Sample records for albite feldspar dissolution

  1. Deformation behaviour of feldspar in greenschist facies granitoide shear zones from the Austroalpine basement to the south of the western Tauern window, Eastern Alps

    NASA Astrophysics Data System (ADS)

    Hentschel, Felix; Trepmann, Claudia

    2015-04-01

    Objective of this study is to elucidate the feldspar deformation behaviour at greenschist facies conditions relevant for the long-term rheological properties of continental crust. Uncertainties in models for the rheological properties are partly due to a poor knowledge of the deformation mechanisms taking place in granitoid rocks at inaccessible depth. The deformation behaviour of feldspar, the most abundant mineral in the continental crust, is characterized by an interaction of brittle, dissolution-precipitation and crystal-plastic processes, which is difficult to evaluate in experiments given the problematic extrapolation of experimental conditions to reasonable natural conditions. However, microfabrics of metamorphic granitoid rocks record the grain-scale deformation mechanisms and involved chemical reactions proceeding during their geological history. This usually includes deformation and modification through several stages in space (depth, i.e., P, T conditions) and/or time. For deciphering the rock's record this implies both, challenge and chance to resolve these different stages. Here, we use the deformation record of mylonitic pegmatites from the Austroalpine basement south to the western Tauern window. The structural, crystallographic and chemical characteristics of the feldspar microfabrics are determined via micro-analytical techniques (polarized light microscopy, scanning electron microscopy, SEM, electron back scatter diffraction, EBSD) to identify the relevant deformation mechanisms and deformation conditions. The pegmatites represent a relatively simple Ca-poor granitoid system, mineralogically dominated by albite-rich plagioclase, K-feldspar and quartz. The matrix of the mylonitic pegmatites is composed of alternating monomineralic albite and quartz ribbons defining the foliation. Fragmented tourmaline and K-feldspar porphyroclasts occur isolated within the matrix. At sites of dilation along the stretching lineation K-feldspar porphyroclasts show serrated boundaries to matrix albite grains. In intragranular zones within K-feldspar porphyroclasts, small albite but also K-feldspar grains and "subgrains" (K-feldspar domains with a small misorientation angle to the host K-feldspar porphyroclast) occur. Strain shadows around porphyroclasts are composed of polymineralic aggregates of albite, K-feldspar and quartz. The albite grains in ribbons show a shape preferred orientation (SPO) with a long axis of about 50-100 µm in the foliation plane and EBSD data reveal an absent to very weak crystallographic orientation (CPO). These microfabrics show indication of a sequence of brittle behaviour, localized dislocation glide-controlled deformation and dissolution-precipitation creep of feldspar. Monomineralic quartz ribbons and shear bands show evidence of dislocation glide by a pronounced CPO, implying dislocation creep. The microfabric is interpreted to have evolved during different stages of episodic deformation at transient high stresses with subsequent viscous flow at decreasing stresses.

  2. Structure-dependent interactions between alkali feldspars and organic compounds: implications for reactions in geologic carbon sequestration.

    PubMed

    Yang, Yi; Min, Yujia; Jun, Young-Shin

    2013-01-02

    Organic compounds in deep saline aquifers may change supercritical CO(2) (scCO(2))-induced geochemical processes by attacking specific components in a mineral's crystal structure. Here we investigate effects of acetate and oxalate on alkali feldspar-brine interactions in a simulated geologic carbon sequestration (GCS) environment at 100 atm of CO(2) and 90 °C. We show that both organics enhance the net extent of feldspar's dissolution, with oxalate showing a more prominent effect than acetate. Further, we demonstrate that the increased reactivity of Al-O-Si linkages due to the presence of oxalate results in the promotion of both Al and Si release from feldspars. As a consequence, the degree of Al-Si order may affect the effect of oxalate on feldspar dissolution: a promotion of ~500% in terms of cumulative Si concentration was observed after 75 h of dissolution for sanidine (a highly disordered feldspar) owing to oxalate, while the corresponding increase for albite (a highly ordered feldspar) was ~90%. These results provide new insights into the dependence of feldspar dissolution kinetics on the crystallographic properties of the mineral under GCS conditions.

  3. Effects of Irradiation on Albite's Chemical Durability.

    PubMed

    Hsiao, Yi-Hsuan; La Plante, Erika Callagon; Krishnan, N M Anoop; Le Pape, Yann; Neithalath, Narayanan; Bauchy, Mathieu; Sant, Gaurav

    2017-10-19

    Albite (NaAlSi 3 O 8 ), a framework silicate of the plagioclase feldspar family and a common constituent of felsic rocks, is often present in the siliceous mineral aggregates that compose concrete. When exposed to radiation (e.g., in the form of neutrons) in nuclear power plants, the crystal structure of albite can undergo significant alterations. These alterations may degrade its chemical durability. Indeed, careful examinations of Ar + -implanted albite carried out using Fourier transform infrared spectroscopy (FTIR) and molecular dynamics simulations show that albite's crystal structure, upon irradiation, undergoes progressive disordering, resulting in an expansion in its molar volume (i.e., a reduction of density) and a reduction in the connectivity of its atomic network. This loss of network connectivity (i.e., rigidity) results in an enhancement of the aqueous dissolution rate of albite-measured using vertical scanning interferometry (VSI) in alkaline environments-by a factor of 20. This enhancement in the dissolution rate (i.e., reduction in chemical durability) of albite following irradiation has significant impacts on the durability of felsic rocks and of concrete containing them upon their exposure to radiation in nuclear power plant (NPP) environments.

  4. Mineral replacement reactions and element mobilization

    NASA Astrophysics Data System (ADS)

    Putnis, Christine V.; Ruiz-Agudo, Encarnacion; King, Helen E.; Hövelmann, Jörn; Renard, François

    2016-04-01

    When a mineral is out of equilibrium with an aqueous fluid, reactions will take place in an attempt to reach a new equilibrium. Commonly in the Earth dissolution at a mineral-fluid interface initiates a coupled reaction involving dissolution and precipitation (Ruiz-Agudo et al., 2014). This is a ubiquitous reaction during such processes as metamorphism, metasomatism and weathering. When rock-forming minerals such as feldspars, olivine, pyroxenes are in contact with aqueous fluids (typically NaCl-rich) resultant new phases are formed and elements present in the parent mineral are released to the fluid and therefore mobilized for transport elsewhere. This has been shown in a number of systems such as the albitisation of feldspars (Hövelmann et al., 2010) when a Ca-bearing plagioclase is replaced by albite (NaAlSi3O8). However during this reaction not only is Ca released to the fluid but most other minor elements, such as Mg, Pb, rare earth elements amongst others, are almost totally mobilized and removed in solution. This interface-coupled dissolution-precipitation reaction has many implications for the redistributon of elements in the crust of the Earth. It is also of note that albitisation occurs often in areas of high mineralization, such as in the Curnamona Province in S. Australia (Au-Cu and Ag-Pb-Zn deposits) and the Bamble District of S. Norway. Secondly atomic force microscopy (AFM) has been used to image these reactions at a nanoscale, especially at the calcite-fluid interface, such as the formation of apatite from phosphate-bearing solutions, and the sequestration of toxic elements, eg., Se and As. References Ruiz-Agudo E., Putnis C.V., Putnis A. (2014) Coupled dissolution and precipitation at mineral-fluid interfaces. Chemical Geology, 383, 132-146. Putnis C.V. and Ruiz-Agudo E. (2013) The mineral-water interface: where minerals react with the environment. Elements, 9, 177-182. Hövelmann J., Putnis A., Geisler T., Schmidt B.C., Golla-Schindler U. (2009) The replacement of plagioclase feldspars by albite: observations from hydrothermal experiments. Contrib. Min. and Pet. 159, 43-59.

  5. Depositional and diagenetic history and petroleum geology of the Jurassic Norphlet Formation of the Alabama coastal waters area and adjacent federal waters area

    USGS Publications Warehouse

    Kugler, R.L.; Mink, R.M.

    1999-01-01

    The discovery of deep (>20,000 ft) gas reservoirs in eolian sandstone of the Upper Jurassic Norphlet Formation in Mobile Bay and offshore Alabama in the late 1970s represents one of the most significant hydrocarbon discoveries in the nation during the past several decades. Estimated original proved gas from Norphlet reservoirs in the Alabama coastal waters and adjacent federal waters is 7.462 trillion ft3 (Tcf) (75% recovery factor). Fifteen fields have been established in the offshore Alabama area. Norphlet sediment was deposited in an arid environment in alluvial fans, alluvial plains, and wadis in updip areas. In downdip areas, the Norphlet was deposited in a broad desert plain, with erg development in some areas. Marine transgression, near the end of Norphlet deposition, resulted in reworking of the upper part of the Norphlet Formation. Norphlet reservoir sandstone is arkose and subarkose, consisting of a simple assemblage of three minerals, quartz, albite, and K-feldspar. The present framework grain assemblage of the Norphlet is dominantly diagenetic, owing to albitization and dissolution of feldspar. Despite the simple framework composition, the diagenetic character of the Norphlet is complex. Important authigenic minerals include carbonate phases (calcite, dolomite, Fe-dolomite, and breunnerite), feldspar (albite and K-feldspar), evaporite minerals (anhydrite and halite), clay minerals (illite and chlorite), quartz, and pyrobitumen. The abundance and distribution of these minerals varies significantly between onshore and offshore regions of Norphlet production. The lack of sufficient internal sources of components for authigenic minerals, combined with unusual chemical compositions of chloride (Mg-rich), breunnerite, and some minor authigenic minerals, suggests that Louann-derived fluids influenced Norphlet diagenesis. In offshore Alabama reservoirs, porosity is dominantly modified primary porosity. Preservation of porosity in deep Norphlet reservoirs is due to a combination of factors, including a lack of sources of cement components and lack of pervasive early cement, so that fluid-flow pathways remained open during burial. Below the dominantly quartz-cemented tight zone near the top of the Norphlet, pyrobitumen is a major contributor to reduction in reservoir quality in offshore Alabama. The highest reservoir quality occurs in those wells where the present gas-water contact is below the paleohydrocarbon-water contact. Thiz zone of highest reservoir quality is between the lowermost occurrence of pyrobitumen and the present gas-water contact.The Upper Jurassic Norphlet Formation sediment was deposited in an arid environment in alluvial fans, alluvial plains, and wadis in undip areas. In downdip areas, the Norphlet was deposited in a broad desert plain, with erg development in some areas. Marine transgression, near the end of Norphlet deposition resulted in reworking of the upper part of the formation. he present framework grain assemblage of the Norphlet is dominantly diagenetic, owing to albitization and dissolution of feldspar. Despite the simple framework composition, the diagenetic character of the Norphlet is complex.

  6. Feldspar diagenesis in the Frio Formation, Brazoria County, Texas Gulf Coast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Land, L.S.; Milliken, K.L.

    1981-07-01

    Tremendous quantities of detrital feldspar have been dissolved or albitized below about 14000 ft (4267 m) in the Frio Formation (Oligocene), Chocolate Bayou Field, Brazoria County, Texas. Some sandstones no longer contain any unmodified detrital feldspar grains. Material transfer involved in these reactions is immense, affecting at least 15% of the rock volume. Thus, albitization has important implications for several other diagenetic processes that involve feldspars or their components. These processes include formation of secondary porosity, precipitation of quartz and carbonate cements, and the evolution of Na-Ca-Cl formation water.

  7. Adsorption of N-tallow 1,3-propanediamine-dioleate collector on albite and quartz minerals, and selective flotation of albite from greek stefania feldspar ore.

    PubMed

    Vidyadhar, A; Hanumantha Rao, K; Forssberg, K S E

    2002-04-01

    The adsorption behavior of tallow 1,3-propanediamine-dioleate (Duomeen TDO) collector on albite and quartz minerals is assessed through Hallimond flotation, zeta potential, and diffuse reflectance FTIR investigations, together with the species distribution of the collector. The collector performance on albite separation from a natural feldspar material is evaluated in bench scale flotation tests. The Hallimond flotation responses of the minerals as a function of pH and collector concentration indicate that albite can be selectively floated from quartz at pH 2 where the doubly positively charged collector species adsorb on albite but not on quartz. However, the zeta potential and infrared spectra reveal that the adsorption behavior of the collector is similar on both minerals. The discrepancy in the flotation and adsorption results is attributed to the coarse and fine particle size fractions, and the shorter and longer equilibration periods employed in these studies respectively. The comparable adsorption on fine particles of albite and quartz at pH 2 is explained by the interaction of ammonium ions on silanol groups by hydrogen bonding as well as electrostatic interactions. The changes in zeta potentials are in good agreement with the formation of ionic species and free molecular forms of the collector. The IR spectra show the coexistence of neutral oleic acid together with charged amine species at low pH values in accordance with the species distribution diagram. Selective flotation of albite is accomplished from a natural feldspar material with tallow diamine-dioleate collector at pH 2 using sulfuric acid, only when the feed is deslimed prior to the bench scale flotation tests. An albite recovery exceeding 85% is achieved from a feed material containing about 50% albite.

  8. Dissolution kinetics as a function of the Gibbs free energy of reaction: An experimental study based on albite feldspar

    NASA Astrophysics Data System (ADS)

    Hellmann, Roland; Tisserand, Delphine

    2006-01-01

    Here we report on an experimental investigation of the relation between the dissolution rate of albite feldspar and the Gibbs free energy of reaction, Δ Gr. The experiments were carried out in a continuously stirred flow-through reactor at 150 °C and pH (150 °C) 9.2. The dissolution rates R are based on steady-state Si and Al concentrations and sample mass loss. The overall relation between Δ Gr and R was determined over a free energy range of -150 < Δ Gr < -15.6 kJ mol -1. The data define a continuous and highly non-linear, sigmoidal relation between R and Δ Gr that is characterized by three distinct free energy regions. The region furthest from equilibrium, delimited by -150 < Δ Gr < -70 kJ mol -1, represents an extensive dissolution rate plateau with an average rate R¯=1.0×10-8molm-2s-1. In this free energy range the rates of dissolution are constant and independent of Δ Gr, as well as [Si] and [Al]. The free energy range delimited by -70 ⩽ Δ Gr ⩽ -25 kJ mol -1, referred to as the 'transition equilibrium' region, is characterized by a sharp decrease in dissolution rates with increasing Δ Gr, indicating a very strong inverse dependence of the rates on free energy. Dissolution nearest equilibrium, defined by Δ Gr > -25 kJ mol -1, represents the 'near equilibrium' region where the rates decrease as chemical equilibrium is approached, but with a much weaker dependence on Δ Gr. The lowest rate measured in this study, R = 6.2 × 10 -11 mol m -2 s -1 at Δ Gr = -16.3 kJ mol -1, is more than two orders of magnitude slower than the plateau rate. The data have been fitted to a rate equation (adapted from Burch et al. [Burch, T. E., Nagy, K. L., Lasaga, A. C., 1993. Free energy dependence of albite dissolution kinetics at 80 °C and pH 8.8. Chem. Geol.105, 137-162]) that represents the sum of two parallel reactions R=k1[1-exp(-ng)]+k2[1-exp(-g)], where k1 and k2 are rate constants that have been determined by regression, with values 1.02 × 10 -8 and 1.80 × 10 -10 mol m -2 s -1, g ≡ |Δ Gr|/R T is a dimensionless number, and n, m1, and m2 are adjustable fitted parameters ( n = 7.98 × 10 -5, m1 = 3.81 and m2 = 1.17). Based on measurements of the temporal evolution of RSi and RAl for each experiment, steady-state dissolution rates appear to be congruent at all Δ Gr. In contrast, non-steady-state dissolution is incongruent, and is related to Δ Gr. Scanning electron microscopy (SEM) images of post-reaction grain surfaces indicate that dissolution close to equilibrium (Δ Gr > -25 kJ mol -1) resulted in the precipitation of a secondary crystalline phase, but there are no indications that this altered the measured R-Δ Gr relation.

  9. Effect of electrolyte on surface free energy components of feldspar minerals using thin-layer wicking method.

    PubMed

    Karagüzel, C; Can, M F; Sönmez, E; Celik, M S

    2005-05-01

    Application of the thin-layer wicking (TLW) technique on powdered minerals is useful for characterizing their surfaces. Albite (Na-feldspar) and orthoclase (K-feldspar) are feldspar minerals which are frequently found in the same matrix. Despite similarities in their physicochemical properties, separation of these minerals from each other by flotation is generally possible in the presence of monovalent salts such as NaCl. Both albite and orthoclase exhibit the same microflotation properties and rather close electrokinetic profiles in the absence of salt. In this study, contact angles of albite and orthoclase determined by the TLW technique yielded close values in the absence and presence of amine collector. While the calculated surface energies and their components determined using contact angle data reveal that the energy terms remain farther apart in the absence of the collector, the differences narrow down at collector concentrations where full flotation recoveries are obtained. However, the effect of addition of NaCl on contact angles and surface free energy components at constant amine concentration indicates that albite is significantly affected by salt addition, whereas orthoclase remains marginally affected. This interesting finding is explained on the basis of ion-exchange properties, the stability of the interface, flotation data, and zeta potential data in the presence of NaCl.

  10. Thermal infrared spectroscopy and modeling of experimentally shocked plagioclase feldspars

    USGS Publications Warehouse

    Johnson, J. R.; Horz, F.; Staid, M.I.

    2003-01-01

    Thermal infrared emission and reflectance spectra (250-1400 cm-1; ???7???40 ??m) of experimentally shocked albite- and anorthite-rich rocks (17-56 GPa) demonstrate that plagioclase feldspars exhibit characteristic degradations in spectral features with increasing pressure. New measurements of albite (Ab98) presented here display major spectral absorptions between 1000-1250 cm-1 (8-10 ??m) (due to Si-O antisymmetric stretch motions of the silica tetrahedra) and weaker absorptions between 350-700 cm-1 (14-29 ??m) (due to Si-O-Si octahedral bending vibrations). Many of these features persist to higher pressures compared to similar features in measurements of shocked anorthite, consistent with previous thermal infrared absorption studies of shocked feldspars. A transparency feature at 855 cm-1 (11.7 ??m) observed in powdered albite spectra also degrades with increasing pressure, similar to the 830 cm-1 (12.0 ??m) transparency feature in spectra of powders of shocked anorthite. Linear deconvolution models demonstrate that combinations of common mineral and glass spectra can replicate the spectra of shocked anorthite relatively well until shock pressures of 20-25 GPa, above which model errors increase substantially, coincident with the onset of diaplectic glass formation. Albite deconvolutions exhibit higher errors overall but do not change significantly with pressure, likely because certain clay minerals selected by the model exhibit absorption features similar to those in highly shocked albite. The implication for deconvolution of thermal infrared spectra of planetary surfaces (or laboratory spectra of samples) is that the use of highly shocked anorthite spectra in end-member libraries could be helpful in identifying highly shocked calcic plagioclase feldspars.

  11. Organic-inorganic interactions at oil-water contacts: quantitative retracing of processes controlling the CO2 occurrence in Norwegian oil reservoirs

    NASA Astrophysics Data System (ADS)

    van Berk, Wolfgang; Schulz, Hans-Martin

    2010-05-01

    Crude oil quality in reservoirs can be modified by degradation processes at oil-water contacts (OWC). Mineral phase assemblages, composition of coexisting pore water, and type and amount of hydrocarbon degradation products (HDP) are controlling factors in complex hydrogeochemical processes in hydrocarbon-bearing siliciclastic reservoirs, which have undergone different degrees of biodegradation. Moreover, the composition of coexisting gas (particularly CO2 partial pressure) results from different pathways of hydrogeochemical equilibration. In a first step we analysed recent and palaeo-OWCs in the Heidrun field. Anaerobic decomposition of oil components at the OWC resulted in the release of methane and carbon dioxide and subsequent dissolution of feldspars (anorthite and adularia) leading to the formation of secondary kaolinite and carbonate phases. Less intensively degraded hydrocarbons co-occur with calcite, whereas strongly degraded hydrocarbons co-occur with solid solution carbonate phase (siderite, magnesite, calcite) enriched in δ13C. To test such processes quantitatively in a second step, CO2 equilibria and mass transfers induced by organic-inorganic interactions have been hydrogeochemically modelled in different semi-generic scenarios with data from the Norwegian continental shelf (acc. Smith & Ehrenberg 1989). The model is based on chemical thermodynamics and includes irreversible reactions representing hydrolytic disproportionation of hydrocarbons according to Seewald's (2006) overall reaction (1a) which is additionally applied in our modelling work in an extended form including acetic acid (1b): (1) R-CH2-CH2-CH3 + 4H2O -> R + 2CO2 + CH4 + 5H2, (2) R-CH2-CH2-CH3 + 4H2O -> R + 1.9CO2 + 0.1CH3COOH + 0.9CH4 + 5H2. Equilibrating mineral assemblages (different feldspar types, quartz, kaolinite, calcite) are based on the observed primary reservoir composition at 72 °C. Modelled equilibration and coupled mass transfer were triggered by the addition and reaction of different amounts of HDP. Modelled CO2 partial pressure values in a multicomponent gas phase equilibrated with K-feldspar, quartz, kaolinite, and calcite resemble measured data. Similar CO2 contents result from acetic acid addition (eq. 1b). Equilibration with albite or anorthite reduces the release of CO2 into the multicomponent gas phase dramatically, by 1 or 4 orders of magnitude compared with the equilibration with K-feldspar (van Berk et al., 2009). Third and based on data by Ehrenberg & Jakobsen (2001), the effects of organic-inorganic interactions at OWCs in Brent Group reservoir sandstones from the Gullfaks Oilfield (offshore Norway) have been hydrogeochemically modelled. Observed local changes in mineral phase assemblage compositions (content of different feldspar types, kaolinite, carbonate) and CO2 partial pressures are attributed to varying degrees of oil-biodegradation (up to more than 10 %; Horstadt et al. 1992). Modelling results are congruent with observations and indicate that (i) intense dissolution of anorthite, (ii) less intense dissolution of albite, (iii) minor dissolution of K-feldspar, (iv) intense precipitation of kaolinite and quartz, (v) less intense precipitation of carbonate, and (vi) formation of CO2 partial pressures are driven by the release of HDP. References Ehrenberg SN & Jakobsen KG (2001) Plagioclase dissolution related to biodegradation of oil in Brent Group sandstones (Middle Jurassic) of Gullfaks Field, northern North Sea. Sedimentology, 48, 703-721. Smith JT & Ehrenberg SN (1989) Correlation of carbon dioxide abundance with temperature in clastic hydrocarbon reservoirs: relationship to inorganic chemical equilibrium. Marine and Petroleum Geology, 6, 129-135. Seewald JS (2003) Organic-inorganic interactions in petroleum-producing sedimentary basins. Nature, 426, 327-333. van Berk, W, Schulz, H-M & Fu, Y (2009) Hydrogeochemical modelling of CO2 equilibria and mass transfer induced by organic-inorganic interactions in siliciclastic petroleum reservoirs. Geofluids, 9, 253-262.

  12. Radiation damage-controlled localization of alteration haloes in albite: implications for alteration types and patterns vis-à-vis mineralization and element mobilization

    NASA Astrophysics Data System (ADS)

    Pal, D. C.; Chaudhuri, T.

    2016-12-01

    Uraninite, besides occurring in other modes, occurs as inclusions in albite in feldspathic schist in the Bagjata uranium deposits, Singhbhum shear zone, India. The feldspathic schist, considered the product of Na-metasomatism, witnessed multiple hydrothermal events, the signatures of which are preserved in the alteration halo in albite surrounding uraninite. Here we report radiation damage-controlled localization of alteration halo in albite and its various geological implications. Microscopic observation and SRIM/TRIM simulations reveal that the dimension of the alteration halo is dependent collectively on the zone of maximum cumulative α dose that albite was subjected to and by the extent of dissolution of uraninite during alteration. In well-preserved alteration haloes, from uraninite to the unaltered part of albite, the alteration minerals are systematically distributed in different zones; zone-1: K-feldspar; zone-2: chlorite; zone-3: LREE-phase/pyrite/U-Y-silicate. Based on textures of alteration minerals in the alteration microdomain, we propose a generalized Na+➔K+➔H+ alteration sequence, which is in agreement with the regional-scale alteration pattern. Integrating distribution of ore and alteration minerals in the alteration zone and their geochemistry, we further propose multiple events of U, REE, and sulfide mineralization/mobilization in the Bagjata deposit. The alteration process also involved interaction of the hydrothermal fluid with uraninite inclusions resulting in resorption of uraninite, redistribution of elements, including U and Pb, and resetting of isotopic clock. Thus, our study demonstrates that alteration halo is a miniature scale-model of the regional hydrothermal alteration types and patterns vis-à-vis mineralization/mobilization. This study further demonstrates that albite is vulnerable to radiation damage and damage-controlled fluid-assisted alteration, which may redistribute metals, including actinides, from radioactive minerals included in albite. This has important implications in geochronology. Such a study can also provide important clues to the chemical behavior of granite, in which albite is a common constituent, in a physico-chemical ambience analogous to a site of deep borehole disposal of radioactive waste.

  13. Geology and mineralization of the Jabal Umm Al Suqian albitized apogranite, southern Najd region, Kingdom of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Bokhari, M. Madani; Jackson, Norman J.; Al Oweidi, Khalid

    A porphyritic muscovite—albite—microcline microgranite crops out at Jabal Umm Al Suqian, 80 km NE of Bishah. It intrudes alkali-feldspar granite, quartz diorite and a conglomerate composed of dioritic clasts, and is enveloped by a shell of hydrothermally altered, albitized, greisenized and microclinized country rocks. The principal chemical features of the microgranite are: 5-7% Na 2O, Na 2O/K 2O = 1.7, Rb 978 ppm, Sn 94 ppm, and low Ba, Ce, Sr and Zr. Albitized microgranite is highly enriched in F, Nb and Y, and the greisenized assemblages are enriched in F, Li, Rb, Sn and Zn. Mineralization consists of small veins and lenses of fluorite and disseminated minerals such as ixiolite, monazite, bastnaesite, betafite and fluorite, but is not economically significant. The microgranite is probably an apogranite cupola in the roof of an alkali-feldspar granite. Crystallization at about 1 kb total volatile pressure was controlled by (1) variable (0-3 wt. %) F contents which significantly reduced the freezing temperature of the melt and resulted in an albite-rich residue; and (2) progressive decrease in K, which also produced a sodic residuum. K- and F-rich hydrothermal fluids produced the envelope of phyllic alteration. Repetitive increase and decrease in volatile pressure produced rhythmic banding of quartz and alkali feldspar in the upper part of the cupola.

  14. Carbonation of Rock Minerals by Supercritical Carbon Dioxide at 250 degrees C.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugama, T.; Ecker, L.; Butcher, T.

    2010-06-01

    Wet powder-samples of five rock minerals, granite, albite, hornblende, diorite, and biotite mica, were exposed in supercritical carbon dioxide (scCO2) for 3 days at 250 C under 17.23 MPa pressure, and then the susceptibility of the various crystalline phases present in these mineral structures to reactions with hot scCO2 was investigated by XRD and FT-IR. The anorthite present in diorite was identified as the most vulnerable phase to carbonation. In contrast, biotite displayed a great resistance, although its phase was transformed hydrothermally to sanidine and quartz. Granite comprised of two phases, anorthoclase-type albite and quartz. The carbonation of former phasemore » led to the formation of amorphous sodium and potassium carbonates coexisting with the clay-like by-products of the carbonation reaction. The reactivity of quartz to scCO2 was minimal, if any. Among these rock minerals, only hornblende formed crystalline carbonation products, such as calcite and magnesite after exposure, reflecting the likelihood of an increase in its volume. Based upon the feldspar ternary diagram, the carbonation rate of various different minerals in the plagioclase feldspar family depended primarily on the amount of anorthite. On the other hand, alkali feldspar minerals involving anorthoclase-type albite and sanidine had a lower reactivity with scCO2, compared with that of plagioclase feldspar minerals.« less

  15. Hydrothermal alteration and mass exchange in the hornblende latite porphyry, Rico, Colorado

    USGS Publications Warehouse

    Larson, P.B.; Cunningham, C.G.; Naeser, C.W.

    1994-01-01

    The Rico paleothermal anomaly, southwestern Colorado, records the effects of a large hydrothermal system that was active at 4 Ma. This hydrothermal system produced the deep Silver Creek stockwork Mo deposit, which formed above the anomaly's heat source, and shallower base and precious-metal vein and replacement deposits. A 65 Ma hornblende latite porphyry is present as widespread sills throughout the area and provided a homogenous material that recorded the effects of the hydrothermal system up to 8 km from the center. Hydrothermal alteration in the latite can be divided into a proximal facies which consists of two assemblages, quartz-illite-calcite and chlorite-epidote, and a distal facies which consists of a distinct propylitic assemblage. Temperatures were gradational vertically and laterally in the anomaly, and decreased away from the centra heat source. A convective hydrothermal plume, 3 km wide and at least 2 km high, was present above the stock-work molybdenum deposit and consisted of upwelling, high-temperature fluids that produced the proximal alteration facies. Distal facies alteration was produced by shallower cooler fluids. The most important shallow base and precious-metal vein deposits in the Rico district are at or close to the boundary of the thermal plume. Latite within the plume had a large loss of Na2O, large addition of CaO, and variable SiO2 exchante. Distal propylitized latite samples lost small amounts of Na2O and CaO and exchanged minor variable amounts of SiO2. The edge of the plume is marked by steep Na2O exchange gradients. Na2O exchange throughout the paleothermal anomaly was controlled by the reaction of the albite components in primary plagioclase and alkali feldspars. Initial feldspar alteration in the distal facies was dominated by reaction of the plagioclase, and the initial molar ratio of reactants (alkali feldspar albite component to plagioclase albite component) was 0.35. This ratio of the moles of plagioclase to alkali feldspar albite components that reacted evolved to 0.92 as the reaction progressed. Much of the alkali feldspar albite component in the proximal facies reacted while the, primary plagioclase was still unreacted, but the ratio for these assemblages increased to 1.51 when the plagioclase entered the reaction paragenesis. Plagioclase reaction during distal propylitic alteration resulted in pseudomorphic albite mixed with illite and a loss of Na2O. CaO is lost in the distal facies as hornblende reacts to chlorite, although some calcium may be fixed in calcite. CaO is added to the proximal facies as the quantity of chlorite replacing hornblende increases and epidote and calcite are produced. ?? 1994 Springer-Verlag.

  16. Elasticity of plagioclase feldspars

    NASA Astrophysics Data System (ADS)

    Brown, J. Michael; Angel, Ross J.; Ross, Nancy L.

    2016-02-01

    Elastic properties are reported for eight plagioclase feldspars that span compositions from albite (NaSi3AlO8) to anorthite (CaSi2Al2O8). Surface acoustic wave velocities measured using Impulsive Stimulated Light Scattering and compliance sums from high-pressure X-ray compression studies accurately determine all 21 components of the elasticity tensor for these triclinic minerals. The overall pattern of elasticity and the changes in individual elastic components with composition can be rationalized on the basis of the evolution of crystal structures and chemistry across this solid-solution join. All plagioclase feldspars have high elastic anisotropy; a* (the direction perpendicular to the b and c axes) is the softest direction by a factor of 3 in albite. From albite to anorthite the stiffness of this direction undergoes the greatest change, increasing twofold. Small discontinuities in the elastic components, inferred to occur between the three plagioclase phases with distinct symmetry (C1>¯, I1>¯, and P1>¯), appear consistent with the nature of the underlying conformation of the framework-linked tetrahedra and the associated structural changes. Measured body wave velocities of plagioclase-rich rocks, reported over the last five decades, are consistent with calculated Hill-averaged velocities using the current moduli. This confirms long-standing speculation that previously reported elastic moduli for plagioclase feldspars are systematically in error. The current results provide greater assurance that the seismic structure of the middle and lower crusts can be accurately estimated on the basis of specified mineral modes, chemistry, and fabric.

  17. Mueilha rare metals granite, Eastern Desert of Egypt: An example of a magmatic-hydrothermal system in the Arabian-Nubian Shield

    NASA Astrophysics Data System (ADS)

    Abu El-Rus, Mohamed A.; Mohamed, Mohamed A.; Lindh, Anders

    2017-12-01

    The Mueilha granite pluton is one of the rare-metals bearing peraluminous granitic plutons in the Arabian-Nubian Shield. It represents the apical part of a highly evolved magma chamber emplaced at a shallow level subsequent to the post Pan-African orogeny. The pluton can be seen as a highly leucocratic medium-grained albite/oligoclase framework infilled with quartz, K-feldspar and muscovite that are variably overgrown by K-feldspar, muscovite, quartz and topaz megacrysts. The increasing number and size of the K-feldspar megacrysts at the expense of the whitened albite/oligoclase framework imparts variably red color to the Mueilha granite. Contacts between the milky white and red granites are usually gradational, but may be locally sharp or may form narrow transition zones resulting from abrupt variations in texture and lithology. Textural relations indicate an initial stage of hydrothermal albitization of magmatic plagioclase and crystallization of topaz megacrysts resulting from infiltration of Na-rich fluorine bearing fluids. A subsequent stage of metasomatic enrichment is characterized by extensive growth of large K-feldspar, quartz and muscovite megacrysts at the expense of the albite/oligoclase crystals as a result of infiltration of K-Si rich hydrous fluids. Post-magmatic infiltration of hydrous fluids along the fault planes is shown by the intense replacement of alkali feldspar megacrysts by quartz, development of myrmekitic intergrowth pockets along the K-feldspar megacrysts and sealing of the micro-fractures by cryptocrystalline mixtures of clay minerals, iron oxides, sericite and chlorite. Compositionally, the red granitic rocks have higher SiO2, Fe2O3total, K2O/Na2O, Σ REE, Y, Th, U, Zr and Zn and lower Al2O3, Ga, Ta, Nb and Mo compared to the milky white granites. LILE and Sn do not show clear variation trends throughout the Mueilha granite pluton, suggesting their immobility during hydrothermal alteration. Microthermometric measurements indicate that the interactions with the hydrothermal fluids started at a minimum temperature > 400°C, most likely during the late-stage crystallization of the Mueilha granite and continued after their complete solidification (i.e. subsolidus conditions) at a temperature as low as 120 °C. The high fertility of Mueilha granite is most plausibly the result of partial melting within the undepleted juvenile crust of the Arabian-Nubian Shield that has formed during the Pan-African orogeny.

  18. Geological setting and petrogenesis of symmetrically zoned, miarolitic granitic pegmatites at Stak Nala, Nanga Parbat - Haramosh Massif, northern Pakistan

    USGS Publications Warehouse

    Laurs, B.M.; Dilles, J.H.; Wairrach, Y.; Kausar, A.B.; Snee, L.W.

    1998-01-01

    Miarolitic granitic pegmatites in the Stak valley in the northeast part of the Nanga Parbat - Haramosh Massif, in northern Pakistan, locally contain economic quantities of bi- and tricolored tourmaline. The pegmatites form flat-lying sills that range from less than 1 m to more than 3 m thick and show symmetrical internal zonation. A narrow outer or border zone of medium-to coarse-grained oligoclase - K-feldspar - quartz grades inward to a very coarse-grained wall zone characterized by K-feldspar - oligoclase - quartz - schorl tourmaline. Radiating sprays of schorl and flaring megacrysts of K-feldspar (intermediate microcline) point inward, indicating progressive crystallization toward the core. The core zone consists of variable mixtures of blocky K-feldspar (intermediate microcline), oligoclase, quartz, and sparse schorl or elbaite, with local bodies of sodic aplite and miarolitic cavities or "pockets". Minor spessartine-almandine garnet and lo??llingite are disseminated throughout the pegmatite, but were not observed in the pockets. The pockets contain well-formed crystals of albite, quartz, K-feldspar (maximum microcline ?? orthoclase overgrowths), schorl-elbaite tourmaline, muscovite or lepidolite, topaz, and small amounts of other minerals. Elbaite is color-zoned from core to rim: green (Fe2+- and Mn2+-bearing), colorless (Mn2+-bearing), and light pink (trace Mn3+). Within ???10 cm of the pegmatites, the granitic gneiss wallrock is bleached owing to conversion of biotite to muscovite, with local quartz and albite added. Schorl is disseminated through the altered gneiss, and veins of schorl with bleached selvages locally traverse the wallrock up to 1 m from the pegmatite contact. The schorl veins can be traced into the outer part of the wall zone, which suggests that they formed from aqueous fluids derived during early saturation of the pegmatite-forming leucogranitic magma rich in H2O, F, B, and Li. Progressive crystallization resulted in a late-stage sodic magma and abundant aqueous fluids. Two late stages of volatile escape are recognized: the first stage caused pressure-quenching of the last magma, which produced aplite and caused albitization (An3 to An8) of earlier crystallized K-feldspar and oligoclase. The second stage, released during the rupture of miarolitic cavities, produced platy albite ("cleavelandite," An1) locally associated with F-rich moscovite and elbaite. Albitization is likely due to cooling of alkali-fluoride-dominated fluids at less than 2 kbar pressure. The pegmatites are derived from Himalayan leucogranitic magma emplaced prior to 5 Ma into granulitic gneiss that was at 300?? to 550??C and 1.5 to 2 kbar. The pegmatites were emplaced during uplift of the Haramosh Massif, since they cross-cut ductile normal faults but are cut by brittle normal faults. Economically important pink tourmaline mineralization formed in pockets concentrated near the crest of a broad antiform, as a result of trapping of late magmatic aqueous fluids that had become Fe-poor owing to the prior crystallization of schorl.

  19. Feldspar dissolution rates in the Topopah Spring Tuff, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Bryan, C.R.; Helean, K.B.; Marshall, B.D.; Brady, P.V.

    2009-01-01

    Two different field-based methods are used here to calculate feldspar dissolution rates in the Topopah Spring Tuff, the host rock for the proposed nuclear waste repository at Yucca Mountain, Nevada. The center of the tuff is a high silica rhyolite, consisting largely of alkali feldspar (???60 wt%) and quartz polymorphs (???35 wt%) that formed by devitrification of rhyolitic glass as the tuff cooled. First, the abundance of secondary aluminosilicates is used to estimate the cumulative amount of feldspar dissolution over the history of the tuff, and an ambient dissolution rate is calculated by using the estimated thermal history. Second, the feldspar dissolution rate is calculated by using measured Sr isotope compositions for the pore water and rock. Pore waters display systematic changes in Sr isotopic composition with depth that are caused by feldspar dissolution. The range in dissolution rates determined from secondary mineral abundances varies from 10-16 to 10-17 mol s-1 kg tuff-1 with the largest uncertainty being the effect of the early thermal history of the tuff. Dissolution rates based on pore water Sr isotopic data were calculated by treating percolation flux parametrically, and vary from 10-15 to 10-16 mol s-1 kg tuff-1 for percolation fluxes of 15 mm a-1 and 1 mm a-1, respectively. Reconciling the rates from the two methods requires that percolation fluxes at the sampled locations be a few mm a-1 or less. The calculated feldspar dissolution rates are low relative to other measured field-based feldspar dissolution rates, possibly due to the age (12.8 Ma) of the unsaturated system at Yucca Mountain; because oxidizing and organic-poor conditions limit biological activity; and/or because elevated silica concentrations in the pore waters (???50 mg L-1) may inhibit feldspar dissolution. ?? 2009 Elsevier Ltd. All rights reserved.

  20. Formation of albitite-hosted uranium within IOCG systems: the Southern Breccia, Great Bear magmatic zone, Northwest Territories, Canada

    NASA Astrophysics Data System (ADS)

    Montreuil, Jean-François; Corriveau, Louise; Potter, Eric G.

    2015-03-01

    Uranium and polymetallic U mineralization hosted within brecciated albitites occurs one kilometer south of the magnetite-rich Au-Co-Bi-Cu NICO deposit in the southern Great Bear magmatic zone (GBMZ), Canada. Concentrations up to 1 wt% U are distributed throughout a 3 by 0.5 km albitization corridor defined as the Southern Breccia zone. Two distinct U mineralization events are observed. Primary uraninite precipitated with or without pyrite-chalcopyrite ± molybdenite within magnetite-ilmenite-biotite-K-feldspar-altered breccias during high-temperature potassic-iron alteration. Subsequently, pitchblende precipitated in earthy hematite-specular hematite-chlorite veins associated with a low-temperature iron-magnesium alteration. The uraninite-bearing mineralization postdates sodic (albite) and more localized high-temperature potassic-iron (biotite-magnetite ± K-feldspar) alteration yet predates potassic (K-feldspar), boron (tourmaline) and potassic-iron-magnesium (hematite ± K-feldspar ± chlorite) alteration. The Southern Breccia zone shares attributes of the Valhalla (Australia) and Lagoa Real (Brazil) albitite-hosted U deposits but contains greater iron oxide contents and lower contents of riebeckite and carbonates. Potassium, Ni, and Th are also enriched whereas Zr and Sr are depleted with respect to the aforementioned albitite-hosted U deposits. Field relationships, geochemical signatures and available U-Pb dates on pre-, syn- and post-mineralization intrusions place the development of the Southern Breccia and the NICO deposit as part of a single iron oxide alkali-altered (IOAA) system. In addition, this case example illustrates that albitite-hosted U deposits can form in albitization zones that predate base and precious metal ore zones in a single IOAA system and become traps for U and multiple metals once the tectonic regime favors fluid mixing and oxidation-reduction reactions.

  1. Origin of the Okrouhlá Radouň episyenite-hosted uranium deposit, Bohemian Massif, Czech Republic: fluid inclusion and stable isotope constraints

    NASA Astrophysics Data System (ADS)

    Dolníček, Zdeněk; René, Miloš; Hermannová, Sylvie; Prochaska, Walter

    2014-04-01

    The Okrouhlá Radouň shear zone hosted uranium deposit is developed along the contact of Variscan granites and high-grade metasedimentary rocks of the Moldanubian Zone of the Bohemian Massif. The pre-ore pervasive alteration of wall rocks is characterized by chloritization of mafic minerals, followed by albitization of feldspars and dissolution of quartz giving rise to episyenites. The subsequent fluid circulation led to precipitation of disseminated uraninite and coffinite, and later on, post-ore quartz and carbonate mineralization containing base metal sulfides. The fluid inclusion and stable isotope data suggest low homogenization temperatures (˜50-140 °C during pre-ore albitization and post-ore carbonatization, up to 230 °C during pre-ore chloritization), variable fluid salinities (0-25 wt.% NaCl eq.), low fluid δ18O values (-10 to +2 ‰ V-SMOW), low fluid δ13C values (-9 to -15 ‰ V-PDB), and highly variable ionic composition of the aqueous fluids (especially Na/Ca, Br/Cl, I/Cl, SO4/Cl, NO3/Cl ratios). The available data suggest participation of three fluid endmembers of primarily surficial origin during alteration and mineralization at the deposit: (1) local meteoric water, (2) Na-Ca-Cl basinal brines or shield brines, (3) SO4-NO3-Cl-(H)CO3 playa-like fluids. Pre-ore albitization was caused by circulation of alkaline, oxidized, and Na-rich playa fluids, whereas basinal/shield brines and meteoric water were more important during the post-ore stage of alteration.

  2. Crystal structure refinement of reedmergnerite, the boron analog of albite

    USGS Publications Warehouse

    Clark, J.R.; Appleman, D.E.

    1960-01-01

    Ordering of boron in a feldspar crystallographic site T1(0) has been found in reedmergnerite, which has silicon-oxygen and sodium-oxygen distances comparable to those in isostructural low albite. If a simple ionic model is assumed, calculated bond strengths yield a considerable charge imbalance in reedmergnerite, an indication of the inadequacy of the model with respect to these complex structures and of the speculative nature of conclusions based on such a model.

  3. Cryptic microtextures and geological histories of K-rich alkali feldspars revealed by charge contrast imaging

    NASA Astrophysics Data System (ADS)

    Flude, Stephanie; Lee, Martin R.; Sherlock, Sarah C.; Kelley, Simon P.

    2012-06-01

    Charge contrast imaging in the scanning electron microscope can provide new insights into the scale and composition of alkali feldspar microtextures, and such information helps considerably with the interpretation of their geological histories and results of argon isotope thermochronological analyses. The effectiveness of this technique has been illustrated using potassium-rich alkali feldspars from the Dartmoor granite (UK). These feldspars contain strain-controlled lamellar crypto- and microperthites that are cross-cut by strain-free deuteric microperthites. The constituent albite- and orthoclase-rich phases of both microperthite generations can be readily distinguished by atomic number contrast imaging. The charge contrast results additionally show that sub-micrometre-sized albite `platelets' are commonplace between coarser exsolution lamellae and occur together to make cryptoperthites. Furthermore, charge contrast imaging reveals that the orthoclase-rich feldspar is an intergrowth of two phases, one that is featureless with uniform contrast and another that occurs as cross-cutting veins and grains with the {110} adularia habit. Transmission electron microscopy shows that the featureless feldspar is tweed orthoclase, whereas the veins and euhedral grains are composed of irregular microcline that has formed from orthoclase by `unzipping' during deuteric or hydrothermal alteration. The charge contrast imaging results are especially important in demonstrating that deuteric perthites are far more abundant in alkali feldspars than would be concluded from investigations using conventional microscopy techniques. The unexpected presence of such a high volume of replacement products has significant implications for understanding the origins and geological histories of crustal rocks and the use of alkali feldspars in geo- and thermochronology. Whilst the precise properties of feldspars that generate contrast remain unclear, the similarity between charge contrast images and corresponding cathodoluminescence images of deuteric microperthites indicates that trace element chemistry and possibly also elastic strain within the crystal play a major role.

  4. Pressure determination in Hydrothermal Diamond Anvil Cell via laser interferometry: Investigation of hydrothermal melting of haplogranitic glass

    NASA Astrophysics Data System (ADS)

    Solferino, G.; Anderson, A. J.

    2012-12-01

    Pressure determination in HDAC experiments of hydrothermal melting of a haplogranitic glass at 130-830 MPa and 600-800 °C were performed employing in-situ visualization of alpha to beta quartz via laser interferometry. Hitherto, Raman spectroscopy of ruby, quartz, 13C and zircon has been used for the same purpose, with a best resolution of 40-50 MPa. Our method average uncertainty is just 3.4 MPa. This augmented precision is critical in estimate of the emplacement depth of mid to upper crustal magmatic bodies, e.g., intermediate-felsic intrusions, or definition of formation conditions of magmatic ores, like rare metal pegmatites. Moreover, thanks to this improved resolution on pressure measurements, we observed that actual run pressure, named Pα/β, is smaller than pressure computed using the equation of state (EOS) of pure water, here labeled PH2O for an ample range of pressures, up to 400 MPa. The absolute value of ΔP = Pα/β- PH2O decrease at higher pressure, and switches from negative to positive at P > 800 MPa. Since dissolution of the glass/melt into the pressure medium (water) leads to increment of the medium compressibility (density), then the medium should be able to impose a larger pressure than pure water for every observed temperature of alpha to beta transition (i.e., steeper isochor). A possible explanation of this discrepancy is found in the differential density between the pressure medium and the melt, and in the change of the volume occupied by the fluid for increasing temperature, as it emerges from a simplified model of dissolution of albite feldspar / albite melt in water, prepared for this study on the base of solubility data available in literature.

  5. Inclusions in Minerals: the Importance of Host Mineral Composition, Pressure and Temperature for Potential Inclusion Alteration

    NASA Astrophysics Data System (ADS)

    Marquardt, K.; Markl, G.

    2017-12-01

    Inclusions in minerals are used to decipher details of the host mineral/rock history. They frequently originate from the time of mineral formation; be it diamond, garnet or `common' feldspar. Thus protected they survive changing pressure and temperature for different durations compared to their non-enclosed counterparts. Inclusions may (partially) equilibrate at a later point in history, and thus provide complementary information on past processes and alteration pathways less commonly discussed. The study investigates partially altered pyroxene inclusions in feldspars indicative of high-p-T fluid transport during granulite facies metamorphism in charnockites from the Lofoten Islands in Northern Norway. The protoliths formed about 1750 Ma ago, at about 800 - 900°C and 4 kbar. During crustal thickening, they reached high-pressure granulite-facies conditions of about 8-11 kbar at 700°C (1). While this event caused large magmatic pyroxenes to react with an infiltrating fluid to form corona textures of amphibole; pyroxenes inside feldspars behaved very differently. Pyroxenes enclosed in orthoclase-rich feldspar were partially hydrated to amphiboles. Contrastingly, feldspar with lower orthoclase content protected the magmatic pyroxenes efficiently. Transport and transformation mechanisms recorded in these µm to nm textures were studied by EMPA and TEM. Focused Ion Beam (FIB) prepared TEM-foils revealed that pyroxenes, when spatially connected to albite exsolution lamellae, show dissolution features. Based on composition, nanostructures and the known p-T-history, we propose the following succession of events. Ternary feldspar containing small magmatic pyroxenes began to exsolve between about 800 and 700°C. The exsolution changed from coherent to incoherent and a fluid infiltrated the feldspar accompanied by a formation of nanotunnels. Gradually the tunnels grew larger so that finally whole film perthites acted as pathways. When the fluid had access to pyroxene, reaction took place and amphibole formed. nm-scale observations need to be considered in studies on fluid mobility and for total reaction rates. Ref: Fitz Gerald, J. D., Parsons, I., & Cayzer, N. (2006). American Mineralogist, 91, 772-783. Markl, G., & Bucher, K. (1998). Nature, 391, 781-783.

  6. Albite dissociation reaction in the Northwest Africa 8275 shocked LL chondrite and implications for its impact history

    NASA Astrophysics Data System (ADS)

    Miyahara, Masaaki; Ohtani, Eiji; Yamaguchi, Akira

    2017-11-01

    An impact event recorded in the Northwest Africa (NWA) 8275 LL7 ordinary chondrite was investigated based on high-pressure mineralogy of pervasive shock-melt veins present in the rock. NWA 8275 consists of olivine, low-Ca pyroxene, plagioclase (albite-oligoclase composition), and minor high-Ca pyroxene, K-feldspar, phosphate minerals, metallic Fe-Ni and iron sulfide. Plagioclase and K-feldspar grains near the shock-melt veins have become amorphous, although no high-pressure polymorphs of olivine and pyroxene were identified in or adjacent the shock-melt veins. Raman spectroscopy and focused ion beam (FIB)-assisted transmission electron microscopy (TEM) observations reveal that plagioclase entrained around the center portion of the shock-melt veins has dissociated into a jadeite + coesite assemblage. Alternately stacked jadeite and coesite crystals occur in the original plagioclase. On approaching the host rock/shock-melt vein, only jadeite is present. Based on the high-pressure polymorph assemblage, the shock pressure and temperature conditions recorded in the shock-melt veins are ∼3-12 GPa and ∼1973-2373 K, respectively. Following a Rankine-Hugoniot relationship, the impact velocity was at least ∼0.45-1.54 km/s. The duration of high-pressure and high-temperature (HPHT) conditions required for the albite dissociation reaction is estimated a maximum of ∼4-5 s using the phase transition rate of albite, implying that a body of up to ∼9-12 km across collided with the parent body of NWA 8275. The coexistence of jadeite and coesite, the latter of which rarely accompanies jadeite in shocked ordinary chondrites, as a dissociation product of albite requires relatively long duration HPHT conditions. Thus, the impact event recorded in NWA 8275 was likely caused by a larger-than-typical projectile.

  7. Morphological evolution of dissolving feldspar particles with anisotropic surface kinetics and implications for dissolution rate normalization and grain size dependence: A kinetic modeling study

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Lüttge, Andreas

    2009-11-01

    With previous two-dimensional (2D) simulations based on surface-specific feldspar dissolution succeeding in relating the macroscopic feldspar kinetics to the molecular-scale surface reactions of Si and Al atoms ( Zhang and Lüttge, 2008, 2009), we extended our modeling effort to three-dimensional (3D) feldspar particle dissolution simulations. Bearing on the same theoretical basis, the 3D feldspar particle dissolution simulations have verified the anisotropic surface kinetics observed in the 2D surface-specific simulations. The combined effect of saturation state, pH, and temperature on the surface kinetics anisotropy has been subsequently evaluated, found offering diverse options for morphological evolution of dissolving feldspar nanoparticles with varying grain sizes and starting shapes. Among the three primary faces on the simulated feldspar surface, the (1 0 0) face has the biggest dissolution rate across an extensively wide saturation state range and thus acquires a higher percentage of the surface area upon dissolution. The slowest dissolution occurs to either (0 0 1) or (0 1 0) faces depending on the bond energies of Si-(O)-Si ( ΦSi-O-Si/ kT) and Al-(O)-Si ( ΦAl-O-Si/ kT). When the ratio of ΦSi-O-Si/ kT to ΦAl-O-Si/ kT changes from 6:3 to 7:5, the dissolution rates of three primary faces change from the trend of (1 0 0) > (0 1 0) > (0 0 1) to the trend of (1 0 0) > (0 0 1) > (0 1 0). The rate difference between faces becomes more distinct and accordingly edge rounding becomes more significant. Feldspar nanoparticles also experience an increasing degree of edge rounding from far-from-equilibrium to close-to-equilibrium. Furthermore, we assessed the connection between the continuous morphological modification and the variation in the bulk dissolution rate during the dissolution of a single feldspar particle. Different normalization treatments equivalent to the commonly used mass, cube assumption, sphere assumption, geometric surface area, and reactive surface area normalizations have been used to normalize the bulk dissolution rate. For each of the treatments, time consistence and grain size dependence of the normalized dissolution rate have been evaluated and the results revealed significant dependences on the magnitude of surface kinetic anisotropy under differing environmental conditions. In general, the normalized dissolution rates are strongly dependent on grain size. Time-consistent normalization treatment varies with the investigated condition. The modeling results suggest that the sphere-, cube-, and BET-normalized dissolution rates are appropriate under the far-from-equilibrium conditions at low pH where these normalizations are time-consistent and are slightly dependent on grain size.

  8. Visible/near-infrared spectra of experimentally shocked plagioclase feldspars

    USGS Publications Warehouse

    Johnson, J. R.; Horz, F.

    2003-01-01

    High shock pressures cause structural changes in plagioclase feldspars such as mechanical fracturing and disaggregation of the crystal lattice at submicron scales, the formation of diaplectic glass (maskelynite), and genuine melting. Past studies of visible/ near-infrared spectra of shocked feldspars demonstrated few spectral variations with pressure except for a decrease in the depth of the absorption feature near 1250-1300 nm and an overall decrease in reflectance. New visible/near-infrared spectra (400-2500 nm) of experimentally shocked (17-56 GPa) albite- and anorthite-rich rock powders demonstrate similar trends, including the loss of minor hydrated mineral bands near 1410, 1930, 2250, and 2350 nm. However, the most interesting new observations are increases in reflectance at intermediate pressures, followed by subsequent decreases in reflectance at higher pressures. The amount of internal scattering and overall sample reflectance is controlled by the relative proportions of micro-fractures, submicron grains, diaplectic glass, and melts formed during shock metamorphism. We interpret the observed reflectance increases at intermediate pressures to result from progressively larger proportions of submicron feldspar grains and diaplectic glass. The ensuing decreases in reflectance occur after diaplectic glass formation is complete and the proportion of genuine melt inclusions increases. The pressure regimes over which these reflectance variations occur differ between albite and anorthite, consistent with thermal infrared spectra of these samples and previous studies of shocked feldspars. These types of spectral variations associated with different peak shock pressures should be considered during interpretation and modeling of visible/near-infrared remotely sensed spectra of planetary and asteroidal surfaces.

  9. Porosity developed during mineral replacement reactions: implications for fluid flux in the Earth

    NASA Astrophysics Data System (ADS)

    Putnis, Christine V.; Trindade Pedrosa, Elisabete; Hövelmann, Jörn; Renard, François; Ruiz-Agudo, Encarnacion

    2017-04-01

    Aqueous fluids, that are ubiquitous in the crust of the Earth, will move through possible pathways in rocks. Rocks characteristically have low permeability but fractures can provide fast fluid channels. Mineral grain boundaries also present easy fluid pathways. However, porosity within minerals forms when a mineral is out of equilibrium with an aqueous fluid and reactions take place in an attempt to reach a new equilibrium. Commonly, dissolution at a mineral-fluid interface initiates one or several coupled reactions involving dissolution and precipitation (Putnis C.V. and Ruiz-Agudo E., 2013; Ruiz-Agudo et al., 2014). In pseudomorphic volume-deficit reactions, a new phase forms while porosity is created, and thereby reactive fluid flow through the originally solid mineral is enhanced. These coupled dissolution-replacement reactions therefore will constrain the flux of material carried by the fluid. These reactions are common during such processes as metamorphism, metasomatism, and weathering. When rock-forming minerals such as feldspars, olivine, pyroxenes and carbonates are in contact with aqueous fluids (typically NaCl-rich) porosity is formed during the interfacial replacement reactions. Elements present in the parent mineral are released to the fluid and therefore mobilized for transport elsewhere. Porosity formation has been shown in a number of systems, such as during the albitisation of feldspars (Hövelmann et al., 2009) and the replacement of carbonates by apatite phases (Pedrosa et al., 2016). Some of these examples will be presented as well as examples from atomic force microscopy (AFM) experiments used to image these reactions at a nanoscale, especially at the calcite-fluid interface, when new phases can be directly observed forming. This mechanism has also been shown as a means of carbon and phosphorus sequestration and for the removal of toxic elements from superficial waters, such as Se and As. References Ruiz-Agudo E., Putnis C.V., Putnis A. (2014) Coupled dissolution and precipitation at mineral-fluid interfaces. Chem. Geol., 383, 132-146. Putnis C.V. and Ruiz-Agudo E. (2013) The mineral-water interface: where minerals react with the environment. Elements, 9, 177-182. Hövelmann J., Putnis A., Geisler T., Schmidt B.C., Golla-Schindler U. (2009) The replacement of plagioclase feldspars by albite: observations from hydrothermal experiments. Contrib. Min. and Pet. 159, 43-59. Pedrosa E.T., Putnis C.V., Putnis A. (2016) The pseudomorphic replacement of marble by apatite: the role of fluid composition. Chem. Geol., 425, 1-11.

  10. Beryl pegmatite at Jabal Tarban, southern Najd region, Kingdom of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Jackson, Norman J.

    Beryl pegmatite near Jabal Tarban forms a carapace on a small stock of alkali-feldspar microgranite. Geological, petrographic and geochemical features indicate a genetic relationship between pegmatite and microgranite. Crystallization of quartz and alkali feldspar from a low-Ca granitic magma resulted in formation of a residuum enriched in rare elements. Silica separated from this residuum to form a pegmatitic carapace over the stock; the remainder crystallized as the fine-grained albite-rich groundmass of the microgranite.

  11. Experiment and simulation study on the effects of cement minerals on the water-rock-CO2 interaction during CO2 geological storage

    NASA Astrophysics Data System (ADS)

    Liu, N.; Cheng, J.

    2016-12-01

    The CO2 geological storage is one of the most promising technology to mitigate CO2 emission. The fate of CO2 underground is dramatically affected by the CO2-water-rock interaction, which are mainly dependent on the initial aquifer mineralogy and brine components. The cement minerals are common materials in sandstone reservoir but few attention has been paid for its effects on CO2-water-rock interaction. Five batch reactions, in which 5% cement minerals were assigned to be quartz, calcite, dolomite, chlorite and Ca-montmorillonite, respectively, were conducted to understanding the cement minerals behaviors and its corresponding effects on the matrix minerals alterations during CO2 geological storage. Pure mineral powders were selected to mix and assemble the 'sandstone rock' with different cement components meanwhile keeping the matrix minerals same for each group as 70% quartz, 20% K-feldspar and 5% albite. These `rock' reacted with 750ml deionized water and CO2 under 180° and 18MPa for 15 days, during which the water chemistry evolution and minerals surface micromorphology changes has been monitored. The minerals saturation indexes calculation and phase diagram as well as the kinetic models were made by PHREEQC to uncover the minerals reaction paths. The experiment results indicated that the quartz got less eroded, on the contrary, K-feldspar and albite continuously dissolved to favor the gibbsite and kaolinite precipitations. The carbonates cement minerals quickly dissolved to reach equilibrium with the pH buffered and in turn suppressed the alkali feldspar dissolutions. No carbonates minerals precipitations occurred until the end of reactions for all groups. The simulation results were basically consistent with the experiment record but failed to simulate the non-stoichiometric reactions and the minerals kinetic rates seemed underestimated at the early stage of reactions. The cement minerals significantly dominated the reaction paths during CO2 geological storage and its effects on the CO2-water-rock interaction should be focused no matter for the benefit of injection sustainability or carbon sequestration capability. And more cement minerals such as ankerite should be included and the reservoir quality changes should also be taken consideration in the further study.

  12. Role of Fluids in Lunar vs. Terrestrial Gabbros During Late-Stage and Post-Magmatic Crystallization, a Case Study

    NASA Astrophysics Data System (ADS)

    Fagan, T. J.; Fujimoto, A.; Kosaka, D.

    2018-04-01

    Incompatible elements, including H2O, are concentrated in late-stage magmatic pockets in gabbros from the Earth and Moon. Feldspar near the pockets is albitized by water (Earth case) or has discontinuous, unexplained changes in composition (Moon).

  13. Rates and processes of crystal growth in the system anorthite-albite. [magmatic liquids in igneous rock formation

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, R. J.; Klein, L.; Uhlmann, D. R.; Hays, J. F.

    1979-01-01

    The growth rates and interface morphologies of crystals of synthetic compositions in the anorthite (CaAl2Si2O8)-albite (NaAlSi3O8) plagioclase feldspar system are measured in an investigation of the crystallization of igneous rocks. Mixed plagioclase glasses with compositions of 75% and 50% anorthite were observed using the microscope heating technique as they crystallized at temperatures near the liquidus, and 75%, 50% and 20% anorthite crystals were treated by resistance heating and observed at greater degrees of undercooling. Growth rates were found to be independent of time and to decrease with increasing albite content, ranging from 0.5 to 2 x 10 to the -5th cm/min. The crystal morphologies for all compositions are faceted near the liquidus and become progressively skeletal, dendritic and fibrillar with increasing undercooling.

  14. Equations of State and High-Pressure Behavior of Alkali Feldspars

    NASA Astrophysics Data System (ADS)

    Ross, N.; Zhao, J.; Angel, R. J.

    2017-12-01

    The response of the feldspar structure to changes in composition, pressure and temperature can be described in terms of the collective tilts of the tetrahedra that comprise the framework (Angel et al. 2012; 2013). Angel et al. (2013) showed that the extreme anisotropy of the changes in the unit-cell parameters of monoclinic alkali feldspars is not due to anisotropic interaction of the extra-framework cation with the anions of the framework, but due to the tilting of the tetrahedra. To date, a comprehensive study of the effect of pressure on the structural and elastic properties of alkali feldspars has been lacking. In this contribution, we present newly measured equation of state and structural data from high-pressure single-crystal X-ray diffraction experiments for a series of alkali feldspars with different symmetries and various states of Al/Si order:disorder. As observed by Benusa et al. (2005) for low albite, P-V data sets for Na-rich compositions are best fit with a fourth-order Birch-Murnaghan equation of state. Bulk moduli range from 52.3(9) GPa for low albite to 58.6(3) GPa for microcline. In comparison with microcline, sanidine has K=57.2(8) GPa indicating that the effect of Al:Si order:disorder has little effect on the bulk modulus. The anisotropy of the compression is pronounced with 65% of the volume compression accounted for by the compression of the (100) plane normal. This is due to the closing-up of the crankshaft chains of tetrahedra that are characteristic of the feldspar structure. Single-crystal X-ray intensity data sets show that the four-membered rings of tetrahedra within the alkali feldspar structure undergo significant shear at high pressures. Changes in the rate of shear of the four-membered rings with pressure are associated with changes in the variation of the unit-cell angles with pressure. The general conclusion is that that framework models which incorporate regular tetrahedra can be used to predict elastic properties and anisotropy in the alkali feldspars at high pressure. References: Benusa, M.D., Angel, R.J., and Ross N.L.(2005) Am. Mineral., 90:1115-1120; Angel, R.J., Sochalski-Kolbus, L.M., Tribaudino, M. (2012) Am. Mineral., 97, 765-778; Angel, R.J., Ross, N.L., Zhao, J., Sochalski-Kolbus, L., Krueger, H., Schmidt, C.B., Burkhard (2013) Eur. J. Mineral., 25: 597-614.

  15. The mechanism of myrmekite formation deduced from steady-diffusion modeling based on petrography: Case study of the Okueyama granitic body, Kyushu, Japan

    NASA Astrophysics Data System (ADS)

    Yuguchi, Takashi; Nishiyama, Tadao

    2008-12-01

    Myrmekite is an intergrowth texture consisting of vermicular quartz and albitic plagioclase (Ab 93An 7 in this study), typically occurring between K-feldspar and plagioclase. It occurs ubiquitously in both metamorphic and granitic rocks; however, its genesis has been an enigma. This paper describes myrmekite's petrography and discusses its genesis from the Okueyama granitic body (OKG), which is a young (14 Ma) granite in Southwest Japan with no evidence of deformation after solidification. The genesis of a newly observed texture, the 'reaction rim', will be also discussed in relation to myrmekite. The reaction rim is an albite layer (Ab 95An 5) with no vermicular quartz between K-feldspar and plagioclase, and it occasionally makes a composite texture with myrmekite. Both myrmekite and the reaction rim are accompanied by a diffusive boundary layer (Olg-layer) with a mean composition of oligoclase (Ab 75An 25) in the rim of neighboring plagioclase rim. The overall reactions in an open system for the formation of myrmekite and that for the reaction rim are derived based on the following two models: 1) one based on the assumption of conservation of solid volume with arbitrarily specified closure components, and 2) the other based on the assumption of closure of AlO 3/2 together with an arbitrarily specified volume factor. Steady diffusion modeling in an open system based on the overall reaction thus derived defines the stability field of myrmekite and of the reaction rim in terms of the ratios of phenomenological coefficients ( L-ratios). The steady diffusion models for the above two models have essentially the same features. Myrmekite is stable for large values (> 10) of LAlAl/ LCaCa, for moderate values of LAlAl/ LSiSi, and for only small values (< 1) of LAlAl/ LNaNa. In the case of the reaction rim, the stability field is much wider in a plot of LAlAl/ LCaCa vs. LAlAl/ LNaNa, and its dependence on LAlAl/ LSiSi is stronger than that of myrmekite. The reaction rim is stable only for large values of LAlAl/ LCaCa, which is consistent with the case of myrmekite. Exchange cycles for myrmekite and the reaction rim show that the essential formation mechanism is albitization of K-feldspar: KAlSi 3O 8 + NaO 1/2 = NaAlSi 3O 8 + KO 1/2, which is coupled with albitization of plagioclase via diffusive transport of NaO 1/2 and SiO 2: CaAl 2Si 2O 8 + NaO 1/2 + SiO 2 = NaAlSi 3O 8 + CaO + AlO 3/2. Formation of myrmekite requires more SiO 2 than development of the reaction rim; some of the SiO 2 is given by decomposition of K-feldspar and some is supplied from the environment to the boundary between K-feldspar and plagioclase.

  16. Shock-induced transformations in the system NaAlSiO4-SiO2 - A new interpretation

    NASA Technical Reports Server (NTRS)

    Sekine, Toshimori; Ahrens, Thomas J.

    1992-01-01

    New internally consistent interpretations of the phases represented by the high pressure phase shock wave data for an albite-rich rock, jadeite, and nepheline in the system NaAlSiO4-SiO2, are obtained using the results of static high pressure investigations, and the recent discovery of the hollandite phase in a shocked meteorite. We conclude that nepheline transforms directly to the calcium ferrite structure, whereas albite transforms possibly to the hollandite structure. Shock Hugoniots for the other plagioclase and alkali feldspars also indicate that these transform to hollandite structures. The pressure-volume data at high pressure could alternatively represent the compression of an amorphous phase. Moreover, the shock Hugoniot data are expected to reflect the properties of the melt above shock stresses of 60-80 GPa. The third order Birch-Murnaghan equation of state parameters are given for the calcium ferrite type NaAlSiO4 and for albite-rich, orthoclase-rich, and anorthite-rich hollandites.

  17. Differential rates of feldspar weathering in granitic regoliths

    USGS Publications Warehouse

    White, A.F.; Bullen, T.D.; Schulz, M.S.; Blum, A.E.; Huntington, T.G.; Peters, N.E.

    2001-01-01

    Differential rates of plagioclase and K-feldspar weathering commonly observed in bedrock and soil environments are examined in terms of chemical kinetic and solubility controls and hydrologic permeability. For the Panola regolith, in the Georgia Piedmont Province of southeastern United States, petrographic observations, coupled with elemental balances and 87Sr/86Sr ratios, indicate that plagioclase is being converted to kaolinite at depths > 6 m in the granitic bedrock. K-feldspar remains pristine in the bedrock but subsequently weathers to kaolinite at the overlying saprolite. In contrast, both plagioclase and K-feldspar remain stable in granitic bedrocks elsewhere in Piedmont Province, such as Davis Run, Virginia, where feldspars weather concurrently in an overlying thick saprolite sequence. Kinetic rate constants, mineral surface areas, and secondary hydraulic conductivities are fitted to feldspar losses with depth in the Panola and Davis Run regoliths using a time-depth computer spreadsheet model. The primary hydraulic conductivities, describing the rates of meteoric water penetration into the pristine granites, are assumed to be equal to the propagation rates of weathering fronts, which, based on cosmogenic isotope dating, are 7 m/106 yr for the Panola regolith and 4 m/106 yr for the Davis Run regolith. Best fits in the calculations indicate that the kinetic rate constants for plagioclase in both regoliths are factors of two to three times faster than K-feldspar, which is in agreement with experimental findings. However, the range for plagioclase and K-feldspar rates (kr = 1.5 x 10-17 to 2.8 x 10-16 mol m-2 s-1) is three to four orders of magnitude lower than for that for experimental feldspar dissolution rates and are among the slowest yet recorded for natural feldspar weathering. Such slow rates are attributed to the relatively old geomorphic ages of the Panola and Davis Run regoliths, implying that mineral surface reactivity decreases significantly with time. Differential feldspar weathering in the low-permeability Panola bedrock environment is more dependent on relative feldspar solubilities than on differences in kinetic reaction rates. Such weathering is very sensitive to primary and secondary hydraulic conductivities (qp and qs), which control both the fluid volumes passing through the regolith and the thermodynamic saturation of the feldspars. Bedrock permeability is primarily intragranular and is created by internal weathering of networks of interconnected plagioclase phenocrysts. Saprolite permeability is principally intergranular and is the result of dissolution of silicate phases during isovolumetric weathering. A secondary to primary hydraulic conductivity ratio of qs/qp = 150 in the Panola bedrock results in kinetically controlled plagioclase dissolution but thermodynamically inhibited K-feldspar reaction. This result is in accord with calculated chemical saturation states for groundwater sampled in the Panola Granite. In contrast, greater secondary conductivities in the Davis Run saprolite, qs/qp = 800, produces both kinetically controlled plagioclase and K-feldspar dissolution. Faster plagioclase reaction, leading to bedrock weathering in the Panola Granite but not at Davis Run, is attributed to a higher anorthite component of the plagioclase and a wetter and warmer climate. In addition, the Panola Granite has an abnormally high content of disseminated calcite, the dissolution of which precedes the plagioclase weathering front, thus creating additional secondary permeability. Copyright ?? 2001 Elsevier Science Ltd.

  18. Petrography and geochemistry of granitoids from the Samphire Pluton, South Australia: Implications for uranium mineralisation in overlying sediments

    NASA Astrophysics Data System (ADS)

    Domnick, Urs; Cook, Nigel J.; Bluck, Russel; Brown, Callan; Ciobanu, Cristiana L.

    2018-02-01

    The Blackbush uranium deposit (JORC Inferred Resource: 12,580 tonnes U), located on the north-eastern Eyre Peninsula, is currently the only sediment-hosted U deposit investigated in detail in the Gawler Craton. Uranium is hosted within Eocene sandstone of the Kanaka Beds, overlying Mesoproterozoic granites of the Samphire pluton, affiliated with the Hiltaba Intrusive Suite ( 1.6 Ga). These are considered the most probable source rocks for uranium mineralisation. By constraining the petrography and mineralogy of the granites, insights into the post-emplacement evolution can be gained, which may provide an exploration indicator for other sediment-hosted uranium systems. Three geochemically distinct granite types were identified in the Samphire Pluton and correspond to domains interpreted from geophysical data. All granites show complex alteration overprints and textures with increasing intensity closer to the deposit, as well as crosscutting veining. Alkali feldspar has been replaced by porous K-feldspar and albite, and plagioclase is overprinted by an assemblage of porous albite + sericite ± calc-silicates (prehnite, pumpellyite and epidote). This style of feldspar alteration is regionally widespread and known from Hiltaba-aged granites associated with iron-oxide copper-gold mineralisation at Olympic Dam and in the Moonta-Wallaroo region. In two granite types biotite is replaced by calcic garnet. Calc-silicates are indicative of Ca-metasomatism, sourced from the anorthite component of altered plagioclase. Minor clay alteration of feldspars is present in all samples. Mineral assemblages in veins include quartz + hematite, hematite + coffinite, fluorite + quartz, and clay minerals. Minor chlorite and sericite are found in all vein types. All granite types are anomalously rich in U (concentrations between 10 and 81 ppm). Highly variable Th/U ratios, as well as hydrothermal U minerals (mostly coffinite) in granites and veins, are clear evidence for U mobility. Uranium may have been preconcentrated in veins in the upper parts of the pluton, and was subsequently leached after deposition of the sediment.

  19. Dissolution and time-dependent compaction of albite sand: experiments at 100°C and 160°C in pH-buffered organic acids and distilled water

    NASA Astrophysics Data System (ADS)

    Hajash, Andrew; Carpenter, Thomas D.; Dewers, Thomas A.

    1998-09-01

    Aqueous fluids are important in the diagenesis and deformation of crustal rocks. Both chemical and physical interactions are involved and often they are strongly coupled. For example, pore waters not only dissolve, transport, and precipitate chemical species, but they also substantially affect the mechanical behavior of the rocks that contain them. Stresses magnified at grain contacts by differences in pore-fluid pressure ( Pp) and confining pressure ( Pc) can, in turn, influence the rate and extent of chemical exchange. To begin investigation of these coupled systems, compaction experiments were conducted using albite sand (250-500 μm) and distilled water (pH 5.8), 0.07 M acetate (pH 4.7), and 0.07 M acetate + 0.005 M citrate (pH 4.4) solutions in a hydrothermal flow-through system at conditions that simulate diagenesis. Pore-fluid chemistry and pore-volume loss were monitored to quantify the effects of organic acids on time-dependent compaction rates. The effects of stress and fluid chemistry on the dissolution kinetics were also examined. Albite dissolution rates, monitored by steady-state fluid chemistry, increased when an effective pressure ( Pe= Pc- Pp) was applied, probably due to increases in total surface area caused by grain breakage at contacts. These effects were transient in distilled water, however, Si and Al concentrations remained elevated in the acetate pore fluid. The average Si-based release rates indicate ≈35% increase in reactive surface area by application of Pe=34.5 MPa. At 100°C with Pe=34.5 MPa, steady-state Si concentrations were ≈2.3 times higher in 0.07 M acetate and 5.8 times higher in 0.07 M acetate + 0.005 M citrate than in distilled water. Al increased by even larger factors (3× in the acetate buffer and 10× in the citrate solution). These changes in fluid chemistry are attributed to both pH and ligand-enhanced reactions. Albite dissolution appears to be controlled by surface complexation reactions at Al sites. Rapid dissolution of albite in the organic acid solutions is probably due to the ability of organic acid ligands to selectively complex with aluminum. Time-dependent compaction was observed at 100 and 160°C with Pe=34.5 MPa. Strain rates increased with temperature from ≈10 -9 s -l at 100°C to ≈10 -8 s -l at 160°C and decreased with strain in all pore fluids, especially at 100°C. Compaction rates in distilled water and in the acetate solution had similar magnitudes and strain dependencies; however, small amounts of citrate species apparently enhance compaction compared to the other fluids at similar strains. Textural data indicate that time-dependent compaction of the albite sand occurred primarily by brittle mechanisms at these temperatures. However, the deformation is clearly thermally activated and may be chemically assisted by the aqueous pore fluid.

  20. Long-Term CO2 Exposure Experiments - Geochemical Effects on Brine-Saturated Reservoir Sandstone

    NASA Astrophysics Data System (ADS)

    Fischer, Sebastian; Zemke, Kornelia; Liebscher, Axel; Wandrey, Maren

    2010-05-01

    The injection of CO2 into deep saline aquifers is the most promising strategy for the reduction of CO2 emissions to the atmosphere via long-term geological storage. The study is part of the CO2SINK project conducted at Ketzin, situated 40 km west of Berlin. There, food grade CO2 has been pumped into the Upper Triassic Stuttgart Formation since June 2008. The main objective of the experimental program is to investigate the effects of long-term CO2 exposure on the physico-chemical properties of the reservoir rock. To achieve this goal, core samples from observation well Ktzi 202 have been saturated with synthetic brine and exposed to CO2 in high quality steel autoclaves at simulated reservoir P-T-conditions of 5.5 MPa and 40 ° C. The synthetic brine had a composition representative of the formation fluid (Förster et al., 2006) of 172.8 g/l NaCl, 8.0 g/l MgCl2×2H2O, 4.8 g/l CaCl2×2H2O and 0.6 g/l KCl. After 15 months, the first set of CO2-exposed samples was removed from the pressure vessels. Thin sections, XRD, SEM as well as EMP data were used to determine the mineralogical features of the reservoir rocks before and after the experiments. Additionally, NMR relaxation and MP was performed to measure poroperm and pore size distribution values of the twin samples. The analyzed samples are fine- to medium grained, moderately well- to well sorted and weakly consolidated sandstones. Quartz and plagioclase are the major components, while K-feldspar, hematite, white & dark mica, chlorite and illite are present in minor and varying amounts. Cements are composed of analcime, dolomite and anhydrite. Some samples show mm- to cm-scale cross-beddings. The laminae comprise lighter, quartz- and feldspar-dominated layers and dark-brownish layers with notably less quartz and feldspars. The results are consistent with those of Blaschke et al. (2008). The plagioclase composition indicates preferred dissolution of the Ca-component and a trend toward albite-rich phases or even pure albite during the experiments. Additionally, XRD data suggest anhydrite dissolution in the course of CO2 exposure. The chemical evolution of the brine displays increasing Ca2+ concentrations (Wandrey et al., 2010) in line with the preferred dissolution of the anorthite component of plagioclase. SEM photomicrographs show corrosion textures on mineral surfaces of, e.g., plagioclase. The petrophysical properties of the sandstone samples also suggest slight changes. NMR and MP data indicate a slightly increased porosity and a shifting to larger pore sizes. The physico-chemical measurements imply (i) Ca2+ dissolution from the rock by the fluid, and (ii) slightly increasing porosity, but decreasing permeability. However, additional evaluation is still needed to interconnect the changes suggested to occur during CO2 exposure and to better understand CO2-brine-rock interactions. Supplementary core samples have been removed from the pressure vessels after 21 and 24 months and will soon be analyzed. Further core fragments will remain in storage in the autoclaves for longer-term experiments. References BLASCHKE, A.-W., SCHöNER, R., GAUPP, R. AND FöRSTER, A. (2008): Sandstone petrography and pore system of the Upper Triassic Stuttgart Formation from a CO2 pilot storage site (Ketzin, Germany), Geo 2008 - Resources and Risks in the Earth System, International Conference and 106th Annual Meeting of the Deutsche Gesellschaft für Geowissenschaften e.V. (DGG) and 98th Annual Meeting of the Geologische Vereinigung e.V. (GV) (Aachen 2008), 301. FöRSTER, A, NORDEN, B., ZINCK-JORGENSEN, K., FRYKMAN, P., KUHLENKAMP, J., SPANGENBERG, E., ERZINGER, J., ZIMMER, M., KOPP, J., BORM, G., JUHLIN, C., COSMA, C.-G., HURTER, S. (2006): Baseline Characterization of the CO2SINK Geological Storage Site at Ketzin, Germany, Environmental Geoscience, 13, 3, 145-161. WANDREY, M., FISCHER, S., ZEMKE, K., LIEBSCHER, A., SCHERF, A.-K., VIETH, A., ZETTLITZER, M. and WüRDEMANN, H. (2010), Monitoring petrophysical, mineralogical, geochemical and microbiological effects of CO2 exposure - Results of long-term experiments under in situ condition, submitted to the 10th International Conference on Greenhouse Gas Control Technologies (GHGT 10), Amsterdam.

  1. Naturally weathered feldspar surfaces in the Navajo Sandstone aquifer, Black Mesa, Arizona: Electron microscopic characterization

    NASA Astrophysics Data System (ADS)

    Zhu, Chen; Veblen, David R.; Blum, Alex E.; Chipera, Stephen J.

    2006-09-01

    Naturally weathered feldspar surfaces in the Jurassic Navajo Sandstone at Black Mesa, Arizona, was characterized with high-resolution transmission and analytical electron microscope (HRTEM-AEM) and field emission gun scanning electron microscope (FEG-SEM). Here, we report the first HRTEM observation of a 10-nm thick amorphous layer on naturally weathered K-feldspar in currently slightly alkaline groundwater. The amorphous layer is probably deficient in K and enriched in Si. In addition to the amorphous layer, the feldspar surfaces are also partially coated with tightly adhered kaolin platelets. Outside of the kaolin coatings, feldspar grains are covered with a continuous 3-5 μm thick layer of authigenic smectite, which also coats quartz and other sediment grains. Authigenic K-feldspar overgrowth and etch pits were also found on feldspar grains. These characteristics of the aged feldspar surfaces accentuate the differences in reactivity between the freshly ground feldspar powders used in laboratory experiments and feldspar grains in natural systems, and may partially contribute to the commonly observed apparent laboratory-field dissolution rate discrepancy. At Black Mesa, feldspars in the Navajo Sandstone are dissolving at ˜10 5 times slower than laboratory rate at comparable temperature and pH under far from equilibrium condition. The tightly adhered kaolin platelets reduce the feldspar reactive surface area, and the authigenic K-feldspar overgrowth reduces the feldspar reactivity. However, the continuous smectite coating layer does not appear to constitute a diffusion barrier. The exact role of the amorphous layer on feldspar dissolution kinetics depends on the origin of the layer (leached layer versus re-precipitated silica), which is uncertain at present. However, the nanometer thin layer can be detected only with HRTEM, and thus our study raises the possibility of its wide occurrence in geological systems. Rate laws and proposed mechanisms should consider the possibility of this amorphous layer on feldspar surface.

  2. Naturally weathered feldspar surfaces in the Navajo Sandstone aquifer, Black Mesa, Arizona: Electron microscopic characterization

    USGS Publications Warehouse

    Zhu, Chen; Veblen, D.R.; Blum, A.E.; Chipera, S.J.

    2006-01-01

    Naturally weathered feldspar surfaces in the Jurassic Navajo Sandstone at Black Mesa, Arizona, was characterized with high-resolution transmission and analytical electron microscope (HRTEM-AEM) and field emission gun scanning electron microscope (FEG-SEM). Here, we report the first HRTEM observation of a 10-nm thick amorphous layer on naturally weathered K-feldspar in currently slightly alkaline groundwater. The amorphous layer is probably deficient in K and enriched in Si. In addition to the amorphous layer, the feldspar surfaces are also partially coated with tightly adhered kaolin platelets. Outside of the kaolin coatings, feldspar grains are covered with a continuous 3-5 ??m thick layer of authigenic smectite, which also coats quartz and other sediment grains. Authigenic K-feldspar overgrowth and etch pits were also found on feldspar grains. These characteristics of the aged feldspar surfaces accentuate the differences in reactivity between the freshly ground feldspar powders used in laboratory experiments and feldspar grains in natural systems, and may partially contribute to the commonly observed apparent laboratory-field dissolution rate discrepancy. At Black Mesa, feldspars in the Navajo Sandstone are dissolving at ???105 times slower than laboratory rate at comparable temperature and pH under far from equilibrium condition. The tightly adhered kaolin platelets reduce the feldspar reactive surface area, and the authigenic K-feldspar overgrowth reduces the feldspar reactivity. However, the continuous smectite coating layer does not appear to constitute a diffusion barrier. The exact role of the amorphous layer on feldspar dissolution kinetics depends on the origin of the layer (leached layer versus re-precipitated silica), which is uncertain at present. However, the nanometer thin layer can be detected only with HRTEM, and thus our study raises the possibility of its wide occurrence in geological systems. Rate laws and proposed mechanisms should consider the possibility of this amorphous layer on feldspar surface. ?? 2006 Elsevier Inc. All rights reserved.

  3. HAFNIAN ZIRCONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    von Knorring, O.; Hornung, G.

    1961-06-17

    Two hafnia zircons were examined in detail, one from Mtoko in Southern Rhodesia, containing 21% HfO/sub 2/, and the other from Karibib in South-West Africa, with 31% HfO/sub 2/. In both cases the zircons are associated with the later tantalum-rich phase of mineralization. The Mtoko zircon forms small, mauve- colored, independent crystals in the albitic zone of the pegmatite. The zircon from Karibib occurs in larger reddish-brown masses, partly intergrown with minute manganotantalite crystals and set in a matrix of lithium-bearing mica, albite, quartz and kaolinized feldspar. Some crystals show dominant pyramid faces, with a suppressed prism. Both zircons exhibitmore » an intense golden-yellow fluorescence in UV light. The zircon from Karibib was found to be only weakly radioactive. Data are given concerning various properties of the two zircons. (P.C.H.)« less

  4. Experimental investigation of cephapirin adsorption to quartz filter sands and dune sands

    NASA Astrophysics Data System (ADS)

    Peterson, Jonathan W.; O'Meara, Theresa A.; Seymour, Michael D.

    2008-08-01

    Batch experiments were performed to investigate cephapirin (a widely used veterinary antibiotic) adsorption on various size sands of low total organic carbon content (0.08-0.36 wt%). In the aqueous concentration range investigated (11-112 μmol/L cephapirin), adsorption to nearly pure quartz filter sands (0.50-3.35 mm diameter) is low. Isotherms are S-shaped and most display a region of minimum adsorption, where decreased adsorption occurs with increasing solution concentration, followed by increased adsorption at higher concentrations. Cephapirin adsorption to quartz-rich, feldspar-bearing dune sands (0.06-0.35 mm diameter), and the smallest quartz filter sand investigated (0.43-0.50 mm), can be described by linear sorption isotherms over the range of concentrations investigated. Distribution coefficients ( K d) range from 0.94 to 3.45 L/kg. No systematic relationship exists between grain size and amount of adsorption for any of the sands investigated. Cephapirin adsorption is positively correlated to the feldspar ratio (K-feldspar/(albite + Ca-plagioclase). Feldspar-ratio normalization of distribution coefficients was more effective than organic carbon normalization at reducing variability of K d values in the dune sands investigated.

  5. Melting in feldspar-bearing systems to high pressures and the structures of aluminosilicate liquids

    NASA Astrophysics Data System (ADS)

    Boettcher, Art; Guo, Qiti; Bohlen, Steve; Hanson, Brooks

    1984-04-01

    To test the possibility that aluminosilicate liquids exhibit pressure-induced transformations, particularly involving changes in the coordination of aluminum, we determined melting relationships for the feldspar-bearing systems NaAlSi3O8-SiO2, KAlSi3O8-SiO2, and CaAl2Si2O8-SiO2 from 1 atm to 25 kbar. Albite and anorthite behave similarly in that they, and presumably liquids of these compositions, transform at high pressures to jadeite, kyanite, corundum, and other structures with aluminum in six-fold coordination, releasing SiO2 component. This results in a large increase in the activity of SiO2 component in the liquid (alqz), which is manifested by a significant decrease in the melting-point depression of albite and of anorthite by the addition of quartz at pressures above ˜15 kbar. In contrast, sanidine does not transform to denser phases at pressures below at least 100 kbar, but it melts incongruently to leucite + SiO2-rich liquid up to ˜ 15 kbar. This produces a relatively large alqz and a small freezing-point depression by quartz below this pressure; the opposite holds above ˜15 kbar. These results support the concept that significant structural changes, including coordination changes in aluminum, occur in magmas in the upper mantle.

  6. Rare earth element geochemistry of feldspars: examples from Fe-oxide Cu-Au systems in the Olympic Cu-Au Province, South Australia

    NASA Astrophysics Data System (ADS)

    Kontonikas-Charos, Alkis; Ciobanu, Cristiana L.; Cook, Nigel J.; Ehrig, Kathy; Krneta, Sasha; Kamenetsky, Vadim S.

    2018-04-01

    Rare earth element (REE) fractionation trends in feldspars are reported from Olympic Dam (including Wirrda Well and Phillip's Ridge) and Cape Donington (Port Lincoln), for comparison with two other igneous-hydrothermal terranes within the eastern Gawler Craton: Moonta-Wallaroo and Hillside. The case studies were selected as they represent 1590 Ma Hiltaba Suite and/or 1845 - 1810 Ma Donington Suite granites, and, aside from Cape Donington, are associated with Mesoproterozoic iron-oxide copper gold (IOCG)-type mineralization. Both plagioclase and alkali feldspar were analyzed within selected samples with the purpose of constraining and linking changes in REE concentrations and fractionation trends in feldspars to local and whole-rock textures and geochemistry. Two unique, reproducible fractionation trends were obtained for igneous plagioclase and alkali feldspars, distinguished from one another by light rare earth element enrichment, Eu-anomalies and degrees of fractionation (e.g. La/Lu slopes). Results for hydrothermal albite and K-feldspar indicate that REE concentrations and fractionation trends are generally inherited from igneous predecessors, however in some instances, significant amounts of REE appear to have been lost to the fluid. These results may have critical implications for the formation of world-class IOCG systems, in which widespread alkali metasomatism plays a key role by altering the physical and chemical properties of the host rocks during early stages of IOCG formation, as well as trapping trace elements (including REE).

  7. Laboratory batch experiments and geochemical modelling of water-rock-supercritical CO2 reactions in Southern San Joaquin Valley, California oil field sediments: Implications for future carbon capture and sequestration projects.

    NASA Astrophysics Data System (ADS)

    Mickler, P. J.; Rivas, C.; Freeman, S.; Tan, T. W.; Baron, D.; Horton, R. A.

    2015-12-01

    Storage of CO2 as supercritical liquid in oil reservoirs has been proposed for enhanced oil recovery and a way to lower atmospheric CO2 levels. The fate of CO2 after injection requires an understanding of mineral dissolution/precipitation reactions occurring between the formation minerals and the existing formation brines at formation temperatures and pressures in the presence of supercritical CO2. In this study, core samples from three potential storage formations, the Vedder Fm. (Rio Bravo oil field), Stevens Fm. (Elk Hills oil field) and Temblor Fm. (McKittrick oil field) were reacted with a synthetic brine and CO2(sc) at reservoir temperature (110°C) and pressure (245-250 bar). A combination of petrographic, SEM-EDS and XRD analyses, brine chemistry, and PHREEQ-C modelling were used to identify geochemical reactions altering aquifer mineralogy. XRD and petrographic analyses identified potentially reactive minerals including calcite and dolomite (~2%), pyrite (~1%), and feldspars (~25-60%). Despite the low abundance, calcite dissolution and pyrite oxidation were dominant geochemical reactions. Feldspar weathering produced release rates ~1-2 orders of magnitude slower than calcite dissolution. Calcite dissolution increased the aqueous concentrations of Ca, HCO3, Mg, Mn and Sr. Silicate weathering increased the aqueous concentrations of Si and K. Plagioclase weathering likely increased aqueous Ca concentrations. Pyrite oxidation, despite attempts to remove O2 from the experiment, increased the aqueous concentration of Fe and SO4. SEM-EDS analysis of post-reaction samples identified mixed-layered illite-smectites associated with feldspar grains suggesting clay mineral precipitation in addition to calcite, pyrite and feldspar dissolution. The Vedder Fm. sample underwent complete disaggregation during the reaction due to cement dissolution. This may adversely affect Vedder Formation CCS projects by impacting injection well integrity.

  8. Coupled alkali feldspar dissolution and secondary mineral precipitation in batch systems: 4. Numerical modeling of kinetic reaction paths

    NASA Astrophysics Data System (ADS)

    Zhu, Chen; Lu, Peng; Zheng, Zuoping; Ganor, Jiwchar

    2010-07-01

    This paper explores how dissolution and precipitation reactions are coupled in batch reactor experimental systems at elevated temperatures. This is the fourth paper in our series of "Coupled Alkali Feldspar Dissolution and Secondary Mineral Precipitation in Batch Systems". In our third paper, we demonstrated via speciation-solubility modeling that partial equilibrium between secondary minerals and aqueous solutions was not attained in feldspar hydrolysis batch reactors at 90-300 °C and that a strong coupling between dissolution and precipitation reactions follows as a consequence of the slower precipitation of secondary minerals ( Zhu and Lu, 2009). Here, we develop this concept further by using numerical reaction path models to elucidate how the dissolution and precipitation reactions are coupled. Modeling results show that a quasi-steady state was reached. At the quasi-steady state, dissolution reactions proceeded at rates that are orders of magnitude slower than the rates measured at far from equilibrium. The quasi-steady state is determined by the relative rate constants, and strongly influenced by the function of Gibbs free energy of reaction ( ΔG) in the rate laws. To explore the potential effects of fluid flow rates on the coupling of reactions, we extrapolate a batch system ( Ganor et al., 2007) to open systems and simulated one-dimensional reactive mass transport for oligoclase dissolution and kaolinite precipitation in homogeneous porous media. Different steady states were achieved at different locations along the one-dimensional domain. The time-space distribution and saturation indices (SI) at the steady states were a function of flow rates for a given kinetic model. Regardless of the differences in SI, the ratio between oligoclase dissolution rates and kaolinite precipitation rates remained 1.626, as in the batch system case ( Ganor et al., 2007). Therefore, our simulation results demonstrated coupling among dissolution, precipitation, and flow rates. Results reported in this communication lend support to our hypothesis that slow secondary mineral precipitation explains part of the well-known apparent discrepancy between lab measured and field estimated feldspar dissolution rates ( Zhu et al., 2004). Here we show how the slow secondary mineral precipitation provides a regulator to explain why the systems are held close to equilibrium and show how the most often-quoted "near equilibrium" explanation for an apparent field-lab discrepancy can work quantitatively. The substantiated hypothesis now offers the promise of reconciling part of the apparent field-lab discrepancy.

  9. A Novel Approach to Experimental Studies of Mineral Dissolution Kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Zhu; William E. Seyfried

    2005-01-01

    Currently, DOE is conducting pilot CO{sub 2} injection tests to evaluate the concept of geological sequestration. One strategy that potentially enhances CO{sub 2} solubility and reduces the risk of CO{sub 2} leak back to the surface is dissolution of indigenous minerals in the geological formation and precipitation of secondary carbonate phases, which increases the brine pH and immobilizes CO{sub 2}. Clearly, the rates at which these dissolution and precipitation reactions occur directly determine the efficiency of this strategy. However, one of the fundamental problems in modern geochemistry is the persistent two to five orders of magnitude discrepancy between laboratory-measured andmore » field derived feldspar dissolution rates. To date, there is no real guidance as to how to predict silicate reaction rates for use in quantitative models. Current models for assessment of geological carbon sequestration have generally opted to use laboratory rates, in spite of the dearth of such data for compositionally complex systems, and the persistent disconnect between lab and field applications. Therefore, a firm scientific basis for predicting silicate reaction kinetics in CO{sub 2} injected geological formations is urgently needed to assure the reliability of the geochemical models used for the assessments of carbon sequestration strategies. The funded experimental and theoretical study attempts to resolve this outstanding scientific issue by novel experimental design and theoretical interpretation to measure silicate dissolution rates and iron carbonate precipitation rates at conditions pertinent to geological carbon sequestration. In the first year of the project, we have successfully developed a sample preparation method and completed three batch feldspar dissolution experiments at 200 C and 300 bars. The changes of solution chemistry as dissolution experiments progressed were monitored with on-line sampling of the aqueous phase at the constant temperature and pressure. These data allow calculating overall apparent feldspar dissolution rates and secondary mineral precipitation rates as a function of saturation states. State-of-the-art atomic resolution transmission electron microscopy (TEM), scanning electron microscopy, and electron microprobe was used to characterize the reactants (feldspars before experiments). We experimented with different sample preparation methods for TEM study, and found excellent images and chemical resolution with reactants, which shows promise of the technology and establishes the baseline for comparison with products (feldspars after the experiments). Preliminary electron microscopic characterization shows that the reacted feldspars have etch pits and are covered with secondary sheet silicate phases. Reaction-path geochemical modeling is used to interpret the experimental results. We have established the software and database, and are making great progress. Also during the first year, our education goal of graduate student training has been achieved. A Ph. D. student at Indiana University is progressing well in the degree program and has taken geochemical modeling, SEM, and TEM courses, which will facilitate research in the second and third year. A Ph. D. student at University of Minnesota is progressing well in conducting the experiments, and is near graduation. With the success of training of graduate students and excellent experimental data in the first year, we anticipate a more fruitful year in the second year.« less

  10. Processes of mineralization in the Hauran Basin (Syria and Jordan) and in adjoining areas

    NASA Astrophysics Data System (ADS)

    Raggad, Marwan Al; Elias, Salameh; Inbar, Nimrod; Rosenthal, Eliahu; Möller, Peter; Siebert, Christian; Magri, Fabien

    2017-04-01

    Volcanic rocks covering vast areas in central north Jordan and in central and southern Syria erupted during 6 different phases starting in Miocene and continuing - with major interruptions - into the Holocene. The petrological composition of the different flows of the Harrat ash Shaam Basalt complex is quite homogeneous with the major minerals: Plagioclase, K-feldspar, clinopyroxene, amphibole, biotite, olivine, magnetite, limonite, goethite, pyrite and chalcopyrite. The oldest basalts cover Cretaceous and Paleogene sediments, which at that time formed the land surface of drainage basins. The basaltic aquifer contains groundwater with a wide range of salinities. They represent a continuous sequence of increasingly mineralized groundwater originating from precipitation over Jebel Druz flowing radially into all directions, in coincidence with the topographic slopes. Along the flow-paths halite and gypsum are dissolved. Ca2+ not only depends on gypsum dissolution but also increases proportionally to Mg. This may suggest that the combination of Ca2+, Mg2+ and sulfate is a saline endmember fluid originating from the underlying carbonate formations of the basalt. Mixing with recharge water could explain the chemical composition of the various types of water. The signature of dissolved gypsum and halite indicates dissolution of evaporites that might have formed by evaporation either before the basalt covered the area or due to the hot basalts heating up the underlying carbonates and their enclosed fluids. Evaporation of water precipitated evaporites. Ca and Mg halides are hygroscopic, thus they are only present in solution. Such saline water, however, has not affected the low saline groundwater because their increase in Ca depends neither on the increase of Mg2+ nor of SO42-. This leaves the formation of clay minerals as the probably sink for Na. Inverse modelling applying PHREEQC with phreeq.dat database reveals that the mineralization of groundwater increases due to dissolution of increasing amounts of halite and gypsum which are mass-wise, the most important reactants. Concurrently, albite increasingly precipitates. Montmorillonite, gibbsite and calcite form, whereas kaolinite is consumed. Sulfides are oxidized. δD and δ18O of well and springs fit an evaporation line rooted on the Ajloun MWL. Hydrochemically, there are two sources of salts: Mixing with a saline endmember brine and/or dissolution of evaporites. Near Jebel Druz, dissolution of evaporites dominates, whereas mixing with a saline endmember and formation of clay minerals occur at greater distances.

  11. Authigenic potassium feldspar: a tracer for the timing of palaeofluid flow in carbonate rocks, Northern Calcareous Alps, Austria

    USGS Publications Warehouse

    Spotl, C.; Kunk, Michael J.; Ramseyer, K.; Longstaffe, F.J.

    1998-01-01

    This paper is included in the Special Publication entitled 'Dating and duration of fluid flow and fluid-rock interaction', edited by J. Parnell. Feldspar is a common authigenic constituent in Permian carbonate rocks which occur as tectonically isolated blocks within the evaporitic Haselgebirge melange in the Northern Calcareous Alps (NCA). Coexisting with pyrite, anhydrite, (saddle) dolomite, magnesite, fluorite and calcite, K-feldspar and minor albite record an event of regionally extensive interaction of hot brines with carbonate rocks. Detailed petrographic, crystallographic and geochemical studies reveal a variability in crystal size and shape, Al-Si ordering, elemental and stable isotopic compositions of the K-feldspar, which is only partially consistent with the traditional view of authigenic feldspar as a well-ordered, compositionally pure mineral. 40Ar-39Ar step- heating measurements of authigenic potassium feldspar from several localities yield two age populations, an older one of 145-154 Ma, and a younger one of c.90-97 Ma. Most age spectra reflect cooling through the argon retention temperature interval, which was rapid in some localities (as indicated by plateau ages) and slower in others. Rb-Sr isotope data are more difficult to interpret, because in many K-feldspar samples they are controlled largely by Sr-bearing inclusions. The Jurassic 40Ar-39Ar dates are interpreted as minimum ages of feldspar growth and hence imply that fluid-rock interaction is likely to be simultaneous with or to slightly predate melange formation. Deformation associated with the closure and subduction of the Meliata-Hallstatt ocean south of the NCA during the Upper Jurassic is regarded as the principal geodynamic driving force for both enhanced fluid circulation and melange formation. Some localities were reheated beyond the argon retention temperature for microcline during mid-Cretaceous nappe stacking of the NCA, thus obliterating the older signal.

  12. Silicon self-diffusion in single-crystal natural quartz and feldspar

    NASA Astrophysics Data System (ADS)

    Cherniak, D. J.

    2003-09-01

    Silicon diffusion was measured in natural quartz and anorthitic feldspar under dry, low-pressure (0.1 MPa) conditions using a 30Si tracer. Sources of diffusant consisted of 30Si-enriched silica powder for experiments on quartz and microcrystalline 30Si-doped synthetic feldspar of composition comparable to the feldspar specimens. Distributions of 30Si were measured with Rutherford backscattering spectrometry and nuclear reaction analysis, using the reaction 30Si (p,γ) 31P. The following Arrhenius relations were obtained for anneals at 1 atm in air. For quartz: transport normal to c: Dqtz,⊥c=7.97×10 -6 exp (-447±31 kJ mol -1/ RT) m 2 s -1; transport parallel to c: Dqtz,∥c=6.40×10 -6 exp (-443±22 kJ mol -1/ RT) m 2 s -1. For anorthitic feldspar (An 93): DAn=3.79×10 -7 exp (-465±50 kJ mol -1/ RT) m 2 s -1. The few successful experiments on diffusion in plagioclase of more albitic compositions (An 67 and An 23) reveal Si diffusivities a few orders of magnitude faster than that in the anorthite. The results for these feldspars bracket the determination of CaAl-NaSi interdiffusion under dry conditions by Grove et al. [Geochim. Cosmochim. Acta 48 (1984) 2113-2121], suggesting that the rate-limiting process is indeed Si diffusion. Si diffusion in quartz under more reducing conditions (NNO) is slightly slower (by about half an order of magnitude) than diffusion in samples annealed in air. This is consistent with observations made in studies of synthetic quartz [Béjina and Jaoul, Phys. Earth Planet. Inter. 50 (1988) 240-250].

  13. Geomorphological stability of Permo-Triassic albitized profiles - case study of the Montseny-Guilleries High (NE Iberia)

    NASA Astrophysics Data System (ADS)

    Parcerisa, D.; Casas, L.; Franke, C.; Gomez-Gras, D.; Lacasa, G.; Nunez, J. A.; Thiry, M.

    2010-05-01

    Massif paleoalteration profiles (≥ 200 m) occur in the upper parts of the Montseny-Guilleries High (NE Catalan Coastal Ranges). The profiles consist of hard albitized-chloritized-hematized facies in the lower part and softer kaolinized-hematized facies in the upper part of the section. Preliminary paleomagnetic data show Triassic ages for both, the albitized and the kaolinized parts, and point to a surficial formation altered under oxidising conditions. Similar paleoalteration profiles have already been described and dated to Triassic ages elsewhere in Europe [Schmitt, 1992; Ricordel et al., 2007; Parcerisa et al., 2009]. These Permian-Triassic alterations are following a succession of different mineral transformations from the top to the base of the profile: 1) Red facies are defined by an increase in the amount and size of haematite crystals leading to the red colour of the rocks. The increase on haematite content is pervasively affecting the whole rock and is accompanied by the kaolinitization of the feldspars. 2) Pink facies: here, the granite shows an uniform pink colouration, which is mainly due to the albitization of the primary Ca-bearing plagioclases, accompanied by a precipitation of minute haematite, sericite, and calcite crystals inside the albite. Additionally primary biotite is fully chloritized. The pink granites are much more resistant to the present-day weathering than the "unaltered" facies at the base of the profile. 3) Spotted facies is characterized by a partial alteration of the rock, which caused a pink-screened aspect to the rock. The alteration developed along the fractures and is less well developed or absent in the non-fractured zones. In the pink-screened facies, the plagioclases are partially albitized and contain numerous hematite inclusions. Biotites are usually almost entirely chloritized. 4) Unaltered facies: These granites are coloured white to greyish, containing plagioclase and K-feldspar that do not show any trace of albitization. Biotites are not or weakly chloritized. However, these "unaltered" (or primary) granites are strongly weathered into granite boulders embedded in grus by the present-day climatic conditions. The maturest paleoprofiles occur at the northern part of the Catalan Coastal Ranges (i.e. the Montseny-Guilleries High) where the Variscan basement remained exposed during Triassic times. Towards the South the profiles progressively disappear and Triassic sediments acquire their maximum thickness here. The alteration profiles are related with the Permo-Triassic paleosurface still outcroping on wide areas [Gómez-Gras and Ferrer, 1999]. They are partially covered by Triassic fluvial sandstones (Buntsandstein facies) in the South [Gómez-Gras, 1993] and by Palaeocene alluvial conglomerates in the West [Anadón et al., 1979]. The Triassic paleosurface shows a remarkable stability successively outcropping during Mesozoic and Tertiary times, the pre-Tertiary exhumation and even the present day weathering affected very little these albitized profiles. The hardness and thus preservation of the Triassic paleosurface is mainly related to the albitization. The albitized granites are entirely lacking anorthitic plagioclase, which is much more sensitive to chemo-mechanical weathering. Development of albite and additional chloritization of the primary biotite crystals render the rocks much more resistant to weathering and erosion. This stability is particularly well expressed in case of the Montseny-Guilleries High, which is limited by a high fault scarp at the south-eastern margin. The albitized top of the scarp shows remarkably hard fresh rocks, whereas the base of the scarp (formed of primary, non-albitized facies) is deeply weathered into gruss. This is causing much smother landscape reliefs in the valleys and thalwegs. Since a long time the remarkable persistence of the Triassic paleosurface expressed in the Paleozoic massifs has been highlighted by geomorphologists. Only recently we could draw the link of the paleosurface preservation to its albitisation [Battiau-Queney, 1996; Widdowson, 1997]. Anadón, P., Colombo, F., Esteban, M., Marzo, M., Robles, S., Santanach, P., Solé-Sugrañes, L.., 1979. Evolución tectonostratigráfica de los Catalánides. Acta Geológica Hispánica, 14: 242-270. Battiau-Queney Y., 1996, A tentative classification of paleoweathering formations based on geomorphological criteria. Geomorphology, 16, p. 87-102. Gómez-Gras, D., 1993. El Permotrias de la Cordillera Costero Catalana: facies y petrologia sedimentaria (Parte I). Boletin Geologico y Minero, 104(2): 115-161. Gómez-Gras, D., Ferrer, C., 1999. Caracterización petrológica de perfiles de meteorización antiguos desarrollados en granitos tardihercínicos de la Cordillera Costero Catalana. Revista de la Sociedad Geológica de España, 12(2): 281-299. Parcerisa, D., Thiry, M., Schmitt, J.M., 2009. Albitisation related to the Triassic unconformity in igneous rocks of the Morvan Massif (France). International Journal of Earth Sciences (Geol Rundsch). DOI 10.1007/s00531-008-0405-1 Ricordel, C., Parcerisa, D., Thiry, M., Moreau, M.G., Gómez-Gras, D., 2007. Triassic magnetic overprints related to albitization in granites from the Morvan massif (France). Palaeogeography, Palaeoclimatology, Palaeoecology, 251: 268-282. Schmitt J.M., 1992, Triassic albitization in southern France : an unusual mineralogical record from a major continental paleosurface. in : Mineralogical and geochemical records of paleoweathering, IGCP 317, Schmitt J.M., Gall Q., (eds), E.N.S.M.P. Mém. Sc. de la Terre, 18, p. 115-132. Widdowson M., 1997, The geomorphological and geological importance of palaeosurfaces. in: Widdowson M. (ed.), Palaeosurfaces: recognition, reconstruction and palaeoenvironmental interpretation. Geol. Soc. Special Publ., 120, p. 1-12.

  14. Microelements in anthropogenically contaminated soils in the central part of Petrozavodsk

    NASA Astrophysics Data System (ADS)

    Rybakov, D. S.; Kevlich, V. I.

    2017-06-01

    Urban soils (Urbic Technosols) formed within or near the industrial sites removed of service show a considerable excess over the regional background in the content of Pb, Zn, Cu, Mn, Cr, Ni, as well as over the average content of W, Mo, Pb, Sb, Cr, Cu, Sn, Ni, Zn, and Mn in urban soils. Microelements are concentrated for the most part in the soil fine earth, and above all, in the fraction with particle size <0.1 mm. Surface films (on quartz and feldspar grains) of quartz-feldspar-muscovite (partially with tremolite and chlorite) composition and undifferentiated dispersed mixture of quartz, albite, microcline, muscovite and organomineral soil substance are the strongest concentrators of heavy metals and metalloids. Pb and Sn are partially present in soils as oxides, and a part of Zn and Pb, in the form of substantial admixtures to technogenic chemical compounds. As a whole, distribution of elements in the studied soils is controlled by the specifics and type of contamination, resistance of coarser grains to weathering under the given physicochemical conditions, and by predominantly mineral (quartz-feldspar) composition of the solids in soil layers and the features of elements proper.

  15. Groundwater geochemistry in the Seminole Well Field, Cedar Rapids, Iowa

    USGS Publications Warehouse

    Boyd, Robert A.

    1999-01-01

    The City of Cedar Rapids obtains its municipal water supply from four well fields in an alluvial aquifer along the Cedar River in east-central Iowa. Since 1992, the City and the U.S. Geological Survey have cooperatively studied the groundwater-flow system and water chemistry near the well fields. The geochemistry in the alluvial aquifer near the Seminole Well Field was assessed to identify potentially reactive minerals and possible chemical reactions that produce observed changes in water chemistry. Calcite, dolomite, ferrihydrite, quartz, rhodochrosite, and siderite were identified as potentially reactive minerals by calculating saturation indexes. Aluminosiicate minerals including albite, Ca-montmorillonite, gibbsite, illite, K-feldspar, and kaolinite were identified as potentially reactive minerals using hypothetical saturation indexes calculated with an assumed dissolved aluminum concentration of 1 microgram per liter. Balanced chemical equations derived from inverse-modeling techniques were used to assess chemical reactions as precipitation percolates to the water table. Calcite dissolution was predominate, but aluminosilicate weathering, cation exchange, and redox reactions also likely occurred. Microbial-catalyzed redox reactions altered the chemical composition of water infiltrating from the Cedar River into the alluvial aquifer by consuming dissolved oxygen, reducing nitrate, and increasing dissolved iron and manganese concentrations. Nitrate reduction only occurred in relatively shallow (3 to 7 meters below land surface) groundwater near the Cedar River and did not occur in water infiltrating to deeper zones of the alluvial aquifer.

  16. Complex Diffusion Mechanisms for Li in Feldspar: Re-thinking Li-in-Plag Geospeedometry

    NASA Astrophysics Data System (ADS)

    Holycross, M.; Watson, E. B.

    2017-12-01

    In recent years, the lithium isotope system has been applied to model processes in a wide variety of terrestrial environments. In igneous settings, Li diffusion gradients have been frequently used to time heating episodes. Lithium partitioning behavior during decompression or cooling events drives Li transfer between phases, but the extent of Li exchange may be limited by its diffusion rate in geologic materials. Lithium is an exceptionally fast diffuser in silicate media, making it uniquely suited to record short-lived volcanic phenomena. The Li-in-plagioclase geospeedometer is often used to time explosive eruptions by applying laboratory-calibrated Li diffusion coefficients to model concentration profiles in magmatic feldspar samples. To quantify Li transport in natural scenarios, experimental measurements are needed that account for changing temperature and oxygen fugacity as well as different feldspar compositions and crystallographic orientation. Ambient pressure experiments were run at RPI to diffuse Li from a powdered spodumene source into polished sanidine, albite, oligoclase or anorthite crystals over the temperature range 500-950 ºC. The resulting 7Li concentration gradients developed in the mineral specimens were evaluated using laser ablation ICP-MS. The new data show that Li diffusion in all feldspar compositions simultaneously operates by both a "fast" and "slow" diffusion mechanism. Fast path diffusivities are similar to those found by Giletti and Shanahan [1997] for Li diffusion in plagioclase and are typically 10 to 20 times greater than slow path diffusivities. Lithium concentration gradients in the feldspar experiments plot in the shape of two superimposed error function curves with the slow diffusion regime in the near-surface of the crystal. Lithium diffusion is most sluggish in sanidine and is significantly faster in the plagioclase feldspars. It is still unclear what diffusion mechanism operates in nature, but the new measurements may impact how Li-in-plagioclase geospeedometry is used to time igneous processes. Giletti, B.J., and T.M. Shanahan (1997) Alkali diffusion in plagioclase feldspar, Chem. Geol., 139, 3-20

  17. Influence of depositional environment on diagenesis in St. Peter sandstone, Michigan basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundgren, C.E. Jr.; Barnes, D.A.

    1989-03-01

    The Middle Ordovician St. Peter Sandstone in the Michigan basin was deposited in marine peritidal to storm-dominated, outer shelf depositional environments that evolved in a regionally significant transgressive pattern. The formation is bounded by carbonate and shaly clastic strata of the Prairie du Chien Group below and is transitional to condensed sequence clastics and carbonates of the Glenwood Formation above. Sedimentologic and petrographic analysis of conventional core from 25 wells suggests that reservoir quality in the formation is strongly dependent on a complex diagenetic history, especially the nature and subsequent dissolution of intergranular carbonate in the sandstone. Petrographic evidence indicatesmore » that porosity in the formation formed by dissolution of precursor dolomite of various origins and, locally, the formation of pore-filling authigenic clay (chlorite-illite). Authigenic clay is the incongruent dissolution product of dolomite, detrital K-feldspar, and, possibly, muscovite and results in diminished reservoir quality where abundant in the St. Peter Sandstone. Authigenic clay is volumetrically more significant in the upper portions of the formation and is associated with higher concentrations of detrital K-feldspar. Depositional facies controlled the distribution and types of intergranular carbonate (now dolomite) and detrital K-feldspar in the St. Peter Sandstone and hence reservoir quality; both components were more significant in storm-shelf sandstone facies.« less

  18. Geology of the Mahd Adh Dhahab District, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Afifi, A.M.

    1990-01-01

    Major-element data show that the Mahd Group was produced from separate basaltic and dacitic-rhyolitic magmas that overlapped without mixing. The alkalis and alkaline-earth elements were particularly mobile during metamorphism (which caused widespread albitization of feldspars) and also during hydrothermal alteration (which added secondary microcline). This mobility adversely affected rubidium-strontium whole-rock systematics, which makes whole-rock isochron dates obtained from these rocks questionable. The new geological data presented here are combined with the geochronologic data of Calvez and Kemp (1982) to re-interpret the geologic history of this area.

  19. Time-temperature evolution of microtextures and contained fluids in a plutonic alkali feldspar during heating

    NASA Astrophysics Data System (ADS)

    Parsons, Ian; Fitz Gerald, John D.; Lee, James K. W.; Ivanic, Tim; Golla-Schindler, Ute

    2010-08-01

    Microtextural changes brought about by heating alkali feldspar crystals from the Shap granite, northern England, at atmospheric pressure, have been studied using transmission and scanning electron microscopy. A typical unheated phenocryst from Shap is composed of about 70 vol% of tweed orthoclase with strain-controlled coherent or semicoherent micro- and crypto-perthitic albite lamellae, with maximum lamellar thicknesses <1 μm. Semicoherent lamellae are encircled by nanotunnel loops in two orientations and cut by pull-apart cracks. The average bulk composition of this microtexture is Ab27.6Or71.8An0.6. The remaining 30 vol% is deuterically coarsened, microporous patch and vein perthite composed of incoherent subgrains of oligoclase, albite and irregular microcline. The largest subgrains are ~3 μm in diameter. Heating times in the laboratory were 12 to 6,792 h and T from 300°C into the melting interval at 1,100°C. Most samples were annealed at constant T but two were heated to simulate an 40Ar/39Ar step-heating schedule. Homogenisation of strain-controlled lamellae by Na↔K inter-diffusion was rapid, so that in all run products at >700°C, and after >48 h at 700°C, all such regions were essentially compositionally homogeneous, as indicated by X-ray analyses at fine scale in the transmission electron microscope. Changes in lamellar thickness with time at different T point to an activation energy of ~350 kJmol-1. A lamella which homogenised after 6,800 h at 600°C, therefore, would have required only 0.6 s to do so in the melting interval at 1,100°C. Subgrains in patch perthite homogenised more slowly than coherent lamellae and chemical gradients in patches persisted for >5,000 h at 700°C. Homogenisation T is in agreement with experimentally determined solvi for coherent ordered intergrowths, when a 50-100°C increase in T for An1 is applied. Homogenisation of lamellae appears to proceed in an unexpected manner: two smooth interfaces, microstructurally sharp, advance from the original interfaces toward the mid-line of each twinned, semicoherent lamella. In places, the homogenisation interfaces have shapes reflecting the local arrangements of nanotunnels or pull-aparts. Analyses confirm that the change in alkali composition is also relatively sharp at these interfaces. Si-Al disordering is far slower than alkali homogenisation so that tweed texture in orthoclase, tartan twinning in irregular microcline, and Albite twins in albite lamellae and patches persisted in all our experiments, including 5,478 h at 700°C, 148 h at 1,000°C and 5 h at 1,100°C, even though the ensemble in each case was chemically homogeneous. Nanotunnels and pull-aparts were modified after only 50 min at 500°C following the simulated 40Ar/39Ar step-heating schedule. New features called ‘slots’ developed away from albite lamellae, often with planar traces linking slots to the closest lamella. Slot arrays were often aligned along ghost-like regions of diffraction contrast which may mark the original edges of lamellae. We suggest that the slot arrays result from healing of pull-aparts containing fluid. At 700°C and above, the dominant defects were subspherical ‘bubbles’, which evolved from slots or from regions of deuteric coarsening. The small degree of partial melting observed after 5 h at 1,100°C was often in the vicinity of bubbles. Larger micropores, which formed at subgrain boundaries in patch perthite during deuteric coarsening, retain their shape up to the melting point, as do the subgrain boundaries themselves. It is clear that modification of defects providing potential fast pathways for diffusion in granitic alkali feldspars begins below 500°C and that defect character progressively changes up to, and beyond, the onset of melting.

  20. Geology and mineralization of the Jabalat alkali-feldspar granite, northern Asir region, Kingdom of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Al Tayyar, Jaffar; Jackson, Norman J.; Al-Yazidi, Saeed

    The Jabalat post-tectonic granite pluton is composed of albite- and oligoclase-bearing, low-calcium, F-, Sn- and Rb-rich subsolvus granites. These granites display evidence of late-magmatic, granitophile- and metallic-element specialization, resulting ultimately in the development of post-magmatic, metalliferous hydrothermal systems characterized by a Mo sbnd Sn sbnd Cu sbnd Pb sbnd Zn sbnd Bi sbnd Ag sbnd F signature. Two main types of mineralization are present within the pluton and its environs: (1) weakly mineralized felsic and aplitic dikes and veins enhanced in Mo, Bi, Ag, Pb and Cu; and (2) pyrite—molybdenite—chalcopyrite-bearing quartz and quartz—feldspar veins rich in Mo, Sn, Bi, Cu, Zn and Ag. A satellite stock, 3 km north of the main intrusion, is composed of fine-grained, miarolitic, muscovite—albite—microcline (microperthite) granite. The flanks of this intrusion and adjacent dioritic rocks are greisenized and highly enriched in Sn, Bi and Ag. Quartz veins which transect the satellite stock contain molybdenite and stannite.

  1. Sequence-stratigraphic controls on sandstone diagenesis: An example from the Williams Fork formation, Piceance Basin, Colorado

    NASA Astrophysics Data System (ADS)

    Aboktef, Adel

    This study documents the distribution of diagenetic alterations in Williams Fork fluvial sandstones, assess sequence stratigraphic controls on diagenetic features, and addresses diagenetic impacts on porosity. Petrographic point counts of 220 thin sections from six wells forms the database. The near absence of potassium feldspar and volcanic rock fragments in the lower Williams Fork interval and increasing plagioclase content upward represent changes in sediment provenance rather than stratigraphic variability in diagenesis. The lower Williams Fork sands are from sedimentary sources whereas middle and upper Williams Fork sands include input from magmatic arcs and basement uplifts. Compaction, early and late cementation, dissolution, and replacement by calcite or clay minerals combined to alter Williams Fork sandstones. Infiltration of clays occurred prior to any burial. Chlorite, quartz, non-ferroan calcite, compaction and dissolution features, and kaolinite formed during eo-diagenesis at <70°C. More quartz, compaction and dissolution features, plus albite, illite, mixed-layer illite/smectite, ferroan calcite, and dolomite formed in the meso-diagenetic realm (>70°C). Four of these features show spatial variability with respect to systems tracts. Infiltrated clays are concentrated in lowstand systems tracts (LST) and highstand systems tracts (HST) because accommodation space rose slow or fell during deposition of those sands, which led to prolonged sand body exposure on floodplain and ample opportunities for downward percolation of mud during flood events. Concentration of pseudomatrix (mud intraclasts) in HST and LST deposits resulted from floodplain erosion when base-level fell with decreasing accommodation space. Authigenic chlorite formed in the HST and transgressive systems tracts (TST) of the upper half of the Williams Fork Formation because volcanic clasts are abundant in that interval. Quartz overgrowths are more likely to exceed 7% in TST deposits for reasons that are unknown. High total clay content (infiltrated, grain coatings, pseudomatrix) does inhibit quartz overgrowths in all systems tracts. Williams Fork sandstones form low-permeability tight-gas reservoirs. Primary porosity was almost entirely destroyed by compaction and cementation. Reservoir rock resulted from one of two pathways. Eogenetic authigenic chlorite and/or calcite inhibited quartz cementation, minimized compaction and protected some primary porosity. Alternately, dissolution of framework grains or cements created secondary porosity. The later pathway tends to be the more dominant.

  2. A Novel Approach to Experimental Studies of Mineral Dissolution Kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Zhu

    2006-08-31

    Currently, DOE is conducting pilot CO{sub 2} injection tests to evaluate the concept of geological sequestration. One strategy that potentially enhances CO{sub 2} solubility and reduces the risk of CO{sub 2} leak back to the surface is dissolution of indigenous minerals in the geological formation and precipitation of secondary carbonate phases, which increases the brine pH and immobilizes CO{sub 2}. Clearly, the rates at which these dissolution and precipitation reactions occur directly determine the efficiency of this strategy. However, one of the fundamental problems in modern geochemistry is the persistent two to five orders of magnitude discrepancy between laboratory measuredmore » and field derived feldspar dissolution rates. To date, there is no real guidance as to how to predict silicate reaction rates for use in quantitative models. Current models for assessment of geological carbon sequestration have generally opted to use laboratory rates, in spite of the dearth of such data for compositionally complex systems, and the persistent disconnect between laboratory and field applications. Therefore, a firm scientific basis for predicting silicate reaction kinetics in CO2 injected geological formations is urgently needed to assure the reliability of the geochemical models used for the assessments of carbon sequestration strategies. The funded experimental and theoretical study attempts to resolve this outstanding scientific issue by novel experimental design and theoretical interpretation to measure silicate dissolution rates and iron carbonate precipitation rates at conditions pertinent to geological carbon sequestration. In the second year of the project, we completed CO{sub 2}-Navajo sandstone interaction batch and flow-through experiments and a Navajo sandstone dissolution experiment without the presence of CO{sub 2} at 200 C and 250-300 bars, and initiated dawsonite dissolution and solubility experiments. We also performed additional 5-day experiments at the same conditions as alkali-feldspar dissolution experiments with and without the presence of CO{sub 2} performed in the first year to check the validation of the experiments and analysis. The changes of solution chemistry as dissolution experiments progressed were monitored with on-line sampling of the aqueous phase at the constant temperature and pressure. These data allow calculating overall apparent mineral (feldspars and sandstones) dissolution rates and secondary mineral precipitation rates as a function of saturation states. State-of-the-art atomic resolution transmission electron microscopy (TEM), scanning electron microscopy (SEM), and electron microprobe was used to characterize the products and reactants. Reaction-path geochemical modeling was used to interpret the experimental results of alkali-feldspar dissolution experiments without the presence of CO{sub 2}. Two manuscripts are near completion. Also during the second year, our education goal of graduate student training has been advanced. A Ph. D. student at Indiana University is progressing well in the degree program and has taken geochemical modeling, SEM, and TEM courses, which will facilitate research in the third year. A Ph. D. student at University of Minnesota had graduated. With the success of training of graduate students and excellent experimental data in the second year, we anticipate a more fruitful year in the third year.« less

  3. High-pressure phase relations in the composition of albite NaAlSi3O8 constrained by an ab initio and quasi-harmonic Debye model, and their implications

    NASA Astrophysics Data System (ADS)

    Deng, L.; Liu, X.; Liu, H.; Dong, J.

    2010-12-01

    The high pressure physical-chemical behaviors of feldspar in subducted slab are very important to the geodynamic process in the deep interior of the Earth. Albite (NaAlSi3O8;Ab) is one of the few end members in the feldspar family, and its high-P behavior is obviously a prerequisite to the full understanding of the physical-chemical properties of feldspar at high pressures. So far it has been well accepted that Ab breaks down to the phase assemblage of Jadeite+Stishovite(NaAlSi2O6; Jd, SiO2; St,JS hereafter) at ~9-10 GPa. The JS phase assemblage might be stable up to ~23 GPa, and eventually directly change into the phase assemblage of calcium-ferrite type NaAlSiO4 (Cf) +2St (CS hereafter). However, some independent researches suggest there is an intermediate phase Na-hollandite (Na-Hall; a phase with the composition of NaAlSi3O8 and the structure of hollandite) between JS phase assemblage transition into CS phase assemblage (Liu 1978; Tutti 2007; Sekine and Ahrens, 1992; Beck et al., 2004). Whether Na-Hall is a thermodynamic stable phase under high P-T conditions remains unknown. In this work, phase relations in the composition of albite NaAlSi3O8 at pressures up to 40 GPa were constrained by a theoretical method that combines the ab initio calculation and quasi-harmonic Debyemodel. First, the P-T dependence of the thermodynamic potentials of the individual phase, St, Cf, Jd and the hypothetical Na-Holl were derived. Our results are generally in consistent agreement with available experimental data and previous theoretical predictions. Second, the Gibbs free energy of the hypothetical Na-Holl phase was compared with that of the phase assemblages JS and CS. Our results show that the Na-Holl phase is not a thermodynamically stable phase over the studied P-T conditions of 0-40 GPa and 100-600 K, which rules it out as a possible intermediate phase along the transition path from the JS phase assemblage to CS phase assemblage. Our calculations have predicted that the JS phase assemblage transforms into the CS phase assemblage at about 33.6 GPa at 0 K, and the Clayperon slope of this phase transition is about 0.014 GPa/K. This study implies that lingunite (Na-Holl), found in somemeteorites, is not possibly a thermodynamically stable high-P phase, and the Cf phase probably plays an important role in maintaining the sodium budget and hosting the large-ion lithophile elements in the deep interior of the Earth. References: Beck, P., Gillet, P., Gautron, L., Daniel, I., El Goresy, A., 2004. A new natural high-pressure (Na, Ca)-hexaluminosilicate [(CaxNa1-x)Al3+xSi3-xO11] in shocked Martian meteorites. Earth Planet. Sci. Lett. 219, 1-12. Liu, L., 1978. High-pressure phase transformations of albite, jadeite and nepheline. Earth Planet. Sci. Lett. 37, 438-444. Sekine, T., Ahrens, T.J., 1992. Shock-induced transformations in the system NaAlSi3O8-SiO2: a new interpretation. Phys. Chem. Mineral. 18, 359-364. Tutti, F., 2007. Formation of end-member NaAlSi3O8 hollandite-type structure (lingunite) in diamond anvil cell. Phys. Earth Planet. Inter. 161, 143-149.

  4. Porphyry Cu-Au and associated polymetallic Fe-Cu-Au deposits in the Beiya Area, western Yunnan Province, south China

    USGS Publications Warehouse

    Xu, X.-W.; Cai, X.-P.; Xiao, Q.-B.; Peters, S.G.

    2007-01-01

    The Alkaline porphyries in the Beiya area are located east of the Jinshajiang suture, as part of a Cenozoic alkali-rich porphyry belt in western Yunnan. The main rock types include quartz-albite porphyry, quartz-K-feldspar porphyry and biotite-K-feldspar porphyry. These porphyries are characterised by high alkalinity [(K2O + Na2O)% > 10%], high silica (SiO2% > 65%), high Sr (> 400??ppm) and 87Sr/86Sr (> 0.706)] ratio and were intruded at 65.5??Ma, between 25.5 to 32.5??Ma, and about 3.8??Ma, respectively. There are five main types of mineral deposits in the Beiya area: (1) porphyry Cu-Au deposits, (2) magmatic Fe-Au deposits, (3) sedimentary polymetallic deposits, (4) polymetallic skarn deposits, and (5) palaeoplacers associated with karsts. The porphyry Cu-Au and polymetallic skarn deposits are associated with quartz-albite porphyry bodies. The Fe-Au and polymetallic sedimentary deposits are part of an ore-forming system that produced considerable Au in the Beiya area, and are characterised by low concentrations of La, Ti, and Co, and high concentrations of Y, Yb, and Sc. The Cenozoic porphyries in western Yunnan display increased alkalinity away from the Triassic Jinshajiang suture. Distribution of both the porphyries and sedimentary deposits in the Beiya area are interpreted to be related to partial melting in a disjointed region between upper mantle lithosphere of the Yangtze Plate and Gondwana continent, and lie within a shear zone between buried Palaeo-Tethyan oceanic lithosphere and upper mantle lithosphere, caused by the subduction and collision of India and Asia. ?? 2006 Elsevier B.V. All rights reserved.

  5. The role of reaction affinity and secondary minerals in regulating chemical weathering rates at the Santa Cruz Soil Chronosequence, California

    USGS Publications Warehouse

    Maher, K.; Steefel, Carl; White, A.F.; Stonestrom, David A.

    2009-01-01

    In order to explore the reasons for the apparent discrepancy between laboratory and field weathering rates and to determine the extent to which weathering rates are controlled by the approach to thermodynamic equilibrium, secondary mineral precipitation, and flow rates, a multicomponent reactive transport model (CrunchFlow) was used to interpret soil profile development and mineral precipitation and dissolution rates at the 226 ka Marine Terrace Chronosequence near Santa Cruz, CA. Aqueous compositions, fluid chemistry, transport, and mineral abundances are well characterized [White A. F., Schulz M. S., Vivit D. V., Blum A., Stonestrom D. A. and Anderson S. P. (2008) Chemical weathering of a Marine Terrace Chronosequence, Santa Cruz, California. I: interpreting the long-term controls on chemical weathering based on spatial and temporal element and mineral distributions. Geochim. Cosmochim. Acta 72 (1), 36-68] and were used to constrain the reaction rates for the weathering and precipitating minerals in the reactive transport modeling. When primary mineral weathering rates are calculated with either of two experimentally determined rate constants, the nonlinear, parallel rate law formulation of Hellmann and Tisserand [Hellmann R. and Tisserand D. (2006) Dissolution kinetics as a function of the Gibbs free energy of reaction: An experimental study based on albite feldspar. Geochim. Cosmochim. Acta 70 (2), 364-383] or the aluminum inhibition model proposed by Oelkers et al. [Oelkers E. H., Schott J. and Devidal J. L. (1994) The effect of aluminum, pH, and chemical affinity on the rates of aluminosilicate dissolution reactions. Geochim. Cosmochim. Acta 58 (9), 2011-2024], modeling results are consistent with field-scale observations when independently constrained clay precipitation rates are accounted for. Experimental and field rates, therefore, can be reconciled at the Santa Cruz site. Additionally, observed maximum clay abundances in the argillic horizons occur at the depth and time where the reaction fronts of the primary minerals overlap. The modeling indicates that the argillic horizon at Santa Cruz can be explained almost entirely by weathering of primary minerals and in situ clay precipitation accompanied by undersaturation of kaolinite at the top of the profile. The rate constant for kaolinite precipitation was also determined based on model simulations of mineral abundances and dissolved Al, SiO2(aq) and pH in pore waters. Changes in the rate of kaolinite precipitation or the flow rate do not affect the gradient of the primary mineral weathering profiles, but instead control the rate of propagation of the primary mineral weathering fronts and thus total mass removed from the weathering profile. Our analysis suggests that secondary clay precipitation is as important as aqueous transport in governing the amount of dissolution that occurs within a profile because clay minerals exert a strong control over the reaction affinity of the dissolving primary minerals. The modeling also indicates that the weathering advance rate and the total mass of mineral dissolved is controlled by the thermodynamic saturation of the primary dissolving phases plagioclase and K-feldspar, as is evident from the difference in propagation rates of the reaction fronts for the two minerals despite their very similar kinetic rate laws. ?? 2009 Elsevier Ltd.

  6. Effect of oxalate on the dissolution rates of oligoclase and tremolite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mast, M.A.; Drever, J.I.

    1987-09-01

    The effect of oxalate, a strong chelator for Al and other cations, on the dissolution rates of oligoclase feldspar and tremolite amphibole was investigated in a flow-through reactor at 22/sup 0/C. Oxalate at concentrations of 0.5 and 1 mM has essentially no effect on the dissolution rate of tremolite, nor on the steady-state rate of release of Si from oligoclase. The fact that oxalate has no effect on dissolution rate suggests that detachment of Si rather than Al or Mg is the rate-limiting step. At pH 4 and 9, oxalate has no effect on the steady-state rate of release ofmore » Al, and dissolution is congruent. At pH 5 and 7, oligoclase dissolution is congruent in the presence of oxalate, but in the absence of oxalate Al is preferentially retained in the solid relative to Si. Large transient spikes of Al or Si are observed when oxalate is added to or removed from the system. The cause of the spikes is unknown; the authors suggest adsorption feldspar surfaces away from sites of active dissolution as a possibility. The rate of dissolution of tremolite is independent of pH over the pH range 2-5, and decreases at higher pH. The rate of dissolution of oligoclase in these experiments was independent of pH over the pH range 4-9. Since the dissolution rate of these minerals is independent of pH and organic ligand concentration, the effect of acid deposition from the atmosphere on the rate of supply of cations from weathering of granitic rocks should be minor.« less

  7. Mineral shock signatures in rocks from Dhala (Mohar) impact structure, Shivpuri district, Madhya Pradesh, India

    NASA Astrophysics Data System (ADS)

    Roy, Madhuparna; Pandey, Pradeep; Kumar, Shailendra; Parihar, P. S.

    2017-12-01

    A concrete study combining optical microscopy, Raman spectroscopy and X-ray diffractometry, was carried out on subsurface samples of basement granite and melt breccia from Mohar (Dhala) impact structure, Shivpuri district, Madhya Pradesh, India. Optical microscopy reveals aberrations in the optical properties of quartz and feldspar in the form of planar deformation feature-like structures, lowered birefringence and mosaics in quartz, toasting, planar fractures and ladder texture in alkali feldspar and near-isotropism in bytownite. It also brings to light incidence of parisite, a radioactive rare mineral in shocked granite. Raman spectral pattern, peak positions, peak widths and multiplicity of peak groups of all minerals, suggest subtle structural/crystallographic deviations. XRD data further reveals minute deviations of unit cell parameters of quartz, alkali feldspar and plagioclase, with respect to standard α-quartz, high- and low albite and microcline. Reduced cell volumes in these minerals indicate compression due to pressure. The c0/a0 values indicate an inter-tetrahedral angle roughly between 120o and 144o, further pointing to a possible pressure maxima of around 12 GPa. The observed unit cell aberration of minerals may indicate an intermediate stage between crystalline and amorphous stages, thereby, signifying possible overprinting of decompression signatures over shock compression effects, from a shock recovery process.

  8. Coupled multiphase reactive flow and mineral dissolution-precipitation kinetics: Examples of long-term CO2 sequestration in Utsira Sand, Norway and Mt. Simon Formation, Midwest USA

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Zhang, G.; Lu, P.; Hu, B.; Zhu, C.

    2017-12-01

    The extent of CO2 mineralization after CO2 injection into deep saline aquifers is a result of the complex coupling of multiphase fluid flow, mass transport, and brine-mineral reactions. The effects of dissolution rate laws and groundwater flow on the long-term fate of CO2 have been seriously overlooked. To investigate these effects, we conducted multiphase (CO2 and brine) coupled reactive transport modeling of CO2 storage in two sandy formations (Utsira Sand, Norway1,2 and Mt. Simon formation, USA 3) using ToughReact and simulated a series of scenarios. The results indicated that: (1) Different dissolution rate laws for feldspars can significantly affect the amount of CO2 mineralization. Increased feldspar dissolution will promote CO2 mineral trapping through the coupling between feldspar dissolution and carbonate mineral precipitation at raised pH. The predicted amount of CO2 mineral trapping when using the principle of detailed balancing-based rate law for feldspar dissolution is about twice as much as that when using sigmoidal rate laws in the literature. (2) Mineral trapping is twice as much when regional groundwater flow is taken into consideration in long-term simulations (e.g., 10,000 years) whereas most modeling studies neglected the regional groundwater flow back and effectively simulated a batch reactor process. Under the influence of regional groundwater flow, the fresh brine from upstream continuously dissolves CO2 at the tail of CO2 plume, generating a large acidified area where large amount of CO2 mineralization takes place. The upstream replenishment of groundwater results in ˜22% mineral trapping at year 10,000, compared to ˜4% when this effect is ignored. Refs: 1Zhang, G., Lu, P., Wei, X., Zhu, C. (2016). Impacts of Mineral Reaction Kinetics and Regional Groundwater Flow on Long-Term CO2 Fate at Sleipner. Energy & Fuels, 30(5), 4159-4180. 2Zhu, C., Zhang, G., Lu, P., Meng, L., Ji, X. (2015). Benchmark modeling of the Sleipner CO2 plume: Calibration to seismic data for the uppermost layer and model sensitivity analysis. International Journal of Greenhouse Gas Control, 43, 233-246. 3Zhang, G., Lu, P., Zhang, Y., Wei, X., Zhu, C. (2015). Effects of rate law formulation on predicting CO2 sequestration in sandstone formations. International Journal of Energy Research, 39(14), 1890-1908.

  9. A modeling study of the long-term mineral trapping in deep saline marine sands aquifers (Invited)

    NASA Astrophysics Data System (ADS)

    Aagaard, P.; Pham, V.; Hellevang, H.

    2009-12-01

    Simulation of geochemical processes due to CO2 injection and storage are dependent on sediment petrography and the kinetics of mineral fluid reactions. Mineral trapping of CO2 in the Utsira sand and similar marine sand reservoirs have been revisited based on critical review of rate data and geochemical constraints on formation waters. Reaction paths calculations were done with the PHREEQC modeling software at relevant reservoir conditions covering a temperature range of 30-100 °C and corresponding reservoir pressures. Initial CO2 saturation was determined by the fluid fugacity corresponding with reservoir conditions. The mineral dissolution kinetics was expressed with a chemical affinity term (Aagaard & Helgeson,1982) while a critical super-saturation for mineral growth was included in the precipitation rate expression. The redox conditions and the H2S fugacity in the simulations were constrained by the acetic/propionic acid buffer trend and the magnetite-pyrite buffer (Aagaard et al. 2001) respectively. We used a revised mineralogical composition for the Utsira sand also performed a sensitivity analyses with respect to mineral content. The simulations were run over a period of 10000 years. The main simulation results included dissolution of glauconite, smectite, pyrite, muscovite and albite, with precipitation of the carbonates siderite, ankerite, and minor dawsonite, as well as kaolinite, silica (either chalcedony or quartz), and K-feldspar. The uncertainties in the simulations are specially connected with initial mineral abundances. The effect of critical super-saturation and reactive surface area for precipitation needs to be further evaluated and tested. Aagaard, P. and H.C. Helgeson (1982). Thermodynamic and Kinetic Constraints on Reaction Rates among Minerals and Aqueous Solutions. I. Theoretical Considerations. Am. J. Sci., v. 282, p. 257-285. P. Aagaard, J. Jahren & S.N. Ehrenberg (2001) H2S controling reactions in clastic hydrocarbon reservoirs from the Norwegian Shelf and Gulf Coast, in Cidu, R.(ed) Water-Rock Interaction, WRI-10, Balkema, p. 129-132.

  10. Glide twinning and pseudotwinning in peristerite: Si,Al diffusional stabilization and implications for the peristerite solvus

    NASA Astrophysics Data System (ADS)

    Brown, William L.

    1989-07-01

    Albite glide pseudotwins related to grain-boundary stresses have been observed in an exsolved peristerite (Brown 1989). The glide operation transposes the pre-existing periodic oligoclase/albite lamellae and interfaces into a position rotated by only ˜0.5° in the pseudotwins, but transforms the indices from (1bar 80) outside to ( 081) inside the pseudotwin. The pseudotwin is anti-ordered with respect to Al and Si and both it and the transposed interface are unstable. They should revert to the initial state on stress removal. If however the stresses are maintained for a sufficiently long time, the pseudotwins are stabilized by inversion of Si,Al order and re-orientation of the interface by an angle of about 30° into a position close to \\underline {(1bar 80)} . The continuous lamellae break up into a series of discs by diffusion of NaSi and CaAl, the minimum diffusion path being about the same as the thickness of the lamellae. On extrapolating available interdiffusion data in Ab-rich plagioclases to low temperatures, possible diffusion times may be calculated. The calculated times are long so that either the peristerite miscibility gap must be at a higher temperature than previously supposed or the low-temperature interdiffusion coefficients must be higher than the extrapolated experimental ones, or both. From recent data on ordering in albite, the crest of the gap is estimated to lie close to 650 625° C at low pressure and it is possible that interdiffusion under natural conditions is facilitated by hydrogen (protons) in feldspars.

  11. The Thermal Expansion Of Feldspars

    NASA Astrophysics Data System (ADS)

    Hovis, G. L.; Medford, A.; Conlon, M.

    2009-12-01

    Hovis and others (1) investigated the thermal expansion of natural and synthetic AlSi3 feldspars and demonstrated that the coefficient of thermal expansion (α) decreases significantly, and linearly, with increasing room-temperature volume (VRT). In all such feldspars, therefore, chemical expansion limits thermal expansion. The scope of this work now has been broadened to include plagioclase and Ba-K feldspar crystalline solutions. X-ray powder diffraction data have been collected between room temperature and 925 °C on six plagioclase specimens ranging in composition from anorthite to oligoclase. When combined with thermal expansion data for albite (2,3,4) a steep linear trend of α as a function of VRT emerges, reflecting how small changes in composition dramatically affect expansion behavior. The thermal expansion data for five synthetic Ba-K feldspars ranging in composition from 20 to 100 mole percent celsian, combined with data for pure K-feldspar (3,4), show α-VRT relationships similar in nature to the plagioclase series, but with a slope and intercept different from the latter. Taken as a group all Al2Si2 feldspars, including anorthite and celsian from the present study along with Sr- (5) and Pb-feldspar (6) from other workers, show very limited thermal expansion that, unlike AlSi3 feldspars, has little dependence on the divalent-ion (or M-) site occupant. This apparently is due to the necessitated alternation of Al and Si in the tetrahedral sites of these minerals (7), which in turn locks the tetrahedral framework and makes the M-site occupant nearly irrelevant to expansion behavior. Indeed, in feldspar series with coupled chemical substitution it is the change away from a 1:1 Al:Si ratio that gives feldspars greater freedom to expand. Overall, the relationships among α, chemical composition, and room-temperature volume provide useful predictive tools for estimating feldspar thermal expansion and give insight into the controls of expansion behavior in this important mineral system. We thank the Earth Sciences Division of the National Science Foundation for support of this research via grant EAR-0408829, which has provided valuable learning experiences for the undergraduate coauthors of this abstract. We appreciate the cooperation of the Department of Mineral Sciences, Smithsonian Institution, which provided five of the plagioclase specimens. Thanks to Tony Abraham, Department of Earth Sciences, Cambridge University, who conducted a portion of the high-temperature X-ray experiments. The Ba-K feldspar crystalline solutions were synthesized and chemically characterized in the 1970's at Harvard University by our good friend, Dr. Jun Ito, now deceased. (1) Hovis, Morabito, Spooner, Mott, Person, Henderson, Roux and Harlov, 2008, American Mineralogist, (2) Stewart and von Limbach, 1967, American Journal of Science, (3) Hovis and Graeme-Barber, 1997, American Mineralogist, (4) Hovis, Brennan, Keohane, and Crelling, 1999, The Canadian Mineralogist, (5) Henderson, 1984, Progress in Experimental Petrology, NERC Report, Volume 6, (6) Benna, Tribaudino, and Bruno, 1999, American Mineralogist, (7) Lowenstein, 1954, American Mineralogist.

  12. Deciphering the evolution of rapakivi magmas from mineral inclusions in alkali feldspar megacrysts and zircon

    NASA Astrophysics Data System (ADS)

    Heinonen, Aku; Mänttäri, Irmeli; Rämö, Tapani; Larjamo, Kirsi

    2017-04-01

    Rapakivi granites are ferroan (A-type) granites that are characterized by ovoid-shaped alkali feldspar megacrysts (diameter up to 15 cm) commonly mantled by plagioclase forming the namesake rapakivi texture. The 1.63 Ga Wiborg batholith in southeastern Finland is the type area of rapakivi granites. Recent studies into the chemistry and geochronology of the mineral inclusions within the Wiborg rapakivi granite ovoids have shown that the megacrysts may represent magmas that crystallized significantly earlier and either in different P/T conditions or from magmas with dissimilar compositions than the matrices of the respective granites. It is possible that the ovoids crystallized from magmas with more evolved geochemical characteristics than the matrices, including higher levels of REE and other incompatibe elements. All ovoids are perthitic and have concave and rod-shaped quartz, hypidiomorphic or slightly resorbed plagioclase (often with partial quartz rim), zircon, biotite, apatite, and ilmenite (and occasionally minor magnetite) inclusions. The ovoids of the mafic rapakivi granite types have also hornblende and sometimes olivine and clinopyroxene inclusions, whereas the more felsic types have abundant fluorite. In contrast to the ovoids, the groundmass feldspar grains have hardly any inclusions. Differences are also observed in the hornblende compositions between the ovoid inclusion (dominantly ferroedenitic) and matrix (ferropargasitic/hastingsitic) populations. As zircon is an almost ubiquitous inclusion phase, time-integrated trace element composition comparisons of not only ovoid inclusion and matrix populations but also between different morphological types have been possible. Also the zircon crystals themselves contain plenty of inclusions. Alkali feldspar (albite and potassic feldspar) and quartz constitute the bulk of the inclusions within zircon crystals but chloritized mafic minerals, and sometimes also fluorite and ilmenite are common. A detailed analysis of the distribution of inclusion types within different morphological zircon domains and between ovoid vs. matrix populations will provide a more in depth view into the crystallization history and magmatic evolution of the granite hosts.

  13. Environmental effect and genetic influence: a regional cancer predisposition survey in the Zonguldak region of Northwest Turkey

    NASA Astrophysics Data System (ADS)

    Kadir, Selahattin; Önen-Hall, A. Piril; Aydin, S. Nihal; Yakicier, Cengiz; Akarsu, Nurten; Tuncer, Murat

    2008-03-01

    The Cretaceous-Eocene volcano-sedimentary units of the Zonguldak region of the western Black Sea consist of subalkaline andesite and tuff, and sandstone dominated by smectite, kaolinite, accessory chlorite, illite, mordenite, and analcime associated with feldspar, quartz, opal-CT, amphibole, and calcite. Kaolinization, chloritization, sericitization, albitization, Fe-Ti-oxidation, and the presence of zeolite, epidote, and illite in andesitic rocks and tuffaceous materials developed as a result of the degradation of a glass shards matrix, enclosed feldspar, and clinopyroxene-type phenocrysts, due to alteration processes. The association of feldspar and glass with smectite and kaolinite, and the suborientation of feldspar-edged, subparallel kaolinite plates to fracture axes may exhibit an authigenic smectite or kaolinite. Increased alteration degree upward in which Al, Fe, and Ti are gained, and Si, Na, K, and Ca are depleted, is due to the alteration following possible diagenesis and hydrothermal activities. Micromorphologically, fibrous mordenite in the altered units and the presence of needle-type chrysotile in the residential buildings in which cancer cases lived were detected. In addition, the segregation pattern of cancer susceptibility in the region strongly suggested an environmental effect and a genetic influence on the increased cancer incidence in the region. The most likely diagnosis was Li-Fraumeni syndrome, which is one of the hereditary cancer predisposition syndromes; however, no mutations were observed in the p53 gene, which is the major cause of Li-Fraumeni syndrome. The micromorphology observed in the altered units in which cancer cases were detected may have a role in the expression of an unidentified gene, but does not explain alone the occurrence of cancer as a primary cause in the region.

  14. Fluvial/lacustrine diagenesis: Significance for hydrocarbon production and entrapment in the carboniferous Albert Fm, Moncton basin, NB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noble, J.P.A.; Chowdhury, A.H.; Yu, H.

    1996-12-31

    The Carboniferous Horton Group Albert Formation sediments include lacustrine source-rock oil shales and fluvial porous reservoir sandstones. The petrography, stable isotopes, fluid inclusions, cathodoluminescence and mirror/trace element chemistry of these sandstones are used to establish the diagenetic history and controlling factors. Early diagenetic calcite, quartz and albite cements with minor chlorite and kaolinite are variably present and related to depositional mineralogy and lake levels winch controlled the porewater chemistry. Antitaxial veins occurring preferentially in shales are shown, from heavy {delta}C{sup 13} values and fluid inclusions, to be related to methanogenesis in overpressured zones at shallow depths. Later burial calcite andmore » extensive albitisation are related to mineral reactions during the phase of rapid subsidence at temperatures of 80{degrees} to 150{degrees} in the deepest segment of the basin, together with significant dissolution of carbonates and feldspars related mainly to organic acids generated by organic maturation processes. Mass balance calculations indicate that not enough organic matter was present to account for all the estimated secondary porosity and some evidence suggests that reactions between kaolinite and calcite/ankerite to produce chlorite, and mixed layer illite-smectite ordering reactions, produced significant secondary porosity. Burial history reconstructions and thermal modelling of the Albert Fm. sediments using Arrhenius type maturity models and reflectance and rock-eval data suggest locally variable maturation and reservoir production related to the locally different fault tectonic histories characteristic of strike-slip lacustrine segmented basins. The Horton depositional cycle was followed by major dextral transpression with local faulting and inversion and vein cementation.« less

  15. Fluvial/lacustrine diagenesis: Significance for hydrocarbon production and entrapment in the carboniferous Albert Fm, Moncton basin, NB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noble, J.P.A.; Chowdhury, A.H.; Yu, H.

    1996-01-01

    The Carboniferous Horton Group Albert Formation sediments include lacustrine source-rock oil shales and fluvial porous reservoir sandstones. The petrography, stable isotopes, fluid inclusions, cathodoluminescence and mirror/trace element chemistry of these sandstones are used to establish the diagenetic history and controlling factors. Early diagenetic calcite, quartz and albite cements with minor chlorite and kaolinite are variably present and related to depositional mineralogy and lake levels winch controlled the porewater chemistry. Antitaxial veins occurring preferentially in shales are shown, from heavy [delta]C[sup 13] values and fluid inclusions, to be related to methanogenesis in overpressured zones at shallow depths. Later burial calcite andmore » extensive albitisation are related to mineral reactions during the phase of rapid subsidence at temperatures of 80[degrees] to 150[degrees] in the deepest segment of the basin, together with significant dissolution of carbonates and feldspars related mainly to organic acids generated by organic maturation processes. Mass balance calculations indicate that not enough organic matter was present to account for all the estimated secondary porosity and some evidence suggests that reactions between kaolinite and calcite/ankerite to produce chlorite, and mixed layer illite-smectite ordering reactions, produced significant secondary porosity. Burial history reconstructions and thermal modelling of the Albert Fm. sediments using Arrhenius type maturity models and reflectance and rock-eval data suggest locally variable maturation and reservoir production related to the locally different fault tectonic histories characteristic of strike-slip lacustrine segmented basins. The Horton depositional cycle was followed by major dextral transpression with local faulting and inversion and vein cementation.« less

  16. Modelling chemical depletion profiles in regolith

    USGS Publications Warehouse

    Brantley, S.L.; Bandstra, J.; Moore, J.; White, A.F.

    2008-01-01

    Chemical or mineralogical profiles in regolith display reaction fronts that document depletion of leachable elements or minerals. A generalized equation employing lumped parameters was derived to model such ubiquitously observed patterns:C = frac(C0, frac(C0 - Cx = 0, Cx = 0) exp (??ini ?? over(k, ??) ?? x) + 1)Here C, Cx = 0, and Co are the concentrations of an element at a given depth x, at the top of the reaction front, or in parent respectively. ??ini is the roughness of the dissolving mineral in the parent and k???? is a lumped kinetic parameter. This kinetic parameter is an inverse function of the porefluid advective velocity and a direct function of the dissolution rate constant times mineral surface area per unit volume regolith. This model equation fits profiles of concentration versus depth for albite in seven weathering systems and is consistent with the interpretation that the surface area (m2 mineral m- 3 bulk regolith) varies linearly with the concentration of the dissolving mineral across the front. Dissolution rate constants can be calculated from the lumped fit parameters for these profiles using observed values of weathering advance rate, the proton driving force, the geometric surface area per unit volume regolith and parent concentration of albite. These calculated values of the dissolution rate constant compare favorably to literature values. The model equation, useful for reaction fronts in both steady-state erosional and quasi-stationary non-erosional systems, incorporates the variation of reaction affinity using pH as a master variable. Use of this model equation to fit depletion fronts for soils highlights the importance of buffering of pH in the soil system. Furthermore, the equation should allow better understanding of the effects of important environmental variables on weathering rates. ?? 2008.

  17. Exploration of geo-mineral compounds in granite mining soils using XRD pattern data analysis

    NASA Astrophysics Data System (ADS)

    Koteswara Reddy, G.; Yarakkula, Kiran

    2017-11-01

    The purpose of the study was to investigate the major minerals present in granite mining waste and agricultural soils near and away from mining areas. The mineral exploration of representative sub-soil samples are identified by X-Ray Diffractometer (XRD) pattern data analysis. The morphological features and quantitative elementary analysis was performed by Scanning Electron Microscopy-Energy Dispersed Spectroscopy (SEM-EDS).The XRD pattern data revealed that the major minerals are identified as Quartz, Albite, Anorthite, K-Feldspars, Muscovite, Annite, Lepidolite, Illite, Enstatite and Ferrosilite in granite waste. However, in case of agricultural farm soils the major minerals are identified as Gypsum, Calcite, Magnetite, Hematite, Muscovite, K-Feldspars and Quartz. Moreover, the agricultural soils neighbouring mining areas, the minerals are found that, the enriched Mica group minerals (Lepidolite and Illite) the enriched Orthopyroxene group minerals (Ferrosilite and Enstatite). It is observed that the Mica and Orthopyroxene group minerals are present in agricultural farm soils neighbouring mining areas and absent in agricultural farm soils away from mining areas. The study demonstrated that the chemical migration takes place at agricultural farm lands in the vicinity of the granite mining areas.

  18. Metal-rich fluid inclusions provide new insights into unconformity-related U deposits (Athabasca Basin and Basement, Canada)

    NASA Astrophysics Data System (ADS)

    Richard, Antonin; Cathelineau, Michel; Boiron, Marie-Christine; Mercadier, Julien; Banks, David A.; Cuney, Michel

    2016-02-01

    The Paleoproterozoic Athabasca Basin (Canada) hosts numerous giant unconformity-related uranium deposits. The scope of this study is to establish the pressure, temperature, and composition (P-T-X conditions) of the brines that circulated at the base of the Athabasca Basin and in its crystalline basement before, during and after UO2 deposition. These brines are commonly sampled as fluid inclusions in quartz- and dolomite-cementing veins and breccias associated with alteration and U mineralization. Microthermometry and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) data from five deposits (Rabbit Lake, P-Patch, Eagle Point, Millennium, and Shea Creek) complement previously published data for the McArthur River deposit. In all of the deposits investigated, fluid inclusion salinity is between 25 and 40 wt.% NaCl equiv., with compositions displaying a continuum between a "NaCl-rich brine" end-member (Cl > Na > Ca > Mg > K) and a "CaCl2-rich brine" end-member (Cl > Ca ≈ Mg > Na > K). The CaCl2-rich brine has the highest salinity and shows evidence for halite saturation at the time of trapping. The continuum of compositions between the NaCl-rich brine and the CaCl2-rich brine end-members combined with P-T reconstructions suggest anisothermal mixing of the two brines (NaCl-rich brine, 180 ± 30 °C and 800 ± 400 bars; CaCl2-rich brine, 120 ± 30 °C and 600 ± 300 bars) that occurred under fluctuating pressure conditions (hydrostatic to supra-hydrostatic). However, because the two brines were U bearing and therefore oxidized, brine mixing was probably not the driving force for UO2 deposition. Several scenarios are put forward to account for the Cl-Na-Ca-Mg-K composition of the brines, involving combinations of seawater evaporation, halite dissolution, mixing with a halite-dissolution brine, Mg/Ca exchange by dolomitization, Na/Ca exchange by albitization of plagioclase, Na/K exchange by albitization of K-feldspar, and Mg loss by Mg-rich alteration. Finally, the metal concentrations in the NaCl-rich and CaCl2-rich brines are among the highest recorded compared to present-day sedimentary formation waters and fluid inclusions from basin-hosted base metal deposits (up to 600 ppm U, 3000 ppm Mn, 4000 ppm Zn, 6000 ppm Cu, 8000 ppm Pb, and 10,000 ppm Fe). The CaCl2-rich brine carries up to one order of magnitude more metal than the NaCl-rich brine. Though the exact origin of major cations and metals of the two brines remains uncertain, their contrasting compositions indicate that the two brines had distinct flow paths and fluid-rock interactions. Large-scale circulation of the brines in the Athabasca Basin and Basement was therefore a key parameter for metal mobility (including U) and formation of unconformity-related U deposits.

  19. Foliation development and reaction softening by dissolution and precipitation in the transformation of granodiorite to orthogneiss, Glastonbury Complex, Connecticut, U.S.A

    USGS Publications Warehouse

    Wintsch, R.P.; Aleinikoff, J.N.; Yi, K.

    2005-01-01

    Textures, microstructures, and patterns of chemical zoning in minerals in a granodioritic orthogneiss in the Glastonbury Complex, Connecticut, lead to the interpretation that foliation development was facilitated by retrograde hydration reactions in the presence of an aqueous fluid. Incomplete replacement of the metastable magmatic minerals K-feldspar + hastingsite + magnetite produced foliation-defining biotite + epidote + quartz. These reaction products did not replace K-feldspar - hastingsite interfaces; rather, either biotite or epidote replaced the amphibole, and plagioclase replaced K-feldspar. Biotite and epidote precipitated syntectonically in discrete layers that define the foliation in the orthogneiss, whereas quartz precipitated primarily in ribbons, further enhancing the fabric. Metastable REE-rich igneous titanite also dissolved, and was incompletely replaced by REE-poor, Al-bearing metamorphic titanite. The similar concentrations of the REE in epidote and titanite show that the REE released by titanite dissolution were precipitated locally as the allanite component in adjacent grains of epidote. The entire process was syntectonic, with most grains showing multiple overgrowths in the direction of extension as defined by stretched xenoliths. Sufficient U was present in the titanite overgrowths to allow SHRIMP dating of cores, mantles, and rims. These results suggest at least three retrograde Alleghanian events of growth in a span of ???30 m.y. Thus the dissolution - transportation - precipitation process not only describes the reaction mechanism but also leads to the redistribution of reaction products into nearly monomineralic layers, thus contributing to metamorphic differentiation and to the development of the foliation. The resulting orthogneiss was much weaker that the granodiorite protolith, owing to this reaction and textural softening.

  20. Chlorite, Biotite, Illite, Muscovite, and Feldspar Dissolution Kinetics at Variable pH and Temperatures up to 280 C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, S.; Smith, M.; Lammers, K.

    2016-10-05

    Summary Sheet silicates and clays are ubiquitous in geothermal environments. Their dissolution is of interest because this process contributes to scaling reactions along fluid pathways and alteration of fracture surfaces, which could affect reservoir permeability. In order to better predict the geochemical impacts on long-term performance of engineered geothermal systems, we have measured chlorite, biotite, illite, and muscovite dissolution and developed generalized kinetic rate laws that are applicable over an expanded range of solution pH and temperature for each mineral. This report summarizes the rate equations for layered silicates where data were lacking for geothermal systems.

  1. Investigation of Potassium Feldspar Reactivity in Wet Supercritical CO2 by In Situ Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Thompson, C.; Widener, C.; Schaef, T.; Loring, J.; McGrail, B. P.

    2014-12-01

    Capture and subsequent storage of CO2 in deep geologic reservoirs is progressively being considered as a viable approach to reduce anthropogenic greenhouse gas emissions. In the long term, injected CO2 may become permanently entrapped as silicate minerals react with CO2 enriched fluids to form stable carbonate minerals. Potassium feldspars are highly abundant in the earth's crust and are present in the caprocks and storage formations of many target reservoirs. While the dissolution kinetics and carbonation reactions of feldspars have been well studied in the aqueous phase, comparatively little work has focused on K-feldspar reactivity in the CO2-rich fluid. In this study, we used in situ infrared spectroscopy to investigate the carbonation reactions of natural microcline samples. Experiments were carried out at 50 °C and 91 bar by circulating dry or wet supercritical CO2 (scCO2) past a thin film of powdered sample. Water concentrations ranged from 0% to 125% relative to saturation, and transmission-mode absorbance spectra were recorded as a function of time for 48 hours. No discernible reaction was detected when the samples were exposed to anhydrous scCO2. However, in fully water-saturated scCO2, a thin film of liquid-like water was observed on the samples' surfaces, and up to 0.6% of the microcline was converted to a carbonate phase. Potassium carbonate is the most likely reaction product, but minor amounts of sodium carbonate and siderite may also have formed from minor sample impurities. The extent of reaction appears to be related to the thickness of the water film and is likely a consequence of the film's ability to solvate and transport ions in the vicinity of the mineral surface. Other features observed in the spectra correspond to microcline dissolution and precipitation of amorphous silica. Implications about the role of water in these reactions and the relative effectiveness of alkali feldspars for mineral trapping of CO2 will be discussed.

  2. Petrologic Constraints on the Exhumation of the Sierra Blanca Metamorphic Core Complex (AZ)

    NASA Astrophysics Data System (ADS)

    Koppens, K. M.; Gottardi, R.

    2017-12-01

    The Sierra Blanca metamorphic core complex (SBMCC), located 90 miles west of Tucson, is part of the southern belt of metamorphic core complexes that stretches across southern Arizona. The SBMCC exposes Jurassic age sedimentary rocks that have been metamorphosed by intruding Late Cretaceous peraluminous granites and pegmatites. Evidence of this magmatic episode includes polysythetic twinning in plagioclase, albite exsolution of potassium feldspar resulting in myrmekitic texture, and garnet, mica and feldspar assemblages. The magmatic fabric is overprinted by a Tertiary (Miocene?) tectonic fabric, associated with the exhumation of the Sierra Blanca metamorphic core along a low-angle detachment fault, forming the SBMCC. The NW-SE elongated dome of metamorphic rocks forms the footwall of the detachment shear zone, and is separated from the hanging wall, composed of Paleozoic and Mesozoic metasedimentary rocks, by a low-angle detachment shear zone. Foliation is defined by gneissic layering and aligned muscovite, and is generally sub-horizontal, defining the dome. The NNW-SSE mineral stretching lineation is expressed by plagioclase and K-feldspar porphyroclasts, and various shear sense indicators are all consistent with a top-to the-NNW shear sense. Lineation trends in a NNW-SSE orientation; however, plunge changes across the domiform shape of the MCC. Much of the deformation is preserved in the blastomylonitic gneiss derived from the peraluminous granite, including epidote porphyroclasts, grain boundary migration in quartz, lozenged amphiboles, mica fish, and retrograde mineral alterations. Detailed petrologic observation and microstructural analysis presented here provide thermomechanical constraints on the evolution of the SBMCC.

  3. Micro-Raman and FT-IR spectroscopic studies of ceramic shards excavated from ancient Stratonikeia city at Eskihisar village in West-South Turkey

    NASA Astrophysics Data System (ADS)

    Bahçeli, Semiha; Güleç, Gamze; Erdoğan, Hasan; Söğüt, Bilal

    2016-02-01

    In this study, micro-Raman and Fourier transformed infrared (FT-IR) spectroscopies, X-ray diffraction (XRD) and scanning electron microscope with energy dispersive X-ray (SEM-EDX) were used to characterize the mineralogical structures of pigments of four ceramic fragments in which one of them belongs to Hellenistic period (1st - IVth century BC) and other three ceramic shards belong to Early Rome (IVth century BC- 1st century AD) excavated from Stratonikeia ancient city. In the results of investigations on these four ceramic fragments, the various phases were identified: quartz, kaolinite, albit (or Na-feldspar), calcite, anastase, hematite and magnetite. Furthermore, the obtained findings indicate that firing temperature is about 800-850 °C for all the shards.

  4. Chlorite, Biotite, Illite, Muscovite and Feldspar Dissolution Kinetics at Variable pH and Temperatures up to 280 deg C

    DOE Data Explorer

    Carroll, Susan; Smith, Megan M.; Lammers, Kristin

    2017-02-24

    Chemical reactions pose an important but poorly understood threat to EGS long-term success because of their impact on fracture permeability. This report summarizes the dissolution rate equations for layered silicates where data were lacking for geothermal systems. Here we report updated rate laws for chlorite (Carroll and Smith 2013), biotite (Carroll and Smith, 2015), illite (Carroll and Smith, 2014), and for muscovite. Also included is a spreadsheet with rate data and rate equations for use in reactive transport simulators.

  5. Petrology of a nonindigenous microgranitic clast in polymict ureilite EET 87720: Evidence for formation of evolved melt on an unknown parent body

    NASA Astrophysics Data System (ADS)

    Beard, A. D.; Downes, H.; Chaussidon, M.

    2015-09-01

    EET 87720 is a polymict ureilite breccia known to contain numerous nonindigenous fragments. We have discovered a microgranitic clast in an interior chip of Elephant Moraine (EET) 87720. The clast consists of a granophyre-like intergrowth of a pure SiO2 phase (tridymite) and albite, mantling a zoned oligoclase phenocryst. In the intergrowth, the tridymite occurs as thin elongate vermicular blebs within larger albite crystals. The granophyre-like intergrowth and the oligoclase phenocryst share a common margin, suggesting that the clast was originally part of a larger fragment. An estimate of its bulk composition is equivalent to that of granite (77 wt% SiO2). Patches of high-Si K-bearing glass occur interstitially within the clast; they have high concentrations of SO3 (11-12 wt%) and contain Cl (0.6 wt%), suggesting that the clast formed on a volatile-rich parent body perhaps resembling early Mars. The mean oxygen isotope composition of the feldspar and tridymite in the clast is very different from the oxygen isotope compositions of ureilites, and is similar to those of silicate inclusions in IIE and IVA irons. Thus, the clast is not indigenous to the ureilite parent body, but it provides evidence for the formation of evolved melts on an unknown parent body in the early solar system.

  6. CO2-rich geothermal areas in Iceland as natural analogues for geologic carbon sequestration

    NASA Astrophysics Data System (ADS)

    Thomas, D.; Maher, K.; Bird, D. K.; Brown, G. E.; Arnorsson, S.

    2013-12-01

    Geologic CO2 sequestration into mafic rocks via silicate mineral dissolution and carbonate precipitation has been suggested as a way to mitigate industrial CO2 emissions by storing CO2 in a stable form. Experimental observations of irreversible reaction of basalt with supercritical or gaseous and aqueous CO2 have resulted in carbonate precipitation, but there are no universal trends linking the extent of mineralization and type of reaction products to the bulk rock composition, glass percentage or mineralogy of the starting material. Additionally, concern exists that CO2 leakage from injection sites and migration through the subsurface may induce mineral dissolution and desorption of trace elements, potentially contaminating groundwater. This study investigates low-temperature (≤180°C) basaltic geothermal areas in Iceland with an anomalously high input of magmatic CO2 as natural analogues of the geochemical processes associated with the injection of CO2 into mafic rocks and possible leakage. Fluids that contain >4 mmol/kg total CO2 are common along the divergent Snæfellsnes Volcanic Zone in western Iceland and within the South Iceland Seismic Zone in southwest Iceland. The meteorically derived waters contain up to 80 mmol/kg dissolved inorganic carbonate (DIC). The aqueous concentration of major cations and trace elements is greater than that in Icelandic surface and groundwater and increases with DIC and decreasing pH. Concentrations of As and Ni in some samples are several times the World Health Organization (WHO) guidelines for safe drinking water. Thermodynamic modeling indicates that waters approach saturation with respect to calcite and/or aragonite, kaolinite and amorphous silica, and are undersaturated with respect to plagioclase feldspar, clinozoisite and Ca-zeolites. Petrographic study of drill cuttings from wells that intersect the CO2-rich areas indicates that the sites have undergone at least two stages of hydrothermal alteration: initial high-temperature and late stage low-temperature alteration. Imaging results from scanning electron microscopy show that calcite has replaced hydrothermally altered silicate minerals, such as albitic plagioclase. CO2-rich low-temperature fluids are not in equilibrium with correlative high-temperature hydrothermal mineral assemblages, indicating that the kinetics of mineral dissolution and secondary mineral precipitation, along with fluid residence times, are important controls on CO2 alteration and mineral formation at low temperatures. Our results have implications for predicting mineral product formation and trace element release during geologic carbon sequestration into hydrothermally altered basalts.

  7. Alteration and mineralization of an oceanic forearc and the ophiolite-ocean crust analogy

    USGS Publications Warehouse

    Alt, J.C.; Teagle, D.A.H.; Brewer, T.; Shanks, Wayne C.; Halliday, A.

    1998-01-01

    Mineralogical, chemical, and isotopic (O, C, S, and Sr) analyses were performed on minerals and bulk rocks from a forearc basement section to understand alteration processes and compare with mid-ocean ridges (MOR) and ophiolites. Ocean Drilling Program Hole 786B in the Izu-Bonin forearc penetrates 103 m of sediment and 725 m into volcanic flows, breccias, and basal dikes. The rocks comprise boninites and andesites to rhyolites. Most of the section was affected by low-temperature (<100??C) seawater alteration, with temperatures increasing downward. The rocks are partly (5-25%) altered to smectite, Fe-oxyhydroxide, calcite, and phillipsite, and exhibit gains of K, Rb, and P, loss of Ca, variable changes in Si, Na, Mg, Fe, Sr, and Y, and elevated ??18O and 87Sr/86Sr. Higher temperatures (???150??C) in the basal dikes below 750 m led to more intense alteration and formation of chlorite-smectite, corrensite, albite, K-feldspar, and quartz (??chlorite). A 5 m thick hydrothermally altered and pyritized zone at 815 m in the basal dikes reacted with mixtures of seawater and hydrothermal fluids to Mg-chlorite, albite, and pyrite, and gained Mg and S and lost Si and Ca. Focused flow of hydrothermal fluids produced sericitization halos (Na-K sericite, quartz, pyrophyllite, K-feldspar, and pyrite) along quartz veins at temperatures of 200??-250??C. High 87Sr/86Sr ratios of chloritized (???0.7055) and sericitized (???0.7065) rocks indicate involvement of seawater via mixing with hydrothermal fluids. Low ??34S of sulfide (???2 to -5.5???) and sulfate (12.5???) are consistent with input of magmatic SO2 into hydrothermal fluids and disproportionation to sulfide and sulfate. Alteration processes were generally similar to those at MORs, but the arc section is more intensively altered, in part because of the presence of abundant glassy rocks and mafic phases. The increase in alteration grade below 750 m and the mineralization in the basal dikes are analogous to changes that occur near the base of the volcanic section in MOR and the Troodos ophiolite.

  8. Characteristics and origin of the relatively high-quality tight reservoir in the Silurian Xiaoheba Formation in the southeastern Sichuan Basin

    PubMed Central

    Gong, Xiaoxing; Shi, Zejin; Wang, Yong; Tian, Yaming; Li, Wenjie; Liu, Lei

    2017-01-01

    A mature understanding of the sandstone gas reservoir in the Xiaoheba Formation in the southeastern Sichuan Basin remains lacking. To assess the reservoir characteristics and the origin of the high-quality reservoir in the Xiaoheba Formation, this paper uses systematic field investigations, physical property analysis, thin section identification, scanning electron microscopy and electron microprobe methods. The results indicate that the Xiaoheba sandstone is an ultra-tight and ultra-low permeability reservoir, with an average porosity of 2.97% and an average permeability of 0.56×10−3 μm2. This promising reservoir is mainly distributed in the Lengshuixi and Shuangliuba regions and the latter has a relatively high-quality reservoir with an average porosity of 5.28% and average permeability of 0.53×10−3 μm2. The reservoir space comprises secondary intergranular dissolved pores, moldic pores and fractures. Microfacies, feldspar dissolution and fracture connectivity control the quality of this reservoir. The relatively weak compaction and cementation in the interbedded delta front distal bar and interdistributary bay microfacies indirectly protected the primary intergranular pores and enhanced late-stage dissolution. Late-stage potassium feldspar dissolution was controlled by the early-stage organic acid dissolution intensity and the distance from the hydrocarbon generation center. Early-stage fractures acted as pathways for organic acid migration and were therefore important factors in the formation of the reservoir. Based on these observations, the area to the west of the Shuangliuba and Lengshuixi regions has potential for gas exploration. PMID:28686735

  9. Mineral dissolution in the Cape Cod aquifer, Massachusetts, USA: I . Reaction stoichiometry and impact of accessory feldspar and glauconite on strontium isotopes, solute concentrations, and REY distribution

    USGS Publications Warehouse

    Bau, Michael; Alexander, Brian; Chesley, John T.; Dulski, Peter; Brantley, Susan L.

    2004-01-01

    To compare relative reaction rates of mineral dissolution in a mineralogically simple groundwater aquifer, we studied the controls on solute concentrations, Sr isotopes, and rare earth element and yttrium (REY) systematics in the Cape Cod aquifer. This aquifer comprises mostly carbonate-free Pleistocene sediments that are about 90% quartz with minor K-feldspar, plagioclase, glauconite, and Fe-oxides. Silica concentrations and pH in the groundwater increase systematically with increasing depth, while Sr isotopic ratios decrease. No clear relationship between 87Sr/86Sr and Sr concentration is observed. At all depths, the 87Sr/86Sr ratio of the groundwater is considerably lower than the Sr isotopic ratio of the bulk sediment or its K-feldspar component, but similar to that of a plagioclase-rich accessory separate obtained from the sediment. The Si-87Sr/86Sr-depth relationships are consistent with dissolution of accessory plagioclase. In addition, solutes such as Sr, Ca, and particularly K show concentration spikes superimposed on their respective general trends. The K-Sr-87Sr/86Sr systematics suggests that accessory glauconite is another major solute source to Cape Cod groundwater. Although the authigenic glauconite in the Cape Cod sediment is rich in Rb, it is low in in-grown radiogenic 87Sr because of its young Pleistocene age. The low 87Sr/86Sr ratios are consistent with equilibration of glauconite with seawater. The impact of glauconite is inferred to vary due to its variable abundance in the sediments. In the Cape Cod groundwater, the variation of REY concentrations with sampling depth resembles that of K and Rb, but differs from that of Ca and Sr. Shale-normalized REY patterns are light REY depleted, show negative Ce anomalies and super-chondritic Y/Ho ratios, but no Eu anomalies. REY input from feldspar, therefore, is insignificant compared to input from a K-Rb-bearing phase, inferred to be glauconite. These results emphasize that interpretation of groundwater chemistry, even in relatively simple aquifers, may be complicated by solute contributions from “exotic” accessory minerals such as glauconite. To detect such peculiarities, groundwater studies should combine the study of elemental concentration and isotopic composition of several solutes that show different geochemical behavior.

  10. Mid Carboniferous lamprophyres, Cobequid Fault Zone, eastern Canada, linked to sodic granites, voluminous gabbro, and albitization

    NASA Astrophysics Data System (ADS)

    Pe-Piper, Georgia; Piper, David J. W.; Papoutsa, Angeliki

    2018-01-01

    Major intra-continental shear zones developed during the later stages of continental collision in a back-arc setting are sites of prolonged magmatism. Mantle metasomatism results from both melting of subducted sediments and oceanic crust. In the Cobequid Fault Zone of the northern Appalachians, back-arc A-type granites and gabbros dated ca. 360 Ma are locally intruded by lamprophyric dykes dated ca. 335 Ma. All the lamprophyres are kersantites with biotite and albite, lesser ilmenite, titanite and fluorapatite, and minor magmatic calcite, allanite, pyrite, magnetite, quartz and K-feldspar in some samples. The lamprophyres show enrichment in Rb, Ba, K, Th and REE and classify as calc-alkaline lamprophyre on the basis of biotite and whole rock chemistry. Pb isotopes lie on a mixing line between normal mantle-derived gabbro and OIB magma. Nd isotopes range from 1.3-3.5 εNdt, a little lower than in local gabbro. Most lamprophyres have δ18O = 3.8-4.4‰. Country rock is cut by pyrite-(Mg)-chlorite veins with euhedral allanite crystals that resemble the lamprophyres mineralogically, with the Mg-chlorite representing chloritized glass. Early Carboniferous unenriched mafic dykes and minor volcanic rocks are widespread along the major active strike-slip fault zones. The lamprophyres are geographically restricted to within 10 km of a small granitoid pluton with some sodic amphibole and widespread albitization. This was displaced by early Carboniferous strike-slip faulting from its original position close to the large Wentworth Pluton, the site of mantle-derived sodic amphibole granite, a major late gabbro pluton, and a volcanic carapace several kilometres thick, previously demonstrated to be the site of mantle upwelling and metasomatism. The age of the lamprophyres implies that enriched source material in upper lithospheric mantle or lower crust was displaced 50 km by crustal scale strike-slip faulting after enrichment by the mantle upwelling before lamprophyre emplacement. This indicates a multi-stage process to emplace lamprophyric magma.

  11. Evaluation of mineral-aqueous chemical equilibria of felsic reservoirs with low-medium temperature: A comparative study in Yangbajing geothermal field and Guangdong geothermal fields

    NASA Astrophysics Data System (ADS)

    Li, Jiexiang; Sagoe, Gideon; Yang, Guang; Lu, Guoping

    2018-02-01

    Classical geothermometers are useful tools for estimating reservoir temperatures of geothermal systems. However, their application to low-medium temperature reservoirs is limited because large variations of temperatures calculated by different classical geothermometers are usually observed. In order to help choose the most appropriate classical geothermometer for calculating the temperatures of low-medium temperature reservoirs, this study evaluated the mineral-aqueous equilibria of typical low-medium temperature felsic reservoirs in the Yangbajing geothermal field and Guangdong geothermal fields. The findings of this study support that reservoirs in the Guangdong geothermal fields have no direct magma influence. Also, natural reservoirs may represent the intermediate steady state before reaching full equilibrium, which rarely occurs. For the low-medium temperature geothermal systems without the influence of magma, even with seawater intrusion, the process of minerals reaching mineral-aqueous equilibrium is sequential: chlorite and chalcedony are the first, then followed by K-feldspar, kaolinite and K-mica. Chlorite may reach equilibrium at varying activity values, and the equilibrium between K-feldspar and kaolinite or K-feldspar and K-mica can fix the contents of K and Al in the solutions. Although the SiO2 and Al attain equilibrium state, albite and laumontite remain unsaturated and thus may affect low-medium temperature calculations. In this study, the chalcedony geothermometer was found to be the most suitable geothermometer for low-medium temperature reservoirs. The results of K-Mg geothermometer may be useful to complement that of the chalcedony geothermometer in low-medium temperature reservoir systems. Na-K geothermometer will give unreliable results at low-medium temperatures; and Na-K-Ca will also be unsuitable to calculate reservoir temperatures lower than 180 °C, probably caused by the chemical imbalance of laumontite.

  12. Sodium storage in deep paleoweathering profiles beneath the Paleozoic-Triassic unconformity

    NASA Astrophysics Data System (ADS)

    Thiry, M.; Parcerisa, D.; Ricordel-Prognon, C.; Schmitt, J.-M.

    2009-04-01

    A major sodium accumulation has been recognized for long and by numerous authors in the Permo-Triassic salt deposits (Hay et al., 2006). Beside these basinal deposits, important masses of sodium were stored on the continents within deep palaeoweathering profiles in form of albite. Indeed, wide surfaces and huge volumes of granito-gneissic basements of the Hercynian massifs are albitized from North-Africa up to Scandinavia. These albitized rocks have usually been considered as related to tardi-magmatic metasomatic processes (Cathelineau 1986; Petersson and Eliasson 1997). Geometrical arrangement and dating of these alterations point out that these albitizations, or at least a part of them, developed under low temperature subsurface conditions in relation with the Triassic palaeosurface (Ricordel et al., 2007; Parcerisa et al., 2009). Petrology The albitized igneous rocks show a strong alteration with pseudomorphic replacement of the primary plagioclases into albite, replacement of primary biotite by chlorite and minor precipitation of neogenic minerals like albite, chlorite, apatite, haematite, calcite and titanite. Albitized rocks are characterized by their pink coloration due to the presence of minute haematite inclusions in the albite. The development and distribution of the albitization and related alterations above the unaltered basement occurs in three steps that define a vertical profile, up to 100-150 m depth. 1) In the lower part of the profile, albitization occurs within pink-colored patches in the unaltered rock, giving a pink-spotted aspect to the rock. 2) In the middle part of the profile, rocks have an overall pink coloration due to the albitization of the primary Ca-bearing igneous plagioclases. Usually, this facies develops in a pervasive manner, affecting the whole rock, but it may also be restricted to joints, giving a sharp-pink coloration to the fracture wall. 3) Finally, the top of the profile is defined by the same mineral paragenesis as in the pink stage, with an increase in the amount and size of sericite and hematite inclusions. The latter causes the red coloration of the altered rocks. Regional layout Regional distribution of the alterations which affect the Carboniferous igneous and volcanic formations beneath the Jurassic sedimentary cover lead to associate these alterations to the Triassic unconformity. Besides, albitized facies show generally both topographic and regional arrangements, with more altered facies occurring in the mountain highs and in the external parts of the massifs and unaltered facies occurring in the river valleys and in the central parts of the massifs. Moreover, the haematite associated with these albitized basement rocks has been dated from Early Trias by means of paleomagnetism (Ricordel et al, 2007). From this layout and dating, it is deduced that albitization is related to the development of a deep weathering profile (up to 150 m deep) during a long-lasting exposure of the Triassic erosional unconformity (regolith). Geochemistry and paleoenvironmental setting It has to be highlighted that, this alteration may not behave like an "ordinary" weathering profile and occurred under unusual, or at least very specific, geological settings. The scale of the profiles (over 100 m depth) relates this alteration rather to a groundwater environment. The weak mobility of most chemical elements may point to a groundwater with very low outflows and deep water table. This may occur in very subdued landscape and in arid climatic conditions. It has also to be pointed that this alteration may have lasted for several 10's of Ma. Albite formation at low temperature may be envisioned consequently in alkaline, confined waters with sufficient concentrations of sodium and silica. Early attempts of modeling (Schmitt, 1994) have also indicated that a high Na+/K+ ratio is as well probably required. Petrographic data also indicate an import of sodium by the weathering solutions, without any clear enrichment in potassium. The Na+ enrichment is most likely linked with the peculiar geochemical setting of the Triassic environment where for instance halite moulds are very common in transgressive epicontinental deposits. The leaching of such salts, the role of salty marine aerosols, or a periodic/episodic contribution of seawater or evaporative solutions may be equally invoked. Mass balance Taking into account the surpergene origin of albitization and its widespread development on the Paleozoic basement rocks (from Morocco to Scandinavia) means that high amounts of Na+ have been stored in the deep paleoweathering profiles of the Triassic continents. This sodium storage in weathering profiles has to be taken in consideration in addition to the major sodium chloride accumulation in the basins during the Permo-Triassic times. Further investigations are needed to demonstrate the extent of these paleoweathering profiles and then to estimate the amount of this continental sodium storage. References Cathelineau M (1986) The hydrothermal alkali metasomatism effects on granitic rocks: Quartz dissolution and related sub-solidus changes. Jour. Petrol., 27: 945-965. Hay, W.W.; Migdisov, A.; Balukhovsky, A.N.; Wold, C.N.; Flogel, S., Soding, E. (2006) Evaporites and the salinity of the ocean during the Phanerozoic: Implications for climate, ocean circulation and life. Palaeogeography, Palaeoclimatology, Palaeoecology, 240/1-2: 3-46. Parcerisa D., Thiry M., Schmitt J.-M. (2009) Albitisation related to the Triassic unconformity in igneous rocks of the Morvan Massif (France), International Journal of Earth Sciences, DOI: 10.1007/s00531-008-0405-1. Petersson J, Eliasson T (1997) Mineral evolution and element mobility during episyenitization (dequartzification) and albitization in the postkinematic Bohus granite, southwest Sweden. Lithos, 42: 123-146. Ricordel C, Parcerisa D, Thiry M, Moreau M-G, Gómez-Gras D (2007) Triassic magnetic overprints related to albitization in granites from the Morvan massif (France). Palaeogeography Palaeoclimatology Palaeoecology, 251: 268-282. Schmitt JM (1994) Geochemical modelling and origin of the Triassic albitized regolith in southern France. 14th International Sedimentological Congress, Recife, Brazil. Abstracts book S8: 19-21.

  13. Geology of the Andover Granite and surrounding rocks, Massachusetts

    USGS Publications Warehouse

    Castle, Robert O.

    1964-01-01

    Field and petrographic studies of the Andover Granite and surrounding rocks have afforded an opportunity for an explanation of its emplacement and crystallization. The investigation has contributed secondarily to an understanding of the geologic history of southeastern New England, particularly as it is revealed in the Lawrence, Wilmington, South Groveland, and Reading quadrangles of Massachusetts. The Andover Granite and Sharpners Pond Tonalite together comprise up to 90 percent of the Acadian(?) subalkaline intrusive series cropping out within the area of study. The subalkaline series locally invades a sequence of early to middle Paleozoic and possibly Precambrian metasedimentary and metavolcanic rocks. Much of the subalkaline series and most of the Andover Granite is confined between two prominent east-northeast trending faults or fault systems. The northern fault separates the mildly metamorphosed Middle Silurian(?) Merrimack Group on the north from a highly metamorphosed and thoroughly intruded Ordovician(?) sequence on the south. The southern 'boundary '' fault is a major structural discontinuity characterized by penetrative, diffuse shearing over a zone one-half mile or more in width. The magmatic nature of the Andover Granite is demonstrated by: (1) sharply crosscutting relationships with surrounding rocks; (2) the occurrence of tabular-shaped xenoliths whose long directions parallel the foliation within the granite and whose internal foliation trends at a high angle to that of the granite; (3) continuity with the clearly intrusive Sharpners Pond Tonalite; (4) the compositional uniformity of the granite as contrasted with the compositional diversity of the rocks it invades; (5) its modal and normative correspondence with (a) calculated norms of salic extrusives and (b) that of the ternary (granite) minimum for the system NaAlSi3O8-KAlSi3O8-SiO2. Orogenic granites, as represented by the Andover, contrast with post-orogenic granites, represented locally by the Peabody Granite, in their phase composition and texture. Unlike the Peabody, the Andover Granite is thought to have been thoroughly recrystallized through the unmixing of initially homogeneous phases with the concomitant development of extremely intricate, allotriomorphic textures. Textural relationships between potassium and plagioclase feldspars and among quartz and the two feldspars, suggest that the Andover Granite has evolved through exsolution of a single hypersolvus feldspar (or two coexisting subsolvus feldspars of only slightly disparate compositions) into discrete grains of plagioclase and potassium feldspar, much along the lines proposed by Tuttle (1952). A hypothesis is proposed for the origin of myrmekite whereby it is evolved indirectly through exsolution of a homogeneous, hypersolvus, calcalkali feldspar in the presence of a silica reservoir. Where the An 'molecule' is contained in the primary mix crystal, exsolution into potassium and plagioclase feldspar phases normally requires a paired exchange between Ca-Al and K-Si. Should the silicon requirements of the developing potassium feldspar be met by the matrix silica reservoir, the concomitantly evolving plagioclase may become stoichiometrically enriched in silicon and ultimately develop into myrmekite. Discrete unmixing of pure alkali feldspar proceeds through simple alkali ion exchange; ternary compostions high in An are more apt to fall initially in the two-feldspar field, thereby reducing the unmixing potential. General restriction of myrmekite to plagioclase of calcic albite to oligoclase composition is explained accordingly.

  14. Formation of cordierite-bearing lavas during anatexis in the lower crust beneath Lipari Island (Aeolian arc, Italy)

    USGS Publications Warehouse

    Di, Martino C.; Forni, F.; Frezzotti, M.L.; Palmeri, R.; Webster, J.D.; Ayuso, R.A.; Lucchi, F.; Tranne, C.A.

    2011-01-01

    Cordierite-bearing lavas (CBL;~105 ka) erupted from the Mt. S. Angelo volcano at Lipari (Aeolian arc, Italy) are high-K andesites, displaying a range in the geochemical and isotopic compositions that reflect heterogeneity in the source and/or processes. CBL consist of megacrysts of Ca-plagioclase and clinopyroxene, euhedral crystals of cordierite and garnet, microphenocrysts of orthopyroxene and plagioclase, set in a heterogeneous rhyodacitic-rhyolitic groundmass containing abundant metamorphic and gabbroic xenoliths. New petrographic, chemical and isotopic data indicate formation of CBL by mixing of basaltic-andesitic magmas and high-K peraluminous rhyolitic magmas of anatectic origin and characterize partial melting processes in the lower continental crust of Lipari. Crustal anatectic melts generated through two main dehydration-melting peritectic reactions of metasedimentary rocks: (1) Biotite + Aluminosilicate + Quartz + Albite = Garnet + Cordierite + K-feldspar + Melt; (2) Biotite + Garnet + Quartz = Orthopyroxene + Cordierite + K-feldspar + Melt. Their position into the petrogenetic grid suggests that heating and consequent melting of metasedimentary rocks occurred at temperatures of 725 < T < 900??C and pressures of 0.4-0.45 GPa. Anatexis in the lower crust of Lipari was induced by protracted emplacement of basic magmas in the lower crust (~130 Ky). Crustal melting of the lower crust at 105 ka affected the volcano evolution, impeding frequent maficmagma eruptions, and promoting magma stagnation and fractional crystallization processes. ?? 2011 Springer-Verlag.

  15. Petrology of Impact-Melt Rocks at the Chicxulub Multiring Basin, Yucatan, Mexico

    NASA Technical Reports Server (NTRS)

    Schuraytz, Benjamin C.; Sharpton, Virgil L.; Marin, Luis E.

    1994-01-01

    Compositions and textures of melt rocks from the upper part of the Chicxulub structure are typical of melt rocks at other large terrestrial impact structures. Apart from variably elevated iridium concentrations (less than 1.5 to 13.5 +/- 0.9 ppb) indicating nonuniform dissemination of a meteoritic component, bulk rock and phenocryst compositions imply that these melt rocks were derived exclusively from continental crust and platform-sediment target lithologies. Modest differences in bulk chemistry among samples from wells located approximately 40 km apart suggest minor variations in relative contributions of these target lithologies to the melts. Subtle variations in the compositions of early-formed pyroxene and plagioclase also support minor primary differences in chemistry between the melts. Evidence for pervasive hydrothermal alteration of the porous mesostasis includes albite, K-feldspar, quartz, epidote, chlorite, and other phyllosilicates, as well as siderophile element-enriched sulfides, suggesting the possibility that Chicxulub, like Sudbury, may host important ore deposits.

  16. An experimental investigation of agglutinate melting mechanisms - Shocked mixtures of sodium and potassium feldspars

    NASA Technical Reports Server (NTRS)

    Simon, S. B.; Papike, J. J.; Horz, F.; See, T. H.

    1985-01-01

    The results of an experiment designed to test the validity of the model for agglutinate formation involving fusion of the finest fraction or F3 are reported. Impact glasses were formed from various mixes of orthoclase and albite powders, which were used as analogs for soils with chemically constrasting coarse and fine fractions. The results showed that the single most important factor displacing the composition of a small-scale impact melt from the bulk composition of the source regolith is the fractionated composition of the finest soil fraction. Volatile loss and the amount of melting, which in turn are determined by the degree of shock, are also important. As predicted by the model, the lower pressure melts are the most fractionated, and higher pressure is accompanied by increased melting causing glass compositions to approach the bulk. In general, the systematics predicted by the model are observed; the model appears to be valid.

  17. Mineral chemistry and geochemistry of the Late Neoproterozoic Gabal Abu Diab granitoids, Central Eastern Dessert, Egypt: Implications for the origin of rare metal post-orogenic A-type granites

    NASA Astrophysics Data System (ADS)

    Sami, Mabrouk; Ntaflos, Theodoros; Farahat, Esam S.; Ahmed, Awaad F.; Mohamed, Haroun A.

    2015-04-01

    The Neoproterozoic Gabal Abu Diab pluton is a part of the Arabian Nubian shield (ANS) continental crust and located in the Central Eastern Desert (CED) of Egypt. It constitutes multiphase granitic pluton intruded into granodiorite and metagabbro-diorite rocks with sharp and nonreactive contacts. Based on field observations, colors, structural variations and petrographic investigations, this granitic outcrop consists of an inner core of two-mica granite (TMG) followed outward by garnet bearing muscovite granite (GBMG) and albite granite (AG). Petrographical study indicated that medium to coarse-grained TMG is dominated by K-feldspar (Or88-98), quartz, plagioclase (albite, An0-7), muscovite and biotite with hypidiomorphic texture. With exception the appearance of garnet and the disappearance of biotite the GBMG resembles the TGM, while AG is leucocratic without any mafic mineral. The main accessories are zircon, Nb and Ta-bearing rutile, columbite, ilmenorutile, ilmenite, magnetite and apatite. This mineralogical similarity and the existence of columbite group minerals (CGM) in all granitoids, indicates a cogenetic relationship. Microprobe analyses reveal that, besides the CGM, rutile and ilmenite are the main repository phases for Nb-Ta-Ti. Columbite-(Mn) exists as individual subhedral crystals (up to 100μm in size) or intimate intergrowth with Nb-bearing rutile and/or ilmenite. The CGM are represented mostly by columbite-(Mn) with Ta/(Ta+Nb) and Mn/(Mn+Fe) ratio ranging from 0.02-0.08 and 0.4-0.9, respectively suggesting extreme degree of magmatic fractionation. Rutile contains significant amounts of Ta (up to 4 wt.% Ta2O5) and Nb (up to 22 wt.% Nb2O5). Biotites are phlogopite-annite in composition (Ann47-60Phlog40-53,on average) and are enriched with AlIV that characterize peraluminous granites. Garnets contain 60-69 mol.% spessartine and 28-36 mol.% almandine where, the ratio of spessartine and almandine together exceeds 95 mole percent, similar to garnet occur within A-type granite worldwide. According to Zhang et al., 2012, the garnet crystallized at the expense of biotite from the MnO-rich evolved melt after fractionation of biotite, plagioclase, K-feldspar, zircon, apatite, and ilmenite. The granitoids are alkali feldspar granites showing distinct geochemical features and most likely, belong to the post-orogenic younger Egyptian granitoids. They are peraluminous A-type alkaline rocks but they have lower Fe2O3, MgO, MnO, CaO, TiO2, P2O5, Sr, Ba, V, and higher SiO2, Na2O, K2O, Nb, Ta, U, Zr, Th, Ga/Al and Rb than the typical rocks of this type. The positive correlation between Ba and Sr, and the negative correlation between Rb and K/Rb reveal fractional crystallization of alkali feldspar. The similarity in most geochemical characteristics suggests that Abu Diab granitoids are genetically related to each other and extremely enrichment in incompatible elements such as Nb and Ta, indicating that they crystallized from extremely differentiated magmas. References: Zhang, J., Ma, C. and She, Z., 2012. An Early Cretaceous garnet-bearing metaluminous A-type granite intrusion in the East Qinling Orogen, central China: Petrological, mineralogical and geochemical constraints. Geoscience Frontiers 3 (5), 635-646.

  18. Upper Cretaceous Shannon Sandstone Reservoirs, Powder River Basin, Wyoming: Evidence for organic acid diagenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansley, P.L.; Nuccio, V.F.

    Comparison of the petrology of shallow and deep oil reservoirs in the Upper Cretaceous Shannon Sandstone Beds of the Steele Member of the Cody Shale strongly suggests that organic acids have had a more significant impact on the diagenetic alteration of aluminosilicate grains and carbonate cements in the deep reservoirs than in the shallow reservoirs. In shallow reservoirs, detrital grains exhibit minor dissolution, sparse and small overgrowths, and secondary porosity created by dissolution of early calcite cement. However, deeper sandstones are characterized by extensive dissolution of detrital K-feldspar and detrital glauconite grains, and precipitation of abundant, large quartz and feldsparmore » overgrowths. Throughout the Shannon and Steele, dissolution of glauconite and degradation of kerogen were probably aided by clay mineral/organic catalysis, which caused simultaneous reduction of iron and oxidation of kerogen. This process resulted in release of ferrous iron and organic acids and was promoted in the deep reservoirs by higher formation temperatures accounting for more extensive dissolution of aluminosilicate grains. Carbonic acid produced from the dissolution of early calcite cement, decarboxylation of organic matter, and influx of meteoric water after Laramide uplift produced additional dissolution of cements and grains. Dissolution by organic acids and complexing by organic acid anions, however, best explain the intensity of diagenesis and absence of dissolution products in secondary pores and on etched surfaces of framework grains in deep reservoirs.« less

  19. Effect of oxalate on the dissolution rates of oligoclase and tremolite (journal version)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mast, M.A.; Drever, J.I.

    1987-01-01

    The effect of oxalate, a strong chelator for Al and other cations, on the dissolution rates of oligoclase feldspar and tremolite amphibole was investigated in a flow-through reactor at 22 deg C. Oxalate at concentrations of 0.5 and 1 mM has essentially no effect on the dissolution rate of tremolite, nor on the steady-state rate of release of Si from oligoclase. The fact that oxalate has no effect on dissolution rate suggests that detachment of Si rather than Al or Mg is the rate-limiting step. At pH 4 and 9, oxalate has no effect on the steady-state rate of releasemore » of Al, and dissolution is congruent. At pH 5 and 7, oligoclase dissolution is congruent in the presence of oxalate, but in the absence of oxalate Al is preferentially retained in the solid relative to Si. The rate of dissolution of tremolite is independent of pH over the pH range 2-5, and decreases at higher pH. The rate of dissolution of oligoclase was independent of pH over the pH range 4-9. Since the dissolution rate of these minerals is independent of pH and organic ligand concentration, the effect of acid deposition from the atmosphere on the rate of supply of cations from weathering of granitic rocks should be minor.« less

  20. Magmatic evolution and controls on rare metal-enrichment of the Strange Lake A-type peralkaline granitic pluton, Québec-Labrador

    NASA Astrophysics Data System (ADS)

    Siegel, Karin; Vasyukova, Olga V.; Williams-Jones, Anthony E.

    2018-05-01

    Although it is well known that A-type granites are enriched in the rare earth elements (REE) and other high field strength elements (HFSE), the magmatic processes that concentrate these elements are still poorly understood. The 1.24 Ga Strange Lake pluton in northern Québec-Labrador provides an extraordinary example of hyper-enrichment in the REE, Zr, and Nb in a peralkaline A-type granite. The pluton consists of two hypersolvus granite units (southern and northern) and a transsolvus granite, all of which contain perthitic alkali feldspar as the earliest major mineral; the transsolvus granite also contains separate albite and microcline crystals. Arfvedsonite, a sodic amphibole, occurs exclusively as phenocrysts in the transsolvus granite, whereas in the hypersolvus granite it is present as a late, interstitial phase. The primary HFSE minerals are zircon, monazite-(Ce), gagarinite-(Ce) and the pyrochlore group minerals. Magma evolution was monitored by the alumina content in the bulk rock, which decreases from the southern to the northern hypersolvus granite and is lowest in the transsolvus granite. Alkalinity indices and bulk Si, Fe, Rb, REE, Zr, Nb concentrations show the opposite trend. Alkali feldspar compositions mirror the trend shown by the bulk rock, i.e., decreasing Al contents are accompanied by increasing Si, Fe3+, REE, Zr and Nb contents. The major driving forces for the evolution of the hypersolvus magma prior to emplacement were the early separation of a fluoride melt from the silicate melt and the crystallization of alkali feldspar and HFSE-rich phases (zircon, monazite-(Ce), pyrochlore group). An alkali feldspar-rich crystal-mush containing LREE-fluoride melt droplets was emplaced as the least evolved southern hypersolvus granite. Massive fractionation of alkali feldspar led to a sharp increase in ƒH2O and F- activity in the magma chamber that triggered the crystallization of arfvedsonite and was followed by emplacement of the northern hypersolvus granite, which contained a higher proportion of LREE-fluoride melt droplets. Further evolution in the magma chamber led to a transition from a miaskitic to an agpaitic composition. The transsolvus granite was intruded in the form of a low viscosity crystal mush of alkali feldspar, quartz, arfvedsonite (after appreciable crystallization of arfvedsonite) and LREE-fluoride melt droplets. Upon emplacement, arfvedsonite (and gagarinite-(Ce)) crystals segregated as cumulates in response to a combination of flow differentiation and gravity settling. The immiscible fluoride melt accumulated in a volatile-rich residual silicate magma, which migrated to the top of the pluton where it formed the F-REE-rich cores of highly mineralized pegmatites.

  1. Direct Measurement of the Wettability of Minerals Using Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Deng, Y.; Xu, L.; Lu, H.; Wang, H.; Shi, Y.

    2016-12-01

    The wettability of reservoir rock plays an essential role in affecting the states of fluids (water, oil, etc) in pores which are constructed with various minerals. The contact angle method, which is based on the optical microscope photographs of millimeter-sized droplets on a smooth mineral surface, is one of the most widely employed methods to evaluate the wettability of a rock. However, the real reservoir rocks are composed of several kinds of minerals and thus nonhomogeneous, which leads to different wettability at different location of the rock. The mineral grains are usually micrometer-sized so that the traditional optical contact angle method cannot obtain the wettability of different minerals in the rock. Here we used a tapping-mode atomic force microscopy (TM-AFM, MFP-3D-BIO, Asylum Research) to measure the contact angles of micrometer-sized water droplets on different minerals in a tight sand rock which is mainly composed of quartz, albite, potash feldspar and anorthite. The water droplets varied from submicron to several tens micron in diameter. With the optimization of tool and operation parameters, the AFM tip was well controlled so that the nanoscale morphology of the contact configuration between water film and the mineral surface can be obtained at high resolution without disturbing the liquid surface. The AFM results showed that the contact angles of water on quartz and albite were 30-40 ° and 37-45 °, respectively. The AFM method provides a new measure for the wettability evaluation of reservoir rocks, and it is with potential to be applied to oil and gas hydrate studies.

  2. Zoning and exsolution in cumulate alkali feldspars from the eruption (12.9 Ka) of Laacher see volcano (Western Germany) as an indicator of time-scales and dynamics of carbonate-silicate unmixing

    NASA Astrophysics Data System (ADS)

    Sourav Rout, Smruti; Wörner, Gerhard

    2017-04-01

    Time-scales extracted from the detailed analysis of chemically zoned minerals provide insights into crystal ages, magma storage and compositional evolution, including mixing and unmixing events. This allows having a better understanding of pre-eruptive history of large and potentially dangerous magma chambers. We present a comprehensive study of chemical diffusion across zoning and exsolution patterns of alkali feldspars in carbonatite-bearing cognate syenites from the 6.3 km3 (D.R.E) phonolitic Laacher See Tephra (LST) eruption 12.9 ka ago. The Laacher See volcano is located in the Quaternary East Eifel volcanic field of the Paleozoic Rhenish Massif in Western Germany and has produced a compositionally variable sequence in a single eruption from a magma chamber that was zoned from mafic phonolite at the base to highly evolved, actively degassing phonolite magma at the top. Diffusion chronometry is applied to major and trace element compositions obtained on alkali feldspars from carbonate-bearing syenitic cumulates. Methods used were laser ablation inductively coupled plasma mass spectrometry (LA ICP-MS) in combination with energy-dispersive and wavelength-dispersive electron microprobe analyses (EDS & WDS-EMPA). The grey scale values extracted from multiple accumulations of back-scattered electron images represent the K/Na ratio owing to the extremely low concentrations of Ba and Sr (<30 ppm). The numerical grey scale profiles and the quantitative compositional profiles are anatomized using three different fitting models in MATLAB®, Mathematica® and Origin® to estimate related time-scales with minimized error for a temperature range of 750 deg C to 800 deg C (on the basis of existing experimental data on phase transition and phase separation). A distinctive uphill diffusive analysis is used specifically for the phase separation in the case of exsolution features (comprising of albite- and orthoclase-rich phases) in sanidines. The error values are aggregates of propagated error through calculations and the uncertainty in temperature values. Trace element compositional data of distinct feldspar compositions that are assumed to have grown before and after silicate-carbonate unmixing are used to estimate partition coefficients between carbonate and silicate melt. The resulting values correlate well with available experimental data from the literature. We will present a genetic model based on the compositional data on feldspar zonation for the process and timing of silicate-carbonate unmixing prior to eruption of the host phonolite magma.

  3. Hydrothermal alteration of deep fractured granite: Effects of dissolution and precipitation

    NASA Astrophysics Data System (ADS)

    Nishimoto, Shoji; Yoshida, Hidekazu

    2010-03-01

    This paper investigates the mineralogical effects of hydrothermal alteration at depth in fractures in granite. A fracture accompanied by an alteration halo and filled with clay was found at a depth of 200 m in a drill core through Toki granite, Gifu, central Japan. Microscopic observation, XRD, XRF, EPMA and SXAM investigations revealed that the microcrystalline clays consist of illite, quartz and pyrite and that the halo round the fracture can be subdivided into a phyllic zone adjacent to the fracture, surrounded by a propylitic zone in which Fe-phyllosilicates are present, and a distinctive outer alteration front characterized by plagioclase breakdown. The processes that result in these changes took place in three successive stages: 1) partial dissolution of plagioclase with partial chloritization of biotite; 2) biotite dissolution and precipitation of Fe-phyllosilicate in the dissolution pores; 3) dissolution of K-feldspar and Fe-phyllosilicate, and illite precipitation associated with development of microcracks. These hydrothermal alterations of the granite proceed mainly by a dissolution-precipitation process resulting from the infiltration of hydrothermal fluid along microcracks. Such infiltration causes locally high mobility of Al and increases the ratio of fluid to rock in the alteration halo. These results contribute to an understanding of how granitic rock becomes altered in orogenic fields such as the Japanese island arc.

  4. Is there a geochemical link between volcanic and plutonic rocks in the Organ Mountains caldera?

    NASA Astrophysics Data System (ADS)

    Memeti, V.; Davidson, J.

    2013-12-01

    Results from separate volcanic and plutonic studies have led to inconsistent conclusions regarding the origins and thus links between volcanic and plutonic systems in continental arcs and the magmatic processes and time scales responsible for their compositional variations. Some have suggested that there is a geochemical and geochronological disconnect between volcanic and plutonic rocks and hence have questioned the existence of magma mush columns beneath active volcanoes. Investigating contemporary volcanic and plutonic rocks that are spatially connected is thus critical in exploring these issues. The ca. 36 Ma Organ Mountains caldera in New Mexico, USA, represents such a system exposing contemporaneous volcanic and plutonic rocks juxtaposed at the surface due to tilting during extensional tectonics along the Rio Grande Rift. Detailed geologic and structural mapping [1] and 40Ar/39Ar ages of both volcanics and plutons [2] demonstrate the spatial and temporal connection of both rock types with active magmatism over >2.5 myr. Three caldera-forming ignimbrites erupted within 600 kyr [2] from this system with a total erupted volume of 500-1,000 km3 as well as less voluminous pre- and post-caldera trachyte and andesite lavas. The ignimbrite sequence ranges from a crystal-poor, high-SiO2 rhyolite at the base to a more crystal-rich, low-SiO2 rhyolite at the top. Compositional zoning with quartz-monzonite at the base grading to syenite and alaskite at the top is also found in the Organ Needle pluton, the main intrusion, which is interpreted to be the source for the ignimbrites [1]. Other contemporaneous and slightly younger plutons have dioritic to leucogranitic compositions. We examined both volcanic and plutonic rocks with petrography and their textural variations with color cathodoluminescence, and used whole rock element and Sr, Nd and Pb isotope geochemistry to constrain magma compositions and origins. Electron microprobe analyses on feldspars have been completed to determine within-crystal geochemical variations. Our current conclusions and working hypotheses are: 1) All igneous rocks from the Organ Mountains are crustal-mantle melt mixtures indicating two component mixing; 2) the caldera-forming ignimbrites are likely derived from a fractionating Organ Needle pluton; 3) pre- and post-caldera lavas are isotopically similar to the post-caldera Sugarloaf Peak quartz-monzonite; 4) K-feldspar cumulate textures in the structurally top 0.5-1 km of the Organ Needle pluton indicate that interstitial melt was lost from the magma mush, which likely fed the ignimbrite eruptions. 5) Plutonic feldspar textures are complex compared to rather simple zoned volcanic feldspars including K-feldspar rimmed plagioclase, plagioclase rimmed K-feldspar and unrimmed feldspars occurring over a range of grain sizes at thin section scale. Some volcanic feldspar phenocrysts have any previous zonation erased due to late stage albitization. Although the single mineral studies are still work in progress and details need resolving, our data so far suggest a geochemical link between volcanic and plutonic rocks of the Organ Mountains caldera, albeit a complex one; and greater complexity in plutonic versus volcanic minerals. [1] Seager (1980), NM Bureau of Mines and Min. Res. Memoir 36, 97 p. [2] Zimmerer & McIntosh (2013) Journal of Geophysical Research, v. 93, p. 4421-4433

  5. [Effects of ammonium sulfate on the metabolism and K-feldspar weathering of two potassium-bearing mineral-solubilizing bacteria].

    PubMed

    Huang, Zhi; Ma, Guangyou; He, Linyan; Sheng, Xiafang

    2012-02-04

    To determine the best conditions for Bacillus globisporus Q12 and Rhizobium sp. Q32 to produce organic acids and extracellular polysaccharides, respectively, and further elucidate the weathering mechanism of the two potassium-bearing mineral-solubilizing bacteria. Different contents (0-1.2 g/L) of (NH4)2SO4 were added to media to analyze the ability of the strains to produce organic acids and extracellular polysaccharides, and assess the ability of Q12, Q32 and their mixture to dissolve potassium feldspar. Scanning electron microscope (SEM) was also used to observe the distribution of the bacterial cells on the surfaces of the feldspar and the mineral weathering. Results show that Bacillus globisporus Q12 produced more organic acids, when the contents of (NH4)2SO4 were 0.6 g/L; Rhizobium sp. Q32 produced more extracellular polysaccharides, when there was no (NH4)2SO4 in the media; and the mixture of two strains produced more organic acids and extracellular polysaccharides, when the contents of (NH4)2SO4 were 0.3 g/L. Mineral dissolution experiment showed that Bacillus globisporus Q12, Rhizobium sp. Q32 and the mixture (Q12 + Q32) significantly dissolved the feldspar and released the elements from the mineral, of which the mixture of Q12 and Q32 had the best weathering ability than strain Q12 or Q32; SEM also indicated that the mixture of Q12 and Q32 had more ability to weather feldspar than each tested strain. The contents of (NH4)2SO4 in the media could affect the growth and metabolites of the strains Q12 and Q32 and the mineral bioweathering, the mixture of strains Q12 and Q32 had the more potential of feldspar weathering through the combined action of organic acids and extracellular polysaccharides produced by strains Q12 and Q32.

  6. Oscillating brittle and viscous behavior through the earthquake cycle in the Red River Shear Zone: Monitoring flips between reaction and textural softening and hardening

    NASA Astrophysics Data System (ADS)

    Wintsch, Robert P.; Yeh, Meng-Wan

    2013-03-01

    Microstructures associated with cataclasites and mylonites in the Red River shear zone in the Diancang Shan block, Yunnan Province, China show evidence for both reaction hardening and softening at lower greenschist facies metamorphic conditions. The earliest fault-rocks derived from Triassic porphyritic orthogneiss protoliths are cataclasites. Brittle fractures and crushed grains are cemented by newly precipitated quartz. These cataclasites are subsequently overprinted by mylonitic fabrics. Truncations and embayments of relic feldspars and biotites show that these protolith minerals have been dissolved and incompletely replaced by muscovite, chlorite, and quartz. Both K-feldspar and plagioclase porphyroclasts are truncated by muscovite alone, suggesting locally metasomatic reactions of the form: 3K-feldspar + 2H+ = muscovite + 6SiO2(aq) + 2K+. Such reactions produce muscovite folia and fish, and quartz bands and ribbons. Muscovite and quartz are much weaker than the reactant feldspars and these reactions result in reaction softening. Moreover, the muscovite tends to align in contiguous bands that constitute textural softening. These mineral and textural modifications occurred at constant temperature and drove the transition from brittle to viscous deformation and the shift in deformation mechanism from cataclasis to dissolution-precipitation and reaction creep. These mylonitic rocks so produced are cut by K-feldspar veins that interrupt the mylonitic fabric. The veins add K-feldspar to the assemblage and these structures constitute both reaction and textural hardening. Finally these veins are boudinaged by continued viscous deformation in the mylonitic matrix, thus defining a late ductile strain event. Together these overprinting textures and microstructures demonstrate several oscillations between brittle and viscous deformation, all at lower greenschist facies conditions where only frictional behavior is predicted by experiments. The overlap of the depths of greenschist facies conditions with the base of the crustal seismic zone suggests that the implied oscillations in strain rate may have been related to the earthquake cycle.

  7. Deformation of quartz and feldspar at mid-crustal depths in an extensional normal fault (Viveiro Fault, NW Spain)

    NASA Astrophysics Data System (ADS)

    López-Sánchez, M. A.; Llana-Fúnez, S.; Marcos, A.; Martínez, F. J.

    2012-04-01

    Metamorphic reactions, deformation mechanism and chemical changes during mylonitization and ultramylonitization of granite affected by a crustal-scale shear zone are investigated using microstructural observations and quantitative analysis. The Vivero Fault (VF) is a large extensional shear zone (>140Km) in NW of Iberia that follows the main Variscan trend dipping 60° toward the West. The movement accumulated during its tectonic history affects the major lithostratigraphic sequence of Palaeozoic and Neoproterozoic rocks and the metamorphic facies developed during Variscan orogenesis. Staurolite, and locally, andalucite plus biotite grew in the hangingwall during the development of VF, overprinted the previous regional Variscan greenschist facies metamorphism. Andalusite growth took place during the intrusion of syntectonic granitic bodies, such as the deformed granite studied here. The Penedo Gordo granite is coarse-grained two-mica biotite-rich granite intruding the VF and its hangingwall. This granite developed a localized deformation consisting of a set of narrow zones (mm to metric scales) heterogeneously distributed subsequently to its intrusion. Based on pseudosections for representative hangingwall pelites hosting the granite and the inferred metamorphic evolution, the shear zone that outcrops at present-day erosion surface was previously active at 14,7-17 km depth (390-450 MPa). Temperature estimates during deformation reach at least the range 500-600° C, implying a local gradient of 35±6°C/km. Microstructures in the mylonites are characterized by bulging (BLG) to subgrain rotation (SGR) recristallization in quartz with the increasing of deformation. Albitisation, flame-perthite and tartan twining are common in K-feldspar at the early stage of deformation. The inferred dominant deformation mechanisms are: i) intracrystalline plasticity in quartz, ii) cataclasis with syntectonic crystallisation of very fine albite-oligoclase and micas in K-feldspar, and iii) cataclasis with precipitation of K-feldspar in fractures and other dilatational sites in plagioclase. Ultramylonites consist of a matrix mainly containing feldspar, quartz and micas (mainly biotite) with an average grain size below 15 μm, usually featuring some quartz pods and small feldspar porphyroclast. Quartz pods disintegrate into polycrystalline aggregates, and the resultant grains are mixed into the surrounding matrix reaching its average grain size. In the matrix, grain size is uniform and the distribution of mineral phases tends to be homogeneous. Mass balance analysis based on major elements indicates that the deformation process was not isochemical for some elements. Preliminary XRF results show that the mylonitic/ultramylonitic samples are depleted in Na and Mn and enriched in K and Ca respect to the original protolith, while others remains stable (Si, Al or Fe). This data suggests a large-scale transport of some components, and therefore, that fluids were involved during deformation. Similar feldspar microstructures in mylonites, implying cataclasis and neocrystallisation, have been previously reported in natural rocks where the temperature was estimated between 250 to 450°C (see Fitz-Gerald and Stünitz 1993, Hippertt 1998 or Ree et al. 2005). In opposition to this, petrological and mineralogical thermometry data indicate that temperatures during deformation of FV reached at 500-600°C, extending the temperature range previously reported.

  8. Petrological features of selected components of the Cergowa sandstones (Outer Carpathians) recorded by scanning electron microscopy - preliminary study

    NASA Astrophysics Data System (ADS)

    Pszonka, Joanna

    2017-11-01

    The scanning electron microscope analysis of the Cergowa sandstones brings new data on their petrological features and chemical composition. Previous work in standard petrographic examination, e.g. polarising (PL) or cathodoluminescence (CL) microscopy, displayed limited information on grain surface topography and only assumptions to their geochemistry. Both identification and characterisation of minerals are fundamental in the progress of mining and minerals processing systems. Detrital grains of the Cergowa sandstones are bound by calcite and dolomitic cement and commonly corroded by diagenetic fluids, however, in varying degrees, which is illustrated here by feldspar, quartz and dolomite minerals. Dissolution processes of marginal parts of these mineral grains resulted in corrosion, which increased the contact surface between the grains and the cement. The difference in resistance to these processes was observed not only among distinct groups of minerals, but also within the group of feldspars: between K-feldspars and minerals of plagioclase. That combination resulted in exceptionally strong cementation of the Cergowa sandstones, which is expressed by their high hardness and resistance to abrasion, freezing, and thawing. Inherent parameters of sandstones are characterised by their petrographical properties.

  9. Manganese oxides and associated minerals as constituents of dispersed mineralization of metasomatic rocks in the Dukat ore field

    NASA Astrophysics Data System (ADS)

    Filimonova, L. G.; Sivtsov, A. V.; Trubkin, N. V.

    2010-08-01

    Lithiophorite and coronadite—varieties of vernadite and todorokite—make up finely dispersed colloform mixtures along with minor grains and nanoparticles of aluminosilicates and ore minerals in metasomatic rocks of the Dukat ore field, which were formed in local areas of fluid and hydrothermal-solution discharge at the upper level of the ore-forming system. Fe-vernadite associates with feroxyhyte, magnetite, apatite, K-feldspar, native silver, and acanthite in greisenized granitoids and with epidote, cerianite, plattnerite, and Fe-chlorite in quartz-garnet-chlorite propylites. Todorokite with high Pb, Tl, and Sn contents associates with epidote, albite, bitumen, and native silver in quartz-epidote-chlorite propylites. Al-vernadite, coronadite, and lithiophorite associate with opal, kaolinite, Fe-chlorite, zincite, uraninite, native silver, and acanthite in argillisites. These data allowed us to estimate the conditions of manganese accumulation in the epithermal ore-forming system and deposition conditions of Mn-rich, finely dispersed mineral mixtures in mineralized zones hosted in metasomatic rocks of the ore field.

  10. Chemical weathering rates of a soil chronosequence on granitic alluvium: I. Quantification of mineralogical and surface area changes and calculation of primary silicate reaction rates

    USGS Publications Warehouse

    White, A.F.; Blum, A.E.; Schulz, M.S.; Bullen, T.D.; Harden, J.W.; Peterson, M.L.

    1996-01-01

    Mineral weathering rates are determined for a series of soils ranging in age from 0.2-3000 Ky developed on alluvial terraces near Merced in the Central Valley of California. Mineralogical and elemental abundances exhibit time-dependent trends documenting the chemical evolution of granitic sand to residual kaolinite and quartz. Mineral losses with time occur in the order: hornblende > plagioclase > K-feldspar. Maximum volume decreases of >50% occur in the older soils. BET surface areas of the bulk soils increase with age, as do specific surface areas of aluminosilicate mineral fractions such as plagioclase, which increases from 0.4-1.5 m2 g-1 over 600 Ky. Quartz surface areas are lower and change less with time (0.11-0.23 m2 g-1). BET surface areas correspond to increasing external surface roughness (?? = 10-600) and relatively constant internal surface area (??? 1.3 m2 g-1). SEM observations confirm both surface pitting and development of internal porosity. A numerical model describes aluminosilicate dissolution rates as a function of changes in residual mineral abundance, grain size distributions, and mineral surface areas with time. A simple geometric treatment, assuming spherical grains and no surface roughness, predicts average dissolution rates (plagioclase, 10-17.4; K-feldspar, 10-17.8; and hornblende, 10-17.5 mol cm-1 s-1) that are constant with time and comparable to previous estimates of soil weathering. Average rates, based on BET surface area measurements and variable surface roughnesses, are much slower (plagioclase, 10-19.9; K-feldspar, 10-20.5; and hornblende 10-20.1 mol cm-2 s-1). Rates for individual soil horizons decrease by a factor of 101.5 over 3000 Ky indicating that the surface reactivities of minerals decrease as the physical surface areas increase. Rate constants based on BET estimates for the Merced soils are factors of 103-104 slower than reported experimental dissolution rates determined from freshly prepared silicates with low surface roughness (?? <10). This study demonstrates that the utility of experimental rate constants to predict weathering in soils is limited without consideration of variable surface areas and processes that control the evolution of surface reactivity with time.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagy, Kathryn L.; Sturchio, Neil C.

    This project, renewal of a previous EMSP project of the same title, is in its first year of funding at the University of Illinois at Chicago. The purpose is to continue investigating rates and mechanisms of reactions between primary sediment minerals found in the Hanford subsurface and leaked waste tank solutions. The goals are to understand processes that result in (1) changes in porosity and permeability of the sediment and resultant changes in flow paths of the contaminant plumes, (2) formation of secondary precipitates that can take up contaminants in their structures, and (3) release of mineral components that canmore » drive redox reactions affecting dissolved contaminant mobility. A post-doctoral scientist, Dr. Sherry Samson, has been hired and two masters of science students are beginning to conduct experimental research. One research project that is underway is focused on measurement of the dissolution rates of plagioclase feldspar in high pH, high nitrate, high Al-bearing solutions characteristic of the BX tank farms. The first set of experiments is being conduced at room temperature. Subsequent experiments will examine the role of temperature because tank solutions in many cases were near boiling when leakage is thought to have occurred and temperature gradients have been observed beneath the SX and BX tank farms. The dissolution experiments are being conducted in stirred-flow kinetic reactors using powdered labradorite feldspar from Pueblo Park, New Mexico.« less

  12. Diagenesis and reservoir quality of the Lower Cretaceous Quantou Formation tight sandstones in the southern Songliao Basin, China

    NASA Astrophysics Data System (ADS)

    Xi, Kelai; Cao, Yingchang; Jahren, Jens; Zhu, Rukai; Bjørlykke, Knut; Haile, Beyene Girma; Zheng, Lijing; Hellevang, Helge

    2015-12-01

    The Lower Cretaceous Quantou Formation in the southern Songliao Basin is the typical tight oil sandstone in China. For effective exploration, appraisal and production from such a tight oil sandstone, the diagenesis and reservoir quality must be thoroughly studied first. The tight oil sandstone has been examined by a variety of methods, including core and thin section observation, XRD, SEM, CL, fluorescence, electron probing analysis, fluid inclusion and isotope testing and quantitative determination of reservoir properties. The sandstones are mostly lithic arkoses and feldspathic litharenites with fine to medium grain size and moderate to good sorting. The sandstones are dominated by feldspar, quartz, and volcanic rock fragments showing various stages of disintegration. The reservoir properties are quite poor, with low porosity (average 8.54%) and permeability (average 0.493 mD), small pore-throat radius (average 0.206 μm) and high displacement pressure (mostly higher than 1 MPa). The tight sandstone reservoirs have undergone significant diagenetic alterations such as compaction, feldspar dissolution, quartz cementation, carbonate cementation (mainly ferrocalcite and ankerite) and clay mineral alteration. As to the onset time, the oil emplacement was prior to the carbonate cementation but posterior to the quartz cementation and feldspar dissolution. The smectite to illite reaction and pressure solution at stylolites provide a most important silica sources for quartz cementation. Carbonate cements increase towards interbedded mudstones. Mechanical compaction has played a more important role than cementation in destroying the reservoir quality of the K1q4 sandstone reservoirs. Mixed-layer illite/smectite and illite reduced the porosity and permeability significantly, while chlorite preserved the porosity and permeability since it tends to be oil wet so that later carbonate cementation can be inhibited to some extent. It is likely that the oil emplacement occurred later than the tight rock formation (with the porosity close to 10%). However, thicker sandstone bodies (more than 2 m) constitute potential hydrocarbon reservoirs.

  13. Water chemistry at Snowshoe Mountain, Colorado: mixed processes in a common bedrock

    USGS Publications Warehouse

    Hoch, A.R.; Reddy, M.M.

    2001-01-01

    At Snowshoe Mountain the primary bedrock is quite homogeneous, but weathering processes vary as waters moves through the soils, vadose zone and phreatic zone of the subsurface. In the thin soil, physical degradation of tuff facilitates preferential dissolution of potassium ion from glass within the rock matrix, while other silicate minerals remain unaltered. In the vadose zone, in the upper few meters of fractured bedrock, dilute water infiltrates during spring snowmelt and summer storms, leading to preferential dissolution of augite exposed on fracture surfaces. Deeper yet, in the phreatic zone of the fractured bedrock, Pleistocene calcite fracture fillings dissolve, and dioctahedral and trioctahedral clays form as penetrative weathering alters feldspar and pyroxene. Alkalinity is generated and silica concentrations are buffered by mineral alteration reactions.

  14. Fluid-rock reactions in an evaporitic melange, Permian Haselgebirge, Austrian Alps

    USGS Publications Warehouse

    Spotl, C.; Longstaffe, F.J.; Ramseyer, K.; Kunk, Michael J.; Wiesheu, R.

    1998-01-01

    Tectonically isolated blocks of carbonate rocks present within the anhydritic Haselgebirge melange of the Northern Calcareous Alps record a complex history of deformation and associated deep-burial diagenetic to very low-grade metamorphic reactions. Fluids were hot (up to ~ 250 ??C) and reducing brines charged with carbon dioxide. Individual carbonate outcrops within the melange record different regimes of brine-rock reactions, ranging from pervasive dolomite recrystallization to dedolomitization. Early diagenetic features in these carbonates were almost entirely obliterated. Matrix dolomite alteration was related to thermochemical sulphate reduction (TSR) recognized by the replacement of anhydrite by calcite + pyrite ?? native sulphur. Pyrite associated with TSR is coarsely crystalline and characterized by a small sulphur isotope fractionation relative to the precursor Permian anhydrite. Carbonates associated with TSR show low Fe/Mn ratios reflecting rapid reaction of ferrous iron during sulphide precipitation. As a result, TSR-related dolomite and calcite typically show bright Mn(II)-activated cathodoluminescence in contrast to the dull cathodoluminescence of many (ferroan) carbonate cements in other deep-burial settings. In addition to carbonates and sulphides, silicates formed closely related to TSR, including quartz, K-feldspar, albite and K-mica. 40Ar/39Ar analysis of authigenic K-feldspar yielded mostly disturbed step-heating spectra which suggest variable cooling through the argon retention interval for microcline during the Late Jurassic. This timing coincides with the recently recognized subduction and closure of the Meliata-Hallstatt ocean to the south of the Northern Calcareous Alps and strongly suggests that the observed deep-burial fluid-rock reactions were related to Jurassic deformation and melange formation of these Permian evaporites.

  15. Ages and sources of components of Zn-Pb, Cu, precious metal, and platinum group element deposits in the goodsprings district, Clark County, Nevada

    USGS Publications Warehouse

    Vikre, Peter G.; Browne, Quentin J.; Fleck, Robert J.; Hofstra, Albert H.; Wooden, Joseph L.

    2011-01-01

    The Goodsprings district, Clark County, Nevada, includes zinc-dominant carbonate replacement deposits of probable late Paleozoic age, and lead-dominant carbonate replacement deposits, copper ± precious metal-platinum group element (PGE) deposits, and gold ± silver deposits that are spatially associated with Late Triassic porphyritic intrusions. The district encompasses ~500 km2 although the distribution of all deposits has been laterally condensed by late Mesozoic crustal contraction. Zinc, Pb, and Cu production from about 90 deposits was ~160,000 metric tons (t) (Zn > Pb >> Cu), 2.1 million ounces (Moz) Ag, 0.09 Moz Au, and small amounts of PGEs—Co, V, Hg, Sb, Ni, Mo, Mn, Ir, and U—were also recovered.Zinc-dominant carbonate replacement deposits (Zn > Pb; Ag ± Cu) resemble Mississippi Valley Type (MVT) Zn-Pb deposits in that they occur in karst and fault breccias in Mississippian limestone where the southern margin of the regional late Paleozoic foreland basin adjoins Proterozoic crystalline rocks of the craton. They consist of calcite, dolomite, sphalerite, and galena with variably positive S isotope compositions (δ34S values range from 2.5–13‰), and highly radiogenic Pb isotope compositions (206Pb/204Pb >19), typical of MVT deposits above crystalline Precambrian basement. These deposits may have formed when southward flow of saline fluids, derived from basinal and older sedimentary rocks, encountered thinner strata and pinch-outs against the craton, forcing fluid mixing and mineral precipitation in karst and fault breccias. Lead-dominant carbonate replacement deposits (Pb > Zn, Ag ± Cu ± Au) occur among other deposit types, often near porphyritic intrusions. They generally contain higher concentrations of precious metals than zinc-dominant deposits and relatively abundant iron oxides after pyrite. They share characteristics with copper ± precious metal-PGE and gold ± silver deposits including fine-grained quartz replacement of carbonate minerals in ore breccias and relatively low S and Pb isotope values (δ34S values vary from 0–~4‰; 206Pb/204Pb <18.5). Copper ± precious metal-PGE deposits (Cu, Co, Ag, Au, Pd, and Pt) consist of Cu carbonate minerals (after chalcocite and chalcopyrite) and fine-grained quartz that have replaced breccia clasts and margins of fissures in Paleozoic limestones and dolomites near porphyritic intrusions. Gold ± silver deposits occur along contacts and within small-volume stocks and dikes of feldspar porphyry, one textural variety of porphyritic intrusions. Lead isotope compositions of copper ± precious metal-PGE, gold ± silver, and lead-dominant carbonate replacement deposits are similar to those of Mojave crust plutons, indicating derivation of Pb from 1.7 Ga crystalline basement or from Late Proterozoic siliciclastic sedimentary rocks derived from 1.7 Ga crystalline basement.Four texturally and modally distinctive porphyritic intrusions are exposed largely in the central part of the district: feldspar quartz porphyry, plagioclase quartz porphyry, feldspar biotite quartz porphyry, and feldspar porphyry. Intrusions consist of 64 to 70 percent SiO2 and variable K2O/Na2O (0.14–5.33) that reflect proportions of K-feldspar and albite phenocrysts and megacrysts as well as partial alteration to K-mica; quartz and biotite phenocrysts are present in several subtypes. Albite may have formed during emplacement of magma in brine-saturated basinal strata, whereas hydrothermal alteration of matrix, phenocrystic, and megacrystic feldspar and biotite to K-mica, pyrite, and other hydrothermal minerals occurred during and after intrusion emplacement. Small volumes of garnet-diopside-quartz and retrograde epidote-mica-amphibole skarn have replaced carbonate rocks adjacent to one intrusion subtype (feldspar-quartz porphyry), but alteration of carbonate rocks at intrusion contacts elsewhere is inconspicuous.Uranium-lead ages of igneous zircons vary inconsistently from ~ 180 to 230 Ma and are too imprecise to distinguish age differences among intrusion subtypes; most ages are 210 to 225 Ma, yielding a mean of 217 ± 1 Ma. K-Ar and 40Ar/39Ar ages of magmatic (plagioclase, biotite) and hydrothermal (K-mica) minerals span a similar range (183–227 Ma), demonstrating broadly contemporaneous intrusion emplacement and hydrothermal alteration but allowing for multiple Late Triassic magmatic-hydrothermal events. Imprecision and range of isotopic ages may have resulted from burial beneath Mesozoic and Tertiary strata and multiple intrusion of magmas, causing thermal disturbance to Ar systems and Pb loss from zircons in intrusions.Separate late Paleozoic (zinc-dominant carbonate replacement deposits) and Late Triassic (all other deposits) mineralizing events are supported by form, distribution, and host rocks of metal deposits, by hydrothermal mineral assemblages, isotope compositions, metal abundances, and metal diversity, and by small intrusion volumes. These characteristics collectively distinguish the Goodsprings district from larger intrusion related carbonate replacement districts in the western United States. They can be used to evaluate proximity to unexposed porphyritic intrusions associated with PGE and gold ± silver mineralization.

  16. Greenschist-Facies Pseudotachylytes and Gouge: a Microstructural Study of the Deformation Propagation at the Boundary Between Hp-Metabasite and Calcite Bearing Metasediments

    NASA Astrophysics Data System (ADS)

    Crispini, L.; Scambelluri, M.; Capponi, G.

    2013-12-01

    Recent friction experiments on calcite-bearing systems reproduce pseudotachylyte structures, that are diagnostic of dinamic calcite recrystallization related to seismic slip in the shallow crust. Here we provide the study of a pseudotachylyte (PT) bearing low angle oblique-slip fault. The fault is linked to the exhumation of Alpine HP-ophiolites and it is syn- to post-metamorphic with respect to retrograde greenschist facies metamorphism. The observed microstructures developed at the brittle-ductile transition and suggest that seismic and interseismic slip was enhanced by interaction with fluids. The fault zone is in-between high-pressure eclogite-facies metabasites (hangingwall) and calcite bearing metasediments (footwall). The mafic rocks largely consist of upper greenschist facies hornblende, albite, chlorite, epidote with relict eclogitic garnet, Na-pyroxene and rutile; metasediments correspond to calcschist and micaschist with quartz, phengite, zoisite, chlorite, calcite and relics of garnet. Key features of the oucrop are: the thickness and geometry of the PT and gouge; the multiple production of PT characterized by overprinting plastic and brittle deformation; the occurrence in footwall metasediments of mm-thick bands of finely recrystallized calcite coeval with PT development in the hangingwall. The damage zone is ca. 2 m-thick and is characterized by two black, ultra-finegrained straight and sharp Principal Slip Zones (PSZ) marked by PT. The damage zone shows a variety of fault rocks (cataclasite and ultracataclasite, gouge and PT) with multiple crosscutting relationships. Within the two main PSZ, PT occurs in 10-20 cm thick layer, in small scale injection veins and in microfractures. In the mafic hanging wall, the PT is recrystallized and does not preserve glass: it shows flow structures with subrounded, embayed and rebsorbed quartz in a fine grained matrix composed of isotropic albite + chlorite + quartz + epidote + titanite, suggesting recrystallization at ca. 270-300°C, 8-10 km of the original glass. PT show plastic deformations overprinted by shear bands and fracturing. The matrix of cataclastic layers has the same mineral assemblage as PT and clasts of recrystallised PT, to indicate polyphase PSZ formation. In the metasedimentary footwall, the original foliation is deflected parallel to the PSZ and is cut by cm-spaced shear bands parallel to PSZ. Deformation propagates in the footwall through mm-thick injections veins, shear bans, P-shears and veins. Pockets of recrystallized PT occur along the pre-existing mylonitic foliation of metasediments. Worthnote is the presence of mm-thick deformation bands (CDB) that are post-mylonitic foliation and mainly composed of fine grained calcite bounded by dissolution seams or ribbon grains of deformed calcite. CDB are characterised by subrounded embayed and rebsorbed quartz grains rimmed by new Ca-Mg amphibole, K-feldspar (90-93%K), in a dinamic recrystallized calcite 2-10 micron in size and slightly elongated. The features of the CDB suggest that these structures can be considered as diagnostic of localised deformation during coesismic slip in metasedimentary rocks.

  17. Development of weathering profile of a forest hillslope in clay-rich sedimentary system

    NASA Astrophysics Data System (ADS)

    Nicklas, R. W.; Kim, H.; Bishop, J. K.; Rempe, D. M.

    2012-12-01

    Hillslopes are an essential element to the understanding of landscape evolution, storm flow generation and biogeochemical processes. Since 2008, extensive studies of climate variables, vegetation, soil moisture, subsurface hydrology, and water chemistry have taken place at a small forested hillslope, "Rivendell", at the Angelo Coast Range Reserve located at the headwaters of the Eel River, California. Here we report on the signature of weathering processes through analysis of core and soil samples collected during well drilling campaigns. Core samples from multiple depths at four wells (at creek edge, mid-slope, up-slope, and ridge-top) were selected and include 1) soil; 2) unsaturated fractured/ weathered zone; 3) zone of seasonal water table fluctuation within weathered bedrock; and 4) chronically saturated fresh bedrock zone. We also include soil samples from a groundwater seep located at the toe of the slope. The mineralogy of these samples was identified using X-ray diffraction. Samples were analyzed for salt and Ca(Mg)CO3 concentrations, and cation exchange capacity using Milli-Q water and acetic acid extraction and BaCl2-NH4Cl treatments, respectively. To further quantify the mineral dissolution and secondary mineral precipitation, a sequential extraction of trace metals were conducted - 1) exchangeable using MgCl2; 2) bound to carbonates using NaOAc; 3) bound to Fe-Mn oxides using NH2OH HCl; and 4) bound to organic matters using H2O2 and HNO3. The total elemental contents were determined using HF-HNO3-HClO4 dissolution. The mineralogy of the fresh bedrock zone showed similar patterns throughout the site -for clay minerals, chlorite, illite, interstratified illite/smectite were dominant; K-feldspar dominated the primary minerals. Shallow (<30 cm) soils had kaolinite, and chlorite was absent in some samples. CaCO3 was also predominantly found in the fresh bedrock zone and progressively increased with depth. The depletion profile of major cations (Ca, Na, Mg, K, and Si) and trace metals (Fe, Mn and Al) show the mineral dissolution fronts. K-feldspar, chlorite and CaCO3 dissolution and secondary mineral precipitation are thus the major processes that are critical to the interpretation of groundwater chemistry.

  18. The brittle-viscous-plastic evolution of shear bands in the South Armorican Shear Zone

    NASA Astrophysics Data System (ADS)

    Bukovská, Zita; Jeřábek, Petr; Morales, Luiz F. G.; Lexa, Ondrej; Milke, Ralf

    2014-05-01

    Shear bands are microscale shear zones that obliquely crosscut an existing anisotropy such as a foliation. The resulting S-C fabrics are characterized by angles lower than 45° and the C plane parallel to shear zone boundaries. The S-C fabrics typically occur in granitoids deformed at greenschist facies conditions in the vicinity of major shear zones. Despite their long recognition, mechanical reasons for localization of deformation into shear bands and their evolution is still poorly understood. In this work we focus on microscale characterization of the shear bands in the South Armorican Shear Zone, where the S-C fabrics were first recognized by Berthé et al. (1979). The initiation of shear bands in the right-lateral South Armorican Shear Zone is associated with the occurrence of microcracks crosscutting the recrystallized quartz aggregates that define the S fabric. In more advanced stages of shear band evolution, newly formed dominant K-feldspar, together with plagioclase, muscovite and chlorite occur in the microcracks, and the shear bands start to widen. K-feldspar replaces quartz by progressively bulging into the grain boundaries of recrystallized quartz grains, leading to disintegration of quartz aggregates and formation of fine-grained multiphase matrix mixture. The late stages of shear band development are marked by interconnection of fine-grained white mica into a band that crosscuts the original shear band matrix. In its extremity, the shear band widening may lead to the formation of ultramylonites. With the increasing proportion of shear band matrix from ~1% to ~12%, the angular relationship between S and C fabrics increases from ~30° to ~40°. The matrix phases within shear bands show differences in chemical composition related to distinct evolutionary stages of shear band formation. The chemical evolution is well documented in K-feldspar, where the albite component is highest in porphyroclasts within S fabric, lower in the newly formed grains within microcracks and nearly absent in matrix grains in the well developed C bands. The chemical variation between primary and secondary new-formed micas was clearly identified by the Mg-Ti-Na content. The microstructural analysis documents a progressive decrease in quartz grain size and increasing interconnectivity of K-feldspar and white mica towards more mature shear bands. The contact-frequency analysis demonstrates that the phase distribution in shear bands tends to evolve from quartz aggregate distribution via randomization to K-feldspar aggregate distribution. The boundary preferred orientation is absent in quartz-quartz contacts either inside of outside the C bands, while it changes from random to parallel to the C band for the K-feldspar and and K-feldspar-quartz boundaries. The lack of crystallographic preferred orientation of the individual phases in the mixed matrix of the C planes suggests a dominant diffusion-assisted grain boundary sliding deformation mechanism. In the later stages of shear band development, the deformation is accommodated by crystal plasticity of white mica in micaceous bands. The crystallographic and microstructural data thus indicate two important switches in deformation mechanisms, from (i) brittle to Newtonian viscous behavior in the initial stages of shear band evolution and from (ii) Newtonian viscous to power law in the later evolutionary stages. The evolution of shear bands in the South Armorican Shear Zone thus document the interplay between deformation mechanisms and chemical reactions in deformed granitoids.

  19. Textural evolution of plagioclase feldspar across a shear zone: Implications for deformation mechanism and rock strength

    NASA Astrophysics Data System (ADS)

    Putnis, Andrew; Austrheim, Håkon; Mukai, Hiroki; Putnis, Christine V.

    2014-05-01

    Caledonian amphibolite facies shear zones developed in granulite facies anorthosites and anorthositic gabbros of the Bergen Arcs, western Norway allow a detailed study of the relationships between fluid-infiltration, mineral reactions, the evolution of microstructure and deformation mechanisms. A sequence of rocks from the relatively pristine granulites into a shear zone has been studied by optical microscopy, EMPA, SEM, EBSD and TEM, focusing on the progressive development of microstructure in the plagioclase feldspars, leading up to their deformation in the shear zone. At the outcrop scale, fluid infiltration into the granulites is marked by a distinct colour change in the plagioclase from lilac/brown to white. This is associated with the breakdown of the intermediate composition plagioclase (~An50) in the granulite to a complex intergrowth of Na-rich and Ca-rich domains. EBSD analysis shows that this intergrowth retains the crystallographic orientation of the parent feldspar, but that the Ca-rich domains contain many low-angle boundaries as well as twin-related domains. Within the shear zone, this complex intergrowth coarsens by grain boundary migration, annihilating grain boundaries but retaining the Na-rich and Ca-rich zoning pattern. Analysis of nearest-neighbour misorientations of feldspar grains in the shear zone demonstrates that local crystallographic preferred orientation (CPO) is inherited from the parent granulite grain orientations. Random pair misorientation angle distributions show that there is no CPO in the shear zone as a whole, nor is there significant shape preferred orientation (SPO) in individual grains. These observations are interpreted in terms of fluid-induced weakening and deformation by dissolution-precipitation (pressure solution) creep.

  20. Feldspar 40Ar/39Ar dating of ICDP PALEOVAN cores

    NASA Astrophysics Data System (ADS)

    Engelhardt, Jonathan Franz; Sudo, Masafumi; Stockhecke, Mona; Oberhänsli, Roland

    2017-11-01

    Volcaniclastic fall deposits in ICDP drilling cores from Lake Van, Turkey, contain sodium-rich sanidine and calcium-rich anorthoclase, which both comprise a variety of textural zoning and inclusions. An age model records the lake's history and is based on climate-stratigraphic correlations, tephrostratigraphy, paleomagnetics, and earlier 40Ar/39Ar analyses (Stockhecke et al., 2014b). Results from total fusion and stepwise heating 40Ar/39Ar analyses presented in this study allow for the comparison of radiometric constraints from texturally diversified feldspar and the multi-proxy lacustrine age model and vice versa. This study has investigated several grain-size fractions of feldspar from 13 volcaniclastic units. The feldspars show textural features that are visible in cathodoluminescence (CL) or back-scattered electron (BSE) images and can be subdivided into three dominant zoning-types: (1) compositional zoning, (2) round pseudo-oscillatory zoning and (3) resorbed and patchy zoning (Ginibre et al., 2004). Round pseudo-oscillatory zoning records a sensitive alternation of Fe and Ca that also reflects resorption processes. This is only visible in CL images. Compositional zoning reflects anticorrelated anorthite and orthoclase contents and is visible in BSE. Eleven inverse isochron ages from total fusion and three from stepwise heating analyses fit the age model. Four experiments resulted in older inverse isochron ages that do not concur with the model within 2σ uncertainties and that deviate from 1 ka to 17 ka minimum. C- and R-type zoning are interpreted as representing growth in magma chamber cupolas, as wall mushes, or in narrow conduits. Persistent compositions of PO-type crystals and abundant surfaces recording dissolution features correspond to formation within a magma chamber. C-type zoning and R-type zoning have revealed an irregular incorporation of melt and fluid inclusions. These two types of zoning in feldspar are interpreted as preferentially contributing either heterogeneously distributed excess 40Ar or inherited 40Ar to the deviating 40Ar/39Ar ages that are discussed in this study.

  1. Effects of chemical alteration on fracture mechanical properties in hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Callahan, O. A.; Eichhubl, P.; Olson, J. E.

    2015-12-01

    Fault and fracture networks often control the distribution of fluids and heat in hydrothermal and epithermal systems, and in related geothermal and mineral resources. Additional chemical influences on conduit evolution are well documented, with dissolution and precipitation of mineral species potentially changing the permeability of fault-facture networks. Less well understood are the impacts of chemical alteration on the mechanical properties governing fracture growth and fracture network geometry. We use double-torsion (DT) load relaxation tests under ambient air conditions to measure the mode-I fracture toughness (KIC) and subcritical fracture growth index (SCI) of variably altered rock samples obtained from outcrop in Dixie Valley, NV. Samples from southern Dixie Valley include 1) weakly altered granite, characterized by minor sericite in plagioclase, albitization and vacuolization of feldspars, and incomplete replacement of biotite with chlorite, and 2) granite from an area of locally intense propylitic alteration with chlorite-calcite-hematite-epidote assemblages. We also evaluated samples of completely silicified gabbro obtained from the Dixie Comstock epithermal gold deposit. In the weakly altered granite KIC and SCI are 1.3 ±0.2 MPam1/2 (n=8) and 59 ±25 (n=29), respectively. In the propylitic assemblage KIC is reduced to 0.6 ±0.1 MPam1/2 (n=11), and the SCI increased to 75 ±36 (n = 33). In both cases, the altered materials have lower fracture toughness and higher SCI than is reported for common geomechanical standards such as Westerly Granite (KIC ~1.7 MPam1/2; SCI ~48). Preliminary analysis of the silicified gabbro shows a significant increase in fracture toughness, 3.6 ±0.4 MPam1/2 (n=2), and SCI, 102 ±45 (n=19), compared to published values for gabbro (2.9 MPam1/2 and SCI = 32). These results suggest that mineralogical and textural changes associated with different alteration assemblages may result in spatially variable rates of fracture initiation and growth in different parts of hydrothermal systems. Contrasting fracture mechanical properties between alteration assemblages may constitute a new mechanism of chemical-mechanical feedback that contributes to the localization of conduits in hydrothermal systems.

  2. Geochemical Interaction of Middle Bakken Reservoir Rock and CO2 during CO2-Based Fracturing

    NASA Astrophysics Data System (ADS)

    Nicot, J. P.; Lu, J.; Mickler, P. J.; Ribeiro, L. H.; Darvari, R.

    2015-12-01

    This study was conducted to investigate the effects of geochemical interactions when CO2 is used to create the fractures necessary to produce hydrocarbons from low-permeability Middle Bakken sandstone. The primary objectives are to: (1) identify and understand the geochemical reactions related to CO2-based fracturing, and (2) assess potential changes of reservoir property. Three autoclave experiments were conducted at reservoir conditions exposing middle Bakken core fragments to supercritical CO2 (sc-CO2) only and to CO2-saturated synthetic brine. Ion-milled core samples were examined before and after the reaction experiments using scanning electron microscope, which enabled us to image the reaction surface in extreme details and unambiguously identify mineral dissolution and precipitation. The most significant changes in the reacted rock samples exposed to the CO2-saturated brine is dissolution of the carbonate minerals, particularly calcite which displays severely corrosion. Dolomite grains were corroded to a lesser degree. Quartz and feldspars remained intact and some pyrite framboids underwent slight dissolution. Additionally, small amount of calcite precipitation took place as indicated by numerous small calcite crystals formed at the reaction surface and in the pores. The aqueous solution composition changes confirm these petrographic observations with increase in Ca and Mg and associated minor elements and very slight increase in Fe and sulfate. When exposed to sc-CO2 only, changes observed include etching of calcite grain surface and precipitation of salt crystals (halite and anhydrite) due to evaporation of residual pore water into the sc-CO2 phase. Dolomite and feldspars remained intact and pyrite grains were slightly altered. Mercury intrusion capillary pressure tests on reacted and unreacted samples shows an increase in porosity when an aqueous phase is present but no overall porosity change caused by sc-CO2. It also suggests an increase in permeability in the former case and possibly a minor decrease in the latter case.

  3. Provenance, diagenesis, tectonic setting and reservoir quality of the sandstones of the Kareem Formation, Gulf of Suez, Egypt

    NASA Astrophysics Data System (ADS)

    Zaid, Samir M.

    2013-09-01

    The Middle Miocene Kareem sandstones are important oil reservoirs in the southwestern part of the Gulf of Suez basin, Egypt. However, their diagenesis and provenance and their impact on reservoir quality, are virtually unknown. Samples from the Zeit Bay Oil Field, and the East Zeit Oil Field represent the Lower Kareem (Rahmi Member) and the Upper Kareem (Shagar Member), were studied using a combination of petrographic, mineralogical and geochemical techniques. The Lower Rahmi sandstones have an average framework composition of Q95F3.4R1.6, and 90% of the quartz grains are monocrystalline. By contrast, the Upper Shagar sandstones are only slightly less quartzose with an average framework composition of Q76F21R3 and 82% of the quartz grains are monocrystalline. The Kareem sandstones are mostly quartzarenite with subordinate subarkose and arkose. Petrographical and geochemical data of sandstones indicate that they were derived from granitic and metamorphic terrains as the main source rock with a subordinate quartzose recycled sedimentary rocks and deposited in a passive continental margin of a syn rift basin. The sandstones of the Kareem Formation show upward decrease in maturity. Petrographic study revealed that dolomite is the dominant cement and generally occurs as fine to medium rhombs pore occluding phase and locally as a grain replacive phase. Authigenic quartz occurs as small euhedral crystals, locally as large pyramidal crystals in the primary pores. Authigenic anhydrites typically occur as poikilotopic rhombs or elongate laths infilling pores but also as vein filling cement. The kaolinite is a by-product of feldspar leaching in the presence of acidic fluid produced during the maturation of organic matter in the adjacent Miocene rocks. Diagenetic features include compaction; dolomite, silica and anhydrite cementation with minor iron-oxide, illite, kaolinite and pyrite cements; dissolution of feldspars, rock fragments. Silica dissolution, grain replacement and carbonate dissolution greatly enhance the petrophysical properties of many sandstone samples.

  4. Hydrogeochemical tracing of mineral water in Jingyu County, Northeast China.

    PubMed

    Yan, Baizhong; Xiao, Changlai; Liang, Xiujuan; Wu, Shili

    2016-02-01

    The east Jilin Province in China, Jingyu County has been explored as a potential for enriching mineral water. In order to assess the water quality and quantity, it is of crucial importance to investigate the origin of the mineral water and its flow paths. In this study, eighteen mineral springs were sampled in May and September of 2012, May and September of 2013, and May 2014 and the environment, evolvement, and reaction mechanism of mineral water formation were analysed by hydrochemical data analysis, geochemical modelling and multivariate statistical analysis. The results showed that the investigated mineral water was rich in calcium, magnesium, potassium, sodium, bicarbonate, chloride, sulphate, fluoride, nitrate, total iron, silicate, and strontium, and mineral water ages ranged from 11.0 to more than 61.0 years. The U-shape contours of the mineral ages indicate a local and discrete recharge. The mineral compositions of the rocks were olivine, potassium feldspar, pyroxene, albite, and anorthite and were under-saturated in the mineral water. The origin of mineral water was from the hydrolysis of basalt minerals under a neutral to slightly alkaline and CO2-rich environment.

  5. A mineralogical petrographic and geochemical study of samples from wells in the geothermal field of Milos Island (Greece)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liakopoulos, A.

    1991-01-01

    This paper presents a study of hydrothermal alteration on Milos Island, Greece. Examination of cores and cuttings from the two drill sites, obtained from a depth of about 1100 m in Milos geothermal field, showed that the hydrothermal minerals occurring in the rock include: K-feldspar, albite, chlorite, talc, diopside, epidote, muscovite, tremolite, kaolinite, montmorillonite, alunite, anhydrite, gypsum, calcite, and opaque minerals. The chemical composition of the minerals (104 analyses) was determined with Electron Probe Microanalysis. The composition of the hydrothermal fluid was determined and correlated with the mineralogy. Isotopic ratios of C and O for one calcite sample taken frommore » 341 m depth were determined and used for geochemical calculations. A number of reactions feasible at the P-T conditions of the geothermal field are given to establish the chemical evolution of the hydrothermal fluid. The distribution of the hydrothermal minerals indicates the dilution of the K-, Na- Cl-rich hydrothermal fluid of the deep reservoir by a Ca-, Mg-rich cold water at a shallower level.« less

  6. Analysis of the potential geochemical reactions in the Enceladus' hydrothermal environment

    NASA Astrophysics Data System (ADS)

    Ramirez-Cabañas, A. K.; Flandes, A.

    2017-12-01

    Enceladus is the sixth largest moon of Saturn and differs from its other moons, because of its cryovolcanic geysers that emanate from its south pole. The instruments of the Cassini spacecraft reveal different compounds in the gases and the dust of the geysers, such as salts (sodium chloride, sodium bicarbonate and/or sodium carbonate), as well as silica traces (Postberg et al., 2008, 2009) that could be the result of a hydrothermal environment (Hsu et al., 2014, Sekine et al., 2014). By means of a thermodynamic analysis, we propose and evaluate potential geochemical reactions that could happen from the interaction between the nucleus surface and the inner ocean of Enceladus. These reactions may well lead to the origin of the compounds found in the geysers. From this analysis, we propose that, at least, two minerals must be present in the condritic nucleus of Enceladus: olivines (fayalite and fosterite) and feldspar (orthoclase and albite). Subsequently, taking as reference the hydrothermal processes that take place on Earth, we propose the different stages of a potential hydrothermal scenario for Enceladus.

  7. Cathodoluminescence, fluid inclusion and stable C-O isotope study of tectonic breccias from thrusting plane of a thin-skinned calcareous nappe

    NASA Astrophysics Data System (ADS)

    Milovský, Rastislav; van den Kerkhof, Alfons; Hoefs, Jochen; Hurai, Vratislav; Prochaska, Walter

    2012-03-01

    Basal hydraulic breccias of alpine thin-skinned Muráň nappe were investigated by means of cathodoluminescence petrography, stable isotope geochemistry and fluid inclusions analysis. Our study reveals an unusual dynamic fluid regime along basal thrust plane during final episode of the nappe emplacement over its metamorphic substratum. Basal thrusting fluids enriched in 18O, silica, alumina, alkalies and phosphates were generated in the underlying metamorphosed basement at epizonal conditions corresponding to the temperatures of 400-450°C. The fluids fluxed the tectonized nappe base, leached evaporite-bearing formations in hangingwall, whereby becoming oversaturated with sulphates and chlorides. The fluids further modified their composition by dedolomitization and isotopic exchange with the host carbonatic cataclasites. Newly formed mineral assemblage of quartz, phlogopite, albite, potassium feldspar, apatite, dravite tourmaline and anhydrite precipitated from these fluids on cooling down to 180-200°C. Finally, the cataclastic mush was cemented by calcite at ambient anchizonal conditions. Recurrent fluid injections as described above probably enhanced the final motion of the Muráň nappe.

  8. Paleoproterozoic volcanic centers of the São Félix do Xingu region, Amazonian craton, Brazil: Hydrothermal alteration and metallogenetic potential

    NASA Astrophysics Data System (ADS)

    da Cruz, Raquel Souza; Fernandes, Carlos Marcello Dias; Villas, Raimundo Netuno Nobre; Juliani, Caetano; Monteiro, Lena Virgínia Soares; Lagler, Bruno; Misas, Carlos Mario Echeverri

    2016-06-01

    Geological, petrographic, scanning electron microscopy, and X-ray diffraction studies revealed hydrothermalized lithotypes evidenced by overprinted zones of potassic, propylitic, sericitic, and intermediate argillic alterations types, with pervasive and fracture-controlled styles, in Paleoproterozoic volcano-plutonic units of the São Félix do Xingu region, Amazonian craton, northern Brazil. The Sobreiro Formation presents propylitic (epidote + chlorite + carbonate + clinozoisite + sericite + quartz ± albite ± hematite ± pyrite), sericitic (sericite + quartz + carbonate), and potassic (potassic feldspar + hematite) alterations. The prehnite-pumpellyite pair that is common in geothermal fields also occurs in this unit. The Santa Rosa Formation shows mainly potassic (biotite + microcline ± magnetite), sericitic (sericite + quartz + carbonate ± chlorite ± gold), and intermediate argillic (montmorillonite + kaolinite/halloysite + illite) alterations. These findings strongly suggest the involvement of magma-sourced and meteoric fluids and draw attention to the metallogenetic potential of these volcanic units for Paleoproterozoic epithermal and rare and base metal porphyry-type mineralizations, similar to those already identified in other portions of the Amazonian craton.

  9. Pseudotachylyte in the Tananao Metamorphic Complex, Taiwan: Occurrence and dynamic phase changes of fossil earthquakes

    NASA Astrophysics Data System (ADS)

    Chu, Hao-Tsu; Hwang, Shyh-Lung; Shen, Pouyan; Yui, Tzen-Fu

    2012-12-01

    Pseudotachylyte veins and cataclasites were studied in the mylonitized granitic gneiss of the Tananao Metamorphic Complex at Hoping, Eastern Taiwan. The aphanitic pseudotachylyte veins vary in thickness, ranging from millimeters to about 1 cm. Field and optical microscopic observations show that such pseudotachylyte veins cut across cataclasites, which, in turn, transect the mylonitized granitic gneiss. Scanning electron microscopic images also show that both the pseudotachylyte veins and the cataclasites have been metasomatized by a K-rich fluid, resulting in the replacement of Na-plagioclase by K-feldspar (veins). Analytical electron microscopic observations reveal further details of physical and chemical changes (mainly fragmentation, dislocations, cleaving-healing with inclusions and relic voids, and retention of high-temperature albite) of quartz and feldspar in crushed grains. Pseudotachylytes occur as dark veins having a higher content of chlorite-biotite, clinozoisite-epidote and titanite fragments than cataclasites. These veins, coupled with hematite/jarosite-Fe-rich amorphous shell/carbonaceous material, indicate that crushing, healing/sintering, and inhomogeneous melt/fluid infiltration involving incipient and intermediate/high temperature melt patches, before and/or contemporaneous with the metasomatic K-rich fluid, prevailed in a coupled or sequential manner in the faulting event to form nonequilibrium phase assemblage. The chlorite-biotite, carbonaceous material and other nanoscale minerals could be vulnerable in future earthquakes under the influence of water. The timing of the formation of these pseudotachylyte veins should be later than the area's age of mylonitization of granitic gneiss of approximately 4.1-3.0 Ma (Wang et al., 1998). The formation of pseudotachylytes registers the fossil earthquakes during early stages in the exhumation history of the uplifting Taiwan Mountain belt since the Plio-Pleistocene Arc-Continent collision.

  10. Diagenetic evaluation of Pannonian lacustrine deposits in the Makó Trough, southeastern Hungary

    NASA Astrophysics Data System (ADS)

    Szőcs, Emese; Milovský, Rastislav; Gier, Susanne; Hips, Kinga; Sztanó, Orsolya

    2017-04-01

    The Makó Trough is the deepest sub-basin of the Pannonian Basin. As a possible shale gas and tight gas accumulation the area was explored by several hydrocarbon companies. In this study, we present the preliminary results on the diagenetic history and the porosity evolution of sandstones and shales. Petrographic (optical microscopy, CL, blue light microscopy) and geochemical methods (SEM-EDX, WDX, O and C stable isotopes) were applied on core samples of Makó-7 well (3408- 5479 m). Processes which influenced the porosity evolution of the sandstones were compaction, cementation, mineral replacement and dissolution. The most common diagenetic minerals are carbonates (non-ferroan and Fe-bearing calcite, dolomite and ankerite), clay minerals (kaolinite, mixed layer illite-smectite and chlorite) and other silicates (quartz and feldspar). Initial clay mineral and ductile grain content also influences reservoir quality. The volumetrically most significant diagenetic minerals are calcite and clay minerals. The petrography of calcite is variable (bright orange to dull red luminescence color, pore-filling cement, replacive phases which are occasionally scattered in the matrix). The δ13 C-PDB values of calcite range from 1.7 ‰ to -5.5 ‰, while δ18 O-PDB values range from 0.5 ‰ to -9.1 ‰, no depth related trend was observed. These data suggest that calcite occurs in more generations, i.e. eogenetic pre-compactional and mesogenetic post-compactional. Kaolinite is present in mottles in size similar to detrital grains, where remnants of feldspars can be seen. This indicates feldspar alteration via influx of water rich in organic derived carbon dioxide. Secondary porosity can be observed in carbonates and feldspars at some levels, causing the improvement of the reservoir quality.

  11. Fluid Pocket Generation in Response to Heterogeneous Reactivity of a Rock Fracture Under Hydrothermal Conditions

    NASA Astrophysics Data System (ADS)

    Okamoto, A.; Tanaka, H.; Watanabe, N.; Saishu, H.; Tsuchiya, N.

    2017-10-01

    Fractures are the location of various water-rock interactions within the Earth's crust; however, the impact of the chemical heterogeneity of fractures on hydraulic properties is poorly understood. We conducted flow-through experiments on the dissolution of granite with a tensile fracture at 350°C and fluid pressure of 20 MPa with confining pressure of 40 MPa. The aperture structures were evaluated by X-ray computed tomography before and after the experiments. Under the experimental conditions, quartz grains dissolve rapidly to produce grain-scale pockets on the fracture surface, whereas altered feldspar grains act as asperities to sustain the open cavities. The fracture contained gouge with large surface area. The feedback between fluid flow and the rapid dissolution of gouge material produced large fluid pockets, whereas permeability did not always increase significantly. Such intense hydrological-chemical interactions could strongly influence the porosity-permeability relationship of fractured reservoirs in the crust.

  12. Estimation of the reactive mineral surface area during CO2-rich fluid-rock interaction: the influence of neogenic phases

    NASA Astrophysics Data System (ADS)

    Scislewski, A.; Zuddas, P.

    2010-12-01

    Mineral dissolution and precipitation reactions actively participate to control fluid chemistry during water-rock interaction. It is however, difficult to estimate and well normalize bulk reaction rates if the mineral surface area exposed to the aqueous solution and effectively participating on the reactions is unknown. We evaluated the changing of the reactive mineral surface area during the interaction between CO2-rich fluids and Albitite/Granitoid rocks (similar mineralogy but different abundances), reacting under flow-through conditions. Our methodology, adopting an inverse modeling approach, is based on the estimation of dissolution rate and reactive surface area of the different minerals participating in the reactions by the reconstruction the chemical evolution of the interacting fluids. The irreversible mass-transfer processes is defined by a fractional degree of advancement, while calculations were carried out for Albite, Microcline, Biotite and Calcite assuming that the ion activity of dissolved silica and aluminium ions was limited by the equilibrium with quartz and kaolinite. Irrespective of the mineral abundance in granite and albitite, we found that mineral dissolution rates did not change significantly in the investigated range of time where output solution’s pH remained in the range between 6 and 8, indicating that the observed variation in fluid composition depends not on pH but rather on the variation of the parent mineral’s reactive surface area. We found that the reactive surface area of Albite varied by more than 2 orders of magnitude, while Microcline, Calcite and Biotite surface areas changed by 1-2 orders of magnitude. We propose that parent mineral chemical heterogeneity and, particularly, the stability of secondary mineral phases may explain the observed variation of the reactive surface area of the minerals. Formation of coatings at the dissolving parent mineral surfaces significantly reduced the amount of surface available to react with CO2-rich fluids, decreasing the effective reactive surface area. Predictive models of CO2 sequestration under geological conditions should take into account the inhibiting role of surface coating formation. The CO2 rich fluid-rock interactions may also have significant consequences on metal mobilization. Our results indicated that the formation of stable carbonate complexes enhances the solubility of uranium minerals of both albitite and granite, facilitating the U(IV) oxidation, and limiting the extent of uranium adsorption onto particles in oxidized waters. This clearly produces an increase of the uranium mobility with significant consequences for the environment.

  13. High-Temperature Thermal Diffusivity Measurements of Silicate Glasses

    NASA Astrophysics Data System (ADS)

    Pertermann, M.; Hofmeister, A. M.; Whittington, A. G.; Spera, F. J.; Zayac, J.

    2005-12-01

    Transport of heat in geologically relevant materials is of great interest because of its key role in heat transport, magmatism and volcanic activity on Earth. To better understand the thermal properties of magmatic materials at high temperatures, we measured the thermal diffusivity of four synthetic end-member silicate glasses with the following compositions: albite (NaAlSi3O8), orthoclase (KAlSi3O8), anorthite (CaAl2Si2O8), and diopside (CaMgSi2O6). Thermal diffusivity measurements were conducted with the laser-flash technique and data were acquired from room temperature to a maximum temperature near 1100°C, depending on the glass transition temperature. The presence of sub-mm sized bubbles in one of the orthoclase samples had no discernable effect on measured diffusivities. At room temperature, the three feldspar-type glasses have thermal diffusivity (D) values of 0.58-0.61 mm2/s, whereas the diopside glass has 0.52 mm2/s. With increasing temperature, D decreases by 5-10% (relative) for all samples and becomes virtually constant at intermediate temperatures. At higher temperatures, the anorthite and diopside glasses exhibit significant drops in thermal diffusivity over a 50-100°C interval, correlating with previously published heat capacity changes near the glass transition for these compositions. For anorthite, D (in mm2/s) decreases from 0.48 at 750-860°C to 0.36 at 975-1075°C; for diopside, D changes from 0.42 at 630-750°C to 0.30 at 850-910°C, corresponding to relative drops of 24 and 29%, respectively. Albite and orthoclase glasses do not exhibit this change and also lack significant changes in heat capacity near the glass transition. Instead, D is constant at 400-800°C for albite, and for orthoclase values go through a minimum at 500-600°C before increasing slightly towards 1100°C but it never exceeds the room temperature D. Our data on thermal diffusivity correlate closely with other thermophysical properties. Thus, at least in case of simple compositions, measurement of thermal diffusivity of glasses above the glass transition may closely approximate the behavior of magmatic liquids. For the orthoclase composition, our new data show that the thermal diffusivity of glass in the range of 20-1100°C is clearly lower than that of orthoclase single crystals (Hoefer and Schilling, 2002, Phys Chem Minerals, 29, 571-584).

  14. Hydrothermal alteration of graywacke and basalt by 4 molal NaCl.

    USGS Publications Warehouse

    Rosenbauer, R.J.; Bischoff, J.L.; Radtke, A.S.

    1983-01-01

    Rock-water interaction experiments were carried out at 350oC and 500 bar at a 1/10 rock/fluid ratio using 4 molal NaCl brine. Reaction of brine and greywacke lead to the conversion of illite, dolomite and quartz to albite and smectite. In the process, the rock gained Na and released Ca, K, heavy metals and CO2 to solution. Metal mobilization was found to primarily depend on acidity which was produced by Na metasomatism and by dedolomitization. Reaction of brine and basalt produced only minor alteration in which some smectite and little albite formed. No significant acidity was produced nor did metals become mobilized. Production of acidity during albitization depends entirely on the phase being altered. Albitization of greywacke produces H+ whereas the albitization of basalt apparently consumes this ion. -J.E.S.

  15. Co-Cu-Au deposits in metasedimentary rocks-A preliminary report

    USGS Publications Warehouse

    Slack, J.F.; Causey, J.D.; Eppinger, R.G.; Gray, J.E.; Johnson, C.A.; Lund, K.I.; Schulz, K.J.

    2010-01-01

    A compilation of data on global Co-Cu-Au deposits in metasedimentary rocks refines previous descriptive models for their occurrence and provides important information for mineral resource assessments and exploration programs. This compilation forms the basis for a new classification of such deposits, which is speculative at this early stage of research. As defined herein, the Co-Cu-Au deposits contain 0.1 percent or more by weight of Co in ore or mineralized rock, comprising disseminated to semi-massive Co-bearing sulfide minerals with associated Fe- and Cu-bearing sulfides, and local gold, concentrated predominantly within rift-related, siliciclastic metasedimentary rocks of Proterozoic age. Some deposits have appreciable Ag ? Bi ? W ? Ni ? Y ? rare earth elements ? U. Deposit geometry includes stratabound and stratiform layers, lenses, and veins, and (or) discordant veins and breccias. The geometry of most deposits is controlled by stratigraphic layering, folds, axial-plane cleavage, shear zones, breccias, or faults. Ore minerals are mainly cobaltite, skutterudite, glaucodot, and chalcopyrite, with minor gold, arsenopyrite, pyrite, pyrrhotite, bismuthinite, and bismuth; some deposits have appreciable tetrahedrite, uraninite, monazite, allanite, xenotime, apatite, scheelite, or molybdenite. Magnetite can be abundant in breccias, veins, or stratabound lenses within ore or surrounding country rocks. Common gangue minerals include quartz, biotite, muscovite, K-feldspar, albite, chlorite, and scapolite; many deposits contain minor to major amounts of tourmaline. Altered wall rocks generally have abundant biotite or albite. Mesoproterozoic metasedimentary successions constitute the predominant geologic setting. Felsic and (or) mafic plutons are spatially associated with many deposits and at some localities may be contemporaneous with, and involved in, ore formation. Geoenvironmental data for the Blackbird mining district in central Idaho indicate that weathering of abundant Fe, S, As, Co, and Cu in sulfide minerals of the deposits produces acidic waters, especially in pyrite-rich deposits; mine runoff has high concentrations of Fe, Cu, and Mn that exceed U.S. drinking water or aquatic life standards.

  16. Mass change calculations of hydrothermal alterations within the volcanogenic metasediments hosted Cu-Pb (-Zn) mineralization at Halilar area, NW Turkey

    NASA Astrophysics Data System (ADS)

    Kiran Yildirim, Demet; Abdelnasser, Amr; Doner, Zeynep; Kumral, Mustafa

    2016-04-01

    The Halilar Cu-Pb (-Zn) mineralization that is formed in the volcanogenic metasediments of Bagcagiz Formation at Balikesir province, NW Turkey, represents locally vein-type deposit as well as restricted to fault gouge zone directed NE-SW along with the lower boundary of Bagcagiz Formation and Duztarla granitic intrusion in the study area. Furthermore, This granite is traversed by numerous mineralized sheeted vein systems, which locally transgress into the surrounding metasediments. Therefore, this mineralization closely associated with intense hydrothermal alteration within brecciation, and quartz stockwork veining. The ore mineral assemblage includes chalcopyrite, galena, and some sphalerite with covellite and goethite formed during three phases of mineralization (pre-ore, main ore, and supergene) within an abundant gangue of quartz and calcite. The geologic and field relationships, petrographic and mineralogical studies reveal two alteration zones occurred with the Cu-Pb (-Zn) mineralization along the contact between the Bagcagiz Formation and Duztarla granite; pervasive phyllic alteration (quartz, sericite, and pyrite), and selective propylitic alteration (albite, calcite, epidote, sericite and/or chlorite). This work, by using the mass balance calculations, reports the mass/volume changes (gain and loss) of the chemical components of the hydrothermal alteration zones associated with Halilar Cu-Pb (-Zn) mineralization at Balikesir area (Turkey). It revealed that the phyllic alteration has enrichments of Si, Fe, K, Ba, and LOI with depletion of Mg, Ca, and Na reflect sericitization of alkali feldspar and destruction of ferromagnesian minerals. This zone has high Cu and Pb with Zn contents represents the main mineralized zone. On the other hand, the propylitic zone is characterized by addition of Ca, Na, K, Ti, P, and Ba with LOI and Cu (lower content) referring to the replacement of plagioclase and ferromagnesian minerals by albite, calcite, epidote, and sericite with chlorite. Keywords: Mass balance calculations; hydrothermal alterations; Cu-Pb (-Zn) mineralization; Halilar area; NW Turkey

  17. Probing interfacial reactions with x-ray reflectivity and x-ray reflection interface microscopy : influence of NaCl on the dissolution of orthoclase at pOH2 and 85 {degree} C.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fenter, P.; Lee, S. S.; Park, C.

    2010-01-01

    The role of electrolyte ions in the dissolution of orthoclase (0 0 1) in 0.01 m NaOH (pOH {approx} 2) at 84 {+-} 1 C is studied using a combination of in-situ X-ray reflectivity (XR) and ex-situ X-ray reflection interface microscopy (XRIM). The real-time XR measurements show characteristic intensity oscillations as a function of time indicative of the successive removal of individual layers. The dissolution rate in 0.01 m NaOH increases approximately linearly with increasing NaCl concentration up to 2 m NaCl. XRIM measurements of the lateral interfacial topography/structure were made for unreacted surfaces and those reacted in 0.01 mmore » NaOH/1.0 m NaCl solution for 15, 30 and 58 min. The XRIM images reveal that the dissolution reaction leads to the formation of micron-scale regions that are characterized by intrinsically lower reflectivity than the unreacted regions, and appears to be nucleated at steps and defect sites. The reflectivity signal from these reacted regions in the presence of NaCl in solution is significantly lower than that calculated from an idealized layer-by-layer dissolution process, as observed previously in 0.1 m NaOH in the absence of added electrolyte. This difference suggests that dissolved NaCl results in a higher terrace reactivity leading to a more three-dimensional process, consistent with the real-time XR measurements. These observations demonstrate the feasibility of XRIM to gain new insights into processes that control interfacial reactivity, specifically the role of electrolytes in feldspar dissolution at alkaline conditions.« less

  18. Hydrothermal modification of host rock geochemistry within Mo-Cu porphyry deposits in the Galway Granite, western Ireland

    NASA Astrophysics Data System (ADS)

    Tolometti, Gavin; McCarthy, Will

    2016-04-01

    Hydrothermal alteration of host rock is a process inherent to the formation of porphyry deposits and the required geochemical modification of these rocks is regularly used to indicate proximity to an economic target. The study involves examining the changes in major, minor and trace elements to understand how the quartz vein structures have influenced the chemistry within the Murvey Granite that forms part of the 380-425Ma Galway Granite Complex in western Ireland. Molybdenite mineralisation within the Galway Granite Complex occurred in close association with protracted magmatism at 423Ma, 410Ma, 407Ma, 397Ma and 383Ma and this continues to be of interest to active exploration. The aim of the project is to characterize hydrothermal alteration associated with Mo-Cu mineralisation and identify geochemical indicators that can guide future exploration work. The Murvey Granite intrudes metagabbros and gneiss that form part of the Connemara Metamorphic complex. The intrusion is composed of albite-rich pink granite, garnetiferous granite and phenocrytic orthoclase granite. Minor doleritic dykes post-date the Murvey Granite, found commonly along its margins. Field mapping shows that the granite is truncated to the east by a regional NW-SE fault and that several small subparallel structures host Mo-Cu bearing quartz veins. Petrographic observations show heavily sericitized feldspars and plagioclase and biotite which have undergone kaolinization and chloritisation. Chalcopyrite minerals are fine grained, heavily fractured found crystallized along the margins of the feldspars and 2mm pyrite crystals. Molybdenite are also seen along the margins of the feldspars, crystallized whilst the Murvey Granite cooled. Field and petrographic observations indicate that mineralisation is structurally controlled by NW-SE faults from the selected mineralization zones and conjugate NE-SW cross cutting the Murvey Granite. Both fault orientations exhibit quartz and disseminated molybdenite mineralization. Extensive hydrothermal alteration is observed within 75 meters of veins that exhibit prominent disseminated mineralisation. To investigate associated geochemical alteration 24 samples were selected along two traverses that cross cut two distinct vein structures. XRF analysis results show that calcium decreases from 1.8 - 0.2 wt% and sulphur increases from 0.2 - 0.9 wt% moving away from the mineralized zones which is to be expected due to their mobile nature. Unexpectedly, minor element data shows no fluctuation in Cu concentrations moving away from either vein structures, despite chalcopyrite found greatest near the vein structures. XRF data analysis is underway to compare the non-mobile and mobile elements to investigate the extent of the decreasing and increasing trends moving proximal to the mineralization zones. The relative decrease in calcium may be caused by the exchange of ion end members between feldspars and this will be tested using a WDS electron micro-probe.

  19. Petrogenesis of Oxidized Arfvedsonite Granite Gneiss from Dimra Pahar, Hazaribagh, Eastern India: Constraints from Mineral Chemistry and Trace Element Geochemistry

    NASA Astrophysics Data System (ADS)

    Basak, Ankita; Goswami, Bapi

    2017-04-01

    The arfvedsonite granite gneiss of Dimra Pahar occurs along the North Purulia Shear Zone (NPSZ) which pivots the Proterozoic Chotannagpur Gneissic Complex (CGC), Eastern India. Although minerals like arfvedsonite and aegirine depict the peralkaline nature of the pluton, the geochemistry of the rock reflects its composition varying from peralkaline to mildly peraluminous. K-feldspar, quartz, arfvedsonite, albite with accessory aegirine, titaniferous iron oxides and zircon form the dominant mineralogy of this alkali feldspar granite (IUGS, 2000) gneiss. The zircon saturation temperature corresponds to 747oC-1066oC. The granitic magma contains low water content evidenced by the absence of any pegmatite associated with this pluton. Geochemically these granites are classified as ferroan and alkalic (cf. Frost et al., 2001). These highly evolved granites possess enrichment of SiO2, Na2O + K2O, FeO(t)/MgO, Ga/Al, Zr, Nb, Ga, Y, Ce and rare earth elements (REE) with low abundance of CaO, MgO, Ba and Sr which characterize their A-type nature while standard discrimination diagrams ( cf. Eby, 1992; Grebennikov, 2014) help to further discriminate them as A1 type. Tectonic discriminations diagrams (Pearce et al., 1984; Maniar and Piccoli, 1989; Batchelor and Bowden, 1985) constrain the tectonic setting of the magma to be anorogenic, within plate, rift-related one. The REE compositions show moderately fractionated patterns with (La/Yb)N 2.57-10.5 and Eu/Eu* 0.16-0.70. Multielement spider diagram and various trace element ratio together with oxidized nature (ΔNNO: +2) of these granites further suggest that these have been derived from OIB-type parental magma. The peralkaline nature of the granite and its lack of subduction- related geochemical features are consistent with an origin in a zone of regional extension. The extremely high Rb/Sr ratios combined with the extreme Sr, Ba, P, Ti and Eu depletions clearly indicate that these A-type granites were highly evolved and require advanced fractional crystallization in upper crustal conditions. Major element mass-balance models that use observed phases are consistent with an origin by fractional crystallization from a basaltic parent. The high Sr, Eu and Ba anomalies strongly suggest plagioclase and alkali feldspar fractionation. The abundance of Nb relative to Y reflects pyroxene and amphibole fractionation during differentiation process. EPMA studies of arfvedsonite, aegirine, k-feldspar and albite reveal the pure end-member composition of all the minerals which in turn reflects metamorphism has superimposed on the pluton. The elongated nature of the pluton, metamorphism together with the shear- related deformation as evidenced from the petrographic studies of the rocks suggest syn-tectonic emplacement of the pluton in relation to the kinematics of the North Purulia Shear Zone during 1000Ma (Goswami and Bhattacharyya, 2014). Derivation from basaltic parental magmas indicates that the Dimrapahar pluton represents addition of juvenile material to the crust. References Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J. and Frost, C.D., (2001): A geochemical classification for granitic rocks. Journal of petrology, 42(11):2033-2048. Eby, G.N (1992): Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology, 20(7): 641-644. Le Bas, M. J. (2000). IUGS reclassification of the high-Mg and picritic volcanic rocks. Journal of Petrology, 41(10): 1467-1470. Grebennikov, A. V. (2014): A-type granites and related rocks: petrogenesis and classification. Russian Geology and Geophysics, 55.(11): 1353-1366. Pearce, J.A., Harris, N.B. and Tindle, A.G. (1984): Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of petrology, 25(4): 956-983. Maniar, P.D. and Piccoli, P.M. (1989): Tectonic discrimination of granitoids. Geological society of America bulletin, 101(5): 635-643. Batchelor, R.A. and Bowden, P. (1985): Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chemical geology, 48(1-4): 43-55. Goswami, B. and Bhattacharyya, C. (2014): Petrogenesis of shoshonitic granitoids, eastern India: implications for the late Grenvillian post-collisional magmatism. Geoscience Frontiers, 5(6): 821-843.

  20. From Nm-Scale Measurements Of Mineral Dissolution Rate To Overall Dissolution Rate Laws: A Case Study Based On Diopside

    NASA Astrophysics Data System (ADS)

    Daval, D.; Saldi, G.; Hellmann, R.; Knauss, K.

    2011-12-01

    While we expect conventional reactive transport simulations to provide reliable estimations of the evolution of fluid-rock interactions over time scales of centuries and even more, recent experimental studies showed that they could hardly be satisfactorily used on simplified systems (e.g. batch carbonation experiments on single minerals), on time scales of weeks [1]. Among the reasons for such inconsistencies is the nature of the rate laws used in the geochemical codes, which heavily relies on our description of the fundamental mechanisms involved during water(-CO2)-mineral reactions. Silicate dissolution constitutes a key step of GCS processes. Whereas the dissolution rate of silicate minerals has been extensively studied at far-from-equilibrium conditions, extrapolating such rates over a broad range of solution composition relevant for GCS has proven challenging. Regarding diopside, recent studies [2, 3] suggested that below 125 °C, an unexpected drop of the rate occurred for Gibbs free energies of reaction (ΔGr) as low as -76 kJ.mol-1, with severe consequences on our ability to predict the rate of complex processes such as carbonation reactions [3]. The mechanism responsible for such a drop remains unclear and therefore needs to be deciphered. An examination of our previous data [3] led us to envisage that two different, non-exclusive aspects were worth investigating: (i) the possible passivating ability of interfacial, nm-thick Si-rich layers developed on weathered silicate surface, and (ii) the stop of etch pits formation on crystal surface, each mechanism being found to be responsible for drops of olivine [1] and albite [4] dissolution rates, respectively. Our ongoing experiments aim at better constraining these two mechanisms, and determining in turn whether one of them could explain the above-mentioned drop of diopside dissolution rate. Classical flow-through experiments with controlled SiO2(aq) concentrations are combined with both ex situ AFM and VSI measurements and in situ monitoring of the topography of the dissolving surface of diopside in a hydrothermal AFM flow-cell (e.g. [5]). By investigating the dissolution of several cleavages, we will show how these latter techniques represent a powerful tool for studying the anisotropy of diopside dissolution, and determining which face ultimately controls its dissolution rate. An attempt to link these observations to macroscopic determination of diopside dissolution rates as a function of fluid composition will be discussed. [1] Daval et al. (2011) Chem. Geol., 284, 193-209. [2] Dixit & Carroll (2007) Geochem. T, 8, 1-14. [3] Daval et al. (2010) Geochim. Cosmochim. Ac., 74, 2615-2633. [4] Arvidson & Luttge (2010) Chem. Geol., 269, 79-88. [5] Saldi et al. (2009) Geochim. Cosmochim. Ac., 73, 5646-5657.

  1. Intensive low-temperature tectono-hydrothermal overprint of peraluminous rare-metal granite: a case study from the Dlhá dolina valley (Gemericum, Slovakia)

    NASA Astrophysics Data System (ADS)

    Breiter, Karel; Broska, Igor; Uher, Pavel

    2015-02-01

    A unique case of low-temperature metamorphic (hydrothermal) overprint of peraluminous, highly evolved rare-metal S-type granite is described. The hidden Dlhá dolina granite pluton of Permian age (Western Carpathians, eastern Slovakia) is composed of barren biotite granite, mineralized Li-mica granite and albitite. Based on whole-rock chemical data and evaluation of compositional variations of rock-forming and accessory minerals (Rb-P-enriched K-feldspar and albite; biotite, zinnwaldite and di-octahedral micas; Hf-(Sc)-rich zircon, fluorapatite, topaz, schorlitic tourmaline), the following evolutionary scenario is proposed: (1) Intrusion of evolved peraluminous melt enriched in Li, B, P, F, Sn, Nb, Ta, and W took place followed by intrusion of a large body of biotite granites into Paleozoic metapelites and metarhyolite tuffs; (2) The highly evolved melt differentiated in situ forming tourmaline-bearing Li-biotite granite at the bottom, topaz-zinnwaldite granite in the middle, and quartz albitite to albitite at the top of the cupola. The main part of the Sn, Nb, and Ta crystallized from the melt as disseminated cassiterite and Nb-Ta oxide minerals within the albitite, while disseminated wolframite appears mainly within the topaz-zinnwaldite granite. The fluid separated from the last portion of crystallized magma caused small scale greisenization of the albitite; (3) Alpine (Cretaceous) thrusting strongly tectonized and mylonitized the upper part of the pluton. Hydrothermal low-temperature fluids enriched in Ca, Mg, and CO2 unfiltered mechanically damaged granite. This fluid-driven overprint caused formation of carbonate veinlets, alteration and release of phosphorus from crystal lattice of feldspars and Li from micas, precipitating secondary Sr-enriched apatite and Mg-rich micas. Consequently, all bulk-rock and mineral markers were reset and now represent the P-T conditions of the Alpine overprint.

  2. Characteristics of the Late Devonian Tsagaan Suvarga Cu-Mo deposit, Southern Mongolia

    NASA Astrophysics Data System (ADS)

    Tungalag, Naidansuren; Jargalan, Sereenen; Khashgerel, Bat-Erdene; Mijiddorj, Chuluunbaatar; Kavalieris, Imants

    2018-05-01

    The Late Devonian Tsagaan Suvarga deposit (255 Mt at 0.55% Cu, 0.02% Mo) is located on the NW margin of the Tsagaan Suvarga Complex (TSC), which extends ENE over 15 × 10 km and comprises mainly medium-grained equigranular hornblende-biotite quartz monzonite and monzodiorite. Distinct mineralized intrusions are inferred from distribution of Cu-Mo mineralization but are not clearly discernible. The Tsagaan Suvarga Complex is a window within Carboniferous volcanic and sedimentary rocks, and wall rocks to the TSC are not known or exposed in the nearby district. Whole-rock analyses and Sr-Nd isotopes, 87Sr/86Sr0 = 0.7027 to 0.7038 (n = 12) and ɛNd0 = + 4.26 to + 2.77 (n = 12), show that the granitoids are subduction-related I-type, high K-calc-alkaline to shoshonitic series and derived from a mantle source. They exhibit fractionated light rare earth elements, without depleted Eu and depleted middle heavy rare earth elements and Y, typical of oxidized, fertile porphyry magmatic suites. Early porphyry-style quartz veins include A- and B-type. Molybdenite occurs in monomineralic veins (1-5 mm) or A veins. Copper mineralization occurs mainly as chalcopyrite and subordinate bornite, disseminated and associated with quartz-muscovite veins. Pyrite (vol%) content is less than chalcopyrite and bornite combined. Deep oxidation to about 50 m depth has formed zones of malachite and covellite in late fractures. The most important alteration is actinolite-biotite-chlorite-magnetite replacing hornblende and primary biotite. Quartz-K-feldspar alteration is minor. Late albite replaces primary K-feldspar and enhances sodic rims on plagioclase crystals. Quartz-muscovite (or sericitic alteration) overprints actinolite-biotite and porphyry-type quartz veins. Field observations and petrographic studies suggest that the bulk of the chalcopyrite-bornite mineralization at the Tsagaan Suvarga formed together with coarse muscovite alteration.

  3. Low temperature geothermal systems in carbonate-evaporitic rocks: Mineral equilibria assumptions and geothermometrical calculations. Insights from the Arnedillo thermal waters (Spain).

    PubMed

    Blasco, Mónica; Gimeno, María J; Auqué, Luis F

    2018-02-15

    Geothermometrical calculations in low-medium temperature geothermal systems hosted in carbonate-evaporitic rocks are complicated because 1) some of the classical chemical geothermometers are, usually, inadequate (since they were developed for higher temperature systems with different mineral-water equilibria at depth) and 2) the chemical geothermometers calibrated for these systems (based on the Ca and Mg or SO 4 and F contents) are not free of problems either. The case study of the Arnedillo thermal system, a carbonate-evaporitic system of low temperature, will be used to deal with these problems through the combination of several geothermometrical techniques (chemical and isotopic geothermometers and geochemical modelling). The reservoir temperature of the Arnedillo geothermal system has been established to be in the range of 87±13°C being the waters in equilibrium with respect to calcite, dolomite, anhydrite, quartz, albite, K-feldspar and other aluminosilicates. Anhydrite and quartz equilibria are highly reliable to stablish the reservoir temperature. Additionally, the anhydrite equilibrium explains the coherent results obtained with the δ 18 O anhydrite - water geothermometer. The equilibrium with respect to feldspars and other aluminosilicates is unusual in carbonate-evaporitic systems and it is probably related to the presence of detrital material in the aquifer. The identification of the expected equilibria with calcite and dolomite presents an interesting problem associated to dolomite. Variable order degrees of dolomite can be found in natural systems and this fact affects the associated equilibrium temperature in the geothermometrical modelling and also the results from the Ca-Mg geothermometer. To avoid this uncertainty, the order degree of the dolomite present in the Arnedillo reservoir has been determined and the results indicate 18.4% of ordered dolomite and 81.6% of disordered dolomite. Overall, the results suggest that this multi-technique approach is very useful to solve some of the problems associated to the study of carbonate-evaporitic geothermal systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Geochemical and geochronological constraints on the genesis of Au-Te deposits at Cripple Creek, Colorado

    USGS Publications Warehouse

    Kelley, K.D.; Romberger, S.B.; Beaty, D.W.; Pontius, J.A.; Snee, L.W.; Stein, H.J.; Thompson, T.B.

    1998-01-01

    The Cripple Creek district (653 metric tons (t) of Au) consists of Au-Te veins and disseminated gold deposits that are spatially related to alkaline igneous rocks in an Oligocene intrusive complex. Vein paragenesis includes quartz-biotite-K feldspar-fluorite-pyrite followed by base metal sulfides and telluride minerals. Disseminated deposits consist of microcrystalline native gold with pyrite that are associated with zones of pervasive adularia. New 40Ar/39Ar dates indicate that there was a complex magmatic and hydrothermal history. Relatively felsic rocks (tephriphonolite, trachyandesite, and phonolite) were emplaced into the complex over about 1 m.y., from 32.5 ?? 0.1 (1??) to 31.5 ?? 0.1 Ma. A younger episode of phonolite emplacement outside of the complex is indicated by an age of 30.9 ?? 0.1 Ma. Field relationships suggest that at least one episode of mafic and ultramafic dike emplacement occurred after relatively more felsic rocks and prior to the main gold mineralizing event. Only a single whole-rock date for mafic phonolite (which indicated a maximum age of 28.7 Ma) was obtained. However, constraints on the timing of mineralization are provided by paragenetically early vein minerals and K feldspar from the disseminated gold pyrite deposits. Early vein minerals (31.3 ?? 0.1-29.6 ?? 0.1 Ma) and K feldspar (29.8 ?? 0.1 Ma) from the Cresson disseminated deposit, together with potassically altered phonolite adjacent to the Pharmacist vein (28.8 and 28.2 ?? 0.1 Ma), suggest there was a protracted history of hydrothermal activity that began during the waning stages of phonolite and early mafic-ultramafic activity and continued, perhaps intermittently, for at least 2 m.y. Estimated whole-rock ??18O values of the alkaline igneous rocks range from 6.4 to 8.2 per mil. K feldspar and albite separates from igneous rocks have lead isotope compositions of 206Pb/204Pb = 17.90 to 18.10, 207Pb/204Pb = 15.51 to 15.53, and 208Pb/204Pb = 38.35 to 38.56. These isotopic compositions, together with major and trace element data, indicate that the phonolitic magmas probably evolved by fractional crystallization of an alkali basalt that assimilated lower crustal material. Upper crustal contamination of the magmas was not significant. The 206Pb/204Pb compositions of vein galenas almost entirely overlap those of phonolites, suggesting a genetic relationship between alkaline magmatism and mineralization. However, a trend toward higher 207Pb/204Pb (15.57-15.60) and 208Pb/204Pb ratios (38.94-39.48) of some galenas suggests a contribution to the ore fluid from surrounding Early Proterozoic rocks, probably through leaching by mineralizing fluids. Limited stable isotope compositions of quartz, K feldspar, and biotite from this and previous studies support a largely magmatic origin for the early vein fluids. It is suggested that three features were collectively responsible for generating alkaline magmas and associated mineral deposits: (1) the timing of magmatism and mineralization, which coincided with the transition between subduction-related compression and extension related to continental rifting; (2) the location of Cripple Creek at the junction of four major Precambrian units and at the intersection of major northeast-trending regional structures with northwest-trending faults, which served as conduits for magmas and subsequent hydrothermal fluids; and (3) the complex magmatic history which included emplacement of relatively felsic magmas followed by successively more mafic magmas with time.

  5. Petrography and geochemistry of the primary ore zone of the Kenticha rare metal granite-pegmatite field, Adola Belt, Southern Ethiopia: Implications for ore genesis and tectonic setting

    NASA Astrophysics Data System (ADS)

    Mohammedyasin, Mohammed Seid; Desta, Zerihun; Getaneh, Worash

    2017-10-01

    The aim of this work is to evaluate the genesis and tectonic setting of the Kenticha rare metal granite-pegmatite deposit using petrography and whole-rock geochemical analysis. The samples were analysed for major elements, and trace and rare earth elements by ICP-AES and ICP-MS, respectively. The Kenticha rare metal granite-pegmatite deposit is controlled by the N-S deep-seated normal fault that allow the emplacement of the granite-pegmatite in the study area. Six main mineral assemblages have been identified: (a) alaskitic granite (quartz + microcline + albite with subordinate muscovite), (b) aplitic layer (quartz + albite), (c) muscovite-quartz-microcline-albite pegmatite, (d) spodumene-microcline-albite pegmatite, partly albitized or greisenized, (e) microcline-albite-green and pink spodumene pegmatite with quartz-microcline block, which is partly albitized and greisenized, and (f) quartz core. This mineralogical zonation is also accompanied by variation in Ta ore concentration and trace and rare earth elements content. The Kenticha granite-pegmatite is strongly differentiated with high SiO2 (72-84 wt %) and enriched with Rb (∼689 ppm), Be (∼196 ppm), Nb (∼129 ppm), Ta (∼92 ppm) and Cs (∼150 ppm) and depleted in Ba and Sr. The rare earth element (REE) patterns of the primary ore zone (below 60 m depth) shows moderate enrichment in light REE ((La/Yb)N = ∼8, and LREE/HREE = ∼9.96) and negative Eu-anomaly (Eu/Eu* = ∼0.4). The whole-rock geochemical data display the Within Plate Granite (WPG) and syn-Collisional Granite (syn-COLG) suites and interpret as its formation is crustal related melting. The mineralogical assemblage, tectonic setting and geochemical signatures implies that the Kenticha rare metal bearing granite pegmatite is formed by partial melting of metasedimentary rocks during post-Gondwana assembly and further tantalite enrichment through later hydrothermal-metasomatic processes.

  6. An iridium-rich iron micrometeorite with silicate inclusions from the Moon

    NASA Technical Reports Server (NTRS)

    Jolliff, Bradley L.; Korotev, Randy L.; Haskin, Larry A.

    1993-01-01

    We have found a 0.1 mg iron micrometeorite containing meteoritic silicate inclusions in an agglutinate from 2-2.5 cm deep in regolith core 60014. The metal is 93 percent iron, 6.5 percent nickel, 0.5 percent cobalt, approximately 150 ppm iridium, and less than 2 ppm gold. Although the Ir concentration is higher than that reported previously for any iron meteorite group, it lies on the extrapolation to low Ni and high Ir concentrations of several meteorite groups on Ni,Ir plots (groups 2C,D,E, and 3AB,E,F). Tiny, subrounded silicate inclusions comprise low-Ca pyroxene (En83), olivine (FO80), and albitic and potassic feldspars, as mixtures of minerals or glasses. Minor phases include oldhamite (CaS) and, tentatively, hercynite (FeAl2O4). The inclusions have pyroxene FeO/MnO of approximately 25 and olivine FeO/MnO of 40-60. In comparison with known iron meteorites, the inclusions are most similar to those in type 2E, e.g., Weekeroo Station, Colomera, and Kodaikanal. As far as we know, this is the first observation of an iron meteorite with silicate inclusions from a lunar sample. No metal fragments with meteoritic, nonmetallic inclusions were reported in several previous, exhaustive studies of soil particles.

  7. Resetting of RbSr ages of volcanic rocks by low-grade burial metamorphism

    USGS Publications Warehouse

    Asmeroma, Y.; Damon, P.; Shafiqullah, M.; Dickinson, W.R.; Zartman, R.E.

    1991-01-01

    We report a nine-point RbSr whole-rock isochron age of 70??3 Ma (MSWD 3.97) for Mid-Jurassic volcanic rocks. The same rocks have also been dated by the UThPb method on zircon, giving a crystallization age of 166 ?? 11 Ma, over twice as old as the RbSr age. The data demonstrate that whole-rock RbSr ages of volcanic rocks, even lava flows with SiO2 content as low as 57 wt.%, are susceptible to complete resetting. The rocks range in composition from rhyodacite tuffs to andesite lavas. The complete breakdown of all major minerals that contain Rb and Sr resulted in an alteration mineral assemblage consisting of phengite, albite, secondary quartz, and minor amounts of chlorite and epidote. Phengite is the K-bearing product of the breakdown of biotite and K-feldspar. Pressure during low-grade metamorphism of the volcanic rocks, estimated from phengite composition to have been in the range of 4 to 6 kbar, points to thrust-related burial as the main cause of resetting. Consequently, such reset isochrons may date large-scale events such as regional thrusting and metamorphism. The coherent resetting of the RbSr isochron suggests large-scale pervasive fluid movement during thrust-related burial metamorphism. ?? 1991.

  8. Impact of dissolution and carbonate precipitation on carbon storage in basalt

    NASA Astrophysics Data System (ADS)

    Wells, R. K.; Xiong, W.; Tadeoye, J.; Menefee, A.; Ellis, B. R.; Skemer, P. A.; Giammar, D.

    2016-12-01

    The spatial evolution of silicate mineral dissolution, carbonate precipitation, and the transport of fluids influence the viability of carbon storage in basalt reservoirs. Dissolution of natural basalt and subsequent carbonate precipitation in systems with different transport processes operating were characterized using static and flow-through (5 mL/hr) experiments at 50, 100, and 150 °C, and 100 bar CO2. Intact samples and cores with milled pathways that simulate fractures were tested. Spatial and mineralogical patterns in dissolution and precipitation were analyzed using optical and electron microscopy, microCT scanning, and surface roughness data. Precipitates and fluid chemistry were analyzed using Raman spectroscopy, SEM-EDS, and ICP-MS. Analysis of the bulk solution and surface topography suggests dissolution of olivine and pyroxene grains begins within hours of the start of the experiments. In flow-through experiments, total effluent cation concentrations reach a peak concentration within a few hours then drop towards a steady state within a few days. In static experiments, the initial rate of cation release is faster than it is after several weeks. In both cases Ca2+, Mg2+, and Fe2+ are the dominant cations in solution in the initial stages of reaction. Lower concentrations of Na2+, K+, and Al3+, and the preservation of feldspar and matrix grains after several weeks of reaction indicate the slow reactivity of these minerals. As the reaction progresses, the surface roughness increases steadily with cavities developing at the sites of olivine and pyroxene grains. Post-reaction analysis of basalt samples reacted at static conditions with milled pathways reveals that both siderite and amorphous silica precipitated within diffusion-limited zones as early as 4-6 weeks. Siderite abundance varies with distance along the pathway with the highest concentration of carbonates 1-2 cm below the fracture opening. Siderite precipitates are large enough to fill fracture opening 100 μm wide within 4-6 weeks.

  9. Kinetic and mineralogic controls on the evolution of groundwater chemistry and 87Sr/86Sr in a sandy silicate aquifer, northern Wisconsin, USA

    USGS Publications Warehouse

    Bullen, T.D.; Krabbenhoft, D.P.; Kendall, C.

    1996-01-01

    Substantial flowpath-related variability of 87Sr/86Sr is observed in groundwaters collected from the Trout Lake watershed of northern Wisconsin. In the extensive shallow aquifer composed of sandy glacial outwash, groundwater is recharged either by seepage from lakes or by precipitation that infiltrates the inter-lake uplands. 87Sr/86Sr of groundwater derived mainly as seepage from a precipitation-dominated lake near the head of the watershed decreases with progressive water chemical evolution along its flowpath due primarily to enhanced dissolution of relatively unradiogenic plagioclase. In contrast, 87Sr/86Sr of groundwater derived mainly from precipitation that infiltrates upland areas is substantially greater than that of precipitation collected from the watershed, due to suppression of plagioclase dissolution together with preferential leaching of Sr from radiogenic phases such as K-feldspar and biotite. The results of a column experiment that simulated the effects of changing residence time of water in the aquifer sand indicate that mobile waters obtain relatively unradiogenic Sr, whereas stagnant waters obtain relatively radiogenic Sr. Nearly the entire range of strontium-isotope composition observed in groundwaters from the watershed was measured in the experimental product waters. The constant mobility of water along groundwater recharge flowpaths emanating from the lakes promotes the dissolution of relatively unradiogenic plagioclase, perhaps due to effective dispersal of clay mineral nuclei resulting from dissolution reactions. In contrast, episodic stagnation in the unsaturated zone along the upland recharge flowpaths suppresses plagioclase dissolution, perhaps due to accumulation of clay mineral nuclei on its reactive surfaces. Differences in redox conditions along these contrasting flowpaths probably enhance the observed differences in strontium isotope behavior. This study demonstrates that factors other than the calculated state of mineral saturation must be considered when attempting to simulate chemical evolution along flowpaths, and that reaction models must be able to incorporate changing contributions from reacting minerals in the calculations.

  10. The surface chemistry of multi-oxide silicates

    NASA Astrophysics Data System (ADS)

    Oelkers, Eric H.; Golubev, Sergey V.; Chairat, Claire; Pokrovsky, Oleg S.; Schott, Jacques

    2009-08-01

    The surface chemistry of natural wollastonite, diopside, enstatite, forsterite, and albite in aqueous solutions was characterized using both electrokinetic techniques and surface titrations performed for 20 min in batch reactors. Titrations performed in such reactors allow determination of both proton consumption and metal release from the mineral surface as a function of pH. The compositions, based on aqueous solution analysis, of all investigated surfaces vary dramatically with solution pH. Ca and Mg are preferentially released from the surfaces of all investigated divalent metal silicates at pH less than ˜8.5-10 but preferentially retained relative to silica at higher pH. As such, the surfaces of these minerals are Si-rich and divalent metal poor except in strongly alkaline solutions. The preferential removal of divalent cations from these surfaces is coupled to proton consumption. The number of protons consumed by the preferential removal of each divalent cation is pH independent but depends on the identity of the mineral; ˜1.5 protons are consumed by the preferential removal of each Ca atom from wollastonite, ˜3 protons are consumed by the preferential removal of each Mg or Ca atom from diopside or enstatite, and ˜4 protons are consumed by the preferential removal of each Mg from forsterite. These observations are interpreted to stem from the creation of additional 'internal' adsorption sites by the preferential removal of divalent metal cations which can be coupled to the condensation of partially detached Si. Similarly, Na and Al are preferentially removed from the albite surface at 2 > pH > 11; mass balance calculations suggest that three protons are consumed by the preferential removal of each Al atom from this surface over this entire pH range. Electrokinetic measurements on fresh mineral powders yield an isoelectric point (pH IEP) 2.6, 4.4, 3.0, 4.5, and <1, for wollastonite, diopside, enstatite, forsterite, and albite, respectively, consistent with the predominance of SiO 2 in the surface layer of all of these multi-oxide silicates at acidic pH. Taken together, these observations suggest fundamental differences between the surface chemistry of simple versus multi-oxide minerals including (1) a dependency of the number and identity of multi-oxide silicate surface sites on the aqueous solution composition, and (2) the dominant role of metal-proton exchange reactions on the reactivity of multi-oxide mineral surfaces including their dissolution rate variation with aqueous solution composition.

  11. Time-resolved remote Raman study of minerals under supercritical CO2 and high temperatures relevant to Venus exploration.

    PubMed

    Sharma, Shiv K; Misra, Anupam K; Clegg, Samuel M; Barefield, James E; Wiens, Roger C; Acosta, Tayro

    2010-07-13

    We report time-resolved (TR) remote Raman spectra of minerals under supercritical CO(2) (approx. 95 atm pressure and 423 K) and under atmospheric pressure and high temperature up to 1003 K at distances of 1.5 and 9 m, respectively. The TR Raman spectra of hydrous and anhydrous sulphates, carbonate and silicate minerals (e.g. talc, olivine, pyroxenes and feldspars) under supercritical CO(2) (approx. 95 atm pressure and 423 K) clearly show the well-defined Raman fingerprints of each mineral along with the Fermi resonance doublet of CO(2). Besides the CO(2) doublet and the effect of the viewing window, the main differences in the Raman spectra under Venus conditions are the phase transitions, the dehydration and decarbonation of various minerals, along with a slight shift in the peak positions and an increase in line-widths. The dehydration of melanterite (FeSO(4).7H(2)O) at 423 K under approximately 95 atm CO(2) is detected by the presence of the Raman fingerprints of rozenite (FeSO(4).4H(2)O) in the spectrum. Similarly, the high-temperature Raman spectra under ambient pressure of gypsum (CaSO(4).2H(2)O) and talc (Mg(3)Si(4)O(10)(OH)(2)) indicate that gypsum dehydrates at 518 K, but talc remains stable up to 1003 K. Partial dissociation of dolomite (CaMg(CO(3))(2)) is observed at 973 K. The TR remote Raman spectra of olivine, alpha-spodumene (LiAlSi(2)O(6)) and clino-enstatite (MgSiO(3)) pyroxenes and of albite (NaAlSi(3)O(8)) and microcline (KAlSi(3)O(8)) feldspars at high temperatures also show that the Raman lines remain sharp and well defined in the high-temperature spectra. The results of this study show that TR remote Raman spectroscopy could be a potential tool for exploring the surface mineralogy of Venus during both daytime and nighttime at short and long distances.

  12. Experimental Insights into Multiphase (H2O-CO2) Fluid-Rock Interactions in Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Kaszuba, J. P.; Lo Re, C.; Martin, J.; McPherson, B. J.; Moore, J. N.

    2012-12-01

    Integrated hydrothermal experiments and geochemical modeling elucidate fluid-rock interactions and reaction pathways in both natural and anthropogenic systems, including enhanced geothermal systems (EGS) in which CO2 is introduced as a working fluid. Experiments are conducted in rocker bombs and flexible Au-Ti reaction cells. Individual experiments require one to three months to complete; intensive in-situ fluid/gas sampling gauges reaction progress. Investigation of granitic reservoirs and associated vein minerals are broadly based on the Roosevelt Hot Springs thermal area, Utah, USA. The granite consists of subequal amounts of quartz, perthitic K-feldspar (~25% wt% albite and 75% wt% K-feldspar), and oligoclase (An23), and 4 wt% Fe-rich biotite. Vein minerals include epidote and chlorite (clinochlore). Experiments are conducted at 250°C and 25 to 45 MPa. Each experiment uses mineral powders (75 wt% of rock mass, ground to <45 um) to increase reactivity and also mineral pieces (0.1-0.7 cm in size) to promote petrologic evaluation of mineral reactions. The water (I ≈ 0.1 molal) initially contains millimolal quantities of SiO2, Al, Ca, Mg, K, SO4, and HCO3 and is designed to be saturated with all of the minerals present at the start of each experiment. Excess CO2 is injected to saturate the water and maintain an immiscible supercritical fluid phase. The entire evolutionary path of the natural system is not replicated at laboratory scales. Instead, experiments define a segment of the reaction path and, in combination with geochemical modeling, provide clear trajectories towards equilibrium. Reaction of granite+water yields illite+zeolite; smectite subsequently precipitates in response to CO2 injection. Reaction of granite+epidote+water yields illite+zeolite+smectite; zeolite does not precipitate after CO2 is injected. Water in all experiments become saturated with chalcedony. Carbonate minerals do not precipitate but are predicted as final equilbrium products. Enhanced Geothermal Systems are expected to follow similar reaction pathways and produce metastable minerals during initial development.

  13. Dielectric properties and the monoclinictriclinic inversion in albite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, P.; Duba, A.; Piwinskii, A.J.

    1976-12-01

    Dielectric properties (epsilon', real part of complex permittivity; epsilon'', imaginary part of complex permittivity; tan delta, loss tangent = epsilon''/epsilon') of single crystal Amelia albite have been measured parallel to the b-axis under controlled oxygen fugacity near the QFM buffer in the temperature range 1000 to 1373/sup 0/K at frequencies (..nu..) of 0.2 to 10 kHz. Plots of epsilon' and epsilon'' as a function of temperature exhibit minima which depend on time and ..nu.. in this albite. In addition, plots of tan delta as a function of temperature develop maxima which are also time-dependent. When epsilon', epsilon'', and tan deltamore » were investigated between 1220 and 1320/sup 0/K as a function of time, a break in these dielectric parameters with temperature was found. Epsilon' and epsilon'' increased with time above this break, while they decreased with time below the break. Values of loss tangent were also non-linear functions of temperature. Epsilon' and epsilon'' minima, tan delta maxima, and the temperature break in these dielectric properties were found to converge at approximately 1283/sup 0/K as time increases. Assuming that the epsilon' and epsilon'' increase and the tan delta decrease are the result of increasing disorder in this albite, these experimental data suggest that 1283 +- 20/sup 0/K is the temperature of the monoclinic-triclinic transition in this albite. This agrees well with electrical conductivity results which indicate 1253 +- 30/sup 0/K.« less

  14. Size distribution and roundness of clasts within pseudotachylytes of the Gangavalli Shear Zone, Salem, Tamil Nadu: An insight into its origin and tectonic significance

    NASA Astrophysics Data System (ADS)

    Behera, Bhuban Mohan; Thirukumaran, V.; Soni, Aishwaraya; Mishra, Prasanta Kumar; Biswal, Tapas Kumar

    2017-06-01

    Gangavalli (Brittle) Shear Zone (Fault) near Attur, Tamil Nadu exposes nearly 50 km long and 1-3 km wide NNE-SSW trending linear belt of cataclasites and pseudotachylyte produced on charnockites of the Southern Granulite Terrane. Pseudotachylytes, as well as the country rock, bear the evidence of conjugate strike slip shearing along NNE-SSW and NW-SE directions, suggesting an N-S compression. The Gangavalli Shear Zone represents the NNE-SSW fault of the conjugate system along which a right lateral shear has produced seismic slip motion giving rise to cataclasites and pseudotachylytes. Pseudotachylytes occur as veins of varying width extending from hairline fracture fills to tens of meters in length. They carry quartz as well as feldspar clasts with sizes of few mm in diameter; the clast sizes show a modified Power law distribution with finer ones (<1000 {\\upmu }m2) deviating from linearity. The shape of the clasts shows a high degree of roundness (>0.4) due to thermal decrepitation. In a large instance, devitrification has occurred producing albitic microlites that suggest the temperature of the pseudotachylyte melt was >1000^{circ }\\hbox {C}. Thus, pseudotachylyte veins act as a proxy to understand the genetic process involved in the evolution of the shear zone and its tectonic settings.

  15. Adsorption of Radioactive Cesium to Illite-Sericite Mixed Clays

    NASA Astrophysics Data System (ADS)

    Hwang, J. H.; Choung, S.; Park, C. S.; Jeon, S.; Han, J. H.; Han, W. S.

    2016-12-01

    Once radioactive cesium is released into aquatic environments through nuclear accidents such as Chernobyl and Fukushima, it is harmful to human and ecological system for a long time (t1/2 = 30.2 years) because of its chemical toxicity and γ-radiation. Sorption mechanism is mainly applied to remove the cesium from aquatic environments. Illite is one of effective sorbent, considering economical cost for remediation. Although natural illite is typically produced as a mixture with sericite formed by phyllic alteration in hydrothermal ore deposits, the effects of illite-sericite mixed clays on cesium sorption was rarely studied. This study evaluated the sorption properties of cesium to natural illite collected at Yeongdong in Korea as the world-largest illite producing areas (termed "Yeongdong illite"). The illite samples were analyzed by XRF, XRD, FT-IR and SEM-EDX to determine mineralogy, chemical composition, and morphological characteristics, and used for batch sorption experiments. Most of "Yeongdong illite" samples predominantly consist of sericite, quartz, albite, plagioclase feldspar and with minor illite. Cesium sorption distribution coefficients (Kd,Cs) of various "Yeongdong illite" samples ranged from 500 to 4000 L/kg at low aqueous concentration (Cw 10-7 M). Considering Kd,Cs values were 400 and 6000 using reference sericite and illite materials, respectively, in this study, these results suggested that high contents of sericite significantly affect the decrease of sorption capabilities for radiocesium by natural illite (i.e., illite-sericite mixed clay).

  16. Modelling melting in crustal environments, with links to natural systems in the Nepal Himalayas

    NASA Astrophysics Data System (ADS)

    Isherwood, C.; Holland, T.; Bickle, M.; Harris, N.

    2003-04-01

    Melt bodies of broadly granitic character occur frequently in mountain belts such as the Himalayan chain which exposes leucogranitic intrusions along its entire length (e.g. Le Fort, 1975). The genesis and disposition of these bodies have considerable implications for the development of tectonic evolution models for such mountain belts. However, melting processes and melt migration behaviour are influenced by many factors (Hess, 1995; Wolf &McMillan, 1995) which are as yet poorly understood. Recent improvements in internally consistent thermodynamic datasets have allowed the modelling of simple granitic melt systems (Holland &Powell, 2001) at pressures below 10 kbar, of which Himalayan leucogranites provide a good natural example. Model calculations such as these have been extended to include an asymmetrical melt-mixing model based on the Van Laar approach, which uses volumes (or pseudovolumes) for the different end-members in a mixture to control the asymmetry of non-ideal mixing. This asymmetrical formalism has been used in conjunction with several different entropy of mixing assumptions in an attempt to find the closest fit to available experimental data for melting in simple binary and ternary haplogranite systems. The extracted mixing data are extended to more complex systems and allow the construction of phase relations in NKASH necessary to model simple haplogranitic melts involving albite, K-feldspar, quartz, sillimanite and {H}2{O}. The models have been applied to real bulk composition data from Himalayan leucogranites.

  17. REDUCING UNCERTAINTIES IN MODEL PREDICTIONS VIA HISTORY MATCHING OF CO2 MIGRATION AND REACTIVE TRANSPORT MODELING OF CO2 FATE AT THE SLEIPNER PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Chen

    2015-03-31

    An important question for the Carbon Capture, Storage, and Utility program is “can we adequately predict the CO2 plume migration?” For tracking CO2 plume development, the Sleipner project in the Norwegian North Sea provides more time-lapse seismic monitoring data than any other sites, but significant uncertainties still exist for some of the reservoir parameters. In Part I, we assessed model uncertainties by applying two multi-phase compositional simulators to the Sleipner Benchmark model for the uppermost layer (Layer 9) of the Utsira Sand and calibrated our model against the time-lapsed seismic monitoring data for the site from 1999 to 2010. Approximatemore » match with the observed plume was achieved by introducing lateral permeability anisotropy, adding CH4 into the CO2 stream, and adjusting the reservoir temperatures. Model-predicted gas saturation, CO2 accumulation thickness, and CO2 solubility in brine—none were used as calibration metrics—were all comparable with the interpretations of the seismic data in the literature. In Part II & III, we evaluated the uncertainties of predicted long-term CO2 fate up to 10,000 years, due to uncertain reaction kinetics. Under four scenarios of the kinetic rate laws, the temporal and spatial evolution of CO2 partitioning into the four trapping mechanisms (hydrodynamic/structural, solubility, residual/capillary, and mineral) was simulated with ToughReact, taking into account the CO2-brine-rock reactions and the multi-phase reactive flow and mass transport. Modeling results show that different rate laws for mineral dissolution and precipitation reactions resulted in different predicted amounts of trapped CO2 by carbonate minerals, with scenarios of the conventional linear rate law for feldspar dissolution having twice as much mineral trapping (21% of the injected CO2) as scenarios with a Burch-type or Alekseyev et al.–type rate law for feldspar dissolution (11%). So far, most reactive transport modeling (RTM) studies for CCUS have used the conventional rate law and therefore simulated the upper bound of mineral trapping. However, neglecting the regional flow after injection, as most previous RTM studies have done, artificially limits the extent of geochemical reactions as if it were in a batch system. By replenishing undersaturated groundwater from upstream, the Utsira Sand is reactive over a time scale of 10,000 years. The results from this project have been communicated via five peer-reviewed journal articles, four conference proceeding papers, and 19 invited and contributed presentations at conferences and seminars.« less

  18. Properties of the Hermean Regolith. 5; New Optical Reflectance Spectra, Comparison with Lunar Anorthosites and Mineralogical Modelling

    NASA Technical Reports Server (NTRS)

    Warell, J.; Blewett, D. T.

    2003-01-01

    We present new optical (0.4-0.65 micron) spectra of Mercury and lunar pure anorthosite locations, obtained quasi-simultaneously with the Nordic Optical Telescope (NOT) in 2002. A comparative study is performed with the model of Lucey et al. between iron-poor, mature, pure anorthosite (less than 90% plagioclase feldspar) Clementine spectra from the lunar farside and a combined 0.4-1.0 micron mercurian spectrum, obtained with the NOT, calculated for standard photometric geometry. Mercury is located at more extreme locations in the Lucey ratio-reflectance diagrams than any known lunar soil, specifically with respect to the extremely iron-poor mature anorthosites. Though quantitative prediction of FeO and TiO2 abundances cannot be made without a more generally applicable model, we find qualitatively that the abundances of both these oxides must be near zero for Mercury. We utilize the theory of Hapke, with realistic photometric parameters, to model laboratory spectra of matured mineral powders and lunar soils, and remotely sensed spectra of lunar anorthosites and Mercury. An important difference between fabricated and natural powders is the high value for the internal scattering parameter necessary to interpret the spectra for the former, and the requirement of rough and non-isotropically scattering surfaces in the modelling of the latter. The mature lunar anorthosite spectra were well modelled with binary mixtures of calcic feldspars and olivines, grain sizes of 25-30 micron and a concentration of submicroscopic metallic iron (SMFe) of 0.12-0.15% in grain coatings. The mercurian spectrum is not possible to interpret from terrestrial mineral powder spectra without introducing an average particle scattering function for the bulk soil that increases in backscattering efficiency with wavelength. The observed spectrum is somewhat better predicted with binary mixture models of feldspars and pyroxenes, that single-component regoliths consisting of either albite or diopside. Correct spectral reflectance values were predicted with a concentration of 0.1 wt% SMFe in coatings of 15-30 micron sized grains. Since reasonable cosmogonical formation scenarios for Mercury, or meteoritic infall, predict iron concentrations at least this high, we draw the conclusion that the average grain size of Mercury is about a factor of two smaller than for average returned lunar soil samples. The 0.6-2.5 micron spectrum of McCord and Clark is used to further limit the possible range of mineralogical composition of Mercury. It is found that an intimately mixed and matured 3 : 1 labradorite-to-enstatite regolith composition best matches both the optical and near-infrared spectra, yielding an abundance of approx. 1.2 wt% FeO and -approx. 0 wt% TiO2.

  19. Predictions of diagenetic reactions in the presence of organic acids

    NASA Astrophysics Data System (ADS)

    Harrison, Wendy J.; Thyne, Geoffrey D.

    1992-02-01

    Stability constants have been estimated for cation complexes with anions of monofunctional and difunctional acids (combinations of Ca, Mg, Fe, Al, Sr, Mn, U, Th, Pb, Cu, Zn with formate, acetate, propionate, oxalate, malonate, succinate, and salicylate) between 0 and 200°C. Difunctional acid anions form much more stable complexes than monofunctional acid anions with aluminum; the importance of the aluminum-acetate complex is relatively minor in comparison to aluminum oxalate and malonate complexes. Divalent metal cations such as Mg, Ca, and Fe form more stable complexes with acetate than with difunctional acid anions. Aluminum-oxalate can dominate the species distribution of aluminum under acidic pH conditions, whereas the divalent cation-acetate and oxalate complexes rarely account for more than 60% of the total dissolved cation, and then only in more alkaline waters. Mineral thermodynamic affinities were calculated using the reaction path model EQ3/6 for waters having variable organic acid anion (OAA) contents under conditions representative of those found during normal burial diagenesis. The following scenarios are possible: 1) K-feldspar and albite are stable, anorthite dissolves 2) All feldpars are stable 3) Carbonates can be very unstable to slightly unstable, but never increase in stability. Organic acid anions are ineffective at neutral to alkaline pH in modifying stabilities of aluminosilicate minerals whereas the anions are variably effective under a wide range of pH in modifying carbonate mineral stabilities. Reaction path calculations demonstrate that the sequence of mineral reactions occurring in an arkosic sandstone-fluid system is only slightly modified by the presence of OAA. A spectrum of possible sandstone alteration mineralogies can be obtained depending on the selected boundary conditions: EQ3/6 predictions include quartz overgrowth, calcite replacement of plagioclase, albitization of plagioclase, and the formation of porosity-occluding calcite cement, smectite, and illite, all of which are commonly documented in rocks. Under some circumstances, OAA-bearing waters are less effective at producing porosity in an arkosic sandstone than are OAA-free waters. In the scenarios modeled in this study the role of OAA in fluid-rock interactions is to contribute to the total alteration assemblage but not necessarily to dominate it, except under exceptional circumstances that might include, for example, hydrocarbon contaminant plumes in aquifers, wetland environments, and within hydrocarbon source-rocks.

  20. A Study of Melt Inclusions in Tin-Mineralized Granites From Zinnwald, Germany

    NASA Astrophysics Data System (ADS)

    Sookdeo, C. A.; Webster, J. D.; Eschen, M. L.; Tappen, C. M.

    2001-12-01

    We have analyzed silicate melt inclusions from drill core samples from the eastern Erzgebirge region, Germany, to investigate magmatic-hydrothermal and mineralizing processes in compositionally evolved, tin-bearing granitic magmas. Silicate melt inclusions are small blebs of glass that are trapped or locked within phenocrysts and may contain high concentrations of volatiles that usually leave magma via degassing. Quartz phenocrysts were carefully hand picked from crushed samples of albite-, zinnwaldite- +/- lepidolite-bearing granitic dikes from Zinnwald and soaked in cold dilute HF to remove any attached groundmass. The cleaned phenocrysts were loaded into precious metal capsules with several drops of immersion oil to create a reducing environment at high temperature. The quartz-bearing capsules were inserted into quartz glass tubes, loaded into a furnace for heating at temperatures of 1025\\deg and 1050\\deg C (1atm) for periods of 20 to 30 hours, and subsequently the inclusions were quenched to glass. The inclusions were analyzed for major and minor elements (including F, Cl, and P) by electron microprobe and for H2O, trace elements, and ore elements by ion microprobe. The melt inclusion compositions are similar to that of the whole-rock sample from which the quartz separates were extracted. The average melt inclusion and whole-rock compositions are peraluminous, high in silica and rare alkalis, and low in MgO, CaO, FeO, MnO, and P2O5. Unlike the whole-rock sample, the melt inclusions contain from 0.5 to more than 4 wt.% F. The Cl contents of the inclusions are variable and range from hundreds of ppm to several thousand ppm. The variable and strong enrichments in F of the melt inclusions may correlate with (Na2O/Na2O+K2O) in the inclusions which is consistent with crystal fractionation of feldspars which drives the residual melt to increasing Na contents. Overall, the compositions of these melt inclusions are different from melt inclusions extracted from the highly peraluminous, tin-mineralized granites of the western Erzgebirge region. The latter represent extreme compositional evolution of P- and F-rich magmas. The inclusions from the albite-, zinnwaldite-, +/- lepidolite-bearing granitic dikes of Zinnwald are more similar, compositionally, to those in tin-mineralized rhyolites of Mexico and New Mexico; the Erzgebirge dike melt inclusions container comparatively greater abundances of Li, Sn, and F, however.

  1. P-T composition and evolution of paleofluids in the Paleoproterozoic Mag Hill IOCG system, Contact Lake belt, Northwest Territories, Canada

    NASA Astrophysics Data System (ADS)

    Somarin, A. Karimzadeh; Mumin, A. Hamid

    2014-02-01

    The Echo Bay stratovolcano complex and Contact Lake Belt of the Great Bear Magmatic Zone, Northwest Territories, host a series of coalescing Paleoproterozoic hydrothermal systems that affected an area of several hundred square kilometers. They were caused by intrusion of synvolcanic diorite-monzodioritic plutons into andesitic host rocks, producing several characteristic hydrothermal assemblages. They include early and proximal albite, magnetite-actinolite-apatite, and potassic (K-feldspar) alteration, followed by more distal hematite, phyllic (quartz-sericite-pyrite), and propylitic (chlorite-epidote-carbonate±sericite±albite±quartz) alteration, and finally by late-stage polymetallic epithermal veins. These alteration types are characteristic of iron oxide copper-gold deposits, however, with distal and lower-temperature assemblages similar to porphyry Cu systems. Magnetite-actinolite-apatite alteration formed from high temperature (up to 560 °C) fluids with average salinity of 12.8 wt% NaCl equivalent. The prograde propylitic and phyllic alteration stages are associated with fluids with temperatures varying from 80 to 430 °C and a wide salinity range (0.5-45.6 wt% NaCl equivalent). Similarly, wide fluid temperature (104-450 °C) and salinity (4.2-46.1 wt% NaCl equivalent) ranges are recorded for the phyllic alteration. This was followed by Cu-Ag-U-Zn-Co-Pb sulfarsenide mineralization in late-stage epithermal veins formed at shallow depths and temperatures from 270 °C to as low as 105 °C. The polymetallic veins precipitated from high salinity (mean 30 wt% NaCl equivalent) dense fluids (1.14 g/cm3) with a vapor pressure of 3.8 bars, typical of epithermal conditions. Fluid inclusion evidence indicates that mixed fluids with evolving physicochemical properties were responsible for the formation of the alteration assemblages and mineralization at Mag Hill. An early high temperature, moderate salinity, and magmatic fluid was subsequently modified variably by boiling, mixing with cooler low-salinity meteoric water, and simple cooling. The evidence is consistent with emplacement of the source plutons and stocks into an epithermal environment within ~1 km of surface. This generated near-surface high-temperature alteration in a dynamic hydrothermal system that collapsed (telescoped) resulting in widespread evidence of boiling and epithermal mineralization superimposed on earlier stages of alteration.

  2. Isolation and the interaction between a mineral-weathering Rhizobium tropici Q34 and silicate minerals.

    PubMed

    Wang, Rong Rong; Wang, Qi; He, Lin Yan; Qiu, Gang; Sheng, Xia Fang

    2015-05-01

    The purposes of this study were to isolate and evaluate the interaction between mineral-weathering bacteria and silicate minerals (feldspar and biotite). A mineral-weathering bacterium was isolated from weathered rocks and identified as Rhizobium tropici Q34 based on 16S rRNA gene sequence analysis. Si and K concentrations were increased by 1.3- to 4.0-fold and 1.1- to 1.7-fold in the live bacterium-inoculated cultures compared with the controls respectively. Significant increases in the productions of tartaric and succinic acids and extracellular polysaccharides by strain Q34 were observed in cultures with minerals. Furthermore, significantly more tartaric acid and polysaccharide productions by strain Q34 were obtained in the presence of feldspar, while better growth and more citric acid production of strain Q34 were observed in the presence of biotite. Mineral dissolution experiments showed that the organic acids and polysaccharides produced by strain Q34 were also capable of promoting the release of Si and K from the minerals. The results showed that the growth and metabolite production of strain Q34 were enhanced in the presence of the minerals and different mineral exerted distinct impacts on the growth and metabolite production. The bio-weathering process is probably a synergistic action of organic acids and extracellular polysaccharides produced by the bacterium.

  3. Investigation on porosity and permeability change of Mount Simon sandstone (Knox County, IN, USA) under geological CO 2 sequestration conditions: a numerical simulation approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Liwei; Soong, Yee; Dilmore, Robert M.

    In this paper, a numerical model was developed to simulate reactive transport with porosity and permeability change of Mount Simon sandstone (samples from Knox County, IN) after 180 days of exposure to CO 2-saturated brine under CO 2 sequestration conditions. The model predicted formation of a high-porosity zone adjacent to the surface of the sample in contact with bulk brine, and a lower porosity zone just beyond that high-porosity zone along the path from sample/bulk brine interface to sample core. The formation of the high porosity zone was attributed to dissolution of quartz and muscovite/illite, while the formation of themore » lower porosity zone adjacent to the aforementioned high porosity zone was attributed to precipitation of kaolinite and feldspar. The model predicted a 40% permeability increase for the Knox sandstone sample after 180 days of exposure to CO 2-saturated brine, which was consistent with laboratory-measured permeability results. Model-predicted solution chemistry results were also found to be consistent with laboratory-measured solution chemistry data. Finally, initial porosity, initial feldspar content and the exponent n value (determined by pore structure and tortuosity) used in permeability calculations were three important factors affecting permeability evolution of sandstone samples under CO 2 sequestration conditions.« less

  4. Investigation on porosity and permeability change of Mount Simon sandstone (Knox County, IN, USA) under geological CO 2 sequestration conditions: a numerical simulation approach

    DOE PAGES

    Zhang, Liwei; Soong, Yee; Dilmore, Robert M.

    2016-01-14

    In this paper, a numerical model was developed to simulate reactive transport with porosity and permeability change of Mount Simon sandstone (samples from Knox County, IN) after 180 days of exposure to CO 2-saturated brine under CO 2 sequestration conditions. The model predicted formation of a high-porosity zone adjacent to the surface of the sample in contact with bulk brine, and a lower porosity zone just beyond that high-porosity zone along the path from sample/bulk brine interface to sample core. The formation of the high porosity zone was attributed to dissolution of quartz and muscovite/illite, while the formation of themore » lower porosity zone adjacent to the aforementioned high porosity zone was attributed to precipitation of kaolinite and feldspar. The model predicted a 40% permeability increase for the Knox sandstone sample after 180 days of exposure to CO 2-saturated brine, which was consistent with laboratory-measured permeability results. Model-predicted solution chemistry results were also found to be consistent with laboratory-measured solution chemistry data. Finally, initial porosity, initial feldspar content and the exponent n value (determined by pore structure and tortuosity) used in permeability calculations were three important factors affecting permeability evolution of sandstone samples under CO 2 sequestration conditions.« less

  5. Crystal-chemical controls on the partitioning of Sr and Ba between plagioclase feldspar, silicate melts, and hydrothermal solutions

    NASA Astrophysics Data System (ADS)

    Blundy, Jonathan D.; Wood, Bernard J.

    1991-01-01

    The isothermal (750°C) experiments of LAGACHE and DUJON (1987) reveal that the partitioning of Sr between plagioclase feldspar and hydrothermal solutions is a funtion of the anorthite (An) content of the plagioclase, indicating that crystal chemistry may exert a powerful influence on trace element partitioning. In order to compare these results with those on trace element partitioning between plagioclase and silicate melts we have compiled from the literature a large dataset of experimental and volcanic distribution coefficients ( D's) for Sr (and Ba). These data, which span a compositional range from lunar basalt to high silica rhyolite and a temperature range of over 650°C, show a relationship between DSr (and DBa) and mole fraction An ( XAn) which is similar to that exhibited by the hydrothermal results obtained at constant temperature. Plots of In DSr and In DBa versus XAn are linear with negative slope, indicating that both elements are more compatible in albite than anorthite. In terms of molar distribution coefficients ( D Sr∗) the hydrothermal and silicate melt data display an identical linear relationship between RT In D Sr∗ (where T is the absolute temperature in K and R is the gas constant, 8.314 JK -1 mol -1) and XAn. We conclude therefore that crystal chemistry provides the dominant control on partitioning of Sr and Ba into plagioclase and that the effects of temperature, pressure, and fluid composition are minor. Apparent relationships between DSr (and DBa) and the reciprocal temperature (1/ T) are artefacts of the linear relationships between XAn and 1/ T in the experimental studies. By defining a Henry's law standard state for the silicate melts and hydrothermal solutions, and considering plagioclases to be ternary regular solutions, we are able to relate the observed relationships between RT In D i∗ (where i is Ba or Sr) and XAn to the excess free energies of the trace element partitioning reactions between plagioclase and melt or hydrothermal solution. The interaction parameters are consistent with simple models in which the larger Ba or Sr cations are accommodated by lattice strain in the host plagioclase lattice, which is assumed to be perfectly elastic and isotropic. Thus D i∗ is a function of the Young's modulus of the host crystal and the size mismatch between trace and host cations. The greater elasticity of albite relative to anorthite accounts for the observed preference of Sr and Ba for sodic plagioclases over calcic plagioclases. For geochemical purposes the weight fraction partition coefficient Di is of more value than its molar counterpart. Regression of the Di data versus XAn yields the semi-empirical relationships RTIn DSr = 26,800 - 26,700 · XAnRTIn DBa = 10,200 - 38,200 · XAn. Thus measurement of the An and trace element (Ba, Sr) contents of a magmatic plagioclase enables calculation of the Ba and Sr contents of the coexisting liquid, which can be extremely important in the deciphering of igneous processes. By reference to plagioclase fractionation in the simple An-Ab binary we show that failure to take into account the compositional dependence of DSr can result in erroneous interpretations of geochemical trends. We also consider applications to three natural igneous suites: the Aden Volcanics; the layered Kiglapait Intrusion, Labrador; and the southern Actamello Massif, Italy.

  6. Geochemical modeling of arsenic sulfide oxidation kinetics in a mining environment

    NASA Astrophysics Data System (ADS)

    Lengke, Maggy F.; Tempel, Regina N.

    2005-01-01

    Arsenic sulfide (AsS (am), As 2S 3 (am), orpiment, and realgar) oxidation rates increase with increasing pH values. The rates of arsenic sulfide oxidation at higher pH values relative to those at pH˜2 are in the range of 26-4478, 3-17, 8-182, and 4-10 times for As 2S 3 (am), orpiment, AsS (am), and realgar, respectively. Numerical simulations of orpiment and realgar oxidation kinetics were conducted using the geochemical reaction path code EQ3/6 to evaluate the effects of variable DO concentrations and mineral reactivity factors on water chemistry evolution during orpiment and realgar oxidation. The results show that total As concentrations increase by ˜1.14 to 13 times and that pH values decrease by ˜0.6 to 4.2 U over a range of mineral reactivity factors from 1% to 50% after 2000 days (5.5 yr). The As release from orpiment and realgar oxidation exceeds the current U.S. National Drinking Water Standard (0.05 ppm) approximately in 200-300 days at the lowest initial dissolved oxygen concentration (3 ppm) and a reactivity factor of 1%. The results of simulations of orpiment oxidation in the presence of albite and calcite show that calcite can act as an effective buffer to the acid water produced from orpiment oxidation within relatively short periods (days/months), but the release of As continues to increase. Pyrite oxidation rates are faster than orpiment and realgar from pH 2.3 to 8; however, pyrite oxidation rates are slower than As 2S 3 (am) and AsS (am) at pH 8. The activation energies of arsenic sulfide oxidation range from 16 to 124 kJ/mol at pH˜8 and temperature 25 to 40°C, and pyrite activation energies are ˜52 to 88 kJ/mol, depending on pH and temperature range. The magnitude of activation energies for both pyrite and arsenic sulfide solids indicates that the oxidation of these minerals is dominated by surface reactions, except for As 2S 3 (am). Low activation energies of As 2S 3 (am) indicate that diffusion may be rate controlling. Limestone is commonly mixed with sulfide minerals in a mining environment to prevent acid water formation. However, the oxidation rates of arsenic sulfides increase as solution pH rises and result in a greater release of As. Furthermore, the lifetimes of carbonate minerals (i.e., calcite, aragonite, and dolomite) are much shorter than those of arsenic sulfide and silicate minerals. Thus, within a geologic frame time, carbonate minerals may not be present to act as a pH buffer for acid mine waters. Additionally, the presence of silicate minerals such as pyroxenes (wollastonite, jadeite, and spodumene) and Ca-feldspars (labradorite, anorthite, and nepheline) may not be important for buffering acid solutions because these minerals dissolve faster than and have shorter lifetimes than sulfide minerals. However, other silicate minerals such as Na and K-feldspars (albite, sanidine, and microcline), quartz, pyroxenes (augite, enstatite, diopsite, and MnSiO 3) that have much longer lifetimes than arsenic sulfide minerals may be present in a system. The results of our modeling of arsenic sulfide mineral oxidation show that these minerals potentially can release significant concentrations of dissolved As to natural waters, and the factors and mechanisms involved in arsenic sulfide oxidation warrant further study.

  7. Prognostic significance of combined albumin-bilirubin and tumor-node-metastasis staging system in patients who underwent hepatic resection for hepatocellular carcinoma.

    PubMed

    Harimoto, Norifumi; Yoshizumi, Tomoharu; Sakata, Kazuhito; Nagatsu, Akihisa; Motomura, Takashi; Itoh, Shinji; Harada, Noboru; Ikegami, Toru; Uchiyama, Hideaki; Soejima, Yuji; Maehara, Yoshihiko

    2017-11-01

    In recent years, the establishment of new staging systems for hepatocellular carcinoma (HCC) has been reported worldwide. The system combining albumin-bilirubin (ALBI) with tumor-node-metastasis stage, developed by the Liver Cancer Study Group of Japan, was called the ALBI-T score. Patient data were retrospectively collected for 357 consecutive patients who had undergone hepatic resection for HCC with curative intent between January 2004 and December 2015. The overall survival and recurrence-free survival were compared by the Kaplan-Meier method, using different staging systems: the Japan integrated staging (JIS), modified JIS, and ALBI-T. Multivariate analysis identified five poor prognostic factors (higher age, poor differentiation, the presence of microvascular invasion, the presence of intrahepatic metastasis, and blood transfusion) that influenced overall survival, and four poor prognostic factors (the presence of intrahepatic metastasis, serum α-fetoprotein level, blood transfusion, and each staging system (JIS, modified JIS, and ALBI-T score)) that influenced recurrence-free survival. Patients for each these three staging system had a significantly worse prognosis regarding recurrence-free survival, but not with overall survival. The modified JIS score showed the lowest Akaike information criteria statistic value, indicating it had the best ability to predict overall survival compared with the other staging systems. This retrospective analysis showed that, in post-hepatectomy patients with HCC, the ALBI-T score is predictive of worse recurrence-free survival, even when adjustments are made for other known predictors. However, modified JIS is better than ALBI-T in predicting overall survival. © 2017 The Japan Society of Hepatology.

  8. Three-Dimensional Modeling of the Reactive Transport of CO2 and Its Impact on Geomechanical Properties of Reservoir Rocks and Seals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Hou, Zhangshuan; Bacon, Diana H.

    This article develops a novel multiscale modeling approach to analyze CO2 reservoirs using Pacific Northwest National Laboratory’s STOMP-CO2-R code that is interfaced with the ABAQUS® finite element package. The STOMP-CO2-R/ABAQUS® sequentially coupled simulator accounts for the reactive transport of CO2 causing mineral composition changes that modify the geomechanical properties of reservoir rocks and seals. Formation rocks’ elastic properties that vary during CO2 injection and govern the poroelastic behavior of rocks are modeled by an Eshelby-Mori-Tanka approach (EMTA) implemented in ABAQUS® via user-subroutines. The computational tool incorporates the change in rock permeability due to both geochemistry and geomechanics. A three-dimensional (3D)more » STOMP-CO2-R model for a model CO2 reservoir containing a vertical fault is built to analyze a formation containing a realistic geochemical reaction network with 5 minerals: albite, anorthite, calcite, kaolinite and quartz. A 3D ABAQUS® model that maps the above STOMP-CO2-R model is built for the analysis using STOMP-CO2-R/ABAQUS®. The results show that the changes in volume fraction of minerals include dissolution of anorthite, precipitation of calcite and kaolinite, with little change in the albite volume fraction. After a long period of CO2 injection the mineralogical and geomechanical changes significantly reduced the permeability and elastic modulus of the reservoir (between the base and caprock) in front of the fault leading to a reduction of the pressure margin to fracture at and beyond the injection location. The impact of reactive transport of CO2 on the geomechanical properties of reservoir rocks and seals are studied in terms of mineral composition changes that directly affect the rock stiffness, stress and strain distributions as well as the pressure margin to fracture.« less

  9. Differentiating pedogenesis from diagenesis in early terrestrial paleoweathering surfaces formed on granitic composition parent materials

    USGS Publications Warehouse

    Driese, S.G.; Medaris, L.G.; Ren, M.; Runkel, Anthony C.; Langford, R.P.

    2007-01-01

    Unconformable surfaces separating Precambrian crystalline basement and overlying Proterozoic to Cambrian sedimentary rocks provide an exceptional opportunity to examine the role of primitive soil ecosystems in weathering and resultant formation of saprolite (weathered rock retaining rock structure) and regolith (weathered rock without rock structure), but many appear to have been affected by burial diagenesis and hydrothermal fluid flow, leading some researchers to discount their suitability for such studies. We examine one modern weathering profile (Cecil series), four Cambrian paleoweathering profiles from the North American craton (Squaw Creek, Franklin Mountains, Core SQ-8, and Core 4), one Neoproterozoic profile (Sheigra), and one late Paleoproterozoic profile (Baraboo), to test the hypothesis that these paleoweathering profiles do provide evidence of primitive terrestrial weathering despite their diagenetic and hydrothermal overprinting, especially additions of potassium. We employ an integrated approach using (1) detailed thin-section investigations to identify characteristic pedogenic features associated with saprolitization and formation of well-drained regoliths, (2) electron microprobe analysis to identify specific weathered and new mineral phases, and (3) geochemical mass balance techniques to characterize volume changes during weathering and elemental gains and losses of major and minor elements relative to the inferred parent materials. There is strong pedogenic evidence of paleoweathering, such as clay illuviation, sepic-plasmic fabrics, redoximorphic features, and dissolution and alteration of feldspars and mafic minerals to kaolinite, gibbsite, and Fe oxides, as well as geochemical evidence, such as whole-rock losses of Na, Ca, Mg, Si, Sr, Fe, and Mn greater than in modern profiles. Evidence of diagenesis includes net additions of K, Ba, and Rb determined through geochemical mass balance, K-feldspar overgrowths in overlying sandstone sections, and K-feldspars with reaction rims in weathered basement. The sub-Cambrian paleoweathering profiles formed on granite are remarkably similar to modern weathering profiles formed on granite, in spite of overprinting by potassium diagenesis. ?? 2007 by The University of Chicago. All rights reserved.

  10. Weathering of the New Albany Shale, Kentucky, USA: I. Weathering zones defined by mineralogy and major-element composition

    USGS Publications Warehouse

    Tuttle, M.L.W.; Breit, G.N.

    2009-01-01

    Comprehensive understanding of chemical and mineralogical changes induced by weathering is valuable information when considering the supply of nutrients and toxic elements from rocks. Here minerals that release and fix major elements during progressive weathering of a bed of Devonian New Albany Shale in eastern Kentucky are documented. Samples were collected from unweathered core (parent shale) and across an outcrop excavated into a hillside 40 year prior to sampling. Quantitative X-ray diffraction mineralogical data record progressive shale alteration across the outcrop. Mineral compositional changes reflect subtle alteration processes such as incongruent dissolution and cation exchange. Altered primary minerals include K-feldspars, plagioclase, calcite, pyrite, and chlorite. Secondary minerals include jarosite, gypsum, goethite, amorphous Fe(III) oxides and Fe(II)-Al sulfate salt (efflorescence). The mineralogy in weathered shale defines four weathered intervals on the outcrop-Zones A-C and soil. Alteration of the weakly weathered shale (Zone A) is attributed to the 40-a exposure of the shale. In this zone, pyrite oxidization produces acid that dissolves calcite and attacks chlorite, forming gypsum, jarosite, and minor efflorescent salt. The pre-excavation, active weathering front (Zone B) is where complete pyrite oxidation and alteration of feldspar and organic matter result in increased permeability. Acidic weathering solutions seep through the permeable shale and evaporate on the surface forming abundant efflorescent salt, jarosite and minor goethite. Intensely weathered shale (Zone C) is depleted in feldspars, chlorite, gypsum, jarosite and efflorescent salts, but has retained much of its primary quartz, illite and illite-smectite. Goethite and amorphous FE(III) oxides increase due to hydrolysis of jarosite. Enhanced permeability in this zone is due to a 14% loss of the original mass in parent shale. Denudation rates suggest that characteristics of Zone C were acquired over 1 Ma. Compositional differences between soil and Zone C are largely attributed to illuvial processes, formation of additional Fe(III) oxides and incorporation of modern organic matter.

  11. Susceptibility of Granite Rock to scCO2/Water at 200 degrees C and 250 degrees C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugama, T.; Gill, S., Ecker, L., Butcher, T., Warren, J.

    Granite rock comprising anorthoclase-type albite and quartz as its major phases and biotite mica as the minor one was exposed to supercritical carbon dioxide (scCO{sub 2})/water at 250 C and 13.78 MPa pressure for 104 hours. For comparison purpose, four other rocks, albite, hornblende, diorite, and quartz, also were exposed. During the exposure of granite, ionic carbonic acid, known as the wet carbonation reactant, preferentially reacted with anorthoclase-type albite and biotite, rather than with quartz. The susceptibility of biotite to wet carbonation was higher than that of anorthoclase-type albite. All the carbonation by-products of anorthoclase-type albite were amorphous phases includingmore » Na- and K-carbonates, a kaolinite clay-like compound, and silicon dioxide, while wet carbonation converted biotite into potassium aluminum silicate, siderite, and magnesite in crystalline phases and hydrogen fluoride (HF). Three of these reaction by-products, Na- and K-carbonates and HF, were highly soluble in water. Correspondingly, the carbonated top surface layer, about 1.27 mm thick as carbonation depth, developed porous microstructure with numerous large voids, some of which have a size of {>=} 10 {mu}m, reflecting the erosion of granite by the leaching of these water-soluble reaction by-products. Comparing with this carbonation depth, its depth of other minerals was considerable lower, particularly, for hornblende and diorite with 0.07 and 0.02 mm, while no carbonate compound was detected in quartz. The major factor governing these low carbonation depths in these rocks was the formation of water-insensitive scale-like carbonate by-products such as calcite (CaCO{sub 3}), siderite (FeCO{sub 3}), and magnesite (MgCO{sub 3}). Their formation within the superficial layer of these minerals served as protective barrier layer that inhibits and retards further carbonation of fresh underlying minerals, even if the exposure time was extended. Thus, the coverage by this barrier layer of the non-carbonated surfaces of the underlying rock was reason why the hornblende and diorite exhibited a minimum depth of carbonation. Under exposure to the scCO{sub 2}/water at 200 C and 10.34 MPa pressure for up to 42 days, the ranking of the magnitude of erosion caused by wet carbonation was in the following order; granite > albite > hornblende > diorite > quartz. The eroding-caused weight loss of granite (0.88 %) was {approx}2.4, {approx}5.2, {approx}9.8, and {approx}17.6 times greater than that of albite, hornblends, diorite, and quartz, respectively.« less

  12. A kinetics database and scripts for PHREEQC

    NASA Astrophysics Data System (ADS)

    Hu, B.; Zhang, Y.; Teng, Y.; Zhu, C.

    2017-12-01

    Kinetics of geochemical reactions has been increasingly used in numerical models to simulate coupled flow, mass transport, and chemical reactions. However, the kinetic data are scattered in the literature. To assemble a kinetic dataset for a modeling project is an intimidating task for most. In order to facilitate the application of kinetics in geochemical modeling, we assembled kinetics parameters into a database for the geochemical simulation program, PHREEQC (version 3.0). Kinetics data were collected from the literature. Our database includes kinetic data for over 70 minerals. The rate equations are also programmed into scripts with the Basic language. Using the new kinetic database, we simulated reaction path during the albite dissolution process using various rate equations in the literature. The simulation results with three different rate equations gave difference reaction paths at different time scale. Another application involves a coupled reactive transport model simulating the advancement of an acid plume in an acid mine drainage site associated with Bear Creek Uranium tailings pond. Geochemical reactions including calcite, gypsum, and illite were simulated with PHREEQC using the new kinetic database. The simulation results successfully demonstrated the utility of new kinetic database.

  13. Gneiss wastes as secondary raw material for the ceramic industry: an example from the Verbano Cusio Ossola district (Piedmont, north-western Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Cavallo, Alessandro

    2015-04-01

    The Verbano Cusio Ossola province (VCO, Piedmont, north-western Italy) is one of the most important Italian quarrying districts, due to the peculiarity and variety of its exploited rock types, mainly orthogneisses such as Serizzo and Beola, and subordinately granites, marbles and other rocks. The most important and extensively exploited ornamental stone from the VCO province is surely the Serizzo, commercialized in four main varieties, and representing about 70% of all the stone production from the VCO area. The protholith of the Serizzo is a Permian granite - granodiorite metamorphosed during the alpine events, and the rock-forming minerals are mainly quartz, K-feldspar, plagioclase (andesine), biotite, with variable amounts of muscovite and epidote (allanite). The other important ornamental stone of the VCO province is the Beola, a series of heterogeneous materials (mainly orthogneisses) with marked (mylonitic) foliation and strong mineralogical lineation, occurring in the median Ossola Valley; its production (15% of the whole stones of the VCO) is subordinated with respect to that of Serizzo. The mineralogical composition of the Beola varieties is similar to Serizzo, consisting of quite homogeneous quartz, K-feldspar (orthoclase or microcline), plagioclase, biotite and muscovite. The main differences relate to the grain size, the rock fabric (generally mylonitic) and to the presence of accessory/secondary minerals. Recent regulatory developments and the growing environmental awareness, require an increasing reuse of wastes deriving from the extraction and processing of dimension stones (up to 50 % of the extracted gross volume). Granite wastes from the VCO (Baveno pink granite and Montorfano white granite), after specific industrial treatments (crushing, sieving, drying, magnetic separation of biotite and hornblende), are used successfully as quartz-feldspars mix in the ceramic industry, with very low FeOtot content. On the other hand, other quartzose-feldspathic rocks (i.e. Serizzo and Beola), are potential sources of secondary raw materials for the ceramic industry. To assess the feasibility of a reuse of these waste materials, an extensive sampling was performed on the main quarry dumps. The waste rocks were characterized by polarized light optical microscopy (OM) on thin sections, scanning electron microscopy (SEM), quantitative X-ray powder diffraction (XRD-QPA with the Rietveld method), electron microprobe (WDS and EDS) and whole-rock geochemistry (ICP-AES, ICP-MS and LECO®). The performed analyzes show a marked mineralogical and chemical heterogeneity (e.g. highly variable content of phyllosilicates, FeOtot content between 0.39 and 6.99 wt.%), as well as important textural and granulometric differences. On the other hand, the composition of feldspars is quite homogeneous, with the plagioclase ranging from almost pure albite to oligoclase (An 25 - 30%). Some varieties of Serizzo and Beola (Serizzo Sempione, Serizzo Formazza and Beola Bianca) are preferable because of their relatively low FeOtot content, but granulometric and textural factors should never be overlooked, as they have an important feedback in the efficiency and feasibility of the industrial treatments (e.g. magnetic separation). Specifically, some Beola varieties with particularly fine grain size and mylonitic texture, are poorly-suited to industrial ore treatments. On the contrary, the Serizzo varieties, although with a generally higher FeOtot content, have a coarser and homogeneous (and therefore preferable) grain size. Waste materials with different composition could be mixed properly until reaching the desired "ideal" compositions for the following industrial treatments. In any case, an accurate characterization of the waste materials from each of quarry dump is of fundamental importance.

  14. Microtectonic-assisted P-T determination on low-grade Alpine metamorphic rocks from the "Tisia Mega-Unit" of the Slavonian Mountains in Croatia

    NASA Astrophysics Data System (ADS)

    Balen, Dražen; Lihter, Iva; Massonne, Hans-Joachim

    2016-04-01

    The internal structure of the Tisia (Tisza) Mega-Unit in the Alpine-Carpathian-Dinaridic orogenic system encompasses large Alpine nappe systems brought to its present-day position by complex regional-scale movements. The Slavonian Mountains are part of the Bihor nappe system which is below the Codru and above the Mecsek nappe systems. The low-grade metamorphic schist unit of the Slavonian Mountains includes numerous rocks which were previously related to Precambrian and/or Lower Paleozoic orogeneses. However, recent studies (e.g. Balen, 2014, European Geosciences Union General Assembly, EGU 2014-6122) show that the metapelites of this unit should be attributed to the Alpine orogeny and the poorly known P-T conditions, which they experienced, should be refined. Although metapelites can be sensitive to changes of metamorphic conditions and, therefore, be suitable for the P-T estimation of metamorphic event(s), the extraction of mineral assemblages, being in equilibrium, and associated microtectonic data for particular low-grade metamorphic rocks is not straightforward. On the contrary, due to lack of suitable minerals and complex mictotectonic features, one can be faced with a severe problem concerning (dis)equilibrium. To avoid this, the observation scale in the research was set to the sub-mm level taking into account microtectonic positions of minerals. The investigated samples from the Slavonian Mountains are fine-grained schists consisting of chlorite (15-30 vol. %), white mica (15-25 vol. %), quartz (10-25 vol. %), feldspars (albite 10-15 vol. %; some K-feldspar), biotite (<5 vol. %), opaques (<5 vol. %), and accessory minerals (zircon, monazite, xenotime, apatite, chalcopyrite, pyrite, barite, parisite-(Ce), rutile). The schists show complex microtectonic fabric including well-developed foliations, pervasive folding, crenulation and cleavage. Foliations are defined by the preferred orientation of phyllosilicates and thin quartz and feldspar ribbons. Chlorite and white mica oriented along the S1 foliation are up to 50 μm long grains whereas those oriented along the S2 foliation are as large as 500 μm. Chlorite is ripidolite; potassic white mica is muscovite to phengite. Both minerals show a systematic variation in chemical composition such as higher Si contents in white mica and lower XFe in chlorite of the S1 assemblage compared to the S2 assemblage. The application of classical chlorite thermometers, based on Si, Al, Fe, and Mg contents of chlorite, and phengite gave P-T conditions of 325-350 °C around 4.6 kbar and 315-330 °C around 3.8 kbar for the S1 and S2 minerals, respectively. Constructions of pseudosections in the system MnNCKFMASHTO with PERPLEX confirmed these P-T ranges yielding 3.1-4.7 kbar and 300-360 °C based on intersections of XFe (chlorite) and Si (phengite) isopleths. The P-T range is in accordance with the critical reaction chlorite + K-feldspar = biotite + K-white mica in the presence of quartz and H2O. The presented refinement of the P-T data for the studied metapelites combined with two sets of known monazite ages (113±20 and 82±23 Ma; Balen, 2014) has a significance in clarifying details of the geodynamic evolution during the Alpine orogeny. Financial support by the Croatian Science Foundation (IP-2014-09-9541) and T. Theye's help during microprobe work is greatly acknowledged.

  15. Experimental study of terrestrial plant litter interaction with aqueous solutions

    NASA Astrophysics Data System (ADS)

    Fraysse, F.; Pokrovsky, O. S.; Meunier, J.-D.

    2010-01-01

    Quantification of silicon and calcium recycling by plants is hampered by the lack of physico-chemical data on reactivity of plant litter in soil environments. We applied a laboratory experimental approach for determining the silica and calcium release rates from litter of typical temperate and boreal plants: pine ( Pinus laricio), birch ( Betula pubescens), larch ( Larix gmelinii), elm ( Ulmus laevis Pall.), tree fern ( Dicksonia squarrosa), and horsetail (Equisetum arvense) in 0.01 M NaCl solutions, pH of 2-10 and temperature equals to 5, 25 and 40 °C. Open system, mixed-flow reactors equipped with dialysis compartment and batch reactors were used. Comparative measurements were performed on intact larch needles and samples grounded during different time, sterilized or not and with addition or not of sodium azide in order to account for the effect of surface to mass ratio and possible microbiological activity on the litter dissolution rates. Litter degradation results suggest that the silica release rate is independent on dissolved organic carbon release (cell breakdown) which implies the presence of phytoliths in a pure "inorganic" pool not complexed with organic matter. Calcium and DOC are released at the very first stage of litter dissolution while Si concentration increases gradually suggesting the presence of Ca and Si in two different pools. The dry-weight normalized dissolution rate at circum-neutral pH range (approx. 1-10 μmol/g DW/day) is 2 orders of magnitude higher than the rates of Si release from common soil minerals (kaolinite, smectite, illite). Minimal Ca release rates evaluated from batch and mixed-flow reactors are comparable with those of most reactive soil minerals such as calcite and apatite, and several orders of magnitude higher than the dissolution rates of major rock-forming silicates (feldspars, pyroxenes). The activation energy for Si liberation from plant litter is approx. 50 kJ/mol which is comparable with that of surface-controlled mineral dissolutions. It is shown that the Si release rate from the above-ground forest biomass is capable of producing the Si concentrations observed in soil solutions of surficial horizons and contribute significantly to the Si flux from the soil to the river.

  16. New insights into the oleate flotation response of feldspar particles of different sizes: Anisotropic adsorption model.

    PubMed

    Xu, Longhua; Tian, Jia; Wu, Houqin; Deng, Wei; Yang, Yaohui; Sun, Wei; Gao, Zhiyong; Hu, Yuehua

    2017-11-01

    The anisotropic adsorption of sodium oleate (NaOL) on feldspar surfaces was investigated to elucidate the different flotation properties of feldspar particles of four different size ranges. Microflotation experiments showed that the feldspar flotation recovery of particles with sizes spanning different ranges decreased in the order 0-19>19-38>45-75>38-45μm. Zeta potential and FTIR measurements showed that NaOL was chemically adsorbed on the Al sites of the feldspar surface. The anisotropic surface energies and broken bond densities estimated by density functional theory calculations showed that, although feldspar mostly exposed (010) and (001) surfaces, only the (001) surfaces contained the Al sites needed for NaOL adsorption. The interaction energies calculated by molecular dynamics simulations confirmed the more favorable NaOL adsorption on (001) than (010) surfaces, which may represent the main cause for the anisotropic NaOL adsorption on feldspar particles of different sizes. SEM measurements showed that the main exposed surfaces on coarse and fine feldspar particles were the side (010) and basal (001) ones, respectively. A higher fraction of Al-rich (001) surfaces is exposed on fine feldspar particles, resulting in better floatability compared with coarse particles. XPS and adsorption measurements confirmed that the Al content on the feldspar surface varied with the particle size, explaining the different NaOL flotation of feldspar particles of different sizes. Therefore, the present results suggest that coarsely ground ore should be used for the separation of feldspar gangue minerals. Further improvements in the flotation separation of feldspar from associated valuable minerals can be achieved through selective comminution or grinding processes favoring the exposure of (010) surfaces. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Mineral-microbial interaction in long term experiments with sandstones and reservoir fluids exposed to CO2

    NASA Astrophysics Data System (ADS)

    Kasina, Monika; Morozova, Daria; Pellizzari, Linda; Würdemann, Hilke

    2013-04-01

    Microorganisms represent very effective geochemical catalysts, and may influence the process of the CO2 storage significantly. The goal of this study is to characterize the interactions between minerals and microorganisms during their exposure to the CO2 in a long term experiment in high pressure vessels to better understand the influence of biological processes on the composition of the reservoir sandstones and the long term stability of CO2 storage. The natural gas reservoir, proposed for the CO2 storage is characterized by high salinity (up to 420 g/l) and temperatures around 130°C, at depth of approximately 3.5 km. Microbial community of the reservoir fluid samples was dominated by different H2-oxidising, thiosulfate-oxidising and biocorrosive thermophilic bacteria as well as microorganisms similar to representatives from other deep environments, which have not previously been cultivated. The cells were attached to particles and were difficult to detect because of low cell numbers (Morozova et al., 2011). For the long term experiments, the autoclaved rock core samples from the core deposit were grinded, milled to the size of 0.5 mm and incubated with fresh reservoir fluids as inoculum for indigenous microorganisms in a N2/CH4/H2-atmosphere in high pressure vessels at a temperature of 80°C and pressure of 40 bars. Incubation was performed under lower temperature than in situ in order to favor the growth of the dormant microorganisms. After three months of incubation samples were exposed to high CO2 concentrations by insufflating it into the vessels. The sampling of rock and fluid material was executed 10 and 21 months after start of the experiment. Mineralogical analyses performed using XRD and SEM - EDS showed that main mineral components are quartz, feldspars, dolomite, anhydrite and calcite. Chemical fluid analyses using ICP-MS and ICP-OES showed that after CO2 exposure increasing Si4+ content in the fluid was noted after first sampling (ca. 25 relative %), whereas after the second sampling it decreased (to 31 relative %) in comparison to the reservoir fluid sample. This may suggest dissolution of silicate minerals at first, and secondary precipitation at second stage of experiment. In addition, immobilization of heavy metals dispersed within silicate minerals was also detected. An increase of Ca (3.2 up to 13% relative), SO4 (up to 14 relative %) and Fetot (47 and 24% relative) were also detected after first and second sampling respectively and may suggest dissolution of cements and iron rich minerals. The concentration of organic acids increased relatively by 12.5 % and 25% after first and second sampling respectively might be an indication for metabolic activity of microorganism or an effect of mobilisation due to CO2 exposure. The presence of newly formed mineral phases was detected using SEM-EDS. Quartz, albite and illite precipitation is a common process in all studied samples. However only illite is considered to be of bacterial origin, nevertheless its crystallization can also occur as a consequence of inorganic diagenetic processes. Further analyses of the microbial community composition, quantity and activity will bring a more insight into the CO2 exposure processes. Daria Morozova, Dagmar Kock, Martin Krüger, and Hilke Würdemann. Biogeochemical and microbial characterization of reservoir fluids from a gas field (Altmark). Geotechnologien 2011

  18. Petrogenesis of Miller Range 07273, a new type of anomalous melt breccia: Implications for impact effects on the H chondrite asteroid

    NASA Astrophysics Data System (ADS)

    Ruzicka, Alex M.; Hutson, Melinda; Friedrich, Jon M.; Rivers, Mark L.; Weisberg, Michael K.; Ebel, Denton S.; Ziegler, Karen; Rumble, Douglas; Dolan, Alyssa A.

    2017-09-01

    Miller Range 07273 is a chondritic melt breccia that contains clasts of equilibrated ordinary chondrite set in a fine-grained (<5 μm), largely crystalline, igneous matrix. Data indicate that MIL was derived from the H chondrite parent asteroid, although it has an oxygen isotope composition that approaches but falls outside of the established H group. MIL also is distinctive in having low porosity, cone-like shapes for coarse metal grains, unusual internal textures and compositions for coarse metal, a matrix composed chiefly of clinoenstatite and omphacitic pigeonite, and troilite veining most common in coarse olivine and orthopyroxene. These features can be explained by a model involving impact into a porous target that produced brief but intense heating at high pressure, a sudden pressure drop, and a slower drop in temperature. Olivine and orthopyroxene in chondrule clasts were the least melted and the most deformed, whereas matrix and troilite melted completely and crystallized to nearly strain-free minerals. Coarse metal was largely but incompletely liquefied, and matrix silicates formed by the breakdown during melting of albitic feldspar and some olivine to form pyroxene at high pressure (>3 GPa, possibly to 15-19 GPa) and temperature (>1350 °C, possibly to ≥2000 °C). The higher pressures and temperatures would have involved back-reaction of high-pressure polymorphs to pyroxene and olivine upon cooling. Silicates outside of melt matrix have compositions that were relatively unchanged owing to brief heating duration.

  19. New data on carbonatites of the Il'mensky-Vishnevogorsky alkaline complex, the southern Urals, Russia

    NASA Astrophysics Data System (ADS)

    Nedosekova, I. L.

    2007-04-01

    Carbonatites that are hosted in metamorphosed ultramafic massifs in the roof of miaskite intrusions of the Il’mensky-Vishnevogorsky alkaline complex are considered. Carbonatites have been revealed in the Buldym, Khaldikha, Spirikha, and Kagan massifs. The geological setting, structure of carbonatite bodies, distribution of accessory rare-metal mineralization, typomorphism of rock-forming minerals, geochemistry, and Sr and Nd isotopic compositions are discussed. Dolomite-calcite carbonatites hosted in ultramafic rocks contain tetraferriphlogopite, richterite, accessory zircon, apatite, magnetite, ilmenite, pyrrhotite, pyrite, and pyrochlore. According to geothermometric data and the composition of rock-forming minerals, the dolomite-calcite carbonatites were formed under K-feldspar-calcite, albite-calcite, and amphibole-dolomite-calcite facies conditions at 575-300°C. The Buldym pyrochlore deposit is related to carbonatites of these facies. In addition, dolomite carbonatites with accessory Nb and REE mineralization (monazite, aeschynite, allanite, REE-pyrochlore, and columbite) are hosted in ultramafic massifs. The dolomite carbonatites were formed under chlorite-sericite-ankerite facies conditions at 300-200°C. The Spirikha REE deposit is related to dolomite carbonatite and alkaline metasomatic rocks. It has been established that carbonatites hosted in ultramafic rocks are characterized by high Sr, Ba, and LREE contents and variable Nb, Zr, Ti, V, and Th contents similar to the geochemical attributes of calcio-and magnesiocarbonatites. The low initial 87Sr/86Sr = 0.7044-0.7045 and ɛNd ranging from 0.65 to -3.3 testify to their derivation from a deep mantle source of EM1 type.

  20. Diagenetic contrast of sandstones in hydrocarbon prospective Mesozoic rift basins (Ethiopia, UK, USA)

    NASA Astrophysics Data System (ADS)

    Wolela, A.

    2014-11-01

    Diagenetic studied in hydrocarbon-prospective Mesozoic rift basins were carried out in the Blue Nile Basin (Ethiopia), Ulster Basin (United Kingdom) and Hartford Basin (United States of America). Alluvial fan, single and amalgamated multistorey meandering and braided river, deep and shallow perennial lake, shallow ephemeral lake, aeolian and playa mud-flat are the prominent depositional environments. The studied sandstones exhibit red bed diagenesis. Source area geology, depositional environments, pore-water chemistry and circulation, tectonic setting and burial history controlled the diagenetic evolution. The diagenetic minerals include: facies-related minerals (calcrete and dolocrete), grain-coating clay minerals and/or hematite, quartz and feldspar overgrowths, carbonate cements, hematite, kaolinite, illite-smectite, smectite, illite, chlorite, actinolite, laumontite, pyrite and apatite. Diversity of diagenetic minerals and sequence of diagenetic alteration can be directly related to depositional environment and burial history of the basins. Variation in infiltrated clays, carbonate cements and clay minerals observed in the studied sandstones. The alluvial fan and fluviatile sandstones are dominated by kaolinite, illite calcite and ferroan calcite, whereas the playa and lacustrine sandstones are dominated by illite-smectite, smectite-chlorite, smectite, chlorite, dolomite ferroan dolomite and ankerite. Albite, pyrite and apatite are predominantly precipitated in lacustrine sandstones. Basaltic eruption in the basins modified mechanically infiltrated clays to authigenic clays. In all the studied sandstones, secondary porosity predominates over primary porosity. The oil emplacement inhabited clay authigenesis and generation of secondary porosity, whereas authigenesis of quartz, pyrite and apatite continued after oil emplacement.

  1. Experimental investigation of the solubility of albite and jadeite in H 2O, with paragonite + quartz at 500 and 600 °C, and 1-2.25 GPa

    NASA Astrophysics Data System (ADS)

    Wohlers, Anke; Manning, Craig E.; Thompson, Alan B.

    2011-05-01

    The solubilities of the assemblages albite + paragonite + quartz and jadeite + paragonite + quartz in H 2O were determined at 500 and 600 °C, 1.0-2.25 GPa, using hydrothermal piston-cylinder methods. The three minerals are isobarically and isothermally invariant in the presence of H 2O, so fluid composition is uniquely determined at each pressure and temperature. A phase-bracketing approach was used to achieve accurate solubility determinations. Albite + quartz and jadeite + quartz dissolve incongruently in H 2O, yielding residual paragonite which could not be retrieved and weighed. Solution composition fixed by the three-mineral assemblage at a given pressure and temperature was therefore bracketed by adding NaSi 3O 6.5 glass in successive experiments, until no paragonite was observed in run products. Solubilities derived from experiments bounding the appearance of paragonite thus constrain the equilibrium fluid composition. Results indicate that, at a given pressure, Na, Al, and Si concentrations are higher at 600 °C than at 500 °C. At both 500 and 600 °C, solubilities of all three elements increase with pressure in the albite stability field, to a maximum at the jadeite-albite-quartz equilibrium. In the jadeite stability field, element concentrations decline with continued pressure increase. At the solubility maximum, Na, Al, and Si concentrations are, respectively, 0.16, 0.05, and 0.48 molal at 500 °C, and 0.45, 0.27, and 1.56 molal at 600 °C. Bulk solubilities are 3.3 and 10.3 wt% oxides, respectively. Observed element concentrations are everywhere greater than those predicted from extrapolated thermodynamic data for simple ions, monomers, ion pairs, and the silica dimer. The measurements therefore require the presence of additional, polymerized Na-Al-Si-bearing species in the solutions. The excess solubility is >50% at all conditions, indicating that polymeric structures are the predominant solutes in the P- T region studied. The solubility patterns likely arise from combination of the large solid volume change associated with the albite-jadeite-quartz equilibrium and the rise in Na-Al-Si polymerization with approach to the hydrothermal melting curves of albite + quartz and jadeite + quartz. Our results indicate that polymerization of Na-Al-Si solutes is a fundamental aspect of fluid-rock interaction at high pressure. In addition, the data suggest that high-pressure metamorphic isograds can impose unexpected controls on metasomatic mass transfer, that significant metasomatic mass transfer prior to melting should be considered in migmatitic terranes, and that polymeric complexes may be an important transport agent in subduction zones.

  2. Origin of minor and trace element compositional diversity in anorthitic feldspar phenocrysts and melt inclusions from the Juan de Fuca Ridge

    USGS Publications Warehouse

    Adams, David T.; Nielsen, Roger L.; Kent, Adam J.R.; Tepley, Frank J.

    2011-01-01

    Melt inclusions trapped in phenocryst phases are important primarily due to their potential of preserving a significant proportion of the diversity of magma composition prior to modification of the parent magma array during transport through the crust. The goal of this investigation was to evaluate the impact of formational and post-entrapment processes on the composition of melt inclusions hosted in high anorthite plagioclase in MORB. Our observations from three plagioclase ultra-phyric lavas from the Endeavor Segment of the Juan de Fuca Ridge document a narrow range of major elements and a dramatically greater range of minor and trace elements within most host plagioclase crystals. Observed host/inclusion partition coefficients for Ti are consistent with experimental determinations. In addition, observed values of DTi are independent of inclusion size and inclusion TiO2 content of the melt inclusion. These observations preclude significant effects from the re-homogenization process, entrapment of incompatible element boundary layers or dissolution/precipitation. The observed wide range of TiO2 contents in the host feldspar, and between bands of melt inclusions within individual crystals rule out modification of TiO contents by diffusion, either pre-eruption or due to re-homogenization. However, we do observe comparatively small ranges for values of K2O and Sr compared to P2O5 and TiO2 in both inclusions and crystals that can be attributed to diffusive processes that occurred prior to eruption.

  3. Blueschist metamorphism and its tectonic implication of Late Paleozoic-Early Mesozoic metabasites in the mélange zones, central Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Zhang, Jinrui; Wei, Chunjing; Chu, Hang

    2015-01-01

    Blueschists in central Inner Mongolia are distributed as layers and blocks in mélanges including the southern zone in Ondor Sum area and the northern zone in Manghete and Naomuhunni areas. They have been attributed to the subduction of Early Paleozoic oceanic crust. Blueschists from Ondor Sum and Naomuhunni are characterized by occurrence of sodic amphibole coexisting with epidote, albite, chlorite, calcic amphibole (in Ondor Sum) and muscovite (in Naomuhunni). Blueschists in Manghete contain porphyroblastic albite with inclusions of garnet and epidote in a matrix dominated by calcic-sodic amphibole, epidote, chlorite, albite and muscovite. Phase equilibria modeling for three blueschist samples using pseudosection suggest that the AlM2 contents in sodic amphibole can be used as a good barometer in the limited assemblage involving sodic amphibole + actinolite + epidote + chlorite + albite + quartz under pressures <4-6 kbar, while this barometer is largely influenced by temperature and bulk Fe2O3 contents in the actinolite-absent assemblage sodic amphibole + epidote + chlorite + albite + quartz of higher pressure and the AlM2 contents are not pressure-controlled in the albite-absent assemblage sodic amphibole + epidote + chlorite + quartz under pressures > 7-10 kbar. In the sodic amphibole-bearing assemblages, the NaM4 contents in sodic amphibole mainly decrease as temperature rises, being a potential thermometry. The calculated pseudosections constrain the P-T conditions of blueschists to be 3.2-4.2 kbar/355-415 °C in Ondor Sum, 8.2-9.0 kbar/455 °C-495 °C in Manghete and 6.6-8.1 kbar/420-470 °C in Naomuhunni. These P-T estimates indicate a rather high geothermal gradient of 18-25 °C/km for the blueschist metamorphism, being of intermediate P/T facies series. Available zircon U-Pb age data suggests that the protoliths of blueschists were formed later than Late Paleozoic-Early Mesozoic and metamorphosed soon afterwards. An alternative interpretation for the tectonic implication of blueschists in central Inner Mongolia is that they may be a new type attributed to closure of limited ocean basins and do not represent a tectonic regime occurred in conventional subduction setting.

  4. Experimental and thermodynamic study of heterogeneous and homogeneous equilibria in the system NaAlSiO4-SiO2

    NASA Astrophysics Data System (ADS)

    Waterwiese, Tanja; Chatterjee, Niranjan D.; Dierdorf, Ivana; Göttlicher, Jörg; Kroll, Herbert

    1995-08-01

    Internally consistent thermodynamic datasets available at present call for a further improvement of the data for nepheline (Holland and Powell 1988; Berman 1991). Because nepheline is a common rock-forming mineral, an attempt has been made to improve on the present state of knowledge of its thermodynamic properties. To achieve that goal, two heterogeneous reactions involving nepheline, albite, jadeite and a-quartz in the system NaAlSiO4-SiO2 have been reversed by long duration runs in the range 460 ≤ T(°C) ≤ 960 and 10 ≤ P(kbar) ≤ 22. Given sufficiently long run times, the albite run products approach internal equilibrium with respect to their Al,Si order-disorder states. Using appropriate thermochemical, thermophysical, and volumetric data, Landau expansion for albite, and the relevant reaction reversals, a refined thermodynamic dataset (ΔfH{i/0} and S{i/0}) has been derived for nepheline, jadeite, a-quartz, albite, and monalbite. Our refined data agree very well with their calorimetric counterparts, but have smaller uncertainties. The refined dataset for ΔfH{i/0} and S{i/0}, including their uncertainties and correlation, help generate the NaAlSiO4-SiO2 phase diagram including 2a confidence interval for each P-T curve (Fig. 5).

  5. Pressure induced elastic softening in framework aluminosilicate- albite (NaAlSi 3O 8)

    DOE PAGES

    Mookherjee, Mainak; Mainprice, David; Maheshwari, Ketan; ...

    2016-10-13

    Albite (NaAlSi 3O 8) is an aluminosilicate mineral. Its crystal structure consists of 3-D framework of Al and Si tetrahedral units. We have used Density Functional Theory to investigate the high-pressure behavior of the crystal structure and how it affects the elasticity of albite. Our results indicate elastic softening between 6–8 GPa. This is observed in all the individual elastic stiffness components. Our analysis indicates that the softening is due to the response of the three-dimensional tetrahedral framework, in particular by the pressure dependent changes in the tetrahedral tilts. At pressure <6 GPa, the PAW-GGA can be described by amore » Birch-Murnaghan equation of state with V GGA 0 = 687.4Å 3, K GGA 0 = 51.7 GPa, and G GGA 0 = 4.7. The shear modulus and its pressure derivative are K ⊕GGA 0 = 33.7 GPa, and G ⊕GGA 0 = 2.9. At 1 bar, the azimuthal compressional and shear wave anisotropy AV GGA P = 42.8%, and AV GGA S = 50.1%. We also investigate the densification of albite to a mixture of jadeite and quartz. The transformation is likely to cause a discontinuity in density, compressional, and shear wave velocity across the crust and mantle. Furthermore, this could partially account for the Mohorovicic discontinuity in thickened continental crustal regions.« less

  6. A detailed study of ice nucleation by feldspar minerals

    NASA Astrophysics Data System (ADS)

    Whale, T. F.; Murray, B. J.; Wilson, T. W.; Carpenter, M. A.; Harrison, A.; Holden, M. A.; Vergara Temprado, J.; Morris, J.; O'Sullivan, D.

    2015-12-01

    Immersion mode heterogeneous ice nucleation plays a crucial role in controlling the composition of mixed phase clouds, which contain both supercooled liquid water and ice particles. The amount of ice in mixed phase clouds can affect cloud particle size, lifetime and extent and so affects radiative properties and precipitation. Feldspar minerals are probably the most important minerals for ice nucleation in mixed phase clouds because they nucleate ice more efficiently than other components of atmospheric mineral dust (Atkinson et al. 2013). The feldspar class of minerals is complex, containing numerous chemical compositions, several crystal polymorphs and wide variations in microscopic structure. Here we present the results of a study into ice nucleation by a wide range of different feldspars. We found that, in general, alkali feldspars nucleate ice more efficiently than plagioclase feldspars. However, we also found that particular alkali feldspars nucleate ice relatively inefficiently, suggesting that chemical composition is not the only important factor that dictates the ice nucleation efficiency of feldspar minerals. Ice nucleation by feldspar is described well by the singular model and is probably site specific in nature. The alkali feldspars that do not nucleate ice efficiently possess relatively homogenous structure on the micrometre scale suggesting that the important sites for nucleation are related to surface topography. Ice nucleation active site densities for the majority of tested alkali feldspars are similar to those found by Atkinson et al (2013), meaning that the validity of global aerosol modelling conducted in that study is not affected. Additionally, we have found that ice nucleation by feldspars is strongly influenced, both positively and negatively, by the solute content of droplets. Most other nucleants we have tested are unaffected by solutes. This provides insight into the mechanism of ice nucleation by feldspars and could be of importance when modelling ice nucleation in mixed phase clouds. Atkinson, J. D., Murray, B. J., Woodhouse, M. T., Carslaw, K. S., Whale, T. F., Baustian, K. J., Dobbie, S., O'Sullivan, D., and Malkin, T. L.: The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds, Nature, 10.1038/nature12278, (2013).

  7. Hydrothermal alteration of a rhyolitic hyaloclastite from Ponza Island, Italy

    NASA Astrophysics Data System (ADS)

    Ylagan, Robert F.; Altaner, Stephen P.; Pozzuoli, Antonio

    1996-12-01

    A rhyolitic hyaloclastite from Ponza island, Italy, has been hydrothermally altered producing four distinct alteration zones based on XRD and field textures: (1) non-pervasive argillic zone; (2) propylitic zone; (3) silicic zone; and (4) sericitic zone. The unaltered hyaloclastite is a volcanic breccia with clasts of vesiculated obsidian in a matrix of predominantly pumice lapilli. Incomplete alteration of the hyaloclastite resulted in the non pervasive argillic zone, characterized by smectite and disordered opal-CT. Obsidian clasts, some pumice lapilli, and pyrogenic plagioclase and biotite are unaltered. Smectite has an irregular flakey morphology, although euhedral particles are occasionally observed. The propylitic zone is characterized by mixed-layer illite/smectite (I/S) with 10 to 85% illite (I), mordenite, opal-C and authigenic K-feldspar (akspar). The matrix of the hyaloclastite is completely altered and obsidian clasts are silicified; however, plagioclase and biotite phenocrysts remain unaltered. Flakey I/S replaces pumice, and mordenite, akspar and silica line and fill pores. I/S particles are composed predominantly of subequant plates and euhedral laths. The silicic zone is characterized by highly illitic I/S with ≥ 90% I, quartz, akspar and occasional albite. In this zone the matrix and clasts are completely altered, and pyrogenic plagioclase shows significant alteration. Illitic I/S has a euhedral lath-like morphology. In the sericitic zone the hyaloclastite altered primarily to illitic I/S with ≥ 66% I, quartz, and minor akspar and pyrite. Clay minerals completely replace pyrogenic feldspars and little evidence remains of the original hyaloclastite texture. Unlike other zones, illitic I/S is fibrous and pure illite samples are composed of euhedral laths and hexagonal plates. The temperatures of hydrothermal alteration likely ranged from 30 to 90 °C for the argillic zone, from 110 to 160 °C for the propylitic zone, from 160 to 270 °C for the silicic zone, and were possibly as high as 300 °C for the sericitic zone. The four zones occur as linear bands that increase in intensity north of the bentonite mine at Cala dell'Acqua. The alteration zones have two orientations and may be structurally controlled by E-W- and NE-SW-trending faulting which is consistent with the dominant structural trends of the Pontine archipelago. Finally, hydrothermal alteration most likely involved seawater based on the geologic evolution of Ponza.

  8. Laboratory tools to quantify biogenic dissolution of rocks and minerals: a model rock biofilm growing in percolation columns

    NASA Astrophysics Data System (ADS)

    Seiffert, Franz; Bandow, Nicole; Kalbe, Ute; Milke, Ralf; Gorbushina, Anna

    2016-04-01

    Sub-aerial biofilms (SAB) are ubiquitous, self-sufficient microbial ecosystems found on mineral surfaces at all altitudes and latitudes. SABs, which are the principal causes of weathering on exposed terrestrial surfaces, are characterised by patchy growth dominated by associations of algae, cyanobacteria, fungi and heterotrophic bacteria. A recently developed in vitro system to study colonisation of rocks exposed to air included two key SAB participants - the rock-inhabiting ascomycete Knufia petricola (CBS 123872) and the phototrophic cyanobacterium Nostoc punctiforme ATCC29133. Both partners are genetically tractable and we used them here to study weathering of granite, K-feldspar and plagioclase. Small fragments of the various rocks or minerals (1 to 6 mm) were packed into flow-through columns and incubated with 0.1% glucose and 10 µM thiamine-hydrochloride (90 µL.min-1) to compare weathering with and without biofilms. Dissolution of the minerals was followed by: analysing (i) the degradation products in the effluent from the columns via Inductively Coupled Plasma Spectroscopy and (ii) by studying polished sections of the incubated mineral fragment/grains using scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray analyses. K. petricola/N. punctiforme stimulated release of Ca, Na, Mg and Mn. Analyses of the polished sections confirmed depletion of Ca, Na and K near the surface of the fragments. The abrupt decrease in Ca concentration observed in peripheral areas of plagioclase fragments favoured a dissolution-reprecipitation mechanism. Percolation columns in combination with a model biofilm can thus be used to study weathering in closed systems. Columns can easily be filled with different minerals and biofilms, the effluent as well as grains can be collected after long-term exposure under axenic conditions and easily analysed.

  9. Hydrothermal alteration and diagenesis of terrestrial lacustrine pillow basalts: Coordination of hyperspectral imaging with laboratory measurements

    USGS Publications Warehouse

    Greenberger, Rebecca N; Mustard, John F; Cloutis, Edward A; Mann, Paul; Wilson, Janette H.; Flemming, Roberta L; Robertson, Kevin; Salvatore, Mark R; Edwards, Christopher

    2015-01-01

    The phases identified in the sample are albite, large iron oxides, and titanite throughout; calcite in vesicles; calcic clinopyroxene, aegirine, and Fe/Mg-bearing clay in the rind; and fine-grained hematite and pyroxenes in the interior. Using imaging spectroscopy, the chemistry and mineralogy results extend to the hand sample and larger outcrop. From all of the analyses, we suggest that the pillow basalts were altered initially after emplacement, either by heated lake water or magmatic fluids, at temperatures of at least 400-600°C, and the calcic clinopyroxenes and aegirine identified in the rind are a preserved record of that alteration. As the hydrothermal system cooled to slightly lower temperatures, clays formed in the rind, and, during this alteration, the sample oxidized to form hematite in the matrix of the interior and Fe3+ in the pyroxenes in the rind. During the waning stages of the hydrothermal system, calcite precipitated in vesicles within the rind. Later, diagenetic processes albitized the sample, with albite replacing plagioclase, lining vesicles, and accreting onto the exterior of the sample. This albitization or Na-metasomatism occurred when the lake within the Hartford Basin evaporated during a drier past climatic era, resulting in Na-rich brines. As Ca-rich plagioclase altered to albite, Ca was released into solution, eventually precipitating as calcite in previously-unfilled vesicles, dominantly in the interior of the pillow. Coordinated analyses of this sample permit identification of the alteration phases and help synthesize the aqueous history of pillow lavas of the Talcott formation. These results are also relevant to Mars, where volcanically-resurfaced open basin lakes have been found, and this Hartford Basin outcrop may be a valuable analog for any potential volcano-lacustrine interactions. The results can also help to inform the utility and optimization of potentially complementary, synergistic, and uniquely-suited techniques for characterization of hydrothermally-altered terrains.

  10. Impacts of CO2 Leakage on a Shallow Aquifer System: Laboratory Column Experiments and Reactive Transport Modeling

    NASA Astrophysics Data System (ADS)

    Ha, Jong Heon; Jeen, Sung-Wook

    2017-04-01

    Groundwater quality change due to the leakage of CO2 in a shallow aquifer system is an important aspect of environmental impact assessment in a carbon dioxide capture and storage (CCS) site. This study evaluated geochemical changes in a shallow aquifer system resulting from leakage of CO2 through laboratory column experiments and reactive transport modeling. In the column experiments, two columns were set up and filled with the sediment from the Environmental Impact Test (EIT) facility of the Korea CO2 Storage Environmental Management (K-COSEM) Research Center. Groundwater, also collected form the EIT site, was purged with CO2 or Ar gases, and was pumped into the columns with the pumping rates of 200-1000 mL day-1 (0.124-0.62 m day-1). Profile and time-series effluent samplings were conducted to evaluate the spatial and temporal geochemical changes in the aquifer materials upon contact with CO2. The experimental results showed that after injecting CO2-purged groundwater, the pH was decreased, and alkalinity, electrical conductivity (EC) and concentrations of major cations were increased. The spatial and temporal geochemical changes from the column experiments indicate that dissolution of aquifer materials in contact with dissolved CO2 is the major contributor to the changes in groundwater geochemistry. The reactive transport modeling has been conducted to reproduce these geochemical changes in the aquifer system by incorporating dissolution of the dominant aluminosilicate minerals in the aquifer such as microcline, anorthite, albite, and biotite. This study suggests that pH, alkalinity, EC and concentrations of major cations are important monitoring parameters for detecting CO2 leakage in a shallow groundwater aquifer system.

  11. The blueschits from the Kopina Mt., West Sudetes, Poland - what do they tell us about accretion of the Variscides?

    NASA Astrophysics Data System (ADS)

    Majka, Jarosław; Mazur, Stanisław; Kośmińska, Karolina; Dudek, Krzysztof

    2015-04-01

    Blueschists are tracers of sutures, thus marking fossil subduction zones at convergent plate boundaries and providing important constraints on plate tectonic reconstructions. Their occurrences are scarce in the Variscan belt owing to a strong collisional overprint but just because of that each locality deserves particular attention. The Variscan blueschists must have formed during the early stage of the Variscan Orogeny and may represent a vestige of missing marginal basins fringing the Rheic Ocean at the onset of subduction. The studied rocks from the Kopina Mt. consist mainly of garnet, glaucophane, clinozoisite-epidote, chlorite-I, titanite, hematite and quartz. The original high-pressure assemblage is overprinted by later, lower pressure paragenesis, which comprises mostly Ca-amphiboles, chlorite-II, albite and K-feldspar. The latter occurs in polymineral inclusions in other phases together with albite and chlorite that are interpreted as phengite breakdown products. Garnet shows chemical compositional variation from Alm54Prp3Grs30Sps13 in the cores to Alm66Prp4Grs29Sps1 in the rims. The almandine zoning is bowl-shaped, whereas spessartine profiles show bell-shaped trends. The grossular and pyrope contents are generally constant throughout the grain. Rather gradual changes in the chemical zoning suggest a progressive, one-step garnet growth pattern. Glaucophane, although commonly well preserved, in some cases disintegrates to the albite-chlorite assemblage. The pressure-temperature (P-T) conditions were estimated using the phase equilibrium modelling in the NCKFMMnASHTO system using the PerpleX software. The compositional isopleths cross cut in the stability field of Grt+Gln+Ep+Chl+Pheng+Ttn+Hem+Q. P-T estimates indicate that the peak conditions occur at c. 14-17 kbar and 470-500°C, which corresponds to quite a low geothermal gradient in the range of 8-10°C/km. The P-T conditions estimated lie on a low temperature geotherm that is typical for a relatively cool subduction of the oceanic crust. Therefore, the origin of the studied rocks dates back to the time preceding accretion of the eastern Variscides and defines one of the key tectonic boundaries in the Bohemian Massif. A mechanism for syn-collisional emplacement and exhumation of the Kopina blueschists can be tentatively explained through activation of the double subduction system operating towards the east. First subduction commenced already in the Early Devonian and operated beneath an island arc located in proximity to the Saxothuringian margin, within the Rheic Ocean. After the mid-Devonian exhumation of the Central Sudetes allochthon, another subduction system was initiated along the eastern margin of the Rheic Ocean, beneath the Brunia microplate. Subducted oceanic crust of the Rheic Ocean (including the Kopina Mt. blueschists) reached peak metamorphic conditions in the Late Devonian, the event pronounced by a continental arc volcanism along the Brunian margin. Exhumation of the subducted oceanic crust was accommodated by the slab roll-back, which is inferred from the bimodal age and spatial distribution of the volcanic activity within the Brunian active margin. Shortly after the Kopina Mt. blueschists exhumation this eastern subduction system became probably inactive. In contrast, the western one involving the Saxothuringian margin was still operating leading to the subsequent collision with Brunia in the Early Carboniferous that produced a widespread high temperature overprint mostly wiping up the earlier metamorphic history.

  12. Geochronology and geochemistry of the granites from the Zhuxi W-Cu ore deposit in South China: Implication for petrogenesis, geodynamical setting and mineralization

    NASA Astrophysics Data System (ADS)

    Pan, Xiaofei; Hou, Zengqian; Zhao, Miao; Chen, Guohua; Rao, Jianfeng; Li, Yan; Wei, Jin; Ouyang, Yongpeng

    2018-04-01

    The giant Zhuxi tungsten deposit is located in the Taqian-Fuchun Ore Belt in northeastern Jiangxi province, and genetically associated with the Zhuxi granitic stocks and dykes. Three mineralization-related granites including granite porphyry dykes (GP), biotite granitic stocks (BG), and white granitic dykes (WG), were identified in the Zhuxi deposit. SHRIMP zircon U-Pb analysis for the three granitic rocks present ages ranging from 153.5 ± 1.0 Ma to 150.4 ± 1.0 Ma. The BG mainly contains quartz, microcline, albite, biotite and muscovite with minor accessory minerals including zircon, apatite, monazite, Ti/Fe oxides, and dolerite. However, the WG is mainly composed of quartz, microcline and albite with minor muscovite and accessory minerals. The GP is a medium-grained porphyritic granite and its phenocrysts include quartz, alkali feldspar, muscovite and plagioclase. All the Zhuxi granites have high SiO2 content (71.97 wt%-81.19 wt%) and total alkali (3.25 wt%-9.42 wt%), and their valid aluminum saturation index (ASI) values show a wide range of 1.03 to 2.49. High Rb/Sr ratios, low Sr content (<50 ppm) and markedly negative Eu anomalies of GP, WG and BG demonstrated that the Zhuxi granites are highly fractioned and intensive crystal differentiated. Because they display the features of both I- and S-types granites, they were confirmed to be I-S transform-type granites. Whole rock εNd(t) and zircon εHf(t) values fall into the ranges of -6.98 to -11.97, and -3.1 to -11.5, and the Nd (TDM2) and Hf two-stage model ages (TDMc) are 1.51-1.92 Ga and 1.42-2.01 Ga, respectively. Geochemical and isotopic data suggest that these highly fractionated I-S transform-type granites were originated from magmas which showed affinity with the Proterozoic continent and the Shuangqiaoshan Group and little mantle contribution was involved during the generation of Zhuxi granitic rocks. Extreme fractional crystallization resulted in further enrichment of tungsten in the evolved granitic magma. New data, presented together with previously published data, suggest that the Zhuxi granitic complex was likely to be formed during lithospheric compression setting during the late Jurassic to early Cretaceous. The biotite granite stock predominately contributed to the production of skarn alteration and mineralization, followed by the white granite dyke; the granite porphyry dykes have little effect.

  13. Feldspars Detected by ChemCam in Gale Crater with Implications for Future Martian Exploration

    NASA Astrophysics Data System (ADS)

    Gasda, P. J.; Carlson, E.; Wiens, R. C.; Bridges, J.; Sautter, V.; Cousin, A.; Maurice, S.; Gasnault, O.; Clegg, S. M.

    2015-12-01

    Feldspar is a common igneous mineral that can shed light on parent magma temperatures, pressures, and compositions. During the first 801 sols of the NASA Mars Science Laboratory mission, we have detected 125 possible feldspar grains using the ChemCam LIBS instrument. We analyzed spectra from successive laser shots at the same location and approximate whole rock compositions for each target. Feldspar-containing targets range from tephrite-basanite to trachyandesite. The most common feldspar type is andesine; no targets are >An60. Over 30% are anorthoclase, and ~10% have potassium contents up to Or60. Individual shot measurements in a single spot suggest some feldspars are zoned. Most of these rocks are either float or incorporated into conglomerates, and thus we do not know their provenance. Many of the samples may originate from the Gale crater walls, indicative of Southern Highland ancient crust. Some may also be flung from further away (e.g., emplaced by impact processes). Hence, these rocks may give us a general clue to the variety of evolved igneous materials on Mars. The ubiquity of feldspars at Gale suggests that they have been significantly underestimated for the Southern Highlands, if not for the whole of Mars. For example, significant abundance of andesitic feldspars in both the southern highland and northern lowlands of Mars would imply that Martian volcanism has produced a greater extent of evolved igneous materials to a greater degree than previously thought. Remote sensing instruments are insensitive to plagioclase due to dust cover, lack of exposures, or low feldspar FeO content. However, the Mars 2020 rover will be equipped with 3 new instruments, the arm-mounted SHERLOC Raman, PIXL μXRF, and the mast-mounted SuperCam combined Raman-LIBS instruments, which should help characterize Martian feldspars. Additionally, the SuperCam instrument plans to include three feldspars in its suite of 20+ onboard standards to improve feldspar chemical analysis.

  14. Micro- and Nanostructures of SAFOD Core Samples - First Results

    NASA Astrophysics Data System (ADS)

    Janssen, C.; Wirth, R.; Rybacki, E.; Naumann, R.; Kemnitz, H.; Wenk, H.; Dresen, G. H.

    2009-12-01

    Microstructures and chemical composition of ultra-cataclastic rocks from the San Andreas Fault drill hole (SAFOD) were examined using TEM, SEM and XRD analyses. The ultra-cataclasites are mainly composed of quartz, clay minerals (illite/smectite, chlorite), feldspar (plagioclase) and calcite with grain sizes between 200 nm and 500 μm. In particular we found: (1) amorphous materials, identified by transmission electron microscopy. Chemical analyses suggest that all amorphous material was formed by comminution (crush-origin) of fragments rather than by melting (melt-origin) and that the observed amorphous phases may act as hydrodynamic lubricating layers that reduce friction in the San Andreas Fault. (2) Pressure solution seams and localized precipitation of hydrous mixed-layered clay minerals suggest intensive dissolution-precipitation processes. These may lead to a thin film covering slip surfaces. (3) Authigenic clay minerals forming a flocculated fabric. (4) The fine-grained (< 1μm) gouge matrix contains clasts (feldspar, quartz) and is frequently cut by fault-related veins. The veins are filled with calcite or quartz. Observed micorstructures in the fine-grained matrix suggest comminution and sliding of the nanoscale grains. Open pore spaces up to 2.25 μm3 have been formed during and after deformation within the gouge matrix. These were possibly filled with hydrothermal fluids at elevated pore fluid pressure preventing closure. (5) Detrital quartz and feldspar grains are partly dissolved and replaced by authigenic illite-smectite (I-S) mixed-layer clay minerals. TEM imaging of these grains reveal that initial alteration processes started within pores and small fissures of grains. The crystallographic-preferred orientation of illite and I/S grains is rather weak with a maximum m.r.d. (multiples of random orientation) of 2.3. (6) Some older fault-related vein-calcites show evidence for intense intracrystalline plasticity (deformation twins and dislocation creep). Dislocation densities in calcite grains indicate a local maximum stress of about 40 MPa. The younger fault-related vein-calcite generation with elongated to fibrous habit suggests slow opening by aseismic slip. These crystals are not fractured or twinned (or only less); indicating that healing processes (cementation) outlasted deformation.

  15. Mineral displacement and -dissolution processes and their relevance to rock porosity and permeability in Rotliegend sandstones of the Altmark natural gas field (central Germany) - results from CO2 laboratory batch experiments

    NASA Astrophysics Data System (ADS)

    Pudlo, Dieter; Enzmann, Frieder; Heister, Katja; Werner, Lars; Ganzer, Leonhard; Reitenbach, Viktor; Henkel, Steven; Albrecht, Daniel; Gaupp, Reinhard

    2014-05-01

    The Rotliegend reservoir sandstones of the Altmark area (central Germany) comprise the second largest natural gas field of Europe. These sandstones were deposited on a playa-like continental platform with braided river systems, ephemeral lakes and aeolian dunes under semi-arid conditions. Some of the pristine, red coloured deposits suffered intensive late diagenetic alteration and are now preserved as bleached, high porous and permeable sandstones. To evaluate the relevance of distinct fluids and their fluid-rock alteration reactions on such bleaching processes we performed laboratory static batch experiments on the Altmark sandstones. These 4-6 week lasting runs were conducted with CO2 saturated synthetic brines under typical Altmark reservoir conditions (p= 20 MPa, T= 125°C). Thereby mineralogical, petrophysical and (hydro- and geo-) chemical rock features were maintained prior and after the experiments. Chemical data proved the dissolution of carbonate and sulphate minerals during the runs, whereas the variation in abundance of further elements was within the detection limit of analytical accuracy. However, FE-SEM investigations on used, evaporated brines reveal the presence of illite and chlorite minerals within a matrix of Ca-, Si-, Fe, Al-, Na- and S components (carbonate, anhydrite, albite and Fe-(hydr-) oxides ?). By porosity and relative permeability measurements an increase in both rock features was observed after the runs, indicating that mineral dissolution and/or (clay) fine migration/detachment occurred during the experiments. Mineral dissolution, especially of pore-filling cements (e.g. carbonate-, sulphate minerals) is also deduced by BET analysis, in determining the specific surface of the sandstones. The size of these reactive surfaces increased after the experiments, suggesting that after the dissolution of pore-filling cements, formerly armoured grain rimming clay cutans were exposed to potential migrating fluids. These findings are also supported by µ-CT investigations. Here, the achieved 3D modelling data indicate an increase in reactive surface areas exposed to the pore space (which is in accord to the BET observations), as well as an enhancement in rock porosity and permeability after the runs. Moreover, these simulations showed that a remarkable mass (mineral) transfer was induced by the experiments, which led to a displacement of the porosity and permeability distribution in the sandstones and therefore a change in the fluid flow characteristics within the rocks - a parameter most important for every fluid-rock process. These observations are quite astonishing because they suggest that not only fluid velocity (e.g. during fluid flow experiments) might detach and transport grain rimming (clay) minerals, but also that physico-chemical reactions may enforce the release of such solids, even during almost static p-/T-/Xfluid conditions, as used in our experiments.

  16. A-thermal elastic behavior of silicate glasses.

    PubMed

    Rabia, Mohammed Kamel; Degioanni, Simon; Martinet, Christine; Le Brusq, Jacques; Champagnon, Bernard; Vouagner, Dominique

    2016-02-24

    Depending on the composition of silicate glasses, their elastic moduli can increase or decrease as function of the temperature. Studying the Brillouin frequency shift of these glasses versus temperature allows the a-thermal composition corresponding to an intermediate glass to be determined. In an intermediate glass, the elastic moduli are independent of the temperature over a large temperature range. For sodium alumino-silicate glasses, the a-thermal composition is close to the albite glass (NaAlSi3O8). The structural origin of this property is studied by in situ high temperature Raman scattering. The structure of the intermediate albite glass and of silica are compared at different temperatures between room temperature and 600 °C. When the temperature increases, it is shown that the high frequency shift of the main band at 440 cm(-1) in silica is a consequence of the cristobalite-like alpha-beta transformation of 6-membered rings. This effect is stronger in silica than bond elongation (anharmonic effects). As a consequence, the elastic moduli of silica increase as the temperature increases. In the albite glass, the substitution of 25% of Si(4+) ions by Al(3+) and Na(+) ions decreases the proportion of SiO2 6-membered rings responsible for the silica anomaly. The effects of the silica anomaly balance the anharmonicity in albite glass and give rise to an intermediate a-thermal glass. Different networks, formers or modifiers, can be added to produce different a-thermal glasses with useful mechanical or chemical properties.

  17. Carboniferous-Permian tectonic transition envisaged in two magmatic episodes at the Kuruer Cu-Au deposit, Western Tianshan (NW China)

    NASA Astrophysics Data System (ADS)

    Yu, Jie; Li, Nuo; Qi, Nan; Guo, Jian-Ping; Chen, Yan-Jing

    2018-03-01

    The Western Tianshan in NW China is one of the most important gold provinces in the Central Asian Orogenic Belt (CAOB). The recently discovered Kuruer Cu-Au deposit has been interpreted to represent a transition from high-sulfidation epithermal to porphyry mineralization system. In this study, we present new LA-ICP-MS zircon U-Pb ages for the many magmatic rock types at Kuruer, including the Dahalajunshan Formation andesitic tuff (333.2 ± 1.6 Ma), diorite porphyry (269.7 ± 2.0 Ma), slightly-altered (264.4 ± 2.6 Ma) and intensively-altered (270.5 ± 2.5 Ma) albite porphyry. These ages reveal two distinct magmatic episodes: The Early Carboniferous Dahalajunshan Formation (wall rocks) andesitic tuff samples contain narrow ranges of SiO2 (60.29-61.28 wt.%), TiO2 (0.96-0.98 wt.%), Al2O3 (16.55-16.57 wt.%) and Fe2O3T (5.36-5.57 wt.%). The tuff is characterized by LREE enrichment and HFSE depletion, as well as LREE/HREE enrichment ((La/Yb)N = 8.31-8.76) and negative Eu anomalies (δEu = 0.64-0.76). Zircon εHf (t) values are 5.4-8.2, and two-stage Hf model ages (TDM2) are 821-1016 Ma, indicating partial melting of a moderately depleted mantle wedge with Precambrian continental crustal input. The ore-forming Middle Permian diorite porphyry and (quartz) albite porphyry have variable major oxide compositions (e.g., SiO2 = 53.09-53.12 wt.% for the diorite porphyry, 70.84-78.03 wt.% for the albite porphyry, and 74.07-75.03 wt.% for the quartz albite porphyry) but similar chondrite-normalized REE and primitive mantle-normalized multi-element patterns. These porphyries display LREE enrichment and HFSE depletion, as well as elevated LREE/HREE enrichment and negative Eu anomalies. The positive zircon εHf(t) values (11.7-15.9 for the diorite porphyry, 8.9-14.9 for the albite porphyry) and young two-stage Hf model ages (TDM2) (282-542 Ma for the diorite porphyry, 337-717 Ma for the albite porphyry) indicate a major juvenile continental crustal involvement. We propose that the Carboniferous and Middle Permian magmatism was formed in a continental arc and post-collisional settings, respectively, with the latter episode responsible for the Cu-Au mineralization.

  18. Fractal Nature of Porosity in Volcanic Tight Reservoirs of the Santanghu Basin and its Relationship to Pore Formation Processes

    NASA Astrophysics Data System (ADS)

    Wang, Weiming; Wang, Zhixuan; Chen, Xuan; Long, Fei; Lu, Shuangfang; Liu, Guohong; Tian, Weichao; Su, Yue

    In this paper, in a case study of Santanghu Basin in China, the morphological characteristics and size distribution of nanoscale pores in the volcanic rocks of the Haerjiawu Formation were investigated using the results of low temperature nitrogen adsorption experiments. This research showed that within the target layer, a large number of nanoscale, eroded pores showed an “ink bottle” morphology with narrow pore mouths and wide bodies. The fractal dimension of pores increases gradually with increasing depth. Moreover, as fractal dimension increases, BET-specific surface area gradually increases, average pore diameter decreases and total pore volume gradually increases. The deeper burial of the Haerjiawu volcanic rocks in the Santanghu Basin leads to more intense erosion by organic acids derived from the basin’s source rocks. Furthermore, the internal surface roughness of these corrosion pores results in poor connectivity. As stated above, the corrosion process is directly related to the organic acids generated by the source rock of the interbedded volcanic rocks. The deeper the reservoir, the more the organic acids being released from the source rock. However, due to the fact that the Haerjiawu volcanic rocks are tight reservoirs and have complicated pore-throat systems, while organic acids dissolve unstable minerals such as feldspars which improve the effective reservoir space; the dissolution of feldspars results in the formation of new minerals, which cannot be expelled from the tight reservoirs. They are instead precipitated in the fine pore throats, thereby reducing pore connectivity, while enhancing reservoir micro-preservation conditions.

  19. Quantifying Textures of Rapakivi Granites and Mantle Formation Insights

    NASA Astrophysics Data System (ADS)

    Ashauer, Z.; Currier, R. M.

    2017-12-01

    Rapakivi texture, the mantling of plagioclase on alkali feldspar, is a common occurrence in granitoids derived from crustal melting. Presented here, are several textural analyses that quantify mantle thickness and the overall distribution of crystal populations. Analyses were performed on outcrops and slabbed samples from the Wolf River Batholith, Wisconsin, USA and the Wiborg Batholith, Finland. Both localities are "classical" rapakivi granites of Proterozoic age associated with incipient rifting of the supercontinent Nuna/Columbia. Mantle thickness analysis reveals a relationship between the characteristic size of the mantle and the size of the core. The thickest mantles tend to be on relatively small cores while relatively large cores display thin mantles. This relationship is consistent with a replacement origin as a result of alkali feldspar dissolution with concomitant reprecipitation of plagioclase, due to disequilibrium between crystal and melt. If this is the case then crystal size distributions should be similar between unmantled and mantled megacrysts. Preliminary results confirm this supposition: rapakivi mantle formation in these classical systems appear to be the result of replacement. These textural analyses immediately call into question the viability of epitaxial growth models. A certain amount of disequilibrium is required to drive the replacement reaction. Two potential mechanisms are 1) mechanical transfer of crystals into a magma of more mafic composition (i.e., magma mixing), and 2) the production of a heterogeneous melt during rapid melting of granitic rock and reaction between unmelted crystals and partial melt. The classical rapakivi granites are associated with prolonged bimodal magmatism, and so there is clear potential to drive either of these mantling mechanisms.

  20. Pyritized mudstone and associated facies in the Permian-Triassic boundary of the Çürük Daǧ section, Southern Turkey

    NASA Astrophysics Data System (ADS)

    Varol, Baki; Koşun, Erdal; Ünal Pinar, Neslihan; Ayranci, Korhan

    2011-03-01

    This paper is the first study of pyritized mudstones (PM) in the Permian-Triassic (P-T) boundary section of the Çürük Dağ (Taurus, Antalya Nappes, Turkey). The mudstones were generally formed as lensoidal-shaped layers or infill materials within nodular platform limestones (hardground). Normal marine fauna is diminished in the pyritized limestones, whereas tube-like microorganisms are apparently increased with the association of pyrite crystals consisting of both framboidal and cubic crystals. The total rock volumes are up to 50-60% clay minerals and are mainly made up of in situ kaolinite and subordinate mixed layer clays (illite-vermiculite). Kaolinite preferentially developed on feldspar crystals, sometimes covering ostracoda bivalves together with gypsum micronodules composed of fan-shaped gypsum crystals. The origin of the kaolinite is, in situ, directly related to feldspar dissolution via heterotrophic bacteria. Thus, kaolinite is found along with bacterial structures. Other mineralogical compositions include established quartz (mostly β-quartz), gypsum crystals (100-200 μm) glauconite and magnetite. Magnetite grains comprise a minor amount (1-2%) and show some bacterial-induced crystal orientations. Glauconite is formed as an accessory mineral that occurs as infill material in biogenic grains. On the other hand, some microspheres represented by a silica-dominated composition are only observed in scanning electron microscopes (SEM) studies under high magnification. Isotope values (d34S) obtained from the pyritized mudstones show an isotopic heterogeneity that suggests that the pyritized mudstone consists of at least two components, with different sulphur-concentrations and d34S values.

  1. Particle size and X-ray analysis of Feldspar, Calvert, Ball, and Jordan soils

    NASA Technical Reports Server (NTRS)

    Chapman, R. S.

    1977-01-01

    Pipette analysis and X-ray diffraction techniques were employed to characterize the particle size distribution and clay mineral content of the feldspar, calvert, ball, and jordan soils. In general, the ball, calvert, and jordan soils were primarily clay size particles composed of kaolinite and illite whereas the feldspar soil was primarily silt-size particles composed of quartz and feldspar minerals.

  2. Experimental Studies on the Interaction of scCO2 and scCO2-SO2 With Rock Forming Minerals at Conditions of Geologic Carbon Storages - First Results

    NASA Astrophysics Data System (ADS)

    Erzinger, J.; Wilke, F.; Wiersberg, T.; Vasquez Parra, M.

    2010-12-01

    Co-injection of SO2 (plus possibly NOx and O2) during CO2 storage in deep saline aquifers may cause stronger brine acidification than CO2 alone. Because of that, we investigate chemical corrosion of rocks and rock-forming minerals with impure supercritical CO2 (scCO2) at possible storage conditions of >73.7 bar and >31°C. Contaminates were chosen with respect to the composition of CO2 captured industrially from coal-fired power plants using the oxyfuel technology. The resulting data should build a base for the long-term prediction of the behavior of CO2 in geologic storage reservoirs. Experiments of up to 1000 hrs duration have been performed with 10 natural mineral concentrates (calcite, dolomite, siderite, anhydrite, hematite, albite, microcline, kaolinite, muscovite, biotite) in 3n NaCl solution and pure scCO2 or scCO2+SO2 (99.5+0.5 vol%). The NaCl reaction fluid resembles the average salinity of deep formation waters of the North German Basin and is not free of oxygen. To increase reaction rates all minerals were ground and the reagents agitated either by stirring or shaking in autoclaves of about one liter in volume. The autoclaves consist of Hastelloy™ or ferromagnetic stainless steel fully coated with PTFE. We used in average 15 g of solids, 700 ml liquid, and the vessels were pressurized up to 100 bars with CO2 or CO2-SO2 mixture. Experiments were run at temperatures up to 90°C. Before, during and after the experiments small amounts fluids were sampled and analyzed for dissolved constituents and pH. Solid phases were characterized by XRF, XRD, and EMPA before and after the experiments. Pure scCO2 corrodes all carbonates, reacts only slightly with anhydrite, albite, and microcline at a minimum pH of 4, and does not recognizably interact with the others. After the experiment, albite has gained in a, not yet fully identified, carbonate phase which might be dawsonite. Reaction fluids of the experiments with scCO2+SO2 have mostly lower pH than using scCO2 alone, at which those with silicate phases have a lower pH (between 2 and 3) than experiments with carbonates. Fluid-mineral-interactions using scCO2-SO2 are thus much stronger and the concentrations of SO4 and cations in the reacting fluids are generally much higher, especially for Fe, Si and Al of silicates. However, intensity and rate of reactions are controlled by the availability of SO2 and apparently buffered by dissolution and precipitation processes. EMPA and Raman spectroscopy analyses are in progress to identify possible precipitated secondary products on mineral surfaces.

  3. Formation of halloysite from feldspar: Low temperature, artificial weathering versus natural weathering

    USGS Publications Warehouse

    Parham, Walter E.

    1969-01-01

    Weathering products formed on surfaces of both potassium and plagioclase feldspar (An70), which were continuously leached in a Soxhlet extraction apparatus for 140 days with 7.21 of distilled water per day at a temperature of approximately 78°C, are morphologically identical to natural products developed on potassium feldspars weathered under conditions of good drainage in the humid tropics. The new products, which first appear as tiny bumps on the feldspar surface, start to develop mainly at exposed edges but also at apparently random sites on flat cleavage surfaces. As weathering continues, the bumps grow outward from the feldspar surface to form tapered projections, which then develop into wide-based thin films or sheets. The thin sheets of many projections merge laterally to form one continuous flame-shaped sheet. The sheets formed on potassium feldspars may then roll to form tubes that are inclined at a high angle to the feldspar surface. Etch pits of triangular outline on the artificially weathered potassium feldspars serve as sites for development of continuous, non-rolled, hollow tubes. It is inferred from its morphology that this weathering product is halloysite or its primitive form. The product of naturally weathered potassium feldspars is halloysite . 4H2O.The flame-shaped films or sheets formed on artificially weathered plagioclase feldspar do not develop into hollow tubes, but instead give rise to a platy mineral that is most probably boehmite. These plates form within the flame-shaped films, and with continued weathering are released as the film deteriorates. There is no indication from this experiment that platy pseudohexagonal kaolinite forms from any of these minerals under the initial stage of weathering.

  4. [Study on the fine structure of K-feldspar of Qichun granite].

    PubMed

    Du, Deng-Wen; Hong, Han-Lie; Fan, Kan; Wang, Chao-Wen; Yin, Ke

    2013-03-01

    Fine structure of K-feldspar from the Qichun granite was investigated using X-ray diffraction (XRD), Fourier infrared absorption spectroscopy (FTIR), and inductively coupled plasma mass spectrometry methods to understand the evolution of the granitic magmatism and its correlation to molybdenite mineralization. The XRD results showed that K-feldspar of the potassic alteration veins has higher ordering index and triclinicity and is namely microcline with triclinic symmetry. K-feldspar of the early cretaceous granite has relatively lower ordering index and has widening [131] peak and is locally triclinic ordering. K-feldspar of the late cretaceous granite has lowest ordering index and sharp [131] peak and is honiogeneously monoclinic. The FTIR results showed that the IR spectra of the Qichun K-feldspar are similar to that of orthoclase reported by Farmer (1974). The 640 cm-1 absorption band increases while the 540 cm-' absorption band decreases with increase in K-feldspar ordering index, also, the 1,010 cm-1 absorption band separates into 1,010 and 1,046 cm-1 absorption bands, with a change in the band shape from widening to sharp outline. The ICP-MS results suggested that K-feldspar of the early cretaceous granite has relatively higher metal elements and rare earth elements, and the granite exhibits better mineralization background, K-feldspar of the potassic alteration veins has markedly lower Sr and Ba, indicating that the alteration fluid originated from the granitic magmatism, and hence, potassic alteration is a good indicator for molybdenite exploration.

  5. Mineral resource of the month: feldspar

    USGS Publications Warehouse

    ,

    2011-01-01

    The article focuses on feldspar, a mineral that composes of potassium, sodium, or a fusion of the two, and its various applications. According to estimates by scientists, the mineral is present at 60 percent of the crust of Earth, wherein it is commonly used for making glass and ceramics. Global mining of feldspar was about 20 million metric tons in 2010, wherein Italy, Turkey, and China mine 55 percent of the feldspar worldwide.

  6. Rare earth elements as a fingerprint of soil components solubilization

    NASA Astrophysics Data System (ADS)

    Davranche, M.; Grybos, M.; Gruau, G.; Pédrot, M.; Dia, A.

    2009-04-01

    The retention of rare earth element (REE) in the soil profile are mainly controlled by three factors, (i) the stability of the primary REE-carrying minerals, (ii) the presence of secondary phases as clays and Fe- and Mn-oxyhydroxides and (ii) the concentration of colloidal organic matter (OM). Considering that each soil phases (mineral or organic) displays (ii) various surface properties, such as specific area, surface sites density and nature and (ii) their own REE distribution inherited from the rock weathering, their mobilization through various chemical reactions (dissolution, colloidal release….) may involve the development of various shaped REE patterns in the soil solutions. REE fractionation from the different soil phases may therefore be used to identify the response of the soil system to a particular chemical process such as reductive and/or acidic dissolution. To test this purpose, an organic-rich wetland soil sample was incubated under anaerobic condition at both pH 5 and uncontrolled pH. The REE patterns developed in the soil solution were then compared to the REE patterns obtained through either aerobic at pH 3 and 7 incubations or a chemical reduction experiment (using hydroxylamine). REE patterns in anaerobic and aerobic at pH 7 experiments exhibited the same middle rare earth element (MREE) downward concavity significant of the complexation of REE with soil OM. By contrast, under acidic condition, the REE pattern exhibited a positive Eu anomaly due to the dissolution of soil feldspar. Finally, REE pattern obtained from the chemical reducing experiment showed an intermediary flat shape corresponding to a mixing between the soil organic and mineral phases dissolution. The comparison of the various REE pattern shapes allowed to conclude that (i) biological reduction of wetland soil involved amorphous Fe(III) colloids linked to OM and, (ii) that the REE mobility was controlled by the dynamic of OM in wetland soil. They also evidence the potential of REE to be use as a tracer of the soil phases involved in the various chemical processes running in soil solutions.

  7. Rheology of K-feldspar aggregates and its implications for dynamics of continental lower crust

    NASA Astrophysics Data System (ADS)

    Chen, J.; Jin, Z.; Shi, F.; Zhang, J.

    2015-12-01

    Rheology of feldspar-dominated rocks controls many important processes fundamental to understanding the dynamics of continental lower crust. K-feldspar mineral is an important constituent mineral for continental lower crust and the Precambrian terranes. However, the rheological properties of K-feldspar have not been well quantified. We have performed triaxial compression experiments on natural K-feldspar (88 ppm wt. H2O) aggregates at 1.5 GPa and 1273 - 1373 K using a modified 5GPa Griggs apparatus. The hot-pressed specimens are wrapped in a thin layer of Nickel foil and sealed in 9mm long Platinum jackets along with overlying alumina pistons. Fitting of our preliminary data indicates that the deformation occurred in the dislocation creep regime with a stress exponent of ~3.3 and an activation energy of ~512 kJ/mol. Comparison of our results to previous studies indicates that K-feldspar is stronger than granulite but weaker than eclogite and dry olivine aggregates. These results suggest that K-feldspar likely serves as a strong phase in continental lower crust and the Precambrian terrane.

  8. Effect of ageing of K-feldspar on its ice nucleating efficiency in immersion, deposition and contact freezing modes

    NASA Astrophysics Data System (ADS)

    Peckhaus, Andreas; Bachmann, Felix; Hoffmann, Nadine; Koch, Michael; Kiselev, Alexei; Leisner, Thomas

    2015-04-01

    Recently K-feldspar was identified as one of the most active atmospheric ice nucleating particles (INP) of mineral origin [1]. Seeking the explanation to this phenomena we have conducted extensive experimental investigation of the ice nucleating efficiency of K-feldspar in three heterogeneous freezing modes. The immersion freezing of K-feldspar was investigated with the cold stage using arrays of nanoliter-size droplets containing aqueous suspension of polydisperse feldspar particles. For contact freezing, the charged droplets of supercooled water were suspended in the laminar flow of the DMA-selected feldspar-containing particles, allowing for determination of freezing probability on a single particle-droplet contact [2]. The nucleation and growth of ice via vapor deposition on the crystalline surfaces of macroscopic feldspar particles have been investigated in the Environmental Scanning Electron Microscope (ESEM) under humidified nitrogen atmosphere. The ice nucleation experiments were supplemented with measurements of effective surface area of feldspar particles and ion chromatography (IC) analysis of the leached framework cations (K+, Na+, Ca2+, Mg2+). In this contribution we focus on the role of surface chemistry influencing the IN efficiency of K-feldspar, in particular the connection between the degree of surface hydroxylation and its ability to induce local structural ordering in the interfacial layer in water molecules (as suggested by recent modeling efforts). We mimic the natural process of feldspar ageing by suspending it in water or weak aqueous solution of carbonic acid for different time periods, from minutes to months, and present its freezing efficiency as a function of time. Our immersion freezing experiments show that ageing have a nonlinear effect on the freezing behavior of feldspar within the investigated temperature range (-40°C to -10°C). On the other hand, deposition nucleation of ice observed in the ESEM reveals clear different pattern between freshly cleaved and aged mineral surfaces. This effect is especially pronounced for surfaces having different crystallographic orientations (001 and 010), with 001 being clearly preferential for ice nucleation. The factor two change of the BET effective area of the naturally aged feldspar particles is also indicative for the change in the surface morphology. Based on the IC analysis of framework cations removal from the surface of feldspar, we discuss the possible implications of this process for the interpretation of observed freezing behavior of feldspars. [1] Atkinson, J.D., Murray, B.J., Woodhouse, M.T., Whale, T.F., Baustian, K.J., Carslaw, K.S., Dobbie, S., O'Sullivan, D., and Malkin, T.L.: The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds. Nature, 498, 355-358, 2013 [2] Hoffmann, N., Kiselev, A., Rzesanke, D., Duft, D., and Leisner, T.: Experimental quantification of contact freezing in an electrodynamic balance. Atmos. Meas. Tech., 6, 2373-2382, 2013.

  9. Mineral-deposit model for lithium-cesium-tantalum pegmatites

    USGS Publications Warehouse

    Bradley, Dwight C.; McCauley, Andrew D.; Stillings, Lisa L.

    2017-06-20

    Lithium-cesium-tantalum (LCT) pegmatites comprise a compositionally defined subset of granitic pegmatites. The major minerals are quartz, potassium feldspar, albite, and muscovite; typical accessory minerals include biotite, garnet, tourmaline, and apatite. The principal lithium ore minerals are spodumene, petalite, and lepidolite; cesium mostly comes from pollucite; and tantalum mostly comes from columbite-tantalite. Tin ore as cassiterite and beryllium ore as beryl also occur in LCT pegmatites, as do a number of gemstones and high-value museum specimens of rare minerals. Individual crystals in LCT pegmatites can be enormous: the largest spodumene was 14 meters long, the largest beryl was 18 meters long, and the largest potassium feldspar was 49 meters long.Lithium-cesium-tantalum pegmatites account for about one-fourth of the world’s lithium production, most of the tantalum production, and all of the cesium production. Giant deposits include Tanco in Canada, Greenbushes in Australia, and Bikita in Zimbabwe. The largest lithium pegmatite in the United States, at King’s Mountain, North Carolina, is no longer being mined although large reserves of lithium remain. Depending on size and attitude of the pegmatite, a variety of mining techniques are used, including artisanal surface mining, open-pit surface mining, small underground workings, and large underground operations using room-and-pillar design. In favorable circumstances, what would otherwise be gangue minerals (quartz, potassium feldspar, albite, and muscovite) can be mined along with lithium and (or) tantalum as coproducts.Most LCT pegmatites are hosted in metamorphosed supracrustal rocks in the upper greenschist to lower amphibolite facies. Lithium-cesium-tantalum pegmatite intrusions generally are emplaced late during orogeny, with emplacement being controlled by pre-existing structures. Typically, they crop out near evolved, peraluminous granites and leucogranites from which they are inferred to be derived by fractional crystallization. In cases where a parental granite pluton is not exposed, one is inferred to lie at depth. Lithium-cesium-tantalum LCT pegmatite melts are enriched in fluxing components including H2O, F, P, and B, which depress the solidus temperature, lower the density, and increase rates of ionic diffusion. This, in turn, enables pegmatites to form thin dikes and massive crystals despite having a felsic composition and temperatures that are significantly lower than ordinary granitic melts. Lithium-cesium-tantalum pegmatites crystallized at remarkably low temperatures (about 350–550 °C) in a remarkably short time (days to years).Lithium-cesium-tantalum pegmatites form in orogenic hinterlands as products of plate convergence. Most formed during collisional orogeny (for example, Kings Mountain district, North Carolina). Specific causes of LCT pegmatite-related magmatism could include: ordinary arc processes; over thickening of continental crust during collision or subduction; slab breakoff during or after collision; slab delamination before, during, or after collision; and late collisional extensional collapse and consequent decompression melting. Lithium-cesium-tantalum pegmatite deposits are present in all continents including Antarctica and in rocks spanning 3 billion years of Earth history. The global age distribution of LCT pegmatites is similar to those of common pegmatites, orogenic granites, and detrital zircons. Peak times of LCT pegmatite genesis at about 2640, 1800, 960, 485, and 310 Ma (million years before present) correspond to times of collisional orogeny and supercontinent assembly. Between these pulses were long intervals when few or no LCT pegmatites formed. These minima overlap with supercontinent tenures at ca. 2450–2225, 1625–1000, 875–725, and 250–200 Ma.Exploration and assessment for LCT pegmatites are guided by a number of observations. In frontier areas where exploration has been minimal at best, the key first-order criteria are an orogenic hinterland setting, appropriate regional metamorphic grades, and the presence of evolved granites and common granitic pegmatites. New LCT pegmatites are most likely to be found near known deposits. Pegmatites tend to show a regional mineralogical and geochemical zoning pattern with respect to the inferred parental granite, with the greatest enrichment in the more distal pegmatites. Mineral-chemical trends in common pegmatites that can point toward an evolved LCT pegmatite include: increasing rubidium in potassium feldspar, increasing lithium in white mica, increasing manganese in garnet, and increasing tantalum and manganese in columbite-tantalite. Most LCT pegmatite bodies show a distinctive internal zonation featuring four zones: border, wall, intermediate (where lithium, cesium, and tantalum are generally concentrated), and core. This zonation is expressed both in cross section and map view; thus, what may appear to be a common pegmatite may instead be the edge of a mineralized body.Neither lithium-cesium-tantalum pegmatites nor their parental granites are likely to cause serious environmental concerns. Soils and country rock surrounding a LCT pegmatite, as well as waste from mining operations, may be enriched in characteristic elements relative to global average soil and bedrock values. These elements may include lithium, cesium, tantalum, beryllium, boron, fluorine, phosphorus, manganese, gallium, rubidium, niobium, tin, and hafnium. Among this suite of elements, however, the only ones that might present a concern for environmental health are beryllium and fluorine, which are included in the U.S. Environmental Protection Agency drinking-water regulations with maximum contaminant levels of 4 micrograms per liter and 4 milligrams per liter, respectively.

  10. Application of Cathodoluminescence to The Study of Feldspars: Imaging and Spectrometry

    NASA Astrophysics Data System (ADS)

    Fonseca, Rute; Couto, Helena

    2017-12-01

    Cathodoluminescence (CL) studies were carried out on polished thin sections of different feldspar samples (from migmatites, granites, aplite-pegmatites and granitic aggregates) using a hot cathode CL equipment HC3-LM coupled to an optical microscope and to a spectrometer (SpectraPro 2300i and a CCD Pixis 400B detector and the software Winspec32) from the Faculty of Sciences of University of Porto. The system was operated at 14kV and a filament current of 0.18 mA. The samples were coated with a thin gold film using a Cressington 108 Auto device. Luminescence images were acquired during the CL analysis with an adapted digital video-camera (KAPPA PS 40C-285 (DX) with dual stage Peltier cooling) and an acquisition time between 351ms and 3,52s. The CL study, including imaging and spectrometry, proved to be an important tool to complement the feldspar petrography as it contributes to the identification of features not observed under optical microscope. The application of the Cathodoluminescence to feldspar allows distinguishing between potassic feldspar and plagioclase, differentiating generations of feldspar and displaying internal zoning and growth areas, among other. The spectrometry complements the CL imaging. It allows obtaining a qualitative level of emission intensity, which permits the interpretation of the nature of this luminescence in each feldspar. Bands shown in the spectra are related to the existing activator elements. In the present study, it was found an association of each feldspar to different spectra and respective colour. The plagioclases exhibit yellow or green luminescence. The activator element is Mn2+, showing a broad emission band between 550 - 570 nm specially detected on this type of feldspars, due to the replacement of K+ for Mn2+. The potassium feldspars have more or less intense blue colour associated with various activators elements: the activator element is Cu2+ showing a broad emission band between 420±5 nm. This emission band can be detected either in potassium feldspar or in plagioclases, but when associated with the blue colour, it indicates that it is a potassium feldspar. Spectra with a wavelength of 460±10 nm, associated to the element activator/synthesizer Ti3+, which is initially deposited as Ti4+, replacing Al, as temperature rise. The emission band with a wavelength of 860 nm correspond to the activator element Pb+, and occurs specially in potassium feldspar like adularia and orthoclase. The activator element Al - O - Al, show a broad emission band between 450-480 nm. This emission in CL is caused by the replacement of Al3+ and Si4+ in feldspars.

  11. Organic carbon characteristics in density fractions of soils with contrasting mineralogies

    NASA Astrophysics Data System (ADS)

    Yeasmin, Sabina; Singh, Balwant; Johnston, Cliff T.; Sparks, Donald L.

    2017-12-01

    This study was aimed to evaluate the role of minerals in the preservation of organic carbon (OC) in different soil types. Sequential density fractionation was done to isolate particulate organic matter (POM, <1.8 g cm-3) and mineral associated OM (MOM: 1.8-2.2, 2.2-2.6 and >2.6 g cm-3) from four soils, i.e., a Ferralsol, a Luvisol, a Vertisol and a Solonetz. Organic matter (OM) in the density fractions was characterised using diffuse reflectance Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and mass spectroscopy in the original states (i.e., without any chemical pre-treatment), and after 6% sodium hypochlorite (NaOCl) and 10% hydrofluoric acid (HF) treatments. The NaOCl oxidation resistant fraction was considered as a relatively stable pool of OC and the HF soluble fraction was presumed as the mineral bound OC. Phyllosilicate-dominated soils, i.e., Vertisol, Luvisol and Solonetz, contained a greater proportion of POM than Fe and Al oxide-dominated Ferralsol. Wider C:N ratio and lower δ13C and δ15N in POM suggest the dominance of labile OC in this fraction and this was also supported by a greater proportion of NaOCl oxidised OC in the same fraction that was enriched with aliphatic C. The sequential density fractionation method effectively isolated OM into three distinct groups in the soils: (i) OM associated with Fe and Al oxides (>1.8 g cm-3 in the Ferralsol); (ii) OM associated with phyllosilicates (1.8-2.6 g cm-3) and (iii) OM associated with quartz and feldspar (>2.6 g cm-3) in the other three soils. Greater oxidation resistance, and more dissolution of OC during the HF treatment in the Fe and Al oxides dominated fractions suggest a greater potential of these minerals to protect OC from oxidative degradation as compared to the phyllosilicates, and quartz and feldspar matrices. OM associated with Fe and Al oxides was predominantly aromatic and carboxylate C. Decreased C:N ratio in the NaOCl oxidation resistant OM and HF soluble OM of phyllosilicates, and quartz and feldspars dominant fractions compared to their untreated fractions indicate a preferred retention of N rich organic compounds by these minerals. OM associated with phyllosilicates was enriched with protonated amide N and aromatic C. Quartz and feldspars associated OM comprised of N containing organic compounds and polysaccharides, although we don't expect any role of these minerals in their preservation. Our results imply that the abundance and surface properties of minerals in the soil largely control the dynamics of OC and subsequently protect OC from microbial cycling.

  12. Neon diffusion kinetics and implications for cosmogenic neon paleothermometry in feldspars

    NASA Astrophysics Data System (ADS)

    Tremblay, Marissa M.; Shuster, David L.; Balco, Greg; Cassata, William S.

    2017-05-01

    Observations of cosmogenic neon concentrations in feldspars can potentially be used to constrain the surface exposure duration or surface temperature history of geologic samples. The applicability of cosmogenic neon to either application depends on the temperature-dependent diffusivity of neon isotopes. In this work, we investigate the kinetics of neon diffusion in feldspars of different compositions and geologic origins through stepwise degassing experiments on single, proton-irradiated crystals. To understand the potential causes of complex diffusion behavior that is sometimes manifest as nonlinearity in Arrhenius plots, we compare our results to argon stepwise degassing experiments previously conducted on the same feldspars. Many of the feldspars we studied exhibit linear Arrhenius behavior for neon whereas argon degassing from the same feldspars did not. This suggests that nonlinear behavior in argon experiments is an artifact of structural changes during laboratory heating. However, other feldspars that we examined exhibit nonlinear Arrhenius behavior for neon diffusion at temperatures far below any known structural changes, which suggests that some preexisting material property is responsible for the complex behavior. In general, neon diffusion kinetics vary widely across the different feldspars studied, with estimated activation energies (Ea) ranging from 83.3 to 110.7 kJ/mol and apparent pre-exponential factors (D0) spanning three orders of magnitude from 2.4 × 10-3 to 8.9 × 10-1 cm2 s-1. As a consequence of this variability, the ability to reconstruct temperatures or exposure durations from cosmogenic neon abundances will depend on both the specific feldspar and the surface temperature conditions at the geologic site of interest.

  13. Geologic Setting of the Hamme Tungsten District, North Carolina and Virginia

    USGS Publications Warehouse

    Parker, John Mason

    1963-01-01

    The Hamme tungsten district is in the eastern part of the Piedmont province, mainly in Vance County, North Carolina, but it extends a few miles into Virginia. The district is underlain by a central lenticular pluton of albite granodiorite that trends north-northeastward and is flanked on both sides by metamorphic rocks of low and medium grade that dip steeply westward. The relative ages of the metamorphic rocks are uncertain. The oldest rocks are likely to be the biotite gneisses in the eastern part of the district; successively younger units expose westward across the district are sericite-chlorite phyllites, greenstone, metafelsites, and metabasalts. The biotite gneisses and minor intercalated hornblende gneiss, which have a total thickness of many thousand feet, were derived from sediments. Some of the gneiss grades into phyllites and as probably formed by metasomatic alteration of the phyllites. Sericite-chlorite phyllite, epidote-quartz meta siltstone, quartzite, and conglomeratic phyllite occur principally in a wide belt on the west side of the central albite granodiorite. This unit is some 10,000 feet thick and originally consisted mainly of sediments of the graywacke suite. Greenstone totaling about 500 feet in thickness lies west of the phyllite and was derived from maflc lava flows and andesitic tuff. Metamorphosed massive aphanitic and porphyritic flows and dikes that range in composition from dacite to rhyolite, and phyllitic metatuffs and tuffaceous breccia are exposed west of the greenstone. These total at least 3,000 feet in thickness. Massive metabasalt that resembles greenstone but is less altered is common in the area between the Hamme district and the Virgilina district to the west. The thickness of the metabasalt is about 600 to 6,000 feet. The metamorphic rocks of the Hamme and Virgilina districts are parts of the Carolina slate belt, but map units cannot be directly correlated. Rocks in the Hamme district are thought by the writer to have been derived mainly from graywackes and volcanic flows, and subordinately from pyroclastic materials, whereas the rocks of the Virgilina district were interpreted by earlier workers as being mainly volcanic with much pyroclastic material but little sediment. Igneous, and perhaps pseudo igneous, rocks in the district include hornblende gabbro, albite granodiorite, aplite, and pegmatite--all of which are probably middle Paleozoic in age--and diabase and hypersthene tonalite of Late Triassic age. The gabbro forms three lenticular to subcircular bodies up to 2% miles in width in the western part of the area. Albite granodiorite forms a pluton with a maximum width of 7 miles which occupies the center of the area. At its northeastern end the pluton narrows abruptly to a point. Phyllite forms the wall rocks on all sides of the albite granodiorite. The contact is gradational and conformable in most places, but on the northwest side it cuts across wall structure for about 3 miles. Near its western edge the albite granodiorite includes a northeast-trending zone of schistose wall rock in and near which are localized the tungsten deposits. The origin of the albite granodiorite is uncertain, but it may have formed by the metasomatic replacement of the wallrocks, during which albite porphyroblasts developed first and were followed by microcline and quartz. Diabase and hypersthene tonalite occur as dikes and sills along four northward-trending belts. The dikes are a few feet to more than 300 feet thick, and several extend along strike for more than 10 miles. The Hamme district Is in the eastern part of the Carolina slate belt, and the Virg1l1na district lies along the western side of the belt. Rocks in the Hamme district dip mostly westward and in the Vifg1lina district dip mainly eastward into a syncline. This syncline, here named the Spewmarrow syncline, may be a structure of regional significance. Tungsten in the Hamme district occurs mainly

  14. Effect of pressure on the short-range structure and speciation of carbon in alkali silicate and aluminosilicate glasses and melts at high pressure up to 8 GPa: 13C, 27Al, 17O and 29Si solid-state NMR study

    NASA Astrophysics Data System (ADS)

    Kim, Eun Jeong; Fei, Yingwei; Lee, Sung Keun

    2018-03-01

    Despite the pioneering efforts to explore the nature of carbon in carbon-bearing silicate melts under compression, experimental data for the speciation and the solubility of carbon in silicate melts above 4 GPa have not been reported. Here, we explore the speciation of carbon and pressure-induced changes in network structures of carbon-bearing silicate (Na2O-3SiO2, NS3) and sodium aluminosilicate (NaAlSi3O8, albite) glasses quenched from melts at high pressure up to 8 GPa using multi-nuclear solid-state NMR. The 27Al triple quantum (3Q) MAS NMR spectra for carbon-bearing albite melts revealed the pressure-induced increase in the topological disorder around 4 coordinated Al ([4]Al) without forming [5,6]Al. These structural changes are similar to those in volatile-free albite melts at high pressure, indicating that the addition of CO2 in silicate melts may not induce any additional increase in the topological disorder around Al at high pressure. 13C MAS NMR spectra for carbon-bearing albite melts show multiple carbonate species, including [4]Si(CO3)[4]Si, [4]Si(CO3)[4]Al, [4]Al(CO3)[4]Al, and free CO32-. The fraction of [4]Si(CO3)[4]Al increases with increasing pressure, while those of other bridging carbonate species decrease, indicating that the addition of CO2 may enhance mixing of Si and Al at high pressure. A noticeable change is not observed for 29Si NMR spectra for the carbon-bearing albite glasses with varying pressure at 1.5-6 GPa. These NMR results confirm that the densification mechanisms established for fluid-free, polymerized aluminosilicate melts can be applied to the carbon-bearing albite melts at high pressure. In contrast, the 29Si MAS NMR spectra for partially depolymerized, carbon-bearing NS3 glasses show that the fraction of [5,6]Si increases with increasing pressure at the expense of Q3 species ([4]Si species with one non-bridging oxygen as the nearest neighbor). The pressure-induced increase in topological disorder around Si is evident from an increase in peak width of [4]Si with pressure. 17O NMR spectrum shows that the fraction of Na⋯Osbnd [5]Si in carbon-bearing NS3 glasses is less than that of carbon-free NS3 glasses at 6 GPa potentially due to the formation of bridging carbonate species. While its presence is not evident from the 17O NMR spectrum primarily due to low carbon concentration, 13C MAS NMR results imply the formation of bridging carbonates, [4]Si(CO3)[4]Si, above 6 GPa. The spin-lattice relaxation time (T1) of CO2 in albite melts increases with increasing pressure from 42 s (at 1.5 GPa) to 149 s (at 6 GPa). Taking the pressure-induced change in T1 of carbon species into consideration, total carbon content in carbon-bearing albite melts increases with pressure from ∼1 wt% at 1.5 GPa to ∼4.1 wt% at 6 GPa. The results also reveal a noticeable drop in the peak intensity of free carbonates in carbon-bearing NS3 melts at 6 GPa, implying a potential non-linear change in the carbon solubility with pressure. The current results of carbon speciation in the silicate melts above 4 GPa provide an improved link among the atomic configurations around carbon species, their carbon contents, and isotope composition of carbon-bearing melts in the upper mantle.

  15. Melting and subsolidus reactions in the system K2O-CaO-Al2O3-SiO2-H2O

    NASA Astrophysics Data System (ADS)

    Johannes, Wilhelm

    1980-09-01

    Beginning of melting and subsolidus relationships in the system K2O-CaO-Al2O3-SiO2-H2O have been experimentally investigated at pressures up to 20 kbars. The equilibria discussed involve the phases anorthite, sanidine, zoisite, muscovite, quartz, kyanite, gas, and melt and two invariant points: Point [Ky] with the phases An, Or, Zo, Ms, Qz, Vapor, and Melt; point [Or] with An, Zo, Ms, Ky, Qz, Vapor, and Melt. The invariant point [Ky] at 675° C and 8.7 kbars marks the lowest solidus temperature of the system investigated. At pressures above this point the hydrated phases zoisite and muscovite are liquidus phases and the solidus temperatures increase with increasing pressure. At 20 kbars beginning of melting occurs at 740 °C. The solidus temperatures of the quinary system K2O-CaO-Al2O3-SiO2-H2O are almost 60° C (at 20 kbars) and 170° C (at 2kbars) below those of the limiting quaternary system CaO-Al2O3-SiO2-H2O. The maximum water pressure at which anorthite is stable is lowered from 14 to 8.7 kbars in the presence of sanidine. The stability limits of anorthite+ vapor and anorthite+sanidine+vapor at temperatures below 700° C are almost parallel and do not intersect. In the wide temperature — pressure range at pressures above the reaction An+Or+Vapor = Zo+Ms+Qz and temperatures below the melting curve of Zo+Ms+Ky+Qz+Vapor, the feldspar assemblage anorthite+sanidine is replaced by the hydrated phases zoisite and muscovite plus quartz. CaO-Al2O3-SiO2-H2O. Knowledge of the melting relationships involving the minerals zoisite and muscovite contributes to our understanding of the melting processes occuring in the deeper parts of the crust. Beginning of melting in granites and granodiorites depends on the composition of plagioclase. The solidus temperatures of all granites and granodiorites containing plagioclases of intermediate composition are higher than those of the Ca-free alkali feldspar granite system and below those of the Na-free system discussed in this paper. The investigated system also provides information about the width of the P-T field in which zoisite can be stable together with an Al2SiO5 polymorph plus quartz and in which zoisite plus muscovite and quartz can be formed at the expense of anorthite and potassium feldspar. Addition of sodium will shift the boundaries of these fields to higher pressures (at given temperatures), because the pressure stability of albite is almost 10kbars above that of anorthite. Assemblages with zoisite+muscovite or zoisite+kyanite are often considered to be products of secondary or retrograde reactions. The P-T range in which hydration of granitic compositions may occur in nature is of special interest. The present paper documents the highest temperatures at which this hydration can occur in the earth's crust.

  16. Identification of Ice Nucleation Active Sites on Feldspar Dust Particles

    PubMed Central

    2015-01-01

    Mineral dusts originating from Earth’s crust are known to be important atmospheric ice nuclei. In agreement with earlier studies, feldspar was found as the most active of the tested natural mineral dusts. Here we investigated in closer detail the reasons for its activity and the difference in the activity of the different feldspars. Conclusions are drawn from scanning electron microscopy, X-ray powder diffraction, infrared spectroscopy, and oil-immersion freezing experiments. K-feldspar showed by far the highest ice nucleation activity. Finally, we give a potential explanation of this effect, finding alkali-metal ions having different hydration shells and thus an influence on the ice nucleation activity of feldspar surfaces. PMID:25584435

  17. Immobilization of enzyme using natural feldspar for use in the synthesis of oleyl oleate

    NASA Astrophysics Data System (ADS)

    Ali, Balqish Juliana; Othman, Siti Salhah; Harun, Farah Wahida; Jumal, Juliana; Rahman, Mohd Basyaruddin Abdul

    2018-06-01

    Natural feldspar from Tanah Putih, Gua Musang, Kelantan (Malaysia) was physico-chemically characterized using X-ray Diffraction (XRD), Surface Area and Porosity Analysis (ASAP) and Energy Dispersive X-ray (EDX) techniques. The feldspar was found to be of the potassium (K) type, with major components containing aluminum (Al), and silicon (Si). The feldspar also possesses 38.307 nm mean pore diameter and 18.717 m2/g surface area. Candida rugosa (CRL) was then immobilized onto natural feldspar by physical adsorption method. About 49.96% of protein content was immobilized onto the support. The catalytic activity of the immobilized lipase was determined by the esterification reaction using oleic acid and oleyl alcohol. The effects of various reaction temperatures, stability in organic solvent, and lipase recyclability on the esterification reaction for the native and immobilized lipase were investigated. Feldspar-immobilized lipase exhibited higher activity than that of the native lipase. Immobilized lipase retained its activity ca. 50% even after incubation at high temperature (70°C) with the optimum reaction temperature of 40°C, long incubation in hexane up to 10 days and after ten repeated cycles used. Feldspar-immobilized lipase also showed considerably efficient reusability where it was not easily leached even after being washed with large amount of hexane (20 mL). These results showed that physical adsorption method is suitable for the immobilization of lipase onto feldspar.

  18. Can cathodoluminescence of feldspar be used as provenance indicator?

    NASA Astrophysics Data System (ADS)

    Scholonek, Christiane; Augustsson, Carita

    2016-05-01

    We have studied feldspar from crystalline rocks for its textural and spectral cathodoluminescence (CL) characteristics with the aim to reveal their provenance potential. We analyzed ca. 60 rock samples of plutonic, volcanic, metamorphic, and pegmatitic origin from different continents and of 16 Ma to 2 Ga age for their feldspar CL textures and ca. 1200 feldspar crystals from these rocks for their CL color spectra. Among the analyzed rocks, igneous feldspar is most commonly zoned, whereby oscillatory zoning can be confirmed to be typical for volcanic plagioclase. The volcanic plagioclase also less commonly contains twin lamellae that are visible in CL light than crystals from other rock types. Alkali feldspar, particularly from igneous and pegmatitic rocks, was noted to be most affected by alteration features, visible as dark spots, lines and irregular areas. The size of all textural features of up to ca. 150 μm, in combination with possible alteration in both the source area and the sedimentary system, makes the CL textures of feldspar possible to use for qualitative provenance research only. We observed alkali feldspar mostly to luminesce in a bluish color and sometimes in red, and plagioclase in green to yellow. The corresponding CL spectra are dominated by three apparent intensity peaks at 440-520 nm (mainly blue), 540-620 nm (mainly green) and 680-740 nm (red to infrared). A dominance of the peak in the green wavelength interval over the blue one for plagioclase makes CL particularly useful for the differentiation of plagioclase from alkali feldspar. An apparent peak position in red to infrared at < 710 nm for plagioclase mainly is present in mafic rocks. Present-day coastal sand from Peru containing feldspar with the red to infrared peak position mainly exceeding 725 nm for northern Peruvian sand and a larger variety for sand from southern Peru illustrates a discriminative effect of different source areas. We conclude that the provenance application particularly can reveal first-cycle input from mafic rocks and source variations for detritus from arid areas that has been affected by little feldspar alteration.

  19. An occurrence of metastable cristobalite in high-pressure garnet Granulite

    USGS Publications Warehouse

    Darling, R.S.; Chou, I.-Ming; Bodnar, R.J.

    1997-01-01

    High-pressure (0.8 gigapascals) granulite facies garnet from Gore Mountain, New York, hosts multiple solid inclusions containing the low- pressure silica polymorph cristobalite along with albite and minor ilmenite. Identification of cristobalite is based on Raman spectra, electron microprobe analysis, and microthermometric measurements on the ??/?? phase transformation. The cristobalite plus albite inclusions may have originated as small, trapped samples of hydrous sodium-aluminum-siliceous melt. Diffusive loss of water from these inclusions under isothermal, isochoric conditions may have resulted in a large enough internal pressure decrease to promote the metastable crystallization of cristobalite.

  20. AUthigenic feldspar as an indicator of paleo-rock/water interactions in Permian carbonates of the Northern Calcareous Alps, Austria

    USGS Publications Warehouse

    Spotl, C.; Kralik, M.; Kunk, Michael J.

    1996-01-01

    Dolostones interbedded with Upper Permian evaporites at the base of the Northern Calcareous Alps contain abundant authigenic K-feldspar. Two petrographically, structurally, and isotopically distinct generations of K-feldspar can be distinguished: crystals composed of an inclusion-rich core and a clear rim, and optically unzoned, transparent crystals. Both feldspar types have essentially identical K-feldspar end-member compositions with ??? 99.5 mole % Or component. Low oxygen isotope ratios (+16.1??? to +18.1??? SMOW) suggest precipitation from 18O-enriched, saline fluids at temperatures in excess of ??? 140??C. 40Ar/39Ar plateau-age spectra of five samples range from 145 ?? 1 to 144 ?? 1 Ma (Early Berriasian) and suggest that both types of feldspar were formed within an interval that did not exceed ??? 2 m.y. Rb/Sr model ages range from 152 to 140 Ma, assuming that the burial diagenetic regime was buffered with respect to strontium by the associated marine Permian evaporites. Authigenic K-feldspar records two distinct events of hot brine flow, most likely triggered by tectonic movements (detachment) and by an increase in the subsurface temperature in response to thrust loading.

  1. A model that helps explain Sr-isotope disequilibrium between feldspar phenocrysts and melt in large-volume silicic magma systems

    USGS Publications Warehouse

    Duffield, W.A.; Ruiz, J.

    1998-01-01

    Feldspar phenocrysts of silicic volcanic rocks are commonly in Sr-isotopic disequilibrium with groundmass. In some cases the feldspar is more radiogenic, and in others it is less radiogenic. Several explanations have been published previously, but none of these is able to accommodate both senses of disequilibrium. We present a model by which either more- or less-radiogenic feldspar (or even both within a single eruptive unit) can originate. The model requires a magma body open to interaction with biotite- and feldspar-bearing wall rock. Magma is incrementally contaminated as wall rock melts incongruently. Biotite preferentially melts first, followed by feldspar. Such melting behavior, which is supported by both field and experimental studies, first contaminates magma with a relatively radiogenic addition, followed by a less-radiogenic addition. Feldspar phenocrysts lag behind melt (groundmass of volcanic rock) in incorporating the influx of contaminant, thus resulting in Sr-isotopic disequilibrium between the crystals and melt. The sense of disequilibrium recorded in a volcanic rock depends on when eruption quenches the contamination process. This model is testable by isotopic fingerprinting of individual feldspar crystals. For a given set of geologic boundary conditions, specific core-to-rim Sr-isotopic profiles are expectable. Moreover, phenocrysts that nucleate at different times during the contamination process should record different and predictable parts of the history. Initial results of Sr-isotopic fingerprinting of sanidine phenocrysts from the Taylor Creek Rhyolite are consistent with the model. More tests of the model are desirable.Feldspar phenocrysts of silicic volcanic rocks are commonly in Sr-isotopic disequilibrium with groundmass. In some cases the feldspar is more radiogenic, and in others it is less radiogenic. Several explanations have been published previously, but none of these is able to accommodate both senses of disequilibrium. We present a model by which either more- or less-radiogenic feldspar (or even both within a single eruptive unit) can originate. The model requires a magma body open to interaction with biotite- and feldspar-bearing wall rock. Magma is incrementally contaminated as wall rock melts incongruently. Biotite preferentially melts first, followed by feldspar. Such melting behavior, which is supported by both field and experimental studies, first contaminates magma with a relatively radiogenic addition, followed by a less-radiogenic addition. Feldspar phenocrysts lag behind melt (groundmass of volcanic rock) in incorporating the influx of contaminant, thus resulting in Sr-isotopic disequilibrium between the crystals and melt. The sense of disequilibrium recorded in a volcanic rock depends on when eruption quenches the contamination process. This model is testable by isotopic fingerprinting of individual feldspar crystals. For a given set of geologic boundary conditions, specific core-to-rim Sr-isotopic profiles are expectable. Moreover, phenocrysts that nucleate at different times during the contamination process should record different and predictable parts of the history. Initial results of Sr-isotopic fingerprinting of sanidine phenocrysts from the Taylor Creek Rhyolite are consistent with the model. More tests of the model are desirable.

  2. Neon diffusion kinetics and implications for cosmogenic neon paleothermometry in feldspars

    DOE PAGES

    Tremblay, Marissa M.; Shuster, David L.; Balco, Greg; ...

    2017-02-20

    Observations of cosmogenic neon concentrations in feldspars can potentially be used to constrain the surface exposure duration or surface temperature history of geologic samples. The applicability of cosmogenic neon to either application depends on the temperature-dependent diffusivity of neon isotopes. Here in this work, we investigate the kinetics of neon diffusion in feldspars of different compositions and geologic origins through stepwise degassing experiments on single, proton-irradiated crystals. To understand the potential causes of complex diffusion behavior that is sometimes manifest as nonlinearity in Arrhenius plots, we compare our results to argon stepwise degassing experiments previously conducted on the same feldspars.more » Many of the feldspars we studied exhibit linear Arrhenius behavior for neon whereas argon degassing from the same feldspars did not. This suggests that nonlinear behavior in argon experiments is an artifact of structural changes during laboratory heating. However, other feldspars that we examined exhibit nonlinear Arrhenius behavior for neon diffusion at temperatures far below any known structural changes, which suggests that some preexisting material property is responsible for the complex behavior. In general, neon diffusion kinetics vary widely across the different feldspars studied, with estimated activation energies (E a) ranging from 83.3 to 110.7 kJ/mol and apparent pre-exponential factors (D 0) spanning three orders of magnitude from 2.4 ×10 -3 to 8.9 × 10 -1 cm 2 s -1. Finally, as a consequence of this variability, the ability to reconstruct temperatures or exposure durations from cosmogenic neon abundances will depend on both the specific feldspar and the surface temperature conditions at the geologic site of interest.« less

  3. Nano- to Formation-Scale Estimates of Mineral-Specific Reactive Surface Area

    NASA Astrophysics Data System (ADS)

    Cole, D. R.; Swift, A.; Sheets, J.; Anovitz, L. M.

    2017-12-01

    Predictions of changes in fluid composition, coupled with the evolution of the solid matrix, include the generation and testing of reactive transport models. However, translating a heterogeneous natural system into physical and chemical model parameters, including the critical but poorly-constrained metric of fluid-accessible surface area, continues to challenge Earth scientists. Studies of carbon storage capacity, permeability, rock strain due to mineral dissolution and precipitation, or the prediction of rock evolution through diagenesis and weathering each consider macroscale outcomes of processes that often are critically impacted by rock surface geometry at the nanoscale. The approach taken here is to consider the whole vertical extent of a saline reservoir and then to address two questions. First, what is the accessible surface area for each major mineral, and for all adjacent pore sizes from <2 nm on up, within each major lithofacies in that formation? Second, with the formation thus divided into units of analysis, parameterized, and placed into geologic context, what constraints can be placed on reactive surface area as a function of mineral composition? A complex sandstone covering a substantial fraction of the quartz-K-feldspar-illite ternary is selected and mineral-specific surface area quantified using neutron scattering, nitrogen and mercury porosimetry, multi-signal high-resolution mineral mapping, and other techniques. For neutron scattering, scale-specific pore geometries enable more accurate translation of volume into surface area. By applying this workflow to all end-member lithologies of this reservoir formation, equations and maps of surface area as a function of position on a quartz-feldspar-clay ternary plot are developed for each major mineral. Results from this work therefore advance our ability to parameterize models not just for the particular formation studied, but for similar geologic units as well.

  4. Depositional and diagenetic variability within the Cambrian Mount Simon Sandstone: Implications for carbon dioxide sequestration

    USGS Publications Warehouse

    Bowen, B.B.; Ochoa, R.I.; Wilkens, N.D.; Brophy, J.; Lovell, T.R.; Fischietto, N.; Medina, C.R.; Rupp, J.A.

    2011-01-01

    The Cambrian Mount Simon Sandstone is the major target reservoir for ongoing geologic carbon dioxide (CO2) sequestration demonstrations throughout the midwest United States. The potential CO2 reservoir capacity, reactivity, and ultimate fate of injected CO2 depend on textural and compositional properties determined by depositional and diagenetic histories that vary vertically and laterally across the formation. Effective and efficient prediction and use of the available pore space requires detailed knowledge of the depositional and diagenetic textures and mineralogy, how these variables control the petrophysical character of the reservoir, and how they vary spatially. Here, we summarize the reservoir characteristics of the Mount Simon Sandstone based on examination of geophysical logs, cores, cuttings, and analysis of more than 150 thin sections. These samples represent different parts of the formation and depth ranges of more than 9000 ft (>2743 m) across the Illinois Basin and surrounding areas. This work demonstrates that overall reservoir quality and, specifically, porosity do not exhibit a simple relationship with depth, but vary both laterally and with depth because of changes in the primary depositional facies, framework composition (i.e., feldspar concentration), and diverse diagenetic modifications. Diagenetic processes that have been significant in modifying the reservoir include formation of iron oxide grain coatings, chemical compaction, feldspar precipitation and dissolution, multiple generations of quartz overgrowth cementation, clay mineral precipitation, and iron oxide cementation. These variables provide important inputs for calculating CO2 capacity potential, modeling reactivity, and are also an important baseline for comparisons after CO2 injection. Copyright ??2011. The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.

  5. The chemical evolution of Kurnub Group palcowater in the Sinai-Negev province - A mass balance approach

    USGS Publications Warehouse

    Rosenthal, E.; Jones, B.F.; Weinberger, G.

    1998-01-01

    The chemical evolution of the Kurnub Group paleowater was studied starting from rainwater in recharge areas of the Sinai and along groundwater flowpaths leading to the natural outlets of this regional aquifer. This was achieved by investigating the chemical composition of groundwater, ionic ratios, degrees of saturation with common mineral species, normative analysis of dissolved salts and by modeling of rock/water interaction and mixing processes occurring along groundwater flow paths. The initial groundwater composition used is from the Nakhel well in Sinai. It evolves from desert rainwater percolating through typical Kurnub Group lithology in Sinai. This rainwater dissolves mainly gypsum, halite and dolomite together with smaller amounts of marine aerosol and K-feldspar. At the same time it precipitates calcite, SiO2, smectite and degasses CO2. Between the area of Nakhel and the northern Negev the chemistry of Kurnub Group waters is influenced by dissolution of halite and lesser amounts of gypsum of surficial origin in recharge areas, small amounts of feldspars and of dolomite cement in sandstones eroded from the Arabo-Nubian igneous massif of Sinai and organic degradation-derived CO2. Concomitantly, there is precipitation of calcite, smectite, SiO2 and probably analcime characteristic of sediments in continental closed basins. North of the Negev, the Kurnub Group fluids are diluted and altered by mixing with Judea Group aquifer groundwaters. On the E there is mixing with residual brines from the water body ancestral to the Dead Sea, prior to discharge into the Arava valley. Rock/water interaction indicated by NETPATH and PHREEQC modeling is in agreement with lithology and facies changes previously observed in the Kurnub Group sequence.

  6. CIRF.B Reaction-Transport-Mechanical Simulator: Applications to CO2 Injection and Reservoir Integrity Prediction

    NASA Astrophysics Data System (ADS)

    Park, A. J.; Tuncay, K.; Ortoleva, P. J.

    2003-12-01

    An important component of CO2 sequestration in geologic formations is the reactions between the injected fluid and the resident geologic material. In particular, carbonate mineral reaction rates are several orders of magnitude faster than those of siliciclastic minerals. The reactions between resident and injected components can create complex flow regime modifications, and potentially undermine the reservoir integrity by changing their mineralogic and textural compositions on engineering time scale. This process can be further enhanced due to differences in pH and temperature of the injectant from the resident sediments and fluids. CIRF.B is a multi-process simulator originally developed for basin simulations. Implemented processes include kinetic and thermodynamic reactions between minerals and fluid, fluid flow, mass-transfer, composite-media approach to sediment textural description and dynamics, elasto-visco-plastic rheology, and fracturing dynamics. To test the feasibility of applying CIRF.B to CO2 sequestration, a number of engineering scale simulations are carried out to delineate the effects of changing injectant chemistry and injection rates on both carbonate and siliciclastic sediments. Initial findings indicate that even moderate amounts of CO2 introduced into sediments can create low pH environments, which affects feldspar-clay interactions. While the amount of feldspars reacting in engineering time scale may be small, its consequence to clay alteration and permeability modfication can be significant. Results also demonstrate that diffusion-imported H+ can affect sealing properties of both siliciclastic and carbonate formations. In carbonate systems significant mass transfer can occur due to dissolution and reprecipitation. The resulting shifts in in-situ stresses can be sufficient to initiate fracturing. These simulations allow characterization of injectant fluids, thus assisting in the implementation of effective sequestration procedures.

  7. Experimental insights into the geochemistry and mineralogy of a granite-hosted geothermal system injected with supercritical CO2

    NASA Astrophysics Data System (ADS)

    Lo Re, C.; Kaszuba, J. P.; Moore, J.; McPherson, B. J.

    2011-12-01

    Supercritical CO2 may be a viable working fluid in enhanced geothermal systems (EGS) due to its large expansivity, low viscosity, and reduced reactivity with rock as compared to water. Hydrothermal experiments are underway to evaluate the geochemical impact of using supercritical CO2 as a working fluid in granite-hosted geothermal systems. Synthetic aqueous fluid and a model granite are reacted at 250 °C and 250 bars in a rocking autoclave and Au-Ti reaction cell for a minimum of 28 days (water:rock ratio of approximately 20:1). Subsequent injection of supercritical CO2 increases pressure, which decays over time as the CO2 dissolves into the aqueous fluid. Initial experiments decreased to a steady state pressure of 450 bars approximately 14 hours after injection of supercritical CO2. Post-injection reaction is allowed to continue for at least an additional 28 days. Excess CO2 is injected to produce a separate supercritical fluid phase (between 1.7 and 3.1 molal), ensuring aqueous CO2 saturation for the duration of each experiment. The granite was created using mineral separates and consists of ground (75 wt%, <45 microns) and chipped (25 wt%, 0.5-1.0 cm), sub-equal portions of quartz, perthitic potassium feldspar (~ 25 wt% albite and 75 wt% potassium feldspar), oligoclase, and a minor (4 wt%) component of Fe-rich biotite. The synthetic saline water (I = 0.12 m) contains molal quantities of Na, Cl, and HCO3 and millimolal quantities of K, SiO2, SO4, Ca, Al, and Mg, in order of decreasing molality. Aqueous fluids are sampled approximately 10 times over the course of each experiment and analyzed for total dissolved carbon and sulfide by coulometric titration, anions by ion chromatography, and major, minor, and trace cations by ICP-OES and -MS. Bench pH measurements are paired with aqueous analyses to calculate in-situ pH. Solid reactants are evaluated by SEM-EDS, XRD, and/or bulk chemical analysis before and after each experiment. Analytical data are reviewed alongside geochemical models to evaluate fluid-rock interactions and the capacity of theoretical models to predict the observed outcome. Data derived from this study will inform our understanding of how a real world geothermal system may respond geochemically and mineralogically given 'spontaneous' injection of CO2, whether by an anthropogenic or natural source. Companion modeling work is also underway, which will use these experiments to calibrate EGS models for field application.

  8. Y,REE,Nb,Ta,Ti-oxide (AB 2O 6) minerals from REL-REE euxenite-subtype pegmatites of the Třebíč Pluton, Czech Republic; substitutions and fractionation trends

    NASA Astrophysics Data System (ADS)

    Škoda, Radek; Novák, Milan

    2007-04-01

    Aeschynite-group minerals (AGM) and euxenite-group minerals (EGM) occur in REL-REE euxenite-subtype pegmatites from the Třebíč Pluton, Czech Republic. They form strongly metamictized, light brown to black, equigranular to needle-like, subhedral to anhedral grains enclosed in blocky K-feldspar and less commonly in albite, and blocky quartz, and in the graphic unit (quartz and K-feldspar). Both AGM and EGM are homogeneous to slightly heterogeneous in BSE images. They are not commonly associated with the other primary Y,REE,Ti,Nb-bearing minerals, i.e. allanite-(Ce), monazite-(Ce), titanite, and ilmenite, which occur within the same textural-paragenetic unit. Aeschynite-(Y), aeschynite-(Ce), aeschynite-(Nd), nioboaeschynite-(Ce), tantalaeschynite-(Ce), vigezzite and polycrase-(Y) were identified using EMP and canonical discrimination analysis [Ercit, T.S., 2005a. Identification and alteration trends of granitic-pegmatite-hosted (Y,REE,U,Th)-(Nb,Ta,Ti) oxide minerals: a statistical approach. Can. Mineral. 43, 4 1291-1303.]. The exchange vector ACa B(Nb,Ta) A(Y,REE) - 1 BTi - 1 or its combination with the exchange vector ACa 2B(Nb,Ta) 3A(U,Th) - 1 A(Y,REE) - 1 BTi - 3 have been elucidated for the AGM. The exchange vector ACa A(U,Th) A(Y,REE) - 2 is predominant in the EGM. The AGM are enriched in HREE, whereas LREE are concentrated in the EGM. Weak to none-existent geochemical fractionations, as expressed by the U/(U + Th), Y/(Y + REE), Ta/(Ta + Nb) and (Nb + Ta)/(Ti + Nb + Ta) ratios, were noted for single grains from both the AGM and EGM, as well as in grains of polycrase-(Y) from four different textural-paragenetic units located in the Vladislav pegmatite. Simultaneous increase of U/(U + Th) and Y/(Y + REE) in the AGM during fractionation is typical. The Ta/(Ta + Nb) fractionation is usually weak and contradicts the Y/(Y + REE) and U/(U + Th) fractionation trends. This unusual behavior of Nb and Ta may be controlled by associated Ti-rich minerals (titanite, ilmenite, rutile), the composition of parental melt and/or by elevated F activity. The AGM and EGM from pegmatites of the Třebíč Pluton are quite similar in composition to those from REL-REE euxenite-subtype pegmatites in the Trout Creek Pass, Chaffee County, Colorado, USA, which are generally Ca,U,Th-depleted, show lower Ta/(Ta+Nb), and lower variation in HREE/LREE.

  9. Cathodoluminescence investigations on quartz cement in the sandstones of Khabour Formation from Iraqi Kurdistan Region, Northern Iraq

    NASA Astrophysics Data System (ADS)

    Omer, Muhamed F.; Friis, Henrik

    2014-03-01

    The Ordovician deltaic to shallow marine Khabour Formation in Northern Iraq consists mainly of sandstone with minor siltstone and interbedded shale. The sandstones are pervasively cemented by quartz that resulted in very little preserved primary porosity. Cathodoluminescence and petrographic studies showed that the silica cementation occurred in five successive phases which can be distinguished by their luminescence pattern. The precipitations of two phases have predated the major compaction process while the other phases are younger. The successive phases represent a sequence of changes in silica supply which were classified as very early and early, derived from dissolved biogenic silica that precipitated as opal/microquartz, possibly pre-compactional and of non-luminescent quartz overgrowth type. This was followed by phases whose silica supply derived from pressure solution of quartz, dissolution of feldspar, and hydrothermal fluids related to major thrust fault event. These successive quartz cement phases showed an increase in luminescence and the development of complicated zonation pattern in late-stage quartz cementation.

  10. Using Neutron Diffraction to Determine the Low-Temperature Behavior of Pb2+ in Lead Feldspar

    NASA Astrophysics Data System (ADS)

    Kolbus, L. M.; Anovitz, L. M.; Chakoumackos, B. C.; Wesolowski, D. J.

    2014-12-01

    Feldspar minerals comprise 60% of the Earth's crust, so it imperative that the properties of feldspar be well understood for seismic modeling. The structure of feldspar consists of a three-dimensional framework of strongly-bonded TO4 tetrahedra formed by the sharing of oxygen atoms between tetrahedra. The main solid solution series found in natural feldspars are alkali NaAlSi3O8 -KAlSi3O8 and plagioclase CaAl2Si2O8-NaAlSi3O8. Recently, efforts have been made to systematically quantify feldspars structural change at non-ambient temperatures by considering only the relative tilts of the tetrahedral framework [1]. This serves as a tool to predict various behaviors of the structure such as the relative anisotropy of unit cell parameters and volume evolution with composition and temperature. Monoclinic feldspars are well predicted by the model [1], but discrepancies still remain between the model predictions and real structures with respect to absolute values of the unit cell parameters. To improve the existing model, a modification must be made to account for the M-cation interaction with its surrounding oxygen atoms. We have, therefore, chosen to study the structure of Pb-feldspar (PbAl2Si2O8), which provides the opportunity to characterize a monoclinic Al2Si2 feldspar containing a large M-site divalent cation using neutron diffraction. Neutron diffraction allows for the characterization of the M-site cation interaction between the oxygen atoms in the polyhedral cage by providing information to accurately determine the atomic displacement parameters.. Lead feldspar was synthesized for this study using the method described in [2], and confirmed to have a monoclinic C2/m space group. In this talk we will present structural determinations and atomic displacement parameters of Pb-feldspar from 10 - 300K generated from Neutron diffraction at the POWGEN beamline at the Spallation Neutron Source at Oak Ridge National lab, and compare our results to those predicted by the tetrahedral tilting model. [1] Angel, R.J. Ross, N.L, Zhao, J, Sochalski-Kolbus, L., Kruger, H., Schmidt, B.C. (2013) European Journal of Mineralogy, 25: 597-614. [2] Benna, P., Tribaudino, M., Bruno, E. (1996) American Mineralogist, 81: 1337-1343.

  11. Principles of Thermal Expansion in Feldspars

    NASA Astrophysics Data System (ADS)

    Hovis, Guy; Medford, Aaron; Conlon, Maricate; Tether, Allison; Romanoski, Anthony

    2010-05-01

    Following the recent thermal expansion work of Hovis et al. (1) on AlSi3 feldspars, we have investigated the thermal expansion of plagioclase, Ba-K, and Ca-K feldspar crystalline solutions. X-ray powder diffraction data were collected between room temperature and 925 °C on six natural plagioclase specimens ranging in composition from anorthite to oligoclase, the K-exchanged equivalents of these plagioclase specimens, and five synthetic Ba-K feldspars with compositions ranging from 25 to 99 mol % BaAl2Si2O8. The resulting thermal expansion coefficients (α) for volume have been combined with earlier results for end-member Na- and K-feldspars (2,3). Unlike AlSi3 feldspars, Al2Si2 feldspars, including anorthite and celsian from the present study plus Sr- and Pb-feldspar from other workers (4,5), show essentially constant and very limited thermal expansion, regardless of divalent cation size. In the context of structures where the Lowenstein rule (6) requires Al and Si to alternate among tetrahedra, the proximity of bridging Al-O-Si oxygen ions to divalent neighbors (ranging from 0 to 2) produces short Ca-O (or Ba-O) bonds (7,8) that apparently are the result of local charge-balance requirements (9). Gibbs et al. (10) suggest that short bonds such as these have a partially covalent character. This in turn stiffens the structure. Thus, for feldspar series with coupled substitution the change away from a purely divalent M-site occupant gives the substituting (less strongly bonded) monovalent cations increasingly greater influence on thermal expansion. Overall, then, thermal expansion in the feldspar system is well represented on a plot of α against room-temperature volume, where one sees a quadrilateral bounded by data for (A) AlSi3 feldspars whose expansion behavior is controlled largely by the size of the monovalent alkali-site occupant, (B) Al2Si2 feldspars whose expansion is uniformly limited by partially-covalent bonds between divalent M-site occupants and bridging Al-O-Si oxygens, (C) plagioclase (11,12,13) and (D) Ba-K feldspars (12) where coupled substitution across the series produces expansion behavior that rapidly transitions from one control to the other. Generally, thermal expansion coefficients vary linearly as functions of room-temperature volume between the relevant end members. Thus, the thermal expansion of any feldspar can be estimated simply from knowledge of its chemical system and room-temperature volume. References cited: (1) Hovis, Morabito, Spooner, Mott, Person, Henderson, Roux & Harlov (2008) American Mineralogist 93, 1568-1573. (2) Hovis & Graeme-Barber (1997) American Mineralogist 82, 158-164. (3) Hovis, Brennan, Keohane & Crelling (1999) The Canadian Mineralogist 37, 701-709. (4) Henderson (1984) Progress in Experimental Petrology, N.E.R.C. Report 6, 78-83. (5) Benna, Tribaudino & Bruno (1999) American Mineralogist 84, 120-129. (6) Lowenstein (1954) American Mineralogist 39, 92 -96. (7) Megaw, Kempster & Radosolovich (1962) Acta Crystallographica 15, 1017-1035. (8) Newham & Megaw (1960) Acta Crystallographica 13, 303-312. (9) Pauling (1929) Journal of the American Chemical Society 51, 1010-1026. (10) Gibbs, Rosso, Cox & Boisen (2003) Physics and Chemistry of Minerals 30, 317-320. (11) Grundy & Brown (1974) In The Feldspars, Eds. MacKenzie & Zussman, 163-173. (12) Hovis, Medford, Conlon, Tether & Romanoski (in review) American Mineralogist. (13) Tribaudino, Angel, Camara, Nestola, Pasqual, & Margiolaki (in review) Contributions to Mineralogy and Petrology.

  12. Equilibrium-disequilibrium relations in the Monte Rosa Granite, Western Alps: Petrological, Rb-Sr and stable isotope data

    USGS Publications Warehouse

    Frey, M.; Hunziker, J.C.; O'Neil, J.R.; Schwander, H.W.

    1976-01-01

    Nine samples from the Monte Rosa Granite have been investigated by microscopic, X-ray, wet chemical, electron microprobe, stable isotope and Rb-Sr and K-Ar methods. Two mineral assemblages have been distinguished by optical methods and dated as Permian and mid-Tertiary by means of Rb-Sr age determinations. The Permian assemblage comprises quartz, orthoclase, oligoclase, biotite, and muscovite whereas the Alpine assemblage comprises quartz, microcline, albite+epidote or oligoclase, biotite, and phengite. Disequilibrium between the Permian and Alpine mineral assemblages is documented by the following facts: (i) Two texturally distinguishable generations of white K-mica are 2 M muscovite (Si=3.1-3.2) and 2 M or 3 T phengite (Si=3.3-3.4). Five muscovites show Permian Rb-Sr ages and oxygen isotope fractionations indicating temperatures between 520 and 560 ?? C; however, K-Ar ages are mixed or rejuvenated. Phengite always shows mid-Tertiary Rb-Sr ages, (ii) Two biotite generations can be recognized, although textural evidence is often ambiguous. Three out of four texturally old biotites show mid-Tertiary Rb-Sr cooling ages while the oxygen isotopic fractionations point to Permian, mixed or Alpine temperatures, (iii) Comparison of radiogenic and stable isotope relations indicates that the radiogenic isotopes in the interlayer positions of the micas were mobilized during Alpine time without recrystallization, that is, without breaking Al-O or Si-O bonds. High Ti contents in young muscovites and biotites also indicate that the octahedral (and tetrahedral) sites remained undisturbed during rejuvenation. (iv) 'Isotopic reversals' in the order of O18 enrichment between K-feldspar and albite exist. Arguments for equilibrium during Permian time are meagre because of Alpine overprinting effects. Texturally old muscovites show high temperatures and Permian Rb-Sr ages in concordancy with Rb-Sr whole rock ages. For the tectonically least affected samples, excellent concordance between quartz-muscovite and quartz-biotite 'Permian temperatures' implies oxygen isotope equilibrium in Permian time which was undisturbed during Alpine metamorphism. Arguments for equilibrium during the mid-Tertiary metamorphism are as follows: (i) Mid-Tertiary Rb-Sr mineral isochrons of up to six minerals exist, (ii) Oxygen isotope temperatures of coexisting Alpine phengites and biotites are concordant. The major factor for the adjustment of the Permian assemblages to Alpine conditions was the degree of Alpine tectonic overprinting rather than the maximum temperatures reached during the mid-Tertiary Alpine metamorphism. The lack of exchange with externally introduced fluid phases in the samples least affected by tectonism indicates that the Monte Rosa Granite 'stewed in its own juices'. This seems to be the major cause for the persistence of Permian ages and corresponding temperatures. ?? 1976 Springer-Verlag.

  13. Variable diffusion rates during exsolution coarsening in the presence of fluids.

    NASA Astrophysics Data System (ADS)

    Putnis, Andrew; Prent, Alexander

    2017-04-01

    The scale of exsolution textures in mineral solid solutions has long been used as an indicator of thermal history during cooling. The theory of spinodal decomposition in an anisotropic solid and subsequent coarsening of exsolution textures as a function of temperature and cooling rate is well developed (see Petrishcheva et al., 2009 and Abart et al., 2009 for a review of the Cahn-Hilliard theory). For the case of exsolution in the alkali feldspar solid solution [(Na,K)AlSi3O8] the characteristic texture shows compositional fluctuations in Na,K with a wavelength that depends on the cooling rate. The cooling rate is determined from knowledge of the Na-K interdiffusion coefficient, assuming that the unmixing is simply due to the interdiffusion of Na and K in an otherwise fixed tetrahedral Al,Si framework. Cryptoperthites and mesoperthites with a periodic lamellar microstructure are considered to be the end-result of such a solid-state exsolution process. Later-stage fluid infiltration results in patch perthites that are formed at a sharp replacement front by a dissolution-precipitation mechanism (Parsons et al., 2015). Patch perthites have an easily recognizable texture and are clear indicators of a reaction with an aqueous solution. The distinction is thus drawn between crypto- and meso-perthite showing periodic lamellae, associated with a solid-state exsolution process, and the patch perthite showing irregular domains of Na-rich and K-rich feldspars associated with a fluid mediated reprecipitation process. However, the presence of fluids can also enhance the coarsening of lamellar exsolution textures, retaining an apparently solid-state microstructure but with a length scale that is dependent on local recrystallization driven by fluid infiltration. Examples will be given from alkali feldspars in granitic rocks where it is clearly demonstrable that cooling rates cannot be inferred from such exsolution textures. The variability in Na,K diffusion rates and thus different length scales of exsolution are likely to be due to the efficiency of diffusional transport through a fluid phase, which is influenced by differences in fluid-induced micro- and nano-porosity. Abart R. et al. (2009) Am. J. Sci. 309, 450-475. Petrishcheva E. and Abart R. (2009) Am. J. Sci, 309, 431-449. Parsons I. et al., (2015) Am. Min. 100, 1277-1303.

  14. Hydrothermal alteration and diagenesis of terrestrial lacustrine pillow basalts: Coordination of hyperspectral imaging with laboratory measurements

    NASA Astrophysics Data System (ADS)

    Greenberger, Rebecca N.; Mustard, John F.; Cloutis, Edward A.; Mann, Paul; Wilson, Janette H.; Flemming, Roberta L.; Robertson, Kevin M.; Salvatore, Mark R.; Edwards, Christopher S.

    2015-12-01

    We investigate an outcrop of ∼187 Ma lacustrine pillow basalts of the Talcott Formation exposed in Meriden, Connecticut, USA, focusing on coordinated analyses of one pillow lava to characterize the aqueous history of these basalts in the Hartford Basin. This work uses a suite of multidisciplinary measurements, including hyperspectral imaging, other spectroscopic techniques, and chemical and mineralogical analyses, from the microscopic scale up to the scale of an outcrop. The phases identified in the sample are albite, large iron oxides, and titanite throughout; calcite in vesicles; calcic clinopyroxene, aegirine, and Fe/Mg-bearing clay in the rind; and fine-grained hematite and pyroxenes in the interior. Using imaging spectroscopy, the chemistry and mineralogy results extend to the hand sample and larger outcrop. From all of the analyses, we suggest that the pillow basalts were altered initially after emplacement, either by heated lake water or magmatic fluids, at temperatures of at least 400-600 °C, and the calcic clinopyroxenes and aegirine identified in the rind are a preserved record of that alteration. As the hydrothermal system cooled to slightly lower temperatures, clays formed in the rind, and, during this alteration, the sample oxidized to form hematite in the matrix of the interior and Fe3+ in the pyroxenes in the rind. During the waning stages of the hydrothermal system, calcite precipitated in vesicles within the rind. Later, diagenetic processes albitized the sample, with albite replacing plagioclase, lining vesicles, and accreting onto the exterior of the sample. This albitization or Na-metasomatism occurred when the lake within the Hartford Basin evaporated during a drier past climatic era, resulting in Na-rich brines. As Ca-rich plagioclase altered to albite, Ca was released into solution, eventually precipitating as calcite in previously-unfilled vesicles, dominantly in the interior of the pillow. Coordinated analyses of this sample permit identification of the alteration phases and help synthesize the aqueous history of pillow lavas of the Talcott Formation. These results are also relevant to Mars, where volcanically-resurfaced open basin lakes have been found, and this Hartford Basin outcrop may be a valuable analog for any potential volcano-lacustrine interactions. The results can also help to inform the utility and optimization of potentially complementary, synergistic, and uniquely-suited techniques for characterization of hydrothermally-altered terrains.

  15. Systematic variations of argon diffusion in feldspars and implications for thermochronometry

    DOE PAGES

    Cassata, William S.; Renne, Paul R.

    2013-03-07

    Coupled information about the time-dependent production and temperature-dependent diffusion of radiogenic argon in feldspars can be used to constrain the thermal evolution attending a host of Earth and planetary processes. To better assess the accuracy of thermal models, an understanding of the mechanisms and pathways by which argon diffuses in feldspars is desirable. Here we present step-heating Ar diffusion experiments conducted on feldspars with diverse compositions, structural states, and microstructural characteristics. The experiments reveal systematic variations in diffusive behavior that appear closely related to these variables, with apparent closure temperatures for 0.1–1 mm grains of ~200–400 °C (assuming a 10more » °C/Ma cooling rate). Given such variability, there is no broadly applicable set of diffusion parameters that can be utilized in feldspar thermal modeling; sample-specific data are required. Diffusion experiments conducted on oriented cleavage flakes do not reveal directionally-dependent diffusive anisotropy to within the resolution limits of our approach (approximately a factor of 2). Additional experiments aimed at constraining the physical significance of the diffusion domain are presented and indicate that unaltered feldspar crystals with or without coherent exsolution lamellae diffuse at the grain-scale, whereas feldspars containing hydrothermal alteration and/or incoherent sub-grain intergrowths do not. Arrhenius plots for argon diffusion in plagioclase and alkali feldspars appear to reflect a confluence of intrinsic diffusion kinetics and structural transitions that occur during incremental heating experiments. These structural transitions, along with sub-grain domain size variations, cause deviations from linearity (i.e., upward and downward curvature) on Arrhenius plots. An atomistic model for Arrhenius behavior is proposed that incorporates the variable lattice deformations of different feldspars in response to heating and compression. Furthermore, the resulting implications for accurately extrapolating laboratory-derived diffusion parameters to natural settings and over geologic time are discussed. We find that considerable inaccuracies may exist in published thermal histories obtained using multiple diffusion domain (MDD) models fit to Arrhenius plots for exsolved alkali feldspar, where the inferred Ar partial retention zones may be spuriously hot.« less

  16. Geothermometry, geochronology, and mass transfer associated with hydrothermal alteration of a rhyolitic hyaloclastite from Ponza Island, Italy

    USGS Publications Warehouse

    Altaner, S.P.; Ylagan, R.F.; Savin, S.M.; Aronson, J.L.; Belkin, H.E.; Pozzuoli, A.

    2003-01-01

    A rhyolitic hyaloclastite from Ponza Island, Italy, was hydrothermally altered, producing four distinct alteration zones based on X-ray diffraction mineralogy and field textures: (1) nonpervasive argillic zone; (2) propylitic zone; (3) silicic zone; and (4) sericitic zone. The unaltered hyaloclastite is volcanic breccia with clasts of vesiculated obsidian in a matrix of predominantly pumice lapilli. Incomplete alteration of the hyaloclastite resulted in the nonpervasive argillic zone, characterized by smectite and disordered opal-CT. The other three zones exhibit more complete alteration of the hyaloclastite. The propylitic zone is characterized by mixed-layer illite-smectite (I-S) with 10 to 85% I, mordenite, opal-C, and authigenic K-feldspar (akspar). The silicic zone is characterized by I-S with ???90% I, pure illite, quartz, akspar, and occasional albite. The sericitic zone consists primarily of I-S with ???66% I, pure illite, quartz, and minor akspar and pyrite. K/Ar dates of I-S indicate hydrothermal alteration occurred at 3.38 ?? 0.08 Ma. Oxygen isotope compositions of I-S systematically decrease from zones 1 to 4. In the argillic zone, smectite has ??18 O values of 21.7 to 22.0??? and I-S from the propylitic, silicic, and sericitic zones ranges from 14.5 to 16.3???, 12.5 to 14.0???, and 8.6 to 11.9???, respectively. ??18 O values for quartz from the silicic and sericitic zones range from 12.6 to 15.9???. By use of isotope fractionation equations and data from authigenic quartz-hosted primary fluid inclusions, alteration temperatures ranged from 50 to 65 ??C for the argillic zone, 85 to 125 ??C for the propylitic zone, 110 to 210 ??C for the silicic zone, and 145 to 225 ??C for the sericitic zone. Fluid inclusion data and calculated ??18 O water values indicate that hydrothermal fluids were seawater dominated. Mass-transfer calculations indicate that hydrothermal alteration proceeded in a relatively open chemical system and alteration in the sericitic zone involved the most extensive loss of chemical species, especially Si. Systematic gains in Mg occur in all alteration zones as a result of I-S clay mineral formation, and systematic losses of Na, Ca, and K occur in most zones. With the exception of Ca, calculations of mass transfer associated with hydrothermal alteration on Ponza agree with chemical fluxes observed in laboratory experiments involving hydrothermal reactions of rhyolite and seawater. The anomalous Ca loss at Ponza may be due to hydrothermal formation of anhydrite and later low-temperature dissolution. On the basis of Mg enrichments derived from circulating seawater, we estimate the following minimum water/rock ratios: 9, 3, 6, and 9 for the argillic, propylitic, silicic, and sericitic zones, respectively. Hydrothermal fluid pH for the propylitic and silicic zones was neutral to slightly basic and relatively acidic for the sericitic zone as a result of condensation of carbonic and perhaps other acids. Copyright ?? 2003 Elsevier Science Ltd.

  17. Mass transfer and fluid evolution in late-metamorphic veins, Rhenish Massif (Germany): insight from alteration geochemistry and fluid-mineral equilibria modeling

    NASA Astrophysics Data System (ADS)

    Marsala, Achille; Wagner, Thomas

    2016-08-01

    Element mobility and fluid-rock interaction related to the formation of late-metamorphic quartz veins have been studied by combination of mineral chemistry, whole-rock geochemistry, mass balance analysis and fluid-mineral equilibria modeling. The quartz veins are hosted by very low-grade metasedimentary rocks of the fold-and-thrust belt of the Rhenish Massif (Germany). The veins record two stages of evolution, a massive vein filling assemblage with elongate-blocky quartz, chlorite, apatite and albite, and a later open space filling assemblage with euhedral crystals of quartz, ankerite-dolomite and minor calcite and sulfides. Detailed mass balance analysis of an alteration profile adjacent to a representative quartz vein demonstrates that element mobility is restricted to the proximal zone. The most important element changes are gain of Ca, Fe, Mg, Mn, P and CO2, and loss of Si, K and Na. The data demonstrate that wall-rock carbonation is one of the main alteration features, whereas mobility of Si, K and Na are related to dissolution of quartz and destruction of detrital feldspar and muscovite. The whole-rock geochemical data, in conjunction with fluid composition data and pressure-temperature estimates, were used as input for fluid-mineral equilibria modeling in the system Si-Al-Fe-Mg-Ca-Na-K-C-S-O-H-B-F-Cl. Modeling involved calculation of rock-buffered fluid compositions over the temperature interval 100-500 °C, and reaction-path simulations where a rock-buffered high-temperature fluid reacts with fresh host-rocks at temperatures of 400, 300 and 200 °C. Calculated rock-buffered fluid compositions demonstrate that retrograde silica solubility is a strong driving force for quartz leaching in the temperature-pressure window of 380-450 °C and 0.5 kbar. These conditions overlap with the estimated temperatures for the initial stage of vein formation. Reaction-path models show that high-temperature alteration can produce the observed silica leaching, suggesting that fast advection of external hot fluids from deeper crustal levels was essential for the early stage of vein formation. Fluid advection must have occurred as multiple pulses, which allowed for periods of influx of fluids that leached quartz, alternating with periods of cooling and quartz precipitation in the veins. Reaction-path models at high temperatures (300-400 °C) do not produce carbonate alteration, whereas fluid-rock reaction at 200 °C produces carbonate alteration, consistent with the temperature estimates for the late-stage vein carbonate assemblage. Comparison between modeling results and geochemical data suggests that the observed alteration features are the product of fluid-rock reaction under conditions where the external fluid gradually cooled down and evolved with time. The results of this study highlight the importance of late-orogenic fluid migration for the formation of quartz vein arrays in fold-and-thrust belts.

  18. Feldspar basalts in lunar soil and the nature of the lunar continents

    NASA Technical Reports Server (NTRS)

    Reid, A. M.; Ridley, W. I.; Harmon, R. S.; Warner, J.; Brett, R.; Jakes, P.; Brown, R. W.

    1974-01-01

    It is found that 25% on the Apollo-14 glasses have the same composition as the glasses in two samples taken from the Luna-16 column. The compositions are equivalent to feldspar basalt and anorthosite gabbro, and are similar to the feldspar basalts identified from Surveyor-7 analysis for lunar continents.

  19. APPLICATIONS OF CATHODOLUMINESCENCE OF QUARTZ AND FELDSPAR TO SEDIMENTARY PETROLOGY.

    USGS Publications Warehouse

    Ruppert, Leslie F.

    1987-01-01

    Cathodoluminescence (CL), the emission of visible light during electron bombardment, was first used in sandstone petrology in the mid-1960's. CL techniques are especially useful for determining the origin and source of quartz and feldspar, two of the most common constituents in clastic rocks. CL properties of both minerals are dependent on their temperature of crystallization, duration of cooling, and/or history of deformation. Detrital quartz and feldspar are typically derived from igneous and metamorphic sources and luminesce in the visible range whereas authigenic quartz and feldspar form at low temperatures and do not luminesce. Quantification of luminescent and non-luminescent quartz and feldspar with the scanning electron microscope, electron microprobe, or a commercial CL device can allow for the determination of origin, diagenesis, and source of clastic rocks when used in conjunction with field and other petrographic analyses.

  20. Geochemical characteristics of the San Miguel aquifer, Baja California, Mexico.

    NASA Astrophysics Data System (ADS)

    Tostado-Plascencia, Miriam; Rosas-Elguera, Jose; Kretzschmar, Thomas

    2010-05-01

    The valley of San Miguel, located in the state of Baja California, Mexico, is an important region because of the wine industry. It is therefore important to know groundwater characteristics. Two aquifers can be recognized in the San Miguel basin, first one is in fractured granitic rocks (in the upper part of the basin, called UB) and other is free-type in detritc sediments (in the lower part of the basin, close to the sea, called LB). The water temperature ranges between 25°C y 11°C without significant variations along the year. The conductivity increases with the water temperature and decreases in February when the temperature is lower. The pH of the waters in UB is between 8.5 and 6.5 but in the LB is in the range of 6.8 to 7.3. Our data show that Na, Mg, and HCO3- concentrations decrease during the rainy season due to ion exchange. According to the Stiff diagrams the waters of the LB are classified as sodium chloride. In the UB the water classification includes calcium and magnesium bicarbonate, magnesium chloride, and few calcium chloride and sodium chloride. The saturation indexes of the waters suggest that the mineral phases which can be present are: K-feldspar, gibbsite, albite, quartz, calcite, aragonite, gypsum, and magnesite. Because of SI>0 then the first four phases can precipitate but the SI of magnesite and gypsum is negative thus the can be dissolved. Finally, calcite and aragonite are in equilibrium due to they are close to zero. Our results suggest that the aquifers of the San Miguel basin do not show evidence of saline intrusion.

  1. Pressure-induced amorphization in plagioclase feldspars: A time-resolved powder diffraction study during rapid compression

    NASA Astrophysics Data System (ADS)

    Sims, M.; Jaret, S.; Carl, E. R.; Schrodt, N.; Rhymer, B.; Mohrholz, V.; Konopkova, Z.; Smith, J.; Liermann, H. P.; Glotch, T. D.; Ehm, L.

    2017-12-01

    Impact cratering is important in planetary body formation and evolution [1]. The pressure and temperature conditions during impacts are classified using systems [2] that stem from 1) petrographic features and 2) the presence of high pressure mineral phases observed in impactites. Maskelynite, amorphous plagioclase ((Na1-x Cax)Al1+x Si2-x O8), is a key indicator of petrographic type S5 (strongly shocked) and forms between 25 and 45 GPa. However, the formation pressure of maskelynite differs substantially depending on the experimental technique producing it. Shock experiments produce amorphization at > 10 GPa higher than static diamond anvil cell (DAC) experiments. We utilize a new technique, fast compression in combination with time-resolved powder diffraction, to study the effect of strain rate on plagioclase amorphization pressure. Anorthite and albite were compressed to 80 GPa at multiple rates from 0.05 GPa/s to 80 GPa/s, and we observed a decrease in amorphization pressure with increasing compression rate for strain rates of about 10-3 s-1. This decrease demonstrates negative strain rate sensitivity, which is likely caused by structural defects. Negative strain rate sensitivity implies that faster rates are more ductile and heterogeneous and slower rates are more brittle and homogeneous. Our results fit into the deformation framework proposed by Huffman and Reimold [3] and are consistent with the formation mechanism for maskelynite by "shear melting" proposed by Grady [4]. [1] Chao, E.C.T., Shock Metamorphism of Natural Materials., Baltimore, Md: Mono Book Corp, 1968; [2] Stöffler, D., J. Geophys. Res, 76(23), 5541, 1971; [3] Huffman, A.R. and W.U. Reimold, Tectonophysics, 256(1-4), 165-217, 1996; [4] Grady, D., J. Geophys. Res. Solid Earth, 85(B2), 913-924, 1980.

  2. Late Cretaceous dacitic dykes swarm from Central Iran, a trace for amphibolite melting in a subduction zone

    NASA Astrophysics Data System (ADS)

    Nosouhian, N.; Torabi, G.; Arai, S.

    2016-05-01

    Late Cretaceous Bayazeh dyke swarm is situated in the western part of the Central-East Iranian Microcontinent (CEIM). These dykes with a dominant northeast-southwest trend occur in the Eastern margin of the Yazd block. They cross cut the Lower Cretaceous sedimentary rocks. The length of the Bayazeh dykes occasionally reaches up to the 2 km. Rock forming minerals of these dykes are plagioclase (andesine and oligoclase), amphibole (magnesio-hastingsitic hornblende, magnesio-hornblende and tschermakitic hornblende), quartz, K-feldspar (orthoclase), zircon and apatite. Secondary minerals are chlorite (pycnochlorite), albite, magnetite and calcite. The main textures are porphyritic, glomeroporphyritic and poikilitic. The felsic character of the Bayazeh dacitic dykes is shown by their high SiO2 (62.70 to 64.60 wt %) and low [Fe2O3* + MgO + MnO + TiO2] (average 4.64 wt %) contents. These dykes represent the peraluminous to metaluminous nature and their Na2O and K2O values are 5.20-7.14 and 1.51-2.59 wt %, respectively, which reveal their sodic chemistry. The trace element characteristics are the LREE enrichment relative to HREE, [La/Yb]CN = 13.27-22.99, and slightly negative or positive Eu anomaly. These geochemical characteristics associated with low Nb/La (0.16-0.25), Yb/Nd (0.04-0.05) and high Zr/Sm (37.60-58.25) ratios indicate that the melting of a metamorphosed subducted oceanic crust is occurred where the residual mineral assemblage is dominated by garnet amphibolite. The chemical compositions of the Bayazeh dykes resemble those of slab-derived tonalite-trondhjemite-granodiorite (TTG) series. They were formed by subduction of Mesozoic Neo-Tethys -related Nain and Ashin oceanic crusts.

  3. Geochemical features of the geothermal fluids from the Mapamyum non-volcanic geothermal system (Western Tibet, China)

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Chen, Xiaohong; Shen, Licheng; Wu, Kunyu; Huang, Mingzhi; Xiao, Qiong

    2016-06-01

    Mapamyum geothermal field (MGF) in western Tibet is one of largest geothermal areas characterized by the occurrence of hydrothermal explosions on the Tibetan Plateau. The geochemical properties of hydrothermal water in the MGF system were investigated to trace the origin of the solutes and to determine the equilibrium temperatures of the feeding reservoir. The study results show that the geochemistry of hydrothermal waters in the MGF system is mainly of the Na-HCO3 type. The chemical components of hydrothermal waters are mainly derived from the minerals in the host rocks (e.g., K-feldspar, albite, Ca-montmorillonite, and Mg-montmorillonite). The hydrothermal waters are slightly supersaturated or undersaturated with respect to aragonite, calcite, dolomite, chalcedony and quartz (saturation indices close to 0), but are highly undersaturated with respect to gypsum and anhydrite (saturation indices < 0). Mixing models and Na-K-Mg ternary diagrams show that strong mixing between cold meteoric water and deeply-seated thermal fluids occurred during the upward flowing process. δD and δ18O data confirm that the meteoric water acts as the water source of the geothermal waters. An 220 °C equilibrated reservoir temperature of hydrothermal spring waters was calculated via both the Na-K-Mg ternary diagrams and the cationic chemical geothermometers. The logpCO2 of hydrothermal waters in the MGF system ranges from - 2.59 to - 0.57 and δ13C of the total dissolved inorganic carbon ranges from - 5.53‰ to - 0.94‰, suggesting that the carrier CO2 in hydrothermal water are mainly of a magmatic or metamorphic CO2 origin.

  4. Nanoscale Chemical Processes Affecting Storage Capacities and Seals during Geologic CO2 Sequestration.

    PubMed

    Jun, Young-Shin; Zhang, Lijie; Min, Yujia; Li, Qingyun

    2017-07-18

    Geologic CO 2 sequestration (GCS) is a promising strategy to mitigate anthropogenic CO 2 emission to the atmosphere. Suitable geologic storage sites should have a porous reservoir rock zone where injected CO 2 can displace brine and be stored in pores, and an impermeable zone on top of reservoir rocks to hinder upward movement of buoyant CO 2 . The injection wells (steel casings encased in concrete) pass through these geologic zones and lead CO 2 to the desired zones. In subsurface environments, CO 2 is reactive as both a supercritical (sc) phase and aqueous (aq) species. Its nanoscale chemical reactions with geomedia and wellbores are closely related to the safety and efficiency of CO 2 storage. For example, the injection pressure is determined by the wettability and permeability of geomedia, which can be sensitive to nanoscale mineral-fluid interactions; the sealing safety of the injection sites is affected by the opening and closing of fractures in caprocks and the alteration of wellbore integrity caused by nanoscale chemical reactions; and the time scale for CO 2 mineralization is also largely dependent on the chemical reactivities of the reservoir rocks. Therefore, nanoscale chemical processes can influence the hydrogeological and mechanical properties of geomedia, such as their wettability, permeability, mechanical strength, and fracturing. This Account reviews our group's work on nanoscale chemical reactions and their qualitative impacts on seal integrity and storage capacity at GCS sites from four points of view. First, studies on dissolution of feldspar, an important reservoir rock constituent, and subsequent secondary mineral precipitation are discussed, focusing on the effects of feldspar crystallography, cations, and sulfate anions. Second, interfacial reactions between caprock and brine are introduced using model clay minerals, with focuses on the effects of water chemistries (salinity and organic ligands) and water content on mineral dissolution and surface morphology changes. Third, the hydrogeological responses (using wettability alteration as an example) of clay minerals to chemical reactions are discussed, which connects the nanoscale findings to the transport and capillary trapping of CO 2 in the reservoirs. Fourth, the interplay between chemical and mechanical alterations of geomedia, using wellbore cement as a model geomedium, is examined, which provides helpful insights into wellbore and caprock integrities and CO 2 mineralization. Combining these four aspects, our group has answered questions related to nanoscale chemical reactions in subsurface GCS sites regarding the types of reactions and the property alterations of reservoirs and caprocks. Ultimately, the findings can shed light on the influences of nanoscale chemical reactions on storage capacities and seals during geologic CO 2 sequestration.

  5. Geology of the Quartz Creek Pegmatite District, Gunnison County Colorado

    USGS Publications Warehouse

    Staatz, Mortimer H.; Trites, A.F.

    1952-01-01

    Inferred reserves of the district are estimated for beryl, scrap mica, both hand-cobbing and milling feldspar, lepidolite, columbite-tantalite, topaz, monazite, and microlite. No sheet mica was found. Reserves are small and transportation costs are high so substantial production of low-priced feldspar and scrap mica will depend on the adoption of economica milling techniques for recovering the large quantities of feldspar available.  Beryl is irregularly distributed and its recovery as a byproduct will depend on the establishment of a stable market for feldspar and scrap mica.  Lepidolite reserves are small low grade.

  6. Geochemistry of sedimentary-derived migmatite from NE Sardinia, Italy

    NASA Astrophysics Data System (ADS)

    Cruciani, Gabriele; Fancello, Dario; Franceschelli, Marcello; Scodina, Massimo

    2015-04-01

    In NE Sardinia at Porto Ottiolu, about 30 km south of Olbia (NE Sardinia), crops out a sequence of migmatized ortho and paragneiss, belonging to the Variscan basement's axial zone. Sedimentary-derived migmatite, which have a layered appearance in the field, were affected by three major variscan folding phase. D2, which is characterized by tight folds, is the most widespread deformation in the field. Leucosomes consists of discontinuous centimetre-thick, coarse-grained layers, that follow the S2 schistosity and are folded by D2 deformation phase. The contact with mesosome is sharp and sometimes marked by melanosome trails. They consist of quartz, plagioclase, very rare K-feldspar, muscovite, biotite, fibrolite, and rare kyanite. Plagioclase is unzoned oligoclase, though in some cases a thin albite rim is observed. Muscovite occurs as: i) single small- to medium-grained flakes enclosed in feldspar; ii) coarse grained crystals associated to biotite, fibrolite, and opaques, iii) in intergrowth with biotite to form thin elongated, slightly oriented trails, marking the faint foliation. Mesosomes are medium-grained, well foliated rocks, consisting of quartz, plagioclase muscovite, , biotite, fibrolite ± K-feldspar ± garnet. Fibrolite, muscovite and biotite are associated, to form strongly oriented, thick levels. Muscovite also occurs as unoriented crystals, showing quartz exsolutions and thin rims. A few mm-thick melanosome is usually present at the boundary between the leucosomes and mesosomes. Leucosomes are characterized by: SiO2: 75.4-77.9; Al2O3: 13.2-14.5; Fe2O3tot: 0.3-0.5; MgO: 0.1-0.2; CaO: 2.7- 3.7; Na2O: 3.9-4.6; K2O: 0.4-0.6 wt.%. An interesting feature is the relative high calcium content already described in other sedimentary-derived migmatite from Sardinia (Cruciani et al., 2008). In the normative Ab-An-Or diagram (Barker, 1979) the leucosomes plot at the boundary between trondhjemite/tonalite fields. All leucosomes are corundum normative and peraluminous. Mesosomes show a lower content of silica and higher content of iron, magnesium and potash. Major elements ranges are: SiO2: 69.9-70.2; Al2O3: 12.8-13.3; Fe2O3tot: 5.4-5.6; MgO: 2.1-2.3; CaO: 2.0-2.1; Na2O: 2.4-2.5; K2O: 2.2-2.4 wt%. Chondrite-normalized REE pattern, shows that all leucosomes are characterized by a positive Eu anomaly and a significant enrichment in LREE. Mesosomes pattern shows a marked negative Eu anomaly, an enrichment in LREE and a depletion in HREE. Total REE content is higher in mesosomes (132-156 ppm) than in leucosomes (51-58 ppm). Trondjhemite/tonalite composition with high CaO, Na2O and low K2O of the leucosomes will be discussed in relation to their significance and origin. References: Barker, F., 1979, Trondhjemite: definition, environment and hypotheses of origin. In: Barker, F. (Ed.), Trondhjemites, dacites, and related rocks. Developments in petrology, vol. 6. Elsevier,Amsterdam, pp. 1-12. Cruciani, G., Franceschelli, M., Elter, F.M., Puxeddu, M., Utzeri, D., 2008, Petrogenesis of Al-silicate-bearing trondhjemitic migmatites from NE Sardinia, Italy. Lithos v. 102, p. 554-574.

  7. Depositional environment, sand provenance, and diagenesis of the Basal Salina Formation (lower Eocene), northwestern Peru

    NASA Astrophysics Data System (ADS)

    Marsaglia, K. M.; Carozzi, A. V.

    The Basal Salina Formation is a lower Eocene transgressive sequence consisting of interbedded shales, siltstones, and conglomeratic sandstones. This formation occurs in the Talara basin of northwestern Peru and is one of a series of complexly faulted hydrocarbon-producing formations within this extensional forearc basin. These sediments were probably deposited in a fan-delta complex that developed along the ancestral Amotape Mountains during the early Eocene. Most of the sediment was derived from the low-grade metamorphic and plutonic rocks that comprise the Amotape Mountains, and their sedimentary cover. Detrital modes of these sandstones reflect the complex tectonic history of the area, rather than the overall forearc setting. Unlike most forearc sediments, these are highly quartzose, with only minor percentages of volcanic detritus. This sand is variably indurated and cemented by chlorite, quartz, calcite, and kaolinite. Clay-mineral matrix assemblages show gradational changes with depth, from primarily detrital kaolinite to diagenetic chlorite and mixed-layered illite/smectite. Basal Salina sandstones exhibit a paragenetic sequence that may be tied to early meteoric influx or late-stage influx of thermally driven brines associated with hydrocarbon migration. Much of the porosity is secondary, resulting from a first-stage dissolution of silicic constituents (volcanic lithic fragments, feldspar, and fibrous quartz) and a later dissolution of surrounding carbonate cement. Types of pores include skeletal grains, grain molds, elongate pores, and fracture porosity. Measured porosity values range up to 24% and coarser samples tend to be more porous. Permeability is enhanced by fractures and deterred by clay-mineral cements and alteration residues.

  8. The Albite Fusion Curve Re-examined: New Experiments and the Density and Compressibility of NaAlSi3O8 Liquid With Pressure

    NASA Astrophysics Data System (ADS)

    Tenner, T. J.; Lange, R. A.

    2005-12-01

    Two half-reversals on the melting temperature of high albite (NaAlSi3O8) were determined at 2.3 GPa (1360-1370 °C) and 2.8 GPa (1383-1389 °C) in a piston-cylinder apparatus with NaAlSi3O8 glass as the starting material. A detailed thermal gradient across the sample capsule was mapped, which showed a 3.5 °C gradient across the upper third of the sample capsule and a 30 °C gradient across the lower two-thirds. A calibration against the melting curve of NaCl showed a -5 % pressure correction for the BaCO3/MgO/graphite pressure medium used in these experiments. In addition to the glass-crystal half-reversals, a crystal-glass half-reversal at 2.73 GPa was obtained (1389-1399 °C) using high albite as the starting material. All run products that quenched to a glass were analyzed by Fourier-transform infrared spectroscopy and were found to contain < 0.045 wt% H2O. Our experimental constraints on the albite fusion curve are in excellent agreement with those of Birch and LeComte (1960) and Boyd and England (1963), but deviate from those of Boettcher et al. (1982). Our new data on the albite fusion curve at high pressure are compared with the calculated melting reaction based on the best available thermodynamic data at one bar (Lange, 2003), and various values for the pressure dependence of liquid compressibility (K' = dKT,0/dP, where KT,0 = 1/βT,0) for NaAlSi3O8 liquid, using the 3rd-order Birch-Murnaghan equation of state. Our phase-equilibrium data match the fusion curve calculated with a liquid value of 10.0 ± 1.0. This allows the density of NaAlSi3O8 liquid to be calculated at 1500 °C and 3.0 GPa (2.551 ± 0.01 g/cm3), with an uncertainty that is ~0.3 %. The results of this study show that the density and compressibility of this viscous and fully polymerized liquid can be calculated to high pressure (~3 GPa) with a remarkably high precision. Owing to the absence of any coordination change in NaAlSi3O8 liquid to ~8 GPa, calculations of its density and compressibility can likely be extended to this pressure.

  9. Thermodynamic modeling of phase relations and metasomatism in shear zones

    NASA Astrophysics Data System (ADS)

    Goncalves, P.; Oliot, E.; Marquer, D.

    2009-04-01

    Ductile shear zones have been recognized for a long time as privileged sites of intense fluid-rock interactions in the crust. In most cases they induce focused changes in mineralogy and bulk chemical composition (metasomatism) which in turn may control the deformation and fluid-migration processes. Therefore understanding these processes requires in a first step to be able to model phase relations in such open system. In this contribution, emphasizes in placed on metasomatic aspects of the problem. Indeed , in many ductile shear zones reported in metagranites, deformation and fluid-rock interactions are associated with gain in MgO and losses of CaO and Na2O (K2O is also a mobile component but it can be either gained or lost). Although the mineralogical consequences of this so-called Mg-metasomatism are well-documented (replacement of K-feldspar into phengite, breakdown of plagioclase into ab + ep, crystallization of chlorite), the origin of this coupled mass-transfer is still unknown. We have performed a forward modeling of phase relationships using petrogenetic grids and pseudosections that consider variations in chemical potential (μ) of the mobile elements (MgO, CaO, Na2O). Chemical potential gradients being the driving force of mass transfer, μ-μ diagrams are the most appropriate diagrams to model open systems where fluid-rock interactions are prominent. Chemical potential diagrams are equivalent to activity diagrams but our approach differs from previous work because (1) solid solutions are taken into account (2) phase relations are modeled in a more realistic chemical system (Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O) and (3) the use of pseudosections allows to predict changes of the mineralogy (modes, composition) for the specific bulk composition studied. A particular attention is paid to the relationships between component concentrations and chemical potentials, which is not obvious in multi-component system. The studied shear zone is located in the Grimsel granodiorite (Swiss Alps). Fourteen samples have been taken along a 80 meter-wide strain gradient from the undeformed granodiorite protolith to the ultramylonitic zone. The metastable magmatic assemblage consists of oligoclase (50 vol%), quartz ( 20 vol%), K-feldspar (17 vol%), and biotite (13 %). With increasing strain, K-feldspar and oligoclase rapidly disappear to produce albite and epidote porphyroblast (up to 45 and 5 vol% respectively) with phengite in shear planes (15 vol%). In the mylonite and ultramylonite, magmatic phases have been completely recrystallized and the metamorphic albite volume decreases down to 25 vol% whereas phengite constitutes up to 30 vol% of the rock. Epidote is absent in the ultramylonite. In localized shear bands, the metamorphic assemblage consists of phengite, chlorite, biotite and quartz. Mass balance calculations show that the ultramylonite is enriched in MgO (up to 130%) while CaO and Na2O are remove (80% and 45% respectively). However, mass transfer is even stronger in the chlorite-bearing shear bands, where CaO and Na2O have been completely leached out. Chemical potential pseudosections are constructed using the bulk composition of the unaltered granodiorite, with K2O, FeO, Al2O3 and SiO2 content remaining constant. Deformation occurred under water-saturated conditions at 6 kbar and 450°C. MgO, CaO and Na2O are considered as "perfectly mobile" components and therefore their chemical potentials, which is fixed by the externally-derived fluid, control the stability of the phases. μMgO vs μCaO and μMgO vs μNa2O diagrams, show that the breakdown of a Kf-ab-ep assemblage into phengite and the subsequent crystallization of chlorite require the introduction of a fluid with a μCaO and μNa2O significantly lower than in the unaltered metamorphic assemblage (Kf-ab-ep-Kf-Bio-q). Equalizing the chemical potential gradient of CaO and Na2O, established between the fluid and the metamorphic assemblage, is achieved by the complete removal of CaO and Na2O. The most striking result is that chemical potential diagram predicts that the loss of CaO and Na2O and the crystallization of chlorite-bearing assemblage at the expense of Kf-ep-ab imply a gain of MgO to reach equilibrium: "Mg-metasomatism" is therefore controlled and induced by the metamorphic assemblage. Finally fluid-rock interactions and mass transfer result in an increase in phyllosilicates in the shear zone from 13 to 32 vol%, which should strongly enhance the strain localization process. To conclude, our approach allows to predict and to quantify the mineralogical changes induced by fluid-rock interactions in a shear zone for any bulk composition or P-T composition.

  10. CONTRIBUTION TO THE GEOCHEMISTRY OF TANTALUM AND NIOBIUM IN THE HYDROTHERMAL-PNEUMATHOLYTIC PROCESS (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beus, A.A.; Sitnin, A.A.

    1961-01-01

    S>Data obtained as a result of geochemical investigations show that tantalum and niobium are typical elements of high-temperature postmagmatic processes (early albitization, greysening) connected with granites. The separation of tantalum and niobium in the hydrothermal-pneumatholytic process (greysening stage), which leads to the concentration of tantalum in albitized and greysenized granites (40 to 100 times compared to the average content in granites) is connected with the different mobility and stability of their acido- complex compounds (in particular fluor- and oxyfluorcomplexes), the existence of which in greysening solutions is suggested. A natural analogy in the behavior of both elements in the processesmore » of postmagmatic metasomatose in granites and granitic pegmatites is suggested. (tr-auth)« less

  11. Propagation of hydroclimatic variability through the critical zone

    NASA Astrophysics Data System (ADS)

    Porporato, A. M.; Calabrese, S.; Parolari, A.

    2016-12-01

    The interaction between soil moisture dynamics and mineral-weathering reactions (e.g., ion exchange, precipitation-dissolution) affects the availability of nutrients to plants, composition of soils, soil acidification, as well as CO2 sequestration. Across the critical zone (CZ), this interaction is responsible for propagating hydroclimatic fluctuations to deeper soil layers, controlling weathering rates via leaching events which intermittently alter the alkalinity levels. In this contribution, we analyze these dynamics using a stochastic modeling approach based on spatially lumped description of soil hydrology and chemical weathering reactions forced by multi-scale temporal hydrologic variability. We quantify the role of soil moisture dynamics in filtering the rainfall fluctuations through its impacts on soil water chemistry, described by a system of ordinary differential equations (and algebraic equations, for the equilibrium reactions), driving the evolution of alkalinity, pH, the chemical species of the soil solution, and the mineral-weathering rate. A probabilistic description of the evolution of the critical zone is thus obtained, allowing us to describe the CZ response to long-term climate fluctuations, ecosystem and land-use conditions, in terms of key variables groups. The model is applied to the weathering rate of albite in the Calhoun CZ observatory and then extended to explore similarities and differences across other CZs. Typical time scales of response and degrees of sensitivities of CZ to hydroclimatic fluctuations and human forcing are also explored.

  12. Hydrologic Transport of Dissolved Inorganic Carbon and Its Control on Chemical Weathering

    NASA Astrophysics Data System (ADS)

    Calabrese, Salvatore; Parolari, Anthony J.; Porporato, Amilcare

    2017-10-01

    Chemical weathering is one of the major processes interacting with climate and tectonics to form clays, supply nutrients to soil microorganisms and plants, and sequester atmospheric CO2. Hydrology and dissolution kinetics have been emphasized as factors controlling chemical weathering rates. However, the interaction between hydrology and transport of dissolved inorganic carbon (DIC) in controlling weathering has received less attention. In this paper, we present an analytical model that couples subsurface water and chemical molar balance equations to analyze the roles of hydrology and DIC transport on chemical weathering. The balance equations form a dynamical system that fully determines the dynamics of the weathering zone chemistry as forced by the transport of DIC. The model is formulated specifically for the silicate mineral albite, but it can be extended to other minerals, and is studied as a function of percolation rate and water transit time. Three weathering regimes are elucidated. For very small or large values of transit time, the weathering is limited by reaction kinetics or transport, respectively. For intermediate values, the system is transport controlled and is sensitive to transit time. We apply the model to a series of watersheds for which we estimate transit times and identify the type of weathering regime. The results suggest that hydrologic transport of DIC may be as important as reaction kinetics and dilution in determining chemical weathering rates.

  13. Modelling the structural controls of primary kaolinite formation

    NASA Astrophysics Data System (ADS)

    Tierney, R. L.; Glass, H. J.

    2016-09-01

    An abundance of kaolinite was formed within the St. Austell outcrop of the Cornubian batholith in Cornwall, southwest England, by the hydrous dissolution of feldspar crystals. The permeability of Cornish granites is low and alteration acts pervasively from discontinuity features, with montmorillonite recognised as an intermediate assemblage in partially kaolinised material. Structural features allowed fluids to channel through the impermeable granite and pervade deep into the rock. Areas of high structural control are hypothesised to link well with areas of advanced alteration. As kaolinisation results in a loss of competence, we present a method of utilising discontinuity orientations from nearby unaltered granites alongside the local tectonic history to calculate strain rates and delineate a discrete fracture network. Simulation of the discrete fracture network is demonstrated through a case study at Higher Moor, where kaolinite is actively extracted from a pit. Reconciliation of fracture connectivity and permeability against measured subsurface data show that higher values of modelled properties match with advanced kaolinisation observed in the field. This suggests that the technique may be applicable across various industries and disciplines.

  14. Luminescence isochron dating: a new approach using different grain sizes.

    PubMed

    Zhao, H; Li, S H

    2002-01-01

    A new approach to isochron dating is described using different sizes of quartz and K-feldspar grains. The technique can be applied to sites with time-dependent external dose rates. It is assumed that any underestimation of the equivalent dose (De) using K-feldspar is by a factor F, which is independent of grain size (90-350 microm) for a given sample. Calibration of the beta source for different grain sizes is discussed, and then the sample ages are calculated using the differences between quartz and K-feldspar De from grains of similar size. Two aeolian sediment samples from north-eastern China are used to illustrate the application of the new method. It is confirmed that the observed values of De derived using K-feldspar underestimate the expected doses (based on the quartz De) but, nevertheless, these K-feldspar De values correlate linearly with the calculated internal dose rate contribution, supporting the assumption that the underestimation factor F is independent of grain size. The isochron ages are also compared with the results obtained using quartz De and the measured external dose rates.

  15. Experimental determination of liquidus H2O contents of haplogranite at deep-crustal conditions

    NASA Astrophysics Data System (ADS)

    Makhluf, A. R.; Newton, R. C.; Manning, C. E.

    2017-09-01

    The liquidus water content of a haplogranite melt at high pressure ( P) and temperature ( T) is important, because it is a key parameter for constraining the volume of granite that could be produced by melting of the deep crust. Previous estimates based on melting experiments at low P (≤0.5 GPa) show substantial scatter when extrapolated to deep crustal P and T (700-1000 °C, 0.6-1.5 GPa). To improve the high-P constraints on H2O concentration at the granite liquidus, we performed experiments in a piston-cylinder apparatus at 1.0 GPa using a range of haplogranite compositions in the albite (Ab: NaAlSi3O8)—orthoclase (Or: KAlSi3O8)—quartz (Qz: SiO2)—H2O system. We used equal weight fractions of the feldspar components and varied the Qz between 20 and 30 wt%. In each experiment, synthetic granitic composition glass + H2O was homogenized well above the liquidus T, and T was lowered by increments until quartz and alkali feldspar crystalized from the liquid. To establish reversed equilibrium, we crystallized the homogenized melt at the lower T and then raised T until we found that the crystalline phases were completely resorbed into the liquid. The reversed liquidus minimum temperatures at 3.0, 4.1, 5.8, 8.0, and 12.0 wt% H2O are 935-985, 875-900, 775-800, 725-775, and 650-675 °C, respectively. Quenched charges were analyzed by petrographic microscope, scanning electron microscope (SEM), X-ray diffraction (XRD), and electron microprobe analysis (EMPA). The equation for the reversed haplogranite liquidus minimum curve for Ab36.25Or36.25Qz27.5 (wt% basis) at 1.0 GPa is T = - 0.0995 w_{{{H}_{ 2} {O}}}^{ 3} + 5.0242w_{{{H}_{ 2} {O}}}^{ 2} - 88.183 w_{{{H}_{ 2} {O}}} + 1171.0 for 0 ≤ w_{{{H}_{ 2} {O}}} ≤ 17 wt% and T is in °C. We present a revised P - T diagram of liquidus minimum H2O isopleths which integrates data from previous determinations of vapor-saturated melting and the lower pressure vapor-undersaturated melting studies conducted by other workers on the haplogranite system. For lower H2O (<5.8 wt%) and higher temperature, our results plot on the high end of the extrapolated water contents at liquidus minima when compared to the previous estimates. As a consequence, amounts of metaluminous granites that can be produced from lower crustal biotite-amphibole gneisses by dehydration melting are more restricted than previously thought.

  16. Pressure variations in the Monte Rosa nappe, Western Alps

    NASA Astrophysics Data System (ADS)

    Luisier, Cindy; Vaughan-Hammon, Joshua; Baumgartner, Lukas; Schmalholz, Stefan

    2017-04-01

    The Monte Rosa nappe is part of the Penninic nappe stack of the Western Alps. It represents the southern-most European continental basement involved in the alpine orogeny. It consists of a pre-Variscan basement complex, made of mostly metapelites and paragneisses, which were intruded by a Permian-age granitic body (Pawlig, 2001). The nappe is heterogeneously deformed, with localized high strain domains separating low strain domains. The metamorphic record is tightly linked to deformation. Different thermodynamic data bases and approaches were used in the past to estimate the peak alpine metamorphic conditions. They range from 1.2 to 2.7 GPa and 490 to 650˚C, based on metagranite, metapelite, metamafic and whiteschist assemblages. The peak alpine metamorphic assemblage of zoisite, phengite and albite symplectites pseudomorphing magmatic plagioclase is preserved only in the less deformed portions of the nappe. Phengite, garnet and titanite coronas surrounding biotite, quartz and igneous K-feldspar make up the rest of the rock. The metagranite locally grades into 10 to 50 meters whiteschist bodies, consisting of talc-chloritoid-kyanite-phengite-quartz, which can contain carbonate and garnet. Their chemistry is interpreted as a metasomatic product of the late magmatic hydrothermal alteration of the granite, whereas their mineralogy results from the alpine high pressure metamorphism (Pawlig and Baumgartner, 2001; Luisier et al., 2015). We performed a phase petrology and textural study to consistently estimate peak alpine metamorphic conditions in the granite and the related whiteschists. Textural observations were used to select the best-preserved high-pressure metagranite samples. Inherited magmatic feldspar textures indicate that jadeite was never formed in these granites, confirmed independently by Si in phengite barometer (1.2 to 1.5 GPa). Note that the granite contains the phengite buffer assemblage of Massonne and Schreyer (1987). Thermodynamic calculations using internally consistent thermodynamic database on whiteschists result in a minimum P of 2.2 GPa at T of 550 to 570˚C and a water activity close to 1, unlike previous water activities proposed (Le Bayon et al., 2006). Peak alpine pressures and temperatures calculated for the metagranite and associated whiteschists hence result in significant different pressure estimates, corroborating previous results from the literature. The possible explanations for such pressure variations are i) slight underestimation of the metagranite peak pressure, due to water-undersaturation conditions, however a pressure as high as 2 GPa is unlikely, or ii) heterogeneous stress conditions, due to rheologically contrasting lithologies, consisting of weak whiteschist inclusions within strong, undeformed metagranites. References Le Bayon et al., 2006: Contrib. Mineral. Petrol. 151, 395-412 Luisier et al., 2015: GSA conference abstract Massonne and Schreyer, 1987: Contrib. Mineral. Petrol. 96, 212-224 Pawlig, S. 2001: PhD thesis, University of Mainz (Germany) Pawlig and Baumgartner, 2001: SMPM 81,329-346

  17. Iron removal on feldspar by using Averrhoa bilimbii as bioleaching agent

    NASA Astrophysics Data System (ADS)

    Amin, Muhammad; Aji, Bramantyo B.; Supriyatna, Yayat Iman; Bahfie, Fathan

    2017-01-01

    Investigation of Averrhoa bilimbii as bioleaching agent was carried out. Parameters of leaching duration, acid concentration, and temperature were performed in iron removal process. Feldspar with sized 149 µm was diluted in 30 ml acid solution in order to reduce its iron content. The experimental results showed a good technical feasibility of the process which iron oxide content of feldspar was decreased from 2.24% to 0.29%. The lowest iron concentration remained was obtained after 5 hours of leaching treatment at 60 °C, and concentrated (100 vol%) Averrhoa bilimbii extract as bioleaching agent. SEM characterizations were carried out on the feldspar before and after the leaching treatment. The result shows that there were no significant effect of leaching process on the ore morphology.

  18. Mineralogy as a function of depth in the prehistoric Makaopuhi tholeiitic lava lake, Hawaii

    USGS Publications Warehouse

    Evans, B.W.; Moore, J.G.

    1968-01-01

    The electron probe X-ray microanalyzer has been used to determine the compositional variability of the groundmass minerals and glass in 10 specimens from a complete 225-foot section of the prehistoric tholeiitic lava lake of Makaopuhi Crater, Hawaii. The order of beginning of crystallization was: (1) chromite, (2) olivine, (3) augite, (4) plagioclase, (5) pigeonite, (6) iron-titanium oxides and orthopyroxene, (7) alkali feldspar and apatite, and (8) glass. Although the lake is chemically tholeiitic throughout, the occurrence of ferromagnesian minerals is as though there were a gradation from alkali olivine basalt in the upper chill downwards to olivine tholeiite. Groundmass olivine decreases downwards and disappears at about 20 feet. Pigeonite is absent in the uppermost 5??2 feet, then increases in amount down to 20 feet, below which augite and pigeonite coexist in constant 2:1 proportions. Strong zoning and metastable compositions characterize the pyroxenes of the chilled zones, but these features gradually disappear towards the interior of the lake to give way to equilibrium pyroxenes. Relatively homogeneous poikilitic orthopyroxene (??? Ca4Mg70Fe26) occurs in the olivine cumulate zone, having formed partly at the expense of pre-existing olivine, augite, and pigeonite (??? Ca8Mg66Fe26). The growth of orthopyroxene is believed to have been facilitated by the slower cooling rate and higher volatile pressure at depth, and by the rise in Mg/Fe ratio of the liquid due to the partial dissolution of settled olivine. Unlike olivine and pyroxene, feldspar is least zoned in the upper and lower chilled regions. The greatest range of compositional zoning in feldspar occurs at 160 to 190 feet, where it extends continuously from Or1.0Ab22An77 to Or64Ab33An3. The feldspar fractionation trend in the An-Ab-Or triangle gradually shifts with depth toward more "equilibrium" trends, even though the zoning becomes more extreme. The variation with depth in the initial (core) composition of the plagioclase suggests the influence of either slow nucleation and growth (undercooling) or slow diffusion in the liquid, relative to the rate of cooling. Idiomorphic opaque inclusions in olivine phenocrysts are chrome-spinels showing continuous variation from 60 percent chromite to 85 percent ulvospinel and to magnetite-rich spinel. A pre-eruption trend of increasing Al with decreasing Cr can be recognized in chromites from the upper chill. Most of the inclusions show a trend of falling Cr and Al, toward an ulvospinelmagnetite solid solution which is progressively poorer in Usp with depth. This trend was produced by solid state alteration of the chromite inclusions during cooling in the lava lake. Ilmenite (average Ilm91Hm9) coexists with variably oxidized titaniferous magnetite in the basalt groundmass. Estimated oxygen fugacities agree well with other independent determinations in tholeiitic basalt. No sulfide phase has been detected. Fractional crystallization produced a groundmass glass of granitic composition. Average, in percent, is: SiO2, 75.5; Al2O3, 12.5; K2O, 5.7; Na2O, 3.1; CaO, 0.3; MgO, 0.05; total FeO, 1.2; and TiO2, 0.8. Normative Or> Ab. Minor changes in glass composition with depth are consistent with a greater approach towards the granite minimum. Incipient devitrification precluded reliable analysis of glass from the lower half of the section. The SiO2-phase associated with devitrification contains alkalis and Al and is believed to be cristobalite. Needle-like apatite crystals in the groundmass glass are Siand Fe-bearing fluorapatites containing appreciable rare earths (predominantly Ce) and variable Cl. The grain-size and maximum An content of the cores of plagioclase grains were controlled by cooling rate and are at a maximum at the center of the section. The most homogeneous pyroxene (and olivine, Moore and Evans, 1967), most equilibrium pyroxene trends, most abundant alkali feldspar, and most equilibrium feldspar trends are found at 160

  19. Lunar soil evolution processes and Apollo 16 core 60013/60014

    NASA Astrophysics Data System (ADS)

    Basu, A.; McKay, D. S.

    1995-03-01

    Soils of the 62-cm deep Apollo 16 double drive tube 60013/14 are mature at the top and submature at the bottom. Modal analyses of 5529 grains from the 90-150 um and the 500-1000 m fractions from 12 levels of the core show that, in general, agglutinate abundance increases somewhat monotonically to the top and mimics the Is/FeO profile. There is a general decrease in the modal abundance of monomineralic fragments towards the top, suggesting that agglutinates were formed in part at the expense of monomineralic grains, especially feldspars, which are by far the most abundant mineral in these soils. In detail, the top 27 cm of the core differs from the bottom 21 cm, and the middle 14 cm is intermediate in its properties. In the upper segment, variations in the abundances of feldspars correspond with those of feldspathic fragmental breccias and cataclastic anorthosites; in the bottom segment, a similar but weak correspondence between feldspars and crystalline matrix breccias is observed. Mixing of the comminuted products of these three rock types likely produced the bulk of the core material. Many single feldspars in all size fractions are remarkably fresh, show no damage from shock, and are similar in appearance to the large feldspars in anorthosites and feldspathic fragmental breccias, which we consider to be the primary sources of single feldspars in this core. Major (Na, Al, Si, K, Ca) and minor (Fe, Ba) element analyses of 198 single feldspar grains indicate the presence of only one population of feldspars, which is consistent with our interpretation of feldspar provenance. Classification of 890 monomineralic feldspar, olivine, pyroxene, and glass spherules on the basis of the presence or absence of thin brownish coating related to reworking at the surface-shows that coated grains are much more abundant in the top segment than in the bottom segment. A comparison with the mixing and maturation model (McKay et al., 1977) of soils in the core 60009/10, some 60 m away from 60013/14, shows that mixtures of an immature, nearly pure plagioclase soil (dominant in 60009/10) and another immature, crystalline breccia-rich soil (dominant in 60013/14) may have matured through in situ reworking to produce the soils under investigation. We conclude that the soils in this core are products of mixing along soil evolution Path 2 of McKay et al. (1974). Superimposed on that soil column is the reworking of the upper part, which has evolved more recently along Path 1. This core thus represents a consanguineous column of the lunar regolith with an upper reworked segment.

  20. Lunar soil evolution processes and Apollo 16 core 60013/60014

    NASA Technical Reports Server (NTRS)

    Basu, A.; McKay, D. S.

    1995-01-01

    Soils of the 62-cm deep Apollo 16 double drive tube 60013/14 are mature at the top and submature at the bottom. Modal analyses of 5529 grains from the 90-150 micrometers and the 500-1000 micrometers fractions from 12 levels of the core show that, in general, agglutinate abundance increases somewhat monotonically to the top and mimics the Is/FeO profile. There is a general decrease in the modal abundance of monomineralic fragments towards the top, suggesting that agglutinates were formed in part at the expense of monomineralic grains, especially feldspars, which are by far the most abundant mineral in these soils. In detail, the top 27 cm of the core differs from the bottom 21 cm, and the middle 14 cm is intermediate in its properties. In the upper segment, variations in the abundances of feldspars correspond with those of feldspathic fragmental breccias and cataclastic anorthosites; in the bottom segment, a similar but weak correspondence between feldspars and crystalline matrix breccias is observed. Mixing of the comminuted products of these three rock types likely produced the bulk of the core material. Many single feldspars in all size fractions are remarkably fresh, show no damage from shock, and are similar in appearance to the large feldspars in anorthosites and feldspathic fragmental breccias, which we consider to be the primary sources of single feldspars in this core. Major (Na, Al, Si, K, Ca) and minor (Fe, Ba) element analyses of 198 single feldspar grains indicate the presence of only one population of feldspars, which is consistent with our interpretation of feldspar provenance. Classification of 890 monomineralic feldspar, olivine, pyroxene, and glass spherules on the basis of the presence or absence of thin brownish coating--related to reworking at the surface--shows that coated grains are much more abundant in the top segment than in the bottom segment. A comparison with the mixing and maturation model (McKay et al., 1977) of soils in the core 60009/10, some 60 m away from 60013/14, shows that mixtures of an immature, nearly pure plagioclase soil (dominant in 60009/10) and another immature, crystalline breccia-rich soil (dominant in 60013/14) may have matured through in situ reworking to produce the soils under investigation. We conclude that the soils in this core are products of mixing along soil evolution Path 2 of McKay et al. (1974). Superimposed on that soil column is the reworking of the upper part, which has evolved more recently along Path 1. This core thus represents a consanguineous column of the lunar regolith with an upper reworked segment.

  1. Lunar soil evolution processes and Apollo 16 core 60013/60014.

    PubMed

    Basu, A; McKay, D S

    1995-03-01

    Soils of the 62-cm deep Apollo 16 double drive tube 60013/14 are mature at the top and submature at the bottom. Modal analyses of 5529 grains from the 90-150 micrometers and the 500-1000 micrometers fractions from 12 levels of the core show that, in general, agglutinate abundance increases somewhat monotonically to the top and mimics the Is/FeO profile. There is a general decrease in the modal abundance of monomineralic fragments towards the top, suggesting that agglutinates were formed in part at the expense of monomineralic grains, especially feldspars, which are by far the most abundant mineral in these soils. In detail, the top 27 cm of the core differs from the bottom 21 cm, and the middle 14 cm is intermediate in its properties. In the upper segment, variations in the abundances of feldspars correspond with those of feldspathic fragmental breccias and cataclastic anorthosites; in the bottom segment, a similar but weak correspondence between feldspars and crystalline matrix breccias is observed. Mixing of the comminuted products of these three rock types likely produced the bulk of the core material. Many single feldspars in all size fractions are remarkably fresh, show no damage from shock, and are similar in appearance to the large feldspars in anorthosites and feldspathic fragmental breccias, which we consider to be the primary sources of single feldspars in this core. Major (Na, Al, Si, K, Ca) and minor (Fe, Ba) element analyses of 198 single feldspar grains indicate the presence of only one population of feldspars, which is consistent with our interpretation of feldspar provenance. Classification of 890 monomineralic feldspar, olivine, pyroxene, and glass spherules on the basis of the presence or absence of thin brownish coating--related to reworking at the surface--shows that coated grains are much more abundant in the top segment than in the bottom segment. A comparison with the mixing and maturation model (McKay et al., 1977) of soils in the core 60009/10, some 60 m away from 60013/14, shows that mixtures of an immature, nearly pure plagioclase soil (dominant in 60009/10) and another immature, crystalline breccia-rich soil (dominant in 60013/14) may have matured through in situ reworking to produce the soils under investigation. We conclude that the soils in this core are products of mixing along soil evolution Path 2 of McKay et al. (1974). Superimposed on that soil column is the reworking of the upper part, which has evolved more recently along Path 1. This core thus represents a consanguineous column of the lunar regolith with an upper reworked segment.

  2. Evidence for Coordination and Redox Changes of Iron in Shocked Feldspar from Synchrotron MicroXANES

    NASA Technical Reports Server (NTRS)

    Delaney, J. S.; Dyar, M. D.; Hoerz, F.; Johnson, J. R.

    2003-01-01

    Shock modification of feldspar has been documented and experimentally reproduced in many studies since the recognition of maskelynite in Shergotty. Experimentally shocked feldspar samples have been well studied using chemical and crystallographic techniques. The crystallographic, site-specific characterization of major and minor elements is less well documented. We present early x-ray absorption (XAS) spectral data for a suite of albitite samples that were experimentally shocked at pressures between 17 and 50 Gpa.

  3. The role of advanced reactive surface area characterization in improving predictions of mineral reaction rates

    NASA Astrophysics Data System (ADS)

    Beckingham, L. E.; Zhang, S.; Mitnick, E.; Cole, D. R.; Yang, L.; Anovitz, L. M.; Sheets, J.; Swift, A.; Kneafsey, T. J.; Landrot, G.; Mito, S.; Xue, Z.; Steefel, C. I.; DePaolo, D. J.; Ajo Franklin, J. B.

    2014-12-01

    Geologic sequestration of CO2 in deep sedimentary formations is a promising means of mitigating carbon emissions from coal-fired power plants but the long-term fate of injected CO2 is challenging to predict. Reactive transport models are used to gain insight over long times but rely on laboratory determined mineral reaction rates that have been difficult to extrapolate to field systems. This, in part, is due to a lack of understanding of mineral reactive surface area. Many models use an arbitrary approximation of reactive surface area, applying orders of magnitude scaling factors to measured BET or geometric surface areas. Recently, a few more sophisticated approaches have used 2D and 3D image analyses to determine mineral-specific reactive surface areas that account for the accessibility of minerals. However, the ability of these advanced surface area estimates to improve predictions of mineral reaction rates has yet to be determined. In this study, we fuse X-ray microCT, SEM QEMSCAN, XRD, SANS, and SEM-FIB analysis to determine mineral-specific accessible reactive surface areas for a core sample from the Nagaoka pilot CO2 injection site (Japan). This sample is primarily quartz, plagioclase, smectite, K-feldspar, and pyroxene. SEM imaging shows abundant smectite cement and grain coatings that decrease the fluid accessibility of other minerals. However, analysis of FIB-SEM images reveals that smectite nano-pores are well connected such that access to underlying minerals is not occluded by smectite coatings. Mineral-specific accessible surfaces are determined, accounting for the connectivity of the pore space with and without connected smectite nano-pores. The large-scale impact of variations in accessibility and dissolution rates are then determined through continuum scale modeling using grid-cell specific information on accessible surface areas. This approach will be compared with a traditional continuum scale model using mineral abundances and common surface area estimates. Ultimately, the effectiveness of advanced surface area characterization to improve mineral dissolution rates will be evaluated by comparison of model results with dissolution rates measured from a flow-through column experiment.

  4. Metasomatic alkali-feldspar syenites (episyenites) of the Proterozoic Suomenniemi rapakivi granite complex, southeastern Finland

    NASA Astrophysics Data System (ADS)

    Suikkanen, E.; Rämö, O. T.

    2017-12-01

    Peralkaline to marginally metaluminous alkali-feldspar syenites and quartz alkali-feldspar syenites are hosted by subalkaline, ferroan rapakivi granites in the 1644 Ma Suomenniemi complex of southeastern Finland. These alkali syenites form NW-oriented dikes and small (< 10 m in diameter) bodies that are distinguished from the surrounding granites by their color (violet-red), general lack of quartz, as well as pronounced interstitial character of mafic minerals. Microtextures of the syenites imply pervasive alkali metasomatism and growth of secondary sodic and oxidized ferromagnesian minerals. Both subsolvus ( Ab99 and Or90-100Ab0-10) and hypersolvus (Or40-60Ab40-60) feldspar assemblages are present and display red luminescence characteristic of alkali feldspar recrystallized in the presence of an oxidizing fluid. In the marginally metaluminous syenites, primary magmatic hastingsite has been metasomatized to ferro-actinolite or decomposed to ferro-ferri-hornblende and magnetite. In some of the peralkaline syenites, primary hastingsite was replaced by magnetite and feldspars and has been overgrown by aegirine-augite and riebeckite. Sodic clinopyroxene (sodic augite-aegirine) is the most common and, in many cases, the only ferromagnesian silicate in these syenites. Three peralkaline alkali-feldspar syenites analyzed for zircon U-Pb and O isotopic compositions by single-grain SIMS have zircon 207Pb/206Pb ages of 1645 ± 5, 1642 ± 4 and 1644 ± 4 Ma, and zircon δ18OVSMOW values of 8.04 ± 0.18, 8.19 ± 0.17 and 8.26 ± 0.17‰. Whole-rock Nd isotope data imply an overall εNd(1644 Ma) value of ca. - 1.5 for the syenites. These ages and isotopic fingerprints are, within error, identical to those of the subalkaline granites of the complex. We propose that the Suomenniemi alkali-feldspar syenites are episyenites, formed as the result of pervasive local metasomatism of the subalkaline granites caused by high-temperature oxidizing peralkaline fluids. The process led to major geochemical changes, e.g., addition of Na, Al and Fe3 +, depletion of Si and Fe2 +, and partial to complete recrystallization of the granites along fluid pathways.

  5. Influences of petrographic parameters on technological properties of greywackes used for crushed stone production

    NASA Astrophysics Data System (ADS)

    Prikryl, Richard; Cermak, Martin; Krutilova, Katerina

    2014-05-01

    This study focuses on the influence of petrographic parameters on technological properties of greywackes. These sedimentary rocks make about 27 % of crushed stone market in the Czech Republic. Mainly in Moravia (eastern part of the Czech Republic), greywackes represent almost exclusive high quality aggregate. The behaviour of greywackes varies, however, from quarry to quarry. In this study, we have selected the most important deposits that cover major lithological variation of local greywackes. Studied greywackes were analysed for their petrographic parameters quantitatively (using image analysis of thin sections). The pore space characteristics were determined by using fluorescent dye - epoxy resin impregnated specimens. The studied rocks are composed of subangular and angular quartz grains, lithoclasts (stable rocks: quartzites, and unstable rocks: phylites, metaphylites, siltstones, slates, greywackes, and less frequently acid eruptive rocks), feldspars (orthoclas, microcline, plagioclase), and detrital micas. Detrital and authigenic chlorite has been found as well. The matrix which represents the largest volume of rock-forming components contains a mixture of sericite, chlorite, clay minerals, cements, and clasts in aleuropelitic size. Based on the microscopic examination, all studied rock types were classified as greywacke with fine- to medium-grained massive rock fabric. Only specimen from Bělkovice has shown partly layered structure. Alteration of feldspars and unstable rock fragments represents common feature. Diagenetic features included pressure dissolution of quartz clasts and formation of siliceous and/or calcite cements. Based on the experimental study of technological performance of studied greywackes and its correlation to petrographic features, the average size of clasts and volume of matrix make the driving factors affecting the LA values. The LA values decrease with the increasing of volume of matrix (R = 0.61) and with decreasing average grain size (R = 0.44). The degree of sorting influences LA values as well; more graded greywackes tend to show higher LA values. Regarding PSV, its values increase with increasing volume of quartz clasts.

  6. Diagenesis and reservoir quality of Bhuban sandstones (Neogene), Titas Gas Field, Bengal Basin, Bangladesh

    NASA Astrophysics Data System (ADS)

    Aminul Islam, M.

    2009-06-01

    This study deals with the diagenesis and reservoir quality of sandstones of the Bhuban Formation located at the Titas Gas Field of Bengal Basin. Petrographic study including XRD, CL, SEM and BSE image analysis and quantitative determination of reservoir properties were carried out for this study. The sandstones are fine to medium-grained, moderately well to well sorted subfeldspathic arenites with subordinate feldspathic and lithic arenites. The diagenetic processes include clay infiltration, compaction and cementation (quartz overgrowth, chlorite, kaolinite, calcite and minor amount of pyrite, dolomite and K-feldspar overgrowth). Quartz is the dominant pore occluding cement and generally occurred as small euhedral crystals, locally as large pyramidal crystals in the primary pores. Pressure solution derived from grain contact is the main contributor of quartz overgrowths. Chlorite occurs as pore-lining and pore filling cement. In some cases, chlorite helps to retain porosity by preventing quartz overgrowth. In some restricted depth interval, pore-occlusion by calcite cement is very much intense. Kaolinite locally developed as vermiform and accelerated the minor porosity loss due to pore-occlusion. Kaolinite/chlorite enhances ineffective microporosity. Kaolinite is a by-product of feldspar leaching in the presence of acidic fluid produced during the maturation of organic matter in the adjacent Miocene or deeper Oligocene source rocks. The relation between diagenesis and reservoir quality is as follows: the initial porosity was decreased by compaction and cementation and then increased by leaching of the metastable grains and dissolution of cement. Good quality reservoir rocks were deposited in fluvial environment and hence quality of reservoir rocks is also environment selective. Porosity and permeability data exhibit good inverse correlation with cement. However, some data points indicate multiple controls on permeability. Reservoir quality is thus controlled by pore occluding cement, textural parameters (grain size, pore size and sorting) and depositional environment. The reservoir finally resumed partly its pre-cementation quality after development of secondary porosity.

  7. Microdiamonds from the European Variscan Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Kotkova, J.; Jakubova, P.; Whitehouse, M.; Fedortchouk, Y.

    2014-12-01

    Diamond, along with coesite, has been discovered recently in the continental crustal rocks of the European Variscan orogenic belt, namely the Bohemian Massif (BM). In addition to the garnet-phengite gneiss in Germany, western BM, microdiamond occurs in major rock forming minerals - garnet, kyanite - and in zircon in ultrahigh-pressure rocks overprinted under high-pressure granulite facies conditions (c. 16-20 kbar, c. 1000°C) in the northern and eastern BM. Well-preserved 10-30 μm-sized microdiamonds from northern BM exhibit diverse morphologies (SEM data) depending upon the host rock type. Octahedral diamond occurs in felsic garnet-kyanite-feldspar-quartz rock (metasediment), whereas intermediate garnet-clinopyroxene-feldspar-quartz rock contains a cubo-octahedral variety. Diamond morphology can be thus controlled by solid impurities available in the medium of crystallization (K- vs. Ca-bearing fluids or melts), as shown by experiments. Pointed-bottom negatively oriented trigonal etch pits on the octahedral diamond faces developed due to diamond resorption at CO2-dominated environment (less than 50 wt % of H2O, experimental data), possibly by action of a residual fluid. SIMS determined δ13C values range from -22 to -21 ‰ for the felsic rock and from - 26 to - 33 for the intermediate one, corresponding to the typical range of organic carbon δ13C and inconsistent with a significant mantle carbon (δ13C ~ - 5 ‰) input. Diamond-bearing domains in zircon, also analysed by SIMS, yielded a Variscan U-Pb age of c. 340 Ma. The present stage of knowledge allows us to conclude that (i) metamorphic diamonds in the BM occur in lithologies of metasedimentary character, and their carbon source was organic; (ii) crustal-derived CO2-rich fluids with impurities played an important role in diamond formation and dissolution; (iii) diamonds formed during the Variscan orogenic cycle and (iv) diamonds are best preserved in the external domain of the Variscan orogenic belt.

  8. Architecture and reservoir quality of low-permeable Eocene lacustrine turbidite sandstone from the Dongying Depression, East China

    NASA Astrophysics Data System (ADS)

    Munawar, Muhammad Jawad; Lin, Chengyan; Chunmei, Dong; Zhang, Xianguo; Zhao, Haiyan; Xiao, Shuming; Azeem, Tahir; Zahid, Muhammad Aleem; Ma, Cunfei

    2018-05-01

    The architecture and quality of lacustrine turbidites that act as petroleum reservoirs are less well documented. Reservoir architecture and multiscale heterogeneity in turbidites represent serious challenges to production performance. Additionally, establishing a hierarchy profile to delineate heterogeneity is a challenging task in lacustrine turbidite deposits. Here, we report on the turbidites in the middle third member of the Eocene Shahejie Formation (Es3), which was deposited during extensive Middle to Late Eocene rifting in the Dongying Depression. Seismic records, wireline log responses, and core observations were integrated to describe the reservoir heterogeneity by delineating the architectural elements, sequence stratigraphic framework and lithofacies assemblage. A petrographic approach was adopted to constrain microscopic heterogeneity using an optical microscope, routine core analyses and X-ray diffraction (XRD) analyses. The Es3m member is interpreted as a sequence set composed of four composite sequences: CS1, CS2, CS3 and CS4. A total of forty-five sequences were identified within these four composite sequences. Sand bodies were mainly deposited as channels, levees, overbank splays, lobes and lobe fringes. The combination of fining-upward and coarsening-upward lithofacies patterns in the architectural elements produces highly complex composite flow units. Microscopic heterogeneity is produced by diagenetic alteration processes (i.e., feldspar dissolution, authigenic clay formation and quartz cementation). The widespread kaolinization of feldspar and mobilization of materials enhanced the quality of the reservoir by producing secondary enlarged pores. In contrast, the formation of pore-filling authigenic illite and illite/smectite clays reduced its permeability. Recovery rates are higher in the axial areas and smaller in the marginal areas of architectural elements. This study represents a significant insight into the reservoir architecture and heterogeneity of lacustrine turbidites, and the understanding of compartmentalization and distribution of high-quality sand reservoirs can be applied to improve primary and secondary production in these fields.

  9. Thermal expansion behavior of fluor-chlorapatite crystalline solutions

    NASA Astrophysics Data System (ADS)

    Hovis, G.; Harlov, D.; Gottschalk, M.; Hudacek, W.; Wildermuth, S.

    2009-04-01

    Apatite Ca5(PO4)3(F,Cl,OH,CO3) occurs widely as an accessory mineral in many igneous and metamorphic rocks and in nature displays a wide range of F-Cl-OH-CO3 mixtures (e.g., O'Reilly and Griffin, 2000) that have been used to interpret the role of fluids, e.g. Cl, F, and OH activities, during metamorphic and igneous processes (e.g., Harlov and Förster, 2002). It is important, therefore, to understand the thermodynamic behavior of these solid solutions, including their thermal expansion properties. Fluorapatite - chlorapatite samples were synthesized at the GFZ-Potsdam (Hovis, Harlov, Hahn and Steigert, 2007) using an adaptation of the molten flux method of Cherniak (2000). Dry CaF2 and CaCl2 (0.1 mole total) were mixed with Ca3(PO4)2 (0.03 moles), placed in a Pt crucible, equilibrated for 15 hours at 1375 °C, cooled to 1220 °C at 3 °C/hour, removed from the oven and cooled in air. Crystals were separated from the flux by boiling the quenched product in water. F:Cl fractions for each sample were determined via Rietveld refinement of X-ray powder diffraction data. Chemical homogeneity was confirmed by Rietveld refinement and high-contrast back-scattered electron imaging. Room-temperature unit-cell volumes were determined at the GFZ-Potsdam through Rietveld analysis of X-ray powder diffraction data and also at Lafayette College by standard unit-cell refinement techniques (Holland and Redfern, 1997) using NBS/NIST 640a Si as an internal standard. High-temperature unit-cell dimensions were calculated from X-ray powder diffraction data collected at Cambridge University from room temperature to 1000 °C on a Bruker D8 X-ray diffractometer. NBS Si again was utilized as an internal standard; high-temperature Si peak positions were taken from Parrish (1953). Results indicate that despite the considerable size difference between fluorine and chlorine ions, reflected by substantially different unit-cell sizes at room temperature, the coefficient of thermal expansion across the fluor-chlorapatite series is little affected by composition. This contrasts with relationships in alkali feldspars (Hovis and coworkers, 1997, 1999), which show that K-rich feldspars expand less than Na-rich feldspars. It contrasts also with the behavior of additional AlSi3 feldspars (Hovis and others, 2008), in which room-temperature chemical expansion limits the degree to which the structure can expand thermally. It also differs from expansion in kalsilite crystalline solutions (Hovis and coworkers, 2003, 2006), which depends on K:Na ratio. Among the minerals we have studied previously, only nepheline displays expansion behavior similar to that of fluor-chlorapatite crystalline solutions in that thermal expansion shows little sensitivity to composition. In AlSi3 feldspars and kalsilite one observes a single crystallographically distinct alkali site and a dominating SiO4 tetrahedral framework that limits the vibrational characteristics of the alkali-site occupant(s). Fluor-chlorapatite crystalline solutions have no such structural framework. Moreover, the anion site in the latter changes structural character in the transition from fluorapatite to chlorapatite. This flexibility apparently allows anion vibrational characteristics, coupled with those of Ca polyhedral components, to change continuously and in a compensating manner across the series. The thermal expansion data also imply that volumes of F-Cl mixing in fluor-chlorapatite are constant from room temperature to 1000 °C. References: Cherniak, D.J. (2000) Rare earth element diffusion in apatite. Geochimica et Cosmochimica Acta 64, 3871-3885. Harlov, D.E. and Förster, H-J. (2002) High grade fluid metasomatism on both a local and regional Scale: the Seward Peninsula, Alaska and the Ivrea-Verbano Zone, Northern Italy Part II: phosphate mineral chemistry. Journal of Petrology 43, 801-824. Holland, T.J.B. and Redfern, S.A.T. (1997) Unit-cell refinement: Changing the dependent variable, and use of regression diagnostics. Mineralogical Magazine 61, 65-77. Hovis, G.L., Brennan, S., Keohane, M., Crelling, J. (1999) High-temperature X-ray investigation of sanidine - analbite crystalline solutions: Thermal expansion, phase transitions, and volumes of mixing. The Canadian Mineralogist 37, 701-709. Hovis, G.L., Crelling, J., Wattles, D., Dreibelbis, B., Dennison, A., Keohane, M., and Brennan, S. (2003) Thermal expansion of nepheline - kalsilite crystalline solutions. Mineralogical Magazine 67, 535-546. Hovis, G.L. and Graeme-Barber, A. (1997) Volumes of K-Na mixing for low albite - microcline crystalline solutions at elevated temperature: A test of regular solution thermodynamic models. American Mineralogist 82, 158-164. Hovis, G.L., Harlov, D.E., Hahn, A., and Steigert, H. (2007) Enthalpies and volumes of F-Cl mixing in fluorapatite - chlorapatite crystalline solutions. Geophysical Research Abstracts 9, abstract 01748. Hovis, G.L., Morabito, J.R. Spooner, R., Mott, A. Person, E.L., Henderson, C. Michael B., Roux, J., and Harlov, D. (2008) A simple predictive model for the thermal expansion of AlSi3 feldspars. American Mineralogist 98, 1568-1573. Hovis, G.L., Person, E., Spooner, A., and Roux, J. (2006) Thermal expansion of highly silicic nepheline - kalsilite crystalline solutions. Mineralogical Magazine 70, 383-396. O'Reilly, S.Y. and Griffin, W.L. (2000) Apatite in the mantle: implications for metasomatic processes and high heat production in Phanerozoic mantle. Lithos 53, 217-232. Parrish, W. (1953) X-Ray reflection angle tables for several standards. Technical Report No. 68, Philips Laboratories Incorporated, Irvington on Hudson, New York.

  10. Metal stabilization mechanism of incorporating lead-bearing sludge in kaolinite-based ceramics.

    PubMed

    Lu, Xingwen; Shih, Kaimin

    2012-02-01

    The feasibility and mechanism of incorporating simulated lead-laden sludge into low-cost ceramic products was investigated by observing the reaction of lead with two kaolinite-based precursors under sintering conditions. To investigate the phase transformation process of lead, lead oxide (PbO) mixed with a kaolinite or mullite precursor were fired at 500-950°C for 3h. Detailed X-ray diffraction analysis of sintered products revealed that both precursors had crystallochemically incorporated lead into the lead feldspar (PbAl(2)Si(2)O(8)) crystalline structure. By mixing lead oxide with kaolinite, lead feldspar begins to crystallize at 700°C; maximum incorporation of lead into this structure occurred at 950°C. However, two intermediate phases, Pb(4)Al(4)Si(3)O(16) and a polymorph of lead feldspar, were detected at temperatures between 700 and 900°C. By sintering lead oxide with the mullite precursor, lead feldspar was detected at temperatures above 750°C, and an intermediate phase of Pb(4)Al(4)Si(3)O(16) was observed in the temperature range of 750-900°C. This study compared the lead leachabilities of PbO and lead feldspar using a prolonged leaching test (at pH 2.9 for 23d) modified from the toxicity characteristic leaching procedure. The results indicate the superiority of lead feldspar in stabilizing lead and suggest a promising and reliable strategy to stabilize lead in ceramic products. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Asbestos contamination in feldspar extraction sites: a failure of prevention? Commentary.

    PubMed

    Cavariani, Fulvio

    2016-01-01

    Fibrous tremolite is a mineral species belonging to the amphibole group. It is present almost everywhere in the world as a natural contaminant of other minerals, like talc and vermiculite. It can be also found as a natural contaminant of the chrysotile form of asbestos. Tremolite asbestos exposures result in respiratory health consequences similar to the other forms of asbestos exposure, including lung cancer and mesothelioma. Although abundantly distributed on the earth's surface, tremolite is only rarely present in significant deposits and it has had little commercial use. Significant presence of amphibole asbestos fibers, characterized as tremolite, was identified in mineral powders coming from the milling of feldspar rocks extracted from a Sardinian mining site (Italy). This evidence raises several problems, in particular the prevention of carcinogenic risks for the workers. Feldspar is widespread all over the world and every year it is produced in large quantities and it is used for several productive processes in many manufacturing industries (over 21 million tons of feldspar mined and marketed every year). Until now the presence of tremolite asbestos in feldspar has not been described, nor has the possibility of such a health hazard for workers involved in mining, milling and handling of rocks from feldspar ores been appreciated. Therefore the need for a wider dissemination of knowledge of these problems among professionals, in particular mineralogists and industrial hygienists, must be emphasized. In fact both disciplines are necessary to plan appropriate environmental controls and adequate protections in order to achieve safe working conditions.

  12. Function of minerals in the natural radioactivity level of Vaigai River sediments, Tamilnadu, India--spectroscopical approach.

    PubMed

    Ramasamy, V; Paramasivam, K; Suresh, G; Jose, M T

    2014-01-03

    Using Gamma ray and Fourier Transform Infrared (FTIR) spectroscopic techniques, level of natural radioactivity ((238)U, (232)Th and (40)K) and mineralogical characterization of Vaigai River sediments have been analyzed with the view of evaluating the radiation risk and its relation to available minerals. Different radiological parameters are calculated to know the entire radiological characterization. The average of activity concentrations and all radiological parameters are lower than the recommended safety limit. However, some sites are having higher radioactivity values than the safety limit. From the FTIR spectroscopic technique, the minerals such as quartz, microcline feldspar, orthoclase feldspar, kaolinite, gibbsite, calcite, montmorillonite and organic carbon are identified and they are characterized. The extinction co-efficient values are calculated to know the relative distribution of major minerals such as quartz, microcline feldspar, orthoclase feldspar and kaolinite. The calculated values indicate that the amount of quartz is higher than orthoclase feldspar, microcline feldspar and much higher than kaolinite. Crystallinity index is calculated to know the crystalline nature of quartz and the result indicates that the presence of ordered crystalline quartz in the present sediment. The role of minerals in the level of radioactivity is assessed by multivariate statistical analysis (Pearson's correlation and Cluster analysis). The statistical analysis confirms that the clay mineral kaolinite is the major factor than other major minerals to induce the important radioactivity variables such as absorbed dose rate and concentrations of (232)Th and (238)U. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. As-bearing potassium feldspar - a product of fumarole exhalations and gas-rock interactions at the Tolbachik volcano, Kamchatka, Russia

    NASA Astrophysics Data System (ADS)

    Koshlyakova, Natalia; Pekov, Igor; Yapaskurt, Vasily; Shchipalkina, Nadezhda; Sidorov, Evgeny

    2017-04-01

    Potassium feldspar is abundant in products of active fumaroles at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption (1975-1976), Tolbachik volcano, Kamchatka, Russia. The most intriguing fact is that the mineral here strongly differs chemically from potassium feldspar of all other geological formations. It demonstrates wide compositional variations and is typically enriched with As5+ and sometimes contains significant amounts of P, Zn, Cu, Fe and S. Filatovite K[(Al,Zn)_2(As,Si)_2O_8], the arsenate analogue of orthoclase, was discovered here (Vergasova et al., 2004). Samples from the Arsenatnaya fumarole located at the summit of the Second scoria cone (Pekov et al., 2014) contain, as our data show, complete solid-solution series between As-free potassium feldspar and filatovite. Potassium feldspar crystallizes in the Tolbachik fumaroles as a result of two processes: direct deposition from fumarolic gas and interaction of this gas with basalt scoria at temperatures not lower than 500°C. Exhalation feldspar occurs as incrustations sometimes consisting of well-formed prismatic crystals up to 1 mm long. Potassium feldspar produced by gas-rock interaction process replaces basalt and volcanic scoria. Cases of selective replacement of plagioclase in basalt for As-bearing potassium feldspar were observed. Potassium feldspar from the Arsenatnaya fumarole contains (our electron microprobe data, wt.{%}): SiO2 19.4-65.2 (corresponds to 1.05-3.01 atoms per formula unit = apfu; formulae are calculated on the basis of 8 O apfu), Al_2O3 14.3-30.6 (0.80 -1.95 apfu), As_2O5 0.00-34.2 (0.00-0.97 apfu), P_2O5 0.00-2.5 (0.00-0.10 apfu), SO3 0.00-3.2 (0.00-0.11 apfu), Fe_2O3 0.00-3.1 (0.00-0.11 apfu), ZnO 0.00-0.81 (0.00-0.03 apfu), CuO 0.00-2.1 (0.00-0.08 apfu). In feldspar structure all these constituents occupy tetrahedrally coordinated sites in the AlSi-framework (Filatov et al., 2004). Chemical variations of extra-framework cations in potassium feldspar from Arsenatnaya are significantly less (wt.{%}): Na_2O 0.03-1.18 (0.00-0.11 apfu), CaO 0.00-1.79 (0.00-0.09 apfu). A continuous solid-solution series belonging to potassic feldspar itself (i.e. with Si>As in atom proportions) demonstrates the following compositional range (our data for samples from Arsenatnaya): (K0.95Na0.02)Σ{0.97[Si2.94Al1.01Cu0.06P0.01]Σ{4.03O8 - K1.02[Al1.95Si1.05As0.97P0.01S0.01Zn0.01]Σ 3.99O_8. All intermediate members of this series show stable feldspar-type stoichiometry caused by major substitution scheme 2Si4+ \\leftrightarrow Al3+ + As5+. In its generalized form, this scheme can be written as 2Si4+ \\leftrightarrow (Al,Fe)3+ + (As,P)5+. This study was supported by the Russian Science Foundation, grant 14-17-00048. References: Filatov S.K., Krivovichev S.V., Burns P.C., Vergasova L.P. (2004): Crystal structure of filatovite, K[(Al,Zn)_2(As,Si)_2O_8], the first arsenate of the feldspar group. Eur. J. Mineral., 16, 537-543. Pekov I.V., Zubkova N.V., Yapaskurt V.O., Belakovskiy D.I., Lykova I.S., Vigasina M.F., Sidorov E.G., Pushcharovsky D.Yu. (2014): New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. I. Yurmarinite, Na_7(Fe3+,Mg,Cu)_4(AsO_4)_6. Mineral. Mag., 78(4), 905-918. Vergasova L.P., Krivovichev S.K., Britvin S.N., Burns P.C., Ananiev V.V. (2004): Filatovite, K[(Al,Zn)_2(As,Si)_2O_8], a new mineral species from the Tolbachik volcano, Kamchatka peninsula, Russia. Eur. J. Mineral. 16, 533-536.

  14. Tectono-metamorphic evolution of the Jomolhari massif: Variations in timing of syn-collisional metamorphism across western Bhutan

    NASA Astrophysics Data System (ADS)

    Regis, Daniele; Warren, Clare J.; Young, David; Roberts, Nick M. W.

    2014-03-01

    Our current understanding of the rates and timescales of mountain-building processes is largely based on information recorded in U-bearing accessory minerals such as monazite, which is found in low abundance but which hosts the majority of the trace element budget. Monazite petrochronology was used to investigate the timing of crustal melting in migmatitic metasedimentary rocks from the Jomolhari massif (NW Bhutan). The samples were metamorphosed at upper amphibolite to granulite facies conditions (~ 0.85 GPa, ~ 800 °C), after an earlier High-Pressure stage (P > 1.4 GPa), and underwent partial melting through dehydration melting reactions involving muscovite and biotite. In order to link the timing of monazite growth/dissolution to the pressure-temperature (P-T) evolution of the samples, we identified 'chemical fingerprints' in major and accessory phases that were used to back-trace specific metamorphic reactions. Variations in Eu anomaly and Ti in garnet were linked to the growth and dissolution of major phases (e.g. growth of K-feldspar and dehydration melting of muscovite/biotite). Differences in M/HREE and Y from garnet core to rim were instead related to apatite breakdown and monazite-forming reactions. Chemically zoned monazite crystals reacted multiple times during the metamorphic evolution suggesting that the Jomolhari massif experienced a prolonged high-temperature metamorphic evolution from 36 Ma to 18 Ma, significantly different from the P-T-time path recorded in other portions of the Greater Himalayan Sequence (GHS) in Bhutan. Our data demonstrate unequivocally that the GHS in Bhutan consists of units that experienced independent high-grade histories and that were juxtaposed across different tectonic structures during exhumation. The GHS may have been exhumed in response to (pulsed) mid-crustal flow but cannot be considered a coherent block.

  15. Mineralogical and geochemical consequences of the long-term presence of CO2 in natural reservoirs: An example from the Springerville-St. Johns Field, Arizona, and New Mexico, U.S.A

    USGS Publications Warehouse

    Moore, J.; Adams, M.; Allis, R.; Lutz, S.; Rauzi, S.

    2005-01-01

    The Springerville-St. Johns CO2 field in eastern Arizona and western New Mexico is one of more than a dozen gas fields developed within the Colorado Plateau and Southern Rocky Mountain region. Extensive travertine (CaCO3) deposits record a long history of CO2 migration and leakage to the atmosphere. The oldest travertine deposits may have formed during the initial filling of the CO2 reservoir when groundwaters exsolved CO2 upon reaching the surface. The youngest travertine deposits are associated with springs on the floor of the Little Colorado River valley, but travertine deposition appears to be insignificant today. Older deposits occur up to 325 m above the valley floor. Geologic relationships suggest travertine deposition began in the late Pleistocene after volcanic activity ended at ???0.3 Ma. Most of the CaCO3 could have been derived from dissolution of the underlying limestones and dolomites. Interactions between the reservoir fluids and rocks were observed in core samples from one of the intervals that produced dry gas. These reactions resulted in the dissolution of carbonate cements and detrital feldspars and the formation of dawsonite and kaolinite. Geochemical simulations suggest that the dawsonite could have been deposited when the CO2 fugacity reached 20 bars and that the kaolinite formed as the CO2 fugacity decreased. Corrosion of drill pipe by acidic waters and a pronounced HCO3 anomaly above the CO2 reservoir provide evidence of a continuing flux of CO2 from depth. CO2 storage occurs primarily as dissolved carbonate species and as gas accumulations. Only a small percentage of the CO2 was sequestered in secondary minerals. ?? 2005 Elsevier B.V. All rights reserved.

  16. Microstructure and seismic anisotropy of phyllite from Geumseongri Formation and Munjuri Formation in Korea

    NASA Astrophysics Data System (ADS)

    Han, S.; Jung, H.

    2016-12-01

    Mica is a mineral group that shows the strongest seismic anisotropy among the minerals comprising continental crust of the Earth. It is also noteworthy that alignment of mica can strongly affect magnitude and symmetry of seismic anisotropy if a seismic wave passes through a rock composed of mica more than 20-40%. Thus, it is highly necessary to analyze mica-rich rocks to investigate the origin of seismic anisotropy observed in continental crust. In this study, muscovite-quartz phyllites from Geumseongri and Munjuri Formation in Korea were analyzed using Electron Backscattered Diffraction (EBSD) to measure lattice preferred orientation (LPO) of minerals. The samples are mainly composed of muscovite, quartz, albite, chlorite, and biotite with minor calcite and rutile. The EBSD analysis showed that the muscovite [001] axis was strongly aligned normal to the foliation while both [100] and [010] axes were dispersed parallel to the foliation. Chlorite and biotite also exhibited similar LPO except for the chlorite [001] axis in the sample 2619, dispersed normal to the lineation. LPOs of quartz were weak in most samples. The albite (010) pole in the sample 2363M and (001) pole in the sample 2364Q were aligned normal to the foliation. Seismic anisotropy was calculated based on the LPO and modal composition of the specimens. The anisotropy of P-wave (Vp) for quartz was in the range of 4.3 - 9.3% and 3.3 - 6.7% for albite. The maximum shear wave anisotropy (AVs) was in the range of 5.3 - 11.2% for quartz and 3.9 - 5.4% for albite. The Vp anisotropy and maximum AVs anisotropy of mica were in the range of 19.3 - 53.4% and 11.6 - 62.9%, respectively, which are much larger than those of other minerals. As a result, The Vp and maximum AVs anisotropy for whole rock were in the range of 11.8 - 44% and 11.6 - 51.8%, respectively. These results show that modal composition and alignment of mica mainly control the magnitude and symmetry of seismic anisotropy.

  17. Evidence from an Ice Core of a Large Impact Circa 1443 A.D.

    NASA Astrophysics Data System (ADS)

    Abbott, D.; Biscaye, P.; Cole-Dai, J.; Breger, D.

    2005-12-01

    Published data on melt water from the Siple Dome ice core show distinct anomalies at 1443.16 A.D. The Ca value is 111 ppb, over 9 times the next highest Ca value between 850-1760 A.D. The K value is 20 ppb, about 1.4 times the next highest K value. The Ca anomaly may be due to partial dissolution of CaCO3 microfossils from the 24 km Mahuika bolide impact crater on the southern New Zealand shelf. Deep-sea samples of the Mahuika ejecta layer contain >98% carbonate microfossils. The Mahuika impact may have produced tsunami runups of 130 meters in Jervis Bay, Australia. The Australian megatsunami deposits date to 1450±50 A.D. We analyzed the melt water from 8 ice-core samples from the West Antarctic Siple Dome ice core that date from 1440-1448 A.D. The 1443 A.D. level contained a peak in K of 53 ppb as compared to a background of ~6-7 ppb. Ca was high at 26 ppb but this is not as pronounced as reported earlier. We extracted solid material from the melt water. Except for the 1443 A.D. horizon and one fractured grain at the 1442 A.D. level, most samples were barren except for typical dust. At the 1443 A.D. level, we found 5 carbonate microfossils (coccoliths?) from 5 to 20 microns across. Two were round and solid. One microfossil appeared either caught during mitosis or broken during deformation and elongation. Another carbonate microfossil was unbroken, but appeared deformed into a square. We found a Cu grain with a small amount of oxygen. It is most likely a grain of native copper with an oxidized surface. Deformed microfossils and native minerals are both characteristic of bolide impacts. We also found many microcrystalline magnetite cubes, with an average crystal size of 0.3 microns or less. The high magnetic susceptibility of impact ejacta layers is caused by microcrystalline magnetite. We found a grain of conchoidally fractured feldspar ~15 microns long. A semi-quantitive EDAX analysis found 21% Si, 55% O, 9% Al, 5% Na, 3% K, 2% Fe, and 1% Ca (atomic %), well within the range of K-feldspar compositions. Because Fe does not fit into the feldspar structure, its occurrence implies either that the Fe-bearing feldspar is a glass, or that the Fe is in microcracks within the grain. As ice is not Fe-rich, the former is more likely. Because conchoidal fracture is characteristic of glass, this suggests that the feldspar is a glass (maskelynite) derived from an impact onto continental crust. We also found Al Fe oxide, Ti Al oxide, and amphibole. A semi-quantitative EDAX analysis of the latter found 53% O, 20% Si, 5% Na, 4% Al, Mg, and Fe, 3% Ca, and 0.5% K (atomic %) with trace Ti, S and Cl, close to the composition of the alkali amphibole richterite, which forms in contact metamorphosed limestones (skarns). The Al Fe oxide is most likely hercynite, a spinel that forms in contact metamorphic aureoles in silica-poor environments. All mineral grains had distinct edges. We also found radiating, fibrous crystals of a Ca Na silicate. An EDAX analysis of the mineral found 59% O, 13% Ca, 8% Si, 3% Na, and 1% Mg (atomic %). The Ca Na silicate is most likely pectolite (NaCa2Si3O8), which has radiating, fibrous crystals and forms in skarns. The presence of minerals characteristic of contact metamorphism is important as we have found abundant skarn facies minerals in the Mahuika ejecta layer within deep sea sediment. Thus, our data taken together are most consistent with an impact ejecta layer within the Siple Dome ice core that comes from the Mahuika impact event about 4044 kilometers away; providing a well-constrained date for the event around 1443 A.D.

  18. Rates of mineral dissolution and carbonation in peridotite and basalt

    NASA Astrophysics Data System (ADS)

    Kelemen, P. B.; Matter, J. M.

    2009-12-01

    We study natural rates and processes of mineral carbonation in peridotite (olivine-rich rock) in mantle rocks exposed to weathering in northern Oman to learn effective mechanisms from natural processes, and seek ways to accelerate them to achieve significant CO2 capture and storage via mineral carbonation at the lowest possible cost. In our first paper (1), we fit data on mantle olivine carbonation from the DOE Albany Research Center (2,3, ARC). These data, and data from Arizona State University (4, ASU) suggest that a peridotite rock volume heated to 185°C and infused with H2O+CO2 at PCO2 > 75 bars could consume ~ 1 ton CO2 per cubic meter of rock per year. Because it is more abundant than peridotite, other workers focus on carbonation of the most common type of lava on Earth, basalt, whose main mineral constituent is generally labradorite, part of the plagioclase feldspar solid solution series. Our intuition is that labradorite carbonation is much slower than mantle olivine carbonation. To quantify this, we compiled data on dissolution of mantle olivine, labradorite, crystalline basalt, and basaltic glass in aqueous fluids, as well as data on mantle olivine carbonation. The dissolution data are calibrated as a function of surface area (i.e., grain size and shape) and pH, as well as temperature, whereas most of the ARC and ASU experiments were done at a single pH and grain size. Thus, for comparison, we calculated dissolution rates for 70 micron spheres at pH 8, close to the ARC and ASU experimental conditions. At these conditions, olivine carbonation observed by ARC and ASU is 100 to 1000 times faster than labradorite and crystalline basalt, and faster than conventionally measured olivine dissolution rates. The ARC and ASU experiments were different from conventional dissolution experiments in several ways that could lead to an enhancement in olivine reaction rates: (a) they may have lower a(Mg) in fluid due to solid MgCO3 (magnesite) precipitation, (b) they used a relatively high ratio of olivine:fluid (1:4), (c) they generally used high fluid NaCl contents, and (d) they consistently used high NaHCO3 and/or KHCO3 (alkali-bicarbonate) concentrations. In agreement with the ASU group, we consider that alkali-bicarbonate is the crucial catalyst, provided PCO2 is high.This raises the question of whether alkali-carbonate could also catalyze labradorite and basalt carbonation. ARC and ASU data extrapolated to low T and low PCO2 agree with natural carbonation rates in Oman. Our geological observations suggest that higher temperature peridotite carbonation went to completion (all Mg as MgCO3, all Si as quartz), perhaps because reaction-driven cracking maintained reactive surface area and permeability despite formation of reaction products in pore space and armoring of remaining olivine reactants. We are not aware of comparable observations on present-day carbonation of basalt. (1) Kelemen & Matter, PNAS 2008 (2) O’Connor et al., DOE Final Report ARC-TR-04-002, 2004 (3) Gerdemann et al., Environ. Sci. Technol. 2007 (4) Chizmeshya et al., DOE Final Report 924162, 2007

  19. Evidence for Late-Paleozoic brine migration in Cambrian carbonate rocks of the central and southern Appalachians: Implications for Mississippi Valley-type sulfide mineralization

    USGS Publications Warehouse

    Hearn, P.P.; Sutter, J.F.; Belkin, H.E.

    1987-01-01

    Many Lower Paleozoic limestones and dolostones in the Valley and Ridge province of the central and southern Appalachians contain 10 to 25 weight percent authigenic potassium feldspar. This was considered to be a product of early diagenesis, however, 40Ar 39Ar analyses of overgrowths on detrital K-feldspar in Cambrian carbonate rocks from Pennsylvania, Maryland, Virginia, and Tennessee yield Late Carboniferous-Early Permian ages (278-322 Ma). Simple mass balance calculations suggest that the feldspar could not have formed isochemically, but required the flux of multiple pore volumes of fluid through the rocks, reflecting regional fluid migration events during the Late-Paleozoic Alleghanian orogeny. Microthermometric measurements of fluid inclusions in overgrowths on detrital K-feldspar and quartz grains from unmineralized rocks throughout the study area indicate homogenization temperatures from 100?? to 200??C and freezing point depressions of -14?? to -18.5??C (18-21 wt.% NaCl equiv). The apparent similarity of these fluids to fluid inclusions in ore and gangue minerals of nearby Mississippi Valley-type (MVT) deposits suggests that the regional occurrences of authigenic K-feldspar and MVT mineralization may be genetically related. This hypothesis is supported by the discovery of authigenic K-feldspar intergrown with sphalerite in several mines of the Mascot-Jefferson City District, E. Tennessee. Regional potassic alteration in unmineralized carbonate rocks and localized occurrences of MVT mineralization are both explainable by a gravity-driven flow model, in which deep brines migrate towards the basin margin under a hydraulic gradient established during the Alleghanian orogeny. The authigenic K-feldspar may reflect the loss of K during disequilibrium cooling of the ascending brines. MVT deposits are probably localized manifestations of the same migrating fluids, occurring where the necessary physical and chemical traps are present. ?? 1987.

  20. New Elastic Moduli for Amphiboles and Feldspars: Impact on Interpretations of Seismic Velocities

    NASA Astrophysics Data System (ADS)

    Brown, J. M.; Angel, R. J.

    2016-12-01

    Seismic properties (both isotropic and anisotropic) of the crust and upper mantle require re-evaluation in light of improved single crystal properties for feldspars and amphiboles as a function of elemental partitioning. Together these minerals constitute more than half of the crust and are locally important in the lithospheric mantle. Their contribution in understanding seismic structures (both in the crust and mantle) has long been recognized. However, published single crystal elastic moduli, required in predictions of seismic velocities based on mineral properties, have remained inadequate for over 50 years. For example, the contribution of amphiboles to seismic velocities has often been approximated on the basis of the reported moduli for two hornblende crystals of unknown composition. New measurements now accurately characterize the plagioclase feldspars, the potassium feldspars, and the calcium and calcium-sodium amphiboles (including a range of compositions for common hornblende). The new moduli allow successful predictions of rock velocities with and without crystal preferred orientations. In contrast, the older moduli required inappropriate use of the Voigt upper aggregate bound in order to rationalize laboratory measurements. These minerals are also more anisotropic than suggested on the basis of the earlier work where cracks and open cleavage surfaces may have artificially depressed the apparent anisotropy. Both feldspars and amphiboles are nearly as anisotropic as sheet silicates with compressional velocity anisotropy of greater than 50%. The plagioclase feldspars show strong compositional trends with small discontinuities between minor structural transitions. In contrast, potassium substitution for sodium and differences in aluminum ordering have little impact on elastic moduli. In the amphiboles, elastic properties are strongly dependent on total aluminum and iron composition. The bulk modulus is most sensitive to aluminum and the shear modulus is more sensitive to iron. Variations in Poisson's ratio (which depends on the ratio of isotropic compressional and shear wave velocities) associated with compositions within the amphiboles and the feldspars are larger than previously predicted. The extent of modifications to seismic interpretations is evaluated.

  1. Use of a CO2 laser to prepare chondrule-like spherules from supercooled molten oxide and silicate droplets.

    NASA Technical Reports Server (NTRS)

    Nelson, L. S.; Blander, M.; Keil, K.; Skaggs, S. R.

    1972-01-01

    Chondrule-like spherules were formed from individual freely falling subcooled droplets of alumina, enstatite, forsterite, enstatite-albite and forsterite-albite mixtures that had been melted with a focused continuous CO2 laser beam. Their textures (rimmed, excentro-radial, barred, glassy) are strikingly similar to those of many meteoritic chondrules. It is suggested that the phenomena associated with rapid crystallization from the supercooled melt are responsible for the various textures observed in the artificial spherules as well as in similar meteoritic chondrules. It is suggested that the textures observed would also result from rapid crystallization of relatively slowly cooling molten droplets that may have been produced in larger scale events, including condensation from a nebula of solar composition and solidification in an ambient medium of high temperature.

  2. Mineral-solution equilibria—III. The system Na 2OAl 2O 3SiO 2H 2OHCl

    NASA Astrophysics Data System (ADS)

    Popp, Robert K.; Frantz, John D.

    1980-07-01

    Chemical equilibrium between sodium-aluminum silicate minerals and chloride bearing fluid has been experimentally determined in the range 500-700°C at 1 kbar, using rapid-quench hydrothermal methods and two modifications of the Ag + AgCl acid buffer technique. The temperature dependence of the thermodynamic equilibrium constant ( K) for the reaction NaAlSi 3O 8 + HCl o = NaCl o + 1/2Al 2SiO 5, + 5/2SiO 2 + 1/2H 2O Albite Andalusite Qtz. K = (a NaCl o) /(a H 2O ) 1/2/(a HCl o) can be described by the following equation: log k = -4.437 + 5205.6/ T( K) The data from this study are consistent with experimental results reported by MONTOYA and HEMLEY (1975) for lower temperature equilibria defined by the assemblages albite + paragonite + quartz + fluid and paragonite + andalusite + quartz + fluid. Values of the equilibrium constants for the above reactions were used to estimate the difference in Gibbs free energy of formation between NaCl o and HCl o in the range 400-700°C and 1-2 kbar. Similar calculations using data from phase equilibrium studies reported in the literature were made to determine the difference in Gibbs free energy of formation between KCl o and HCl o. These data permit modelling of the chemical interaction between muscovite + kspar + paragonite + albite + quartz assemblages and chloride-bearing hydrothermal fluids.

  3. Feldspars as a source of nutrients for microorganisms

    USGS Publications Warehouse

    Rogers, J.R.; Bennett, P.C.; Choi, W.J.

    1998-01-01

    Phosphorus and nitrogen are essential macronutrients necessary for the survival of virtually all living organisms. In groundwater systems, these nutrients can be quite scarce and can represent limiting elements for growth of subsurface microorganisms. In this study we examined silicate sources of these elements by characterizing the colonization and weathering of feldspars in situ using field microcosms. We found that in carbon-rich anoxic groundwaters where P and N are scarce, feldspars that contain inclusions of P-minerals such as apatite are preferentially colonized over similar feldspars without P. A microcline from S. Dakota, which contains 0.24% P2O5 but ,1 mmol/ g NH , was heavily colonized 1 4 and deeply weathered. A similar microcline from Ontario, which has no detectable P or NH , was barren of attached organisms and completely unweathered after one year. An- 1 4 orthoclase (0.28% P2O5, ;1 mmol/g NH ) was very heavily colonized and weathered, 1 4 whereas plagioclase specimens (,0.01% P, ,1 mmmol/g NH ) were uncolonized and 1 4 unweathered. In addition, the observed weathering rates are faster than expected based on laboratory rates. We propose that this system is particularly sensitive to the availability of P, and the native subsurface microorganisms have developed biochemical strategies to aggressively scavenge P (or some other essential nutrient such as Fe31 ) from resistant feldspars. The result of this interaction is that only minerals containing P will be signifi- cantly colonized, and these feldspars will be preferentially destroyed, as the subsurface microbial community scavenges a limiting nutrient.

  4. Zeolite-clay mineral zonation of volcaniclastic sediments within the McDermitt caldera complex of Nevada and Oregon

    USGS Publications Warehouse

    Glanzman, Richard K.; Rytuba, James J.

    1979-01-01

    Volcaniclastic sediments deposited in the moat of the collapsed McDermitt caldera complex have been altered chiefly to zeolites and potassium feldspar. The original rhyolitic and peralkaline ash-flow tuffs are included in conglomerates at the caldera rims and grade into a lacustrine series near the center of the collapse. The tuffs show a lateral zeolitic alteration from almost fresh glass to clinoptilolite, clinoptilolite-mordenite, and erionite; to analcime-potassium feldspar; and finally to potassium feldspar. Vertical zonation is in approximately the same order. Clay minerals in associated mudstones, on the other hand, show little lateral variation but a distinct vertical zonation, having a basal dioctahedral smectite, a medial trioctahedral smectite, and an upper dioctahedral smectite. The medial trioctahedral smectite is enriched in lithium (as much as 6,800 ppm Li). Hydrothermal alteration of the volcaniclastic sediments, forming both mercury and uranium deposits, caused a distinct zeolite and clay-mineral zonation within the general lateral zonation. The center of alteration is generally potassium feldspar, commonly associated with alunite. Potassium feldspar grades laterally and vertically to either clinoptilolite or clinoptilolite-mordenite, generally associated with gypsum. This zone then grades vertically and laterally into fresh glass. The clay minerals are a dioctahedral smectite, a mixed-layer clay mineral, and a 7-A clay mineral. The mixed-layer and 7-A clay minerals are associated with the potassium feldspar-alunite zone of alteration, and the dioctahedral smectite is associated with clinoptilolite. This mineralogical zonation may be an exploration guide for mercury and uranium mineralization in the caldera complex environment.

  5. Episodic crustal growth in the Bundelkhand craton of central India shield: Constraints from petrogenesis of the tonalite–trondhjemite–granodiorite gneisses and K-rich granites of Bundelkhand tectonic zone

    NASA Astrophysics Data System (ADS)

    Chauhan, Hiredya; Saikia, Ashima; Ahmad, Talat

    2018-04-01

    Tonalite-trondhjemite-granodiorite gneisses (TTG) and K-rich granites are extensively exposed in the Mesoarchean to Paleoproterozoic Bundelkhand craton of central India. The TTGs rocks are coarse- grained with biotite, plagioclase feldspar, K-feldspar and amphibole as major constituent phases. The major minerals constituting the K-rich granites are K-feldspar, plagioclase feldspar and biotite. They are also medium to coarse grained. Mineral chemical studies show that the amphiboles of TTG are calcic amphibole hastingsite, plagioclase feldspars are mostly of oligoclase composition, K-feldspars are near pure end members and biotites are solid solutions between annite and siderophyllite components. The K-rich granites have biotites of siderophyllite-annite composition similar to those of TTGs, plagioclase feldspars are oligoclase in composition, potassic feldspars have XK ranging from 0.97 to 0.99 and are devoid of any amphibole. The tonalite-trondhjemite-granodiorite gneiss samples have high SiO2 (64.17-74.52 wt%), Na2O (3.11-5.90 wt%), low Mg# (30-47) and HREE contents, with moderate (La/Yb)_{CN} values (14.7-33.50) and Sr/Y ratios (4.85-98.7). These geochemical characteristics suggest formation of the TTG by partial melting of the hydrous basaltic crust at pressures and depths where garnet and amphibole were stable phases in the Paleo-Mesoarchean. The K-rich granite samples show high SiO2 (64.72-76.73 wt%), K2O (4.31-5.42), low Na2O (2.75-3.31 wt%), Mg# (24-40) and HREE contents, with moderate to high (La/Yb)_{CN} values (9.26-29.75) and Sr/Y ratios (1.52-24). They differ from their TTG in having elevated concentrations of incompatible elements like K, Zr, Th, and REE. These geochemical features indicate formation of the K-granites by anhydrous partial melting of the Paleo-Mesoarchean TTG or mafic crustal materials in an extensional regime. Combined with previous studies it is interpreted that two stages of continental accretion (at 3.59-3.33 and 3.2-3.0 Ga) and reworking (at 2.5-1.9 Ga) occurred in the Bundelkhand craton from Archaean to Paleoproterozoic.

  6. IR-RF dating on K-feldspar: tracing environmental changes in the Middle Pleistocene?

    NASA Astrophysics Data System (ADS)

    Kreutzer, Sebastian; Frouin, Marine; Krishna Murari, Madhav; Fuchs, Markus; Mercier, Norbert

    2017-04-01

    In Quaternary sciences, luminescence dating (OSL, TL, RF) yielded paramount importance due to its capability to trace the geomorphological process itself. However, every method has its own limitation and, e.g., the choice of a mineral depends on its local availability and mineral specific characteristic. Since quartz has been proved as reliable dosimeter, but its usual dose saturation level of ca. 150 Gy might be not sufficient in particular cases, feldspar grains are preferred for dating events where higher saturation limits are desired or quartz is not available. However, feldspar suffers from anomalous fading and the efforts undertaken during the last decades to overcome this challenge varied in their success. By contrast, infrared radiofluorescence (IR-RF) of K-feldspar (Trautmann et al., 1999) seems to offer a promising alternative, but until date it has been rarely applied. Likely reasons for this lack of attention are a shortage of commercially available measurement equipment until the recent past and serious methodological doubts that had been raised in the literature (e.g., Buyleart et al., 2012). At the IRAMAT-CRP2A the formerly proposed IR-RF single aliquot regenerative dose (SAR) protocol approach (IRSAR, Erfurt et al., 2003) for K-feldspar grains have been adapted and enhanced (Frouin et al., 2015; Huot et al., 2015; Frouin et al., 2017) using (a) sample adapted bleaching settings and (b) a stimulation at higher temperatures. Together with more recent methodological findings, we present the advantage and the limitations of using the IR-RF dating approach for establishing reliable chronologies on believed Middle Pleistocene sediments. References. Buylaert, J.P., Jain, M., Murray, A.S., Thomsen, K.J., Lapp, T., 2012. IR-RF dating of sand-sized K-feldspar-extracts: A test of accuracy. Radiation Measurements 47, 759-765. Erfurt, G., Krbetschek, M.R., 2003. IRSAR - A single-aliquot regenerative-dose dating protocol applied to the infrared radiofluorescence (IR-RF) of coarse-grain K-feldspar. Ancient TL 21, 35-42. Frouin, M., Huot, S., Kreutzer, S., Lahaye, C., Lamothe, M., Philippe, A., Mercier, N., 2017. An improved radiofluorescence single-aliquot regenerative dose protocol for K-feldspars. Quaternary Geochronology 38, 13-24. Frouin, M., Huot, S., Mercier, N., Lahaye, C., Lamothe, M., 2015. The issue of laboratory bleaching in the infrared-radiofluorescence dating method. Radiation Measurements 81, 212-217. Huot, S., Frouin, M., Lamothe, M., 2015. Evidence of shallow TL peak contributions in infrared radiofluorescence. Radiation Measurements 81, 237-241. Trautmann, T., Krbetschek, M.R., Dietrich, A., Stolz, W., 1999. Feldspar radioluminescence: a new dating method and its physical background. Journal of Luminescence 85, 45-58.

  7. Cl-rich hydrous mafic mineral assemblages in the Highiș massif, Apuseni Mountains, Romania

    NASA Astrophysics Data System (ADS)

    Bonin, Bernard; Tatu, Mihai

    2016-08-01

    The Guadalupian (Mid-Permian) Highiș massif (Apuseni Mountains, Romania) displays a bimodal igneous suite of mafic (gabbro, diorite) and A-type felsic (alkali feldspar granite, albite granite, and hybrid granodiorite) rocks. Amphibole is widespread throughout the suite, and yields markedly high chlorine contents. Three groups are identified: Cl-rich potassic hastingsite (2.60-3.40 wt% Cl) within A-type felsic rocks and diorite, mildly Cl-rich pargasite to hornblende (0.80-1.90 wt% Cl) within gabbro, and low F-Cl hornblende within gabbro and hybrid granodiorite. Coexisting biotite is either Cl-rich within diorite, or F-Cl-poor to F-rich within A-type felsic rocks. Chlorine and fluorine are distributed in both mafic phases, according to the F-Fe and Cl-Mg avoidance rules. The low-Ti contents suggest subsolidus compositions. Cl-rich amphibole within diorite and A-type felsic rocks yields a restricted temperature range - from 575 °C down to 400 °C, whereas mildly Cl-rich amphibole within gabbro displays the highest range - from 675 to 360 °C. Temperatures recorded by Cl-rich biotite within diorite range from 590 to 410 °C. Biotite within A-type felsic rocks yields higher temperatures than amphibole: the highest values- from 640 to 540 °C - are recorded in low-F-Cl varieties, whereas the lowest values- from 535 to 500 °C - are displayed by F-rich varieties. All data point to halogen-rich hydrothermal fluids at upper greenschist facies conditions percolating through fractures and shear zones and pervasively permeating the whole Highiș massif, with F precipitating as interstitial fluorite and Cl incorporating into amphibole, during one, or possibly several, hydrothermal episodes that would have occurred during a ~ 150 My-long period of time extending from the Guadalupian (Mid-Permian) to the Albian (Mid-Cretaceous).

  8. Timing of multiple hydrothermal events in the iron oxide-copper-gold deposits of the Southern Copper Belt, Carajás Province, Brazil

    NASA Astrophysics Data System (ADS)

    Moreto, Carolina P. N.; Monteiro, Lena V. S.; Xavier, Roberto P.; Creaser, Robert A.; DuFrane, S. Andrew; Melo, Gustavo H. C.; Delinardo da Silva, Marco A.; Tassinari, Colombo C. G.; Sato, Kei

    2015-06-01

    The Southern Copper Belt, Carajás Province, Brazil, hosts several iron oxide-copper-gold (IOCG) deposits, including Sossego, Cristalino, Alvo 118, Bacuri, Bacaba, Castanha, and Visconde. Mapping and U-Pb sensitive high-resolution ion microprobe (SHRIMP) IIe zircon geochronology allowed the characterization of the host rocks, situated within regional WNW-ESE shear zones. They encompass Mesoarchean (3.08-2.85 Ga) TTG orthogneiss, granites, and remains of greenstone belts, Neoarchean (ca. 2.74 Ga) granite, shallow-emplaced porphyries, and granophyric granite coeval with gabbro, and Paleoproterozoic (1.88 Ga) porphyry dykes. Extensive hydrothermal zones include albite-scapolite, biotite-scapolite-tourmaline-magnetite alteration, and proximal potassium feldspar, chlorite-epidote and chalcopyrite formation. U-Pb laser ablation multicollector inductively coupled mass spectrometry (LA-MC-ICP-MS) analysis of ore-related monazite and Re-Os NTIMS analysis of molybdenite suggest multiple Neoarchean (2.76 and 2.72-2.68 Ga) and Paleoproterozoic (2.06 Ga) hydrothermal events at the Bacaba and Bacuri deposits. These results, combined with available geochronological data from the literature, indicate recurrence of hydrothermal systems in the Southern Copper Belt, including 1.90-1.88-Ga ore formation in the Sossego-Curral ore bodies and the Alvo 118 deposit. Although early hydrothermal evolution at 2.76 Ga points to fluid migration coeval with the Carajás Basin formation, the main episode of IOCG genesis (2.72-2.68 Ga) is related to basin inversion coupled with Neoarchean (ca. 2.7 Ga) felsic magmatism. The data suggest that the IOCG deposits in the Southern Copper Belt and those in the Northern Copper Belt (2.57-Ga Salobo and Igarapé Bahia-Alemão deposits) do not share a common metallogenic evolution. Therefore, the association of all IOCG deposits of the Carajás Province with a single extensive hydrothermal system is precluded.

  9. Geochemical behavior of rare earth elements of the hydrothermal alterations within the Tepeoba porphyry Cu-Mo-Au deposits at Balikesir, NW Turkey

    NASA Astrophysics Data System (ADS)

    Doner, Zeynep; Abdelnasser, Amr; Kiran Yildirim, Demet; Kumral, Mustafa

    2016-04-01

    This work reports the geochemical characteristics and behavior of the rare earth elements (REE) of the hydrothermal alteration of the Tepeoba porphyry Cu-Mo-Au deposit located in the Anatolian tectonic belt at Biga peninsula (Locally Balikesir province), NW Turkey. The Cu-Mo-Au mineralization at this deposit hosted in the hornfels rocks and related to the silicic to intermediate intrusion of Eybek pluton. It locally formed with brecciated zones and quartz vein stockworks, as well as the brittle fracture zones associated with intense hydrothermal alteration. Three main alteration zones with gradual boundaries formed in the mine area in the hornfels rock that represents the host rock, along that contact the Eybek pluton; potassic, propylitic and phyllic alteration zones. The potassic alteration zone that formed at the center having high amount of Cu-sulfide minerals contains biotite, muscovite, and sericite with less amount of K-feldspar and associated with tourmalinization alteration. The propylitic alteration surrounds the potassic alteration having high amount of Mo and Au and contains chlorite, albite, epidote, calcite and pyrite. The phyllic alteration zone also surrounds the potassic alteration containing quartz, sericite and pyrite minerals. Based on the REE characteristics and content and when we correlate the Alteration index (AI) with the light REEs and heavy REEs of each alteration zone, it concluded that the light REEs decrease and heavy REEs increase during the alteration processes. The relationships between K2O index with Eu/Eu* and Sr/Sr* reveals a positive correlation in the potassic and phyllic alteration zones and a negative correlation in the propylitic alteration zone. This refers to the hydrothermal solution which is responsible for the studied porphyry deposits and associated potassic and phyllic alterations has a positive Eu and Sr anomaly as well as these elements were added to the altered rock from the hydrothermal solution. Keywords: Rare earth elements geochemistry; Tepeoba porphyry Cu-Mo-Au deposits; Balikesir; Turkey

  10. Depostional systems, provenance, and sequence stratigraphy, Carter and [open quotes]Millerella[close quotes] sandstones of northeast Mississippi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleaves, A.W. II

    1993-09-01

    The subsurface [open quotes]Millerella[close quotes] and Carter sandstones (middle Chesterian) of the Black Warrior basin represent the highest units of the thick Muldon clastics deltaic facies tract. Lowstand marine conditions during Carter deposition allowed for southeastwardly progradation of five distinct deltaic lobe complexes onto the stable northern shelf of the basin. With each of these lobes, both an [open quotes]A[close quotes] (upper) and a [open quotes]B[close quotes] (lower) reservoir unit can be identified. The [open quotes]B[close quotes] sandstone produces from delta-front sheet sands, channel-mouth bars, and possible bar fingers of river-dominated deltas. The more prolific [open quotes]A[close quotes] subdivision containsmore » reservoirs in upper delta-plain point bars, crevasse splays, and distributary channel fills. The most easterly of the lobes, preserved in the Bean's Ferry field of Itawamba County, comprises an amalgamated valley-fill facies that removed a maximum of 250 ft (76 m) of lower Bangor platform carbonates. In contrast, the [open quotes]Millerella[close quotes] sandstone is a series of unconnected pods that formed as marine-reworked sand bodies during a eustatic rise in sea level. The average detrital sand grain composition for four cores taken in Monroe County is 94.7% monocrystalline quartz, 2.9% polycrystalline quartz, 1.6% albite feldspar, 0.1% low-rank metamorphic rock fragments, 0.5 chert, and 0.2% muscovite. These data indicate that neither the Ozark uplift nor the Ouachita orogen could have acted as the principal source area for the Carter and [open quotes]Millerella[close quotes] sandstones. More likely, the sedimentary-igneous terrains along the northern margin of the Illinois basin served this function. A major eustatic lowstand brought this mineralogically mature sediment across the Illinois basin through incised valleys to the northern self of the Black Warrior basin.« less

  11. Authigenic K-feldspar in salt rock (Haselgebirge Formation, Eastern Alps)

    NASA Astrophysics Data System (ADS)

    Leitner, Christoph

    2015-04-01

    The crystallisation of authigenic quartz under low temperature, saline conditions is well known (Grimm, 1962). Also the growth of low temperature authigenic feldspar in sediments is a long known phenomenon (Kastner & Siever, 1979; Sandler et al., 2004). In this study we intend to show that halite (NaCl) is a major catalyser for authigenic mineral growth. During late Permian (c. 255-250 Ma), when the later Eastern Alps were located around north of the equator, the evaporites of the Haselgebirge Formation were deposited (Piller et al., 2004). The Haselgebirge Fm. consists in salt mines of a two-component tectonite of c. 50 % halite and 50 % sedimentary clastic and other evaporite rocks (Spötl 1998). Most of the clastic rocks are mud- to siltstones ("mudrock"). During this study, we investigated rare sandstones embedded in salt rock form four Alpine salt mines. Around 40 polished thin sections were prepared by dry grinding for thin section analysis and scanning electron microscopy. The sandstones consist mainly of quartz, K-feldspar, rock fragments, micas, accessory minerals and halite in the pore space. They are fine grained and well sorted. Mudrock clasts in sandstone were observed locally, and also coal was observed repeatedly. Asymmetric ripples were found only in the dimension of millimeters to centimeters. Euhedral halite crystals in pores indicate an early presence of halite. During early diagenesis, authigenic minerals crystallized in the following chronological order. (1) Where carbonate (mainly magnesite) occurred, it first filled the pore space. Plant remains were impregnated with carbonate. (2) Halite precipitated between the detritic sandstone grains. Carbonate grains can be completely embedded in halite. (3) K-feldspar and quartz grains usually expose a detritic core and a later grown euhedral inclusion free rim. Euhedral rims of K-feldspar often also enclose a halite core. K-feldspar replaced the pre-existing halite along former grain boundaries of halite. Fluid reaction rims with many tiny minerals (hematite, acicular crystals, fluid inclusions etc.) around quartz, K-feldspar and rock fragments probably belong to this stage. (4) Authigenic anhydrite grew over carbonate, halite (halite inclusions in anhydrite), euhedral quartz and euhedral K-feldspar. (5). The sulfate polyhalite [K2Ca2Mg(SO4)4•2H2O] needs three major cation ingredients: potassium, calcium and magnesium. The large granoblastic polyhalite crystals enclose halite, euhedral quartz and euhedral K-feldspar. It formed coevally with the authigenic anhydrite, which proves by their intermediate intergrowth. The age of granoblastic polyhalite was measured between 235-210 Ma on samples from the salt mines of Altaussee, Berchtesgaden and Bad Dürrnberg with 39Ar/40Ar dating (Leitner et al., 2014). Since deposition of the Haselgebirge Fm. was at c. 250 Ma, the primary diagenetic crystallization was completed c. 15-30 Ma after deposition. The overburden at this time was 1000-2000 m at maximum (formation of the large carbonate platforms; Tollmann, 1985) and therefore very low p-T conditions can be assumed for the formation of authigenic quartz and authigenic K-feldspar.

  12. Shocked plagioclase signatures in Thermal Emission Spectrometer data of Mars

    USGS Publications Warehouse

    Johnson, J. R.; Staid, M.I.; Titus, T.N.; Becker, K.

    2006-01-01

    The extensive impact cratering record on Mars combined with evidence from SNC meteorites suggests that a significant fraction of the surface is composed of materials subjected to variable shock pressures. Pressure-induced structural changes in minerals during high-pressure shock events alter their thermal infrared spectral emission features, particularly for feldspars, in a predictable fashion. To understand the degree to which the distribution and magnitude of shock effects influence martian surface mineralogy, we used standard spectral mineral libraries supplemented by laboratory spectra of experimentally shocked bytownite feldspar [Johnson, J.R., Ho??rz, F., Christensen, P., Lucey, P.G., 2002b. J. Geophys. Res. 107 (E10), doi:10.1029/2001JE001517] to deconvolve Thermal Emission Spectrometer (TES) data from six relatively large (>50 km) impact craters on Mars. We used both TES orbital data and TES mosaics (emission phase function sequences) to study local and regional areas near the craters, and compared the differences between models using single TES detector data and 3 ?? 2 detector-averaged data. Inclusion of shocked feldspar spectra in the deconvolution models consistently improved the rms errors compared to models in which the spectra were not used, and resulted in modeled shocked feldspar abundances of >15% in some regions. However, the magnitudes of model rms error improvements were within the noise equivalent rms errors for the TES instrument [Hamilton V., personal communication]. This suggests that while shocked feldspars may be a component of the regions studied, their presence cannot be conclusively demonstrated in the TES data analyzed here. If the distributions of shocked feldspars suggested by the models are real, the lack of spatial correlation to crater materials may reflect extensive aeolian mixing of martian regolith materials composed of variably shocked impact ejecta from both local and distant sources. ?? 2005 Elsevier Inc. All rights reserved.

  13. Mineralogy and geochemistry of Eocene Helete formation , Adiyaman, Turkey

    NASA Astrophysics Data System (ADS)

    Choi, J.; Lee, I.; Yildirim, E.

    2013-12-01

    Helete formation is located at Adiyaman, Turkey which is in the Alpine-Himalayan orogeny belt. Helete formation is represented by andesitic, basaltic and gabbroic rocks cut by localized felsic intrusions and overlain by open-marine Nummulitic carbonate sediments. Electron microprobe analyses were conducted for 15 rocks samples of Helete formation. These rock samples are named as basalt, andesite, gabbro, diorite, dacite, and granite. Basalt and andesite samples are composed of clinopyroxene(augite), plagioclase(Ab98-96), carbonate, and hyaline. Gabbro samples have wide range of plagioclase composition from anorthite to albite(Ab92-16), and other minerals like clinopyroxene(augite) and amphibole(hornblende and actinolite). Diabase samples consist of epidote group minerals and sphene with plagioclase(Ab80), pyroxene and hornblende. Dacite samples are composed of dolomite and quartz. Granite samples are composed of quartz, chlorite, and plagioclase which range from albite to oligoclase in composition (Ab98-89).

  14. Electrical Conductivity of Rocks and Dominant Charge Carriers. Part 1; Thermally Activated Positive Holes

    NASA Technical Reports Server (NTRS)

    Freund, Friedemann T.; Freund, Minoru M.

    2012-01-01

    The prevailing view in the geophysics community is that the electrical conductivity structure of the Earth's continental crust over the 5-35 km depth range can best be understood by assuming the presence of intergranular fluids and/or of intragranular carbon films. Based on single crystal studies of melt-grown MgO, magma-derived sanidine and anorthosite feldspars and upper mantle olivine, we present evidence for the presence of electronic charge carriers, which derive from peroxy defects that are introduced during cooling, under non-equilibrium conditions, through a redox conversion of pairs of solute hydroxyl arising from dissolution of H2O.The peroxy defects become thermally activated in a 2-step process, leading to the release of defect electrons in the oxygen anion sublattice. Known as positive holes and symbolized by h(dot), these electronic charge carriers are highly mobile. Chemically equivalent to O(-) in a matrix of O(2-) they are highly oxidizing. Being metastable they can exist in the matrix of minerals, which crystallized in highly reduced environments. The h(dot) are highly mobile. They appear to control the electrical conductivity of crustal rocks in much of the 5-35 km depth range.

  15. Quantitative mineralogy of the Yukon River system: Changes with reach and season, and determining sediment provenance

    USGS Publications Warehouse

    Eberl, D.D.

    2004-01-01

    The mineralogy of Yukon River basin sediment has been studied by quantitative X-ray diffraction. Bed, beach, bar, and suspended sediments were analyzed using the RockJock computer program. The bed sediments were collected from the main stem and from selected tributaries during a single trip down river, from Whitehorse to the Yukon River delta, during the summer of 2001. Beach and bar sediments were collected from the confluence region of the Tanana and Yukon Rivers during the summer of 2003. Suspended sediments were collected at three stations on the Yukon River and from a single station on the Tanana River at various times during the summers of 2001 through 2003, with the most complete set of samples collected during the summer of 2002. Changes in mineralogy of Yukon River bed sediments are related to sediment dilution or concentration effects from tributary sediment and to chemical weathering during transport. Carbonate minerals compose about 2 wt% of the bed sediments near Whitehorse, but increase to 14 wt% with the entry of the White River tributary above Dawson. Thereafter, the proportion of carbonate minerals decreases downstream to values of about 1 to 7 wt% near the mouth of the Yukon River. Quartz and feldspar contents of bed sediments vary greatly with the introduction of Pelly River and White River sediments, but thereafter either increase irregularly (quartz from 20 to about 50 wt%) or remain relatively constant (feldspar at about 35 wt%) with distance downstream. Clay mineral content increases irregularly downstream from about 15 to about 30 wt%. The chief clay mineral is chlorite, followed by illite + smectite; there is little to no kaolinite. The total organic carbon content of the bed sediments remains relatively constant with distance for the main stem (generally 1 to 2 wt%, with one exception), but fluctuates for the tributaries (1 to 6 wt%). The mineralogies of the suspended sediments and sediment flow data were used to calculate the amount of mineral dissolution during transport between Eagle and Pilot Station, a distance of over 2000 km. We estimate that approximately 3 wt% of the quartz, 15 wt% of the feldspar (1 wt% of the alkali and 25 wt% of the plagioclase), and 26 wt% of the carbonates (31 wt% of the calcite and 15 wt% of the dolomite) carried by the river dissolve in this reach. The mineralogies of the suspended sediments change with the season. For example, during the summer of 2002 the quartz content varied by 20 wt%, with a minimum in mid-summer. The calcite content varied by a similar amount, and had a maximum corresponding to the quartz minimum. These modes are related to the relative amount of sediment flowing from the White River system, which is relatively poor in quartz, but rich in carbonate minerals. Suspended total clay minerals varied by as much as 25 wt%, with maxima in mid July, and suspended feldspar varied up to 10 wt%. Suspended sediment data from the summers of 2001 and 2003 support the 2002 trends. A calculation technique was developed to determine theproportion of various sediment sources in a mixed sediment by unmixing its quantitative mineralogy. Results from this method indicate that at least three sediment sources can be identified quantitatively with good accuracy. With this technique, sediment mineralogies can be used to calculate the relative flux of sediment from different tributaries, thereby identifying sediment provenance.

  16. Phanerozoic extensional faulting and alteration control on uranium mineralization in trachytes of the Central Eastern Desert of Egypt

    NASA Astrophysics Data System (ADS)

    Hamdy, Mohamed M.; Waheeb, Anton G.; Aly, Samir M.; Farag, Nagdy M.; Sadek, Adel F.

    2017-12-01

    The Gabal Nasb El Atshan Upper Carboniferous-Lower Permian altered trachytes include uranium up to 3165 ppm. The paleostress and resolved shear stress analyses of the deformation systems in Gabal Nasb El Atshan area indicate that the trachyte was subjected to WNW-ESE to E-W tensile shear stress directed extensional regimes. The low-stress regions in the vicinity of extensional faults and their associated joints were favorable locations for fluid flow and the consequence alteration and U-mineralization. This occurred more extensively along the contacts between the sills of trachyte and the Hammamat sedimentary rocks; where the latter acted as a physical barrier for the alteration fluids migration outward. Alteration styles include albitization, aegirinization, arfvedsonization, chloritization and ferruginisation. The albitization is the most common sodic metasomatism, giving sanidine from Or98.8Ab0.7 to Or62.3Ab37.6, anorthoclase from Or51.4Ab48.0 to Or12.2Ab87.6 and albite from Or11.0Ab89.0 to Or0.8Ab99.2. Aegirine and arfvedsonite formed due to decreasing sodium activity in the metasomatic fluids. Sodic metasomatism may be the source of uranium-enrichment, taking place during the late magmatic to deuteric processes. This was followed by a retrograde alteration of chloritization between 175 and 42 °C toward precipitation of Fe-oxides and alteration of primary uranium. Surficial low-temperature alteration remobilized and redistributed the produced uranylhydroxides and ferruginisation caused the reduction and adsorption of U forming betafite, uranophane, soddyite, umohoite, uranotile and uranopilite.

  17. Complex layering of the Orange Mountain Basalt: New Jersey, USA

    NASA Astrophysics Data System (ADS)

    Puffer, John H.; Block, Karin A.; Steiner, Jeffrey C.; Laskowich, Chris

    2018-06-01

    The Orange Mountain Basalt of New Jersey is a Mesozoic formation consisting of three units: a single lower inflated sheet lobe about 70 m thick (OMB1), a middle pillow basalt about 10 to 20 m thick (OMB2), and an upper compound pahoehoe flow about 20 to 40 m thick (OMB3). The Orange Mountain Basalt is part of the Central Atlantic Magmatic Province. Quarry and road-cut exposures of OMB1 near Paterson, New Jersey, display some unusual layering that is the focus of this study. OMB1 exposures displays the typical upper crust, core, and basal crust layers of sheet lobes but throughout the Patterson area also display distinct light gray layers of microvesicular basalt mineralized with albite directly over the basal crust and under the upper crust. The lower microvesicular layer is associated with mega-vesicular diapirs. We propose that the upper and lower microvesicular layers were composed of viscous crust that was suddenly quenched before it could devolatilize immediately before the solidification of the core. During initial cooling, the bottom of the basal layer was mineralized with high concentrations of calcite and albite during a high-temperature hydrothermal event. Subsequent albitization, as well as zeolite, prehnite, and calcite precipitation events, occurred during burial and circulation of basin brine heated by recurring Palisades magmatism below the Orange Mountain Basalt. Some of the events experienced by the Orange Mountain Basalt are unusual and place constraints on the fluid dynamics of thick flood basalt flows in general. The late penetration of vesicular diapirs through the entire thickness of the flow interior constrains its viscosity and solidification history.

  18. Peak Metamorphic Temperature Profile across Eastern Belt Franciscan, Northern California Coast Ranges

    NASA Astrophysics Data System (ADS)

    Schmidt, W. L.; Platt, J. P.

    2017-12-01

    Previous work done on metamorphic temperatures across the lawsonite-albite to blueschist facies rocks of the Eastern Belt of the Franciscan accretionary complex has relied on a combination of many methods, and suggests that temperature broadly increases from west to east. The Taliaferro Metamorphic Complex is an exception to this pattern and shows higher pressures, and possibly higher temperatures, than its surroundings. The exact location and nature of the faults separating accreted packets in the Eastern Belt is somewhat controversial. A recently calibrated low-temperature laser Raman geothermometer for use on carbonaceous material provides a uniform method of estimating peak metamorphic temperature across the eastern Franciscan and is here used to identify the position of major tectonic boundaries. Temperatures were obtained from exposures in Thomes Creek, Cottonwood Creek, Grindstone Creek, and the middle fork of the Eel River. Peak T in the South Fork Mountain Schist, the highest grade and easternmost unit in the Franciscan, is 310-375°C, whereas in immediately underlying lawsonite-albite facies rocks below the Log Springs thrust, peak T is 270 - 300°C. The Taliaferro Metamorphic Complex reached a peak temperature of 336°C, whereas the surrounding lawsonite-albite facies rocks yield peak temperatures as low as 232°C. Preliminary temperature profiles clearly allow the major faults bounding the Taliaferro Metamorphic Complex and the South Fork Mountain Schist to be located. Extension of the temperature profile has the potential to reveal further detail within these units and the lower grade rocks surrounding them.

  19. Calorimetric investigation of the excess entropy of mixing in analbite-sanidine solid solutions: lack of evidence for Na,K short- range order and implications for two-feldspar thermometry.

    USGS Publications Warehouse

    Haselton, H.T.; Hovis, G.L.; Hemingway, B.S.; Robie, R.A.

    1983-01-01

    Heat capacities (5-380 K) have been measured by adiabatic calorimetry for five highly disordered alkali feldspars (Ab99Or1, Ab85Or15, Ab55Or45, Ab25Or75 and Ab1Or99). The thermodynamic and mineralogical implications of the results are discussed. The new data are also combined with recent data for plagioclases in order to derive a revised expression for the two-feldspar thermometer. T calculated from the revised expression tend to be higher than previous calculations.-J.A.Z.

  20. Study on the Particle Size Distribution Nano-Particles of Mining Minerals on Whiteness of Triaxial Body

    NASA Astrophysics Data System (ADS)

    Mathur, Ravi; Soni, Aditi

    White wares produced worldwide represent the foundation of much of the ceramic industry; Porcelain bodies fabricated from triaxial mixtures of clay, quartz and feldspar with different size and amounts of nano particles were investigated. Although the purity of raw materials has a strong effect on the colour of the fired bodies, the particle size of raw materials also effect the whiteness The raw material mining minerals china Clay, Feldspar, quarts were prepared of various sized nano particles contains 10.60 -20.22%, 56.84- 70.80 % and 34.87-50.76 % of 100nm respectively. The fired bodies of raw mining minerals and triaxial bodies were subjected to colour measurement. The differences in whiteness were compared and discussed. The studies so far carried out is upto 400 mesh size while the present study has included up to 100nm particle size. A statistical correlation between whiteness of feldspar and triaxial body was also carried out. The correlation between china clay and triaxial body are 0.53, 0.57 and 0.66 for china clay similarly correlation for feldspar is 0.49, 0.73 and 0.83 for triaxial body it are 0.97, 0.84 and 0.75 for A1, A2 and A3 samples. Correlation between china clay and feldspar with triaxial body are 0.79 and 0.92 respectively.

  1. New experimental constraints on liquidi, critical mixing, and the second critical end point in the system albite-H2O

    NASA Astrophysics Data System (ADS)

    Makhluf, A. R.; Newton, R. C.; Manning, C. E.

    2013-12-01

    Supercritical fluids in rock-H2O systems have been proposed to be important agents of mass transfer in high-pressure environments such as subduction zones. We conducted new experimental studies of the important model system H2O-albite (NaAlSi3O8). Equilibrium phase relations were determined in isobaric T-XH2O binaries at 10.0, 12.5, 14.0, 16.0, and 17.0 kbar, at 600-1060 °C and H2O mole fractions (XH2O) of 0.35 to 0.99. All experiments were conducted in a piston-cylinder apparatus. Stabilities of hydrous albite liquid (L) and H2O-rich vapor (V) were determined from textural analysis of run products by binocular, petrographic and scanning electron microscopy. At each pressure, the experiments bracketed the liquidus curve, the topology of the L+V miscibility gap, and the temperature of critical mixing (TC). The bulk composition at critical mixing of L+V is ~50 wt% H2O at all pressures investigated. The P-T trace of the critical curve is described by the equation TC = -59.9P + 1650 (R2=0.998) where T is in °C and P is in kbar, and the equation is valid over the investigated P and T. The results indicate a critical endpoint on the hydrous melting curve at 16.3 kbar and 667 °C. Our results agree reasonably well with the work of Burnham and Jahns (1962, Am. Journal of Sci., 260, 721) and Shen and Keppler (1997, Nature, 385, 710). The constraints on the phase equilibria allow derivation of a thermodynamic model using a modified version of the Redlich-Kister method (1948, Indus. and Eng. Chem., 40b, 345) which allows quantification of the NaAlSi3O8 activity, aAb, and H2O activity, aH2O, over the entire composition range at each of the above listed pressures, between the solidus temperatures and critical temperatures. The results provide fundamental constraints on the physical chemical controls on the generation and solution properties of supercritical and subcritical fluids in the albite-H2O system.

  2. Structural relaxation of vitreous albite near Tg and implications for transport properties of the supercooled liquid at high pressure

    NASA Astrophysics Data System (ADS)

    Gaudio, S. J.; Lesher, C. E.

    2012-12-01

    We estimate the glass transition temperature, Tg, for vitreous/amorphous albite between 0 and 7.7 GPa by tracking the progress of densification following high-temperature annealing experiments with run durations equal to 5τ (when τ=100 s). Tg decreases by 54 K/GPa up to 2.6 GPa, and thereafter shows a weak negative pressure dependence. This behavior mimics the negative pressure dependence of viscosity of albite liquid shown by [1]; however, we do not find a change in the sign of ∂Tg/∂P at least up to 7.7 GPa as reported in some isothermal ∂η/∂P, and ∂DO/∂P data sets. Our high field (21.8 T) 27Al MAS NMR measurements of recovered glasses rapidly quenched from super-Tg conditions possess trace amounts of high coordinated Al at 2.6 GPa and only ˜17% by 5.5 GPa. This suggests that the decrease in Tg (and viscosity at low temperature) results dominantly from topological rearrangement of the supercooled melt structure and not changes to Al or Si coordination number and connectivity of the network. In fact, at Tg from 0 to 8 GPa, the XNBO, or network connectivity, is unchanged [2] and at 7.7 GPa, we find the proportion of high coordinated Al is still ˜35%. Convergence in the timescales of relaxation at Tg(P) and the onset of Na mobility to 6 GPa documented by high-pressure electrical conductivity measurements [3] implies that the fragility of albite melt increases with pressure up to ˜4-5 GPa, without changing the effective polymerization of the melt. In contrast, fragility appears to decrease with pressure in partially depolymerized silicate melts. Such differences in fragility can be used for extrapolation of activation energy based models for viscous flow to high pressure. [1] Kushiro, 1978, EPSL, 41; Brearley et al., 1986, GCA, 50; Brearley and Montana, 1989, GCA, 53; Poe et al., 1997, Science, 276; Suzuki et al., 2002, Phys. Chem. Miner., 29; Funakoshi et al., 2002, J. Phys.: Condens. Matter., 14; Behrens and Schulze, 2003, Am. Min., 88. [2] Lee et al. 2004, GCA, 68; [3] Bagdassarov et al., 2004, Phys. Chem. Glasses, 45.

  3. The transition from blueschist to greenschist facies modeled by the reaction glaucophane + 2 diopside + 2 quartz = tremolite + 2 albite

    NASA Astrophysics Data System (ADS)

    Jenkins, David M.

    2011-10-01

    The reaction glaucophane + 2 diopside + 2 quartz = tremolite + 2 albite is proposed to model the transition from the blueschist to greenschist facies. This reaction was investigated experimentally over the range of 1.0-2.1 GPa and 500-800°C using synthetic phases in the chemical system Na2O-CaO-MgO-Al2O3-SiO2-H2O. Reversals of this reaction were possible at 500 and 550°C and growth of the low-pressure assemblage at 600°C; however, at temperatures of 600°C and higher and at pressures above 1.6 GPa omphacite nucleation (at the expense of diopside and albite) became quite strong and prevented attaining clear reversals of this reaction. Compositional changes in the amphiboles were determined by both electron microprobe analyses and correlations between unit-cell dimensions and composition. Glaucophane and particularly tremolite showed clear signs of compositional re-equilibration and merged to a single amphibole of winchite composition by about 754°C. These data were used to model the miscibility gap between glaucophane and tremolite using either the asymmetric multicomponent formulism parameters of W TR,GL of 68 kJ with αTR of 1.0 and αGL of 0.75 or a simple two-site asymmetric thermodynamic mixing expression with Margules parameters W NaCa of 13.4 kJ and W CaNa of 19.3 kJ. Combination of these thermodynamic models of the miscibility gap with extant thermodynamic data for the other phases yields a calculated location of the above reaction, involving pure diopside and albite, that is in good agreement with the observed experimental reversals and amphibole compositions over the range of 0.94-1.93 GPa and 400-754°C. The calculated effect of jadeite solid solution into diopside is to reduce the dP/dT slope from 0.0028 to 0.0021 GPa/°C and decrease the pressure by 0.28 GPa at 754°C. The dP/dT slope of this reaction boundary lies close to a linear geotherm of 13°C/km and is consistent with the slopes of other solid-solid reactions that have been used to model the blueschist-to-greenschist facies transition.

  4. Effects of chemical surface modification on the ice nucleation ability of feldspar and illite

    NASA Astrophysics Data System (ADS)

    Augustin, Stefanie; Wex, Heike; Kanter, Sandra; Ebert, Martin; Niedermeier, Dennis; Stratmann, Frank

    2014-05-01

    Mineral dust is the most abundant ice nuclei (IN) in the atmosphere and thus it is thought to be important for ice nucleation in clouds (Murray et al. [2012]). The clay minerals contribute approximately two thirds of the mineral dust mass (Atkinson et al. [2013]), and illite is the most abundant clay mineral found in the atmosphere [Broadley et al., 2012]. In the past years a lot of the ice nucleation research focused on proxies for clay minerals like Arizona Test Dust (ATD), kaolinite and illite (see reviews by Murray et al. [2012] and Hoose and Möhler. [2012]). In most experiments, these substances acted as IN only at relatively low temperatures (lower than -25°C). Very recently Atkinson et al. (2013) showed that K-feldspar, which is a common crustal material, is the most active mineral dust with freezing temperatures above -20°C. In the present study we compared the immersion freezing behavior of size segregated illite and feldspar particles. We used illite-NX (Arginotec) and a feldspar sample from Minas Gerais, Brazil (consisting to roughly 80% of a K-feldspar with the remainder being a Na-feldspar). Both substances were examined in the framework of the INUIT research project. For the illite-NX particles freezing onset was observed at temperatures around -34°C. The feldspar sample already induced freezing at -23°C. The data obtained was in agreement to those reported in Broadley el al. [2012] and Atkinson et al. [2013]. To simulate chemical aging of the particle surface we coated the particles with sulfuric acid and repeated the measurements. The illite-NX showed a rather small change in the ice nucleation ability, whereas the freezing ability of the feldspar was strongly reduced and became similar to that of illite-NX. It seems that the sulfuric acid destroyed those sites on the particle surface which are responsible for the initiation of freezing. We continue our work in trying to better understand what exactly it is that gives K-feldspar its good IN ability. Acknowledgement: Part of this work was done within the framework of the DFG funded Ice Nucleation research UnIT (INUIT, FOR 1525) under WE 4722/1-1. Murray, B. J., O'Sullivan, D., Atkinson, J. D. and Webb, M. E., Chem. Soc. Rev., 41, 6519-6554, 2012. Atkinson J. D. , B. J. Murray, M. T. Woodhouse, T. F. Whale, K. J. Baustian, K. S. Carslaw, S. Dobbie, D. O'Sullivan and T. L. Malkin, Nature, 498, 355-358, 2013. Broadley S. L., B. J. Murray, R. J. Herbert, J. D. Atkinson, S. Dobbie, T. L. Malkin, E. Condlie, and L. Neve, Atmos. Chem. Phys., 12, 287-307, 2012. Hoose, C. and O. Möhler, Atmos. Chem. Phys., 12, 9817-9854, 2012.

  5. Multi-scale strain localization within orthogneiss during subduction and exhumation (Tenda unit, Alpine Corsica)

    NASA Astrophysics Data System (ADS)

    Beaudoin, Alexandre; Augier, Romain; Jolivet, Laurent; Raimbourg, Hugues; Jourdon, Anthony; Scaillet, Stéphane; Cardello, Giovanni Luca

    2016-04-01

    Strain localization depends upon scale-related factors resulting in a gap between small-scale studies of deformation mechanisms and large-scale numerical and tectonic models. The former often ignore the variations in composition and water content across tectonic units, while the latter oversimplify the role of the deformation mechanisms. This study aims to heal this gap, by considering microstructures and strain localization not only at a single shear zone-scale but across a 40km-wide tectonic unit and throughout its complex polyphased evolution. The Tenda unit (Alpine Corsica) is an external continental unit mainly composed of granites, bounded by the East Tenda Shear Zone (ETSZ) that separates it from the overlying oceanic-derived HP tectonic units. Previous studies substantially agreed on (1) the burial of the Tenda unit down to blueschist-facies conditions associated with top-to-the-west shearing (D1) and (2) subsequent exhumation accommodated by a localized top-to-the-east shear zone (D2). Reaction-softening is the main localizing mechanism proposed in the literature, being associated with the transformation of K-feldspar into white-mica. In this work, the Tenda unit is reviewed through (1) the construction of a new field-based strain map accompanied by cross-sections representing volumes of rock deformed at different grades related to large-scale factors of strain localization and (2) the structural study of hand-specimens and thin-sections coupled with EBSD analysis in order to target the deformation processes. We aim to find how softening and localization are in relation to the map-scale distribution of strain. The large-scale study shows that the whole Tenda unit is affected by the two successive stages of deformation. However, a more intense deformation is observed along the eastern margin, which originally led to the definition of the ETSZ, with a present-day anastomosed geometry of deformation. Strain localization is clearly linked to rheological/lithological contrasts as it concentrates either along preexisting intrusive and tectonic contacts. As K-feldspar-poor granites remain relatively undeformed, reaction-softening seems to be a major mechanism during D1. However, evidences suggest that this mechanism is in competition with dynamic recrystallization: at outcrop and hand-specimen scale, the correlation between localized structures such as C-planes and phengite-rich zones is not always observed. This same competition remains active during D2 where top-to-the-east C-planes are common in phengite-rich layers, but an overall grain-size reduction is also observed across the different strain grades, suggesting that dynamic recrystallization remains active during the whole story. Final localization is sometimes observed in phengite-poor aplitic ultramylonites characterized by a very fine quartz-albite matrix suggesting that grain-size sensitive flow would be the major mechanism involved in the final rheology of the ETSZ.

  6. Multiple deformation mechanisms operating at seismogenic depths: Tectonic pseudotachylyte and associated deformation from the central Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Prante, M. R.; Evans, J. P.

    2012-12-01

    Description and identification of fault-related deformation products that are diagnostic of seismic slip have implications for the energy budget of earthquakes, fault strength, and fault-rock assemblages. We describe tectonic pseduotachylyte, cataclastic rocks, crystal-plastic deformation, and hydrothermal alteration form faults exhumed from seismogenic depths in the Volcanic Lakes area, in northern Sequoia and Kings Canyon National Park, CA, USA. Fault rock protoliths include Mesozoic granite and granodiorite plutonic and limited metasedimentary and metavolcanic rocks. These plutonic and metamorphic rocks are cross-cut by the E-W striking, steeply dipping, left-lateral strike-slip Granite Pass (GPF) and Glacier Lakes faults (GLF). Cross-cutting relationships and microstructural data suggest that the GPF is the oldest fault in the area and preserves evidence for coeval brittle and plastic crystal deformation, and hydrothermal fluid-flow. Tectonic pseudotachylyte from the area has been dated using the 40Ar/39Ar method at 76.6 ± 0.3 Ma; when placed into a thermochronologic framework for the plutonic host rock it can be inferred that the pseudotachylyte formed at depths between 2.4-6.0 km with ambient temperatures between 110-160°C. Exceptionally well preserved tectonic pseudotachylyte from the GLF and GPF contain evidence for a frictional melt origin including: 1) plagioclase spherulites and microlites, 2) injection vein morphology, 3) amygdules, 4) viscous flow banding and folds, and 5) embayed and corroded clasts. Pseudotachylyte from the GPF and GLF is associated with brittle and plastic deformation in the damage zone of the faults. Evidence for plastic deformation includes undulose extinction, deformation lamellae, subgrain development, and grain boundary bulging in quartz; and limited undulose extinction in feldspar. Additionally, abundant hydrothermal alteration and mineralization has been documented in the GPF and GLF fault zones, including, chlorite pseudomorphs after biotite and alteration of mafic phases to epidote, sericite and calcite alteration of albite, and calcite and chlorite filled veins. Cross-cutting calcite veins contain fine-grained calcite with abundant twins up to 20 μm-thick. Multiple pseudotachylyte injection veins and reworked pseudotachylyte in cataclastic rock suggest multiple earthquakes along the GPF and GLF at depths favorable to pseudotachylyte formation. Abundant hydrothermal alteration and cross-cutting calcite veins with thick (> 1 μm) twins is consistent with ambient temperatures between 170 and 200°C. These temperatures are generally consistent with the reported ambient temperature conditions during pseudotachylyte formation. Crystal-plastic deformation of quartz and feldspar in the GPF and GLF zones is consistent with deformation at temperatures between 200-400°C. Frictional melt and associated brittle and plastic deformation, and fluid alteration are presumed to have occurred at similar temperature conditions and may be coeval. These results have important implication for understanding energy sinks associated with seismic slip and the conditions of tectonic pseudotachylyte formation.

  7. Cataclastic rocks of the San Gabriel fault—an expression of deformation at deeper crustal levels in the San Andreas fault zone

    NASA Astrophysics Data System (ADS)

    Anderson, J. Lawford; Osborne, Robert H.; Palmer, Donald F.

    1983-10-01

    The San Gabriel fault, a deeply eroded late Oligocene to middle Pliocene precursor to the San Andreas, was chosen for petrologic study to provide information regarding intrafault material representative of deeper crustal levels. Cataclastic rocks exposed along the present trace of the San Andreas in this area are exclusively a variety of fault gouge that is essentially a rock flour with a quartz, feldspar, biotite, chlorite, amphibole, epidote, and Fe-Ti oxide mineralogy representing the milled-down equivalent of the original rock (Anderson and Osborne, 1979; Anderson et al., 1980). Likewise, fault gouge and associated breccia are common along the San Gabriel fault, but only where the zone of cataclasis is several tens of meters wide. At several localities, the zone is extremely narrow (several centimeters), and the cataclastic rock type is cataclasite, a dark, aphanitic, and highly comminuted and indurated rock. The cataclastic rocks along the San Gabriel fault exhibit more comminution than that observed for gouge along the San Andreas. The average grain diameter for the San Andreas gouge ranges from 0.01 to 0.06 mm. For the San Gabriel cataclastic rocks, it ranges from 0.0001 to 0.007 mm. Whereas the San Andreas gouge remains particulate to the smallest grain-size, the ultra-fine grain matrix of the San Gabriel cataclasite is composed of a mosaic of equidimensional, interlocking grains. The cataclastic rocks along the San Gabriel fault also show more mineralogiec changes compared to gouge from the San Andreas fault. At the expense of biotite, amphibole, and feldspar, there is some growth of new albite, chlorite, sericite, laumontite, analcime, mordenite (?), and calcite. The highest grade of metamorphism is laumontite-chlorite zone (zeolite facies). Mineral assemblages and constrained uplift rates allow temperature and depth estimates of 200 ± 30° C and 2-5 km, thus suggesting an approximate geothermal gradient of ~50°C/km. Such elevated temperatures imply a moderate to high stress regime for the San Andreas, which is consistent with experimental rock failure studies. Moreover, these results suggest that the previously observed lack of heat flow coaxial with the fault zone may be the result of dissipation rather than low stress. Much of the mineralogy of the cataclastic rocks is still relict from the earlier igneous or metamorphic history of the protolith; porphyroclasts, even in the most deformed rocks, consist of relict plagioclase (oligoclase to andesine), alkali feldspar, quartz, biotite, amphibole, epidote, allanite, and Fe-Ti oxides (ilmenite and magnetite). We have found no significant development of any clay minerals (illite, kaolinite, or montmorillonite). For many sites, the compositions of these minerals directly correspond to the mineral compositions in rock types on one or both sides of the fault. Whole rock major and trace element chemistry coupled with mineral compositions show that mixing within the zone of cataclasis is not uniform, and that originally micaceous foliated, or physically more heterogeneous rock units may contribute a disproportionally large amount to the resultant intrafault material. As previously found for the gouge along the San Andreas, chemical mobility is not a major factor in the formation of cataclastic rocks of the San Gabriel fault. We see only minor changes for Si and alkalies; however, there is a marked mobility of Li, which is a probable result of the alteration and formation of new mica minerals. The gouge of the San Andreas and San Gabriel faults probably formed by cataclastic flow. There is some indication, presently not well constrained, that the fine-grained matrix of the cataclasite of from the San Gabriel fault formed in response to superplastic flow.

  8. The effect of temperature on experimental and natural chemical weathering rates of granitoid rocks

    USGS Publications Warehouse

    White, A.F.; Blum, A.E.; Bullen, T.D.; Vivit, D.V.; Schulz, M.; Fitzpatrick, J.

    1999-01-01

    The effects of climatic temperature variations (5-35??C) on chemical weathering are investigated both experimentally using flow-through columns containing fresh and weathered granitoid rocks and for natural granitoid weathering in watersheds based on annual solute discharge. Although experimental Na and Si effluent concentrations are significantly higher in the fresh relative to the weathered granitoids, the proportional increases in concentration with increasing temperature are similar. Si and Na exhibit comparable average apparent activation energies (E(a)) of 56 and 61 kJ/mol, respectively, which are similar to those reported for experimental feldspar dissolution measured over larger temperature ranges. A coupled temperature-precipitation model, using an expanded database for solute discharge fluxes from a global distribution of 86 granitoid watersheds, produces an apparent activation energy for Si (51 kJ/mol), which is also comparable to those derived from the experimental study. This correlation reinforces evidence that temperature does significantly impact natural silicate weathering rates. Effluent K concentrations in the column study are elevated with respect to other cations compared to watershed discharge due to the rapid oxidation/dissolution of biotite. K concentrations are less sensitive to temperature, resulting in a lower average E(a) value (27 kJ/mol) indicative of K loss from lower energy interlayer sites in biotite. At lower temperatures, initial cation release from biotite is significantly faster than cation release from plagioclase. This agrees with reported higher K/Na ratios in cold glacial watersheds relative to warmer temperate environments. Increased release of less radiogenic Sr from plagioclase relative to biotite at increasing temperature produces corresponding decreases in 87Sr/86Sr ratios in the column effluents. A simple mixing calculation using effluent K/Na ratios, Sr concentrations and 87Sr/86Sr ratios for biotite and plagioclase approximates stoichiometric cation ratios from biotite/plagioclase dissolution at warmer temperatures (35??C), but progressively overestimates the relative proportion of biotite with decreasing temperature. Ca, Mg, and Sr concentrations closely correlate, exhibit no consistent trends with temperature, and are controlled by trace amounts of calcite or exchange within weathered biotite. The inability of the watershed model to differentiate a climate signal for such species correlates with the lower temperature dependence observed in the experimental studies.

  9. Experimental investigation of CO2-brine-rock interactions at simulated in-situ conditions

    NASA Astrophysics Data System (ADS)

    Słomski, Piotr; Lutyński, Marcin; Mastalerz, Maria; Szczepański, Jacek; Derkowski, Arkadiusz; Topór, Tomasz

    2017-04-01

    Geological sequestration of carbon dioxide (CO2) in deep formations (e.g. saline aquifers, oil and gas reservoirs and coalbeds) is one of the most promising options for reducing concentration of this anthropogenic greenhouse gas in the atmosphere. CO2 injected into the rock formations can be trapped by several mechanisms including structural and stratigraphic trapping, capillary CO2 trapping, dissolution trapping and mineral trapping. During dissolution trapping, CO2 dissolves in the formation brine and sinks in the reservoir as the CO2-enriched brine has an increased density. In comparison, in mineral trapping, CO2 is bound by precipitating new carbonate minerals. The latter two mechanisms depend on the temperature, pressure, and the mineralogy of the reservoir rock and the chemical composition of the brine. This study discusses laboratory scale alterations of Ordovician and Silurian shale rocks from potential CO2 sequestration site B1 in the Baltic Basin. In the reported experiment, rocks submerged in brine in specially constructed reactors were subjected to CO2 pressure of 30-35 MPa for 30-45 days at temperature of 80 oC. Shale samples were analyzed in terms of mineral composition and mesopore surface area and volume, before and after experiments, by means of X-ray diffraction and N2 low-pressure adsorption, respectively, for possible CO2 induced changes. Comparison of mineral composition before and after experiments demonstrated subtle mineral changes. The most conspicuous was a release of Fe in the form of Fe-oxyhydroxides, most probably related to the decomposition of Fe-bearing minerals like pyrite, chlorite and, less frequently, ankerite. With regard to porosity, interestingly, the most significant increase in mesopore surface area and mesopore volume was observed in samples with the largest drop of chlorite amount. The less significant mineral changes were associated with formation of kaolinite related to breakdown of feldspars and dissolution of carbonate minerals represented by calcite, dolomite, and ankerite. In the analyzed samples, no new carbonate minerals were formed during the experiments. An increase of carbonates was recorded only in three out of 13 samples. However, concentration of carbonates in these three samples is too low to conclude CO2 mineral trapping in new carbonate phases. Acknowledgments: the study was supported from grant SHALESEQ (No PL12-0109) funded by the National Centre for Research and Development.

  10. Correlation of basic TL, OSL and IRSL properties of ten K-feldspar samples of various origins

    NASA Astrophysics Data System (ADS)

    Sfampa, I. K.; Polymeris, G. S.; Pagonis, V.; Theodosoglou, E.; Tsirliganis, N. C.; Kitis, G.

    2015-09-01

    Feldspars stand among the most widely used minerals in dosimetric methods of dating using thermoluminescence (TL), optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL). Having very good dosimetric properties, they can in principle contribute to the dating of every site of archaeological and geological interest. The present work studies basic properties of ten naturally occurring K-feldspar samples belonging to three feldspar species, namely sanidine, orthoclase and microcline. The basic properties studied are (a) the influence of blue light and infrared stimulation on the thermoluminescence glow-curves, (b) the growth of OSL, IRSL, residual TL and TL-loss as a function of OSL and IRSL bleaching time and (c) the correlation between the OSL and IRSL signals and the energy levels responsible for the TL glow-curve. All experimental data were fitted using analytical expressions derived from a recently developed tunneling recombination model. The results show that the analytical expressions provide excellent fits to all experimental results, thus verifying the tunneling recombination mechanism in these materials and providing valuable information about the concentrations of luminescence centers.

  11. Characterization and modes of occurrence of elements in feed coal and coal combustion products from a power plant utilizing low-sulfur coal from the Powder River Basin, Wyoming

    USGS Publications Warehouse

    Brownfield, Michael E.; Cathcart, James D.; Affolter, Ronald H.; Brownfield, Isabelle K.; Rice, Cynthia A.; O'Connor, Joseph T.; Zielinski, Robert A.; Bullock, John H.; Hower, James C.; Meeker, Gregory P.

    2005-01-01

    The U.S. Geological Survey and the University of Kentucky Center for Applied Energy Research are collaborating with an Indiana utility company to determine the physical and chemical properties of feed coal and coal combustion products from a coal-fired power plant. The Indiana power plant utilizes a low-sulfur (0.23 to 0.47 weight percent S) and lowash (4.9 to 6.3 weight percent ash) subbituminous coal from the Wyodak-Anderson coal zone in the Tongue River Member of the Paleocene Fort Union Formation, Powder River Basin, Wyoming. Based on scanning electron microscope and X-ray diffraction analyses of feed coal samples, two mineral suites were identified: (1) a primary or detrital suite consisting of quartz (including beta-form grains), biotite, feldspar, and minor zircon; and (2) a secondary authigenic mineral suite containing alumino-phosphates (crandallite and gorceixite), kaolinite, carbonates (calcite and dolomite), quartz, anatase, barite, and pyrite. The primary mineral suite is interpreted, in part, to be of volcanic origin, whereas the authigenic mineral suite is interpreted, in part, to be the result of the alteration of the volcanic minerals. The mineral suites have contributed to the higher amounts of barium, calcium, magnesium, phosphorus, sodium, strontium, and titanium in the Powder River Basin feed coals in comparison to eastern coals. X-ray diffraction analysis indicates that (1) fly ash is mostly aluminate glass, perovskite, lime, gehlenite, quartz, and phosphates with minor amounts of periclase, anhydrite, hematite, and spinel group minerals; and (2) bottom ash is predominantly quartz, plagioclase (albite and anorthite), pyroxene (augite and fassaite), rhodonite, and akermanite, and spinel group minerals. Microprobe and scanning electron microscope analyses of fly ash samples revealed quartz, zircon, and monazite, euhedral laths of corundum with merrillite, hematite, dendritic spinels/ferrites, wollastonite, and periclase. The abundant calcium and magnesium mineral phases in the fly ash are attributed to the presence of carbonate, clay, and phosphate minerals in the feed coal and their alteration to new phases during combustion. The amorphous diffraction-scattering maxima or glass 'hump' appears to reflect differences in chemical composition of fly ash and bottom ash glasses. In Wyodak-Anderson fly and bottom ashes, the center point of scattering maxima is due to calcium and magnesium content, whereas the glass 'hump' of eastern fly ash reflects variation in aluminum content. The calcium- and magnesium-rich and alumino-phosphate mineral phases in the coal combustion products can be attributed to volcanic minerals deposited in peat-forming mires. Dissolution and alteration of these detrital volcanic minerals occurred either in the peat-forming stage or during coalification and diagenesis, resulting in the authigenic mineral suite. The presence of free lime (CaO) in fly ash produced from Wyodak-Anderson coal acts as a self-contained 'scrubber' for SO3, where CaO + SO3 form anhydrite either during combustion or in the upper parts of the boiler. Considering the high lime content in the fly ash and the resulting hydration reactions after its contact with water, there is little evidence that major amounts of leachable metals are mobilized in the disposal or utilization of this fly ash.

  12. A natural laboratory for 40Ar/39Ar geochronology: ICDP cores from Lake Van, Turkey

    NASA Astrophysics Data System (ADS)

    Engelhardt, Jonathan; Sudo, Masafumi; Oberhänsli, Roland

    2015-04-01

    Pore water samples from ICDP Paleovan cores indicate a limited pore water exchange within Quaternary lake sediments. The core's volcaniclastic sections bear unaltered K-rich ternary feldspar and fresh to altered glass shards of predominantly rhyolitic composition. Whereas applying the 40Ar/39Ar method on feldspars resulted in ages timing a late-stage crystallization, glass shards had the potential to date the eruption. Volcanic glass is prone to modifications such as hydrous alteration (palagonitization) and devitrification (Cerling et al., 1985). These modifications affect the glass' chemistry and challenge the application of the 40Ar/39Ar method. Gaining precise radiometric ages from two phases has the potential to strengthen a climate-stratigraphic age-model (Stockhecke et al., 2014), and to significantly increase the temporal resolution on the deposition of the lake sediments. Vice versa the core's previous age model has the ability to question the reliability of 40Ar/39Ar eruption ages derived from ternary feldspars and glass shards. Multi- and single-grain total fusion on alkali feldspars from six volcaniclastic deposits resulted in Pleistocene ages that are in good agreement with the predicted age model. Feldspar phenocrysts from three ashes in the core's youngest section yielded consistent isochron ages that are significantly older than the model's prediction. Several distinct stratigraphic and paleomagnetic time markers of similar stratigraphic positions contradict to the older radiometric dates (Stockhecke et al., 2014). Partial resorption features of inherited feldspar domains and the involvement of excess 40Ar indicate incomplete degassing of older domains. To evaluate the magmatic history of the different domains EMPA mappings of trace elements that could be interpreted as Ar diffusion couples are currently conducted. Geochronology on Paleovan cores offers unique opportunities to monitor the effect of alteration on the Ar-systematics of volcanic glass shards and identifies a period of incorporation and incomplete degassing of inherited feldspar domains. References: Cerling, T.E., Brown, F.H., Bowman, J.R., 1985. Low-Temperature Alteration of Volcanic Glass - Hydration, Na, K, O-18 and Ar Mobility. Chemical Geology, 52 (3-4), 281-293. Stockhecke, M., Kwiecien, O., Vigliotti, L., Anselmetti, F., Beer, J., Çağatay, N. M., Channell, J. E. T., Kipfel, R., Lachner, J., Litt, T., Pickarski, N., Sturm, M., 2014. Chronostratigraphy of the 600,000 year old continental record of Lake Van (Turkey). Quarternary Science Reviews 104, 8-17

  13. A comparative study of K-rich and Na/Ca-rich feldspar ice-nucleating particles in a nanoliter droplet freezing assay

    NASA Astrophysics Data System (ADS)

    Peckhaus, Andreas; Kiselev, Alexei; Hiron, Thibault; Ebert, Martin; Leisner, Thomas

    2016-09-01

    A recently designed droplet freezing assay was used to study the freezing of up to 1500 identical 0.2 nL water droplets containing suspensions of one Na/Ca-rich feldspar and three K-rich and one Na/Ca-rich feldspar particles. Three types of experiments have been conducted: cooling ramp, isothermal freezing at a constant temperature, and freeze-thaw cycles. The observed freezing behavior has been interpreted with the help of a model based on the classical nucleation theory (soccer ball model (SBM); Niedermeier et al., 2015). By applying the model to the different freezing experiments conducted with the same ice-nucleating material, the unique sets of model parameters for specific feldspar suspensions could be derived. The SBM was shown to adequately describe the observed cooling rate dependence, the ice-nucleating active sites (INAS) surface density ns(T) in a wide temperature range, and the shift of the freezing curves towards lower temperature with dilution. Moreover, the SBM was capable of reproducing the variation of INAS surface density ns(T) with concentration of ice-nucleating particles in the suspension droplets and correctly predicting the leveling-off of ns(T) at low temperature. The freeze-thaw experiments have clearly shown that the heterogeneous freezing induced even by very active ice-nucleating species still possesses a stochastic nature, with the degree of randomness increasing towards homogeneous nucleation. A population of the high-temperature INAS has been identified in one of the K-rich feldspar samples. The freezing of 0.8 wt % suspension droplets of this particular feldspar was observed already at -5 °C. These high-temperature active sites could be deactivated by treating the sample with hydrogen peroxide but survived heating up to 90 °C. Given a high mass concentration of these high-temperature active sites (2.9 × 108 g-1) and a very low value of contact angle (0.56 rad) the possibility of biological contamination of the sample was concluded to be unlikely but could not be completely ruled out. The freezing efficacy of all feldspar samples has been shown to reduce only slightly after suspension in water for over 5 months.

  14. Immersion freezing of ambient dust using WISDOM setup

    NASA Astrophysics Data System (ADS)

    Rudich, Y.; Reicher, N.

    2017-12-01

    A small subset of the atmospheric particles has the ability to induce ice formation. Among them are mineral dust particles that originate from arid regions. Mineral dust particles are internally mixed with various types of minerals such as kaolinite and illite from the clay minerals, quartz and feldspar. The mineral composition of the dust particles determine their freezing efficiency. Much attention was given to the clay group, as they are the most common minerals transported in the atmosphere. Recently, much focus has been directed to the feldspars, since its ice efficiency is higher at warmer temperatures, and as such is may dominate freezing in mixed phase clouds. Moreover, it was found that samples that contained higher content of feldspar had higher nucleation activity. In this study, we examine the immersion freezing of ambient dust particles that were collected in Rehovot, Israel (31.9N, 34.8E about 80m AMSL), during dust storms from the Sahara and the Syrian deserts. The size-segregated dust particles were collected on cyclopore polycarbonate filters using a Micro-orifice Uniform deposit Impactor (MOUDI). Freezing experiments were done using the WeIzmann Supercooled Droplets Observation on Microarray set (WISDOM). The particles were extracted from the filters by sonication and subsequently immersed in 100μm droplets that were cooled in a rate of 1°CPM to -37°C (homogenous freezing threshold). Investigation of the particles mineralogy was also performed. We observed freezing onset at 253K for particles of different diameters (0.3, 1.0, 1.8 and 3.2 μm). Most of the droplets were completely frozen by 243K. The number of active sites ranged from 108 to 1012 per m-2. Droplets that contained larger particles (higher surface area) froze at slightly warmer temperatures and contained slightly higher number of active sites. The freezing behavior fits well with measurements of K-feldspar particles and this may suggest that the feldspar dominated the dust freezing. In addition, our results agree with the scaled freezing of K-feldspar obtained by Atkinson et al. (2013). The results provide further evidence that feldspar mineral dominates glaciation in mixed phase clouds. In the talk, we will describe the experiments, new results and their atmospheric significance

  15. Detrital K-feldspar thermochronology of the Nanaimo Group: Characterization of Basement and Extraregional Basin Contributions

    NASA Astrophysics Data System (ADS)

    Isava, V.; Grove, M.; Mahoney, J. B.; Kimbrough, D. L.

    2016-12-01

    The Late Cretaceous-Early Paleogene Nanaimo Group covers the contact between Triassic basement Wrangellia terrane and the Jurassic-Cretaceous Coast Plutonic Complex (CPC) in southern British Columbia. Prior detrital zircon U-Pb and Hf studies indicate a change in sediment source for the Nanaimo basin, from the primitive CPC in Santonian-Early Campanian time to an isotopically evolved continental extraregional source during the late Campanian/Maastrictian. Two notably different areas have been proposed as potential source regions: (1) the Idaho/Boulder batholith and Belt Supergroup, and (2) the Mojave/Salinia segment of structurally disrupted late Cretaceous southern California margin. Single crystal 40Ar/39Ar laser fusion of ca. 100-200 grains apiece from seven detrital K-feldspar samples from Santonian-Maastrichtian strata of the northern Nanaimo Group constrain the history of the sediments' source regions. The two oldest samples, from the K-feldspar poor Comox and Extension Fms., display a monotonic increasing distribution of cooling ages 80-125 Ma that reflects shallow erosion of the CPC. In contrast, Late Campanian strata of the Cedar District and De Courcy Fms. exhibit a more pronounced cluster of cooling ages 80-95 Ma as well as a greater proportion of Jurassic ages that represent progressively deeper erosion of the CPC. Evidence for an extraregional sediment source appears abruptly in the Geoffrey Fm. by 72 Ma, matching the time of local-to-extraregional shift indicated in detrital zircon U-Pb studies. Over 90% of the detrital K-feldspars from these arkosic sandstones yield cooling ages of 70-80 Ma, with sparse older ages associated with the CPC. Samples from the successively younger Spray and Gabriola Fms. also yield >90% K-feldspar ages younger than 80 Ma and exhibit age maxima of 68 Ma and 65 Ma, respectively. These results are distinct from detrital zircon U-Pb and K-feldspar 40Ar/39Ar ages of the southern Sierra Nevada, Mojave/Salina, and northern Peninsular Ranges of southern California. Resemblance with the Idaho/Boulder batholith indicates the latter as a more likely source of extraregional detritus. Measurements are underway to couple detrital K-feldspar 40Ar/39Ar thermochronology with U-Pb isotopes on the same grains to further distinguish between these two possibilities.

  16. Phase relations among K-feldspar, muscovite and H2O at 1.0 GPa and 800°C: Implications for metasediment dissolution and melting at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Fineman, D.; Manning, C. E.

    2016-12-01

    Melting and solubility of K-feldspar (ksp) and muscovite (mus) were investigated in the system KSi3O6.5 -Al2O3 - H2O at 1.0 GPa and 800 °C with rapid-quench piston-cylinder techniques. Equilibrium assemblages of ksp, mus, silicate liquid (L) and aqueous fluid (V) were deduced from optical and scanning electron microscopy. Quenched silicate liquids and aqueous fluids were distinguished using the methodology of Burnham and Jahns (1962, Am J Sci, 260, 721) and Makhluf et al. (2016, CMP, in press). Experiments on a range of bulk compositions constrain the locations of the V, ksp+V, ms+V, and ksp+L+V fields. This allowed geometrical constraints to be placed on additional phase boundaries in the ternary system. The results show that ksp dissolves incongruently in H2O, with residual liquid or ms depending on the fluid-rock ratio. In contrast, ms dissolves congruently in H2O and KSi3O6.5 -H2O solutions with up to 25 wt% KSi3O6.5. Results indicate that stable hydrous liquid at these conditions has an Al content intermediate between ksp and ms. There is no stable liquid along the ksp-H2O join, consistent with results of Goldsmith and Peterson (1990, Am Min, 75, 1362). All data are consistent with the stability of a supercritical fluid on the KAlSi3O8 -H2O join, with 5-10 wt% dissolved Al2O3. Compositional constraints imply that the liquid phase contains 25 wt% H2O and coexists with a V phase containing 25 wt% dissolved solutes. This in turn implies critical mixing of the fluid phases at higher temperature, which is similar to the systems NaAlSi3O8-H2O and simple granite-H2O. Our results help constrain the conditions of production of supercritical granitic-H2O fluids systems in deep crustal and subduction zone settings.

  17. Chemical weathering of a marine terrace chronosequence, Santa Cruz, California I: Interpreting rates and controls based on soil concentration-depth profiles

    USGS Publications Warehouse

    White, A.F.; Schulz, M.S.; Vivit, D.V.; Blum, A.E.; Stonestrom, David A.; Anderson, S.P.

    2008-01-01

    The spatial and temporal changes in element and mineral concentrations in regolith profiles in a chronosequence developed on marine terraces along coastal California are interpreted in terms of chemical weathering rates and processes. In regoliths up to 15 m deep and 226 kyrs old, quartz-normalized mass transfer coefficients indicate non-stoichiometric preferential release of Sr > Ca > Na from plagioclase along with lesser amounts of K, Rb and Ba derived from K-feldspar. Smectite weathering results in the loss of Mg and concurrent incorporation of Al and Fe into secondary kaolinite and Fe-oxides in shallow argillic horizons. Elemental losses from weathering of the Santa Cruz terraces fall within the range of those for other marine terraces along the Pacific Coast of North America. Residual amounts of plagioclase and K-feldspar decrease with terrace depth and increasing age. The gradient of the weathering profile bs is defined by the ratio of the weathering rate, R to the velocity at which the profile penetrates into the protolith. A spreadsheet calculator further refines profile geometries, demonstrating that the non-linear regions at low residual feldspar concentrations at shallow depth are dominated by exponential changes in mineral surface-to-volume ratios and at high residual feldspar concentrations, at greater depth, by the approach to thermodynamic saturation. These parameters are of secondary importance to the fluid flux qh, which in thermodynamically saturated pore water, controls the weathering velocity and mineral losses from the profiles. Long-term fluid fluxes required to reproduce the feldspar weathering profiles are in agreement with contemporary values based on solute Cl balances (qh = 0.025-0.17 m yr-1). During saturation-controlled and solute-limited weathering, the greater loss of plagioclase relative to K-feldspar is dependent on the large difference in their respective solubilities instead of the small difference between their respective reaction kinetics. The steady-state weathering rate under such conditions is defined asR = fenced(qh ?? frac(msol, Mtotal)) ?? fenced(frac(1, Sv ?? bs)) ??. The product of qh and the ratio of solubilized to solid state feldspar (msat/Mtotal) define the weathering velocity. The weathering gradient bs reflects the kinetic rate of reaction where Sv is the volumetric surface area of the residual feldspar. Both this rate expression and the spreadsheet calculations produce similar plagioclase weathering rates (R = 5-14 ?? 10-16 mol m-2 s-1) which agree with those reported for other environments of comparable climate and age. Weathering-dependent concentration profiles are commonly described in literature. The present paper provides methods by which these data can yield a more fundamental understanding of the weathering processes involved.

  18. The P-Fe diagram for K-feldspars: A preliminary approach in the discrimination of pegmatites

    NASA Astrophysics Data System (ADS)

    Sánchez-Muñoz, Luis; Müller, Axel; Andrés, Sol López; Martin, Robert F.; Modreski, Peter J.; de Moura, Odulio J. M.

    2017-02-01

    Pegmatites are extremely coarse-grained and heterogeneous rocks in which quantitative measurements of mineral proportions and chemical compositions of the whole rock are virtually impossible to acquire. Thus, conventional criteria such as bulk compositions and modal mineralogy used for the classifications of igneous rocks simply cannot be applied for pegmatites. An alternative is to use the mineralogical and chemical attributes of K-rich feldspars, the only mineral that is omnipresent in pegmatites. We have used this approach to test a possible discriminant among four groups of pegmatites on the basis of major petrological features, such as the abundance of quartz, feldspars, micas and phosphates. Group I is represented by relatively flux-poor, and silica-poor pegmatites, in most cases with hypersolvus feldspars, devoid of quartz and with minor biotite, which are common in rift settings as in the Coldwell Alkaline Complex in northwestern Ontario, Canada. Group II comprises relatively flux-poor, silica-rich pegmatites with quartz, subsolvus feldspars and biotite as major primary minerals, typically occurring in the asymmetric collisional Grenville Orogeny. Group III comprises relatively flux-rich, silica-rich P-poor pegmatites with quartz, subsolvus feldspars, and muscovite as the major primary minerals. Finally, group IV consists of relatively flux-rich, silica-rich, P-rich pegmatites with the same previous major minerals as in group III but with abundant phosphates. Group III and IV are found in most symmetric collisional orogens, such as in the Eastern Brazilian Pegmatite Province as the result of the collision of cratons mainly formed by igneous and metamorphic rock of Archean and Early Proterozoic age. We have selected specimens of blocky perthitic K-rich feldspar from the inner part of thirty-one pegmatites belonging to these four categories occurring worldwide to cover a wide range of mineralogy, geological age, geotectonic setting and geographical positions. Concentrations of major elements (Si, Al, K, Na, Ca, Fe, Mg, Mn, Ti and P) were obtained by X-ray fluorescence (XRF), and those of minor and trace elements (P, Fe, Li, Ge, Ga, Rb, Sr, Ba, Tl, Pb, Y, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) were established by laser-ablation inductively coupled plasma - mass spectrometry (LA-ICP-MS), in areas free of coarse Na-feldspar veins or patches. We show that the four groups have very different average values of the minor and trace elements. However, only the cations occupying tetrahedral sites, particularly the Fe and P, are sufficiently immobile to show distinct differences among pegmatites. Hence, we propose a P-Fe diagram to discriminate among the four groups of pegmatites, as a possible criterion with which to classify pegmatites.

  19. Petrology, geochemistry and isotope data on a ultrahigh-pressure jadeite quartzite from Shuanghe, Dabie Mountains, East-central China

    NASA Astrophysics Data System (ADS)

    Liou, J. G.; Zhang, R. Y.; Jahn, Bor-ming

    1997-08-01

    In the Dabie ultrahigh-pressure terrane of east-central China, coesite-bearing jadeite quartzites occur locally as intercalated layers with marble and mafic eclogite. This rock assemblage is, in turn, enclosed within quartzofeldspathic gneisses. Metamorphic parageneses and kelyphitic textures reveal a multistage metamorphic evolution and complex exhumation history. The primary peak metamorphic assemblage consists of jadeite + garnet + coesite + rutile ± apatite. Minor coesite and coesite pseudomorphs occur as inclusions in jadeite and garnet. Three stages of retrograde assemblages are observed in the jadeite quartzites. Stage A is represented by the polymorphic transformation of coesite to quartz aggregates. Stage B is characterized by formation of coronas around jadeite porphyroblasts consisting of an inner layer of oligoclase + amphibole and an outer layer of albite ± aegirine—augite. The last stage (stage C) involved total replacement of jadeite and most garnets by taramitic amphibole + albite + aegirine-augite. Peak metamorphic P-T conditions were > 26 kbar at 660°C and are consistent with the estimates from the adjacent coesite-bearing eclogites. The jadeite quartzites display clockwise P-T path that matches those of the adjacent eclogites. Major and trace element data suggest that the protolith of the jadeite quartzite could have been an albitized siltstone enriched in Na and depleted in K and Ca. The highly negative present-day ɛNd value (-24.7) indicates a very old age for the protolith. Its late Archean model age (TDM) of 2.58 Ga is among the oldest so far identified for rocks from the Dabie UHPM terrane. Concordant field relations and petrogenetic considerations suggest that all mafic, politic, carbonate and gneissic rocks have experienced in-situ UHP metamorphism during Triassic continental collision between the Sino-Korean and Yangtze cratons.

  20. Carbonation of Clay Minerals Exposed to scCO2/Water at 200 degrees and 250 degrees C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugama, T.; Ecker, L.; Gill, S.

    2010-11-01

    To clarify the mechanisms of carbonation of clay minerals, such as bentonite, kaolinite, and soft clay, we exposed them to supercritical carbon dioxide (scCO2)/water at temperatures of 200 and 250 C and pressures of 1500 and 2000 psi for 72- and 107-hours. Bentonite, comprising three crystalline phases, montmorillonite (MMT), anorthoclase-type albite, and quartz was susceptible to reactions with ionic carbonic acid yielded by the interactions between scCO2 and water, particularly MMT and anorthoclase-type albite phases. For MMT, the cation-exchangeable ions, such as Na+ and Ca2+, present in its basal interplanar space, were replaced by proton, H+, from ionic carbonic acid;more » thereafter, the cations leaching from MMT directly reacted with CO32- as a counter ion of H+ to form carbonate compounds. Such in-situ carbonation process in basal space caused the shrinkage and breakage of the spacing structure within MMT. In contrast, the wet carbonation of anorthoclase-type albite, categorized as rock minerals, entailed the formation of three amorphous by-products, such as carbonates, kaolinite-like compounds, and silicon dioxide. Together, these two different carbonations caused the disintegration and corruption of bentonite. Kaolinite clay containing the amorphous carbonates and silicon dioxide was inert to wet carbonation. We noted only a gain in weight due to its water uptake, suggesting that kaolinite-like by-products generated by the wet carbonation of rock minerals might remain unchanged even during extended exposure. Soft clay consisting of two crystalline phases, dolomite and silicon dioxide, also was unaltered by wet carbonation, despite the uptake of water.« less

  1. Petrographic Analysis of Selected Core Materials from the Manson (Iowa) Impact Structure

    NASA Astrophysics Data System (ADS)

    Short, N. M.; Gold, D. P.

    1993-07-01

    The Manson impact structure, largest (36 km) in the U.S., is inferred to have produced shocked materials found in the upper layer of some K-T Boundary deposits, mainly because its radiometric age (66 my) is compatible. Short, in 1966 [1], was first to show that Manson is an impact crater through casual analysis then of 22 samples from a 1953 drill hole (2-A). These samples have now been studied in detail, with these key results: (1) the lithology of clasts within 2-A is dominantly granitic; (2) most quartz is strongly shocked (many planar deformation features, PDFs) and shows a pervasive alteration (clay minerals?; iron stain); (3) a unique texture (single crystals broken into hundreds of small fragments [polycrystalline]) occurs in some heavily shocked quartz; and (4) feldspars display a wide range of shock features from multiple PDFs to incipient melting (internal flow) and extensive recrystallization. Table 1 summarizes the major shock features arranged in stages of progressive shock metamorphism for the three principal minerals: quartz, feldspars, and biotite. The predominant mode of PDF occurrence in quartz within leucogranitic clasts, and in most quartz fragments in matrix material is marked by light, orange-brown to grayish-brown in plane-transmitted light, and a deeper reddish-brown, with reduced birefringence, cross-polarized light. At high magnification, the alteration consists of tiny specks of unknown identity that often obscure but do not destroy the sets of PDFs. The effect under the microscope sometimes resembles the "texture" of toasted bread. This hallmark of Manson shocked quartz is rarely seen in shocked quartz from other impact structures (occasional in materials examined by NMS from West Hawk Lake and Steen River in Canada). Sharpton et al [2] describe similar quartz in their examination of Manson materials, stating the origin of this alteration to be due to in-crater postimpact hydrothermal alteration; if so, such a condition would not be diagnostic of shocked quartz grains in K-T deposits and is therefore not a criterion for relating these deposits to the Manson event. Single (larger) crystals of "toasted" quartz contain an average of 5.5 sets of PDFs whose principal crystallographic orientation is pi-1012 (omega-1013 is second most common). Much less frequent in clasts and matrix grains are untoasted but decorated PDFs in quartz, with omega predominant in the average 2.2 sets per grain. In some strongly shocked leucogranites, and in occasional matrix fragments, single crystals have been broken into numerous small (100 micrometers) interlocking quartz grains (toasted), containing an average of only 1.4 PDF sets, in which omega is prevalent. These sets do not cross individual micrograin boundaries and orientations vary between grains. This highly distinctive texture, which we interpret as shock-induced shattering of single crystals accompanied by rotations, may be unique to Manson: a similar texture has been described by Schreyer [3] in Vredefort Central Core granites, but in those quartzes the PDFs pass across grain boundaries. In highly shocked Manson quartz, recrystallization may completely remove PDFs and the toasted effect is absent. Manson feldspars show a range of PDFs, some resembling those in quartz, others arranged en echelon in alternating albite twins, others concentrated in deformation bands. Feldspars may partially isotropize or display internal flow banding in thetomorphic crystals or may be recrystallized. Biotite responds by intricate kinking progressing through nearly complete decomposition. Un-devitrified glass is rare in 2-A. In 1991-92, the U.S.G.S. drill-cored 12 holes to depths under 380 m along a zone from crater center to assumed rim. Hole M-1 lies about 4 km northeast of 2-A within the central peak (probably a ring). Materials in the upper 100 m or so are mainly shales and some carbonates that show indecisive shock effects except for occasional melting. Crystalline clasts below the sedimentary materials have proportionately less leucogranites and more dioritic and amphibolitic clasts. The variety and characteristics of shock effects in these rocks are often notably different from those in crystalline 2-A clasts. References: [1] Short N. M. (1966) J. Geol. Educ., 14, 149-166. [2] Sharpton V. L. et al (1990) GSA Spec. Paper 247, 349-357. [3] Schreyer, W. (1983) J. Petrol., 14, 26-37. Table 1, which appears here in the hard copy, shows stages of progressive metamorphism of 2-A Manson minerals.

  2. Sorption characteristic of uranium(VI) ion onto K-feldspar.

    PubMed

    Gao, Xiaoqing; Bi, Mingliang; Shi, Keliang; Chai, Zhifang; Wu, Wangsuo

    2017-10-01

    The effect of pH, contact time, temperature, ionic strength and initial U(VI) concentration on U(VI) sorption onto K-feldspar was investigated using batch techniques. The sorption kinetics was evaluated and the activation energy was obtained based on the rate constants at different temperature. Graphical correlations of sorption isotherm models have been evaluated and applied for U(VI) uptake by K-feldspar. Various thermodynamic parameters, such as, Gibb's free energy, entropy and enthalpy of the on-going sorption process have been calculated and the possible sorption mechanism of U(VI) was deduced. The results are expected to help better understand the migration of uranium in the host materials of granite. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Quartz and feldspar glasses produced by natural and experimental shock.

    NASA Technical Reports Server (NTRS)

    Stoeffler, D.; Hornemann, U.

    1972-01-01

    Refractive index, density, and infrared absorption studies of naturally and experimentally shocked-produced glasses formed from quartz, plagioclase, and alkali-feldspar confirm the existence of two main groups of amorphous forms of the framework silicates: solid-state and liquid-state glasses. These were apparently formed as metastable release products of high-pressure-phases above and below the glass transition temperatures. Solid-state glasses exhibit a series of structural states with increasing disorder caused by increasing shock pressures and temperatures. They gradually merge into the structural state of fused minerals similar to that of synthetic glasses quenched from a melt. Shock-fused alkali feldspars can, however, be distinguished from their laboratory-fused counterparts by infrared absorption and by higher density.

  4. Anisotropic surface physicochemical properties of spodumene and albite crystals: Implications for flotation separation

    NASA Astrophysics Data System (ADS)

    Xu, Longhua; Peng, Tiefeng; Tian, Jia; Lu, Zhongyuan; Hu, Yuehua; Sun, Wei

    2017-12-01

    Aluminosilicate minerals (e.g., spodumene, albite) have complex crystal structures and similar surface chemistries, but they have poor selectivity compared to traditional fatty acid collectors, making flotation separation difficult. Previous research has mainly considered the mineral crystal structure as a whole. In contrast, the surface characteristics at the atomic level and the effects of different crystal interfaces on the flotation behavior have rarely been investigated. This study focuses on investigating the surface anisotropy quantitatively, including the chemical bond characteristics, surface energies, and broken bond densities, using density functional theory and classical theoretical calculations. In addition, the anisotropy of the surface wettability and adsorption characteristics were examined using contact angle, zeta potential, and Fourier-transform infrared measurements. Finally, these surface anisotropies with different flotation behaviors were investigated and interpreted using molecular dynamics simulations, scanning electron microscopy, and X-ray photoelectron spectroscopy. This systematic research offers new ideas concerning the selective grinding and stage flotation of aluminosilicate minerals based on the crystal characteristics.

  5. Experimentally determined compositions of diopside-jadeite pyroxene in equilibrium with albite and quartz at 1200-1350°C and 15-34 kbar

    NASA Astrophysics Data System (ADS)

    Gasparik, Tibor

    1985-03-01

    Equilibrium compositions of diopside-jadeite pyroxene coexisting with albite and quartz were experimentally determined at 25 different P-T conditions, using an electron microprobe for analysis. The new data and the 600°C data of HOLLAND (1983) provided the following mixing properties of the diopside (Di)-jadeite (Jd) solid solution (J, K): Gxs = XJdXDi[12600 - 9.45 T + (12600 - 7.6 T)( XJd - XDi) - (21400 - 16.2 T)( XJd - XDi) 2]. The Di-Jd solution is close to ideal above 1000°C but immiscible below 565°C. The Di-Jd solvus is slightly asymmetric with the crest at composition Di 42.4Jd 57.6. Excess enthalpy is positive but smaller than indicated by the enthalpy of solution measurements of WOODet al. (1980). Disorder in the Di-Jd solution is significantly smaller than complete disorder implied by the ionic two-site model.

  6. The ubiquitous nature of accessory calcite in granitoid rocks: Implications for weathering, solute evolution, and petrogenesis

    USGS Publications Warehouse

    White, A.F.; Schulz, M.S.; Lowenstern, J. B.; Vivit, D.V.; Bullen, T.D.

    2005-01-01

    Calcite is frequently cited as a source of excess Ca, Sr and alkalinity in solutes discharging from silicate terrains yet, no previous effort has been made to assess systematically the overall abundance, composition and petrogenesis of accessory calcite in granitoid rocks. This study addresses this issue by analyzing a worldwide distribution of more than 100 granitoid rocks. Calcite is found to be universally present in a concentration range between 0.028 to 18.8 g kg-1 (mean = 2.52 g kg-1). Calcite occurrences include small to large isolated anhedral grains, fracture and cavity infillings, and sericitized cores of plagioclase. No correlation exists between the amount of calcite present and major rock oxide compositions, including CaO. Ion microprobe analyses of in situ calcite grains indicate relatively low Sr (120 to 660 ppm), negligible Rb and 87Sr/86Sr ratios equal to or higher than those of coexisting plagioclase. Solutes, including Ca and alkalinity produced by batch leaching of the granitoid rocks (5% CO2 in DI water for 75 d at 25??C), are dominated by the dissolution of calcite relative to silicate minerals. The correlation of these parameters with higher calcite concentrations decreases as leachates approach thermodynamic saturation. In longer term column experiments (1.5 yr), reactive calcite becomes exhausted, solute Ca and Sr become controlled by feldspar dissolution and 87Sr/ 86Sr by biotite oxidation. Some accessory calcite in granitoid rocks is related to intrusion into carbonate wall rock or produced by later hydrothermal alteration. However, the ubiquitous occurrence of calcite also suggests formation during late stage (subsolidus) magmatic processes. This conclusion is supported by petrographic observations and 87Sr/86Sr analyses. A review of thermodynamic data indicates that at moderate pressures and reasonable CO2 fugacities, calcite is a stable phase at temperatures of 400 to 700??C. Copyright ?? 2005 Elsevier Ltd.

  7. Si cycling in a forest biogeosystem - the importance of anthropogenic perturbation and induced transient state of biogenic Si pools

    NASA Astrophysics Data System (ADS)

    Sommer, M.; Jochheim, H.; Höhn, A.; Breuer, J.; Zagorski, Z.; Busse, J.; Barkusky, D.; Puppe, D.; Wanner, M.; Kaczorek, D.

    2012-12-01

    The relevance of biological Si cycling for dissolved silica (DSi) export from terrestrial biogeosystems is still in debate. Even in systems showing a high content of weatherable minerals, like Cambisols on volcanic tuff, biogenic Si (BSi) might contribute > 50% to total DSi (Gerard et~al., 2008). However, the actual number of biogeosystem studies is rather limited for generalised conclusions. To cover one end of controlling factors on DSi - weatherable minerals content - we studied a~forested site with absolute quartz dominance (> 95%). Hence, we hypothesise minimal effects of chemical weathering of silicates on DSi. During a~four year observation period (May 2007-April 2011) we quantified (i) internal and external Si fluxes of a temperate-humid biogeosystem (beech, 120 yr) by BIOME-BGC (vers. ZALF), (ii) related Si budgets, and, (iii) Si pools in soil and beech, chemically as well as by SEM-EDX. For the first time both compartments of biogenic Si in soils were analysed, i.e. phytogenic and zoogenic Si pool (testate amoebae). We quantified an average Si plant uptake of 35 kg Si ha-1 yr-1 - most of which is recycled to the soil by litterfall - and calculated an annual biosilicification from idiosomic testate amoebae of 17 kg Si ha-1. High DSi concentrations (6 mg l-1) and DSi exports (12 kg Si ha-1 yr-1) could not be explained by chemical weathering of feldspars or quartz dissolution. Instead, dissolution of a relictic phytolith Si pool seems to be the main process for the DSi observed. We identified forest management, i.e. selective extraction of pine trees 20 yr ago followed by a disappearance of grasses, as the most probable control for the phenomena observed and hypothesised the biogeosystem to be in a transient state in terms of Si cycling.

  8. Si cycling in a forest biogeosystem - the importance of transient state biogenic Si pools

    NASA Astrophysics Data System (ADS)

    Sommer, M.; Jochheim, H.; Höhn, A.; Breuer, J.; Zagorski, Z.; Busse, J.; Barkusky, D.; Meier, K.; Puppe, D.; Wanner, M.; Kaczorek, D.

    2013-07-01

    The relevance of biological Si cycling for dissolved silica (DSi) export from terrestrial biogeosystems is still in debate. Even in systems showing a high content of weatherable minerals, like Cambisols on volcanic tuff, biogenic Si (BSi) might contribute > 50% to DSi (Gerard et al., 2008). However, the number of biogeosystem studies is rather limited for generalized conclusions. To cover one end of controlling factors on DSi, i.e., weatherable minerals content, we studied a forested site with absolute quartz dominance (> 95%). Here we hypothesise minimal effects of chemical weathering of silicates on DSi. During a four year observation period (05/2007-04/2011), we quantified (i) internal and external Si fluxes of a temperate-humid biogeosystem (beech, 120 yr) by BIOME-BGC (version ZALF), (ii) related Si budgets, and (iii) Si pools in soil and beech, chemically as well as by SEM-EDX. For the first time two compartments of biogenic Si in soils were analysed, i.e., phytogenic and zoogenic Si pool (testate amoebae). We quantified an average Si plant uptake of 35 kg Si ha-1 yr-1 - most of which is recycled to the soil by litterfall - and calculated an annual biosilicification from idiosomic testate amoebae of 17 kg Si ha-1. The comparatively high DSi concentrations (6 mg L-1) and DSi exports (12 kg Si ha-1 yr-1) could not be explained by chemical weathering of feldspars or quartz dissolution. Instead, dissolution of a relictic, phytogenic Si pool seems to be the main process for the DSi observed. We identified canopy closure accompanied by a disappearance of grasses as well as the selective extraction of pine trees 30 yr ago as the most probable control for the phenomena observed. From our results we concluded the biogeosystem to be in a transient state in terms of Si cycling.

  9. Beryl-bearing pegmatites in the Ruby Mountains and other areas in Nevada and northwestern Arizona

    USGS Publications Warehouse

    Olson, Jerry C.; Hinrichs, E. Neal

    1960-01-01

    Pegmatite occurs widely in Nevada and northwestern Arizona, but little mining has been done for such pegmatite minerals as mica, feldspar, beryl, and lepidolite. Reconnaissance for beryl-bearing pegmatite in Nevada and in part of Mohave County, Ariz., and detailed studies in the Dawley Canyon area, Elko County, Nev., have shown that beryl occurs in at least 11 districts in the region. Muscovite has been prospected or mined in the Ruby and Virgin Mountains, Nev., and in Mohave County, Ariz. Feldspar has been mined in the southern part of the region near Kingman, Ariz., and in Clark County, Nev. The pegmatites in the region range in age from Precambrian to late Mesozoic or Tertiary. Among the pegmatite minerals found or reported in the districts studied are beryl, chrysoberyl, scheelite, wolframite, garnet, tourmaline, fluorite, apatite, sphene, allanite, samarskite, euxenite, gadolinite, monazite, autunite, columbite-tantalite, lepidolite, molybdenite, and pyrite and other sulflde minerals. The principal beryl-bearing pegmatites examined are in the Oreana and Lakeview (Humboldt Canyon) areas, Pershing County; the Dawley Canyon area in the Ruby Mountains, Elko County, Nev.; and on the Hummingbird claims in the Virgin Mountains, Mohave County, Ariz. Beryl has also been reported in the Marietta district, Mineral County; the Sylvania district, Esmeralda County; near Crescent Peak and near Searchlight, Clark County, Nev.; and in the Painted Desert near Hoover Dam, Mohave County, Ariz. Pegmatites are abundant in the Ruby Mountains, chiefly north of the granite stock at Harrison Pass. In the Dawley Canyon area of 2.6 square miles at least 350 pegmatite dikes more than 1 foot thick were mapped, and beryl was found in small quantities in at least 100 of these dikes. Four of these dikes exceed 20 feet in thickness, and 1 is 55 feet thick. A few pegmatites were also examined in the Corral Creek, Gilbert Canyon, and Hankins Canyon areas in the Ruby Mountains.The pegmatite dikes in the Dawley Canyon area intrude granite and metamorphic rocks which consist chiefly of quartzite and schist of probable Early Cambrian age. The granite is of two types: a biotite-muscovite granite that forms the main mass of the stock and albite granite that occurs in the metamorphic rocks near the borders of the stock. The pegmatites were emplaced chiefly along fractures in the granite and along schistosity or bedding planes in the metamorphic rocks.Many of the Dawley Canyon pegmatite dikes are zoned, having several rock units of contrasting mineralogy or grain size formed successively from the walls inward. Aplitic units occur either as zones or in irregular positions in the pegmatite dikes and are a distinctive feature of the Dawley Canyon pegmatites. Some of the aplitic and fine-grained pegmatite units are characterized by thin layers of garnet crystals, forming many parallel bands on outcrop surfaces. The occurrence of aplitic and pegmatitic textures in the same dike presumably indicates abrupt changes in physical-chemical conditions during crystallization, such as changes in viscosity and in content of volatile constituents. Concentrations of 0.1 percent or more beryl, locally more than 1 percent, occur in certain zones in the Dawley Canyon pegmatites. Spectrographic analyses of 23 samples indicate that the BeO content ranges from 0.0017 to 0.003 percent in the albite granite, from ,0.0013 to 0.039 percent in aplitic units in pegmatite, from 0.0005 to 0.10 percent in coarse-grained pegmatite, and from less than 0.0001 to 0.0004 percent in massive quartz veins. The scheelite-beryl deposits at Oreana and in Humboldt Canyon, Pershing County, are rich in beryllium. Twelve samples from the Lakeview (Humboldt Canyon) deposit range from 0.018 to 0.11 percent BeO, but underground crosscuts have failed to intersect similar rock at depth. Beryl locally constitutes as much as 10 percent of the pegmatitic ore at Oreana. The beryl was not recovered during tungsten mining at Oreana and is now in the tailings of the mill at Toulon, Nev. The percentage of beryl is lower than the Oreana ore because of dilution by tailings from other ores milled at Toulon. Beryl has been found in many pegmatite dikes in the Virgin Mountains. Both beryl and chrysoberyl occur in dikes on the Hummingbird claims, north of Virgin Peak, in Mohave County, Ariz. Spectrographic analyses of 5 representative samples of the principal dike on the Hummingbird claims range from 0.055 to 0.11 percent BeO.

  10. Emerald mineralization and metasomatism of amphibolite, khaltaro granitic pegmatite - Hydrothermal vein system, Haramosh Mountains, Northern Pakistan

    USGS Publications Warehouse

    Laurs, B.M.; Dilles, J.H.; Snee, L.W.

    1996-01-01

    Emerald mineralization is found within 0.1- to 1-m-thick hydrothermal veins and granitic pegmatites cutting amphibolite within the Nanga Parbat - Haramosh massif, in northern Pakistan. The amphibolite forms a sill-like body within garnet-mica schist, and both are part of a regional layered gneiss unit of Proterozoic (?) age. The 40Ar/39Ar data for muscovite from a pegmatite yield a plateau age of 9.13 ?? 0.04 Ma. Muscovite from mica schist and hornblende from amphibolite yield disturbed spectra with interpreted ages of 9 to 10 Ma and more than 225 Ma, respectively, which indicate that peak Tertiary metamorphism reached 325 to 550??C prior to 10 Ma. Pegmatites were emplaced after peak metamorphism during this interval and are older than pegmatites farther south in the massif. At Khaltaro, simply zoned albite-rich miarolitic pegmatites and hydrothermal veins containing various proportions of quartz, albite, tourmaline, muscovite, and beryl are associated with a 1- to 3-m-thick heterogeneous leucogranite sill, that is locally albitized. The pegmatites likely crystallized at 650 to 600??C at pressures of less than 2 kbar. Crystals of emerald form within thin (0.20, 0.54-0.89 wt%), to pale blue beryl (<0.07, 0.10-0.63%), to colorless beryl (<0.07, 0.07-0.28%). The amphibolite is metasomatized in less than 20-cm-wide selvages that are symmetrically zoned around veins or pegmatites. A sporadic inner zone containing F-rich biotite, tourmaline, and fluorite, with local albite, muscovite, quartz, and rare beryl, gives way to an intermediate zone containing biotite and fluorite with local plagioclase and quartz, and to an outer zone of amphibolite containing sparse biotite and local quartz. The inner and intermediate zones experienced gains of K, H, F, B, Li, Rb, Cs, Be, Ta, Nb, As, Y and Sr, and losses of Si, Mg, Ca, Fe, Cr, V and Sc. The outer alteration zone has gained F, Li, Rb, Cs, and As. Oxygen isotope analyses of igneous and hydrothermal minerals indicate that a single fluid of magmatic origin with ??18OH2O = 8??? produced the pegmatite-vein system and hydrothermal alteration at temperatures between 550 and 400??C. The formation of emerald results from introduction of HF-rich magmatic-hydrothermal fluids into the amphibolite, which caused hydrogen ion metasomatism and released Cr and Fe into the pegmatite-vein system.

  11. Some observations on the stoichiometry of feldspar hydrolysis in granitic soil

    Treesearch

    James L. Clayton

    1988-01-01

    Weathering rates of orthoclase and plagioclase were computed from mass balances of Na, K, and Ca in three forested watersheds in the Idaho batholith. On the basis of stand conditions, two watersheds were assumed to have no net gains or losses of cations in biomass, and increases in biomass were measured in the third watershed. Balanced feldspar hydrolysis reactions...

  12. Thermoluminescence and Antarctic meteorites

    NASA Technical Reports Server (NTRS)

    Sears, D. W. G.; Hasan, F. A.

    1986-01-01

    The level of natural thermoluminescence (TL) in meteorites is the result of competition between build-up, due to exposure to cosmic radiation, and thermal decay. Antarctic meteorites tend to have lower natural TL than non-Antarctic meteorites because of their generally larger terrestrial ages. However, since a few observed falls have low TL due to a recent heating event, such as passage within approximately 0.7 astronomical units of the Sun, this could also be the case for some Antarctic meteorites. Dose rate variations due to shielding, heating during atmospheric passage, and anomalous fading also cause natural TL variations, but the effects are either relatively small, occur infrequently, or can be experimentally circumvented. The TL sensitivity of meteorites reflects the abundance and nature of the feldspar. Thus intense shock, which destroys feldspar, causes the TL sensitivity to decrease by 1 to 2 orders of magnitude, while metamorphism, which generates feldspar through the devitrification of glass, causes TL sensitivity to increase by a factor of approximately 10000. The TL-metamorphism relationship is particularly strong for the lowest levels of metamorphism. The order-disorder transformation in feldspar also affect the TL emission characteristics and thus TL provides a means of paleothermometry.

  13. A plutonic view of explosive volcanism: the shatter zone of the Cadillac Mountain granite, Maine

    NASA Astrophysics Data System (ADS)

    Wiebe, R.

    2013-12-01

    The Silurian Cadillac Mountain granite (CMG) is about 15 km in diameter. It is underlain on its deeper western margin by layered gabbro-diorite (GD) up to 3 km thick and on its eastern and southern margins by an intrusive breccia (the 'shatter zone' (SZ)), up to 1 km wide. Coeval rhyolite tuffs, ignimbrites and lavas occur near the southern margin of the granite. The more shallow eastern part of the SZ can be divided into three zones: (SZA) An outer zone against country rock (CR) consists of strongly broken up, deformed sedimentary rocks and angular blocks of diabase invaded by thin irregular veins of aphanitic felsite. All CR fragments are tightly packed with less than ~ 15% matrix, which coarsens inward to vfg quartz, feldspar and biotite. (SZB) A central zone contains abundant sedimentary and scarce rhyolite blocks (typically < 1 m) and larger diabase blocks (from < 1 m to 10s of meters). This zone has 20 to 60% fg to mg matrix with quartz, two feldspars, biotite and abundant pieces of CR down to a few mm. It typically has a strong flow fabric around CR blocks. (SZC) The inner zone has only large (10-80 m) blocks of sedimentary rock, diabase and rhyolite (flows and ignimbrite). The mg granitic matrix (>60%) has blocky hypersolvus feldspar, interstitial to equant quartz, Fe-cpx, Fe-hornblende, two oxides and scarce fayalite. Feldspar in this zone consistently has a sequence of zones consisting of: (1) a homogeneous core of ~ An10Ab80Or10, (2) a transition up to 1 mm wide with 10-15 Or-Ab oscillations (e.g. from Or10 to Or30), each from 20 to 100 microns in width, and (3) a nearly homogeneous rim of variable width averaging about An3Ab70Or27. The occurrence of crystals with such distinctive zoning over such a great distance (18 km) suggests that the zoning was produced by an intensive parameter and not by magma mixing. Because the crystals are restricted to the SZ matrix, processes that produced the shatter zone probably also influenced feldspar zoning. Analysis of clast size distribution of CR fragments in SZA and SZB suggests an extremely high-energy environment consistent with a pyroclastic eruption from the CMG magma chamber (Roy et al. 2012). If such an eruption did occur, one expected effect would be episodic, sudden drops in pressure during degassing and eruptive events. Since the lower part of the chamber was apparently relatively dry (hypersolvus alkali feldspar with ternary feldspar occurs in CMG immediately above the GD), the drop in pressure would lower H2O activity so that the Ab-rich loop of the alkali feldspar phase diagram would shift to higher T, causing the melt to fall below the liquidus and shift the equilibrium solid feldspar to higher Or values. This matches the initial oscillatory zone to higher Or on the homogeneous cores. Because the SZ terminates at the top of the GD, it is likely that mafic input contributed to the eruption. The large inward increase in the crystallization T of the matrix from SZA to SZC probably records initial escape of a cooler felsic cap and upwelling of deep, hot hypersolvus magma along with partial collapse of the chamber roof.

  14. Characterisation of mineralogical forms of barium and trace heavy metal impurities in commercial barytes by EPMA, XRD and ICP-MS.

    PubMed

    Ansari, T M; Marr, I L; Coats, A M

    2001-02-01

    This study was carried out to characterise the mineralogical forms of barium and the trace heavy metal impurities in commercial barytes of different origins using electron probe microanalysis (EPMA), X-ray diffraction (XRD) and inductively coupled plasma mass spectrometry (ICP-MS). Qualitative EPMA results show the presence of typically eight different minerals in commercial barytes including barite (BaSO4), barium feldspar, galena (PbS), pyrite (FeS2), sphalerite (ZnS), quartz (SiO2), and silicates, etc. Quantitative EPMA confirms that the barite crystals in the barytes contain some strontium and a little calcium, whereas trace heavy metals occur in the associated minerals. Analysis of aqua regia extracts of barytes samples by ICP-MS has shown the presence of a large number of elements in the associated minerals. Arsenic, copper and zinc concentrations correlate closely in all 10 samples. The findings suggest that barytes is not, as traditionally thought, an inert mineral, but is a potentially toxic substance due to its associated heavy metal impurities, which can be determined by an aqua regia digest without the need for complete dissolution of the barite itself. X-ray powder diffraction was not informative as the complex barite pattern masks the very weak lines from the small amounts of associated minerals.

  15. Reactions and reaction rates in the regional aquifer beneath the Pajarito Plateau, north-central New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Hereford, Anne G.; Keating, Elizabeth H.; Guthrie, George D.; Zhu, Chen

    2007-05-01

    Reactions and reaction rates within aquifers are fundamental components of critical hydrological processes. However, reactions simulated in laboratory experiments typically demonstrate rates that are much faster than those observed in the field. Therefore, it is necessary to conduct more reaction rate analyses in natural settings. This study of geochemical reactions in the regional aquifer in the Pajarito Plateau near Los Alamos, New Mexico combines modeling with petrographic assessment to further knowledge and understanding of complex natural hydrologic systems. Groundwater geochemistry shows marked evolution along assumed flow paths. The flow path chosen for this study was evaluated using inverse mass balance modeling to calculate the mass transfer. X-ray diffraction and field emission gun scanning electron microscopy were used to identify possible reactants and products. Considering the mineralogy of the aquifer and saturation indices for the regional water refined initial interpretations. Calculations yielded dissolution rates for plagioclase on the order of 10-15 mol s-1 m-2 and for K-feldspar on the order of 10-17 mol s-1 m-2, orders of magnitude slower than laboratory rates. While these rates agree with other aquifer studies, they must be considered in the light of the uncertainty associated with geometric surface area estimates, 14C ages, and aquifer properties.

  16. Water quality characterization in some birimian aquifers of the Birim Basin, Ghana

    USGS Publications Warehouse

    Bruce, B.-Y.; Yidana, S.M.; Anku, Y.; Akabzaa, T.; Asiedu, D.

    2009-01-01

    The objective of this study was to determine the main controls on the hydrochemistry of groundwater in the study area. Mass balance modeling was used simultaneously with multivariate R-mode hierarchical cluster analysis to determine the significant sources of variation in the hydrochemistry. Two water types have been revealed in this area: (1) waters influenced more significantly by the weathering of silicate minerals from the underlying geology, and are rich in silica, sodium, calcium, bicarbonate, and magnesium ions, and (2) waters that have been influenced by the effects of fertilizers and other anthropogenic activities in the area. Mineral speciation and silicate mineral stability diagrams generated from the data suggest that montmorillonite, probably derived from the incongruent dissolution of feldspars and micas, is the most stable silicate phase in the groundwater. The apparent incongruent weathering of silicate minerals in the groundwater system has led to the enrichment of sodium, calcium, magnesium and bicarbonate ions as well as silica, leading to the supersaturation of calcite, aragonite, dolomite and quartz. Stability in the montmorillonite field suggests restricted flow conditions whereby groundwater residence time is relatively high, leading to greater contact of groundwater with the rock to enhance weathering. Cation exchange processes have also been determined to play minor roles in the hydrochemistry.

  17. Rare earth elements in sinters from the geothermal waters (hot springs) on the Tibetan Plateau, China

    NASA Astrophysics Data System (ADS)

    Feng, Jin-Liang; Zhao, Zhen-Hong; Chen, Feng; Hu, Hai-Ping

    2014-10-01

    The mineralogical and geochemical composition of sinters from the geothermal areas on the Tibetan Plateau was determined. They occur as siliceous, salty and calcareous sinters but biogenic siliceous sinters were also found. The analyses indicate that there are no distinct inter -element relationships between individual rare earth elements (REEs) and other elements. Formed from the same geothermal water, the mineralogical and chemical composition of the sinters is influenced by their genesis and formation conditions. The REE distributions depend on the origin of the sinters. Fe-Mn phases in sinters tend to scavenge more REEs from geothermal water. Neither the REE fractionation nor the Ce anomaly seems to be associated with Fe-Mn phases in the sinters. The fourth tetrads of some sinters display weak W-type (concave) effects. In contrast, the third tetrads present large effects in some sinters due to positive Gd anomalies. The origin of the positive Eu anomalies in some sinters seems to be caused by preferential dissolution of feldspars during water-rock interaction. The complexing ligands in geothermal water may contribute significantly to the fractionation of REEs in sinters. The dominant CO32- and HCO3- complexing in geothermal water favors enrichment of heavy REEs in calcareous sinters.

  18. Effects of CO2-rich fluids on a redbed reservoir: outcrop analogue study from the Buntsandstein (Germany)

    NASA Astrophysics Data System (ADS)

    Kasch, N.; Kley, J.; Koester, J.; van Geldern, R.; Wehrer, M.; Wendler, J.

    2010-12-01

    Carbon capture and storage (CCS) in saline aquifers will induce fluid-rock interactions, with effects on the mineralogy and physical properties of the reservoir. These effects are difficult to study in real reservoirs. Outcrop analogues provide access to relatively large rock volumes, but it may be difficult to prove that CO2 was involved in the mineral reactions observed. We present circumstantial evidence for the presence of CO2-rich fluids during the alteration of Triassic Buntsandstein redbeds from Germany. Fluid-rock interaction there is evidenced by localized bleaching of the red sandstones in fringes of a few mm to a few cm width along joints and fine cracks. The fringes can be traced along individual joints for a few dm to m. 3D geometric analysis on a cm scale shows that the bleached cracks form a complex interconnected network. On the outcrop scale, bleaching is essentially restricted to one north-trending joint set which is parallel to Miocene basalt dikes in the area. In underground salt mines, the dikes have caused bleaching of potassium salt minerals along their contacts. In the same mines CO2 is found trapped within rock salt along north-trending fractures, sometimes causing violent gas eruptions during mining operations. Together, these observations suggest that bleaching along north-trending joints in the Buntsandstein is causally related to the migration of CO2-rich fluids associated with the basalt volcanism. Today, CO2 ascends in CO2-enriched waters. We analyzed 12 samples of such waters. Their δ18O values correspond to meteoric waters. The δ13C (DIC) values of four water samples show signatures typical of volcanogenic CO2. Five samples contain mixed signals of volcanogenic and carbonatic CO2 or biogenic CO2 from soil. Volcanogenic and carbonatic CO2 are restricted to waters interpreted to rise along NW-SE striking basement faults. The switch of preferential fluid channeling from N-trending fractures in Tertiary time to NW-trending fractures today is compatible with a coeval rotation of the largest horizontal stress from N to NW, corroborating the control of fluid pathways by the contemporary stress field. Geochemical analyses of the bleached fringes show that bleaching causes a decrease in Fe and Mn due to hematite dissolution. Using cathodoluminescence microscopy and -spectroscopy combined with electron microprobe analysis and stable carbon isotopes, we detected two major fluid-mineral interactions probably involving CO2: (1) precipitation of zoned, joint-filling calcites and pore-filling calcite cements, the latter replacing an earlier dolomite, and (2) alkali feldspar alteration. We interpret Fe-rich calcite crystal cores to reflect incorporation of iron released by coeval bleaching during the dolomite-calcite transformation. This recrystallisation was associated with a volume increase, possibly suggesting some degree of sealing and enhanced retention of CO2. On the other hand, feldspar alteration has a destructing effect on the feldspar grains, implying that bleaching creates pore space.

  19. Processes of high-T fluid-rock interaction during gold mineralization in carbonate-bearing metasediments: the Navachab gold deposit, Namibia

    NASA Astrophysics Data System (ADS)

    Dziggel, A.; Wulff, K.; Kolb, J.; Meyer, F. M.

    2009-08-01

    The Navachab gold deposit in the Damara belt of central Namibia is hosted by a near-vertical sequence of amphibolite facies shelf-type metasediments, including marble, calc-silicate rock, and biotite schist. Petrologic and geochemical data were collected in the ore, alteration halos, and the wall rock to evaluate transport of elements and interaction between the wall rock and the mineralizing fluid. The semi-massive sulfide lenses and quartz-sulfide veins are characterized by a complex polymetallic ore assemblage, comprising pyrrhotite, chalcopyrite, sphalerite, and arsenopyrite, native bismuth, gold, bismuthinite, and bismuth tellurides. Mass balance calculations indicate the addition of up to several orders of magnitude of Au, Bi, As, Ag, and Cu. The mineralized zones also record up to eightfold higher Mn and Fe concentrations. The semi-massive sulfide lenses are situated in the banded calc-silicate rock. Petrologic and textural data indicate that they represent hydraulic breccias that contain up to 50 vol.% ore minerals, and that are dominated by a high-temperature (T) alteration assemblage of garnet-clinopyroxene-K-feldspar-quartz. The quartz-sulfide veins crosscut all lithological units. Their thickness and mineralogy is strongly controlled by the composition and rheological behavior of the wall rocks. In the biotite schist and calc-silicate rock, they are up to several decimeters thick and quartz-rich, whereas in the marble, the same veins are only a few millimeters thick and dominated by sulfides. The associated alteration halos comprise (1) an actinolite-quartz alteration in the biotite schist, (2) a garnet-clinopyroxene-K-feldspar-quartz alteration in the marble and calc-silicate rock, and (3) a garnet-biotite alteration that is recorded in all rock types except the marble. The hydrothermal overprint was associated with large-scale carbonate dissolution and a dramatic increase in CO2 in the ore fluid. Decarbonation of wall rocks, as well as a low REE content of the ore fluid resulted in the mobilization of the REE, and the decoupling of the LREE from the HREE. The alteration halos not only parallel the mineralized zones, but may also follow up single layers away from the mineralization. Alteration is far more pronounced facing upward, indicating that the rocks were steep when veining occurred. The petrologic and geochemical data indicate that the actinolite-quartz- and garnet-clinopyroxene-K-feldspar-quartz alterations formed in equilibrium with a fluid (super-) saturated in Si, and were mainly controlled by the composition of the wall rocks. In contrast, the garnet-biotite alteration formed by interaction with a fluid undersaturated in Si, and was mainly controlled by the fluid composition. This points to major differences in fluid-rock ratios and changes in fluid composition during alteration. The alteration systematics and geometry of the hydrothermal vein system are consistent with cyclic fluctuations in fluid pressure during fault valve action.

  20. Comment on “Systematic variations of argon diffusion in feldspars and implications for thermochronometry” by Cassata and Renne

    NASA Astrophysics Data System (ADS)

    Lovera, Oscar M.; Harrison, T. Mark; Boehnke, Patrick

    2015-02-01

    Cassata and Renne (2013) is a data-rich paper potentially providing opportunities to systematically test long-standing models of argon diffusion behavior in feldspars and we congratulate them on a heroic achievement. That said, several of their interpretations are highly problematic due to misconceptions of both the nature of their sample and diffusion modeling.

  1. Rapakivi texture formation via disequilibrium melting in a contact partial melt zone, Antarctica

    NASA Astrophysics Data System (ADS)

    Currier, R. M.

    2017-12-01

    In the McMurdo Dry Valleys of Antarctica, a Jurassic aged dolerite sill induced partial melting of granite in the shallow crust. The melt zone can be traced in full, from high degrees of melting (>60%) along the dolerite contact, to no apparent signs of melting, 10s of meters above the contact. Within this melt zone, the well-known rapakivi texture is found, arrested in various stages of development. High above the contact, and at low degrees of melting, K-feldspar crystals are slightly rounded and unmantled. In the lower half of the melt zone, mantles of cellular textured plagioclase appear on K-feldspar, and thicken towards the contact heat source. At the highest degrees of melting, cellular-textured plagioclase completely replaces restitic K-feldspar. Because of the complete exposure and intact context, the leading models of rapakivi texture formation can be tested against this system. The previously proposed mechanisms of subisothermal decompression, magma-mixing, and hydrothermal exsolution all fail to adequately describe rapakivi generation in this melt zone. Preferred here is a closed system model that invokes the production of a heterogeneous, disequilibrium melt through rapid heating, followed by calcium and sodium rich melt reacting in a peritectic fashion with restitic K-feldspar crystals. This peritectic reaction results in the production of plagioclase of andesine-oligoclase composition—which is consistent with not just mantles in the melt zone, but globally as well. The thickness of the mantle is diffusion limited, and thus a measure of the diffusive length scale of sodium and calcium over the time scale of melting. Thermal modeling provides a time scale of melting that is consistent with the thickness of observed mantles. Lastly, the distribution of mantled feldspars is highly ordered in this melt zone, but if it were mobilized and homogenized—mixing together cellular plagioclase, mantled feldspars, and unmantled feldspars—the result would be akin to rapakivi granites observed globally in Proterozoic systems. In essence, the melt zone is an embryonic rapakivi granite; not yet fully developed and displaying clear ties to its parental rock.

  2. Kiglapait Feldspar States 5 to <2 Kbar, 1250 to 240 Degrees C in 20 Ma: Liquidus, Solidus, Solvi, and Subsolidus with Sr Isotope Partitioning: a Review

    NASA Astrophysics Data System (ADS)

    Morse, S. A.

    2017-12-01

    The 1305 Ga Kiglapait Intrusion of coastal Labrador records the crystallization of troctolite through olivine gabbro to magnetite- and apatite-bearing rocks to monoclinic sanidine- mesoperthite-ferrosyenite below an inverted stratigraphy of a thin Upper Border Zone. The crystallization history was about 1 Ma. ¶The evolutionary history of Kiglapait feldspars in an 8.4 km thick magma chamber runs from plagioclase An70 at 5 kbar and 1250°C, cooling through to ferrosyenite with mesoperthite and two feldspars at 3 kbar and 1,000°C. The residual magma encountered the binodal solvus and finished crystallizing as an azeotrope with plagioclase (Or 21, An 15) and sanidine (Or 52, An 8) in liquid (Xor = 1/3; An 11). Cooling in the subsolidus brought the feldspars to compositions An15-Or 3, An0-Or 80-85 at 800-730°C. Metastable mesoperthite on the coherent solvus in various stages of late equilibration persists in the local assemblages. Arrested to complete feldspar symplectites suggest the local presence of a vapor phase. ¶Splits of the final Or-rich feldspar were found by mass spectrometry to have a dominant quantity of Rb and 87Sr/86Sr along with % amounts of Ba; in contrast, the plag fraction has very low Rb and 87Sr/86Sr. The estimated timing of the isotopic segregation was plausibly continuous with major-element fractionation or perhaps at the moment(s) of exsolution. ¶The cooling record of the solidified intrusion at 3 kbar is shown by 40Ar/39Ar data to have been rapid, reaching an ambient temperature near 240°C within the first 20 Ma, compared to the ambient country-rock temperature before intrusion of 350°C. The difference suggests a late uplift of the region after the Kiglapait magmatism. ¶Contributions from Y. Yu, T. Krogh, M. Hamilton, D. Lindsley, D. DePaolo, M. Jercinovic and S.R. Hart are especially acknowledged.

  3. Peculiar Feldspar And Quartz Inclusions Within Zircons From Anorthosites, North Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Eliwa, H. A.; Dawoud, M. I.; Khalaf, I. M.; Negendank, J. F.; Itaya, T.

    2004-12-01

    Zircons from three anorthosite outcrops along Wadi Dib area, north Eastern Desert of Egypt contain abundant and conspicuous inclusions of quartz, feldspar, amphibole and apatite. These anorthosites, as (50-100m thick) layers, represent the top of mafic-ultramafic intrusions exhibiting rhythmic layering visible by reputation of melanocratic and leucocratic layers. Field and microscopic studies exhibit that these anorthosites were affected by the action of residual magmatic solutions associated with the late stage crystallization of the younger granites, which modified their mineralogical composition. They are composed totally of plagioclase with subordinate amount of clinoenstatite, augite, amphibole, biotite, K-feldspar, and quartz. Accessories are magnetite, ilmenite, apatite and zircon. The abundance and the mode of occurrence of K-feldspar, quartz, and biotite with apatite and zircon among the megacrysts suggest their formation is ascribed to the interaction with the residual solutions. The microprobe data exhibit difference between feldspar and amphiboles contained herein zircons and those as anorthosite mineral constituents. The genetic relationship between zircons and their inclusions suggests later growth of zircons than inclusions and most probably at the final stage of rock modification. Zircons are magmatic and found in the interstitial feldspar and quartz among plagioclase megacrysts in aggregates or as individual grains. The microscopic and SEM images investigation exhibit that most zircons are subhedral to euhedral equant and prismatic crystals. Most zircons have same range of crystal morphologies and internal growth structures with predominance of prism /{100/} and pyramid /{101/} and occasionally prism /{110/} and pyramid /{111/}. No evidences for poly-faceted grains, inherited cores or later overgrowths were detected. CL images distinguished zircons with visible core-rim structures and others with regular and continuous growth zones contained herein various inclusions. The dark CL cores in the core-rim structured zircons are higher in U, Y and sometimes Hf relative to the CL bright rims. Microprobe data and x-ray chemical mapping of various zoned zircons suggest that U and Y with sometimes Hf have a negative correlation to the CL brightness, while Th doesn't exhibit any significant correlation.

  4. The Cooling History and Structure of the Ordinary Chondrite Parent Bodies

    NASA Technical Reports Server (NTRS)

    Benoit, P. H.; Sears, D. W. G.

    1996-01-01

    Most major meteorite classes exhibit significant ranges of metamorphism. The effects of metamorphism have been extensively characterized, but the heat source(s) and the metamorphic environment are unknown. Proposed beat sources include Al-26, Fe-60, electromagnetic induction, and impact. It is typically assumed that metamorphism occurred in parent bodies of some sort, but it uncertain whether these bodies were highly structured ("onion skins") or were chaotic mixes of material ("rubble piles"). The lack of simple trends of metallographic cooling rates with petrologic type has been considered supportive of both concepts. In this study, we use induced thermoluminescence (TL) as an indicator of thermal history. The TL of ordinary chondrites is produced by sodic feldspar, and the induced TL peak temperature is related to its crystallographic order/disorder. Ordered feldspar has TL peak temperatures of approx. 120 C, and disordered feldspar has TL peak temperatures of approx. 220 C. While ordered feldspar can be easily disordered in the laboratory by heating above 650 C and is easily quenched in the disordered form, producing ordered feldspar requires cooling at geologic cooling rates. We have measured the induced TL properties of 101 equilibrated ordinary chondrites, including 49 H, 29 L, and 23 LL chondrites. For the H chondrites there is an apparent trend of decreasing induced TL peak temperature with increasing petrologic type. H4 chondrites exhibit a tight range of TL peak temperatures, 190 C - 200 C, while H6 chondrites exhibit TL peak temperatures between 180 C and 190 C. H5 chondrites cover the range between H4 and H6, and also extend up to 210 C. Similar results are obtained for LL chondfiles and most L6 chondrites have lower induced TL peak temperatures than L5 chondrites.

  5. Biochemical evolution. I. Polymerization on internal, organophilic silica surfaces of dealuminated zeolites and feldspars

    PubMed Central

    Smith, Joseph V.

    1998-01-01

    Catalysis at mineral surfaces might generate replicating biopolymers from simple chemicals supplied by meteorites, volcanic gases, and photochemical gas reactions. Many ideas are implausible in detail because the proposed mineral surfaces strongly prefer water and other ionic species to organic ones. The molecular sieve silicalite (Union Carbide; = Al-free Mobil ZSM-5 zeolite) has a three-dimensional, 10-ring channel system whose electrically neutral Si-O surface strongly adsorbs organic species over water. Three -O-Si tetrahedral bonds lie in the surface, and the fourth Si-O points inwards. In contrast, the outward Si-OH of simple quartz and feldspar crystals generates their ionic organophobicity. The ZSM-5-type zeolite mutinaite occurs in Antarctica with boggsite and tschernichite (Al-analog of Mobil Beta). Archean mutinaite might have become de-aluminated toward silicalite during hot/cold/wet/dry cycles. Catalytic activity of silicalite increases linearly with Al-OH substitution for Si, and Al atoms tend to avoid each other. Adjacent organophilic and catalytic Al-OH regions in nanometer channels might have scavenged organic species for catalytic assembly into specific polymers protected from prompt photochemical destruction. Polymer migration along weathered silicic surfaces of micrometer-wide channels of feldspars might have led to assembly of replicating catalytic biomolecules and perhaps primitive cellular organisms. Silica-rich volcanic glasses should have been abundant on the early Earth, ready for crystallization into zeolites and feldspars, as in present continental basins. Abundant chert from weakly metamorphosed Archaean rocks might retain microscopic clues to the proposed mineral adsorbent/catalysts. Other framework silicas are possible, including ones with laevo/dextro one-dimensional channels. Organic molecules, transition-metal ions, and P occur inside modern feldspars. PMID:9520372

  6. Biochemical evolution. I. Polymerization On internal, organophilic silica surfaces of dealuminated zeolites and feldspars.

    PubMed

    Smith, J V

    1998-03-31

    Catalysis at mineral surfaces might generate replicating biopolymers from simple chemicals supplied by meteorites, volcanic gases, and photochemical gas reactions. Many ideas are implausible in detail because the proposed mineral surfaces strongly prefer water and other ionic species to organic ones. The molecular sieve silicalite (Union Carbide; = Al-free Mobil ZSM-5 zeolite) has a three-dimensional, 10-ring channel system whose electrically neutral Si-O surface strongly adsorbs organic species over water. Three -O-Si tetrahedral bonds lie in the surface, and the fourth Si-O points inwards. In contrast, the outward Si-OH of simple quartz and feldspar crystals generates their ionic organophobicity. The ZSM-5-type zeolite mutinaite occurs in Antarctica with boggsite and tschernichite (Al-analog of Mobil Beta). Archean mutinaite might have become de-aluminated toward silicalite during hot/cold/wet/dry cycles. Catalytic activity of silicalite increases linearly with Al-OH substitution for Si, and Al atoms tend to avoid each other. Adjacent organophilic and catalytic Al-OH regions in nanometer channels might have scavenged organic species for catalytic assembly into specific polymers protected from prompt photochemical destruction. Polymer migration along weathered silicic surfaces of micrometer-wide channels of feldspars might have led to assembly of replicating catalytic biomolecules and perhaps primitive cellular organisms. Silica-rich volcanic glasses should have been abundant on the early Earth, ready for crystallization into zeolites and feldspars, as in present continental basins. Abundant chert from weakly metamorphosed Archaean rocks might retain microscopic clues to the proposed mineral adsorbent/catalysts. Other framework silicas are possible, including ones with laevo/dextro one-dimensional channels. Organic molecules, transition-metal ions, and P occur inside modern feldspars.

  7. FTIR measurements of OH in deformed quartz and feldspars of the South Tibetan Detachment, Greater Himalaya

    NASA Astrophysics Data System (ADS)

    Jezek, L.; Law, R. D.; Jessup, M. J.; Searle, M. P.; Kronenberg, A. K.

    2017-12-01

    OH absorption bands due to water in deformed quartz and feldspar grains of mylonites from the low-angle Lhotse Detachment (of the South Tibetan Detachment System, Rongbuk Valley north of Mount Everest) have been measured by Fourier Transform Infrared (FTIR) Spectroscopy. Previous microstructural studies have shown that these rocks deformed by dislocation creep at high temperature conditions in the middle crust (lower - middle amphibolite facies), and oxygen isotope studies suggest significant influx of meteoric water. OH absorption bands at 3400 cm-1 of quartz mylonites from the footwall of the Lhotse Detachment Fault are large, with the character of the molecular water band due to fluid inclusions in milky quartz. Mean water contents depend on structural position relative to the core of the Lhotse Detachment, from 1000 ppm (OH/106 Si) at 420 m below the fault to 11,350 (+/-1095) ppm near its center. The gradient in OH content shown by quartz grains implies influx of meteoric water along the Lhotse Detachment from the Tibetan Plateau ground surface to middle crustal depths, and significant fluid penetration into the extruding Himalayan slab by intergranular, permeable fluid flow processes. Feldspars of individual samples have comparable water contents to those of quartz and some are wetter. Large water contents of quartz and feldspar may have contributed to continued deformation and strain localization on the South Tibetan Detachment System. Dislocation creep in quartz is facilitated by water in laboratory experiments, and the water contents of the Lhotse fault rocks are similar to (and even larger than) water contents of quartz experimentally deformed during water weakening. Water contents of feldspars are comparable to those of plagioclase aggregates deformed experimentally by dislocation and diffusion creep under wet conditions.

  8. Thermodynamic modeling of non-ideal mineral-fluid equilibria in the system Si-Al-Fe-Mg-Ca-Na-K-H-O-Cl at elevated temperatures and pressures: Implications for hydrothermal mass transfer in granitic rocks

    NASA Astrophysics Data System (ADS)

    Dolejš, David; Wagner, Thomas

    2008-01-01

    We present the results of thermodynamic modeling of fluid-rock interaction in the system Si-Al-Fe-Mg-Ca-Na-H-O-Cl using the GEM-Selektor Gibbs free energy minimization code. Combination of non-ideal mixing properties in solids with multicomponent aqueous fluids represents a substantial improvement and it provides increased accuracy over existing modeling strategies. Application to the 10-component system allows us to link fluid composition and speciation with whole-rock mineralogy, mass and volume changes. We have simulated granite-fluid interaction over a wide range of conditions (200-600 °C, 100 MPa, 0-5 m Cl and fluid/rock ratios of 10-2-104) in order to explore composition of magmatic fluids of variable salinity, temperature effects on fluid composition and speciation and to simulate several paths of alteration zoning. At low fluid/rock ratios (f/r) the fluid composition is buffered by the silicate-oxide assemblage and remains close to invariant. This behavior extends to a f/r of 0.1 which exceeds the amount of exsolved magmatic fluids controlled by water solubility in silicate melts. With increasing peraluminosity of the parental granite, the Na-, K- and Fe-bearing fluids become more acidic and the oxidation state increases as a consequence of hydrogen and ferrous iron transfer to the fluid. With decreasing temperature, saline fluids become more Ca- and Na-rich, change from weakly acidic to alkaline, and become significantly more oxidizing. Large variations in Ca/Fe and Ca/Mg ratios in the fluid are a potential geothermometer. The mineral assemblage changes from cordierite-biotite granites through two-mica granites to chlorite-, epidote- and zeolite-bearing rocks. We have carried out three rock-titration simulations: (1) reaction with the 2 m NaCl fluid leads to albitization, chloritization and desilication, reproducing essential features observed in episyenites, (2) infiltration of a high-temperature fluid into the granite at 400 °C leads to hydrolytic alteration commencing with alkali-feldspar breakdown and leading to potassic, phyllic and argillic assemblages; this is associated with reduction and iron metasomatism as observed in nature and (3) interaction with a multicomponent fluid at 600 °C produces sodic-calcic metasomatism. Na, Ca and Fe are the most mobile elements whereas immobility of Al is limited by f/r ∼ 400. All simulations predict a volume decrease by 3.4-5.4%, i.e., porosity formation at f/r < 30. At higher fluid/rock ratios simulation (2) produces a substantial volume increase (59%) due to mineral precipitation, whereas simulation (3) predicts a volume decrease by 49% at the advanced albitization-desilication stage. Volume changes closely correlate with mass changes of SiO2 and are related to silica solubility in fluids. The combined effects of oxygen fugacity, fluid acidity and pH for breakdown of aqueous metal complexes and precipitation of ore minerals were evaluated by means of reduced activity products. Sharp increases in saturation indexes for oxidative breakdown occur at each alteration zone whereas reductive breakdown or involvement of other chloride complexes favor precipitation at high fluid/rock ratios only. Calculations of multicomponent aqueous-solid equilibria at high temperatures and pressures are able to accurately predict rock mineralogy and fluid chemistry and are applicable to diverse reactive flow processes in the Earth's crust.

  9. Cation Diffusion in Plagioclase Feldspar

    NASA Astrophysics Data System (ADS)

    Morse, S. A.

    1984-08-01

    Steep compositional gradients in igneous plagioclase feldspar from slowly cooled intrusive bodies imply a maximum value of the intracrystalline diffusion coefficient for NaSi leftrightarrows CaAl exchange, Dmax~ 10-20 centimeters squared per second for temperatures in the range 1250 degrees to 1000 degrees C. Millimeter-sized grains cannot be homogenized in all geologic time; hence reactive equilibrium crystallization of plagioclase from the melt does not occur in dry systems.

  10. Strain softening along the MCT zone from the Sikkim Himalaya: Relative roles of Quartz and Micas

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Kathakali; Mitra, Gautam

    2011-06-01

    In the Darjeeling - Sikkim Himalaya, two distinct faults form the Main Central thrust (MCT), the structurally higher MCT1 and the lower MCT2; each has accommodated translation greater than 100 km. The lower MCT2 places Greater Himalayan amphibolite grade Paro-Lingtse gneiss over Lesser Himalayan greenschist grade Daling metapelites. The MCT2 is folded by the underlying Lesser Himalayan duplex and is exposed at different structural positions of the fold. At Pelling, the MCT2 zone is exposed as a ˜373 m thick NW dipping fault zone that exposes ˜19 m of hanging wall mylonitized Lingtse gneiss. The Lingtse protolith shows evidence of amphibolite grade plastic deformation features in quartz and feldspar. Within the hanging wall mylonite zone (HWMZ), quartz and feldspar have undergone grain-size reduction by different deformation mechanisms and feldspars are sericitized suggesting the presence of fluids during deformation. We estimate a temperature of ˜300 °C within the fault zone during fluid-assisted retrogression and deformation. Reaction softening of feldspars produced a large proportion of intrinsically weak matrix. This, in combination with development of a strong foliation defined by parallel mica grains, resulted in strain softening along the MCT2 zone, and concentrated the deformation along a thin zone or zones.

  11. Cationic polyelectrolyte induced separation of some inorganic contaminants and their mixture (zirconium silicate, kaolin, K-feldspar, zinc oxide) as well as of the paraffin oil from water.

    PubMed

    Ghimici, Luminita

    2016-03-15

    The flocculation efficiency of a cationic polyelectrolyte with quaternary ammonium salt groups in the backbone, namely PCA5 was evaluated on zirconium silicate (kreutzonit), kaolin, K- feldspar and zinc oxide (ZnO) suspensions prepared either with each pollutant or with their mixture. The effect of several parameters such as settling time, polymer dose and the pollutant type on the separation efficacy was evaluated and followed by optical density and zeta potential measurements. Except for ZnO, the interactions between PCA5 and suspended particles led to low residual turbidity values (around 4% for kreutzonit, 5% for kaolin and 8% for K-feldspar) as well as to the reduction of flocs settling time (from 1200 min to 30 min and 120 min in case of kaolinit and K-feldspar, respectively), that meant a high efficiency in their separation. The negative value of the zeta potential and flocs size measurements, at the optimum polymer dose, point to contribution from charge patch mechanism for the particles flocculation. A good efficiency of PCA5 in separation of paraffin oil (a minimum residual turbidity of 9.8%) has been also found. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. In situ 40K-40Ca ‘double-plus’ SIMS dating resolves Klokken feldspar 40K-40Ar paradox

    NASA Astrophysics Data System (ADS)

    Harrison, T. Mark; Heizler, Matthew T.; McKeegan, Kevin D.; Schmitt, Axel K.

    2010-11-01

    The 40K- 40Ca decay system has not been widely utilized as a geochronometer because quantification of radiogenic daughter is difficult except in old, extremely high K/Ca domains. Even these environments have not heretofore been exploited by ion microprobe analysis due to the very high mass resolving power (MRP) of 25,000 required to separate 40K + from 40Ca +. We introduce a method that utilizes doubly-charged K and Ca species which permits isotopic measurements to be made at relatively low MRP (~ 5000). We used this K-Ca 'double-plus' approach to address an enduring controversy in 40Ar/ 39Ar thermochronology revolving around exsolved alkali feldspars from the 1166 Ma Klokken syenite (southern Greenland). Ion microprobe 40K- 40Ca analysis of Klokken samples reveal both isochron and pseudoisochron behaviors that reflect episodic isotopic and chemical exchange of coarsely exsolved perthites and a near end-member K-feldspar until ≤ 719 Ma, and perhaps as late at ~ 400 Ma. Feldspar microtextures in the Klokken syenite evolved over a protracted interval by non-thermal processes (fluid-assisted recrystallization) and thus this sample makes a poor model from which to address the general validity of 40Ar/ 39Ar thermochronological methodologies.

  13. Prolonged magmatic activity on Mars inferred from the detection of felsic rocks

    USGS Publications Warehouse

    Wray, James J.; Hansen, Sarah T.; Dufek, Josef; Swayze, Scott L.; Murchie, Scott L.; Seelos, Frank P.; Skok, John R.; Irwin, Rossman P.; Ghiorso, Mark S.

    2013-01-01

    Rocks dominated by the silicate minerals quartz and feldspar are abundant in Earth’s upper continental crust. Yet felsic rocks have not been widely identified on Mars, a planet that seems to lack plate tectonics and the associated magmatic processes that can produce evolved siliceous melts on Earth. If Mars once had a feldspar-rich crust that crystallized from an early magma ocean such as that on the Moon, erosion, sedimentation and volcanism have erased any clear surface evidence for widespread felsic materials. Here we report near-infrared spectral evidence from the Compact Reconnaissance Imaging Spectrometer for Mars onboard the Mars Reconnaissance Orbiter for felsic rocks in three geographically disparate locations on Mars. Spectral characteristics resemble those of feldspar-rich lunar anorthosites, but are accompanied by secondary alteration products (clay minerals). Thermodynamic phase equilibrium calculations demonstrate that fractional crystallization of magma compositionally similar to volcanic flows near one of the detection sites can yield residual melts with compositions consistent with our observations. In addition to an origin by significant magma evolution, the presence of felsic materials could also be explained by feldspar enrichment by fluvial weathering processes. Our finding of felsic materials in several locations on Mars suggests that similar observations by the Curiosity rover in Gale crater may be more widely applicable across the planet.

  14. Development of cataclastic foliation in deformation bands in feldspar-rich conglomerates of the Rio do Peixe Basin, NE Brazil

    NASA Astrophysics Data System (ADS)

    Nicchio, Matheus A.; Nogueira, Francisco C. C.; Balsamo, Fabrizio; Souza, Jorge A. B.; Carvalho, Bruno R. B. M.; Bezerra, Francisco H. R.

    2018-02-01

    In this work we describe the deformation mechanisms and processes that occurred during the evolution of cataclastic deformation bands developed in the feldspar-rich conglomerates of the Rio do Peixe Basin, NE Brazil. We studied bands with different deformation intensities, ranging from single cm-thick tabular bands to more evolved clustering zones. The chemical identification of cataclastic material within deformation bands was performed using compositional mapping in SEM images, EDX and XRD analyses. Deformation processes were identified by microstructural analysis and by the quantification of comminution intensity, performed using digital image processing. The deformation bands are internally non homogeneous and developed during five evolutionary stages: (1) moderate grain size reduction, grain rotation and grain border comminution; (2) intense grain size reduction with preferential feldspar fragmentation; (3) formation of subparallel C-type slip zones; (4) formation of S-type structures, generating S-C-like fabric; and (5) formation of C‧-type slip zones, generating well-developed foliation that resembles S-C-C‧-type structures in a ductile environment. Such deformation fabric is mostly imparted by the preferential alignment of intensely comminuted feldspar fragments along thin slip zones developed within deformation bands. These processes were purely mechanical (i.e., grain crushing and reorientation). No clays or fluids were involved in such processes.

  15. Origin of karst conduits in calcareous sandstone and carbonate-silicate rocks: Complex role of insoluble material

    NASA Astrophysics Data System (ADS)

    Bruthans, Jiri; Balak, Frantisek; Schweigstillova, Jana; Vojtisek, Jan

    2017-04-01

    Carbonate karst is best developed in high-grade limestones and majority of the studies is focused on these rocks. Features developed by dissolution of calcite cement in quartz sandstones and dissolution of various carbonate-silicate rocks are studied far less frequently. Unlike in common karst, the insoluble residuum has to be washed out after dissolution to create high-permeability conduits in these rocks. Aquifers in a Bohemian Cretaceous Basin (BCB), the most important hydrogeological basin in the Czech Republic, consist mainly of quartz and calcareous sandstones to siltstones. These rocks are intercalated by thin layers of calcite-cemented sandstone and low-grade limestone, the latter sometimes partly impregnated by a secondary silica. Results of tracer tests show a high flow velocity in some of the aquifers. Springs with flow rate up to 500 l/s and wells with yield up to 200 l/s occur in these rocks. Dissolution features in BCB were however not yet studied in detail. For identification and characterization of rocks prone to karstification, 350 cores were sampled mostly from boreholes but also from rock outcrops in several areas of BCB. Cores were taken from intervals where: (i) high carbonate content was expected, (ii) conduits and enlarged porosity was observed in rock outcrops or wells, (iii) inflows to boreholes were determined by well logging. Calcium carbonate content was determined by calcimetry in all cores. All cores were leached in hydrochloric acid to observe the degree of disintegration after removal of calcite, which was far dominating portion of total carbonate. Polished sections were prepared from selected cores and Ca, Si, Na, K, Al content was automatically mapped by microprobe to visualize the calcium, silica, feldspar and clay mineral distribution in cores. Conduits were photo documented in the field. Two types of sediments with distinct disintegration characteristics were observed: (i) In sandstone composed of quartz grains cemented by calcite the complete disintegration occurs when calcite content exceeds 30-50%. Such calcite-rich layers are mostly few tens of cms thick and are enclosed in quartz sandstone. Groundwater flow dissolves calcite cement and turns the rock into cohesion-less sand. Sand is consequently washed out by headward erosion in drainage areas forming high capacity conduits within the sandstone. (ii) In carbonates containing secondary silica which form reinforcing structure, even 70-80% calcite content may not be sufficient for rock disintegration during leaching. Disintegration occurs only on tectonically heavily fractured zones, where secondary silica structure is fragmented. It was found that inflows into wells are often associated with zones prone to karstification. Results clearly show that form of insoluble material is critical for karstification potential. Insoluble grain size defines minimum flow velocity needed to excavate the conduits in dissolved residuum. Impregnation by secondary silica needs to be tectonically fragmented prior conduits can occur. Research was funded by the Czech Science Foundation (GA CR No. 16-19459S) and Review of groundwater resources (Ident. No. 155996).

  16. Hydrothermal titanite from the Chengchao iron skarn deposit: temporal constraints on iron mineralization, and its potential as a reference material for titanite U-Pb dating

    NASA Astrophysics Data System (ADS)

    Hu, Hao; Li, Jian-Wei; McFarlane, Christopher R. M.

    2017-09-01

    Uranium-lead isotopes and trace elements of titanite from the Chengchao iron skarn deposit (Daye district, Eastern China), located along the contact zones between Triassic marine carbonates and an early Cretaceous intrusive complex consisting of granite and quartz diorite, were analyzed using laser ablation inductively coupled plasma mass spectrometry to provide temporal constraints on iron mineralization and to evaluate its potential as a reference material for titanite U-Pb geochronology. Titanite grains from mineralized endoskarn have simple growth zoning patterns, exhibit intergrowth with magnetite, diopside, K-feldspar, albite and actinolite, and typically contain abundant primary two-phase fluid inclusions. These paragenetic and textural features suggest that these titanite grains are of hydrothermal origin. Hydrothermal titanite is distinct from the magmatic variety from the ore-related granitic intrusion in that it contains unusually high concentrations of U (up to 2995 ppm), low levels of Th (12.5-453 ppm), and virtually no common Pb. The REE concentrations are much lower, as are the Th/U and Lu/Hf ratios. The hydrothermal titanite grains yield reproducible uncorrected U-Pb ages ranging from 129.7 ± 0.7 to 132.1 ± 2.7 Ma (2σ), with a weighted mean of 131.2 ± 0.2 Ma [mean standard weighted deviation (MSWD) = 1.7] that is interpreted as the timing of iron skarn mineralization. This age closely corresponds to the zircon U-Pb age of 130.9 ± 0.7 Ma (MSWD = 0.7) determined for the quartz diorite, and the U-Pb ages for zircon and titanite (130.1 ± 1.0 Ma and 131.3 ± 0.3 Ma) in the granite, confirming a close temporal and likely genetic relationship between granitic magmatism and iron mineralization. Different hydrothermal titanite grains have virtually identical uncorrected U-Pb ratios suggestive of negligible common Pb in the mineral. The homogeneous textures and U-Pb characteristics of Chengchao hydrothermal titanite suggest that the mineral might be a suitable internal reference material for U-Pb dating.

  17. The origin and evolution of saline formation water, Lower Cretaceous carbonates, south-central Texas, U.S.A.

    NASA Astrophysics Data System (ADS)

    Land, Lynton S.; Prezbindowski, Dennis R.

    1981-12-01

    Systematic chemical variation exists in formation water collected from a dip section through Lower Cretaceous rocks of south-central Texas. Chemical variation can be explained by an interactive water-rock diagenetic model. The cyclic Lower Cretaceous shelf carbonates of the Edwards Group dip into the Gulf of Mexico Coast "geosyncline", and can be considered, to a first approximation, as part of a complex aquifer contained by Paleozoic basement beneath, and by relatively impermeable Upper Cretaceous clay and chalk above. The hydrodynamic character of this carbonate system is strongly controlled by major fault systems. Major fault systems serve as pathways for vertical movement of basinal brines into the Lower Cretaceous section. Formation water movement in this sytem has strong upfault and updip components. The "parent" Na/1bCa/1bCl brine originates deep in the Gulf of Mexico basin, at temperatures between 200 and 250°C, by the reaction: halite + detrital plagioclase + quartz + water → albite + brine Other dissolved components originate by reaction of the fluid with the sedimentary phases, K-feldspar, calcite, dolomite, anhydrite, celestite, barite and fluorite. Significant quantities of Pb, Zn and Fe have been mobilized as well. As the brine moves updip out of the overpressured deep Gulf of Mexico basin, and encounters limestones of the Stuart City Reef Trend (the buried platform margin), small amounts of galena precipitate in late fractures. Continuing to rise upfault and updip, the brine becomes progressively diluted. On encountering significant quantities of dolomite in the backreef facies, the Ca-rich brine causes dedolomitization. Although thermochemical consideration suggests that small amounts of several authigenic phases should precipitate, most have yet to be found. Minor amounts of several kinds of calcite spar are present, however. As the brine evolves by dilution and by cooling, no systematic changes in any cation/Cl ratio occur, except for regular updip gain in Mg as a result of progressive dedolomitization. The formation water, highly diluted by meteoric water, eventually discharges along faults as hot mineral water.

  18. Tectono-metallogenetic evolution of the Fe-Cu deposit of Dominga, northern Chile

    NASA Astrophysics Data System (ADS)

    Veloso, E.; Cembrano, J.; Arancibia, G.; Heuser, G.; Neira, S.; Siña, A.; Garrido, I.; Vermeesch, P.; Selby, D.

    2017-04-01

    The Dominga district in northern Chile (2082 Mt at 23.3 % Fe, 0.07 % Cu) shows a spatial and genetic affinity among distinctive structural elements and Fe-Cu-rich paragenetic mineral assemblages. Deep seated, NE-to-E striking structural elements form a right-lateral duplex-like structural system (early structural system, ESS) that cuts a regionally extensive alteration (stage I) zone. The EES system served as a locus and as path for the emplacement of biotite-magnetite alteration/mineralization (stage IIa) as veins and Fe-bearing layers following altered volcano sedimentary strata. NW-striking actinolite-magnetite hydrothermal breccias, coeval with and part of the ESS, include apatite (stage IIb) crystallized at 127 ± 15 Ma (U-Pb, 2σ). The ESS was also the locus of subsequent alteration/mineralization represented by K-feldspar, epidote, and albite (stage IIIa) and Fe-Cu-rich (vermiculite-anhydrite-chalcopyrite, stage IIIb) mineral associations. Shallowly developed, NNE-striking, left-lateral structural elements defining the El Tofo Structural System (ETSS)—probably part of the Atacama Fault System—clearly crosscut the ESS. Minerals associated with alteration/mineralization stage IIIb also occur as veins and as part of hydrothermal breccias of the ETSS, marking the transition from the ESS to ETSS. Molybdenite associated with alteration/mineralization stage IIIb yielded a Re-Os age of 127.1 ± 0.7 Ma (2σ). Both the ESS and ETSS were cut by left-lateral, NW- to E-striking shallowly developed structural elements (Intermediate Structural System, ISS) on which a hematite-calcite assemblage (stage IV) occurs mostly as infill material of veins and fault veins. The ISS is cut by N-striking, left-lateral, and shallowly developed structural elements (Late Structural System, LSS) showing no evidence of alteration/mineralization. Estimated strain and stress fields indicate an overall NW-trending shortening/compression and NE-trending stretching/tension strike-slip regime probably due to oblique subduction during the Mesozoic. However, the orientations of the stress and strain fields calculated for each structural system suggest a back-and-forth rotation pattern during transition from one structural system to the other—as they change between transtension and transpression—and between alteration/mineralization stages.

  19. Radionuclides in ground water of the Carson River Basin, western Nevada and eastern California, U.S.A.

    USGS Publications Warehouse

    Thomas, J.M.; Welch, A.H.; Lico, M.S.; Hughes, J.L.; Whitney, R.

    1993-01-01

    Ground water is the main source of domestic and public supply in the Carson River Basin. Ground water originates as precipitation primarily in the Sierra Nevada in the western part of Carson and Eagle Valleys, and flows down gradient in the direction of the Carson River through Dayton and Churchill Valleys to a terminal sink in the Carson Desert. Because radionuclides dissolved in ground water can pose a threat to human health, the distribution and sources of several naturally occurring radionuclides that contribute to gross-alpha and gross-beta activities in the study area were investigated. Generally, alpha and beta activities and U concentration increase from the up-gradient to down-gradient hydrographic areas of the Carson River Basin, whereas 222Rn concentration decreases. Both 226Ra and 228Ra concentrations are similar throughout the study area. Alpha and beta activities and U concentration commonly exceed 100 pCi/l in the Carson Desert at the distal end of the flow system. Radon-222 commonly exceeds 2,000 pCi/l in the western part of Carson and Eagle Valleys adjacent to the Sierra Nevada. Radium-226 and 228Ra concentrations are <5 pCi/l. Four ground water samples were analyzed for 210Po and one sample contained a high concentration of 21 pCi/l. Seven samples were analyzed for 210Pb; six contained <3 pCi/l and one contained 12 pCi/l. Thorium-230 was detected at concentrations of 0.15 and 0.20 pCi/l in two of four samples. Alpha-emitting radionuclides in the ground water originated from the dissolution of U-rich granitic rocks in the Sierra Nevada by CO2, oxygenated water. Dissolution of primary minerals, mainly titanite (sphene) in the granitic rocks, releases U to the water. Dissolved U is probably removed from the water by adsorption on Fe- and Mn-oxide coatings on fracture surfaces and fine-grained sediment, by adsorption on organic matter, and by coprecipitation with Fe and Mn oxides. These coated sediments are transported throughout the basin by fluvial processes. Thus, U is transported as dissolved and adsorbed species. A rise in the water table in the Carson Desert because of irrigation has resulted in the oxidation of U-rich organic matter and dissolution of U-bearing coatings on sediments, producing unusually high U concentration in the ground water. Alpha activity in the ground water is almost entirely from the decay of U dissolved in the water. Beta activity in ground water samples is primarily from the decay of 40K dissolved in the water and ingrowth of 238U progeny in the sample before analysis. Approximately one-half of the measured beta activity may not be present in ground water in the aquifer, but instead is produced in the sample after collection and before analysis. Potassium-40 is primarily from the dissolution of K-containing minerals, probably K-feldspar and biotite. Radon-222 is primarily from the decay of 226Ra in the aquifer materials. Radium in the ground water is thought to be mainly from alpha recoil associated with the decay of Th in the aquifer material. Some Ra may be from dissolution (or desorption) or Ra-rich coatings on sediments. ?? 1993.

  20. Relation between sedimentary framework and hydrogeology in the Guarani Aquifer System in São Paulo state, Brazil

    NASA Astrophysics Data System (ADS)

    Hirata, Ricardo; Gesicki, Ana; Sracek, Ondra; Bertolo, Reginaldo; Giannini, Paulo César; Aravena, Ramón

    2011-04-01

    This paper presents the results of a new investigation of the Guarani Aquifer System (SAG) in São Paulo state. New data were acquired about sedimentary framework, flow pattern, and hydrogeochemistry. The flow direction in the north of the state is towards the southwest and not towards the west as expected previously. This is linked to the absence of SAG outcrop in the northeast of São Paulo state. Both the underlying Pirambóia Formation and the overlying Botucatu Formation possess high porosity (18.9% and 19.5%, respectively), which was not modified significantly by diagenetic changes. Investigation of sediments confirmed a zone of chalcedony cement close to the SAG outcrop and a zone of calcite cement in the deep confined zone. The main events in the SAG post-sedimentary history were: (1) adhesion of ferrugineous coatings on grains, (2) infiltration of clays in eodiagenetic stage, (3) regeneration of coatings with formation of smectites, (4) authigenic overgrowth of quartz and K-feldspar in advanced eodiagenetic stage, (5) bitumen cementation of Pirambóia Formation in mesodiagenetic stage, (6) cementation by calcite in mesodiagenetic and telodiagenetic stages in Pirambóia Formation, (7) formation of secondary porosity by dissolution of unstable minerals after appearance of hydraulic gradient and penetration of the meteoric water caused by the uplift of the Serra do Mar coastal range in the Late Cretaceous, (8) authigenesis of kaolinite and amorphous silica in unconfined zone of the SAG and cation exchange coupled with the dissolution of calcite at the transition between unconfined and confined zone, and (9) authigenesis of analcime in the confined SAG zone. The last two processes are still under operation. The deep zone of the SAG comprises an alkaline pH, Na-HCO 3 groundwater type with old water and enriched δ 13C values (<-3.9), which evolved from a neutral pH, Ca-HCO 3 groundwater type with young water and depleted δ 13C values (>-18.8) close to the SAG outcrop. This is consistent with a conceptual geochemical model of the SAG, suggesting dissolution of calcite driven by cation exchange, which occurs at a relatively narrow front recently moving downgradient at much slower rate compared to groundwater flow. More depleted values of δ 18O in the deep confined zone close to the Paraná River compared to values of relative recent recharged water indicate recharge occur during a period of cold climate. The SAG is a "storage-dominated" type of aquifer which has to be managed properly to avoid its overexploitation.

  1. Emplacement, petrological and magnetic susceptibility characteristics of diverse magmatic epidote-bearing granitoid rocks in Brazil, Argentina and Chile

    NASA Astrophysics Data System (ADS)

    Sial, A. N.; Toselli, A. J.; Saavedra, J.; Parada, M. A.; Ferreira, V. P.

    1999-03-01

    Magmatic epidote (mEp)-bearing granitoids from five Neoproterozoic tectonostratigraphic terranes in Northeastern (NE) Brazil, Early Palaeozoic calc-alkalic granitoids in Northwestern (NW) Argentina and from three batholiths in Chile have been studied. The elongated shape of some of these plutons suggests that magmas filled fractures and that dyking was probably the major mechanism of emplacement. Textures reveal that, in many cases, epidote underwent partial dissolution by host magma and, in these cases, may have survived dissolution by relatively rapid upward transport by the host magma. In plutons where such a mechanism is not evident, unevenly distributed epidote at outcrop scale is armoured by biotite or near-solidus K-feldspar aggregates, which probably grew much faster than epidote dissolution, preventing complete resorption of epidote by the melt. Al-in-hornblende barometry indicates that, in most cases, amphibole crystallized at P≥5 kbar. Kyanite-bearing thermal aureoles surrounding plutons that intruded low-grade metamorphic rocks in NE Brazil support pluton emplacement at intermediate to high pressure. mEp show overall chemical variation from 20 to 30 mol% (mole percent) pistacite (Ps) and can be grouped into two compositional ranges: Ps 20-24 and Ps 27-30. The highest Ps contents are in epidotes of plutons in which hornblende solidified under P<5 kbar. The percentage of corrosion of individual epidote crystals included in plagioclase in high-K calc-alkalic granitoids in NE Brazil, emplaced at 5-7 kbar pressure, yielded estimates of magma transport rate from 70 to 350 m year -1. Most of these plutons lack Fe-Ti oxide minerals and Fe +3 is mostly associated with the epidote structure. Consequently, magnetic susceptibility (MS) in the Neoproterozoic granitoids in NE Brazil, as well as Early Palaeozoic plutons in Argentina and Late Palaeozoic plutons in Chile, is usually low (<0.50×10 -3 SI), which is typical behavior of plutons which crystallized under low fO 2 (ilmenite-series granitoids), although Fe/(Fe+Mg) ratios in hornblende (0.40-0.65) indicate crystallization under high fO 2. Mesozoic to Tertiary calc-alkalic plutons in Chile, however, exhibit iron oxide minerals and MS values >3.0×10 -3 SI, typical of magnetite-series granitoids crystallized under higher oxygen fugacity. In NE Brazil, Argentina and Chile, it seems that mEp is more common in Precambrian to Palaeozoic ilmenite-series granitoids, while its occurrence in magnetite-series granitoids is more restricted to Mesozoic to Tertiary granitoids.

  2. Europium anomaly in plagioclase feldspar - Experimental results and semiquantitative model.

    NASA Technical Reports Server (NTRS)

    Weill, D. F.; Drake, M. J.

    1973-01-01

    The partition of europium between plagioclase feldspar and magmatic liquid is considered in terms of the distribution coefficients for divalent and trivalent europium. A model equation is derived giving the europium anomaly in plagioclase as a function of temperature and oxygen fugacity. The model explains europium anomalies in plagioclase synthesized under controlled laboratory conditions as well as the variations of the anomaly observed in natural terrestrial and extraterrestrial igneous rocks.

  3. Europium anomaly in plagioclase feldspar: experimental results and semiquantitative model.

    PubMed

    Weill, D F; Drake, M J

    1973-06-08

    The partition of europium between plagioclase feldspar and magmatic liquid is considered in terms of the distribution coefficients for divalent and trivalent europium. A model equation is derived giving the europium anomaly in plagioclase as a function of temperature and oxygen fugacity. The model explains europium anomalies in plagioclase synthesized under controlled laboratory conditions as well as the variations of the anomaly observed in natural terrestrial and extraterrestrial igneous rocks.

  4. Microfluidic Leaching of Soil Minerals: Release of K+ from K Feldspar

    PubMed Central

    Ciceri, Davide; Allanore, Antoine

    2015-01-01

    The rate of K+ leaching from soil minerals such as K-feldspar is believed to be too slow to provide agronomic benefit. Currently, theories and methods available to interpret kinetics of mineral processes in soil fail to consider its microfluidic nature. In this study, we measure the leaching rate of K+ ions from a K-feldspar-bearing rock (syenite) in a microfluidic environment, and demonstrate that at the spatial and temporal scales experienced by crop roots, K+ is available at a faster rate than that measured with conventional apparatuses. We present a device to investigate kinetics of mineral leaching at an unprecedented simultaneous resolution of space (~101-102 μm), time (~101-102 min) and fluid volume (~100-101 mL). Results obtained from such a device challenge the notion that silicate minerals cannot be used as alternative fertilizers for tropical soils. PMID:26485160

  5. Deformation microstructures of Barre granite: An optical, Sem and Tem study

    USGS Publications Warehouse

    Schedl, A.; Kronenberg, A.K.; Tullis, J.

    1986-01-01

    New scanning electron microscope techniques have been developed for characterizing ductile deformation microstructures in felsic rocks. In addition, the thermomechanical history of the macroscopically undeformed Barre granite (Vermont, U.S.A.) has been reconstructed based on examination of deformation microstructures using optical microscopy, scanning electron microscopy, and transmission electron microscopy. The microstructures reveal three distinct events: 1. (1) a low-stress, high-temperature event that produced subgrains in feldspars, and subgrains and recrystallized grains in quartz; 2. (2) a high-stress, low-temperature event that produced a high dislocation density in quartz and feldspars; and 3. (3) a lowest-temperature event that produced cracks, oriented primarily along cleavage planes in feldspars, and parallel to the macroscopic rift in quartz. The first two events are believed to reflect various stages in the intrusion and cooling history of the pluton, and the last may be related to the last stages of cooling, or to later tectonism. ?? 1986.

  6. Partial pressures of oxygen, phosphorus and fluorine in some lunar lavas

    NASA Technical Reports Server (NTRS)

    Nash, W. P.; Hausel, W. D.

    1973-01-01

    Lunar sample 14310 is a feldspar-rich basalt which shows no evidence of shock deformation or recrystallization. Pyroxenes include Mg-rich orthopyroxene, pigeonite and augite; pyroxferroite occurs in the interstitial residuum. Plagioclase feldspars are zoned from An(96) to An(67), and variations in feldspar compositions do not necessarily indicate loss of Na during eruption of the lava. Opaque phases include ilmenite, ulvospinel, metallic iron, troilite, and schreibersite. Both whitlockite and apatite are present, and the interstitial residua contain baddeleyite, tranquillityite and barium-rich sanidine. Theoretical calculations provide estimates of partial pressures of oxygen, phosphorus, and fluorine in lunar magmas. In general, partial pressures of oxygen are restricted by the limiting assemblages of iron-wuestite and ilmenite-iron-rutile; phosphorus partial pressures are higher in lunar magmas than in terrestrial lavas. The occurrence of whitlockite indicates significantly lower fugacities of fluorine in lunar magmas than in terrestrial magmas.

  7. Regional fluid migration in the Illinois basin: evidence from in situ oxygen isotope analysis of authigenic K-feldspar and quartz from the Mount Simon Sandstone

    USGS Publications Warehouse

    Chen, Zhensheng; Riciputi, Lee R.; Mora, Claudia I.; Fishman, Neil S.

    2001-01-01

    Oxygen isotope compositions of widespread, authigenic K-feldspar and quartz overgrowths and cements in the Upper Cambrian Mount Simon Sandstone were measured by ion microprobe in 11 samples distributed across the Illinois basin and its periphery. Average K-feldspar δ18O values increase systematically from +14‰ ± 1‰ in the southernmost and deepest samples in Illinois to +24‰ ± 2‰ in the northernmost outcrop sample in Wisconsin. A similar trend was observed for quartz overgrowths (22‰ ± 2‰ to 28‰ ± 2‰). Constant homogenization temperatures (100–130 °C) of fluid inclusions associated with quartz overgrowths throughout the basin suggest that the geographic trend in oxygen isotope compositions is a result of diagenetic modification of a south to north migrating basinal fluid.

  8. In situ differentiation and evolution of potassic syenites from Svidnya, Bulgaria

    NASA Astrophysics Data System (ADS)

    Dyulgerov, Momchil; Platevoet, Bernard

    2013-12-01

    Potassic syenites from Svidnya, Bulgaria crop out as small isolated bodies as the primary for this intrusion liquid has basic to intermediate composition. The evolution in a closed magma chamber created plutonic rocks ranging from basic (melasyenite) to acid (granite) and from metaluminous to peralkaline. The most mafic varieties show cumulative textures typical for orthocumulates with cumulus phases clinopyroxene, biotite, apatite and potassium feldspar as gravitational settling is a viable process for separation of particles in the bottom parts of magma chamber. In the middle stratigraphic level of biggest body modal igneous layering with development of dark (clinopyroxene + amphibole) and light (potassium feldspar) laminas was observed. Oscillatory crystallization around eutectic point resulted in cyclic separation of mafic and felsic phases in repetitive layers. Fractionation of Ca- and Al-rich phases—clinopyroxene, biotie and potassium feldspar created peralkaline residual liquid strongly enriched in HFS elements.

  9. Ammonium in aqueous fluids to 600 °C, 1.3 GPa: A spectroscopic study on the effects on fluid properties, silica solubility, and K-feldspar to muscovite reactions

    NASA Astrophysics Data System (ADS)

    Schmidt, Christian; Watenphul, Anke

    2010-12-01

    The behavior of ammonium, NH 4+, in aqueous systems was studied based on Raman spectroscopic experiments to 600 °C and about 1.3 GPa. Spectra obtained at ambient conditions revealed a strong reduction of the dynamic three-dimensional network of water with addition of ammonium chloride, particularly at small solute concentrations. The differential scattering cross section of the ν 1-NH 4+ Raman band in these solutions was found to be similar to that of salammoniac. The Raman band of silica monomers at ˜780 cm -1 was present in all spectra of the fluid at high temperatures in hydrothermal diamond-anvil cell experiments with H 2O ± NH 4Cl and quartz or the assemblage quartz + kyanite + K-feldspar ± muscovite/tobelite. However, these spectra indicated that dissolved silica is less polymerized in ammonium chloride solutions than in comparable experiments with water. Quantification based on the normalized integrated intensity of the H 4SiO 40 band showed that the silica solubility in experiments with H 2O + NH 4Cl was significantly lower than that in equimolal NaCl solutions. This suggests that ammonium causes a stronger decrease in the activity of water in chloridic solutions than sodium. The Raman spectra of the fluid also showed that a significant fraction of ammonium was converted to ammonia, NH 3, in all experiments at temperatures above 300 °C. This indicates a shift towards acidic conditions for experiments without a buffering mineral assemblage. The estimated pH of the fluid was ˜2 at 600 °C, 0.26 GPa, 6.6 m initial NH 4Cl, based on the ratio of the integrated ν 1-NH 3 and ν 1-NH 4+ intensities and the HCl 0 dissociation constant. The NH 3/NH 4+ ratio increased with temperature and decreased with pressure. This implies that more ammonium should be retained in K-bearing minerals coexisting with chloridic fluids upon high- P low- T metamorphism. At 500 °C, 0.73 GPa, ammonium partitions preferentially into the fluid, as constrained from infrared spectroscopy on the muscovite and from mass balance. The conversion of K-feldspar to muscovite proceeded much faster in experiments with NH 4Cl solutions than in comparable experiments with water. This is interpreted as being caused by enhancement of the rate-limiting alumina solubility, suggesting complexation of Al with NH 4. Nucleation and growth of mica at the expense of K-feldspar and NH 4+/K + exchange between fluid and K-feldspar occurred simultaneously, but incorporation of NH 4+ into K-feldspar was distinctly faster than K-feldspar consumption.

  10. An integrated study on microtectonics, geothermometry and thermochronology of the Çataldaǧ Core Complex (NW Turkey): Implications for cooling, deformation and uplift history

    NASA Astrophysics Data System (ADS)

    Kamaci, Omer; Altunkaynak, Safak

    2017-04-01

    We present an integrated study on structure, microstructure, geothermometry and thermochronology of the Çataldaǧ Core Complex (ÇCC) in NW Turkey in order to understand the cooling, deformation and uplift mechanisms. ÇCC is formed from an Eo-Oligocene granite-gneiss-migmatite complex (GGMC) and an Early Miocene I-type granodioritic body (ÇG: Çataldaǧ granodiorite) which were exhumed as a dome-shaped core complex in the footwall of a ring-shaped low-angle detachment zone (The Çataldaǧ Detachment Fault Zone; ÇDFZ) in the Early Miocene. New U-Pb zircon (LA-ICPMS) and monazite ages of GGMC yielded magmatic ages of 33.8 and 30.1 Ma (Latest Eocene-Early Oligocene). 40Ar/39Ar muscovite, biotite and K-feldspar from the GGMC yielded the deformation age span 21.38±0,05 Ma and 20.81±0.04 Ma, which is also the emplacement age (20.84±0.13 Ma and 21.6±0.04 Ma) of ÇG. ÇDFZ is responsible for mainly top-to-the-north sense kinematic processes. The microstructural features of quartz, feldspar and mica indicate that the ÇCC has undergone continuous deformations during its cooling, from submagmatic to cataclastic conditions. Five microstructural grades have been classified under ductile (DZ) and ductile-to-brittle shear zone (SZ), according to the estimated deformation temperature and intensity of the strain. Microcline twinning, marginally replacement myrmekite and flame-perthite are predominant features for feldspar while chessboard extinction, grain boundary migration and subgrain rotation recrystallization is common for quartz in the DZ which has a deformation temperature range of >600°C to 400°C. Grain size reduction is an important factor for the ductile to brittle shear zone (SZ). Feldspar is represented by bulging recrystallization (BLG), feldspar-fish and domino-type microfracture/microfaulting and quartz show more elongated structures such as ribbons with high aspect ratios. Mineral-fish (muscovite, biotite and feldspar) structures indicate a temperature range of 500°C to <250°C. The GGMC and ÇG, which were formed in different periods, suffered continuous ductile-to-brittle deformation and uplifted together along ÇDFZ during Early Miocene when the first major period of N-S extension began in the western Anatolia. Microstructural grades, two-feldspar geothermometry and geochronological data indicate that the GGMC and ÇG, which were formed in different periods, suffered continuous ductile-to-brittle deformation and uplifted together along ÇDFZ during Early Miocene when the first major period of N-S extension began in the western Anatolia.

  11. Estimation of landslide-triggering factors using clay minerals, ASTER satellite image and GIS in the Busan area, southeastern Korea

    NASA Astrophysics Data System (ADS)

    Jeong, G. C.; Kim, M. G.; Choi, J. J.; Ryu, J. O.; Nho, J. G.; Choo, C. O.

    2016-12-01

    This study aims at estimating landslide-inducing factors such as extreme rainfall, slope, and geological factors in Busan city, southeastern Korea, using clay mineralogy, DM analysis and DB construction in order to develop the landslide evaluation standards suitable for the country. GIS-based data collected from the study area include geological maps, topological maps, soil maps, forest maps and others in the DB construction. Data extraction and processing for landslide-induced factors consist of expandable clay minerals identified using XRD, along with XRF and weathering sensitivity analysis and fundamental soil analysis on 38 bulk samples composed of weathered rocks and soils. Finally landslide sensibility maps were constructed using ArcGIS, together with ASTER satellite images for identifying clay minerals on regional areas helpful for saving time and money. In Mt. Cheonma, 16 samples are composed of quartz, albite, illite, vermiculite, and kaolinite, with little difference in mineralogy. In Mt. Hwangryeong and Mt. Geumryeun, 12 samples consist of quartz, albite, illite, vermiculite, kaolinite and hornblende, with little difference in mineralogy. In Mt. Songhak, 10 samples are composed of quartz, illite, vermiculite, and kaolinite. Quartz, albite and illite are abundant in most samples, regardless of sites studied. IDW interpolation method was applied to the Busan area. The resolution of space grids consists of 5 m x 5 m. Especially, illite was used as the most effective factor that induces landslide using IDW interpolation and ASTER satellite images. In conclusion, sensibility maps constructed using 16 layers including illite content, weathered sensibility are well in accordance with the real sites where landslides took place, showing that areas with high sensibility are closely related to the high frequencies of landslide. This research was supported by the Public Welfare & Safety Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (grant number 2012M3A2A1050976)

  12. P-T and structural constraints of lawsonite and epidote blueschists from Liberty Creek and Seldovia: Tectonic implications for early stages of subduction along the southern Alaska convergent margin

    NASA Astrophysics Data System (ADS)

    López-Carmona, Alicia; Kusky, Timothy M.; Santosh, M.; Abati, Jacobo

    2011-01-01

    The southern Alaska convergent margin contains several small belts of sedimentary and volcanic rocks metamorphosed to blueschist facies, located along the Border Ranges fault on the contact between the Wrangellia and Chugach terranes. These belts are significant in that they are the most inboard, and thus probably contain the oldest record of Triassic-Jurassic northward-directed subduction beneath Wrangellia. The Liberty Creek HP-LT schist belt is the oldest and the innermost section of the Chugach terrane. Within this belt lawsonite blueschists contains an initial high-pressure assemblage formed by lawsonite + phengite + chlorite + sphene + albite ± apatite ± carbonates and quartz. Epidote blueschists are composed of sodic, sodic-calcic and calcic amphiboles + epidote + phengite + chlorite + albite + sphene ± carbonates and quartz. P-T pseudosections computed from four representative samples constrain maximum pressures at 16 kbar and 250-280 °C for the Lawsonite-bearing blueschists, and 15 kbar and 400-500 °C for the epidote-bearing blueschists, suggesting a initial subduction stage of 50-55 km depth. The growth of late albite porphyroblasts in all samples suggests a dramatic decompression from ca. 9 kbar to 5 kbar. The Liberty Creek schists can be correlated with the Seldovia blueschist belt on the Kenai Peninsula. Metamorphism in both terranes took place in the Early Jurassic (191-192 Ma), recording an early stage of subduction beneath Wrangellia. In the nearby terranes of the same margin, the age of metamorphism records an early stage of subduction at 230 Ma. Based on this difference in age, a maximum of 40 Ma were necessary to subduct the protoliths of the Seldovia and Liberty Creek blueschists to depths of circa 50-55 km, suggesting a minimum vertical component of subduction of 1.2-1.5 cm/year.

  13. Reaction softening by dissolution–precipitation creep in a retrograde greenschist facies ductile shear zone, New Hampshire, USA

    USGS Publications Warehouse

    McAleer, Ryan J.; Bish, David L.; Kunk, Michael J.; Sicard, Karri R.; Valley, Peter M.; Walsh, Gregory J.; Wathen, Bryan A.; Wintsch, R.P.

    2016-01-01

    We describe strain localization by a mixed process of reaction and microstructural softening in a lower greenschist facies ductile fault zone that transposes and replaces middle to upper amphibolite facies fabrics and mineral assemblages in the host schist of the Littleton Formation near Claremont, New Hampshire. Here, Na-poor muscovite and chlorite progressively replace first staurolite, then garnet, and finally biotite porphyroblasts as the core of the fault zone is approached. Across the transect, higher grade fabric-forming Na-rich muscovite is also progressively replaced by fabric-forming Na-poor muscovite. The mineralogy of the new phyllonitic fault-rock produced is dominated by Na-poor muscovite and chlorite together with late albite porphyroblasts. The replacement of the amphibolite facies porphyroblasts by muscovite and chlorite is pseudomorphic in some samples and shows that the chemical metastability of the porphyroblasts is sufficient to drive replacement. In contrast, element mapping shows that fabric-forming Na-rich muscovite is selectively replaced at high-strain microstructural sites, indicating that strain energy played an important role in activating the dissolution of the compositionally metastable muscovite. The replacement of strong, high-grade porphyroblasts by weaker Na-poor muscovite and chlorite constitutes reaction softening. The crystallization of parallel and contiguous mica in the retrograde foliation at the expense of the earlier and locally crenulated Na-rich muscovite-defined foliation destroys not only the metastable high-grade mineralogy, but also its stronger geometry. This process constitutes both reaction and microstructural softening. The deformation mechanism here was thus one of dissolution–precipitation creep, activated at considerably lower stresses than might be predicted in quartzofeldspathic rocks at the same lower greenschist facies conditions.

  14. Strong climate and tectonic control on plagioclase weathering in granitic terrain

    USGS Publications Warehouse

    Rasmussen, C.; Brantley, S.; Richter, D.D.B.; Blum, A.; Dixon, J.; White, A.F.

    2011-01-01

    Investigations to understand linkages among climate, erosion and weathering are central to quantifying landscape evolution. We approach these linkages through synthesis of regolith data for granitic terrain compiled with respect to climate, geochemistry, and denudation rates for low sloping upland profiles. Focusing on Na as a proxy for plagioclase weathering, we quantified regolith Na depletion, Na mass loss, and the relative partitioning of denudation to physical and chemical contributions. The depth and magnitude of regolith Na depletion increased continuously with increasing water availability, except for locations with mean annual temperature <5??C that exhibited little Na depletion, and locations with physical erosion rates <20gm-2yr-1 that exhibited deep and complete regolith Na depletion. Surface Na depletion also tended to decrease with increasing physical erosion. Depth-integrated Na mass loss and regolith depth were both three orders of magnitude greater in the fully depleted, low erosion rate sites relative to other locations. These locations exhibited strong erosion-limitation of Na chemical weathering rates based on correlation of Na chemical weathering rate to total Na denudation. Sodium weathering rates in cool locations with positive annual water balance were strongly correlated to total Na denudation and precipitation, and exhibited an average apparent activation energy (Ea) of 69kJmol-1 Na. The remaining water-limited locations exhibited kinetic limitation of Na weathering rates with an Ea of 136kJmol-1 Na, roughly equivalent to the sum of laboratory measures of Ea and dissolution reaction enthalpy for albite. Water availability is suggested as the dominant factor limiting rate kinetics in the water-limited systems. Together, these data demonstrate marked transitions and nonlinearity in how climate and tectonics correlate to plagioclase chemical weathering and Na mass loss. ?? 2010 Elsevier B.V.

  15. Development of the "rare-earth" hypothesis to explain the reasons of geophagy in Teletskoye Lake are kudurs (Gorny Altai, Russia).

    PubMed

    Panichev, Alexander M; Seryodkin, Ivan V; Kalinkin, Yuri N; Makarevich, Raisa A; Stolyarova, Tatiana A; Sergievich, Alexander A; Khoroshikh, Pavel P

    2017-12-18

    The mineral and chemical composition of the liquid and lithogenous substances, consumed by the wild ungulate animals, at the kudurs of the Teletskoye Lake, Gorny Altai, Russia, was studied. It was investigated that all examined kudurits are argillous-aleurolitic and get in the interval from 1 to 100 μm with the predominance of the fraction 10 μm. By the mineral composition, the lithogenous kudurits present the quartz-feldspathic-hydromicaceous-chloritic mineral formations with the large content of the quartz particles (20-43%) and sodium-containing plagioclases (albite, 15-32 wt%). The lithogenous kudurits are the products of the reconstitution of the metamorphic cleaving stones as a result of the glacier abrasive effect, subsequent its aqueous deposits and then eolation in the subaerial conditions. The fontinal waters consumed at the kudurs are subsaline chloride-hydrocarbonate-sodium and sulphated-hydrocarbonate-calcium types. It essentially differs by the increased content of rare-earth elements in reference to the lake water. The acid (HCl, pH-1) extracts from the kudurits more actively extract calcium (10-35% of the gross contents; sodium extracts at the level of 1-3%). The most fluent in the microelements composition are Cu, Be, Sr, Co, Cd, Pb, Sc, Y and rare-earth elements. The transit of all these elements into the dissoluted form fluctuates about 10% from the gross contents. The reason of geophagy is related to tendency of herbivores to absorb mineralized subsoils enriched by the biologically accessible forms of rare-earth elements, arisen as a result of vital activity of specific microflora.

  16. Ba-rich sanidine megacrysts in trachytic rocks of Eslamy volcano, NW Iran

    NASA Astrophysics Data System (ADS)

    Aßbichler, Donjá; Asadpour, Manijeh; Heuss-Aßbichler, Soraya; Kunzmann, Thomas

    2016-04-01

    The Eslamy volcano is located on a peninsula at the eastern coast of Urumieh lake, NW Iran. The complex stratovolcano with gentle slope flanks exposes a collapsed caldera in the central part. Specific features are different sanidine rich rocks that occur in form of ejecta and flows. According to the field observations they are products of one volcanic event. XRF measurements show they all have trachytic compositions. Typical for this locality are the large sanidine phenocrysts. In the trachytic flow the sanidine crystals reach average size of ~4 cm embedded in a greenish-blue matrix consisting mainly of crystallized feldspar and subordinate pyroxen. Occasionally feldspar megacrysts of approx. 10 cm were observed. Na content of the sanidine megacrysts varies between 0.05 - 0.5 pfu with higher concentrations in the cores. Furthermore they show oscillatory zoning patterns caused by variations of Ba content (0-0.04 pfu). The matrix of the trachytic flow consist mainly of interlocking sanidine crystals (0.05-0.45 pfu Na) partly with Ba-rich cores containing up to 0.06 pfu Ba. In contrast to the megacrysts they show slightly higher Fe contents (0.025-0.035 pfu). The volcanic ejecta with bombs of approx. 50 cm in size were found in one distinct layer within a pyroclastic horizon. The average diameter of the feldspar phenocrysts is much smaller (0.5-2 cm). Sanidine is the main phase of these rocks (up to 80 %). As mafic phase up to 30 % pyroxen (mainly diospide) ± biotite can be observed. Accessories are magnetite ± apatite ± titanite ± zircon. In contrast to the flow rocks the main phase of the matrix of the ejecta is always glass with higher Fe2O3 (total) contents (up to 6 wt.-%) indicating a fast cooling of the sample due to ejection. They are completely depleted in Ba. In two samples zoned feldspar relicts enclosed in glass show remolten rims. Similar to flow rocks the feldspar phenocrysts of all ejecta show a complex zoning pattern, e.g. three samples expose high Ba contents within the core of the feldspars with a maximum Ba-content of 0.12 pfu. In addition, all phenocrysts show an oscillatory zoning pattern. The very fine rimed zones are mainly caused by the variation of Ba content (0-0.06 pfu).

  17. Sorption Mechanisms of Antibiotic Cephapirin onto Quartz and Feldspar by Raman Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Jonathan; Wang, Wei; Gu, Baohua

    2009-01-01

    Raman spectroscopy was used to investigate the sorption mechanisms of cephapirin (CHP), a veterinary antibiotic, onto quartz (SiO2) and feldspar (KAlSi3O8) at different pH values. Depending on the charge and surface properties of the mineral, different reaction mechanisms including electrostatic attraction, monodentate and bidentate complexation were found to be responsible for CHP sorption. The zwitterion (CHPo) adsorbs to a quartz(+) surface by electrostatic attraction of the carboxylate anion group ( COO-) at a low pH, but adsorbs to a quartz(-) surface through electrostatic attraction of the pyridinium cation and possibly COO- bridge complexes at relatively higher pH conditions. CHP- bondsmore » to a quartz(-) surface by bidentate complexation between one oxygen of COO- and oxygen from the carbonyl (C=O) of the acetoxymethyl group. On a feldspar surface of mixed charge, CHPo forms monodentate complexes between C=O as well as COO- bridging complexes or electrostatically attached to localized edge (hydr)oxy-Al surfaces. CHP- adsorbs to feldspar(-) through monodentate C=O complexation, and similar mechanisms may operate for the sorption of other cephalosporins. This research demonstrates, for the first time, that Raman spectroscopic techniques can be effective for evaluating the sorption processes and mechanisms of cephalosporin antibiotics even at relatively low sorbed concentrations (97-120 μmol/kg).« less

  18. Variations in the chemical and stable isotope composition of carbon and sulfur species during organic-rich sediment alteration: An experimental and theoretical study of hydrothermal activity at guaymas basin, gulf of california

    USGS Publications Warehouse

    Seewald, Jeffrey S.; Seyfried, W.E.; Shanks, Wayne C.

    1994-01-01

    Organic-rich diatomaceous ooze was reacted with seawater and a Na-Ca-K-Cl fluid of seawater chlorinity at 325-400??C, 400-500 bars, and fluid/sediment mass ratios of 1.56-2.35 to constrain factors regulating the abundance and stable isotope composition of C and S species during hydrothermal alteration of sediment from Guaymas Basin, Gulf of California. Alteration of inorganic and organic sedimentary components resulted in extensive exchange reactions, the release of abundant H2S, CO2, CH4, and Corganic, to solution, and recrystallization of the sediment to an assemblage containing albitic plagioclase, quartz, pyrrhotite, and calcite. The ??34Scdt values of dissolved H2S varied from -10.9 to +4.3??? during seawater-sediment interaction at 325 and 400??C and from -16.5 to -9.0??? during Na-Ca-K-Cl fluid-sediment interaction at 325 and 375??C. In the absence of seawater SO4, H2S is derived from both the transformation of pyrite to pyrrhotite and S released during the degradation of organic matter. In the presence of seawater SO4, reduction of SO4 contributes directly to H2S production. Sedimentary organic matter acts as the reducing agent during pyrite and SO4 reduction. Requisite acidity for the reduction of SO4 is provided by Mg fixation during early-stage sediment alteration and by albite and calcite formation in Mg-free solutions. Organically derived CH4 was characterized by ??13Cpdb values ranging between -20.8 and -23.1???, whereas ??13Cpdb values for dissolved Corganic ranged between -14.8 and -17.7%. Mass balance calculations indicate that ??13C values for organically derived CO2 were ??? - 14.8%. Residual solid sedimentary organic C showed small (??? 0.7???) depletions in 13C relative to the starting sediment. The experimental results are consistent with the isotopic and chemical composition of natural hydrothermal fluids and minerals at Guaymas Basin and permit us to better constrain sources and sinks for C and S species in subseafloor hydrothermal systems at sediment-covered spreading centers. Our data show that the sulfur isotope composition of hydrothermal Sulfide minerals in Guaymas Basin can be explained by derivation of S from diagenetic sulfide and seawater sulfate. Basaltic S may also contribute to hydrothermal sulfide precipitates but is not required to explain their isotopic composition. Estimates of seawater/ sediment mass ratios based on sulfur isotopic composition of sulfide minerals and the abundance of dissolved NH3 in vent fluids range from 3-29 during hydrothermal circulation. Sources of C in Guaymas Basin hydrothermal fluids include thermal degradation of organic matter, bacteriogenic methane production, and dissolution of diagenetic carbonate. ?? 1994.

  19. Numerical modeling of the impact of temperature on the behavior of minerals in the Soultz-sous-Forêts enhanced geothermal system

    NASA Astrophysics Data System (ADS)

    Van Ngo, Viet; Lucas, Yann; Clément, Alain; Fritz, Bertrand

    2015-04-01

    Operation of the enhanced geothermal system (EGS) requires to re-inject fluid, after heat exchange at the surface to the energy production, into the geothermal reservoir. This cold re-injected fluid can cause a strong disequilibrium with the fluid and granitic rock within the geothermal reservoir and then implies the possible dissolution/precipitation of minerals. The hydrothermal alterations include the transformation of plagioclase, biotite and K-feldspar and the precipitation of various secondary minerals. The major sealing phases observed in the main fracture zones are quartz, calcite, and clay minerals. These mineralogical transformations may modify the porosity, permeability and fluid pathways of the geothermal reservoir. In the Soultz-sous-Forêts EGS (Alsace, France), the hydraulic connection between the injection well and the production well is quite poor. Therefore, understanding the impact of changes in temperature, which are caused by the re-injected fluid, on the behavior of minerals (especially for the main newly-formed minerals such as quartz, calcite and clay minerals) is a critical preliminary step for the long-term prediction of their evolution. The approach used in the present work is typically based on a geochemical code, called THERMA, which enables to calculate the changes in equilibrium constants of all primary and secondary minerals and aqueous species as a function of temperature. Our model accounted for a wide range of different mineral groups in order to make sure a large freedom for the numerical calculations. The modeling results showed that when the temperature of geothermal reservoir is cooled down, quartz, calcite, illites, galena and pyrite have tendency towards equilibrium state, which indicates that they are precipitated under the geothermal conditions. In contrast, other minerals including plagioclase, K-feldspar and biotite remained unsaturated. These behaviors of minerals were further illustrated by the Khorzinsky stability diagrams, which are based on the activities of different species such as H4SiO4, Ca2+, Mg2+, and Al3+ and take into account partial CO2 pressure,. The modeling results further suggested that we should pay a special attention to the main minerals (e.g., quartz, calcite and illites) when studying the changes in porosity and permeability of the geothermal reservoir. This study was preparing a simulation of water-rock interaction processes related to these temperature conditions.

  20. On the origin of mixed-layered clay minerals from the San Andreas Fault at 2.5-3 km vertical depth (SAFOD drillhole at Parkfield, California)

    NASA Astrophysics Data System (ADS)

    Schleicher, A. M.; Warr, L. N.; van der Pluijm, B. A.

    2009-02-01

    A detailed mineralogical study is presented of the matrix of mudrocks sampled from spot coring at three key locations along the San Andreas Fault Observatory at depth (SAFOD) drill hole. The characteristics of authigenic illite-smectite (I-S) and chlorite-smectite (C-S) mixed-layer mineral clays indicate a deep diagenetic origin. A randomly ordered I-S mineral with ca. 20-25% smectite layers is one of the dominant authigenic clay species across the San Andreas Fault zone (sampled at 3,066 and 3,436 m measured depths/MD), whereas an authigenic illite with ca. 2-5% smectite layers is the dominant phase beneath the fault (sampled at 3,992 m MD). The most smectite-rich mixed-layered assemblage with the highest water content occurs in the actively deforming creep zone at ca. 3,300-3,353 m (true vertical depth of ca. 2.7 km), with I-S (70:30) and C-S (50:50). The matrix of all mudrock samples show extensive quartz and feldspar (both plagioclase and K-feldspar) dissolution associated with the crystallization of pore-filling clay minerals. However, the effect of rock deformation in the matrix appears only minor, with weak flattening fabrics defined largely by kinked and fractured mica grains. Adopting available kinetic models for the crystallization of I-S in burial sedimentary environments and the current borehole depths and thermal structure, the conditions and timing of I-S growth can be evaluated. Assuming a typical K+ concentration of 100-200 ppm for sedimentary brines, a present-day geothermal gradient of 35°C/km and a borehole temperature of ca. 112°C for the sampled depths, most of the I-S minerals can be predicted to have formed over the last 4-11 Ma and are probably still in equilibrium with circulating fluids. The exception to this simple burial pattern is the occurrence of the mixed layered phases with higher smectite content than predicted by the burial model. These minerals, which characterize the actively creeping section of the fault and local thin film clay coating on polished brittle slip surfaces, can be explained by the influence of either cooler fluids circulating along this segment of the fault or the flow of K+-depleted brines.

  1. 1D Thermal-Hydraulic-Chemical (THC) Reactive transport modeling for deep geothermal systems: A case study of Groß Schönebeck reservoir, Germany

    NASA Astrophysics Data System (ADS)

    Driba, D. L.; De Lucia, M.; Peiffer, S.

    2014-12-01

    Fluid-rock interactions in geothermal reservoirs are driven by the state of disequilibrium that persists among solid and solutes due to changing temperature and pressure. During operation of enhanced geothermal systems, injection of cooled water back into the reservoir disturbs the initial thermodynamic equilibrium between the reservoir and its geothermal fluid, which may induce modifications in permeability through changes in porosity and pore space geometry, consequently bringing about several impairments to the overall system.Modeling of fluid-rock interactions induced by injection of cold brine into Groß Schönebeck geothermal reservoir system situated in the Rotliegend sandstone at 4200m depth have been done by coupling geochemical modeling Code Phreeqc with OpenGeoSys. Through batch modeling the re-evaluation of the measured hydrochemical composition of the brine has been done using Quintessa databases, the results from the calculation indicate that a mineral phases comprising of K-feldspar, hematite, Barite, Calcite and Dolomite was found to match the hypothesis of equilibrium with the formation fluid, Reducing conditions are presumed in the model (pe = -3.5) in order to match the amount of observed dissolved Fe and thus considered as initial state for the reactive transport modeling. based on a measured composition of formation fluids and the predominant mineralogical assemblage of the host rock, a preliminary 1D Reactive transport modeling (RTM) was run with total time set to 30 years; results obtained for the initial simulation revealed that during this period, no significant change is evident for K-feldspar. Furthermore, the precipitation of calcite along the flow path in the brine results in a drop of pH from 6.2 to a value of 5.2 noticed over the simulated period. The circulation of cooled fluid in the reservoir is predicted to affect the temperature of the reservoir within the first 100 -150m from the injection well. Examination of porosity change in this simulation reveals that, porosity and permeability near the wellbore are enhanced after injection. This is chiefly due to the dissolution of calcite near the injection well and less extent by dolomite The porosity is improved by more than 14% at the injection well, but then decreases away from the well.

  2. Reactive alteration of Mt. Simon sandstone during CO2-rich brine injection: A coupled experimental and modeling study

    NASA Astrophysics Data System (ADS)

    Dávila Ordoñez, M. G.; Zahasky, C.; Crandall, D.; Druhan, J. L.

    2017-12-01

    Thus far, one million metric tons of CO2 have been injected into the lower Mt. Simon formation as part of the Decatur CO2 Capture and Storage Project. Micro-seismic events were observed within the CO2 plume both during and after pressurization associated with the primary injection. The Mt. Simon reservoir rock consists of 76.5 wt.% quartz, 2.1 wt.% calcite, 17.3 wt.% K-feldspar, 1.1 wt.% chlorite, 0.7 wt.% illite and lesser extents of siderite, kaolinite, dolomite and marcasite, and is thus anticipated to become geochemically altered by exposure to acidified CO2-rich brine. However, the extent to which the geochemical reactivity contributes to structural weakening is unknown. To explore relationships between the principle geochemical reactions, evolution of fluid transport properties and physical alteration, we performed a series of flow-through experiments using Mt. Simon core (5 cm diameter, ranging from 4.3 - 8.6 cm length) and fluids representative of acidified reservoir brine. Experiments were operated under P = 1450 bar, Pconfining = 1900 - 3000 bar and T = 53 ºC conditions, and flow rates varied from 0.08 to 5.00 mL h-1 over a period of 166 h. A 2D reactive transport code (Crunch-Tope) was used to simulate these experiments, constrained by measured time series aqueous concentrations of Ca, Mg, S, Si, K and Fe and pH during the CO2-rich brine interaction. The model domain was divided into 30 nodes in x at a spacing of 0.12 cm, and 40 nodes in y at a spacing of 0.22 cm, and initial permeability measured for the core was specified and allowed to evolve over the course of the simulation using measured flow rate as a constraint. All relevant kinetic and thermodynamic reaction parameters were obtained from the literature. Solute time series from both experiments and simulations indicated that the acidified brine introduced continuously into the column promoted dissolution of K-feldspar, chloride, illite, pyrite and calcite, and the precipitation of Ca-, Fe- and Si -bearing secondary phases, resulting in a net porosity increase at the inlet. Despite this opening of the inlet pore space, permeability decreased over the length of the column (kfinal/kinitial = 0.76), thus altering local resistance to fluid phase pressure gradients.

  3. Natural CO 2 accumulations in the western Williston Basin: A mineralogical analog for CO 2 injection at the Weyburn site

    DOE PAGES

    Ryerson, F. J.; Lake, John; Whittaker, Steven; ...

    2013-01-17

    The Devonian carbonates of the Duperow Formation on the western flank of the Williston Basin in southwest Saskatchewan contain natural accumulations of CO 2, and may have done so for as long as 50 million years. These carbonate sediments are characterized by a succession of carbonate cycles capped by anhydrite-rich evaporites that are thought to act as seals to fluid migration. The Weyburn CO 2 injection site lies 400 km to the east in a series of Mississippian carbonates that were deposited in a similar depositional environment. That long-term isolation of natural CO 2 can be accomplished within carbonate stratamore » has motivated the investigation of the Duperow rocks as a potential natural analog for storage of anthropogenic CO 2 in carbonate lithologies. For the Duperow strata to represent a legitimate analog for Midale injection and storage, the similarity in lithofacies, whole rock compositions, mineral compositions and porosity with the Midale Beds must be established. Here we compare lithofacies, whole rock compositions, mineralogy and mineral compositions from both locales. The major mineral phases at both locales are calcite, dolomite and anhydrite. In addition, accessory pyrite, fluorite, quartz and celestine (strontium sulfate) are also observed. Dawsonite, a potential CO 2-trapping mineral, is not observed within the CO 2-bearing horizons of the Duperow Formation, however. The distribution of porosity in the Midale Vuggy units is similar to that of the Duperow Formation, but the Marly units of the Midale have significantly higher porosity. The Duperow Formation is topped by the Dinesmore evaporite that is rich in anhydrite, and often contains authigenic K-feldspar. The chemistry of dolomite and calcite from the two localities also overlaps. Silicate minerals are in low abundance (<3%) within the analyzed Duperow samples, with quartz and K-feldspar the only silicates observed petrographically or in X-ray diffraction patterns. The Midale Beds contain significantly higher silica/silicate concentrations (Durocher et al., 2003), but the paucity of mono- and divalent cations that can be derived from dissolution of these silicate minerals likely precludes significant carbonate mineral formation. Therefore physical and solution trapping are likely to be the primary CO 2 trapping mechanisms at both sites.« less

  4. Mineralogy and geothermometry of high-temperature rhyolites from the central and western Snake River Plain

    USGS Publications Warehouse

    Honjo, N.; Bonnichsen, B.; Leeman, W.P.; Stormer, J.C.

    1992-01-01

    Voluminous mid-Miocene rhyolitic ash-flow tuffs and lava flows are exposed along the northern and southern margins of the central and western Snake River Plain. These rhyolites are essentially anhydrous with the general mineral assemblage of plagioclase ??sanidine ?? quartz + augite + pigeonite ?? hypersthene ?? fayalitic olivine + Fe-Ti oxides + apatite + zircon which provides an opportunity to compare feldspar, pyroxene, and Fe-Ti oxide equilibration temperatures for the same rocks. Estimated pyroxene equilibration temperatures (based on the geothermometers of Lindsley and coworkers) range from 850 to 1000??C, and these are well correlated with whole-rock compositions. With the exception of one sample, agreement between the two-pyroxene thermometers tested is well within 50??C. Fe-Ti oxide geothermometers applied to fresh magnetite and ilmenite generally yield temperatures about 50 to 100??C lower than the pyroxene temperatures, and erratic results are obtained if these minerals exhibit effects of subsolidus oxidation and exsolution. Results of feldspar thermometry are more complicated, and reflect uncertainties in the thermometer calibrations as well as in the degree of attainment of equilibrium between plagioclase and sanidine. In general, temperatures obtained using the Ghiorso (1984) and Green and Usdansky (1986) feldspar thermometers agree with the pyroxene temperatures within the respective uncertainties. However, uncertainties in the feldspar temperatures are the larger of the two (and exceed ??60??C for many samples). The feldspar thermometer of Fuhrman and Lindsley (1988) produces systematically lower temperatures for many of the samples studied. The estimated pyroxene temperatures are considered most representative of actual magmatic temperatures for these rhyolites. This range of temperatures is significantly higher than those for rhyolites from many other suites, and is consistent with the hypothesis that the Snake River Plain rhyolitic magmas formed by partial fusion of relatively dry (e.g. granulitic) crustal lithologies. ?? 1992 Springer-Verlag.

  5. Tracking Volatile Movement and Fluxing in Magmatic Systems with Mineral Geochemistry: A Comparison Between two Mount St. Helens Eruptions

    NASA Astrophysics Data System (ADS)

    Rowe, M. C.; Kent, A. J.; Cashman, K.; Thornber, C. R.

    2008-12-01

    Lithium abundances in amphibole and feldspar have recently been applied to studies of volatile migration and fluxing in shallow magmatic systems. Lithium is advantageous because it 1) partitions into Cl- and H2O- rich volatile components at shallow pressures and 2) has a high diffusion coefficient in many minerals, recording relative short timescales of crystallization, enrichment, and depletion in magmatic systems. Prior studies at Mount St. Helens have identified high Li concentrations in feldspar phenocrysts, interpreted to record volatile fluxing to shallow magma in both the 1980 and 2004 eruptions. This interpretation is based largely on rapid diffusion and re-equilibration of Li in feldspar but is also supported by fluctuations in Li concentrations in melt inclusions. We have extended previous results by measuring the concentration of Li in amphibole phenocrysts, in addition to associated plagioclase. Amphibole is stable only at pressures > ~100 MPa and therefore is expected to retain information about degassing deep in the magmatic systems. In 1980 eruptive material, the temporal variability in amphibole Li abundance parallels that of feldspar and Li partitioning between both phases is in accord with measured equilibrium values. In contrast, amphibole grains in the 2004 eruptive products have Li abundances that are antithetical to those in feldspar, recording an initial depletion, followed by significant enrichment by Jan 2005 (from ~10 to ~1000 ug/g). One interpretation of the 2004- 08 trend is that Li abundances simply reflect melt composition and concentrations are dictated by amphibole/melt partitioning. Alternatively, because Li rapid diffuses, low-Li amphibole in 2004 could also result from extensive diffusion between a high-Li amphibole and low-Li melt. The vastly different temporal trends in amphibole Li concentrations between the 1980s and the 2004-08 eruptions raise significant questions about partitioning and diffusion of Li in shallow magmatic systems.

  6. Induced Thermoluminescence Dating of Volcanism on Hawaii

    NASA Astrophysics Data System (ADS)

    Sears, D. W. G.; Sears, H.; Hughes, S. S.; Sehlke, A.

    2016-12-01

    Last year we demonstrated that a suite of tholeiitic basalts that had erupted about 2.2 ka to nearly 500 ka ago in the east Snake River Plain (Idaho) showed a correlation between induced TL and age, although there was considerable scatter. This correlation is consistent with petrographic changes in the feldspar, the major TL-producing mineral in these rocks, such as crystallization of glassy or amorphous phases to produce feldspar or the diffusional loss of incompatible elements, such as Fe, that quench TL in feldspars. We have now measured 19 basalts from Hawaii. The Kohala alkali basalts (130-470 ka) have higher induced TL than the Kilauea tholeiitic basalts (<10ka) by a factor of 10-100. Benoit et al. (2001) showed that there is a strong relationship between induced TL and composition of feldspars. Applying the results of Benoit et al. (2001) to correct for compositional differences between the alkali and tholeiitic basalts, by normalizing them all to a tholeiitic feldspar composition, the correlation between induced TL and age for the Hawaii basalts is identical to the correlation observed for the Idaho basalts within our experimental uncertainties. These results suggest that there is an induced TL vs. age trend for basalts that is not specific to one location, and that there is the potential for a non-isotopic method of dating volcanism. The main challenge now is to identify and correct for causes of scatter in the data, other than composition, such as the amount of crystallization before, during, and immediately after emplacement of the lava (e.g., devitrification of the residual glasses within the basalts). If this can be done, the TL method, which is low-weight, low-power, low data-rate, would be suitable to spacecraft use. Part of FINESSE (PI Jennifer Heldmann) SSERVI node. We thank BASALT (PI Darlene Lim) for logistical support. [AS1]Any others you would consider?

  7. Metal mobilization under alkaline conditions in ash-covered tailings.

    PubMed

    Lu, Jinmei; Alakangas, Lena; Wanhainen, Christina

    2014-06-15

    The aim of this study was to determine element mobilization and accumulation in mill tailings under alkaline conditions. The tailings were covered with 50 cm of fly ash, and above a sludge layer. The tailings were geochemically and mineralogically investigated. Sulfides, such as pyrrhotite, sphalerite and galena along with gangue minerals such as dolomite, calcite, micas, chlorite, epidote, Mn-pyroxene and rhodonite were identified in the unoxidized tailings. The dissolution of the fly ash layer resulted in a high pH (close to 12) in the underlying tailings. This, together with the presence of organic matter, increased the weathering of the tailings and mobilization of elements in the uppermost 47 cm of the tailings. All primary minerals were depleted, except quartz and feldspar which were covered by blurry secondary carbonates. Sulfide-associated elements such as Cd, Fe, Pb, S and Zn and silicate-associated elements such as Fe, Mg and Mn were released from the depletion zone and accumulated deeper down in the tailings where the pH decreased to circum-neutral. Sequential extraction suggests that Cd, Cu, Fe, Pb, S and Zn were retained deeper down in the tailings and were mainly associated with the sulfide phase. Calcium, Cr, K and Ni released from the ash layer were accumulated in the uppermost depletion zone of the tailings. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Compositional changes of minerals associated with dynamic recrystallizatin

    NASA Astrophysics Data System (ADS)

    Yund, Richard A.; Tullis, Jan

    1991-09-01

    The rate of compositional and isotopic exchange between minerals may be enhanced significantly if the rock is deformed simultaneously. The enhanced exchange rate may result from a reduction in grain size (shorter distance for volume diffusion), dissolution and growth of grains by diffusion creep (pressure solution), or the movement of high-angle grain boundaries through strained grains during recrystallization in the dislocation creep regime. The migration of high-angle grain boundaries provides high diffusivity paths for the rapid exchange of components during recrystallization. The operation of the latter process has been demonstrated by deforming aggregates consisting of two plagioclases (An1 and An79) at 900°C, 1 GPa confining pressure, and a strain rate of ˜2x10-6s-1. The polygonal, recrystallized grains were analyzed using an analytical transmission electron microscope and have a variable but often intermediate composition. At the conditions of these experiments, the volume interdiffusion rate of NaSi/CaAl is too slow to produce any observable chemical change, and microstructural-chemical relations indicate that the contribution from diffusion creep was insignificant except for initially fine-grained (2 10 μm) aggregates. These results indicate that strain-induced recrystallization can be an effective mechanism for enhancing the kinetics of metamorphic reactions and for resetting the isotope systematics of minerals such as feldspars, pyroxenes, and amphiboles.

  9. Thallium and Silver binding to dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Benedetti, M. F.; Martin, L.; Simonucci, C.; Viollier, E.

    2017-12-01

    Silver (Ag) and thallium (Tl) are potential contaminants at the vicinity of mining sites and are harmful pollutants. Silver can be found in mine but also as released by the dissolution of Silver nanoparticles, a major new emerging contaminant. Tl is both lithophilic and calcophilic elements and found in sulphur ores (associated with lead, zinc, antimony…) or in rocks containing K-feldspar. Speciation of Ag and Tl is poorly known mainly due to their low concentrations in aquatic environments. Review of Ag and Tl geochemistry clearly shows a lack of quantitative information about interactions with natural organic matter. Organic ligands could play an important role in Ag or Tl bioavailability, chemical reactivity (adsorption or photo oxidation inhibition or catalysis) and hence geochemical transfers. Based on equilibrium between two solutions that are separated by a selectively permeable membrane, the so-called "Donnan membrane technique" (DMT) provides a measure of free ion concentrations. Analytes measurements are performed by HR-ICP-MS Element 2 (Thermo Scientific). Experimental setup allows the Donnan equilibrium to be reached after 100 and 120 hours for Tl. Experiments performed with purified natural organic matter allow calculating complexation constants in multiple pH conditions. With this work, we contribute new data and interpretations to an active debate on Ag and Tl geochemical modeling. In conclusion, this work brings a new view on risk assessment for mining activities.

  10. Geochemical investigation of weathering processes in a forested headwater catchment: Mass-balance weathering fluxes

    USGS Publications Warehouse

    Jones, B.F.; Herman, J.S.

    2008-01-01

    Geochemical research on natural weathering has often been directed towards explanations of the chemical composition of surface water and ground water resulting from subsurface water-rock interactions. These interactions are often defined as the incongruent dissolution of primary silicates, such as feldspar, producing secondary weathering products, such as clay minerals and oxyhydroxides, and solute fluxes (Meunier and Velde, 1979). The chemical composition of the clay-mineral product is often ignored. However, in earlier investigations, the saprolitic weathering profile at the South Fork Brokenback Run (SFBR) watershed, Shenandoah National Park, Virginia, was characterized extensively in terms of its mineralogical and chemical composition (Piccoli, 1987; Pochatila et al., 2006; Jones et al., 2007) and its basic hydrology. O'Brien et al. (1997) attempted to determine the contribution of primary mineral weathering to observed stream chemistry at SFBR. Mass-balance model results, however, could provide only a rough estimate of the weathering reactions because idealized mineral compositions were utilized in the calculations. Making use of detailed information on the mineral occurrence in the regolith, the objective of the present study was to evaluate the effects of compositional variation on mineral-solute mass-balance modelling and to generate plausible quantitative weathering reactions that support both the chemical evolution of the surface water and ground water in the catchment, as well as the mineralogical evolution of the weathering profile. ?? 2008 The Mineralogical Society.

  11. Chemical variations in Yellowknife Bay formation sedimentary rocks analyzed by ChemCam on board the Curiosity rover on Mars

    USGS Publications Warehouse

    Mangold, Nicolas; Forni, Olivier; Dromart, G.; Stack, K.M.; Wiens, Roger C.; Gasnault, Olivier; Sumner, Dawn Y.; Nachon, Marion; Meslin, Pierre-Yves; Anderson, Ryan B.; Barraclough, Bruce; Bell, J.F.; Berger, G.; Blaney, D.L.; Bridges, J.C.; Calef, F.; Clark, Brian R.; Clegg, Samuel M.; Cousin, Agnes; Edgar, L.; Edgett, Kenneth S.; Ehlmann, B.L.; Fabre, Cecile; Fisk, M.; Grotzinger, John P.; Gupta, S.C.; Herkenhoff, Kenneth E.; Hurowitz, J.A.; Johnson, J. R.; Kah, Linda C.; Lanza, Nina L.; Lasue, Jeremie; Le Mouélic, S.; Lewin, Eric; Malin, Michael; McLennan, Scott M.; Maurice, S.; Melikechi, Noureddine; Mezzacappa, Alissa; Milliken, Ralph E.; Newsome, H.L.; Ollila, A.; Rowland, Scott K.; Sautter, Violaine; Schmidt, M.E.; Schroder, S.; D'Uston, C.; Vaniman, Dave; Williams, R.A.

    2015-01-01

    The Yellowknife Bay formation represents a ~5 m thick stratigraphic section of lithified fluvial and lacustrine sediments analyzed by the Curiosity rover in Gale crater, Mars. Previous works have mainly focused on the mudstones that were drilled by the rover at two locations. The present study focuses on the sedimentary rocks stratigraphically above the mudstones by studying their chemical variations in parallel with rock textures. Results show that differences in composition correlate with textures and both manifest subtle but significant variations through the stratigraphic column. Though the chemistry of the sediments does not vary much in the lower part of the stratigraphy, the variations in alkali elements indicate variations in the source material and/or physical sorting, as shown by the identification of alkali feldspars. The sandstones contain similar relative proportions of hydrogen to the mudstones below, suggesting the presence of hydrous minerals that may have contributed to their cementation. Slight variations in magnesium correlate with changes in textures suggesting that diagenesis through cementation and dissolution modified the initial rock composition and texture simultaneously. The upper part of the stratigraphy (~1 m thick) displays rocks with different compositions suggesting a strong change in the depositional system. The presence of float rocks with similar compositions found along the rover traverse suggests that some of these outcrops extend further away in the nearby hummocky plains.

  12. Hydrochemical characterization of groundwater in the Akyem area, Ghana

    USGS Publications Warehouse

    Banoeng-Yakubo, B.; Yidana, S.M.; Anku, Y.; Akabzaa, T.; Asiedu, D.

    2008-01-01

    The Akyem area is a small farming community located in southeastern Ghana. Groundwater samples from wells in the area were analyzed for concentrations of the major ions, silica, electrical conductivity and pH. The objective was to determine the main controls on the hydrochemistry of ground-water. Mass balance modeling was used together with multivariate R-mode hierarchical cluster analysis to determine the significant sources of variation in the hydrochemistry. Two water types exist in this area. The first is influenced most by the weathering of silicate minerals from the underlying geology, and is thus rich in silica, sodium, calcium, bicarbonate, and magnesium ions. The second is water that has been influenced by the effects of fertilizers and other anthropogenic activities in the area. Mineral speciation and silicate mineral stability diagrams suggest that montmorillonite, probably derived from the incongruent dissolution of feldspars and micas, is the most stable silicate phase in the groundwaters. The apparent incongruent weathering of silicate minerals in the groundwater system has led to the enrichment of sodium, calcium, magnesium and bicarbonate ions as well as silica, leading to the supersaturation of calcite, aragonite, dolomite and quartz. Stability in the montmorillonite field suggests restricted flow conditions and a long groundwater residence time, leading to greater exposure of the rock to weathering. Cation exchange processes appear to play minor roles in the hydrochemistry of groundwater.

  13. Markers for geodynamic stability of the Variscan basement: case study for the Montseny-Guilleries High (NE Iberia)

    NASA Astrophysics Data System (ADS)

    Parcerisa, David; Franke, Christine; Gómez-Gras, David; Thiry, Médard

    2010-05-01

    The Montseny-Guilleries High is a Miocene horst composed of Variscan basement rocks, situated in the northeastern part of the Catalan Coastal Ranges (NE Iberia). The Montseny-Guilleries High has an asymmetric profile with an abrupt faulted scarp at the southeastern margin and a smooth surface dipping to the Northwest; here Paleocene sediments of the Ebro basin margin are to some extend in onlap. The stratigraphic arrangement of the Mesozoic units in the Catalan Coastal Ranges indicate that the Montseny-Guilleries area was a relief during the Mesozoic, remaining exposed probably from the Permian to the Cretaceous [Anadón et al., 1979; Gómez-Gras, 1993]. The high subsequently has been faulted due to a rifting phase that took place during the Miocene [Anadón et al., 1979]. The geodynamic history (burial-exhumation processes and denudation rate) of the Montseny-Guilleries High can be deciphered from cooling markers, such as for example apatite fission tracks [Juez-Larré & Andriessen, 2006]. However, the cooling history of an area depends on many factors (i.e. denudation rate, variations of the geothermal gradient) that complicate interpretations [Juez-Larré & Ter Voorde, 2009]. Another solution is to search for datable paleoweathering records in order to obtain benchmarks for ancient surfaces of continental exposure. This is the case for the Permian-Triassic paleosurface, at which an extensive albitization-hematisation alteration occurred at shallow depth [Thiry et al., 2009]. Several paleoalterations have been identified in the Montsent-Guilleries High [Gómez-Gras & Ferrer, 1999]. These alterations are coupled to the smooth surface or peneplain of the northwestern margin of the high and form a paleoprofile with less altered rocks on the lower parts of the relief and more altered rocks located at the higher parts of the relief (i.e. on the peneplain). From base to top, the profile starts with week albitization-hematisation of the facies developed mainly in the fractures; the degree of albitization-hematisation progressively increases towards the top affecting the whole rock, which acquires a characteristic pink color. Finally, the top of the profile is formed by strongly altered to hematite and kaolinite rich reddish facies. These uppermost parts of the alteration profile are formed by a relatively soft rock and are therefore usually not preserved, but the intermediate albitized parts are more resistant to surface alteration than unaltered facies and protect the peneplain from weathering and erosion. The albitization-hematisation alterations observed in the Montseny-Guilleries peneplain are very similar to the Permian-Triassic paleoalteration profiles observed in other parts of Europe, affecting the Variscan basement [Ricordel et al., 2007; Parcerisa et al., 2009]. Dating these profiles using paleomagnetic methods will help us to identify the location of the Permian-Triassic surface in the area and deduce its geodynamic history during the Mesozoic and Tertiary periods. Anadón, P., Colombo, F., Esteban, M., Marzo, M., Robles, S., Santanach, P., Solé-Sugrañes, L., 1979, Evolución tectonostratigráfica de los Catalánides, Acta Geol. Hisp., 14: 242-270. Gómez-Gras, D., 1993, El Permotrias de la Cordillera Costero Catalana: facies y petrologia sedimentaria (Parte I), Bol. Geol. Min., 104 (2): 115-161. Gómez-Gras, D., Ferrer, C., 1999, Caracterización petrológica de perfiles de meteorización antiguos desarrollados en granitos tardihercínicos de la Cordillera Costero Catalana, Rev. Soc. Geol. Esp., 12(2): 281-299. Juez-Larre, J., Andriessen, P.A.M., 2006, Tectonothermal evolution of the northeastern margin of Iberia since the break-up of Pangea to present, revealed by low-temperature fission-track and (U-Th)/He thermochronology: A case history of the Catalan Coastal Ranges, Earth Planet. Sci. Let., 243 (1-2): 159-180. Juez-Larré, J., Ter Voorde, M., 2009, Thermal impact of the break-up of Pangea on the Iberian Peninsula, assessed by thermochronological dating and numerical modeling, Tectonophysics, v. 474, no. 1-2, p. 200-213. Parcerisa, D., Thiry, M., Schmitt, J.M., 2009, Albitisation related to the Triassic unconformity in igneous rocks of the Morvan Massif (France), Int. Jour. Earth Sci., DOI 10.1007/s00531-008-0405-1 Ricordel, C., Parcerisa, D., Thiry, M., Moreau, M.G., Gomez-Gras, D., 2007, Triassic magnetic overprints related to albitization in granites from the Morvan massif (France), Palaeogeogr. Palaeoclimatol. Palaeoecol., 251:268-282. Thiry, M., Parcerisa, D., Ricordel-Prognon, C., Schmitt, J.M., 2009, Sodium storage in deep paleoweathering profiles beneath the Paleozoic-Triassic unconformity, EGU General Assembly 2009, Vienna, Austria.

  14. Magmatic processes revealed by anorthoclase textures and trace element modeling: The case of the Lajes Ignimbrite eruption (Terceira Island, Azores)

    NASA Astrophysics Data System (ADS)

    D'Oriano, Claudia; Landi, Patrizia; Pimentel, Adriano; Zanon, Vittorio

    2017-11-01

    The Lajes Ignimbrite on Terceira Island (Azores) records the last major pyroclastic density current-forming eruption of Pico Alto Volcano that occurred ca. 21 kyrs ago. This comenditic trachyte ignimbrite contains up to 30 vol% of crystals, mostly anorthoclase. Geochemical investigation of the products collected throughout two key outcrops reveals that major element compositions are poorly variable, whereas trace elements show significant variability, pointing to the presence of a zoned magma reservoir. Thermometry and oxygen fugacity estimations yielded pre-eruptive temperatures of 850-900 °C and ΔNNO from - 2.4 to - 1.8. Melt-alkali-feldspar hygrometer indicates magmatic H2O contents ranging from 5.8 wt% in the upper part of the reservoir to 3.6 wt% at the bottom, indicating that the magma reservoir (confined at 4 km depth) was mainly water-undersaturated before the eruption, except for the topmost portion. Two types of anorthoclase crystals were identified. Type 1 crystals show reverse to oscillatory zoning with An contents of 0.4-2.1 mol% and Ba of 200-2000 ppm. They formed in the middle/upper portion of the reservoir, where fractional crystallization processes dominated. Type 2 crystals, mainly present in the less evolved products, are characterized by patchy-zoned cores with large dissolution pockets surrounded by thick oscillatory-zoned rims and show a wide compositional range (An of 0.5-4.7 mol% and Ba of 142-4824 ppm). Their zoning patterns, together with whole-rock and glass compositions of the juvenile clasts, are consistent with the involvement of an anorthoclase-bearing cumulate from the bottom of the reservoir that underwent partial melting. Crystal dissolution was likely induced by the presence of a heat source at depth, without any mass transfer to the eruptible magma, as suggested by the lack of petrographic and chemical evidences of mixing between the resident comenditic trachyte and a mafic/intermediate magma. Thermal instability generated convective plumes that were responsible for the admittance of crystals from the cumulate level into the intermediate portions of the magma reservoir and possibly acted as trigger of the explosive eruption.

  15. Constraining Path-Dependent Processes During Basalt-CO2 Interactions with Observations From Flow-Through and Batch Experiments

    NASA Astrophysics Data System (ADS)

    Thomas, D.; Garing, C.; Zahasky, C.; Harrison, A. L.; Bird, D. K.; Benson, S. M.; Oelkers, E. H.; Maher, K.

    2017-12-01

    Predicting the timing and magnitude of CO2 storage in basaltic rocks relies partly on quantifying the dependence of reactivity on flow path and mineral distribution. Flow-through experiments that use intact cores are advantageous because the spatial heterogeneity of pore space and reactive phases is preserved. Combining aqueous geochemical analyses and petrologic characterization with non-destructive imaging techniques (e.g. micro-computed tomography) constrains the relationship between irreversible reactions, pore connectivity and accessible surface area. Our work enhances these capabilities by dynamically imaging flow through vesicular basalts with Positron Emission Tomography (PET) scanning. PET highlights the path a fluid takes by detecting photons produced during radioactive decay of an injected radiotracer (FDG). We have performed single-phase, CO2-saturated flow-through experiments with basaltic core from Iceland at CO2 sequestration conditions (50 °C; 76-90 bar Ptot). Constant flow rate and continuous pressure measurements at the inlet and outlet of the core constrain permeability. We monitor geochemical evolution through cation and anion analysis of outlet fluid sampled periodically. Before and after reaction, we perform PET scans and characterize the core using micro-CT. The PET scans indicate a discrete, localized flow path that appears to be a micro-crack connecting vesicles, suggesting that vesicle-lining minerals are immediately accessible and important reactants. Rapid increases in aqueous cation concentration, pH and HCO3- indicate that the rock reacts nearly immediately after CO2 injection. After 24 hours the solute release decreases, which may reflect a transition to reaction with phases with slower kinetic dissolution rates (e.g. zeolites and glasses to feldspar), a decrease in available reactive surface area or precipitation. We have performed batch experiments using crushed material of the same rock to elucidate the effect of flow path geometry and mineral accessibility on geochemical evolution. Interestingly, surface area-normalized dissolution rates as evinced by SiO2 release in all experiments approach similar values ( 10-15 mol/cm2/s). Our experiments show how imaging techniques are helpful in interpreting path-dependent processes in open systems.

  16. The formation of the Late Cretaceous Xishan Sn-W deposit, South China: Geochronological and geochemical perspectives

    NASA Astrophysics Data System (ADS)

    Zhang, Lipeng; Zhang, Rongqing; Hu, Yongbin; Liang, Jinlong; Ouyang, Zhixia; He, Junjie; Chen, Yuxiao; Guo, Jia; Sun, Weidong

    2017-10-01

    The Xishan Sn-W deposit is spatially related to K-feldspar granites in the Yangchun basin, western Guangdong Province, South China. LA-ICP-MS zircon U-Pb dating for the Xishan pluton defines an emplacement age of 79 Ma (78.1 ± 0.9 Ma; 79.0 ± 1.2 Ma; 79.3 ± 0.8 Ma), consistent with the mineralization age of the Xishan Sn-W deposit constrained by molybdenite Re-Os isochron age (79.4 ± 4.5 Ma) and LA-ICP-MS cassiterite U-Pb ages (78.1 ± 0.9 Ma and 79.0 ± 1.2 Ma) for the cassiterite-quartz vein. These indicate a close genetic relationship between the granite and Sn-W mineralization. The Xishan K-feldspar granites have geochemical characteristics of A-type granites, e.g., high total alkali (Na2O + K2O = 7.88-10.07 wt.%), high Ga/Al ratios (10000*Ga/Al > 2.6) and high Zr + Nb + Ce + Y concentrations (> 350 ppm). They are further classified as A2-type granites. The whole-rock isotopic compositions of K-feldspar granites (initial 87Sr/86Sr = 0.705256-0.706181; εNd(t) = - 5.4 to - 4.8) and zircon εHf(t) values (- 7.8 to 2.0) suggest a mixed magma source. The low zircon Ce4 +/Ce3 + ratios (12-88) of K-feldspar granites suggest low oxygen fugacities, which is key for enrichment of tin in primary magmas. The K-feldspar granites have experienced strong differentiation as indicated by their high Rb/Sr and K/Rb ratios, and low Nb/Ta and Zr/Hf ratios, which play an important role in ore-forming element transportation and concentration. A-type granite characteristics of the Xishan pluton show that it formed in an extensional environment. The high F and low Cl characteristics of the K-feldspar granite are most probably attributed to slab rollback. In the Late Cretaceous, the Xishan Sn-W deposit was located near the interaction of the circum-Pacific and the Tethys tectonic realms. Late Cretaceous Sn-W deposits, including the Xishan deposit, form an EW-trending belt from Guangdong to Yunnan Province in South China. This belt is in accordance with the direction of the Neo-Tethys slab rollback in the Late Cretaceous. In addition, the NS-trending extension has been recognized in the Late Cretaceous in South China. We propose that the Xishan Sn-W deposit should be attributed to the Neo-Tethys slab rollback in the Late Cretaceous.

  17. Hydrothermal reequilibration of igneous magnetite in altered granitic plutons and its implications for magnetite classification schemes: Insights from the Handan-Xingtai iron district, North China Craton

    NASA Astrophysics Data System (ADS)

    Wen, Guang; Li, Jian-Wei; Hofstra, Albert H.; Koenig, Alan E.; Lowers, Heather A.; Adams, David

    2017-09-01

    Magnetite is a common mineral in igneous rocks and has been used as an important petrogenetic indicator as its compositions and textures reflect changing physiochemical parameters such as temperature, oxygen fugacity and melt compositions. In upper crustal settings, igneous rocks are often altered by hydrothermal fluids such that the original textures and compositions of igneous magnetite may be partly or completely obliterated, posing interpretive problems in petrological and geochemical studies. In this paper, we present textural and compositional data of magnetite from variably albitized granitoid rocks in the Handan-Xingtai district, North China Craton to characterize the hydrothermal reequilibration of igneous magnetite. Four types of magnetite have been identified in the samples studied: pristine igneous magnetite (type 1), reequilibrated porous magnetite (type 2), reequilibrated nonporous magnetite (type 3), and hydrothermal magnetite (type 4). Pristine igneous magnetite contains abundant well-developed ilmenite exsolution lamellae that are largely replaced by titanite during subsequent hydrothermal alteration. The titanite has a larger molar volume than its precursor ilmenite and thus causes micro-fractures in the host magnetite grains, facilitating dissolution and reprecipitation of magnetite. During sodic alteration, the igneous magnetite is extensively replaced by type 2 and type 3 magnetite via fluid-induced dissolution and reprecipitation. Porous type 2 magnetite is the initial replacement product of igneous magnetite and is subsequently replaced by the nonoporous type 3 variety as its surface area is reduced and compositional equilibrium with the altering fluid is achieved. Hydrothermal type 4 magnetite is generally euhedral and lacks exsolution lamellae and porosity, and is interpreted to precipitate directly from the ore-forming fluids. Hydrothermal reequilibration of igneous magnetite has led to progressive chemical purification, during which trace elements such as Ti, Al, Mg, Zn, and Cr contents decrease dramatically (up to 2-3 orders of magnitude different), coupled with significant increase in iron concentrations from less than 64 wt.% to higher than 70 wt.%. Results presented here show that magnetite is much more susceptible to textural and compositional reequilibration than previously thought. The reequilibrated magnetite has geochemical patterns that may be distinctively different from its precursor, making existing discrimination plots questionable when applied to genetic interpretation. Based on textural characterization and high-resolution in situ compositional analyses, we propose that the Fe versus V/Ti diagram can be more confidently used to discriminate between pristine igneous magnetite, reequilibrated magnetite, and hydrothermal magnetite.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meckel, Timothy; Trevino, Ramon

    This project characterized the Miocene-age sub-seafloor stratigraphy in the near-offshore portion of the Gulf of Mexico adjacent to the Texas coast. The large number of industrial sources of carbon dioxide (CO₂) in coastal counties and the high density of onshore urbanization and environmentally sensitive areas make this offshore region extremely attractive for long-term storage of carbon dioxide emissions from industrial sources (CCS). The study leverages dense existing geologic data from decades of hydrocarbon exploration in and around the study area to characterize the regional geology for suitability and storage capacity. Primary products of the study include: regional static storage capacitymore » estimates, sequestration “leads” and prospects with associated dynamic capacity estimates, experimental studies of CO₂-brine-rock interaction, best practices for site characterization, a large-format ‘Atlas’ of sequestration for the study area, and characterization of potential fluid migration pathways for reducing storage risks utilizing novel high-resolution 3D (HR3D) seismic surveys. In addition, three subcontracted studies address source-to-sink matching optimization, offshore well bore management and environmental aspects. The various geologic data and interpretations are integrated and summarized in a series of cross-sections and maps, which represent a primary resource for any near-term commercial deployment of CCS in the area. The regional study characterized and mapped important geologic features (e.g., Clemente-Tomas fault zone, the regionally extensive Marginulina A and Amphistegina B confining systems, etc.) that provided an important context for regional static capacity estimates and specific sequestration prospects of the study. A static capacity estimate of the majority of the Study area (14,467 mi 2) was estimated at 86 metric Gigatonnes. While local capacity estimates are likely to be lower due to reservoir-scale characteristics, the offshore Miocene interval is a storage resource of National interest for providing CO₂ storage as an atmospheric emissions abatement strategy. The natural petroleum system was used as an analog to infer seal quality and predict possible migration pathways of fluids in an engineered system of anthropogenic CO₂ injection and storage. The regional structural features (e.g., Clemente-Tomas fault zone) that exert primary control on the trapping and distribution of Miocene hydrocarbons are expected to perform similarly for CCS. Industrial-scale CCS will require storage capacity utilizing well-documented Miocene hydrocarbon (dominantly depleted gas) fields and their larger structural closures, as well as barren (unproductive, brine-filled) closures. No assessment was made of potential for CO₂ utilization for enhanced oil and gas recovery. The use of 3D numerical fluid flow simulations have been used in the study to greatly assist in characterizing the potential storage capacity of a specific reservoir. Due to the complexity of geologic systems (stratigraphic heterogeneity) and inherent limitations on producing a 3D geologic model, these simulations are typically simplified scenarios that explore the influence of model property variability (sensitivity study). A specific site offshore San Luis Pass (southern Galveston Island) was undertaken successfully, indicating stacked storage potential. Downscaling regional capacity estimates to the local scale (and the inverse) has proven challenging, and remains an outstanding gap in capacity assessments. In order to characterize regional seal performance and identify potential brine and CO₂ leakage pathways, results from three high-resolution 3D (HR3D) seismic datasets acquired by the study using novel HR3D (P-Cable) acquisition system showed steady and significant improvements in data quality because of improved acquisition and processing technique. Finely detailed faults and stratigraphy in the shallowest 1000 milliseconds (~800 m) of data allowed for the identification and mapping of unconformable surfaces including what is probably a surface associated with the last Pleistocene glacial lowstand. The identification of a previously unrecognized (in commercial seismic data) gas chimney that was clearly defined in the 2013 HR3D survey, indicates that HR3D surveys may be useful as both a characterization tool for the overburden of a potential carbon sequestration site and as an additional monitoring tool for future engineered injection sites. Geochemical modeling indicated that injection of CO₂ would result in minor dissolution of calcite, K-feldspar and albite. In addition, modeling of typical brines in Miocene age rocks indicate that approximately 5% of injection capacity would result from CO₂ dissolution into the brine. After extensive searches, no rock samples of the Marginulina A and Amphistegina B seals (“caprocks”) were obtained, but analyses of available core samples of other Miocene age mudrocks (seals or caprocks) indicate that they have sealing ability sufficient for potential CO 2 storage in underlying sandstone units.« less

  19. Geochemical modeling of fluid-fluid and fluid-mineral interactions during geological CO2 storage

    NASA Astrophysics Data System (ADS)

    Zhu, C.; Ji, X.; Lu, P.

    2013-12-01

    The long time required for effective CO2 storage makes geochemical modeling an indispensable tool for CCUS. One area of geochemical modeling research that is in urgent need is impurities in CO2 streams. Permitting impurities, such as H2S, in CO2 streams can lead to potential capital and energy savings. However, predicting the consequences of co-injection of CO2 and impurities into geological formations requires the understanding of the phase equilibrium and fluid-fluid interactions. To meet this need, we developed a statistical associating fluid theory (SAFT)-based equation of state (EOS) for the H2S-CO2-H2O-NaCl system at 373.15

  20. Predictive modeling of CO2 sequestration in deep saline sandstone reservoirs: Impacts of geochemical kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balashov, Victor N.; Guthrie, George D.; Hakala, J. Alexandra

    2013-03-01

    One idea for mitigating the increase in fossil-fuel generated CO{sub 2} in the atmosphere is to inject CO{sub 2} into subsurface saline sandstone reservoirs. To decide whether to try such sequestration at a globally significant scale will require the ability to predict the fate of injected CO{sub 2}. Thus, models are needed to predict the rates and extents of subsurface rock-water-gas interactions. Several reactive transport models for CO{sub 2} sequestration created in the last decade predicted sequestration in sandstone reservoirs of ~17 to ~90 kg CO{sub 2} m{sup -3|. To build confidence in such models, a baseline problem including rockmore » + water chemistry is proposed as the basis for future modeling so that both the models and the parameterizations can be compared systematically. In addition, a reactive diffusion model is used to investigate the fate of injected supercritical CO{sub 2} fluid in the proposed baseline reservoir + brine system. In the baseline problem, injected CO{sub 2} is redistributed from the supercritical (SC) free phase by dissolution into pore brine and by formation of carbonates in the sandstone. The numerical transport model incorporates a full kinetic description of mineral-water reactions under the assumption that transport is by diffusion only. Sensitivity tests were also run to understand which mineral kinetics reactions are important for CO{sub 2} trapping. The diffusion transport model shows that for the first ~20 years after CO{sub 2} diffusion initiates, CO{sub 2} is mostly consumed by dissolution into the brine to form CO{sub 2,aq} (solubility trapping). From 20-200 years, both solubility and mineral trapping are important as calcite precipitation is driven by dissolution of oligoclase. From 200 to 1000 years, mineral trapping is the most important sequestration mechanism, as smectite dissolves and calcite precipitates. Beyond 2000 years, most trapping is due to formation of aqueous HCO{sub 3}{sup -}. Ninety-seven percent of the maximum CO{sub 2} sequestration, 34.5 kg CO{sub 2} per m{sup 3} of sandstone, is attained by 4000 years even though the system does not achieve chemical equilibrium until ~25,000 years. This maximum represents about 20% CO{sub 2} dissolved as CO{sub 2},aq, 50% dissolved as HCO{sub 3}{sup -}{sub ,aq}, and 30% precipitated as calcite. The extent of sequestration as HCO{sub 3}{sup -} at equilibrium can be calculated from equilibrium thermodynamics and is roughly equivalent to the amount of Na+ in the initial sandstone in a soluble mineral (here, oligoclase). Similarly, the extent of trapping in calcite is determined by the amount of Ca2+ in the initial oligoclase and smectite. Sensitivity analyses show that the rate of CO{sub 2} sequestration is sensitive to the mineral-water reaction kinetic constants between approximately 10 and 4000 years. The sensitivity of CO{sub 2} sequestration to the rate constants decreases in magnitude respectively from oligoclase to albite to smectite.« less

  1. On the age of sinistral shearing along the southern border of the Tauern Window (Eastern Alps).

    NASA Astrophysics Data System (ADS)

    Kitzig, C.; Schneider, S.; Hammerschmidt, K.

    2009-04-01

    The first-order structure of the western Tauern Window consists of three upright, ENE-striking antiforms of large amplitude, whose flanks are overprinted by sinistral shear zones, striking parallel to the axial planes of the antiforms. Analogue modelling suggests that these shear zones accommodate part of the shortening of the South Alpine indenter (Rosenberg et al., 2004). The age of sinistral shearing in the western Tauern Window and immediately south of it is still controversial. Mancktelow et al. (2001) suggested that sinistral shearing at the southern border of the Tauern Window terminated at 30 Ma. Based on monazite spot dates ranging between 29.0-20.3 Ma (n=10) of dextral shear zones, which cross-cut the sinistral Greiner shear zone, Barnes et al. (2004) argued that the switch from sinistral to dextral shear occurred shortly after the thermal peak of the Alpine orogeny (c.~ 30 Ma). Recent dating of mica-bearing marble suggested that the activity of the southernmost sinistral shear zone of the Tauern Window (the Ahrntal shear zone) was 19.8±0.4 Ma ago (Glodny et al. 2008). Sinistral shearing is commonly interpreted as part of the 2nd Alpine phase of deformation that affected the Tauern Window. The main foliation (S1) of the Tauern Window was acquired during a first phase, which resulted in the present day nappe stack. Only along some of the later shear zones a second Alpine foliation (S2) was formed. At present no attempt has been made, to distinguish the two and directly date the S2 mylonitic foliation. In the present work we use the Rb/Sr method to date mineral pairs formed under greenschist to lower amphibolite facies conditions from the tonalitic Zentral Gneiss. We dated four samples, two from the inferred undeformed tonalite protolith, one from the strongly foliated tonalitic gneiss and one from an outcrop-scale sinistral shear zone within the foliated tonalitic gneiss. Generally biotite and feldspar define isochrones for the four samples. The undeformed tonalites yield an age of 26.4±0.1 Ma and of 11.1±0.1 Ma, the strongly foliated tonalitic gneiss yields an age of 19.8±0.1 Ma, which is close to the age of the outcrop-scale shear zone of 18.0±0.1 Ma. It is difficult to interpret the 11 Ma age of one undeformed sample, because it is significantly younger than the ages obtained from zircon fission tracks from neighbouring areas. The older age of 26 Ma for the undeformed tonalite sample is interpreted as cooling age below the closure temperature of biotite, based on the following arguments: 1) This age is consistent with the inferred regional thermochronological distribution of cooling (Luth and Willingshofer, 2008); 2) The rock fabric is undeformed; 3) The age is older than the two deformed samples collected within a distance of a few hundreds of meters. The mineral assemblage of the deformed samples (green biotite and albite crystallisation) differs from the one of the undeformed rocks (red-brown biotite and K-feldspar clasts). Therefore, the albite-biotite isochrons of the deformed samples are inferred to date the deformation event. This age of deformation is consistent with the age determination of Glodny et al. (2008) from deformed marbles of the Schieferhülle, and with previous dating of sinistral shearing along the northern border of the western Tauern Window (Schneider et al., 2007), which yielded an average (n=5) age of 21.9±1.6 Ma. Therefore, sinistral deformation appears to have affected contemporaneously both the northern and the southern margins of the Zentral Gneiss in the western Tauern Window. References: Barnes, J. D., Selverstone, J. & Sharp, Z.D., 2004. Interactions between serpentinite devolatilization, metasomatism and strike-slip strain localization during deep-crustal shearing in the Eastern Alps. Journal of Metamorphic Geology, 22, 283-300. Glodny, J., Ring, U. Kühn. A., 2008. Coeval high-pressure metamorphism, thrusting, strike slip, and extensional shearing in the Tauern Window, Eastern Alps, Tectonics, 27, TC4004, DOI:10.1029/2007TC002193. Luth, S.W., & Willingshofer, E. 2008. Mapping of the Post-Collisional Cooling History of the Eastern Alps, Birkhäuser Verlag, Basel DOI:10.1007/s00015-008-1294-9 Mancktelow, N.S., Stöckli, D., Grollimund, B., Müller, W., Fügenschuh, B., Viola, G., Seward, D. & Villa, I., 2001. The DAV and Periadriatic fault systems in the eastern Alps south of the Tauern Window. International Journal of Earth Sciences, 90, 593-622. Rosenberg, C.L., Brun, J.-P., Cagnard, F., and Gapais, D., 2007. Oblique indentation in the Eastern Alps: Insights from laboratory experiments, Tectonics, 26, TC2003, doi:10.1029/2006TC001960. Schneider, S., Hammerschmidt, K., and Rosenberg, C.L., 2007. In-situ Rb-Sr dating of the SEMP mylonites, western Tauern Window, Eastern Alps Geophysical Research Abstracts, Vol. 9, 09136. SRef-ID: 1607-7962/gra/EGU2007-A-09136

  2. Multi-stage barites in partially melted UHP eclogite: implications for fluid/melt activities during deep continental subduction in the Sulu orogenic belt

    NASA Astrophysics Data System (ADS)

    Wang, Songjie; Wang, Lu

    2015-04-01

    Barite (BaSO4) is well-known from deep-sea sedimentary environments but has received less attention to its presence in high-grade metamorphic rocks. Recently, barite in ultrahigh pressure (UHP) eclogite has drawn increasing attention from geologists, especially in the Dabie-Sulu orogen, since it is an important indicator for high-salinity fluid events, thus aiding in further understanding HP-UHP fluid / melt evolution. However, its formation time and mechanism in UHP eclogite are still controversial, with three representative viewpoints: (1) Liu et al. (2000) found barite-anhydrite-coesite inclusions in zircon and interpreted them to have formed by UHP metamorphic fluids; (2) Zeng et al. (2007) recognized isolated barite within K-feldspar (Kfs) and Quartz (Qz) surrounded by radial cracks in omphacite, and interpreted Kfs+Qz to be reaction products of potassium-rich fluid/melt and coesite, with the barite formed by prograde metamorphic fluids; (3) Gao et al. (2012) and Chen et al. (2014) found barite-bearing Multiphase Solid (MS) inclusions within garnet and omphacite and assumed that the barite formed by phengite breakdown possibly caused by eclogite partial melting during exhumation, though no direct evidence were proposed. The controversy above is mainly due to the lack of direct formation evidence and absence of a clear link with the metamorphic evolution of UHP eclogite along the subduction-exhumation path. We report detailed petrological and micro-structural analyses revealing four types of barites clearly linked with (1) the prograde, (2) earlier stage of partial melting and (3) later stage of crystallization differentiation, as well as (4) high-grade amphibolite-facies retrogression of a deeply subducted and partially melted intergranular coesite-bearing eclogite from Yangkou Bay, Sulu Orogen. Round barite inclusions (type-I) within UHP-stage garnet and omphacite are formed by internally buffered fluids from mineral dehydration during prograde metamorphism. Zr-in-rutile thermometry shows their formation temperature to be 586-664 oC at 1.5-2.5 GPa. Barite-bearing MS inclusions with Ba-bearing K-feldspar (type-II) connected by Kfs+Pl+Bt veinlets of in-situ phengite breakdown and thin barite veinlets along grain boundaries (type-III) are products of phengite breakdown and induced fluid flow during exhumation. These barites have witnessed the gradational separation process of melt/ fluid from miscibility on/above the second critical endpoint during UHP metamorphism, to immiscibility along the exhumation path of the subducted slab. Associated reactions from pyrite to hematite and goethite with the type-III barite ring surrounding the pyrite provide evidence for a local high oxygen fugacity environment during eclogite partial melting and subsequent melt/fluid crystallization processes. Moreover, large grain barite aggregations (type-IV) modified by amphibole+albite symplectite are most likely formed by release of molecular and hydroxyl water from anhydrous minerals of eclogite during high-grade amphibolite-facies retrogression. The growth of multi-stage barites in UHP eclogite further advances our understanding of fluid/melt transfer, crystallization processes along the subduction-exhumation path of the partially melted eclogite, broadening our knowledge of melt/fluid evolution within subduction-collision zones worldwide. REFERENCES Chen Y.X., et al., 2014, Lithos, 200, 1-21. Liu J.B., et al., 2000, Acta Petrologica Sinica 16(4), 482-484. Zeng L.S., et al., 2007, Chinese Science Bulletin, 52(21), 2995-3001. Gao X.Y., et al., 2012, Journal of Metamorphic Geology, 30(2), 193-212.

  3. Carbonate-silicate melt immiscibility, REE mineralising fluids, and the evolution of the Lofdal Intrusive Suite, Namibia

    NASA Astrophysics Data System (ADS)

    Bodeving, Sarah; Williams-Jones, Anthony E.; Swinden, Scott

    2017-01-01

    The Lofdal Intrusive Suite, Namibia, consists of calcio-carbonatite and silica-undersaturated alkaline intrusive rocks ranging in composition from phono-tephrite to phonolite (and nepheline syenite). The most primitive of these rocks is the phono-tephrite, which, on the basis of its Y/Ho and Nb/Ta ratios, is interpreted to have formed by partial melting of the mantle. Roughly linear trends in major and trace element contents from phono-tephrite to phonolite and nepheline syenite indicate that the latter two rock types evolved from the phono-tephrite by fractional crystallisation. The nepheline syenite, however, has a lower rare earth element (REE) content than the phonolite. The carbonatite has a primitive mantle-normalised REE profile roughly parallel to that of the silica-undersaturated alkaline igneous rocks, although the absolute REE concentrations are higher. Like the phono-tephrite, it also has a mantle Y/Ho ratio. However, the Nb/Ta and Zr/Hf ratios are significantly higher. Moreover, the carbonatite displays strong negative Ta, Zr and Hf anomalies on spidergrams, whereas the silicate rocks display positive anomalies for these elements. Significantly, this behaviour is predicted by the corresponding carbonatite-silicate melt partition coefficients, as is the behaviour of the REE. Based on these observations, we interpret the carbonatite to represent an immiscible liquid that exsolved from the phono-tephrite or possibly the phonolite melt. The result was a calcio-carbonatite that is enriched in the heavy REE (HREE) relative to most other carbonatites. Fluids released from the corresponding magma are interpreted to have been the source of the REE mineralisation that is currently the target of exploration. 2. The composition of feldspar in nepheline syenite, fenite, calcio-carbonatite and phonolite plotted on the feldspar ternary classification diagram modified after Schairer (1950) in terms of the components albite (Ab), orthoclase (Or) and anorthite (An). Note: ANO = anorthosite, SAN = sanidine, OLI = oligoclase, AND = andesine, LAB = labradorite, BYT = bytownite. 3. Composition of the Lofdal mica plotted on the biotite classification diagram of Rieder et al. (1998). 4. Clinopyroxene composition in nepheline syenite and calcio-carbonatite phenocrysts illustrated on the classification ternary for sodic pyroxenes (after Morimoto; 1989). Quad (Q) represents wollastonite, enstatite and ferrosilite of the Mg-Ca-Fe group of pyroxenes. 5. The range of carbonatite compositions illustrated on the carbonatite classification diagram of Gittins and Harmer (1997). 6. Composition of the Lofdal nepheline syenite on the plutonic Total-Alkali-Silica diagram of Wilson (1989). 7. a. A binary plot showing the concentration of Y versus that of Ho in bulk rock samples of the phono-tephrites, phonolites, nepheline syenites and carbonatites. The trend-line represents the mantle value of approximately 27.7 (Sun and McDonough, 1989). b. A binary plot showing the concentration of Nb versus that of Ta in bulk rock samples of the phono-tephrites, phonolites, nepheline syenites and carbonatites. The trend-line represents the mantle value of approximately 17.4 (Sun and McDonough, 1989). c. A binary plot showing the concentration of Zr versus that of Hf in bulk rock samples of the phono-tephrites, phonolites, nepheline syenites and carbonatites. The trend-line represents the mantle value of approximately 36.2 (Sun and McDonough, 1989). 8. A binary plot showing the concentration of K2O versus Na2O in nepheline syenite and fenite.

  4. Geology and porphyry copper-type alteration-mineralization of igneous rocks at the Christmas Mine, Gila County, Arizona

    USGS Publications Warehouse

    Koski, Randolph A.

    1979-01-01

    The Christmas copper deposit, located in southern Gila County, Arizona, is part of the major porphyry copper province of southwestern North America. Although Christmas is known for skarn deposits in Paleozoic carbonate rocks, ore-grade porphyry-type copper mineralization also occurs in a composite granodioritic intrusive complex and adjacent mafic volcanic country rocks. This study considers the nature, distribution, and genesis of alteration-mineralization in the igneous rock environment at Christmas. At the southeast end of the Dripping Spring Mountains, the Pennsylvanian Naco Limestone is unconformably overlain by the Cretaceous Williamson Canyon Volcanics, a westward-thinning sequence of basaltic volcanic breccia and lava flows, and subordinate clastic sedimentary rocks. Paleozoic and Mesozoic strata are intruded by Laramide-age dikes, sills, and small stocks of hornblende andesite porphyry and hornblende rhyodacite porphyry, and the mineralized Christmas intrusive complex. Rocks of the elongate Christmas stock, intruded along an east-northeast-trending fracture zone, are grouped into early, veined quartz diorite (Dark Phase), biotite granodiorite porphyry (Light Phase), and granodiorite; and late, unveined dacite porphyry and granodiorite porphyry. Biotite rhyodacite porphyry dikes extending east and west from the vicinity of the stock are probably coeval with biotite granodiorite porphyry. Accumulated normal displacement of approximately 1 km along the northwest-trending Christmas-Joker fault system has juxtaposed contrasting levels (lower, intrusive-carbonate rock environment and upper, intrusive-volcanic rock environment) within the porphyry copper system. K-Ar age determinations and whole-rock chemical analyses of the major intrusive rock types indicate that Laramide calc-alkaline magmatism and ore deposition at Christmas evolved over an extended period from within the Late Cretaceous (~75-80 m.y. ago) to early Paleocene (~63-61 m.y. ago). The sequence of igneous rocks is progressively more alkaline and silicic from basalt to granodiorite. Early (Stage I) chalcopyrite-bornite (-molybdenite) mineralization and genetically related K-silicate alteration are centered on the Christmas stock. K-silicate alteration is manifested by pervasive hornblende-destructive biotitization in the stock, biotitization of basaltic volcanic wall rocks, and a continuous stockwork of K-feldspar veinlets and quartz-K-feldspar veins in the stock and quartz-sulfide veins in volcanic rocks. Younger (Stage II) pyrite-chalcopyrite mineralization and quartz-sericite-chlorite alteration occur in a zone overlapping with but largely peripheral to the zone of Stage I stockwork veins. Within the Christmas intrusive complex, K-silicate-altered rocks in the central stock are flanked east and west by zones of fracture-controlled quartz-sericite alteration and strong pyritization. In volcanic rocks quartz-chlorite-pyrite-chalcopyrite veins are superimposed on earlier biotitization and crosscut Stage I quartz-sulfide veins. Beyond the zones of quartz-sericite alteration, biotite rhyodacite porphyry dikes contain the propylitic alteration assemblage epidote-chlorite-albite-sphene. Chemical analyses indicate the following changes during pervasive alteration of igneous rocks: (1) addition of Si, K, H, S, and Cu, and loss of Fe 3+ and Ca during intense biotitization of basalt; (2) loss of Na and Ca, increase of Fe3+/Fe2+, and strong H-metasomatism during sericitization of quartz diorite; and (3) increase in Ca, Na, and Fe3+/Fe2+, and loss of K during intense propylitization of biotite rhyodacite porphyry dikes. Thorough biotitization of biotite granodiorite porphyry in the Christmas stock was largely an isochemical process. Fluid-inclusion petrography reveals that Stage I veins are characterized by low to moderate populations of moderate-salinity and gas-rich inclusions, and sparse but ubiquitous halite-bearing inclusions. Moderate-salinity an

  5. Underplating generated A- and I-type granitoids of the East Junggar from the lower and the upper oceanic crust with mixing of mafic magma: Insights from integrated zircon U-Pb ages, petrography, geochemistry and Nd-Sr-Hf isotopes

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Liu, Xiu-Jin; Liu, Li-Juan

    2013-10-01

    Whole rock major and trace element, Nd-Sr and zircon Hf isotopic compositions and secondary-ion mass spectrometry zircon U-Pb ages of eleven granitoid intrusions and dioritic rocks from the East Junggar (NW China) were analyzed in this study. The East Junggar granitoids were emplaced during terminal Early to Late Carboniferous (325-301 Ma) following volcanic eruption of the Batamayi Formation. Zircons from the East Junggar granitoids yielded 210 concordant 206Pb/238U ages which are all younger than 334 Ma and exhibit ɛHf(t) values distinctly higher than Devonian arc volcanic-rocks. Seismic P-wave velocities of deep crust of the East Junggar proper resemble those of oceanic crust (OC). These characteristics suggest absence of volcanic rock and volcano-sedimentary rock of Devonian and Early Carboniferous from the source region. The East Junggar granitoids show ɛNd(t) and initial 87Sr/86Sr values substantially overlapping those of the Armantai ophiolite in the area. The Early Paleozoic OC with seamount-like composition as the Zhaheba-Armantai ophiolites remained in the lower crust and formed main source rock of the East Junggar granitoids. Based on petrography and geochemistry, the East Junggar granitoids are classified into peralkaline A-type in the northern subarea, I-type (I1 and I2 subgroups) mainly in the north and A-type in the south of the southern subarea. The perthitic or argillated core and oligoclasic rim with an argillated boundary of feldspar phenocrysts and inclusion of perthites or its overgrowth by matrix plagioclase, in the monzogranites (northern subarea), suggest mixing of peralkaline granitic magma with mafic magma. In the north of the southern subarea, the presence of magmatic microdioritic enclaves (MMEs) in the I1 subgroup granitoids, transfer of plagioclase phenocrysts and hornblendes between host granodiorite and the MME across the boundary and a prominent resorption surface in the plagioclase phenocrysts indicate mixing of crustal magma (I2 subgroup granitoids) with mafic magma. Magma mixing shifted (87Sr/86Sr)i of the I1 subgroup granitoids towards the mantle array. Two generations of hornblende with zonal distribution and similar mineral and geochemical compositions of quartz monzodiorite and hosted MME with unfractionated rare earth elements (REE) suggest extended magma mixing with onset probably at or near source region. These observations imply concurrency of mantle input and the crustal melting and, hence, a causal relationship between underplating/intraplating and the lower OC/upper OC melting. The I-type granitoids experienced plagioclase and hornblende fractionations, whereas fractionated phases of the two groups of A-type granites were alkali feldspar and albite-oligoclase with significant involvement of F--rich fluid. Granodioritic parent magmas of the I2 subgroup granitoids stemmed from the hydrous upper OC. Parent magmas of the two A-type groups possess syenogranitic or quartz syenitic compositions. The peralkaline A-type granites stemmed from the lower OC, whereas the A-type granites from dehydrated upper OC left behind after extensive partial melting and extraction of I-type granitoids. Based on comparison in the ternary system Mg2SiO4-CaAl2SiO6-SiO2, most of the Batamayi volcanic rocks with affinity to ocean-island basalts were derived from asthenospheric upwelling. The gabbro-dioritic rocks with higher light to heavy REE ratios stemmed from metasomatized lithospheric mantle. Both of the above mafic rocks contain subducted slab component.

  6. Volcanostratigraphy, petrography and petrochemistry of Late Cretaceous volcanic rocks from the Görele area (Giresun, NE Turkey)

    NASA Astrophysics Data System (ADS)

    Oguz, Simge; Aydin, Faruk; Baser, Rasim

    2015-04-01

    In this study, we have reported for lithological, petrographical and geochemical features of late Cretaceous volcanic rocks from the Çanakçı and the Karabörk areas in the south-eastern part of Görele (Giresun, NE Turkey) in order to investigate their origin and magmatic evolution. Based on the previous ages and recent volcano-stratigraphic studies, the late Cretaceous time in the study area is characterized by an intensive volcanic activity that occurred in two different periods. The first period of the late Cretaceous volcanism (Cenomanian-Santonian; 100-85 My), conformably overlain by Upper Jurassic-Lower Cretaceous massive carbonates (Berdiga Formation), is represented by bimodal units consisting of mainly mafic rock series (basaltic-andesitic lavas and hyaloclastites, dikes and sills) in the lower part (Çatak Formation), and felsic rock series (dacitic lavas and hyaloclastites, crystal- and pyrite-bearing tuffs) in the upper part (Kızılkaya Formation). The second period of the late Cretaceous volcanism (Santonian-Late Campanian; 85-75 Ma) is also represented by bimodal character and again begins with mafic rock suites (basaltic-basaltic andesitic lavas and hyaloclastites) in the lower part (Çağlayan Formation), and grades upward into felsic rock suites (biotite-bearing rhyolitic lavas, ignimbrites and hyaloclastites) through the upper part (Tirebolu Formation). These bimodal units are intercalated with volcanic conglomerates-sandstones, claystones, marl and red pelagic limestones throughout the volcanic sequence, and the felsic rock series have a special important due to hosting of volcanogenic massive sulfide deposits in the region. All volcano-sedimentary units are covered by Tonya Formation (Late Campanian-Paleocene) containing calciturbidites, biomicrites and clayey limestones. The mafic rocks in the two volcanic periods generally include basalt, basaltic andesite and minor andesite, whereas felsic volcanics of the first period mainly consists of dacite but those of the second period have biotite-bearing rhyolite. The basalts and basaltic andesites exhibit subaphyric to porphyritic texture with phenocrysts of calcic plagioclase and augite in a fine-grained to microcrystalline groundmass, consisting of plag+cpx+mag. Andesite samples display a porphyritic texture with phenocrysts of calcic to sodic plagioclase and augite in a hyalopilitic matrix of plag+cpx±amph+mag. Zircon and magnetite are common accessory minerals, whereas chlorite, epidote and calcite are typical alteration products. On the other hand, the dacitic and rhyolitic rocks commonly show a porphyritic texture with predominant feldspar, quartz and some biotite phenocrysts. The microgranular to felsophyric groundmass is mainly composed of aphanitic plagioclase, K-feldspar and quartz. Accessory minerals include zircon, apatite and magnetite. Typical alteration minerals include late-formed sericite, albite and clay minerals. Late Cretaceous mafic and felsic volcanic rocks have a largely sub-alkaline character with typical arc geochemical signatures. N-MORB-normalised multi-element patterns show that all rock samples are enriched in LILEs (e.g. Rb, Ba, Th) but depleted in Nb and Ti. The chondrite-normalized REE patterns are concave shapes with low to medium enrichment, suggesting a common mantle source for the studied bimodal rock series. All geochemical data reflecting typical characteristics of subduction-related magmas are commonly attributed to a depleted mantle source, which has been previously enriched by fluids or sediments. Acknowledgments This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK, grant 112Y365)

  7. Evidence for a nonmagmatic component in potassic hydrothermal fluids of porphyry cu-Au-Mo systems, Yukon, Canada

    NASA Astrophysics Data System (ADS)

    Selby, David; Nesbitt, Bruce E.; Creaser, Robert A.; Reynolds, Peter H.; Muehlenbachs, Karlis

    2001-02-01

    Isotopic (H, Sr, Pb, Ar) and fluid inclusion data for hydrothermal fluids associated with potassic alteration from three Late Cretaceous porphyry Cu occurrences, west central Yukon, suggest a nonmagmatic fluid component was present in these hydrothermal fluids. Potassic stage quartz veins contain a dominant assemblage of saline and vapor-rich fluid inclusions that have δD values between -120 and -180‰. Phyllic stage quartz veins are dominated by vapor-rich fluid inclusions and have δD values that overlap with but are, on average, heavier (-117 to -132‰) than those in potassic stage quartz veins. These δD values are significantly lower than those from plutonic quartz phenocrysts (-91 to -113‰), and from values typically reported for primary fluids from porphyry-style mineralization (-40 to -100‰). The initial Sr ( 87Sr/ 86Sr i) isotopic values for the plutons are 0.7055 (Casino), 0.7048 (Mt. Nansen), and 0.7055 (Cash). The 87Sr/ 86Sr i compositions of hydrothermal K-feldspar ranges from magmatic Sr i values to more radiogenic compositions (Casino: 0.70551-0.70834, n = 8; Mt. Nansen: 0.7063-0.7070, n = 4; Cash: 0.7058, n = 1). The fluid inclusion waters from potassic quartz veins have 87Sr/ 86Sr i values that are similar to those of co-existing hydrothermal K-feldspar. The Pb isotopic compositions of hydrothermal K-feldspar show a weak positive correlation with Sr i for identical samples. Fluid inclusion waters of phyllic quartz veins also have Sr i compositions more radiogenic than the plutons. The Pb isotopic composition of pyrite and bornite from phyllic alteration veins are similar to, or more radiogenic than, hydrothermal K-feldspar Pb isotopic values. Hydrothermal K-feldspar samples yield 40Ar/ 39Ar ages (Casino = 71.9 ± 0.7 to 73.4 ± 0.8 Ma; Mt. Nansen = 68.2 ± 0.7 and 69.5 ± 0.6 Ma; Cash = 68.3 ± 0.8 Ma) similar to the U-Pb zircon, K-Ar biotite and Re-Os molybdenite ages of the Late Cretaceous plutons, with the age spectra indicating no excess 40Ar or disturbance. The 40Ar/ 36Ar values (285-292) of the K-feldspar samples are similar to the atmospheric compositions (295 ± 5) during Late Cretaceous time. The H, Sr, Pb, and Ar isotopic compositions of hydrothermal K-feldspar and quartz vein fluid inclusion waters that characterize the potassic hydrothermal fluids show evidence for an exotic component in addition to magmatic water (fluid). This component has a low δD, radiogenic Sr and Pb, and an atmospheric Ar composition. The inheritance of pre-existing isotope compositions from the host rocks, postpotassic alteration isotope exchange, or the replenishment of the magma chamber with magma of different isotopic composition cannot explain the isotope data. We suggest that to generate the observed H, Sr, Pb, and Ar isotope compositions, crustal fluids must be a component (15-94%) of potassic hydrothermal fluids in porphyry mineralization in the deposits studied.

  8. Increase in Ice Nucleation Efficiency of Feldspars, Kaolinite and Mica in Dilute NH3 and NH4+-containing Solutions

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Marcolli, C.; Luo, B.; Krieger, U. K.; Peter, T.

    2017-12-01

    Semivolatile species present in the atmosphere are prone to adhere to mineral dust particle surfaces during long range transport, and could potentially change the particle surface properties and its ice nucleation (IN) efficiency. Immersion freezing experiments were performed with microcline (K-feldspar), known to be highly IN active, suspended in aqueous solutions of ammonia, (NH4)2SO4, NH4HSO4, NH4NO3, NH4Cl, Na2SO4, H2SO4, K2SO4 and KCl to investigate the effect of solutes on the IN efficiency. Freezing of emulsified droplets investigated with a differential scanning calorimeter (DSC) showed that the heterogeneous ice nucleation temperatures deviate from the water activity-based IN theory, describing heterogeneous ice nucleation temperatures as a function of solution water activity by a constant offset with respect to the ice melting point curve (Zobrist et al. 2008). IN temperatures enhanced up to 4.5 K were observed for very dilute NH3 and NH4+-containing solutions while a decrease was observed as the concentration was further increased. For all solutes with cations other than NH4+, the IN efficiency decreased. An increase of the IN efficiency in very dilute NH3 and NH4+-containing solutions followed by a decrease with increasing concentration was also observed for sanidine (K-feldspar) and andesine (Na/Ca-feldspar). This is an important indication towards specific chemical interactions between solutes and the feldspar surface which is not captured by the water activity-based IN theory. A similar trend is present but less pronounced in case of kaolinite and mica, while quartz is barely affected. We hypothesize that the hydrogen bonding of NH3 molecules with surface -OH groups could be the reason for the enhanced freezing temperatures in dilute ammonia and ammonium containing solutions as they could form an ice-like overlayer providing hydrogen bonding groups for ice to nucleate on top of it. This implies to possibilities of enhanced IN efficiency, especially in mixed-phase cloud regime, of ammonium sulfate coated mineral dust particles in the condensation mode when the coating dilutes during cloud droplet activation.

  9. Muscovite-Dehydration Melting: A Textural Study of a Key Reaction in Transforming Continental Margin Strata Into a Migmatitic Orogenic Core

    NASA Astrophysics Data System (ADS)

    Dyck, B. J.; St Onge, M. R.; Waters, D. J.; Searle, M. P.

    2015-12-01

    Metamorphosed continental margin sedimentary sequences, which comprise the dominant tectonostratigraphic assemblage exposed in orogenic hinterlands, are crucial to understanding the architecture and evolution of collisional mountain belts. This study explores the textural effect of anatexis in amphibolite-grade conditions and documents the mineral growth mechanisms that control nucleation and growth of K-feldspar, sillimanite and silicate melt. The constrained textural evolution follows four stages: 1) Nucleation - K-feldspar is documented to nucleate epitaxially on isomorphic plagioclase in quartzofeldspathic (psammitic) domains, whereas sillimanite nucleates in the Al-rich (pelitic) domain, initially on [001] mica planes. The first melt forms at the site of muscovite breakdown. 2) Chemically driven growth - In the quartzofeldspathic domain, K-feldspar progressively replaces plagioclase by a K+ - Na+ cation transfer reaction, driven by the freeing of muscovite-bound K+ during breakdown of the mica. Sillimanite forms intergrowths with the remaining hydrous melt components, contained initially in ovoid clots. 3) Merge and coarsening - With an increase in pressure, melt and sillimanite migrate away from clots along grain boundaries. A melt threshold is reached once the grain-boundary network is wetted by melt, increasing the length-scale of diffusion, resulting in grain boundary migration and grain-size coarsening. The melt threshold denotes the transition to an open-system on the lithology scale, where melt is a transient phase. 4) Residual melt crystallization - Residual melt crystallizes preferentially on existing peritectic grains as anatectic quartz, plagioclase, and K-feldspar. As the system cools and closes, grain growth forces melt into the intersections of grain-boundaries, recognized as irregular shaped melt films, or as intergrowths of the volatile-rich phases (i.e. Tur-Ms-Ap). In the Himalayan metamorphic core these processes result in the formation of: pelitic K-feldspar augen gneiss, stockwork leucogranites, and an effective strengthening of the hinterland, as evidenced by a switch in tectonic deformation style, from thin-skinned cover sequence thrust imbrication and folding to out-of-sequence basement-involved thick-skinned thrusting and folding.

  10. Near-liquidus growth of feldspar spherulites in trachytic melts: 3D morphologies and implications in crystallization mechanisms

    NASA Astrophysics Data System (ADS)

    Arzilli, Fabio; Mancini, Lucia; Voltolini, Marco; Cicconi, Maria Rita; Mohammadi, Sara; Giuli, Gabriele; Mainprice, David; Paris, Eleonora; Barou, Fabrice; Carroll, Michael R.

    2015-02-01

    The nucleation and growth processes of spherulitic alkali feldspar have been investigated in this study through X-ray microtomography and electron backscatter diffraction (EBSD) data. Here we present the first data on Shape Preferred Orientation (SPO) and Crystal Preferred Orientation (CPO) of alkali feldspar within spherulites. The analysis of synchrotron X-ray microtomography and EBSD datasets allowed us to study the morphometric characteristics of spherulites in trachytic melts in quantitative fashion, highlighting the three-dimensional shape, preferred orientation, branching of lamellae and crystal twinning, providing insights about the nucleation mechanism involved in the crystallization of the spherulites. The nucleation starts with a heterogeneous nucleus (pre-existing crystal or bubble) and subsequently it evolves forming "bow tie" morphologies, reaching radially spherulitic shapes in few hours. Since each lamella within spherulite is also twinned, these synthetic spherulites cannot be considered as single nuclei but crystal aggregates originated by heterogeneous nucleation. A twin boundary may have a lower energy than general crystal-crystal boundaries and many of the twinned grains show evidence of strong local bending which, combined with twin plane, creates local sites for heterogeneous nucleation. This study shows that the growth rates of the lamellae (10- 6-10- 7 cm/s) in spherulites are either similar or slightly higher than that for single crystals by up to one order of magnitude. Furthermore, the highest volumetric growth rates (10- 11-10- 12 cm3/s) show that the alkali feldspar within spherulites can grow fast reaching a volumetric size of ~ 10 μm3 in 1 s.

  11. Combined natural gamma ray spectral/litho-density measurements applied to complex lithologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quirein, J.A.; Gardner, J.S.; Watson, J.T.

    1982-09-01

    Well log data has long been used to provide lithological descriptions of complex formations. Historically, most of the approaches used have been restrictive because they assumed fixed, known, and distinct lithologies for specified zones. The approach described in this paper attempts to alleviate this restriction by estimating the ''probability of a model'' for the models suggested as most likely by the reservoir geology. Lithological variables are simultaneously estimated from response equations for each model and combined in accordance with the probability of each respective model. The initial application of this approach has been the estimation of calcite, quartz, and dolomitemore » in the presence of clays, feldspars, anhydrite, or salt. Estimations were made by using natural gamma ray spectra, photoelectric effect, bulk density, and neutron porosity information. For each model, response equations and parameter selections are obtained from the thorium vs potassium crossplot and the apparent matrix density vs apparent volumetric photoelectric cross section crossplot. The thorium and potassium response equations are used to estimate the volumes of clay and feldspar. The apparent matrix density and volumetric cross section response equations can then be corrected for the presence of clay and feldspar. A test ensures that the clay correction lies within the limits for the assumed lithology model. Results are presented for varying lithologies. For one test well, 6,000 feet were processed in a single pass, without zoning and without adjusting more than one parameter pick. The program recognized sand, limestone, dolomite, clay, feldspar, anhydrite, and salt without analyst intervention.« less

  12. Assessing Past Surface Processes Rates Using Feldspar Luminescence

    NASA Astrophysics Data System (ADS)

    Lamothe, M.

    2010-12-01

    Luminescence dating methods (OSL) developed over the last decade offer absolute depositional ages for sediments, crystallization ages for volcanic material or firing ages for burnt archaeological materials. When these natural surface events are from well-documented geological sequences of events, the ages can decipher timing as well as intensity of processes rates. The advent of luminescence dating has yielded a unique window on the pace of the erosion-transport-depositional cycle as the event assessed using luminescence is last exposure to sunlight and burial. A unique advantage of luminescence is its universal applicability since the routinely used dosimeters, minerals of quartz and feldspar, are almost ubiquitous on the land surface. Dating applications to sediments are still clouded by low accuracy and near saturation of the natural luminescence level, commonly observed for sediments older than the Last Interglacial. The latter imposes severe constraints in the use of quartz as a reliable dosimeter for any environment beyond the Late Pleistocene. However, in the case of feldspar, if dates are corrected for anomalous fading, ages of ancient surface processes could potentially be obtained up to ca 500 ka. Nevertheless, large uncertainties inherent to older ages may therein limit usefulness to precisely assessing processes rates. Case-studies will be used to highlight the potential and limitation of luminescence to properly assess surface processes rates for a) Holocene and older aeolian sedimentary systems, b) rates of tectonic movement by dating relative sea level changes from moderately stable to highly dynamic coastal areas, and c) albeit at its early stages, processes in volcanism, by means of tephra-extracted feldspar luminescence dating.

  13. Biochemical evolution III: Polymerization on organophilic silica-rich surfaces, crystal–chemical modeling, formation of first cells, and geological clues

    PubMed Central

    Smith, Joseph V.; Arnold, Frederick P.; Parsons, Ian; Lee, Martin R.

    1999-01-01

    Catalysis at organophilic silica-rich surfaces of zeolites and feldspars might generate replicating biopolymers from simple chemicals supplied by meteorites, volcanic gases, and other geological sources. Crystal–chemical modeling yielded packings for amino acids neatly encapsulated in 10-ring channels of the molecular sieve silicalite-ZSM-5-(mutinaite). Calculation of binding and activation energies for catalytic assembly into polymers is progressing for a chemical composition with one catalytic Al–OH site per 25 neutral Si tetrahedral sites. Internal channel intersections and external terminations provide special stereochemical features suitable for complex organic species. Polymer migration along nano/micrometer channels of ancient weathered feldspars, plus exploitation of phosphorus and various transition metals in entrapped apatite and other microminerals, might have generated complexes of replicating catalytic biomolecules, leading to primitive cellular organisms. The first cell wall might have been an internal mineral surface, from which the cell developed a protective biological cap emerging into a nutrient-rich “soup.” Ultimately, the biological cap might have expanded into a complete cell wall, allowing mobility and colonization of energy-rich challenging environments. Electron microscopy of honeycomb channels inside weathered feldspars of the Shap granite (northwest England) has revealed modern bacteria, perhaps indicative of Archean ones. All known early rocks were metamorphosed too highly during geologic time to permit simple survival of large-pore zeolites, honeycombed feldspar, and encapsulated species. Possible microscopic clues to the proposed mineral adsorbents/catalysts are discussed for planning of systematic study of black cherts from weakly metamorphosed Archaean sediments. PMID:10097060

  14. Magma hybridization in the Western Tatra Mts. granitoid intrusion (S-Poland, Western Carpathians).

    PubMed

    Burda, Jolanta; Gawęda, Aleksandra; Klötzli, Urs

    In the Variscan Western Tatra granites hybridization phenomena such as mixing and mingling can be observed at the contact of mafic precursors of dioritic composition and more felsic granitic host rocks. The textural evidence of hybridization include: plagioclase-K-feldspar-sphene ocelli, hornblende- and biotite-rimmed quartz ocelli, plagioclase with Ca-rich spike zonation, inversely zoned K-feldspar crystals, mafic clots, poikilitic plagioclase and quartz crystals, mixed apatite morphologies, zoned K-feldspar phenocrysts. The apparent pressure range of the magma hybridization event was calculated at 6.1 kbar to 4.6 kbar, while the temperature, calculated by independent methods, is in the range of 810°C-770°C. U-Pb age data of the hybrid rocks were obtained by in-situ LA-MC-ICP-MS analysis of zircon. The oscillatory zoned zircon crystals yield a concordia age of 368 ± 8 Ma (MSWD = 1.1), interpreted as the age of magma hybridization and timing of formation of the magmatic precursors. It is the oldest Variscan magmatic event in that part of the Tatra Mountains.

  15. Ternary feldspar thermometry of Paleoproterozoic granulites from In-Ouzzal terrane (Western Hoggar, southern Algeria)

    NASA Astrophysics Data System (ADS)

    Benbatta, A.; Bendaoud, A.; Cenki-Tok, B.; Adjerid, Z.; Lacène, K.; Ouzegane, K.

    2017-03-01

    The In Ouzzal terrane in western Hoggar (Southern Algeria) preserves evidence of ultrahigh temperature (UHT) crustal metamorphism. It consists in Archean crustal units, composed of orthogneissic domes and greenstone belts, strongly remobilized during the Paleoproterozoic orogeny which was recognized as an UHT event (peak T > 1000 °C and P ≈ 9-12 kbar). This metamorphism was essentially defined locally in Al-Mg granulites, Al-Fe granulites and quartzites outcropping in the Northern part of the In Ouzzal terrane (IOT). In order to test and verify the regional spread of the UHT metamorphism in this terrane, ternary feldspar thermometry on varied rock types (Metanorite, Granulite Al-Mg and Orthogneiss) and samples that crop out in different zones of the In Ouzzal terrane. These rocks contain either perthitic, antiperthitic or mesoperthitic parageneses. Ternary feldspars used in this study have clearly a metamorphic origin. The obtained results combined with previous works show that this UHT metamorphism (>900 °C) affected the whole In Ouzzal crustal block. This is of major importance as for future discussion on the geodynamic context responsible for this regional UHT metamorphism.

  16. Effects of soda-lime-silica waste glass on mullite formation kinetics and micro-structures development in vitreous ceramics.

    PubMed

    Marinoni, Nicoletta; D'Alessio, Daniela; Diella, Valeria; Pavese, Alessandro; Francescon, Ferdinando

    2013-07-30

    The effects of soda-lime waste glass, from the recovery of bottle glass cullet, in partial replacement of Na-feldspar for sanitary-ware ceramic production are discussed. Attention is paid to the mullite growth kinetics and to the macroscopic properties of the final output, the latter ones depending on the developed micro-structures and vitrification grade. Measurements have been performed by in situ high temperature X-ray powder diffraction, scanning electron microscopy, thermal dilatometry, water absorption and mechanical testing. Glass substituting feldspar from 30 to 50 wt% allows one (i) to accelerate the mullite growth reaction kinetics, and (ii) to achieve macroscopic features of the ceramic output that comply with the latest technical requirements. The introduction of waste glass leads to (i) a general saving of fuel and reduction of the CO2-emissions during the firing stage, (ii) a preservation of mineral resources in terms of feldspars, and (iii) an efficient management of the bottle glass refuse by readdressing a part of it in the sanitary-ware manufacturing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Thermal infrared spectroscopy and modeling of experimentally shocked basalts

    USGS Publications Warehouse

    Johnson, J. R.; Staid, M.I.; Kraft, M.D.

    2007-01-01

    New measurements of thermal infrared emission spectra (250-1400 cm-1; ???7-40 ??m) of experimentally shocked basalt and basaltic andesite (17-56 GPa) exhibit changes in spectral features with increasing pressure consistent with changes in the structure of plagioclase feldspars. Major spectral absorptions in unshocked rocks between 350-700 cm-1 (due to Si-O-Si octahedral bending vibrations) and between 1000-1250 cm-1 (due to Si-O antisymmetric stretch motions of the silica tetrahedra) transform at pressures >20-25 GPa to two broad spectral features centered near 950-1050 and 400-450 cm-1. Linear deconvolution models using spectral libraries composed of common mineral and glass spectra replicate the spectra of shocked basalt relatively well up to shock pressures of 20-25 GPa, above which model errors increase substantially, coincident with the onset of diaplectic glass formation in plagioclase. Inclusion of shocked feldspar spectra in the libraries improves fits for more highly shocked basalt. However, deconvolution models of the basaltic andesite select shocked feldspar end-members even for unshocked samples, likely caused by the higher primary glass content in the basaltic andesite sample.

  18. Preliminary data on boulders at station 6, Apollo 17 landing site

    NASA Technical Reports Server (NTRS)

    Heiken, G. H.; Butler, P., Jr.; Simonds, C. H.; Phinney, W. C.; Warner, J.; Schmitt, H. H.; Bogard, D. D.; Pearce, W. G.

    1973-01-01

    A cluster of boulders at Station 6 (Apollo 17 landing site) consists of breccias derived from the North Massif. Three preliminary lithologic units were established, on the basis of photogeologic interpretations; all lithologies identified photogeologically were sampled. Breccia clasts and matrices studied petrographically and chemically fall into two groups by modal mineralogy: (1) low-K Fra Mauro or high basalt composition, consisting of 50-60% modal feldspar, approximately 45% orthopyroxene and 1-7% Fe-Ti oxide; (2) clasts consisting of highland basalt composition, consisting of 70% feldspar, 30% orthopyroxene and olivine and a trace of Fe-Ti oxide.

  19. Fracture resistance of a selection of full-contour all-ceramic crowns: an in vitro study.

    PubMed

    Zesewitz, Tim F; Knauber, Andreas W; Nothdurft, Frank P

    2014-01-01

    This study aimed to evaluate the fracture resistance of monolithic single crowns made from zirconia (ZI), lithium disilicate (LS2), or feldspar ceramic (FC). Five groups of crowns representing a maxillary first molar were made with the appropriate dimensions according to the manufacturer's instructions. The ZI and LS2 crowns were luted adhesively or cemented conventionally on a metal abutment tooth analog. The feldspar ceramic crowns were luted adhesively. All specimens underwent axial loading until fracture. The crowns in the ZI groups possessed the highest fracture resistance independent of the mode of fixation.

  20. Igneous phenocrystic origin of K-feldspar megacrysts in granitic rocks from the Sierra Nevada batholith

    USGS Publications Warehouse

    Moore, J.G.; Sisson, T.W.

    2008-01-01

    Study of four K-feldspar megacrystic granitic plutons and related dikes in the Sierra Nevada composite batholith indicates that the megacrysts are phenocrysts that grew in contact with granitic melt. Growth to megacrystic sizes was due to repeated replenishment of the magma bodies by fresh granitic melt that maintained temperatures above the solidus for extended time periods and that provided components necessary for K-feldspar growth. These intrusions cooled 89-83 Ma, are the youngest in the range, and represent the culminating magmatic phase of the Sierra Nevada batholith. They are the granodiorite of Topaz Lake, the Cathedral Peak Granodiorite, the Mono Creek Granite, the Whitney Granodiorite, the Johnson Granite Porphyry, and the Golden Bear Dike. Megacrysts in these igneous bodies attain 4-10 cm in length. All have sawtooth oscillatory zoning marked by varying concentration of BaO ranging generally from 3.5 to 0.5 wt%. Some of the more pronounced zones begin with resorption and channeling of the underlying zone. Layers of mineral inclusions, principally plagioclase, but also biotite, quartz, hornblende, titanite, and accessory minerals, are parallel to the BaO-delineated zones, are sorted by size along the boundaries, and have their long axes preferentially aligned parallel to the boundaries. These features indicate that the K-feldspar megacrysts grew while surrounded by melt, allowing the inclusion minerals to periodically attach themselves to the faces of the growing crystals. The temperature of growth of titanite included within the K-feldspar megacrysts is estimated by use of a Zr-in-titanite geothermometer. Megacryst-hosted titanite grains all yield temperatures typical of felsic magmas, mainly 735-760 ??C. Titanite grains in the granodiorite hosts marginal to the megacrysts range to lower growth temperatures, in some instances into the subsolidus. The limited range and igneous values of growth temperatures for megacryst-hosted titanite grains support the interpretation that the megacrysts formed ag igneous sanidine phenocrysts, that intrusion temperatures varied by only small amounts while the megacrysts grew, and that megacryst growth ceased before the intrusions cooled below the solidus. Individual Ba-enriched zones were apparently formed by repeated surges of new, hotter granitic melt that replenished these large magma chambers. Each recharge of hot magron offset cooling, maintained the partially molten or mushy character of the chamber, stirred up crystals, and induced convective currents that lofted, settling megacrysts back up into the chamber. Because of repeated reheating of the magma chamber and prolonged maintenance of the melt, this process apparently continued long enough to provide the ideal environment for the growth of these extraordinarily large K-feldspar phenocrysts. ??2008 Geological Society of America.

  1. Iron isotope behavior during fluid/rock interaction in K-feldspar alteration zone - A model for pyrite in gold deposits from the Jiaodong Peninsula, East China

    NASA Astrophysics Data System (ADS)

    Zhu, Zhi-Yong; Jiang, Shao-Yong; Mathur, Ryan; Cook, Nigel J.; Yang, Tao; Wang, Meng; Ma, Liang; Ciobanu, Cristiana L.

    2018-02-01

    Mechanisms for Fe isotope fractionation in hydrothermal mineral deposits and in zones of associated K-feldspar alteration remain poorly constrained. We have analyzed a suite of bulk samples consisting of granite displaying K-feldspar alteration, Precambrian metamorphic rocks, and pyrite from gold deposits of the Jiaodong Peninsula, East China, by multi-collector inductively-coupled plasma mass spectrometry. Pyrites from disseminated (J-type) ores show a δ56Fe variation from +0.01 to +0.64‰, overlapping with the signature of the host granites (+0.08 to +0.39‰). In contrast, pyrites from quartz veins (L-type ores) show a wide range of Fe-isotopic composition from -0.78 to +0.79‰. Negative values are never seen in the J-type pyrites. The Fe isotope signature of the host granite with K-feldspar alteration is significantly heavier than that of the bulk silicate Earth. The Fe isotopic compositions of Precambrian metamorphic rocks across the district display a narrow range between -0.16‰ and +0.19‰, which is similar to most terrestrial rocks. Concentrations of major and trace elements in bulk samples were also determined, so as to evaluate any correlation between Fe isotope composition and degree of alteration. We note that during progressive K-feldspar alteration to rocks containing >70 wt% SiO2, >75 ppm Rb, and <1.2 wt% total Fe2O3, the Fe isotope composition of the granite changes systematically. The Fe isotope signature becomes heavier as the degree of alteration increases. The extremely light Fe isotopic compositions in L-type gold deposits may be explained by Rayleigh fractionation during pyrite precipitation in an open fracture system. We note that the sulfur isotopic compositions of pyrite in the two types of ores are also different. Pyrite from J-type ores has a systematically 3.5‰-higher δ34S value (11.2‰) than those of pyrite from the L-type ores (7.7‰). There is, however, no correlation between Fe and S isotope signatures. The isotopic fractionation of sulfur is used to constrain a change in the fO2 of the hydrothermal fluids from which pyrite precipitated. This work demonstrates that the Fe isotope composition of pyrite displays a significant response to the process of pyrite precipitation in hydrothermal systems, and that systematic fractionation of iron isotopes occurs during fluid/rock reaction in the K-feldspar alteration zone of the Linglong granite. The implications of the results are that processes of mineralization and associated fluid-rock interaction, which are ubiquitously observed in porphyry-style Cu-Au-Mo and other hydrothermal deposits, may be readily traceable using Fe isotopes.

  2. The Black Pearl mine, Arizona - Wolframite veins and stockscheider pegmatite related to an albitic stock

    NASA Technical Reports Server (NTRS)

    Schmitz, Christopher; Burt, Donald M.

    1990-01-01

    Wolframite-bearing quartz veins flanked by greisen alteration occur at and near the Black Pearl mine, Yavapai County, Arizona. The veins are genetically related to a small albitite stock, and cut a series of Proterozoic metasedimentary and intrusive rocks. The largest vein, the only one mined, is located at the apex of the stock. Field relations imply that this stock is a late-stage differentiate of time 1.4-Ga anorogenic Lawler Peak batholith, which crops out about 3 km to the south. The albitites are of igneous origin and have suffered only minor deuteric alteration. A thin (1 to 2 m) pegmatite unit ('stockscheider') occurs at the contact of the Black Pearl Albitite stock with the country rocks. Directional indicators and other evidence suggest that the pegmatite was formed in the presence of a volatile-rich fluid phase close to the time of magma emplacement. The sudden change from coarse-grained microcline-rich pegmatite to fine-grained, albite-rich albitite suggests pressure quenching, possibly due to escape of fluids up the Black Pearl vein. Stockscheider-like textures typically occur near the apical contacts of productive plutons. The presence or absence of this texture is a useful guide in prospecting for lithophile metal deposits.

  3. Alkali-deficient tourmaline from the Sullivan Pb-Zn-Ag deposit, British Columbia

    USGS Publications Warehouse

    Jiang, S.-Y.; Palmer, M.R.; Slack, J.F.

    1997-01-01

    Alkali-deficient tourmalines are found in albitized rocks from the hanging-wall of the Sullivan Pb-Zn-Ag deposit (British Columbia, Canada). They approximate the Mg-equivalent of foitite with an idealized formula D???(Mg2Al)Al6Si6O18(BO 3)3(OH)4. Major chemical substitutions in the tourmalines are the alkali-defect type [Na*(x) + Mg*(Y) = ???(X) + Al(Y)] and the uvite type [Na*(X) + Al(Y) = Ca(X) + Mg*(Y)], where Na* = Na + K, Mg* = Mg + Fe + Mn. The occurrence of these alkali-deficient tourmalines reflects a unique geochemical environment that is either alkali-depleted overall or one in which the alkalis preferentially partitioned into coexisting minerals (e.g. albite). Some of the alkali-deficient tourmalines have unusually high Mn contents (up to 1.5 wt.% MnO) compared to other Sullivan tourmalines. Manganese has a strong preference for incorporation into coexisting garnet and carbonate at Sullivan, thus many tourmalines in Mn-rich rocks are poor in Mn (<0.2 wt.% MnO). It appears that the dominant controls over the occurrence of Mn-rich tourmalines at Sullivan are the local availability of Mn and the lack of other coexisting minerals that may preferentially incorporate Mn into their structures.

  4. Influence of geology on groundwater-sediment interactions in arsenic enriched tectono-morphic aquifers of the Himalayan Brahmaputra river basin

    NASA Astrophysics Data System (ADS)

    Verma, Swati; Mukherjee, Abhijit; Mahanta, Chandan; Choudhury, Runti; Mitra, Kaushik

    2016-09-01

    The present study interprets the groundwater solute chemistry, hydrogeochemical evolution, arsenic (As) enrichment and aquifer characterization in Brahmaputra River Basin (BRB) involving three geologically and tectono-morphically distinct regions located in northeastern India. These study regions consist of the northwestern (NW) and the northern (N) region, both located along the western and eastern parts of Eastern Himalayas and the southern (S) region (near Indo-Burmese Range and Naga hills) of the Brahmaputra basin which show distinct tectonic settings and sediment provenances in the Himalayan orogenic belt. Stable isotopic composition (δ2H and δ18O) in groundwater suggests that some evaporation may have taken place through recharging of ground water in the study areas. The major-ion composition shows that groundwater composition of the NW and N parts are between Casbnd HCO3 and Casbnd Nasbnd HCO3 while the S-region is dominated by Nasbnd Casbnd HCO3 hydrochemical facies. The major mineralogical composition of aquifer sediments indicates the dominant presence of iron(Fe)-oxide and oxyhydroxides, mica (muscovite and biotite), feldspar, pyroxene, amphibole, abundance of quartz and clay minerals whereas clay is predominantly present in sediments of S-aquifers. These mafic minerals, aluminosilicates and clay minerals might offer available reactive surface for As-adsorption and co-precipitatation with amorphous Fe. These associated adsorbed and co-precipitated As might be released due to reductive dissolution of Fe-oxide and oxyhydroxides in groundwater. These minerals are assumed to be possible sources of As in groundwater. The stability diagrams of groundwater data suggest that solute might have been introduced into groundwater from weathering of K-feldspar, plagioclase, pyroxene of Himalayan rocks, the Siwalik Group and Eastern Syntaxes in NW and N-regions. However, basic cations might be derived from weathering of K-feldspar, plagioclase, pyroxene and olivine those being major constituents in a gabbroic complex (ophiolite) and basalt terrain in S-region. The aquifers of S-region are severely contaminated with dissolved As compared to NW and N regions. Almost more than 92% of groundwater samples in the southern part (maximum 5.53 μM or 415 μg/L) are enriched with As, which draws a distinct difference from the NW and N parts of BRB aquifers. The redox-sensitive solutes (i.e., Fe, Mn, HCO3- and TOC) are positively correlated with As in NW and N-parts; whereas EH shows negative to very weak positive correlation which suggests that a redox-dependent mobilization plays important role in As liberation in NW and N parts of the basin. However, As in southern aquifers is not showing any correlation or weak negative correlation with redox-sensitive solutes; suggesting that multiple reactions and hydrogeochemical processes and their interaction control As mobilization and fate in the S-region of BRB. The occurrence of high concentrations of arsenic in groundwater of Brahmaputra basin is described through a crustal recycling model and tectonic movement between the Indian-Eurasian plates and Burmese micro-continents. As-enriched groundwater in Himalayan foreland basin in the BRB is probably a result of crustal evolution through which As is subsequently mobilized from aquifer matrix to solution in groundwater by water-sediment reaction under favorable biogeochemical conditions. The results of the study indicate geological control (i.e. change in lithofacies, tectonic set-up) on groundwater chemistry and distribution of redox-sensitive solutes such as As.

  5. Identifying the regional-scale groundwater-surface water interaction on the Sanjiang Plain, Northeast China.

    PubMed

    Wang, Xihua; Zhang, Guangxin; Xu, Y Jun; Sun, Guangzhi

    2015-11-01

    Assessment on the interaction between groundwater and surface water (GW-SW) can generate information that is critical to regional water resource management, especially for regions that are highly dependent on groundwater resources for irrigation. This study investigated such interaction on China's Sanjiang Plain (10.9 × 10(4) km(2)) and produced results to assist sustainable regional water management for intensive agricultural activities. Methods of hierarchical cluster analysis (HCA), principal component analysis (PCA), and statistical analysis were used in this study. One hundred two water samplings (60 from shallow groundwater, 7 from deep groundwater, and 35 from surface water) were collected and grouped into three clusters and seven sub-clusters during the analyses. The PCA analysis identified four principal components of the interaction, which explained 85.9% variance of total database, attributed to the dissolution and evolution of gypsum, feldspar, and other natural minerals in the region that was affected by anthropic and geological (sedimentary rock mineral) activities. The analyses showed that surface water in the upper region of the Sanjiang Plain gained water from local shallow groundwater, indicating that the surface water in the upper region was relatively more resilient to withdrawal for usage, whereas in the middle region, there was only a weak interaction between shallow groundwater and surface water. In the lower region of the Sanjiang Plain, surface water lost water to shallow groundwater, indicating that the groundwater was vulnerable to pollution by pesticides and fertilizers from terrestrial sources.

  6. Incorporation of cooling-induced crystallization into a 2-dimensional axisymmetric conduit heat flow model

    NASA Astrophysics Data System (ADS)

    Heptinstall, David; Bouvet de Maisonneuve, Caroline; Neuberg, Jurgen; Taisne, Benoit; Collinson, Amy

    2016-04-01

    Heat flow models can bring new insights into the thermal and rheological evolution of volcanic 3 systems. We shall investigate the thermal processes and timescales in a crystallizing, static 4 magma column, with a heat flow model of Soufriere Hills Volcano (SHV), Montserrat. The latent heat of crystallization is initially computed with MELTS, as a function of pressure and temperature for an andesitic melt (SHV groundmass starting composition). Three fractional crystallization simulations are performed; two with initial pressures of 34MPa (runs 1 & 2) and one of 25MPa (run 3). Decompression rate was varied between 0.1MPa/° C (runs 1 & 3) and 0.2MPa/° C (run 2). Natural and experimental matrix glass compositions are accurately reproduced by all MELTS runs. The cumulative latent heat released for runs 1, 2 and 3 differs by less than 9% (8.69E5 J/kg*K, 9.32E5 J/kg*K, and 9.49E5 J/kg*K respectively). The 2D axisymmetric conductive cooling simulations consider a 30m-diameter conduit that extends from the surface to a depth of 1500m (34MPa). The temporal evolution of temperature is closely tracked at depths of 10m, 750m and 1400m in the centre of the conduit, at the conduit walls, and 20m from the walls into the host rock. Following initial cooling by 7-15oC at 10m depth inside the conduit, the magma temperature rebounds through latent heat release by 32-35oC over 85-123 days to a maximum temperature of 1002-1005oC. At 10m depth, it takes 4.1-9.2 years for the magma column to cool by 108-131oC and crystallize to 75wt%, at which point it cannot be easily remobilized. It takes 11-31.5 years to reach the same crystallinity at 750-1400m depth. We find a wide range in cooling timescales, particularly at depths of 750m or greater, attributed to the initial run pressure and the dominant latent heat producing crystallizing phase, Albite-rich Plagioclase Feldspar. Run 1 is shown to cool fastest and run 3 cool the slowest, with surface emissivity having the strongest cooling influence in the upper tens of meters of the conduit in all runs.

  7. From Compression to Extension: Cretaceous A-type Granite as Indicator of Geodynamic Changes in the Adria Part of the European Neotethys Suture Zone

    NASA Astrophysics Data System (ADS)

    Balen, D.; Schneider, P.; Massonne, H. J.; Opitz, J.; Petrinec, Z.

    2017-12-01

    The Cretaceous suture zone between the colliding plates of European and Adria (Gondwana) marks the closure of the W Neotethys branch. This zone, partly located in the northern Croatia, comprises reddish alkali granite which is mainly composed of alkali feldspar and quartz, with small amounts of albite, white mica and hematite with ilmenite exsolutions. Accessory minerals include zircon, apatite and Fe-(Ti)-oxides. This granite shows a geochemical signature typical for A2-type granite characterized by a highly siliceous composition and an enrichment in alkalies (high-K calc-alkaline series) and Al (strongly peraluminous, ASI>1.1). The rock belongs to the group of oxidized and ferroan granites with low CaO, MgO, MnO and FeO* contents. Characteristic trace element ratios, primitive mantle and OIB normalized spider-diagrams show significant positive anomalies of Rb, Th, U, K, Zr and Pb accompanied with clear negative anomalies of Ba, Nb, Sr, P, Eu and Ti. The negative anomalies suggest fractionation of plagioclase, apatite and Fe-Ti oxide. Based on the geochemical characteristics the magma originated mainly from melting of lower continental crust (granulite facies metasediments) although a mantle contribution cannot be excluded. The melting process could have been triggered by a heat from the upwelling upper mantle as inferred from zircon typology (D and J5 types prevail), as well from the zircon and whole-rock chemistry accompanied with high zircon saturation temperatures (T=860-950°C). Subsequent ascent of granitic magma was localized along the Europe-Adria suture i.e. the Sava Zone segment of the Late Cretaceous collisional zone where granite was emplaced at ca. 20 km depth. The emplacement followed a long period of Mesozoic orogenic compressional activity. Typical for A-type granites, although in our case related to the subduction of the Adria plate underneath the European plate, is their formation in an extensional tectonic regime. Thus, the studied A-type granite indicates the onset of transition from compression to extension at the European margin. This event occurred in the interval between 87.7-85.8 Ma as shown by 207Pb/235U, 206Pb/238U and 208Pb/232Th ratios measured with LA-ICP-MS on zircon. Support by the Croatian Science Foundation (IP-2014-09-9541) is acknowledged.

  8. Mineralogy of the Chaparra IOCG deposit, southern Peru

    NASA Astrophysics Data System (ADS)

    Yáñez, Juan; Alfonso, Pura

    2014-05-01

    The Chaparra IOCG, located in southern Peru, near Chala, is mined and exploited by small-scale miners for gold, however, it has not been studied until now. Here we present a preliminary geological and mineralogic study of this deposit. Powder X ray diffraction, electron microscopy and electron microprobe were used to characterize the mineralization. This deposit is hosted in magmatic rocks from the Coastal Batholith. Host rocks belong to the Linga Super-unit, of Upper Cretaceous age and are mainly constituted by monzonites, monzogabbros and diorites. Major alterations are the propylitic (chlorite - albite - quartz), advanced argillic (jarosite - natrojarosite) and sericitic (muscovite-sericite-quartz). Gypsum and other alteration minerals such as potassium feldspar and phlogopite, vermiculite and natrolite are widespread. Mineralization occurs mainly in quartz veins up to 1 m thick, emplaced filling fractures. Ore mineralogy is mainly composed of hematite, goethite, and sulphides (mainly pyrite, chalcopyrite and covellite). Gold and REE-rich minerals also occur. Native gold can reach up to 1 mm in size, but usually is few μm in size. Its composition is 82-92 wt% Au, up to 12 wt% of Ag and Fe can reach up to 4 wt%. The paragenetic sequence in the Chaparra deposit was divided into three stages: (I) primary mineralization, (II) Fracture filling, and (III) supergene alteration. The sequence begins with the crystallization of magnetite, quartz, pyrrhotite and pyrite. Subsequently, native gold, native Bismuth and uraninite crystallices together with the former minerals, in which are enclosed. Later, monacite is formed, being enclosed in quartz. Pyrite also presents small grains of chalcopyrite inside. Galena, sphalerite and arsenopyrite also are formed, whether included in pyrite or outside. Scarce grains of sakuraiite also occur in this stage. Structural formula of sakuraiie from this deposit is Cu 01.78-1.90 Zn 0.07-12Fe 1.16-124In 0.22-0.26Sn 0.79-082S4). Indium content of this mineral is between 5.43 and 6.41 wt%. At the end of this stage hematite and Cu-rich minerals, mainly tetrahedrite and covellite are formed. In addition, other sulphosalts, as tennantite and annivite are generated. Rrutile, zircon, apatite and subsequently ferrocordierite are also formed. In the stage (II) fractures are produced and filled by tetrahedrite, garavellite and native bismuth. Finally, in the stage (III) supergene alteration generates goethite, jarosite, gypsum, scorodite and yodargirite.

  9. Sr and Pb isotopic geochemistry of feldspars and implications for the growth of megacrysts in plutonic settings.

    NASA Astrophysics Data System (ADS)

    Munnikhuis, J.; Glazner, A. F.; Coleman, D. S.; Mills, R. D.

    2015-12-01

    Why megacrystic textures develop in silicic igneous rocks is still unknown. One hypothesis is that these crystals nucleate early in a magma chamber with a high liquid content. A supportive observation of this hypothesis is areas in plutons with high concentrations of megacrysts suggesting flow sorting. Another group of hypotheses suggest megacrystic textures form during protracted late-stage coarsening in a low-melt, interlocked matrix due to either thermal oscillations from incremental pluton emplacement, or Ostwald ripening. Isotopic analyses of large, euhedral K-feldspar megacrysts from the Cretaceous intrusive suites of the Sierra Nevada batholith (SNB) provide new insight into their origin. Megacrysts from the SNB reach the decimeter scale, are Or rich (85-90%), are perthitic, and host mineral inclusions of nearly all phases in the host rock. In-situ micro-drilling of transects, from core to rim, of the alkali feldspars provides material for Sr and Pb isotopic analyses by thermal ionization mass spectrometry (TIMS). Preliminary 87Sr/86Sr(i) isotopic data from samples from the Cathedral Peak Granodiorite, of the Tuolumne Intrusive Suite range from 0.706337 to 0.706452 (~1.6ɛSr) near the cores, whereas a sawtooth pattern with larger variability, 0.706179 to 0.706533 (~5ɛSr), occurs nears the rims. We interpret these preliminary data to indicate that the late portion of growth (i.e. crystal rim) was dominated by either cannibalism of small K-feldspar crystals with isotopic variability, or by addition of isotopically diverse late components to the magma. By comparing the Sr and Pb isotopic stratigraphy of megacrysts from a variety of rock matrices and different granitoids in the SNB isotopic trends can be evaluated to determine if crystals sizes are dependent on disequilibrium processes or grow at a steady state.

  10. Using a reactive transport model to elucidate differences between laboratory and field dissolution rates in regolith

    NASA Astrophysics Data System (ADS)

    Moore, Joel; Lichtner, Peter C.; White, Art F.; Brantley, Susan L.

    2012-09-01

    The reactive transport model FLOTRAN was used to forward-model weathering profiles developed on granitic outwash alluvium over 40-3000 ka from the Merced, California (USA) chronosequence as well as deep granitic regolith developed over 800 ka near Davis Run, Virginia (USA). Baseline model predictions that used laboratory rate constants (km), measured fluid flow velocities (v), and BET volumetric surface areas for the parent material (AB,mo) were not consistent with measured profiles of plagioclase, potassium feldspar, and quartz. Reaction fronts predicted by the baseline model are deeper and thinner than the observed, consistent with faster rates of reaction in the model. Reaction front depth in the model depended mostly upon saturated versus unsaturated hydrologic flow conditions, rate constants controlling precipitation of secondary minerals, and the average fluid flow velocity (va). Unsaturated hydrologic flow conditions (relatively open with respect to CO2(g)) resulted in the prediction of deeper reaction fronts and significant differences in the separation between plagioclase and potassium feldspar reaction fronts compared to saturated hydrologic flow (relatively closed with respect to CO2(g)). Under saturated or unsaturated flow conditions, the rate constant that controls precipitation rates of secondary minerals must be reduced relative to laboratory rate constants to match observed reaction front depths and measured pore water chemistry. Additionally, to match the observed reaction front depths, va was set lower than the measured value, v, for three of the four profiles. The reaction front gradients in mineralogy and pore fluid chemistry could only be modeled accurately by adjusting values of the product kmAB,mo. By assuming km values were constrained by laboratory data, field observations were modeled successfully with TST-like rate equations by dividing measured values of AB,mo by factors from 50 to 1700. Alternately, with sigmoidal or Al-inhibition rate models, this adjustment factor ranges from 5 to 170. Best-fit models of the wetter, hydrologically saturated Davis Run profile required a smaller adjustment to AB,mo than the drier hydrologically unsaturated Merced profiles. We attributed the need for large adjustments in va and AB,mo necessary for the Merced models to more complex hydrologic flow that decreased the reactive surface area in contact with bulk flow water, e.g., dead-end pore spaces containing fluids that are near or at chemical equilibrium. Thus, rate models from the laboratory can successfully predict weathering over millions of years, but work is needed to understand how to incorporate changes in what controls the relationship between reactive surface area and hydrologic flow.

  11. In-situ Pb isotope analysis of Fe-Ni-Cu sulphides by laser ablation multi-collector ICPMS: New insights into ore formation in the Sudbury impact melt sheet

    NASA Astrophysics Data System (ADS)

    Darling, J. R.; Storey, C. D.; Hawkesworth, C. J.; Lightfoot, P. C.

    2012-12-01

    Laser-ablation (LA) multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS) is ideally suited to in situ determination of isotope ratios in sulphide minerals. Using samples of magmatic sulphide ore from the Sudbury impact structure, we test LA-MC-ICPMS analytical protocols that aim to meet a range of analytical challenges in the analysis of Pb isotopes. These include: potential matrix sensitive isotopic fractionation; interferences on Pb isotopes; low melting points of many sulphide minerals; the availability of standards. Magmatic sulphides of wide ranging mineralogy (pyrrhotite, pentlandite, chalcopyrite, pyrite and sphalerite) were analysed for Pb isotopic composition, using the silicate glass NIST SRM 610 as an external standard to correct for instrumental mass-fractionation. Despite matrix sensitive melting and re-deposition around ablation pits, several lines of evidence indicate that all analyses are accurate, within typical analytical uncertainties of 0.003-2% (2σ), and that the defined approach is insensitive to compositional diversity in sample matrix: (a) laser ablation and dissolution based measurements of sulphide powders are in agreement; (b) analyses from each sample define isochron ages within uncertainty of the known crystallization age (1850 Ma); (c) the results of sulphide measurements by laser ablation are consistent with age-corrected feldspar analyses from the same samples. The results have important implications for ore formation in Sudbury. The Pb isotope data regressions are consistent with age corrected feldspar analyses from each respective sample, which together with time integrated Th/U ratios that match whole rock values (3.1, 4.0 and 6.1 for the Worthington, Copper Cliff and Parkin Offset Dykes, respectively) indicate chemical equilibrium between the silicate and sulphide systems during ore formation. The sulphides within each respective sample have indistinguishable model initial Pb isotope ratios (207Pb/204Pbm), irrespective of mineralogy or texture, indicating a common origin for ores within each of three different Offset Dykes. Furthermore, variations between Offset Dykes (e.g., 207Pb/204Pbm = 15.514 ± 0.012, 15.399 ± 0.009 and 15.275 ± 0.003) show that the ores have differing crustal sources on previously unrecognized scales. Mass balance considerations, particularly for MgO, Ni and Cu, indicate that the spatial distribution of mafic target rocks played a significant role in controlling the mineralization potential in different parts of the melt sheet.

  12. Chemical weathering rates of a soil chronosequence on granitic alluvium: III. Hydrochemical evolution and contemporary solute fluxes and rates

    USGS Publications Warehouse

    White, A.F.; Schulz, M.S.; Vivit, D.V.; Blum, A.E.; Stonestrom, David A.; Harden, J.W.

    2005-01-01

    Although long-term changes in solid-state compositions of soil chronosequences have been extensively investigated, this study presents the first detailed description of the concurrent hydrochemical evolution and contemporary weathering rates in such sequences. The most direct linkage between weathering and hydrology over 3 million years of soil development in the Merced chronosequence in Central California relates decreasing permeability and increasing hydrologic heterogeneity to the development of secondary argillic horizons and silica duripans. In a highly permeable, younger soil (40 kyr old), pore water solutes reflect seasonal to decadal-scale variations in rainfall and evapotranspiration (ET). This climate signal is strongly damped in less permeable older soils (250 to 600 kyr old) where solutes increasingly reflect weathering inputs modified by heterogeneous flow. Elemental balances in the soils are described in terms of solid state, exchange and pore water reservoirs and input/output fluxes from precipitation, ET, biomass, solute discharge and weathering. Solute mineral nutrients are strongly dependent on biomass variations as evidenced by an apparent negative K weathering flux reflecting aggradation by grassland plants. The ratios of solute Na to other base cations progressively increase with soil age. Discharge fluxes of Na and Si, when integrated over geologic time, are comparable to solid-state mass losses in the soils, implying similar past weathering conditions. Similarities in solute and sorbed Ca/Mg ratios reflect short-term equilibrium with the exchange reservoir. Long-term consistency in solute ratios, when contrasted against progressive decreases in solid-state Ca/Mg, requires an additional Ca source, probably from dry deposition. Amorphous silica precipitates from thermodynamically-saturated pore waters during periods of high evapotranspiration and result in the formation of duripans in the oldest soils. The degree of feldspar and secondary gibbsite and kaolinite saturation varies both spatially and temporally due to the seasonality of plant-respired CO2 and a decrease in organically complexed Al. In deeper pore waters, K-feldspar is in equilibrium and plagioclase is about an order of magnitude undersaturated. Hydrologic heterogeneity produces a range of weathering gradients that are constrained by solute distributions and matrix and macropore flow regimes. Plagioclase weathering rates, based on precipitation-corrected Na gradients, vary between 3 and 7 ?? 10-16 mol m-2 s-1. These rates are similar to previously determined solid-state rates but are several orders of magnitude slower than for experimental plagioclase dissolution indicating strong inhibitions to natural weathering, partly due to near-equilibrium weathering reactions. Copyright ?? 2005 Elsevier Ltd.

  13. Acid-neutralizing potential of minerals in intrusive rocks of the Boulder batholith in northern Jefferson County, Montana

    USGS Publications Warehouse

    Desborough, George A.; Briggs, Paul H.; Mazza, Nilah; Driscoll, Rhonda

    1998-01-01

    Experimental studies show that fresh granitic rocks of the Boulder batholith in the Boulder River headwaters near Basin, Montana have significant acid-neutralizing potential and are capable of neutralizing acidic water derived from metal-mining related wastes or mine workings. Laboratory studies show that in addition to the acidneutralizing potential (ANP) of minor amounts of calcite in these rocks, biotite, tremolite, and feldspars will contribute significantly to long-term ANP. We produced 0.45 micrometer-filtered acidic (pH = 2.95) leachate for use in these ANP experiments by exposing metal-mining related wastes to deionized water in a waste:leachate ratio of 1:20. We then exposed these leachates to finely-ground and sized fractions of batholith rocks, and some of their mineral fractions for extended and repeated periods, for which results are reported here. The intent was to understand what reactions of metal-rich acidic water and fresh igneous rocks would produce. The reactions between the acidic leachates and the bulk rocks and mineral fractions are complex. Factors such as precipitation of phases like Fe-hydroxides and Alhydroxides and the balance between dissolved cations and anions that are sulfate dominated complicate analysis of the results. Research by others of acid neutralization by biotite and tremolite attributed a rise in pH to proton (H+) adsorption in sites vacated by K, Mg, and Ca. Destruction of the silicate framework and liberation of associated structural hydroxyl ions may contribute to ANP. Studies by others have indicated that the conversion of biotite to a vermiculite-type structure by removal of K at a pH of 4 consumes about six protons for every mole of biotite, but at a pH of 3 there is pronounced dissolution of the tetrahedral lattice. The ANP of fresh granitic rocks is much higher than anticipated. The three bulk Boulder igneous rock samples studied have minimum ANP equivalent to about 10-14 weight percent calcite. This ANP is in addition to that provided by the 0.36-1.4 weight percent calcite present in these samples. The total rock ANP is thus equivalent to that of many sedimentary rocks that are generally believed to be among the most efficient for attenuation of acidic waters. The long-term ANP contributed by biotite, tremolite, feldspars, and possibly unidentified minerals in these rocks, as well as calcite, are all important with regard to their natural remediation of degraded water quality originating from Fe-sulfide rich mineral deposits and the associated mine wastes and acid-mine drainage water.

  14. XRD and SEM study of alumina silicate porcelain insulator

    NASA Astrophysics Data System (ADS)

    Duddi, Dharmender; Singh, G. P.; Kalra, Swati; Shekhawat, M. S.; Tak, S. K.

    2018-05-01

    Higher strength electrical porcelain is a requirement of industry. This will be achieved by a specific composition of raw materials, which is consisted of clays and feldspars. Water absorption, particle size and insulating properties are of special interest now a day. China clay, Ball clay and Quartz are widely used by ceramic industries in Bikaner district of Rajasthan. Sample for present study were prepared by mixing of above clay, feldspar with MnO2, then shrinkage is observed. Bar shaped samples were prepared and heated up to a temperature of about 1185° C to observe shrinkage. For phase study of XRD and SEM are observed.

  15. Geology and ore deposits of the Mahd Adh Dhahab District, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Luce, Robert W.; Bagdady, Abdulaziz; Roberts, Ralph Jackson

    1976-01-01

    The principal ore minerals are pyrite, chalcopyrite, sphalerite, galena, and minor tetrahedrite, argentite, and native gold and silver. The gold and silver occurs finely disseminated in the veins and in the altered selvages of the veins. Widespread potassic and propylitic alteration accompanied the ore-forming processes. Potassium feldspar was introduced during an early stage of vein formation. Isotopic analyses of lead in vein potassium feldspar and galena yield a model age of about 900-1050 million years with the possibility of the original lead source having been remobilized about 600 million years ago. Chlorite and carbonate are also prominent vein minerals.

  16. Comparative study of ice nucleating efficiency of K-feldspar in immersion and deposition freezing modes

    NASA Astrophysics Data System (ADS)

    Hiron, T.; Hoffmann, N.; Peckhaus, A.; Kiselev, A. A.; Leisner, T.; Flossmann, A. I.

    2016-12-01

    One of the main challenges in understanding the evolution of Earth's climate resides in the understanding the role of ice nucleation on the development of tropospheric clouds as well as its initiation. K-feldspar is known to be a very active ice nucleating particle and this study focuses on the characterization of its activity in two heterogeneous nucleation modes, immersion and deposition freezing.We use a newly built humidity-controlled cold stage allowing the simultaneous observation of up to 2000 identical 0.6-nanoliter droplets containing suspension of mineral dust particles. The droplets are first cooled down to observe immersion freezing, the obtained ice crystals are then evaporated and finally, the residual particles are exposed to the water vapor supersaturated with respect to ice.The ice nucleation abilities for the individual residual particles are then compared for the different freezing modes and correlation between immersion ice nuclei and deposition ice nuclei is investigated.Based on the electron microscopy analysis of the residual particles, we discuss the possible relationship between the ice nucleation properties of feldspar and its microstructure. Finally, we discuss the atmospheric implications of our experimental results, using DESCAM, a 1.5D bin-resolved microphysics model.

  17. Importance of dust storms in the diagenesis of sandstones: a case study, Entrada sandstone in the Ghost Ranch area, New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Orhan, Hükmü

    1992-04-01

    The importance of dust storms on geological processes has only been studied recently. Case-hardening, desert-varnish formation, duricrust development, reddening and cementation of sediments and caliche formation, are some important geological processes related to dust storms. Dust storms can also be a major source for cements in aeolian sandstones. The Jurassic aeolian Entrada Formation in the Ghost Ranch area is composed of quartz with minor amounts of feldspar and rock fragments, and is cemented with smectite as grain coatings and calcite and kaolinite as pore fillings. Smectite shows a crinkly and honeycomb-like morphology which points to an authigenic origin. The absence of smectite as framework grains and the presence of partially dissolved grains, coated with smectite and smectite egg-shells, indicate an external source. Clay and fine silt-size particles are believed to be the major source for cements, smectite and calcite in the Entrada Formation. The common association of kaolinite with altered feldspar, and the absence of kaolinite in spots heavily cemented with calcite, lead to the conclusions that the kaolinite formation postdates carbonates and that framework feldspar grains were the source of kaolinite.

  18. In-situ 40Ar/39Ar Laser Probe Dating of Micas from Mae Ping Shear Zone, Northern Thailand

    NASA Astrophysics Data System (ADS)

    Lin, Y. L.; Yeh, M. W.; Lo, C. H.; Lee, T. Y.; Charusiri, P.

    2012-04-01

    The Mae Ping Shear Zone (MPSZ, also known as Wang Chao Fault Zone), which trends NW-SE from Myanmar to central Thailand, was considered as the southern boundary of the SE extrusion of Indochina and Sibumasu block during the Cenozoic escape tectonic event of SE asia. Many analyses of 40Ar/39Ar dating on biotite and K-feldspar, K/Ar dating on biotite and illite, zircon fission-track and apatite fission-track dating had been accomplished to constrain the shearing period. Nevertheless, it is hard to convince that the ages could represent the end of the shearing since none of the dated minerals have been proved to be crystallized syn-tectonically. Meta-granitoid and gneiss from the MPSZ were analyzed in this study by applying in-situ 40Ar/39Ar laser probe dating with combination of petrology and micro-structural analysis in the purpose to decipher the geological significance of the dates. Plagioclase was replacing K-feldspar for K-feldspar was cut and embayed by plagioclase observed by SEM + EDS. Muscovite in the granitoid own fish shapes of sinistral sense of shearing, and are always in contact with plagioclase and quartz, which suggests that the muscovite crystallized from the dissolving K-feldspar under amphibolite facies condition. 117 spots on 12 muscovite fishes yield ages from 44 Ma to 35 Ma and have a mean age of 40 Ma. Since the growth condition of the muscovite is higher than the closure temperature, thus we can interpret these muscovite ages as cooling ages. Hence left-lateral shearing of the MPSZ can be deduced as syn- to post-muscovite growth and uplifted the crystalline rocks within the shear zone. The ages of matrix biotite in gneiss has a mean age of 35 Ma, which is consistent with the cooling path reconstructed from previous studies. While the ages of inclusion biotite in the K-feldspar phenocryst scatter from 40 to 50 Ma due to the isotopes were not totally re-equilibrated during the shearing. Consequently, the left-lateral shearing of the MPSZ was supposed to initiate prior to 44 Ma and lasted till 35Ma, which is earlier than previously proposed.

  19. Nanomineralogy as a new dimension in understanding elusive geochemical processes in soils: The case of low-solubility-index elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schindler, Michael; Hochella, Michael F.

    2016-05-20

    Nanomineralogy is a new dimension in understanding chemical processes in soils. These processes are revealed at the nanoscale within the structures and compositions of phases that heretofore were not even known to exist in the soils in which they are found. The discovery and understanding of soil chemistry in this way is best accessible via a combination of focused ion beam technology (for sample preparation) and high resolution, analytical transmission electron microscopy (for phase identification). We have used this scientific framework and these techniques to decipher past and present chemical processes in a soil in Sudbury, Ontario, Canada that hasmore » been impacted by both smelter contamination (acidification) and subsequent remediation within the past century. In this study, we use these methods to investigate mobilization and sequestration of the relatively immobile elements Al, Ti and Zr. In a micrometer-thick alteration layer on an albite grain, a first generation of clay minerals represents weathering of the underlying mineral prior to the acidification of the soils. Complex assemblages of Ti- and Zr-bearing nanophases occur on the surfaces of Fe-(hydr)oxide crystals and are the result of the dissolution of silicates and oxides and the mobilization of Ti- and Zr-bearing colloids under acidic conditions. These phases include anatase (TiO2), kleberite (Fe3+Ti6O11(OH)5) Ti4O7, baddelyite (ZrO2), a structural analogue to kelyshite (NaZr[Si2O6(OH)]) and authigenic zircon (ZrSiO4). Subsequent remediation of the acidic soils has resulted in the sequestration of Al and in the neoformation of the clay minerals kaolinite, smectite and illite. These complex mineral assemblages form a porous layer that controls the interaction of the underlying mineral with the environment.« less

  20. Fundamental study of CO2-H2O-mineral interactions for carbon sequestration, with emphasis on the nature of the supercritical fluid-mineral interface.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, Charles R.; Dewers, Thomas A.; Heath, Jason E.

    2013-09-01

    In the supercritical CO2-water-mineral systems relevant to subsurface CO2 sequestration, interfacial processes at the supercritical fluid-mineral interface will strongly affect core- and reservoir-scale hydrologic properties. Experimental and theoretical studies have shown that water films will form on mineral surfaces in supercritical CO2, but will be thinner than those that form in vadose zone environments at any given matric potential. The theoretical model presented here allows assessment of water saturation as a function of matric potential, a critical step for evaluating relative permeabilities the CO2 sequestration environment. The experimental water adsorption studies, using Quartz Crystal Microbalance and Fourier Transform Infrared Spectroscopymore » methods, confirm the major conclusions of the adsorption/condensation model. Additional data provided by the FTIR study is that CO2 intercalation into clays, if it occurs, does not involve carbonate or bicarbonate formation, or significant restriction of CO2 mobility. We have shown that the water film that forms in supercritical CO2 is reactive with common rock-forming minerals, including albite, orthoclase, labradorite, and muscovite. The experimental data indicate that reactivity is a function of water film thickness; at an activity of water of 0.9, the greatest extent of reaction in scCO2 occurred in areas (step edges, surface pits) where capillary condensation thickened the water films. This suggests that dissolution/precipitation reactions may occur preferentially in small pores and pore throats, where it may have a disproportionately large effect on rock hydrologic properties. Finally, a theoretical model is presented here that describes the formation and movement of CO2 ganglia in porous media, allowing assessment of the effect of pore size and structural heterogeneity on capillary trapping efficiency. The model results also suggest possible engineering approaches for optimizing trapping capacity and for monitoring ganglion formation in the subsurface.« less

  1. Automated Dissolution for Enteric-Coated Aspirin Tablets: A Case Study for Method Transfer to a RoboDis II.

    PubMed

    Ibrahim, Sarah A; Martini, Luigi

    2014-08-01

    Dissolution method transfer is a complicated yet common process in the pharmaceutical industry. With increased pharmaceutical product manufacturing and dissolution acceptance requirements, dissolution testing has become one of the most labor-intensive quality control testing methods. There is an increased trend for automation in dissolution testing, particularly for large pharmaceutical companies to reduce variability and increase personnel efficiency. There is no official guideline for dissolution testing method transfer from a manual, semi-automated, to automated dissolution tester. In this study, a manual multipoint dissolution testing procedure for an enteric-coated aspirin tablet was transferred effectively and reproducibly to a fully automated dissolution testing device, RoboDis II. Enteric-coated aspirin samples were used as a model formulation to assess the feasibility and accuracy of media pH change during continuous automated dissolution testing. Several RoboDis II parameters were evaluated to ensure the integrity and equivalency of dissolution method transfer from a manual dissolution tester. This current study provides a systematic outline for the transfer of the manual dissolution testing protocol to an automated dissolution tester. This study further supports that automated dissolution testers compliant with regulatory requirements and similar to manual dissolution testers facilitate method transfer. © 2014 Society for Laboratory Automation and Screening.

  2. Emplacement and deformation of the A-type Madeira granite (Amazonian Craton, Brazil)

    NASA Astrophysics Data System (ADS)

    Siachoque, Astrid; Salazar, Carlos Alejandro; Trindade, Ricardo

    2017-04-01

    The Madeira granite is one of the Paleoproterozoic (1.82 Ga) A-type granite intrusions in the Amazonian Craton. It is elongated in the NE-SW direction and is composed of four facies. Classical structural techniques and the anisotropy of magnetic susceptibility (AMS) method were applied to the study of its internal fabric. Magnetic susceptibility measurements, thermomagnetic curves, remanent coercivity spectra, optical microscopy and SEM (scanning electron microscopy) analyses were carried out on the earlier and later facies of the Madeira granite: the rapakivi granite (RG) and the albite granite (AG) respectively. The last one is subdivided into the border albite granite (BAG) and the core albite granite (CAG) subfacies. AMS fabric pattern is controlled by pure magnetite in all facies, despite significant amounts of hematite in the BAG subfacies. Microstructural observations show that in almost all sites, magnetic fabric correlates to magmatic state fabrics that are defined by a weak NE-SW orientation of mafic and felsic silicates. However, strain mechanisms in both subfacies of AG also exhibit evidence for solid-state deformation at high to moderate temperatures. Pegmatite dyke, strike slip fault (SFA-B-C), hydrothermal vein, normal fault (F1-2) and joint (J) structures were observed and their orientation and kinematics is consistent with the magmatic and solid-state structures. Dykes, SFA-C and F1, are usually orientated along the N70°E/40°N plane, which is nearly parallel to the strike of AMS and magmatic foliations. In contrast, veins, SFB, F2 and some J are oriented perpendicular to the N70°E trend. Kinematic analysis in these structures shows evidence for a dextral sense of movement in the system in the brittle regime. The coherent structural pattern for the three facies of Madeira granite suggests that the different facies form a nested pluton. The coherence in orientation and kinematics from magmatic to high-temperature solid-state, and into the brittle regime indicates the continuity in the stress regime from the last magmatic stages until the complete cooling of the pluton, likely along a NE-SW dextral corridor related to the regional deformation in the Uatumã-Anauá Domain of the Amazonian Craton.

  3. Monazite behaviours during high-temperature metamorphism: a case study from Dinggye region, Tibetan Himalaya

    NASA Astrophysics Data System (ADS)

    Wang, Jia-Min; Wu, Fu-Yuan; Rubatto, Daniela; Liu, Shi-Ran; Zhang, Jin-Jiang

    2017-04-01

    Monazite is a key accessory mineral for metamorphic geochronology, but its growth mechanisms during melt-bearing high-temperature metamorphism is not well understood. Therefore, the petrology, pressure-temperature and timing of metamorphism have been investigated in pelitic and psammitic granulites from the Greater Himalayan Crystalline Complex (GHC) in Dinggye, southern Tibet. These rocks underwent an isothermal decompression process from pressure conditions of >10 kbar to <5 kbar with constant temperatures of 750-830°C, and recorded three metamorphic stages of kyanite-grade (M1), sillimanite-grade (M2) and cordierite-spinel grade (M3). Monazite and zircon crystals were analyzed for ages by microbeam techniques either in mounts or thin sections. Ages were linked to specific conditions of mineral growth by comprehensive studies on zoning patterns, trace element signatures, index mineral inclusions (melt inclusions, sillimanite and K-feldspar) in dated domains and textural correlations with coexisting minerals. The results show that inherited domains (500-400 Ma) are common in monazite even at granulite-facies conditions. Few monazites formed at the M1-stage ( 30-29 Ma) and recorded heterogeneous Th, Y, and HREE compositions, which formed by recrystallization related to muscovite dehydration melting reaction. These monazite grains were protected from dissolution or lateral overprinting mainly by the armour effect of matrix crystals (biotite and quartz). Most monazite grains formed at the M3-stage (21-19 Ma) through either dissolution-reprecipitation or recrystallization that was related to biotite dehydration melting reaction. These monazite grains record HREE and Y signatures in local equilibrium with different reactions involving either garnet breakdown or peritectic garnet growth. Another peak of monazite growth occurs during melt crystallization ( 15 Ma), and these monazites are unzoned and have homogeneous compositions. Our results documented the widespread recrystallization to account for monazite growth during high-temperature metamorphism and related melting reactions that trigger monazite recrystallization. In a regional sense, our P-T-t data along with published data indicate that the pre-M1 eclogite-facies metamorphism occurred at 39-30 Ma in the Dinggye Himalaya. Our results are in favour of a steady exhumation of the GHC rocks since Oligocene that was contributed by partial melting. Key words: U-Th-Pb geochronology, Monazite, Recrystallization, Pelitic granulite, Himalaya

  4. Experimental studies of alunite: II. Rates of alunite-water alkali and isotope exchange

    USGS Publications Warehouse

    Stoffregen, R.E.; Rye, R.O.; Wasserman, M.D.

    1994-01-01

    Rates of alkali exchange between alunite and water have been measured in hydrothermal experiments of 1 hour to 259 days duration at 150 to 400??C. Examination of run products by scanning electron microscope indicates that the reaction takes place by dissolution-reprecipitation. This exchange is modeled with an empirical rate equation which assumes a linear decrease in mineral surface area with percent exchange (f) and a linear dependence of the rate on the square root of the affinity for the alkali exchange reaction. This equation provides a good fit of the experimental data for f = 17% to 90% and yields log rate constants which range from -6.25 moles alkali m-2s-1 at 400??C to - 11.7 moles alkali m-2s-1 at 200??C. The variation in these rates with temperature is given by the equation log k* = -8.17(1000/T(K)) + 5.54 (r2 = 0.987) which yields an activation energy of 37.4 ?? 1.5 kcal/mol. For comparison, data from O'Neil and Taylor (1967) and Merigoux (1968) modeled with a pseudo-second-order rate expression give an activation energy of 36.1 ?? 2.9 kcal/mol for alkali-feldspar water Na-K exchange. In the absence of coupled alkali exchange, oxygen isotope exchange between alunite and water also occurs by dissolution-reprecipitation but rates are one to three orders of magnitude lower than those for alkali exchange. In fine-grained alunites, significant D-H exchange occurs by hydrogen diffusion at temperatures as low as 100??C. Computed hydrogen diffusion coefficients range from -15.7 to -17.3 cm2s-1 and suggest that the activation energy for hydrogen diffusion may be as low as 6 kcal/mol. These experiments indicate that rates of alkali exchange in the relatively coarse-grained alunites typical of hydrothermal ore deposits are insignificant, and support the reliability of K-Ar age data from such samples. However, the fine-grained alunites typical of low temperature settings may be susceptible to limited alkali exchange at surficial conditions which could cause alteration of their radiometric ages. Furthermore, the rapid rate of hydrogen diffusion observed at 100-150??C suggests that fine-grained alunites are susceptible to rapid D-H re-equilibration even at surficial conditions. ?? 1994.

  5. Diagenesis of Upper Carboniferous rocks in the Ouachita foreland shelf in mid-continent USA: an overview of widespread effects of a Variscan-equivalent orogeny

    USGS Publications Warehouse

    Walton, A.W.; Wojcik, K.M.; Goldstein, R.H.; Barker, C.E.

    1995-01-01

    Diagenesis of Upper Carboniferous foreland shelf rocks in southeastern Kansas took place at temperatures as high as 100-150?? C at a depth of less than 2 km. High temperatures are the result of the long distance (hundreds of kilometers) advection of groundwater related to collisional orogeny in the Ouachita tectonic belt to the south. Orogenic activity in the Ouachita area was broadly Late Carboniferous, equivalent to the Variscan activity of Europe. Mississippi Valley-type Pb-Zn deposits and oil and gas fields in the US midcontinent and elsewhere are commonly attributed to regional groundwater flow resulting from such collisional events. This paper describes the diagenesis and thermal effects in sandstone and limestone of Upper Carboniferous siliciclastic and limestone-shale cyclothems, the purported confining layer of a supposed regional aquifer. Diagenesis took place in early, intermediate, and late stages. Many intermediate and late stage events in the sandstones have equivalents in the limestones, suggesting that the causes were regional. The sandstone paragenesis includes siderite cement (early stage), quartz overgrowths (intermediate stage), dissolution of feldspar and carbonates, followed by minor Fe calcite, pore-filling kaolinite and sub-poikilotopic Ca ankerite (late stage). The limestone paragenesis includes calcite cement (early stage); megaquartz, chalcedony, and Fe calcite spar (intermediate stage); and dissolution, Ca-Fe dolomite and kaolinite (late stage). The Rm value of vitrinite shows a regional average of 0.6-0.7%; Rock-Eval TmaX suggests a comparable degree of organic maturity. The Th of aqueous fluid inclusions in late stage Ca-Fe-Mg carbonates ranges from 90 to 160?? and Tmice indicates very saline water (>200000 ppm NaCl equivalent); ??18O suggests that the water is of basinal origin. Local warm spots have higher Rm, Tmax, and Th. The results constrain numerical models of regional fluid migration, which is widely viewed as an artesian flow from recharge areas in the Ouachita belt across the foreland basin onto the foreland shelf area. Such models must account for heating effects that extend at least 500 km from the orogenic front and affect both supposed aquifer beds and the overlying supposed confining layer. Warm spots indicate either more rapid or more prolonged flow locally. Th and Tmice data show the highest temperatures coincided with high salinity fluids. ?? 1995 Springer-Verlag.

  6. Experimental investigation of the Heletz shale caprocks sealing capacity: implication for CO2 geological storage integrity

    NASA Astrophysics Data System (ADS)

    Abdoulghafour, Halidi; Gouze, Philippe; Luquot, Linda; Arif, Mohamed; Iglauer, Stefan

    2017-04-01

    Using a combination of core flooding experiments and wettability measurements, we evaluate the sealing efficiency of Heletz caprock under CO2 sequestration conditions. The flow through experiments consisted of flowing CO2 enriched fluid into two micro-fractured cylindrical cores (15 mm length - 9 mm diameter, with hydraulic aperture: 2.7 µm for the sample named H18A and 13 µm for sample named H18B) and monitoring the permeability changes, the evolution of the chemistry from the inlet and outlet fluid. The changes in microstructures and mineralogy were also studied using an environmental scanning electrons microscope (ESEM) and X-ray micro-tomography (XRMT) images. The fracture permeability was found to decrease significantly in the two experiments from 14.1×10-12 m2 to 5.0×10-12 m2 for experiment H18B and from 6.5×10-13 m2 to 2.8×10-13 m2 for experiment H18A. Calcite dissolution and reconversion of k-feldspar to illite and kaolinite were the main reaction on sample H18B while "calcite precipitation" in batch condition was the dominant reaction on sample H18A. Accordingly, the decrease in permeability was induced by the dispersion of dissolution products and the re-organization of clay particles within the fracture for sample H18B as shown by micro-tomography and ESEM images. The fracture healing due to the calcite and clay mineral precipitation along the fracture was attested by ESEM image for sample H18A. The results of capillary pressure breakthrough calculated by applying the Washburn equation and the reservoir scaling method from intrusion of mercury are approximately 380 kPa and 310 kPa for H18B and H18A respectively. Although, these values are sensibly different but close to each other and in good agreement to indicate the weak storage capacity of the heletz caprock. Subsequently less than 90 m of CO2 column height can be efficiently stored in the Heletz reservoir. Thus the self-mitigation of the CO2 leakage is expected only when few quantity of CO2 will be injected.

  7. Formation of a metastable hollandite phase from amorphous plagioclase: A possible origin of lingunite in shocked chondritic meteorites

    NASA Astrophysics Data System (ADS)

    Kubo, Tomoaki; Kono, Mari; Imamura, Masahiro; Kato, Takumi; Uehara, Seiichiro; Kondo, Tadashi; Higo, Yuji; Tange, Yoshinori; Kikegawa, Takumi

    2017-11-01

    We conducted high-pressure experiments in plagioclase with different anorthite contents at 18-27 GPa and 25-1750 °C using both a laser-heated diamond anvil cell and a Kawai-type multi-anvil apparatus to clarify the formation conditions of the hollandite phase in shocked chondritic and Martian meteorites. Lingunite (NaAlSi3O8-rich hollandite) was found first to crystallize from amorphous oligoclase as a metastable phase before decomposing into the final stable state. This process might account for the origin of lingunite found along with maskelynite in shocked chondritic meteorites. Metastable lingunite appeared at ∼20-24 GPa and ∼1100-1300 °C in laboratory tests lasting tens of minutes; however, it might also form at the higher temperatures and shorter time periods of shock events. In contrast, the hollandite phase was not observed during any stage of crystallization when using albite or labradorite as starting materials. The formation process of (Ca,Na)-hollandite in the labradorite composition found in Martian shergottites remains unresolved. The orthoclase contents of the hollandite phase both in shocked meteorites (2.4-8.2 mol%) and our oligoclase sample (3.9 mol%) are relatively high compared to the albite and labradorite samples (0.6 and 1.9 mol%, respectively). This might critically affect the crystallization kinetics of hollandite phase.

  8. Electron microprobe study of lunar and planetary zoned plagioclase feldspars: An analytical and experimental study of zoning in plagioclase

    NASA Technical Reports Server (NTRS)

    Smith, R. K.; Lofgren, G. E.

    1982-01-01

    Natural and experimentally grown zoned plagioclase feldspars were examined by electron microprobe. The analyses revealed discontinuous, sector, and oscillary chemical zoning superimposed on continuous normal or reverse zoning trends. Postulated mechanisms for the origin of zoning are based on either physical changes external to the magma (P, T, H2O saturation) or kinetic changes internal to the magma (diffusion, supersaturation, growth rate). Comparison of microprobe data on natural zoned plagioclase with zoned plagioclase grown in controlled experiments show that it may be possible to distinguish zonal development resulting from physio-chemical changes to the bulk magma from local kinetic control on the growth of individual crystals.

  9. Precambrian ophiolites of Arabia; a summary of geologic settings, U-Pb geochronology, lead isotope characteristics, and implications for microplate accretion, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Pallister, John S.; Stacey, J.S.; Fischer, L.B.; Premo, W.R.

    1988-01-01

    Feldspar lead-isotope data are of three types: 1) lead from the ophiolitic rocks and arc tonalites of the northwestern Arabian Shield and ophiolitic rocks of the Nabitah suture zone is similar to lead in present midocean ridge basalt, 2) anomalous radiogenic data from the Thurwah ophiolite are from rocks that contain zircons from pre-late Proterozoic continental crust, and 3) feldspar from the Urd ophiolite shows retarded uranogenic lead growth and is related either to an anomalous oceanic mantle source, or in an unknown manner to ancient continental mantle or lower crust of the eastern Arabian Shield.

  10. Melting behavior and phase relations of lunar samples

    NASA Technical Reports Server (NTRS)

    Hays, J. F.

    1976-01-01

    An attempt was made to show that feldspar would float during melting. Large anorthite crystals were placed beneath a silicate glass representative of liquid in which plagioclase accumulation is thought to have occurred. In less than 3 hours at 1,300 C, the crystals rose to the top in a Pt crucible 3 cm deep equilibrated in air and in a Mo crucible 1.5 cm deep equilibrated in an H2/CO2 gas stream of log PO2 = -10.9 (below Fe/FeO). These results suggest that lunar crustal formation by feldspar flotation is possible without special recourse to differential sinking of plagioclase versus mafic minerals or selective elutriation of plagioclase.

  11. Geochemical modelling of worst-case leakage scenarios at potential CO2-storage sites - CO2 and saline water contamination of drinking water aquifers

    NASA Astrophysics Data System (ADS)

    Szabó, Zsuzsanna; Edit Gál, Nóra; Kun, Éva; Szőcs, Teodóra; Falus, György

    2017-04-01

    Carbon Capture and Storage is a transitional technology to reduce greenhouse gas emissions and to mitigate climate change. Following the implementation and enforcement of the 2009/31/EC Directive in the Hungarian legislation, the Geological and Geophysical Institute of Hungary is required to evaluate the potential CO2 geological storage structures of the country. Basic assessment of these saline water formations has been already performed and the present goal is to extend the studies to the whole of the storage complex and consider the protection of fresh water aquifers of the neighbouring area even in unlikely scenarios when CO2 injection has a much more regional effect than planned. In this work, worst-case scenarios are modelled to understand the effects of CO2 or saline water leaks into drinking water aquifers. The dissolution of CO2 may significantly change the pH of fresh water which induces mineral dissolution and precipitation in the aquifer and therefore, changes in solution composition and even rock porosity. Mobilization of heavy metals may also be of concern. Brine migration from CO2 reservoir and replacement of fresh water in the shallower aquifer may happen due to pressure increase as a consequence of CO2 injection. The saline water causes changes in solution composition which may also induce mineral reactions. The modelling of the above scenarios has happened at several methodological levels such as equilibrium batch, kinetic batch and kinetic reactive transport simulations. All of these have been performed by PHREEQC using the PHREEQC.DAT thermodynamic database. Kinetic models use equations and kinetic rate parameters from the USGS report of Palandri and Kharaka (2004). Reactive transport modelling also considers estimated fluid flow and dispersivity of the studied formation. Further input parameters are the rock and the original ground water compositions of the aquifers and a range of gas-phase CO2 or brine replacement ratios. Worst-case scenarios at seven potential CO2-storage areas have been modelled. The visualization of results has been automatized by R programming. The three types of models (equilibrium, kinetic batch and reactive transport) provide different type but overlapping information. All modelling output of both scenarios (CO2/brine) indicate the increase of ion-concentrations in the fresh water, which might exceed drinking water limit values. Transport models provide a possibility to identify the most suitable chemical parameter in the fresh water for leakage monitoring. This indicator parameter may show detectable and early changes even far away from the contamination source. In the CO2 models potassium concentration increase is significant and runs ahead of the other parameters. In the rock, the models indicate feldspar, montmorillonite, dolomite and illite dissolution whereas calcite, chlorite, kaolinite and silica precipitates, and in the case of CO2-inflow models, dawsonite traps a part of the leaking gas.

  12. Coupled Reactive Transport Modeling of CO2 Injection in Mt. Simon Sandstone Formation, Midwest USA

    NASA Astrophysics Data System (ADS)

    Liu, F.; Lu, P.; Zhu, C.; Xiao, Y.

    2009-12-01

    CO2 sequestration in deep geological formations is one of the promising options for CO2 emission reduction. While several large scale CO2 injections in saline aquifers have shown to be successful for the short-term, there is still a lack of fundamental understanding on key issues such as CO2 storage capacity, injectivity, and security over multiple spatial and temporal scales that need to be addressed. To advance these understandings, we applied multi-phase coupled reactive mass transport modeling to investigate the fate of injected CO2 and reservoir responses to the injection into Mt. Simon Formation. We developed both 1-D and 2-D reactive transport models in a radial region of 10,000 m surrounding a CO2 injection well to represent the Mt. Simon sandstone formation, which is a major regional deep saline reservoir in the Midwest, USA. Supercritical CO2 is injected into the formation for 100 years, and the modeling continues till 10,000 years to monitor both short-term and long-term behavior of injected CO2 and the associated rock-fluid interactions. CO2 co-injection with H2S and SO2 is also simulated to represent the flue gases from coal gasification and combustion in the Illinois Basin. The injection of CO2 results in acidified zones (pH ~3 and 5) adjacent to the wellbore, causing progressive water-rock interactions in the surrounding region. In accordance with the extensive dissolution of authigenic K-feldspar, sequential precipitations of secondary carbonates and clay minerals are predicted in this zone. The vertical profiles of CO2 show fingering pattern from the top of the reservoir to the bottom due to the density variation of CO2-impregnated brine, which facilitate convection induced mixing and solubility trapping. Most of the injected CO2 remains within a radial distance of 2500 m at the end of 10,000 years and is sequestered and immobilized by solubility and residual trapping. Mineral trapping via secondary carbonates, including calcite, magnesite, ankerite and dawsonite, is predicted, but only constituting a minor component as compared to other trapping mechanisms. The mineral alteration induced by CO2 injection results in changes in porosity/permeability due to these complex mineral dissolution and precipitation reactions. Increases in porosity (from 15% to 16.2%) occur in the low-pH zones due to the acidic dissolution of minerals. However, within the carbonate mineral trapping zone, porosity reduction occurs. Co-injection of H2S causes relatively limited modification from the CO2 alone case while significantly higher water-rock reactivity is associated with the SO2 co-injection. Although co-injection of CO2 with H2S and SO2 could potentially reduce separation and injection cost, it may lead to some uncertainty and risks and therefore require further investigation.

  13. Does the dose-solubility ratio affect the mean dissolution time of drugs?

    PubMed

    Lánský, P; Weiss, M

    1999-09-01

    To present a new model for describing drug dissolution. On the basis of the new model to characterize the dissolution profile by the distribution function of the random dissolution time of a drug molecule, which generalizes the classical first order model. Instead of assuming a constant fractional dissolution rate, as in the classical model, it is considered that the fractional dissolution rate is a decreasing function of the dissolved amount controlled by the dose-solubility ratio. The differential equation derived from this assumption is solved and the distribution measures (half-dissolution time, mean dissolution time, relative dispersion of the dissolution time, dissolution time density, and fractional dissolution rate) are calculated. Finally, instead of monotonically decreasing the fractional dissolution rate, a generalization resulting in zero dissolution rate at time origin is introduced. The behavior of the model is divided into two regions defined by q, the ratio of the dose to the solubility level: q < 1 (complete dissolution of the dose, dissolution time) and q > 1 (saturation of the solution, saturation time). The singular case q = 1 is also treated and in this situation the mean as well as the relative dispersion of the dissolution time increase to infinity. The model was successfully fitted to data (1). This empirical model is descriptive without detailed physical reasoning behind its derivation. According to the model, the mean dissolution time is affected by the dose-solubility ratio. Although this prediction appears to be in accordance with preliminary application, further validation based on more suitable experimental data is required.

  14. Effects of Bacillus subtilis endospore surface reactivity on the rate of forsterite dissolution

    NASA Astrophysics Data System (ADS)

    Harrold, Z.; Gorman-Lewis, D.

    2013-12-01

    Primary mineral dissolution products, such as silica (Si), calcium (Ca) and magnesium (Mg), play an important role in numerous biologic and geochemical cycles including microbial metabolism, plant growth and secondary mineral precipitation. The flux of these and other dissolution products into the environment is largely controlled by the rate of primary silicate mineral dissolution. Bacteria, a ubiquitous component in water-rock systems, are known to facilitate mineral dissolution and may play a substantial role in determining the overall flux of dissolution products into the environment. Bacterial cell walls are complex and highly reactive organic surfaces that can affect mineral dissolution rates directly through microbe-mineral adsorption or indirectly by complexing dissolution products. The effect of bacterial surface adsorption on chemical weathering rates may even outweigh the influence of active processes in environments where a high proportion of cells are metabolically dormant or cell metabolism is slow. Complications associated with eliminating or accounting for ongoing metabolic processes in long-term dissolution studies have made it challenging to isolate the influence of cell wall interactions on mineral dissolution rates. We utilized Bacillus subtilis endospores, a robust and metabolically dormant cell type, to isolate and quantify the effects of bacterial surface reactivity on forsterite (Mg2SiO4) dissolution rates. We measured the influence of both direct and indirect microbe-mineral interactions on forsterite dissolution. Indirect pathways were isolated using dialysis tubing to prevent mineral-microbe contact while allowing free exchange of dissolved mineral products and endospore-ion adsorption. Homogenous experimental assays allowed both direct microbe-mineral and indirect microbe-ion interactions to affect forsterite dissolution rates. Dissolution rates were calculated based on silica concentrations and zero-order dissolution kinetics. Additional analyses including Mg concentrations, microprobe and BET analyses support mineral dissolution rate calculations and stoichiometry considerations. All experimental assays containing endospores show increased forsterite dissolution rates relative to abiotic controls. Forsterite dissolution rates increased by approximately one order of magnitude in dialysis bound, biotic experiments relative to abiotic assays. Homogenous biotic assays exhibited a more complex dissolution rate profile that changes over time. All microbially mediated forsterite dissolution rates returned to abiotic control rates after 10 to 15 days of incubation. This shift in dissolution rate likely corresponds to maximum endospore surface adsorption capacity. The Bacillus subtilis endospore surface serves as a first-order proxy for studying the effect of metabolizing microbe surfaces on silicate dissolution rates. Comparisons with published abiotic, microbial, and organic acid mediated forsterite dissolution rates will provide insight on the importance of bacterial surfaces in primary mineral dissolution processes.

  15. Mars: Difference Between Lowland and Highland Basalts Confirms A Tendency Observed In Terrestrial and Lunar Basaltic Compositions

    NASA Astrophysics Data System (ADS)

    Kochemasov, G.

    Basalts are very widespread lithology on surfaces of terrestrial planets because their mantles, by general opinion, are predominantly basic in composition. Planetary sur- face unevennesses are often filled with this very fluid under high temperatures ma- terial. Basaltic compositions are however variable and this is helped by a wide iso- morphism of constituent minerals: Na-Ca feldspars and Fe-Mg dark minerals. Ratios between light and dark minerals as well as Fe/Mg ratios in dark minerals play an important role in regulation of basaltic densities. Rock density is a very important factor for constructing tectonic blocks in celestial bodies (Theorem 4, [1]). Angular momenta regulation of different level tectonic blocks in rotating bodies is more effec- tively fulfilled at the crustal level as this level has the longest radius. Thus, composition of crustal basalts is very sensitive to hypsometric (tectonic0 position of certain plan- etary blocks. At Earth oceanic hollows are filled with Fe-rich tholeiites (the deepest Pacific depression is filled with the richest in Fe tholeiites), on continents prevail com- paratively Mg-rich continental basalts. Mare basalts of the Moon are predominantly Fe,Ti-rich. At higher crustal levels appear less dense feldspar-rich, KREEP basalts. This tendency for martian basalts became clear after TES experiment on MGS [2]. The TES data on mineralogy of low-albedo regions show that type1 spectra belong to less dense basic rocks (feldspar 50%, pyroxene 25%) than type2 spectra (feldspar 35%, pyroxene + glass 35%). It means that the highland basaltoids are less dense than the lowland ones. It is interesting that the type1 spectral shape is similar to a spec- trum of the Deccan Traps flood basalts [2]. These continental basalts of the low-lying Indostan subcontinent are known to be relatively Fe-rich and approach the oceanic tholeiites. Global gravity, magnetic, basaltic composition data, available upto now for these bodies: Earth, Moon, Mars, indicate that there is a regular planetology capable 1 to make scientific predictions. References: [1] Kochemasov G.G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., v. 1,# 3, 700; [2] Bandfield J.L., Hamilton V.E., Christensen Ph.R. (2000) A global view of martian surface composi- tions from MGS-TES // Science, v.287, # 5458, 1626-1630. MARS: DIFFERENCE BETWEEN LOWLAND AND HIGHLAND BASALTS CONFIRMS A TENDENCY OBSERVED IN TERRESTRIAL AND LUNAR BASALTIC COMPOSITIONS G. Kochemasov, IGEM RAS, 35 Staromonetny, Moscow 109017, Russia, kochem@igem.ru, Fax: (007)(095) 230 21 79 Basalts are very widespread lithology on surfaces of terrestrial planets because their mantles, by general opinion, are predominantly basic in composition. Planetary sur- face unevennesses are often filled with this very fluid under high temperatures ma- terial. Basaltic compositions are however variable and this is helped by a wide iso- morphism of constituent minerals: Na-Ca feldspars and Fe-Mg dark minerals. Ratios between light and dark minerals as well as Fe/Mg ratios in dark minerals play an important role in regulation of basaltic densities. Rock density is a very important factor for constructing tectonic blocks in celestial bodies (Theorem 4, [1]). Angular momenta regulation of different level tectonic blocks in rotating bodies is more effec- tively fulfilled at the crustal level as this level has the longest radius. Thus, composition of crustal basalts is very sensitive to hypsometric (tectonic0 position of certain plan- etary blocks. At Earth oceanic hollows are filled with Fe-rich tholeiites (the deepest Pacific depression is filled with the richest in Fe tholeiites), on continents prevail com- paratively Mg-rich continental basalts. Mare basalts of the Moon are predominantly Fe,Ti-rich. At higher crustal levels appear less dense feldspar-rich, KREEP basalts. This tendency for martian basalts became clear after TES experiment on MGS [2]. The TES data on mineralogy of low-albedo regions show that type1 spectra belong to less dense basic rocks (feldspar 50%, pyroxene 25%) than type2 spectra (feldspar 35%, pyroxene + glass 35%). It means that the highland basaltoids are less dense than the lowland ones. It is interesting that the type1 spectral shape is similar to a spec- trum of the Deccan Traps flood basalts [2]. These continental basalts of the low-lying Indostan subcontinent are known to be relatively Fe-rich and approach the oceanic tholeiites. Global gravity, magnetic, basaltic composition data, available upto now for these bodies: Earth, Moon, Mars, indicate that there is a regular planetology capable to make scientific predictions. References: [1] Kochemasov G.G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., v. 1,# 3, 700; [2] Bandfield J.L., Hamilton V.E., Christensen Ph.R. (2000) A global view of martian surface composi- tions from MGS-TES // Science, v.287, # 5458, 1626-1630. 2 MARS: DIFFERENCE BETWEEN LOWLAND AND HIGHLAND BASALTS CONFIRMS A TENDENCY OBSERVED IN TERRESTRIAL AND LUNAR BASALTIC COMPOSITIONS G. Kochemasov, IGEM RAS, 35 Staromonetny, Moscow 109017, Russia, kochem@igem.ru, Fax: (007)(095) 230 21 79 Basalts are very widespread lithology on surfaces of terrestrial planets because their mantles, by general opinion, are predominantly basic in composition. Planetary sur- face unevennesses are often filled with this very fluid under high temperatures ma- terial. Basaltic compositions are however variable and this is helped by a wide iso- morphism of constituent minerals: Na-Ca feldspars and Fe-Mg dark minerals. Ratios between light and dark minerals as well as Fe/Mg ratios in dark minerals play an important role in regulation of basaltic densities. Rock density is a very important factor for constructing tectonic blocks in celestial bodies (Theorem 4, [1]). Angular momenta regulation of different level tectonic blocks in rotating bodies is more effec- tively fulfilled at the crustal level as this level has the longest radius. Thus, composition of crustal basalts is very sensitive to hypsometric (tectonic0 position of certain plan- etary blocks. At Earth oceanic hollows are filled with Fe-rich tholeiites (the deepest Pacific depression is filled with the richest in Fe tholeiites), on continents prevail com- paratively Mg-rich continental basalts. Mare basalts of the Moon are predominantly Fe,Ti-rich. At higher crustal levels appear less dense feldspar-rich, KREEP basalts. This tendency for martian basalts became clear after TES experiment on MGS [2]. The TES data on mineralogy of low-albedo regions show that type1 spectra belong to less dense basic rocks (feldspar 50%, pyroxene 25%) than type2 spectra (feldspar 35%, pyroxene + glass 35%). It means that the highland basaltoids are less dense than the lowland ones. It is interesting that the type1 spectral shape is similar to a spec- trum of the Deccan Traps flood basalts [2]. These continental basalts of the low-lying Indostan subcontinent are known to be relatively Fe-rich and approach the oceanic tholeiites. Global gravity, magnetic, basaltic composition data, available upto now for these bodies: Earth, Moon, Mars, indicate that there is a regular planetology capable to make scientific predictions. References: [1] Kochemasov G.G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., v. 1,# 3, 700; [2] Bandfield J.L., Hamilton V.E., Christensen Ph.R. (2000) A global view of martian surface composi- tions from MGS-TES // Science, v.287, # 5458, 1626-1630. MARS: DIFFERENCE BETWEEN LOWLAND AND HIGHLAND BASALTS CONFIRMS A TENDENCY OBSERVED IN TERRESTRIAL AND LUNAR BASALTIC COMPOSITIONS G. Kochemasov, IGEM RAS, 35 Staromonetny, Moscow 109017, Russia, 3 kochem@igem.ru, Fax: (007)(095) 230 21 79 Basalts are very widespread lithology on surfaces of terrestrial planets because their mantles, by general opinion, are predominantly basic in composition. Planetary sur- face unevennesses are often filled with this very fluid under high temperatures ma- terial. Basaltic compositions are however variable and this is helped by a wide iso- morphism of constituent minerals: Na-Ca feldspars and Fe-Mg dark minerals. Ratios between light and dark minerals as well as Fe/Mg ratios in dark minerals play an important role in regulation of basaltic densities. Rock density is a very important factor for constructing tectonic blocks in celestial bodies (Theorem 4, [1]). Angular momenta regulation of different level tectonic blocks in rotating bodies is more effec- tively fulfilled at the crustal level as this level has the longest radius. Thus, composition of crustal basalts is very sensitive to hypsometric (tectonic0 position of certain plan- etary blocks. At Earth oceanic hollows are filled with Fe-rich tholeiites (the deepest Pacific depression is filled with the richest in Fe tholeiites), on continents prevail com- paratively Mg-rich continental basalts. Mare basalts of the Moon are predominantly Fe,Ti-rich. At higher crustal levels appear less dense feldspar-rich, KREEP basalts. This tendency for martian basalts became clear after TES experiment on MGS [2]. The TES data on mineralogy of low-albedo regions show that type1 spectra belong to less dense basic rocks (feldspar 50%, pyroxene 25%) than type2 spectra (feldspar 35%, pyroxene + glass 35%). It means that the highland basaltoids are less dense than the lowland ones. It is interesting that the type1 spectral shape is similar to a spec- trum of the Deccan Traps flood basalts [2]. These continental basalts of the low-lying Indostan subcontinent are known to be relatively Fe-rich and approach the oceanic tholeiites. Global gravity, magnetic, basaltic composition data, available upto now for these bodies: Earth, Moon, Mars, indicate that there is a regular planetology capable to make scientific predictions. References: [1] Kochemasov G.G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., v. 1,# 3, 700; [2] Bandfield J.L., Hamilton V.E., Christensen Ph.R. (2000) A global view of martian surface composi- tions from MGS-TES // Science, v.287, # 5458, 1626-1630. MARS: DIFFERENCE BETWEEN LOWLAND AND HIGHLAND BASALTS CONFIRMS A TENDENCY OBSERVED IN TERRESTRIAL AND LUNAR BASALTIC COMPOSITIONS G. Kochemasov, IGEM RAS, 35 Staromonetny, Moscow 109017, Russia, kochem@igem.ru, Fax: (007)(095) 230 21 79 Basalts are very widespread lithology on surfaces of terrestrial planets because their mantles, by general opinion, are predominantly basic in composition. Planetary sur- face unevennesses are often filled with this very fluid under high temperatures ma- 4 terial. Basaltic compositions are however variable and this is helped by a wide iso- morphism of constituent minerals: Na-Ca feldspars and Fe-Mg dark minerals. Ratios between light and dark minerals as well as Fe/Mg ratios in dark minerals play an important role in regulation of basaltic densities. Rock density is a very important factor for constructing tectonic blocks in celestial bodies (Theorem 4, [1]). Angular momenta regulation of different level tectonic blocks in rotating bodies is more effec- tively fulfilled at the crustal level as this level has the longest radius. Thus, composition of crustal basalts is very sensitive to hypsometric (tectonic0 position of certain plan- etary blocks. At Earth oceanic hollows are filled with Fe-rich tholeiites (the deepest Pacific depression is filled with the richest in Fe tholeiites), on continents prevail com- paratively Mg-rich continental basalts. Mare basalts of the Moon are predominantly Fe,Ti-rich. At higher crustal levels appear less dense feldspar-rich, KREEP basalts. This tendency for martian basalts became clear after TES experiment on MGS [2]. The TES data on mineralogy of low-albedo regions show that type1 spectra belong to less dense basic rocks (feldspar 50%, pyroxene 25%) than type2 spectra (feldspar 35%, pyroxene + glass 35%). It means that the highland basaltoids are less dense than the lowland ones. It is interesting that the type1 spectral shape is similar to a spec- trum of the Deccan Traps flood basalts [2]. These continental basalts of the low-lying Indostan subcontinent are known to be relatively Fe-rich and approach the oceanic tholeiites. Global gravity, magnetic, basaltic composition data, available upto now for these bodies: Earth, Moon, Mars, indicate that there is a regular planetology capable to make scientific predictions. References: [1] Kochemasov G.G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., v. 1,# 3, 700; [2] Bandfield J.L., Hamilton V.E., Christensen Ph.R. (2000) A global view of martian surface composi- tions from MGS-TES // Science, v.287, # 5458, 1626-1630. MARS: DIFFERENCE BETWEEN LOWLAND AND HIGHLAND BASALTS CONFIRMS A TENDENCY OBSERVED IN TERRESTRIAL AND LUNAR BASALTIC COMPOSITIONS G. Kochemasov, IGEM RAS, 35 Staromonetny, Moscow 109017, Russia, kochem@igem.ru, Fax: (007)(095) 230 21 79 Basalts are very widespread lithology on surfaces of terrestrial planets because their mantles, by general opinion, are predominantly basic in composition. Planetary sur- face unevennesses are often filled with this very fluid under high temperatures ma- terial. Basaltic compositions are however variable and this is helped by a wide iso- morphism of constituent minerals: Na-Ca feldspars and Fe-Mg dark minerals. Ratios between light and dark minerals as well as Fe/Mg ratios in dark minerals play an important role in regulation of basaltic densities. Rock density is a very important factor for constructing tectonic blocks in celestial bodies (Theorem 4, [1]). Angular 5 momenta regulation of different level tectonic blocks in rotating bodies is more effec- tively fulfilled at the crustal level as this level has the longest radius. Thus, composition of crustal basalts is very sensitive to hypsometric (tectonic0 position of certain plan- etary blocks. At Earth oceanic hollows are filled with Fe-rich tholeiites (the deepest Pacific depression is filled with the richest in Fe tholeiites), on continents prevail com- paratively Mg-rich continental basalts. Mare basalts of the Moon are predominantly Fe,Ti-rich. At higher crustal levels appear less dense feldspar-rich, KREEP basalts. This tendency for martian basalts became clear after TES experiment on MGS [2]. The TES data on mineralogy of low-albedo regions show that type1 spectra belong to less dense basic rocks (feldspar 50%, pyroxene 25%) than type2 spectra (feldspar 35%, pyroxene + glass 35%). It means that the highland basaltoids are less dense than the lowland ones. It is interesting that the type1 spectral shape is similar to a spec- trum of the Deccan Traps flood basalts [2]. These continental basalts of the low-lying Indostan subcontinent are known to be relatively Fe-rich and approach the oceanic tholeiites. Global gravity, magnetic, basaltic composition data, available upto now for these bodies: Earth, Moon, Mars, indicate that there is a regular planetology capable to make scientific predictions. References: [1] Kochemasov G.G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., v. 1,# 3, 700; [2] Bandfield J.L., Hamilton V.E., Christensen Ph.R. (2000) A global view of martian surface composi- tions from MGS-TES // Science, v.287, # 5458, 1626-1630. MARS: DIFFERENCE BETWEEN LOWLAND AND HIGHLAND BASALTS CONFIRMS A TENDENCY OBSERVED IN TERRESTRIAL AND LUNAR BASALTIC COMPOSITIONS G. Kochemasov, IGEM RAS, 35 Staromonetny, Moscow 109017, Russia, kochem@igem.ru, Fax: (007)(095) 230 21 79 Basalts are very widespread lithology on surfaces of terrestrial planets because their mantles, by general opinion, are predominantly basic in composition. Planetary sur- face unevennesses are often filled with this very fluid under high temperatures ma- terial. Basaltic compositions are however variable and this is helped by a wide iso- morphism of constituent minerals: Na-Ca feldspars and Fe-Mg dark minerals. Ratios between light and dark minerals as well as Fe/Mg ratios in dark minerals play an important role in regulation of basaltic densities. Rock density is a very important factor for constructing tectonic blocks in celestial bodies (Theorem 4, [1]). Angular momenta regulation of different level tectonic blocks in rotating bodies is more effec- tively fulfilled at the crustal level as this level has the longest radius. Thus, composition of crustal basalts is very sensitive to hypsometric (tectonic0 position of certain plan- etary blocks. At Earth oceanic hollows are filled with Fe-rich tholeiites (the deepest Pacific depression is filled with the richest in Fe tholeiites), on continents prevail com- 6 paratively Mg-rich continental basalts. Mare basalts of the Moon are predominantly Fe,Ti-rich. At higher crustal levels appear less dense feldspar-rich, KREEP basalts. This tendency for martian basalts became clear after TES experiment on MGS [2]. The TES data on mineralogy of low-albedo regions show that type1 spectra belong to less dense basic rocks (feldspar 50%, pyroxene 25%) than type2 spectra (feldspar 35%, pyroxene + glass 35%). It means that the highland basaltoids are less dense than the lowland ones. It is interesting that the type1 spectral shape is similar to a spec- trum of the Deccan Traps flood basalts [2]. These continental basalts of the low-lying Indostan subcontinent are known to be relatively Fe-rich and approach the oceanic tholeiites. Global gravity, magnetic, basaltic composition data, available upto now for these bodies: Earth, Moon, Mars, indicate that there is a regular planetology capable to make scientific predictions. References: [1] Kochemasov G.G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., v. 1,# 3, 700; [2] Bandfield J.L., Hamilton V.E., Christensen Ph.R. (2000) A global view of martian surface composi- tions from MGS-TES // Science, v.287, # 5458, 1626-1630. MARS: DIFFERENCE BETWEEN LOWLAND AND HIGHLAND BASALTS CONFIRMS A TENDENCY OBSERVED IN TERRESTRIAL AND LUNAR BASALTIC COMPOSITIONS G. Kochemasov, IGEM RAS, 35 Staromonetny, Moscow 109017, Russia, kochem@igem.ru, Fax: (007)(095) 230 21 79 Basalts are very widespread lithology on surfaces of terrestrial planets because their mantles, by general opinion, are predominantly basic in composition. Planetary sur- face unevennesses are often filled with this very fluid under high temperatures ma- terial. Basaltic compositions are however variable and this is helped by a wide iso- morphism of constituent minerals: Na-Ca feldspars and Fe-Mg dark minerals. Ratios between light and dark minerals as well as Fe/Mg ratios in dark minerals play an important role in regulation of basaltic densities. Rock density is a very important factor for constructing tectonic blocks in celestial bodies (Theorem 4, [1]). Angular momenta regulation of different level tectonic blocks in rotating bodies is more effec- tively fulfilled at the crustal level as this level has the longest radius. Thus, composition of crustal basalts is very sensitive to hypsometric (tectonic0 position of certain plan- etary blocks. At Earth oceanic hollows are filled with Fe-rich tholeiites (the deepest Pacific depression is filled with the richest in Fe tholeiites), on continents prevail com- paratively Mg-rich continental basalts. Mare basalts of the Moon are predominantly Fe,Ti-rich. At higher crustal levels appear less dense feldspar-rich, KREEP basalts. This tendency for martian basalts became clear after TES experiment on MGS [2]. The TES data on mineralogy of low-albedo regions show that type1 spectra belong to less dense basic rocks (feldspar 50%, pyroxene 25%) than type2 spectra (feldspar 7 35%, pyroxene + glass 35%). It means that the highland basaltoids are less dense than the lowland ones. It is interesting that the type1 spectral shape is similar to a spec- trum of the Deccan Traps flood basalts [2]. These continental basalts of the low-lying Indostan subcontinent are known to be relatively Fe-rich and approach the oceanic tholeiites. Global gravity, magnetic, basaltic composition data, available upto now for these bodies: Earth, Moon, Mars, indicate that there is a regular planetology capable to make scientific predictions. References: [1] Kochemasov G.G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., v. 1,# 3, 700; [2] Bandfield J.L., Hamilton V.E., Christensen Ph.R. (2000) A global view of martian surface composi- tions from MGS-TES // Science, v.287, # 5458, 1626-1630. MARS: DIFFERENCE BETWEEN LOWLAND AND HIGHLAND BASALTS CONFIRMS A TENDENCY OBSERVED IN TERRESTRIAL AND LUNAR BASALTIC COMPOSITIONS G. Kochemasov, IGEM RAS, 35 Staromonetny, Moscow 109017, Russia, kochem@igem.ru, Fax: (007)(095) 230 21 79 Basalts are very widespread lithology on surfaces of terrestrial planets because their mantles, by general opinion, are predominantly basic in composition. Planetary sur- face unevennesses are often filled with this very fluid under high temperatures ma- terial. Basaltic compositions are however variable and this is helped by a wide iso- morphism of constituent minerals: Na-Ca feldspars and Fe-Mg dark minerals. Ratios between light and dark minerals as well as Fe/Mg ratios in dark minerals play an important role in regulation of basaltic densities. Rock density is a very important factor for constructing tectonic blocks in celestial bodies (Theorem 4, [1]). Angular momenta regulation of different level tectonic blocks in rotating bodies is more effec- tively fulfilled at the crustal level as this level has the longest radius. Thus, composition of crustal basalts is very sensitive to hypsometric (tectonic0 position of certain plan- etary blocks. At Earth oceanic hollows are filled with Fe-rich tholeiites (the deepest Pacific depression is filled with the richest in Fe tholeiites), on continents prevail com- paratively Mg-rich continental basalts. Mare basalts of the Moon are predominantly Fe,Ti-rich. At higher crustal levels appear less dense feldspar-rich, KREEP basalts. This tendency for martian basalts became clear after TES experiment on MGS [2]. The TES data on mineralogy of low-albedo regions show that type1 spectra belong to less dense basic rocks (feldspar 50%, pyroxene 25%) than type2 spectra (feldspar 35%, pyroxene + glass 35%). It means that the highland basaltoids are less dense than the lowland ones. It is interesting that the type1 spectral shape is similar to a spec- trum of the Deccan Traps flood basalts [2]. These continental basalts of the low-lying Indostan subcontinent are known to be relatively Fe-rich and approach the oceanic tholeiites. Global gravity, magnetic, basaltic composition data, available upto now for 8 these bodies: Earth, Moon, Mars, indicate that there is a regular planetology capable to make scientific predictions. References: [1] Kochemasov G.G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., v. 1,# 3, 700; [2] Bandfield J.L., Hamilton V.E., Christensen Ph.R. (2000) A global view of martian surface composi- tions from MGS-TES // Science, v.287, # 5458, 1626-1630. MARS: DIFFERENCE BETWEEN LOWLAND AND HIGHLAND BASALTS CONFIRMS A TENDENCY OBSERVED IN TERRESTRIAL AND LUNAR BASALTIC COMPOSITIONS G. Kochemasov, IGEM RAS, 35 Staromonetny, Moscow 109017, Russia, kochem@igem.ru, Fax: (007)(095) 230 21 79 Basalts are very widespread lithology on surfaces of terrestrial planets because their mantles, by general opinion, are predominantly basic in composition. Planetary sur- face unevennesses are often filled with this very fluid under high temperatures ma- terial. Basaltic compositions are however variable and this is helped by a wide iso- morphism of constituent minerals: Na-Ca feldspars and Fe-Mg dark minerals. Ratios between light and dark minerals as well as Fe/Mg ratios in dark minerals play an important role in regulation of basaltic densities. Rock density is a very important factor for constructing tectonic blocks in celestial bodies (Theorem 4, [1]). Angular momenta regulation of different level tectonic blocks in rotating bodies is more effec- tively fulfilled at the crustal level as this level has the longest radius. Thus, composition of crustal basalts is very sensitive to hypsometric (tectonic0 position of certain plan- etary blocks. At Earth oceanic hollows are filled with Fe-rich tholeiites (the deepest Pacific depression is filled with the richest in Fe tholeiites), on continents prevail com- paratively Mg-rich continental basalts. Mare basalts of the Moon are predominantly Fe,Ti-rich. At higher crustal levels appear less dense feldspar-rich, KREEP basalts. This tendency for martian basalts became clear after TES experiment on MGS [2]. The TES data on mineralogy of low-albedo regions show that type1 spectra belong to less dense basic rocks (feldspar 50%, pyroxene 25%) than type2 spectra (feldspar 35%, pyroxene + glass 35%). It means that the highland basaltoids are less dense than the lowland ones. It is interesting that the type1 spectral shape is similar to a spec- trum of the Deccan Traps flood basalts [2]. These continental basalts of the low-lying Indostan subcontinent are known to be relatively Fe-rich and approach the oceanic tholeiites. Global gravity, magnetic, basaltic composition data, available upto now for these bodies: Earth, Moon, Mars, indicate that there is a regular planetology capable to make scientific predictions. References: [1] Kochemasov G.G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., v. 1,# 3, 700; [2] Bandfield J.L., Hamilton V.E., Christensen Ph.R. (2000) A global view of martian surface composi- tions from MGS-TES // Science, v.287, # 5458, 1626-1630. 9 MARS: DIFFERENCE BETWEEN LOWLAND AND HIGHLAND BASALTS CONFIRMS A TENDENCY OBSERVED IN TERRESTRIAL AND LUNAR BASALTIC COMPOSITIONS G. Kochemasov, IGEM RAS, 35 Staromonetny, Moscow 109017, Russia, kochem@igem.ru, Fax: (007)(095) 230 21 79 Basalts are very widespread lithology on surfaces of terrestrial planets because their mantles, by general opinion, are predominantly basic in composition. Planetary sur- face unevennesses are often filled with this very fluid under high temperatures ma- terial. Basaltic compositions are however variable and this is helped by a wide iso- morphism of constituent minerals: Na-Ca feldspars and Fe-Mg dark minerals. Ratios between light and dark minerals as well as Fe/Mg ratios in dark minerals play an important role in regulation of basaltic densities. Rock density is a very important factor for constructing tectonic blocks in celestial bodies (Theorem 4, [1]). Angular momenta regulation of different level tectonic blocks in rotating bodies is more effec- tively fulfilled at the crustal level as this level has the longest radius. Thus, composition of crustal basalts is very sensitive to hypsometric (tectonic0 position of certain plan- etary blocks. At Earth oceanic hollows are filled with Fe-rich tholeiites (the deepest Pacific depression is filled with the richest in Fe tholeiites), on continents prevail com- paratively Mg-rich continental basalts. Mare basalts of the Moon are predominantly Fe,Ti-rich. At higher crustal levels appear less dense feldspar-rich, KREEP basalts. This tendency for martian basalts became clear after TES experiment on MGS [2]. The TES data on mineralogy of low-albedo regions show that type1 spectra belong to less dense basic rocks (feldspar 50%, pyroxene 25%) than type2 spectra (feldspar 35%, pyroxene + glass 35%). It means that the highland basaltoids are less dense than the lowland ones. It is interesting that the type1 spectral shape is similar to a spec- trum of the Deccan Traps flood basalts [2]. These continental basalts of the low-lying Indostan subcontinent are known to be relatively Fe-rich and approach the oceanic tholeiites. Global gravity, magnetic, basaltic composition data, available upto now for these bodies: Earth, Moon, Mars, indicate that there is a regular planetology capable to make scientific predictions. References: [1] Kochemasov G.G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., v. 1,# 3, 700; [2] Bandfield J.L., Hamilton V.E., Christensen Ph.R. (2000) A global view of martian surface composi- tions from MGS-TES // Science, v.287, # 5458, 1626-1630. MARS: DIFFERENCE BETWEEN LOWLAND AND HIGHLAND BASALTS CONFIRMS A TENDENCY OBSERVED IN TERRESTRIAL AND LUNAR BASALTIC COMPOSITIONS G. Kochemasov, IGEM RAS, 35 Staromonetny, Moscow 109017, Russia, 10 kochem@igem.ru, Fax: (007)(095) 230 21 79 Basalts are very widespread lithology on surfaces of terrestrial planets because their mantles, by general opinion, are predominantly basic in composition. Planetary sur- face unevennesses are often filled with this very fluid under high temperatures ma- terial. Basaltic compositions are however variable and this is helped by a wide iso- morphism of constituent minerals: Na-Ca feldspars and Fe-Mg dark minerals. Ratios between light and dark minerals as well as Fe/Mg ratios in dark minerals play an important role in regulation of basaltic densities. v 11

  16. A novel determination of calcite dissolution kinetics in seawater

    NASA Astrophysics Data System (ADS)

    Subhas, Adam V.; Rollins, Nick E.; Berelson, William M.; Dong, Sijia; Erez, Jonathan; Adkins, Jess F.

    2015-12-01

    We present a novel determination of the dissolution kinetics of inorganic calcite in seawater. We dissolved 13 C -labeled calcite in unlabeled seawater, and traced the evolving δ13 C composition of the fluid over time to establish dissolution rates. This method provides sensitive determinations of dissolution rate, which we couple with tight constraints on both seawater saturation state and surface area of the dissolving minerals. We have determined dissolution rates for two different abiotic calcite materials and three different grain sizes. Near-equilibrium dissolution rates are highly nonlinear, and are well normalized by geometric surface area, giving an empirical dissolution rate dependence on saturation state (Ω) of: This result substantiates the non-linear response of calcite dissolution to undersaturation. The bulk dissolution rate constant calculated here is in excellent agreement with those determined in far from equilibrium and dilute solution experiments. Plots of dissolution versus undersaturation indicates the presence of at least two dissolution mechanisms, implying a criticality in the calcite-seawater system. Finally, our new rate determination has implications for modeling of pelagic and seafloor dissolution. Nonlinear dissolution kinetics in a simple 1-D lysocline model indicate a possible transition from kinetic to diffusive control with increasing water depth, and also confirm the importance of respiration-driven dissolution in setting the shape of the calcite lysocline.

  17. Microsphere zeolite materials derived from coal fly ash cenospheres as precursors to mineral-like aluminosilicate hosts for 135,137Cs and 90Sr

    NASA Astrophysics Data System (ADS)

    Vereshchagina, Tatiana A.; Vereshchagin, Sergei N.; Shishkina, Nina N.; Vasilieva, Nataly G.; Solovyov, Leonid A.; Anshits, Alexander G.

    2013-06-01

    Hollow microsphere zeolite materials with a bilayered zeolite/glass crystalline shell bearing NaP1 zeolite were synthesized by the hydrothermal treatment of coal fly ash cenospheres (Si/Al = 2.7) in an alkaline medium. Cs+ and/or Sr2+ forms of zeolitized cenospheres with the different Cs+ and/or Sr2+ loading were prepared by the ion exchange from nitrate solutions. The resulted (Cs,Na)P1, (Sr,Na)P1 and (Cs,Sr,Na)P1 bearing microsphere zeolites were converted to glass ceramics by heating at 900-1000 °C. The differential scanning calorimetry and quantitative phase analysis were used to monitor the solid-phase transformation of the initial and ion exchanged zeolite materials. It was established that the final solidified forms of Cs+ and/or Sr2+ are glass-crystalline ceramic materials based on pollucite-nepheline, Sr-feldspar-nepheline and Sr-feldspar-pollucite composites including ˜60 wt.% of the major host phases (pollucite, Sr-feldspar) and 10-20 wt.% of glass. The 137Cs leaching rate of 4.1 × 10-7 g cm-2 day-1 was determined for the pollucite glass-ceramic according to Russian State Standard (GOST) No. 52126 P-2003 (7 day, 25 °C, distilled water).

  18. Dating Middle Pleistocene loess using IRSL luminescence

    NASA Astrophysics Data System (ADS)

    Michel, L.

    2008-12-01

    Loess is a unique palaeoclimate proxy that has a relatively global distribution. A major issue in loess studies is their age, as most terrestrial sediments are outside the realm of isotopic dating methods. Luminescence dating of loess has been attempted with limited success as Optically Stimulated Luminescence (OSL) from the two common dosimeters used in luminescence, quartz and feldspar minerals, both yielded age underestimates. Quartz is limited by dose saturation and feldspar suffers from anomalous fading. Over the last decade, we have developed methods to deal with anomalous fading and hence correct Infrared Stimulated Luminescence (IRSL) ages from feldspar dominated samples. A method known as Dose Rate Correction (DRC) has been successfully applied to loess from the Western European Belt, for ages as old as the Middle Pleistocene. Ages using the same method have been obtained for loess in Alaska and the technique is now being extended to loess from Illinois and China. IRSL can also be used as a reliable telecorrelation tool as luminescence properties of loess are broadly similar, whatever the geological provenance. DRC corrected IRSL extends the applicability of luminescence to dating loess up to at least 500 ka. The limiting factor in the specific case of loess is dose saturation due to relatively high dose rate compared to the average terrestrial sediment radioactivity.

  19. High resolution luminescence chronology for Xiashu Loess deposits of Southeastern China

    NASA Astrophysics Data System (ADS)

    Yi, Shuangwen; Li, Xusheng; Han, Zhiyong; Lu, Huayu; Liu, Jinfeng; Wu, Jiang

    2018-04-01

    Loess deposits in Xiashu are representative of such deposits in Southeastern China that are mainly distributed in the middle and lower reaches of the Yangtze River valley. These loess-paleosol sequences provide a key archive of past climate change in humid, subtropical regions. However, the ages of the sequences are not well constrained. In this study, the standard quartz single-aliquot regenerative (SAR) dose optically stimulated luminescence (OSL) and K-feldspar post-infrared infrared stimulated luminescence (post-IR IRSL; pIRIR290) methods are used to date two loess sequences in Nanjing region. Our results show that quartz SAR OSL and K-feldspar pIRIR290 ages are more or less indistinguishable from one another up to ∼50 ka. Beyond this age, the K-feldspar pIRIR ages increased systematically with deposition depth, agreeing well with the expected ages as far as ∼200 ka. On the basis of a fully independently-dated timescale, we are therefore able to propose, for the first time, a new age model for the Xiashu Loess deposits accumulated since the penultimate interglacial period. Using our newly obtained luminescence dating ages, we observe a marked difference between the loess accumulation rates in the two sequences, potentially forced by regional depositional processes and loess preservation.

  20. Filling material for a buried cavity in a collapse area using light-weighted foam and active feldspar

    NASA Astrophysics Data System (ADS)

    Cho, Jin Woo; Lee, Ju-hyoung; Kim, Sung-Wook; Choi, Eun-Kyeong

    2017-04-01

    Concrete which is generally used as filling material for a buried cavity has very high strength but significantly high self-load is considered its disadvantage. If it is used as filling material, the second collapse due to additional load, causing irreversible damage. If light-weighted foam and active feldspar are used to solve this problem, the second collapse can be prevented by reducing of self-load of filling material. In this study, the specimen was produced by mixing light-weighted foam, active feldspar and cement, and changes in the density, unconfined compressive strength and hydraulic conductivity were analyzed. Using the light-weighted foam could enable the adjustment of density of specimen between 0.5 g/cm3 and 1.7 g/cm3, and if the mixing ratio of the light-weighted foam increases, the specimen has more pores and smaller range of cross-sectional area. It is confirmed that it has direct correlation with the density, and if the specimen has more pores, the density of the specimen is lowered. The density of the specimen influences the unconfined compressive strength and the hydraulic conductivity, and it was also confirmed that the unconfined compressive strength could be adjusted between 0.6 MPa and 8 MPa and the hydraulic conductivity could be adjusted between 10-9cm/sec and 10-3cm/sec. These results indicated that we can adjust unconfined compressive strength and hydraulic conductivity of filling materials by changing the mixing amount of lightweight-weighted foam according to the requirements of the field condition. Keywords: filling material, buried cavity, light-weighted foam, feldspar Acknowledgement This research was supported by a Grant from a Strategic Research Project (Horizontal Drilling and Stabilization Technologies for Urban Search and Rescue (US&R) Operation) funded by the Korea Institute of Civil Engineering and Building Technology.

  1. Clinopyroxene Diffusion Chronometry of the Scaup Lake Rhyolite, Yellowstone Caldera, WY

    NASA Astrophysics Data System (ADS)

    Brugman, K. K.; Till, C. B.; Bose, M.

    2016-12-01

    Eruption of the Scaup Lake flow (SCL) ended 220,000 years of dormancy and began the youngest sequence of eruptions at Yellowstone caldera [Christiansen et al., USGS, 2007]. Quantification of the time intervals between magmatic events and eruption recorded in SCL is critical to interpreting signs of unrest at modern-day Yellowstone. SCL rhyolite includes zoned phenocrysts and accessory phases that indicate multiple rejuvenation events occurred shortly before eruption; previous studies focused on feldspar and zircon crystal records [e.g. Bindeman et al., J.Pet, 2008; Till et al., Geology, 2015]. Here we exploit zoned clinopyroxene (cpx)—one of the earliest-crystalized minerals in SCL as indicated by petrographic relationships—as a diffusion dating tool and utilize elements with different diffusivities to more precisely resolve rejuvenation-eruption timescales. Using NanoSIMS concentration profiles with 300-900 nanometer spacing, we employ the slower-diffusing REE Ce as a proxy for the initial profile shape of faster-diffusing Fe to calculate diffusive timescales. The outermost resolvable zone boundary in SCL cpx yields a rejuvenation-eruption timescale of 166 ± 80 yrs (1 SD). In comparison, modeling relaxation of Fe from a step function initial condition at the same temperature (920°C) yields a less precise timescale of 488 +9000 -300 yrs. Examination of our results, in concert with observed petrographic relationships, indicates SCL cpx may record an older, separate rejuvenation event than those recorded in feldspar rims at < 10 months and 10-40 years prior to eruption [Till et al., Geology, 2015]. The difference in the youngest recorded event between feldspar and cpx may be due to different crystallization intervals for these phases and/or slower crystal growth rates for cpx relative to feldspar. Our diffusion modeling results reinforce that intracrystalline zoning timescales modeled using a step function initial condition should be considered maxima, especially in viscous rhyolitic magmas, and that different phases may not record the same series of pre-eruptive events due to differences in crystallization behavior.

  2. A Two-Stage Model for Origin of Al-rich Crustal Xenoliths in Miocene Andesite, Diablo Range, West-Central California

    NASA Astrophysics Data System (ADS)

    Metzger, E. P.; Ernst, W. G.

    2003-12-01

    Miocene ( ˜ 8-10.5 Ma) andesite exposed as small plugs and dikes in the Diablo Range of west-central California encloses scattered xenoliths with diverse compositions and textures. The andesite is part of the Diablo Range Volcanics (DRV), a mafic to intermediate suite that is broadly coeval with and may be erosional remnants of the more extensive Quien Sabe Field located to the south and east. The DRV suite is inferred to be part of a northwestwardly younging sequence of volcanic fields that may be related to migration of the Mendocino Triple Junction (MTJ). Two basic categories of xenoliths are present: (1) metasedimentary rocks including quartzite, biotite schist, garnet-clinopyroxene gneiss, and distinctive sillimanite-corundum rocks; and (2) gabbroic and dioritic rocks exhibiting plutonic textures. Preliminary analysis has focused on aluminous xenoliths in which blocky porphyroblasts consisting of intergrown plagioclase, corundum, and hercynite +/- sillimanite +/- alkali feldspar up to ˜ 2 cm in length are surrounded by a very fine-grained granoblastic matrix of plagioclase, orthopyroxene, and hercynite +/- biotite +/- alkali feldspar +/- minor quartz. Glass is present both within the inclusions and in the surrounding matrix. The square to elongate outlines of the plagioclase-corundum inclusions suggest that they are pseudomorphic after andalusite. The corundum-bearing xenoliths are interpreted as the products of two stages of high T-low P metamorphism. The first event involved mid-crustal metamorphism (reflecting cessation of outboard subduction/refrigeration?) to produce andalusite-bearing hornfels; other phases probably included K-feldspar, Na-plagioclase, muscovite, biotite, and quartz. The second stage of recrystallization took place when the previously metamorphosed wall rock was incorporated in andesitic magma, possibly during passage of the MTJ. In response to heating by the magma, andalusite was replaced by corundum, plagioclase +/- sillimanite, muscovite and quartz broke down to produce more K-feldspar and sillimanite, and most of the biotite decomposed, forming abundant hercynite.

  3. Quantifying the Variation in Shear Zone Character with Depth: a Case Study from the Simplon Shear Zone, Central Alps

    NASA Astrophysics Data System (ADS)

    Cawood, T. K.; Platt, J. P.

    2017-12-01

    A widely-accepted model for the rheology of crustal-scale shear zones states that they comprise distributed strain at depth, in wide, high-temperature shear zones, which narrow to more localized, high-strain zones at lower temperature and shallower crustal levels. We test and quantify this model by investigating how the width, stress, temperature and deformation mechanisms change with depth in the Simplon Shear Zone (SSZ). The SSZ marks a major tectonic boundary in the central Alps, where normal-sense motion and rapid exhumation of the footwall have preserved evidence of older, deeper deformation in rocks progressively further into the currently-exposed footwall. As such, microstructures further from the brittle fault (which represents the most localized, most recently-active part of the SSZ) represent earlier, higher- temperature deformation from deeper crustal levels, while rocks closer to the fault have been overprinted by successively later, cooler deformation at shallower depths. This study uses field mapping and microstructural studies to identify zones representing deformation at various crustal levels, and characterize each in terms of zone width (representing width of the shear zone at that time and depth) and dominant deformation mechanism. In addition, quartz- (by Electron Backscatter Diffraction, EBSD) and feldspar grain size (measured optically) piezometry are used to calculate the flow stress for each zone, while the Ti-in-quartz thermometer (TitaniQ) is used to calculate the corresponding temperature of deformation. We document the presence of a broad zone in which quartz is recrystallized by the Grain Boundary Migration (GBM) mechanism and feldspar by Subgrain Rotation (SGR), which represents the broad, deep zone of deformation occurring at relatively high temperatures and low stresses. In map view, this transitions to successively narrower zones, respectively characterized by quartz SGR and feldspar Bulge Nucleation (BLG); quartz BLG and brittle deformation of feldspar; and finally, a zone of generally brittle deformation. These zones represent deformation in progressively narrower regions at shallower depths, under lower temperatures and higher stresses.

  4. Questioning the Sedimentary Paradigm for Granites

    NASA Astrophysics Data System (ADS)

    Glazner, A. F.; Bartley, J. M.; Coleman, D. S.; Boudreau, A.; Walker, J. D.

    2007-12-01

    A critical question regarding volcano-pluton links is whether plutons are samples of magma that passed through on its way to eruption, or residues left behind after volcanic rocks were extracted. A persistent theme of recent work on granites sensu lato is that many are sedimentary accumulations of crystals that lost significant volumes of magmatic liquid. This view is based on observations of structures that clearly seem to reflect deposition on a magma chamber floor (e.g., flows of chilled mafic magma into silicic magma) and on the inference that many other structures, such as modal layering, truncated layering, and crystal accumulations, reflect crystal sedimentation on such chamber floors. There are significant physical and geochemical reasons to question this view, based on observations in the Sierra Nevada of California and similar results from other batholiths. First, few granites show the enrichments in Ba, Sr, and relative Eu that feldspar accumulation should produce. Second, sedimentary features such as graded bedding and cross-bedding form in highly turbulent flows, but turbulence is unachievable in viscous silicic liquids, where velocities on the order of 104 m/s would be required to induce turbulence in a liquid with η=104 Pa s. Third, tabular modally layered domains commonly cut surrounding modal layering on both sides, and orientations of modal layering and of the troughs of "ladder dikes" commonly scatter widely within hectare-sized areas; it is difficult to reconcile these features with gravity-driven settling. Fourth, accumulations of K-feldspar megacrysts are typically inferred to be depositional, but this is precluded by crystallization of most K- feldspar after rheologic lock-up occurs. Finally, accumulations of K-feldspar and hornblende are typically packed too tightly to be depositional. With analogy to layered mafic intrusions, many features attributed to crystal sedimentation in granites may be better explained by crystal aging and other in situ chemical processes. In particular, many of these features may record pore-melt flow paths rather than depositional processes.

  5. Accumulated phenocrysts and origin of feldspar porphyry in the Chanho area, western Yunnan, China

    NASA Astrophysics Data System (ADS)

    Xu, Xing-Wang; Jiang, Neng; Yang, Kai; Zhang, Bao-Lin; Liang, Guang-He; Mao, Qian; Li, Jin-Xiang; Du, Shi-Jun; Ma, Yu-Guang; Zhang, Yong; Qin, Ke-Zhang

    2009-12-01

    The No. 1 feldspar porphyry in the Chanho area, western Yunnan, China is characterized by the development of deformed glomeroporphyritic aggregates (GA) that contain diagnostic gravity settling textures. These textures include interlocking curved grain boundaries caused by compaction, bent twins, and arch-like structures. The GAs are accumulated phenocrysts (AP) and antecrysts. The unstable textural configurations such as extensive penetrative microfractures that are restricted within the AP and fractured cores of zircon grains, all suggest that the GAs are transported fragments of fractured cumulates that formed in a pre-emplacement magma chamber rather than form in situ at the current intrusion site. Compositions of minerals and melt as represented by different mineral aggregates formed at various stages of the magmatic process and their relations to the composition of porphyry bodies in the Chanho area indicate that the porphyritic melt for the No. 1 feldspar porphyry experienced two stages of melt mixing. Pulses of potassic melt flowed into a pre-emplacement magma chamber and mixed with crystallizing dioritic magma containing phenocrysts resulted in the first hybrid alkaline granitic melt. The mixing caused denser phenocrysts to settle and aggregate to form cumulates. Secondly, new dioritic melt was injected into the magma chamber and was mixed with the previously formed hybrid alkaline granitic melt to produce syenitic melt. Geochron data, including U-Pb age of zircon and 39Ar/ 40Ar age of hornblende and oligoclase phenocrysts, indicate that hornblende and oligoclase phenocrysts, as well as the core of zircon grains, were antecrysts that formed in a number of crystallization events between 36.3 and 32.78 Ma. Gravity settling of phenocrysts took place at about 33.1 to 32.78 Ma and melts with deformed GAs were transported upwards and emplaced into the current site at 32 Ma. Results of this research indicate that the No. 1 feldspar porphyry was a shallow intrusion of mixed melts that contained phenocrysts and GAs, both of which formed in a deeper transitional magma chamber.

  6. Magmatic-hydrothermal fluid interaction and mineralization in alkali-syenite nodules from the Breccia Museo pyroclastic deposit, Naples, Italy: Chapter 7 in Volcanism in the Campania Plain — Vesuvius, Campi Flegrei and Ignimbrites

    USGS Publications Warehouse

    Fedele, Luca; Tarzia, Maurizio; Belkin, Harvey E.; De Vivo, Benedetto; Lima, Annamaria; Lowenstern, Jacob

    2007-01-01

    The Breccia Museo, a pyroclastic flow that crops out in the Campi Flegrei volcanic complex (Naples, Italy), contains alkali-syenite (trachyte) nodules with enrichment in Cl and incompatible elements (e.g., U, Zr, Th, and rare-earth elements). Zircon was dated at ≈52 ka, by U-Th isotope systematics using a SHRIMP. Scanning electron microscope and electron microprobe analysis of the constituent phases have documented the mineralogical and textural evolution of the nodules of feldspar and mafic accumulations on the magma chamber margins. Detailed electron microprobe data are given for alkali and plagioclase feldspar, salite to ferrosalite clinopyroxene, pargasite, ferrogargasite, magnesio-hastingsite hornblende amphibole, biotite mica, Cl-rich scapolite, and a member (probable davyne-type) of the cancrinite group. Detailed whole rock, major and minor element data are also presented for selected nodules. A wide variety of common and uncommon accessory minerals were identified such as zircon, baddeleyite, zirconolite, pollucite, sodalite, titanite, monazite, cheralite, apatite, titanomagnetite and its alteration products, scheelite, ferberite, uraninite/thorianite, uranpyrochlore, thorite, pyrite, chalcopyrite, and galena. Scanning electron microscope analysis of opened fluid inclusions identified halite, sylvite, anhydrite, tungstates, carbonates, silicates, sulfides, and phosphates; most are probably daughter minerals. Microthermometric determinations on secondary fluid inclusions hosted by alkali feldspar define a temperature regime dominated by hypersaline aqueous fluids. Fluid-inclusion temperature data and mineral-pair geothermometers for coexisting feldspars and hornblende and plagioclase were used to construct a pressure-temperature scenario for the development and evolution of the nodules. We have compared the environment of porphyry copper formation and the petrogenetic environment constructed for the studied nodules. The suite of ore minerals observed in the nodules supports a potential for mineralization, which is similar to that observed in the alkaline volcanic systems of southern Italy (Pantelleria, Pontine Archipelago, Mt. Somma-Vesuvius).

  7. Buffering of potassium in seawater by alteration of basalt in low-temperature, off-axis, hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Laureijs, C. T.; Coogan, L. A.

    2016-12-01

    It is generally accepted that the composition of seawater has varied through the Phanerzoic and that the variation is linked to changes in the same global fluxes that control the long-term carbon cycle. However, K is observed to be stable at a value of 10 mmol/L despite variable river and hydrothermal fluxes [1]. Secondary K-bearing phases are widely observed in altered upper oceanic crust, suggesting that reactions between seawater and basalt in low-temperature, off-axis, oceanic hydrothermal systems could buffer the K concentration of seawater [2]. As K-feldspar is a common secondary K-bearing mineral in Cretaceous and rare in Cenozoic oceanic crust, the formation of K-feldspar by breakdown of plagioclase reacting with a model Cretaceous seawater was modeled at 15 ºC using the PhreeqC code (version 3.2) and the associated llnl.dat database. A fluid with a K-content of 11 mmol/L in equilibrium with K-feldspar and calcite was generated, consistent with K-feldspar acting as a buffer for the K-content in Cretaceous seawater and the production of alkalinity stabilizing atmospheric CO2 levels on the long-term timescales. A compilation of the K2O content of lavas from DSDP and ODP drill cores (from: http://www.earthchem.org/petdb) shows that the average K-content of altered crust was higher in the Cretaceous than the Cenozoic. This data is inconsistent with the model for the composition of seawater presented in [2], but is consistent with an updated and modified version of this model, that uses more realistic fluxes [3]. We conclude that oceanic off-axis hydrothermal systems probably do buffer the K-content of seawater. [1] Timofeeff et al. (2006), Geochim. Cosmochim. Acta. 70, 1977-1994; [2] Demicco et al. (2005), Geology 33, 877-880. [3] Coogan & Dosso (2012), Earth Planet. Sci. Lett. 323-324, 92-101.

  8. Pore Structure and Diagenetic Controls on Relative Permeability: Implications for Enhanced Oil Recovery and CO2 Storage

    NASA Astrophysics Data System (ADS)

    Feldman, J.; Dewers, T. A.; Heath, J. E.; Cather, M.; Mozley, P.

    2016-12-01

    Multiphase flow in clay-bearing sandstones of the Morrow Sandstone governs the efficiency of CO2 storage and enhanced oil recovery at the Farnsworth Unit, Texas. This formation is the target for enhanced oil recovery and injection of one million metric ton of anthropogenically-sourced CO2. The sandstone hosts eight major flow units that exhibit distinct microstructural characteristics due to diagenesis, including: "clean" macro-porosity; quartz overgrowths constricting some pores; ghost grains; intergranular porosity filled by microporous authigenic clay; and feldspar dissolution. We examine the microstructural controls on macroscale (core scale) relative permeability and capillary pressure behavior through: X-ray computed tomography, Robomet.3d, and focused ion beam-scanning electron microscopy imaging of the pore structure of the major flow units of the Morrow Sandstone; relative permeability and capillary pressure in the laboratory using CO2, brine, and oil at reservoir pressure and effective stress conditions. The combined data sets inform links between patterns of diagenesis and multiphase flow. These data support multiphase reservoir simulation and performance assessment by the Southwest Regional Partnership on Carbon Sequestration (SWP). Funding for this project is provided by the U.S. Department of Energy's National Energy Technology Laboratory through the SWP under Award No. DE-FC26-05NT42591. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  9. Depositional environment of downdip Yegua (Eocene) sandstones, Jackson County, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitten, C.J.; Berg, R.R.

    Yegua sandstones at a depth of 8300-8580 ft (2530-2615 m) were partly cored in the Arco Jansky 1 dry hole. Total thickness of the sandstone section is approximately 240 ft (73 m). The sandstones are enclosed in thick marine shales and are about 20 mi (32 km) downdip from thicker and more abundant sandstones in the Yegua Formation. The section is similar to reservoirs recently discovered in the area at the Toro Grande (1984), Lost Bridge (1984), and El Torito (1985) fields. The sandstones are fine to very fine grained and occur in thin beds that are 0.5-9 ft (0.15-2.7more » m) thick. Sedimentary structures within the beds range from a lower massive division to a laminated or rippled upper division. Grain size within beds fines upward from 0.18 mm at the base to 0.05 mm at the top. The sandstones are interpreted to be turbidites of the AB type that were deposited within channels. The sandstones contain an average of 50% quartz and are classified as volcanic-arenites to feldspathic litharenites. Carbonate cement ranges from 0 to 27%. Average porosity is 29% and permeabilities are in the range of 60-1600 md in the clean sandstones. Much of the porosity is secondary and is the result of the dissolution of cements, volcanic rock fragments, and feldspar grains. Yegua sandstones produce gas and condensate at nearby Toro Grande field on a gentle, faulted anticline. The local trend of reservoir sandstones may be controlled in part by faulting that was contemporaneous with deposition.« less

  10. Chemical composition and geologic history of saline waters in Aux Vases and Cypress Formations, Illinois Basin

    USGS Publications Warehouse

    Demir, I.; Seyler, B.

    1999-01-01

    Seventy-six samples of formation waters were collected from oil wells producing from the Aux Vases or Cypress Formations in the Illinois Basin. Forty core samples of the reservoir rocks were also collected from the two formations. Analyses of the samples indicated that the total dissolved solids content (TDS) of the waters ranged from 43,300 to 151,400 mg/L, far exceeding the 35,400 mg/mL of TDS found in typical seawater. Cl-Br relations suggested that high salinities in the Aux Vases and Cypress formation waters resulted from the evaporation of original seawater and subsequent mixing of the evaporated seawater with concentrated halite solutions. Mixing with the halite solutions increased Na and Cl concentrations and diluted the concentration of other ions in the formation waters. The elemental concentrations were influenced further by diagenetic reactions with silicate and carbonate minerals. Diagenetic signatures revealed by fluid chemistry and rock mineralogy delineated the water-rock interactions that took place in the Aux Vases and Cypress sandstones. Dissolution of K-feldspar released K into the solution, leading to the formation of authigenic illite and mixed-layered illite/smectite. Some Mg was removed from the solution by the formation of authigenic chlorite and dolomite. Dolomitization, calcite recrystallization, and contribution from clay minerals raised Sr levels significantly in the formation waters. The trend of increasing TDS of the saline formation waters with depth can be explained with density stratification. But, it is difficult to explain the combination of the increasing TDS and increasing Ca/Na ratio with depth without invoking the controversial 'ion filtration' mechanism.

  11. Hydraulic evolution of high-density turbidity currents from the Brushy Canyon Formation, Eddy County, New Mexico inferred by comparison to settling and sorting experiments

    NASA Astrophysics Data System (ADS)

    Motanated, Kannipa; Tice, Michael M.

    2016-05-01

    Hydraulic transformations in turbidity currents are commonly driven by or reflected in changes in suspended sediment concentrations, but changes preceding transformations can be difficult to diagnose because they do not produce qualitative changes in resultant deposits. This study integrates particle settling experiments and in situ detection of hydraulically contrasting particles in turbidites in order to infer changes in suspended sediment concentration during deposition of massive (Bouma Ta) sandstone divisions. Because grains of contrasting density are differentially sorted during hindered settling from dense suspensions, relative grading patterns can be used to estimate suspended sediment concentrations and interpret hydraulic evolution of the depositing turbidity currents. Differential settling of dense particles (aluminum ballotini) through suspensions of hydraulically coarser light particles (silica ballotini) with volumetric concentration, Cv, were studied in a thin vessel by using particle-image-velocimetry. At high Cv, aluminum particles were less retarded than co-sedimenting silica particles, and effectively settled as hydraulically coarser grains. This was because particles were entrained into clusters dominated by the settling behavior of the silica particles. Terminal settling velocities of both particles converged at Cv ≥ 25%, and particle sorting was diminished. The results of settling experiments were applied to understand settling of analogous feldspar and zircon grains in natural turbidity flows. Distributions of light and heavy mineral grains in massive sandstones, Bouma Ta divisions, of turbidites from the Middle Permian Brushy Canyon Formation were observed in situ by X-ray fluorescence microscopy (μXRF). Hydraulic sorting of these grains resulted in characteristic patterns of zirconium abundance that decreased from base to top within Ta divisions. These profiles resulted from upward fining of zircon grains with respect to co-occurring feldspar grains. Although calculated settling velocity distributions for zircon grains in structureless sandstones were slower than those for feldspar grains at infinite dilution, calculated settling velocity distributions for zircon and feldspar grains in overlying black siltstone layers were identical. This evidence suggests that these sandstone divisions were deposited from hyperconcentrated suspensions where particle segregation was diminished and hydraulically fine grains were entrained with hydraulically coarse particles. Hydraulic fining of zircon grains during deposition implies that the suspended sediment concentration at the bases of turbidity currents increased even as the overall current evolved toward lower density as reflected by cessation of Ta deposition and by hydraulic equivalence of zircon and feldspar grains in overlying low-density turbiditic siltstones. This evolution likely resulted from volumetric collapse of the turbidity currents.

  12. Discriminative Dissolution Method for Benzoyl Metronidazole Oral Suspension.

    PubMed

    da Silva, Aline Santos; da Rosa Silva, Carlos Eduardo; Paula, Fávero Reisdorfer; da Silva, Fabiana Ernestina Barcellos

    2016-06-01

    A dissolution method for benzoyl metronidazole (BMZ) oral suspensions was developed and validated using a high-performance liquid chromatography (HPLC) method. After determination of sink conditions, dissolution profiles were evaluated using different dissolution media and agitation speeds. The sample insertion mode in dissolution media was also evaluated. The best conditions were obtained using a paddle, 50 rpm stirring speed, simulated gastric fluid (without pepsin) as the dissolution medium, and sample insertion by a syringe. These conditions were suitable for providing sink conditions and discriminatory power between different formulations. Through the tested conditions, the results can be considered specific, linear, precise, accurate, and robust. The dissolution profiles of five samples were compared using the similarity factor (f 2) and dissolution efficiency. The dissolution kinetics were evaluated and described by the Weibull model. Whereas there is no monograph for this pharmaceutical formulation, the dissolution method proposed can be considered suitable for quality control and dissolution profile comparison of different commercial formulations.

  13. Friction-Induced Changes in the Surface Structure of Basalt and Granite

    NASA Astrophysics Data System (ADS)

    Vettegren, V. I.; Arora, K.; Ponomarev, A. V.; Mamalimov, R. I.; Shcherbakov, I. P.; Kulik, V. B.

    2018-05-01

    Friction-induced changes in the structure of the surface layer of basalt and granite samples extracted from a well in the triggered seismicity zone in the Koyna-Warna region, India, have been studied by infrared, Raman, and photoluminescence spectroscopy. It has been found that friction leads to a partial degradation of quartz, albite, and clinopyroxenes crystals. Instead of these crystals, a thin layer of a mineral with a low coefficient of friction—kaolinite—is formed on the surface.

  14. Isotopic and geochemical characterization of fossil brines of the Cambrian Mt. Simon Sandstone and Ironton-Galesville Formation from the Illinois Basin, USA

    NASA Astrophysics Data System (ADS)

    Labotka, Dana M.; Panno, Samuel V.; Locke, Randall A.; Freiburg, Jared T.

    2015-09-01

    Geochemical and isotopic characteristics of deep-seated saline groundwater provide valuable insight into the origin and evolving composition, water-rock interaction, and mixing potential of fossil brines. Such information may yield insight into intra- and interbasinal brine movement and relationships between brine evolution and regional groundwater flow systems. This investigation reports on the δ18O and δD composition and activity values, 87Sr/86Sr ratios and Sr concentrations, and major ion concentrations of the Cambrian-hosted brines of the Mt. Simon Sandstone and Ironton-Galesville Formation and discusses the evolution of these brines as they relate to other intracontinental brines. Brines in the Illinois Basin are dominated by Na-Ca-Cl-type chemistry. The Mt. Simon and overlying Ironton-Galesville brines exhibit total dissolved solids concentrations of ∼195,000 mg/L and ∼66,270 mg/L, respectively. The δD of brine composition of the Mt. Simon ranges from -34‰ to -22‰ (V-SMOW), and the Ironton-Galesville is ∼-53.2‰ (V-SMOW). The δ18O composition of the Mt. Simon brine ranges from -5.0‰ to -2.8‰ (V-SMOW), and the Ironton-Galesville brine is ∼-6.9‰ (V-SMOW). The 87Sr/86Sr values in the Mt. Simon brine range from 0.7110 to 0.7116. The less radiogenic Ironton-Galesville brine has an average 87Sr/86Sr value of 0.7107. Evaluation of δ18O and δD composition and activities and 87Sr/86Sr ratios suggests that the Mt. Simon brine is likely connate seawater and recirculating deep-seated brines that have been diluted with meteoric water and influenced by the dissolution of evaporites with a minimal halite contribution based on Cl/Br ratios. The Ironton-Galesville brine is also likely originally connate seawater that mixed with other brines and meteoric waters, including possibly Pleistocene glacial recharge. The Ca-excess vs. Na-deficiency comparison with the Basinal Fluid Line suggests the Mt. Simon and Ironton-Galesville brines have been influenced by the effects of albitization and plot very close to the Basinal Fluid Line. These Cambrian-hosted brines appear to have a different albitization history than other regional basin brines and a strong component of seawater. The Ironton-Galesville brine appears more geochemically associated with other Illinois Basin brines than the Mt. Simon brine which appears more geochemically conservative. Comparisons with other extrabasinal North American brines suggest that the Michigan basin brines are geochemically most similar to the Mt. Simon brines with the exception of the influence from carbonates in the Michigan Basin. Analyses of 87Sr/86Sr values in the Mt. Simon brine suggest that brine Sr has isotopically equilibrated with clay minerals in the Lower Mt. Simon and underlying bedrock formations and not with whole rock suggesting the influence of recirculating brines from the crystalline basement. Overall, the geochemistry of these Cambrian-hosted brines suggests an evolution from original seawater-like compositions. This investigation shows that intracratonic basins do not behave as closed systems but can be strongly affected by water-rock interaction and regional groundwater flow systems that circulate deep crystalline basement brines and brines from nearby basins.

  15. [Dissolution behavior of Fuzi Lizhong pill based on simultaneous determination of two components in Glycyrrhizae Radix et Rhizoma].

    PubMed

    Jiang, Mao-Yuan; Zhang, Zhen; Shi, Jin-Feng; Zhang, Jin-Ming; Fu, Chao-Mei; Lin, Xia; Liu, Yu-Mei

    2018-03-01

    To preliminarily investigate the dissolution behavior of Fuzi Lizhong pill, provide the basis for its quality control and lay foundation for in vivo dissolution behavior by determining the dissolution rate of liquiritin and glycyrrhizic acid. High-performance liquid chromatography (HPLC) method for simultaneous content determination of the two active ingredients of liquiritin and glycyrrhizic acid in Fuzi Lizhong pill was established; The dissolution amount of these two active ingredients in fifteen batches of Fuzi Lizhong pill from five manufacturers was obtained at different time points, and then the cumulative dissolution rate was calculated and cumulative dissolution curve was drawn. The similarity of cumulative dissolution curve of different batches was evaluated based on the same factory, and the similarity of cumulative dissolution curve of different factories was evaluated based on the same active ingredients. The dissolution model of Fuzi Lizhong pill based on two kinds of active ingredients was established by fitting with the dissolution data. The best dissolution medium was 0.25% sodium lauryl sulfate. The dissolution behavior of liquiritin and glycyrrhizic acid in Fuzi Lizhong pill was basically the same and sustained release in 48 h. Three batches of the factories (factory 2, factory 3, factory 4 and factory 5) appeared to be similar in dissolution behavior, indicating similarity in dissolution behavior in most factories. Two of the three batches from factory 1 appeared to be not similar in dissolution behavior of liquiritin and glycyrrhizic acid. The dissolution data of the effective ingredients from different factories were same in fitting, and Weibull model was the best model in these batches. Fuzi Lizhong pill in 15 batches from 5 factories showed sustained release in 48 h, proving obviously slow releasing characteristics "pill is lenitive and keeps a long-time efficacy". The generally good dissolution behavior also suggested that quality of different batches from most factories was stable. The dissolution behavior of liquiritin and glycyrrhizic acid in different factories was different, suggesting that the source of medicinal materials and preparation technology parameters in five factories were different. Copyright© by the Chinese Pharmaceutical Association.

  16. Optimization of Dissolution Compartments in a Biorelevant Dissolution Apparatus Golem v2, Supported by Multivariate Analysis.

    PubMed

    Stupák, Ivan; Pavloková, Sylvie; Vysloužil, Jakub; Dohnal, Jiří; Čulen, Martin

    2017-11-23

    Biorelevant dissolution instruments represent an important tool for pharmaceutical research and development. These instruments are designed to simulate the dissolution of drug formulations in conditions most closely mimicking the gastrointestinal tract. In this work, we focused on the optimization of dissolution compartments/vessels for an updated version of the biorelevant dissolution apparatus-Golem v2. We designed eight compartments of uniform size but different inner geometry. The dissolution performance of the compartments was tested using immediate release caffeine tablets and evaluated by standard statistical methods and principal component analysis. Based on two phases of dissolution testing (using 250 and 100 mL of dissolution medium), we selected two compartment types yielding the highest measurement reproducibility. We also confirmed a statistically ssignificant effect of agitation rate and dissolution volume on the extent of drug dissolved and measurement reproducibility.

  17. Etching of semiconductor cubic crystals: Determination of the dissolution slowness surfaces

    NASA Astrophysics Data System (ADS)

    Tellier, C. R.

    1990-03-01

    Equations of the representative surface of dissolution slowness for cubic crystals are determined in the framework of a tensorial approach of the orientation-dependent etching process. The independent dissolution constants are deduced from symmetry considerations. Using previous data on the chemical etching of germanium and gallium arsenide crystals, some possible polar diagrams of the dissolution slowness are proposed. A numerical and graphical simulation method is used to obtain the derived dissolution shapes. The influence of extrema in the dissolution slowness on the successive dissolution shapes is also examined. A graphical construction of limiting shapes of etched crystals appears possible using the tensorial representation of the dissolution slowness.

  18. Coherent anti-Stokes Raman Scattering (CARS) Microscopy Visualizes Pharmaceutical Tablets During Dissolution

    PubMed Central

    Fussell, Andrew L.; Kleinebudde, Peter; Herek, Jennifer; Strachan, Clare J.; Offerhaus, Herman L.

    2014-01-01

    Traditional pharmaceutical dissolution tests determine the amount of drug dissolved over time by measuring drug content in the dissolution medium. This method provides little direct information about what is happening on the surface of the dissolving tablet. As the tablet surface composition and structure can change during dissolution, it is essential to monitor it during dissolution testing. In this work coherent anti-Stokes Raman scattering microscopy is used to image the surface of tablets during dissolution while UV absorption spectroscopy is simultaneously providing inline analysis of dissolved drug concentration for tablets containing a 50% mixture of theophylline anhydrate and ethyl cellulose. The measurements showed that in situ CARS microscopy is capable of imaging selectively theophylline in the presence of ethyl cellulose. Additionally, the theophylline anhydrate converted to theophylline monohydrate during dissolution, with needle-shaped crystals growing on the tablet surface during dissolution. The conversion of theophylline anhydrate to monohydrate, combined with reduced exposure of the drug to the flowing dissolution medium resulted in decreased dissolution rates. Our results show that in situ CARS microscopy combined with inline UV absorption spectroscopy is capable of monitoring pharmaceutical tablet dissolution and correlating surface changes with changes in dissolution rate. PMID:25045833

  19. Evaluation of a biphasic in vitro dissolution test for estimating the bioavailability of carbamazepine polymorphic forms.

    PubMed

    Deng, Jia; Staufenbiel, Sven; Bodmeier, Roland

    2017-07-15

    The purpose of this study was to discriminate three crystal forms of carbamazepine (a BCS II drug) by in vitro dissolution testing and to correlate in vitro data with published in vivo data. A biphasic dissolution system (phosphate buffer pH6.8 and octanol) was used to evaluate the dissolution of the three polymorphic forms and to compare it with conventional single phase dissolution tests performed under sink and non-sink conditions. Similar dissolution profiles of three polymorphic forms were observed in the conventional dissolution test under sink conditions. Although a difference in dissolution was seen in the single phase dissolution test under non-sink conditions as well as in the aqueous phase of the biphasic test, little relevance for in vivo data was observed. In contrast, the biphasic dissolution system could discriminate between the different polymorphic forms in the octanol phase with a ranking of form III>form I>dihydrate form. This was in agreement with the in vivo performance. The dissolved drug available for oral absorption, which was dominated by dissolution and solution-mediated phase transformation, could be reflected in the biphasic dissolution test. Moreover, a good correlation was established between in vitro dissolution in the octanol phase of the biphasic test and in vivo pharmacokinetic data (R 2 =0.99). The biphasic dissolution method is a valuable tool to discriminate between different crystal forms in the formulations of poorly soluble drugs. Copyright © 2017. Published by Elsevier B.V.

  20. 5 CFR 2634.410 - Dissolution.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 3 2014-01-01 2014-01-01 false Dissolution. 2634.410 Section 2634.410..., QUALIFIED TRUSTS, AND CERTIFICATES OF DIVESTITURE Qualified Trusts § 2634.410 Dissolution. Within thirty days of dissolution of a qualified trust, the interested party shall file a report of the dissolution...

  1. 5 CFR 2634.410 - Dissolution.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 3 2013-01-01 2013-01-01 false Dissolution. 2634.410 Section 2634.410..., QUALIFIED TRUSTS, AND CERTIFICATES OF DIVESTITURE Qualified Trusts § 2634.410 Dissolution. Within thirty days of dissolution of a qualified trust, the interested party shall file a report of the dissolution...

  2. High temperature dissolution of chromium substituted nickel ferrite in nitrilotriacetic acid medium

    NASA Astrophysics Data System (ADS)

    Sathyaseelan, V. S.; Chandramohan, P.; Velmurugan, S.

    2016-12-01

    High temperature (HT) dissolution of chromium substituted nickel ferrite was carried out with relevance to the decontamination of nuclear reactors by way of chemical dissolution of contaminated corrosion product oxides present on stainless steel coolant circuit surfaces. Chromium substituted nickel ferrites of composition, NiFe(2-x)CrxO4 (x ≤ 1), was synthetically prepared and characterized. HT dissolution of these oxides was carried out in nitrilotriacetic acid medium at 160 °C. Dissolution was remarkably increased at 160 °C when compared to at 85 °C in a reducing decontamination formulation. Complete dissolution could be achieved for the oxides with chromium content 0 and 0.2. Increasing the chromium content brought about a marked reduction in the dissolution rate. About 40 fold decrease in rate of dissolution was observed when chromium was increased from 0 to 1. The rate of dissolution was not very significantly reduced in the presence of N2H4. Dissolution of oxide was found to be stoichiometric.

  3. Dissolution of solid dosage form. II. Equations for the dissolution of nondisintegrating tablet under the sink condition.

    PubMed

    Yonezawa, Y; Shirakura, K; Otsuka, A; Sunada, H

    1991-03-01

    An equation for dissolution from the whole surface of a nondisintegrating single component tablet under the sink condition was derived. Also, equations for several dissolution manners of the tablet under the sink condition were derived in the postulation of the dominant dissolution rate constant which determines the dissolution manner. The applicability or validity of these equations were examined by the dissolution measurements with nondisintegrating single component tablets. About one-tenth the amount of the amount needed to saturate the solution was used to prepare a tablet, and dissolution measurements were carried out with the tablet whose flat or side surface was masked with an adhesive tape in accordance with the conditions for derivation of equations. Among the derived equations, dissolution from the whole surface of a tablet was expressed by a form similar to the cube root law equation for particles. Hence, a single component tablet compressed by the use of a suitable amount was thought to behave like a single crystal. Also, equations derived for several dissolution manners were thought to be applicable for the dissolution of a nonspherical particle and crystal concerning the crystal's habit and its dissolution property, and the extended applicability was examined by converting the crystal into a simplified or idealized form, i.e., rectangle or plate.

  4. Justification of disintegration testing beyond current FDA criteria using in vitro and in silico models.

    PubMed

    Uebbing, Lukas; Klumpp, Lukas; Webster, Gregory K; Löbenberg, Raimar

    2017-01-01

    Drug product performance testing is an important part of quality-by-design approaches, but this process often lacks the underlying mechanistic understanding of the complex interactions between the disintegration and dissolution processes involved. Whereas a recent draft guideline by the US Food and Drug Administration (FDA) has allowed the replacement of dissolution testing with disintegration testing, the mentioned criteria are not globally accepted. This study provides scientific justification for using disintegration testing rather than dissolution testing as a quality control method for certain immediate release (IR) formulations. A mechanistic approach, which is beyond the current FDA criteria, is presented. Dissolution testing via United States Pharmacopeial Convention Apparatus II at various paddle speeds was performed for immediate and extended release formulations of metronidazole. Dissolution profile fitting via DDSolver and dissolution profile predictions via DDDPlus™ were performed. The results showed that Fickian diffusion and drug particle properties (DPP) were responsible for the dissolution of the IR tablets, and that formulation factors (eg, coning) impacted dissolution only at lower rotation speeds. Dissolution was completely formulation controlled if extended release tablets were tested and DPP were not important. To demonstrate that disintegration is the most important dosage form attribute when dissolution is DPP controlled, disintegration, intrinsic dissolution and dissolution testing were performed in conventional and disintegration impacting media (DIM). Tablet disintegration was affected by DIM and model fitting to the Korsmeyer-Peppas equation showed a growing effect of the formulation in DIM. DDDPlus was able to predict tablet dissolution and the intrinsic dissolution profiles in conventional media and DIM. The study showed that disintegration has to occur before DPP-dependent dissolution can happen. The study suggests that disintegration can be used as performance test of rapidly disintegrating tablets beyond the FDA criteria. The scientific criteria and justification is that dissolution has to be DPP dependent, originated from active pharmaceutical ingredient characteristics and formulations factors have to be negligible.

  5. Justification of disintegration testing beyond current FDA criteria using in vitro and in silico models

    PubMed Central

    Uebbing, Lukas; Klumpp, Lukas; Webster, Gregory K; Löbenberg, Raimar

    2017-01-01

    Drug product performance testing is an important part of quality-by-design approaches, but this process often lacks the underlying mechanistic understanding of the complex interactions between the disintegration and dissolution processes involved. Whereas a recent draft guideline by the US Food and Drug Administration (FDA) has allowed the replacement of dissolution testing with disintegration testing, the mentioned criteria are not globally accepted. This study provides scientific justification for using disintegration testing rather than dissolution testing as a quality control method for certain immediate release (IR) formulations. A mechanistic approach, which is beyond the current FDA criteria, is presented. Dissolution testing via United States Pharmacopeial Convention Apparatus II at various paddle speeds was performed for immediate and extended release formulations of metronidazole. Dissolution profile fitting via DDSolver and dissolution profile predictions via DDDPlus™ were performed. The results showed that Fickian diffusion and drug particle properties (DPP) were responsible for the dissolution of the IR tablets, and that formulation factors (eg, coning) impacted dissolution only at lower rotation speeds. Dissolution was completely formulation controlled if extended release tablets were tested and DPP were not important. To demonstrate that disintegration is the most important dosage form attribute when dissolution is DPP controlled, disintegration, intrinsic dissolution and dissolution testing were performed in conventional and disintegration impacting media (DIM). Tablet disintegration was affected by DIM and model fitting to the Korsmeyer–Peppas equation showed a growing effect of the formulation in DIM. DDDPlus was able to predict tablet dissolution and the intrinsic dissolution profiles in conventional media and DIM. The study showed that disintegration has to occur before DPP-dependent dissolution can happen. The study suggests that disintegration can be used as performance test of rapidly disintegrating tablets beyond the FDA criteria. The scientific criteria and justification is that dissolution has to be DPP dependent, originated from active pharmaceutical ingredient characteristics and formulations factors have to be negligible. PMID:28442890

  6. 12 CFR 546.4 - Voluntary dissolution.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 6 2014-01-01 2012-01-01 true Voluntary dissolution. 546.4 Section 546.4 Banks... ASSOCIATIONS-MERGER, DISSOLUTION, REORGANIZATION, AND CONVERSION § 546.4 Voluntary dissolution. A Federal savings association's board of directors may propose a plan for dissolution of the association. The plan...

  7. 12 CFR 546.4 - Voluntary dissolution.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 6 2013-01-01 2012-01-01 true Voluntary dissolution. 546.4 Section 546.4 Banks... ASSOCIATIONS-MERGER, DISSOLUTION, REORGANIZATION, AND CONVERSION § 546.4 Voluntary dissolution. A Federal savings association's board of directors may propose a plan for dissolution of the association. The plan...

  8. 12 CFR 546.4 - Voluntary dissolution.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Voluntary dissolution. 546.4 Section 546.4... ASSOCIATIONS-MERGER, DISSOLUTION, REORGANIZATION, AND CONVERSION § 546.4 Voluntary dissolution. A Federal savings association's board of directors may propose a plan for dissolution of the association. The plan...

  9. 12 CFR 146.4 - Voluntary dissolution.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 1 2014-01-01 2014-01-01 false Voluntary dissolution. 146.4 Section 146.4... ASSOCIATIONS-MERGER, DISSOLUTION, REORGANIZATION, AND CONVERSION § 146.4 Voluntary dissolution. (a) A Federal savings association's board of directors may propose a plan for dissolution of the association. The plan...

  10. 12 CFR 146.4 - Voluntary dissolution.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 1 2013-01-01 2013-01-01 false Voluntary dissolution. 146.4 Section 146.4... ASSOCIATIONS-MERGER, DISSOLUTION, REORGANIZATION, AND CONVERSION § 146.4 Voluntary dissolution. (a) A Federal savings association's board of directors may propose a plan for dissolution of the association. The plan...

  11. 12 CFR 546.4 - Voluntary dissolution.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 5 2011-01-01 2011-01-01 false Voluntary dissolution. 546.4 Section 546.4... ASSOCIATIONS-MERGER, DISSOLUTION, REORGANIZATION, AND CONVERSION § 546.4 Voluntary dissolution. A Federal savings association's board of directors may propose a plan for dissolution of the association. The plan...

  12. 12 CFR 546.4 - Voluntary dissolution.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 6 2012-01-01 2012-01-01 false Voluntary dissolution. 546.4 Section 546.4... ASSOCIATIONS-MERGER, DISSOLUTION, REORGANIZATION, AND CONVERSION § 546.4 Voluntary dissolution. A Federal savings association's board of directors may propose a plan for dissolution of the association. The plan...

  13. 12 CFR 146.4 - Voluntary dissolution.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 1 2012-01-01 2012-01-01 false Voluntary dissolution. 146.4 Section 146.4... ASSOCIATIONS-MERGER, DISSOLUTION, REORGANIZATION, AND CONVERSION § 146.4 Voluntary dissolution. (a) A Federal savings association's board of directors may propose a plan for dissolution of the association. The plan...

  14. Ab initio calculation of 1H, 17O, 27Al and 29Si NMR parameters, vibrational frequencies and bonding energetics in hydrous silica and Na-aluminosilicate glasses

    NASA Astrophysics Data System (ADS)

    Kubicki, J. D.; Sykes, D. G.

    2004-10-01

    Ab initio, molecular orbital (MO) calculations were performed on model systems of SiO 2, NaAlSi 3O 8 (albite), H 2O-SiO 2 and H 2O-NaAlSi 3O 8 glasses. Model nuclear magnetic resonance (NMR) isotropic chemical shifts (δ iso) for 1H, 17O, 27Al and 29Si are consistent with experimental data for the SiO 2, NaAlSi 3O 8, H 2O-SiO 2 systems where structural interpretations of the NMR peak assignments are accepted. For H 2O-NaSi 3AlO 8 glass, controversy has surrounded the interpretation of NMR and infrared (IR) spectra. Calculated δ iso1H, δ iso17O, δ iso27Al and δ iso29Si are consistent with the interpretation of Kohn et al. (1992) that Si-(OH)-Al linkages are responsible for the observed peaks in hydrous Na-aluminosilicate glasses. In addition, a theoretical vibrational frequency associated with the Kohn et al. (1992) model agrees well with the observed shoulder near 900 cm -1 in the IR and Raman spectra of hydrous albite glasses. MO calculations suggest that breaking this Si-(OH)-Al linkage requires ˜+56 to +82 kJ/mol which is comparable to the activation energies for viscous flow in hydrous aluminosilicate melts.

  15. Paleozoic-Mesozoic boundary in the Berry Creek Quadrangle, northwestern Sierra Nevada, California

    USGS Publications Warehouse

    Hietanen, Anna Martta

    1977-01-01

    Structural and petrologic studies in the Berry Creek quadrangle at the north end of the western metamorphic belt of the Sierra Nevada have yielded new information that helps in distinguishing between the chemically similar Paleozoic and Mesozoic rocks. The distinguishing features are structural and textural and result from different degrees of deformation. Most Paleozoic rocks are strongly deformed and thoroughly recrystallized. Phenocrysts in meta volcanic rocks are granulated and drawn out into lenses that have sutured outlines. In contrast, the phenocrysts in the Mesozoic metavolcanic rocks show well-preserved straight crystal faces, are only slightly or not at all granulated, and contain fewer mineral inclusions than do those in the Paleozoic rocks. The groundmass in the Paleozoic rocks is recrystallized to a fairly coarse grained albite-epidote-amphibole-chlorite rock, whereas in the Mesozoic rocks the groundmass is a very fine grained feltlike mesh with only spotty occurrence of well-recrystallized finegrained albite-epidote-chlorite-actinolite rock. Primary minerals, such as augite, are locally preserved in the Mesozoic rocks but are altered to a mixture of amphibole, chlorite, and epidote in the Paleozoic rocks. In the contact aureoles of the plutons, and within the Big Bend fault zone, which crosses the area parallel to the structural trends, all rocks are thoroughly recrystallized and strongly deformed. Identification of the Paleozoic and Mesozoic rocks in these parts of the area was based on the continuity of the rock units in the field and on gradual changes in microscopic textures toward the plutons.

  16. Rare-earth-element minerals in martian breccia meteorites NWA 7034 and 7533: Implications for fluid-rock interaction in the martian crust

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Ma, Chi; Beckett, John R.; Chen, Yang; Guan, Yunbin

    2016-10-01

    Paired martian breccia meteorites, Northwest Africa (NWA) 7034 and 7533, are the first martian rocks found to contain rare-earth-element (REE) phosphates and silicates. The most common occurrence is as clusters of anhedral monazite-(Ce) inclusions in apatite. Occasionally, zoned, irregular merrillite inclusions are also present in apatite. Monazite-bearing apatite is sometimes associated with alkali-feldspar and Fe-oxide. Apatite near merrillite and monazite generally contains more F and OH (F-rich region) than the main chlorapatite host and forms irregular boundaries with the main host. Locally, the composition of F-rich regions can reach pure fluorapatite. The chlorapatite hosts are similar in composition to isolated apatite without monazite inclusions, and to euhedral apatite in lithic clasts. The U-Th-total Pb ages of monazite in three apatite are 1.0 ± 0.4Ga (2σ), 1.1 ± 0.5Ga (2σ), and 2.8 ± 0.7Ga (2σ), confirming a martian origin. The texture and composition of monazite inclusions are mostly consistent with their formation by the dissolution of apatite and/or merrillite by fluid at elevated temperatures (>100 °C). In NWA 7034, we observed a monazite-chevkinite-perrierite-bearing benmoreite or trachyandesite clast. Anhedral monazite and chevkinite-perrierite grains occur in a matrix of sub-micrometer REE-phases and silicates inside the clast. Monazite-(Ce) and -(Nd) and chevkinite-perrierite-(Ce) and -(Nd) display unusual La and Ce depletion relative to Sm and Nd. In addition, one xenotime-(Y)-bearing pyrite-ilmenite-zircon clast with small amounts of feldspar and augite occurs in NWA 7034. One xenotime crystal was observed at the edge of an altered zircon grain, and a cluster of xenotime crystals resides in a mixture of alteration materials. Pyrite, ilmenite, and zircon in this clast are all highly altered, zircon being the most likely source of Y and HREE now present in xenotime. The association of xenotime with zircon, low U and Th contents, and the low Yb content relative to Gd and Dy in xenotime suggest the possible formation of xenotime as a byproduct of fluid-zircon reactions. On the basis of relatively fresh apatite grains and lithic clasts in the same samples, we propose that the fluid-rock/mineral reactions occurred in the source rocks before their inclusion in NWA 7034 and 7533. Additionally, monazite-bearing apatite and REE-mineral-bearing clasts are possibly derived from different crustal origins. Thus, our results imply the wide-occurrence of hydrothermal fluids in the martian crust at 1 Ga or older, which were probably induced by impacts or large igneous intrusions.

  17. Crystallisation condition of the Quaternary basanites of volcanic centre Black Rock, monogenetic field Lunar Crater

    NASA Astrophysics Data System (ADS)

    Turova, Mariia; Plechov, Pavel; Scherbakov, Vasily; Larin, Nikolay

    2017-04-01

    The Lunar Crater volcanic field is located in a tension zone Basin and Range Province (USA). This tension is connected with dives oceanic plate under the continental plate [1]. Lunar Crater consists of flows basalt, basanite, trachybasalt has a different age [2]. In this work we investigate the youngest rock - basanite. The basanite is highly crystalline consisting of about megacrysts (3-10 cm) 30-60 wt% phenocrysts ( 800-1500 µm) and microphenocrysts (100-800 µm) and 40-60% microlites (<100 µm). This type of crystal allocated on the basis of size and different chemical composition. The basanite contains about 40 wt % of olivine phenocrysts and microphenocrysts; 35 % clinopyroxene phenocrysts and microphenocrysts. The other phenocrysts and microphenocrysts are feldspar and spinel. Phenocrysts of olivine plagioclase and clinopyroxene are the features of dissolution. The groundmass (<100 µm) consist of microlites olivine, clinopyroxene sanidine Ti-magnetite. Megacrysts are crystals range from I to l0 cm, are free of inclusions, and are unzoned. Basanite also bearing homeogenic enclaves and amphibole-feldspar-clinopyroxene cumulates. This size 4 mm-1.5 cm. Also in some cumulat indentified mineral renit. We determined pressure of the formation of clinopyroxene assemblage using the clinopyroxene barometer based on the relationship between pressure and the volumes of the unit cell and polyhedron M1 in the mineral structure [3]. The pressure is 18-20 kbar for megacrysts, for phenocrysts 15-18 kbar, for microphenocryst 6-8 kbar, for microlites 1,5-3 kbar. Moreover megacrysts are depleted of REE, compared with phenocrysts. Possibly, megacrysts are formed from the same basanite magma during earlier stage of crystallization [4]. Oxygen barometer data shows that the grains were formed in Redox conditions about FMQ+0.2. Temperature and oxygen fugacity conditions were estimated for microphenocrysts and groundmass crystallization only. Bibliography 1. Zoback M. L., Anderson R. E., Thompson G. A. Cainozoic evolution of the state of stress and style of tectonism of the Basin and Range province of the western United States //Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. - 1981. - T. 300. - №. 1454. - C. 407-434. 2. Wood, X., and Keinle, Y., 1990, Volcanoes of North America: Cambridge,United Kingdom, Cambridge University Press, 354 p. 3. Nimis P. Clinopyroxene geobarometry of magmatic rocks. Part 2. Structural geobarometers for basic to acid, tholeiitic and mildly alkaline magmatic systems //Contributions to Mineralogy and Petrology. - 1999. - T. 135. - №. 1. - C. 62-74. 4. Ballhaus C., Berry R. F., Green D. H. High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle //Contributions to Mineralogy and Petrology. - 1991. - T. 107. - №. 1. - C. 27-40.

  18. Interface dissolution control of the 14C profile in marine sediment

    USGS Publications Warehouse

    Keir, R.S.; Michel, R.L.

    1993-01-01

    The process of carbonate dissolution at the sediment-water interface has two possible endmember boundary conditions. Either the carbonate particles dissolve mostly before they are incorporated into the sediment by bioturbation (interface dissolution), or the vertical mixing is rapid relative to their extermination rate (homogeneous dissolution). In this study, a detailed radiocarbon profile was determined in deep equatorial Pacific sediment that receives a high rate of carbonate supply. In addition, a box model of sediment mixing was used to simulate radiocarbon, carbonate content and excess thorium profiles that result from either boundary process following a dissolution increase. Results from homogeneous dissolution imply a strong, very recent erosional event, while interface dissolution suggests that moderately increased dissolution began about 10,000 years ago. In order to achieve the observed mixed layer radiocarbon age, increased homogeneous dissolution would concentrate a greater amount of clay and 230Th than is observed, while for interface dissolution the predicted concentrations are too small. These results together with small discontinuities beneath the mixed layer in 230Th profiles suggest a two-stage increase in interface dissolution in the deep Pacific, the first occurring near the beginning of the Holocene and the second more recently, roughly 5000 years ago. ?? 1993.

  19. K-feldspar megacryst accumulations formed by mechanical instabilities in magma chamber margins, Asha pluton, NW Argentina

    NASA Astrophysics Data System (ADS)

    Rocher, Sebastián; Alasino, Pablo H.; Grande, Marcos Macchioli; Larrovere, Mariano A.; Paterson, Scott R.

    2018-07-01

    The Asha pluton, the oldest unit of the San Blas intrusive complex (Early Carboniferous), exhibits impressive examples of magmatic structures formed by accumulation of K-feldspar megacrysts, enclaves, and schlieren. Almost all recognized structures are meter-scale, vertically elongate bodies of variable shapes defined as fingers, trails, drips, and blobs. They preferentially developed near the external margin of the Asha pluton and generally are superimposed by chamber-wide magmatic fabrics. They mostly have circular or sub-circular transverse sections with an internal fabric defined by margin-parallel, inward-dipping concentric foliation and steeply plunging lineation at upper parts and flat foliation at lower parts. The concentration of megacrysts usually grades from upper sections, where they appear in a proportion similar to the host granite, to highly packed accumulations of K-feldspar along with grouped flattened enclaves at lower ends. These features suggest an origin by downward localized multiphase magmatic flow, narrowing and 'log jamming', and gravitational sinking of grouped crystals and enclaves, with compaction and filter pressing as main mechanisms of melt removal. Crystal size distribution analysis supports field observations arguing for a mechanical origin of accumulations. The magmatic structures of the Asha pluton represent mechanical instabilities generated by thermal and compositional convection, probably owing to cooling and crystallization near the pluton margins during early stages of construction of the intrusive complex.

  20. Diagenesis Along Fractures in an Eolian Sandstone, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Ming, D. W.; Yen, A. S.; Rampe, E. B.; Grotzinger, J. P.; Blake, D. F.; Bristow, T. F.; Chipera, S. J.; Downs, R.; Morris, R. V.; Morrison, S. M.; hide

    2016-01-01

    The Mars Science Laboratory rover Curiosity has been exploring sedimentary deposits in Gale crater since August 2012. The rover has traversed up section through approx.100 m of sedimentary rocks deposited in fluvial, deltaic, lacustrine, and eolian environments (Bradbury group and overlying Mount Sharp group). The Stimson formation lies unconformable over a lacustrine mudstone at the base of the Mount Sharp group and has been interpreted to be a cross-bedded sandstone of lithified eolian dunes. Mineralogy of the unaltered Stimson sandstone consists of plagioclase feldspar, pyroxenes, and magnetite with minor abundances of hematite, and Ca-sulfates (anhydrite, bassanite). Unaltered sandstone has a composition similar to the average Mars crustal composition. Alteration "halos" occur adjacent to fractures in the Stimson. Fluids passing through these fractures have altered the chemistry and mineralogy of the sandstone. Silicon and S enrichments and depletions in Al, Fe, Mg, Na, K, Ni and Mn suggest aqueous alteration in an open hydrologic system. Mineralogy of the altered Stimson is dominated by Ca-sulfates, Si-rich X-ray amorphous materials along with plagioclase feldspar, magnetite, and pyroxenes, but less abundant in the altered compared to the unaltered Stimson sandstone and lower pyroxene/plagioclase feldspar. The mineralogy and geochemistry of the altered sandstone suggest a complicated history with several (many?) episodes of aqueous alteration under a variety of environmental conditions (e.g., acidic, alkaline).

Top