Science.gov

Sample records for alboran sea basin

  1. Tectonic and stratigraphic evolution of the Western Alboran Sea basin since the last 25 Myrs

    NASA Astrophysics Data System (ADS)

    Do Couto, Damien; Gorini, Christian; Jolivet, Laurent; Lebret, Noëmie; Augier, Romain; Gumiaux, Charles; D'Acremont, Elia; Ammar, Abdellah; Auxietre, Jean-Luc

    2016-04-01

    The Western Alboran Basin (WAB) formation has always been a matter of debate and was either considered as a backarc or a forearc basin. Based on stratigraphic analysis of high-resolution 2D seismic profiles mostly located offshore Morocco, the tectonic and stratigraphic history of the WAB is clarified. A thick pre-rift sequence is observed beneath the Miocene basin and interpreted as the topmost Malaguide/Ghomaride complex composing the Alboran domain. The structural position of this unit compared with the HP-LT exhumed Alpujarride/Sebtide metamorphic basement, leads us to link the Early Miocene subsidence of the basin with an extensional detachment. Above the Early Miocene, a thick Serravallian sequence marked by siliciclastic deposits is nearly devoid of extensional structures. Its overall landward to basinward onlap geometry indicates that the WAB has behaved as a sag basin during most of its evolution, from the Serravallian to the Late Tortonian. Tectonic reconstructions in map view and cross-section further suggest that the basin has always represented a strongly subsiding topographic low without internal deformation that has migrated westward together with the retreating slab. We propose that the subsidence of the WAB was controlled by the pull of the dipping subducting lithosphere explaining the large thickness (10 km) of the mostly undeformed sedimentary infill.

  2. Tectonic and stratigraphic evolution of the Western Alboran Sea Basin in the last 25 Myrs

    NASA Astrophysics Data System (ADS)

    Do Couto, Damien; Gorini, Christian; Jolivet, Laurent; Lebret, Noëmie; Augier, Romain; Gumiaux, Charles; d'Acremont, Elia; Ammar, Abdellah; Jabour, Haddou; Auxietre, Jean-Luc

    2016-05-01

    The Western Alboran Basin (WAB) formation has always been the subject of debate and considered either as a back-arc or a forearc basin. Stratigraphic analyses of high-resolution 2D seismic profiles mostly located offshore Morocco, enabled us to clarify the tectonic and stratigraphic history of the WAB. The thick pre-rift sequence located beneath the Miocene basin is interpreted as the topmost Malaguide/Ghomaride complex composing the Alboran domain. The structural position of this unit compared with the HP-LT exhumed Alpujarride/Sebtide metamorphic basement, leads us to link the Early Miocene subsidence of the basin with an extensional detachment. Above the Early Miocene, a thick Serravallian sequence marked by siliciclastic deposits is nearly devoid of extensional structures. Its overall landward to basinward onlap geometry indicates that the WAB has behaved as a sag basin during most of its evolution from the Serravallian to the late Tortonian. Tectonic reconstructions in map view and in cross section further suggest that the basin has always represented a strongly subsiding topographic low without internal deformation that migrated westward together with the retreating slab. We propose that the subsidence of the WAB was controlled by the pull of the dipping subducting lithosphere hence explaining the considerable thickness (10 km) of the mostly undeformed sedimentary infill.

  3. Flysch-type sedimentation in the Alboran Sea, Western Mediterranean.

    PubMed

    Stanley, D J; Gehin, C E; Bartolini, C

    1970-12-01

    The Quaternary deposits of the Alboran Sea and associated sediment dispersal patterns, and geographic and tectonic setting of the region, are closely similar to those of some ancient flysch basins preserved in the geological record. PMID:16059023

  4. Geochemical proxies for reconstructing climate variability in marginal basins: the Alboran Sea record

    NASA Astrophysics Data System (ADS)

    Martinez-Ruiz, Francisca; Kastner, Miriam; Gallego-Torres, David; Rodrigo-Gámiz, Marta; Nieto-Moreno, Vanesa; Jiménez-Espejo, Francisco J.; Ortega-Huertas, Miguel

    2014-05-01

    High sedimentation rate sediment sections in the Alboran Sea basin (westernmost Mediterranean) have provided excellent paleoarchives for reconstructing past climate variability. The following diverse proxies have been used for such reconstruction, molecular biomarkers, stable and radiogenic isotopes, microfossil assemblages, sediment grain size, and mineral and chemical composition of marine sediments. The elemental ratios have revealed to be reliable paleoclimate proxies. Al-normalized concentrations of detrital elements have allowed to characterize the terrigenous inputs into this basin. Ti/Al, Zr/Al and Si/Al ratios have served as proxies for eolian dust input, and Mg/Al, K/Al and Rb/Al ratios have provided information on fluvial contribution. An in-depth interpretation of these terrigenous element proxies requires knowledge of the mineral composition. Redox sensitive elements have also provided a reliable reconstruction of oxygen conditions at the time of deposition, though these elements are particularly susceptible to diagenetic remobilization, and certain elements, such as U, may also be linked to organic matter, which affects bulk U concentrations. Regarding productivity, even though most of the paleoproductivity reconstructions are based on Ba proxies, the biogeochemistry of Ba is not fully understood and the mechanisms for barite precipitation in the water column are not yet known. Over the past 20,000 cal yr BP, ratios mirroring eolian input indicate a major input of dust from the end of the Last Glacial Maximum to the Oldest Dryas. Mg/Al, K/Al and Rb/Al ratios record humid conditions during the subsequent Bölling-Alleröd warm period, further supported by the decrease in the Zr/Al ratio. These ratios have also allowed a detailed reconstruction of paleoclimate conditions during the Younger Dryas and the Holocene. Ratios of redox sensitive elements such as U/Th, Zn/Al, Cu/Al, and V/Al ratios also show significant fluctuations in oxygen conditions over

  5. Evolution of the Alboran Sea hydrographic structures during July 1993

    NASA Astrophysics Data System (ADS)

    Lafuente, Jesús García.; Cano, Natalio; Vargas, Manuel; Rubín, Juan P.; Hernández-Guerra, Alonso

    1998-01-01

    During the ICTIOALBORAN-0793 multidisciplinary oceanographic survey carried out in July 1993 by the Instituto Español de Oceanografı´a (IEO) in the Alboran Sea, some anomalous features were detected. One was the presence of a small cyclonic eddy in the western Alboran Basin, close to the African coast. The upper layer of the eddy consisted of Mediterranean Surface Water and was separated from its supposed source (the northern Alboran Sea) by the Atlantic Jet. Another feature was the probable temporary interruption of the flow of fresh Atlantic Water (S≈36.5) into the eastern Alboran Basin and its replacement by a modified (saltier) Atlantic Water. These features can be explained assuming a time evolution of the surface circulation in the Alboran Sea forced by speed variations in the inflowing Atlantic Water through the Strait of Gibraltar. A collection of satellite images covering the survey period and across-strait sea level difference data, indicative of the geostrophic velocity of the inflow through the Strait, were used to check this assumption. Both sets of data supplied independent but compatible information in the sense that they complemented each other and gave support to the proposed evolving model. Finally, some speculative ideas attempting to correlate the inferred variability in the Alboran Sea with the state of the baroclinic water exchange through the Strait of Gibraltar (maximal or submaximal) are discussed.

  6. The Messinian erosional surface and early Pliocene reflooding in the Alboran Sea: New insights from the Boudinar basin, Morocco

    NASA Astrophysics Data System (ADS)

    Cornée, Jean-Jacques; Münch, Philippe; Achalhi, Mohammed; Merzeraud, Gilles; Azdimousa, Ali; Quillévéré, Frédéric; Melinte-Dobrinescu, Mihaela; Chaix, Christian; Moussa, Abdelkhalak Ben; Lofi, Johanna; Séranne, Michel; Moissette, Pierre

    2016-03-01

    New investigations in the Neogene Boudinar basin (Morocco) provide new information about the Messinian Salinity Crisis (MSC) and Zanclean reflooding in the southern part of the Alboran realm (westernmost Mediterranean). Based on a new field, sedimentological and palaeontological analyses, the age and the geometry of both the Messinian erosional surface (MES) and the overlying deposits have been determined. The MES is of late Messinian age and was emplaced in subaerial settings. In the Boudinar basin, a maximum of 200 m of Miocene sediments was eroded, including late Messinian gypsum blocks. The original geometry of the MES is preserved only when it is overlain by late Messinian continental deposits, conglomeratic alluvial fans or lacustrine marly sediments. These sediments are interpreted as indicators of the sea-level fall during the MSC. Elsewhere in the basin, the contact between late Messinian and early Pliocene deposits is a low-angle dipping, smooth surface that corresponds to the early Pliocene transgression surface that subsequently re-shaped the regressive MES. The early Pliocene deposits are characterized by: (i) their onlap onto either the basement of the Rif chain or the late Miocene deposits; (ii) lagoonal deposits at the base to offshore marls and sands at the top (earliest Pliocene; 5.33-5.04 Ma interval; foraminifer zone PL1); (iii) marine recovery occurring in the 5.32-5.26 Ma interval; and (iv) the change from lagoonal to offshore environments occurring within deposits tens of metres thick. This information indicates that at least the end of the reflooding period was progressive, not catastrophic as previously thought.

  7. Tectono-sedimentary evolution of the peripheral basins of the Alboran Sea in the arc of Gibraltar during the latest Messinian-Pliocene

    NASA Astrophysics Data System (ADS)

    Guerra-Merchán, Antonio; Serrano, Francisco; Hlila, Rachid; El Kadiri, Khalil; Sanz de Galdeano, Carlos; Garcés, Miguel

    2014-07-01

    In the peripheral basins of the Alboran Sea, five stratigraphic units (latest Messinian-Pliocene) separated by discontinuities and representing transgressive-regressive cycles have been recognized. The first unit (LM) is latest Messinian in age and precisely characterizes the Lago-Mare event at the end of the Messinian Salinity Crisis, i.e. just before the opening of the Strait of Gibraltar at the beginning of the Pliocene. The three following units (Pl-1, Pl-2 and Pl-3) are Zanclean in age, whereas the last one (Pl-4) is Piacenzian. These four Pliocene units consist of alluvial, deltaic, and littoral deposits in the marginal areas, changing to open marine deposits with planktonic components in the basinal areas, although their extension varies in each basin. Regionally, these units do not necessarily stack in a single stratigraphic succession because of tectonics that controlled their hosting basins. Thus, the LM and Pl-1 units occur only in the Malaga and Estepona-Marbella basins, revealing that the onset of the sedimentation after the Messinian evaporitic stage and the Pliocene transgression was not a single and synchronous event in the western Alboran Sea. Moreover, the Pl-3 and Pl-4 units do not appear in all basins, so that the subsequent continentalization process of these Alboran peripheral areas during the Pliocene was also diachronous. The sedimentary evolution of the peripheral basins was controlled mainly by tectonics. During the latest Messinian-early Pliocene, the sedimentation took place in a context marked by a NNW-SSE compression and ENE-WSW perpendicular tension. The onset of the sedimentation (LM and Pl-1 units) could be linked to preexisting E-W faults that mark part of the borders of the Malaga basin and the Estepona-Marbella sector. During the deposition of the Pl-2 unit, the movements of E-W, NW-SE, and NE-SW normal faults determined a continuous subsidence in several basins, resulting in the accumulation of thick clastic marine sequences (i

  8. The transition from Alboran to Algerian basins (Western Mediterranean Sea): Chronostratigraphy, deep crustal structure and tectonic evolution at the rear of a narrow slab rollback system

    NASA Astrophysics Data System (ADS)

    Medaouri, Mourad; Déverchère, Jacques; Graindorge, David; Bracene, Rabah; Badji, Rabie; Ouabadi, Aziouz; Yelles-Chaouche, Karim; Bendiab, Fethi

    2014-07-01

    The eastern Alboran basin and its transition to the Algerian basin is a key area in the Mediterranean realm where controversial kinematic and geodynamical models are proposed. Models imply striking differences regarding the nature of the crust, the prevalence of brittle faulting and ductile shear, the origin of magmatism, the style of Miocene deformation and the driving mechanisms of the Alboran plate kinematics. Combining a new chronostratigraphic chart of the Alboran and Algerian basins based on the Habibas (HBB-1) core drill, deep seismic sections striking WSW-ENE and SSE-NNW, and potential field data, we re-assess the tectonic evolution that controlled the sedimentation and basement deformation of the westernmost limit of the Algerian basin and its transition with the Alboran domain. A WSW-directed extensional tectonic phase has shaped a stretched continental crust with typical tilted blocks along ∼100 km from Burdigalian to Tortonian times, which is assumed to result from the WSW-directed migration of the Alboran block driven by a narrow slab rollback. In the Algerian basin, this event was followed by the emplacement of an oceanic-type crust. Potential field signatures of the deep basin as well as geometrical correlations with onland outcrops of inner zones suggest a minimum WSW-directed displacement of the Alboran terrane of ∼200 km. At the southern foot of the Algerian basin, the continent-ocean transition is sharp and may result from the westward propagation of a slab tear at depth, forming two segments of STEP (Subduction-Transform Edge Propagator) margins. Our results support models of intense shear tractions at the base of an overriding plate governed by slab rollback-induced mantle flow. Finally, Messinian salt tectonics affected overlying deposits until today. A late Tortonian to Quaternary dominantly transpressive tectonic episode linked to the Africa-Iberia convergence post-dates previous events, deforming the whole margin.

  9. Modeling the impact of tidal flows on the biological productivity of the Alboran Sea

    NASA Astrophysics Data System (ADS)

    Sánchez-Garrido, José C.; Naranjo, C.; Macías, D.; García-Lafuente, J.; Oguz, T.

    2015-11-01

    The control of phytoplankton production by tidal forcing in the Alboran Sea is investigated with a high-resolution ocean circulation model coupled to an ecosystem model. The aim of the modeling efforts was to elucidate the role of tides in sustaining the high biological productivity of the Alboran Sea, as compared with the rest of the Mediterranean subbasins. It is shown that tidal forcing accounts for an increase of phytoplankton biomass and primary productivity in the basin of about 40% with respect to a nontidal circulation, and about 60% in the western Alboran Sea alone. The tidal dynamics of the Strait of Gibraltar is shown to be the primary factor in determining the enhancement of productivity, pumping nutrients from depth to the photic zone in the Alboran Sea. Model results indicate that the biological implications of the propagating internal tides are small. These results imply that nutrient transports through the Strait of Gibraltar have to be parametrized in ocean models that do not resolve tides in order to properly represent the biochemical budgets of the Alboran Sea.

  10. Evolution of the continental margin of southern Spain and the Alboran Sea

    USGS Publications Warehouse

    Dillon, William P.; Robb, James M.; Greene, H. Gary; Lucena, Juan Carlos

    1980-01-01

    Seismic reflection profiles and magnetic intensity measurements were collected across the southern continental margin of Spain and the Alboran basin between Spain and Africa. Correlation of the distinct seismic stratigraphy observed in the profiles to stratigraphic information obtained from cores at Deep Sea Drilling Project site 121 allows effective dating of tectonic events. The Alboran Sea basin occupies a zone of motion between the African and Iberian lithospheric plates that probably began to form by extension in late Miocene time (Tortonian). At the end of Miocene time (end of Messinian) profiles show that an angular unconformity was cut, and then the strata were block faulted before subsequent deposition. The erosion of the unconformity probably resulted from lowering of Mediterranean sea level by evaporation when the previous channel between the Mediterranean and Atlantic was closed. Continued extension probably caused the block faulting and, eventually the opening of the present channel to the Atlantic through the Strait of Gibraltar and the reflooding of the Mediterranean. Minor tectonic movements at the end of Calabrian time (early Pleistocene) apparently resulted in minor faulting, extensive transgression in southeastern Spain, and major changes in the sedimentary environment of the Alboran basin. Active faulting observed at five locations on seismic profiles seems to form a NNE zone of transcurrent movement across the Alboran Sea. This inferred fault trend is coincident with some bathymetric, magnetic and seismicity trends and colinear with active faults that have been mapped on-shore in Morocco and Spain. The faults were probably caused by stresses related to plate movements, and their direction was modified by inherited fractures in the lithosphere that floors the Alboran Sea.

  11. Seismic stratigraphy, subsidence history, and tectonic evolution of the Alboran Sea, western Mediterranean

    SciTech Connect

    Watts, A.B. ); Doherty, J.I.C.; Banda, E. ); Platt, J. )

    1991-08-01

    Seismic reflection profile, gravity and geoid data, and well data have been used to examine the tectonic evolution of the Alboran Sea, a small basin in the western Mediterranean. Previous seismic refraction data suggest that the basin is underlain by stretched continental crust which thins from about 40 km beneath Iberia and Morocco to as much as 15 km in the basin center. According to commercial well data, the earliest sediments are lower Burdigalian, suggesting that extension was initiated during the early Miocene. The thinning is part of a sidespread extensional event that appears have modified the crustal structure in the Balearic, Algerian, and Valencia Trough basins to the east. In the case of the Alboran Sea basin, however, the extent to which extensional processes account for the crustal structure is obscured by the competing effects of compression due, for example, to thrust/fold loading in the flanking Betic and Rif cordillera. Backstripping of commercial wells in the Iberian margin reveals an exponentially decreasing subsidence that is similar in form to that of many rift-type basins. However, DSDP Site 121, located on a basement high in the basin center, shows an accelerating subsidence that is more typical of foreland-type basins. Recent studies in the Valencia Trough, show that the relative of extensional and compressional processes can be estimated through an integrated approach of flexural backstripping, crustal restoration, and gravity and geoid modeling along selected transects of a basin. The authors paper presents the results of such an approach to the Alboran Sea and evaluates its implications for current models for the tectonic evolution of the basin.

  12. New and rare sponges from the deep shelf of the Alboran Island (Alboran Sea, Western Mediterranean).

    PubMed

    Sitjà, Cèlia; Maldonado, Manuel

    2014-01-01

    The sponge fauna from the deep shelf (70 to 200 m) of the Alboran Island (Alboran Sea, Western Mediterranean) was investigated using a combination of ROV surveys and collecting devices in the frame of the EC LIFE+ INDEMARES Grant aimed to designate marine areas of the Nature 2000 Network within Spanish territorial waters. From ROV surveys and 351 examined specimens, a total of 87 sponge species were identified, most belonging in the Class Demospongiae, and one belonging in the Class Hexactinellida. Twenty six (29%) species can be regarded as either taxonomically or faunistically relevant. Three of them were new to science (Axinella alborana nov. sp.; Axinella spatula nov. sp.; Endectyon filiformis nov. sp.) and 4 others were Atlantic species recorded for the first time in the Mediterranean Sea (Jaspis eudermis Lévi & Vacelet, 1958; Hemiasterella elongata Topsent, 1928; Axinella vellerea Topsent, 1904; Gelliodes fayalensis Topsent, 1892). Another outstanding finding was a complete specimen of Rhabdobaris implicata Pulitzer-Finali, 1983, a species only known from its holotype, which had entirely been dissolved for its description. Our second record of the species has allowed a neotype designation and a restitution of the recently abolished genus Rhabdobaris Pulitzer-Finally, 1983, also forcing a slight modification of the diagnosis of the family Bubaridae. Additionally, 12 species were recorded for the first time from the shelf of the Alboran Island, including a few individuals of the large hexactinellid Asconema setubalense Kent, 1877 that provided the second Mediterranean record of this "North Atlantic" hexactinellid. ROV explorations also revealed that sponges are an important component of the deep-shelf benthos, particularly on rocky bottoms, where they make peculiar sponge gardens characterized by a wide diversity of small, erect species forming a dense "undergrowth" among a scatter of large sponges and gorgonians. The great abundance and the taxonomic

  13. Role of structural inheritances and major transfer fault-zones in the tectonic history of the Alboran Basin (Western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Comas, Menchu; Crespo-Blanc, Ana; Balanya, Juan Carlos

    2014-05-01

    The geodynamic evolution of the Gibraltar Arc System (GAS), which involves the origin and development of the Alboran back-arc basin, occurred during the Neogene related to the westward moving of the Alboran Domain (the Betic-Rifean hinterland) within a context of NNW-SSE plate-tectonic convergence. In this contribution we document shallow-crustal structures, deformation partitioning, and the different structural domains from the tectonic framework beneath the Alboran Sea. Furthermore, we focus the critical role of inherited crustal structures and major transfer faults within a coherent sequence of Miocene to Recent deformation phases. Early Miocene extensional processes conditioned substantial thinning and the exhumation of the metamorphic Alboran Domain before the opening of the Alboran Basin. Beneath the Alboran Sea, an ENE-SSW directed back-arc extension (from about 16 to 8.5 Ma, late Burdigalian to late Tortonian) affected both the metamorphic basement (the crustal Alboran Domain) and the overlying Miocene sedimentary units. This extension resulted in major low-angle normal faults, and NNW-SSE trending grabens connected by ENE-SSW transtensional transfer-faults, both happening in concomitance with the westward migration (around 200 km) of the Alboran Domain. The geometry of the extensional structures constrains the manner, timing and amount of the coeval crustal thinning. In the late Tortonian (about 8.5 Ma) a dominant N-S directed compressional phase caused inversions of former extensional faults, discrete folding, and strike-slip faulting. This compressional event triggered the spectacular West Alboran shale-diapirism from over-pressured basal units. At the South and Eastern Alboran and at the transition to the Algeria basins, a pervasive period of NW-SE directed compressional deformation (from about 7 Ma onwards) that affected the whole basin is patent. Long lasting compressional conditions since the late Tortonian resulted in a dramatic structural

  14. Giant slide in the South Alboran margin: Upper Miocene margin inversion or Messinian sea level fall?

    NASA Astrophysics Data System (ADS)

    Gorini, C.; d'Acremont, E.; El Abbassi, M.; Do Couto, D.; Migeon, S.; Ammar, A.; Estrada, F.; Ercilla, G.; Alonso, B.; Poort, J.; Jabour, H.

    2012-04-01

    A series of submarine slides, from different periods and origin, were identified offshore Morroco using a new seismic reflection database available in the South Alboran Sea. The latest seismic reflection survey, used for this study, was acquired during the Marlboro-1 cruise (July 2011). This high resolution, two dimensional seismic data , provide evidence for a giant submarine landslide (mega-slide) with a volume of 200 km3, an area of 550 km2 and a maximum thickness of 540 m. It extends for over 40 km from the Xauen/Tofino banks at 200 m water depth to the deep basin floor of the Western Alboran Basin. The landslide is located on a steep, tectonically active margin and confined between structural highs. The seismic data allow a detailed imaging of internal structures, erosional headwall and the basal sliding surface of this mass transport deposit (MTD). The landslide is a complex deposit, involving a chaotic matrix, and preserved continuous reflectors evoquing floating giant blocks. The basal sliding surface reveals that significant amounts of seafloor erosion occured that cut into the Upper Miocene sediments. We will discuss the factors triggering the slope failure and the mechanism that caused the weakening. The origin of the mega-slide is the Xauen-Tofino banks bounded by thrust faults whose tectonic activity is recorded since the late Miocene. An acceleration of the uplift and compressional activity is evidenced during the Messinian with an increase of the volume of mass transport at the front of these thrusts. The top of the mega-slide is eroded by the Zanclean (5.33Ma) flooding event and thus occurred before or during the Messinian crisis. This timing correponds in the South Alboran Sea to a peak of tectonic activity and a huge and rapid sea level fall (about 1000m). We propose that both have played a role in triggering the South Alboran mega-slide.

  15. Decompression and high-temperature low-pressure metamorphism in the exhumed floor of an extensional basin, Alboran Sea, western Mediterranean

    NASA Astrophysics Data System (ADS)

    Platt, J. P.; Soto, J. I.; Comas, M. C.; Leg 161 Shipboard Scientists

    1996-05-01

    Leg 161 of the Ocean Drilling Program (ODP) has made a major contribution to our understanding of the origin of the Alboran Basin by demonstrating that it is underlain by rocks of continental origin that have undergone high-temperature metamorphism and melting at exceptionally low pressure after exhumation and decompression. Basement rocks recovered from Site 976 consist of high-grade schist and gneiss derived from aluminous sediments, and minor amounts of marble, granitic dikes, and migmatitic segregations of granitic material. Mineral assemblages and textural relations show that an early assemblage including biotite, garnet, staurolite, plagioclase, and rutile is overprinted by a second assemblage of biotite, sillimanite, plagioclase, potassium feldspar, and ilmenite. Both assemblages are overprinted by andalusite, potassium feldspar, and minor garnet. Migmatitic gneiss contains relict andalusite, overprinted by sillimanite and cordierite coexisting with granitic leucosome. Preliminary pressure-temperature estimates suggest that the metamorphic evolution followed an approximately isothermal decompression path from 7 to 3 kbar at temperatures in the range 580 to 630 °C. After decompression, granitic melts formed at <3 kbar and >670 °C, after andalusite breakdown and within the sillimanite stability field. The cored rocks closely resemble high-grade metamorphic rocks in the adjacent Betic Cordillera of southern Spain, which yield early Miocene radiometric dates. At ODP Site 976 they are overlain by middle Miocene marine sediments. The combination of exhumation in an extensional tectonic environment and the evidence for high and increasing temperature during exhumation provide support for and new constraints on current models for the basin that involve the removal of lithospheric mantle below a zone of continental collision, accompanied or followed by extension.

  16. Heat flow in the Alboran Sea, western Mediterranean

    NASA Astrophysics Data System (ADS)

    Polyak, B. G.; Fernàndez, M.; Khutorskoy, M. D.; Soto, J. I.; Basov, I. A.; Comas, M. C.; Khain, V. Ye.; Alonso, B.; Agapova, G. V.; Mazurova, I. S.; Negredo, A.; Tochitsky, V. O.; de la Linde, J.; Bogdanov, N. A.; Banda, E.

    1996-10-01

    The results of the first regional heat flow survey carried out in the Alboran Basin are presented. The survey consists of 98 heat flow measurements obtained using a violin type probe, 697 nautic miles of gravity profiles, 1446 nautic miles of bathymetric survey, and 22 gravity cores. A remarkable difference in heat flow patterns exists between the western (WAB) and eastern (EAB) parts of the Alboran Basin. The average heat flow in the WAB is 69 ± 6 mW m -2 with a generally increasing trend towards the centre and to the east. In contrast, the heat flow pattern in the EAB shows an average value of 124 ± 8 mW m -2 and it is maintained rather constant for the overall area. Superimposed on this general pattern there are some local thermal anomalies, associated with hydrothermal activity, which have been detected in the central WAB (up to 123 mW m -2), in the South Alboran Basin (SAB) (up to 153 mW m -2) and in the Djibouti Bank (DB) (up to 254 mW m -2). After corrections for thermal refraction, sedimentation and cooling of volcanic bodies, the resulting heat flow distribution in the WAB is smoother, but still shows the increasing trend towards the centre and to the east. In the EAB, the application of these corrections did not lead to any noticeable changes. A 1-D approach that combines heat flow data, crustal structure and elevation shows a dramatic decrease in lithospheric thickness from the WAB (50-90 km) to the EAB (38-40 km). Likewise, the resulting crustal thickness is around 14-16 km in the central part of the WAB, increasing towards the borders of the basin, whereas in the EAB the crustal thickness varies between 12.5 and 14.5 km in its western part, and between 10 and 11.5 km in its eastern part.

  17. Structure of the mantle beneath the Alboran Basin from magnetotelluric soundings

    NASA Astrophysics Data System (ADS)

    Garcia, X.; Seillé, H.; Elsenbeck, J.; Evans, R. L.; Jegen, M.; Hölz, Sebastian; Ledo, J.; Lovatini, A.; Marti, A.; Marcuello, A.; Queralt, P.; Ungarelli, C.; Ranero, C. R.

    2015-12-01

    We present results of marine MT acquisition in the Alboran sea that also incorporates previously acquired land MT from southern Spain into our analysis. The marine data show complex MT response functions with strong distortion due to seafloor topography and the coastline, but inclusion of high resolution topography and bathymetry and a seismically defined sediment unit into a 3-D inversion model has allowed us to image the structure in the underlying mantle. The resulting resistivity model is broadly consistent with a geodynamic scenario that includes subduction of an eastward trending plate beneath Gibraltar, which plunges nearly vertically beneath the Alboran. Our model contains three primary features of interest: a resistive body beneath the central Alboran, which extends to a depth of ˜150 km. At this depth, the mantle resistivity decreases to values of ˜100 Ohm-m, slightly higher than those seen in typical asthenosphere at the same depth. This transition suggests a change in slab properties with depth, perhaps reflecting a change in the nature of the seafloor subducted in the past. Two conductive features in our model suggest the presence of fluids released by the subducting slab or a small amount of partial melt in the upper mantle (or both). Of these, the one in the center of the Alboran basin, in the uppermost-mantle (20-30 km depth) beneath Neogene volcanics and west of the termination of the Nekkor Fault, is consistent with geochemical models, which infer highly thinned lithosphere and shallow melting in order to explain the petrology of seafloor volcanics.

  18. Plio-Quaternary tectonic evolution off Al Hoceima, Moroccan Margin of the Alboran Basin.

    NASA Astrophysics Data System (ADS)

    Lafosse, Manfred; d'Acremont, Elia; Rabaute, Alain; Mercier de Lépinay, Bernard; Gorini, Christian; Ammar, Abdellah; Tahayt, Abdelilah

    2015-04-01

    We use data from a compilation of industrial and academic 2D surveys and recent data from MARLBORO-1 (2011), MARLBORO-2 (2012), and SARAS (2012) surveys, which provide high resolution bathymetry and 2D seismic reflexion data. We focus on the key area located south of the Alboran Ridge and the Tofiño Bank, and encompassing the Nekor and Boudinar onshore-offshore basins on the Moroccan side of the Alboran Sea. The Nekor basin is a present pull-apart basin in relay between inherited N050° sinistral strike-slip faults. We consider that these faults define the Principal Displacement Zones (PDZ). The northern PDZ marks the position of the crustal Bokkoya fault, which is connected to the Al-Idrisi Fault Zone en relais with the Adra and Carboneras Fault Zones. On the seabed, right-stepping non-coalescent faults characterize the sinistral kinematics of the northern PDZ and give a general N050° azimuth for the crustal discontinuity. The southern PDZ corresponds to the Nekor fault Zone, a Miocene sinistral strike-slip fault acting as the structural limit of the External Rif. On its eastern edge, the Nekor basin is bounded by the N-S onshore-offshore Trougout fault, connecting the northern and the southern PDZ. The western boundary of the Nekor basin is marked by the Rouadi and El-Hammam Quaternary active N-S normal faults. In the offshore Nekor basin, recent N155° conjugated normal faults affect the seabed. Further east, the Boudinar basin is a Plio-Quaternary uplifted Neogene basin. The northeastern segment of the Nekor fault bounds this basin to the south but is inactive in the Quaternary. Normal east-dipping N150° faults are visible offshore in the continuity of the Boudinar fault. From our perspective, the orientation of major tectonic structures (Bokkoya, Nekor and Carboneras faults and the Alboran ridge) under the present compressive regime due to the Europe/Africa convergence is not compatible with a strike-slip motion. The orientation of the most recent Plio

  19. Numerical Modeling of physical-biological interactions in the Alboran Sea with a submesoscale-resolving model

    NASA Astrophysics Data System (ADS)

    Sánchez Garrido, José Carlos; Naranjo Rosa, Cristina; Sammartino, Simone; Macias Moy, Diego

    2014-05-01

    Ageostrophic motion, such those associated to internal hydraulic jumps, propagating nonlinear internal waves, and submesoscale vortices, are recognized to efficiently supply nutrients to the euphotic zone and thereby fuel biological productivity. These processes are ubiquitous in the Strait of Gibraltar and the adjacent Alboran Sea, and therefore are expected to play an important role in the overall biomass budget of the basin. This has been investigated with a three-dimensional, tidally-forced, high-resolution model [O(1km)] ocean model embedded with an ecosystem NPZD module. We found that tidal mixing in the Strait of Gibraltar enhances remarkably local primary production and drive a net flow of biomass to the Alboran Sea. Additionally, tides also cause an inflow of nutrients confined to the photic layer, which increase further the Alboran Sea biomass through the enhancement of local primary productivity. Subinertial accelerations of the Atlantic flow are also found to temporary enhance biological productivity through the advection of shear vorticity (and submesoscale eddies) from the Strait to the Alboran Sea.

  20. Consequences of a future climatic scenario for the anchovy fishery in the Alboran Sea (SW Mediterranean): A modeling study

    NASA Astrophysics Data System (ADS)

    Macías, D.; Castilla-Espino, D.; García-del-Hoyo, J. J.; Navarro, G.; Catalán, I. A.; Renault, L.; Ruiz, J.

    2014-07-01

    The Alboran basin is one of the most productive areas of the Mediterranean Sea and supports an anchovy fishery with a history of remarkably variable landings. Past and present anchovy recruitment levels are highly sensitive to changes in the strength and direction of the incoming jet of Atlantic waters, which modulate the hydrographic features of the basin. Here, we analyze plausible consequences for the anchovy fisheries in the region based on a projected physical scenario for the end of the century obtained using a coupled hydrological-biogeochemical model. Our model predicts a substantial increase in horizontal water velocity and a negligible change in the associated biological production, which likely indicates reductions in anchovy stock, catches and revenues. Alternative policies are analyzed here for the economic scenario that is expected to emerge under future conditions of oceanographic features, pelagic ecosystem dynamics and anchovy landings in the Alboran Sea.

  1. Tectonic and stratigraphic evolution in South Alboran Sea (Morocco)

    NASA Astrophysics Data System (ADS)

    D'Acremont, E.; Gorini, C.; El Abbassi, M.; Farran, M.; Leroy, S.; Mercier De Lepinay, B. F.; Migeon, S.; Poort, J.; Ammar, A.; Smit, J.; Ercilla, G.; Alonso, B.; Scientific Team of the Marlboro project

    2011-12-01

    The Alboran Basin, in western Mediterranean, concentrates on a relatively small surface and densely-populated, a large structural complexity linked to seismic activity with recurrent mass-transport deposits that may trigger tsunamis. It was formed by Oligo-Miocene extension while tectonic inversion occurred since the Late Miocene (Tortonian) due to the African-European collision. This North-South compression produces a conjugated fault system located in the central area from Al Hoceima to Andalusia. Numerous instabilities are linked to the recent and present-day seismic activity and show the link between seismicity and erosion-sedimentation processes. On the Andalusia margin the active structures have been identified and recently mapped in detail by using MBES data (including backscatter), and high-resolution seismic data. Such detailed studies have not yet been carried out on the Moroccan margin. The Marlboro-1 oceanographic cruise (R/V Côtes de la Manche, July 2011) has imaged and constrained active structures and associated sedimentary systems through seismic reflection data (MCS). The Xauen/Tofino banks (growth folds), the Alboran Ridge, and the Al Hoceima basin offshore Morocco have been selected because they constitute key-study areas that record a complete deformation history since the Tortonian. Active features including faults, growth folds, channels, mass transport deposits, contourites and volcanoes has provided first order tectonic and sedimentary markers of the basin's evolution. A high chrono-stratigraphical resolution will constitute the basis for reconstructing the evolution of this tectonically active area marked by strong seismic activity. The Marlboro-1 cruise will allow determining key-study area of the Marlboro-2 cruise scheduled for 2012 (R/V Téthys-II, CNFC Call). These cruises should allow for the acquisition of data necessary to characterize basin morphology, active tectonic and sedimentary structures and also make the link with existing

  2. Tomographic imaging beneath Alboran sea and surrounding areas (southern Iberian Peninsula and northern Morocco)

    NASA Astrophysics Data System (ADS)

    Serrano, I.; Morales, J.

    2009-04-01

    The main aim of this study is to provide a detailed analysis of the structure of the crust and upper mantle below the Iberian Peninsula, Morocco and surrounding regions using the results of global seismic tomography. We have developed a detailed three-dimensional velocity structure of this region to 700-km depth using P-wave arrival times from more than 15,000 local and regional earthquakes and 145 teleseismic events. For teleseismic events we handpicked P-wave arrival times from high-quality original seismograms from 2000 to 2005 belonging to the Andalusian Seismic Network. We also handpicked data from seismic stations belonging to the GSN (Global Seismic Network) and monitored by IRIS. All events are located between 30° and 90° from the seismic networks. This new data set is superior, in terms of both station density and arrival time accuracy, to that used in previous studies because of the higher sensitivity of the seismographs monitored by the new broad band network of the Andalusian Institute of Geophysics. In this study we modified the original tomographic method of Zhao et al. (1992) to combine teleseismic residuals with local and regional earthquake arrival times in tomographic inversions. Several bodies of high P-wave seismic velocity are located between 5 and 15 km depth and the magnetic and gravimetric data indicate superposition of bodies at different depths in this zone with a complex geological structure. Pronounced low-velocity anomalies characterize the upper crust near the Strait of Gibraltar, both in Spain and Morocco, which could be interpreted as a sedimentary basin or crustal deformation in the flysch regions. Two high-velocity anomalies were obtained in the Alboran Sea, the first, located in the middle of the basin could be related to the existence of high density lithologies, while the second, situated in the eastern Rif and trending NE-SW, could be related to the NE-SW trending magnetic anomaly in the eastern Rif. One of the most robust

  3. Seismicity and active tectonics in the Alboran Sea, Western Mediterranean: Constraints from an offshore-onshore seismological network and swath bathymetry data

    NASA Astrophysics Data System (ADS)

    Grevemeyer, Ingo; Gràcia, Eulàlia; Villaseñor, Antonio; Leuchters, Wiebke; Watts, Anthony B.

    2015-12-01

    Seismicity and tectonic structure of the Alboran Sea were derived from a large amphibious seismological network deployed in the offshore basins and onshore in Spain and Morocco, an area where the convergence between the African and Eurasian plates causes distributed deformation. Crustal structure derived from local earthquake data suggests that the Alboran Sea is underlain by thinned continental crust with a mean thickness of about 20 km. During the 5 months of offshore network operation, a total of 229 local earthquakes were located within the Alboran Sea and neighboring areas. Earthquakes were generally crustal events, and in the offshore domain, most of them occurred at crustal levels of 2 to 15 km depth. Earthquakes in the Alboran Sea are poorly related to large-scale tectonic features and form a 20 to 40 km wide NNE-SSW trending belt of seismicity between Adra (Spain) and Al Hoceima (Morocco), supporting the case for a major left-lateral shear zone across the Alboran Sea. Such a shear zone is in accord with high-resolution bathymetric data and seismic reflection imaging, indicating a number of small active fault zones, some of which offset the seafloor, rather than supporting a well-defined discrete plate boundary fault. Moreover, a number of large faults known to be active as evidenced from bathymetry, seismic reflection, and paleoseismic data such as the Yusuf and Carboneras faults were seismically inactive. Earthquakes below the Western Alboran Basin occurred at 70 to 110 km depth and hence reflected intermediate depth seismicity related to subducted lithosphere.

  4. The depiction of Alboran Sea Gyre during Donde Va? using remote sensing and conventional data

    NASA Technical Reports Server (NTRS)

    Laviolette, P. E.

    1984-01-01

    Experienced oceanographic investigators have come to realize that remote sensing techniques are most successful when applied as part of programs of integrated measurements aimed at solving specific oceanographic problems. A good example of such integration occurred during the multi-platform international experiment, Donde Va? in the Alboran Sea during the period June through October, 1982. The objective of Donde Va? was to derive the interrelationship of the Atlantic waters entering the Mediterranean Sea and the Alboran Sea Gyre. The experimental plan conceived solely with this objective in mind consisted of a variety of remote sensing and conventional platforms: three ships, three aircraft, five current moorings, two satellites and a specialized beach radar (CODAR). Integrated analyses of these multiple-data sets are still being conducted. However, the initial results show detailed structure of the incoming Atlantic jet and Alboran Sea Gyre that would not have been possible by conventional means.

  5. Neogene tectonic evolution of the southwestern Alboran Basin as inferred from seismic data off Morocco

    SciTech Connect

    Chalouan, A.; Saji, R.; Michard, A.; Bally, A.W.

    1997-07-01

    The southwestern part of the western Mediterranean Alboran Basin, including part of the Alboran ridge (Xaouen Bank), was investigated through the analysis of 28 intersecting multichannel seismic lines. The seismic stratigraphy is tied to the Amoco well El-Jebha 1. Five seismic units or subunits are described from the Quaternary to the middle (and lower?) Miocene. The acoustic basement is interpreted to be mainly Paleozoic and Triassic metamorphic rocks of the Alboran Domain nappes, and, in places, middle Miocene-Messinian calc-alkalic volcanics. In the depocenters, the thickness of the sedimentary infill (mostly clays and turbidites) exceeds 9 km. Normal faults of middle Miocene-Tortonian age are broadly parallel to the coast, and dip either seaward or landward. They were mostly inverted during pre- and post-Messinian episodes of compression, which formed a set of en echelon, north-verging faulted folds in the Alboran ridge area, in relation with sinistral movement along the offshore projection of the Jebha fault. After Pliocene subsidence, a final episode of compression reactivated the earlier folds and pushed the Alboran ridge onto the Moroccan slope. The complex structural history suggests many structural and stratigraphic potential hydrocarbon traps. A high-resolution seismic survey could lead to the definition of new exploration plays.

  6. Controls of picophytoplankton abundance and composition in a highly dynamic marine system, the Northern Alboran Sea (Western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Amorim, Ana L.; León, Pablo; Mercado, Jesús M.; Cortés, Dolores; Gómez, Francisco; Putzeys, Sebastien; Salles, Soluna; Yebra, Lidia

    2016-06-01

    The Alboran Sea is a highly dynamic basin which exhibits a high spatio-temporal variability of hydrographic structures (e.g. fronts, gyres, coastal upwellings). This work compares the abundance and composition of picophytoplankton observed across the northern Alboran Sea among eleven cruises between 2008 and 2012 using flow cytometry. We evaluate the seasonal and longitudinal variability of picophytoplankton on the basis of the circulation regimes at a regional scale and explore the presence of cyanobacteria ecotypes in the basin. The maximal abundances obtained for Prochlorococcus, Synechococcus and picoeukaryotes (12.7 × 104, 13.9 × 104 and 8.6 × 104 cells mL- 1 respectively) were consistent with those reported for other adjacent marine areas. Seasonal changes in the abundance of the three picophytoplankton groups were highly significant although they did not match the patterns described for other coastal waters. Higher abundances of Prochlorococcus were obtained in autumn-winter while Synechococcus and picoeukaryotes exhibited a different seasonal abundance pattern depending on the sector (e.g. Synechococcus showed higher abundance in summer in the west sector and during winter in the eastern study area). Additionally, conspicuous longitudinal gradients were observed for Prochlorococcus and Synechococcus, with Prochlorococcus decreasing from west to east and Synechococcus following the opposite pattern. The analysis of environmental variables (i.e. temperature, salinity and inorganic nutrients) and cell abundances indicates that Prochlorococcus preferred high salinity and nitrate to phosphate ratio. On the contrary, temperature did not seem to play a role in Prochlorococcus distribution as it was numerically important during the whole seasonal cycle. Variability in Synechococcus abundance could not be explained by changes in any environmental variable suggesting that different ecotypes were sampled during the surveys. In particular, our data would indicate

  7. Active hydrocarbon (methane) seepage at the Alboran Sea mud volcanoes indicated by specific lipid biomarkers.

    NASA Astrophysics Data System (ADS)

    Lopez-Rodriguez, C.; Stadnitskaia, A.; De Lange, G. J.; Martínez-Ruiz, F.; Comas, M.; Sinninghe Damsté, J. S.

    2012-04-01

    Mud volcanoes (MVs) and pockmark fields are known to occur in the Alboran Basin (Westernmost Mediterranean). These MVs occur above a major sedimentary depocenter that includes up to 7 km thick early Miocene to Holocene sequences. MVs located on the top of diapiric structures that originated from undercompacted Miocene clays and olistostromes. Here we provide results from geochemical data-analyses of four gravity cores acquired in the Northern Mud Volcano Field (north of the 36°N): i.e. Perejil, Kalinin and Schneiderś Heart mud expulsion structures. Extruded materials include different types of mud breccias. Specific lipid biomarkers (n-alkanes, hopanes, irregular isoprenoid hydrocarbons and Dialkyl Glycerol Diethers (DGDs) were analysed by gas chromatography (GC) and gas chromatography mass spectrometry (GC-MS). Determination of Glycerol Dialkyl Glycerol Tetraethers (GDGTs) by high performance liquid chromatography-spectrometry (HPLC-MS), and analysis of biomarker δ13C values were performed in selected samples. Lipid biomarker analysis from the three MVs revealed similar n-alkane distributions in all mud breccia intervals, showing significant hydrocarbon-derived signals and the presence of thermally immature organic-matter admixture. This suggests that similar strata fed these MVs. The hemipelagic drapes reveal comparable n-alkane distributions, suggesting that significant upward diffusion of fluids occurs. Distributions of GDGTs are generally accepted as usefull biomarkers to locate the anaerobic oxidation of methane (AOM) in marine sediments. However, our GDGT profiles only reflect the marine thaumarchaeotal signature. There seems to be no archaea producing specific GDGTs involved in AOM in the recovered interval. Evidence of recent activity (i.e., methane gas-bubbling and chemosynthetic fauna at the Perejil MV) and the presence of specific lipid biomarker related with methanotropic archaea (Irregular Isoprenoids and DGDs), however, suggest the existence of

  8. Origin of lipid biomarkers in mud volcanoes from the Alboran Sea, western Mediterranean

    NASA Astrophysics Data System (ADS)

    López-Rodríguez, C.; Stadnitskaia, A.; De Lange, G. J.; Martínez-Ruíz, F.; Comas, M.; Sinninghe Damsté, J. S.

    2013-11-01

    Mud volcanoes (MVs) are the most prominent indicators of active methane/hydrocarbon venting at the seafloor on both passive and active continental margins. Their occurrence in the Western Mediterranean is patent at the West Alboran Basin, where numerous MVs develop overlaying a major sedimentary depocenter containing overpressured shales. Although some of these MVs have been studied, the detailed biogeochemistry of expelled mud so far has not been examined in detail. This work provides the first results on the composition and origin of organic matter, Anaerobic Oxidation of Methane (AOM) processes and general characteristics on MV dynamics using lipid biomarkers as the main tool. Lipid biomarker analysis was performed on MV expelled material (mud breccias) and interbedded hemipelagic sediments from Perejil, Kalinin and Schneider's Heart MVs located in the northwest margin of the Alboran Sea. The n-alkane-distributions and n-alkane-derived indices (CPI and ACL), in combination with the epimerization degree of hopanes (22S/(22S + 22R)) indicate that all studied mud breccia have a similar biomarker composition consisting of mainly thermally immature organic matter with an admixture of petroleum-derived compounds. This concordant composition indicates that common source strata must feed all three studied MVs. The past or present AOM activity was established using lipid biomarkers specific for anaerobic methanotropic archaea (irregular isoprenoids and DGDs) and the depleted carbon isotope composition (δ13C) of crocetane/phytane. The presence of these lipid biomarkers, together with the low amounts of detected GDGTs, is consistent with the dominance of anaerobic methanotrophs of the ANME-2 over ANME-1, at least in mud breccia from Perejil MVs. In contrast, the scarce presence or lack of these AOM-related lipid biomarkers in sediments from Kalinin and Schneider's Heart MVs, suggest no recent active methane seepage has occurred at these sites. Moreover, the observed

  9. Fueling plankton production by a meandering frontal jet: a case study for the Alboran Sea (Western Mediterranean).

    PubMed

    Oguz, Temel; Macias, Diego; Garcia-Lafuente, Jesus; Pascual, Ananda; Tintore, Joaquin

    2014-01-01

    A three dimensional biophysical model was employed to illustrate the biological impacts of a meandering frontal jet, in terms of efficiency and persistency of the autotrophic frontal production, in marginal and semi-enclosed seas. We used the Alboran Sea of the Western Mediterranean as a case study. Here, a frontal jet with a width of 15-20 km, characterized by the relatively low density Atlantic water mass, flows eastward within the upper 100 m as a marked meandering current around the western and the eastern anticyclonic gyres prior to its attachment to the North African shelf/slope topography of the Algerian basin. Its inherent nonlinearity leads to the development of a strong ageostrophic cross-frontal circulation that supplies nutrients into the nutrient-starved euphotic layer and stimulates phytoplankton growth along the jet. Biological production is larger in the western part of the basin and decreases eastwards with the gradual weakening of the jet. The higher production at the subsurface levels suggests that the Alboran Sea is likely more productive than predicted by the satellite chlorophyll data. The Mediterranean water mass away from the jet and the interiors of the western and eastern anticyclonic gyres remain unproductive. PMID:25372789

  10. Scenarios for earthquake-generated tsunamis on a complex tectonic area of diffuse deformation and low velocity: The Alboran Sea, Western Mediterranean

    USGS Publications Warehouse

    Alvarez-Gomez, J. A.; Aniel-Quiroga, I.; Gonzalez, M.; Olabarrieta, M.; Carreno, E.

    2011-01-01

    The tsunami impact on the Spanish and North African coasts of the Alboran Sea generated by several reliable seismic tsunamigenic sources in this area was modeled. The tectonic setting is complex and a study of the potential sources from geological data is basic to obtain probable source characteristics. The tectonic structures considered in this study as potentially tsunamigenic are: the Alboran Ridge associated structures, the Carboneras Fault Zone and the Yusuf Fault Zone. We characterized 12 probable tsunamigenic seismic sources in the Alboran Basin based on the results of recent oceanographical studies. The strain rate in the area is low and therefore its seismicity is moderate and cannot be used to infer characteristics of the major seismic sources. These sources have been used as input for the numerical simulation of the wave propagation, based on the solution of the nonlinear shallow water equations through a finite-difference technique. We calculated the Maximum Wave Elevations, and Tsunami Travel Times using the numerical simulations. The results are shown as maps and profiles along the Spanish and African coasts. The sources associated with the Alboran Ridge show the maximum potential to generate damaging tsunamis, with maximum wave elevations in front of the coast exceeding 1.5. m. The Carboneras and Yusuf faults are not capable of generating disastrous tsunamis on their own, although their proximity to the coast could trigger landslides and associated sea disturbances. The areas which are more exposed to the impact of tsunamis generated in the Alboran Sea are the Spanish coast between Malaga and Adra, and the African coast between Alhoceima and Melilla. ?? 2011 Elsevier B.V.

  11. Role of the Alboran Sea volcanic arc choking the Mediterranean to the Messinian salinity crisis and foundering biota diversification in North Africa and Southeast Iberia

    NASA Astrophysics Data System (ADS)

    Booth-Rea, Guillermo; Ranero, Cesar R.; Grevemer, Ingo

    2016-04-01

    The Mediterranean Sea desiccated ~5.96 million years ago when it became isolated from the world oceans during the Messinian salinity crisis. This event permitted the exchange of terrestrial biota between Africa and Iberia contributing to the present rich biodiversity of the Mediterranean region. The cause chocking the Mediterranean has been proposed to be tectonic uplift and dynamic topography but the driving mechanism still remains debated. We present a new wide-angle seismic profile that provides a detailed image of the thickness and seismic velocity distribution of the crust in the eastern Alboran basin. The velocity model shows a characteristic structure of a subduction-related volcanic arc with a high-velocity lower crust and a 16-18 km total-thickness igneous crust that magmatic accreted mostly between ~10-6 Ma across the eastern Alboran basin. Estimation of the isostatically corrected depth of the arc crust taking into account the original thermal structure and sediment-loading subsidence since 6 Ma places a large area of the eastern Alboran basin above sea level at the time. This estimation is supported by geophysical data showing subaereal erosional unconformities for that time. This model may explain several up-to-now-disputed features of the Messinian salinity crisis, including: the progressive isolation of the Mediterranean since 7.1 Ma with the disappearance of open marine taxa, the existence of evaporites mostly to the east of the volcanic arc, the evidence that the Gibraltar straits were not a land bridge offered by continuous Messinian open marine sediments at ODP site 976 in the western Alboran basin, the importance of southeastern Iberia and North Africa as centres of biota diversification since before the salinity crisis, and patterns of speciation irradiating from SE Iberia and the eastern Rif in some taxons.

  12. Application of the CARLIT index along a biogeographical gradient in the Alboran Sea (European Coast).

    PubMed

    Bermejo, Ricardo; de la Fuente, Gina; Vergara, Juan J; Hernández, Ignacio

    2013-07-15

    An index, based on littoral communities assemblages (CARLIT), was applied to assess the ecological status of Northwestern Mediterranean coastal waters, following the requirements of the European Water Framework Directive. The biogeographical particularities of the Alboran Sea suggested a reassessment of this index, and that was the main objective of this work. Due to these biogeographical particularities, two regions were proposed in the studied region, with new reference conditions for each region. Subsequently, by means of a multivariate analysis, littoral community abundances and the CARLIT index were compared with factors related to geomorphology, biogeography and anthropogenic pressures. Overall, the biogeographical component determined the distribution of littoral communities. In contrast, the ecological status yielded by the index only was significantly related to anthropogenic pressures. The results pointed out that the reassessment of the CARLIT index was suitable to evaluate the ecological status of the Alboran Sea. PMID:23673205

  13. Origin of lipid biomarkers in mud volcanoes from the Alboran Sea, western Mediterranean

    NASA Astrophysics Data System (ADS)

    López-Rodríguez, C.; Stadnitskaia, A.; De Lange, G. J.; Martínez-Ruíz, F.; Comas, M.

    2014-06-01

    Mud volcanoes (MVs) are the most prominent indicators of active methane/hydrocarbon venting at the seafloor on both passive and active continental margins. Their occurrence in the western Mediterranean is patent at the West Alboran Basin, where numerous MVs develop overlaying a major sedimentary depocentre containing overpressured shales. Although some of these MVs have been studied, the detailed biogeochemistry of expelled mud so far has not been examined in detail. This work provides the first results on the composition and origin of organic matter, anaerobic oxidation of methane (AOM) processes and general characteristics on MV dynamics using lipid biomarkers as the main tool. Lipid biomarker analysis was performed on MV expelled material (mud breccias) and interbedded hemipelagic sediments from Perejil, Kalinin and Schneider's Heart MVs located in the northwest margin of the Alboran Sea. The n alkane distributions and n alkane-derived indices (CPI and ACL), in combination with the epimerization degree of hopanes (22S/(22S+22R)) indicate that all studied mud breccia have a similar biomarker composition consisting of mainly thermally immature organic matter with an admixture of petroleum-derived compounds. This concordant composition indicates that common source strata must feed all three studied MVs. The past or present AOM activity was established using lipid biomarkers specific for anaerobic methanotrophic archaea (irregular isoprenoids and dialkyl glycerol diethers) and the depleted carbon isotope composition (δ13C) of crocetane/phytane. The presence of these lipid biomarkers, together with the low amounts of detected glycerol dialkyl glycerol tetraethers, is consistent with the dominance of anaerobic methanotrophs of the ANME-2 over ANME-1, at least in mud breccia from Perejil MVs. In contrast, the scarce presence or lack of these AOM-related lipid biomarkers in sediments from Kalinin and Schneider's Heart MVs, suggests that no recent active methane seepage

  14. Atmospheric-induced variability of hydrological and biogeochemical signatures in the NW Alboran Sea. Consequences for the spawning and nursery habitats of European anchovy

    NASA Astrophysics Data System (ADS)

    Macías, D.; Catalán, I. A.; Solé, J.; Morales-Nin, B.; Ruiz, J.

    2011-12-01

    The north-western Alboran Sea is a highly dynamic region in which the hydrological processes are mainly controlled by the entrance of the Atlantic Jet (AJ) through the Strait of Gibraltar. The biological patterns of the area are also related to this variability in which atmospheric pressure distributions and wind intensity and direction play major roles. In this work, we studied how changes in atmospheric forcing (from high atmospheric pressure over the Mediterranean to low atmospheric pressure) induced alterations in the physical and biogeochemical environment by re-activating coastal upwelling on the Spanish shore. The nursery area of European anchovy ( Engraulis encrasicolus) in the NW Alboran Sea, confirmed to be the very coastal band around Malaga Bay, did not show any drastic change in its biogeochemical characteristics, indicating that this coastal region is somewhat isolated from the rest of the basin. Our data also suggests that anchovy distribution is tightly coupled to the presence of microzooplankton rather than mesozooplankton. Finally, we use detailed physical and biological information to evaluate a hydrological-biogeochemical coupled model with a specific hydrological configuration to represent the Alboran basin. This model is able to reproduce the general circulation patterns in the region forced by the AJ movements only including two variable external forcings; atmospheric pressure over the western Mediterranean and realistic wind fields.

  15. Past and present active sedimentation and tectonics in the South Alboran Sea

    NASA Astrophysics Data System (ADS)

    d'Acremont, E.; Gorini, C.; El Abbassi, M.; Farran, M.; Leroy, S.; Mercier de Lépinay, B.; Migeon, S.; Poort, J.; Ammar, A.; Smit, J.; Do Couto, D.; Ercilla, G.; Alonso, B.

    2012-04-01

    Since the Tortonian, the thinned continental crust and the overlying sedimentary cover of the Alboran Sea are submitted to tectonic inversion due to the convergence between Eurasia and Africa. The past and present deformation is significant along the Moroccan margin where the MARLBORO-1 cruise in 2011, acquired 1100 km of mid-resolution seismic reflection along 20 profiles perpendicular and parallel to the margin, off Al Hoceima, to latitude 36°N. The study area located on the Xauen/Tofino banks and the South Alboran ridge off Morocco, shows signs of both past and present strong tectonic deformation, mass-movement deposits (mostly slides and mass flow deposits), and contourites. The lateral and longitudinal evolution of contourites and mass movement deposits and the geometric relationships between those deposits and active tectonic structures have been studied. In the distal margin, contourites and gravitational instabilities are the depositional systems that best record the tectonic signal of the area since at least the Messinian. On the two flanks of the Xauen/Tofino and South Alboran ridge, the sedimentary register affected by growth-faults is mainly composed of contourites. Internal strata pattern, spatial and temporal distribution of thickness and depocenters, and discontinuities help to infer sedimentary processes and their interaction with tectonics. In the southern Alboran Sea where the bathymetry shows abrupt slopes, the recurrent seismic activity seems to be the main factor triggering mass wasting as witnessed by the Mass transport complexes (MTCs). Recent MTCs originate from escarpments on the edge of the contourites. However, in most cases the seismic reflection data show the depositional bodies of numerous slides linked to the activity of growth-faults and thrusts observed on the Xauen and Tofino Bank's north flanks. Tectonic inversion is recorded since the late Miocene with an acceleration of the uplift and compressional activity evidenced during

  16. Atmospheric forcing and Sea Surface Temperature response in the Gulf of Cadiz-Alboran Sea system in a 20 years simulation

    NASA Astrophysics Data System (ADS)

    Boutov, D.; Peliz, A.

    2012-04-01

    In the frame of MedEX ("Inter-basin exchange in the changing Mediterranean Sea") Project a 20 years (1989-2008) simulation at 2km resolution covering Gulf of Cadiz and Alboran Sea, forced by 9 km winds (WRF downscaling of ERA-Interim reanalysis), is analyzed and compared with observations. Statistical methods, EOF techniques and two harmonic (including annual and semi-annual frequencies) data fit were performed for the analysis. Modeled SST fields are also compared with long-term (1996-2008) in-situ buoy observations provided by Puertos del Estado (Spain) and satellite derived Pathfinder SST database. Model SSTs generally follow observations data at annual and inter-annual scales with a global error not exceeding 0.17°C (model warmer than SST). No significant warming tendency was observed in both basins during the 20 years and the Interanual variability dominates, with the series showing a cooling period from 1991 to 1993 followed by a warming period started from 1994. In particular we show that SST cooling observed in the early 1990's in the Gulf of Cadiz - Alboran system is associated with the 1991 catastrophic eruption of Pinatubo volcano (Philippines).

  17. The Climatological Annual Cycle of Satellite-derived Phytoplankton Pigments in the Alboran Sea: A Physical Interpretation

    NASA Technical Reports Server (NTRS)

    Garcia-Gorriz, E.; Carr, M. E.

    1998-01-01

    The circulation and upwelling processes (coastal and gyre-induced) that control the phytoplankton distribution in the Alboran sea are examined by analyzing monthly climatological patterns of Coastal Zone Color Scanner (CZCS) pigment concentrations, sea surface temperatures, winds, and seasonal geostrophic fields.

  18. Geotechnical properties and preliminary assessment of sediment stability on the continental slope of the northwestern Alboran Sea

    USGS Publications Warehouse

    Baraza, J.; Ercilla, G.; Lee, H.J.

    1992-01-01

    Laboratory analysis of core samples from the western Alboran Sea slope reveal a large variability in texture and geotechnical properties. Stability analysis suggests that the sediment is stable under static gravitational loading but potentially unstable under seismic loading. Slope failures may occur if horizontal ground accelerations greater than 0.16 g are seismically induced. The, Alboran Sea is an active region, on which earthquakes inducing accelerations big enough to exceed the shear strength of the soft soil may occur. Test results contrast with the apparent stability deduced from seismic profiles. ?? 1992 Springer-Verlag New York Inc.

  19. Atmospheric patterns driving Holocene productivity in the Alboran Sea (Western Mediterranean): a multiproxy approach.

    NASA Astrophysics Data System (ADS)

    Ausin, Blanca; Flores, Jose-Abel; Sierro, Francisco Javier; Cacho, Isabel; Hernández-Almeida, Iván; Martrat, Belén; Grimalt, Joan

    2014-05-01

    This study is aimed to reconstruct productivity during the Holocene in the Western Mediterranean as well as to investigate what processes account for its short-term variability. Fossil coccolithophore assemblages have been studied along with Mg/Ca and Uk'37-estimated Sea Surface Temperature (SST) and other paleoenvironmental proxies. The study site is located in a semi-permanent area of upwelling in the Alboran Sea. This productive cell is of special interest since is closely related to local hydrological dynamics driven by the entering Atlantic Jet (AJ). The onset of this productive cell is suggested at 7.7 ka cal. B.P. and linked to the establishment of the anticyclonic gyres. From 7.7 ka cal. BP to present, the N ratio and accumulation rate of Florisphaera profunda show successive upwelling and stratification events. This alternation is simultaneous to changes in the Western Mediterranean Deep Water (WMDW) formation rate in the Gulf of Lions [Frigola et al., 2007], along with changes in Mg/Ca-estimated SST, relative abundance of reworked nannoliths, pollen grains record [Fletcher et al., 2012] and n-hexacosan-1-ol index. Two scenarios are proposed to explain short-term climatic and oceanographic variability: [1] Wetter climate and weaker north-westerlies blowing over the Gulf of Lions trigger a slackening of the WMDW formation. Consequently, a minor AJ inflows the Alboran Sea leading to less vertical mixing and a deepening of the nutricline and hence, long-term stratification events. [2] Arid climate and stronger north-westerlies enable WMDW reinforcement. In turn, increased AJ triggers vertical mixing and nutricline shoaling, and therefore, productive periods. Finally, changes in atmospheric patterns (e.g. the winter North Atlantic Oscillation; [Olsen et al., 2012]) prove to be useful in explaining the WMDW formation in the Gulf of Lions and associated short-term productivity variations in the Alboran Sea. References Fletcher, W. J., M. Debret, and M. F

  20. Architectures of the Moroccan continental shelf of the Alboran Sea: insights from high-resolution bathymetry and seismic data.

    NASA Astrophysics Data System (ADS)

    Lafosse, Manfred; Gorini, Christian; Leroy, Pascal; d'Acremont, Elia; Rabineau, Marina; Ercilla, Gemma; Alonso, Belén; Ammar, Abdellah

    2016-04-01

    The MARLBORO and the SARAS oceanographic surveys have explored the continental shelf in the vicinity of the transtensive Nekor basin (South Alboran Sea, Western Mediterranean) and over three submarine highs located at several tens of kilometers from the shelf. Those surveys have produced high-resolution (≤29m²/pixel) bathymetry maps. Simultaneously, seismic SPARKER and TOPAS profiles were recorded. To quantify and understand Quaternary vertical motions of this tectonically active area, we searched for morphological and sedimentary paleobathymetric or paleo-elevations markers. Shelf-edge wedges associated marine terraces and paleo-shorelines have been identified on the bathymetry and on seismic cross-sections. These features reflect the trends of long term accommodation variations. Along the Moroccan continental shelf the lateral changes of shelf-edges geometries and the spatial distribution of marine landforms (sedimentary marine terraces, sediment wave fields, marine incisions) reflect the interaction between sea level changes and spatial variations of subsidence rates. Positions of paleo-shorelines identified in the studied area have been correlated with the relative sea-level curve (Rohling et al., 2014). Several still stands or slow stands periods have been recognized between -130-125m, -100-110m and -85-80m. The astronomical forcing controls the architecture of Mediterranean continental shelves. Marine landforms distribution also reveals the way sea level changed since the LGM. The comparison with observations on other western Mediterranean margins (e.g. the Gulf of Lion, the Ionian-Calabrian shelf) allowed a first order access to vertical motion rates.

  1. Processes driving submarine landslide geohazards in Alboran Sea: A complex interaction between fluid pressure, contouritic sedimentation and seismicity

    NASA Astrophysics Data System (ADS)

    Lafosse, M.; Gorini, C.

    2015-12-01

    The active Eurasia-Nubia plate boundary runs across the Alboran Sea in the Western Mediterranean Sea. Earthquakes of magnitude Mw >6, fluid escape and thick accumulations are potential triggers of submarine landslides along the Alboran contouritic margins. Over the last decade, international collaboration between Spanish, French and Moroccan marine geologists working has allowed a large amount of high-resolution multibeam and multi- and single channel seismic data to be collected from the Alboran Sea. Multibeam and echosounder data collected during the SARAS Eurofleet cruise reveal the distribution of slope failures along the northern flank of the Xauen-Tofiño bank along the Moroccan margin and the southern flank of the Alboran ridge. Those highs are active folds located on both sides of the Trans Alboran Shear Zone (TASZ). Here we provide a detailed mapping and description of the morphology of the Xauen-Tofiño landslides, including volumetric estimates of the failed mass and the related mass transport deposits over the last 2 myr. The most voluminous Holocene landslide mobilized ~0.5 km3 of sediment at the initial stage of slope failure, and formed a ~2.2-2.4 km3 mass transport deposit. Twenty-eight and thirty-eight Mass Transport Deposits (MTD) were described from the Xauen and Tofiño banks, respectively. Boreholes analysis of ODP sites 976 and 979 allowed the calibration of some of the reflectors and relative ages of the pulses of tectonic activity and MTD's events. Active uplift pulses are observed at 1.19, 0.79 and 0.46 Ma for the Alboran ridge, and at 1.19 and 0.79 Ma for the Xauen-Tofiño Bank. We compute different parameters for each MTD's from the literature, including the volume of sediments involved and the porosity, thanks to physical laws. For few MTD's, we also map associated slump scars and compute parameters such as the run-off and the volume of sediments, deduced from the scar with a simple geometric reconstitution of the paleo-topography. The

  2. ALBOREX: an intensive multi-platform and multidisciplinary experiment in the Alboran Sea

    NASA Astrophysics Data System (ADS)

    Ruiz, Simón; Pascual, Ananda; Allen, John; Olita, Antonio; Tovar, Antonio; Oguz, Temel; Mahadevan, Amala; Poulain, Pierre; Tintoré, Joaquín

    2015-04-01

    An intensive multi-platform and multidisciplinary experiment was completed in May 2014 as part of PERSEUS EU Project. 25 drifters, 2 gliders, 3 Argo floats and one ship were dedicated to sample an area of about 50x50 km in the eastern Alboran Sea during one week. The experiment, which also includes 66 CTD stations and 500 water samples (salinity, chlorophyll and nutrients), was designed to capture the intense but transient vertical exchanges associated with mesoscale and submesoscale features. The vertical motion associated with mesoscale and submesoscale features such as ocean eddies, filaments and fronts plays a major role in determining ocean productivity, due to the exchange of properties between the surface and the ocean interior. Understanding the relationship between these physical and biological processes is crucial for predicting the marine ecosystems response to changes in the climate system and to sustainable marine resource management. However, to understand the links between mesoscale and submesoscale features and ecosystem responses, it is necessary to collect data at a range of temporal and spatial scales, and then combine these data with coupled physical and biochemical models. Data from thermosalinograph revealed a sharp surface salinity front with values ranging from 36.6 (Atlantic Waters) to 38.2 (Mediterranean Waters) in conjunction with a filament in temperature. Drifters followed a massive anticyclonic gyre. Near real time data from ADCP showed coherent patterns with currents up to 1m/s. Gliders detected a subduction of chlorophyll located in areas adjacent to the front. We also present results on the horizontal strain rate, relative vorticity and quasi-geostrophic vertical motion to understand the dynamics of this intense ocean front.

  3. Microfossils, a Key to Unravel Cold-Water Carbonate Mound Evolution through Time: Evidence from the Eastern Alboran Sea

    PubMed Central

    Stalder, Claudio; Vertino, Agostina; Rosso, Antonietta; Rüggeberg, Andres; Pirkenseer, Claudius; Spangenberg, Jorge E.; Spezzaferri, Silvia; Camozzi, Osvaldo; Rappo, Sacha; Hajdas, Irka

    2015-01-01

    Cold-water coral (CWC) ecosystems occur worldwide and play a major role in the ocean's carbonate budget and atmospheric CO2 balance since the Danian (~65 m.y. ago). However their temporal and spatial evolution against climatic and oceanographic variability is still unclear. For the first time, we combine the main macrofaunal components of a sediment core from a CWC mound of the Melilla Mounds Field in the Eastern Alboran Sea with the associated microfauna and we highlight the importance of foraminifera and ostracods as indicators of CWC mound evolution in the paleorecord. Abundances of macrofauna along the core reveal alternating periods dominated by distinct CWC taxa (mostly Lophelia pertusa, Madrepora oculata) that correspond to major shifts in foraminiferal and ostracod assemblages. The period dominated by M. oculata coincides with a period characterized by increased export of refractory organic matter to the seafloor and rather unstable oceanographic conditions at the benthic boundary layer with periodically decreased water energy and oxygenation, variable bottom water temperature/density and increased sediment flow. The microfaunal and geochemical data strongly suggest that M. oculata and in particular Dendrophylliidae show a higher tolerance to environmental changes than L. pertusa. Finally, we show evidence for sustained CWC growth during the Alleröd-Younger-Dryas in the Eastern Alboran Sea and that this period corresponds to stable benthic conditions with cold/dense and well oxygenated bottom waters, high fluxes of labile organic matter and relatively strong bottom currents PMID:26447699

  4. Microfossils, a Key to Unravel Cold-Water Carbonate Mound Evolution through Time: Evidence from the Eastern Alboran Sea.

    PubMed

    Stalder, Claudio; Vertino, Agostina; Rosso, Antonietta; Rüggeberg, Andres; Pirkenseer, Claudius; Spangenberg, Jorge E; Spezzaferri, Silvia; Camozzi, Osvaldo; Rappo, Sacha; Hajdas, Irka

    2015-01-01

    Cold-water coral (CWC) ecosystems occur worldwide and play a major role in the ocean's carbonate budget and atmospheric CO2 balance since the Danian (~65 m.y. ago). However their temporal and spatial evolution against climatic and oceanographic variability is still unclear. For the first time, we combine the main macrofaunal components of a sediment core from a CWC mound of the Melilla Mounds Field in the Eastern Alboran Sea with the associated microfauna and we highlight the importance of foraminifera and ostracods as indicators of CWC mound evolution in the paleorecord. Abundances of macrofauna along the core reveal alternating periods dominated by distinct CWC taxa (mostly Lophelia pertusa, Madrepora oculata) that correspond to major shifts in foraminiferal and ostracod assemblages. The period dominated by M. oculata coincides with a period characterized by increased export of refractory organic matter to the seafloor and rather unstable oceanographic conditions at the benthic boundary layer with periodically decreased water energy and oxygenation, variable bottom water temperature/density and increased sediment flow. The microfaunal and geochemical data strongly suggest that M. oculata and in particular Dendrophylliidae show a higher tolerance to environmental changes than L. pertusa. Finally, we show evidence for sustained CWC growth during the Alleröd-Younger-Dryas in the Eastern Alboran Sea and that this period corresponds to stable benthic conditions with cold/dense and well oxygenated bottom waters, high fluxes of labile organic matter and relatively strong bottom currents.

  5. Microfossils, a Key to Unravel Cold-Water Carbonate Mound Evolution through Time: Evidence from the Eastern Alboran Sea.

    PubMed

    Stalder, Claudio; Vertino, Agostina; Rosso, Antonietta; Rüggeberg, Andres; Pirkenseer, Claudius; Spangenberg, Jorge E; Spezzaferri, Silvia; Camozzi, Osvaldo; Rappo, Sacha; Hajdas, Irka

    2015-01-01

    Cold-water coral (CWC) ecosystems occur worldwide and play a major role in the ocean's carbonate budget and atmospheric CO2 balance since the Danian (~65 m.y. ago). However their temporal and spatial evolution against climatic and oceanographic variability is still unclear. For the first time, we combine the main macrofaunal components of a sediment core from a CWC mound of the Melilla Mounds Field in the Eastern Alboran Sea with the associated microfauna and we highlight the importance of foraminifera and ostracods as indicators of CWC mound evolution in the paleorecord. Abundances of macrofauna along the core reveal alternating periods dominated by distinct CWC taxa (mostly Lophelia pertusa, Madrepora oculata) that correspond to major shifts in foraminiferal and ostracod assemblages. The period dominated by M. oculata coincides with a period characterized by increased export of refractory organic matter to the seafloor and rather unstable oceanographic conditions at the benthic boundary layer with periodically decreased water energy and oxygenation, variable bottom water temperature/density and increased sediment flow. The microfaunal and geochemical data strongly suggest that M. oculata and in particular Dendrophylliidae show a higher tolerance to environmental changes than L. pertusa. Finally, we show evidence for sustained CWC growth during the Alleröd-Younger-Dryas in the Eastern Alboran Sea and that this period corresponds to stable benthic conditions with cold/dense and well oxygenated bottom waters, high fluxes of labile organic matter and relatively strong bottom currents. PMID:26447699

  6. Seasonal and inter-annual changes in the planktonic communities of the northwest Alboran Sea (Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Mercado, Jesús M.; Cortés, Dolores; García, Alberto; Ramírez, Teodoro

    2007-08-01

    The response of the northwestern Alboran Sea pelagic ecosystem to temporal changes in hydrological conditions has been examined for the time period of 1992-2002. In addition, the bottom-up linkages between the lower trophic levels and the growth and nutritional status of sardine larvae were examined using quarterly data from 1992 to 2002 within the frame of the monitoring Project ECOMALAGA. The study area was characterised by the almost permanent presence of an upwelling which was intensified in the spring period. Consequently, an annual peak of nutrients was usually found during this season when the nitrate concentration averaged 1.35 μM. Accordingly, chlorophyll- a concentration and cell abundance of micro- plus nano-phytoplankton increased in that season (1.51 μg L -1 and 446 cell mL -1 compared to 0.85 μg L -1 and 225 cell mL -1 obtained from summer to fall). Despite these seasonal changes, the analysis of the taxonomic composition of the phytoplankton communities did not reveal a clear annual succession pattern. Contrastingly, peaks of zooplankton abundance were obtained in summer (1964 ind m -3) due to the increased presence of brachiopods with respect to copepods (which dominated from fall to spring). Significant inter-annual changes were obtained in the phytoplankton and zooplankton communities. Thus, dinoflagellate and coccolitophorid abundances relative to diatom abundances tended to increase from 1997 to 2002. This trend matched the progressive reduction of the upwelling intensity. These inter-annual changes significantly affected the larval growth of Sardine pilchardus and their nutritional condition, as higher growth rates in terms of body length coupled to higher somatic mass increases (expressed by DNA content) occurred in spring, matching with the higher chlorophyll- a concentration. Furthermore, the highest larval growth was obtained in 2001, coinciding with the change observed in the composition of phytoplankton community.

  7. A new diagnosis of the genus Delectona (Porifera, Demospongiae), with a description of a new species from the Alboran Sea (western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Rosell, D.

    1996-12-01

    A redescription of the genus Delectona is provided, based on information gained by the finding of a new species, D. alboransis, from the Alboran Sea (southwestern Mediterranean Sea). Up to now, this genus contained only one species: Delectona higgini, from the Indian Ocean, which has not been recorded since 1880. The presence of megascleres in the new species and the different ranges of amphiaster lengths of the two species are the main features allowing a differentiation. In addition, the excavating capability of sponges of this genus is questioned, following the observations on the external morphology of D. alboransis. Our results support the hypothesis of other authors that some areas of the circalittoral level of the Alboran Sea may represent a redoubt of relict species with Indo-Pacific affinities.

  8. Highly diverse molluscan assemblages of Posidonia oceanica meadows in northwestern Alboran Sea (W Mediterranean): Seasonal dynamics and environmental drivers

    NASA Astrophysics Data System (ADS)

    Urra, Javier; Mateo Ramírez, Ángel; Marina, Pablo; Salas, Carmen; Gofas, Serge; Rueda, José L.

    2013-01-01

    The seasonal dynamics of the molluscan fauna associated with the westernmost populations of the Mediterranean seagrass Posidonia oceanica, has been studied throughout an annual cycle in the northwestern coasts of the Alboran Sea. Samples were collected seasonally (5 replicated per season) using a non-destructive sampling technique (airlift sampler) on quadrats of 50 × 50 cm at 2 sites located 7 km apart. Several environmental variables from the water column (temperature, chlorophyll a), the sediment (percentage of organic matter) and the seagrass meadows (shoot density, leaf height and width, number of leaves per shoot) were also measured in order to elucidate their relationships with the dynamics of the molluscan assemblages. In these meadows, a total of 17,416 individuals of molluscs were collected, belonging to 71 families and 171 species, being Rissoidae, Pyramidellidae and Trochidae the best-represented families, and Mytilidae, Nassaridae and Trochidae the dominant ones in terms of abundance. The assemblages were dominated by micro-algal grazers, filter feeders and ectoparasites (including those feeding on sessile preys). The species richness and the abundance displayed significant maximum values in summer, whereas evenness and diversity displayed maximum values in spring, being significant for the evenness. Both abundance and species richness values were positively correlated to seawater temperature and percentage organic matter, only for the latter, and negatively to leaf width. Significant seasonal groupings were obtained with multivariate analyses (MDS, Cluster, ANOSIM) using qualitative and quantitative data that could be mainly related to biological aspects (i.e. recruitment) of single species. The molluscan assemblages are influenced by the biogeographical location of the area (Alboran Sea), reflected in the absence or scarcity of most Mediterranean species strictly associated with P. oceanica (e.g. Tricolia speciosa, Rissoa ventricosa) and by the

  9. The seasonal cycle of the Atlantic Jet dynamics in the Alboran Sea: direct atmospheric forcing versus Mediterranean thermohaline circulation

    NASA Astrophysics Data System (ADS)

    Macias, Diego; Garcia-Gorriz, Elisa; Stips, Adolf

    2016-02-01

    The Atlantic Jet (AJ) is the inflow of Atlantic surface waters into the Mediterranean Sea. This geostrophically adjusted jet fluctuates in a wide range of temporal scales from tidal to subinertial, seasonal, and interannual modifying its velocity and direction within the Alboran Sea. At seasonal scale, a clearly defined cycle has been previously described, with the jet being stronger and flowing towards the northeast during the first half of the year and weakening and flowing more southwardly towards the end of the year. Different hypothesis have been proposed to explain this fluctuation pattern but, up to now, no quantitative assessment of the importance of the different forcings for this seasonality has been provided. Here, we use a 3D hydrodynamic model of the entire Mediterranean Sea forced at the surface with realistic atmospheric conditions to study and quantify the importance of the different meteorological forcings on the velocity and direction of the AJ at seasonal time scale. We find that the direct effects of local zonal wind variations are much more important to explain extreme collapse events when the jet dramatically veers southward than to the seasonal cycle itself while sea level pressure variations over the Mediterranean seem to have very little direct effect on the AJ behavior at monthly and longer time scales. Further model results indicate that the annual cycle of the thermohaline circulation is the main driver of the seasonality of the AJ dynamics in the model simulations. The annual cycles in local wind forcing and SLP variations over the Mediterranean have no causal relationship with the AJ seasonality.

  10. Characterization of the submesoscale energy cascade in the Alboran Sea thermocline from spectral analysis of high-resolution MCS data

    NASA Astrophysics Data System (ADS)

    Sallares, Valenti; Mojica, Jhon F.; Biescas, Berta; Klaeschen, Dirk; Gràcia, Eulàlia

    2016-06-01

    Part of the kinetic energy that maintains ocean circulation cascades down to small scales until it is dissipated through mixing. While most steps of this downward energy cascade are well understood, an observational gap exists at horizontal scales of 103-101 m that prevents characterizing a key step in the chain: the transition from anisotropic internal wave motions to isotropic turbulence. Here we show that this observational gap can be covered using high-resolution multichannel seismic (HR-MCS) data. Spectral analysis of acoustic reflectors imaged in the Alboran Sea thermocline shows that this transition is likely caused by shear instabilities. In particular, we show that the averaged horizontal wave number spectra of the reflectors vertical displacements display three subranges that reproduce theoretical spectral slopes of internal waves (λx > 100 m), Kelvin-Helmholtz-type shear instabilities (100 m > λx > 33 m), and turbulence (λx < 33 m), indicating that the whole chain of events is occurring continuously and simultaneously in the surveyed area.

  11. Deep Chlorophyll Maximum distribution in the Alboran sea and its relationship with mesoscale and frontal features through syncronous glider observations.

    NASA Astrophysics Data System (ADS)

    Olita, Antonio; Ribotti, Alberto; Ruiz, Simon; Pascual, Ananda

    2015-04-01

    May 25 2014, two gliders were launched in the framework of the multiplatform and multidisciplinary experiment in the Alboran sea named ALBOREX (a PERSEUS project sampling) and of the JERICO TNA FRIPP project. The two instruments glided for 6 days, during which ADCP, ship based CTD, ARGO floats and surface drifters also sampled surface to deep waters allowing, togheter with bottle water samples, to collect a comprehensive dataset of oceanographic multidisciplinary quasi-synoptic data at (sub-)mesoscale. This preliminary work presents the results related to the two glider launched at approximatively 20 km each other. The two gliders intercepted in their pathway a frontal structure belonging to the northern margin of a quite large and strong anticyclonic structure originating by the meandering of Atlantic Waters entering in Mediterranean through Gibraltar. The vertical structure of Chlorophyll-a (as derived by fluorimeter measurements) shows the area of subsidence across the front and the deepening of isolines in the eddy interior. The analysis of the relatively low-cost glider data, combined with synoptic satellite measurements, shed light on the dynamics determining the re-distribution of the phytoplanktonic biomass and provide pretious hints, combined with dissolved oxygen data also collected by the unmanned autonomous vehicles, about the influence of such dynamical features on Primary Production.

  12. Last glacial to Holocene productivity and oxygen changes based on benthic foraminiferal assemblages from the western Alboran Sea

    NASA Astrophysics Data System (ADS)

    Pérez-Asensio, José N.; Cacho, Isabel; Frigola, Jaime; Pena, Leopoldo D.; Asioli, Alessandra; Kuhlmann, Jannis; Huhn, Katrin

    2016-04-01

    Late glacial to Holocene productivity and oxygen changes in the Alboran Sea were investigated analyzing benthic foraminiferal assemblages from the marine sediment core HER-GC-UB06. This 255 cm-long core was recovered at 946 m water depth in the Alboran Sea (western Mediterranean Sea) and includes homogeneous greyish clays from the last 23 ka. Nowadays, the core site is bathed by the Western Mediterranean Deep Water (WMDW) and near the overlying Levantine Intermediate Water (LIW). Benthic foraminifera from the size fraction >63 μm were identified at species level and counted until reaching at least 300 individuals. Q-mode principal component analyses (PCA) was performed to establish benthic foraminiferal assemblages. In addition, benthic foraminifera were classified according to their microhabitat preferences. Diversity was assessed with several diversity indices. Four benthic foraminiferal assemblages have been identified along the core. The distribution of these assemblages records changes in productivity and oxygen conditions during the last 23 ka. The last glacial and deglaciation interval, 23-12.5 ka, shows low diversity and is characterized by the Nonionella iridea assemblage, which includes Cassidulina laevigata, Bolivina dilatata, Nonionoides turgida and Cibicides pachyderma as secondary taxa. This assemblage can be interpreted as a moderately oxygenated mesotrophic environment with episodic pulses of fresh organic matter. Although general mesotrophic conditions prevail, the Last Glacial Maximum shows a more oligotrophic and better oxygenated setting as suggested by higher abundance of epifaunal-shallow infaunal taxa. In contrast, along the Bølling-Allerød eutrophic conditions with higher productivity and lower oxygenation are recorded by a deep infaunal taxa maximum. During the Younger Dryas (YD) and the earliest Holocene (12.5-10.5 ka), the Bolivina dilatata assemblage dominates coinciding with a lower diversity, especially during the YD. This species

  13. Characterization of the sub-mesoscale energy cascade in the Alboran Sea thermocline from spectral analysis of multichannel seismic data

    NASA Astrophysics Data System (ADS)

    Sallares, Valenti; Moncada, Jhon F.; Biescas, Berta; Klaeschen, Dirk

    2016-04-01

    Large-scale ocean dynamics is linked to small-scale mixing by means of turbulence, which enables the exchange of kinetic energy across the scales. At equilibrium, the energy flux that is injected at the production range must be balanced by mixing at the dissipation range. While the physics of the different ranges is now well established, an observational gap exists at the 103-101 m scale that prevents to characterize the transition from the anisotropic internal wave motions to isotropic turbulence. This lack of empirical evidence limits our understanding of the mechanisms governing the downward energy cascade, hampering the predictive capability of ocean circulation models. Here we show that this observational gap can be covered using high-resolution multichannel seismic (HR-MCS) data. Spectral analysis of acoustic reflectors imaged in the Alboran Sea (Western Mediterranean) thermocline evidences that this transition is caused by shear instabilities. In particular, we show that the averaged horizontal wavenumber (kx) spectra of the reflector's vertical displacements display three subranges that reproduce theoretical spectral slopes of internal waves [λx>100 m, with λx=kx-1], Kelvin-Helmholtz (KH)-type shear instabilities[100 m> λx>33 m], and turbulence[λx<33 m]. The presence of the transitional subrange in the averaged spectrum indicates that the whole chain of events is occurring continuously and simultaneously in the surveyed area. The availability of a system providing observational data at the appropriate scales opens new perspectives to incorporate small-scale mixing in predictive ocean modelling research.

  14. Cold-water coral carbonate mounds and associated habitats of the Chella Seamount (Alboran Sea - SW Mediterranean)

    NASA Astrophysics Data System (ADS)

    Lo Iacono, C.; Bartolomé, R.; Gràcia, E.; Monteys, X.; Perea, H.; Gori, A.; Event-Shelf Team

    2009-04-01

    This study focuses on the characterization of cold-water carbonate mounds and of the associated habitats detected and mapped in the Chella Seamount, off the Almeria Margin, along the eastern Alboran Sea (SW Mediterranean). The study has been carried out by means of an integrated geophysical dataset, comprising large-scale sidescan sonar (TOBI), high resolution swath-bathymetry, TOPAS and Sparker high-resolution seismics. The acoustic dataset has been ground-truthed by images from an ROV and a deep-towed video-camera. Carbonate mounds range from 10 to 60 m in height and from 150 to 250 m in width, typically displaying a sub-circular shape. They are found within a depth range of 80-400 m and generally occur along the structural ridges of the Chella Seamount. Some of the mounds are distributed NW-SE and N-S, coinciding with the orientation of the active fault lineations observed North and West of the study area. On the other hand, the orientation of some other mounds suggests that the presence of strong bottom currents and reduced sedimentary fluxes are environmental factors suitable for their development. The images obtained from video inspections have been key for the characterization of the benthic communities and abundance of the species identified along the mounds. Video stills suggest that most of the mounds are in a "sub-fossil" stage and are mainly composed of patchy distributed Madrepora oculata and Lophelia pertusa. Additionally, other environments have been detected, in which sponges, boulders, coarse sands and bedforms prevail. Wide and dense patches of gorgonian (Callogorgia verticillata) have been observed along the top of the Chella Seamount. The integration of different marine geophysical methods supported by ground-truthing calibrations, allowed to recognize in detail the structural, sedimentary and hydrodynamic constrains suitable for the development of cold-water coral carbonate mounds in the Chella Seamount and to recognize and map some of the

  15. Morphology of Submarine Canyons in the Palomares Margin (East of Alboran Sea, western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Perez-Hernandez, S.; Comas, M. C.; Escutia, C.

    2009-04-01

    . Longitudinal profiles show convex-up sections along the tributary system and concave-up sections from the merge in the main canyon down slope. The transition from an erosional canyon to a depositional channel is located at 2100m water depth. The mouth of the Alias-Almanzora Canyon-channel system is characterized by distributaries channels and lobated features. Morphological analyses from these Canyons indicate they have different origin and evolution. The connection of the Alias-Almanzora Canyon to a fluvial drainage system offshore suggests the canyon formed by erosion of the continental shelf edge during sea-level low stand periods, when entrapment of sediment on deltas and reduced sediment transport through submarine canyons occurred. The Gata Canyon has instead developed by head wards erosion and gravitational instabilities. Both canyon systems are highly influenced by recent tectonics, and structural trends influence their location and changes in pathways. Contribution from Projects SAGAS CTM2005-08071-03-01 and TOPO-IBERIA CSD2006-00041 (R & D National Plan of the Ministry of Science and Technology and FEDER funding, Spain).

  16. Looking for long-term changes in hydroid assemblages (Cnidaria, Hydrozoa) in Alboran Sea (South-Western Mediterranean): a proposal of a monitoring point for the global warming

    NASA Astrophysics Data System (ADS)

    González-Duarte, Manuel María; Megina, Cesar; Piraino, Stefano

    2014-12-01

    In the last 20-30 years, the temperature of the Mediterranean Sea has increased and global warming is allowing the establishment of tropical-affinity species into more temperate zones. Sessile communities are particularly useful as a baseline for ecological monitoring; however, a lack of historical data series exists for sessile marine organisms without commercial interest. Hydroids are ubiquitous components of the benthic sessile fauna on rocky shores and have been used as bio-indicators of environmental conditions. In this study on the benthic hydroid assemblages of the Chafarinas Islands (Alboran Sea, South-Western Mediterranean), we characterized the hydroid assemblages, identified the bathymetric gradients, and compared them with a previous study carried out in 1991. Hydroid assemblages showed a significant difference both between year and among depths. Furthermore, eight species not present in 1991 were found, including two possible new species and the tropical and subtropical species Sertularia marginata. Due to its strategic position at the entrance of the Mediterranean and the existence of previous data on hydroid assemblages, the Chafarinas Islands are proposed as a possible monitoring point for entrance of Atlantic tropical species into the Mediterranean Sea.

  17. Crustal and upper mantle shear velocities of Iberia, the Alboran Sea, and North Africa from ambient noise and ballistic finite-frequency Rayleigh wave tomography

    NASA Astrophysics Data System (ADS)

    Palomeras, I.; Villasenor, A.; Thurner, S.; Levander, A.; Gallart, J.; mimoun, H.

    2013-12-01

    The complex Mesozoic-Cenozoic Alpine deformation in the western Mediterranean extends from the Pyrenees in northern Spain to the Atlas Mountains in southern Morocco. The Iberian plate was accreted to the European plate in late Cretaceous, resulting in the formation of the Pyrenees. Cenozoic African-European convergence resulted in subduction of the Tethys oceanic plate beneath Europe. Rapid Oligocene slab rollback from eastern Iberia spread eastward and southward, with the trench breaking into three segments by the time it reached the African coast. One trench segment moved southwestward and westward creating the Alboran Sea, floored by highly extended continental crust, and building the encircling Betics Rif mountains comprising the Gibraltar arc, and the Atlas mountains, which formed as the inversion of a Jurassic rift. A number of recent experiments have instrumented this region with broad-band arrays (the US PICASSO array, Spanish IberArray and Siberia arrays, the University of Munster array), which, including the Spanish, Portuguese, and Moroccan permanent networks, provide a combined array of 350 stations having an average interstation spacing of ~60 km. Taking advantage of this dense deployment, we have calculated the Rayleigh waves phase velocities from ambient noise for short periods (4 s to 40 s) and teleseismic events for longer periods (20 s to 167 s). Approximately 50,000 stations pairs were used to measure the phase velocity from ambient noise and more than 160 teleseismic events to measure phase velocity for longer periods. The inversion of the phase velocity dispersion curves provides a 3D shear velocity for the crust and uppermost mantle. Our results show differences between the various tectonic regions that extend to upper mantle depths (~200 km). In Iberia we obtain, on average, higher upper mantle shear velocities in the western Variscan region than in the younger eastern part. We map high upper mantle velocities (>4.6 km/s) beneath the

  18. Alboran jets, gyres and eddies in a 20-year high resolution simulation

    NASA Astrophysics Data System (ADS)

    Peliz, A.

    2012-04-01

    The circulation of the Alboran Sea has long been described as being in a quasi-steady state composed of the Atlantic Jet meandering on the northern bound of two conspicuous gyres: the Western Alboran Gyre and Eastern Alboran Gyre (WAG and EAG). Changes to this 2 gyre flow system (transitions or transient events) are not very well explored yet. Periodic disappearances of the WAG (collapses or migrations) have been reported, but a single event of WAG migration, observed in fall 1996, is described in detail. These studies suggested that WAG is more likely to disappear in winter after drastic changes in the inflow, and that 2-gyre steady states are essentially observed in summer. The transition periods and the occurrence of smaller eddies are episodically referred in the literature but poorly known. Using a 20 yr 2km resolution Regional Ocean Modeling System simulation of the Gulf of Cadiz-Alboran Sea basins (from the "Inter-basin Exchange in a changing Mediterranean Sea" project MedEX), a classification of the circulation types and mesoscale structures in the Alboran Sea is conducted, characterizing their duration and frequency of occurrence, and temporal evolution. The 2-gyre quasi-steady state (or blocking situation) is confirmed as the most common flow type in the Alboran (occurring during about 42% of the simulation time) and that it is more frequent in summer. However, periods of double gyre flow in winter are also present although the gyre organization is slightly different and this state is described as a 2-gyre winter type. Long stable periods of a single gyre blocking were also identified, and they occupy about 17% of the 20-year period This single gyre usually constitutes a larger version of the WAG somewhat displaced to the east and occurs all year round although it is more common in winter months. The remaining time, the Alboran Sea is in relatively fast evolving flow transitions. The transitions were classified into, WAG migrations (when the WAG clearly

  19. Miocene magmatism and tectonics within the Peri-Alboran orogen (western Mediterranean)

    NASA Astrophysics Data System (ADS)

    El Azzouzi, M.; Bellon, H.; Coutelle, A.; Réhault, J.-P.

    2014-07-01

    The aim of this paper concerns Miocene igneous activity in the Alboran Sea and Peri-Alboran area (northern Morocco, western Algeria and Betic Cordilleras in Spain), considering its age and its location with regard to major tectonics structures. We have compiled previous K-Ar isotopic ages of lavas and plutonic boulders and intrusives with an error of ±1σ and completed this set by a new K-Ar isotopic age for andesitic tuffites from Alboran Island. Geochemistry of most of these samples has been considered after previous analyses completed with new data for Spain magmatism. These two sets of data allow us to place the magmatic activity within the regional stratigraphy and tectonics and their chronological framework of the three major tectonic phases of the Maghrebian orogen, at 17 Ma (Burdigalian), 15 Ma (Langhian) and 9 Ma (Tortonian). Petro-geochemical characteristics are compared through time and geographical locations. A major goal of this coupled approach is to help the elaboration of possible geodynamical processes. As an application, we present the case study of the Dellys, Djinet and Thenia region (east of Algiers) where the successive magmatic events between 19.4 ± 1 and 11.6 ± 0.5 Ma are closely related to the local tectonics and sedimentation. The Peri-Alboran igneous activity is placed in a multidisciplinary framework. Timing of activity is defined according to the ages of the neighbouring sedimentary units and the K-Ar ages of igneous rocks. In Spain, the Cabo de Gata-Carboneras magmatic province displays late Oligocene and early Miocene leucogranitic dikes, dated from 24.8 ± 1.3 to 18.1 ± 1.2 Ma; three following andesitic to rhyolitic events took place around 15.1 ± 0.8 to 14.0 ± 0.7 Ma, 11.8 ± 0.6 to 9.4 ± 0.4 Ma, 8.8 ± 0.4 to 7.9 ± 0.4 Ma; this last event displays also granitic rocks. Lamproitic magmas dated between 8.4 ± 0.4 and 6.76 ± 0.04 Ma were emplaced after the Tortonian phase. In Morocco, after the complex building of the Ras Tarf

  20. Sediment supply from the Betic-Rif orogen to basins through Neogene

    NASA Astrophysics Data System (ADS)

    Iribarren, L.; Vergés, J.; Fernàndez, M.

    2009-09-01

    We present a quantification of total and partial (divided by time slices) sedimentary volumes in the Neogene basins of the Betic-Rif orogen. These basins include the Alboran Sea, the intramontane basins, the Guadalquivir and Rharb foreland basins and the Atlantic Margin of the Gibraltar Arc. The total volume of Neogene sediments deposited in these basins is ~ 209,000 km 3 and is equally distributed between the internal (Alboran Basin and intramontane basins) and the external basins (foreland basins and Atlantic Margin). The largest volumes are recorded by the Alboran Basin (89,600 km 3) and the Atlantic Margin (81,600 km 3). The Guadalquivir and Rharb basins amount 14,000 km 3 and 14,550 km 3, respectively whereas the intramontane basins record 9235 km 3. Calculated mean sediment accumulation rates for the early-middle Miocene show an outstanding asymmetry between the Alboran basin (0.24 mm/yr) and the foreland basins (0.06-0.07 mm/yr) and the Atlantic Margin (0.03 mm/yr). During the late Miocene, sedimentation rates range between 0.17 and 0.18 mm/yr recorded in the Alboran Basin and 0.04 mm/yr in the intramontane basins. In the Pliocene-Quaternary, the highest sedimentation rates are recorded in the Atlantic Margin reaching 0.22 mm/yr. Sedimentary contribution shows similar values for the inner and outer basins with a generalized increase from late Miocene to present (from 3500 to 6500 km 3/My). Interestingly, the Alboran Basin records the maximum sedimentary contribution during the late Miocene (5500 km 3/My), whereas the Atlantic Margin does during the Pliocene-Quaternary (6600 km 3/My). The spatial and time variability of the sediment supply from the Betic-Rif orogen to basins is closely related to the morphotectonic evolution of the region. The high sedimentation rates obtained in the Alboran Basin during the early-middle Miocene are related to active extensional tectonics, which produced narrow and deep basins in its western domain. The highest sedimentary

  1. Impacts of reprocessed altimetry on the surface circulation and variability of the Western Alboran Gyre

    NASA Astrophysics Data System (ADS)

    Juza, Mélanie; Escudier, Romain; Pascual, Ananda; Pujol, Marie-Isabelle; Taburet, Guillaume; Troupin, Charles; Mourre, Baptiste; Tintoré, Joaquín

    2016-08-01

    New altimetry products in semi-enclosed seas are of major interest given the importance of the coastal-open ocean interactions. This study shows how reprocessed altimetry products in the Mediterranean Sea from Archiving, Validation and Interpolation of Satellite Oceanographic data (AVISO) have improved the representation of the surface circulation over the 1993-2012 period. We focus on the Alboran Sea, which is the highest mesoscale activity area of the western Mediterranean. The respective impacts of the new mean dynamic topography (MDT) and mapped sea level anomaly (MSLA) on the description of the Western Alboran Gyre (WAG) are quantitatively evaluated. The temporal mean and variability of the total kinetic energy have been significantly increased in the WAG considering both the new MDT and MSLA (by more than 50%). The new MDT has added 39% to the mean kinetic energy, while the new MSLA has increased the eddy kinetic energy mean (standard deviation) by 53% (30%). The new MSLA has yielded higher variability of total (eddy) kinetic energy, especially in the annual frequency band by a factor of 2 (3). The MDT reprocessing has particularly increased the low-frequency variability of the total kinetic energy by a factor of 2. Geostrophic velocities derived from the altimetry products have also been compared with drifter data. Both reprocessed MDT and MSLA products intensify the velocities of the WAG making them closer to the in situ estimations, reducing the root mean square differences and increasing the correlation for the zonal and meridional components. The results obtained using refined coastal processing of altimetry products and new observational data are very encouraging to better understand the ocean circulation variability and coastal-open ocean interactions, and for potential improvements in other sub-basins, marginal seas and coastal global ocean.

  2. Relation between Tethys sea and Tarim basin

    SciTech Connect

    Wei Junchao )

    1988-08-01

    The Tarim basin is the largest continental basin in China. It is known as the heart of central Asia. Still it was related to the Mediterranean Sea in the geological past. Based on the investigations of paleontology, stratigraphy, tectonics, and remote sensing, it is suggested that Tethys and the Tarim basin should be connected from the Late Cretaceous to Miocene. The northern branch of the Tethys sea channel began to pass through the Alay gap and invade the Tarim basin at the beginning of the Late Cretaceous. Up to the Miocene, marine invasion and marine regression must have happened six times in the western Tarim basin. The Paleocene marine invasion encroached upon the widest area and lasted the longest of the six times, which extended to the region of the southern Hotan River. The occurrence of the Paleocene marine fossils in the Kuqa Seg indicates the influence of the marine invasion. At the end of the Miocene, seawater receded fully from the Tarim basin. A Miocene petroleum field has been found in the Yecheng Seg of the western Tarim basin. According to the relationship between Tethys and the Tarim basin, the potentialities of the Late Cretaceous-Miocene hydrocarbon source are considered to be great.

  3. Magmatic evolution of the Alboran region: The role of subduction in forming the western Mediterranean and causing the Messinian Salinity Crisis

    NASA Astrophysics Data System (ADS)

    Duggen, Svend; Hoernle, Kaj; van den Bogaard, Paul; Harris, Chris

    2004-01-01

    The magmatic evolution of the Alboran region (westernmost Mediterranean) contains important clues for improving our understanding of the origin of Mediterranean-style back-arc basins and the desiccation of the Mediterranean Sea in the Messinian. We use new laser 40Ar/ 39Ar age and geochemical (major and trace element and O-Sr-Nd-Pb isotope) data from igneous rocks from southern Spain, the Alboran Sea and northern Morocco to reconstruct the magmatic evolution of the westernmost Mediterranean since the Eocene. Lower Oligocene dikes near Malaga (33.6±0.6 Ma) and Middle to Upper Miocene volcanic rocks from the Alboran Sea area (6.57±0.04 to 11.8±0.4 Ma) can be subdivided into two groups: (1) LREE-depleted (relative to N-MORB), primarily tholeiitic series, and (2) LREE-enriched, primarily calc-alkaline series volcanic rocks. Both groups are generally enriched in fluid-mobile elements (e.g. Rb, Th, U, K and Pb) relative to fluid-immobile elements (e.g. Nb, Ta, LREE). The LREE-depleted group has 143Nd/ 144Nd (0.5128-0.5130) isotope ratios similar to Atlantic MORB but higher 87Sr/ 86Sr (0.7046-0.7100). In contrast, the LREE-enriched group has less radiogenic Nd (0.5121-0.5126) and tend to more radiogenic Sr (0.7066-0.7205) isotopic composition. Pb isotope ratios are surprisingly uniform and have compositions similar to marine sediments. Analyses of mineral separates show that mafic melts with relatively low δ 18O (5.6-7.2‰) had high 87Sr/ 86Sr (0.7048-0.7088), Δ7/4 (10.6-14.1) and Δ8/4 (40.0-49.3). Modeling of the trace elements and Sr-Nd-Pb-O isotopic compositions provides compelling evidence for the contamination of the mantle source with hydrous fluids/melts, which can be explained through subduction of oceanic lithosphere beneath the Alboran Basin but not through detachment/delamination of lithospheric mantle. We present a geodynamic model that reconstructs the Late Eocene to Quaternary evolution of the western Mediterranean through westward roll-back of

  4. Aral Sea basin: a sea dies, a sea also rises.

    PubMed

    Glantz, Michael H

    2007-06-01

    The thesis of this article is quite different from many other theses of papers, books, and articles on the Aral Sea. It is meant to purposely highlight the reality of the situation in Central Asia: the Aral Sea that was once a thriving body of water is no more. That sea is dead. What does exist in its place are the Aral seas: there are in essence three bodies of water, one of which is being purposefully restored and its level is rising (the Little Aral), and two others which are still marginally connected, although they continue to decline in level (the Big Aral West and the Big Aral East). In 1960 the level of the sea was about 53 m above sea level. By 2006 the level had dropped by 23 m to 30 m above sea level. This was not a scenario generated by a computer model. It was a process of environmental degradation played out in real life in a matter of a few decades, primarily as a result of human activities. Despite wishes and words to the contrary, it will take a heroic global effort to save what remains of the Big Aral. It would also take a significant degree of sacrifice by people and governments in the region to restore the Big Aral to an acceptable level, given that the annual rate of flow reaching the Amudarya River delta is less than a 10th of what it was several decades ago. Conferring World Heritage status to the Aral Sea(s) could spark restoration efforts for the Big Aral.

  5. An integrated multiscale paleoseismic and neotectonic approach of the Carboneras Fault Zone, SE Spain, and its marine continuation in the Alboran Sea

    NASA Astrophysics Data System (ADS)

    Moreno, X.; Masana, E.; Gracia, E.; Bartolome, R.; Lo Iacono, C.; Rodés, A.; Pallàs, R.

    2009-12-01

    . The N45 segment overlaps with the southern N60 segment in a 14 km long intersection zone characterized by prominent pressure ridges and narrow flower structures. The N60 segment links to the south with an 8 km long N45 segment showing a transtensive graben-type structure. The southern end of the CFZ is characterized by smooth strain transference through folds and pervasive subvertical NW-SE faults. Geometry and structure of the marine segments are similar to onshore structures indicating a main left-lateral movement with a reverse component. The infill of the sedimentary basins on both sides of the basement high produced by the CFZ suggests that the activity of the fault started before the Messinian (Upper Miocene). Sediment rates obtained from 14C dating of marine cores allow us to calculate dip-slip rates of the CFZ. As observed on seismic profiles, these values range from 0.14 mm/a for the last 165 ka to 0.06 mm/a if considering the whole Quaternary. A forthcoming study better controlling the age of key horizons as well as detailed study of horizontally displaced morphological features will allow us to propose more accurate vertical and horizontal slip rates.

  6. Sea surface temperature variability in the Colombian Basin, Caribbean Sea

    NASA Astrophysics Data System (ADS)

    Ruiz-Ochoa, Mauricio; Beier, Emilio; Bernal, Gladys; Barton, Eric Desmond

    2012-06-01

    Daily sea surface temperature (SST) data from the Advanced Very High Resolution Radiometer (AVHRR) database with ∼4 km of spatial resolution were analyzed for the period 1985-2009 in the Colombian Basin using harmonic and empirical orthogonal function (EOF) analysis. The data were compared with observational records in the Rosario Island National Park at 10 m depth (T10) from March 2003 to August 2005. SST values were higher than T10 from June to October (rainy season), but similar from December to February (dry season); both data sets have similar coefficient of variation. The mean SST distribution varies spatially, with minimum SST values in the coastal zone of La Guajira Peninsula and maximum values in the Darien and Mosquitos Gulfs. The seasonal variability explains up to 75% of the total variability in La Guajira, a high value compared with 40% in the Mosquitos Gulf. The most important feature of the splitting of SST variation into annual and semiannual harmonics in La Guajira is the relationship between their amplitudes. These are of the same order, which is not common in other ocean zones, where the semiannual component is only a small fraction of the annual dominated by the solar warming. The river water discharge, highest from August to November, produces low density surface water, reduces vertical mixing and limits the absorption of solar radiation to a thin surface layer, explaining the discrepancy between SST and T10 in the rainy season. The decomposition of the SST in EOFs indicated that the dominant mode of the basin is a uniform interannual variation in phase with the North Tropical Atlantic Index. The second mode, representing the variability of the Guajira upwelling, covaried strongly with the second mode of wind stress curl. The third mode reflected the role of the vertical atmospheric circulation cell associated with the Caribbean Low Level Jet off Central America.

  7. Teleseismic traveltimes residuals across the Dead Sea basin

    NASA Astrophysics Data System (ADS)

    Hofstetter, A.; Dorbath, C.

    2014-12-01

    New findings of the structure of the Dead Sea sedimentary basin and its eastern and western bordering regions are obtained by P and PKP wave relative traveltime residuals of 644 teleseisms, as recorded by the Dead Sea Integrated Research portable seismic network in the Dead Sea basin and its neighboring regions. The Lisan Peninsula is characterized by relatively small teleseismic traveltime residuals of about 0.14 s, in the latitude range of 31.22°-31.37° and at the longitude of 35.50°, slowly decreasing toward the west. The largest teleseismic traveltime residuals are in the southern Dead Sea basin, south of the Lisan Peninsula in the latitude range of 31.05°-31.15° and along longitude 35.45° and continuing southward toward the Amaziahu Fault, reaching values of 0.4-0.5 s. There is a small positive residual at the Amaziahu Fault and a small negative residual south of it probably marking the southern end of the Dead Sea basin. East and west of the Dead Sea basin the mean teleseismic traveltime residuals are negative with overall averages of -0.35 s and -0.45 s, respectively. Using the teleseismic residuals, we estimate the horizontal dimensions of the Lisan salt diapir to be 23 km × 13 km at its widest and a maximal thickness of about 7.2 km. The thickness of the Mount Sodom salt diapir is estimated as 6.2 km.

  8. Teleseismic travel times residuals across the Dead Sea basin

    NASA Astrophysics Data System (ADS)

    Hofstetter, Rami; Dorbath, Catherine

    2014-05-01

    New findings of the structure of the Dead Sea sedimentary basin and its eastern and western bordering regions were obtained by applying P and PKP wave relative travel time residuals of 644 teleseisms, as recorded by the DESIRE portable seismic network in the Dead Sea basin and its outskirts. The Lisan is characterized by relatively small teleseismic travel time residuals of about 0.14 sec, in the latitude range of 31.220-31.370 and longitude of 35.500, slowly degrading towards west. The largest teleseismic travel time residuals are in the southern Dead Sea basin, south of the Lisan in the latitude range of 31.050-31.150 and along longitude 35.450 and continuing southward towards Amatzyahu Fault, reaching values of 0.3 to 0.4 sec. We get small positive residual in the Amatzyahu Fault and small negative residual south of it marking probably the southern end of the Dead Sea basin. East and west of the Dead Sea basin the mean teleseismic travel time residuals are negative having an over whole average of -0.35 sec and -0.45 sec, respectively. Using the teleseismic residuals we estimate the horizontal dimensions of the Lisan salt diapir to be 20 km X 12 km at its widest place and a maximal thickness of about 7.2 km. The thickness of the Mt. Sodom salt diapir is estimated as 6.2 km.

  9. On the origin of the ultradeep East Barents Sea basin

    NASA Astrophysics Data System (ADS)

    Gac, SéBastien; Huismans, Ritske S.; Podladchikov, Yuri Y.; Faleide, Jan Inge

    2012-04-01

    Very large subsidence, with up to 20 km thick sediment layers, is observed in the East Barents Sea basin. Subsidence started in early Paleozoic, accelerated in Permo-Triassic times, finished during the middle Cretaceous, and was followed by moderate uplift in Cenozoic times. The observed gravity signal suggests that the East Barents Sea is at present in isostatic balance and indicates that a mass excess is required in the lithosphere to produce the observed large subsidence. Several origins have been proposed for the mass excess. We use 1-D thermokinematic modeling and 2-D isostatic density models of continental lithosphere to evaluate these competing hypotheses. The crustal density in 2-D thermokinematic models resulting from pressure-, temperature-, and composition-dependent phase change models is computed along transects crossing the East Barents Sea. The results indicate the following. (1) Extension can only explain the observed subsidence provided that a 10 km thick serpentinized mantle lens beneath the basin center is present. We conclude that this is unlikely given that this highly serpentinized layer should be formed below a sedimentary basin with more than 10 km of sediments and crust at least 10 km thick. (2) Phase changes in a compositionally homogeneous crust do not provide enough mass excess to explain the present-day basin geometry. (3) Phase change induced densification of a preexisting lower crustal gabbroic body, interpreted as a mafic magmatic underplate, can explain the basin geometry and observed gravity anomalies. The following model is proposed for the formation of the East Barents Sea basin: (1) Devonian rifting and extension related magmatism resulted in moderate thinning of the crust and a mafic underplate below the central basin area explaining initial late Paleozoic subsidence. (2) East-west shortening during the Permian and Triassic resulted in densification of the previously emplaced mafic underplated body and enhanced subsidence

  10. Extreme flood events in the Dead Sea basin

    NASA Astrophysics Data System (ADS)

    Ahlborn, Marieke; Ben Dor, Yoav; Schwab, Markus J.; Neugebauer, Ina; Plessen, Birgit; Tjallingii, Rik; Erel, Yigal; Enzel, Yehouda; Brauer, Achim

    2016-04-01

    The Dead Sea is a hypersaline, terminal lake located within the Dead Sea basin at the lowest continental elevation on Earth (~425 m below mean sea level). Extreme hydro-meteorological events in terms of flash floods occur regularly during the wet season in the Dead Sea basin and adjacent mountain ranges. However, little is known about the impact of these extreme floods on the sedimentary dynamics in the Dead Sea and possible links to long-term climate changes. The trilateral research project PALEX (Paleoclimate in the Eastern Mediterranean Region - Levante: Paleohydrology and Extreme Flood Events) was recently initiated within the framework of the DFG priority program 1006 ICDP (International Continental Scientific Drilling Program) to investigate extreme flood events in the Dead Sea basin during the Late Pleistocene and Holocene. Within the ICDP Dead Sea Deep Drilling Project (DSDDP) the ~455 m long sediment core 5017-1 was recovered from the northern Dead Sea basin. Previously published results (Neugebauer et al., 2014, 2015) have demonstrated the occurrence of extreme flood events represented in the sediments as thick graded detrital layers during Late Holocene dry phases. Based on these results we will apply a comprehensive analytical approach including microfacies analyses, μXRF element scanning, and stable isotope geochemistry to different time intervals of core 5017-1. Particularly, we aim to investigate the structure and composition of detrital layers in order to decipher sediment transport mechanisms and the provenance of the flood-triggered sediments. The overarching goal is to establish a high-resolution extreme flood time series for the Dead Sea basin on the basis of a previously established radiocarbon and U-Th chronology (Torfstein et al., 2015; Neugebauer et al., 2014) and to study a possible link between the frequency and magnitude of extreme flood events and the long-term climate trend. Neugebauer I, Brauer A, Schwab MJ, et al. (2014) Lithology of

  11. A Seismic Profile Across the Southern Dead Sea Basin

    NASA Astrophysics Data System (ADS)

    Mechie, J.; Stiller, M.; Meiler, M.; Weber, M.; Abu-Ayyash, K.; Ben-Avraham, Z.; El-Kelani, R.; Qabbani, I.; Desire Group

    2006-12-01

    As part of the DESIRE project seismic wide-angle reflection / refraction (WRR) and near-vertical incidence reflection (NVR) measurements were completed in spring 2006 across the Dead Sea Transform (DST) in the region of the southern Dead Sea basin. The DST with a total of about 105 km multi-stage left-lateral shear since about 18 Ma ago, accommodates the movement between the Arabian and African plates. It connects the spreading centre in the Red Sea with the Taurus collision zone in Turkey over a length of about 1100 km. With a sedimentary infill of about 10 km in places, the southern Dead Sea basin is the largest pull-apart basin along the DST and one of the largest pull-apart basins on Earth. The WRR measurements comprised 11 shots recorded by 200 three-component and 400 one-component instruments spaced 300 m to 1.2 km apart along the whole length of the E-W trending 240 km long profile. The NVR measurements were carried out along the central 100 km of the E-W trending profile and consisted of a 90-fold vibroseis survey along the western 50 km and an 18-fold explosive source survey along the eastern 50 km of the profile. First results of modelling of the P-wave WRR data and a field example from the NVR data will be presented. Together with results from previously completed seismic profiles in the region, these new results will constrain models of the formation of the Dead Sea Transform (DST) in the region of the southern Dead Sea basin. potsdam.de/pb2/pb22/projects/index_e.html

  12. Petroleum geologic characteristics of east China Sea basin

    SciTech Connect

    Desheng, Li )

    1990-05-01

    The East China Sea is a major Cenozoic epicontinental rift-depression basin covering an area of 770,000 km{sup 2}. The basin is bounded by the Minzhe, uplift to the west and by the Ryukyu Island arc to the east. The thickness of sedimentary strata is greater than 10 km. Basin evolution has been dominated by taphrogenesis and orogenesis attributable to the westward subduction of the Pacific plate. The basin history of the East China Sea can be divided into four stages: (1) Late Cretaceous-Paleogene rifting stage, (2) Eocene-Oligocene rifting-depression stage, (3) Miocene depression stage, and (4) Pliocene-Quaternary draping stage. The Okinawa Trough is a new rifting zone related to the subduction of Ryukyu Island arc. Recent geophysical exploration and petroleum drilling activities in the East China Sea basin show that Paleogene lacustrine and Neogene marine facies strata include multiple suites of hydrocarbon source rocks. Eight structures have tested gas and oil. The Pinghu gas and oil field was discovered and delineated on the west slope of Xihu depression. Various types of traps, dome anticlines, rollover anticlines, fault blocks, buried hills, and reef carbonates, are good prospects.

  13. Stress tensor and focal mechanisms in the Dead Sea basin

    NASA Astrophysics Data System (ADS)

    Hofstetter, A.; Dorbath, C.; Dorbath, L.; Braeuer, B.; Weber, M. H.

    2015-12-01

    We use the recorded seismicity, confined to the Dead Sea basin and its boundaries, by the Dead Sea Integrated Research (DESIRE) portable seismic network and the Israel and Jordan permanent seismic networks for studying the mechanisms of earthquakes that occurred in the Dead Sea basin. The observed seismicity in the Dead Sea basin was divided into 9 regions according to the spatial distribution of the earthquakes and the known tectonic features. The large number of recording stations and the good station distribution allowed the reliable determinations of 494 earthquake focal mechanisms. For each region, based on the inversion of the observed polarities of the earthquakes, we determine the focal mechanisms and the associated stress tensor. For 159 earthquakes out of the 494 mechanisms we could determine compatible fault planes. On the eastern side, the focal mechanisms are mainly strike-slip mechanism with nodal planes in the N-S and E-W directions. The azimuths of the stress axes are well constrained presenting minimal variability in the inversion of the data, which is in good agreement with the Arava fault on the eastern side of the Dead Sea basin and what we had expected from the regional geodynamics. However, larger variabilities of the azimuthal and dip angles are observed on the western side of the basin. Due to the wider range of azimuths of the fault planes, we observe the switching of sigma1 and sigma2 or the switching of sigma2 and sigma3as major horizontal stress directions. This observed switching of stress axes allows having dip-slip and normal mechanisms in a region that is dominated by strike-slip motion.

  14. Stress tensor and focal mechanisms in the Dead Sea basin

    NASA Astrophysics Data System (ADS)

    Hofstetter, A.; Dorbath, C.; Dorbath, L.; Braeuer, B.; Weber, M.

    2016-04-01

    We use the recorded seismicity, confined to the Dead Sea basin and its boundaries, by the Dead Sea Integrated Research (DESIRE) portable seismic network and the Israel and Jordan permanent seismic networks for studying the mechanisms of earthquakes in the Dead Sea basin. The observed seismicity in the Dead Sea basin is divided into nine regions according to the spatial distribution of the earthquakes and the known tectonic features. The large number of recording stations and the adequate station distribution allowed the reliable determinations of 494 earthquake focal mechanisms. For each region, based on the inversion of the observed polarities of the earthquakes, we determine the focal mechanisms and the associated stress tensor. For 159 earthquakes, out of the 494 focal mechanisms, we could determine compatible fault planes. On the eastern side, the focal mechanisms are mainly strike-slip mechanism with nodal planes in the N-S and E-W directions. The azimuths of the stress axes are well constrained presenting minimal variability in the inversion of the data, which is in agreement with the Eastern Boundary fault on the east side of the Dead Sea basin and what we had expected from the regional geodynamics. However, larger variabilities of the azimuthal and dip angles are observed on the western side of the basin. Due to the wider range of azimuths of the fault planes, we observe the switching of σ1 and σ2 or the switching of σ2 and σ3 as major horizontal stress directions. This observed switching of stress axes allows having dip-slip and normal mechanisms in a region that is dominated by strike-slip motion.

  15. IODP expedition 347: Baltic Sea basin paleoenvironment and biosphere

    NASA Astrophysics Data System (ADS)

    Andrén, T.; Barker Jørgensen, B.; Cotterill, C.; Green, S.; IODP expedition 347 scientific party, the

    2015-12-01

    The Integrated Ocean Drilling Program (IODP) expedition 347 cored sediments from different settings of the Baltic Sea covering the last glacial-interglacial cycle. The main aim was to study the geological development of the Baltic Sea in relation to the extreme climate variability of the region with changing ice cover and major shifts in temperature, salinity, and biological communities. Using the Greatship Manisha as a European Consortium for Ocean Research Drilling (ECORD) mission-specific platform, we recovered 1.6 km of core from nine sites of which four were additionally cored for microbiology. The sites covered the gateway to the North Sea and Atlantic Ocean, several sub-basins in the southern Baltic Sea, a deep basin in the central Baltic Sea, and a river estuary in the north. The waxing and waning of the Scandinavian ice sheet has profoundly affected the Baltic Sea sediments. During the Weichselian, progressing glaciers reshaped the submarine landscape and displaced sedimentary deposits from earlier Quaternary time. As the glaciers retreated they left a complex pattern of till, sand, and lacustrine clay, which in the basins has since been covered by a thick deposit of Holocene, organic-rich clay. Due to the stratified water column of the brackish Baltic Sea and the recurrent and widespread anoxia, the deeper basins harbor laminated sediments that provide a unique opportunity for high-resolution chronological studies. The Baltic Sea is a eutrophic intra-continental sea that is strongly impacted by terrestrial runoff and nutrient fluxes. The Holocene deposits are recorded today to be up to 50 m deep and geochemically affected by diagenetic alterations driven by organic matter degradation. Many of the cored sequences were highly supersaturated with respect to methane, which caused strong degassing upon core recovery. The depth distributions of conservative sea water ions still reflected the transition at the end of the last glaciation from fresh-water clays to

  16. Basin modeling of the Parang (Socotra) Basin, northern East China Sea shelf: Implications for hydrocarbon potential

    NASA Astrophysics Data System (ADS)

    Kim, H.; Moon, S.; Lee, G.; Yoon, Y.; Kim, H.

    2013-12-01

    The hydrocarbon potential of the Parang (Socotra) Basin in the northern East China Sea shelf has remained poorly understood. We performed one-dimensional basin modeling for a dummy well located in the depocenter of the northern part of the Parang Basin to investigate the timings of hydrocarbon generation and expulsion. First, a depth-converted seismic profile crossing the dummy well was restored by backstripping and decompaction for eight regional and subregional unconformities, including the top of the acoustic basement, to reconstruct the subsidence history and to determine the timing of trap formation. The basin modeling, assuming rifting heat-flow model and source rocks with type III kerogen, suggests that the main phase of hydrocarbon (mostly gas) expulsion peaked in the Late Eocene, predating the inversion that created traps in the early Middle to latest Middle Eocene. Thus, the potential for large hydrocarbon accumulations in the northern Parang Basin is probably limited.

  17. Morphometric analysis of the Marmara Sea river basins, Turkey

    NASA Astrophysics Data System (ADS)

    Elbaşı, Emre; Ozdemir, Hasan

    2014-05-01

    The drainage basin, the fundamental unit of the fluvial landscape, has been focus of research aimed at understanding the geometric characteristics of the master channel and its tributary network. This geometry is referred to as the basin morphometry and is nicely reviewed by Abrahams (1984). A great amount of research has focused on geometric characteristic of drainage basins, including the topology of the stream networks, and quantitative description of drainage texture, pattern, shape, and relief characteristics. Evaluation of morphometric parameters necessitates the analysis of various drainage parameters such as ordering of the various streams, measurement of basin area and perimeter, length of drainage channels, drainage density (Dd), stream frequency (Fs), bifurcation ratio (Rb), texture ratio (T), basin relief (Bh), Ruggedness number (Rn), time of concentration (Tc), hypsometric curve and integral (Hc and Hi) (Horton, 1932, Schumn, 1956, Strahler, 1957; Verstappen 1983; Keller and Pinter, 2002; Ozdemir and Bird, 2009). These morphometric parameters have generally been used to predict flood peaks, to assess sediment yield, and to estimate erosion rates in the basins. River basins of the Marmara Sea, has an area of approximately 40,000 sqkm, are the most important basins in Turkey based on their dense populations, industry and transportation systems. The primary aim of this study is to determine and analyse of morphometric characteristics of the Marmara Sea river basins using 10 m resolution Digital Elevation Model (DEM) and to evaluate of the results. For these purposes, digital 10 m contour maps scaled 1:25000 and geological maps scaled 1:100000 were used as the main data sources in the study. 10 m resolution DEM data were created using the contour maps and then drainage networks and their watersheds were extracted using D8 pour point model. Finally, linear, areal and relief morphometries were applied to the river basins using Geographic Information Systems

  18. Geologic evolution of the Bering Sea Komandorksy deep basin

    SciTech Connect

    Bogdanov, N.A.

    1986-07-01

    The deep-water Komandorsky basin is located in the southwestern part of the Bering Sea. On the east, it is separated from the Aleutian basin by the submerged Shirshov Ridge; on the west, it is bordered by structures of the north Kamchatka accretionary prism. The Komandorsky basin is characterized by strongly dissected relief of it acoustic basement, which is overlain by a 1.5 to 2.0-km thick sedimentary cover. The western part of the basin is occupied by a rift zone, which is characterized by modern seismicity and high heat flow. It is considered to be the axial zone of Miocene-Pleistocene spreading. On the north terrace of the Komandorsky island arc, traced active volcanos provide evidence that subduction is occurring under the arc from the north. The spreading rift zone is reflected on the continent in Miocene-Pleistocene volcanic rocks, characterized by typical oceanic tholeiitic composition. The Komandorsky basin formed as a result of spreading during the Maestrichtian. Spreading within the basin occurred during the early and middle Oligocene and the late Miocene. East and west of the spreading axis, accretionary prisms formed. The latter are observed along the western flank of the Shirshov Ridge and on the eastern sides of the Kamchatka Peninsula and Koraginsky Island.

  19. Sea surface temperature variations in the western Mediterranean Sea over the last 20 kyr: A dual-organic proxy (UK'37 and LDI) approach

    NASA Astrophysics Data System (ADS)

    Rodrigo-Gámiz, M.; Martínez-Ruiz, F.; Rampen, S. W.; Schouten, S.; Sinninghe Damsté, J. S.

    2014-02-01

    A high-resolution sea surface temperature (SST) reconstruction of the western Mediterranean was accomplished using two independent, algae-based molecular organic proxies, i.e., the UK'37 index based on long-chain unsaturated ketones and the novel long-chain diol index (LDI) based on the relative abundances of C28 and C30 1,13- and 1,15-diols. Two marine records, from the western and eastern Alboran Sea basin, spanning the last 14 and 20 kyr, respectively, were studied. Results from the surface sediments suggest that the two proxies presently reflect seasons with similar SST or simply annual mean SST. Both proxy records reveal the transition from the Last Glacial Maximum to the Holocene in the eastern Alboran Sea with an SST increase of approximately 7°C for UK'37 and 9°C for LDI. Minimum SSTs (10-12°C) are reached at the end of the Last Glacial Maximum and during the last Heinrich event with a subsequent rapid SST increase in LDI-SST toward the beginning of the Bölling period (20°C), while UK'37-SST remains constantly low (~12°C). The Bölling-Alleröd period is characterized by a rapid increase and subsequent decrease in UK'37-SST, while the LDI-SST decrease continuously. Short-term fluctuations in UK'37-SST are probably related to the availability of nutrients and seasonal changes. The Younger Dryas is recorded as a short cold interval followed by progressively warmer temperatures. During the Holocene, the general lower UK'37-derived temperature values in the eastern Alboran (by approximately 1.5-2°C) suggest a southeastward cold water migration by the western Alboran gyre and divergence in the haptophyte blooming season between both basins.

  20. Late Pleistocene carbonate dissolution in the Venezuela Basin, Caribbean Sea

    SciTech Connect

    Cofer-Shabica, N.B.; Peterson, L.C.

    1985-01-01

    Piston cores from water depths greater than 4000 m in the Venezuela Basin (Caribbean Sea) provide continuous late Pleistocene records of carbonate dissolution and accumulation. The authors examination of multiple dissolution indices indicate that, at least for the last 150,000 years, dissolution of carbonate in the Venezuela Basin has been more intense during interglacial than glacial periods, a pattern opposite to more general observations from the deep Atlantic and Gulf of Mexico. By virtue of its shallow sill depth (1815 m), the Venezuela Basin is relatively isolated from the mainstream of Atlantic thermohaline circulation, and presently is filled with homogeneous, relatively warm (3.8/sup 0/C) waters primarily derived from Upper North Atlantic Deep Water. During the last glacial, the enhanced preservation of carbonate in the Venezuela Basin suggests the presence of a less corrosive, more oxygenated water mass in the Atlantic near sill depth. However, this simple interpretations is potentially complicated by past changes in the rain of biogenic materials from surface waters to the deep basin in what must be an essentially closed system below sill depth. Their observations of increased interglacial dissolution may help to explain previously noted discrepancies in the local glacial to interglacial amplitude of delta/sup 18/O variations recorded by coccoliths and planktonic foraminifera.

  1. Oil and gas bearing in Norwegian Sea basins

    NASA Astrophysics Data System (ADS)

    Zabanbark, A.

    2013-07-01

    The Norwegian passive continental margin is represented by an extensive gentle shelf and continental slope. On the continental slope, there are the isolated Vøring, Møre and Ras basins, the Halten Terrace is situated to the east of them at the shelf, then the Nordland submarine ridge and the Trondelag Platform at the seaboard. There are Paleozoic, Mesozoic and Cenozoic sediments in its sections. Two complex structures are clearly distinguished in the sedimentary section: the lower stage (up to the Upper Cretaceous), reflecting the rifting structure of the basins, broken by a system of dislocations to a series of horsts, grabens, and separated blocks; and the upper stage, poorly dislocated, like a mantle covering the lower stage, with erosion and sharp unconformity. The Halten Terrace is the principal oil and gas production basin. At present, there are more than 50 oil, gas, and condensate fields in it. The following particularities have been discovered: than the field lays in the deepwater, than the age of the hydrocarbon pay is younger. It is also interesting that all gas fields are situated in the Vøring and Møre basins and western part of the Halten Terrace; the oil and gas fields, mainly at the center of the Halten Terrace; but pure oil fields, in the north of the terrace. In conformity with discovering the particularities, it is possible to say that the prospects of oil and gas bearing in the Norwegian Sea are primarilyt related to the Halten Terrace and the Vøring and Møre basins, especially the territories situated at the boundary of the two basins, where it is possible to discover large hydrocarbon accumulations like the Ormen-Lange field, because the Paleocene-Upper Cretaceous productive turbidite thick at the boundary of these basins is on the continental slope, which is considered promising a priori.

  2. Late compressional features, East China Sea Shelf Basin

    SciTech Connect

    Cunningham, A.E.; Prebish, M.R.; Eisenstadt, G. ); Norris, J.W.; Letsch, D.K. )

    1994-07-01

    Many anticlinal folds observed in the East China Sea Shelf Basin are interpreted to result from a change in regional stress from tensional to compressional. This compression is interpreted to have occurred during the late Eocene to Oligocene Yuquan movement. These features were observed most frequently south of the Mingyuefeng 1 well within China's recently offered Fourth Round Acreage. Many of these structures are interpreted to be related to reverse and strike-slip motion along reactivated, Late Cretaceous to late Eocene, synrift, normal faults. An early to middle Miocene regional unconformity truncates the crest of most anticlinal features, and does not appear to be involved in the folding episode. Late Eocene to Oligocene compressional highs present attractive structural targets in the East China Sea Shelf Basin. The deformed sedimentary section thickens toward the rift-basin boundary faults, suggesting synrift sedimentation. Consequently, there is no thinning of the synrift section across the crest of the structural highs formed by postrift compression. The timing of these compressional structural highs, however, must be compared with the hydrocarbon generation and migration history from source rocks in adjacent half grabens to properly assess accumulation potential.

  3. Does Arctic sea ice reduction foster shelf-basin exchange?

    PubMed

    Ivanov, Vladimir; Watanabe, Eiji

    2013-12-01

    The recent shift in Arctic ice conditions from prevailing multi-year ice to first-year ice will presumably intensify fall-winter sea ice freezing and the associated salt flux to the underlying water column. Here, we conduct a dual modeling study whose results suggest that the predicted catastrophic consequences for the global thermohaline circulation (THC), as a result of the disappearance of Arctic sea ice, may not necessarily occur. In a warmer climate, the substantial fraction of dense water feeding the Greenland-Scotland overflow may form on Arctic shelves and cascade to the deep basin, thus replenishing dense water, which currently forms through open ocean convection in the sub-Arctic seas. We have used a simplified model for estimating how increased ice production influences shelf-basin exchange associated with dense water cascading. We have carried out case studies in two regions of the Arctic Ocean where cascading was observed in the past. The baseline range of buoyancy-forcing derived from the columnar ice formation was calculated as part of a 30-year experiment of the pan-Arctic coupled ice-ocean general circulation model (GCM). The GCM results indicate that mechanical sea ice divergence associated with lateral advection accounts for a significant part of the interannual variations in sea ice thermal production in the coastal polynya regions. This forcing was then rectified by taking into account sub-grid processes and used in a regional model with analytically prescribed bottom topography and vertical stratification in order to examine specific cascading conditions in the Pacific and Atlantic sectors of the Arctic Ocean. Our results demonstrate that the consequences of enhanced ice formation depend on geographical location and shelf-basin bathymetry. In the Pacific sector, strong density stratification in slope waters impedes noticeable deepening of shelf-origin water, even for the strongest forcing applied. In the Atlantic sector, a 1.5x increase of

  4. Does Arctic sea ice reduction foster shelf-basin exchange?

    PubMed

    Ivanov, Vladimir; Watanabe, Eiji

    2013-12-01

    The recent shift in Arctic ice conditions from prevailing multi-year ice to first-year ice will presumably intensify fall-winter sea ice freezing and the associated salt flux to the underlying water column. Here, we conduct a dual modeling study whose results suggest that the predicted catastrophic consequences for the global thermohaline circulation (THC), as a result of the disappearance of Arctic sea ice, may not necessarily occur. In a warmer climate, the substantial fraction of dense water feeding the Greenland-Scotland overflow may form on Arctic shelves and cascade to the deep basin, thus replenishing dense water, which currently forms through open ocean convection in the sub-Arctic seas. We have used a simplified model for estimating how increased ice production influences shelf-basin exchange associated with dense water cascading. We have carried out case studies in two regions of the Arctic Ocean where cascading was observed in the past. The baseline range of buoyancy-forcing derived from the columnar ice formation was calculated as part of a 30-year experiment of the pan-Arctic coupled ice-ocean general circulation model (GCM). The GCM results indicate that mechanical sea ice divergence associated with lateral advection accounts for a significant part of the interannual variations in sea ice thermal production in the coastal polynya regions. This forcing was then rectified by taking into account sub-grid processes and used in a regional model with analytically prescribed bottom topography and vertical stratification in order to examine specific cascading conditions in the Pacific and Atlantic sectors of the Arctic Ocean. Our results demonstrate that the consequences of enhanced ice formation depend on geographical location and shelf-basin bathymetry. In the Pacific sector, strong density stratification in slope waters impedes noticeable deepening of shelf-origin water, even for the strongest forcing applied. In the Atlantic sector, a 1.5x increase of

  5. Chapter 44: Geology and petroleum potential of the Lincoln Sea Basin, offshore North Greenland

    USGS Publications Warehouse

    Sorensen, K.; Gautier, D.; Pitman, J.; Ruth, Jackson H.; Dahl-Jensen, T.

    2011-01-01

    A seismic refraction line crossing the Lincoln Sea was acquired in 2006. It proves the existence of a deep sedimentary basin underlying the Lincoln Sea. This basin appears to be comparable in width and depth to the Sverdrup Basin of the Canadian Arctic Islands. The stratigraphy of the Lincoln Sea Basin is modelled in analogy to the Sverdrup Basin and the Central Spitsbergen Basin, two basins between which the Lincoln Sea intervened before the onset of seafloor spreading in the Eurasian Basin. The refraction data indicates that the Lincoln Sea Basin is capped by a kilometre-thick, low-velocity layer, which is taken to indicate an uplift history similar to, or even more favourable than, the fairway part of the Sverdrup Basin. Tectonic activity in the Palaeogene is likely to constitute the major basin scale risk. We conclude that the Lincoln Sea Basin is likely to be petroliferous and contains risked resources on the order of 1 ?? 109 barrels of oil, to which comes an equivalent amount of (associated and nonassociated) gas. ?? 2011 The Geological Society of London.

  6. Tectonic evolution of the Black Sea orogene belt and the history of opening of the Black Sea basin

    SciTech Connect

    Uesuemezsoy, S. )

    1988-08-01

    The Black Sea basin is surrounded by successive orogenic belts of Hercynian, Cimmerian, and Alpine ages. The Rhodope, Thracian, western Pontian, and Transcaucasian (RTPT) blocks of Precambrian age were involved by the circum-Black Sea orogene belts. The Hercynian orogene was documented in the Balkanide, Great Caucasian, Kriastide, southern Pontian, and Transcaucasian belts. The Cimmerian orogene extended north and south of the Black Sea. The southern Cimmerian orogene was represented by the circum-Rhodope and East Thracian-Strandja-Kuere belts. The northern Cimmerian orogene belt extended along the Dobruca-Crimean and southern slope belts. Following the demise of the Black Sea Cimmerian basin, the northernmost oceanic branch extending from Nish-Trajan through the present Black Sea to the intra-Transcaucasian basin, was opened within the Hercynian and Cimmerian consolidated terrain in the Late Jurassic. The other oceanic branch, extending from Izmir-Ankara through circum Kirsehir to various basins, was opened within the Paleotethyan collision belt, considered to be eastern extension of the Pindus basin. The Nish-Trajan sector of the northernmost basin was closed in the middle Cretaceous, and the Moesian platform re-fused to the Getic-Serbo-Macedonian-Rhodope belt. The easternmost extension of the intra-Transcaucasian basin disappeared in the Late Cretaceous. Consequently, the northernmost oceanic branch was reduced to the present Black Sea basin.

  7. Basin Modelling of the Laptev Sea Rift, NE Russia

    NASA Astrophysics Data System (ADS)

    Brandes, C.; Franke, D.; Piepjohn, K.; Gaedicke, C.

    2015-12-01

    The Laptev Sea Rift in the northeastern Arctic shelf area of Russia is a standard example for an oceanic rift system that propagates into a continent and plays an important role in the geodynamic models for the opening of the Eurasia Basin. To better understand the evolution of this rift, a basin modelling study was carried out with the software PetroMod®. The software simulates and analyses the burial history and temperature evolution of a sedimentary basin. It is a dynamic forward simulation based on the finite element method. The modelled section used in this study is based on a depth converted seismic section, acquired by the BGR. The section covers the Anisin Basin and is characterized by listric normal faults. The numerical simulation was supported by tectonic and sedimentological field data sets that were collected in outcrops during the CASE 13 expedition in 2011. Normal faults in outcrops were analysed using fault-slip inversion techniques to derive the paleo-extension direction. The presence of normal faults in relatively unconsolidated Paleogene sediments and in Neogene to Quaternary volcanic rocks, indicate very young extension in the area of the New Siberian Islands. The conceptual model for the simulation was built on the basis of the seismic data and the properties of the rocks and sediments observed in the outcrops. Initial results show that the present-day temperature field in the area of the Anisin Basin is characterized by seafloor-parallel isotherms. In the central part of the graben structure, the isotherms are slightly bent down and the heat-flow is reduced, probably due to blanketing effects. An extracted geohistory curve is almost linear and implies that subsidence controlled by faults is the dominating mechanism. From the simulation, sedimentation rates are derived that were highest in the early Paleocene phase of graben development and decreased in the late Eocene.

  8. Groundwater Availability Within the Salton Sea Basin Final Report

    SciTech Connect

    Tompson, A; Demir, Z; Moran, J; Mason, D; Wagoner, J; Kollet, S; Mansoor, K; McKereghan, P

    2008-01-11

    It is widely recognized that increasing demands for water in Southern California are being affected by actions to reduce and redirect the amount of water imported from the Colorado River. In the Imperial Valley region, for example, import reductions will not only affect agricultural users but also could produce significant collateral impacts on the level and quality of water in the Salton Sea, its regional ecology, or even the long term air quality in the greater basin. The notion of using groundwater in the Imperial Valley as an additional source for agricultural or domestic needs, energy production, or Salton Sea restoration efforts, so as to offset reductions in imported water, is not a new concept. Even though it has been discussed recently (e.g., LLNL, 2002), the idea goes back, in part, to several studies performed by the US Department of Interior and other agencies that have indicated that there may be substantial, usable amounts of groundwater in some portions of the Imperial Valley. It has been estimated, for example, that between 1.1 and 3 billion acre-feet (AF) of groundwater lie within the extended, deep basin underlying the valley and Salton Sea region, even though much of it may be unrecoverable or too poor in its quality (Imperial County, 1997). This is a significant volume with respect to the total annual precipitation volume received in California, whose average is close to 200 million (or 0.2 billion) AF per year (DWR, 1998), and especially with respect to the total annual precipitation received in the Salton Sea watershed itself, which we estimate (Appendix A) to be approximately 2.5 million acre feet (MAF) per year. Clearly, a thorough appraisal of the groundwater resources in the Imperial Valley and Salton Sea region--i.e., an assessment of their overall physical availability--will be needed to determine how they can be used and managed to suit new or redirected demands in the region. Development of an improved or updated groundwater assessment

  9. Tidal exchange between the North Sea and Dutch Wadden Sea and mixing time scales of the tidal basins

    NASA Astrophysics Data System (ADS)

    Ridderinkhof, H.; Zimmerman, J. T. F.; Philippart, M. E.

    Particle trajectories in a numerical model of the western Dutch Wadden Sea and the adjacent North Sea are used to study the tidal exchange between the North Sea and the tidal basins. Tidal exchange of water masses appears to depend strongly on the tidal phase at which the computation is started. In general the volume displaced by the large-scale through-flow between connected tidal basins is much smaller than the exchanged volume. For all inlets North Sea water mainly enters the Wadden Sea from the southern side of the inlet whereas basin water leaves the Wadden Sea mainly along the northern coast. Differences in exchanged volume between the inlets are caused by differences in bathymetry at the seaward side of the different inlets. Schematizing each tidal basin as a single well-mixed box, in which an exchange coefficient parameterizes the exchange with the North Sea, allows a rough estimate of the turnover time of a tidal basin. A salt balance for a simple two-box schematization of the Marsdiep and Vlie basins gives an independent estimate of the exchange coefficient between the Marsdiep basin and the North Sea. Its value appears to be larger than the tidally exchanged volume. The revised salt balance, in which the effect of the through-flow between the Marsdiep and Vlie basins is incorporated, is used to calculate the flushing time of fresh water in the western Dutch Wadden Sea which appears to be larger than previous estimates. The tidally exchanged volume through the inlets, as calculated with the numerical model combined with the relation between the exchange coefficient and the tidally exchanged volume for the Marsdiep basin, is used to give a rough estimate of the turnover time of all Dutch Wadden Sea basins. For the Eierlandse Gat and the Borndiep the exchanged volume is calculated by means of our hydrodynamical model. For the other basins it is assumed that its value is a fixed percentage of the tidal prism entering a basin.

  10. Modes of sedimentary basin formation in the north-eastern Black Sea

    NASA Astrophysics Data System (ADS)

    Stephenson, Randell; Starostenko, Vitaly; Sydorenko, Grygoriy; Yegorova, Tamara

    2016-04-01

    The Greater Caucasus and Black Sea sedimentary basins developed in a Mesozoic back-arc setting, the former older than the latter (Jurassic v. Cretaceous). Compressional shortening of the former and accompanying ongoing development of marginal basin depocentres in the north-eastern Black Sea - which is closely tied to the formation of the Crimea-Greater Caucasus orogen - is a Cenozoic phenomenon, starting in the Eocene and proceeding until the present day. Recently, the sedimentary basin/crust/lithosphere geometry of the study area has been characterised across a range of scales using regional seismic reflection profiling, long-offset refraction/wide-angle reflection profiling and local earthquake tomography. These provide a new integrated image of the present-day crustal structure and sedimentary basin architecture of the northern margin of the eastern Black Sea, north across the Azov Sea and provide evidence of the deeper expression of sedimentary basins and the processes controlling the geometry of their inversion during the Cenozoic. It is inferred that the Greater Caucasus paleo-Basin, lying stratigraphically below the Black Sea and younger sedimentary successions, extends further to the west than previously known. This basin has significant thickness in the area between the Azov and Black seas and probably forms the deeper core of the Crimea-Caucasus inversion zone. The Crimea-Greater Caucasus orogenic belt is the expression of "basin inversion" of the Jurassic Greater Caucasus paleo-Basin, the degree of inversion of which varies along strike. The Greater Caucasus foredeep basins - Indolo-Kuban and Sorokin-Tuapse troughs -represent syn-inversional marginal troughs to the main inversion zone. The Shatsky Ridge - the northern flank of the main East Black Sea Basin - may also be mainly a syn-inversional structure, underlain by a blind thrust zone expressed as a northward dipping zone of seismicity on the northern margin of the eastern Black Sea.

  11. Retrieval of eddy dynamics from SMOS sea surface salinity measurements in the Algerian Basin (Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Isern-Fontanet, Jordi; Olmedo, Estrella; Turiel, Antonio; Ballabrera-Poy, Joaquim; García-Ladona, Emilio

    2016-06-01

    The circulation in the Algerian Basin is characterized by the presence of fresh-core eddies that propagate along the coast or at distances between 100 and 200 km from the coast. Enhancements in the processing of the Soil Moisture and Ocean Salinity (SMOS) data have allowed to produce, for the first time, satellite sea surface salinity (SSS) maps in the Mediterranean Sea that capture the signature of Algerian eddies. SMOS data can be used to track them for long periods of time, especially during winter. SMOS SSS maps are well correlated with in situ measurements although the former has a smaller dynamical range. Despite this limitation, SMOS SSS maps capture the key dynamics of Algerian eddies allowing to retrieve velocities from SSS with the correct sign of vorticity.

  12. Present state of the Aral Sea: diverging physical and biological characteristics of the residual basins

    PubMed Central

    Izhitskiy, A. S.; Zavialov, P. O.; Sapozhnikov, P. V.; Kirillin, G. B.; Grossart, H. P.; Kalinina, O. Y.; Zalota, A. K.; Goncharenko, I. V.; Kurbaniyazov, A. K.

    2016-01-01

    Latest data on the hydrophysical and biological state of the residual basins of the Aral Sea are presented and compared. Direct, quasi-simultaneous observations were carried out in the central part of the Western Large Aral Sea, the northern extremity of the Large Aral known as Chernyshev Bay, Lake Tshchebas, and the Small Aral Sea in October 2014. The Large Aral Sea and Lake Tshchebas transformed into hyperhaline water bodies with highly special taxocene structure. The Small Aral Sea was a relatively diverse brackish ecosystem, which was rather similar to the pre-desiccation environment. The Small Aral Sea and Lake Tshchebas exhibited a fully-mixed vertical structure, whereas the Western Large Aral Sea was strongly stratified. Our data show that during desiccation, different parts of the Aral Sea experienced different environmental conditions, resulting in qualitative and quantitative differences in the physical and biological regimes among the different residual basins. PMID:27032513

  13. Lower crustal flow and the role of shear in basin subsidence: An example from the Dead Sea basin

    USGS Publications Warehouse

    Al-Zoubi, A.; ten Brink, U.

    2002-01-01

    We interpret large-scale subsidence (5-6 km depth) with little attendant brittle deformation in the southern Dead Sea basin, a large pull-apart basin along the Dead Sea transform plate boundary, to indicate lower crustal thinning due to lower crustal flow. Along-axis flow within the lower crust could be induced by the reduction of overburden pressure in the central Dead Sea basin, where brittle extensional deformation is observed. Using a channel flow approximation, we estimate that lower crustal flow would occur within the time frame of basin subsidence if the viscosity is ??? 7 ?? 1019 - 1 ?? 1021 Pa s, a value compatible with the normal heat flow in the region. Lower crustal viscosity due to the strain rate associated with basin extension is estimated to be similar to or smaller than the viscosity required for a channel flow. However, the viscosity under the basin may be reduced to 5 ?? 1017 - 5 ?? 1019 Pa s by the enhanced strain rate due to lateral shear along the transform plate boundary. Thus, lower crustal flow facilitated by shear may be a viable mechanism to enlarge basins and modify other topographic features even in the absence of underlying thermal anomalies. ?? 2002 Elsevier Science B.V. All rights reserved.

  14. Can the South China Sea tell us anything about Canada Basin?

    NASA Astrophysics Data System (ADS)

    Stephenson, Randell; Li, Lu

    2016-04-01

    The Canada Basin (a sub-basin within the Amerasia Basin) and the South China Sea both preserve oceanic spreading centres and adjacent passive continental margins characterised by broad continent-ocean transition zones with hyper-extended continental crust. There are indications that hyper-extension in the South China Sea occurred mainly as a result of flow within a weak lower crustal layer and that it occurred both before and after plate break-up and the onset of ocean lithosphere formation at the sea-floor spreading axis. Available geophysical data from Canada Basin permit similar inferences. Both basins are about the same size and the oceanic segment in both is about the same size. Seafloor spreading in the South China Sea took place in the Cenozoic whereas in Canada Basin it is widely believed to have occurred during the Cretaceous. Widespread magmatism expressed as the High Arctic Large Igneous Province (HALIP) may or may not have played an intrinsic, linked, role in Canada Basin formation. No similar LIP is associated with the South China Sea although one mechanism proposed to have driven its formation is ascribed to mantle plume activity in its northernmost part. More conventionally the mechanism of opening of the South China Sea is considered to be "passive" rather than "active", related to plate reconfigurations in the southeast Asia region linked or not linked to the nearby collision of India and Eurasia and/or subduction of a "proto-South China Sea". The driving mechanism for opening of Canada Basin is poorly discussed in the literature but is generally ascribed to paleo-tectonic plate reconfigurations and subduction in the northern Pacific (Eurasia-North America plates) region in the Mesozoic. Can the South China Sea tell us anything about Canada Basin in terms of the pre-existing lithosphere of each and the geodynamic processes leading to its hyper-extension and eventual break-up?

  15. Megafloods in Marginal Basins: New Data from the Black Sea

    NASA Astrophysics Data System (ADS)

    Giosan, L.; Mart, Y.; McHugh, C. M.; Vachtman, D.; Cagatay, N. M.; Kadir, E. K.; Ryan, W. B.

    2005-12-01

    One of Jim Kennett's long-standing scientific interests has been the study of abrupt events ranging from destabilization of the gas hydrate reservoir, to volcanism, to megafloods. In appreciation to his contribution to the study of catastrophes in paleoceanography, we present new data on the Holocene reconnection of the Black Sea basin to the ocean, resulting from a July 2005 survey aboard the R/V Mediterranean Explorer of the EcoOcean Foundation. The survey included tightly-spaced Chirp subbottom profiling on the outer shelf northwest of the Bosporus outlet (Istanbul Bogazi), combined with precisely targeted gravity coring. Subbottom horizons are calibrated by radiocarbon and optical luminescence ages on cores. Chirp profiles reveal channels and ridges nearly transversal to the bathymetric contours. Ridges have grown on a seaward-dipping erosion surface that truncates the top of older prograding clinoforms. The ridges are up 12 m in height and have an asymmetrical cross-section, gentler on the west and steeper on the east. Sediment drifting is apparent on the gentler side. In the interiors of the ridges we found highly reflective mounds that are rooted directly on the erosion surface. The mounds organize in both elongated and circular to oval features. Shell-bearing marine mud drapes the mounds. Between the ridges and mounds the drape rests directly on the erosion surface that can be traced seaward to beyond -120 m. High abundance of exceptionally large shells of Mytilus sp. at the base of the drape suggests that bedforms were seeded by a colonization of mollusks building bioherms right on top of the erosion surface beginning at the time of the Mediterranean connection. The Black Sea lacustrine stage experienced an evaporative drawdown below its outlet and has only tracked the global sea level rise since 8.4 ky bp. The saltwater megaflood from the Mediterranean led to dramatic morphologic reorganization of the shelf sea-floor close to the Bosporus and exceptional

  16. Environmental selection of protistan plankton communities in hypersaline anoxic deep-sea basins, Eastern Mediterranean Sea.

    PubMed

    Filker, Sabine; Stock, Alexandra; Breiner, Hans-Werner; Edgcomb, Virginia; Orsi, William; Yakimov, Michail M; Stoeck, Thorsten

    2013-02-01

    High salt concentrations, absence of light, anoxia, and high hydrostatic pressure make deep hypersaline anoxic basins (DHABs) in the Eastern Mediterranean Sea one of the most polyextreme habitats on Earth. Taking advantage of the unique chemical characteristics of these basins, we tested the effect of environmental selection and geographic distance on the structure of protistan communities. Terminal restriction fragment length polymorphism (T-RFLP) analyses were performed on water samples from the brines and seawater/brine interfaces of five basins: Discovery, Urania, Thetis, Tyro, and Medee. Using statistical analyses, we calculated the partitioning of diversity among the ten individual terminal restriction fragment (T-RF) profiles, based on peak abundance and peak incidence. While a significant distance effect on spatial protistan patterns was not detected, hydrochemical gradients emerged as strong dispersal barriers that likely lead to environmental selection in the DHAB protistan plankton communities. We identified sodium, magnesium, sulfate, and oxygen playing in concerto as dominant environmental drivers for the structuring of protistan plankton communities in the Eastern Mediterranean DHABs.

  17. Environmental selection of protistan plankton communities in hypersaline anoxic deep-sea basins, Eastern Mediterranean Sea

    PubMed Central

    Filker, Sabine; Stock, Alexandra; Breiner, Hans-Werner; Edgcomb, Virginia; Orsi, William; Yakimov, Michail M; Stoeck, Thorsten

    2013-01-01

    High salt concentrations, absence of light, anoxia, and high hydrostatic pressure make deep hypersaline anoxic basins (DHABs) in the Eastern Mediterranean Sea one of the most polyextreme habitats on Earth. Taking advantage of the unique chemical characteristics of these basins, we tested the effect of environmental selection and geographic distance on the structure of protistan communities. Terminal restriction fragment length polymorphism (T-RFLP) analyses were performed on water samples from the brines and seawater/brine interfaces of five basins: Discovery, Urania, Thetis, Tyro, and Medee. Using statistical analyses, we calculated the partitioning of diversity among the ten individual terminal restriction fragment (T-RF) profiles, based on peak abundance and peak incidence. While a significant distance effect on spatial protistan patterns was not detected, hydrochemical gradients emerged as strong dispersal barriers that likely lead to environmental selection in the DHAB protistan plankton communities. We identified sodium, magnesium, sulfate, and oxygen playing in concerto as dominant environmental drivers for the structuring of protistan plankton communities in the Eastern Mediterranean DHABs. PMID:23239531

  18. Assessment of Undiscovered Oil and Gas Resources of the Red Sea Basin Province

    USGS Publications Warehouse

    ,

    2010-01-01

    The U.S. Geological Survey estimated mean volumes of 5 billion barrels of undiscovered technically recoverable oil and 112 trillion cubic feet of recoverable gas in the Red Sea Basin Province using a geology-based assessment methodology.

  19. Basin evolution at the SW Barents Sea margin and its conjugate off NE Greenland

    NASA Astrophysics Data System (ADS)

    Faleide, Jan Inge; Wong, Po Wan; Helge Gabrielsen, Roy; Tsikalas, Filippos; Blaich, Olav A.; Planke, Sverre; Myklebust, Reidun

    2015-04-01

    The SW Barents Sea margin developed from a megashear zone which linked the Norwegian-Greenland Sea and the Artic Eurasia Basin during the initial Eocene opening. Within the dextral megashear system, a series of deep and narrow basins formed in the SW Barents Sea. These basins formed in response to multiple rift events and rapid differential subsidence. The distribution of salt structures both in the SW Barents Sea and on the conjugate NE Greenland margin reflects the Late Paleozoic basin configuration. Late Middle Jurassic to Early Cretaceous rifting affected all deep basins in the SW Barents Sea (e.g., Bjørnøya, Tromsø, Harstad and Sørvestsnaget basins) as on the mid-Norwegian margin and the conjugate NE Greenland margin. Following rifting, a wide region subsided and was covered by thick Cretaceous strata. Late Cretaceous-Paleocene rifting between Norway and Greenland was taken up within the megashear zone and pull-apart basins formed in the SW Barents Sea and in the Wandel Sea Basin in NE Greenland. Contraction/inversion formed structural highs separating distinct Late Cretaceous depocenters that continued to subside rapidly. The rifting culminated in crustal breakup and accretion of oceanic crust near the Paleocene-Eocene transition. NE Atlantic breakup was accompanied by large-scale igneous activity, which also affected parts of the SW Barents Sea margin. The sheared Senja FZ margin is segmented, each segment having different structural styles reflecting a complex interplay between the geometry of the sheared margin segments and the opening direction. A continental sliver was also cut off the SW Barents Sea margin, now forming the Greenland Ridge which is a protrusion of the NE Greenland margin. The continent-ocean transition is confined within a narrow zone, bounded by a characteristic marginal high along the Senja Fracture Zone. During Eocene, the Harstad and southern Sørvestsnaget basins developed as narrow, elongated, en echelon basins landward of the

  20. Subduction initiation, recycling of Alboran lower crust, and intracrustal emplacement of subcontinental lithospheric mantle in the Westernmost Mediterranean

    NASA Astrophysics Data System (ADS)

    Varas-Reus, María Isabel; Garrido, Carlos J.; Bosch, Delphine; Marchesi, Claudio; Hidas, Károly; Booth-Rea, Guillermo; Acosta-Vigil, Antonio

    2015-04-01

    Unraveling the tectonic settings and processes involved in the annihilation of subcontinental mantle lithosphere is of paramount importance for our understanding of the endurance of continents through Earth history. Unlike ophiolites -- their oceanic mantle lithosphere counterparts -- the mechanisms of emplacement of the subcontinental mantle lithosphere in orogens is still poorly known. The emplacement of subcontinental lithospheric mantle peridotites is often attributed to extension in rifted passive margins or continental backarc basins, accretionary processes in subduction zones, or some combination of these processes. One of the most prominent features of the westernmost Mediterranean Alpine orogenic arcs is the presence of the largest outcrops worldwide of diamond facies, subcontinental mantle peridotite massifs; unveiling the mechanisms of emplacement of these massifs may provide important clues on processes involved in the destruction of continents. The western Mediterranean underwent a complex Alpine evolution of subduction initiation, slab fragmentation, and rollback within a context of slow convergence of Africa and Europe In the westernmost Mediterranean, the alpine orogeny ends in the Gibraltar tight arc, which is bounded by the Betic, Rif and Tell belts that surround the Alboran and Algero-Balearic basins. The internal units of these belts are mostly constituted of an allochthonous lithospheric domain that collided and overthrusted Mesozoic and Tertiary sedimentary rocks of the Mesozoic-Paleogene, South Iberian and Maghrebian rifted continental paleomargins. Subcontinental lithospheric peridotite massifs are intercalated between polymetamorphic internal units of the Betic (Ronda, Ojen and Carratraca massifs), Rif (Beni Bousera), and Tell belts. In the Betic chain, the internal zones of the allochthonous Alboran domain include, from bottom to top, polymetamorphic rock of the Alpujarride and Malaguide complexes. The Ronda peridotite massif -- the

  1. [Species composition and distribution of foraminifers in the Deryugin Basin (Sea of Okhotsk)].

    PubMed

    Khusid, T A; Domanov, M M; Svinininnikov, A M

    2006-01-01

    Analysis of the composition and quantitative distribution of foraminifers in bathyal sediments collected at 14 stations in the Deryugin Basin and at 11 stations in other regions of the Sea of Okhotsk, Sea of Japan, and North Pacific demonstrated specific foraminifer complex in the basin at depths from 1650 to 1800 m associated with cold barite/methane seeps. Oligomixed biocenosis with prevailing agglutinated foraminifers and Saccorhiza ramosa as the dominant was shown to develop in these zones. PMID:16634440

  2. Three-dimensional modeling of pull-apart basins: implications for the tectonics of the Dead Sea Basin

    USGS Publications Warehouse

    Katzman, Rafael; ten Brink, Uri S.; Lin, Jian

    1995-01-01

    We model the three-dimensional (3-D) crustal deformation in a deep pull-apart basin as a result of relative plate motion along a transform system and compare the results to the tectonics of the Dead Sea Basin. The brittle upper crust is modeled by a boundary element technique as an elastic block, broken by two en echelon semi-infinite vertical faults. The deformation is caused by a horizontal displacement that is imposed everywhere at the bottom of the block except in a stress-free “shear zone” in the vicinity of the fault zone. The bottom displacement represents the regional relative plate motion. Results show that the basin deformation depends critically on the width of the shear zone and on the amount of overlap between basin-bounding faults. As the width of the shear zone increases, the depth of the basin decreases, the rotation around a vertical axis near the fault tips decreases, and the basin shape (the distribution of subsidence normalized by the maximum subsidence) becomes broader. In contrast, two-dimensional plane stress modeling predicts a basin shape that is independent of the width of the shear zone. Our models also predict full-graben profiles within the overlapped region between bounding faults and half-graben shapes elsewhere. Increasing overlap also decreases uplift near the fault tips and rotation of blocks within the basin. We suggest that the observed structure of the Dead Sea Basin can be described by a 3-D model having a large overlap (more than 30 km) that probably increased as the basin evolved as a result of a stable shear motion that was distributed laterally over 20 to 40 km.

  3. The Pre-Messinian Total Petroleum System of the Provence Basin, Western Mediterranean Sea

    USGS Publications Warehouse

    Pawlewicz, Mark

    2004-01-01

    The Provence Basin is in that portion of the western Mediterranean Sea that is deeper than 2 kilometers. The basin lies essentially beyond the outer continental shelf, between the countries of France, Italy, and Algeria, the Balearic Islands, and the islands of Sardinia and Corsica. It encompasses nearly 300,000 square kilometers and includes the Rhone River submarine fan on the continental slope of southern France. It is province 4068 in the World Energy study. A single, hypothetical, total petroleum system (TPS), the Pre-Messinian TPS (406801), was described for the Provence Basin. The designation hypothetical is used because there is no hydrocarbon production from the basin. The Provence Basin is a deep-water Tertiary rift basin in which the geothermal gradients vary regionally. The Red Sea Basin shares a similar geologic and thermal history with the rifted western Mediterranean Sea and was used as an analog to better understand the genesis of the Provence Basin and as a guide to estimating possible undiscovered amounts of hydrocarbons. For this assessment the basin was given a potential, at the mean, for undiscovered resources of 51 trillion cubic feet (1.4 trillion cubic meters) gas, 0.42 billion barrels oil, and 2.23 million barrels natural gas liquids.

  4. Younger Dryas thermohaline circulation in the N-Atlantic: Irminger Sea versus Norwegian Sea Basin

    NASA Astrophysics Data System (ADS)

    Kuijpers, Antoon; Seidenkrantz, Marit-Solveig; Luise Knudsen, Karen; Knutz, Paul C.; Sicre, Marie-Alexandrine; Andresen, Camilla S.; Pearce, Christof

    2016-04-01

    ventilation (well) over 1900 m, which contrasts with more limited convection conditions in the Nordic Seas as signaled by Norwegian Sea Deep Water Overflow records from the Faroe-Shetland Channel gateway(9).We conclude that during the YD a steep SST gradient must have existed between the Irminger and Norwegian Sea basin, having resulted in an intensification of (zonal) atmospheric circulation and increased (westerly) storminess, which is documented as a characteristic European YD feature(10). References (1) Blindheim, J. et al. 2000. Deep-Sea Res. I 47,655-680 (2) Condron, A., Winsor, P. 2012. PNAS 109 (49), 19929-19933 (3) Löfverström, M. 2014. Clim. Past 10, 1453-1471 (4) Weinelt, M. et al. 1995. KNAW Verh. Nat. 1. R. 44, 109-116 (5) Knudsen, K.L. et al. 2004. Mar. Micropal. 50, 273-305 (6) Kuijpers, A. et al. 2003. Mar.Geo. 195, 109-129 (7) Knutz, P. et al. 2011. Paleoceanography 26 PA3204, doi:10.1029/2010PA002053 (8) Björck, S. et al. 2002. Geology 90, 427-430 (9) Kuijpers, A. et al. 1998. Mar.Geo. 152, 1-3, 75-99 (10) Renssen, H. et al. 1996. Clim. Dyn. 12, 813-824

  5. Structure and hydrocarbon potential of sedimentary basins of the far east marginal seas

    SciTech Connect

    Gnibidenko, H. ); Kononov, V. )

    1990-05-01

    Crustal structural of the Bering, Okhotsk Japan, East China, and South China marginal seas consists of continental plates and deep sea basins that are the elements of the lowermost order in the structure of transition zone from the Asia continent to the Pacific Ocean. Two stages are recognized in the crustal evolution of the northwest Pacific transition zone: (1) geosyncline development that began in the pre-Paleozoic and continues to the present within island arcs; and (2) quasiplatform stage that began in the late Cretaceous and continues to the Holocene within shelf plates. The continental margins of the Far East seas consist of Cenozoic terrigenous cover and pre-Cenozoic basement composed of geosyncline rock association. Normal faults control graben features in the basement and develop rift systems. Paleogene subcontinental formations make up the lowermost section of the cover. A major Oligocene-Holocene sequence (marine formations) overlies and smooths rough topography of the basement and creates giant sedimentary basins. Sediment thickness of the basins attains 10 km. Tectonic evolution of the marginal seas implies the shelf plates to be young platforms and deep-sea basins are believed to be parts of the Pacific thalassocraton fenced by island arcs. The tectonic criterion enables us to differ and grade the provinces according to a hydrocarbon potential. Nearly 100 promising sedimentary basins are presently known in the Bering, Okhotst Japan, East China, and South China seas. About ten basins have been identified as hydrocarbon resources. Deep-sea basins also look promising for hydrocarbons. All the economically significant hydrocarbon accumulations in the Far East marginal seas are attributed to the Cenozoic sediment cover. Major resources are concentrated in the Miocene and Pliocene terrigenous sequences composed of progradation facies within the shelf plates.

  6. Reconstruction of the White Sea Basin during the late Younger Dryas

    NASA Astrophysics Data System (ADS)

    Pasanen, A. H.; Lunkka, J. P.; Putkinen, N. O.

    2012-04-01

    The palaeoenvironments of the White Sea Basin in Northwestern Russia during the late Younger Dryas are poorly understood and partly controversial. To shed light to this problem the glaciofluvial plains and shorelines in the Kalevala End Moraine, west of the White Sea, were studied using geomorphological, sedimentological and ground penetrating radar survey methods. Using these data, the shoreline gradient for the area was determined. The gradient was then used to numerically reconstruct the palaeotopography and the volume and the area of the White Sea Basin during the late Younger Dryas ca. 11500 years ago. The results indicate that at three sites out of four the glaciofluvial plains represent Gilbert type deltaic sedimentation. These deltas, located several kilometres from each other, formed during the same water level. The numerical reconstruction shows that using the shoreline gradient 0,42 m/km the water body in the White Sea Basin was extensive and relatively deep. The currently onshore areas on the western side of the White Sea and Arkhangelsk area were flooded during the late Younger Dryas. The ice margin terminated partly in the White Sea and partly on dry land. According to the reconstruction the White Sea was connected to the Barents Sea via the Gorlo Strait and separated from the Baltic Basin.

  7. The Dead Sea Transform and the Dead Sea Basin - Structure and dynamics

    NASA Astrophysics Data System (ADS)

    Weber, M.; Desire Groups, D A

    2004-12-01

    DESERT and DESIRE, two multi-national, interdisciplinary research efforts by teams from Germany, Israel, Jordan and Palestine focused on the Dead Sea Transform (DST) and the Dead Sea Basin (DSB), respectively. The DST has accommodated left-lateral transform motion of 105 km between the African and Arabian plates since early Miocene (ca. 20 My), creating during this process also the prime example of a pull-apart basin, the DSB. Within DESERT the DST segment between the Dead Sea and the Red Sea called Arava/Araba Fault (AF) was studied with the following results. On plate tectonic scale the AF is a narrow, sub-vertical zone cutting through crust and lithosphere to more than 50 km depth, while the Moho depth increases smoothly from 26 km to 39 km from W to E under the DST. Several faults exist in the upper crust in a ca. 40 km wide zone around the AF, but none has kilometer-size zones of decreased seismic velocities/zones of high electrical conductivities typical for damage zones. Across the sub-vertical AF abrupt changes in lithology can be identified to a depth of 4 kilometers. The AF also acts as a barrier to fluids. The AF is the main active fault of the DST system but it has only accommodated a limited part (up to 60 km) of the overall 105 km of sinistral plate motion. Now inactive fault strands in the vicinity of the present day AF took up lateral motion until about 5 Ma ago, when the main, active fault trace shifted ca. 1 km westward to its present position. In the top few hundred meters of the AF a locally transpressional regime occurs in a 100 to 300 m wide zone of deformed and displaced material, bordered by sub-parallel faults forming positive flower structures. The damage zones of the individual faults are only 5 to 20 m wide. This narrow width is significantly smaller than at other major strike-slip faults of similar magnitude. Most of these findings are corroborated by thermo-mechanical modeling that show shear deformation in the lithosphere under the

  8. The Dead Sea Transform and the Dead Sea Basin - Structure and dynamics

    NASA Astrophysics Data System (ADS)

    Weber, M.; Desire Groups, D A

    2007-12-01

    DESERT and DESIRE, two multi-national, interdisciplinary research efforts by teams from Germany, Israel, Jordan and Palestine focused on the Dead Sea Transform (DST) and the Dead Sea Basin (DSB), respectively. The DST has accommodated left-lateral transform motion of 105 km between the African and Arabian plates since early Miocene (ca. 20 My), creating during this process also the prime example of a pull-apart basin, the DSB. Within DESERT the DST segment between the Dead Sea and the Red Sea called Arava/Araba Fault (AF) was studied with the following results. On plate tectonic scale the AF is a narrow, sub-vertical zone cutting through crust and lithosphere to more than 50 km depth, while the Moho depth increases smoothly from 26 km to 39 km from W to E under the DST. Several faults exist in the upper crust in a ca. 40 km wide zone around the AF, but none has kilometer-size zones of decreased seismic velocities/zones of high electrical conductivities typical for damage zones. Across the sub-vertical AF abrupt changes in lithology can be identified to a depth of 4 kilometers. The AF also acts as a barrier to fluids. The AF is the main active fault of the DST system but it has only accommodated a limited part (up to 60 km) of the overall 105 km of sinistral plate motion. Now inactive fault strands in the vicinity of the present day AF took up lateral motion until about 5 Ma ago, when the main, active fault trace shifted ca. 1 km westward to its present position. In the top few hundred meters of the AF a locally transpressional regime occurs in a 100 to 300 m wide zone of deformed and displaced material, bordered by sub-parallel faults forming positive flower structures. The damage zones of the individual faults are only 5 to 20 m wide. This narrow width is significantly smaller than at other major strike-slip faults of similar magnitude. Most of these findings are corroborated by thermo-mechanical modeling that show shear deformation in the lithosphere under the

  9. Avalonian crustal controls on basin evolution: implications for the Mesozoic basins of the southern North Sea

    NASA Astrophysics Data System (ADS)

    Smit, Jeroen; van Wees, Jan-Diederik; Cloetingh, Sierd

    2015-04-01

    Little is known of the Southern North Sea Basin's (SNSB) Pre-Permian basement due to a lack of outcrop and cores. The nature and structure of the East Avalonian crust and lithosphere remain even less constrained in the absence of deep seismic (refraction) lines. However, various studies have hinted at the importance of the Reactivation of the Early Carboniferous fault network during each consecutive Mesozoic and Cenozoic tectonic phase, demonstrating the key role of weak zones from the Early Carboniferous structural grain in partitioning of structural deformation and vertical basin motions at various scales. Although the older basin history and the basement attract increasing attention, the Pre-Permian tectonics of the SNSB remains little studied with most attention focused on the Permian and younger history. The strong dispersal of existing constraints requires a comprehensive study from Denmark to the UK, i.e. the East Avalonian microplate, bordered by the Variscan Rheïc suture, the Atlantic and Baltica. Based on an extensive literature study and the reinterpretation of publicly available data, linking constraints from the crust and mantle to stratigraphic-sedimentological information, we complement the map of Early Carboniferous rifting of East Avalonia and propose a new tectonic scenario. From the reinterpretation of the boundary between Avalonia and Baltica we propose a new outline for the Avalonian microplate with implications for the tectonics of the North German Basin. Furthermore, we highlight the nature and extent of the major crustal/lithospheric domains with contrasting structural behaviour and the major boundaries that separate them. Results shed light on the effects of long lived differences in crustal fabric that are responsible for spatial heterogeneity in stress and strain magnitudes and zonations of fracturing, burial history and temperature history. The geomechanical control of large crustal-scale fault structures will provide the constraints

  10. A Rossby whistle: A resonant basin mode observed in the Caribbean Sea

    NASA Astrophysics Data System (ADS)

    Hughes, Chris W.; Williams, Joanne; Hibbert, Angela; Boening, Carmen; Oram, James

    2016-07-01

    We show that an important source of coastal sea level variability around the Caribbean Sea is a resonant basin mode. The mode consists of a baroclinic Rossby wave which propagates westward across the basin and is rapidly returned to the east along the southern boundary as coastal shelf waves. Almost two wavelengths of the Rossby wave fit across the basin, and it has a period of 120 days. The porous boundary of the Caribbean Sea results in this mode exciting a mass exchange with the wider ocean, leading to a dominant mode of bottom pressure variability which is almost uniform over the Grenada, Venezuela, and Colombia basins and has a sharp spectral peak at 120 day period. As the Rossby waves have been shown to be excited by instability of the Caribbean Current, this resonant mode is dynamically equivalent to the operation of a whistle.

  11. Correlation of sea level falls interpreted from atoll stratigraphy with turbidites in adjacent basins

    SciTech Connect

    Lincoln, J.M. )

    1990-05-01

    Past sea levels can be derived from any atoll subsurface sediments deposited at or near sea level by determining the ages of deposition and correcting the present depths to the sediments for subsidence of the underlying edifice since the times of deposition. A sea level curve constructed by this method consists of discontinuous segments, each corresponding to a period of rising relative sea level and deposition of a discrete sedimentary package. Discontinuities in the sea level curve derived by this method correspond to relative sea level falls and stratigraphic hiatuses in the atoll subsurface. During intervals of relative sea level fall an atoll emerges to become a high limestone island. Sea level may fluctuate several times during a period of atoll emergence to become a high limestone island. Sea level may fluctuate several times during a period of atoll emergence without depositing sediments on top of the atoll. Furthermore, subaerial erosion may remove a substantial part of the depositional record of previous sea level fluctuations. For these reasons the authors must look to the adjacent basins to complement the incomplete record of sea level change recorded beneath atolls. During lowstands of sea level, faunas originally deposited near sea level on an atoll may be eroded and redeposited as turbidites in deep adjacent basins. Three such turbidites penetrated during deep-sea drilling at Sites 462 and 315 in the central Pacific correlate well with a late Tertiary sea level curve based on biostratigraphic ages and {sup 87}Sr/{sup 86}Sr chronostratigraphy for core from Enewetak Atoll in the northern Marshall Islands. Further drilling of the archipelagic aprons adjacent to atolls will improve the sea level history that may be inferred from atoll stratigraphy.

  12. Long-term sea-level fluctuations driven by ocean basin dynamics.

    PubMed

    Müller, R Dietmar; Sdrolias, Maria; Gaina, Carmen; Steinberger, Bernhard; Heine, Christian

    2008-03-01

    Earth's long-term sea-level history is characterized by widespread continental flooding in the Cretaceous period (approximately 145 to 65 million years ago), followed by gradual regression of inland seas. However, published estimates of the Late Cretaceous sea-level high differ by half an order of magnitude, from approximately 40 to approximately 250 meters above the present level. The low estimate is based on the stratigraphy of the New Jersey margin. By assimilating marine geophysical data into reconstructions of ancient ocean basins, we model a Late Cretaceous sea level that is 170 (85 to 270) meters higher than it is today. We use a mantle convection model to suggest that New Jersey subsided by 105 to 180 meters in the past 70 million years because of North America's westward passage over the subducted Farallon plate. This mechanism reconciles New Jersey margin-based sea-level estimates with ocean basin reconstructions.

  13. Focal mechanisms in the southern Dead Sea basin and related structural elements based on seismological data

    NASA Astrophysics Data System (ADS)

    Hofstetter, A.; Dorbath, C.; Dorbath, L.

    2014-12-01

    A dense temporary local seismological network was operated from 10/2006 to 3/2008 in the southern Dead Sea basin also outside the basin within the framework of the DESIRE (DEad Sea Integrated REsearch) project, providing many recordings of local earthquakes. We used the recordings of DESIRE and also the recordings of the permanent networks of Israel Seismic Network, Israel, and Jordan Seismic Observatory, Jordan. We determined high quality focal plane solutions of 490 events, using at least 6 stations (normally >10 stations) with a good station distribution around the epicenters. In the southern Dead Sea basin and adjacent regions there are several clusters of earthquakes. Most of the activity occurred along the eastern bordering fault of the basin, in the Lisan Peninsula and just south and north of it. Along the eastern and western bordering faults we observe mainly strike slip mechanism, probably supporting the left lateral motion along the Dead Sea fault. The nodal planes of many of focal mechanisms inside the basin are parallel to the transverse faults crossing the basin, i.e., Bokek and Ein-Gedi faults, and also parallel to faults that border the Lisan Peninsula on the north-western and south-western sides.

  14. Subduction initiation, recycling of Alboran lower crust, and intracrustal emplacement of subcontinental lithospheric mantle in the Westernmost Mediterranean

    NASA Astrophysics Data System (ADS)

    Varas-Reus, María Isabel; Garrido, Carlos J.; Bosch, Delphine; Marchesi, Claudio; Hidas, Károly; Booth-Rea, Guillermo; Acosta-Vigil, Antonio

    2015-04-01

    Unraveling the tectonic settings and processes involved in the annihilation of subcontinental mantle lithosphere is of paramount importance for our understanding of the endurance of continents through Earth history. Unlike ophiolites -- their oceanic mantle lithosphere counterparts -- the mechanisms of emplacement of the subcontinental mantle lithosphere in orogens is still poorly known. The emplacement of subcontinental lithospheric mantle peridotites is often attributed to extension in rifted passive margins or continental backarc basins, accretionary processes in subduction zones, or some combination of these processes. One of the most prominent features of the westernmost Mediterranean Alpine orogenic arcs is the presence of the largest outcrops worldwide of diamond facies, subcontinental mantle peridotite massifs; unveiling the mechanisms of emplacement of these massifs may provide important clues on processes involved in the destruction of continents. The western Mediterranean underwent a complex Alpine evolution of subduction initiation, slab fragmentation, and rollback within a context of slow convergence of Africa and Europe In the westernmost Mediterranean, the alpine orogeny ends in the Gibraltar tight arc, which is bounded by the Betic, Rif and Tell belts that surround the Alboran and Algero-Balearic basins. The internal units of these belts are mostly constituted of an allochthonous lithospheric domain that collided and overthrusted Mesozoic and Tertiary sedimentary rocks of the Mesozoic-Paleogene, South Iberian and Maghrebian rifted continental paleomargins. Subcontinental lithospheric peridotite massifs are intercalated between polymetamorphic internal units of the Betic (Ronda, Ojen and Carratraca massifs), Rif (Beni Bousera), and Tell belts. In the Betic chain, the internal zones of the allochthonous Alboran domain include, from bottom to top, polymetamorphic rock of the Alpujarride and Malaguide complexes. The Ronda peridotite massif -- the

  15. Acidification of the Mediterranean Sea from anthropogenic carbon penetration

    NASA Astrophysics Data System (ADS)

    Hassoun, Abed El Rahman; Gemayel, Elissar; Krasakopoulou, Evangelia; Goyet, Catherine; Abboud-Abi Saab, Marie; Guglielmi, Véronique; Touratier, Franck; Falco, Cédric

    2015-08-01

    This study presents an estimation of the anthropogenic CO2 (CANT) concentrations and acidification (ΔpH=pH2013-pHpre-industrial) in the Mediterranean Sea, based upon hydrographic and carbonate chemistry data collected during the May 2013 MedSeA cruise. The concentrations of CANT were calculated using the composite tracer TrOCA. The CANT distribution shows that the most invaded waters (>60 μmol kg-1) are those of the intermediate and deep layers in the Alboran, Liguro- and Algero-Provencal Sub-basins in the Western basin, and in the Adriatic Sub-basin in the Eastern basin. Whereas the areas containing the lowest CANT concentrations are the deep layers of the Eastern basin, especially those of the Ionian Sub-basin, and those of the northern Tyrrhenian Sub-basin in the Western basin. The acidification level in the Mediterranean Sea reflects the excessive increase of atmospheric CO2 and therefore the invasion of the sea by CANT. This acidification varies between -0.055 and -0.156 pH unit and it indicates that all Mediterranean Sea waters are already acidified, especially those of the Western basin where ΔpH is rarely less than -0.1 pH unit. Both CANT concentrations and acidification levels are closely linked to the presence and history of the different water masses in the intermediate and deep layers of the Mediterranean basins. Despite the high acidification levels, both Mediterranean basins are still highly supersaturated in calcium carbonate minerals.

  16. Geology of Norton Basin and continental shelf beneath northwestern Bering Sea, Alaska

    SciTech Connect

    Fisher, M.A.; Patton, W.W. Jr.; Holmes, M.L.

    1982-03-01

    The rocks that floor the Norton basin and the northwestern Bering Sea are most likely of Precambrian and Paleozoic age, like those rocks that crop out around the basin. A maximum of 6.5 km of mainly Cenozoic strata lie over basement in the basin. On the basis of the geometry of reflections in seismic data, it is believed alluvial fans to be present deep in the basin and to border major basement fault blocks. These fans are the lowest units of the basin fill in many areas and consist of uppermost Cretaceous or lower Paleogene, possibly coal- and volcanic-rich rocks. Mainly clastic nonmarine sedimentary rocks overlie the fan deposits. The Neogene and Quaternary basin rocks apparently were deposited in a marine environment.

  17. The Holocene palaeogeography and relative sea level for two tidal basins of the German North Sea coast

    NASA Astrophysics Data System (ADS)

    Bungenstock, Friederike; Wartenberg, Wolfram; Mauz, Barbara; Freund, Holger; Frechen, Manfred; Weerts, Henk J. T.; Berner, Heinrich

    2014-05-01

    The response of coasts to global sea-level rise is highly variable. Knowledge of driving coastal parameters alongside the regional sea-level history is therefore indispensable when the response to global sea-level rise is to be assessed. Here, we study the Holocene relative sea-level of the south coast of the North Sea which is controlled by a number of very local parameters, as well as by regional glacio-isostatic adjustments. It is therefore crucial to restrict the data acquisition and evaluation to small coastal sections, ideally to single tidal basins, to minimize the sources of uncertainties (Bungenstock & Weerts 2010, 2012). We present data from two tidal basins, Langeoog and Jade Bay. For Langeoog a database derived from 600 cores, 68 km of Boomer seismic data, 33 radiocarbon ages and 8 OSL dates is available. (Bungenstock & Schäfer 2009, Mauz & Bungenstock 2007). For the Jade bay, the database comprises sedimentary markers, pollen and macro remains derived from 68 cores. The sedentary chronology is based on 54 radiocarbon ages and pollen constraints (Wartenberg & Freund 2011, Wartenberg et al. 2013). For both tidal basins the sedimentological record was interpreted in terms of the local paleogeographical development since about 7000 cal BP and its influence on the local relative sea-level curve. While the trend of the relative sea level is similar for both tidal basins, it shows a different altitude. The timing of the main marine transgression within the Langeoog area takes place ~3000 cal. BP whereas the sedimentological record of the Jade Bay shows two prominent transgressions, one for ~5000 cal. BP and one for ~3000 cal. BP. The Langeoog palaeo-environment is continuously characterised by marine influence. Within the Jade Bay two different palaeo-environments could be identified, documenting that from the West to the centre the landscape development in the Jade Bay was drainage driven feeding the associated fen peat with minerogenic water but being

  18. Basin Economic Allocation Model (BEAM): An economic model of water use developed for the Aral Sea Basin

    NASA Astrophysics Data System (ADS)

    Riegels, Niels; Kromann, Mikkel; Karup Pedersen, Jesper; Lindgaard-Jørgensen, Palle; Sokolov, Vadim; Sorokin, Anatoly

    2013-04-01

    The water resources of the Aral Sea basin are under increasing pressure, particularly from the conflict over whether hydropower or irrigation water use should take priority. The purpose of the BEAM model is to explore the impact of changes to water allocation and investments in water management infrastructure on the overall welfare of the Aral Sea basin. The BEAM model estimates welfare changes associated with changes to how water is allocated between the five countries in the basin (Kazakhstan, Kyrgyz Republic, Tajikistan, Turkmenistan and Uzbekistan; water use in Afghanistan is assumed to be fixed). Water is allocated according to economic optimization criteria; in other words, the BEAM model allocates water across time and space so that the economic welfare associated with water use is maximized. The model is programmed in GAMS. The model addresses the Aral Sea Basin as a whole - that is, the rivers Syr Darya, Amu Darya, Kashkadarya, and Zarafshan, as well as the Aral Sea. The model representation includes water resources, including 14 river sections, 6 terminal lakes, 28 reservoirs and 19 catchment runoff nodes, as well as land resources (i.e., irrigated croplands). The model covers 5 sectors: agriculture (crops: wheat, cotton, alfalfa, rice, fruit, vegetables and others), hydropower, nature, households and industry. The focus of the model is on welfare impacts associated with changes to water use in the agriculture and hydropower sectors. The model aims at addressing the following issues of relevance for economic management of water resources: • Physical efficiency (estimating how investments in irrigation efficiency affect economic welfare). • Economic efficiency (estimating how changes in how water is allocated affect welfare). • Equity (who will gain from changes in allocation of water from one sector to another and who will lose?). Stakeholders in the region have been involved in the development of the model, and about 10 national experts, including

  19. The Rossby whistle: A resonant basin mode in the Caribbean Sea.

    NASA Astrophysics Data System (ADS)

    Hughes, Christopher W.; Williams, Joanne; Hibbert, Angela; Boening, Carmen; Oram, James

    2016-04-01

    We present a a leaky, resonant Rossby basin mode in the Caribbean Sea, excited by instability of the Caribbean Current. The mode is seen at the surface as westward-propagating Rossby waves with period 120 days, but it is most distinctive in ocean bottom pressure where it is seen in both observations and in a wide variety of ocean models. This bottom pressure mode is a product of the leakiness of the basin, which allows for mass exchange with the surrounding ocean. The mode is found to dominate sea level variability on parts of the South American coast.

  20. Geology and hydrocarbon potential of the Dead Sea Rift Basins of Israel and Jordan

    USGS Publications Warehouse

    Coleman, James; Ten Brink, Uri

    2016-01-01

    Geochemical analyses indicate that the source of all oils, asphalts, and tars recovered in the Lake Lisan basin is the Ghareb Formation. Geothermal gradients along the Dead Sea fault zone vary from basin to basin. Syn-wrench potential reservoir rocks are highly porous and permeable, whereas pre-wrench strata commonly exhibit lower porosity and permeability. Biogenic gas has been produced from Pleistocene reservoirs. Potential sealing intervals may be present in Neogene evaporites and tight lacustrine limestones and shales. Simple structural traps are not evident; however, subsalt traps may exist. Unconventional source rock reservoir potential has not been tested.

  1. Episodic rifting of phanerozoic rocks in the victoria land basin, Western ross sea, antarctica.

    PubMed

    Cooper, A K; Davey, F J

    1985-09-13

    Multichannel seismic-reflection data show that the Victoria Land-basin, unlike other sedimentary basins in the Ross Sea, includes a rift-depression 15 to 25 kilometers wide that parallels the Transantarctic Mountains and contains up to 12 kilometers of possible Paleozoic to Holocene age sedimentary rocks. An unconformity separates the previously identified Cenozoic sedimentary section from the underlying strata of possible Mesozoic and Paleozoic age. Late Cenozoic volcanic rocks intrude into the entire section along the eastern flank of the basin. The Victoria Land basin is probably part of a more extensive rift system that has been active episodically since Paleozoic time. Inferred rifting and basin subsidence during Mesozoic and Cenozoic time may be associated with regional crustal extension and uplift of the nearby Transantarctic Mountains.

  2. Analysis of Marine Gravity Anomalies in the Ulleung Basin (East Sea/Sea of Japan) and Its Implications for the Architecture of Rift-Dominated Backarc Basin

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Mook; Kim, Yoon-Mi

    2016-04-01

    Marginal basins locate between the continent and arc islands often exhibit diverse style of opening, from regions that appear to have formed by well-defined and localized spreading center (manifested by the presence of distinct seafloor magnetic anomaly patterns) to those with less obvious zones of extension and a broad magmatic emplacement most likely in the lower crust. Such difference in the style of back-arc basin formation may lead to marked difference in crustal structure in terms of its overall thickness and spatial variations. The Ulleung Basin, one of three major basins in the East Sea/Sea of Japan, is considered to represent a continental rifting end-member of back-arc opening. Although a great deal of work has been conducted on the sedimentary sections in the last several decades, the deep crustal sections have not been systematically investigated for long time, and thus the structure and characteristics of the crust remain poorly understood. This study examines the marine gravity anomalies of the Ulleung Basin in order to understand the crustal structure using crucial sediment-thickness information. Our analysis shows that the Moho depth in general varies from 16 km at the basin center to 22 km at the margins. However, within the basin center, the inferred thickness of the crust is more or less the same (10-12 km), thus by varying only about 10-20% of the total thickness, contrary to the previous impression. The almost-uniformly-thick crust that is thicker than a normal oceanic crust (~ 7 km) is consistent with previous observations using ocean bottom seismometers and recent deep seismic results from the nearby Yamato Basin. Another important finding is that small residual mantle gravity anomaly highs exist in the northern part of the basin. These highs are aligned in the NNE-SSW direction which correspond to the orientation of the major tectonic structures on the Korean Peninsula, raising the possibility that, though by a small degree, they are a

  3. The southwestern Nansen Basin: Crustal stretching and sea floor spreading

    NASA Astrophysics Data System (ADS)

    Berglar, Kai; Ehrhardt, Axel; Damm, Volkmar; Heyde, Ingo; Schreckenberger, Bernd; Barckhausen, Udo

    2014-05-01

    New geophysical data were collected in August/September 2013 north of Svalbard in the zone from the North Barents shelf towards the oceanic Nansen Basin. We acquired 1056 km of multi-channel seismic data, 2658 km of magnetic data and more than 5000 km of gravity, bathymetric and sediment echosounder data. In the east of the working area, the transition from the Yermak Plateau to the Nansen Basin is characterized by block faulting and well developed syn-rift basins. A large crustal block located about 80 km east of the Yermak Plateau and 120 km north of the slope of the Barents shelf indicates extensive rifting and east-west directed crustal stretching and the absence of oceanic crust in that area. A different picture is found north of Kvitoya Island, in the western part of the working area. There, the slope of the Barents shelf is very steep and a distinct continent-ocean-boundary seems to be located directly at the foot of the slope where we interpret oceanic crust characterized by irregular topography based on the multi-channel seismic data. This will be tested by an analysis of the gravity and magnetic data which is currently work in progress. The combination of east-west-directed continental stretching east of the Yermak Plateau and adjacent oceanic crust to the west points to an opening of the southwesternmost part of the Nansen Basin prior to the spreading of the Gakkel Ridge, possibly related to the opening of the Amerasian Basin.

  4. Sediment Bacterial Communities Reflect the History of a Sea Basin

    PubMed Central

    Lyra, Christina; Sinkko, Hanna; Rantanen, Matias; Paulin, Lars; Kotilainen, Aarno

    2013-01-01

    How entire microbial communities are structured across stratified sediments from the historical standpoint is unknown. The Baltic Sea is an ideal research object for historical reconstruction, since it has experienced many fresh- and brackish water periods and is depleted of dissolved oxygen, which increases the sediment's preservation potential. We investigated the bacterial communities, chemical elements (e.g. Cr, Pb Na, P, Sr and U) and sediment composition in a stratified sediment core dated by radiocarbon and spanning 8000 years of Baltic Sea history, using up-to-date multivariate statistics. The communities were analysed by 16S rRNA gene terminal restriction fragment length polymorphism. The communities of the deep Early Litorina and surface Late Litorina Sea laminae were separated from the communities of the middle Litorina Sea laminae, which were associated with elevated concentrations of U and Sr trace elements, palaeo-oxygen and palaeosalinity proxies. Thus, the Litorina Sea laminae were characterized by past oxygen deficiency and salinity increase. The communities of the laminae, bioturbated and homogeneous sediments were differentiated, based on the same historical sea phases, with correct classifications of 90%. Palaeosalinity was one of the major parameters that separated the bacterial communities of the stratified sediments. A discontinuous spatial structure with a surprising increase in community heterogeneity was detected in Litorina Sea sediments from 388 to 422 cm deep, which suggests that a salinity maximum occurred in the central Gulf of Finland app. 6200–6600 years ago. The community heterogeneity decreased from the surface down to 306 cm, which reflected downcore mineralization. The plateau of the decrease was in the app. 2000-year-old sediment layers. Bacterial community data may be used as an additional tool in ocean-drilling projects, in which it is important to detect mineralization plateaus both to determine historically comparable

  5. Sediment bacterial communities reflect the history of a sea basin.

    PubMed

    Lyra, Christina; Sinkko, Hanna; Rantanen, Matias; Paulin, Lars; Kotilainen, Aarno

    2013-01-01

    How entire microbial communities are structured across stratified sediments from the historical standpoint is unknown. The Baltic Sea is an ideal research object for historical reconstruction, since it has experienced many fresh- and brackish water periods and is depleted of dissolved oxygen, which increases the sediment's preservation potential. We investigated the bacterial communities, chemical elements (e.g. Cr, Pb Na, P, Sr and U) and sediment composition in a stratified sediment core dated by radiocarbon and spanning 8000 years of Baltic Sea history, using up-to-date multivariate statistics. The communities were analysed by 16S rRNA gene terminal restriction fragment length polymorphism. The communities of the deep Early Litorina and surface Late Litorina Sea laminae were separated from the communities of the middle Litorina Sea laminae, which were associated with elevated concentrations of U and Sr trace elements, palaeo-oxygen and palaeosalinity proxies. Thus, the Litorina Sea laminae were characterized by past oxygen deficiency and salinity increase. The communities of the laminae, bioturbated and homogeneous sediments were differentiated, based on the same historical sea phases, with correct classifications of 90%. Palaeosalinity was one of the major parameters that separated the bacterial communities of the stratified sediments. A discontinuous spatial structure with a surprising increase in community heterogeneity was detected in Litorina Sea sediments from 388 to 422 cm deep, which suggests that a salinity maximum occurred in the central Gulf of Finland app. 6200-6600 years ago. The community heterogeneity decreased from the surface down to 306 cm, which reflected downcore mineralization. The plateau of the decrease was in the app. 2000-year-old sediment layers. Bacterial community data may be used as an additional tool in ocean-drilling projects, in which it is important to detect mineralization plateaus both to determine historically comparable

  6. Time-dependence of sea-ice concentration and multiyear ice fraction in the Arctic Basin

    USGS Publications Warehouse

    Gloersen, P.; Zwally, H.J.; Chang, A.T.C.; Hall, D.K.; Campbell, W.J.; Ramseier, R.O.

    1978-01-01

    The time variation of the sea-ice concentration and multiyear ice fraction within the pack ice in the Arctic Basin is examined, using microwave images of sea ice recently acquired by the Nimbus-5 spacecraft and the NASA CV-990 airborne laboratory. The images used for these studies were constructed from data acquired from the Electrically Scanned Microwave Radiometer (ESMR) which records radiation from earth and its atmosphere at a wavelength of 1.55 cm. Data are analyzed for four seasons during 1973-1975 to illustrate some basic differences in the properties of the sea ice during those times. Spacecraft data are compared with corresponding NASA CV-990 airborne laboratory data obtained over wide areas in the Arctic Basin during the Main Arctic Ice Dynamics Joint Experiment (1975) to illustrate the applicability of passive-microwave remote sensing for monitoring the time dependence of sea-ice concentration (divergence). These observations indicate significant variations in the sea-ice concentration in the spring, late fall and early winter. In addition, deep in the interior of the Arctic polar sea-ice pack, heretofore unobserved large areas, several hundred kilometers in extent, of sea-ice concentrations as low as 50% are indicated. ?? 1978 D. Reidel Publishing Company.

  7. Plio-Quaternary seismic stratigraphy of Ross Sea eastern basin (Antarctica): Implications to glacial history and basin evolution

    SciTech Connect

    Alonso, M.B.; Diaz, J.I. ); Anderson, J.S.; Bartek, L. )

    1991-03-01

    From air-gun and water-gun high-resolution single-channel seismic records, seven seismic units are defined, overlying the Ross Sea Unconformity, in the Plio-Quaternary sequences of the Ross Sea Eastern basin. These units are up to 600 m in thickness and generally thin onshore, disappearing near the western limit of the basin. The units are separated by smooth erosional surfaces characterized by continuous, high-amplitude reflectors. By correlation to DSDP Site 272, seismic units I and II are Pliocene in age, and the overlying units (III or VII) are Quaternary in age. Units I, III, and VII are basinal in extension and the others are confined to the central part of the basin. Thickness of the units ranges from 50 to 120 m, and they are mainly characterized by lenticular and wedge geometrics. Three acoustic facies are discerned: stratified, semitransparent, and chaotic. Wide (7 km) lenticular deposits, containing chaotic facies, are incised by U-shaped channels in seismic units, II, III (both up to 0.5 km wide), and VI (2 km wide), The spatial distribution of these channels indicates a paleodrainage system in which ice streams followed flow paths similar to those of the present. The major geological events that occurred on the continental shelf during Plio-Quaternary time were: (1) the first channel incisions are identified near the boundary of the late Pliocene-Quaternary; (2) the advance and retreat of the ice sheet resulted in widespread erosion processes alternating with deposition of glacial and glaciomarine sediments; (3) the largest depocenter has been always situated in the shelf break environment, near the western limit of the basin; and (4) the only important progradation of the shelf occurred during the late Pliocene, and since then the shelf has been aggradational.

  8. Subcrustal structure of the black sea basin from seismological data

    NASA Astrophysics Data System (ADS)

    Yanovskaya, T. B.; Gobarenko, V. S.; Yegorova, T. P.

    2016-01-01

    The P-wave travel time data from the earthquakes offshore and onshore around the Black Sea are used for the tomographic reconstruction of the three-dimensional (3D) velocity distribution in the lithosphere of the region. The preliminary refinement of the foci parameters (the coordinates and origin time) has reduced the random errors in the travel-time data. The earthquake data were supplemented by the previous deep seismic sounding (DSS) data on the profiles in Crimea and offshore off the Black Sea. The dataset included more than 4000 travel times overall. In order to eliminate the crustal effect, the travel times were reduced to a surface at a depth of 35 km corresponding to the mean Moho depth in the region. The improved crustal model was used for removing the contribution of the crust from the initial data. The new tomography method, which was recently developed by one of the authors and which relies on the assumption of smoothness of the lateral velocity variations, was applied for reconstructing the velocity structure of the upper mantle beneath the Black Sea up to a depth of 95 km. The lateral velocity variation maps at different depths and the vertical velocity distributions along the meridional and sublatitudinal cross sections across the Black Sea were constructed. High velocities were revealed in the subcrustal lithosphere, and the structural difference below two subbasins—the West Black Sea (WBS) and the East Black Sea (EBS) ones—was established. It shows that the high-velocity body below the WBS is located deeper than below the EBS and is distinguished by higher velocities. Based on these results, it is concluded that the lithosphere beneath the Black Sea has a continental origin.

  9. Tectonics of Chukchi Sea Shelf sedimentary basins and its influence on petroleum systems

    NASA Astrophysics Data System (ADS)

    Agasheva, Mariia; Antonina, Stoupakova; Anna, Suslova; Yury, Karpov

    2016-04-01

    The Chukchi Sea Shelf placed in the East Arctic offshore of Russia between East Siberian Sea Shelf and North Slope Alaska. The Chukchi margin is considered as high petroleum potential play. The major problem is absence of core material from drilling wells in Russian part of Chukchi Shelf, hence strong complex geological and geophysical analyses such as seismic stratigraphy interpretation should be provided. In addition, similarity to North Slope and Beaufort Basins (North Chukchi) and Hope Basin (South Chukchi) allow to infer the resembling sedimentary succession and petroleum systems. The Chukchi Sea Shelf include North and South Chukchi Basins, which are separated by Wrangel-Herald Arch and characterized by different opening time. The North Chukchi basin is formed as a general part of Canada Basin opened in Early Cretaceous. The South Chukchi Basin is characterized by a transtensional origin of the basin, this deformation related to motion on the Kobuk Fault [1]. Because seismic reflections follow chronostratigraphic correlations, it is possible to achieve stratigraphic interpretation. The main seismic horizons were indicated as: PU, JU, LCU, BU, mBU marking each regional unconformities. Reconstruction of main tectonic events of basin is important for building correct geological model. Since there are no drilling wells in the North and South Chukchi basins, source rocks could not be proven. Referring to the North Chukchi basin, source rocks equivalents of Lower Cretaceous Pebble Shale Formation, Lower Jurassic Kingdak shales and Upper Triassic Shublik Formation (North Slope) is possible exhibited [2]. In the South Chukchi, it is possible that Cretaceous source rocks could be mature for hydrocarbon generation. Erosions and uplifts that could effect on hydrocarbon preservation was substantially in Lower Jurassic and Early Cretaceous periods. Most of the structures may be connected with fault and stratigraphy traps. The structure formed at Wrangel-Herald Arch to

  10. Evolution and hydrocarbon potential of Navarin basin, Bering Sea, Alaska

    SciTech Connect

    Steffy, D.A.

    1985-02-01

    The Navarin basin consists of three en echelon subbasins filled with more than 26,000 ft of layered Tertiary sedimentary rock. The subbasins initially formed as a result of extensional deformation associated with oblique subduction of the Kula plate beneath the North American plate in the Late Cretaceous to early tertiary. By the late Eocene, the fragment of the Kula plate, which now floors the Aleutian basin, was isolated by initiation of subduction at the present Aleutian arc. Active graben growth and major faulting ceased by the late Oligocene. Regional subsidence, controlled primarily by crustal cooling, initiated a second phase of sedimentation within and beyond structurally defined subbasins of pre-late Oligocene. The Navarin basin COST 1 well suggests that since the late Eocene, sedimentation within the three subbasins consisted of predominantly marine mudstone and siltstone and minor amounts of sandstone. Regressive events in the middle and late Oligocene, however, exposed older Tertiary and Mesozoic basement highs to wave-base erosion, which may have formed aprons of coarser grained detritus along the subbasins flanks. Eocene and early Oligocene marine sediments with good liquid hydrocarbon source potential and favorable levels of thermal maturity were present at the well site. This marine sequence thickens toward the deeper parts of the basin, indicating that a significant amount of source rock may be present next to traps associated with basement highs.

  11. Satellite Observation of Large Scale Changes in Climate and Land Use in the Caspian Sea Basin

    NASA Astrophysics Data System (ADS)

    Saatchi, S.; Nouri, A.; Asefi, S.; Shiklomanov, A.; Entekhabi, D.; Mohammadi, S.; Hedjazi, B.

    2012-04-01

    The Caspian Sea Basin (catchments) area occupies the vast European and Asian territory between approx. 330-580 N latitude and 300-620 E longitude. In comparison with other world great natural lakes, the Caspian Sea ranks first in watershed area (3660,000 km2) and also in a total annual rivers runoff (340 km3/year - long-term average value). The Caspian is a closed basin with the largest landlocked water body in the world in its center. As a result, the water and biogeochemical cycles over the sea and surrounding lands are intimately linked. Any changes in the hydrologic regime over land and any major shifts in land use and land ecosystem health will directly impact the overall water and energy cycle of the basin, as well as the water quality and aquatic biology of the Sea. The basin being a closed system, it can also exhibit feedback processes that reinforce excursions from normal and lead to large impacts on the surrounding regions. In this paper, we present results of the analysis of climate and vegetation observations over the past 30 years over the Caspian Sea Basin to document the changes of climate, and land use, the regional vegetation response. We focus our analysis using data from AVHRR, MODIS, QSCAT, and TRMM. The results indicate that the region has gone through major changes in land use accompanied by anomalies of temperature and rainfall that in turn has suppressed the vegetation cover and phenology. The results are corroborated by data from socio-economic changes in the region and ground observation of climate and vegetation.

  12. Eddy-entrained Pearl River plume into the oligotrophic basin of the South China Sea

    NASA Astrophysics Data System (ADS)

    He, Xianqiang; Xu, Dongfeng; Bai, Yan; Pan, Delu; Chen, Chen-Tung Arthur; Chen, Xiaoyan; Gong, Fang

    2016-08-01

    The South China Sea (SCS) is the world's largest tropical marginal sea with an oligotrophic basin. In June 2015, a rare large phytoplankton bloom, which is ~500 km long, 100 km wide and lasting more than 19 days, was captured in the northern SCS basin by satellite daily chlorophyll images. Water within the bloom area had a feature of low salinity and high temperature measured by an accidental-passing cruise. Meanwhile, satellite sea level anomaly images and drifter trajectory proved there was a cyclonic eddy nearby. No typhoon and heavy rain happened in this period, so we believed the bloom was triggered by the injection of nutrient-rich Pearl River plume driven by eddy. This is the first report on eddy-entrained Pearl River plume into the SCS, which would raise a new view on irregular transportation of nutrient and carbon and its related biogeochemical influence on the oligotrophic ocean.

  13. Seismological observations of micro-earthquake clusters, Dead Sea Basin

    NASA Astrophysics Data System (ADS)

    Wetzler, N.; Sagy, A.; Marco, S.

    2011-12-01

    The DSB is a seismic active zone characterized by dozens of small earthquakes per year and by M>6 earthquakes every several hundreds years. The basin is about 150 km long and 15-20 km wide; the sedimentary fill exceeds 10 km. The 1985-2009 seismic catalogue of the DSB includes ~1000 earthquakes with initial locations determined by the Geophysical Institute of Israel (GII). It is generally accepted that the basin is a pull-apart, but the relationship between the seismic activity and its 3D structure is not well defined. We relocated 600 earthquakes using the hypoDD double-difference algorithm with regional sub-division. A local velocity model for every sub-division is based on previous geophysical studies. After relocation we divide the relocated catalog to several clusters (space and time). We conduct a focal mechanism (FMS) analysis as well as composite solution for the earthquake clusters based on waveform correlation. The FMS are calculated using the USGS HASH program. We obtain solutions for ~100 earthquakes providing two optional fault planes according to the double-couple mechanism principle. For evaluation of the fault's geometry we calculate the planes of seismicity which form the best-fit calculated plane out of the location of the earthquakes. Finally we perform a full stress inversion using the SATSI algorithm. We observe significant seismic activity down to 20 to 25 km, mainly in the southern and the northern part of the basin, suggesting that the crust is relatively cool. The waveforms and focal mechanisms in most of the clusters show high resemblance and in some cases conform to the orientation of the plane of seismicity. This indicates that the seismic activity is mostly localized along faults that divide the basin to sub basins. Some small events are clustered around deep (up to 8 km) salt diapirs and may indicate seismic activity that is associated with the motion of these bodies.

  14. Tectonics and petroleum potential of sedimentary basins in the Bering, Okhotsk, Japan seas, and island arcs

    SciTech Connect

    Levin, L.E. )

    1993-09-01

    In this vast region located in the northwestern part of the Pacific rim, basins of two main genetic types possess petroleum potential. These two types are represented by basins of the recent active margin and basins of the transitional zone between analogs of the passive margin and the recent active margin. For basins of the active margin, the mean density of potential resources is estimated at 5000 MT/km[sup 2] or more. The total area of these basins is 324,000 km[sup 2] among which 120,000 km[sup 2] are in the Russian sector. Ultimate resources of hydrocarbons are estimated at 1.62 billing MT of oil equivalent. Basins of the zone, transitional from analogs of the passive margin to the recent active margin, are characterized by a number of factors favorable for petroleum occurrence. One of the important factors is the presence of rift trough and foredeeps that are potential sites for zones of oil and gas accumulation. The age of the rifts varies from the late Cretaceous through the Oligocene-Miocene in the Olyutorsky and Litke basins, to the Neogene in the Okhotsk Sea and Tatar-Japan basins. Only a small area of the rifts has been proven to contain zones of oil and gas accumulation. Based on the structural characteristics, the rifts are subdivided into oil-gas bearing, potentially oil-gas bearing, and nonprospective for hydrocarbon exploration. Potential hydrocarbon resources of basins of this type are estimated to be not less than 15.12 billion MT of oil equivalent including 9.2 billion MT in the Russian sector. New large zones of oil and gas accumulation are expected to be found both on the shallow shelf and in some deep-water basins such as in the Aleutian and Kuril basins.

  15. Sea level and climate forcing of the Sr isotope composition of late Miocene Mediterranean marine basins

    NASA Astrophysics Data System (ADS)

    Schildgen, T. F.; Cosentino, D.; Frijia, G.; Castorina, F.; Dudas, F. Ö.; Iadanza, A.; Sampalmieri, G.; Cipollari, P.; Caruso, A.; Bowring, S. A.; Strecker, M. R.

    2014-07-01

    isotope records from marginal marine basins track the mixing between seawater and local continental runoff, potentially recording the effects of sea level, tectonic, and climate forcing in marine fossils and sediments. Our 110 new 87Sr/86Sr analyses on oyster and foraminifera samples from six late Miocene stratigraphic sections in southern Turkey, Crete, and Sicily show that 87Sr/86Sr fell below global seawater values in the basins several million years before the Messinian Salinity Crisis, coinciding with tectonic uplift and basin shallowing. 87Sr/86Sr from more centrally located basins (away from the Mediterranean coast) drop below global seawater values only during the Messinian Salinity Crisis. In addition to this general trend, 55 new 87Sr/86Sr analyses from the astronomically tuned Lower Evaporites in the central Apennines (Italy) allow us to explore the effect of glacio-eustatic sea level and precipitation changes on 87Sr/86Sr. Most variation in our data can be explained by changes in sea level, with greatest negative excursions from global seawater values occurring during relative sea level lowstands, which generally coincided with arid conditions in the Mediterranean realm. We suggest that this greater sensitivity to lowered sea level compared with higher runoff could relate to the inverse relationship between Sr concentration and river discharge. Variations in the residence time of groundwater within the karst terrain of the circum-Mediterranean region during arid and wet phases may help to explain the single (robust) occurrence of a negative excursion during a sea level highstand, but this explanation remains speculative without more detailed paleoclimatic data for the region.

  16. Benthic infaunal communities across the Weddell Sea Basin and South Sandwich Slope, Antarctica

    NASA Astrophysics Data System (ADS)

    Blake, James A.; Narayanaswamy, Bhavani E.

    2004-07-01

    The present study represents the first quantitative investigation of deep-sea benthic infauna in Antarctica. Box cores and multicores were used to collect sediment from 12 stations across the slope and abyssal basin of the Weddell Sea and the slope off the South Sandwich Islands, including sites in the South Sandwich Trench (6300 m). The multicore was a more efficient sampler than the box core. Nine phyla of invertebrates were found, dominated by annelids (67%), crustaceans (20%); other phyla (13%). A total of 117 taxa were identified to the species level: 72 were polychaetes; 45 were crustaceans. Many taxa are new to science. Highest densities were at the 1000 m depth on the western slope of the Weddell Sea (260 individuals per 0.1 m -2) and at ca. 2200 m on the South Sandwich Slope (132 individuals per 0.1 m -2); lowest densities were in the central Weddell Sea Basin (39 individuals per 0.1 m -2). Species richness and rarefaction analysis suggest that the fauna is undersampled. The 117 species identified in this study were represented by only 237 specimens, indicating that species were being added at a rate of one species for every two specimens collected. Rarefaction curves do not begin to reach an asymptote supporting high estimates of diversity. Some species appear to be limited to distinct zones in upper and middle slope depths, other species extend from the slope to the abyssal basin, and at least two species appear to be restricted to the abyssal basin. In general, the densities of infauna on the slopes surrounding the Weddell Sea Basin have lower densities than well-studied areas off North America. However, abyssal populations in Antarctica appear to have denser infaunal populations than those from off New England and the North Pacific Gyre. Productive surface waters of the Weddell Sea and subsequent sinking of phytoplankton to the seabed are probable reasons for the higher benthic productivity in Antarctic abyssal sediments. Similarity analyses were not

  17. An isopycnal view of the Nordic Seas hydrography with focus on properties of the Lofoten Basin

    NASA Astrophysics Data System (ADS)

    Rossby, T.; Ozhigin, Vladimir; Ivshin, Victor; Bacon, Sheldon

    2009-11-01

    Few basins in the world exhibit such a wide range of water properties as those of the Nordic Seas with cold freshwaters from the Arctic in the western basins and warm saline waters from the Atlantic in the eastern basins. In this study we present a 50-year hydrographic climatology of the Nordic Seas in terms of depth and temperature patterns on four upper ocean specific volume anomaly surfaces. This approach allows us to better distinguish between change due to variations along such surfaces and change due to depth variations of the stratified water column. Depth variations indicate changes in the mass field while property variations along isopycnals give insight into isopycnal advection and mixing, as well as diapycnal processes. We find that the warmest waters on each surface are found in the north, close to where the isopycnal outcrops, a clear indication of downward mixing of the warmer, more saline waters on shallower isopycnals due to convective cooling at the surface. These saline waters come from the Norwegian Atlantic Slope Current by means of a very high level of eddy activity in the Lofoten Basin. The isopycnal analyses further show that the principal water mass boundary between the waters of Arctic origin in the west and Atlantic waters in the east aligns quite tightly with the Jan Mayen, Mohn, Knipovich Ridge system suggesting little cross-ridge exchange. Instead, the main routes of exchange between the eastern and western basins appear to be limited to the northern and southern ends of ridge system: Atlantic waters into the Greenland Sea in the Fram St and Artic waters into the southern Norwegian Sea just north of the Iceland-Faroe Ridge. Analysis of a representative isopycnal in the main pycnocline shows it to be stable over time with only small variations with season (except where it outcrops in winter in the Greenland and Iceland Seas). However, two very cold winters, 1968-1969, led to greater than average heat losses across the entire Lofoten

  18. Middle Cenozoic depositional, tectonic, and sea level history of southern San Joaquin basin, California

    SciTech Connect

    Decelles, P.G.

    1988-11-01

    As a prolific producer of hydrocarbons, the San Joaquin basin in south-central California has been the subject of geological research since the late nineteenth century. Much of this research has focused on the subsurface Eocene to lower Miocene succession because of its attractive reservoir potential. Although seismic and well-log data are available in profuse quantities, the complex sedimentary architecture of the basin fill, the application of local and inconsistent stratigraphic nomenclature, and the inherent limitations of subsurface data have led to much confusion concerning the middle Cenozoic history of the basin. This paper presents a sedimentological analysis of the depositional systems in the Eocene to lower Miocene strata of the San Emigdio and Tehachapi Mountains. The various depositional systems are considered within the contexts of encompassing depositional sequences to reconstruct the middle Cenozoic depositional, tectonic, and sea level history of the southern San Joaquin basin. 14 figures, 1 table.

  19. The petroleum basins of the sea of Okhotsk

    SciTech Connect

    Khvedchuk, I. )

    1993-09-01

    The Okhotsk area includes the major oil and gas basins of north Sakhalin and west Kamchatka, where more than 70 fields have been discovered. The basins consist of Tertiary cover (marine, coastal and continental terrigenous, and siliceous volcanogenic and volcanoclastic rocks) and pre-Cenozoic basement composed of geosynclinal rock associations. Sediment thickness in the basins attains 10-12 km. Rifting of the basement has resulted in the development of grabens controlled by northwest- and northeast-trending faults. Crustal thickness is 27-31 km. All the petroleum basins are related to rifts, which were associated with volcanic and magmatic activity and abnormally high temperature and pressures. Analysis of the data show that the main factors affecting deposition of the source rocks, their spatial distribution, and their effectiveness in generating hydrocarbons are; the geological age, regional tectonics, paleogeography, dominant kerogen type, and temperature. There are various types of oil and gas source rocks: Paleocene to lower Eocene claystones contain gas-prone kerogen type III (west Kamchatka); upper Eocene and Oligocene marine clays and siliceous clays contain oil-prone kerogen type II (west Kamchatka); upper Oligocene to lower Miocene siliceous shales (north Sakhalin and west Kamchatka) contain kerogen type II; lower and middle Miocene clays are gas prone (north Sakhalin and west Kamchatka); and middle Miocene marine clays contain oil-prone kerogen type II (north Sakhalin). The quantity of organic matter in the source rocks ranges from 0.6 to 4.2%, and the geothermal gradient ranges from 24 to 44[degrees]C per km. The main reservoirs are upper Oligocene-lower Miocene siliceous shales, Miocene-lower Pliocene sandstones, and upper Miocene deltaic sandstones. Oil and gas accumulations occur in anticlines and stratigraphic traps.

  20. Chapter 19: Geology and petroleum potential of the east Barents Sea Basins and Admiralty Arch

    USGS Publications Warehouse

    Klett, T.R.; Pitman, J.K.

    2011-01-01

    The US Geological Survey (USGS) recently assessed the potential for undiscovered oil and gas resources of the East Barents Basins and Novaya Zemlya Basins and Admiralty Arch Provinces as part of the USGS Circum-Arctic Resource Appraisal. These two provinces are located NE of Scandinavia and the northwestern Russian Federation, on the Barents Sea Shelf between Novaya Zemlya to the east and the Barents Platform to the west. Three assessment units (AUs) were defined in the East Barents Basins for this study - Kolguyev Terrace Assessment Unit (AU), South Barents Basin and Ludlov Saddle AU, and North Barents Basin AU. A fourth, defined as Novaya Zemlya Basins and Admiralty Arch AU, is coincident with the Novaya Zemlya basins and Admiralty Arch Province. These AUs, all lying north of the Arctic Circle, were assessed for undiscovered, technically recoverable resources resulting in total estimated mean volumes of approximately 7.4 billion barrels of crude oil, 318 trillion cubic feet of natural gas and 1.4 billion barrels of natural gas liquids. ?? 2011 The Geological Society of London.

  1. Gravity field over the Sea of Galilee: Evidence for a composite basin along a transform fault

    USGS Publications Warehouse

    Ben-Avraham, Z.; ten Brink, U.; Bell, R.; Reznikov, M.

    1996-01-01

    The Sea of Galilee (Lake Kinneret) is located at the northern portion of the Kinneret-Bet Shean basin, in the northern Dead Sea transform. Three hundred kilometers of continuous marine gravity data were collected in the lake and integrated with land gravity data to a distance of more than 20 km around the lake. Analyses of the gravity data resulted in a free-air anomaly map, a variable density Bouguer anomaly map, and a horizontal first derivative map of the Bouguer anomaly. These maps, together with gravity models of profiles across the lake and the area south of it, were used to infer the geometry of the basins in this region and the main faults of the transform system. The Sea of Galilee can be divided into two units. The southern half is a pull-apart that extends to the Kinarot Valley, south of the lake, whereas the northern half was formed by rotational opening and transverse normal faults. The deepest part of the basinal area is located well south of the deepest bathymetric depression. This implies that the northeastern part of the lake, where the bathymetry is the deepest, is a young feature that is actively subsiding now. The pull-apart basin is almost symmetrical in the southern part of the lake and in the Kinarot Valley south of the lake. This suggests that the basin here is bounded by strike-slip faults on both sides. The eastern boundary fault extends to the northern part of the lake, while the western fault does not cross the northern part. The main factor controlling the structural complexity of this area is the interaction of the Dead Sea transform with a subperpendicular fault system and rotated blocks.

  2. Ogaden Basin subsidence history: Another key to the Red Sea-Gulf of Aden tectonic puzzle

    SciTech Connect

    Pigott, J.D.; Neese, D.; Carsten, G.

    1995-08-01

    Previous work has attempted to understand the tectonic evolution of the Red Sea-Gulf of Aden region through a focus upon plate kinematics and reconstruction of plate interactions in a two dimensional sense. A significant complement to the three dimensional puzzle can be derived from a critical examination of the vertical component, tectonic subsidence analysis. By removing the isostatic contributions of sediment loading and unloading, and fluctuations in sea level, the remaining thermal-mechanical contribution to a basin`s subsidence can be determined. Such an analysis of several Ogaden Basin wells reveals multiple pulses of tectonic subsidence and uplift which correspond to far-field tectonic activities in the Red Sea and Gulf of Aden. One of the more dramatic is a Jurassic tectonic pulse circa 145-130 m.a., and a later extensional event which correlates to a major subsidence event ubiquitous through-out the Gulf of Aden, related to Gondwana Land breakup activities. Tectonic uplift during the Tertiary coincides with early Red Sea rifting episodes. Such activities suggest the Ogaden Basin has been a relatively stable East African cratonic basin, but with heating-extension events related to nearby plate interactions. In terms of hydrocarbon generation, the use of steady state present day geothermal gradients, coupled with subsidence analysis shows that potential Paleozoic and Mesozoic source rocks initiated generation as early as the Jurassic. The generating potential of Paleozoic source rocks would only be exacerbated by later heating events. Furthermore, cooling and tectonic uplift during the Tertiary would tend to arrest on-going hydrocarbon generation for Jurassic source rocks in the Ogaden area.

  3. Sea-floor drainage features of Cascadia Basin and the adjacent continental slope, northeast Pacific Ocean

    USGS Publications Warehouse

    Hampton, M.A.; Karl, Herman A.; Kenyon, Neil H.

    1989-01-01

    Sea-floor drainage features of Cascadia Basin and the adjacent continental slope include canyons, primary fan valleys, deep-sea valleys, and remnant valley segments. Long-range sidescan sonographs and associated seismic-reflection profiles indicate that the canyons may originate along a mid-slope escarpment and grow upslope by mass wasting and downslope by valley erosion or aggradation. Most canyons are partly filled with sediment, and Quillayute Canyon is almost completely filled. Under normal growth conditions, the larger canyons connect with primary fan valleys or deep-sea valleys in Cascadia Basin, but development of accretionary ridges blocks or re-routes most canyons, forcing abandonment of the associated valleys in the basin. Astoria Fan has a primary fan valley that connects with Astoria Canyon at the fan apex. The fan valley is bordered by parallel levees on the upper fan but becomes obscure on the lower fan, where a few valley segments appear on the sonographs. Apparently, Nitinat Fan does not presently have a primary fan valley; none of the numerous valleys on the fan connect with a canyon. The Willapa-Cascadia-Vancouver-Juan de Fuca deep-sea valley system bypasses the submarine fans and includes deeply incised valleys to broad shallow swales, as well as within-valley terraces and hanging-valley confluences. ?? 1989.

  4. The Northern end of the Dead Sea Basin: Geometry from reflection seismic evidence

    USGS Publications Warehouse

    Al-Zoubi, A. S.; Heinrichs, T.; Qabbani, I.; ten Brink, U.S.

    2007-01-01

    Recently released reflection seismic lines from the Eastern side of the Jordan River north of the Dead Sea were interpreted by using borehole data and incorporated with the previously published seismic lines of the eastern side of the Jordan River. For the first time, the lines from the eastern side of the Jordan River were combined with the published reflection seismic lines from the western side of the Jordan River. In the complete cross sections, the inner deep basin is strongly asymmetric toward the Jericho Fault supporting the interpretation of this segment of the fault as the long-lived and presently active part of the Dead Sea Transform. There is no indication for a shift of the depocenter toward a hypothetical eastern major fault with time, as recently suggested. Rather, the north-eastern margin of the deep basin takes the form of a large flexure, modestly faulted. In the N-S-section along its depocenter, the floor of the basin at its northern end appears to deepen continuously by roughly 0.5??km over 10??km distance, without evidence of a transverse fault. The asymmetric and gently-dipping shape of the basin can be explained by models in which the basin is located outside the area of overlap between en-echelon strike-slip faults. ?? 2007 Elsevier B.V. All rights reserved.

  5. Sequence stratigraphic interpretations in a continental strike-slip Basin - Southern Dead Sea, Israel

    SciTech Connect

    Csato, I.; Kendall, C.

    1996-12-31

    Sequence stratigraphic interpretations of subsurface data from the Southern Dead Sea have been integrated with computer modeling of the stratigraphy, demonstrating that the sedimentary fill was controlled by extremely high rates of subsidence (1000 m/MY), salt tectonics, multiple sediment sources, and lake-level fluctuations. The southern part of the basin is underlain by half-grabens and full-grabens. A northwest-southeast directed shear zone (5-6 km wide) closes the basin to the north, while the large Amaziahu growth fault, developed by gravity sliding and salt-withdrawal, separates the basin into two segments. Fan deltas entered the basin at its southern and northern ends, while salt and lacustrine offshore sediments accumulated in its interior. The southern and northern lacustrine systems interfinger in a mixing zone which changed position as a function of lake-level variations. The advance of the northern system was accompanied by lake level falls, while lake-level rises favored an influx from the southern system. The northern sedimentary system gradually became more dominant. The stratigraphic simulation revealed that the lake-level falls paralleled those of the Mediterranean sea, but with a slight (0.3-0.4 MY) delay. Combined stratigraphic and thermal maturation modeling suggests that sediments in the deepest part of the basin are currently within the oil generation window. Significant pinch-out zones flanking the Mount Sedom diapir, buried fan delta complexes, and the peculiar interfingering, zones may be important exploration targets.

  6. Gulf of Suez-Rift basin stratigraphy: an interplay of subsidence and Eustatic sea level

    SciTech Connect

    Richardson, M.; Arthur, M.A.

    1987-05-01

    The Gulf of Suez and Red Sea rift basin underwent a period of rapid subsidence from the early Miocene to the Pliocene during which time a thick (up to 4 km) series of marine evaporites accumulated within the basin. The evaporitic sequence interfingers with carbonates and clastics over structural highs within and along the margins of the basin. Evaporite deposition was also interrupted basin wide by short periods of normal marine sedimentation. Timing and paleo-oceanographic aspects of evaporite deposition within the rift is controversial. A change over of marine source waters within the basin from the Mediterranean Sea to an opening of the rift to the Indian Ocean occurred sometime between the earliest Messinian and earliest Pliocene. Preliminary data suggests that anhydrites from this evaporite sequence retain original Miocene sea water Sr/sup 87//Sr/sup 86/ values which can be compared to Neogene strontium isotope versus time curves in order to further constrain the age of the nonfossiliferous evaporite group. This, combined with currently accepted biostratigraphies for the normal marine strata, enable us to refine rift stratigraphy in order to examine basin subsidence, evaporite accumulation rates, and the correlation of rift tectonics, sedimentation, and associated paleo-oceanographic events. Initial fragmentation and subsidence propagated from the south to the north in the Gulf of Suez during the Aquitanian to Burdigalian (20-25 Ma), and mixed clastic, carbonate, and evaporitic sediments (Nukhul Formation) up to 700 m thick were deposited in isolated subbasins within the rift. This episode was followed by renewed uplift of the rift shoulders, rapid subsidence, and increased clastic influx (late Rudeis Formation) during the Burdigalian (ca. 20-17 Ma).

  7. Sequence Stratigraphic Analysis of Tertiary Wedges and Sediments in Sørvestsnaget Basin, SW Barents Sea

    NASA Astrophysics Data System (ADS)

    Harishidayat, D.; Omosanya, K. O.; Johansen, S. E.; Abrahamson, P.

    2015-12-01

    The Sørvestsnaget Basin is a Cenozoic depocenter in Southwestern Barents Sea formed along the North-South Senja fault. Previous research works in this area have identified a thick succession of Tertiary wedges sourced potentially from the Stappen High. This study is aimed at evaluating the evolution of the Tertiary deposits in the Sørvestsnaget Basin using sequence stratigraphic approach. Five sequences were interpreted from recently acquired high-resolution 2D seismic reflection data. Lithology and biostratigraphic information was obtained from two boreholes in the study area, 7316/5-1 and 7216/11-1S. The sequences were separated into maximum flooding surface, condensed section, and a sequence boundary that correlate from wells to seismic for hundreds of kilometers. The first sequence is the base of the Paleogene unit revealed as low and high basement configuration. This sequence is succeeded by a transgressive system tract (TST) dominated by deposition of deep marine shale after a relative sea-level rise. Biostratigraphy data from well 7216/11-1S revealed stratigraphic breaks on the Late Eocene to Miocene age condensed section. Uplift of the marginal high in Oligocene to Miocene times influenced the development of an early highstand system tract (EHST) during Neogene age. This is followed by deposition of shallow marine sediments and emergence of a late highstand system tract (LHST) in early Quaternary. The LHST developed in a glacio-marine environment. Relatively low sea-level fall during middle Quaternary forced the development of a shelf margin towards the south. The top of the shelf margin system tract (SMST) was eroded by the Upper Regional Unconformity (URU). In Late Quaternary, the Sørvestsnaget Basin witnessed a relatively sea-level rise evidenced by the back-stepping sequences above the URU on seismic section. This is the last transgressive system tract (TST). This work has shown that the Sørvestsnaget Basin has recorded fluctuating sea-level rise

  8. Aspects of exploration, development of Vulcan sub-basin, Timor Sea

    SciTech Connect

    Smith, B.L. ); Lawrence, R.B. )

    1989-10-01

    This article presents a geological summary of the Vulcan sub-basin. Three exploratory phases in the Timor Sea are detailed and the economics of exploration in this area is discussed. The Timor Sea is emerging as a major Australian oil-producing area. From the Jabiru field alone Timor Sea oil production contributes 9% of Australia's oil production. The Timor Sea will soon rank second in terms of daily production. Early phases of exploration in the area focused on the detection and drilling of large structures. Success rates were low. Since the Jabiru discovery in 1983, better exploration methods have resulted in the delineation of many prospects which could contain significant oil reserves. New play concepts being developed will result in additional prospects.

  9. Diachronous fault array growth within continental rift basins: Quantitative analyses from the East Shetland Basin, northern North Sea

    NASA Astrophysics Data System (ADS)

    Claringbould, Johan; Bell, Rebecca; Jackson, Christopher; Gawthorpe, Robert; Odinsen, Tore

    2016-04-01

    The evolution of rift basins has been the subject of many studies, however, these studies have been mainly restricted to investigating the geometry of rift-related fault arrays. The relative timing of development of individual faults that make up the fault array is not yet well constrained. First-order tectono-stratigraphic models for rifts predict that normal faults develop broadly synchronously throughout the basin during a temporally distinct 'syn-rift' episode. However, largely due to the mechanical interaction between adjacent structures, distinctly diachronous activity is known to occur on the scale of individual fault segments and systems. Our limited understanding of how individual segments and systems contribute to array-scale strain largely reflects the limited dimension and resolution of the data available and methods applied. Here we utilize a regional extensive subsurface dataset comprising multiple 3D seismic MegaSurveys (10,000 km2), long (>75km) 2D seismic profiles, and exploration wells, to investigate the evolution of the fault array in the East Shetland Basin, North Viking Graben, northern North Sea. Previous studies propose this basin formed in response to multiphase rifting during two temporally distinct extensional phases in the Permian-Triassic and Middle-to-Late Jurassic, separated by a period of tectonic quiescence and thermal subsidence in the Early Jurassic. We document the timing of growth of individual structures within the rift-related fault array across the East Shetland Basin, constraining the progressive migration of strain from pre-Triassic-to-Late Jurassic. The methods used include (i) qualitative isochron map analysis, (ii) quantitative syn-kinematic deposit thickness difference across fault & expansion index calculations, and (iii) along fault throw-depth & backstripped displacement-length analyses. In contrast to established models, we demonstrate that the initiation, growth, and cessation of individual fault segments and

  10. Integrated modelling and management of nutrients and eutrophication in river basin - coast - sea systems: A southern Baltic Sea perspective

    NASA Astrophysics Data System (ADS)

    Schernewski, Gerald

    2014-05-01

    The Odra river basin (area: 120,000 km2, average discharge: 550 m³/s, annual N-load 60,000 t) and the Oder (Szczecin) Lagoon (687 km²) are the eutrophication hot-spot in the south-western Baltic region. To be able to carry out large scale, spatially integrative analyses, we linked the river basin nutrient flux model MONERIS to the coastal 3D-hydrodynamic and ecosystem model ERGOM. Objectives were a) to analyse the eutrophication history in the river basin and the resulting functional changes in the coastal waters between early 1960's and today and b) to analyse the effects of nitrogen and phosphorus management scenarios in the Oder/Odra river basin on coastal and Baltic Sea water quality. The models show that an optimal river basin management with reduced nutrient loads (e.g. N-load reduction of 35%) would have positive effects on lagoon water quality and algae biomass. The availability of nutrients, N/P ratios and processes like denitrification and nitrogen-fixation would show spatial and temporal changes. It would have positive consequences for ecosystems functions, like the nutrient retention capacity, as well. However, this optimal scenario is by far not sufficient to ensure a good coastal water quality according to the European Water Framework Directive. A "good" water quality in the river will not be sufficient to ensure a "good" water quality in the coastal waters. Further, nitrogen load reductions bear the risk of increased potentially toxic, blue-green algae blooms. The presentation will a) summarize recent results (Schernewski et al. 2009, Schernewski et al. 2011, 2012), b) give an overview how the models were used to provide a comprehensive and consistent set of water quality thresholds and maximum allowable riverine loads for the Water Framework Directive and c) will show the implications for an optimised river basin - lagoon quality management.

  11. Geologic implications of gas hydrates in the offshore of India: Krishna-Godavari Basin, Mahanadi Basin, Andaman Sea, Kerala-Konkan Basin

    USGS Publications Warehouse

    Kumar, Pushpendra; Collett, Timothy S.; Boswell, Ray; Cochran, James R.; Lall, Malcolm; Mazumdar, Aninda; Ramana, Mangipudi Venkata; Ramprasad, Tammisetti; Riedel, Michael; Sain, Kalachand; Sathe, Arun Vasant; Vishwanath, Krishna; Yadav, U.S.

    2014-01-01

    NGHP-01 yielded evidence of gas hydrate from downhole log and core data obtained from all the sites in the Krishna–Godavari Basin, the Mahanadi Basin, and in the Andaman Sea. The site drilled in the Kerala–Konkan Basin during NGHP-01 did not yield any evidence of gas hydrate. Most of the downhole log-inferred gas hydrate and core-recovered gas hydrate were characterized as either fracture-filling in clay-dominated sediments or as pore-filling or grain-displacement particles disseminated in both fine- and coarse-grained sediments. Geochemical analyses of gases obtained from sediment cores recovered during NGHP-01 indicated that the gas in most all of the hydrates in the offshore of India is derived from microbial sources; only one site in the Andaman Sea exhibited limited evidence of a thermogenic gas source. The gas hydrate petroleum system concept has been used to effectively characterize the geologic controls on the occurrence of gas hydrates in the offshore of India.

  12. Discussion of the Ionian and Levantine Seas, NATO workshop on atmospheric and oceanic circulation in the Mediterranean Basin

    SciTech Connect

    Hopkins, T.S.

    1984-01-01

    The gross features and distinctiveness of its thermohaline circulation are described for the Ionian and Levantine Seas of the eastern Mediterranean. The paper also discusses the significance of the thermohaline coupling with neighboring Mediterranean basins. 22 refs. (ACR)

  13. Seismic interpretation of the post-Middle Miocene section of the northeastern Northern South Sea Yellow Basin, Yellow Sea

    NASA Astrophysics Data System (ADS)

    Kim, Hyeonju; Lee, Gwang H.; Kim, Han J.; Yi, BoYeon

    2016-04-01

    The Yellow Sea is a very shallow (< 90 m), semi-enclosed epicontinental sea, lying between China and the Korean Peninsula. The Yellow Sea has undergone gradual, regional subsidence since the Middle Miocene when the major plate reorganization in East Asia led to regional uplift and subsequent erosion in many parts of the marginal basins of the western Pacific, including the Yellow Sea. In this study, we analyzed about 2500 km of 2-D multi-channel seismic data from the northeastern part of the Northern South Yellow Sea Basin to investigate the post-Middle Miocene geologic history of the area. We identified and mapped the Middle Miocene unconformity (MMU) and two horizons (H1 and H2) which are correlatable over much of the area. H1 and H2 were inferred to be of the early Late Miocene (ca. 10 Ma) and of the late Late Miocene (ca. 6.7 Ma), respectively, assuming a constant sediment accumulation rate. MMU forms the top of the basement except for the southwestern corner of the area and is interrupted by numerous volcanic bodies, suggesting active post-Middle Miocene volcanism. The volcanic bodies are oriented largely parallel to the basement faults. H1 and H2 are also affected by volcanic bodies in the northern part of the area, suggesting continued volcanism until the late Late Miocene. The depth of MMU increases southwestward from about 250 m to over 750 m, indicating progressive tilting (i.e., differential subsidence) of the basement toward the depocenter in the southwest. The depths of H1 and H2 increase west- and southwestward from about 200 m to over 450 m and from about 150 m to over 300 m, respectively. Detailed seismic facies were not analyzed due to poor data quality; nevertheless, continuous reflectors, suggesting uniform and thus marine deposition, appear to increase upward and northeastward. This, together with the amount of subsidence estimated from the depth of MMU, strongly suggests that subsidence has been dominant in the area over the global sea

  14. The Norwegian Danish Basin: A key to understanding the Cenozoic in the eastern North Sea

    NASA Astrophysics Data System (ADS)

    Rasmussen, Thomas L.; Clausen, Ole R.; Andresen, Katrine J.; Goledowski, Bartosz

    2015-04-01

    The Danish part of Norwegian-Danish Basin, which constitutes the eastern part of the North Sea Basin, has been the key area for sequence stratigraphic subdivision and analysis of the Cenozoic succession since the mid 1990's. Widespread 3D seismic data, in the central parts of the North Sea Basin, as well as more scattered 3D seismic data in the Danish part of the Norwegian-Danish Basin, have given a more detailed understanding of the sequences and indicate that climate is tenable for the origin of Cenozoic sequence boundaries. The previous sequence stratigraphic interpretations have been an integrated part of an ongoing debate concerning vertical movements of the Fennoscandian shield versus the impact of climate and erosion. A newly accessed coherent regional 2D and reprocessed 3D seismic data set, in the Norwegian part of the Norwegian-Danish Basin, constitute the database for a new sequence stratigraphic analysis of the entire area. The objective of the new study is to test previous subdivisions and introduce a coherent 3D sequence stratigraphic analysis and depositional model for the entire Norwegian-Danish Basin. This analysis is necessary to get out of the stalemate with the uplift discussion. The study shows that the original subdivision by Michelsen et al. (1995, 1998) stands. However, revision of few a sequence boundaries may have to be adjusted due to new biostratigraphic information published. Furthermore, high-angle clinoforms and geomorphological transport complexes observed in the Danish North Sea Basin can be traced into the Norwegian sector. This together with the recognition of several other high-angle clinoform complexes, and their associated seismic facies distribution maps and thickness-maps, enhances the level of detail and constrains the previous published paleogeographic reconstructions of the Cenozoic. The geometry of the Cenozoic infill, in the Norwegian part of the Norwegian-Danish Basin, is here interpreted to be controlled by relative sea

  15. Structures and geometries of the Tajo Basin crust, Spain: Results of a magnetotelluric investigation compared to seismic and thermal models

    NASA Astrophysics Data System (ADS)

    Schmoldt, J.-P.; Jones, A. G.; Rosell, O.

    2014-09-01

    The Tajo Basin and Betic Mountain Chain in the south central region of the Iberian Peninsula were chosen for investigation in the first phase of the magnetotelluric (MT) component of the PICASSO (Program to Investigate the Convective Alboran Sea System Overturn) project. The MT results provide information about the electrical conductivity distribution in previously unprobed subsurface regions, as well as complimenting and enhancing results of prior geological and geophysical investigations thereby enabling the definition of a petrological subsurface model and a comprehensive understanding about the tectonic setting. Two-dimensional (2-D) inversion of the MT data provides enhanced insight into Iberian subsurface geology in the crust. The most striking features of the final model are (i) a distinct vertical interface within the Variscan basement beneath the center of the Tajo Basin that is spatially associated with the boundary between regions with and without substantial Alpine deformation, and (ii) a middle to lower crustal conductive anomaly that can be related to remnants of asthenospheric intrusion in connection with Pliocene volcanic events in the Calatrava Volcanic Province. For the latter, effects of hydrous phases are inferred that may originate from dehydration processes within the subducting slab beneath Alboran Domain and Betic Mountain Chain.

  16. Disentangling Middle Paleozoic sea level and tectonic events in cratonic margins and cratonic basins of North America

    NASA Astrophysics Data System (ADS)

    Bond, Gerard C.; Kominz, Michelle A.

    1991-04-01

    The cratonic margins and basins of North America contain evidence of distinct changes in relative sea level, one of the most intriguing of which occurred in middle Paleozoic time. The change in relative sea level began in Frasnian time (Late Devonian) and continued through Visean time (Middle Mississippian) in the Cordilleran miogeocline, in the Southern Oklahoma Aulacogen, in the Appalachian miogeocline and in the Michigan, Illinois, and Williston basins. The synchroneity and wide geographic distribution of this event are striking and would seem to argue for an eustatic mechanism. An estimate of the middle Paleozoic sea level rise relative to the stable craton in Iowa suggests that while a large sea level rise occurred, it is smaller than the magnitude of subsidence in the cratonic basins and margins. Flexural foreland basin models do not appear to account for the all of the events in the cratonic margins, and thermal subsidence mechanisms do not seem appropriate for the subsidence in the cratonic basins. The middle Paleozoic stratigraphic record from the North American craton and its margins, therefore, poses a basic problem of identifying a mechanism for producing a large-amplitude rise in sea level relative to the stable craton at the same time as a synchronous onset of tectonic subsidence in widespread basinal and marginal settings of diverse tectonic origin. One plausible mechanism for the tectonic subsidence in the basins and margins is a pulse of intraplate compressive stress. The origin of the large sea level rise relative to the stable craton could reflect an unusually large eustatic sea level change, but we cannot eliminate the possibility of a small component of subsidence or change in dynamic topography of the North American craton. The synchroneity of the sea level rise relative to the craton with the subsidence of basins and margins may be fortuitous, but it is also predicted by recent mantle convection models for the early stages of accretion of

  17. Natural Gas and Hydrate Accumulations in the Aleutian Basin of the Bering Sea

    NASA Astrophysics Data System (ADS)

    Barth, G. A.; Scholl, D. W.; Childs, J. R.

    2003-12-01

    The deep water Aleutian Basin of the Bering Sea is a major storehouse of trapped greenhouse gases. Preliminary volume estimates based on seismic reflection observations easily approach 1000 Tcf of natural gas within the basin. USGS seismic reflection data from the deep water (>3500 m) Bering Sea region include over 20,000 km of single channel profiles coincident with GLORIA sonar tracks acquired during the 1986-7 EEZscan program, plus several older multichannel lines also crossing the deep water Aleutian and Bowers Basins. These airgun-source data all provide images from seafloor to basement, over 3 km of penetration. The basin fill includes generally horizontal and uniform sedimentary reflection sequences, comprising predominantly mudstones and distal turbidites, upon oceanic crust of probable Cretaceous age. In seismic reflection images of these flat-lying sediments, methane chimneys overlain by hydrate caps stand out as distinctive velocity pseudostructures. These velocity-amplitude anomaly structures ("VAMPs") characteristically include a zone of velocity pull-up (attributed to high-seismic-velocity hydrate within the sediment) directly overlying a zone of velocity push-down (attributed to low-seismic-velocity gas in the pore spaces). A prominent hydrate bottom simulating reflection (BSR) is also present throughout the basin. Within the VAMPs, the BSR roughly separates the pull-up from the push-down. Hundreds of VAMPs have been imaged, and thousands must exist within the deep water basin. Individual examples vary widely in lateral extent, focused appearance, and amplitude effects. Some also present a seafloor manifestation of slight doming. Five example case studies are presented, focusing particularly on interval travel time anomalies and quantitative interpretation in terms of presence of hydrate and free gas. Individual large VAMPs (1-3 km across, ˜30 ms pull-up, ˜80 ms push-down) are estimated to contain gas volumes (including hydrate) similar to those of

  18. Cheirimedon foscae sp. nov. (Amphipoda: Lysianassidae: Tryphosinae) from the deep sea Campos Basin, Southwestern Atlantic Ocean.

    PubMed

    Siqueira, Silvana Gomes L; Serejo, Cristiana S

    2014-01-01

    A new species of lysianassid amphipod belonging to the genus Cheirimedon was collected on the continental slope of the Campos Basin, the largest oil reserve in Brazilian waters. This is the first record of the genus Cheirimedon from the Atlantic Ocean, which was previously restricted to the Antarctic and Tasmanian sea. The new species is fully illustrated and compared with related species. Additionally, a world key to the Cheirimedon species is provided. 

  19. Shelf sheet-sand reservoir of the lower Cretaceous Greensand, North Celtic Sea Basin, offshore Ireland

    SciTech Connect

    Winn, R.D. Jr.

    1994-11-01

    Core and log data show that the marine, early to middle Albian {open_quotes}A{close_quotes} Sand of the Aptian to lower Cenomanian Greensand-Gault interval, North Celtic Sea Basin, offshore Ireland, was deposited as an approximately tabular sand body in shelf water depths. The {open_quotes}A{close_quotes} Sand is the major reservoir interval at Kinsale Head and Ballycotton gas fields. The reservoir sandstone is bioturbated, variably glauconitic, shell rich, and least muddy toward its provenance in a local area of the Irish massif and finer grained southeastward into the basin. Thickness and coarseness of the {open_quotes}A{close_quotes} Sand are related, in part, to distance from a narrow area of the paleoshore. Bathymetric control of sand thickness was superimposed on proximal-distal trends. Specifically, thick intervals are inferred to have been deposited in shelf lows, and thin zones were deposited over bathymetric highs. The {open_quotes}A{close_quotes} Sand was not deposited as a ridge sand, and positive relief on the depositional sand body appears to have been minor. Deposition of the Greensand occurred during thermal subsidence of the North Celtic Sea Basin following Early Cretaceous rifting. Overall late Early Cretaceous to Late Cretaceous transgression was interrupted by progradation of the {open_quotes}A{close_quotes} Sand, probably caused by a relative drop in sea level (forced regression). The {open_quotes}A{close_quotes} Sand sheet consists of several units within the central depositional basin. Three slightly coarsening-upward units up to 15 m thick probably are the consequence of high-frequency fluctuations in sea level during progradation. The top of the {open_quotes}A{close_quotes} Sand consists of a several-meter-thick, very glauconitic, muddy sandstone to sandy mudstone. The upper unit accumulated in deepening water following the maximum lowstand.

  20. Microbial eukaryotes in the hypersaline anoxic L'Atalante deep-sea basin.

    PubMed

    Alexander, Eva; Stock, Alexandra; Breiner, Hans-Werner; Behnke, Anke; Bunge, John; Yakimov, Michail M; Stoeck, Thorsten

    2009-02-01

    The frontiers of eukaryote life in nature are still unidentified. In this study, we analysed protistan communities in the hypersaline (up to 365 g l(-1) NaCl) anoxic L'Atalante deep-sea basin located in the eastern Mediterranean Sea. Targeting 18S ribosomal RNA retrieved from the basin's lower halocline (3501 m depth) we detected 279 protistan sequences that grouped into 42 unique phylotypes (99% sequence similarity). Statistical analyses revealed that these phylotypes account only for a proportion of the protists inhabiting this harsh environment with as much as 50% missed by this survey. Most phylotypes were affiliated with ciliates (45%), dinoflagellates (21%), choanoflagelates (10%) and uncultured marine alveolates (6%). Sequences from other taxonomic groups like stramenopiles, Polycystinea, Acantharea and Euglenozoa, all of which are typically found in non-hypersaline deep-sea systems, are either missing or very rare in our cDNA clone library. Although many DHAB sequences fell within previously identified environmental clades, a large number branched relatively deeply. Phylotype richness, community membership and community structure differ significantly from a deep seawater reference community (3499 m depth). Also, the protistan community in the L'Atalante basin is distinctively different from any previously described hypersaline community. In conclusion, we hypothesize that extreme environments may exert a high selection pressure possibly resulting in the evolution of an exceptional and distinctive assemblage of protists. The deep hypersaline anoxic basins in the Mediterranean Sea provide an ideal platform to test for this hypothesis and are promising targets for the discovery of undescribed protists with unknown physiological capabilities.

  1. Microbial eukaryotes in the hypersaline anoxic L'Atalante deep-sea basin.

    PubMed

    Alexander, Eva; Stock, Alexandra; Breiner, Hans-Werner; Behnke, Anke; Bunge, John; Yakimov, Michail M; Stoeck, Thorsten

    2009-02-01

    The frontiers of eukaryote life in nature are still unidentified. In this study, we analysed protistan communities in the hypersaline (up to 365 g l(-1) NaCl) anoxic L'Atalante deep-sea basin located in the eastern Mediterranean Sea. Targeting 18S ribosomal RNA retrieved from the basin's lower halocline (3501 m depth) we detected 279 protistan sequences that grouped into 42 unique phylotypes (99% sequence similarity). Statistical analyses revealed that these phylotypes account only for a proportion of the protists inhabiting this harsh environment with as much as 50% missed by this survey. Most phylotypes were affiliated with ciliates (45%), dinoflagellates (21%), choanoflagelates (10%) and uncultured marine alveolates (6%). Sequences from other taxonomic groups like stramenopiles, Polycystinea, Acantharea and Euglenozoa, all of which are typically found in non-hypersaline deep-sea systems, are either missing or very rare in our cDNA clone library. Although many DHAB sequences fell within previously identified environmental clades, a large number branched relatively deeply. Phylotype richness, community membership and community structure differ significantly from a deep seawater reference community (3499 m depth). Also, the protistan community in the L'Atalante basin is distinctively different from any previously described hypersaline community. In conclusion, we hypothesize that extreme environments may exert a high selection pressure possibly resulting in the evolution of an exceptional and distinctive assemblage of protists. The deep hypersaline anoxic basins in the Mediterranean Sea provide an ideal platform to test for this hypothesis and are promising targets for the discovery of undescribed protists with unknown physiological capabilities. PMID:18826436

  2. Gravity, Magnetics and Geodynamic evolution of the Vavilov and Marsili Backarc Basins in the Tyrrhenian Sea

    NASA Astrophysics Data System (ADS)

    Cocchi, L.; Muccini, F.; Carmisciano, C.; Caratori Tontini, F.; Bortoluzzi, G.; Ligi, M.; D'Oriano, F.; Bonatti, E.

    2012-12-01

    The Southern Tyrrhenian Sea, the youngest basin of the West Mediterranean, is made of two sub-basins partly carpeted by oceanic crust. One is the Vavilov Basin, with crust as old as 5-6 Ma; the other is the Marsili Basin where the seafloor spreading process occurred about 2.0 Ma. Each of the two basins displays a prominent volcanic ridge oriented NNE/SSW that mask the former oceanic spreading axes. In this paper, we present new potential field data obtained from Vavilov and Marsili volcanic systems during the recent cruises R/V Universitatis PROMETHEOUS 2006 and R/V Urania MAVA2011. We performed a detailed description and interpretation of the peculiar patterns of magnetic and gravity anomalies considering the morphostructural features of the oceanic seafloor basin and the particular setting of the two seamounts. Both the Vavilov and Marsili volcanic systems have a similar gravity signature with low average density (2.2 g/cm3) due probably to the eruptive mechanisms that prevailed in the two volcanoes. Both systems show NNE-SSW magnetic stripes, particularly well developed at Marsili. The two seamounts present shallow manifestation of hydrothermal alteration that in the case of Vavilov is completely extinct while in the case of the Marsili, it is still active as confirmed by the presence, on the volcano's summit of hydrothermal chimneys rich in Fe-Mn-oxyhydroxides. The similarity between the two basins may be due to similar geodynamic processes affecting the southern Tyrrhenian at different times. Since the Oligocene, the geodynamic evolution of western Mediterranean Sea was mainly driven by passive sinking of the Ionian-African plate within the European mantle modifying, step by step, the crustal setting of the Valencia region, of the Provençal basin and of the Tyrrhenian Sea. The roll back movement triggered stretching of upper-middle crust of the European plate with a different stress rate inducing variable depleting effects that can recall a typical boudinage

  3. Mitochondrial Genetic Differentiation of Spirlin (Actinopterigii: Cyprinidae) in the South Caspian Sea basin of Iran

    PubMed Central

    Seifali, Mahvash; Arshad, Aziz; Moghaddam, Faezeh Yazdani; Esmaeili, Hamid Reza; Kiabi, Bahram H.; Daud, Siti Khalijah; Aliabadian, Mansour

    2012-01-01

    Background Knowledge about Alburnoides remains lacking relative to many other species, resulting in a lack of a systematic position and taxonomic diagnosis. Basic biological information for Alburnoides has been constructed, and it is necessary to understand further and obtain more information about this species. Its phylogenetic relationships are still debated and no molecular data have been used to study this taxon in Iran. A holistic approach for genetic methods was adopted to analyze possible spirlin population differences at selected centers in the south Caspian Sea basin of Iran. Methods The phylogenetic relationships were determined based on 774 base pairs of the mitochondrial cytochrome b gene of 32 specimens of spirlin from nine locations in the south Caspian Sea drainage basin of Iran. The nucleotide sequences were subjected to phylogenetic analysis using the neighbor-joining, maximum parsimony, maximum likelihood, and Bayesian methods. Results The mitochondrial gene tree largely supports the existence of three major clades. The western populations (clade I) may be considered as Alburnoides eichwaldii, whereas the Talar river populations (clade II) are represented as Alburnoides sp.1 and the eastern populations (clade III) may be distinct taxa of Alburnoides sp.2. Conclusion This molecular evidence supports the hypothesis that A. bipunctatus does not exist in the south Caspian Sea basin of Iran, and that the western and eastern populations are distinct taxa. PMID:22654487

  4. Palaeocommunities, diversity and sea-level change from middle Eocene shell beds of the Paris Basin

    NASA Astrophysics Data System (ADS)

    Dominici, Stefano; Zuschin, Martin

    2016-04-01

    The middle Eocene, a time of global transition from greenhouse to icehouse climate, was approached through high-resolution stratigraphy at a few classic localities of the Paris Basin. Quantitative data on the distribution of molluscan species abundance, collected at 12 different shell beds representative of the middle Lutetian and the lower Bartonian, formed the basis for a palaeoecological study. The succession can be subdivided into a hierarchy of depositional sequences, interpreted as the product of relative sea-level change. Abundance distributions are better correlated with 5th-order depositional sequences than geographic locality, suggesting that sea-level played an important role in the distribution of palaeocommunities. Rarefied diversities were measured and compared with analogous data from modern tropical and warm-temperate intertidal and subtidal communities. The palaeoecological analysis shows that sea-level variation is responsible for a major change in the upper part of the middle Lutetian, leading from high-diversity subtidal to low-diversity intertidal and shallow subtidal palaeocommunities. The study did not confirm that the stage-level drop in species richness documented in this basin is related to the global climatic deterioration. Instead, the global climatic signal might be obscured in the Paris Basin by facies control.

  5. GLORIA side-scan imagery of Aleutian basin, Bering Sea slope and Abyssal plain

    SciTech Connect

    Carlson, P.R.; Cooper, A.K.; Gardner, J.V.; Karl, H.A.; Marlow, M.S.; Stevenson, A.J.; Huggett, Q.; Kenyon, N.; Parson, L.

    1987-05-01

    During July-September 1986, about 700,000 km/sup 2/ of continental slope and abyssal plain of the Aleutian basin, Bering Sea, were insonified with GLORIA (Geological Long Range Inclined Asdic) side-scane sonar. A sonar mosaic displays prominent geomorphic features including the massive submarine canyons of the Beringian and the northern Aleutian Ridge slopes and shows well-defined sediment patterns including large deep-sea channels and fan systems on the Aleutian basin abyssal plain. Dominant erosional and sediment transport processes on both the Beringian and the Aleutian Ridge slopes include varieties of mass movement that range from small debris flows and slides to massive slides and slumps of blocks measuring kilometers in dimension. Sediment-flow patterns that appear to be formed by sheet flow rather than channelized flow extend basinward from the numerous canyons and gullies that incise the slopes of the Beringian margin and of Bowers Ridge and some places along the Aleutian Ridge. These Beringian and Bowers canyon sediment sources, however, appear to have contributed less modern sediment to the Aleutian basin than the large, well-defined channel systems that emanate from Bering, Umnak, and Amchitka submarine canyons and extend for several hundred kilometers across the abyssal plain. This GLORIA imagery emphasizes the important contribution of the Aleutian Ridge to modern sedimentation in the deep Bering Sea.

  6. Oblique opening of Skyros Basin in the North Aegean Sea, based on Morphotectonic Analysis

    NASA Astrophysics Data System (ADS)

    Papanikolaou, Dimitris; Nomikou, Paraskevi; Livanos, Isidoros; Papantoniou, George; Rousakis, Grigoris; Lampridou, Danai

    2015-04-01

    Detailed analysis of swath bathymetry and seismic reflection profiling has revealed the morphotectonic structure of the Skyros Basin in North Aegean Sea (Greece). The overall geometry of the basin is shaped by a major slope discontinuity, separating the continental platform from the continental slope at depths between 200-400m. The basin forms an equilateral triangle. Its base is 50km long NW-SE trending at the southwest, parallel to the Skyros Island, whereas its pic is located at the northeast, north of Lesvos Island. The basin comprises 9 sub-basins at depths varying from 1200m at the southwest to 600m to the northeast and is structurally divided into three parts: i) the eastern part forms a longitudinal semi-graben with one sub-basin trending ENE-WSW of 45km length, but only 5-8 Km width at depths varing between 600-700m. This sub-basin is bounded to the south by a marginal fault of >1.5km throw but with unknown horizontal displacement. ii) the central part that forms the predominant part of the triangle with 45 Km long NW-SE trending base and 70km long axis at the NE-SW direction. The central part corresponds to an assymetric graben with a 70km long major marginal fault with >1500m throw along its southern slopes and a 70 km long antithetic fault with >400m throw along its northern slopes. It comprises 5 sub-basins with depths ranging between 950-700m, bounded by important E-W trending strike slip fault zones, characterized by flower structures, with minor vertical components ranging from a few meters up to 200m. iii) the western part of the basin trends NW-SE, is 55 Km long and 25 Km wide, revealing a NW-SE tectonic graben. It comprises two sub-basins, oriented NW-SE separated by an intermediate transverse fault zone. The throw of the western marginal faults offshore Skyros Island exceeds 1200m, whereas the throw of the parallel faults creating the NW-SE tectonic graben is limited to a few hundreds meters. It should be emphasized that the Alpine basement was

  7. Cassiopidae gastropods, influence of Tethys Sea of the Romualdo Formation (Aptian-Albian), Araripe Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Pereira, Priscilla Albuquerque; Cassab, Rita de Cassia Tardin; Barreto, Alcina Magnólia Franca

    2016-10-01

    The Cassiopidae family belongs to a group of gastropods of the Tethyan Realm, whose origin and dispersion are related a transgression of the Tethys Sea during the Early Cretaceous. The Romualdo Formation in the Araripe Basin, located in Northeast Brazil, presents fossil assemblages with echinoids, bivalves and cassiopid gastropods, indicating a marine sedimentation at the top of the formation. This research reveals three new species of this fauna: Gymnentome (Craginia) beurleni sp. nov., 'Pseudomesalia' ('Pseudomesalia') mennessieri sp. nov and 'Pseudomesalia' ('Pseudomesalia') santanensis sp. nov. We also review two other species: Craginia araripensisBeurlen, 1964 and Gymnentome romualdoiBeurlen, 1964, which we reclassify taxonomically as Paraglauconia (Diglauconia) araripensis and Gymnentome (Gymnentome) romualdoi, respectively; Paraglauconia (Diglauconia) lyrica Maury, 1936 and Gymnentome (Gymnentome) carregozica Maury, 1936 were the first recorded species in the Araripe Basin. The occurrence of these cassiopid gastropod fauna in other basins, such as Sergipe, Potiguar and Parnaíba, indicate the influence of waters coming from the north through the Tethys Sea in the Aptian-Albian and in the marginal continental basins of the Brazilian Northeast.

  8. Influence of regional tectonics on halokinesis in the Nordkapp Basin, Barents Sea

    SciTech Connect

    Nilsen, K.T.; Johansen, J.T.; Vendeville, B.C.

    1996-12-31

    Seismic analysis of salt structures in the Nordkapp Basin, a deep salt basin in the southern Barents Sea, combined with experimental modeling suggests that regional tectonics closely controlled diapiric growth. Diapirs formed in the Early Triassic during basement-involved regional extension. The diapirs then rose rapidly by passive growth and exhausted their source layer. Regional extension in the Middle-Late Triassic triggered down-to-the-basin gravity gliding, which laterally shortened the diapirs. This squeezed salt out of diapir stems, forcing diapirs to rise, extrude, and form diapir overhangs. After burial under more than 1000 m of Upper Triassic-Lower Cretaceous sediments, the diapirs were rejuvenated by a Late Cretaceous episode of regional extension and gravity gliding, which deformed their thick roofs. After extension, diapirs stopped rising and were buried under 1500 m of lower Tertiary sediments. Regional compression of the Barents Sea region in the middle Tertiary caused one more episode of diapiric rise. Diapirs in the Nordkapp Basin are now extinct.

  9. Sea level rise of semi-enclosed basins: deviation of Adriatic and Baltic sea level from the mean global value.

    NASA Astrophysics Data System (ADS)

    Scarascia, Luca; Lionello, Piero

    2015-04-01

    Future sea level rise (SL), which represents today one of the major threats that are caused by climate change, will not be uniform. Regional differences are crucial for 40% of the world population, which is located in the coastal zone. To explore the mechanisms linking regional SL to climate variables is very important in order to provide reliable future projections. This study focuses on two semi-enclosed basins, the Adriatic and Baltic Sea and investigates the deviation of their SL from the mean global value. In fact, past deviations of the SL of these two basins from the global value have been observed and can be attributed to large scale factors (such as teleconnections) and regional factors, such as the inverse barometric effect, the wind stress, the thermosteric and halosteric effects. The final goal of this work is to assess to which extent the Adriatic and Baltic SL will depart from the mean global value in the next decades and at the end of 21st century. This is achieved by analyzing deviations of the mean SL of the Baltic and Adriatic Sea from the global mean SL during the 20th century and investigating which factors can explain such deviations. A multivariate linear regression model is built and used to describe the link between three large scale climate variables which are used as predictors (mean sea level pressure, surface air temperature and precipitation), and the regional SL deviation (the predictand), computed as the difference between the regional and the global SL. At monthly scale this linear regression model provides a good reconstruction of the past variability in the cold season during which it explains 60%-70% of the variance. Summer reconstruction is substantially less successful and it represents presently the main limit of the model skill. This linear regression model, forced by predictors extracted from CMIP5 multi-model simulations, is used to provide projections of SL in the Adriatic and Baltic Sea. On the basis of the projections

  10. Diachronous Growth of Normal Fault Systems in Multiphase Rift Basins: Structural Evolution of the East Shetland Basin, Northern North Sea

    NASA Astrophysics Data System (ADS)

    Claringbould, Johan S.; Bell, Rebecca E.; A-L. Jackson, Christopher; Gawthorpe, Robert L.; Odinsen, Tore

    2015-04-01

    Our ability to determine the structural evolution and interaction of fault systems (kinematically linked group of faults that are in the km to 10s of km scale) within a rift basin is typically limited by the spatial extent and temporal resolution of the available data and methods used. Physical and numerical models provide predictions on how fault systems nucleate, grow and interact, but these models need to be tested with natural examples. Although field studies and individual 3D seismic surveys can provide a detailed structural evolution of individual fault systems, they are often spatially limited and cannot be used examine the interaction of fault systems throughout the entire basin. In contrast, regional subsurface studies, commonly conducted on widely spaced 2D seismic surveys, are able to capture the general structural evolution of a rift basin, but lack the spatial and temporal detail. Moreover, these studies typically describe the structural evolution of rifts as comprising multiple discrete tectonic stages (i.e. pre-, syn- and post-rift). This simplified approach does not, however, consider that the timing of activity can be strongly diachronous along and between faults that form part of a kinematically linked system within a rift basin. This study focuses on the East Shetland Basin (ESB), a multiphase rift basin located on the western margin of the North Viking Graben, northern North Sea. Most previous studies suggest the basin evolved in response to two discrete phases of extension in the Permian-Triassic and Middle-Late Jurassic, with the overall geometry of the latter rift to be the result of selective reactivation of faults associated with the former rift. Gradually eastwards thickening intra-rift strata (deposited between two rift phases) that form wedges between and within fault blocks have led to two strongly contrasting tectonic interpretations: (i) Early-Middle Jurassic differential thermal subsidence after Permian-Triassic rifting; or (ii

  11. Novel eukaryotes from the permanently anoxic Cariaco Basin (Caribbean Sea).

    PubMed

    Stoeck, Thorsten; Taylor, Gordon T; Epstein, Slava S

    2003-09-01

    Present knowledge of microbial diversity is decidedly incomplete (S. J. Giovannoni and M. S. Rappé, p. 47-84, in D. Kirchman, ed., Microbial Ecology of the Oceans, 2000; E. Stackebrandt and T. M. Embley, p. 57-75, in R. R. Colwell and D. J. Grimes, ed., Nonculturable Microorganisms in the Environment, 2000). Protistan phylogenies are particularly deficient and undoubtedly exclude clades of principal ecological and evolutionary importance (S. L. Baldauf, Science 300:1703-1706, 2003). The rRNA approach has been extraordinarily successful in expanding the global prokaryotic record (S. J. Giovannoni and M. S. Rappé, p. 47-84, in D. Kirchman, ed., Microbial Ecology of the Oceans, 2000; E. Stackebrandt and T. M. Embley, p. 57-75, in R. R. Colwell and D. J. Grimes, ed., Nonculturable Microorganisms in the Environment, 2000) but has rarely been used in protistan discovery. Here we report the first application of the 18S rRNA approach to a permanently anoxic environment, the Cariaco Basin off the Venezuelan coast. On the basis of rRNA sequences, we uncovered a substantial number of novel protistan lineages. These included new clades of the highest taxonomic level unrelated to any known eukaryote as well as deep branches within established protistan groups. Three novel lineages branch at the base of the eukaryotic evolutionary tree preceding, contemporary with, or immediately following the earliest eukaryotic branches. These newly discovered protists may retain traits reminiscent of an early eukaryotic ancestor(s).

  12. Chemostratigraphy of Upper Cretaceous chalk sequences in Norwegian-Danish basin and North Sea Central Trough

    SciTech Connect

    Joergensen, N.O.

    1987-05-01

    Geochemical studies of subsurface sections and outcrops in the Upper Cretaceous chalk sequences from the Norwegian-Danish basin and the North Sea Central Trough have resulted in a detailed chemostratigraphy for these strata. The most applicable chemostratigraphic markers are based on the distribution of strontium, magnesium, manganese, the /sup 13/C//sup 12/C ratio, and the variations in the carbonate contents. It is demonstrated that the chemostratigraphic approach is valid at two levels: (1) a superior chemostratigraphy in which deep-sea cores from the Atlantic Ocean and sections from western Europe are correlated on the basis of significant geochemical anomalies and long-term variations most likely induced by oceanic geochemical cycles and sea level fluctuations; (2) a subordinate but detailed intrabasinal chemostratigraphic correlation which primarily reflects the physicochemical conditions in the depositional environment. The Upper Cretaceous chemostratigraphy established in the Danish area allows a detailed correlation between relatively continuous chalk sequences in the Norwegian-Danish basin and the rather condensed and hiati-influenced sections in the oil fields of the North Sea. The results emphasize the applicability of chemostratigraphy in the subsurface exploration for hydrocarbon reservoirs in chalk.

  13. The Red Sea analog for the early Gulf of Mexico: Salt basins on oceanic crust

    SciTech Connect

    Hall, D.J.

    1996-12-31

    New geophysical data from the Red Sea and the Gulf of Mexico support the concept that the early Gulf closely resembled the modern Red Sea. Oceanic crust like that now forming along the axis of the Red Sea basin may underlie much of the continental slope offshore Louisiana and Texas. Original depositional thicknesses greater than 4 km characterize both salt depocenters. The thickest salt overlies oceanic crust, probably for isostatic reasons. Deep crustal detachment faulting in a simple shear model with ductile flow below 15 km and narrow zones (up to 50 km) of severely extended crust on the hanging wall characterizes the early tectonic development. The landward edge of thick (> 2--4 km) salt generally follows the edge of oceanic crust, but the seaward edge is localized by depositional factors, modified by subsequent gravity spreading.

  14. Macroparasite community in molluscs of a tidal basin in the Wadden Sea

    NASA Astrophysics Data System (ADS)

    Thieltges, David W.; Krakau, Manuela; Andresen, Henrike; Fottner, Silke; Reise, Karsten

    2006-12-01

    We provide a quantitative inventory of macroparasites in intertidal molluscs from a tidal basin in the Wadden Sea (eastern North Sea). Gastropods and bivalves contained a species rich macroparasite community consisting of trematodes (26 species), turbellarians (1), nematodes (1), copepods (2) and polychaetes (1) in 3,800 host individuals from 10 host species. Highest parasite burdens were observed in the gastropods Hydrobia ulvae and Littorina littorea and in the bivalves Cerastoderma edule and Mytilus edulis. In contrast, only one parasite species and no trematodes were found in Crepidula fornicata. The parasite community in the molluscs was similar to other Western European localities but some parasite species showed obvious differences, related to the large-scale distribution of intermediate and final hosts. Parasitism seems to be a common phenomenon in molluscs of the Wadden Sea and hence the detrimental effects observed in experiments can be expected to frequently happen in the field.

  15. The deeper structure of the southern Dead Sea basin derived from neural network analysis of velocity and attenuation tomography

    NASA Astrophysics Data System (ADS)

    Braeuer, Benjamin; Haberland, Christian; Bauer, Klaus; Weber, Michael

    2014-05-01

    The Dead Sea basin is a pull-apart basin at the Dead Sea transform fault, the boundary between the African and the Arabian plates. Though the DSB has been studied for a long time, the available knowledge - based mainly on surface geology, drilling and seismic reflection surveys - gives only a partial picture of its shallow structure. Therefore, within the framework of the international DESIRE (DEad Sea Integrated REsearch) project, a dense temporary local seismological network was operated in the southern Dead Sea area. Within 18 month of recording 650 events were detected. In addition to an already published tomography study revealing the distribution of P velocities and the Vp/Vs ratios a 2D P-wave attenuation tomography (parameter Qp) was performed. The neural network technique of Self-organizing maps (SOM) is used for the joint interpretation of these three parameters (Vp, Vp/Vs, Qp). The resulting clusters in the petrophysical parameter space are assigned to the main lithological units below the southern part of the Dead Sea basin: (1) The basin sediments characterized by strong attenuation, high vp/vs ratios and low P velocities. (2) The pre-basin sediments characterized by medium to strong attenuation, low Vp/Vs ratios and medium P velocities. (3) The basement characterized by low to moderate attenuation, medium vp/vs ratios and high P velocities. Thus, the asymmetric southern Dead Sea basin is filled with basin sediments down to depth of 7 to 12 km. Below the basin sediments, the pre-basin sediments are extending to a depth between 13 and 18 km.

  16. Seismic stratigraphy of the Tyrrhenian Sea (western Mediterranean Sea) based on ODP leg results: Consequences for the basin evolution

    SciTech Connect

    Mascle, J.; Rehault, J.

    1988-08-01

    A revision of the seismic stratigraphy of the Tyrrehenian Sea is based on detailed calibrations between a dense network of single-channel seismic reflection lines, about 2,000 km of recent multichannel seismic profiles, and the seven sites drilled within the Tyrrhenian in 1986 during the Ocean Drilling Program Leg 107. These correlations substantiate that the basin has been submitted to a succession of short-lived rifting episodes progressively shifting toward the southeast and leading to the local creation of discrete oceanic crust floored basins. Most of the Tyr-rhenian basins and margins have been created in a very short time (between 8 and 2 m.y. in age) and are much younger than previously anticipated. Rifting processes have been acting on a very heterogeneous continental basement (including several suture zones); drifting has created small oceanic subbasins also floored by a very heterogeneous magmatic basement (including serpentinized peridotites). The hypothesis of an asymmetric evolution facilitated by one or several crustal detachment fault systems and driven by geodynamic mechanisms of the bordering collision/subduction is considered.

  17. Modelling the impact of Global Change on the hydrological system of the Aral Sea basin

    NASA Astrophysics Data System (ADS)

    Aus der Beek, T.; Voß, F.; Flörke, M.

    During the last decades the Aral Sea basin has suffered an enormous depletion of water resources within its lakes and rivers with consequences for society, economy, and nature. Within this model study, Global Change impacts on the Amu Darya and Syr Darya rivers, as well as on the Aral Sea itself, are being analysed for the period 1958-2002. In a first step, a multi-annual data base on crop specific irrigated areas has been set-up, which has then been integrated in the hydrology and water use model WaterGAP3. As a second step, anthropogenic water abstractions have been calculated, which were then assimilated in the simulation of river runoff of the Amu Darya and Syr Darya. The last step includes the simulation of the water balance of the Aral Sea, by taking into account modelled river inflow. Within WaterGAP3, the water use module has been switched on and off to separate the impacts of Climate and Global Change (i.e. water abstractions). Irrigation water abstractions are very well represented by WaterGAP3 and lie within the range of reported values. Modelled river discharge also shows a good fit to observed data, whereas phases are in sync but volumes are slightly overestimated. Simulated volumes of the Aral Sea itself are well reflected by the model, though results for the period 1990-2002 are too high. In this study, the Climate Change impacts are much smaller (14%) than the water use impacts (86%) on the shrinkage of the Aral Sea. Finally, an outlook on potential scenario model studies is given, which could analyse the different strategies of mitigation and adaptation of Global Change in the Aral Sea basin.

  18. Salt diapirs in the Dead Sea basin and their relationship to Quaternary extensional tectonics

    USGS Publications Warehouse

    Al-Zoubi, A.; ten Brink, U.S.

    2001-01-01

    Regional extension of a brittle overburden and underlying salt causes differential loading that is thought to initiate the rise of reactive diapirs below and through regions of thin overburden. We present a modern example of a large salt diapir in the Dead Sea pull-apart basin, the Lisan diapir, which we believe was formed during the Quaternary due to basin transtension and subsidence. Using newly released seismic data that are correlated to several deep wells, we determine the size of the diapir to be 13 x 10 km. its maximum depth 7.2 km. and its roof 125 m below the surface. From seismic stratigraphy, we infer that the diapir started rising during the early to middle Pleistocene as this section of the basin underwater rapid subsidence and significant extension of the overburden. During the middle to late Pleistocene, the diapir pierced through the extensionally thinned overburden, as indicated by rim synclines, which attest to rapid salt withdrawal from the surrounding regions. Slight positive topography above the diapir and shallow folded horizons indicate that it is still rising intermittently. The smaller Sedom diapir, exposed along the western bounding fault of the basin is presently rising and forms a 200 m-high ridge. Its initiation is explained by localized E-W extension due monoclinal draping over the edge of a rapidly subsiding basin during the early to middle Pleistocene, and its continued rise by lateral squeezing due to continued rotation of the Amazyahu diagonal fault. ?? 2001 Elsevier Science Ltd. All rights reserved.

  19. Hydrographic properties of separate residual basins of the Aral Sea: in situ observations and intercomparison

    NASA Astrophysics Data System (ADS)

    Izhitskiy, Alexander; Zavialov, Peter; Kurbaniyazov, Abilgazi

    2015-04-01

    Desiccation of the Aral Sea continued intensively throughout the last decade. As reported by NASA and widely commented in mass media, the eastern lobe of the Southern Sea (i.e., the Large Aral Sea) dried up completely in the summer of 2014. Only the western basin of the Large Sea remains there, and the separation of its northernmost portion called Chernyshev Bay is imminent. The northern part of the former Aral Sea known as the Small Aral Sea has separated decades ago and eventually stabilized thanks to a man-made dam trapping all of the Syr Daria discharges in the Small Sea. In addition, the Tschebas Bay, formerly a large bay of the Aral Sea, has evolved into a separate lake with relatively stable boundaries. In this way, the present-day Aral Sea should be considered as a system of separated water bodies with a common origin but different fates and very different physical, chemical, and biological features. In the presented study, we focus on hydrophysical state of the newly individual parts of the former Aral Sea. The comparative investigation is based on field data collected during two surveys of Shirshov Institute of Oceanology to the Aral Sea which took place in the fall season of 2014. In situ measurements including CTD profiling and water sampling were carried in the central western basin of the Large Aral (Aktumsuk area), in the northern extremity of the western Large Aral (Chernyshev bay), in Tschebas Lake, and the western part of the Small Sea (Shevchenko Bay). The analysis of direct observations together with the satellite data allows clarifying main processes and factors determining the physical state of the residual water bodies. According to the results of the in situ observations, three different types of hydrographic structure were documented in the lakes of the former Aral Sea. Salinity of Tschebas Lake water was around 92 g/kg, with the water column fully mixed from surface to bottom. The CTD measurements conducted in the Shevchenko bay of the

  20. Neotectonic of Dead Sea pull-apart basin. A new tectonic model for its northern closure

    NASA Astrophysics Data System (ADS)

    Al-Awabdeh, Mohammad; Pérez-Peña, J. Vicente; Azañón, J. Miguel; Booth-Rea, Guillermo

    2014-05-01

    The Dead Sea is a pull-apart basin formed by the relative motion of two active fault segments of the southern Dead Sea Transform Fault system (DSTF); the Wadi Araba Fault (WAF) and the Jordan Valley Fault (JVF) in northwest Jordan. Both of them are sinistral strike slip faults, however, the WAF has slightly faster slip-rate than the JVF. The northern termination of the Dead Sea basin is not well constrained, without clear transverse structures closing the basin. However, geophysical data suggest an abrupt thinning in this northern termination. Based on fieldwork and observations of recent tectonic structures, we suggest that the northern closure of this pull-apart basin corresponds to an active NW-SE normal fault system to the north of the Kafrain Dam (28 km southwest Amman; the capital of Jordan). These normal faults constitute a transtensional zone formed by the partial reactivation of two major structures; the Shueib and the Amman Hallabat structures (SHS and AHS). Normal faults dipping SW present low to moderate throws, lateral ramps coalescing in the SHS, and probably they merge into a low-dipping main plane. This fault system is also the responsible of the extension of the upper Cretaceous formations to the NE of Kafrain Dam and has associated colluvial wedges of Holocene sediments, indicating a seismic component with related small to medium earthquakes. This work reveals the Quaternary reactivation of tectonic structures that thought inactive in the Neogene and how they accommodate part of the stress in the region alongside with the DSFT.

  1. Back-arc basin opening and closure along the southern margin of the Sea of Japan

    NASA Astrophysics Data System (ADS)

    Sato, Hiroshi; Claringbould, Johan; Ishiyama, Tatsuya; Kato, Naoko; Abe, Susumu; Kawasaki, Shinji

    2016-04-01

    Following the tsunami disaster produced by 2001 Off-Tohoku earthquake (M9) along the Pacific coast of Japan, the Japanese government started an intense evaluation of tsunami hazards. This evaluation spanned along the full Japanese coast, including the Sea of Japan coast on the western side of the Japan arc. In the Sea of Japan, tsunamis are produced by crustal faults. As the longer interval of faulting activity, the historical records of tsunamis in the Sea of Japan are not enough for the evaluation of tsunami height. Thus, the evaluation is carried out based on structural analyses of the margin of the Sea of Japan. To get better understanding of the present-day structural geometry and develop a source-fault model in this region, intense seismic reflection profiling has been carried out since 2013. We introduce the results of the seismic reflection profiles and discuss the structural evolution of the southern margin of the Sea of Japan. 2D seismic reflection profiles were acquired using 1950 cu. in. air-gun and 2100 m streamer cable. The seismic profiles provide the image image up to 3 seconds TWT. The southern margin of the Sea of Japan was produced by back-arc opening and post-rift deformation, and the structural evolution of this area is divided into several stages: rifting (25 - 14 Ma), post-rift compression (14 - 5 Ma), weak thrusting (5 - 1 Ma), and strike-slip deformation (1 Ma to present). During the rifting stage that is associated with the fan-shaped opening of the Sea of Japan, grabens and half-grabens were formed trending parallel to the extension of SW-Japan arc. These grabens were filled by syn-rift sediments, and the maximum thickness of basin fill is observed along the southern margin of the rifted crust. The opening of the Sea of Japan ceased as a result of the collision of Izu-Bonin-Mariana arc system at the Izu collision zone on the central part of Honshu, Japan. Soon after the this event, the young Shikoku basin within the Philippine Sea plate

  2. Tectonic Subsidence Analysis of the Pearl River Mouth Basin, Northern South China Sea

    NASA Astrophysics Data System (ADS)

    Tang, X.; Huang, S. S. X. E. C.; Zhuang, W.; LIU, Z.; Duan, W.; Hu, S.

    2015-12-01

    The Pearl River Mouth Basin (PRMB hereafter) in the northern margin of the South China Sea has attracted great attention not only because of its special tectonic location but also for its abundant hydrocarbon resources. Tectonic evolution controls the petroleum geological condition of hydrocarbon-bearing basins. Efforts have been made to understand the tectonic evolution of this basin. However, many issues about the tectonic features and the evolution process of this basin, such as the age of the breakup unconformities and the anomalously accelerated subsidence during the post-rifting stage, remain controversial. Here we employ tectonic subsidence analysis of sedimentary basins, a technique of removing isostatic loading and compaction effects by back-stripping, to investigate the tectonic controls on the basin formation of the PRMB. We performed the analysis on 4 drill wells and 43 synthetic wells constructed based on recently acquired seismic profiles. The result shows that tectonic subsidence in the eastern sags of the PRMB began to decrease at ~30Ma while in the western sags the onset was ~23.8Ma. This suggests that the break-up time i.e. the end of rifting in the PRMB is earlier in the eastern sags than in the western sags. Abnormally accelerated tectonic subsidence occurred between 17.5-16.4Ma during the post-rifting stage, at an average subsidence rate as high as 301.9m/Ma. This phenomenon discriminates the PRMB from the category of classical Atlantic passive continental marginal basins, of which the tectonic subsidence during the post-rifting stage decays exponentially. The main objective of this paper is to provide insights into the geological and geodynamic evolution of the PRMB. The result bears significance to hydrocarbon exploration in this region.

  3. Anatomy of mass transport deposits in the Dead Sea: sedimentary processes in an active tectonic hypersaline basin

    NASA Astrophysics Data System (ADS)

    Waldmann, Nicolas; Hadzhiivanova, Elitsa; Neugebauer, Ina; Brauer, Achim; Schwab, Markus; Frank, Ute; Dulski, Peter

    2014-05-01

    Continental archives such as interplate endorheic lacustrine sedimentary basins provide an excellent source of data for studying regional climate, seismicity and environmental changes through time. Such is the case for the sediments that were deposited in the Dead Sea basin, a tectonically active pull-apart structure along the Dead Sea fault (DSF). This elongated basin is characterized by steep slopes and a deep and flat basin-floor, which are constantly shaped by seismicity and climate. In this study, we present initial results on the sedimentology and internal structure of mass transport deposits in the Pleistocene Dead Sea. The database used for this study consists of a long core retrieved at ~300 m water depth in the deepest part of the Dead Sea as part of an international scientific effort under the auspice of the ICDP. Micro-facies analysis coupled by elemental scanning (µXRF), granulometry and petrophysical measurements (magnetic susceptibility) have been carried out on selected intervals in order to decipher and identify the source-to-sink processes and controlling mechanisms behind the formation of mass transport deposits. The findings of this study allowed defining and characterizing the mass transport deposits into separate sedimentary facies according to the lake level and limnological conditions. Investigating sediments from the deep Dead Sea basin allowed better understanding and deciphering the depositional processes in relation with the tectonic forces shaping this basin.

  4. Recognition of relict Mesozoic Dongsha Basin in the northern margin, South China Sea and its implication

    NASA Astrophysics Data System (ADS)

    Yan, Pin; Wang, Yanlin

    2015-04-01

    The Pearl River Mouth Basin (PRMB) is dominated by NE-trending rift architecture produced mainly during Cenozoic Era. It comprises a series of grabens built up with thick Paleogene and thick Neogene sediments, up to 12000 m, and dividing basement highs composing Yanshanian granitic rocks. Though previously considered as one constituent part of PRMB in the southeast, Dongsha Basin displays major differences in sedimentary architecture and tectonic framework. Firstly, Dongsha Basin is characterized by a prominent angular unconformity, interpreted as a spectacular planation or rough erosion surface which separates the sediment column into two distinct parts. It is interpreted with accumulating seismic and drill data that the underlying strata comprise Early Cretaceous terrestrial, Jurassic marine and possibly Triassic sedimentary rocks totaling to 4~9 km thick, whereas the overlying strata are very thin (usually 0.5~1 km in whole) composing mainly Neogene sediments. The major sedimentary hiatus between them corresponds to the Late Cretaceous to mid-Miocene Epoch, well during the rifting to spreading process when the PRMB developed. Secondly, unlike the PRMB, the Dongsha Basin has suffered considerably less extension except its boundary areas, and actually remained as a relatively stable block though Cenozoic Era. Moreover, there are a few compressive open fold structures within the buried Mesozoic strata over the central Dongsha Basin. These folds trend in NNE and are characterized mostly by few minor growing upthrust faults with offsets in the order of few tens to hundreds meter. The upthrust faults dipped mostly southeastward against the northwestward subduction of paleo-Pacific plate as postulated in other previous study. The blind folds featured more like back-thrust growth tectonics, formed a broad NNE-SSW trending belt, obviously oblique to the trend of northern margin of the South China Sea and the PRMB as well. In a few recent models, the most prominent

  5. Sequence stratigraphy and hydrocarbon potential of the Phu Khanh Basin offshore central Vietnam, South China Sea

    SciTech Connect

    Lee, G.H.; Watkins, J.S.

    1996-12-31

    The Phu Khanh Basin offshore central Vietnam is one of the few untested basins on the Vietnam margin of the South China Sea. Analysis of over 1,600 km of multi-channel seismic reflection data indicates that the Phu Khanh Basin follows a typical rift-margin order: faulted basement, synrift sedimentation, a breakup unconformity, and postrift sedimentation. Postrift sedimentation consists of a transgressive phase characterized by ramp-like depositional geometries followed by a regressive phase characterized by prograding sequences. An early middle Miocene unconformity separates these two phases. During the transgressive phase rising sea level provided favorable conditions for carbonate buildup development. The regressive interval contains a number of third-order depositional sequences composed of seismically resolvable lowstand, highstand, and rarely, transgressive systems tracts. Lacustrine sediments deposited in graben and half-graben lakes during the rifting stage are probably the principal source rocks. Fractured and/or weathered basement, carbonate complexes, basinfloor fans, and shallows water sands may have good reservoir quality. Potential traps include basement hills, carbonate complexes, fault taps, and stratigraphic traps within lowstand systems tracts. Hydrocarbon indicators such as flat spots, bright spots, gas chimneys with gas mounds on the seafloor occur at a number of locations.

  6. Sequence stratigraphy and hydrocarbon potential of the Phu Khanh Basin offshore central Vietnam, South China Sea

    SciTech Connect

    Lee, G.H. ); Watkins, J.S. )

    1996-01-01

    The Phu Khanh Basin offshore central Vietnam is one of the few untested basins on the Vietnam margin of the South China Sea. Analysis of over 1,600 km of multi-channel seismic reflection data indicates that the Phu Khanh Basin follows a typical rift-margin order: faulted basement, synrift sedimentation, a breakup unconformity, and postrift sedimentation. Postrift sedimentation consists of a transgressive phase characterized by ramp-like depositional geometries followed by a regressive phase characterized by prograding sequences. An early middle Miocene unconformity separates these two phases. During the transgressive phase rising sea level provided favorable conditions for carbonate buildup development. The regressive interval contains a number of third-order depositional sequences composed of seismically resolvable lowstand, highstand, and rarely, transgressive systems tracts. Lacustrine sediments deposited in graben and half-graben lakes during the rifting stage are probably the principal source rocks. Fractured and/or weathered basement, carbonate complexes, basinfloor fans, and shallows water sands may have good reservoir quality. Potential traps include basement hills, carbonate complexes, fault taps, and stratigraphic traps within lowstand systems tracts. Hydrocarbon indicators such as flat spots, bright spots, gas chimneys with gas mounds on the seafloor occur at a number of locations.

  7. Basin-scale variability in the Labrador Sea from TOPEX/POSEIDON and Geosat altimeter data

    NASA Astrophysics Data System (ADS)

    Han, Guoqi; Ikeda, Moto

    1996-12-01

    The TOPEX/POSEIDON altimeter data and the Geosat altimeter data from the Exact Repeat Mission (ERM) have been analyzed to show the basin-scale features of annual sea surface height anomalies in the Labrador Sea. A complex empirical orthogonal function (CEOF) analysis is used to extract spatial and temporal patterns of altimetric sea surface height anomalies. The analysis of TOPEX/POSEIDON data has revealed that the first eigenmode has an annual variation with amplitudes of ˜5 cm, positive in summer and negative in winter. The Geosat data analysis implies similar results but shows only the sea surface height variabilities relative to those of the subtropical gyre circulation and the North Atlantic Current due to an orbit error correction. The steric height anomalies of the climatological monthly-mean Levitus data and the sea surface height anomalies of a wind-driven barotropic model are also analyzed using the CEOF technique. The annual cycle in the Levitus data, dominated by thermal expansion, has an amplitude of ˜4 cm and is nearly in phase with the TOPEX/POSEIDON data. The wind-driven annual signal is approximately in phase with the TOPEX/POSEIDON and Levitus data, but its amplitude is less than ˜1 cm. A correlation analysis suggests that the basin-scale features deduced from TOPEX/POSEIDON data are dominated by the steric height variability of the Levitus data, supplemented to much less extent by the wind-driven response of the barotropic model. The Geosat results are found to represent the steric effect only. It is modified by the orbit error correction so much that the phase changes by 180°.

  8. Linear sea-level response to abrupt ocean warming of major West Antarctic ice basin

    NASA Astrophysics Data System (ADS)

    Mengel, M.; Feldmann, J.; Levermann, A.

    2016-01-01

    Antarctica's contribution to global sea-level rise has recently been increasing. Whether its ice discharge will become unstable and decouple from anthropogenic forcing or increase linearly with the warming of the surrounding ocean is of fundamental importance. Under unabated greenhouse-gas emissions, ocean models indicate an abrupt intrusion of warm circumpolar deep water into the cavity below West Antarctica's Filchner-Ronne ice shelf within the next two centuries. The ice basin's retrograde bed slope would allow for an unstable ice-sheet retreat, but the buttressing of the large ice shelf and the narrow glacier troughs tend to inhibit such instability. It is unclear whether future ice loss will be dominated by ice instability or anthropogenic forcing. Here we show in regional and continental-scale ice-sheet simulations, which are capable of resolving unstable grounding-line retreat, that the sea-level response of the Filchner-Ronne ice basin is not dominated by ice instability and follows the strength of the forcing quasi-linearly. We find that the ice loss reduces after each pulse of projected warm water intrusion. The long-term sea-level contribution is approximately proportional to the total shelf-ice melt. Although the local instabilities might dominate the ice loss for weak oceanic warming, we find that the upper limit of ice discharge from the region is determined by the forcing and not by the marine ice-sheet instability.

  9. Trichoptera biodiversity of the Aegean and Adriatic sea basins in the republic of Kosovo.

    PubMed

    Ibrahimi, Halil; Kučinić, Mladen; Gashi, Agim; Grapci-Kotori, Linda

    2014-01-01

    We present the first preliminary inventory of Trichoptera taxa in the Aegean and Adriatic Sea basins in Kosovo that have previously received poor and fragmentary attention. Adult caddisflies were collected using ultraviolet (UV) light traps in 13 stations in areas of the Aegean Sea and Adriatic Sea drainage basins in Kosovo. Nineteen species out of 82, reported in this article, are first records for the Kosovo caddisfly fauna. Five genera are recorded for the first time in Kosovo: Brachycentrus, Ecclisopteryx, Psilopteryx, Thremma, and Oecetis. During this investigation, we found several Southeastern European endemic and rare species whose previous known distribution was limited to particular areas of this region, as well as other species whose distribution is considerably enlarged by this investigation: Polycentropus ierapetra, Polycentropus irroratus, Chaetopteryx stankovici, Drusus schmidi, Drusus tenellus, Potamophylax goulandriourum, Oecetis notata, and Notidobia melanoptera. Even though this article is a result of a limited sampling effort, it increases the number of Trichoptera taxa recorded for the Republic of Kosovo to 131.

  10. Trichoptera biodiversity of the Aegean and Adriatic sea basins in the republic of Kosovo.

    PubMed

    Ibrahimi, Halil; Kučinić, Mladen; Gashi, Agim; Grapci-Kotori, Linda

    2014-01-01

    We present the first preliminary inventory of Trichoptera taxa in the Aegean and Adriatic Sea basins in Kosovo that have previously received poor and fragmentary attention. Adult caddisflies were collected using ultraviolet (UV) light traps in 13 stations in areas of the Aegean Sea and Adriatic Sea drainage basins in Kosovo. Nineteen species out of 82, reported in this article, are first records for the Kosovo caddisfly fauna. Five genera are recorded for the first time in Kosovo: Brachycentrus, Ecclisopteryx, Psilopteryx, Thremma, and Oecetis. During this investigation, we found several Southeastern European endemic and rare species whose previous known distribution was limited to particular areas of this region, as well as other species whose distribution is considerably enlarged by this investigation: Polycentropus ierapetra, Polycentropus irroratus, Chaetopteryx stankovici, Drusus schmidi, Drusus tenellus, Potamophylax goulandriourum, Oecetis notata, and Notidobia melanoptera. Even though this article is a result of a limited sampling effort, it increases the number of Trichoptera taxa recorded for the Republic of Kosovo to 131. PMID:25434031

  11. Fluvial response to tectonics and sea level change in foreland basins

    SciTech Connect

    Angevine, C.L. ); Posmentier, H.W. )

    1990-05-01

    Fluvial responses to a variety of tectonic and sea level variations have been modeled for foreland sedimentary basins. Sea level cycles encompass three orders of magnitude: fifth-order cycles ({approximately} 10{sup 4}-10{sup 5} yr), fourth-order cycles ({approximately} 10{sup 5}-10{sup 6} yr), and third-order cycles ({approximately}10{sup 4}-10{sup 7} yr). For cycles in the fourth- to fifth-order range, the rates of eustatic change overwhelm the rates of subsidence and, consequently, tectonic considerations are insignificant. However, during third-order cycles of sea level change, the rates of sea level change and tectonic subsidence may be comparable, and the evolution of the fluvial section can be complicated. Two end-member responses to eustatic fall are considered: (1) the situation where the point to which the streams are adjusted (i.e., the shoreline) is located seaward of the zone of maximum subsidence rate due to flexural loading by the fold and thrust belt, and (2) the situation where the shoreline lies within the zone of maximum subsidence rate. In the first case, modeling suggests that fluvial aggradation continues, unaffected by eustatic change. Consequently, sequence boundaries associated with sea level change are not recognized here. In the second case, the response is more complex, and a variety of responses are possible depending on rates of subsidence and sediment flux, and the slope of the profile exposed by relative sea level fall. Under most circumstances, fluvial aggradation will continue, albeit at lower rate than had sea level remained constant.

  12. Transplant experiments uncover Baltic Sea basin-specific responses in bacterioplankton community composition and metabolic activities.

    PubMed

    Lindh, Markus V; Figueroa, Daniela; Sjöstedt, Johanna; Baltar, Federico; Lundin, Daniel; Andersson, Agneta; Legrand, Catherine; Pinhassi, Jarone

    2015-01-01

    Anthropogenically induced changes in precipitation are projected to generate increased river runoff to semi-enclosed seas, increasing loads of terrestrial dissolved organic matter and decreasing salinity. To determine how bacterial community structure and functioning adjust to such changes, we designed microcosm transplant experiments with Baltic Proper (salinity 7.2) and Bothnian Sea (salinity 3.6) water. Baltic Proper bacteria generally reached higher abundances than Bothnian Sea bacteria in both Baltic Proper and Bothnian Sea water, indicating higher adaptability. Moreover, Baltic Proper bacteria growing in Bothnian Sea water consistently showed highest bacterial production and beta-glucosidase activity. These metabolic responses were accompanied by basin-specific changes in bacterial community structure. For example, Baltic Proper Pseudomonas and Limnobacter populations increased markedly in relative abundance in Bothnian Sea water, indicating a replacement effect. In contrast, Roseobacter and Rheinheimera populations were stable or increased in abundance when challenged by either of the waters, indicating an adjustment effect. Transplants to Bothnian Sea water triggered the initial emergence of particular Burkholderiaceae populations, and transplants to Baltic Proper water triggered Alteromonadaceae populations. Notably, in the subsequent re-transplant experiment, a priming effect resulted in further increases to dominance of these populations. Correlated changes in community composition and metabolic activity were observed only in the transplant experiment and only at relatively high phylogenetic resolution. This suggested an importance of successional progression for interpreting relationships between bacterial community composition and functioning. We infer that priming effects on bacterial community structure by natural episodic events or climate change induced forcing could translate into long-term changes in bacterial ecosystem process rates. PMID

  13. Clustering and interpretation of local earthquake tomography models in the southern Dead Sea basin

    NASA Astrophysics Data System (ADS)

    Bauer, Klaus; Braeuer, Benjamin

    2016-04-01

    The Dead Sea transform (DST) marks the boundary between the Arabian and the African plates. Ongoing left-lateral relative plate motion and strike-slip deformation started in the Early Miocene (20 MA) and produced a total shift of 107 km until presence. The Dead Sea basin (DSB) located in the central part of the DST is one of the largest pull-apart basins in the world. It was formed from step-over of different fault strands at a major segment boundary of the transform fault system. The basin development was accompanied by deposition of clastics and evaporites and subsequent salt diapirism. Ongoing deformation within the basin and activity of the boundary faults are indicated by increased seismicity. The internal architecture of the DSB and the crustal structure around the DST were subject of several large scientific projects carried out since 2000. Here we report on a local earthquake tomography study from the southern DSB. In 2006-2008, a dense seismic network consisting of 65 stations was operated for 18 months in the southern part of the DSB and surrounding regions. Altogether 530 well-constrained seismic events with 13,970 P- and 12,760 S-wave arrival times were used for a travel time inversion for Vp, Vp/Vs velocity structure and seismicity distribution. The work flow included 1D inversion, 2.5D and 3D tomography, and resolution analysis. We demonstrate a possible strategy how several tomographic models such as Vp, Vs and Vp/Vs can be integrated for a combined lithological interpretation. We analyzed the tomographic models derived by 2.5D inversion using neural network clustering techniques. The method allows us to identify major lithologies by their petrophysical signatures. Remapping the clusters into the subsurface reveals the distribution of basin sediments, prebasin sedimentary rocks, and crystalline basement. The DSB shows an asymmetric structure with thickness variation from 5 km in the west to 13 km in the east. Most importantly, a well-defined body

  14. Crustal structure of the western Yamato Basin, Japan Sea, revealed from seismic survey

    NASA Astrophysics Data System (ADS)

    No, T.; Sato, T.; Kodaira, S.; Miura, S.; Ishiyama, T.; Sato, H.

    2015-12-01

    The Yamato Basin is the second largest basin of the Japan Sea. This basin is important to clarify its formation process. Some studies of crustal structure had been carried out in the Yamato Basin (e.g. Ludwig et al., 1975; Katao, 1988; Hirata et al., 1989; Sato et al., 2006). However, the relationship between formation process and crustal structure is not very clear, because the amount of seismic exploration data is very limited. In addition, since there is ODP Leg 127 site 797 (Tamaki et al., 1990) directly beneath our seismic survey line, we contributed to the study on the formation of the Yamato Basin by examining the relation between the ODP results and our results. During July-August 2014, we conducted a multi-channel seismic (MCS) survey and ocean bottom seismometer (OBS) survey to study the crustal structure of the western Yamato Basin. We present an outline of the data acquisition and results of the data processing and preliminary interpretations from this study. As a result of our study, the crust, which is about 12 km thick, is thicker than standard oceanic crust (e.g., Spudich and Orcutt, 1980; White et al., 1992) revealed from P-wave velocity structure by OBS survey. A clear reflector estimated to be the Moho can be identified by MCS profiles. The characteristics of the sedimentary layer are common within the survey area. For example, a strong coherent reflector that is estimated to be an opal-A/opal-CT BSR (bottom simulating reflector) (Kuramoto et al., 1992) was confirmed in the sediment of all survey lines. On the other hand, a coherent reflector in the crust was confirmed in some lines. It is identified as this reflector corresponding with the deformation structure in the sediment and basement.

  15. Crustal and basin evolution of the southwestern Barents Sea: From Caledonian orogeny to continental breakup

    NASA Astrophysics Data System (ADS)

    Gernigon, L.; Brönner, M.; Roberts, D.; Olesen, O.; Nasuti, A.; Yamasaki, T.

    2014-04-01

    A new generation of aeromagnetic data documents the post-Caledonide rift evolution of the southwestern Barents Sea (SWBS) from the Norwegian mainland up to the continent-ocean transition. We propose a geological and tectonic scenario of the SWBS in which the Caledonian nappes and thrust sheets, well-constrained onshore, swing from a NE-SW trend onshore Norway to NW-SE/NNW-SSE across the SWBS platform area. On the Finnmark and Bjarmeland platforms, the dominant inherited magnetic basement pattern may also reflect the regional and post-Caledonian development of the late Paleozoic basins. Farther west, the pre-breakup rift system is characterized by the Loppa and Stappen Highs, which are interpreted as a series of rigid continental blocks (ribbons) poorly thinned as compared to the adjacent grabens and sag basins. As part of the complex western rift system, the Bjørnøya Basin is interpreted as a propagating system of highly thinned crust, which aborted in late Mesozoic time. This thick Cretaceous sag basin is underlain by a deep-seated high-density body, interpreted as exhumed high-grade metamorphic lower crust. The abortion of this propagating basin coincides with a migration and complete reorganization of the crustal extension toward a second necking zone defined at the level of the western volcanic sheared margin and proto-breakup axis. The abortion of the Bjørnøya Basin may be partly explained by its trend oblique to the regional, inherited, structural grain, revealed by the new aeromagnetic compilation, and by the onset of further weakening later sustained by the onset of magmatism to the west.

  16. Crustal and basin evolution of the southwestern Barents Sea: from the Caledonian orogeny to continental breakup

    NASA Astrophysics Data System (ADS)

    Gernigon, Laurent; Brönner, Marco; Roberts, David; Olesen, Odleiv

    2013-04-01

    A new generation of aeromagnetic data documents the post-Caledonian tectonic evolution of the southwestern Barents Sea (SBS) up to the continent-ocean transition. Clear evidence of reactivation of Caledonian structures controlling both, Late Palaeozoic and Mesozoic basins can be observed at the edge of the Hammerfest and Nordkapp basins where reactivated low-angle detachments are observed on seismics. Our new aeromagnetic surveys confirm most of the previous structural elements, but new features appear and illustrate the complexity of the pre-Permian tectonic and the basement architecture in the SBS. We propose an updated tectonic scenario of the SBS where the Caledonian nappes and thrust sheets, well constrained onshore, swing anticlockwise from a NE-SW trend close to the Varanger Peninsula to NW-SE across the Nordkapp Basin and the Bjarmeland Platform. On the Bjarmeland Platform, the dominant magnetic grain is clearly NNW-SSE. We show that this pattern reflects a regional pre-Permian system involving several Caledonian thrust sheets that possibly collapsed and controlled the post-Caledonian late Palaeozoic rift development of the SBS. We also consider that this model can explain the later development of the SBS. One specific case is the Bjørnøya Basin, located between the Loppa and Stappen highs which are interpreted as a series of rigid and poorly thinned continental blocks (ribbons) flanked by the Hammerfest and Bjørnøya basins and the basins of the Vestbakken volcanic province. As part of this extensive complex system, the Bjørnøya Basin is interpreted as a extensively thinned and propagating system that aborted in Late Mesozoic time. This thick, Cretaceous sag basin is characterised by a deep high-density body, interpreted as a combination of exhumed lower crust and/or potential serpentinised mantle as suggested by potential field modelling. The abortion of this propagating basin may be partly explained by its trend, which is oblique to the inherited

  17. Crustal architecture of the eastern margin of Japan Sea: back-arc basin opening and contraction

    NASA Astrophysics Data System (ADS)

    No, T.; Sato, T.; Takahashi, N.; Kodaira, S.; Kaneda, Y.; Ishiyama, T.; Sato, H.

    2012-12-01

    Although large earthquakes such as the 1964 Niigata earthquake (M 7.5), 1983 Nihonkai-Chubu earthquake (M 7.8), and 1993 Hokkaido Nansei-Oki earthquake (M 7.8) have caused large amounts of damage to the eastern margin of the Japan Sea, a substantial number of seismic studies have been conducted for the seismogenic zone on the Pacific Ocean side of Japan. In addition, the detail of the source fault model for the eastern margin of the Japan Sea is not well defined for all cases. This highlights the need for further studies to investigate seismic imaging. Therefore, we have collaborated with other Japanese research institutions for a project titled "Priority Investigations of Strain Concentration Areas" (which is funded by Special Coordination Funds for Promoting Science and Technology, Japan). This project has conducted seismic surveys from 2009 to 2012 using the deep-sea research vessel, Kairei, from the Japan Agency for Marine-Earth Science and Technology. There is a strain concentration area in the eastern part of the survey area (Okamura et al., 1995). The western part of the survey area includes the Yamato Basin and Japan Basin. It is very important to study the crustal structure in the seismotectonic studies of the eastern margin of the Japan Sea. We conducted a marine seismic survey by using a multichannel seismic (MCS) system and ocean bottom seismographs (OBSs) along the eastern margin of the Japan Sea. Seismic data were acquired along 42 lines with a total length of approximately 9,000 km. The following results were obtained from seismic imaging. On the basis of the results of the MCS imaging, active reverse faults and folds were observed in the margin of the Toyama Trough; however, the sedimentary layers in the trough were flat. In the sedimentary layers and crusts of the Sado Ridge, Mogami Trough, and source area of the 1964 Niigata earthquake located north of the Sado Island, greater deformation was observed. The deformation weakened toward the Yamato

  18. Distortion and broadening of internal solitary wavefront in the northeastern South China Sea deep basin

    NASA Astrophysics Data System (ADS)

    Xie, Jieshuo; He, Yinghui; Lü, Haibin; Chen, Zhiwu; Xu, Jiexin; Cai, Shuqun

    2016-07-01

    Internal solitary waves (ISWs) with peculiar fronts are frequently observed in the world ocean by satellite images, though with quite few explanations. In this study a distorted and broadening ISW front across the northeastern South China Sea deep basin is presented by using synthetic aperture radar (SAR) image. To illustrate this peculiar front, a nonlinear refraction model is developed to simulate and evaluate the effects of realistic bottom topography, current, and stratification on its transformation. Simulated results in realistic oceanic environments show good agreements with this SAR-observed front. Based on separate and comparative results in different background environments, we demonstrate that the distortion is actually caused by the strong mesoscale currents at periphery of an anticyclonic eddy. Moreover, the broadening is due to the difference in change of wave half width at different rays, which is associated with the different transformation of ISWs across variable bottom topography in the deep basin.

  19. Special features of the hydrochemical conditions variability in the deep water basins of the Caspian Sea

    NASA Astrophysics Data System (ADS)

    Serebrennikova, E. A.; Sapozhnikov, V. V.; Dukhova, L. A.

    2015-03-01

    The features of the long-term variability of the hydrochemical characteristics of deep-water basins of the Caspian Sea are studied on the basis of information obtained during 18- year annual monitoring and supplemented with historical data. The effect of hypoxia and the hydrogen sulfide layer on the position of the nitrate-maximum layer and the content of nitrates in it are shown. Studying the variability of the vertical distribution of the hydrochemical indicators revealed several factors that determine the removal of nutrients from the photic layer and their accumulation in the bottom layer. Among other things, the latest data revealed the unique features of the Caspian coastal upwelling. This will help to avoid underestimation of the productivity of the waters in the Middle Caspian Basin.

  20. A physical view of La Guajira Upwelling System, Colombian Basin, Caribbean Sea

    NASA Astrophysics Data System (ADS)

    Bernal, G.; Beier, E.; Barton, E. D.; Ruiz-Ochoa, M.; Correa, J. G.

    2013-05-01

    La Guajira Peninsula lies within a large upwelling system along the South Caribbean Coast, created by the NE trade winds. In this location, sea surface temperature (SST) exhibits the lowest mean value and the highest variability in the whole Colombian Basin. The seasonal variation of SST explains up to 75 % of the total variability. La Guajira coastal zone also experiences the highest values of wind stress and wind stress curl, with the greatest annual and semiannual variability in the Colombian Basin. It has been shown that wind stress curl enhances the upwelling over the region. Near 90% of the variability of SST in La Guajira can be explained by the seasonality plus the first three EOFs interannual modes: the first, synchronous throughout the Basin, is dominant, and consists of a uniform interannual variation in phase with the North Tropical Atlantic Index; the second co-varies strongly with the second mode of wind stress curl; and the third reflects the role of the vertical atmospheric circulation cell associated with the Caribbean Low Level Jet off Central America. The inclusion of wind stress curl with its maximum offshore of La Guajira explains in part the extension of cool coastal water into the Colombian Basin, with advection in filaments, eddies and meanders. In order to complement the physical knowledge of La Guajira upwelling system, an analysis of water masses, sea surface height, Ekman suction, Ekman transport and coastal upwelling index (CUI) was performed. Hydrographic data was obtained from gridded climatologies from the National Oceanographic Data Center (WOD01); sea surface height anomalies from the Archiving, Validation, and Interpretation of Satellite Oceanography (AVISO) data; and wind data from the Cross-Calibrated Multi-Platform Ocean Surface Wind Velocity Product for Meteorological and Oceanographic Applications (CCMP). The upwelling forms a local water mass, La Guajira surface water (LGSW), with the mixing of subtropical underwater and

  1. Unusual dominance by desert pupfish (Cyprinodon macularius) in experimental ponds within the Salton Sea Basin

    USGS Publications Warehouse

    Saiki, Michael K.; Martin, Barbara A.; Anderson, Thomas W.

    2011-01-01

    In October 2006, months after shallow experimental ponds in the Salton Sea Basin were filled with water from the Alamo River and Salton Sea, fish were observed in several ponds, although inlets had been screened to exclude fish. During October 2007November 2009, nine surveys were conducted using baited minnow traps to document species and relative abundance of fish. Surveys yielded 3,620 fish representing five species. Desert pupfish (Cyprinodon macularius), the only native species encountered, was the most numerous and comprised >93% of the catch. Nonnative species included western mosquitofish (Gambusia affinis, 4.1%), sailfin molly (Poecilia latipinna, 2.8%), and tilapia (a mixture of hybrid Mozambique tilapia Oreochromis mossambicus ?? O. urolepis and redbelly tilapia Tilapia zillii, <0.1%). Dominance by desert pupfish, which persisted over our 2 years of study, was unusual because surveys conducted in nearby agricultural drains yielded relatively few desert pupfish.

  2. Shelf-to-basin iron shuttling enhances vivianite formation in deep Baltic Sea sediments

    NASA Astrophysics Data System (ADS)

    Reed, Daniel C.; Gustafsson, Bo G.; Slomp, Caroline P.

    2016-01-01

    Coastal hypoxia is a growing and persistent problem largely attributable to enhanced terrestrial nutrient (i.e., nitrogen and phosphorus) loading. Recent studies suggest phosphorus removal through burial of iron (II) phosphates, putatively vivianite, plays an important role in nutrient cycling in the Baltic Sea - the world's largest anthropogenic dead zone - yet the dynamics of iron (II) phosphate formation are poorly constrained. To address this, a reactive-transport model was used to reconstruct the diagenetic and depositional history of sediments in the Fårö basin, a deep anoxic and sulphidic region of the Baltic Sea where iron (II) phosphates have been observed. Simulations demonstrate that transport of iron from shelf sediments to deep basins enhances vivianite formation while sulphide concentrations are low, but that pyrite forms preferentially over vivianite when sulphate reduction intensifies due to elevated organic loading. Episodic reoxygenation events, associated with major inflows of oxic waters, encourage the retention of iron oxyhydroxides and iron-bound phosphorus in sediments, increasing vivianite precipitation as a result. Results suggest that artificial reoxygenation of the Baltic Sea bottom waters could sequester up to 3% of the annual external phosphorus loads as iron (II) phosphates, but this is negligible when compared to potential internal phosphorus loads due to dissolution of iron oxyhydroxides when low oxygen conditions prevail. Thus, enhancing vivianite formation through artificial reoxygenation of deep waters is not a viable engineering solution to eutrophication in the Baltic Sea. Finally, simulations suggest that regions with limited sulphate reduction and hypoxic intervals, such as eutrophic estuaries, could act as important phosphorus sinks by sequestering vivianite. This could potentially alleviate eutrophication in shelf and slope environments.

  3. Plate boundaries in the Woodlark Basin and Solomon Sea Region, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Goodliffe, A. M.; Cameron, M.

    2009-12-01

    The Solomon Sea and Woodlark Basin region of eastern Papua New Guinea is a tectonically complex region between the obliquely converging Pacific and Australian plates. Despite numerous marine geophysical surveys in the region, the exact nature of the tectonic boundaries between the Solomon Sea and the Woodlark Basin remains controversial. Marine geophysical data collected in the last decade provides additional insight into this region and clearly defines the boundaries of the Solomon Sea, Trobriand, Woodlark, and Australian plates. Multibeam bathymetry data collected in 2004 along the Trobriand Trough, together with seismic profiles across the trough, show a prominent deformation front in the trench that defines the southern boundary of the Solomon Sea plate. Petrologic data from volcanoes to the south of this boundary indicate that they have a subduction affinity. Heat flow profiles to the south of the plate boundary show a clear subduction signature. At the eastern termination of the Trobriand Trough the plate boundary forms a triple junction with the NE-SW trending Nubaru strike-slip fault. To the NE this major fault separates the Solomon Sea plate from the Woodlark plate. The morphology of this fault and a CMT solution indicate that it is right-lateral. To the SW the Nubaru strike-slip fault passes to the south of the Trobriand Trough, forming the southern boundary of the Trobriand plate (with the Trobriand Trough as the northern boundary). Further west the trend of the strike slip fault becomes more ENE-WSW. A significant extension component is evident as the fault passes to the north of Egum Graben and meets the Woodlark Basin spreading system at the current rifting to seafloor spreading transition directly to the east of Moresby Seamount. The revised tectonic model for this region has important implications for tectonic reconstructions that include an active rifting to spreading transition and prominent core complexes. In the past, models have assumed a

  4. Construction and preliminary analysis of a deep-sea sediment metagenomic fosmid library from Qiongdongnan Basin, South China Sea.

    PubMed

    Hu, Yongfei; Fu, Chengzhang; Yin, Yeshi; Cheng, Gong; Lei, Fang; Yang, Xi; Li, Jing; Ashforth, Elizabeth Jane; Zhang, Lixin; Zhu, Baoli

    2010-11-01

    Preliminary characterization of the microbial phylogeny and metabolic potential of a deep-sea sediment sample from the Qiongdongnan Basin, South China Sea, was carried out using a metagenomic library approach. An effective and rapid method of DNA isolation, purification, and library construction was used resulting in approximately 200,000 clones with an average insert size of about 36 kb. End sequencing of 600 individual clones from the fosmid library generated 1,051 sequences with an average sequence length of 619 bp. Phylogenetic ascription indicated that this library was dominated by Bacteria, predominantly Proteobacteria, though Planctomycetes were also relatively abundant. Sulfate-reducing and anaerobic ammonium-oxidizing bacteria, which play important roles in the cycling of sedimentary nutrients, were abundant in the library. Cluster of orthologous groups category analysis showed that most of the genes contained in the end sequences were related to metabolism, and with cellular processes and signaling. Functional groups assigned by SEED (subsystems-based annotations) highlighted the existence of 'one-carbon' metabolism within this community as well as identifying functional genes involved in methanogenesis. Furthermore, diverse genes involved in the biodegradation of xenobiotics were found using Kyoto Encyclopedia of Genes and Genomes metabolic pathway analysis. PMID:20514504

  5. Construction and preliminary analysis of a deep-sea sediment metagenomic fosmid library from Qiongdongnan Basin, South China Sea.

    PubMed

    Hu, Yongfei; Fu, Chengzhang; Yin, Yeshi; Cheng, Gong; Lei, Fang; Yang, Xi; Li, Jing; Ashforth, Elizabeth Jane; Zhang, Lixin; Zhu, Baoli

    2010-11-01

    Preliminary characterization of the microbial phylogeny and metabolic potential of a deep-sea sediment sample from the Qiongdongnan Basin, South China Sea, was carried out using a metagenomic library approach. An effective and rapid method of DNA isolation, purification, and library construction was used resulting in approximately 200,000 clones with an average insert size of about 36 kb. End sequencing of 600 individual clones from the fosmid library generated 1,051 sequences with an average sequence length of 619 bp. Phylogenetic ascription indicated that this library was dominated by Bacteria, predominantly Proteobacteria, though Planctomycetes were also relatively abundant. Sulfate-reducing and anaerobic ammonium-oxidizing bacteria, which play important roles in the cycling of sedimentary nutrients, were abundant in the library. Cluster of orthologous groups category analysis showed that most of the genes contained in the end sequences were related to metabolism, and with cellular processes and signaling. Functional groups assigned by SEED (subsystems-based annotations) highlighted the existence of 'one-carbon' metabolism within this community as well as identifying functional genes involved in methanogenesis. Furthermore, diverse genes involved in the biodegradation of xenobiotics were found using Kyoto Encyclopedia of Genes and Genomes metabolic pathway analysis.

  6. Fungi in deep-sea sediments of the Central Indian Basin

    NASA Astrophysics Data System (ADS)

    Damare, Samir; Raghukumar, Chandralata; Raghukumar, S.

    2006-01-01

    Although a great amount of information is available on bacteria inhabiting deep-sea sediments, the occurrence of fungi in this environment has been poorly studied and documented. We report here the occurrence of fungi in deep-sea sediments from ˜5000 m depth in the Central Indian Basin (9-16°S and 73-76°E). A total of 181 cultures of fungi, most of which belong to terrestrial sporulating species, were isolated by a variety of isolation techniques. Species of Aspergillus and non-sporulating fungi were the most common. Several yeasts were also isolated. Maximum species diversity was observed in 0-2 cm sections of the sediment cores. Direct staining of the sediments with Calcofluor, a fluorescent optical brightener, revealed the presence of fungal hyphae in the sediments. Immunofluorescence using polyclonal antibodies raised against a deep-sea isolate of Aspergillus terreus (# A 4634) confirmed its presence in the form of hyphae in the sub-section from which it was isolated. A total of 25 representative species of fungi produced substantial biomass at 200 bar pressure at 30° as well as at 5 °C. Many fungi showed abnormal morphology at 200 bar/5 °C. A comparison of terrestrial isolates with several deep-sea isolates indicated that the former could grow at 200 bar pressure when growth was initiated with mycelial inocula. However, spores of a deep-sea isolate A. terreus (# A 4634), but not the terrestrial ones, showed germination at 200 bar pressure and 30 °C. Our results suggest that terrestrial species of fungi transported to the deep sea are initially stressed but may gradually adapt themselves for growth under these conditions.

  7. Tectonics of East Siberian Sea Basin and its influence on petroleum systems

    NASA Astrophysics Data System (ADS)

    Karpov, Yury; Antonina, Stoupakova; Anna, Suslova; Mariia, Agasheva

    2016-04-01

    The East Siberian Sea basin (ESSB) is the largest part of the Siberian Arctic shelf, extending for over 1000 km from New Siberian Islands archipelago to Wrangel Island. Nowadays East Siberian Sea margin is considered as a region with probable high petroleum potential. This part of Russian Arctic shelf is the least studied. The major problems in geological investigation of East Siberian Sea shelf are absence of deep wells in area and low seismic exploration maturity. Only general conclusions on its geology and hydrocarbon systems can be drawn based on limited seismic, gravity and magnetic data, supported by projection of onshore geological data to offshore. So, that's why now only complex geological and seismic stratigraphy interpretations are provided. Today we have several concepts and can summarize the tectonic history of the basin. The basin is filled with siliclastic sediments. In the deepest depocentres sediments thickness exceed 8 km in average. Seismic data was interpreted using methods of seismic stratigraphy. Stratigraphic interpretation was possible to achieve because seismic reflections follow chronostratigraphic correlations. Finally, main seismic horizons were indicated. Each indicated horizon follows regional stratigraphic unconformity. In case of absence of deep wells in ESSB, we can only prove possible source rocks by projection of data about New Siberian Islands archipelago source rocks on offshore. The petroleum potential of these rocks was investigated by several authors [1, 2, 3]. Perspective structures, investigated in ESSB were founded out by comparing seismogeological cross-sections with explored analogs in other Russian and foreign onshore and offshore basins. The majority of structures could be connected with stratigraphic and fault traps. New data on possible petroleum plays was analyzed, large massif of data on geology and tectonic history of the region was collected, so now we can use method of basin modelling to evaluate hydrocarbon

  8. Salt distribution in the Norwegian-Danish Basin, Central North Sea

    NASA Astrophysics Data System (ADS)

    Sassier, Caroline; Jarsve, Erlend; Heeremans, Michel; Mansour Abdelmalak, Mohamed; Faleide, Jan Inge; Helge Gabrielsen, Roy

    2014-05-01

    Salt tectonics have extensively been studied in most parts of the Central North Sea. However, few studies have been done in the Norwegian side of the Norwegian-Danish Basin. In this contribution, we report a new regional analysis of the salt patterns across the offshore Norwegian-Danish Basin. We have mapped the regional distribution of salt structures in the Norwegian-Danish Basin using both old and recent 2D seismic reflection profiles tied to wells. The salt-thickness map shows three distinct salt structures patterns: (1) NW-SE trending salt walls in the northern part of the basin; the spacing between the walls vary between 7 to 12 km; (2) a dense and irregular distribution of salt diapirs in the southern part of the studied area; (3) an irregular pattern of sparse but big salt diapirs in the eastern part of the basin. This domain is characterized by numerous turtle structures associated with salt diapirs. Reflection seismic cross-sections show that most salt structures only pierce the Triassic sedimentary strata whereas only few salt structures reach the seabed. Rotated fault blocks indicate a gliding vergence towards the South in the eastern part of the basin and towards the SE in the western side of the Norwegian-Danish Basin. No mature or compressive salt structures, except some squeezed salt diapirs, are observed in the topographic lows of the basin. The initiation of salt tectonics started during the early Middle Triassic in the entire basin; salt tectonics reactivations were recorded during the Middle Jurassic, Paleogene, and prior to the Quaternary but are not homogeneous across the basin. Salt movements inferred from our study are in good agreement with previous studies. The trend of salt walls (domain 1) indicates a NE-SW extension which is not compatible with N-S trending pre-salt faults. Instead, the strong Triassic subsidence towards the SW has most likely controlled the formation of the salt walls. The salt was initially thicker in domain 2 that

  9. Relationship of sea level changes and intrabasinal tectonics on upper Cretaceous depositional sequences, Tremp basin, Pyrenees, Spain

    SciTech Connect

    Simo, A.

    1988-02-01

    Well-exposed Upper Cretaceous rocks in the Tremp basin display the effects of subsidence and sea level changes. Subsidence and a net sea level rise control the sequence geometry and the cyclicity of transgressive-regressive units. In addition, subsidence, sea level, and sediment supply control the facies framework. The Tremp basin, where specific depositional processes can be related to basin evolution, is proposed as a reference section to compare tectonism vs. sea level changes. Five depositional sequences recognized are seismic-stratigraphic in scale and are correlatives of global rhythms. Sequences are separated by unconformable or correlative conformable surfaces. Most of the surfaces in the area are concordant, characterized by a sharp transition upward from shallower to deeper facies. Sea level drops exposed the inner shelf but not the shelf margin; they did, however, result in submarine erosion and basin-restricted wedge deposition. The three oldest sequences are carbonate-rich. Each sequence exhibits very little coastal onlap; however, each successively younger carbonate platform backsteps the former. Thermal subsidence (6.3 cm/1000 yr) created depositional space in the basin, and uplift reduced shelf onlap. The fourth sequence is carbonate-rich on the shelf and siliciclastic-rich in the basin. Subsidence first increased (shelf = 5.13 cm/1000 yr; basin = 15.4 cm/1000 yr) because of thrusting west of the area, resulting in coastal onlap over 60 km and accompanying backstepping of the carbonate platform. Subsidence later decreased, resulting in platform progradation. The fifth depositional sequence shows an overall siliciclastic regression, in response to regional thrusting and uplift.

  10. Relationship of sea level changes and intrabasinal tectonics on Upper Cretaceous depositional sequences, Tremp Basin, Pyrenees, Spain

    SciTech Connect

    Simo, A.

    1988-01-01

    Well-exposed Upper Cretaceous rocks in the Tremp basin display the effects of subsidence and sea level changes. Subsidence and a net sea level rise control the sequence geometry and the cyclicity of transgressive-regressive units. In addition, subsidence, sea level, and sediment supply control the facies framework. The Tremp basin, where specific depositional processes can be related to basin evolution, is proposed as a reference section to compare tectonism vs. sea level changes. Five depositional sequences recognized are seismic-stratigraphic in scale and are correlatives of global rhythms. Sequences are separated by uncomfortable or correlative conformable surfaces. Most of the surfaces in the area are concordant, characterized by a sharp transition upward from shallower to deeper facies. Sea level drops exposed the inner shelf but not the shelf margin; they did, however, result in submarine erosion and basin-restricted wedge deposition. The three oldest sequences are carbonate-rich. Each sequence exhibits very little coastal onlap; however, each successively younger carbonate platform backsteps the former. Thermal subsidence (6.3cm/1,000 yr) created depositional space space in the basin, and uplift reduced shelf onlap. The fourth sequence is carbonate-rich on the shelf and siliciclastic-rich in the basin. Subsidence first increased (shelf = 5.13 cm/1,000 yr; basin = 15/4 cm/1,000 yr) because of thrusting west of the area, resulting in coastal onlap over 60 km and accompanying backstepping of the carbonate platform. Subsidence later decreased, resulting in platform progradation. The fifth depositional sequence shows an overall siliciclastic regression, in response to regional thrusting and uplift.

  11. Erosion of continental margins in the Western Mediterranean due to sea-level stagnancy during the Messinian Salinity Crisis

    NASA Astrophysics Data System (ADS)

    Just, Janna; Hübscher, Christian; Betzler, Christian; Lüdmann, Thomas; Reicherter, Klaus

    2011-02-01

    High-resolution multi-channel seismic data from continental slopes with minor sediment input off southwest Mallorca Island, the Bay of Oran (Algeria) and the Alboran Ridge reveal evidence that the Messinian erosional surface is terraced at an almost constant depth interval between 320 and 380 m below present-day sea level. It is proposed that these several hundred- to 2,000-m-wide terraces were eroded contemporaneously and essentially at the same depth. Present-day differences in these depths result from subsidence or uplift in the individual realms. The terraces are thought to have evolved during one or multiple periods of sea-level stagnancy in the Western Mediterranean Basin. According to several published scenarios, a single or multiple periods of relative sea-level stillstand occurred during the Messinian desiccation event, generally known as the Messinian Salinity Crisis. Some authors suggest that the stagnancy started during the refilling phase of the Mediterranean basins. When the rising sea level reached the height of the Sicily Sill, the water spilled over this swell into the eastern basin. The stagnancy persisted until sea level in the eastern basin caught up with the western Mediterranean water level. Other authors assigned periods of sea-level stagnancy to drawdown phases, when inflowing waters from the Atlantic kept the western sea level constant at the depth of the Sicily Sill. Our findings corroborate all those Messinian sea-level reconstructions, forwarding that a single or multiple sea-level stagnancies at the depth of the Sicily Sill lasted long enough to significantly erode the upper slope. Our data also have implications for the ongoing debate of the palaeo-depth of the Sicily Sill. Since the Mallorcan plateau experienced the least vertical movement, the observed terrace depth of 380 m there is inferred to be close to the Messinian depth of this swell.

  12. Microbial eukaryote life in the new hypersaline deep-sea basin Thetis.

    PubMed

    Stock, Alexandra; Breiner, Hans-Werner; Pachiadaki, Maria; Edgcomb, Virginia; Filker, Sabine; La Cono, Violetta; Yakimov, Michail M; Stoeck, Thorsten

    2012-01-01

    Only recently, a novel anoxic hypersaline (thalassic) basin in the eastern Mediterranean was discovered at a depth of 3,258 m. The halite-saturated brine of this polyextreme basin revealed one of the highest salt concentrations ever reported for such an environment (salinity of 348‰). Using a eukaryote-specific probe and fluorescence in situ hybridization, we counted 0.6 × 10(4) protists per liter of anoxic brine. SSU rRNA sequence analyses, based on amplification of environmental cDNA identified fungi as the most diverse taxonomic group of eukaryotes in the brine, making deep-sea brines sources of unknown fungal diversity and hotspots for the discovery of novel metabolic pathways and for secondary metabolites. The second most diverse phylotypes are ciliates and stramenopiles (each 20%). The occurrence of closely related ciliate sequences exclusively in other Mediterranean brine basins suggests specific adaptations of the respective organisms to such habitats. Betadiversity-analyses confirm that microeukaryote communities in the brine and the interface are notably different. Several distinct morphotypes in brine samples suggest that the rRNA sequences detected in Thetis brine can be linked to indigenous polyextremophile protists. This contradicts previous assumptions that such extremely high salt concentrations are anathema to eukaryotic life. The upper salinity limits for eukaryotic life remain unidentified.

  13. The Congo deep-sea fan: from basin-wide to block scale.

    NASA Astrophysics Data System (ADS)

    Anka, Zahie; Séranne, Michel; Kowitz, Astrid; Ondrak, Robert; Clausen, Lene

    2010-05-01

    With a surface of about 300,000 km² and at least 0.7 Mkm³ of Cenozoic sediments, the Congo deep-sea fan is one of the largest submarine fan systems in the world and one of the most important depocentre in the eastern south Atlantic. The present-day fan extends over 1000 km offshore the Congo-Angola continental margin and it is sourced by the Congo River, whose continental drainage area is the second largest behind the Amazon's. Since there is a direct connexion between the drainage and the deep offshore basins, through the Congo submarine canyon, direct transfer of terrigenous material from the continent onto the abyssal plain takes place by-passing the shelf and upper slope of the basin. Thus, the study of such a system provides insights on the interaction between a giant distal submarine fan and the proximal mature passive margin, as well as a better understanding of the stratigraphic signature on ultra-deep accumulations from geological processes acting on the proximal margin. In this sense, the analysis of very large 2D seismic-reflection datasets and borehole data has allowed us to carry out multi-scale studies ranging from basin-wide down to block scale. We address questions regarding the time-space sedimentation partitioning on the Congo basin and its possible controlling factors. This has led to a re-interpretation of the post-rift history of the basin and a reconsideration of the stability of the Congo River as a long-term sediment supplier to the Atlantic. The seismo-stratigraphic record of the Congo deep-sea fan results from a complex, but yet decipherable, interplay among processes acting at different scales: submarine erosions, salt tectonics, margin seaward tilting, continental uplift, and climate. In turn, the long-term evolution of this large submarine fan seem to control the distribution of small-scale features probably associated to short-term processes as present-day active liquid /gaseous hydrocarbon leakage. These features (i.e. seafloor

  14. The Southern Adriatic Basin: A Key Area For The Climatic Monitoring of The Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Civitarese, G.; Gacic, M.; Saint, The

    The Southern Adriatic, the southernmost and deepest subbasin of the Adriatic Sea, is considered a major site of deep water formation and the origin of the semi-closed ther- mohaline cell in the Eastern Mediterranean. The dynamics of the area is dominated by the presence of a quasi-permanent cyclonic gyre that intensifies in the winter season creating the conditions for the production of dense and oxygenated waters that are exported to the rest of the Eastern Mediterranean through the Strait of Otranto. The at- mospheric forcing is transferred into the marine system by the winter convective water overturning, that is the key process generating new waters and triggering the biologi- cal pump. The other main forcing is the intermediate saline water advection across the Strait of Otranto, connecting the Adriatic Sea with the general basin-scale circulation of the Eastern Mediterranean. Both of them act in determining the occurrence and the magnitude of the convective events and the related biological processes. Due to the ac- tion of these forcing, the Southern Adriatic system is subject to a significant variability on temporal scale spanning from days to decades. Recent studies have demonstrated that the local thermal and haline surface forcing generates strong year-to-year varia- tions of the vertical convection and consequently of the primary production. On the other hand, the advective forcing changes the intermediate water thermohaline prop- erties as well as the nutrient content in the basin, again affecting both the vertical convection and the biological processes. The signals associated to these processes are particularly intense, and allow us to designate this relatively small basin as a suit- able field laboratory for the study of the relationships between ocean biogeochemical cycles and climate.

  15. On The Heat and Salt Exchange Between The Deep Basins of The Baltic Sea

    NASA Astrophysics Data System (ADS)

    Lehmann, A.; Hinrichsen, H.-H.

    Fluxes of volume, heat and salt have been calculated from numerical model simula- tions for different sections in areas which are important for the deep water exchange in the Baltic Sea. The calculated deep water flow in the Arkona basin is in accordance with independent estimations obtained from profile data. It is found that the strength of the upper layer low saline flow in the Arkona Basin which is on average directed to the west, opposite to the mean wind direction, is compensated by a highly saline flow in deeper layers. Increasing upper layer flow will result in an increased lower layer flow in opposite direction indicating a baroclinic control. The annual mean flow is negatively correlated with the annual mean runoff to the Baltic Sea. In accordance to the mean circulation, the flow through the Bornholm Gat is on average directed to the east, and south of Bornholm the flow is directed to the west indicating an import of heat and salt to the Bornholm Basin through the Bornholm Gat and an export south of Bornholm. Flux characteristics change further downstream in the Stolpe Trench. The volume flow in the upper layer shows a strong seasonal signal. During autumn to spring the flow is mainly directed to the east, in summer the flow direction is reversed. Flow in westerly directions is related to increased lower layer flow in easterly direc- tions. On average the net flow through the Stolpe channel is directed to the east which is in accordance with the mean circulation. The calculated fluxes show high intra- and interannual variability with no obvious trend during the simulation period.

  16. Are the Basins of Tui Regio and Hotei Arcus Sites of Former Titanian Seas?

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey Morgan; Howard, Alan

    2012-01-01

    Features observed in the basins of Tui Regio and Hotei Arcus on Titan have attracted the attention of the Cassini-era investigators. At both locations, VIMS observed discrete 5-micron bright approx.500-km wide features described as lobate in shape. Several studies have proposed that these materials are cryo-volcanic flows; in the case of the Hotei Arcus feature this inference was buttressed with SAR RADAR images showing bright and dark patches with lobate margins. We propose an alternative explanation. First we note that all landforms on Titan that are unambiguously identifiable can be explained by exogenic processes (aeolian, fluvial, impact cratering, and mass wasting). Suggestions of endogenically produced cryovolcanic constructs and flows have, without exception, lacked conclusive diagnostic evidence. Recently published topographic profiles across Tui Regio and the lobate feature region north of Hotei Arcus indicate these features appear to occur in large regional basins, at least along the direction of the profiles. SAR images show that the terrains surrounding both 5-micron bright features exhibit fluvial networks that appear to converge and debauch into the probable basins. The 5-micron bright features themselves correspond to fields of discrete radar-bright depressions whose bounding edges are commonly rounded and cumulate in planform in SAR images. These fields of discrete radar-bright depressions strongly resemble fields of features seen at Titan s high latitudes usually attributed to be dry lakes. Thus the combination of (1) the resemblance to high-latitude dry lakes, (2) location in the centers of probable regional depressions, and (3) convergence of fluvial networks are inferred by us to best explain the 5-micron bright regions at Tui Regio and Hotei Arcus as sites of dry seas or at least paleolake clusters. Such equatorial seas, if real, may be evidence of substantially larger inventories of liquid alkanes in Titan s past.

  17. Late quaternary sea bottom conditions in the southern Panama basin, Eastern Equatorial Pacific

    NASA Astrophysics Data System (ADS)

    Patarroyo, German D.; Martínez, José I.

    2015-11-01

    A paleoceanographic reconstruction of the southern Panama Basin for the last 23.000 years, based on the benthic foraminiferal analysis from the deep sea core ME0005A-24JC (0.01°N, 86.28°W, water depth 2941) is presented. Cluster and SHEBI (SHE Analysis for Biozone Identification) analyses performed on the benthic foraminiferal assemblages, evidence a faunal turnover in the early Holocene at 14 ky BP. Between 23 and 14 ky BP, Fursenkoina rotundata, Hoeglundina elegans, Globobulimina affinis, Globobulimina pacifica, Cibicidoides wuellerstorfi and Uvigerina hispidocostata were common. Conversely, from 14 ky to the present, the assemblage is represented by Chilostomella oolina, Laticarinina pauperata, and Uvigerina proboscidea. This faunal turnover suggests significant fluctuations in oxygen content at the sea floor and the organic matter (OM) influx, which could reflect: (1) fluctuations in the surface productivity related to the equatorial divergence and, (2) OM advection caused by the dynamic of the deep sea currents. Paleoproductivity estimates and benthic foraminiferal rates depict a general trend towards lower values since the Last Glacial Maximum (LGM) with a conspicuous change at 14 ky BP. Therefore, the paleoceanographic reconstructions of the ME0005A-24JC core suggest a transition from La Niña-like conditions during the LGM to El Niño-like conditions in the recent, as previously proposed for the Eastern Equatorial Pacific. Estimates of the paleo-intensity of deep sea currents based on the relative percentage abundance of the epifaunal foraminifera Cibicidoides wuellerstorfi suggest stronger deep sea currents on the Carnegie Ridge before 14 ky BP.

  18. Modelling the impacts of sea level rise on tidal basin ecomorphodynamics and mangrove habitat evolution

    NASA Astrophysics Data System (ADS)

    van Maanen, Barend; Coco, Giovanni; Bryan, Karin

    2016-04-01

    The evolution of tidal basins and estuaries in tropical and subtropical regions is often influenced by the presence of mangrove forests. These forests are amongst the most productive environments in the world and provide important ecosystem services. However, these intertidal habitats are also extremely vulnerable and are threatened by climate change impacts such as sea level rise. It is therefore of key importance to improve our understanding of how tidal systems occupied by mangrove vegetation respond to rising water levels. An ecomorphodynamic model was developed that simulates morphological change and mangrove forest evolution as a result of mutual feedbacks between physical and biological processes. The model accounts for the effects of mangrove trees on tidal flow patterns and sediment dynamics. Mangrove growth is in turn controlled by hydrodynamic conditions. Under stable water levels, model results indicate that mangrove trees enhance the initiation and branching of tidal channels, partly because the extra flow resistance in mangrove forests favours flow concentration, and thus sediment erosion in between vegetated areas. The landward expansion of the channels, on the other hand, is reduced. Model simulations including sea level rise suggest that mangroves can potentially enhance the ability of the soil surface to maintain an elevation within the upper portion of the intertidal zone. While the sea level is rising, mangroves are migrating landward and the channel network tends to expand landward too. The presence of mangrove trees, however, was found to hinder both the branching and headward erosion of the landward expanding channels. Simulations are performed according to different sea level rise scenarios and with different tidal range conditions to assess which tidal environments are most vulnerable. Changes in the properties of the tidal channel networks are being examined as well. Overall, model results highlight the role of mangroves in driving the

  19. Climate and sea level changes and the role of shelf morphology in recording in Sibuyan Sea Basin, Philippines during the last 14 kyBP

    NASA Astrophysics Data System (ADS)

    Lloren, R. B.; Siringan, F. P.

    2014-12-01

    In this study, we reconstruct changes in precipitation using geochemical and grain size proxies and we look at how shelf morphology can influence the nature of sedimentary record of climate and oceanographic events. A 9.6m long sediment core from Sibuyan Sea basin within the internal seas of the Philippines, was raised from a water depth of 1660m. It was analyzed using an XRF core scanner at 1 cm resolution. Grain size was determined using a laser particle analyzer. Thirteen AMS radiocarbon dates from bulk organics provide age control spanning back to 14 kyBP. Overall, the trends of precipitation proxies Ti, Al and Al/Ti follow the 10o N insolation curve. A 1.4 ky periodicity rides on this general trend. But a stepwise decrease of these precipitation proxies occur at about 9ka and 4ka. The former correpond to the melt water pulse 1-c rapid sea level rise of about 15m while the latter correlates time-wise to a period of aridification. The Younger Dryas period, ca. 12.9-11.6 ka, another known dry period, does not show a shift or decrease in sediment input. Similarly, MWP -1B does no register a distinct signal in the core. The insensitivity of the core in reflecting the older climate and sea level events is attributed to the steep morphology of the sea floor where shoreline translations took place during the earlier sea level events; with a steeper sea floor, sediment sequestration near the shoreline will be low and therefore the basin will not feel much change in sediment input. For the younger climate and sea level events, the shoreline positions were already adjacent to sea floor with relatively gentler gradient where sediment sequestration is greater and where a sea level rise of a certain magnitude will translate the shoreline much farther.

  20. Integrating river basin management and the coastal zone: the (blue) Danube and the (black) sea.

    PubMed

    Maksimović, C; Makropoulos, C K

    2002-01-01

    In order to effectively manage the wide variety of physical, chemical biological and ecological processes in a sensitive coastal environment such as the Black Sea, current environmental management objectives are no longer sufficient: a new management approach has to address the intimate functional linkage between the river basin and the costal environment. Current water quality legislation requires compliance to emission levels based on the chemical analysis of water samples taken at discharge points, such as treatment plants discharging into rivers. While such measures provide a relative indication of the water quality at the point of discharge, they fail to describe accurately and sufficiently the quality of the water received from the watershed or basin. As water flows through the catchment, rainfall run-off from urban and agricultural areas carries sediments, pesticides, and other chemicals into river systems, which lead to coastal waters. The impact of the Kosovo crisis on the Danube ecosystems provides a poignant example of the effects of such diffused pollution mechanisms and reveals a number of interesting pollution mechanisms. This paper discusses both the effects of diffused pollution on the Black Sea, drawing from state-of-the-art reports on the Danube, and proposes a framework for a decision support system based on distributed hydrological and pollution transport simulation models and GIS. The use of ecological health indicators and fuzzy inference supporting decisions on regional planning within this framework is also advocated. It is also argued that even the recently produced GEF document on Black Sea protection scenarios should benefit significantly if the concept of pollution reduction from both urban, industrial and rural areas should undergo a systematic conceptual update in the view of the recent recommendations of the UNEP IETC (2000) document.

  1. Sea-level changes and the Middle-Upper Devonian sequence in the Baltic basin

    NASA Astrophysics Data System (ADS)

    Lukševičs, E.; Stinkulis, Ä.¢.

    2012-04-01

    Lithostratigraphic succession of the Middle-Upper Devonian of Baltic, represented by siliciclastic and carbonate deposits of the wide shallow epeiric sea, is well-established. The sequence of biotic and sea-level changes has been studied in detail for about half a century. However, it was rarely tried to compare the sea-level curve for the Baltic with the curve of the global sea-level changes and correlate the succession with the sequence of the Devonian global events well established mainly in the marine record. New facies analysis and biostratigraphical and taphonomical studies together with the re-evaluation of signatures of the world-wide events using sedimentological and palaeontological data enables better understanding of the development of the Middle-Late Devonian basins of the Baltic area. Indications of such events as eustatic fall of the sea-level close to the Givetian-Frasnian and Frasnian-Famennian boundaries, several small-scale transgressions during Famennian interglacials are rather clearly traceable within the sequence. Distribution of deposits, biotas and facies suggests diminishing of the depositional area since the maximum transgression in the earliest Frasnian thus demonstrating good coincidence with the global sea level curve (Haq & Schutter 2008). The retreat of depocentre of the palaeobasin in westerly direction during the late Frasnian and the Famennian likely was caused by tectonic subsidence at the western part of the east Baltics. The most significant event levels identified within the section are the extended Taghanic onlap (middle Givetian) evidenced by dolocretes in the upper part of the Burtnieki Fm; significant drop of the sea level during the earliest Frasnian indicated by widely distributed dolocretes in the top of the Amata Fm that points to the possible position of the Givetian/Frasnian boundary below the Amata; level of the Dubnik RS with extensive gypsum deposits and non-oxidised organic matter of the Salaspils Fm evidencing

  2. Climatic change of sea ice mean thickness in the Arctic basin

    SciTech Connect

    Nagurny, A.P.

    1996-12-31

    A method for automatically monitoring sea ice thickness by measuring ice-plate vibration is proposed. Two energy maximums are clearly manifested in the spectrum of ice cover vibrations, corresponding to the resonant waves (the equality of ice eigen frequency as a plate and upper water layer without ice cover) and to the waves at the minimum of the dispersion curve of the ice-water system. The free vibrations of the resonant waves have low amplitudes and can be adequately described by linear theory of elastic gravity wave propagation. Data are presented for sea ice thickness determined by measuring elastic-gravity waves at points in the Arctic basin for the years 1970 through 1992. During this period, a linear decrease in sea ice thickness was observed. The thickness decreased by 12-14 centimeters, or 3 to 4% of average thickenss, overall. Taking into account the significant scattering of data, a trend of climatic warming in the atmosphere-Arctic Ocean system is indicated. 11 refs., 2 figs.

  3. Diseases and parasites of the sea lamprey, Petromyzon marinus, in the Lake Huron basin

    USGS Publications Warehouse

    McLain, Alberton L.

    1952-01-01

    Sea lampreys from the Lake Huron basin carried no external parasites and showed a fairly low degree of infection by internal parasites. The material examined represented three life-history stages of the sea lamprey. Recently transformed downstream migrants (215 specimens) harbored only nematodes belonging to the genus Camallanus. The percentage of infection was 2.3. Active feeders from the lake (29 lampreys) revealed the highest degree of parasitism (31.0 percent) with the following parasites present: Echinorhynchus coregoni Linkins; Triaenophorus crassus Forel; and Camallanus sp. Among the 257 sexually mature upstream migrants (14.8 percent infected) Echinorhynchus coregoni and E. leidyi Van Cleave were the most common. Only occasional nematodes and cestodes were found, which fact indicates a failure of the lamprey to carry these parasites to the end of its natural life. Of the parasites observed, only the nematodes gave evidence of serious damage to the host. The study suggests that the role played by parasites in the natural control of the sea lamprey in its new habitat in the upper Great Lakes is of minor importance.

  4. Unveiling microbial activities along the halocline of Thetis, a deep-sea hypersaline anoxic basin.

    PubMed

    Pachiadaki, Maria G; Yakimov, Michail M; LaCono, Violetta; Leadbetter, Edward; Edgcomb, Virginia

    2014-12-01

    Deep-sea hypersaline anoxic basins (DHABs) in the Eastern Mediterranean Sea are considered some of the most hostile environments on Earth. Little is known about the biochemical adaptations of microorganisms living in these habitats. This first metatranscriptome analysis of DHAB samples provides significant insights into shifts in metabolic activities of microorganisms as physicochemical conditions change from deep Mediterranean sea water to brine. The analysis of Thetis DHAB interface indicates that sulfate reduction occurs in both the upper (7.0-16.3% salinity) and lower (21.4-27.6%) halocline, but that expression of dissimilatory sulfate reductase is reduced in the more hypersaline lower halocline. High dark-carbon assimilation rates in the upper interface coincided with high abundance of transcripts for ribulose 1,5-bisphosphate carboxylase affiliated to sulfur-oxidizing bacteria. In the lower interface, increased expression of genes associated with methane metabolism and osmoregulation is noted. In addition, in this layer, nitrogenase transcripts affiliated to uncultivated putative methanotrophic archaea were detected, implying nitrogen fixation in this anoxic habitat, and providing evidence of linked carbon, nitrogen and sulfur cycles. PMID:24950109

  5. Unveiling microbial activities along the halocline of Thetis, a deep-sea hypersaline anoxic basin

    PubMed Central

    Pachiadaki, Maria G; Yakimov, Michail M; LaCono, Violetta; Leadbetter, Edward; Edgcomb, Virginia

    2014-01-01

    Deep-sea hypersaline anoxic basins (DHABs) in the Eastern Mediterranean Sea are considered some of the most hostile environments on Earth. Little is known about the biochemical adaptations of microorganisms living in these habitats. This first metatranscriptome analysis of DHAB samples provides significant insights into shifts in metabolic activities of microorganisms as physicochemical conditions change from deep Mediterranean sea water to brine. The analysis of Thetis DHAB interface indicates that sulfate reduction occurs in both the upper (7.0–16.3% salinity) and lower (21.4–27.6%) halocline, but that expression of dissimilatory sulfate reductase is reduced in the more hypersaline lower halocline. High dark-carbon assimilation rates in the upper interface coincided with high abundance of transcripts for ribulose 1,5-bisphosphate carboxylase affiliated to sulfur-oxidizing bacteria. In the lower interface, increased expression of genes associated with methane metabolism and osmoregulation is noted. In addition, in this layer, nitrogenase transcripts affiliated to uncultivated putative methanotrophic archaea were detected, implying nitrogen fixation in this anoxic habitat, and providing evidence of linked carbon, nitrogen and sulfur cycles. PMID:24950109

  6. Identity of Squalius (Actinopterygii, Cyprinidae) from Istra Peninsula in Croatia (Adriatic Sea basin).

    PubMed

    Zupancic, Primoz; Mrakovcic, Milorad; Marcic, Zoran; Naseka, Alexander M; Bogutskaya, Nina G

    2010-08-27

    A chub of previously ambiguous identity from the Boljunscica and Pazincica rivers (south-eastern Istra Peninsula) was studied and compared with geographically close Squalius squalus, Squalius zrmanja, and Squalius janae recently described from the Dragonja River drainage in the Adriatic Sea basin in Slovenia. It was shown that the chub from the south-eastern Istra Peninsula differs from all know species of Squalius but one: Squalius janae. Three samples examined from Boljunscica and Pazincica rivers and Squalius janae from its type locality, Dragonja River, show the following characters typical for the latter species: a long head (the head length 27-32% SL); a pointed conical snout with a clearly projecting upper jaw; a long straight mouth cleft, the lower jaw length (39-45% HL) exceeding the caudal peduncle depth; a large eye; commonly 9? branched anal-fin rays; commonly 44 total vertebrae (24+20 or 25+19); bright silvery colouration, scales easily lost; iris, pectoral, pelvic and anal fin pigmentation with yellow shades. The data on the distribution of Squalius chubs in the northern Adriatic basin support the assumption that the range of Squalius janae is determined by the geology of the Trieste Flysch Basin and the Pazin Flysch Basin forming the base of the Istra Peninsula. The distribution pattern of this species does not support a simple model of fish dispersal and a complete connectivity within the whole Palaeo-Po historical drainage. Indeed, it indicates a disrupted surface palaeohydrography that was heavily fragmented by karstification in the whole Dinaric area.

  7. Water mass transformation in the deep basins of the Nordic Seas: Analyses of heat and freshwater budgets

    NASA Astrophysics Data System (ADS)

    Latarius, K.; Quadfasel, D.

    2016-08-01

    In the Arctic Mediterranean a transformation of Atlantic Water, flowing in near the surface, into overflow water, which leaves the area at depth, takes place. For this transformation the Nordic Seas are of particular importance, as they are largely ice-free and thus heat loss to the atmosphere during winter is strong. Since 2001 Argo-type profiling float measurements have been carried out in the region and enable the observation of hydrography during the whole year. The measurements concentrate on the deep basins, the Norwegian Basin, Lofoten Basin, Greenland Sea and Icelandic Plateau. They are analysed with special emphasis on the seasonal cycle in hydrography. Based on the mean seasonal cycle of temperature and salinity and atmospheric fluxes from reanalysis products for the first decade of this century heat and freshwater budgets are calculated. The residuum in the budgets gives the lateral exchange of water between the inner basins and the boundary current, circumnavigating the whole area. This lateral exchange is identified with the contribution of the deep basins to the water mass transformation within the Nordic Seas. Budget calculations, using atmospheric flux data from NCEP with corrections for high latitudes, yield a contribution of 18% to the total temperature decrease and 6% to the total salinity decrease in the Arctic Mediterranean, although the basins account for only 4% of the total area. The density increase nearly exclusively takes place in the eastern basins, whereas the Greenland Sea plays an important role in matching the temperature and salinity characteristic of the overflow water. An increasing amount of freshwater in the surface layer will have only minor effects on the strength of the overflows across the Greenland-Iceland-Scotland Ridge.

  8. Geometry and subsidence history of the Dead Sea basin: A case for fluid-induced mid-crustal shear zone?

    USGS Publications Warehouse

    ten Brink, U.S.; Flores, C.H.

    2012-01-01

    Pull-apart basins are narrow zones of crustal extension bounded by strike-slip faults that can serve as analogs to the early stages of crustal rifting. We use seismic tomography, 2-D ray tracing, gravity modeling, and subsidence analysis to study crustal extension of the Dead Sea basin (DSB), a large and long-lived pull-apart basin along the Dead Sea transform (DST). The basin gradually shallows southward for 50 km from the only significant transverse normal fault. Stratigraphic relationships there indicate basin elongation with time. The basin is deepest (8-8.5 km) and widest (???15 km) under the Lisan about 40 km north of the transverse fault. Farther north, basin depth is ambiguous, but is 3 km deep immediately north of the lake. The underlying pre-basin sedimentary layer thickens gradually from 2 to 3 km under the southern edge of the DSB to 3-4 km under the northern end of the lake and 5-6 km farther north. Crystalline basement is ???11 km deep under the deepest part of the basin. The upper crust under the basin has lower P wave velocity than in the surrounding regions, which is interpreted to reflect elevated pore fluids there. Within data resolution, the lower crust below ???18 km and the Moho are not affected by basin development. The subsidence rate was several hundreds of m/m.y. since the development of the DST ???17 Ma, similar to other basins along the DST, but subsidence rate has accelerated by an order of magnitude during the Pleistocene, which allowed the accumulation of 4 km of sediment. We propose that the rapid subsidence and perhaps elongation of the DSB are due to the development of inter-connected mid-crustal ductile shear zones caused by alteration of feldspar to muscovite in the presence of pore fluids. This alteration resulted in a significant strength decrease and viscous creep. We propose a similar cause to the enigmatic rapid subsidence of the North Sea at the onset the North Atlantic mantle plume. Thus, we propose that aqueous fluid flux

  9. Education and Raising Awareness of Seismic Risk in the Black Sea Basin

    NASA Astrophysics Data System (ADS)

    Florin Balan, Stefan; Alcaz, Vasile; Trifonova, Petya; Uker, Nalan; Tataru, Dragos

    2014-05-01

    The Project "Black Sea Earthquake Safety Net(work)" ESNET has the intention to educate and raise awareness of seismic risk in the Black Sea Basin in four countries: Moldova, Romania, Bulgaria and Turkey. The project is financed through "The Black Sea Basin Joint Operational Programme", an EU operational programmes under European Neighborhood & Partnership Instrument (ENPI). The programme is financed by ENPI. The participation of Turkey is financed by Instrument for Pre-accession Assistance. It is implemented during the period 2007 - 2013. The project wants to contribute to the prevention of natural disasters generated by earthquakes in Black Sea Basin by developing a joint monitoring and intervention concept. All the countries involved in the project have their own studies, strategies, prevention and intervention systems in case of earthquakes, but until now there has not been an integrated approach so far in the Black Sea Basin. Given the cross-border character of seismic activity, it is necessary to have a cross-border approach on prevention, monitoring and intervention in case of earthquakes. Main objectives : 1. The assessment of the disaster potential, with accent on the seismic risk degree and the earthquakes effects in the intervention area. For achieving the main objective is to have an accurate and up-to-date assessment of the potential of disasters provoked by earthquakes in the project area/regions. This assessment will be carried out at national level and will be used in designing the common concept/approach for dealing with earthquakes at regional level, thus ensuring the cross-border character of the objective. 2.To develop an integrated seismic monitoring and intervention concept. This integrated concept, built on the basis of the previous objective, will have a cross-border relevance and is at the core of the action. The monitoring and intervention in case of earthquakes will be coordinated among the participating countries based on this, thus a

  10. Buried paleo-sedimentary basins in the north-eastern Black Sea-Azov Sea area and tectonic implications (DOBRE-2)

    NASA Astrophysics Data System (ADS)

    Starostenko, Vitaly; Stephenson, Randell; Janik, Tomasz; Tolkunov, Anatoly

    2014-05-01

    A number of independent but inter-related projects carried out under the auspices of various national and international programmes in Ukraine including DARIUS were aimed at imaging the upper lithosphere, crustal and sedimentary basin architecture in the north-eastern Black Sea, southern Crimea and Kerch peninsulas and the Azov Sea. This region marks the transition from relatively undisturbed Precambrian European cratonic crust and lithosphere north of the Azov Sea to areas of significant Phanerozoic tectonics and basin development, in both extensional as well as compressional environments, to the south, including the eastern Black Sea rift, which is the main sedimentary basin of the study area. The wide-angle reflection and refraction (WARR) profile DOBRE-2, a Ukrainian national project with international participation (see below), overlapping some 115 km of the southern end of the DOBREfraction'99 profile (that crosses the intracratonic Donbas Foldbelt) in the north and running to the eastern Black Sea basin in the south, utilised on- and offshore recording and energy sources. It maps crustal velocity structure across the craton margin and documents, among other things, that the Moho deepens from 40 km to ~47 km to the southwest below the Azov Sea and Crimean-Caucasus deformed zone. A regional CDP seismic profile coincident with DOBRE-2, crossing the Azov Sea, Kerch Peninsula and the north-eastern Black Sea southwest to the Ukraine-Turkey border, acquired by Ukrgeofisika (the Ukrainian national geophysical company) reveals in its inferred structural relationships the ages of Cretaceous and younger extensional and subsequent basin inversion tectonic events as well as the 2D geometry of basement displacement associated with post mid-Eocene inversion. A direct comparison of the results of the WARR velocity model and the near-vertical reflection structural image has been made by converting the former into the time domain. The results dramatically demonstrate that

  11. Assessment of undiscovered oil and gas resources of the North Caspian Basin, Middle Caspian Basin, North Ustyurt Basin, and South Caspian Basin Provinces, Caspian Sea Area, 2010

    USGS Publications Warehouse

    Klett, T.R.; Schenk, Christopher J.; Charpentier, Ronald R.; Gautier, Donald L.; Brownfield, Michael E.; Pitman, Janet K.; Cook, Troy A.; Tennyson, Marilyn E.

    2010-01-01

    The U.S. Geological Survey estimated mean volumes of technically recoverable, conventional, undiscovered petroleum resources at 19.6 billion barrels of crude oil, 243 trillion cubic feet of natural gas, and 9.3 billion barrels of natural gas liquids for the Caspian Sea area, using a geology-based assessment methodology.

  12. New insights into the organic carbon export in the Mediterranean Sea from 3-D modeling

    NASA Astrophysics Data System (ADS)

    Guyennon, A.; Baklouti, M.; Diaz, F.; Palmieri, J.; Beuvier, J.; Lebaupin-Brossier, C.; Arsouze, T.; Béranger, K.; Dutay, J.-C.; Moutin, T.

    2015-12-01

    The Mediterranean Sea is one of the most oligotrophic regions of the oceans, and nutrients have been shown to limit both phytoplankton and bacterial activities, resulting in a potential major role of dissolved organic carbon (DOC) export in the biological pump. Strong DOC accumulation in surface waters is already well documented, though measurements of DOC stocks and export flux are still sparse and associated with major uncertainties. This study provides the first basin-scale overview and analysis of organic carbon stocks and export fluxes in the Mediterranean Sea through a modeling approach based on a coupled model combining a mechanistic biogeochemical model (Eco3M-MED) and a high-resolution (eddy-resolving) hydrodynamic simulation (NEMO-MED12). The model is shown to reproduce the main spatial and seasonal biogeochemical characteristics of the Mediterranean Sea. Model estimations of carbon export are also of the same order of magnitude as estimations from in situ observations, and their respective spatial patterns are mutually consistent. Strong differences between the western and eastern basins are evidenced by the model for organic carbon export. Though less oligotrophic than the eastern basin, the western basin only supports 39 % of organic carbon (particulate and dissolved) export. Another major result is that except for the Alboran Sea, the DOC contribution to organic carbon export is higher than that of particulate organic carbon (POC) throughout the Mediterranean Sea, especially in the eastern basin. This paper also investigates the seasonality of DOC and POC exports as well as the differences in the processes involved in DOC and POC exports in light of intracellular quotas. Finally, according to the model, strong phosphate limitation of both bacteria and phytoplankton growth is one of the main drivers of DOC accumulation and therefore of export.

  13. Sulfidization of lacustrine glacial clay upon Holocene marine transgression (Arkona Basin, Baltic Sea)

    NASA Astrophysics Data System (ADS)

    Holmkvist, Lars; Kamyshny, Alexey; Brüchert, Volker; Ferdelman, Timothy G.; Jørgensen, Bo Barker

    2014-10-01

    Towards the end of the last deglaciation more than 13,500 years ago the southern Baltic Sea was a freshwater lake, the Baltic Ice Lake, for several thousand years during which iron-rich, organic-poor clay was deposited. The modern brackish-marine stage started about 8600 years ago with the deposition of organic-rich mud, which is today characterized by high rates of sulfate reduction and high concentrations of free sulfide. We studied the iron-sulfur diagenesis in gravity cores from the Arkona Basin, SW Baltic Sea, to track the progressing sulfidization front in the buried Ice Lake sediment. The geochemical zonation was unusual as the sulfate concentration dropped steeply by two thirds below which it increased again due to a deep sulfate reservoir. The reservoir had been established during the early Holocene marine period as sulfate and other seawater ions diffused down into the lake sediment for several thousand years. Sulfur isotope analyses confirmed its origin as seawater sulfate, while its oxygen isotope composition indicated a microbially catalyzed equilibration with ambient interstitial water, decoupled from net sulfate reduction. Today, hydrogen sulfide diffuses from the marine mud down into the lake sediment where a black band with high magnetic susceptibility and high iron monosulfide, greigite and elemental sulfur content shows progressing sulfidization of the large pool of solid-phase reactive iron. Dissolved iron from the deep Ice Lake sediment diffuses up to the sulfide front and provides a small supplement to the solid Fe(III) pool as a sulfide sink. Pyrite formation at the sulfidization front may involve surface-bound zero-valent sulfur while, above the front, polysulfides are in equilibrium with the system hydrogen sulfide - polysulfide - rhombic sulfur and may not be important for further pyrite formation. The Holocene iron-sulfur diagenesis observed in the Arkona Basin represents an important transitional state for post-glacial transgressions

  14. The Late Devensian (<22,000 BP) Irish Sea Basin: The sedimentary record of a collapsed ice sheet margin

    NASA Astrophysics Data System (ADS)

    Eyles, Nicholas; Marshall McCabe, A.

    The Late Devensian (<20 ka BP) glacial geology of the Irish Sea Basin (4000 km 2) is an event stratigraphy recording the entry of marine waters into a glacio-isostatically-depressed basin, and the rapid retreat of the Irish Sea Glacier as a tidewater ice margin. Marine limits occur up to 140 m O.D. Across much of the central basin, the ice margin was uncoupled from its bed exposing a subglacially-scoured topography to glaciomarine processes. The Irish Sea Glacier was a major drainage conduit of the last British Ice Sheet; calving of the marine ice margin resulted in fast flow (surging) of ice streams recorded by drumlin fields around the northern basin margin and tunnel valleys. Rapid evacuation of the basin may have stranded large areas of dead ice in peripheral zones (e.g. Cheshire/Shropshire Lowlands) and initiated the collapse of the ice sheet. Thick wedges of ice-contact glaciomarine sediments were deposited during ice retreat as morainal bank complexes by successive tidewater ice margins stabilized at pinning points around the Irish Sea coast. Where morainal banks occur on the seaward side of drumlin swarms there is a clear sequential relationship between rapid ice loss from calving ice margins, the development of fast flowing ice streams, drumlinization and the pumping of subglacial sediment to tidewater. Raised delta complexes are locally associated with marine limits along the high relief coastal margins of Wales, east central Ireland, and the Lake District. Associated valley infill complexes record downslope resedimentation of heterogenous sediments into the marine environment during ice retreat. Co-eval offshore deposits are represented by well-stratified glaciomarine complexes that infill a subglacially-scoured topography that shows networks of tunnel valleys. Glaciomarine mud drapes occur well to the south of the maximum limit of grounded ice in the basin (e.g. North Devon, Scilly Islands, Southern Ireland). The age of these distal sediments

  15. Barents Sea Paleozoic basement and basin configurations: Crustal structure from deep seismic and potential field data

    NASA Astrophysics Data System (ADS)

    Aarseth, Iselin; Mjelde, Rolf; Breivik, Asbjørn Johan; Huismans, Ritske; Faleide, Jan Inge

    2016-04-01

    The Barents Sea is underlain by at least two different basement domains; the Caledonian in the west and the Timanian in the east. The transition between these two domains is not well constrained and contrasting interpretations have been published recently. Interpretations of new high-quality magnetic data covering most of the SW Barents Sea has challenged the Late Paleozoic basin configurations in the western and central Barents Sea as outlined in previous studies. Two regional ocean bottom seismic (OBS) profiles were acquired in 2014. This new dataset crosses the two major directions of Caledonian deformation proposed by different authors: N-S direction and SW-NE direction. Of particular importance are the high velocity anomalies related to Caledonian eclogites, revealing the location of Caledonian suture zones in the northern Barents Sea. One of the main objectives with this project is to locate the main Caledonian suture in the western Barents Sea, as well as the possible Barentsia-Baltica suture postulated further eastwards. The collapse of the Caledonian mountain range predominantly along these suture zones is expected to be tightly linked to the deposition of large thicknesses of Devonian erosional products, and later rifting is expected to be influenced by inheritance of Caledonian trends. The P-wave travel-time modelling is done by use of a combined ray-tracing and inversion scheme, and gravity- and magnetic modelling will be used to augment the seismic model. The preliminary results indicate high P-wave velocities (mostly over 4 km/s) close to the seafloor as well as high velocity (around 6 km/s) zones at shallow depths which are interpreted as volcanic sills. The crustal transects reveal areas of complex geology and velocity inversions. A low seismic impedance contrast between the sedimentary section and top crystalline basement makes identification of this interface uncertain. Depth to Moho mostly lies around 30 km, except in an area of rapid change in

  16. Sources and pathways of polycyclic aromatic and saturated hydrocarbons in the Arkona Basin (Southern Baltic Sea, Central Europe)

    SciTech Connect

    Schulz, H.M.

    1996-12-31

    The Baltic Sea (Central Europe) is surrounded by coastal regions with long histories of industrialization. The heavy metal profiles in the sediments in the center of the Arkona Basin, one of the depressions of the southern Baltic Sea area, clearly reflect the historical anthropogenic influence. The Arkona Basin-is the final sink for materials derived from the Oder river which drains a highly polluted industrial area of Eastern Europe. Surficial muddy sediments from a close-meshed field of sampling-points were analyzed for distribution patterns of aliphatics and quantities and ratios of selected polycyclic aromatic hydrocarbons (PAH). These compounds are thought to reflect anthropogenic pollution related to emissions from traffic, heating, etc. We use these marker substances to test if the basin sediments reflect riverine input, and if additional sources can be identified.

  17. Seismic Wide-Angle Reflection / Refraction Profiling from the DESIRE Project Reveals the Deep Structure Across the Southern Dead Sea Basin

    NASA Astrophysics Data System (ADS)

    Weber, M.; Mechie, J.; Ab-Ayyash, K.; Ben-Avraham, Z.; El-Kelani, R.; Qabbani, I.; DESIRE Group

    2007-12-01

    As part of the DESIRE project a 240 km long seismic wide-angle reflection / refraction (WRR) profile was completed in spring 2006 across the Dead Sea Transform (DST) in the region of the southern Dead Sea basin. The DST with a total of about 105 km multi-stage left-lateral shear since about 18 Ma ago, accommodates the movement between the Arabian and African plates. It connects the spreading centre in the Red Sea with the Taurus collision zone in Turkey over a length of about 1100 km. With a sedimentary infill of about 10 km in places, the southern Dead Sea basin is the largest pull-apart basin along the DST and one of the largest pull-apart basins on Earth. The WRR measurements comprised 11 shots recorded by 200 three-component and 400 one- component instruments spaced 300 m to 1.2 km apart along the whole length of the E-W trending profile. Models of the P-wave velocity structure derived from the WRR data show that the sedimentary infill associated with the formation of the southern Dead Sea basin is about 8.5 km thick beneath the profile. With around an additional 2 km of older sediments, the depth to the seismic basement beneath the southern Dead Sea basin is about 11 km below sea level beneath the profile. In contrast, the interfaces below about 20 km depth, including the top of the lower crust and the Moho, show less than 3 km variation in depth beneath the profile as it crosses the southern Dead Sea basin. Thus the Dead Sea pull-apart basin is essentially an upper crustal feature with N-S upper crustal extension associated with the left-lateral motion along the DST. The boundary between the upper and lower crust at about 20 km depth must act as a decoupling zone. Thermo-mechanical modelling of the Dead Sea basin supports such a scenario.

  18. Structural control on lithofacies in the Zhu 1 depression, Pearl River Mouth Basin, South China Sea

    SciTech Connect

    Carnes, J.B.; Novitsky-Evans, J.C.; Schunk, D.J. )

    1994-07-01

    The structural framework of the Zhu 1 depression, Pearl River Mouth Basin, South China Sea, is expressed in terms of a half-graben rifting model, providing foundation for a predictive model of synrift lacustrine source rock distribution. The Zhu 1 depression includes a northern series of linked half grabens, a southern series of linked half grabens, and a central chain of intrabasinal ridges. The central ridge chain includes both horst blocks (termed high-relief accommodation zones or isolation ridges in the model) and antiforms (termed low-relief accommodation zones or interference ridges in the model). Major fluvial input was from the north, funneled into Zhu 1 through gaps (termed platforms in the model) created by offsets in the border faults of the northern series of half grabens. The central ridge chain is interpreted to have controlled sediment distribution within Zhu 1, periodically confining coarse terrigenous clastics within northern half grabens while lacustrine shales accumulated in southern half grabens.

  19. Hydrocarbon gas in sediment from the shelf, slope and basin of the Bering Sea.

    USGS Publications Warehouse

    Kvenvolden, K.A.; Redden, G.D.

    1980-01-01

    Methane, ethane, ethene, propane, propene, isobutane and n-butane are present in low concentrations in the top 2m of sediment. Methane is most abundant and its concentration increases with depth in the sediment. Ethane, ethene, propane and propene are present in almost all samples, but the concentrations of these gases are about two orders of magnitude-lower than the concentration of methane. The average ratios of ethane to ethene are usually greater than one in shelf sediment, about one in slope sediment, and usually less than one in basin sediments. These hydrocarbon gases are probably derived from low-temperature chemical and biochemical processes operating at or near the sea-floor. -from Authors

  20. Crustal metamorphic fluid flux beneath the Dead Sea Basin: Constraints from 2D and 3D magnetotelluric modelling

    NASA Astrophysics Data System (ADS)

    Meqbel, Naser; Weckmann, Ute; Muñoz, Gerard; Ritter, Oliver

    2016-09-01

    We report on a study to explore the deep electrical conductivity structure of the Dead Sea Basin (DSB) using magnetotelluric (MT) data collected along a transect across the DSB where the left lateral strike slip Dead Sea transform fault (DST) splits into two fault strands forming one of the largest pull-apart basins of the world. A very pronounced feature of our 2D inversion model is a deep, sub-vertical conductive zone beneath the DSB. The conductor extends through the entire crust and is sandwiched between highly resistive structures associated with Precambrian rocks of the basin flanks. The high electrical conductivity could be attributed to fluids released by dehydration of the uppermost mantle beneath the DSB, possibly in combination with fluids released by mid to low grade metamorphism in the lower crust and generation of hydrous minerals in the middle crust through retrograde metamorphism. Similar high conductivity zones associated with fluids have been reported from other large fault systems. The presence of fluids and hydrous minerals in the middle and lower crust could explain the required low friction coefficient of the DST along the eastern boundary of the Dead Sea basin and the high subsidence rate of basin sediments. 3D inversion models confirm the existence of a sub-vertical high conductivity structure underneath the DSB but its expression is far less pronounced. Instead, the 3D inversion model suggests a deepening of the conductive DSB sediments off-profile towards the south, reaching a maximum depth of approximately 12 km, which is consistent with other geophysical observations. At shallower levels, the 3D inversion model reveals salt diapirism as an upwelling of highly resistive structures, localized underneath the Al-Lisan Peninsula. The 3D model furthermore contains an E-W elongated conductive structure to the north-east of the Dead Sea basin. More MT data with better spatial coverage are required, however, to fully constrain the robustness of

  1. Gas hydrates in the deep water Ulleung Basin, East Sea, Korea.

    NASA Astrophysics Data System (ADS)

    Ryu, Byong-Jae

    2016-04-01

    Studies on gas hydrates in the deep-water Ulleung Basin, East Sea, Korea was initiated by the Korea Institute of Geoscience and Mineral Resources (KIGAM) to secure the future energy resources in 1996. Bottom simulating reflectors (BSRs) were first identified on seismic data collected in the southwestern part of the basin from 1998 to 1999. Regional geophysical surveys and geological studies of gas hydrates in the basin have been carried out by KIGAM from 2000 to 2004. The work included 12,367 km of 2D multi-channel seismic reflection lines and 38 piston cores 5 to 8 m long. As a part of the Korean National Gas Hydrate Program that has been performed since 2005, 6690 km of 2D multi-channel reflection seismic lines, 900 km2 of 3D seismic data, 69 piston cores and three PROD cores were additionally collected. In addition, two gas hydrate drilling expeditions were performed in 2007 and 2010. Cracks generally parallel to beddings caused by the dissociation of gas hydrate were often observed in cores. The lack of higher hydrocarbons and the carbon isotope ratios indicate that the methane is primarily biogenic. The seismic data showed clear and wide-spread bottom-simulating reflectors (BSRs). The BSR was identified by (a) its polarity opposite to the seafloor, (b) its seafloor-parallel reflection behavior, and (c) its occurrence at a sub-bottom depth corresponding to the expected base of gas hydrate stability zone. Several vertical to sub-vertical chimney-like blank zones up to several kilometers in diameter were also identified in the study area. They are often associated with velocity pull-up structures that are interpreted due to higher velocity in gas hydrate-bearing deposits. Seismic velocity analysis also showed a high velocity anomaly within the pull-up structure. Gas hydrate samples were collected from the shallow sedimentary section of blanking zone by piston coring in 2007. BSRs mainly occur in the southern part of the basin. They also locally observed in the

  2. Forecasting terrestrial water storage changes in the Amazon Basin using Atlantic and Pacific sea surface temperatures

    NASA Astrophysics Data System (ADS)

    de Linage, C.; Famiglietti, J. S.; Randerson, J. T.

    2013-10-01

    Floods and droughts frequently affect the Amazon River basin, impacting transportation, river navigation, agriculture, and ecosystem processes within several South American countries. Here we examined how sea surface temperatures (SSTs) influence interannual variability of terrestrial water storage anomalies (TWSAs) in different regions within the Amazon basin and propose a modeling framework for inter-seasonal flood and drought forecasting. Three simple statistical models forced by a linear combination of lagged spatial averages of central Pacific (Niño 4 index) and tropical North Atlantic (TNAI index) SSTs were calibrated against a decade-long record of 3°, monthly TWSAs observed by the Gravity Recovery And Climate Experiment (GRACE) satellite mission. Niño 4 was the primary external forcing in the northeastern region of the Amazon basin whereas TNAI was dominant in central and western regions. A combined model using the two indices improved the fit significantly (p < 0.05) for at least 64% of the grid cells within the basin, compared to models forced solely with Niño 4 or TNAI. The combined model explained 66% of the observed variance in the northeastern region, 39% in the central and western regions, and 43% for the Amazon basin as a whole with a 3 month lead time between the SST indices and TWSAs. Model performance varied seasonally: it was higher than average during the rainfall wet season in the northeastern Amazon and during the dry season in the central and western regions. The predictive capability of the combined model was degraded with increasing lead times. Degradation was smaller in the northeastern Amazon (where 49% of the variance was explained using an 8 month lead time vs. 69% for a 1 month lead time) compared to the central and western Amazon (where 22% of the variance was explained at 8 months vs. 43% at 1 month). These relationships may enable the development of an early warning system for flood and drought risk. This work also strengthens

  3. Seismic blanking zones in the deep-water Ullung Basin, East Sea of Korea.

    NASA Astrophysics Data System (ADS)

    Ryu, Byong-Jae; Riedel, Michael; Yoo, Dong-Geun

    2015-04-01

    A total 12366.395 L.km of 2D multichannel seismic data were acquired by the Korea Institute of Geoscience and Mineral Resources (KIGAM) for detecting and mapping seismic indicators for the presence of gas hydrate in the deep-water Ulleung Basin, East Sea of Korea. The seismic data were acquired using Trilogy System of Geco-Prakla, Bolt Air-gun System onboard the R/V TAMHAE II of KIGAM during the years of 2000 to 2004. The seismic faices of shallow sediments were also analyzed to understand the sedimentary strata developed in the basin. Seismic data were processed to define gas hydrate indicators such as bottom simulating reflectors (BSRs) and seismic blank zones. The BSR was identified by (a) its polarity opposite to the seafloor, (b) its seafloor-parallel reflection behavior, and (c) its occurrence at a sub-bottom depth corresponding to the expected base of gas hydrate stability zone, on heat flow and other thermal data for the region and on seismic velocity data. The seismic velocity analysis was also conducted for determining the velocity deviation effect of high-velocity gas hydrate and underlying low-velocity free gas. The BSRs occur mainly in the southern part of the basin where mass transport deposits are widely occurring. A number of vertical to sub-vertical seismic blanking zones were identified in the basin. The blanking zones are near-vertical broad chimney-like structures of reduced seismic reflectivity. They may be formed by gas and/or fluid upwelling through fractures and faults. Many of the blanking zones show apparent velocity pull-up effects of sediment layering structures that are interpreted to be a result of higher velocity gas hydrate. The presence of substantial amounts of gas hydrate in the blank zones were first found by piston coring in 2007, and subsequently confirmed by two deep-drilling expeditions in 2007 and 2010. Most of the blanking zones occur in well-bedded turbidite/hemi-pelagic sediments in the northern deep basin. The

  4. Fate of copper complexes in hydrothermally altered deep-sea sediments from the Central Indian Ocean Basin.

    PubMed

    Chakraborty, Parthasarathi; Sander, Sylvia G; Jayachandran, Saranya; Nath, B Nagender; Nagaraju, G; Chennuri, Kartheek; Vudamala, Krushna; Lathika, N; Mascarenhas-Pereira, Maria Brenda L

    2014-11-01

    The current study aims to understand the speciation and fate of Cu complexes in hydrothermally altered sediments from the Central Indian Ocean Basin and assess the probable impacts of deep-sea mining on speciation of Cu complexes and assess the Cu flux from this sediment to the water column in this area. This study suggests that most of the Cu was strongly associated with different binding sites in Fe-oxide phases of the hydrothermally altered sediments with stabilities higher than that of Cu-EDTA complexes. The speciation of Cu indicates that hydrothermally influenced deep-sea sediments from Central Indian Ocean Basin may not significantly contribute to the global Cu flux. However, increasing lability of Cu-sediment complexes with increasing depth of sediment may increase bioavailability and Cu flux to the global ocean during deep-sea mining.

  5. Sea Surface Temperature Variability During the Past 2000 Years in Santa Barbara Basin, California

    NASA Astrophysics Data System (ADS)

    Pak, D. K.; Schimmelmann, A.; Hendy, I. L.

    2014-12-01

    An understanding of the spatial and temporal variability of late Holocene climate events is necessary to decipher natural climate variability from anthropogenic influence. At present, few North Pacific high-resolution marine records of the last 2000 years of temperature exist. High quality box and kasten cores from Santa Barbara Basin provide an opportunity to link foraminiferal proxy records to the instrumental sea surface temperature record over the past 200 years, to extend these proxy temperature records back over the last 2000 years, and to compare them with marine and continental records of temperature from other regions. We present an approximately annual to decadal record of planktonic foraminiferal proxies of temperature, including Mg/Ca, calcite δ18O and size-normalized shell weight of the near-subsurface dwelling planktonic foraminifera Globigerina bulloides, and Neogloboquadrina pachyderma coiling in Santa Barbara Basin, California (34° 16.847' N, 120° 02.268' W), over the past 2000 years. G. bulloides Mg/Ca temperatures exhibit a long-term cooling trend of approximately 2°C that ended in the early 18th century. Similarly, G. bulloides calcite δ18O and shell weight gradually increased from 0 to 1000 AD indicating long-term cooling. However, the cooling trend was followed by a calcite δ18O decrease from 1000 to 1700 AD, indicating either warming or freshening of surface water through the Little Ice Age (ca. 1400 to 1850 AD). After the early nineteenth century, G. bulloides calcite δ18O, Mg/Ca and shell weight trends are again broadly similar and correlate with historical sea surface temperature since 1850, and indicate that near surface temperatures have warmed by approximately 2°C since ~1920.

  6. Unraveling the hydrocarbon charge potential of the Nordkapp Basin, Barents Sea: An integrated approach to reduce exploration risk in complex salt basins

    NASA Astrophysics Data System (ADS)

    Schenk, Oliver; Shtukert, Olga; Bishop, Andrew; Kornpihl, Kristijan; Milne, Graham

    2014-05-01

    The Nordkapp Basin, Barents Sea, is an intra-continental syn-rift basin containing many complex salt structures. The salt is late-Carboniferous to Early Permian in age, with regional extension in the Triassic initiating the salt movement resulting in formation of sub- and mini-basins with significant subsidence (especially in the northeastern part of the basin). Subsequent tectonic phases allowed growth and distortion of salt diapirs that were later affected by uplift and erosion during Tertiary resulting in the formation of salt-related traps in Triassic and Lower Jurassic strata. During Plio-Pleistocene, glacial erosion removed additional Mesozoic and Cenozoic strata. This basin is regarded as a frontier salt province. A small hydrocarbon discovery (Pandora well) in the southwestern part of the basin points to the presence several functioning petroleum systems. The primary play type is related to salt traps below overhangs. Such structures are however, very difficult to image with conventional seismic techniques due to i) generation of multiples from sea floor and top of shallow salt bodies and ii) seismic shadow zones within the salt (possibly resulting from shale and carbonate stringers) which cause severe diffractions so that prospective areas adjacent to the salt remain elusive. Arctic exploration is expensive and the ability to focus on the highest potential targets is essential. A unique solution to this challenging subsurface Arctic environment was developed by integrating petroleum system modeling with full azimuth broadband seismic acquisition and processing. This integrated approach allows intelligent location of seismic surveys over structures which have the maximum chance of success of hydrocarbon charge. Petroleum system modeling was conducted for four seismic sections. Salt was reconstructed according to the diapiric evolution presented in Nilsen et al. (1995) and Koyi et al. (1995). Episodes of major erosion were assigned to Tertiary (tectonic) and

  7. Late Pleistocene Major Sedimentary Reworking Event (Homogenite) in Marmara Sea Central Basin

    NASA Astrophysics Data System (ADS)

    Beck, C.; Schneider, J.-L.; Mercier de Lépinay, B.; Cagatay, N.; Labeyrie, L.; Wendenbaum, E.; Boutareau, S.; Ménot-Combes, G.; Hadjas, I.; Turon, J.-L.; Marmacore Scientific Party

    2003-04-01

    Among eight long piston-cores retrieved during MARMACORE Cruise, two were dedicated to the Marmara Sea Central Basin especially for paleoseismic purpose. There, very high-resolution profiles evidenced a main acoustically transparent unit ponded in the whole basin and resembling the so-called " homogenite " described in central-eastern Mediterranean and in deep lakes. Core MD01-2431 (26.4 m) crossed a major sedimentary event comprising three parts, from bottom to top : 0.7 m of mud clasts within coarse sand, 1.9 m of poorly-stratified sand, and 4.8 m of homogenous clayey silt (top at 15.2 m bsf). Two wood-fragments found in the homogenous horizon (60 cm-separated) yielded 17 100 yrs BP calibrated AMS C14 values. Textural investigation on involved sediments lead to consider the whole set as a unique reworking event with : mass waisting evolving into turbidite, basal liquefaction and erosion of in situ fine sediments, segregation by oscillation (seiche-like or constrained turbidite effect) of finer fraction. If admitting a triggering of the whole set by an earthquake comparable to the strongest historical ones, the unusual reworked volume of soft sediments could be explained by an occurrence during a period of particularly high terrigenous supply.

  8. Magnitude-frequency distribution of submarine landslides in the Gioia Basin (southern Tyrrhenian Sea)

    NASA Astrophysics Data System (ADS)

    Casas, D.; Chiocci, F.; Casalbore, D.; Ercilla, G.; de Urbina, J. Ortiz

    2016-07-01

    Regional inventories and magnitude-frequency relationships provide critical information about landslides and represent a first step in landslide hazard assessment. Despite this, the availability of accurate inventories in the marine environment remains poor because of the commonly low accessibility of high-resolution data at regional scales. Evaluating high-resolution bathymetric data spanning the time interval 2007-2011 for the Gioa Basin of the southern Tyrrhenian Sea yielded a landslide inventory of 428 events affecting an area of >85 km2 and mobilizing approximately 1.4 km3 of sediment. This is the first time that this area is studied in such detail, justifying comparison with other areas both onland and offshore. Statistical analyses revealed that the cumulative distribution of the dataset is characterized by two right-skewed probability distributions with a heavy tail. Moreover, evidence of a rollover for smaller landslide volumes is consistent with similar trends reported in other settings worldwide. This may reflect an observational limitation and the site-specific geologic factors that influence landslide occurrence. The robust validation of both power-law and log-normal probability distributions enables the quantification of a range of probabilities for new extreme events far from the background landslide sizes defined in the area. This is a useful tool at regional scales, especially in geologically active areas where submarine landslides can occur frequently, such as the Gioia Basin.

  9. Tectonics and types of riftogenic basins of the Scotia Sea, South Atlantic

    NASA Astrophysics Data System (ADS)

    Dubinin, E. P.; Kokhan, A. V.; Teterin, D. E.; Grokhol'sky, A. L.; Kurbatova, E. S.; Sushchevskaya, N. M.

    2016-01-01

    Western, central, and eastern provinces are recognized in the Scotia Sea. They are distinguished by their bottom topography, geophysical characteristics, and crustal structure, which record their different origin and evolution. The western province is characterized by the oceanic crust that formed on the West Scotia Ridge, where active spreading may have ceased as a result of a collision between propagating rift and the structural barrier of the thick continental lithosphere of the Falkland Plateau. The central province is a series of blocks mainly composed of continental crust that subsided to various depths depending on the degree of extension in the course of rifting. These blocks are separated by local areas with oceanic crust formed due to the breakup of the continental crust and diffusive spreading. These areas are characterized by deep bottom and high values of Bouguer anomalies. The southern framework of the central province consists of subsided continental blocks and microcontinents divided by small spreading-type basins formed by lithospheric extension complicated by strike-slip faulting. The eastern province is composed of oceanic crust formed on the backarc spreading East Scotia Ridge. The results of density analysis, analog, and numerical simulations allowed us to explain some features of the structure and evolution of these provinces. The insight into tectonic structure of the provinces and their evolution allowed us to recognize several types of riftogenic basins differing in geodynamics, age, and geological and geophysical characteristics.

  10. Deltaic Depositional Systems, Evolution Characteristics, and Petroleum Potential, Palaeogene Sub-Basin, South China Sea

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Wang, Hua; Zhang, Guotao

    2015-04-01

    Deltaic depositional systems are detailed characterized by morphology and facies in a Palaeogene continental sub-basin of Beibuwan Basin, South China Sea. Based on examination of 435 m of conventional cores from 30 wells, three major types of deltaic facies have been recognized: delta, beach and shoreface. Morphology and facies asymmetry between the down-drift and the up-drift sides present a typical asymmetric delta system:1) the down-rift, sourced primarily by the feeding river, are influenced by mixed river and wave processes. Deposits on this side are muddy and consist of barrier, bar, bay-fill, and bayhead delta facies with variable bioturbation intensity; 2)the up-rift, in contrast, is sourced by a second sediment source and typically consists of laterally continuous sandy beach and shoreface facies. Finally, two fundamentally different depositional models are established and reflect a different style of sequence stratigraphic patterns: 1) Multiple-stage faults slopes developed in the down-rift side feed fine grained sediment into two stages channelized front deltaic system; 2) Flexure slope break of the up-rift side, combining with deeper gradual slopes, conversely, feed coarser grained sediment from larger drainages into sandy beach and shoreface systems. Such a distinction has well explained the differentiation of the proven hydrocarbon reserves because the up-rift consists of well-sorted, mature, and laterally continuous homogeneous beach-shoreface reservoirs, whereas the down-rift, in contrast, is muddier and consists of less continuous, less mature, heterolithic reservoirs. The Delta asymmetry concepts and models don't only challenge the traditional definition of deltas in Fushan sub-basin, but also provides strong theoretical support for the future exploration. This process-based model may be applicable to many deep-water settings and provides a framework within which to interpret the stratigraphic and spatial distribution of these complex deposits.

  11. Basin-wide N2 fixation in the deep waters of the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Benavides, Mar; Bonnet, Sophie; Hernández, Nauzet; Martínez-Pérez, Alba María.; Nieto-Cid, Mar; Álvarez-Salgado, Xosé Antón; Baños, Isabel; Montero, María. F.; Mazuecos, Ignacio P.; Gasol, Josep M.; Osterholz, Helena; Dittmar, Thorsten; Berman-Frank, Ilana; Arístegui, Javier

    2016-06-01

    Recent findings indicate that N2 fixation is significant in aphotic waters, presumably due to heterotrophic diazotrophs depending on organic matter for their nutrition. However, the relationship between organic matter and heterotrophic N2 fixation remains unknown. Here we explore N2 fixation in the deep chlorophyll maximum and underneath deep waters across the whole Mediterranean Sea and relate it to organic matter composition, characterized by optical and molecular methods. Our N2 fixation rates were in the range of those previously reported for the euphotic zone of the Mediterranean Sea (up to 0.43 nmol N L-1 d-1) and were significantly correlated to the presence of relatively labile organic matter with fluorescence and molecular formula properties representative for peptides and unsaturated aliphatics and associated with the presence of more oxygenated ventilated water masses. Finally, and despite that the aphotic N2 fixation contributes largely to total water column diazotrophic activity (>50%), its contribution to overall nitrogen inputs to the basin is negligible (<0.5%).

  12. Seismic stratigraphy and sedimentation of Magdalena Fan, Southern Colombian Basin, Caribbean Sea

    SciTech Connect

    Kolla, V.; Buffler, R.T.; Ladd, J.W.

    1984-03-01

    Analysis of all available seismic data from the Magdalena Fan in the southern Colombian basin, Caribbean Sea, allows subdivision of the sedimentary section into six seismic sequences (units). Although sediments were deposited in the present-day Magdalena Fan region since about Late Cretaceous, terrigenous sedimentation became significant only in the late Cenozoic during deposition of the upper three sequences associated with the uplifts of the Andes. These upper three sequences comprise the Magdalena Fan proper. The uppermost sequence probably represents the last main phase of sedimentation subsequent to the major uplift of the Andes in the Pliocene. The morphologic and shallow acoustic (3.5 kHz) characteristics of this fan unit are: upper fan, 1:60-1:110 gradients, channels having well-developed levees, and several subbottom reflectors in all areas except in channels; middle fan, 1:110-1:200 gradients, numerous channels with very subdued levees, and several to few subbottom reflectors; lower fan, < 1:250 gradients, small channels, relatively smooth sea floor, and few or no subbottom reflectors.

  13. Propagated rifting in the Southwest Sub-basin, South China Sea: Insights from analogue modelling

    NASA Astrophysics Data System (ADS)

    Ding, Weiwei; Li, Jiabiao

    2016-10-01

    How the South China Sea rifted has long been a puzzling question that is still debated, particularly with reference to the Southwest Sub-basin (SWSB). Analogue modelling remains one of the most useful tools for testing rift models and processes. Here, we present and discuss a series of analogue modelling experiments designed to investigate the rifting process of the SWSB. Convincing geophysical results were compiled to provide realistic constraints to test the experimental results and interpretations. A heterogeneous lithosphere model with a varied lithospheric structure showed tectono-morphological features similar to the natural case of the SWSB, indicating that the initial thermal condition and rheological stratification of the lithosphere should have a dominant effect on the rifting process of the SWSB. Rigid tectonic blocks existed in the continental margin, such as the Macclesfield Bank and the Reed Bank, and they played important roles in both the shaping of the continent-ocean boundary and the coupling between the crust and mantle. The initial thermal condition and rheological stratification of the lithosphere under the South China Sea controlled the propagated rifting process of the SWSB. Extension was centred on the deep troughs between the rigid blocks, and the break-up occurred in these areas between them. The westward rifting propagation is best explained with a heterogeneous lithosphere model characterized by varied lithospheric structure, and it was responsible for producing the V-shaped configuration of the SWSB.

  14. A review and assessment of gas hydrate potential in Çınarcık Basin, Sea of Marmara

    NASA Astrophysics Data System (ADS)

    Sile, Hande; Akin, Cansu; Ucarkus, Gulsen; Namik Cagatay, M.

    2016-04-01

    The Sea of Marmara (NW Turkey), an intracontinental sea between the Mediterranean and Black Seas, is located in a tectonically active region with the formation of shallow gas hydrates and free gas. It is widely known that, Sea of Marmara sediments are organic-rich and conducive to production of methane, which is released on the sea floor through active fault segments of the North Anatolian Fault (Geli et al., 2008). Here we study the gas hydrate potential of the Çınarcık Basin using published data and our core analyses together with gas hydrate stability relations. The gas sampled in the Çınarcık Basin is composed mainly of biogenic methane and trace amounts of heavier hydrocarbons (Bourry et al., 2009). The seafloor at 1273 m depth on the Çınarcık Basin with temperature of 14.5oC and hydrostatic pressure of 127.3 atm corresponds to the physical limit for gas hydrate formation with respect to phase behavior of gas hydrates in marine sediments (Ménot and Bard, 2010). In order to calculate the base of the gas hydrate stability zone in Çınarcık Basin, we plotted T (oC) calculated considering the geothermal gradient versus P (atm) on the phase boundary diagram. Below the seafloor, in addition to hydrostatic pressure (10 Mpa/km), we calculated lithostatic pressure due to sediment thickness considering the MSCL gamma ray density values (~1.7 gr/cm3). Our estimations show that, gas hydrate could be stable in the upper ~20 m of sedimentary succession in Çınarcık Basin. The amount of gas hydrate in the Çınarcık Basin can be determined using the basinal area below 1220 m depth (483 km2) and average thickness of the gas hydrate stability zone (20 m) and the sediment gas hydrate saturation (1.2 % used as Milkov, 2004 suggested). The calculations indicate the potential volume of gas hydrate in Çınarcık Basin as ~11.6x107 m3. Such estimates are helpful for the consideration of gas hydrates as a new energy resource, for assessment of geohazards or their

  15. Sea Level and Paleoenvironment Control on Late Ordovician Source Rocks, Hudson Bay Basin, Canada

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Hefter, J.

    2009-05-01

    Hudson Bay Basin is one of the largest Paleozoic sedimentary basins in North America, with Southampton Island on its north margin. The lower part of the basin succession comprises approximately 180 to 300 m of Upper Ordovician strata including Bad Cache Rapids and Churchill River groups and Red Head Rapids Formation. These units mainly comprise carbonate rocks consisting of alternating fossiliferous limestone, evaporitic and reefal dolostone, and minor shale. Shale units containing extremely high TOC, and interpreted to have potential as petroleum source rocks, were found at three levels in the lower Red Head Rapids Formation on Southampton Island, and were also recognized in exploration wells from the Hudson Bay offshore area. A study of conodonts from 390 conodont-bearing samples from continuous cores and well cuttings from six exploration wells in the Hudson Bay Lowlands and offshore area (Comeault Province No. 1, Kaskattama Province No. 1, Pen Island No. 1, Walrus A-71, Polar Bear C-11 and Narwhal South O-58), and about 250 conodont-bearing samples collected from outcrops on Southampton Island allows recognition of three conodont zones in the Upper Ordovician sequence, namely (in ascendant sequence) Belodina confluens, Amorphognathus ordovicicus, and Rhipidognathus symmetricus zones. The three conodont zones suggest a cycle of sea level changes of rising, reaching the highest level, and then falling during the Late Ordovician. Three intervals of petroleum potential source rock are within the Rhipidognathus symmetricus Zone in Red Head Rapids Formation, and formed in a restricted anoxic and hypersaline condition during a period of sea level falling. This is supported by the following data: 1) The conodont Rhipidognathus symmetricus represents the shallowest Late Ordovician conodont biofacies and very shallow subtidal to intertidal and hypersaline condition. This species has the greatest richness within the three oil shale intervals to compare other parts of Red

  16. Spatial and temporal habitat partitioning by zooplankton in the Bornholm Basin (central Baltic Sea)

    NASA Astrophysics Data System (ADS)

    Schulz, Jan; Peck, Myron A.; Barz, Kristina; Schmidt, Jörn Oliver; Hansen, Frank C.; Peters, Janna; Renz, Jasmin; Dickmann, Miriam; Mohrholz, Volker; Dutz, Jörg; Hirche, Hans-Jürgen

    2012-12-01

    The deep basins in the Baltic Sea such as the Bornholm Basin (BB) are subject to seasonal changes in the strength of physico-chemical stratification. These depth-related changes in key abiotic factors are strong drivers of habitat partitioning by the autochthonous zooplankton community. Species-specific ecophysiological preferences often result in both seasonal and inter-annual changes in vertical abundance that, when combined with depth-specific water currents, also lead to horizontal differences in spatial distribution. The present study documented the seasonal and depth-specific changes in the abundance and species composition of zooplankton in the BB based upon broad-scale survey data: 832 vertically-resolved (10 m) multinet samples collected at nine stations between March 2002 and May 2003. Changes in the zooplankton community were significantly correlated with changes in ambient hydrography. Each of five taxa (Bosmina coregoni maritima, Acartia spp., Pseudocalanus spp., Temora longicornis, Synchaeta spp.) contributed >10% to the zooplankton community composition. The appearance of cladocerans was mainly correlated with the phenology of thermocline development in the spring. The cladoceran B. coregoni maritima was a dominant member of this community during the warmest periods, preferring the surface waters above the thermocline. Copepods exhibited distinct, ontogenetic and seasonal changes in their distribution. The rotifers (Synchaeta sp.) were the most abundant zooplankton in May. Based on a multivariate approach and the evaluation of vertical distribution patterns, five major habitat utilisation modes were identified that were based, to a large extent, on the dynamics of thermal and haline stratification of the Baltic Sea. Our statistical analysis of one of the most thorough datasets collected on Baltic zooplankton in recent decades reveals some of the factors that make this stratified system highly dynamic with respect to the spatial overlap between

  17. Deep-sea coral record of human impact on watershed quality in the Mississippi River Basin

    USGS Publications Warehouse

    Prouty, Nancy G.; Roark, E. Brendan; Koenig, Alan E.; Demopoulos, Amanda W. J.; Batista, Fabian C.; Kocar, Benjamin D.; Selby, David; McCarthy, Matthew D.; Mienis, Furu

    2014-01-01

    One of the greatest drivers of historical nutrient and sediment transport into the Gulf of Mexico is the unprecedented scale and intensity of land use change in the Mississippi River Basin. These landscape changes are linked to enhanced fluxes of carbon and nitrogen pollution from the Mississippi River, and persistent eutrophication and hypoxia in the northern Gulf of Mexico. Increased terrestrial runoff is one hypothesis for recent enrichment in bulk nitrogen isotope (δ15N) values, a tracer for nutrient source, observed in a Gulf of Mexico deep-sea coral record. However, unambiguously linking anthropogenic land use change to whole scale shifts in downstream Gulf of Mexico biogeochemical cycles is difficult. Here we present a novel approach, coupling a new tracer of agro-industrialization to a multiproxy record of nutrient loading in long-lived deep-sea corals collected in the Gulf of Mexico. We found that coral bulk δ15N values are enriched over the last 150–200 years relative to the last millennia, and compound-specific amino acid δ15N data indicate a strong increase in baseline δ15N of nitrate as the primary cause. Coral rhenium (Re) values are also strongly elevated during this period, suggesting that 34% of Re is of anthropogenic origin, consistent with Re enrichment in major world rivers. However, there are no pre-anthropogenic measurements of Re to confirm this observation. For the first time, an unprecedented record of natural and anthropogenic Re variability is documented through coral Re records. Taken together, these novel proxies link upstream changes in water quality to impacts on the deep-sea coral ecosystem.

  18. Deep-sea coral record of human impact on watershed quality in the Mississippi River Basin

    NASA Astrophysics Data System (ADS)

    Prouty, Nancy G.; Roark, E. Brendan; Koenig, Alan E.; Demopoulos, Amanda W. J.; Batista, Fabian C.; Kocar, Benjamin D.; Selby, David; McCarthy, Matthew D.; Mienis, Furu

    2014-01-01

    One of the greatest drivers of historical nutrient and sediment transport into the Gulf of Mexico is the unprecedented scale and intensity of land use change in the Mississippi River Basin. These landscape changes are linked to enhanced fluxes of carbon and nitrogen pollution from the Mississippi River, and persistent eutrophication and hypoxia in the northern Gulf of Mexico. Increased terrestrial runoff is one hypothesis for recent enrichment in bulk nitrogen isotope (δ15N) values, a tracer for nutrient source, observed in a Gulf of Mexico deep-sea coral record. However, unambiguously linking anthropogenic land use change to whole scale shifts in downstream Gulf of Mexico biogeochemical cycles is difficult. Here we present a novel approach, coupling a new tracer of agro-industrialization to a multiproxy record of nutrient loading in long-lived deep-sea corals collected in the Gulf of Mexico. We found that coral bulk δ15N values are enriched over the last 150-200 years relative to the last millennia, and compound-specific amino acid δ15N data indicate a strong increase in baseline δ15N of nitrate as the primary cause. Coral rhenium (Re) values are also strongly elevated during this period, suggesting that 34% of Re is of anthropogenic origin, consistent with Re enrichment in major world rivers. However, there are no pre-anthropogenic measurements of Re to confirm this observation. For the first time, an unprecedented record of natural and anthropogenic Re variability is documented through coral Re records. Taken together, these novel proxies link upstream changes in water quality to impacts on the deep-sea coral ecosystem.

  19. Possible connection between large volcanic eruptions and level rise episodes in the Dead Sea Basin

    NASA Astrophysics Data System (ADS)

    Bookman, Revital; Filin, Sagi; Avni, Yoav; Rosenfeld, Daniel; Marco, Shmuel

    2014-04-01

    The June 1991 Pinatubo volcanic eruption perturbed the atmosphere, triggering short-term worldwide changes in surface and lower troposphere temperatures, precipitation, and runoff. The following winter was anomalously wet in the Levant, with a ˜2-m increase in the Dead Sea level that created a distinct morphological terrace along the lake's shore. Given the global radiative and chemical effects of volcanogenic aerosols on climatic systems, we tested the hypothesis that the 1991-92 winter shore terrace is a modern analogue to the linkage between past volcanic eruptions and a sequence of shore terraces on the cliffs around the Dead Sea Basin (DSB). Sixteen shore terraces, detected using airborne laser scanning data, were interpreted as indicating short-term level rises due to episodes of enhanced precipitation and runoff during the dramatic drop in Lake Lisan's (palaeo-Dead Sea) level at the end of the Last Glacial Maximum. The terraces were compared with a dated time series of volcanogenic sulfate from the GISP2 ice core, and similar numbers of sulfate concentration peaks and shore terraces were found. Furthermore, a significant correlation was found between SO4 concentration peaks and the heights of the terraces. This correlation may indicate a link between the explosivity of past eruptions, the magnitude of stratospheric injection, and their impact on the northern hemisphere water balance. The record of such short-term climato-hydrological effects is made possible by the dramatic desiccation of Lake Lisan. Detailed records of such events, albeit rare because of their vulnerability and short longevity, provide an important demonstration of global climatic teleconnections.

  20. Deep-sea coral record of human impact on watershed quality in the Mississippi River Basin

    NASA Astrophysics Data System (ADS)

    Prouty, N.; Roark, B.; Koenig, A.; Batista, F. C.; Kocar, B. D.; Selby, D. S.; Mccarthy, M. D.; Mienis, F.; Ross, S. W.; Demopoulos, A. W.

    2015-12-01

    One of the greatest drivers of historical nutrient and sediment transport into the Gulf of Mexico is the unprecedented scale and intensity of land use change in the Mississippi River Basin. These landscape changes are linked to enhanced fluxes of carbon and nitrogen pollution from the Mississippi River, and persistent eutrophication and hypoxia in the northern Gulf of Mexico. Increased terrestrial runoff is one hypothesis for recent enrichment in bulk nitrogen isotope (δ15N) values, a tracer for nutrient source, observed in a Gulf of Mexico deep-sea coral record. However, unambiguously linking anthropogenic land use change to whole scale shifts in downstream Gulf of Mexico biogeochemical cycles is difficult. Here we present a novel approach, coupling a new tracer of agro-industrialization to a multiproxy record of nutrient loading in long-lived deep-sea corals collected in the Gulf of Mexico. We found that coral bulk δ15N values are enriched over the last 150-200 years relative to the last millennia, and compound-specific amino acid δ15N data indicate a strong increase in baseline δ15N of nitrate as the primary cause. Coral rhenium (Re) values are also strongly elevated during this period, suggesting that 34% of Re is of anthropogenic origin, consistent with Re enrichment in major world rivers. However, there are no pre-anthropogenic measurements of Re to confirm this observation. For the first time, an unprecedented record of natural and anthropogenic Re variability is documented through coral Re records. Taken together, these novel proxies link upstream changes in water quality to impacts on the deep-sea coral ecosystem.

  1. Cyclone trends constrain monsoon variability during Late Oligocene sea level highstands (Kachchh Basin, NW India)

    NASA Astrophysics Data System (ADS)

    Reuter, M.; Piller, W. E.; Harzhauser, M.; Kroh, A.

    2013-01-01

    Important concerns about the consequences of climate change for India are the potential impact on tropical cyclones and the monsoon. Herein we present a sequence of fossil shell beds from the shallow-marine Maniyara Fort Formation (Kachcch Basin) as an indicator of tropical cyclone activity along the NW Indian coast during the Late Oligocene warming period (~27-24 Ma). Direct proxies providing information about the atmospheric circulation dynamics over the Indian subcontinent at this time are important since it corresponds to a major climate reorganization in Asia that ends up with the establishment of the modern Asian monsoon system in the Early Miocene. The vast shell concentrations comprise a mixture of parautochthonous and allochthonous assemblages indicating storm-generated sediment transport from deep to shallow water during third-order sea level highstands. Three distinct skeletal assemblages were distinguished each recording a relative storm wave base depth. (1) A shallow storm wave base is shown by nearshore mollusks, corals and Clypeaster echinoids; (2) an intermediate storm wave base depth is indicated by lepidocyclind foraminifers, Eupatagus echinoids and corallinaceans; and (3) a deep storm wave base is represented by an Amussiopecten-Schizaster echinoid assemblage. Vertical changes in these skeletal associations give evidence of gradually increasing tropical cyclone intensity in line with third-order sea level rise. The intensity of cyclones over the Arabian Sea is primarily linked to the strength of the Indian monsoon. Therefore and since the topographic boundary conditions for the Indian monsoon already existed in the Late Oligocene, the longer-term cyclone trends were interpreted to reflect monsoon variability during the initiation of the Asian monsoon system. Our results imply an active monsoon over the Eastern Tethys at ~26 Ma followed by a period of monsoon weakening during the peak of the Late Oligocene global warming (~24 Ma).

  2. Automated reconstruction of drainage basins and water discharge to the sea through glacial cycles

    NASA Astrophysics Data System (ADS)

    Wickert, Andrew

    2015-04-01

    Over glacial cycles, ice masses and their geophysical impacts on surface topography dramatically changed drainage patterns and river discharges. These changes impacted meltwater discharge to the ocean, geomorphology, and climate. As the river systems'the threads that tied the ice sheets to the sea'were stretched, severed, and rearranged during deglaciation, they also shrank and swelled with the pulse of meltwater inputs and proglacial lake dynamics. Here I present a general method to compute past river flow paths, drainage basin geometries, and river discharges. I automate these calculations within GRASS GIS to take advantage of rapid solution techniques for drainage networks in an open-source and compute-cluster-ready environment. I combine modern topography and bathymetry with ice sheet reconstructions from the last glacial cycle and a global glacial isostatic adjustment model to build digital elevation models of the past Earth surface. I then sum ice sheet mass balance with computed precipitation and evapotranspiration from a paleoclimate general circulation model to produce grids of water input. I combine these topographic and hydrologic inputs to compute past river networks and discharges through time. These paleodrainage reconstructions connect ice sheets, sea level, and climate models to fluvial systems, which in turn generate measurable terrace and sedimentary records as they carry physical, compositional, and isotopic signatures of ice sheet melt and landscape change through their channels and to the sea. Therefore, this work provides a self-consistent paleogeographic framework within which models and geologic records may be quantitatively compared to build new insights into past glacial systems.

  3. Assessment and intercomparison of numerical simulations in the Western Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Juza, Mélanie; Mourre, Baptiste; Renault, Lionel; Tintoré, Joaquin

    2014-05-01

    The Balearic Islands Coastal Observing and Forecasting System (SOCIB, www.socib.es) is developing high resolution numerical simulations (hindcasts and forecasts) in the Western Mediterranean Sea (WMOP). WMOP uses a regional configuration of the Regional Ocean Modelling System (ROMS, Shchepetkin and McWilliams, 2005) with a high spatial resolution of 1/50º (1.5-2km). Thus, theses simulations are able to reproduce mesoscale and in some cases sub-mesoscale features that are key in the Mediterranean Sea since they interact and modify the basin and sub-basin circulation. These simulations are initialized from and nested in either the Mediterranean Forecasting System (MFS, 1/16º) or Mercator-Océan simulations (MERCATOR, 1/12º). A repeated glider section in the Ibiza Channel, operated by SOCIB, has revealed significant differences between two WMOP simulations using either MFS or MERCATOR (hereafter WMOP-MFS and WMOP-MERC). In this study, MFS, MERCATOR, WMOP-MFS and WMOP-MERC are compared and evaluated using available multi-platform observations such as satellite products (Sea Level Anomaly, Sea Surface Temperature) and in situ measurements (temperature and salinity profiles from Argo floats, CTD, XBT, fixed moorings and gliders; velocity fields from HF radar and currentmeters). A quantitative comparison is necessary to evaluate the capacity of the simulations to reproduce observed ocean features, and to quantify the possible simulations biases. This will in turn allow to improve the simulations, so as to produce better ocean forecast systems, to study and better understand ocean processes and to address climate studies. Therefore, various statistical diagnostics have been developed to assess and intercompare the simulations at various spatial and temporal scales, in different sub-regions (Alboran Sea, Western and Eastern Algerian sub-basins, Balearic Sea, Gulf of Lion), in different dynamical zones (coastal areas, shelves and "open" sea), along key sections (Ibiza and

  4. Integrated interpretation to improve subsalt imaging: a case study from the Nordkapp Basin, Norwegian Barents Sea

    NASA Astrophysics Data System (ADS)

    Olaf Müller, Christian; Brönner, Marco; Götze, Hans-Jürgen

    2015-04-01

    Seismic imaging of subsalt structures is still a difficult task and remaining uncertanties in the salt geometries makes exploration in the vicinity of such complex structures challenging. Gravity and magnetic data have proofed in the past their potential in combination with seismics to better delineate the shape of such salt structures. The current work deals with the improvement of subsalt imaging by combined interpretation of seismic and potential field data examined at a case study from the southern Nordkapp Basin. The Nordkapp Basin is a deep, narrow saliferous basin located in the southwestern Barents Sea. It comprises more than 30 salt diapirs, which are likely to create traps for hydrocarbons at their flanks and overhangs. Consequently exploration of the Nordkapp Basin with seismic methods started already in the 1980s, but until today solely seismics was not sufficient to reveal the nature and geometry for large parts of the basin. Therefore 2D and 3D seismic data were interpreted and used as stratigraphic constraints for the potential field modeling. For this purpose high resolution gravity and full tensor gravity gradient (FTG) data as well as a regional magnetic dataset were available. After processing the potential field data the 3D modeling was conducted by means of the interactive gravity and magnetic modeling software IGMAS+. Furthermore constraints for the rock properties, provided by well logs and susceptibility measurements of adjacent sedimentary well cores, were integrated. The favoured models indicate for both major salt structures a bulky base and a small root. The depth of the base of salt can vary in a range of about ± 300 m. Remaining mother salt is found in the northern part of the survey area and has no connection to the diapiric salt. Due to its higher sensibility to shallower sources the FTG data was used to model the flanks of the salt diapirs. In agreement with adjacent diapirs and encountered sequences a cap rock coverage was

  5. Development of basins in the Inner Moray Firth and the North Sea by crustal extension and dextral displacement of the Great Glen Fault

    NASA Astrophysics Data System (ADS)

    McQuillin, R.; Donato, J. A.; Tulstrup, J.

    1982-08-01

    Reflection seismic data provide evidence that Mesozoic dextral movements along the Great Glen Fault line have had an important influence on the development of the Inner Moray Firth Basin. Geophysical evidence further indicates that deep structure beneath the inner basin is dissimilar to that beneath the outer part and Viking and Central Grabens in the North Sea. Tectonic development of the inner basin can nevertheless be fitted into a pattern of North Sea extensional movements which led to the formation of the graben system with which the major North Sea hydrocarbon resources are associated.

  6. Bottom melting of Arctic Sea Ice in the Nansen Basin due to Atlantic Water influence

    NASA Astrophysics Data System (ADS)

    Muilwijk, Morven; Smedsrud, Lars H.; Meyer, Amelie

    2016-04-01

    Our global climate is warming, and a shrinking Arctic sea ice cover remains one of the most visible signs of this warming. Sea Ice loss is now visible for all months in all regions of the Arctic. Hydrographic and current observations from a region north of Svalbard collected during the Norwegian Young Sea Ice Cruise (N-ICE2015) are presented here. Comparison with historical data shows that the new observations from January through June fill major gaps in available observations, and help describing important processes linking changes in regional Atlantic Water (AW) heat transport and sea ice. Warm and salty AW originating in the North Atlantic enters the Arctic Ocean through the Fram Strait and is present below the Arctic Sea Ice cover throughout the Arctic. However, the depth of AW varies by region and over time. In the region north of Svalbard, we assume that depth could be governed primarily by local processes, by upstream conditions of the ice cover (Northwards), or by upstream conditions of the AW (Southwards). AW carries heat corresponding to the volume transport of approximately 9 SV through Fram Strait, varying seasonally from 28 TW in winter to 46 TW in summer. Some heat is recirculated, but the net annual heat flux into the Arctic Ocean from AW is estimated to be around 40 TW. The Atlantic Water layer temperature at intermediate depths (150-900m) has increased in recent years. Until recently, maximum temperatures have been found to be 2-3 C in the Nansen Basin. Studies have shown that for example, in the West Spitsbergen Current the upper 50-200m shows an overall AW warming of 1.1 C since 1979. In general we expect efficient melting when AW is close to the surface. Previously the AW entering through Fram Strait has been considered as less important because changes in the sea ice cover have been connected to greater inflow of Pacific Water through Bering Strait and atmospheric forcing. Conversely it is now suggested that AW has direct impact on melting of

  7. The surface circulation in the eastern basin of the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Hamad, N.; Millot, C.; Taupier-Letage, I.

    2003-04-01

    The POEM-schema of the Atlantic Water (AW, http://ciesm.org/events/RT5-WaterMassAcronyms.pdf) circulation in the eastern basin of the Mediterranean Sea widely referred to nowadays (Robinson et al., 1991, completed by Robinson and Golnaraghi, 1993, and by Malanotte-Rizzoli et al., 1997) represents, in particular, a jet meandering offshore across the whole basin. No information is given on the southern part of the basin and no mention is made of a possible overall alongslope anticlockwise flow there, as suggested by a contemporaneous analysis of infrared satellite images (Le Vourch et al., 1992; Millot, 1992). A roughly similar controversy was elucidated in the western basin where such imagery was proven reliable. This has motivated the detailed analysis of daily and weekly composite images (about 1000) during the period 1996-2000, and of monthly composites available since 1985. Our analysis shows that AW circulates alongslope and anticlockwise around the whole basin, as indicated by Nielsen (1912) who considered the Coriolis effect as dominant. This circulation, which is permanent from Tunisia to Turkey, exists more or less temporarily in the Aegean, in the Ionian around Greece and in the Adriatic, due to the Etesians. However, a branch having spread for years (up to early 1998) from the channel of Sicily towards the northern Ionian before vanishing represents marked interannual (not seasonal) variability. Being unstable during most of its circuit, the AW flow generates mesoscale eddies which had not been correctly described before and which represent a relatively large amount of AW. Other eddies are known to be generated by orographic effects on the wind field, especially the Etesians. Both kinds of eddies play a fundamental role in spreading AW from alongslope towards the open basin. Although these eddies have characteristics almost specific to each subbasin and/or generation mechanism, the largest ones are anticyclonic, both kinds reach diameters of a few 100s km

  8. Assessment of Plio-Pleistocene Sea Surface Temperature Evolution Across Ocean Basins, Hemispheres, and Latitudes

    NASA Astrophysics Data System (ADS)

    Peterson, L.; Lawrence, K. T.; Mauriello, H.; Wilson, J.; Holte, L.

    2015-12-01

    New sea surface temperature (SST) records from the southern Pacific and southern Atlantic Oceans allow assessment of similarities and differences in climate evolution across ocean basins, hemispheres, and latitudes over the last 5 million years. Our high-resolution, alkenone-derived SST records from ODP Sites 1088 (South Atlantic, 41°S) and 1125 (South Pacific, 42°S) share strong structural similarities. When compared with SST records from the mid-latitudes of the northern hemisphere, these records provide compelling evidence for broadly hemispherically symmetrical open-ocean temperature evolution in both ocean basins as tropical warm pools contracted over the Plio-Pleistocene. This symmetry in temperature evolution occurs despite strong asymmetries in the development of the cryosphere over this interval, which was marked by extensive northern hemisphere ice sheet growth. Parallel SST evolution across ocean basins and hemispheres suggests that on longterm (>105 yr) timescales, many regions of the world ocean are more sensitive to the global energy budget than to local or regional climate dynamics, although important exceptions include coastal upwelling zone SSTs, high latitude SSTs, and benthic δ18O. Our analysis further reveals that throughout the last 5 Ma, temperature evolution in the extra-tropical Pacific of both hemispheres is very similar to the evolution of SST in the eastern equatorial Pacific upwelling zone, revealing tight coupling between the growth of meridional and equatorial Pacific zonal temperature gradients over this interval as both the extra-tropics and the eastern equatorial Pacific cold tongue underwent cooling. Finally, while long term temperature evolution is broadly consistent across latitudes and ocean basins throughout the entire Plio-Pleistocene, we see evidence that climate coupling on orbital timescales strengthened significantly at 2.7 Ma, at which point obliquity-band coherence emerges among diverse SST records. We attribute this

  9. Responses to the 2800 years BP climatic oscillation in shallow- and deep-basin sediments from the Dead Sea

    NASA Astrophysics Data System (ADS)

    Neugebauer, Ina; Brauer, Achim; Schwab, Markus; Dulski, Peter; Frank, Ute; Hadzhiivanova, Elitsa; Kitagawa, Hiroyuki; Litt, Thomas; Schiebel, Vera; Taha, Nimer; Waldmann, Nicolas

    2015-04-01

    Laminated lake sediments from the Dead Sea basin provide high-resolution records of climatic variability in the eastern Mediterranean region, which is considered being especially sensitive to changing climatic conditions. In the study presented here, we aim to reconstruct palaeoclimatic changes and their relation to the frequency of flood/erosion and dust deposition events as archived in the Dead Sea basin for the time interval from ca 3700 to 1700 years BP. A ca 4 m thick, mostly annually laminated (varved) sediment section from the western margin of the Dead Sea (shallow-water DSEn - Ein Gedi profile) was analysed and correlated to the new ICDP Dead Sea Deep Drilling Project core 5017-1 from the deep basin. To detect even single event layers, we applied a multi-proxy approach of high-resolution microscopic thin section analyses, µXRF element scanning and magnetic susceptibility measurements, supported by grain size and palynological analyses. Based on radiocarbon and varve dating two pronounced dry periods were detected at ~3500-3300 yrs BP and ~2900-2400 yrs BP that are characterized by a sand deposit during the older dry period and enhanced frequency of coarse detrital layers during the younger dry period in the shallow-water DSEn core, both interpreted as increased erosion processes. In the 5017-1 deep-basin core these dry periods are depicted by halite deposits. The timing of the younger dry period broadly coincides with the Homeric Minimum of solar activity at ca 2800 yrs BP. Our results suggest that during this period the Dead Sea region experienced a change in synoptic weather patterns leading to an increased occurrence of flash-flood events, overprinting the overall dry climatic conditions. Following this dry spell, a 250-yrs period of increased dust deposition is observed, coinciding with more regular aragonite precipitation during less arid climatic conditions.

  10. Holocene sea-level change and the emergence of Neolithic seafaring in the Fuzhou Basin (Fujian, China)

    NASA Astrophysics Data System (ADS)

    Rolett, Barry V.; Zheng, Zhuo; Yue, Yuanfu

    2011-04-01

    Neolithic seafaring across the Taiwan Strait began approximately 5000 years ago and involved open-sea voyages over distances of at least 130 km. Rapid sea-level rise preceded the emergence of open-sea voyaging, but the possible role of environmental change as a stimulus for the development of seafaring is poorly understood. We investigate this problem by presenting a record of Holocene sea-level change and coastal transformation based on sediment cores obtained from the Fuzhou Basin on the coast of Fujian, China. The cores are located in direct proximity to archaeological sites of the Tanshishan Neolithic culture (5000-4300 cal BP), which is significant for its similarity to the earliest Neolithic cultures of Taiwan. Multiple lines of evidence record the early Holocene inundation of the Fuzhou Basin around 9000 cal BP, the mid-Holocene sea-level highstand, and the final Holocene marine transgression. This final transition is precisely documented, with AMS dates showing the change occurred close to 1900 cal BP. Our paleogeographic reconstruction shows that a large estuary filled the Fuzhou Basin during the mid-Holocene. Tanshishan and Zhuangbianshan, two of the major Fuzhou Basin Neolithic sites, are located today on hills nearly 80 km from the modern coastline. However, when the sites were settled around 5500-5000 cal BP, the marine transgression had transformed these hills into islands in the upper estuary. We suggest that the Neolithic era estuary setting, together with the lack of land suitable for rice paddy agriculture, inhibited intensive food production but favored a maritime orientation and the development of seafaring.

  11. The Dnepr Canyon: evidence for a continuous submarine channel link between the outer shelf and the deep-sea basin of the northwestern Black Sea

    NASA Astrophysics Data System (ADS)

    Gulin, Sergei B.; Artemov, Yuriy G.; Egorov, Viktor N.; Evtushenko, Dmitriy B.

    2013-08-01

    Multibeam bathymetric surveys and single-beam profiles were collected in 2003-2010 from aboard the Ukrainian RV Professor Vodyanitskiy (cruises PV-58 and PV-60, 2003 and 2004), and the German RV Meteor (cruise M-72, legs 1 and 4, 2007) and RV Maria S. Merian (cruise MSM-15, leg 2, 2010) along the continental margin of the NW Black Sea. Integrating published, reprocessed and novel data has revealed the existence of a major continuous channel extending from the Dnepr paleo-delta into greater water depths. It is more than 90 km long, 1.1 km wide and up to 125 m deep. On the upper slope (120-960 m water depth), a number of smaller channels merge into the large, Y-shaped Dnepr Canyon, which then continues obliquely downslope via this submarine channel to at least 1,815 m water depth off the Crimean continental margin, NW Black Sea. The channel could be an important, hitherto unknown link between the shallow oxic and deep anoxic environments of the Black Sea, along which sediment and organic matter could be funneled into the deep-sea basin. This would have far-reaching implications for investigations dealing with marine geology and biology, climate change, as well as oil and natural gas exploitation. The unusual alignment of the channel along the margin of the basin, as well as the location and mode of channel termination in deeper waters deserve future research.

  12. The last glacial-interglacial transition and dinoflagellate cysts in the western Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Rouis-Zargouni, Imene; Turon, Jean-Louis; Londeix, Laurent; Kallel, Néjib; Essallami, Latifa

    2012-02-01

    Using the analysis of dinoflagellate cysts in three deep-sea sediments cores situated in the Sicilian-Tunisian Strait, in the Gulf of Lions and in the Alboran Sea, we reconstruct the paleoenvironmental changes that took place during the last glacial-interglacial transition in the western Mediterranean Sea. The development of the warm microflora Impagidinium aculeatum and especially Spiniferites mirabilis appears to be an important proxy for recognizing warm periods as the Bölling/Alleröd and the Early Holocene. Bitectatodinium tepikiense, Spiniferites elongatus and Nematosphaeropsis labyrinthus mark the end of the Heinrich event 1 and the Younger Dryas. This cold microfloral association confirms the drastic climate changes in the western Mediterranean Sea synchronous to the dry and cold climate which occurred in the South European margin. The dinocyst N. labyrinthus shows high percentages in all studied regions during the Younger Dryas. Its distribution reveals a significant increase from the South to the North of this basin during this cold brief event. Thus, we note that this species can be considered as a new eco-stratigraphical tracer of the Younger Dryas in the western Mediterranean Sea.

  13. A review of tectonics and sedimentation in a forearc setting: Hellenic Thrace Basin, North Aegean Sea and Northern Greece

    NASA Astrophysics Data System (ADS)

    Maravelis, A. G.; Boutelier, D.; Catuneanu, O.; Seymour, K. St.; Zelilidis, A.

    2016-04-01

    Exposure of the forearc region of the North Aegean Sea, Greece, offers insight into evolving convergent margins. The sedimentary fill of the Thrace Basin during the Late Eocene to Oligocene time provides a record of subduction-driven processes, such as growth of magmatic arcs and construction of accretionary complexes. This large sediment repository received sediment from two sources. The southern (outboard) basin margin reflects the active influence of the exhumed accretionary prism (e.g. Pindic Cordillera or Biga peninsula), while the northern (inboard) margin records the effect of the magmatic arc in the Rhodope region. The forearc basin sedimentary fills shoal upward into shallow-marine strata but are dominated mainly by deep-marine facies. The depositional trend and stacking pattern are dominated by progradational patterns. This trend, which is observed in both basin margins, is related to tectonic deformation rather than sea-level fluctuations. Additional evidence for this tectonic uplift comes from the backstripping analysis. The accretionary complex provided material into the forearc basin. This material was transported northeast and formed a sand-rich turbidity system that evolved upslope into shallow-marine deposits. Stratigraphic data indicate that this turbidity system exhibits a successive landward (inboard) migration of the depocenter. Provenance data utilizing sandstone petrography, conglomerate clast composition, and bulk-rock geochemistry suggest that this system reflects an increased influx of mafic material into the basin. Volcanic arc-derived material was transported south and east and accumulated in deep-marine settings. Both stratigraphic and provenance data indicate a seaward (outboard) migration of the basin depocenter and a significant increase in felsic detritus into the forearc.

  14. Basin-scale estimates of pelagic and coral reef calcification in the Red Sea and Western Indian Ocean

    PubMed Central

    Steiner, Zvi; Erez, Jonathan; Shemesh, Aldo; Yam, Ruth; Katz, Amitai; Lazar, Boaz

    2014-01-01

    Basin-scale calcification rates are highly important in assessments of the global oceanic carbon cycle. Traditionally, such estimates were based on rates of sedimentation measured with sediment traps or in deep sea cores. Here we estimated CaCO3 precipitation rates in the surface water of the Red Sea from total alkalinity depletion along their axial flow using the water flux in the straits of Bab el Mandeb. The relative contribution of coral reefs and open sea plankton were calculated by fitting a Rayleigh distillation model to the increase in the strontium to calcium ratio. We estimate the net amount of CaCO3 precipitated in the Red Sea to be 7.3 ± 0.4·1010 kg·y−1 of which 80 ± 5% is by pelagic calcareous plankton and 20 ± 5% is by the flourishing coastal coral reefs. This estimate for pelagic calcification rate is up to 40% higher than published sedimentary CaCO3 accumulation rates for the region. The calcification rate of the Gulf of Aden was estimated by the Rayleigh model to be ∼1/2 of the Red Sea, and in the northwestern Indian Ocean, it was smaller than our detection limit. The results of this study suggest that variations of major ions on a basin scale may potentially help in assessing long-term effects of ocean acidification on carbonate deposition by marine organisms. PMID:25368148

  15. Basin-scale estimates of pelagic and coral reef calcification in the Red Sea and Western Indian Ocean.

    PubMed

    Steiner, Zvi; Erez, Jonathan; Shemesh, Aldo; Yam, Ruth; Katz, Amitai; Lazar, Boaz

    2014-11-18

    Basin-scale calcification rates are highly important in assessments of the global oceanic carbon cycle. Traditionally, such estimates were based on rates of sedimentation measured with sediment traps or in deep sea cores. Here we estimated CaCO3 precipitation rates in the surface water of the Red Sea from total alkalinity depletion along their axial flow using the water flux in the straits of Bab el Mandeb. The relative contribution of coral reefs and open sea plankton were calculated by fitting a Rayleigh distillation model to the increase in the strontium to calcium ratio. We estimate the net amount of CaCO3 precipitated in the Red Sea to be 7.3 ± 0.4·10(10) kg·y(-1) of which 80 ± 5% is by pelagic calcareous plankton and 20 ± 5% is by the flourishing coastal coral reefs. This estimate for pelagic calcification rate is up to 40% higher than published sedimentary CaCO3 accumulation rates for the region. The calcification rate of the Gulf of Aden was estimated by the Rayleigh model to be ∼1/2 of the Red Sea, and in the northwestern Indian Ocean, it was smaller than our detection limit. The results of this study suggest that variations of major ions on a basin scale may potentially help in assessing long-term effects of ocean acidification on carbonate deposition by marine organisms.

  16. Basin-scale estimates of pelagic and coral reef calcification in the Red Sea and Western Indian Ocean.

    PubMed

    Steiner, Zvi; Erez, Jonathan; Shemesh, Aldo; Yam, Ruth; Katz, Amitai; Lazar, Boaz

    2014-11-18

    Basin-scale calcification rates are highly important in assessments of the global oceanic carbon cycle. Traditionally, such estimates were based on rates of sedimentation measured with sediment traps or in deep sea cores. Here we estimated CaCO3 precipitation rates in the surface water of the Red Sea from total alkalinity depletion along their axial flow using the water flux in the straits of Bab el Mandeb. The relative contribution of coral reefs and open sea plankton were calculated by fitting a Rayleigh distillation model to the increase in the strontium to calcium ratio. We estimate the net amount of CaCO3 precipitated in the Red Sea to be 7.3 ± 0.4·10(10) kg·y(-1) of which 80 ± 5% is by pelagic calcareous plankton and 20 ± 5% is by the flourishing coastal coral reefs. This estimate for pelagic calcification rate is up to 40% higher than published sedimentary CaCO3 accumulation rates for the region. The calcification rate of the Gulf of Aden was estimated by the Rayleigh model to be ∼1/2 of the Red Sea, and in the northwestern Indian Ocean, it was smaller than our detection limit. The results of this study suggest that variations of major ions on a basin scale may potentially help in assessing long-term effects of ocean acidification on carbonate deposition by marine organisms. PMID:25368148

  17. Interpretation of fault-controlled ramp structures in sedimentary basins - example from Caspian Sea using Landsat TM data

    SciTech Connect

    Iranpanah, A.

    1989-03-01

    Lineaments on a series of edge-enhanced images (TM data) from a region around the Caspian Sea form a geomorphically significant linear trend along the major Caucasus-Kopeh Dagh fault line. This fault represents the line of collision between the Cimmerian continents and the Turan plate on the south and north, respectively. The lineament zone manifests a ramp structure that forms a relatively narrow topographic high in the Caspian Sea. Paleogeographic studies of the Caspian Sea suggest that the basin is part of the eastern Paratethys, which began to develop in the early Paleogene during the Alpine-Himalayan uplift. On the basis of the lineaments and associated geomorphic features, the Caspian Sea can be divided into southern, central, and the northern Caspian subbasins. The Caucasus-Kopeh Dagh fault line trends N80/degrees/W and separates the southern Caspian from the central subbasin, approximately along 40/degrees/N latitude. The boundary between the central and the northern subbasins is also a linear topographic high which trends N70/degrees/E and lies approximately at 44/degrees/N latitude. The southern and central subbasins have subequal areal extension covering 35.64% and the 36.63% of the whole sea, whereas the northern subbasin occupies only 27.73% of the basin.

  18. The Influence of Wind and Basin Eddies in Controlling Sea Level Variations in the Coastal Red Sea

    NASA Astrophysics Data System (ADS)

    Abualnaja, Yasser O.; Churchill, James H.; Nellayaputhenpeedika, Mohammedali; Limeburner, Richard

    2015-04-01

    Sea level variations in the central Red Sea coastal zone span a range of roughly 1.2 m. Though relatively small, these water level changes can significantly impact the environment over the shallow reef tops prevalent in the central Red Sea, altering the water depth by a factor or two or more. Roughly half of the coastal sea level variance in central Red Sea is due to elevation changes in an 'intermediate' frequency band, with periods between 2 days and 1 month. We examined the sea level signal in this band using the data from pressure sensors maintained for more than five years at a number of locations in Saudi Arabian coastal waters between 20.1 and 23.5 oN. We find that the intermediate-band sea level variations are strongly correlated with the local wind stress measured at a meteorological buoy. The maximum pressure-wind correlation occurs at wind direction closely aligned with the alongshore orientation and at a lag (wind leading) of 45 hr, which is consistent with the expected response of the coastal sea level to local wind forcing. However, less than half of the sea level variance in the intermediate band is related, through linear correlation, with local wind forcing. Our analysis indicates that the residual coastal sea level signal, not associated with wind forcing, is largely driven remotely by the passage of mesoscale eddies, revealed by satellite altimeter-derived sea level anomaly fields of the central Red Sea. These eddy-driven coastal sea level changes occur on time scales of 10-30 days. They span a range of 0.5 m, and thus constitute an import component of the sea level signal in the coastal Red Sea.

  19. ITCZ-monsoonal association during the last glacial (Cariaco Basin, Northern Arabian Sea)

    NASA Astrophysics Data System (ADS)

    Deplazes, G.; Haug, G. H.; Lueckge, A.

    2010-12-01

    The anoxic Cariaco Basin on the northern shelf of Venezuela preserves detailed records of past tropical climate variability. The sediment formation in this basin is controlled by the migration of the Atlantic Intertropical Convergence Zone (ITCZ) and the corresponding rain belt and trade winds. In the oxygen minimum zone off Pakistan in the northeastern Arabian Sea sediment archives of low-latitude monsoonal climate are preserved. In this study sediments from the two settings that cover the last 80,- to 110,000 years were analysed. Sediment color analysis resulted in reflectance records with a down to annual resolution. An age model was set up by correlation of these records to the δ18O record of Greenland ice (NGRIP). The major element chemistry of the sediments was analysed with X-ray fluorescence scanning. The new high resolution proxy records indicate an unbroken association between warm climate conditions over Greenland, a northerly position of the Atlantic Intertropical Convergence Zone, and a strong Indian summer monsoon since the last glacial. The tight coupling is explained by a dominant role of the North Atlantic that is communicated largely through the atmosphere. New insights of dynamical mechanisms arise from comparison of individual Dansgaard-Oeschger events. The tropical records and the Greenland δ18O record show both an abrupt change at the beginning of an interstadial. The δ18O of Greenland ice peaks early in the interstadials and then decreases more or less constantly toward stadial values. However, the tropical records have a tendency to maintain dark interstadial color on a similar level over several centuries. The following centennial-scale lightening toward the next stadial appears to be delayed compared to the δ18O ice record. This “resistance” of the tropics to the interstadial-stadial transitions suggests a threshold response of the tropics to North Atlantic cooling.

  20. Large-scale patterns of recent sedimentation along the Cayman Troughpull-apart basin, Caribbean Sea

    SciTech Connect

    Debalko, D.; Mann, P. )

    1990-05-01

    The North American-Caribbean plate boundary zone consists of a broad zone of active strike-slip deformation that extends 3,200 km from Middle America to the Lesser Antilles. An 1,100-km-long, 100-km-wide pull-apart basin the Cayman Trough is the dominant structural element of the submerged central part of the plate boundary zone between Jamaica and Honduras. In order to investigate large-scale patterns of recent sedimentation in a fully marine pull-apart setting, the authors surveyed a 90,000-km{sup 2} area along the southern edge of the Cayman Trough using SeaMARC II side-scan sonar, 3.5 KHz, and digital single-channel reflection techniques. These data allow them to divide the southern margin of the Cayman Trough pull-apart into three provinces of recent sedimentation: (1) an eastern terrigenous province characterized by straight short canyon systems (average 1-3 km wide and 10-15 km long) and associated small, lobate fans; canyon-fan systems are sourced by clastic spillover from filled borderland-type basins and by erosion of emergent fault-block islands; (2) a central carbonate province characterized by periplatform carbonate detritus fringing four isolated carbonate banks which collectively make up the Nicaraguan Rise; canyon systems (1-3 km wide, 15-80 km long) are highly meandering when unfaulted and straight when faulted; and (3) an eastern carbonate and terrigenous province characterized by both carbonate sediments shed off the easternmost bank of the Nicaraguan Rise bank and by terrigenous sediment derived from Jamaica.

  1. The linkage between longitudinal sediment routing systems and basin types in the northern South China Sea in perspective of source-to-sink

    NASA Astrophysics Data System (ADS)

    Su, Ming; Hsiung, Kan-Hsi; Zhang, Cuimei; Xie, Xinong; Yu, Ho-Shing; Wang, Zhenfeng

    2015-11-01

    Using bathymetric and seismic data, this study describes the morpho-sedimentary features in Qiongdongnan basin and southwest Taiwan collision basin, northern South China Sea and reveals the linkages between sediment routing system and basin types. The modern Central Canyon in the Qiongdongnan basin is located along the rift margin, and subparallel to the shelf-break southeast of Hainan Island. The modern Central Canyon develops along the basin axis (i.e., Xisha Trough) and longitudinally transports sediments eastward which are mainly supplied by northern continental slope. The Penghu Canyon in the southwest Taiwan collision basin is located along the collision boundary parallel to the strike of the adjacent uplifted Taiwan orogen. The Penghu Canyon develops along the tilting basin axis transporting sediments longitudinally southward to the deep-sea basin and Manila Trench. The Penghu Canyon is supplied with sediments from both flank Kaoping and South China Sea slopes where tributary canyons and channels transport sediments down-slope and feed the axial canyon. The certain basin types may be occupied by particular styles of sediment routing system. By comparing the morpho-sedimentary features and basin characteristics associated with the modern Central Canyon to that of the Valencia Channel in NW Mediterranean Sea, the longitudinal sediment routing system in rift basin type can be determined. In contrast, the longitudinal sediment routing systems in collision setting can be represented by the comparable examples of Penghu Canyon in southwest Taiwan collision basin and Markham Canyon in western Solomon Sea. The rift type sediment routing system is characterized by an axial canyon with a single sediment supply from land drainage margin. In contrast, sediment routing system in collision type basins consists of an axial canyon and dual sediment supplies from flank adjacent slopes. The axial canyons in collision basins are more active than that of the rift basin due to

  2. Weather types across the Caribbean basin and their relationship with rainfall and sea surface temperature

    NASA Astrophysics Data System (ADS)

    Moron, Vincent; Gouirand, Isabelle; Taylor, Michael

    2016-07-01

    Eight weather types (WTs) are computed over 98.75°W-56.25°W, 8.75°N-31.25°N using cluster analysis of daily low-level (925 hPa) winds and outgoing longwave radiation, without removing the mean annual cycle, by a k-means algorithm from 1979 to 2013. The WTs can be firstly interpreted as snapshots of the annual cycle with a clear distinction between 5 "wintertime" and 3 "summertime" WTs, which account together for 70 % of the total mean annual rainfall across the studied domain. The wintertime WTs occur mostly from late November to late April and are characterized by varying intensity and location of the North Atlantic subtropical high (NASH) and transient synoptic troughs along the northern edge of the domain. Large-scale subsidence dominates the whole basin but rainfall can occur over sections of the basin, especially on the windward shores of the troughs associated with the synoptic waves. The transition between wintertime and summertime WTs is rather abrupt, especially in May. One summertime WT (WT 4) is prevalent in summer, and almost exclusive around late July. It is characterized by strong NASH, fast Caribbean low level jet and rainfall mostly concentrated over the Caribbean Islands, the Florida Peninsula, the whole Central America and the tropical Eastern Pacific. The two remaining summertime WTs display widespread rainfall respectively from Central America to Bermuda (WT 5) and over the Eastern Caribbean (WT 6). Both WTs combine reduced regional scale subsidence and weaker Caribbean low-level jet relatively to WT 4. The relationships between WT frequency and El Niño Southern Oscillation (ENSO) events are broadly linear. Warm central and eastern ENSO events are associated with more WT 4 (less WT 5-6) during boreal summer and autumn (0) while this relationship is reversed during boreal summer (+1) for central events only. In boreal winter, the largest anomalies are observed for two WTs consistent with negative (WT 2) and positive (WT 8) phases of the

  3. The advance of Kos Plateau Tuff ignimbrite into the marine realm of the Kalymnos Basin, SE Aegean Sea.

    NASA Astrophysics Data System (ADS)

    Markakis, Emmanouil; Anastasakis, George

    2013-04-01

    The 161 ka Kos Plateau Tuff (KPT) eruption is considered to be the largest explosive Quaternary event in the eastern Mediterranean. It produced pumice rafts followed by "non-welded ignimbrites" that are up to 30m thick, especially widespread on Kos island and covering an area of > 80 Km2 that includes mainly islands and present marine regions. Pyroclastic flows travelled from the proposed vent, that lies between and around Yali and Nisyros islands, across present land and sea, the total volume of the tuff has been estimated as at least 100km3. KPT products principally consist of rhyolitic ash and pumice. Post 2010 Athens University oceanographic missions have mapped the seafloor around the volcanic islands of the SE Aegean Sea. Here we present new data on seafloor morphology and Upper Quaternary seafloor stratigraphy of the Kalymnos basin that extends over an area over 70km2 and map the advance and deposition of the KPT that was previously unknown in this region. The Kalymnos basin is roughly triangular in shape and essentially consists of two sedimentation depocenters: a) a roughly elliptical 400 m deep northern segment that is developed sub-parallel to Kalymnos Island and its W-SW shelf; b) a rather physiographically complex western sector developed NE of Astipalea island and reaching depths of over 620m. High resolution sparker profiles from the west Kos-Kalymnos shelf reveal an outstanding seismic stratigraphy of stacked and prograded coastal clinoform packets capped by erosional transgressive surfaces that record Quaternary eustatic lowstands deposits of sea level with clinoforms developing during forced regression and the erosional surfaces during transgression. We show that a massive gravity flow deposit is intercalated with the shelf sediments. Above it low sea level MIS 6 and 2 sedimentary sequences are fully developed and below stage 8-10 sediments are erratically preserved over stages 12 and 16 sediments. This gravity flow deposit swept across the shelf

  4. Cyclone trends constrain monsoon variability during late Oligocene sea level highstands (Kachchh Basin, NW India)

    NASA Astrophysics Data System (ADS)

    Reuter, M.; Piller, W. E.; Harzhauser, M.; Kroh, A.

    2013-09-01

    Climate change has an unknown impact on tropical cyclones and the Asian monsoon. Herein we present a sequence of fossil shell beds from the shallow-marine Maniyara Fort Formation (Kachcch Basin) as a recorder of tropical cyclone activity along the NW Indian coast during the late Oligocene warming period (~ 27-24 Ma). Proxy data providing information about the atmospheric circulation dynamics over the Indian subcontinent at this time are important since it corresponds to a major climate reorganization in Asia that ends up with the establishment of the modern Asian monsoon system at the Oligocene-Miocene boundary. The vast shell concentrations are comprised of a mixture of parautochthonous and allochthonous assemblages indicating storm-generated sediment transport from deeper to shallow water during third-order sea level highstands. Three distinct skeletal assemblages were distinguished, each recording a relative storm wave base. (1) A shallow storm wave base is shown by nearshore molluscs, reef corals and Clypeaster echinoids; (2) an intermediate storm wave base depth is indicated by lepidocyclinid foraminifers, Eupatagus echinoids and corallinacean algae; and (3) a deep storm wave base is represented by an Amussiopecten bivalve-Schizaster echinoid assemblage. These wave base depth estimates were used for the reconstruction of long-term tropical storm intensity during the late Oligocene. The development and intensification of cyclones over the recent Arabian Sea is primarily limited by the atmospheric monsoon circulation and strength of the associated vertical wind shear. Therefore, since the topographic boundary conditions for the Indian monsoon already existed in the late Oligocene, the reconstructed long-term cyclone trends were interpreted to reflect monsoon variability during the initiation of the Asian monsoon system. Our results imply an active monsoon over the Eastern Tethys at ~ 26 Ma followed by a period of monsoon weakening during the peak of the late

  5. Benthic communities in the deep Mediterranean Sea: exploring microbial and meiofaunal patterns in slope and basin ecosystems

    NASA Astrophysics Data System (ADS)

    Sevastou, K.; Lampadariou, N.; Polymenakou, P. N.; Tselepides, A.

    2013-07-01

    The long-held perception of the deep sea consisting of monotonous slopes and uniform oceanic basins has over the decades given way to the idea of a complex system with wide habitat heterogeneity. Under the prism of a highly diverse environment, a large dataset was used to describe and compare spatial patterns of the dominant small-size components of deep-sea benthos, metazoan meiofauna and microbes, from Mediterranean basins and slopes. A grid of 73 stations sampled at five geographical areas along the central-eastern Mediterranean Basin (central Mediterranean, northern Aegean Sea, Cretan Sea, Libyan Sea, eastern Levantine) spanning over 4 km in depth revealed a high diversity, irrespective of the benthic group or level of taxonomic analysis. A common decreasing bathymetric trend was detected for meiobenthic abundance, major taxa diversity and nematode genera richness, but no differences were found between the two habitats (basin vs slope). In contrast, microbial richness is significantly higher at the basin ecosystem and tends to increase with depth. Multivariate analyses (β- and δ-diversity and ordination analysis) complemented these results and underlined the high within-habitat variability of benthic communities. Meiofaunal communities in particular were found to change gradually and vary more towards the abyss. On the other hand, microbial communities were highly variable, even among samples of the same area, habitat and bathymetry. A significant proportion of the variation of benthic communities and their descriptors was explained by depth and proxies of food availability (sedimentary pigments and organic content), but the combination of predictor variables and the strength of the relationship varied depending on the data set used (based on type of habitat, benthic component, taxonomic level). This, along with the observed high within-habitat variability suggests that other factors, which tend to vary at local scale (hydrodynamics, substrate structure

  6. Effects of neotectonic and sedimentary processes on the seafloor geomorphology of the Tekirdag Basin of the western Marmara Sea (Turkey)

    NASA Astrophysics Data System (ADS)

    Ergin, Mustafa; Yigit-Faridfathi, Füsun

    2010-05-01

    This study forms part of a project (TUBITAK YDABCAG 101Y071) with the main purpose of investigation of late Quaternary slope stability, sediment mass movements and turbidite formations in the tectonically active Tekirdag Basin and its margins from the western Marmara Sea. The results were also intended to relate to the major earthquakes and sea-level changes. During this project, in 2001 aboard the former R/V MTA Sismik-1, a total of 100 km seismic reflection profiles were obtained along three tracklines representing from shelf to slope to deep basin environments. A multichannel airgun seismic system and well-known methods and principles of seismic stratigraphy was used for interpretations. At 11 sites from 29 to 1111 m water depths gravity sediment cores were taken having 100 to 359 cm recoveries and textural and structural characteristics were determined using standard petrographic methods. The NEE-SWW directed seismic profile (TKD-01) which runs parallel to the North Anatolian Fault zone displayed syntectonic sedimentation with negative flower structure that increased in thickness toward the Ganos Fault and pinched out in the east. ENE section of this profile also bears structures of underwater landslides with slump facies. Seismic profile TKD-02 which crosses the Tekirdag Basin in WNW-ESE direction most likely displays major 3 fault segments of the NAF zone. Many faults and syntectonic sedimentation structure can be recognized on this profile. A morphological feature of a sediment wedge or former lowstand delta at the present shelf edge can be related to the effects of last sea-level change. Mounded and chaotic seismic reflection configurations which indicate channel and slope-front fill as well as slump facies are thought to reflect submarine slides and slumps. Other morphological features such as incised submarine valleys or channels running E-W direction are also present on this profile. The seismic profile (TKD-03) runs from NNW to SSE across the basin and

  7. Sea-level and tectonic control of middle to late Pleistocene turbidite systems in Santa Monica Basin, offshore California

    USGS Publications Warehouse

    Normark, W.R.; Piper, D.J.W.; Sliter, R.

    2006-01-01

    Small turbidite systems offshore from southern California provide an opportunity to track sediment from river source through the turbidity-current initiation process to ultimate deposition, and to evaluate the impact of changing sea level and tectonics. The Santa Monica Basin is almost a closed system for terrigenous sediment input, and is supplied principally from the Santa Clara River. The Hueneme fan is supplied directly by the river, whereas the smaller Mugu and Dume fans are nourished by southward longshore drift. This study of the Late Quaternary turbidite fill of the Santa Monica Basin uses a dense grid of high-resolution seismic-reflection profiles tied to new radiocarbon ages for Ocean Drilling Program (ODP) Site 1015 back to 32 ka. Over the last glacial cycle, sedimentation rates in the distal part of Santa Monica Basin averaged 2-3 mm yr-1, with increases at times of extreme relative sea-level lowstand. Coarser-grained mid-fan lobes prograded into the basin from the Hueneme, Mugu and Dume fans at times of rapid sea-level fall. These pulses of coarse-grained sediment resulted from river channel incision and delta cannibalization. During the extreme lowstand of the last glacial maximum, sediment delivery was concentrated on the Hueneme Fan, with mean depositional rates of up to 13 mm yr-1 on the mid- and upper fan. During the marine isotope stage (MIS) 2 transgression, enhanced rates of sedimentation of > 4 mm yr-1 occurred on the Mugu and Dume fans, as a result of distributary switching and southward littoral drift providing nourishment to these fan systems. Longer-term sediment delivery to Santa Monica Basin was controlled by tectonics. Prior to MIS 10, the Anacapa ridge blocked the southward discharge of the Santa Clara River into the Santa Monica Basin. The pattern and distribution of turbidite sedimentation was strongly controlled by sea level through the rate of supply of coarse sediment and the style of initiation of turbidity currents. These two

  8. Identifying a Sea Breeze Circulation Pattern Over the Los Angeles Basin Using Airborne In Situ Carbon Dioxide Measurements

    NASA Astrophysics Data System (ADS)

    Brannan, A. L.; Schill, S.; Trousdell, J.; Heath, N.; Lefer, B. L.; Yang, M. M.; Bertram, T. H.

    2014-12-01

    The Los Angeles Basin in Southern California is an optimal location for a circulation study, due to its location between the Pacific Ocean to the west and the Santa Monica and San Gabriel mountain ranges to the east, as well as its booming metropolitan population. Sea breeze circulation carries air at low altitudes from coastal to inland regions, where the air rises and expands before returning back towards the coast at higher altitudes. As a result, relatively clean air is expected at low altitudes over coastal regions, but following the path of sea breeze circulation should increase the amount of anthropogenic influence. During the 2014 NASA Student Airborne Research Program, a highly modified DC-8 aircraft completed flights from June 23 to 25 in and around the LA Basin, including missed approaches at four local airports—Los Alamitos and Long Beach (coastal), Ontario and Riverside (inland). Because carbon dioxide (CO2) is chemically inert and well-suited as a conserved atmospheric tracer, the NASA Langley Atmospheric Vertical Observations of CO2 in the Earth's Troposphere (AVOCET) instrument was used to make airborne in situ carbon dioxide measurements. Combining measured wind speed and direction data from the aircraft with CO2 data shows that carbon dioxide can be used to trace the sea breeze circulation pattern of the Los Angeles basin.

  9. Possible connection between large volcanic eruptions and level rise episodes in the Dead Sea Basin

    NASA Astrophysics Data System (ADS)

    Bookman, R.; Filin, S.; Avni, Y.; Rosenfeld, D.; Marco, S.

    2014-12-01

    The June 1991 Pinatubo volcanic eruption perturbed the atmosphere, triggering short-term worldwide changes in climate. The following winter was anomalously wet in the Levant, with a ~2-meter increase in the Dead Sea level that created a morphological terrace along the lake's shore. Given the global effects of volcanogenic aerosols, we tested the hypothesis that the 1991-92 shore terrace is a modern analogue to the linkage between past volcanic eruptions and a sequence of shore terraces in the Dead Sea Basin. Analysis of precipitation series from Jerusalem showed a significant positive correlation between the Dust Veil Index (DVI) of the modern eruptions and annual rainfall. The DVI was found to explain nearly 50% of the variability in the annual rainfall, such that greater DVI means more rainfall. Other factors that may affect the annual rainfall in the region as the Southern Oscillation Index (SOI) and the North Atlantic oscillations (NAO) were incorporated along with the DVI in a linear multiple regression model. It was found that the NAO did not contribute anything except for increased noise, but the added SOI increased the explained variability of rainfall to more than 60%. Volcanic eruptions with a VEI of 6, as in the Pinatubo, occurred about once a century during the Holocene and the last glacial-interglacial cycle. This occurrence is similar to the frequency of shore terrace build-up during the Lake Lisan desiccation. Sixteen shore terraces, detected using airborne laser scanning data, were interpreted as indicating short-term level rises due to episodes of enhanced precipitation and runoff during the dramatic drop in Lake Lisan's (palaeo-Dead Sea) level at the end of the LGM. The terraces were compared with a time series of volcanogenic sulfate from the GISP2 record, and similar numbers of sulfate concentration peaks and terraces were found. Furthermore, a significant correlation was found between SO4 concentration peaks and the terraces heights. This

  10. Evidence for local shifting of the main fault and changes in the structural setting, Kinarot basin, Dead Sea transform

    SciTech Connect

    Rotstein, Y.; Frieslander, U. ); Bartov, Y. )

    1992-03-01

    Two new high-resolution seismic reflection profiles from the Kinarot Valley, Dead Sea rift, analyzed with older conventional oil exploration profiles, throw light on the Quaternary evolution of the African-Arabian transform-type plate boundary in the area. The present en echelon main faults of the Dead Sea transform are observed in the seismic data as wide zones of deformation rather than as distinct fault planes. A similar zone of deformation is observed in the center of the Kinarot basin and may be associated with an extinct trace of the main fault. The Zemah structure, previously mapped and drilled, is shown by the new data to be an inactive anticline. Compression within the basin is suggested as being the result of motion along the now inactive main fault observed in the center of the basin. Compression and shortening started some 2 m.y. ago and ended late in the Quaternary as a result of changes in the geometry of the transform. At present the Kinarot basin is subsiding.

  11. Iron and manganese shuttles control the formation of authigenic phosphorus minerals in the euxinic basins of the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Jilbert, Tom; Slomp, Caroline P.

    2013-04-01

    Microanalysis of epoxy resin-embedded sediments is used to demonstrate the presence of authigenic iron (Fe) (II) phosphates and manganese (Mn)-calcium (Ca)-carbonate-phosphates in the deep euxinic basins of the Baltic Sea. These minerals constitute major burial phases of phosphorus (P) in this area, elevating the total P burial rate above that expected for a euxinic depositional environment. Particle shuttles of Fe and Mn oxides into the deep euxinic basins act as drivers for P-bearing mineral authigenesis. While Fe(II) phosphates are formed continuously in the upper sediments following the sulfidization of Fe-oxyhydroxides and release of associated P, Mn-Ca-carbonate-phosphates are formed intermittently following inflow events of oxygenated North Sea water into the deep basins. The mechanism of Fe(II) phosphate formation differs from previously reported occurrences of vivianite formation in marine sediments, by occurring within, rather than below, the sulfate-methane transition zone. The spatial distribution of both authigenic phases in Baltic sediments varies in accordance with the periodic expansion of anoxia on centennial to millennial timescales. The results highlight the potential importance of authigenic P-bearing minerals other than carbonate fluorapatite for total P burial in euxinic basins.

  12. Ultraphytoplankton basin-scale distribution in the eastern Mediterranean Sea in winter: link to hydrodynamism and nutrients

    NASA Astrophysics Data System (ADS)

    Denis, M.; Thyssen, M.; Martin, V.; Manca, B.; Vidussi, F.

    2010-07-01

    The basin-scale distribution of ultraphytoplankton (<10 μm) was determined in the upper 200 m of the eastern Mediterranean Sea during the winter season. Four clusters were resolved by flow cytometry on the basis of their optical properties and identified as Synechococcus, Prochlorococcus, pico- (<3 μm) and nanoeukaryotes (3-10 μm). Synechococcus was the most abundant population (maximum abundance of about 37 000 cells cm-3) and contributed up to 67.7% to the overall ultraphytoplanktonic carbon biomass, whereas the contribution of Prochlorococcus never exceeded 6.5%. The maximum integrated carbon biomass was 1763, 453, 58 and 571 mg C m-2 for nanoeukaryotes, picoeukaryotes, Prochlorococcus and Synechococcus respectively. Water mass properties were analyzed on the basis of temperature and salinity distributions in order to account for the general circulation and locate the main hydrodynamic structures (fronts, gyres, transition between western and eastern basins). The effect of the main hydrodynamic structures and nutrients on the ultraphytoplankton distribution was investigated. No positive correlation between nutrients and phytoplankton could be established when considering large scales. However, below 50 m depth, nutrient ratios between particular stations were correlated to corresponding density ratios. In contrast, significant relationships were found between Synechococcus abundance and density, resulting from the impact of a gyre in southern Adriatic basin and a thermohaline front in the Ionian basin. A significant relationship was also found between picoeukaryotes and salinity in the comparison of western and eastern Mediterranean Sea.

  13. Precipitation and temperature changes in the major Chinese river basins during 1957-2013 and links to sea surface temperature

    NASA Astrophysics Data System (ADS)

    Tian, Qing; Prange, Matthias; Merkel, Ute

    2016-05-01

    The variation characteristics of precipitation and temperature in the three major Chinese river basins (Yellow River, Yangtze River and Pearl River) in the period of 1957-2013 were analyzed on an annual and seasonal basis, as well as their links to sea surface temperature (SST) variations in the tropical Pacific and Indian Ocean on both interannual and decadal time scales. Annual mean temperature of the three river basins increased significantly overall since 1957, with an average warming rate of about 0.19 °C/10a, but the warming was characterized by a staircase form with steps around 1987 and 1998. The significant increase of annual mean temperature could mostly be attributed to the remarkable warming trend in spring, autumn and winter. Warming rates in the northern basins were generally much higher than in the southern basins. However, both the annual precipitation and seasonal mean precipitation of the three river basins showed little change in the study area average, but distinct interannual variations since 1957 and clear regional differences. An overall warming-wetting tendency was found in the northwestern and southeastern river basins in 1957-2013, while the central regions tended to become warmer and drier. Results from a Maximum Covariance Analysis (MCA) showed that the interannual variations of seasonal mean precipitation and surface air temperature over the three river basins were both associated with the El Niño-Southern Oscillation (ENSO) since 1957. ENSO SST patterns affected precipitation and surface air temperature variability throughout the year, but with very different response patterns in the different seasons. For instance, temperature in most of the river basins was positively correlated with central-eastern equatorial Pacific SST in winter and spring, but negatively correlated in summer and autumn. On the decadal time scale, the seasonal mean precipitation and surface air temperature variations were strongly associated with the Pacific

  14. Parascolymia (Scleractinia: Lobophylliidae) in the Central Paratethys Sea (Vienna Basin, Austria) and its possible biogeographic implications.

    PubMed

    Reuter, Markus; Wiedl, Thomas; Piller, Werner E

    2015-01-01

    Palaeobiogeographical and palaeodiversity patterns of scleractinian reef corals are generally biased due to uncertain taxonomy and a loss of taxonomic characters through dissolution and recrystallization of the skeletal aragonite in shallow marine limestones. Herein, we describe a fossil lobophylliid coral in mouldic preservation from the early middle Miocene Leitha Limestone of the Central Paratethys Sea (Vienna Basin, Austria). By using grey-scale image inversion and silicone rubber casts for the visualization of the original skeletal anatomy and the detection of distinct micromorphological characters (i.e. shape of septal teeth, granulation of septocostae) Parascolymia bracherti has been identified as a new species in spite of the dissolved skeleton. In the recent era, Parascolymia like all Lobophylliidae is restricted to the Indo-Pacific region, where it is represented by a single species. The new species proves the genus also in the Miocene Mediterranean reef coral province. A review of the spatio-temporal relationships of fossil corals related to Parascolymia indicates that the genus was probably rooted in the Eastern Atlantic‒Western Tethys region during the Paleocene to Eocene and reached the Indo-Pacific region not before the Oligocene. The revealed palaeobiogeographical pattern shows an obvious congruence with that of Acropora and tridacnine bivalves reflecting a gradual equatorwards retreat of the marine biodiversity center parallel to the Cenozoic climate deterioration. PMID:26201071

  15. Assessment of big floods in the Eastern Black Sea Basin of Turkey.

    PubMed

    Yüksek, Ömer; Kankal, Murat; Üçüncü, Osman

    2013-01-01

    In this study, general knowledge and some details of the floods in Eastern Black Sea Basin of Turkey are presented. Brief hydro-meteorological analysis of selected nine floods and detailed analysis of the greatest flood are given. In the studied area, 51 big floods have taken place between 1955-2005 years, causing 258 deaths and nearly US $500,000,000 of damage. Most of the floods have occurred in June, July and August. It is concluded that especially for the rainstorms that have caused significantly damages, the return periods of the rainfall heights and resultant flood discharges have gone up to 250 and 500 years, respectively. A general agreement is observed between the return periods of rains and resultant floods. It is concluded that there has been no significant climate change to cause increases in flood harms. The most important human factors to increase the damage are determined as wrong and illegal land use, deforestation and wrong urbanization and settlement, psychological and technical factors. Some structural and non-structural measures to mitigate flood damages are also included in the paper. Structural measures include dykes and flood levees. Main non-structural measures include flood warning system, modification of land use, watershed management and improvement, flood insurance, organization of flood management studies, coordination between related institutions and education of the people and informing of the stakeholders.

  16. Geologic evolution and aspects of the petroleum geology of the northern East China Sea shelf basin

    SciTech Connect

    Lee, G.H.; Kim, B.Y.; Shin, K.S.; Sunwoo, D.

    2006-02-15

    Analysis of multichannel seismic reflection profiles reveals that the northern East China Sea shelf basin experienced two phases of rifting, followed by regional subsidence. The initial rifting in the Late Cretaceous created a series of grabens and half grabens, filled by alluvial and fluviolacustrine deposits. Regional uplift and folding (Yuquan movement) in the late Eocene-early Oligocene terminated the initial rifting. Rifting resumed in the early Oligocene, while alluvial and fluviolacustrine deposition continued to prevail. A second phase of uplift in the early Miocene terminated the rifting, marking the transition to the postrift phase. The early postrift phase (early Miocene-late Miocene) is characterized by regional subsidence and westward and northwestward marine transgression. Inversion (Longjing movement) in the late Miocene interrupted the postrift subsidence, resulting in an extensive thrust-fold belt in the eastern part of the area. The entire area entered a stage of regional subsidence again and has become a broad continental shelf. Source rocks include synrift lacustrine facies, fluvial shales, and coal beds. Synrift fluvial, lacustrine, and deltaic deposits, postrift littoral and/or shallow-marine sandstones, and fractured basement have the potential to provide reservoirs. Various types of hydrocarbon traps (e.g., faulted anticlines, overthrusts, rollover anticlines, faults, unconformity traps, combination structural-stratigraphic traps, weathered basement, and stratigraphic traps) are recognized, but many of these traps have not been tested.

  17. Magnetic fabrics induced by dynamic faulting reveal damage zone sizes in soft rocks, Dead Sea basin

    NASA Astrophysics Data System (ADS)

    Levi, T.; Weinberger, R.; Marco, S.

    2014-11-01

    The anisotropy of magnetic susceptibility (AMS) of soft rocks was measured in order to distinguish between the effect of remote and local strain fields, determine the size of the related inelastic damage zone and resolve the fault-plane solutions of past earthquakes. The AMS fabrics were explored next to late Pleistocene syndepositional normal faults (total displacement up to ˜3.5 m) that cross soft lacustrine rocks within the seismically active Dead Sea basin. `Deposition fabrics' prevail meters away from the fault planes and are characterized by scattered maximum and intermediate principal AMS axes. `Deformation fabrics' are detected up to tens of centimetres from the fault planes and are characterized by well-grouped AMS axes, in which one of the principal axes is parallel to the strike of the nearby fault. Variations in the AMS fabrics and magnetic lineations define the size of the inelastic damage zone around the faults. The results demonstrate that the deformation-driven magnetic fabrics and the associated inelastic damage zones are compatible with coseismic dynamic faulting and the effects of the local strain field during earthquakes. Most of the AMS fabrics show a conspicuous similarity to that of the fault-plane solutions, i.e., the principal AMS axes and instantaneous strain ellipsoids are coaxial. These results suggest a novel application of the AMS method for defining the shape and size of the damage zones surrounding dynamic faults and determining the full tensor of the local strain field.

  18. An 800-Year Tropical Atlantic Sea Surface Temperature Variability Record From the Cariaco Basin, Venezuela

    NASA Astrophysics Data System (ADS)

    Black, D. E.; Thunell, R. C.; Kaplan, A.; Abahazi, M. A.; Tappa, E. J.

    2007-05-01

    Here we present an eight century tropical Atlantic SST record based on foraminiferal Mg/Ca recovered from Cariaco Basin sediments that have been calibrated to historical instrumental SSTs. Spatial correlations indicate that the proxy record is representative of SSTs over much of the Caribbean and tropical Atlantic. The Mg/Ca-SST record also correlates well with global land and sea surface temperature anomalies, and captures decadal-scale variations in Atlantic tropical storm and hurricane frequency over the late-19th and 20th centuries. The long-term record displays a surprising amount of variability for a tropical location under essentially modern boundary conditions. The tropical North Atlantic does not appear to have experienced a pronounced Medieval Warm Period relative to the complete record. However, strong Little Ice Age cooling of as much as 3 °C occurred between A. D. 1525 and 1625. Spring SSTs gradually rose between A. D. 1650 and 1900 followed by a 2.5 °C warming over the twentieth century. Viewed in the context of the complete record, twentieth century temperatures are not the warmest in the entire record on average, but they do show the largest increase in magnitude and fastest rate of SST change over the last eight hundred years. Spectral analysis of the Mg/Ca-SST data suggests that 2-5 and ~13 year SST variability that is characteristic of tropical Atlantic instrumental records may change through time.

  19. Deformation and hydrothermal metamorphism of gabbroic rocks within the Godzilla Megamullion, Parece Vela Basin, Philippine Sea

    NASA Astrophysics Data System (ADS)

    Harigane, Yumiko; Michibayashi, Katsuyoshi; Ohara, Yasuhiko

    2011-06-01

    Microstructural and petrologic analyses of 7 gabbroic rocks sampled from the medial area of the Godzilla Megamullion (site KH07-02-D18), located along the Parece Vela Basin spreading ridge (Parece Vela Rift), Philippine Sea, reveal the development of a high-temperature ductile shear zone associated with hydrothermal metamorphism in the lower crust. The deformed gabbroic rocks are petrographically classified into mylonites and an ultramylonite, and are characterized by porphyroclastic textures consisting mainly of coarse plagioclase and clinopyroxene/amphibole porphyroclasts in a fine-grained matrix. Plagioclase crystallographic-preferred orientations vary from (010)[100] and (001)[100] patterns in the mylonites to a weak (001)[100] pattern in the some mylonites and ultramylonite, suggesting a change in the deformation mechanism from dislocation creep to grain-size-sensitive creep with increasing intensity of deformation. The chemical composition of matrix plagioclase is generally more sodic than that of porphyroclasts. Secondary amphibole is ubiquitous, consisting mainly of pargasite and magnesiohornblende (brown hornblende) and actinolite (green hornblende). The mineral assemblage is consistent with the hydrothermal metamorphic reaction: clinopyroxene + calcic plagioclase + fluid → amphibole + sodic plagioclase. Compared with deformed gabbroic rocks from the breakaway and termination areas of the Godzilla Megamullion, the samples record ductile shearing under high temperature conditions, possibly related to the development of the Godzilla Megamullion, although hydrothermal activity in the medial area appears to have been less intense than in both the breakaway and termination areas.

  20. Parascolymia (Scleractinia: Lobophylliidae) in the Central Paratethys Sea (Vienna Basin, Austria) and its possible biogeographic implications

    PubMed Central

    Reuter, Markus; Wiedl, Thomas; Piller, Werner E.

    2015-01-01

    Palaeobiogeographical and palaeodiversity patterns of scleractinian reef corals are generally biased due to uncertain taxonomy and a loss of taxonomic characters through dissolution and recrystallization of the skeletal aragonite in shallow marine limestones. Herein, we describe a fossil lobophylliid coral in mouldic preservation from the early middle Miocene Leitha Limestone of the Central Paratethys Sea (Vienna Basin, Austria). By using grey-scale image inversion and silicone rubber casts for the visualization of the original skeletal anatomy and the detection of distinct micromorphological characters (i.e. shape of septal teeth, granulation of septocostae) Parascolymia bracherti has been identified as a new species in spite of the dissolved skeleton. In the recent era, Parascolymia like all Lobophylliidae is restricted to the Indo-Pacific region, where it is represented by a single species. The new species proves the genus also in the Miocene Mediterranean reef coral province. A review of the spatio-temporal relationships of fossil corals related to Parascolymia indicates that the genus was probably rooted in the Eastern Atlantic‒Western Tethys region during the Paleocene to Eocene and reached the Indo-Pacific region not before the Oligocene. The revealed palaeobiogeographical pattern shows an obvious congruence with that of Acropora and tridacnine bivalves reflecting a gradual equatorwards retreat of the marine biodiversity center parallel to the Cenozoic climate deterioration. PMID:26201071

  1. Structural evolution of the Kopet Dagh fold-and-thrust belt (North-East Iran) and interactions with the South Caspian Sea Basin and Amu Darya Basin

    NASA Astrophysics Data System (ADS)

    Robert, Alexandra M. M.; Letouzey, Jean; Kavoosi, Mohammad A.; Sherkati, Sharham; Müller, Carla; Vergés, Jaume

    2014-05-01

    We present a detailed stratigraphic and structural study of the Kopet Dagh fold-and-thrust belt in NE Iran, which is an investigation of the complex polyphased tectonic history of this belt and its links with the adjacent South Caspian Sea and Amu Darya basins. Based on numerous field surveys, a large amount of 2D and 3D seismic data, borehole data and more than 150 new biostratigaphic datings, a new detailed biostratigraphic chart and 4 main regional cross-sections illustrate the importance of lateral facies variations and structural inheritance in the present-day structure of the belt. After the Cimmerian orogeny corresponding to the closure of the Paleotethys Ocean in Late Triassic-Early Jurassic times, a post-collisional rifting event was associated with the deposition of one of the main source rocks of the Kopet Dagh and the Amu Darya Basin (Kashafrud Formation). Following this rifting event, over 7 km of sediments were accumulated until the Tertiary above a regional post-Triassic unconformity. The occurrence of local uplifts during the Late Cretaceous-Early Paleocene is interpreted as a consequence of regional-scale modification of plate-slab coupling in the Neotethys subduction zone. The structures associated with the Late Eocene/Oligocene folding phase are sealed in the western part of the belt by a major Eocene-Oligocene unconformity at the base of the thick sedimentary series belonging to the South Caspian Sea Basin. The rapid subsidence of the South Caspian Sea Basin is probably related to syn-compressional downward flexure of the resistant basement basin at the onset of the Alpine phase. In the eastern part of the Kopet Dagh, this deformation is characterized by Middle Jurassic graben inversion with evidences of forced-folding, short-cuts and present-day slip partitioning, and as well by larger scale basement uplift. In contrast, the northwestern part of the belt shows thrust faults involving basement and fault-propagation folds within the sedimentary

  2. Subduction initiation and recycling of Alboran domain derived crustal components prior to the intra-crustal emplacement of mantle peridotites in the Westernmost Mediterranean: isotopic evidence from the Ronda peridotite

    NASA Astrophysics Data System (ADS)

    Varas-Reus, María Isabel; Garrido, Carlos J.; Bosch, Delphine; Marchesi, Claudio Claudio; Acosta-Vigil, Antonio; Hidas, Károly; Barich, Amel

    2014-05-01

    During Late Oligocene-Early Miocene different domains formed in the region between Iberia and Africa in the westernmost Mediterranean, including thinned continental crust and a Flysch Trough turbiditic deposits likely floored by oceanic crust [1]. At this time, the Ronda peridotite likely constituted the subcontinental lithospheric mantle of the Alboran domain, which mantle lithosphere was undergoing strong thinning and melting [2] [3] coevally with Early Miocene extension in the overlying Alpujárride-Maláguide stacked crust [4, 5]. Intrusive Cr- rich pyroxenites in the Ronda massif records the geochemical processes occurring in the subcontinental mantle of the Alboran domain during the Late Oligocene [6]. Recent isotopic studies of these pyroxenites indicate that their mantle source was contaminated by a subduction component released by detrital crustal sediments [6]. This new data is consistent with a subduction setting for the late evolution of the Alboran lithospheric mantle just prior to its final intracrustal emplacement in the early Miocene Further detailed structural studies of the Ronda plagioclase peridotites-related to the initial stages of ductile emplacement of the peridotite-have led to Hidas et al. [7] to propose a geodynamic model where folding and shearing of an attenuated mantle lithosphere occurred by backarc basin inversion followed by failed subduction initiation that ended into the intracrustal emplacement of peridotite into the Alboran wedge in the earliest Miocene. This hypothesis implies that the crustal component recorded in late, Cr-rich websterite dykes might come from underthrusted crustal rocks from the Flysch and/or Alpujárrides units that might have been involved in the earliest stages of this subduction initiation stage. To investigate the origin of crustal component in the mantle source of this late magmatic event recorded by Cr-pyroxenites, we have carried out a detail Sr-Nd-Pb-Hf isotopic study of a variety of Betic

  3. 1516 meters inside the earth - observations of seismic activity in the Dead Sea basin using borehole seismometer

    NASA Astrophysics Data System (ADS)

    Hofstetter, A.; Malin, P.; Shalev, E.; Ben-Avraham, Z.; Sagy, A.; Shalev, E.; Bariudin, V.

    2013-12-01

    Seismological measurements, conducted at great depths of several hundred of meters or even a few km, can provide useful information that one cannot get while conducting the measurements on the surface. We take advantage of Masada Deep borehole, an abandoned oil well, for the installation of a seismometer at a large depth of 1516 m. Seismological observations since 1983, using permanent and portable stations, revealed earthquake activity along the Dead Sea fault and its proximity, which is in good agreement with geological observations of young faulting age (> 30 KY). The operation of such station will enrich the seismological database with high quality data. The study has a few goals: 1) improving the detection capabilities of small earthquakes in the Dead Sea basin; 2) improving characterization of seismic activity in the Dead Sea basin; 3) better identification of seismic activity on the Dead Sea fault and observe earthquake nucleation and rupture processes in the near field; 4) extending the Gutenberg-Richter of frequency-magnitude relationship of earthquakes into smaller magnitudes below the threshold of the Israel Seismic Network catalog. The borehole seismometer was installed in Dec. 2012. We present seismic observations of small events conducted at a depth of 1516 m, many of them were not recorded by the Israel Seismic Network.

  4. Geotechnical and sedimentological investigations of deep-sea sediments from a manganese nodule field of the Peru Basin

    NASA Astrophysics Data System (ADS)

    Grupe, Bernd; Becker, Hermann J.; Oebius, Horst U.

    Deep-sea mining of manganese nodules will significantly modify the surface layer of deep sea. Surface sediments are mechanically disturbed, and a cloud of sediment particles suspended and re-deposited. Assessment of sedimentological and soil mechanical characteristics of undisturbed top layer sediments from a manganese nodule field of the Peru Basin are necessary to provide baseline data for soil mechanical estimations and for the physical and numerical modelling of environmental impacts of future ocean mining activities. This will assist the International Seabed Authority to make decisions on how to formulate the mining code, and will increase our understanding of sedimentation processes in the Peru Basin. The deployment of a new sampling device (maxicorer) guaranteed undisturbed sediment samples in which soil mechanics-related parameters were measured including sediment density, water content, shear strength, and penetration force. Data evaluation show a close relationship between the soil mechanical parameters and various sedimentological properties such as grain-size distribution, mineral composition and micro-structure. From the results it can be concluded that in the worst case a deep-sea nodule mining vehicle would sink about 15-20 cm into the sea bed.

  5. Eustatic and climatic control on the Upper Muschelkalk Sea (late Anisian/Ladinian) in the Central European Basin

    NASA Astrophysics Data System (ADS)

    Franz, M.; Kaiser, S. I.; Fischer, J.; Heunisch, C.; Kustatscher, E.; Luppold, F. W.; Berner, U.; Röhling, H.-G.

    2015-12-01

    The Upper Muschelkalk in the Central European Basin (CEB) is a key example of eustatic and climatic controls on inland seas. The late Anisian rapid transgression from Tethyan waters culminated in a large semi-enclosed inland sea stretching across the CEB. Subsequently, the slow but successive retreat in the early Ladinian resulted in a small remnant sea. The pronounced stratal pattern architectures are translated into a framework of 3rd- and 4th-order T-R sequences. The latest Illyrian 3rd-order maximum flooding surface corresponds to maximum abundances of carbonates and marine phytoplankton. An euryhaline marine ecology is indicated by prasinophycean algae dominating over acritarchs and δ18OP values of 18.9-22.4‰ VSMOW corresponding to Tethyan references. During the 3rd-order regressive phase successive freshening up to hyposaline conditions is indicated by up to 3‰ depleted δ18OP values, shifts to more radiogenic 87Sr/86Sr ratios and maximum abundances of terrestrial palynomorphs. Likewise, 4th-order T-R sequences are constrained by commutated stratal pattern architectures, palynofacies and geochemistry. The favourable correlation of middle Triassic 3rd-order sequences of Tethyan and peri-Tethyan basins demonstrate the principle control of circum-Tethyan eustatic cycles. 4th-order sequences are evident and, although not yet correlatable in detail, indicate 106-year scale eustatic cycles which may be attributed to glacioeustatic sea-level changes. The subordinated control of arid to semiarid low latitude and semihumid to humid temperate mid latitude climates affected the Upper Muschelkalk Sea in particular during 4th-order sea-level lowstands. Substantial fresh water input from Scandinavian sources caused temporal stratification leading to stagnant bottom waters and/or sediments as indicated by palynofacies and U/Th and Ni/Co redox indices. The herein reconstructed middle Triassic zonal climates are in agreement to previously published Late Triassic zonal

  6. Crustal structure of the southern Dead Sea basin derived from project DESIRE wide-angle seismic data

    NASA Astrophysics Data System (ADS)

    Mechie, J.; Abu-Ayyash, K.; Ben-Avraham, Z.; El-Kelani, R.; Qabbani, I.; Weber, M.

    2009-07-01

    As part of the DEad Sea Integrated REsearch project (DESIRE) a 235 km long seismic wide-angle reflection/refraction (WRR) profile was completed in spring 2006 across the Dead Sea Transform (DST) in the region of the southern Dead Sea basin (DSB). The DST with a total of about 107 km multi-stage left-lateral shear since about 18 Ma ago, accommodates the movement between the Arabian and African plates. It connects the spreading centre in the Red Sea with the Taurus collision zone in Turkey over a length of about 1100 km. With a sedimentary infill of about 10 km in places, the southern DSB is the largest pull-apart basin along the DST and one of the largest pull-apart basins on Earth. The WRR measurements comprised 11 shots recorded by 200 three-component and 400 one-component instruments spaced 300 m to 1.2 km apart along the whole length of the E-W trending profile. Models of the P-wave velocity structure derived from the WRR data show that the sedimentary infill associated with the formation of the southern DSB is about 8.5 km thick beneath the profile. With around an additional 2 km of older sediments, the depth to the seismic basement beneath the southern DSB is about 11 km below sea level beneath the profile. Seismic refraction data from an earlier experiment suggest that the seismic basement continues to deepen to a maximum depth of about 14 km, about 10 km south of the DESIRE profile. In contrast, the interfaces below about 20 km depth, including the top of the lower crust and the Moho, probably show less than 3 km variation in depth beneath the profile as it crosses the southern DSB. Thus the Dead Sea pull-apart basin may be essentially an upper crustal feature with upper crustal extension associated with the left-lateral motion along the DST. The boundary between the upper and lower crust at about 20 km depth might act as a decoupling zone. Below this boundary the two plates move past each other in what is essentially a shearing motion. Thermo

  7. Palaeoenvironment and its control on the formation of Miocene marine source rocks in the Qiongdongnan Basin, northern South China Sea.

    PubMed

    Li, Wenhao; Zhang, Zhihuan; Wang, Weiming; Lu, Shuangfang; Li, Youchuan; Fu, Ning

    2014-01-01

    The main factors of the developmental environment of marine source rocks in continental margin basins have their specificality. This realization, in return, has led to the recognition that the developmental environment and pattern of marine source rocks, especially for the source rocks in continental margin basins, are still controversial or poorly understood. Through the analysis of the trace elements and maceral data, the developmental environment of Miocene marine source rocks in the Qiongdongnan Basin is reconstructed, and the developmental patterns of the Miocene marine source rocks are established. This paper attempts to reveal the hydrocarbon potential of the Miocene marine source rocks in different environment and speculate the quality of source rocks in bathyal region of the continental slope without exploratory well. Our results highlight the palaeoenvironment and its control on the formation of Miocene marine source rocks in the Qiongdongnan Basin of the northern South China Sea and speculate the hydrocarbon potential of the source rocks in the bathyal region. This study provides a window for better understanding the main factors influencing the marine source rocks in the continental margin basins, including productivity, preservation conditions, and the input of terrestrial organic matter.

  8. Palaeoenvironment and Its Control on the Formation of Miocene Marine Source Rocks in the Qiongdongnan Basin, Northern South China Sea

    PubMed Central

    Li, Wenhao; Zhang, Zhihuan; Wang, Weiming; Lu, Shuangfang; Li, Youchuan; Fu, Ning

    2014-01-01

    The main factors of the developmental environment of marine source rocks in continental margin basins have their specificality. This realization, in return, has led to the recognition that the developmental environment and pattern of marine source rocks, especially for the source rocks in continental margin basins, are still controversial or poorly understood. Through the analysis of the trace elements and maceral data, the developmental environment of Miocene marine source rocks in the Qiongdongnan Basin is reconstructed, and the developmental patterns of the Miocene marine source rocks are established. This paper attempts to reveal the hydrocarbon potential of the Miocene marine source rocks in different environment and speculate the quality of source rocks in bathyal region of the continental slope without exploratory well. Our results highlight the palaeoenvironment and its control on the formation of Miocene marine source rocks in the Qiongdongnan Basin of the northern South China Sea and speculate the hydrocarbon potential of the source rocks in the bathyal region. This study provides a window for better understanding the main factors influencing the marine source rocks in the continental margin basins, including productivity, preservation conditions, and the input of terrestrial organic matter. PMID:25401132

  9. Constraining back-arc basin formation in the eastern Coral Sea: preliminary results from the ECOSAT voyage

    NASA Astrophysics Data System (ADS)

    Seton, M.; Williams, S.; Mortimer, N. N.; Meffre, S.; Moore, J.; Micklethwaite, S.; Zahirovic, S.

    2013-12-01

    The eastern Coral Sea region is an underexplored area at the northeastern corner of the Australian plate, where long-lived interaction between the Pacific and Australian plate boundaries has resulted in an intricate assemblage of deep oceanic basins and ridges, continental fragments and volcanic products. A paucity of marine geophysical and geological data from this complex region has resulted in the lack of a clear conceptual framework to describe its formation, ultimately affecting our understanding of the connection between the plate boundaries of the SW Pacific and SE Asia. In particular, the tectonic relationship between two back-arc basins, the Santa Cruz and d'Entrecasteaux Basins, and the South Rennell Trough, has yet to be resolved. In October-November, 2012, we collected 6,200 km of marine magnetic, 6,800 km of gravity and over 13,600 km2 of swath bathymetry data from the eastern Coral Sea onboard the RV Southern Surveyor. A complementary dredging program yielded useful samples from 14 seafloor sites. Our preliminary geochemical interpretation of the dredge samples obtained from the South Rennell Trough reveal volcanic rocks resembling MORB or BABB-type basalts, similar in composition to the recently re-analysed and dated ORSTOM dredges from the area that yielded ~28 Ma MORB-like basalts. Swath bathymetry profiles from the Santa Cruz Basin reveal that the South Rennell Trough extends into this basin, with seafloor spreading fabric being parallel to the trough. Preliminary analysis of the three full and four partial new magnetic anomaly profiles across the Santa Cruz Basin, coupled with limited existing profiles, reveals that the basin may have formed between Chrons 13-18 (~32-38 Ma), with an extinct spreading ridge along the inferred continuation of the South Rennell Trough, consistent with ORSTOM age dates. Our results suggest that the South Rennell Trough is an extinct southwestward propagating spreading ridge, which may have initiated along a pre

  10. The tectonic framework of a complex pull-apart basin: Seismic reflection observations in the Sea of Galilee, Dead Sea transform

    USGS Publications Warehouse

    Hurwitz, S.; Garfunkel, Z.; Ben-Gai, Y.; Reznikov, M.; Rotstein, Y.; Gvirtzman, H.

    2002-01-01

    A multi-channel seismic reflection survey consisting of 20 lines with a total length of 180 km was conducted in the Sea of Galilee. The data provide new insights into the Pliocene-Quaternary evolution of the Kinarot-Beit-Shean pull-apart basin (KBSB) along the Dead Sea transform. Two distinct zones are defined beneath the lake: (1) a graben that underlies most of the lake, bounded by steep north-south longitudinal strike-slip faults and (2) shallow pre-rift units underlying the northwestern wider part of the lake. We suggest that before approximately 4 Ma, the KBSB grew due to northward movement of the Korazim Plateau and by crustal stretching along the rift axis. Since the Pliocene (??? 4 Ma), lateral slip has been transferred from the southern segment of the basin's western marginal fault to normal faults in the Galilee, and to the eastern margin of the Korazim Plateau by the newly formed, Almagor fault, which makes a restraining bend along the transform. N-S lithospheric stretching below the KBSB has diminished and the Korazim Plateau has changed from being a detached block to a compressional saddle. A phase of rapid subsidence, and formation of a half-graben structure in the northern part of the basin approximately 1 Ma ago was coeval with major deformation in areas adjacent to the KBSB, indicating major reorganization of the plate boundary in the region. Currently, most transform motions are probably taken up along a single fault on the eastern side of the KBSB, implying that the main trough under the Sea of Galilee is in a late stage of growth as a pull-apart. ?? 2002 Elsevier Science B.V. All rights reserved.

  11. Imaging the Fault Geometry From the Multi-Channel Seismic Reflection Data in the Marmara Sea, Tekirdag Basin, Turkey

    NASA Astrophysics Data System (ADS)

    Kanbur, Z.; Alptekin, O.

    2002-05-01

    Determination of the fault geometry in the Marmara Sea has been a major problem for the researchers after the occurence of 17 August 1999 ?zmit (M=7.4) and 12 Novenber 1999 D\\x81zce (M=7.2) earthquakes. We used Pre-Stack Kirchhoff Depth Migration Technique to ivestigate the fault geometry in the Tekirda? Basin in western Marmara Sea by using the multi-channel seismic reflection data collected by Mineral Research Institute of Turkey ( MTA). Our results show that using the Kirchhoff technique the geometry of the fault plane can be imaged better comparing to the convensional technique. Our image of the Ganos fault indicates transpressive character in the west and transtensional character in the south margin of the Tekirda? basin. Imaging technique make the trust component visible in the migration section and show that the Ganos fault has multiple fault plane. These fault planes are imaged through the depth of 2750 m in the west of Tekirda? Basin. The major plane of Ganos fault dips 33 degrees toward south at 1750 m depth. The dip of the fault gradually decreases to 18 degrees till 2750 m. Another image cutting the basin in NS direction shows that the character of the Ganos fault is changed to transtensional and the whole section is like a flower structure. The fault plane dips 70 degrees toward north . The images obtained in this study not only confirm the preliminary results determined from conventional processing techniques but also provides significant additional information on the faults in the Marmara Sea.

  12. Development of Tertiary Basins of SE Asia from the South China Sea to the Andaman Sea region ; a comparative view on structure and timing

    NASA Astrophysics Data System (ADS)

    Pubellier, Manuel; Sautter, Benjamin

    2016-04-01

    Basins of SE Asia have developed since the end of Cretaceous times to the detriment of a Mesozoic andean arc which surrounded Sundaland. The arc was broader in the Eastern part along the Pacific Subduction Zone including theSouth China Sea (SCS), than in the Western part along the Sumatra Subduction Zone (Myanmar, Andaman Sea (AS), Malay Peninsula). By the end of the Upper Cretaceous, this arc died out and a widespread rifting with astonishing resemblances started in the whole Sundaland. We compare and discuss the basins similarities and differences in structure and timing between the two sides. A relaxation stage is evidenced in Western Sunda, represented by poorly exposed Late Cretaceous red beds filling the pre-existing morphostructures without clear fault-controlled basins. These deposits are also observed on seismic data offshore in the Gulf of Thailand and AS). On the opposite side along the Chinese margin, thick molasse-type deposits of Late Cretaceous age are on the contrary well expressed offshore and restricted to narrow valleys, indicating that stretching had already begun. There, the Paleogene is marked by strong extension with large crustal blocks rotated by often counter-regional normal faults creating half grabens. Crust was extended and extremely thinned particularly around the SCS. Basins reached the spreading stage in the Celebes Sea, the North Makassar basin and the SCS. On the western side, this period corresponds to narrow deep grabens (e.g. Mergui basins and part of western Malacca) with continental deposits, meaning that the stretching was localized. There, thinning of the crust took place during the Oligocene up to the Middle Miocene where large basins develop mostly to the outer edges of the Yenshanian Arc. Extension resumed in the Pliocene with the opening of the Andaman basin in an even more external position. To the eastern side the uppermost Miocene and the Pliocene were marked mostly by a deepening of the margins and the SCS ocean

  13. Sediment supply, tectonic subsidence, and basin-filling patterns across the southwestern South China Sea during Pliocene to recent time

    NASA Astrophysics Data System (ADS)

    Murray, Mychal R.; Dorobek, Steven L.

    Sediment flux to southwestern parts of the South China Sea (SCS) during late Cenozoic time reflects contributions from eastern Tibet, western Borneo, and smaller drainages of central Indochina, Vietnam, the Malay Peninsula, and western Indonesia, although little work has been done to evaluate the significance of each source. Regional seismic-reflection data and well logs from the southwestern SCS were used in this study to evaluate sediment flux and dispersal across the area. Regional seismic-stratigraphic patterns across the southwestern SCS, however, show that Pliocene to Recent sediment accumulation within individual basins was also strongly influenced by long-term changes in tectonic subsidence. More updip basins (e.g., Malay, Cuu Long, and West Natuna basins) became filled after Miocene inversion and an abrupt slowing of tectonic subsidence. Once they became filled, sediment could bypass the updip basins. In contrast, the eastern part of the Nam Con Son Basin (NCSB) has experienced much greater subsidence since early Miocene time and continues to receive sediment that bypasses the updip basins. The paleo-Mekong River and a second depositional system with probable headwaters on the Malay Peninsula began supplying large volumes of sediment to the NCSB during late Miocene and Pliocene time, respectively. Filling of updip basins allowed Pliocene to Recent fluvial and shelf facies to shift progressively eastward across the southwestern SCS. This study shows that Pliocene to Recent sediment dispersal and paleogeographic evolution of the southwestern SCS are as strongly influenced by subsidence patterns as they are by sediment supply from continental drainage systems.

  14. A geochemical investigation of crude oils from Eastern Pearl River Mouth Basin, South China Sea

    NASA Astrophysics Data System (ADS)

    Jiamo, Fu; Cunmin, Pei; Guoying, Sheng; Dehan, Liu; Sizhong, Chen

    A thorough petroleum exploration of the Pearl River Mouth Basin (PRMB), South China Sea, began in 1983. At present, several oilfields have been found in the PRMB, mainly distributed in Dongsha Massif, Huizhou and Xijiang Depressions as well as Huilu Lowhigh, and one of them has been developed recently. The crude oils found in the basin can be classified into two types. One is normal waxy type, and the other is cyclic type, which may be caused by minor biodegration and is restricted to the Liuhua District of Dongsha Massif. However, on the basis of geochemical characteristics, all the crude oils are thermally mature, indicating that they are derived from source rocks which have entered the main oil generation period but their maturity is not high enough to reach the overmature stage. Moreover, in the biomarker distribution, the oils also share many similarities. Almost all the oils contain abundant C 30 4-methylsteranes with 24-ethyl side chain, ubiquitous oleanane and lower concentration of gammacerane, and possess high ratios of Ni/V, pristane to phytane and C 30 hopane over total C 29 steranes as well as high paraffin wax and low sulphur content, indicating that they originated from terrestrial organic matter deposited in lacustrine and marsh coal-forming environments. However, some characteristics resemble Brazilian offshore oils of salinewater lacustrine environment. The oils found in the PRMB can also be classified into three main genetic types based on the relative values of pristane over phytane ratio, C 29 sterane preference and the composition of the carbon isotope. Type I oils occurred in the Huizhou and the Xijiang Depressions and their adjacent Dongsha Massif. It has higher ratios of pristane to phytane (1.80-5.54 and 3.21 on the average scale) and heavier carbon isotopic composition, indicating that their source rocks contain much more abundant terrestrial higher plant input. Type II, encountered in Huilu Lowhigh and its bounding area of Dongsha Massif

  15. Distribution and species diversity of deep-sea nematodes in the Venezuela Basin

    NASA Astrophysics Data System (ADS)

    Tietjen, John H.

    1984-02-01

    In three sedimentary regions in the deep (>3400 m) Venezuela Basin, nematode abundance and dry weight biomass (ean ±1 S.E.) were higher in hemipelagic sediments (94 ± 1.5 individuals, 88 ± 2.5 μg per 10 cm -2) than in pelagic (67 ± 3 individuals, 32 ±33 μg per 10 cm -2) or turbidite (36 ± 3 individuals, 30 ± 3 μg per 10 cm -2) sediments. Abundance of nematodes appears to be at least partially related to geographic position within the basin; hemipelagic sediments lie closer to an area of elevated surface production near the Lesser Antilles than do the pelagic or turbidite sediments. Abundance of nematodes is also directly correlated with macrofauna abundance and presence of sedimentary lipids. Normal hierarchical classification indicates the presence of two faunal groups in the sediments: a 'sand' fauna in coarser pelagic sediments (median grain size, 65 μm) and a 'silt-clay' fauna in the finer hemipelagic and turbidite sediments (median grain size in both, 0.65 μm). Animals among the two faunal groups differ mostly in their feeding morphology: selective deposit feeding species, unable to utilize large, pelagically derived particles (mainly foraminiferan tests) are more abundant in finer hemipelagic and turbidite sediments, whereas species capable of rasping food particles off large sedimentary particles (epistrate feeders) are more abundant in pelagic sands than in finer sediments. Species diversity is higher in the hemipelagic than turbidite and pelagic sediments. Two reasons postulated for this are (1) the possible input of relatively fresh, surface-derived organic matter that might permit a large number of species to exist in hemipelagic sediments than in the other two, and (2) an optimally heterogeneous grain size distribution that might allow the species to coexist equitably. All three sediments support more diverse nematode assemblages than those in the North Carolina slope region, probably reflecting the greater physical stability of the abyssal

  16. An adjusted one year sea surface heat and water budget for the Northwestern Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Caniaux, Guy; Prieur, Louis; Giordani, Hervé

    2015-04-01

    The problem of heat and salt budget closure is an important subject in operational and research oceanography. The closure depends crucially on surface fluxes, as they are one of the most important processes in terms of the evolution of the heat and salt content in the oceanic top layers. However, in this problem, two points have to be considered. First, surface fluxes are affected by a variety of errors: those associated with the algorithms used for computing the turbulent fluxes, those due to the data used as input of bulk algorithms and the errors associated with the time and space resolution of the fluxes themselves. The second problem is that no surface flux dataset exists, that can be used as the truth, or as a reference, i.e. that can be used for closing observed heat and water budgets at various time and space scales. Here we address the question of adjusting surface heat and water fluxes so that they are in agreement with the evolution of the thermal and salt contents deduced from the extended dataset collected during the HyMex campaigns. These experiments were conducted in the North-western Mediterranean basin in 2012 and 2013. The method is based: (1) on the one-dimensional column modelling of the experimental area, by solving specific temperature and salinity equations and (2) on the optimization of adjustable coefficients with a genetic algorithm. The surface forcings, calculated from a mix of satellite retrievals, in-situ data, numerical weather prediction model observables and a bulk algorithm are also adjusted with the genetic algorithm. Finally, the adjusted fluxes allows to simulate the domain average sea surface temperature and salinity with errors less than 0.2 percent (or 0.03°C) and 0.08 percent (or 0.03 psu) respectively over one year. The adjusted fluxes are finally compared with various NWP models over the North-western Mediterranean basin and also locally with fluxes estimated at a mooring site (LION buoy).

  17. Hydrographic changes during 20 years in the brine-filled basins of the Red Sea

    NASA Astrophysics Data System (ADS)

    Anschutz, Pierre; Blanc, Gérard; Chatin, Fabienne; Geiller, Magali; Pierret, Marie-Claire

    1999-10-01

    Many of the deep basins filled by hot brines in the Red Sea have not been investigated since their discovery in the early 1970s. Twenty years later, in September 1992, six of these deeps were revisited. The temperature and salinity of the Suakin, Port Sudan, Chain B, and Nereus deeps ranged from 23.25 to 44.60°C and from 144 to 270‰. These values were approximately the same in 1972, indicating that the budget of heat and salt was quite balanced. We measured strong gradients of properties in the transition zone between brines and overlying seawater. The contribution of salinity to the density gradient was more than one order of magnitude higher than the opposite contribution of temperature across the seawater-brine interface. Therefore the interface was extemely stable, and the transfer of properties across it was considered to be controlled mostly by molecular diffusion. We calculate that the diffusional transport of salt from the brines to seawater cannot affect significantly the salinity of the brines over a 20 year period, which agrees with the observations. The brine pools can persist for centuries with no salt input. Therefore, the persisence of brines does not correspond to a steady balance between diffusional loss and continuous input of hydrothermal solutions. Deeps that experience only episodical hydrothermal brine supplies may persist for a long time with salt inherited from past inputs. The theoretical loss of heat by diffusion from the brine to seawater was higher than the observed decrease in temperature of the brine pool during the 20 year period of observation. We calculated that the heat flux out of the pools into the overlying seawater was compensated by a heat flux into the pools of about 250-600 mW/m 2. This range of values corresponds to bottom heat flow values that have been reported earlier for the axial zone of the Red Sea. In contrast to the other brine pools, the temperature and salinity of the Valdivia Deep brine increased by 4.1°C and

  18. Generation of Tsunamite Seismo-Turbidites in the Ionian Sea (Mediterranean Basin)

    NASA Astrophysics Data System (ADS)

    Polonia, A.; Vaiani, S. C.; Nelson, C. H.; Romano, S.; Gasparotto, G.; Gasperini, L.

    2015-12-01

    We are investigating the effects of earthquakes on the sedimentary record in the Ionian Sea through the analysis of turbidite deposits. A comparison between radiometric dating and historical earthquake catalogs suggests that turbidite emplacement triggered by great earthquakes represents over 90% of the deposits in this region. Although the average recurrence time of single events is about 500 yrs, age modelling indicates that their occurrence is not periodic, but rather varies between 100 and 700 yrs with clusters of higher frequency. Seismic reflection images show that some turbidite beds are very thick and marked by acoustic transparent homogenite mud layers at their top. Based on a high resolution study of the most recent of such megabeds, the Homogenite/Augias turbidite (HAT), we show that it was triggered by a catastrophic event, the AD 365 Crete earthquake. Radiometric dating support a scenario of synchronous deposition of the HAT in an area as wide as 100.000 km2, suggesting basin-scale sediment remobilization processes. The HAT (up to 25 m thick) is made of classic stacked and graded sand/silt units with different compositions related to the Malta, Calabria and Sicilian margins. This composition suggests multiple synchronous slope failures typical of seismo-turbidites; however, the Crete earthquake source is too distant from the Italian margins to cause sediment failures by earthquake shaking. Consequently, we propose that the HAT is a deep-sea "tsunamite" deposit. This megabed, together with other turbidites triggered by italian tsunamigenic earthquakes (i.e. AD 1908 Messina, 1693 Catania and 1169 Sicily), is being studied to define differences and similarities with the better known deposits triggered by direct seismic shaking. Textural, micropaleontological, geochemical and mineralogical signatures reveal that such turbidites show cyclic ordered series of sediment units suggesting discontinuities in deposition processes. Utilizing the expanded

  19. Deep sea three component magnetic survey using ROV in the hydrothermal vent of the Lau Basin

    NASA Astrophysics Data System (ADS)

    Kim, C.; Park, C.

    2011-12-01

    We conducted magnetic survey at Apr., 2011 in the western slope of the caldera of TA25, the Lau Basin, the southwestern Pacific using IBRV(Ice Breaker Research Vessel) ARAON of KORDI(Korea Ocean Research and Development Institute), ROV(Remotely Operated Vehicle) of Oceaneering Co. and three component magnetometer(Fig. 1,Fig. 2). The deep-sea three component magnetic survey lines are the 13 N-S lines(100 m spacing) and the 2 E-W lines(Fig. 2). The depth ranges of the survey area are from about 900 m to 1200 m, below sea level. For the magnetic survey, the magnetometer sensor and the data logger was attached with the upper part and lower part of ROV, respectively(Fig. 2). We wanted to make the distance between the magnetometer sensor and ROV over 2 m long to reduce the noise effect of ROV. But, for the safe of deployment and recovery of ROV, the distance between the magnetometer sensor and ROV was 126 cm(Fig. 2). In the magnetic survey, ROV followed the planning tracks at 25~30 m above seafloor using the altimeter and USBL(Ultra Short Base Line) of ROV. IBRV ARAON accompanied ROV on the magnetic survey. The three component magnetometer measure the X(North), Y(East) and Z(Vertical) vector components of a magnetic field. A motion sensor(Oxtans) provided us the data of pitch, roll, yaw for the correction of the magnetic data to the motion of ROV. The data of the magnetometer sensor and the motion sensor were recorded on a notebook through the optical cable of ROV and the network of ARON using magnetometer software. The precision positions of magnetic data were merged by the post-processing of USBL of ROV. Hydrothermal fluids over Curie temperature can quickly alter or replace the iron-rich magnetic minerals, reducing the magnetic remanence of the crustal rocks, in some cases to near 0A/m magnetization. So, the obtained three component magnetic data are fully utilized by finding possible hydrothermal vents of the survey area.

  20. Extensive halogen-induced mercury oxidations in the Dead Sea Basin

    NASA Astrophysics Data System (ADS)

    Obrist, D.; Peleg, M.; Matveev, V.; Luria, M.

    2009-12-01

    Reactive halogen species not only influence ozone (O3) budgets of the troposphere and its oxidation capacity, but also play a major role in oxidation of atmospheric mercury (Hg) leading to so-called Atmospheric Mercury Depletion Events (AMDEs) in the polar boundary layer. During AMDEs, the dominant (>95%), relatively inert Hg0 is converted to highly reactive oxidized Hg2+ which subsequently is removed from the atmosphere by deposition. We report data from a four week measurement campaign at the Dead Sea in Israel, in summer 2009 where we concurrently measured all major atmospheric mercury forms—Hg0 and two operationally defined oxidized Hg2+ species—and bromine oxide (BrO) by means of active long-path differential absorption optical spectroscopy (LP-DOAS). Our results show massive (up to 90%) daytime conversions of Hg0 to oxidized Hg2+ in the presence of high BrO levels under temperatures as high as 45 deg C. Some of the highest oxidized Hg2+ concentrations observed in the Earth’s atmosphere, up to 136 ppqv, were accompanied by strong depletions of Hg0, down to 22 ppqv or 10 % of the global tropospheric background Hg0 concentration. Anti-correlations of Hg0 to Hg2+ show that only ~75% of converted Hg is recovered, indicating substantial deposition of the underlying surface. Hg0 depletions and Hg2+ enhancements temporally coincided well with BrO production and near-complete ozone destruction, with no apparent time lags between any of these processes. The observed O3 and BrO patterns are consistent with almost daily catalytic destruction of ozone by halogens (BrO and/or Br) well described in the Dead Sea Basin. The corresponding destruction of Hg0 and production of Hg2+ strongly indicates that these halogens are also responsible for observed temperate AMDE. Substantial Hg2+ production occurring at BrO levels well below 10 pptv suggests that halogen-driven Hg oxidation may be widespread under across the marine boundary layer where low levels of halogens have

  1. Feedbacks of sedimentation on crustal heat flow - New insights from the Vøring Basin, Norwegian Sea

    NASA Astrophysics Data System (ADS)

    Theissen, S.; Ruepke, L. H.

    2009-04-01

    Information on the nature and origin of rift basins is preserved in the presently observed stratigraphy. Basin modeling aims at recovering this information with the goal of quantifying a basin's structural and thermal evolution. Decompaction and backstripping analysis is a classic and still popular approach to basin reconstruction [Steckler and Watts, 1978]. The total and tectonic subsidences, as well as sedimentation rates are calculated by the consecutive decompaction and removal of individual layers. The thermal history has to be computed separately using forward thermal models. An alternative is coupled forward modeling, where the structural and thermal history is computed simultaneously. A key difference between these reconstruction methods is that feedbacks of sedimentation on crustal heat flow are often neglected in backstripping methods. In this work we use the coupled basin modeling approach presented by Rüpke et al. [2008] to quantify some of the feedbacks between sedimentation and heat flow and to explore the differences between both reconstruction approaches in a case study from the Vøring Basin, Norwegian Sea. In a series of synthetic model runs we have reviewed the effects of sedimentation on basement heat flow. These example calculations clearly confirm the well-known blanketing effect of sedimentation and show that it is largest for high sedimentation rates. Recovery of sedimentation rates from the stratigraphy is, however, not straightforward. Decompaction-based methods may systematically underestimate sedimentation rates as sediment thickness is assumed to not change/thin during stretching. We present a new method for computing sedimentation rates based on forward modeling and demonstrate the differences between both methods in terms of rates and thermal feedbacks in a reconstruction of the Vøring basin (Euromargin transect 2). We find that sedimentation rates are systematically higher in forward models and heat flow is clearly depressed during

  2. Holocene sea surface and deepwater conditions in the Iceland Basin derived from microfossil assemblages

    NASA Astrophysics Data System (ADS)

    Van Nieuwenhove, Nicolas; Pearce, Christof; Seidenkrantz, Marit-Solveig; Hoffmann Barfod, Gry; Fasting Christiansen, Cristina

    2016-04-01

    Holocene ocean conditions in the Iceland Basin were studied at a multi-decadal to centennial resolution with the help of dinoflagellate cyst and foraminiferal assemblages. The studied core, located at ~2120 m water depth at about 200 km south of Iceland, contains 4 distinct tephra layers of several centimeters thick. The ash layers are basaltic-rhyolitic bimodal and shown by major and trace element to have geochemical signatures corresponding to volcanism from the Katla volcano. The rich dinoflagellate cyst assemblages reveal 3 major phases. A first phase, from the end of the Younger Dryas to about ~5.6 ka BP, shows fairly diverse assemblages, suggesting a pronounced seasonality with optimal growing conditions for several species occurring at different times throughout the year. This interval also features the highest relative abundances of the most thermophilic species, Spiniferites mirabilis, indicating high summer sea surface temperatures in line with high summer insolation. Assemblages from the second interval, spanning from ~5.6 to ~2.2 ka BP, have a strong "North Atlantic Drift" signature, which points to strong activity in the Icelandic branch of the latter. High shares of heterotrophic species in the first half of this interval suggest significant primary productivity in the surface waters during that time. Finally, present-day conditions installed around 2.2 ka BP. In addition to these long-term trends, the assemblages show a pronounced variability on a multi-decadal to centennial scale. Preliminary foraminiferal data show a strong but varying influx of North Atlantic Deep Water. A number of forcings can be invoked for these short-term fluctuations, albeit that the volcanoclastic events appear to have no obvious effect on the dinoflagellate cyst assemblages.

  3. Magnetic fabrics induced by dynamic faulting reveal damage zone sizes in soft rocks, Dead Sea basin

    NASA Astrophysics Data System (ADS)

    Levi, Tsafrir; Weinberger, Rami; Marco, Shmulik

    2015-04-01

    Distinguishing between the effect of remote versus local strain fields, determining the size of the related inelastic damage zone, and resolving the fault-plane solutions of past earthquakes are of fundamental importance to neotectonic reconstructions and paleoseismic studies. In order to shad lights on these issues, we measured the anisotropy of magnetic susceptibility (AMS) of soft rocks within a seismically active region. The AMS fabrics were explored next to late Pleistocene syndepositional normal faults (total displacement up to ~3.5 m) that cross soft lacustrine rocks in the Dead Sea basin. 'Deposition fabrics' prevail meters away from the fault planes and are characterized by scattered maximum and intermediate principal AMS axes. 'Deformation fabrics' are detected up to tens of centimeters from the fault planes and are characterized by well-grouped AMS axes, in which one of the principal axes is parallel to the strike of the nearby fault. Variations in the AMS fabrics and magnetic lineations define the size of the inelastic damage zone around the faults. The results demonstrate that the deformation-driven magnetic fabrics and the associated inelastic deformation zones are compatible with coseismic dynamic faulting and the effects of the local strain field during earthquakes. Most of the AMS fabrics show a conspicuous similarity to that of the fault-plane solutions, i.e. the principal AMS axes and instantaneous strain ellipsoids are coaxial. These results suggest a novel application of the AMS method for defining the shape and size of the damage zones surrounding the paleo- dynamic faults and determining the principal axes of the local strain field.

  4. 6 ka anoxic condition in the Sibuyan Sea Basin, Philippines - possible link with an explosive eruption event?

    NASA Astrophysics Data System (ADS)

    Catane, S. G.; Fernando, A.; Peleo-Alampay, A.; Tejada, M. G.

    2010-12-01

    Marine tephra layers in Philippine inland seas were studied to evaluate the history of explosive volcanism in the region and their impact on the marine environment. Two discrete andesitic (SiO*blc*2*elc* = 55-63 wt%) tephra layers were found at depths 446.5-448.4 cm and 454.9-455.8 cm in the gravity core MD 3057 recovered during the Marion Dufresne Marco Polo 2 cruise in 2006. The 7m-long core was retrieved from the northern portion of the Sibuyan Sea Basin at 1660 m below sea level. A C-14 age of 6 ka was obtained for the lower tephra using benthic foraminifera collected immediately below the tephra layer. The tephra layers have similar major element compositions and follow the same fractionation trend on the basis of glass geochemistry. Compositions are distinct from the nearby active andesitic volcanoes, Taal and Mayon. Microprobe imaging showed the occurrence of authigenic pyrite within the lower andesitic tephra layer. Pyrite occurs as euhedral crystals or granular masses (framboids), which are isolated particles or foraminiferal infillings. Framboidal pyrite is associated with anoxic environments where anaerobic bacteria reduces SO*blc*4*elc* dissolved in sea water, initiating the formation of H*blc*2*elc*S. H2S reacts with iron in sediments to form pyrite. Anoxic conditions occur in ocean basins with restricted water exchange due to a physical barrier (sill), density stratification or where input of organic material is high. Alternatively, anoxic conditions may have been caused by the death of benthic organisms due to tephra deposition by depriving the organisms of their food supply. The effect of this apparent anoxic event on benthic foraminifera will be analyzed in detail. It is postulated that these anoxic conditions may cause a decline in the benthic foraminifera occurrence. The extent and duration of anoxic condition of the northern part of the Sibuyan Sea Basin 6 ka needs to be clarified because present-day water condition in the basin is normal. If

  5. A magnetotelluric transect across the Dead Sea Basin: electrical properties of geological and hydrological units of the upper crust

    NASA Astrophysics Data System (ADS)

    Meqbel, Naser M. M.; Ritter, Oliver; DESIRE Group

    2013-06-01

    Oblique shear directions along the left lateral strike-slip Dead Sea transform (DST) fault caused the formation of the Dead Sea Basin (DSB), one of the world's largest pull-apart basins. The Dead Sea, which covers the northern part of the basin, is one of the most saline lakes in world. To understand interaction of saline water from the Dead Sea with the neighbouring hydrological system is an important geoscientific problem for this arid region. Here, we report on the first continuous magnetotelluric (MT) transect crossing the entire DSB, from the eastern to the western rift shoulders and beyond. 2-D inversion of the MT data reveals an unprecedented comprehensive picture of the subsurface structures from the basin and adjacent areas. Quaternary to recent sediments of the Al-Lisan/Samara formations are expressed as highly conductive structures reaching a depth of approximately 4 km. East and west of the rift valley layered sequences of resistive and conductive structures coincide with the sedimentary formations of the Cretaceous, Jurassic and Triassic. Pre-Cambrian basement (crystalized igneous rocks) appears at depths >3 km beneath both rift shoulders as very resistive regions. The eastern boundary fault of the DST is associated with a sharp lateral conductivity contrast between the highly resistive basement structures and the conductive fill of the DSB. The transition to the western rift shoulder appears wider and smoother, in agreement with a broader fractured region, possibly caused by a combination of strong normal faulting and strike-slip activity. The very high conductivities of less than 1 Ωm of the Al-Lisan/Samara formations can be explained with hypersaline waters of the Dead Sea reaching depths of a few kilometres and porosities of at least 37 per cent. The regional Judea and Kurnub aquifers of the Cretaceous are imaged as conductive layers with resistivities of 1-20 Ωm and we infer porosities of 15 per cent. The low resistivities observed in the

  6. Occurrence, distribution and transport of pesticides into the Salton Sea Basin, California, 2001-2002

    USGS Publications Warehouse

    LeBlanc, L.A.; Kuivila, K.M.

    2008-01-01

    The Salton Sea is a hypersaline lake located in southeastern California. Concerns over the ecological impacts of sediment quality and potential human exposure to dust emissions from exposed lakebed sediments resulting from anticipated shrinking of shoreline led to a study of pesticide distribution and transport within the Salton Sea Basin, California, in 2001-2002. Three sampling stations-upriver, river mouth, and offshore-were established along each of the three major rivers that discharge into the Salton Sea. Large-volume water samples were collected for analysis of pesticides in water and suspended sediments at the nine sampling stations. Samples of the bottom sediment were also collected at each site for pesticide analysis. Sampling occurred in October 2001, March-April 2002, and October 2002, coinciding with the regional fall and spring peaks in pesticide use in the heavily agricultural watershed. Fourteen current-use pesticides were detected in water and the majority of dissolved concentrations ranged from the limits of detection to 151 ng/l. Diazinon, EPTC and malathion were detected at much higher concentrations (940-3,830 ng/l) at the New and Alamo River upriver and near-shore stations. Concentrations of carbaryl, dacthal, diazinon, and EPTC were higher in the two fall sampling periods, whereas concentrations of atrazine, carbofuran, and trifluralin were higher during the spring, which matched seasonal use patterns of these pesticides. Current-use pesticides were also detected on suspended and bed sediments in concentrations ranging from detection limits to 106 ng/g. Chlorpyrifos, dacthal, EPTC, trifluralin, and DDE were the most frequently detected pesticides on sediments from all three rivers. The number of detections and concentrations of suspended sediment-associated pesticides were often similar for the river upriver and near-shore sites, consistent with downstream transport of pesticides via suspended sediment. While detectable suspended sediment

  7. Possible connection between large volcanic eruptions and level rise episodes in the Dead Sea Basin

    NASA Astrophysics Data System (ADS)

    Bookman, Revital; Filin, Sagi; Avni, Yoav; Rosenfeld, Daniel; Marco, Shmuel

    2014-05-01

    The June 1991 Pinatubo volcanic eruption perturbed the atmosphere, triggering short-term worldwide changes in surface and lower troposphere temperatures, precipitation, and runoff. The following winter was anomalously wet in the Levant, with a ~2-meter increase in the Dead Sea level that created a distinct morphological terrace along the lake's shore. Given the global radiative and chemical effects of volcanogenic aerosols on climatic systems, we tested the hypothesis that the 1991-92 winter shore terrace is a modern analogue to the linkage between past volcanic eruptions and a sequence of shore terraces on the cliffs around the Dead Sea Basin. Analysis of historical annual precipitation series from Jerusalem showed a significant positive correlation between the Dust Veil Index (DVI) of the modern largest eruptions and corresponding annual rainfall. The DVI was found to explain nearly 50% of the variability in the annual rainfall, such that greater DVI means more rainfall. Other factors that may affect the annual rainfall in the region as the Southern Oscillation Index (SOI) and the North Atlantic oscillations (NAO) were incorporated along with the DVI in a linear multiple regression model. It was found that the NAO did not contribute anything except for increased noise, but the added SOI increased the explained variability of rainfall to more than 60%. The atmospheric effect of the volcanic aerosol cloud produced after the Mt. Pinatubo eruption shows responses in the climate system on a hemispherical to global scale. Volcanic eruptions with a VEI of 6, as in the Pinatubo, occurred about once a century during the Holocene period at a rate that persisted throughout the last glacial-interglacial cycle, though with large variations in the mean. This occurrence is similar to the frequency of shore terrace build-up during the Lake Lisan desiccation. Sixteen shore terraces, detected using airborne laser scanning data, were interpreted as indicating short-term level rises

  8. Mid-1980s distribution of tritium, 3He, 14C and 39Ar in the Greenland/Norwegian seas and the Nansen basin of the Arctic ocean

    SciTech Connect

    Schlosser, P.; Bonisch, G.; Kromer, B.; Loosli, H.H.; Buehler, R.

    1995-12-31

    The distributions of tritium/3He, 14C and 39Ar observed in the period between 1985 and 1987 in the Greenland/Norwegian Seas and the Nansen Basin of the Arctic Ocean are presented. The data are used to outline aspects of the large-scale circulation and the exchange of deep water between the Greenland/Norwegian Seas and the Nansen Basin. Additionally, semi-quantitative estimates of mean ages of the main water masses found in these regions are obtained. Apparent tritium/3He ages of the upper waters (depth <500m) vary from close to zero in the Norwegian Current to about 15 years at the lower boundary of the Arctic halocline. The deep waters (>1,500m depth) of the Greenland/ Norwegian Seas show apparent tritium/3He ages between about 17 years in the Greenland Sea and 30 years in the Norwegian Sea.

  9. Late quaternary depositional systems and sea level change-Santa Monica and San Pedro Basins, California continental borderland

    SciTech Connect

    Nardin, T.R.

    1983-07-01

    A suite of seismic reflection data that provides different degrees of resolution and penetration was used to map the depositional systems that have developed in Santa Monica and San Pedro basins during the late Quaternary. Submarine fan growth, particularly at the mouths of Hueneme and Redondo Canyons, has been the dominant mode of basin filling. Mass movement processes, ranging from creep to large-scale catastrophic slumping, have been important locally. In general, large-scale fan growth fits Normark's model in which the suprafan is the primary locus of coarse sediment deposition. Smaller scale morphologic and depositional patterns on the Hueneme and Redondo fans (e.g., distributary channels and coarse sediment concentrations basinward of the inner suprafan) suggest that a significant amount of coarse sediment presently bypasses the suprafans, however. Long-distance coarse sediment transport was particularly pronounced during late Wisconsinan lowstand of sea level and resulted in progradation of lower mid-fan and lower fan deposits.

  10. Carbon dioxide production in surface sediments of temporarily anoxic basins (Baltic Sea) and resulting sediment-water interface fluxes

    NASA Astrophysics Data System (ADS)

    Böttcher, M. E.; Al-Raei, A. M.; Winde, V.; Lenz, C.; Dellwig, O.; Leipe, T.; Segl, M.; Struck, U.

    2009-04-01

    Organic matter is mineralized in marine sediments by microbial activity using predominantly oxygen, sulfate, and metal oxides as electron acceptors. Modern euxinic basins as found in the Baltic Sea or the Black Sea are of particular importance because they may serve as type systems for anoxia in Earth's history. We present here results from biogeochemical investigations carried out in the Baltic deeps (Gotland Basin, Landsort Deep) during the first scientific cruise of RV M.S. MERIAN in 2006, additionally during RV Prof. Penck cruises in 2006 and 2007. Short sediment cores were obtained with a multi-corer and analyzed for particulate and dissolved main, minor and trace elements, pH, DIC, methane alkalinity, besides the stable carbon isotopes of dissolved inorganic carbon (DIC). Microsensors were applied to analyze steep gradients of oxygen, sulphide and sulphate. Pore water profiles are evaluated in terms of process rates and associated element fluxes using the PROFILE software (Berg et al., 1998, L&O). Gross and net anaerobic mineralization rates were additionally obtained from core incubations with 35S. Steep gradients in DIC are associated with a strong enrichment of the light stable isotope resulting in the Gotland basin from oxidized OM. Element fluxes across the sediment-water interface are compared with literature data and show for the Baltic Sea a dependence from bottom water redox conditions, and sediment compositions and formation conditions (e.g., accumulation rates). DIC in the anoxic part of the water column in the Landsort Deep and the Gotland Deep show relatively similar isotope values, close to the bottom water value, but steep gradients towards heavier values above the pelagic redoxcline. Acknowledgements: The research was supported by Leibniz IO Warnemünde, DFG (Cruise RV MSM MERIAN 01), and MPG. Thanks to B. Schneider and F. Pollehne stimulating discussions, and S. Lage and A. Schipper for technical support.

  11. Holocene fluvial terraces in the Gangkou River Basin of Hengchun Peninsula, Taiwan: implications for sea-level and tectonic controls

    NASA Astrophysics Data System (ADS)

    Chen, Jia-Hong; Chyi, Shyh-Jeng; Ho, Lih-Der; Jen, Chia-Hung; Yen, Jiun-Yee; Lüthgens, Christopher

    2016-04-01

    The Gangkou River basin is the largest basin in the eastern Hengchun Peninsula, which is the most latest emerged region of the Taiwan orogen. The width of the active channel of Gangkou River is narrow but the valleys from middle to downstream are remarkably wide, which indicates the features of underfit stream. Based on the 14C dates of buried tree trunk and terrace sediments, the preliminary model for the geomorphic evolution of Gangkou River is proposed as: Stage I: The wide spread fine-grained sediments of more than 30-meter-thick was found in the downstream area of drainage basin. The large-scale aggradation event was formed between 12000 to 7000 yr BP in response to the rapid sea-level rise during the late Pleistocene and early Holocene. Stage II: The 15 to 20-meter-high terraces of Gangkou River were formed by the incision and lateral erosion between 7000 to 400 yr BP. The 14C dates of marine terraces, beach rocks and sand dune near the estuary also indicate this erosional stage which could be related to the mid-Holocene climatic shift, tectonic uplift and the stabilized sea-level. Stage III: The 3 to 5-meter-high terraces were formed around 400 yr BP which indicated the low incision rate and the modern fluvial processes. The uplift rates are estimated by the height of river and marine terraces as 1.0 to 1.5 and 1.5 to 2.5 mm/yr respectively. The results indicate the low uplift rate maybe contributed to the underfit stream feature, and the fluvial terraces are responding to sea-level, tectonic and climate controls with different timescale in the Gangkou River. The low uplift rate found in the Gangkou River contradicted to the idea of high tectonic uplift rate in Taiwan.

  12. Food for the deep sea: utilization, dispersal, and flux of nekton falls at the Santa catalina basin floor

    NASA Astrophysics Data System (ADS)

    Smith, Craig R.

    1985-04-01

    The role of large food falls in the ecology of deep-sea benthos has been the topic of much speculation and little direct study. The submersible Alvin and free vehicles were used to assess experimentally the fate and flux of nekton falls at a depth of 1310 m in the Santa Catalina Basin. Parcels of dead fish (1 to 40 kg) placed on the basin floor rapidly attracted large aggregations of fish and invertebrate scavengers, which consumed the bulk of the carrion within hours to days. The most strongly attracted megafaunal scavenger was the ophiuroid Ophiophthalmus normani, the dominant megabenthic species in the background epifaunal assemblage. O. normani attained densities of 700 m -2 in aggregations containing thousands of individuals, and remained at elevated abundance around baitfalls for weeks. Six other megafaunal species also appeared to feed directly on carrion, including two of the next ten most abundant megabenthic organisms. Several of these species exhibited roosting behavior near baitfalls; this is probably an adaptation for exploiting rich but unpredictable food resources. Scavengers consumed bait parcels so rapidly and then dispersed so broadly that energy from nekton falls apparently reaches infaunal benthos only in very attenuated form, yielding at most minor community enhancement. Necrophagy was not the sole cause of megafaunal attraction to bait parcels; there is evidence that three predacious species were drawn to high concentrations of their ophiuroid prey. Benthic standing-crop and turnover-rate estimates for nekton falls suggest that perhaps 11% of benthic community respiratory requirements are met by nekton carcasses reaching the basin floor; the flux of energy to the deep sea through such fall events thus merits further study. These energy bonanzas occur frequently enough that O. normani, and other common necrophages, are likely to encounter at least one nekton fall per year. Such windfalls thus could influence the life histories of several

  13. Bioturbation coefficients of deep-sea sediments from the Peru Basin determined by gamma spectrometry of 210Pb exc

    NASA Astrophysics Data System (ADS)

    Suckow, Axel; Treppke, Ute; Wiedicke, Michael H.; Weber, Michael E.

    In the investigation of the impact of deep-sea mining on the ecosystem, the radioactive disequilibrium between 210Pb and 226Ra was studied in 16 surface sediment cores from the Peru Basin to obtain a quantitative measure of bioturbation. Gamma spectrometry was used as a fast, non-destructive, simultaneous assay of 210Pb and 226Ra. Buried manganese nodules and geochemical anomalies affect the depth profiles of these two radioisotopes. The calculated bioturbation coefficients show a high lateral variability. This made it impossible to detect a significant difference in bioturbation between two different study areas.

  14. Comparison of Vertical Distributions of Prokaryotic Assemblages in the Anoxic Cariaco Basin and Black Sea by Use of Fluorescence In Situ Hybridization†

    PubMed Central

    Lin, Xueju; Wakeham, Stuart G.; Putnam, Isabell F.; Astor, Yrene M.; Scranton, Mary I.; Chistoserdov, Andrei Y.; Taylor, Gordon T.

    2006-01-01

    Individual prokaryotic cells from two major anoxic basins, the Cariaco Basin and the Black Sea, were enumerated throughout their water columns using fluorescence in situ hybridization (FISH) with the fluorochrome Cy3 or horseradish peroxidase-modified oligonucleotide probes. For both basins, significant differences in total prokaryotic abundance and phylogenetic composition were observed among oxic, anoxic, and transitional (redoxcline) waters. Epsilon-proteobacteria, Crenarchaeota, and Euryarchaeota were more prevalent in the redoxclines, where previous studies reported high rates of chemoautotrophic production relative to those in waters above and below the redoxclines. Relative abundances of Archaea in both systems varied between 1% and 28% of total prokaryotes, depending on depth. The prokaryotic community composition varied between the two anoxic basins, consistent with distinct geochemical and physical conditions. In the Black Sea, the relative contributions of group I Crenarchaeota (median, 5.5%) to prokaryotic communities were significantly higher (P < 0.001; n = 20) than those of group II Euryarchaeota (median, 2.9%). In contrast, their proportions were nearly equivalent in the Cariaco Basin. Beta-proteobacteria were unexpectedly common throughout the Cariaco Basin's water column, accounting for an average of 47% of 4′,6′-diamidino-2-phenylindole (DAPI)-stained cells. This group was below the detection limit (<1%) in the Black Sea samples. Compositional differences between basins may reflect temporal variability in microbial populations and/or systematic differences in environmental conditions and the populations for which they select. PMID:16597973

  15. Interannual Variation of the Summer Rainfall in the Taipei Basin Caused by the Impact of ENSO on the Land-Sea Breeze Activity

    NASA Astrophysics Data System (ADS)

    Chen, Tsing-Chang; Tsay, Jenq-Dar; Takle, Eugene S.

    2015-04-01

    The Taipei Basin, located in northern Taiwan, is formed by the intersection of the Tanshui River Valley (~30km) and the Keelung River Valley (~60km). Summer is the dry season in northern Taiwan, but the maximum rainfall in the Taipei Basin occurs during the summer. The majority of summer rainfall (75%) in this Basin is produced by afternoon thunderstorms triggered by the sea breeze interactions with the mountains to the south of this Basin. Environmental conditions for the roughly three million people living in the Taipei Basin are greatly affected by the land-sea breeze and afternoon thunderstorm activities. Thus, the water supply, air-land traffic, and pollution for this extremely urbanized basin can be profoundly affected by interannual variations of thunderstorm days and rainfall. A systematic analysis was made of thunderstorm days and rainfall for the past two decades. Opposite the interannual variation of the sea surface temperature (SST) anomalies over the NOAA NINO3 - 4 region, ΔSST (NINO3 - 4), clear interannual variations of these two variables emerge. Occurrence days of afternoon thunderstorm and rainfall amount in the Taipei Basin are double during the cold ΔSST(NINO3 - 4) phase compared to the warm phase. During the latter (former) El Niño-Southern Oscillation (ENSO) phase, the Taipei Basin needs a stronger (weaker) warm/moist monsoon southwesterly flow channeled through the land-sea breeze to trigger thunderstorm activity. In contrast, the convergence of water vapor flux over the southeast/east Asian monsoon region toward Taiwan is enhanced more (less) to maintain rainfall over the Taipei Basin during the cold (warm) ENSO phase.

  16. Interactions of near-coastal and basin-wide features of the Mediterranean Sea in the surface colour and temperature historical record

    SciTech Connect

    Barale, V.; Filippi, P.

    1997-08-01

    Sea surface colour and temperature images, derived from time series of CZCS (1978-1986) and AVHRR (1982-1990) data, have been used to assess the interactions of near-coastal and basin-wide features in the Mediterranean basin. Individual images were processed to apply sensor(s) calibration, to correct for atmospheric contamination, and to estimate chlorophyll-like pigment concentration and surface temperature. Long-term composites show marked differences between western and eastern sub-basins, inshore and offshore domains, northern and southern near-coastal areas. Continental runoff and wind-driven mixing, as well as geomorphology and meteorology of the (northern) basin margins, appear to influence both water dynamics and bio-geo-chemistry. The major sub-basins present a distinct seasonality, superimposed to that of the basin.

  17. Lithospheric-scale effects of a subduction-driven Alboran plate: improved neotectonic modeling

    NASA Astrophysics Data System (ADS)

    Neres, Marta; Carafa, Michele; Terrinha, Pedro; Fernandes, Rui; Matias, Luis; Duarte, João; Barba, Salvatore

    2016-04-01

    The presence of a subducted slab under the Gibraltar arc is now widely accepted. However, discussion still remains on whether subduction is active and what is its influence in the lithospheric processes, in particular in the observed geodesy, deformation rates and seismicity. Aiming at bringing new insights into the discussion, we have performed a neotectonic numerical study of a segment of the Africa-Eurasia plate boundary, from the Gloria fault to the Northern Algerian margin. Specifically, we have tested the effect of including or excluding an independently driven Alboran plate, i.e. testing active subduction versus inactive subduction (2plates versus 3plates scenarios). We used the dynamic code SHELLS (Bird et al., 2008) to model the surface velocity field and the ongoing deformation, using a new up-to-date simplified tectonic map of the region, new available lithospheric data and boundary conditions determined from two alternative Africa-Eurasia angular velocities, respectively: SEGAL2013, a new pole based on stable Africa and stable Eurasia gps data (last decades); and MORVEL, a geological-scale pole (3.16 Ma). We also extensively studied the variation within the parametric space of fault friction coefficient, subduction resistance and surface velocities imposed to the Alboran plate. The final run comprised a total of 5240 experiments, and each generated model was scored against geodetic velocities, stress direction data and seismic strain rates. The preferred model corresponds to the 3plates scenario, SEGAL2013 pole and fault friction of 0.225, with scoring results: gps misfit of 0.78 mm/yr; SHmax misfit of 13.6° and correlation with seismic strain rate of 0.62, significantly better than previous models. We present predicted fault slip rates for the recognized active structures and off-faults permanent strain rates, which can be used for seismic and tsunami hazard calculations (the initial motivation for this work was contributing for calculation of

  18. Genomic and Transcriptomic Resolution of Organic Matter Utilization Among Deep-Sea Bacteria in Guaymas Basin Hydrothermal Plumes

    PubMed Central

    Li, Meng; Jain, Sunit; Dick, Gregory J.

    2016-01-01

    Microbial chemosynthesis within deep-sea hydrothermal vent plumes is a regionally important source of organic carbon to the deep ocean. Although chemolithoautotrophs within hydrothermal plumes have attracted much attention, a gap remains in understanding the fate of organic carbon produced via chemosynthesis. In the present study, we conducted shotgun metagenomic and metatranscriptomic sequencing on samples from deep-sea hydrothermal vent plumes and surrounding background seawaters at Guaymas Basin (GB) in the Gulf of California. De novo assembly of metagenomic reads and binning by tetranucleotide signatures using emergent self-organizing maps (ESOM) revealed 66 partial and nearly complete bacterial genomes. These bacterial genomes belong to 10 different phyla: Actinobacteria, Bacteroidetes, Chloroflexi, Deferribacteres, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, Proteobacteria, Verrucomicrobia. Although several major transcriptionally active bacterial groups (Methylococcaceae, Methylomicrobium, SUP05, and SAR324) displayed methanotrophic and chemolithoautotrophic metabolisms, most other bacterial groups contain genes encoding extracellular peptidases and carbohydrate metabolizing enzymes with significantly higher transcripts in the plume than in background, indicating they are involved in degrading organic carbon derived from hydrothermal chemosynthesis. Among the most abundant and active heterotrophic bacteria in deep-sea hydrothermal plumes are Planctomycetes, which accounted for seven genomes with distinct functional and transcriptional activities. The Gemmatimonadetes and Verrucomicrobia also had abundant transcripts involved in organic carbon utilization. These results extend our knowledge of heterotrophic metabolism of bacterial communities in deep-sea hydrothermal plumes. PMID:27512389

  19. Genomic and Transcriptomic Resolution of Organic Matter Utilization Among Deep-Sea Bacteria in Guaymas Basin Hydrothermal Plumes.

    PubMed

    Li, Meng; Jain, Sunit; Dick, Gregory J

    2016-01-01

    Microbial chemosynthesis within deep-sea hydrothermal vent plumes is a regionally important source of organic carbon to the deep ocean. Although chemolithoautotrophs within hydrothermal plumes have attracted much attention, a gap remains in understanding the fate of organic carbon produced via chemosynthesis. In the present study, we conducted shotgun metagenomic and metatranscriptomic sequencing on samples from deep-sea hydrothermal vent plumes and surrounding background seawaters at Guaymas Basin (GB) in the Gulf of California. De novo assembly of metagenomic reads and binning by tetranucleotide signatures using emergent self-organizing maps (ESOM) revealed 66 partial and nearly complete bacterial genomes. These bacterial genomes belong to 10 different phyla: Actinobacteria, Bacteroidetes, Chloroflexi, Deferribacteres, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, Proteobacteria, Verrucomicrobia. Although several major transcriptionally active bacterial groups (Methylococcaceae, Methylomicrobium, SUP05, and SAR324) displayed methanotrophic and chemolithoautotrophic metabolisms, most other bacterial groups contain genes encoding extracellular peptidases and carbohydrate metabolizing enzymes with significantly higher transcripts in the plume than in background, indicating they are involved in degrading organic carbon derived from hydrothermal chemosynthesis. Among the most abundant and active heterotrophic bacteria in deep-sea hydrothermal plumes are Planctomycetes, which accounted for seven genomes with distinct functional and transcriptional activities. The Gemmatimonadetes and Verrucomicrobia also had abundant transcripts involved in organic carbon utilization. These results extend our knowledge of heterotrophic metabolism of bacterial communities in deep-sea hydrothermal plumes.

  20. Genomic and Transcriptomic Resolution of Organic Matter Utilization Among Deep-Sea Bacteria in Guaymas Basin Hydrothermal Plumes.

    PubMed

    Li, Meng; Jain, Sunit; Dick, Gregory J

    2016-01-01

    Microbial chemosynthesis within deep-sea hydrothermal vent plumes is a regionally important source of organic carbon to the deep ocean. Although chemolithoautotrophs within hydrothermal plumes have attracted much attention, a gap remains in understanding the fate of organic carbon produced via chemosynthesis. In the present study, we conducted shotgun metagenomic and metatranscriptomic sequencing on samples from deep-sea hydrothermal vent plumes and surrounding background seawaters at Guaymas Basin (GB) in the Gulf of California. De novo assembly of metagenomic reads and binning by tetranucleotide signatures using emergent self-organizing maps (ESOM) revealed 66 partial and nearly complete bacterial genomes. These bacterial genomes belong to 10 different phyla: Actinobacteria, Bacteroidetes, Chloroflexi, Deferribacteres, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, Proteobacteria, Verrucomicrobia. Although several major transcriptionally active bacterial groups (Methylococcaceae, Methylomicrobium, SUP05, and SAR324) displayed methanotrophic and chemolithoautotrophic metabolisms, most other bacterial groups contain genes encoding extracellular peptidases and carbohydrate metabolizing enzymes with significantly higher transcripts in the plume than in background, indicating they are involved in degrading organic carbon derived from hydrothermal chemosynthesis. Among the most abundant and active heterotrophic bacteria in deep-sea hydrothermal plumes are Planctomycetes, which accounted for seven genomes with distinct functional and transcriptional activities. The Gemmatimonadetes and Verrucomicrobia also had abundant transcripts involved in organic carbon utilization. These results extend our knowledge of heterotrophic metabolism of bacterial communities in deep-sea hydrothermal plumes. PMID:27512389

  1. Benthic nutrient fluxes in the Eastern Gotland Basin (Baltic Sea) with particular focus on microbial mat ecosystems

    NASA Astrophysics Data System (ADS)

    Noffke, A.; Sommer, S.; Dale, A. W.; Hall, P. O. J.; Pfannkuche, O.

    2016-06-01

    Benthic fluxes and water column distributions of dissolved inorganic nitrogen (DIN) and total dissolved phosphate (PO43 -) were measured in situ at 7 sites across a redox gradient from oxic to anoxic bottom waters in the Eastern Gotland Basin (Baltic Sea). The study area was divided into the oxic zone (60 to ca. 80 m water depth, O2 > 30 μM), the hypoxic transition zone (HTZ, ca. 80 to 120 m, O2 < 30 μM) and the deep anoxic and sulfidic basin (> ca. 120 m). Sediments in the HTZ were covered by mats of vacuolated sulfur bacteria. Ammonium (NH4+) fluxes in the deep basin and the HTZ were elevated at 0.6 mmol m- 2 d- 1 and 1 mmol m- 2 d- 1, respectively. Nitrate (NO3-) fluxes were directed into the sediment at all stations in the HTZ and were zero in the deep basin. PO43 - release was highest in the HTZ at 0.23 mmol m- 2 d- 1, with a further release of 0.2 mmol m- 2 d- 1 in the deep basin. Up-scaling the benthic fluxes to the Baltic Proper equals 109 kt yr- 1 of PO43 - and 266 kt yr- 1 of DIN. This is eight- and two-fold higher than the total external load of P (14 kt yr- 1) and DIN (140 kt yr- 1) in 2006 (HELCOM 2009b). The HTZ makes an important contribution to the internal nutrient loading in the Baltic Proper, releasing 70% of P (76 kt yr- 1) and 75% of DIN (200 kt yr- 1) despite covering only 51% of area.

  2. Phylogenetic status of brown trout Salmo trutta populations in five rivers from the southern Caspian Sea and two inland lake basins, Iran: a morphogenetic approach.

    PubMed

    Hashemzadeh Segherloo, I; Farahmand, H; Abdoli, A; Bernatchez, L; Primmer, C R; Swatdipong, A; Karami, M; Khalili, B

    2012-10-01

    Interrelationships, origin and phylogenetic affinities of brown trout Salmo trutta populations from the southern Caspian Sea basin, Orumieh and Namak Lake basins in Iran were analysed from complete mtDNA control region sequences, 12 microsatellite loci and morphological characters. Among 129 specimens from six populations, seven haplotypes were observed. Based on mtDNA haplotype data, the Orumieh and southern Caspian populations did not differ significantly, but the Namak basin-Karaj population presented a unique haplotype closely related to the haplotypes of the other populations (0·1% Kimura two-parameter, K2P divergence). All Iranian haplotypes clustered as a distinct group within the Danube phylogenetic grouping, with an average K2P distance of 0·41% relative to other Danubian haplotypes. The Karaj haplotype in the Namak basin was related to a haplotype (Da26) formerly identified in the Tigris basin in Turkey, to a Salmo trutta oxianus haplotype from the Aral Sea basin, and to haplotype Da1a with two mutational steps, as well as to other Iranian haplotypes with one to two mutational steps, which may indicate a centre of origin in the Caspian basin. In contrast to results of the mtDNA analysis, more pronounced differentiation was observed among the populations studied in the morphological and microsatellite DNA data, except for the two populations from the Orumieh basin, which were similar, possibly due to anthropogenic causes.

  3. Human impacts on the Changjiang (Yangtze) River basin, China, with special reference to the impacts on the dry season water discharges into the sea

    NASA Astrophysics Data System (ADS)

    Chen, Xiqing; Zong, Yongqiang; Zhang, Erfeng; Xu, Jiangang; Li, Shijie

    2001-11-01

    The annual mean discharge from the upper Changjiang (Yangtze) basin has shown a significant decreasing trend since the end of the 19th century. Since the 1970s, the monthly mean discharge to the sea has also shown a dramatic decrease during dry seasons. This paper examines the human impacts on the major hydrological processes in the Changjiang River basin, with a special focus on their influence on the discharge from the drainage basin to the sea during the dry season. Climatic warming has been obvious since the 1960s in the headwater area, resulting a continuous retreat of glaciers, while the increased evaporation is responsible for the dropping of lake water levels and decrease in water area. Such a trend continuing into the coming decades will significantly change the seasonal hydrological processes, especially the dry-season discharges from the upper basin. The decreasing vegetation cover and the increasing reservoir volume capacity also impacted on the water discharge over the past decades, although in different ways. The possible impacts of the Three Gorges Dam on the monthly variation of water discharge to the sea are discussed with special emphasis. In the middle basin discussions are focused on the effect of decreasing lake area, of increasing reservoir capacity, and of irrigated agriculture on the temporal changes of water discharge since the 1950s. The human impacts on water discharge from the lower basin to the sea are mostly attributed to water transfer to both tributary and neighboring drainage basins by a large number of electric pumping stations and sluices. The total water transferring capacity is more than 5000 m 3/s along the lower river. Studies indicate that in a dry season the water discharge to the sea is greatly reduced and results in strong saltwater intrusion in the estuary.

  4. Quantifying the mass transfer from mountain ranges to deposition in sedimentary basins: Source to sink studies in the Danube Basin-Black Sea system

    NASA Astrophysics Data System (ADS)

    Matenco, Liviu; Andriessen, Paul

    2013-04-01

    A source to sink system describes the natural link between mountains, plains and deltas, by analysing the (re)distribution of material at shallow crustal depth and at the Earth's surface, exploring the links between coupled tectonic and surface processes. Sediment fluxes are the product of erosion and movement of material in and from sources (mountains), the transport and movement of sediments and solutes by river systems to the plains, and deposition and storage in sink zones. The ESF-EUROCORES TOPO-EUROPE SourceSink programme is a fully integrated research effort to significantly advance our predictive capabilities on the quantitative analyses of coupled active and past drainage systems by means of step-wise 4D reconstructions of sediments mass transfer, integrating geophysics, geology, geomorphology, state of the art high-resolution dating, and numerical and analogue modelling. The area selected for this programme is the Danube River Basin-Black Sea source to sink system, a world-class natural laboratory that is uniquely suited in the heart of Europe's topography, covering almost half of its surface, providing opportunities for excellent field sites to study in integration surface and subsurface data that cover the complete chain of source, carrier and sink. Quantifying and modelling the complete system in relation to the controlling parameters has resulted in significant understanding of forcing factors and linking temporal and spatial scales across multiple orogen and basin systems. This research has provided the opportunity to widen the geographical scope to other natural scenarios, where a number of mountain chains with similar geodynamic genesis separate sedimentary basins with comparable evolution.

  5. Comparative Population Structure of Two Deep-Sea Hydrothermal-Vent-Associated Decapods (Chorocaris sp. 2 and Munidopsis lauensis) from Southwestern Pacific Back-Arc Basins

    PubMed Central

    Thaler, Andrew David; Plouviez, Sophie; Saleu, William; Alei, Freddie; Jacobson, Alixandra; Boyle, Emily A.; Schultz, Thomas F.; Carlsson, Jens; Van Dover, Cindy Lee

    2014-01-01

    Studies of genetic connectivity and population structure in deep-sea chemosynthetic ecosystems often focus on endosymbiont-hosting species that are directly dependent on chemical energy extracted from vent effluent for survival. Relatively little attention has been paid to vent-associated species that are not exclusively dependent on chemosynthetic ecosystems. Here we assess connectivity and population structure of two vent-associated invertebrates—the shrimp Chorocaris sp. 2 and the squat lobster Munidopsis lauensis—that are common at deep-sea hydrothermal vents in the western Pacific. While Chorocaris sp. 2 has only been observed at hydrothermal vent sites, M. lauensis can be found throughout the deep sea but occurs in higher abundance around the periphery of active vents We sequenced mitochondrial COI genes and deployed nuclear microsatellite markers for both species at three sites in Manus Basin and either North Fiji Basin (Chorocaris sp. 2) or Lau Basin (Munidopsis lauensis). We assessed genetic differentiation across a range of spatial scales, from approximately 2.5 km to more than 3000 km. Population structure for Chorocaris sp. 2 was comparable to that of the vent-associated snail Ifremeria nautilei, with a single seemingly well-mixed population within Manus Basin that is genetically differentiated from conspecifics in North Fiji Basin. Population structure for Munidopsis lauensis was more complex, with two genetically differentiated populations in Manus Basin and a third well-differentiated population in Lau Basin. The unexpectedly high level of genetic differentiation between M. lauensis populations in Manus Basin deserves further study since it has implications for conservation and management of diversity in deep-sea hydrothermal vent ecosystems. PMID:24983244

  6. Comparative population structure of two deep-sea hydrothermal-vent-associated decapods (Chorocaris sp. 2 and Munidopsis lauensis) from southwestern Pacific back-arc basins.

    PubMed

    Thaler, Andrew David; Plouviez, Sophie; Saleu, William; Alei, Freddie; Jacobson, Alixandra; Boyle, Emily A; Schultz, Thomas F; Carlsson, Jens; Van Dover, Cindy Lee

    2014-01-01

    Studies of genetic connectivity and population structure in deep-sea chemosynthetic ecosystems often focus on endosymbiont-hosting species that are directly dependent on chemical energy extracted from vent effluent for survival. Relatively little attention has been paid to vent-associated species that are not exclusively dependent on chemosynthetic ecosystems. Here we assess connectivity and population structure of two vent-associated invertebrates--the shrimp Chorocaris sp. 2 and the squat lobster Munidopsis lauensis--that are common at deep-sea hydrothermal vents in the western Pacific. While Chorocaris sp. 2 has only been observed at hydrothermal vent sites, M. lauensis can be found throughout the deep sea but occurs in higher abundance around the periphery of active vents We sequenced mitochondrial COI genes and deployed nuclear microsatellite markers for both species at three sites in Manus Basin and either North Fiji Basin (Chorocaris sp. 2) or Lau Basin (Munidopsis lauensis). We assessed genetic differentiation across a range of spatial scales, from approximately 2.5 km to more than 3000 km. Population structure for Chorocaris sp. 2 was comparable to that of the vent-associated snail Ifremeria nautilei, with a single seemingly well-mixed population within Manus Basin that is genetically differentiated from conspecifics in North Fiji Basin. Population structure for Munidopsis lauensis was more complex, with two genetically differentiated populations in Manus Basin and a third well-differentiated population in Lau Basin. The unexpectedly high level of genetic differentiation between M. lauensis populations in Manus Basin deserves further study since it has implications for conservation and management of diversity in deep-sea hydrothermal vent ecosystems. PMID:24983244

  7. Inter-comparison of the potentially active prokaryotic communities in the halocline sediments of Mediterranean deep-sea hypersaline basins.

    PubMed

    Kormas, Konstantinos A; Pachiadaki, Maria G; Karayanni, Hera; Leadbetter, Edward R; Bernhard, Joan M; Edgcomb, Virginia P

    2015-09-01

    The sediment microbiota of the Mediterranean deep-sea anoxic hypersaline basins (DHABs) are understudied relative to communities in the brines and halocline waters. In this study, the active fraction of the prokaryotic community in the halocline sediments of L' Atalante, Urania, and Discovery DHABs was investigated based on extracted total RNA and 454 pyrosequencing of the 16S rRNA gene. Bacterial and archaeal communities were different in the sediments underlying the halocline waters of the three habitats, reflecting the unique chemical settings of each basin. The relative abundance of unique operational taxonomic units (OTUs) was also different between deep-sea control sediments and sediments underlying DHAB haloclines, suggesting adaptation to the steep DHAB chemical gradients. Only a few OTUs were affiliated to known bacterial halophilic and/or anaerobic groups. Many OTUs, including some of the dominant ones, were related to aerobic taxa. Archaea were detected only in few halocline samples, with lower OTU richness relative to Bacteria, and were dominated by taxa associated with methane cycling. This study suggests that, while metabolically active prokaryotic communities appear to be present in sediments underlying the three DHABs investigated, their diversity and activity are likely to be more reduced in sediments underlying the brines. PMID:26174531

  8. Argo float observations of basin-scale deep convection in the Irminger sea during winter 2011-2012

    NASA Astrophysics Data System (ADS)

    Piron, Anne; Thierry, Virginie; Mercier, Herlé; Caniaux, Guy

    2016-03-01

    Analysis of Argo data obtained during winter 2011-2012 revealed the presence over the Irminger Basin of an exceptionally large number of profiles (41) with mixed layer depths (MLD) exceeding 700 m, which was deep enough to reach the pool of the intermediate Labrador Sea Water located in the Irminger Sea. Four of these profiles exhibited an MLD of 1000 m, which was the maximum value observed for the winter in question. The Argo sampling in the Irminger Sea during that winter, which was 3-4 times greater than for the preceding winters, enabled the different phases of the mixed layer deepening down to 1000 m, together with their spatial extents, to be observed for the first time. Two intense convective periods occurred: in late January south of Cape Farewell and in late February-early March east of Greenland. A final deepening period was observed in mid-March, during which the deepest mixed layers were observed. This long deepening period occurred in large regional areas and was followed by a rapid restratification phase. The temporal evolution of oxygen profiles from one Argo float testifies to the local and rapid ventilation of the mixed layer by the deep convection. A mixed layer heat budget along the trajectories of the 4 floats that sampled the deepest mixed layers showed that heat loss at the air-sea interface was mainly responsible for heat content variations in the mixed layer. Greenland Tip Jets were of primary importance for the development of deep convection in the Irminger Sea in the winter of 2011-2012. They enhanced the winter heat loss and two long (more than 24 h), intense late events close together in time pushed the mixed layer deepening down to 1000 m. Net air-sea fluxes, the number of Greenland Tip Jets, the stratification of the water column, the NAO index and the Ekman-induced heat flux are pertinent indicators to assess conditions that are favorable for the development of deep convection in the Irminger Sea. By considering each of those

  9. Geology and petrology of enormous volumes of impact melt on the Moon: A case study of the Orientale basin impact melt sea

    NASA Astrophysics Data System (ADS)

    Vaughan, William M.; Head, James W.; Wilson, Lionel; Hess, Paul C.

    2013-04-01

    Lunar basin-forming impacts produce enormous volumes (>105 km3) of impact melt. All known basin-forming impacts combined may produce ˜108 km3 of impact melt, ˜1/20th the volume of the lunar crust. Despite their volumetric importance, the geology and petrology of massive deposits of impact melt on the Moon have been little studied, in part because most basin impact melt deposits are old and have been obscured or buried by subsequent impact cratering and mare infill. We investigate the geology and model the petrology of fresh massive impact melt deposits in the relatively young 930 km diameter Orientale basin. Models of impact melt production combined with geologic analyses based on new LOLA topographic data suggest that most of the impact melt (˜2/3) produced by the Orientale-forming impact occurs in a ˜15 km thick impact melt sheet (better described as an impact melt sea) ˜350 km in diameter with a volume of ˜106 km3. We anticipate that the Orientale melt sea has undergone large-scale igneous differentiation, since terrestrial impact melt sheets (such as Manicouagan, Sudbury, and Morokweng) less than a tenth of the thickness and a hundredth of the volume of the Orientale melt sea have differentiated. We develop a model for the cumulate stratigraphy of the solidified Orientale impact melt sea. A modeled cumulate stratigraphy (occurring below a quench crust and anorthositic fallback breccia) with an ˜8 km thick layer of norite overlying a ˜4 km layer of pyroxenite and a basal ˜2 km thick layer of dunite produced by equilibrium crystallization of a homogenized melt sea, consistent with vigorous convection in that melt sea, is supported by remotely-sensed norite excavated by the central peak of Maunder crater from ˜4 km depth. Generally, we predict that very large basin-forming impacts, including the South Pole-Aitken (SPA) basin-forming impact, produce melt seas with a cumulate stratigraphy similar to that of the Orientale melt sea. Impact melt

  10. Diversity and distribution of diazotrophic communities in the South China Sea deep basin with mesoscale cyclonic eddy perturbations.

    PubMed

    Zhang, Yao; Zhao, Zihao; Sun, Jun; Jiao, Nianzhi

    2011-12-01

    The South China Sea (SCS) is an oligotrophic subtropical marginal ocean with a deep basin and a permanently stratified central gyre. Upwelling and nitrogen fixation provide new nitrogen for primary production in the SCS. This study was aimed at an investigation of phylogenetic diversity and quantification of the diazotroph community in the SCS deep basin, which is characterized by frequent mesoscale eddies. The diazotroph community had a relatively low diversity but a distinct spatial heterogeneity of diversity in the SCS deep basin. The potential for nitrogen fixation consistently occurred during cyclonic eddies, although upwelling of nutrient-replete deep water might have alleviated nitrogen limitation in the SCS. However, diazotrophic proteobacteria were dominant, but neither Trichodesmium nor heterocystous cyanobacterial diatom symbionts. Quantitative PCR analysis using probe-primer sets developed in this study revealed that the nif H gene of the two dominant alpha- and gammaproteobacterial groups was at the highest abundance (up to 10(4) to 10(5)  copies L(-1) ). Trichodesmium thiebautii was detected with an average density of 10(2)  trichomes L(-1) in the euphotic waters, while Richelia intracellularis was observed sporadically under the microscope. The unicellular cyanobacterial groups A and B were not detected in our libraries. Our results suggested that diazotrophic proteobacteria were significant components potentially contributing to nitrogen fixation in this oligotrophic marginal ocean ecosystem.

  11. A new species of Cottus from the Onega River drainage, White Sea basin (Actinopterygii: Scorpaeniformes: Cottidae).

    PubMed

    Sideleva, Valentina G; Naseka, Alexander M; Zhidkov, Zakhar V

    2015-01-01

    Cottus gratzianowi, a new cottid species, is described from material collected in the Ukhtomitsa River in the Onega River drainage, White Sea basin. It differs from its congeners in Europe east of the Meuse except C. koshewnikowi by having no transverse dark bands on the pelvic fin, a single chin canal pore, an incomplete lateral line not reaching behind the anal-fin insertion, and the position of the lateral line which is located considerably above the mid-line of the flank. From C. koshewnikowi distributed in the Volga (Caspian basin), Pechora, and Northern Dvina rivers (Arctic basin), C. gratzianowi sp. nov. can be distinguished by a combination of character states, the most differentiating are as follows: a larger eye (horizontal diameter 23-28% HL, equal to or exceeding snout length vs. 16-25% HL, less than snout length), a rounded caudal fin (vs. commonly truncated), frequent presence of one to three branched rays in median part of the pectoral fin (vs. usual absence), an interrupted supratemporal canal commissure with 4 pores (vs. non-interrupted, with 3 pores), abdominal vertebrae commonly 10 (vs. 11), and contrasting black blotches on all fins including pelvic and anal fins (vs. no blotches on pelvic and anal fins).

  12. Protistan community patterns within the brine and halocline of deep hypersaline anoxic basins in the eastern Mediterranean Sea.

    PubMed

    Edgcomb, Virginia; Orsi, William; Leslin, Chesley; Epstein, Slava S; Bunge, John; Jeon, Sunok; Yakimov, Michail M; Behnke, Anke; Stoeck, Thorsten

    2009-01-01

    Environmental factors restrict the distribution of microbial eukaryotes but the exact boundaries for eukaryotic life are not known. Here, we examine protistan communities at the extremes of salinity and osmotic pressure, and report rich assemblages inhabiting Bannock and Discovery, two deep-sea superhaline anoxic basins in the Mediterranean. Using a rRNA-based approach, we detected 1,538 protistan rRNA gene sequences from water samples with total salinity ranging from 39 to 280 g/Kg, and obtained evidence that this DNA was endogenous to the extreme habitat sampled. Statistical analyses indicate that the discovered phylotypes represent only a fraction of species actually inhabiting both the brine and the brine-seawater interface, with as much as 82% of the actual richness missed by our survey. Jaccard indices (e.g., for a comparison of community membership) suggest that the brine/interface protistan communities are unique to Bannock and Discovery basins, and share little (0.8-2.8%) in species composition with overlying waters with typical marine salinity and oxygen tension. The protistan communities from the basins' brine and brine/seawater interface appear to be particularly enriched with dinoflagellates, ciliates and other alveolates, as well as fungi, and are conspicuously poor in stramenopiles. The uniqueness and diversity of brine and brine-interface protistan communities make them promising targets for protistan discovery. PMID:19057844

  13. 3D seismic analysis of the Collyhurst Sandstone: implications for CO2 sequestration in the East Irish Sea Basin

    NASA Astrophysics Data System (ADS)

    Gamboa, Davide; Williams, John; Kirk, Karen; Gent, Christopher; Bentham, Michelle; Fellgett, Mark; Schofield, David

    2016-04-01

    Carbon Capture and Storage (CCS) is a vital technology towards low-carbon energy resources and the mitigation of global warming trends induced by rising CO2 levels in the atmosphere. The East Irish Sea Basin (EISB) is a key area for CCS in the western UK, having high CO2 storage potentials in explored hydrocarbon fields and in saline aquifers within the Permo-Triassic Sherwood Sandstone Formation. However, the theoretical storage potential of the EISB could be poorly estimated as the reservoir-prone Lower Permian formations are not considered in detail by current estimations. This work aims to fill this gap, focusing on the characterisation of the Lower Permian Collyhurst Sandstone Formation as a viable storage unit. The potential for CO2 storage is estimated as the total volume/area of suitable closures that are isolated by structural traps, occurring at depths suitable for CO2 injection and containment (>800m). Detailed structural and stratigraphic interpretations were made using 3D seismic data to assess the storage potential of the Collyhurst Sandstone Formation in the southern EISB. The basin strata is compartmentalised by numerous N-S trending faults. A higher degree of compartmentalisation occurs within regional anticlines where elongated tilted blocks are observed, bound by predominantly west-dipping faults that induce a variable offset of the Collyhurst Sandstone strata. Contrastingly, higher lateral continuity of this formation is observed within graben basins were faults are less frequent and with minor offset, thus potentially creating larger storage closures. Fault dip orientation in the grabens is variable, with west and east dipping faults occurring as a function of large east-dipping listric faults. This study was complemented by the stress modelling of the interpreted faults in order to assess the risk of CO2 leakage. Analysis of borehole breakouts observed in four approximately vertical wells in the EISB suggest a maximum horizontal stress

  14. Mercury isotopic composition of hydrothermal systems in the Yellowstone Plateau volcanic field and Guaymas Basin sea-floor rift

    USGS Publications Warehouse

    Sherman, L.S.; Blum, J.D.; Nordstrom, D.K.; McCleskey, R.B.; Barkay, T.; Vetriani, C.

    2009-01-01

    To characterize mercury (Hg) isotopes and isotopic fractionation in hydrothermal systems we analyzed fluid and precipitate samples from hot springs in the Yellowstone Plateau volcanic field and vent chimney samples from the Guaymas Basin sea-floor rift. These samples provide an initial indication of the variability in Hg isotopic composition among marine and continental hydrothermal systems that are controlled predominantly by mantle-derived magmas. Fluid samples from Ojo Caliente hot spring in Yellowstone range in δ202Hg from - 1.02‰ to 0.58‰ (± 0.11‰, 2SD) and solid precipitate samples from Guaymas Basin range in δ202Hg from - 0.37‰ to - 0.01‰ (± 0.14‰, 2SD). Fluid samples from Ojo Caliente display mass-dependent fractionation (MDF) of Hg from the vent (δ202Hg = 0.10‰ ± 0.11‰, 2SD) to the end of the outflow channel (&delta202Hg = 0.58‰ ± 0.11‰, 2SD) in conjunction with a decrease in Hg concentration from 46.6pg/g to 20.0pg/g. Although a small amount of Hg is lost from the fluids due to co-precipitation with siliceous sinter, we infer that the majority of the observed MDF and Hg loss from waters in Ojo Caliente is due to volatilization of Hg0(aq) to Hg0(g) and the preferential loss of Hg with a lower δ202Hg value to the atmosphere. A small amount of mass-independent fractionation (MIF) was observed in all samples from Ojo Caliente (Δ199Hg = 0.13‰ ±1 0.06‰, 2SD) but no significant MIF was measured in the sea-floor rift samples from Guaymas Basin. This study demonstrates that several different hydrothermal processes fractionate Hg isotopes and that Hg isotopes may be used to better understand these processes.

  15. Ichnological trends along an open-water transect across a large marginal-marine epicontinental basin, the modern Baltic Sea

    NASA Astrophysics Data System (ADS)

    Virtasalo, Joonas J.; Bonsdorff, Erik; Moros, Matthias; Kabel, Karoline; Kotilainen, Aarno T.; Ryabchuk, Daria; Kallonen, Aki; Hämäläinen, Keijo

    2011-11-01

    Late Holocene sediments in the Baltic Sea provide an opportunity to study lateral changes in the assemblages of identifiable biogenic sedimentary structures (ichnofossils) in a large, high-latitude semi-enclosed sea with instrumentally determined gradients in biodiversity and environmental factors such as salinity and oxygen availability. Integrated sedimentological and ichnological analysis is carried out on 6 long cores collected along an open-sea, declining salinity transect across the basin. Muddy sediments in euhaline (Kattegat) and polyhaline (Mecklenburg Bight) sites are characterized by the archetypal Cruziana Ichnofacies, portrayed by subsurface deposit-feeding structures ( Scolicia and Planolites), surface deposit-feeding structures ( Skolithos), and structures that reflect both these feeding strategies ( Palaeophycus, Arenicolites/ Polykladichnus and unnamed biodeformational structures produced by bivalves). The ichnofossils are tiered to 3 levels. The Cruziana Ichnofacies is impoverished in the higher mesohaline Arkona Basin and even more so with declining salinity farther inland. The deepest, oxygen-restricted study sites (Gotland Deep and the western Gulf of Finland) below a permanent halocline are characterized by very small and shallow deposit-feeding structures ( Planolites and rare flat Arenicolites/ Polykladichnus), and poorly developed tiering. The nearly freshwater eastern Gulf of Finland is characterized by the Cenozoic archetypal Mermia Ichnofacies, dominated by narrow and shallow subsurface and surface deposit-feeding structures ( Planolites and flat Arenicolites/ Polykladichnus). Large Planolites (3-7 mm in diameter) at this site are untypical of Mermia Ichnofacies assemblages. These results confirm the earlier observations that marine forms dominate brackish-water ichnoassemblages, with the ichnofossil size and diversity decreasing with declining salinity. The results also confirm the predicted decreases in the ichnofossil size and

  16. Sequence stratigraphic model and Evolution of the Channelized depositional systems during Miocene in Ulleung Basin southeastern margin, East Sea

    NASA Astrophysics Data System (ADS)

    Baek, Y.; Lee, S. H.; Kim, H. J.; Jou, H. T.

    2015-12-01

    The southwestern margin of Ulleung Basin consists of broad and gentle slope continental shelf and shelf break. The sedimentary succession of the continental shelf is divided into nine sequences (S1-S9). The sedimentary succession is consists of the lower pro-graded sequences (from S2 to S6; 16.5-8.2 Ma) and upper channelized depositional sequences (S7 and S8; 8.2-5.5 Ma) in the Miocene. It progressively thickens northeast ward, suggesting a significant contribution of sediments into the basin margin. The channelized depositional system of S7 is divided into two subunits in which lower boundaries of each subunit are indicated by erosional truncation and channel incision. The underlying subunit 1 has two main streams; the progressive directions are to the NNE (a) and ENE (b). The main stream of subunit 2, developed after giving rise to the low-relief topography of the subunit 1, is only overlapping main stream (a) of subunit 1. The gentle sloped proximal-middle zone has different internal reflector, subunit 1 is characterized by parallel to chaotic reflections, whereas the subunit 2 is dominated by continuous and inclined reflectors, which can be interpreted that sediments supply is increase in subunit 2 than subunit 1. The steep sloped distal zone of channelized depositional systems connected the shelf break. The slope gradient is more slanted subunit 2 than 1. The internal structures are dis-continuous and inclined chaotic internal reflectors, which is interpreted mass transport deposits (MTDs). The slope failures commonly start near the shelf break, but some others are connected perpendicular to the main stream. The upper boundary of subunit 2 is truncated by transgressive surface. The stacking pattern of sequence 7 suggests the type-1 sequence controlled by sea level change, and the internal erosional surface in the channelized depositional systems can be interpreted that formed by tectonic or relative sea level flocculation during late Miocene in East Sea.

  17. Low bacterial diversity and high labile organic matter concentrations in the sediments of the Medee deep-sea hypersaline anoxic basin.

    PubMed

    Akoumianaki, Ioanna; Nomaki, Hidetaka; Pachiadaki, Maria; Kormas, Konstantinos Ar; Kitazato, Hiroshi; Tokuyama, Hidekazu

    2012-01-01

    Studies in the center and margin of the Medee Basin, a Mediterranean deep-sea hypersaline anoxic basin, and at a reference site during Penelope cruise (2007), revealed the existence of a 7 m-thick halocline, with high salinity (328 psu), and high sedimentary organic carbon and biopolymer concentrations. The 194 16S rRNA sequences retrieved were grouped into 118 unique phylotypes. Pseudomonas gessardii, dominated in the center, while 33 phylotypes were detected at the margin and 73 at the reference site. The study suggested conditions hostile to bacteria in the sediments of the Medee Basin and preservation of sedimentary labile organic matter. PMID:22504432

  18. The geochemistry characteristic and dating of cold seepage carbonates of the Pearl River Mouth Basin, eastern of South China Sea

    NASA Astrophysics Data System (ADS)

    Fang, Yunxin; Fu, Shaoying

    2015-04-01

    Cold seepage carbonates are usually formed by the interaction of methane oxidizing archaea, sulfate reducing bacteria and cold seepage which contain abundant venting hydrocarbon gases. The presence of cold seepage carbonates on the seabed is one of the evidences that the area exist venting hydrocarbon gases, which are usually result by the dissociation of gas hydrate. The cold seepage property and fluid flow rate can influence the oxidation-deoxidation environment of the bottom water and sediment. Many previous studies focused on the mineral composition, microstructure, elemental composition, isotope composition of the cold seepage carbonates and isotopic dating for the cold seepage carbonates. The isotopic dating for the cold seepage carbonates can provide the information of the gas hydrate formation and dissociation in some area of the South China Sea. High precision TIMS-U dating and 14C dating are used as routine method for the dating of the Quaternary carbonates and fossils. The cold seepage carbonates in the study include the samples collected by ROV on the seabed and the drilling for gas hydrate in the Pearl River Mouth Basin, eastern of the South China Sea. The authigenic carbonate occurred in different depth in the A, B and C drilling site. They may be represent different events of gas hydrate formation and dissociation in the Quaternary. The dating study for all the cold seepage carbonates can provide the relative accurate eras of the gas hydrate dissociation events in certain area of the South China Sea.

  19. The interplay between tectonics, sediment dynamics and gateways evolution in the Danube system from the Pannonian Basin to the western Black Sea.

    PubMed

    Matenco, Liviu; Munteanu, Ioan; ter Borgh, Marten; Stanica, Adrian; Tilita, Marius; Lericolais, Gilles; Dinu, Corneliu; Oaie, Gheorghe

    2016-02-01

    Understanding the natural evolution of a river-delta-sea system is important to develop a strong scientific basis for efficient integrated management plans. The distribution of sediment fluxes is linked with the natural connection between sediment source areas situated in uplifting mountain chains and deposition in plains, deltas and, ultimately, in the capturing oceans and seas. The Danube River-western Black Sea is one of the most active European systems in terms of sediment re-distribution that poses significant societal challenges. We aim to derive the tectonic and sedimentological background of human-induced changes in this system and discuss their interplay. This is obtained by analysing the tectonic and associated vertical movements, the evolution of relevant basins and the key events affecting sediment routing and deposition. The analysis of the main source and sink areas is focused in particular on the Miocene evolution of the Carpatho-Balkanides, Dinarides and their sedimentary basins including the western Black Sea. The vertical movements of mountains chains created the main moments of basin connectivity observed in the Danube system. Their timing and effects are observed in sediments deposited in the vicinity of gateways, such as the transition between the Pannonian/Transylvanian and Dacian basins and between the Dacian Basin and western Black Sea. The results demonstrate the importance of understanding threshold conditions driving rapid basins connectivity changes superposed over the longer time scale of tectonic-induced vertical movements associated with background erosion and sedimentation. The spatial and temporal scale of such processes is contrastingly different and challenging. The long-term patterns interact with recent or anthropogenic induced modifications in the natural system and may result in rapid changes at threshold conditions that can be quantified and predicted. Their understanding is critical because of frequent occurrence during

  20. Recurrent Mass-wasting in Sørvestsnaget Basin, SW Barents Sea: A test of multiple hypotheses

    NASA Astrophysics Data System (ADS)

    Omosanya, K. O.; Harishidayat, D.; Lolita, M.; Johansen, S. E.; Abrahamson, P.

    2015-12-01

    Mass-wasting on the NE Atlantic margin is commonly attributed to Cenozoic glaciations. Using high-quality and high-resolution seismic dataset, this study investigates the types and mechanisms driving mass-wasting in the Sørvestsnaget Basin, Southwestern Barents. Seven mass-transport deposits (MTDs) ranging in age from Late Miocene to Holocene are interpreted on seismic profiles. The MTDs are vertically stacked from about 1900 ms TWTT to the present seabed. MTD 5 (area ca.1.22 x 103 km2, volume ca.3.4 x 103 km3) is the largest deposit in the study area and is composed largely of debrites and rafted blocks underlain by thin layers of hemipelagic sediments. Miocene and Early Pliocene MTDs in the basin demonstrate tendency for initial translation through canyons and channels. The youngest MTDs in the area are composed of glacigenic sediments remobilized by ice streams during Late Neogene and Quaternary glaciations. In the southern part of the study area, deep-water sediments fed through V-shaped canyons and channels are widespread signifying the Stappen High as the main sediment source area prior to the Late Pliocene. The prevalence of shallow marine successions in the northern part of the study area is linked to the southwesterly propagation of the shelf break from Miocene to Recent times. In this study, the shelf break trajectory is important for reconstructing paleo-sediment routes and dispersal pattern. The older non-glacial MTDs are separated farther from their paleo-shelf break. Mass-wasting is a recurrent process in the Sørvestsnaget Basin. Triggering mechanisms for slope failure in the basin may include increased pore pressure as a result of sea level fall and high sedimentation rate, over-steepened slope, glaciation, volcanism, and gas hydrate dissociation. Mass-wasting in the study area occurred through progressive, retrogressive and whole body or coherent downslope failures.

  1. Role of sea-level change in deep water deposition along a carbonate shelf margin, Early and Middle Permian, Delaware Basin: implications for reservoir characterization

    NASA Astrophysics Data System (ADS)

    Li, Shunli; Yu, Xinghe; Li, Shengli; Giles, Katherine A.

    2015-04-01

    The architecture and sedimentary characteristics of deep water deposition can reflect influences of sea-level change on depositional processes on the shelf edge, slope, and basin floor. Outcrops of the northern slope and basin floor of the Delaware Basin in west Texas are progressively exposed due to canyon incision and road cutting. The outcrops in the Delaware Basin were measured to characterize gravity flow deposits in deep water of the basin. Subsurface data from the East Ford and Red Tank fields in the central and northeastern Delaware Basin were used to study reservoir architectures and properties. Depositional models of deep water gravity flows at different stages of sea-level change were constructed on the basis of outcrop and subsurface data. In the falling-stage system tracts, sandy debris with collapses of reef carbonates are deposited on the slope, and high-density turbidites on the slope toe and basin floor. In the low-stand system tracts, deep water fans that consist of mixed sand/mud facies on the basin floor are comprised of high- to low-density turbidites. In the transgression and high-stand system tracts, channel-levee systems and elongate lobes of mud-rich calciturbidite deposits formed as a result of sea level rise and scarcity of sandy sediment supply. For the reservoir architecture, the fan-like debris and high-density turbidites show high net-to-gross ratio of 62 %, which indicates the sandiest reservoirs for hydrocarbon accumulation. Lobe-like deep water fans with net-to-gross ratio of 57 % facilitate the formation of high quality sandy reservoirs. The channel-levee systems with muddy calciturbidites have low net-to-gross ratio of 30 %.

  2. Reconstruction of Sea/Lake-Level Changes in an Active Strike-Slip Basin (Gulf of Cariaco, NE Venezuela)

    NASA Astrophysics Data System (ADS)

    van Daele, M.; Audemard, F.; Beck, C.; de Batist, M.; van Welden, A.; Moernaut, J.; 2006 Shipboard Party, G.

    2008-05-01

    In January 2006, 76 high-resolution reflection seismic profiles were acquired in the Gulf of Cariaco, Northeast Venezuela. In the upper 100 m of sedimentary infill, 17 unconformity-bounded sequences were identified and mapped throughout the basin. Up to now, no core or borehole information is available to provide age constraints on these units. The sedimentary infill is cut by several faults, Riedel faults in the central part and the El Pilar fault (one of the main faults of the South American-Caribbean plate boundary) in the southern part of the gulf. The connection of the Gulf of Cariaco with the adjacent Cariaco Basin occurs at a present-day water depth of ~ 55 m. This implies that the gulf was disconnected from the world ocean and functioned as a lake during a large part of the last glacial. The main rivers entering the gulf drain the coastal mountain ranges and tend to form pronounced deltas at their inlet. During times when the gulf was a lake, periods with a dry climate resulted in dramatic lake-level lowstands and even complete desiccation/evaporation. The present-day depths of delta offlap breaks and the presence of lowstand/evaporite deposits can thus be used to estimate sea/lake level at the time of their formation. Detailed analysis of these stratigraphic sea/lake-level indicators allowed reconstructing the sea/lake-level history for the period encompassed by the 17 identified sequences. This sea/lake-level reconstruction also needed to be corrected for tectonic subsidence, affecting different parts of the gulf with different intensity. The reconstructed sea/lake-level curve of the Gulf of Cariaco was compared with the eustatic sea-level curve and with results of previous paleoclimate studies in Venezuela. The striking coherence between the eustatic curve and the amplitudes and absolute heights of successive reconstructed lowstands and highstands compelled us to tune our record to the eustatic curve in order to achieve a rough age estimate for our units

  3. Nearshore half-grabens as analogues for offshore, early Carboniferous rift basins along the SW Barents Sea Margin

    NASA Astrophysics Data System (ADS)

    Koehl, Jean-Baptiste; Bergh, Steffen G.; Indrevær, Kjetil; Lea, Halldis; Bergø, Espen; Henningsen, Tormod; Forthun, Tore; Faleide, Jan-Inge

    2016-04-01

    The present study focuses on the onshore-offshore correlation of brittle faults along the SW Barents Sea Margin, northern Norway. Several studies indicate that the SW Barents Sea Margin experienced a pulse of extensional deformation in the Late Devonian?-early Carboniferous, shortly after the Caledonian contractional deformation ended. The formation of major brittle faults and associated offshore basins that represent targets for hydrocarbon exploration, such as the NE-SW trending Nordkapp Basin, are thought to have initiated during this rifting event. Half-graben structures similar in shape and orientation to the southern segment of the Nordkapp Basin have been identified on the Finnmark Platform and in nearshore areas in coastal Finnmark, northern Norway. Although relatively smaller, these half-graben structures display the same asymmetric, sigma-shaped to triangular architecture in map view as the Nordkapp Basin and also initiated in the earliest Carboniferous, as confirmed by fossiliferous assemblages from shallow cores. The triangular shape of these half-graben structures is related to the presence of possible fault segments of the Trollfjord-Komagelv Fault Zone that trend WNW-ESE and partly truncate the NE-SW trending, sometimes arcuate, extensional brittle faults that bound the half-graben structures. High-resolution bathymetry data show that these half-graben structures internally display minor, NE-SW trending brittle faults and relatively high seafloor relief, thus possible fault displacement, at the intersection between these minor faults and the major, arcuate bounding faults. Microstructural analysis of fault-rocks in nearby onshore fault zones showed multiple generations of cataclasite, suggesting several episodes of faulting in the region. A major goal for future work will be to constrain the exact timing of the faulting event(s) with K/Ar radiometric dating of onshore fault-rocks. This may help estimating the timing of potential fluid migration

  4. Cenozoic tectonic evolution and petroleum exploration in Perl River Mouth basin, South China Sea

    SciTech Connect

    Chi Yukun; Xu Shice )

    1990-06-01

    The Pearl River Mouth basin is a large Cenozoic continental margin basin that is rich in hydrocarbon potential. Fluvial-lake sequences were deposited before Oligocene, but all were covered by Miocene marine clastic and carbonate rocks. Both paleo-Pearl River delta system and reef/bank carbonate system were widely developed. At the early stage of the evolution, two subsidence belts and one uplift between them distributed in NE regional direction; grabens occurred in the north belt and depressions in the south belt. Tectonic movement was stronger in the east than the west. The main production zones have been drilled both in Miocene sandstone and carbonate rocks. As the exploration activities are developing, the basin will be one of the most significant China offshore oil production areas.

  5. Trend Analysis of Nitrogen Deposition to Baltic Sea and its sub basins

    NASA Astrophysics Data System (ADS)

    Semeena, V. S.; Jerzy, Bartnicki

    2009-04-01

    Since the beginning of last century, Baltic Sea has changed from a clear-water sea into a eutrophic marine environment. Eutrophication is the major problem in the Baltic Sea. Excessive nitrogen and phosphorus loads coming from land-based sources within and outside the catchment area of the bordering countries of the Baltic Sea are the main cause of the eutrophication in the sea. Even though a major part of nitrogen(75%) and phosphorus load(95%) enter the sea via rivers or as water-born discharges, 25% of the nitrogen load comes as atmospheric deposition. Numerical models are the best tools to measure atmospheric deposition into sea waters. We have used the latest version of the Unified EMEP model - which has been developed at the EMEP/MSC-W (Meteorological Synthesizing Centre - West of EMEP) for simulating atmospheric transport and deposition of acidifying and eutrophying compounds as well as photo-oxidants in Europe- to study the trends in atmospheric deposition of nitrogen into Baltic Sea for the period 1995-2006. The model domain covers Europe and the Atlantic Ocean. The model grid (of the size 170×133) has a horizontal resolution of 50 km at 60o N, which is consistent with the resolution of emission data reported to CLRTAP. Approximately 10 of these layers are placed below 2 km to obtain high resolution of the boundary layer which is of special importance to the long range transport of air pollution. EMEP model has been thouroughly validated (Fagerli et.al.[1], Simpson et.al.[2], Simpson et.al.[3] ) The contribution of deposition of nitrogen into Baltic Sea from each of the bordering countries of the Baltic Sea and the deposition trends for the period 1995-2006 has been analysed and the results will be presented. References: [1]. Fagerli H., Simpson D. and Aas W.: Model performance for sulphur and nitrogen compounds for the period 1980 to 2000. [In:] L. Tarraśon, (editor), Transboundary Acidification, Eutrophication and Ground Level Ozone in Europe. EMEP

  6. Modelling of oil spills in confined maritime basins: The case for early response in the Eastern Mediterranean Sea.

    PubMed

    Alves, Tiago M; Kokinou, Eleni; Zodiatis, George; Lardner, Robin; Panagiotakis, Costas; Radhakrishnan, Hari

    2015-11-01

    Oil spill models are combined with bathymetric, meteorological, oceanographic, and geomorphological data to model a series of oil spill accidents in the Eastern Mediterranean Sea. A total of 104 oil spill simulations, computed for 11 different locations in the Levantine Basin, show that oil slicks will reach the coast of Cyprus in four (4) to seven (7) days in summer conditions. Oil slick trajectories are controlled by prevailing winds and current eddies. Based on these results, we support the use of chemical dispersants in the very few hours after large accidental oil spills. As a corollary, we show shoreline susceptibility to vary depending on: a) differences in coastline morphology and exposure to wave action, b) the existence of uplifted wave-cut platforms, coastal lagoons and pools, and c) the presence of tourist and protected environmental areas. Mitigation work should take into account the relatively high susceptibility of parts of the Eastern Mediterranean. PMID:26253313

  7. Petrology of basaltic sills from ocean drilling program sites 794 and 797 in the Yamato Basin of the Japan Sea

    NASA Technical Reports Server (NTRS)

    Thy, P.

    1992-01-01

    The basaltic sills from ocean drilling program sites 794 and 797 in the Yamato Basin of the Japan Sea are characterized petrographically on the basis of a detailed study of the composition of relict phenocryst and groundmass phases. The systematic variation in the rock compositions is discussed. Results of 1-atm melting experiments on a relatively primitive basalt from site 797 are reported. The sills are found to constitute two distinct groups of suites: primitive, olivine-bearing suites with low potassium and primitive olivine-bearing to evolved, olivine-free suites with relatively high potassium. A pseudoinvariant reaction relationship between olivine and augite and magnetite is inferred. Complex magmatic and tectonic evolutions in the region, perhaps reflecting a transitional stage between subduction zone activity and back arc spreading, are suggested.

  8. Modelling of oil spills in confined maritime basins: The case for early response in the Eastern Mediterranean Sea.

    PubMed

    Alves, Tiago M; Kokinou, Eleni; Zodiatis, George; Lardner, Robin; Panagiotakis, Costas; Radhakrishnan, Hari

    2015-11-01

    Oil spill models are combined with bathymetric, meteorological, oceanographic, and geomorphological data to model a series of oil spill accidents in the Eastern Mediterranean Sea. A total of 104 oil spill simulations, computed for 11 different locations in the Levantine Basin, show that oil slicks will reach the coast of Cyprus in four (4) to seven (7) days in summer conditions. Oil slick trajectories are controlled by prevailing winds and current eddies. Based on these results, we support the use of chemical dispersants in the very few hours after large accidental oil spills. As a corollary, we show shoreline susceptibility to vary depending on: a) differences in coastline morphology and exposure to wave action, b) the existence of uplifted wave-cut platforms, coastal lagoons and pools, and c) the presence of tourist and protected environmental areas. Mitigation work should take into account the relatively high susceptibility of parts of the Eastern Mediterranean.

  9. Seismic Reflection Moho Structure of Southwest Sub-basin of South China Sea and Implications for Continental Break-up and Seafloor Spreading Mechanisms

    NASA Astrophysics Data System (ADS)

    Zhang, Jinchang; Yan, Pin

    2016-04-01

    Across-basin Moho structure of South China Sea is important for understanding crustal evolution mechanisms of both continental break-up and seafloor spreading processes. Among all the basins in South China Sea, southwest sub-basin opened up the latest and has the closest continental margins, making it the best to study the across-basin structure. Multichannel seismic (MCS) reflection data of NH973-1 line that crosses southwest sub-basin in NW-SE direction were reprocessed in order to image Moho structure. In MCS data Moho reflectors are observed in places, which were not revealed in prior researches. The Moho generally shows symmetric structure on the both sides of the central rift valley. Beneath the oceanic crust in the middle of the basin, the Moho is ~2 seconds depth in two-way travel time (TWTT), which corresponds to ~7 km depth, showing normal oceanic crustal accretion during the seafloor spreading process. When getting close to continent-ocean boundary (COB), the Moho becomes shallow to <1 second depth in TWTT (~3.5 km), implying strongly crustal thinning. At south COB, the Moho depth almost reaches zero, which implies nearly no crust exists and probably the upper mantle could be exhumed. In addition, two low-angle, deep-penetrating normal faults are observed at south COB. The faults cut across the Moho into the upper mantle, which may have been caused by lithospheric hyper-stretching at COB during the continental break-up process.

  10. Sedimentary modeling and analysis of petroleum system of the upper Tertiary sequences in southern Ulleung sedimentary Basin, East Sea (Sea of Japan)

    NASA Astrophysics Data System (ADS)

    Cheong, D.; Kim, D.; Kim, Y.

    2010-12-01

    The block 6-1 located in the southwestern margin of the Ulleung basin, East Sea (Sea of Japan) is an area where recently produces commercial natural gas and condensate. A total of 17 exploratory wells have been drilled, and also many seismic explorations have been carried out since early 1970s. Among the wells and seismic sections, the Gorae 1 well and a seismic section through the Gorae 1-2 well were chosen for this simulation work. Then, a 2-D graphic simulation using SEDPAK elucidates the evolution, burial history and diagenesis of the sedimentary sequence. The study area is a suitable place for modeling a petroleum system and evaluating hydrocarbon potential of reservoir. Shale as a source rock is about 3500m deep from sea floor, and sandstones interbedded with thin mud layers are distributed as potential reservoir rocks from 3,500m to 2,000m deep. On top of that, shales cover as seal rocks and overburden rocks upto 900m deep. Input data(sea level, sediment supply, subsidence rate, etc) for the simulation was taken from several previous published papers including the well and seismic data, and the thermal maturity of the sediment was calculated from known thermal gradient data. In this study area, gas and condensate have been found and commercially produced, and the result of the simulation also shows that there is a gas window between 4000m and 6000m deep, so that three possible interpretations can be inferred from the simulation result. First, oil has already moved and gone to the southeastern area along uplifting zones. Or second, oil has never been generated because organic matter is kerogen type 3, and or finally, generated oil has been converted into gas by thermally overcooking. SEDPAK has an advantage that it provides the timing and depth information of generated oil and gas with TTI values even though it has a limit which itself can not perform geochemical modeling to analyze thermal maturity level of source rocks. Based on the result of our simulation

  11. Monthly-Diurnal Water Budget Variability Over Gulf of Mexico-Caribbean Sea Basin from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Smith, E. A.; Santos, P.

    2006-01-01

    This study presents results from a multi-satellite/multi-sensor retrieval system design d to obtain the atmospheric water budget over the open ocean. A combination of hourly-sampled monthly datasets derived from the GOES-8 5-channel Imager, the TRMM TMI radiometer, and the DMSP 7-channel passive microwave radiometers (SSM/I) have been acquired for the combined Gulf of Mexico-Caribbean Sea basin. Whereas the methodology has been tested over this basin, the retrieval system is designed for portability to any open-ocean region. Algorithm modules using the different datasets to retrieve individual geophysical parameters needed in the water budget equation are designed in a manner that takes advantage of the high temporal resolution of the GOES-8 measurements, as well as the physical relationships inherent to the TRMM and SSM/I passive microwave measurements in conjunction with water vapor, cloud liquid water, and rainfall. The methodology consists of retrieving the precipitation, surface evaporation, and vapor-cloud water storage terms in the atmospheric water balance equation from satellite techniques, with the water vapor advection term being obtained as the residue needed for balance. Thus, the intent is to develop a purely satellite-based method for obtaining the full set of terms in the atmospheric water budget equation without requiring in situ sounding information on the wind profile. The algorithm is validated by cross-checking all the algorithm components through multiple-algorithm retrieval intercomparisons. A further check on the validation is obtained by directly comparing water vapor transports into the targeted basin diagnosed from the satellite algorithms to those obtained observationally from a network of land-based upper air stations that nearly uniformly surround the basin, although it is fair to say that these checks are more effective in identifying problems in estimating vapor transports from a "leaky" operational radiosonde network than in

  12. Use of GOES, SSM/I, TRMM Satellite Measurements Estimating Water Budget Variations in Gulf of Mexico - Caribbean Sea Basins

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.

    2004-01-01

    This study presents results from a multi-satellite/multi-sensor retrieval system designed to obtain the atmospheric water budget over the open ocean. A combination of 3ourly-sampled monthly datasets derived from the GOES-8 5-channel Imager, the TRMM TMI radiometer, and the DMSP 7-channel passive microwave radiometers (SSM/I) have been acquired for the combined Gulf of Mexico-Caribbean Sea basin. Whereas the methodology has been tested over this basin, the retrieval system is designed for portability to any open-ocean region. Algorithm modules using the different datasets to retrieve individual geophysical parameters needed in the water budget equation are designed in a manner that takes advantage of the high temporal resolution of the GOES-8 measurements, as well as the physical relationships inherent to the TRMM and SSM/I passive microwave measurements in conjunction with water vapor, cloud liquid water, and rainfall. The methodology consists of retrieving the precipitation, surface evaporation, and vapor-cloud water storage terms in the atmospheric water balance equation from satellite techniques, with the water vapor advection term being obtained as the residue needed for balance. Thus, the intent is to develop a purely satellite-based method for obtaining the full set of terms in the atmospheric water budget equation without requiring in situ sounding information on the wind profile. The algorithm is validated by cross-checking all the algorithm components through multiple- algorithm retrieval intercomparisons. A further check on the validation is obtained by directly comparing water vapor transports into the targeted basin diagnosed from the satellite algorithms to those obtained observationally from a network of land-based upper air stations that nearly uniformly surround the basin, although it is fair to say that these checks are more effective m identifying problems in estimating vapor transports from a leaky operational radiosonde network than in verifying

  13. Evaluation of the Gas Production Potential of Marine HydrateDeposits in the Ulleung Basin of the Korean East Sea

    SciTech Connect

    Moridis, George J.; Reagan, Matthew T.; Kim, Se-Joon; Seol,Yongkoo; Zhang, Keni

    2007-11-16

    Although significant hydrate deposits are known to exist in the Ulleung Basin of the Korean East Sea, their survey and evaluation as a possible energy resource has not yet been completed. However, it is possible to develop preliminary estimates of their production potential based on the limited data that are currently available. These include the elevation and thickness of the Hydrate-Bearing Layer (HBL), the water depth, and the water temperature at the sea floor. Based on this information, we developed estimates of the local geothermal gradient that bracket its true value. Reasonable estimates of the initial pressure distribution in the HBL can be obtained because it follows closely the hydrostatic. Other critical information needs include the hydrate saturation, and the intrinsic permeabilities of the system formations. These are treated as variables, and sensitivity analysis provides an estimate of their effect on production. Based on the geology of similar deposits, it is unlikely that Ulleung Basin accumulations belong to Class 1 (involving a HBL underlain by a mobile gas zone). If Class 4 (disperse, low saturation accumulations) deposits are involved, they are not likely to have production potential. The most likely scenarios include Class 2 (HBL underlain by a zone of mobile water) or Class 3 (involving only an HBL) accumulations. Assuming nearly impermeable confining boundaries, this numerical study indicates that large production rates (several MMSCFD) are attainable from both Class 2 and Class 3 deposits using conventional technology. The sensitivity analysis demonstrates the dependence of production on the well design, the production rate, the intrinsic permeability of the HBL, the initial pressure, temperature and hydrate saturation, as well as on the thickness of the water zone (Class 2). The study also demonstrates that the presence of confining boundaries is indispensable for the commercially viable production of gas from these deposits.

  14. Aminostratigraphy of Middle and Late Pleistocene deposits in The Netherlands and the southern part of the North Sea Basin

    NASA Astrophysics Data System (ADS)

    Meijer, T.; Cleveringa, P.

    2009-09-01

    A review of all available amino acid racemization D (alloisoleucine)/L (isoleucine) data from the whole shell of four molluscan species from Late and late Middle Pleistocene deposits of the Netherlands is presented. The data allow the distinction of 5 aminostratigraphical units, NAZ (Netherlands Amino Zone) A-E, each representing a temperate stage. The zones are correlated with marine isotope stages 1, 5e, 7, 9, and 11 respectively. Apart from NAZ-D (MIS 9), in all aminozones the marine transgression reached the present-day onshore area of the Netherlands. The transgression during NAZ-C (Oostermeer Interglacial: MIS 7) seems to be at least as widespread as its counterpart during NAZ-B (Eemian: MIS 5e) in the southern bight of the North Sea Basin. The stratigraphic position of the Oostermeer Interglacial is just below deposits of the Drente phase of the Saalian and because of this position the interglacial marine deposits have formerly erroneously considered to be of Holsteinian age. Neede, the 'classic' Dutch Holsteinian site, is dated in NAZ-E (MIS 11), like Noordbergum. Although the validity of these zones has been checked with independent data, some overlap between succeeding zones may occur. The relation between amino acid data from elsewhere in the North Sea Basin and the Netherlands amino zonation is discussed. The deposits at the Holsteinian stratotype Hummelsbüttel in North West Germany are dated in NAZ-D. This interglacial correlates with MIS 9. The Belvédère Interglacial, which is of importance for its archaeology, is in NAZ-D (MIS 9) and therefore of Holsteinian age as well. The lacustroglacial 'pottery clays' in the Noordbergum area are deposits from two glacial stages, which can be correlated with MIS 8 and 10 (the Elsterian). The pottery clay that is considered equivalent to the German 'Lauenburger Ton' correlates with MIS 10.

  15. A numerical study of strike-slip bend formation with application to the Salton Sea pull-apart basin

    NASA Astrophysics Data System (ADS)

    Ye, Jiyang; Liu, Mian; Wang, Hui

    2015-03-01

    How stepovers of strike-slip faults connect to form bends is a question important for understanding the formation of push-up ranges (restraining bends) and pull-apart basins (releasing bends). We investigated the basic mechanics of this process in a simple three-dimensional viscoelastoplastic finite element model. Our model predicts localized plastic strain within stepovers that may eventually lead to the formation of strike-slip bends. Major parameters controlling strain localization include the relative fault strength, geometry of the fault system, and the plasticity model assumed. Using the Drucker-Prager plasticity model, in which the plastic yield strength of the crust depends on both shear and normal stresses, our results show that a releasing bend is easier to develop than a restraining bend under similar conditions. These results may help explain the formation of the Salton Sea pull-apart basin in Southern California 0.5-0.1 Ma ago, when the stepover between the Imperial Fault and the San Andreas Fault was connected by the Brawley seismic zone.

  16. Value of coenocorrelation curves in documenting sea level changes in Appalachian basin during Late Silurian and Early Devonian

    SciTech Connect

    Wong, S.

    1986-05-01

    A detailed paleoecological analysis of the Keyser Limestone was conducted at five localities in Virginia and West Virginia, using two multivariate statistical techniques: cluster analysis and detrended correspondence analysis. Through this analysis, the Keyser fauna was divided into communities along a nearshore to offshore environmental gradient, and each community was assigned to a benthic assemblage. Having established the proximity of the various faunal elements to the shoreline, the faunal zones at other localities, as described in the literature, were assigned to the appropriate benthic assemblage. Coenocorrelation curves were then constructed, based on benthic assemblage membership. By correlating the curves between each locality, the history of sea level changes in the Appalachian basin during the Late Silurian to Early Devonian were determined. Through this technique, more localities can be incorporated into detailed basin analysis studies. In this study, using coenocorrelation curves, it was found that the Keyser Limestone records several transgressive pulses. An initial transgressive pulse, affecting Virginia and West Virginia, resulted in the deposition of facies containing benthic assemblages 4 and 5. A second transgressive pulse resulted in the extension of these facies into Pennsylvania and New York. This transgressive pulse was followed by regressive conditions and the expansion of facies containing benthic assemblage 3. Subsequent transgression led to a return of facies containing benthic assemblages 4 and 5. Keyser deposition ended with a major regressive event, as recorded in the deposition of facies containing benthic assemblages 1-3.

  17. Characterization of gas hydrate distribution using conventional 3D seismic data in the Pearl River Mouth Basin, South China Sea

    USGS Publications Warehouse

    Wang, Xiujuan; Qiang, Jin; Collett, Timothy S.; Shi, Hesheng; Yang, Shengxiong; Yan, Chengzhi; Li, Yuanping; Wang, Zhenzhen; Chen, Duanxin

    2016-01-01

    A new 3D seismic reflection data volume acquired in 2012 has allowed for the detailed mapping and characterization of gas hydrate distribution in the Pearl River Mouth Basin in the South China Sea. Previous studies of core and logging data showed that gas hydrate occurrence at high concentrations is controlled by the presence of relatively coarse-grained sediment and the upward migration of thermogenic gas from the deeper sediment section into the overlying gas hydrate stability zone (BGHSZ); however, the spatial distribution of the gas hydrate remains poorly defined. We used a constrained sparse spike inversion technique to generate acoustic-impedance images of the hydrate-bearing sedimentary section from the newly acquired 3D seismic data volume. High-amplitude reflections just above the bottom-simulating reflectors (BSRs) were interpreted to be associated with the accumulation of gas hydrate with elevated saturations. Enhanced seismic reflections below the BSRs were interpreted to indicate the presence of free gas. The base of the BGHSZ was established using the occurrence of BSRs. In areas absent of well-developed BSRs, the BGHSZ was calculated from a model using the inverted P-wave velocity and subsurface temperature data. Seismic attributes were also extracted along the BGHSZ that indicate variations reservoir properties and inferred hydrocarbon accumulations at each site. Gas hydrate saturations estimated from the inversion of acoustic impedance of conventional 3D seismic data, along with well-log-derived rock-physics models were also used to estimate gas hydrate saturations. Our analysis determined that the gas hydrate petroleum system varies significantly across the Pearl River Mouth Basin and that variability in sedimentary properties as a product of depositional processes and the upward migration of gas from deeper thermogenic sources control the distribution of gas hydrates in this basin.

  18. The geology of Northern Sabah, Malaysia: Its relationship to the opening of the South China Sea Basin

    NASA Astrophysics Data System (ADS)

    Tongkul, F.

    1994-07-01

    The northern part of Sabah, consisting of sedimentary and igneous rocks of Early Cretaceous to Pliocene age, has experienced three major episodes of deformation associated with NW-SE and N-S oriented compressions. The earliest episode deformed and uplifted an oceanic basement (Chert-Spilite Formation) to form an elongate basin, trending approximately NE-SW, during the Late Cretaceous to Early Eocene. This elongate basin became the site for the deposition of middle Eocene to Early Miocene quartzose sediments of the Crocker and Kudat formations, sourced from continental basement towards the southwest and north, respectively. These sediments were subsequently deformed by a second episode of deformation associated with NW-SE and N-S oriented compressions, during the latter part of the late Oligocene and the early Middle Miocene, to form a series of imbricate thrust slices. The N-S trending compressive direction controlled the development of approximately E-W trending basins during the deposition of the Upper Miocene sediments of the South Banggi and Bongaya formations. The continuation of N-S compression, which represents the third episode of deformation, gently deformed these sediments. The three episodes of deformation were related to the differential southward movements of continental blocks separated from the southern margin of China during the intermittent opening of the South China Sea subbasins. The first episode was related to the opening of the Southwest Subbasin, while the second episode was related to both the opening of the Southwest and East subbasins. The third episode was related to continued opening in the East Subbasins.

  19. Towards Predicting Basin-Wide Invertebrate Organic Biomass and Production in Marine Sediments from a Coastal Sea

    PubMed Central

    Burd, Brenda J.; Macdonald, Tara A.; van Roodselaar, Albert

    2012-01-01

    Detailed knowledge of environmental conditions is required to understand faunal production in coastal seas with topographic and hydrographic complexity. We test the hypothesis that organic biomass and production of subtidal sediment invertebrates throughout the Strait of Georgia, west coast of Canada, can be predicted by depth, substrate type and organic flux modified to reflect lability and age of material. A basin-wide database of biological, geochemical and flux data was analysed using an empirical production/biomass (P/B) model to test this hypothesis. This analysis is unique in the spatial extent and detail of P/B and concurrent environmental measurements over a temperate coastal region. Modified organic flux was the most important predictor of organic biomass and production. Depth and substrate type were secondary modifiers. Between 69–74% of variability in biomass and production could be explained by the combined environmental factors. Organisms <1 mm were important contributors to biomass and production primarily in shallow, sandy sediments, where high P/B values were found despite low organic flux. Low biomass, production, and P/B values were found in the deep, northern basin and mainland fjords, which had silty sediments, low organic flux, low biomass of organisms <1 mm, and dominance by large, slow-growing macrofauna. In the highest organic flux and biomass areas near the Fraser River discharge, production did not increase beyond moderate flux levels. Although highly productive, this area had low P/B. Clearly, food input is insufficient to explain the complex patterns in faunal production revealed here. Additional environmental factors (depth, substrate type and unmeasured factors) are important modifiers of these patterns. Potential reasons for the above patterns are explored, along with a discussion of unmeasured factors possibly responsible for unexplained (30%) variance in biomass and production. We now have the tools for basin-wide first

  20. Pre-Variscan back-arc extension of Avalonia: The genesis of the Southern North Sea Basin

    NASA Astrophysics Data System (ADS)

    Smit, Jeroen; van Wees, Jan-Diederik; Cloetingh, Sierd

    2016-04-01

    The Devonian-Early Carboniferous was a period of intense rifting in the Avalonia microplate in between the Caledonian and the Hercynian-Alleghanian collision phases. This rifting phase created the typical horst-and-graben structure of much of East Avalonia's crust that is best known from the UK and Ireland where the horsts and the graben infill are located at or near the surface. In the Southern North Sea, the Netherlands and northwest Germany, the Late Devonian-Early Carboniferous rift structure and units are obliterated by the thick cover of Late Carboniferous-to-Recent basin fill and by the recurrent fault reactivation. Although this rifting created the basis for 350 Ma of lithospheric memory, its dynamics remains relatively unknown. Major open questions include the mode and total amount of extension as well as the age and origin of the Central Graben and the relation between structures located east and west of it. This study addresses these issues by integrating existing data from lithosphere to basin scales and a map-view restoration. We have revised the crustal map of the Thor Suture Zone. The newly defined northern margin of Avalonia and the Thor Suture Zone are key elements in the reconstruction of Devonian-Carboniferous rifting of Avalonian lithosphere. We present a revised map of Devonian-Carboniferous basin structures including the main horsts and grabens and the governing faults east of the Central Graben. Based on these maps, we present a new paleotectonic reconstruction and a novel geodynamic scenario for the Devonian- Carboniferous rifting. These findings are key for better understanding of long-lived tectonic compartmentalisation and post-rifting deformation phases.

  1. Origin and pathways of Winter Intermediate Water in the Northwestern Mediterranean Sea using observations and numerical simulation

    NASA Astrophysics Data System (ADS)

    Juza, Mélanie; Renault, Lionel; Ruiz, Simon; Tintoré, Joaquin

    2013-12-01

    The study of water masses worldwide (their formation, spreading, mixing, and impact on general circulation) is essential for a better understanding of the ocean circulation and variability. In this paper, the formation and main pathways of Winter Intermediate Water (WIW) in the Northwestern Mediterranean Sea (NWMED) are investigated during the winter-spring 2011 using observations and numerical simulation. The main results show that the WIW, formed along the continental shelves of the Gulf of Lion and Balearic Sea, circulates southward following five preferential pathways depending on the WIW formation site location and the oceanic conditions. WIW joins the northeastern part of the Balearic Sea, or flows along the continental shelves until joining the Balearic Current (maximum of 0.33 Sv in early-April) or further south until the Ibiza Channel entrance. Two additional trajectories, contributing to water mass exchanges with the southern part of the Western Mediterranean Sea, bring the WIW through the Ibiza and Mallorca Channels (maxima of 0.26 Sv in late-March and 0.1 Sv in early-April, respectively). The circulation of WIW over the NWMED at 50-200 m depth, its mixing and spreading over the Western Mediterranean Sea (reaching the south of the Balearic Islands, the Algero-Provencal basin, the Ligurian and the Alboran Seas) suggest that the WIW may have an impact on the ocean circulation by eddy blocking effect, exchange of water masses between north and south subbasins of Western Mediterranean Sea through the Ibiza Channel or modification of the ocean stratification.

  2. Constraints on post Mid-Jurassic basin evolution in the North Sea from 3D numerical modelling of basin initiation and subsidence.

    NASA Astrophysics Data System (ADS)

    Petersen, K. D.; Nielsen, S. B.

    2007-12-01

    The North Sea sedimentary basin contains more than 3km of post Mid-Jurassic sediments. These are located in a trilete graben system consisting of the Moray Firth and the Viking and Central grabens, but also in a broad region surrounding the grabens, corresponding to the post-mid Cretaceous sediment deposits During the Mid- Jurassic the area was exposed to volcanism, domal regional uplift and erosion, followed by crustal thinning and normal faulting in the grabens. We use a numerical model considering 3D thermal evolution, flexural isostasy, erosion, sedimentation and compaction together with isopach data to simulate the geodynamic evolution of the area since the Mid-Jurassic. Our modelling studies show that the broad distribution of post Jurassic sediments cannot be explained by uniform stretching in the graben areas alone. Regional Mid-Jurassic thinning of the subcrustal lithosphere producing first uplift and erosion and later accommodation space for Cretaceous and Cenozoic sediments is also required. The uniform crustal thinning factor in the grabens amounts to a maximum of 1.14. The required subcrustal lithospheric thinning amounts to about 15 km. Our results are in accordance with observations from recent rift systems such as the Rhine Graben, Eastern Africa and the Baikal Rift, which show that crustal thinning is restricted to the graben areas while thinning of the subcrustal lithosphere (up to 100 km) and the associated domal surface uplift are more regionally distributed.

  3. Constraints on post Mid-Jurassic basin evolution in the North Sea from 3D numerical modelling of basin initiation and subsidence.

    NASA Astrophysics Data System (ADS)

    Petersen, K. D.; Nielsen, S. B.

    2004-12-01

    The North Sea sedimentary basin contains more than 3km of post Mid-Jurassic sediments. These are located in a trilete graben system consisting of the Moray Firth and the Viking and Central grabens, but also in a broad region surrounding the grabens, corresponding to the post-mid Cretaceous sediment deposits During the Mid- Jurassic the area was exposed to volcanism, domal regional uplift and erosion, followed by crustal thinning and normal faulting in the grabens. We use a numerical model considering 3D thermal evolution, flexural isostasy, erosion, sedimentation and compaction together with isopach data to simulate the geodynamic evolution of the area since the Mid-Jurassic. Our modelling studies show that the broad distribution of post Jurassic sediments cannot be explained by uniform stretching in the graben areas alone. Regional Mid-Jurassic thinning of the subcrustal lithosphere producing first uplift and erosion and later accommodation space for Cretaceous and Cenozoic sediments is also required. The uniform crustal thinning factor in the grabens amounts to a maximum of 1.14. The required subcrustal lithospheric thinning amounts to about 15 km. Our results are in accordance with observations from recent rift systems such as the Rhine Graben, Eastern Africa and the Baikal Rift, which show that crustal thinning is restricted to the graben areas while thinning of the subcrustal lithosphere (up to 100 km) and the associated domal surface uplift are more regionally distributed.

  4. Sea level controls on the textural characteristics and depositional architecture of the Hueneme and associated submarine fan systems, Santa Monica Basin, California

    USGS Publications Warehouse

    Normark, W.R.; Piper, D.J.W.; Hiscott, R.N.

    1998-01-01

    Hueneme and Dume submarine fans in Santa Monica Basin consist of sandy channel and muddy levee facies on the upper fan. lenticular sand sheets on the middle fan. and thinly bedded turbidite and hemipelagic facies elsewhere. Fifteen widely correlatable key seismic reflections in high-resolution airgun and deep-towed boomer profiles subdivide the fan and basin deposits into time-slices that show different thickness and seismic-facies distributions, inferred to result from changes in Quaternary sea level and sediment supply. At times of low sea level, highly efficient turbidity currents generated by hyperpycnal flows or sediment failures at river deltas carry sand well out onto the middle-fan area. Thick, muddy flows formed rapidly prograding high levees mainly on the western (right-hand) side of three valleys that fed Hueneme fan at different times: the most recently active of the lowstand fan valleys. Hueneme fan valley, now heads in Hueneme Canyon. At times of high sea level, fans receive sand from submarine canyons that intercept littoral-drift cells and mixed sediment from earthquake-triggered slumps. Turbidity currents are confined to 'underfit' talweg channels in fan valleys and to steep, small, basin-margin fans like Dume fan. Mud is effectively separated from sand at high sea level and moves basinward across the shelf in plumes and in storm-generated lutite flows, contributing to a basin-floor blanket that is locally thicker than contemporary fan deposits and that onlaps older fans at the basin margin. The infilling of Santa Monica Basin has involved both fan and basin-floor aggradation accompanied by landward and basinward facies shifts. Progradation was restricted to the downslope growth of high muddy levees and the periodic basinward advance of the toe of the steeper and sandier Dume fan. Although the region is tectonically active, major sedimentation changes can be related to eustatic sea-level changes. The primary controls on facies shifts and fan growth

  5. Petrology and isotopic composition of Quaternary basanites dredged from the Bering Sea continental margin near Navarin Basin

    USGS Publications Warehouse

    Davis, A.S.; Gunn, S.H.; Gray, L.-B.; Marlow, M. S.; Wong, F.L.

    1993-01-01

    Quaternary basanites were recovered from the continental margin of the Bering Sea near Navarin Basin. The basanites are highly vesicular flow rock and hyaloclastites similar to other alkalic volcanic rocks erupted repeatedly during the last Cenozoic on islands in the Bering Sea region and in mainland Alaska. K-Ar ages for the basanites indicate at least two episodes of volcanism at about 1.1 and 0.4 Ma. Trace-element data indicate these alkalic lavas have been generated by small, but variable, amounts of partial melting of a metasomatized lherzolite source. The relativley primitive compositions (MgO >9%), presence of mantle-derived xenoliths in some alkalic lavas, and presence of forsteritic olivine with low CaO and high NiO suggest that magma rose rapidly from great depth without spending time in large, long-lived magma chambers. Alkalic volcanism apparently resulted from upwelling and decompressional melting of small isolated mantle diapirs in response to local lithospheric attenuation associated with jostling of blocks during adjustment to regional stresses. -from Authors

  6. Mössbauer investigations to characterize Fe lattice sites in sheet silicates and Peru Basin deep-sea sediments

    NASA Astrophysics Data System (ADS)

    Lougear, André; König, Iris; Trautwein, Alfred X.; Suess, Erwin

    A procedure to classify different Fe lattice sites, i.e., OH-group geometries, in the clay mineral content of deep-sea sediments was developed using Mössbauer spectroscopy at low temperature (77 K). This speciation is of interest with regard to the redox behavior, reactivity and color of marine sediments, since substantial iron redox transitions (associated with sediment color change) have been documented for the structural sheet silicate iron. Lattice site classification was achieved for the Fe(II) fraction, all of which is structural clay Fe(II) in the sediments under investigation. Whereas the major part of the Fe(III) is structural clay iron as well, there is a small Fe(III) fraction in oxide minerals. Therefore, further elaboration of the procedure would be required to also achieve lattice site classification for the Fe(III) fraction. Analysis of the Mössbauer spectra is based on computer fits, the input parameters of which were derived from a separate study of Fe(II)-rich pure chlorites. The procedure of classification is qualified to investigate, e.g., in laboratory experiments, the site-specific reaction rates and the effects on sediment color of iron redox transitions in the sheet silicate content of sediments. The new skills were successfully applied in environmental impact studies on the mining of polymetallic nodules from the Peru Basin deep-sea floor.

  7. Use of ETM+ thermal band to identify irrigation patterns in the Aral Sea basin, Kazakhstan

    NASA Astrophysics Data System (ADS)

    Perdikou, Paraskevi; Clayton, Christopher; Hadjimitsis, Diofantos

    2003-03-01

    Landsat TM thermal bands have generally not been used for land-use classification because of their inferior spatial resolution. But thermal band data is potentially useful, highlighting reductions in temperature associated with recent irrigation, and between the different stages of growth of the crops. This paper presents the results of a remote sensing study for land use classification, based upon Landsat 7 ETM+ data, aimed at estimating irrigation water demand on the basis of the areas cultivated with different types of crops, and local irrigation practices. A time series of images has been acquired for an area along the Syr Darya River (Kazakhstan), one of the two major rivers feeding the Aral Sea. Once the fourth largest inland sea in surface area in the world, the Aral Sea has been reduced to less than 20% of its original volume as a result of large-scale irrigation, causing extensive environmental damage. A rational method of managing irrigation is urgently required if the sea is to return to its former condition. This paper explores the use of the Landsat ETM+ thermal bands alongside those more commonly used for agricultural land classification. Strategies for determining irrigation water demand are discussed, and observations are compared with ground truth.

  8. Foraminifers in late Pleistocene-Holocene sediments of the Deryugin Basin of the Sea of Okhotsk

    NASA Astrophysics Data System (ADS)

    Khusid, T. A.; Belyaeva, N. V.; Chekhovskaya, M. P.; Matul, A. G.

    2009-10-01

    The study of foraminifers from sediments accumulated during the last 30 ky revealed their similar distribution in the central and marginal parts of the Deryugin Basin, which implies similar environmental changes throughout this morphological structure. The lack or extreme taxonomical impoverishment of the benthic foraminiferal assemblages during the Last Glacial Maximum indicates a combination of several factors: the significant deterioration of the parameters controlling their bioproductivity in response to the general cooling; the development of anoxic bottom conditions; and, probably, the unfavorable influence of cold barite-methane seeps on the geochemical parameters of the bottom waters. The weaker activity of these seeps in the central part of the basin during the Holocene is evident from some deviations in the structure of the benthic foraminiferal assemblages against the background of their general taxonomic similarity.

  9. Acidic and alkaline precipitation in the Cilician Basin, north-eastern Mediterranean Sea.

    PubMed

    Ozsoy, T; Saydam, A C

    2000-05-15

    Samples from precipitation events collected at Erdemli during February 1996-June 1997 were analyzed to determine their particulate aluminium content, in addition to pH and conductivity measurements. Backward air mass trajectories corresponding to the rainy days were analyzed to determine potential source regions of acidic and alkaline constituents transported to the Cilician Basin. Approximately 28% of the rain samples were found to be acidic and the trajectories associated with half of the acid precipitation events were from the Mediterranean Basin and the Balkan Peninsula, while the other half were from the Anatolian mainland and local sources. Rain samples were found to be alkaline (58%), with their trajectories originating from North Africa and the Middle East. As a result of its CaCO3 content, mineral dust from these arid regions significantly increased the pH of rainwater.

  10. The biodiversity of the Mediterranean Sea: estimates, patterns, and threats.

    PubMed

    Coll, Marta; Piroddi, Chiara; Steenbeek, Jeroen; Kaschner, Kristin; Ben Rais Lasram, Frida; Aguzzi, Jacopo; Ballesteros, Enric; Bianchi, Carlo Nike; Corbera, Jordi; Dailianis, Thanos; Danovaro, Roberto; Estrada, Marta; Froglia, Carlo; Galil, Bella S; Gasol, Josep M; Gertwagen, Ruthy; Gil, João; Guilhaumon, François; Kesner-Reyes, Kathleen; Kitsos, Miltiadis-Spyridon; Koukouras, Athanasios; Lampadariou, Nikolaos; Laxamana, Elijah; López-Fé de la Cuadra, Carlos M; Lotze, Heike K; Martin, Daniel; Mouillot, David; Oro, Daniel; Raicevich, Sasa; Rius-Barile, Josephine; Saiz-Salinas, Jose Ignacio; San Vicente, Carles; Somot, Samuel; Templado, José; Turon, Xavier; Vafidis, Dimitris; Villanueva, Roger; Voultsiadou, Eleni

    2010-08-02

    Gibraltar and the adjacent Alboran Sea), western African coast, the Adriatic, and the Aegean Sea, which show high concentrations of endangered, threatened, or vulnerable species. The Levantine Basin, severely impacted by the invasion of species, is endangered as well. This abstract has been translated to other languages (File S1).

  11. The Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats

    PubMed Central

    Coll, Marta; Piroddi, Chiara; Steenbeek, Jeroen; Kaschner, Kristin; Ben Rais Lasram, Frida; Aguzzi, Jacopo; Ballesteros, Enric; Bianchi, Carlo Nike; Corbera, Jordi; Dailianis, Thanos; Danovaro, Roberto; Estrada, Marta; Froglia, Carlo; Galil, Bella S.; Gasol, Josep M.; Gertwagen, Ruthy; Gil, João; Guilhaumon, François; Kesner-Reyes, Kathleen; Kitsos, Miltiadis-Spyridon; Koukouras, Athanasios; Lampadariou, Nikolaos; Laxamana, Elijah; López-Fé de la Cuadra, Carlos M.; Lotze, Heike K.; Martin, Daniel; Mouillot, David; Oro, Daniel; Raicevich, Saša; Rius-Barile, Josephine; Saiz-Salinas, Jose Ignacio; San Vicente, Carles; Somot, Samuel; Templado, José; Turon, Xavier; Vafidis, Dimitris; Villanueva, Roger; Voultsiadou, Eleni

    2010-01-01

    Gibraltar and the adjacent Alboran Sea), western African coast, the Adriatic, and the Aegean Sea, which show high concentrations of endangered, threatened, or vulnerable species. The Levantine Basin, severely impacted by the invasion of species, is endangered as well. This abstract has been translated to other languages (File S1). PMID:20689844

  12. The influence of plate boundary deformation on regional intraplate exhumation: evidence from the Irish Sea basin system, western UK

    NASA Astrophysics Data System (ADS)

    Holford, S. P.; Turner, J. P.; Green, P. F.; Williams, G. A.

    2005-12-01

    Elucidating the causes of exhumation within intraplate regions and passive margin settings is an outstanding problem with global tectonic significance. The application of thermochronological tools such as apatite fission-track analysis (AFTA) across apparently stable intraplate regions (e.g. NW Europe, SW Australia, Southern Africa) has repeatedly revealed evidence for extensive phases of km-scale exhumation, often with no obvious causal mechanisms. Here we present results from a study of the exhumation history of the Irish Sea basin system (western UK) using palaeothermal (AFTA and VR), compactional and seismic reflection data which highlights the dominant control that plate boundary processes exert over the uplift and exhumation of continental interiors. This intraplate Mesozoic-Cenozoic basin system occupies the transition between the European Alpine deformation front and the NE Atlantic passive margin. Numerous studies have identified this area as one of the most severely exhumed in NW Europe. Much of this exhumation has been ascribed to Palaeocene epeirogeny caused by the Iceland Plume. However, our results reveal an exhumation history of far greater complexity with major exhumation episodes during the early Cretaceous (120-115 Ma) and Neogene (<20 Ma) removing up to 3 km and 1.5 km of Mesozoic-Cenozoic sediments from this region respectively. Mapping of early Cenozoic exhumation patterns reveals major heterogeneities in exhumation magnitudes at intra-basinal (<10 km) and regional (<100 km) scales which cannot be ascribed to a purely epeirogenic process such as plume-driven uplift. These regional phases of intraplate exhumation are coincident with important phases of deformation at preexisting or incipient plate boundaries. Early Cretaceous exhumation was coeval with the onset of seafloor spreading in Bay of Biscay. Neogene exhumation was coincident with the late Alpine orogenesis, with abundant evidence for Neogene compressional shortening in this study area

  13. Seismic imaging of deep low-velocity zone beneath the Dead Sea basin and transform fault: Implications for strain localization and crustal rigidity

    USGS Publications Warehouse

    ten Brink, U.S.; Al-Zoubi, A. S.; Flores, C.H.; Rotstein, Y.; Qabbani, I.; Harder, S.H.; Keller, Gordon R.

    2006-01-01

    New seismic observations from the Dead Sea basin (DSB), a large pull-apart basin along the Dead Sea transform (DST) plate boundary, show a low velocity zone extending to a depth of 18 km under the basin. The lower crust and Moho are not perturbed. These observations are incompatible with the current view of mid-crustal strength at low temperatures and with support of the basin's negative load by a rigid elastic plate. Strain softening in the middle crust is invoked to explain the isostatic compensation and the rapid subsidence of the basin during the Pleistocene. Whether the deformation is influenced by the presence of fluids and by a long history of seismic activity on the DST, and what the exact softening mechanism is, remain open questions. The uplift surrounding the DST also appears to be an upper crustal phenomenon but its relationship to a mid-crustal strength minimum is less clear. The shear deformation associated with the transform plate boundary motion appears, on the other hand, to cut throughout the entire crust. Copyright 2006 by the American Geophysical Union.

  14. Development of Paleogene depressions and deposition of Lacustrine source rocks in the Pearl River Mouth basin, northern margin of the South China Sea

    SciTech Connect

    Wang, Chunxiu; Sun, Yuxiao

    1994-11-01

    A more accurate, integrated chronostratigraphic framework is applied to the analysis of the development of Paleogene depressions in the Pearl River Mouth basin. The results of our study show that the development of these depressions was characterized by at least three rifting or basin-forming phases occurring during these periods: late Paleocene (Late Cretaceous?)-middle Eocene, late Eocene-early Oligocene, and middle-Oligocene-late Oligocene. The transition from rifting stage to postrifting stage in the basin is about 10 m.y. later than the initial spreading of the South China Sea. The prologue of the spreading of the South China Sea began as early as the end of the middle Eocene. Lacustrine source rocks deposited during the basin`s first rifting phase are thick and of good quality; source rocks deposited during the last two phases, which had a sharp increase in sedimentation rate, are of lesser quality, with the exception being those areas where deposits were out of reach of sediment from the northern mainland.

  15. Lithology and late postglacial stratigraphy of bottom sediments in isolated basins of the White Sea coast exemplified by a small lake in the Chupa settlement area (Northern Karelia)

    NASA Astrophysics Data System (ADS)

    Korsakova, O. P.; Kolka, V. V.; Tolstobrova, A. N.; Lavrova, N. B.; Tolstobrov, D. S.; Shelekhova, T. S.

    2016-05-01

    The complex lithological, geochemical, geochronological, and micropaleontological (diatoms, spores, pollen) investigations of stratified bottom sediments that constitute facies-variable sedimentary sequences in a small isolated lake located near the upper limit of the sea on the White Sea coast made it possible to define lithostratigraphic units (LSU) forming the complete sedimentary succession in deep parts of isolated basins. It is shown that stratigraphy of heterogeneous sequences is determined by two regional transgressive-regressive cycles in relative sea level fluctuations: alternating late Glacial and Holocene transgressions and regressions. The lower part of a clastogenic clayey-sandy-silty sequence successively composed of freshwater (LSU 1) and brackish-water (LSU 2) sediments of the ice-marginal basins and marine postglacial facies (LSU 3) was formed during the late Glacial glacioeustatic marine transgression. Its upper part formed in different isolated basins at different stages of the Holocene is represented depending on its altimetric position on the coastal slope by costal marine sediments (LSU 4) and facies of the partly isolated inlet (LSU 5). The organogenic sapropelic sequence, which overlies sediments of the marine basin and partly isolated bay, corresponds to lithostratigraphic units represented by Holocene sediments accumulated in the meromictic lake (LSU 6), onshore freshwater basin (LSU 7), and freshwater basin with elevated water mineralization (LSU 8) deposited during maximum development of Holocene transgression and lacustrine sediments (LSU 9) formed in coastal environments during terminal phases of the Holocene. The defined lithostratigraphic units differ from each other in lithological, micropaleontological, and geochemical features reflected in structural and textural properties of their sediments, their composition, inclusions, and composition of paleophytocoenoses and diatom assemblages.

  16. From the Highest to the Deepest: A River-Sea Dispersal System that Links A Mountainous Catchment to the Deep-Sea Basin (Invited)

    NASA Astrophysics Data System (ADS)

    Liu, J. T.; Hsu, R. T.

    2013-12-01

    Gaoping River (GPR) is a small mountainous river whose source area is located in the southern Central Range of Taiwan, about 3900 m above sea level. It has an average gradient of 1:150. Both the chemical and physical weathering rates for the GPR catchment are higher than the world average. Approximately 1 km seaward from the mouth of the GPR is the head of the Gaoping Submarine Canyon (GPSC). GPR annually discharges 35 Mt of sediment into the sea, most of which enters the GPSC. The GPSC owes its existence to tectonic processes related to the collision of the Philippine Plate and the Eurasia Plate. The canyon extents from the mouth of GPR, cutting through the Gaoping shelf and slope, and merges into the northeastern Manila Trench over a distance of about 260 km in water depth over 3000 m. It is a major conduit for the transport of terrestrial sediment to the South China Sea (SCS) and the landward transport of particles of marine origin in the SCS. The thickness of the tidally-dominated benthic nepheloid layer (BNL) in the GPSC can exceed 200 m, in which the temperature, flow, and suspended sediment concentration show distinctive tidal oscillations. Both semidiruanl barotropic and baroclinic tides are important in the canyon. In the GRSC the normal transport of suspended sediment associated with tidal propagation from offshore is up-canyon yet episodic sediment transports associated with episodic gravity-driven events are down-canyon. Typhoon-induced river floods often ignite turbidity currents (TCs) in the GPSC. Therefore, hperpycnal river plume and the ensuing TCs form an effective pathway to transport large amount of terrestrial sediment and carbon (fresh and aged) to the SCS basin. However, due to the extensive disturbance in the GPR catchment by typhoon-related deep erosion of hillslopes and incision of river channels, the ';fresh' flood sediment exported by GPR during and immediately after typhoons contains old sediment as defined by the absence of 7Be

  17. Observed and simulated trophic index (TRIX) values for the Adriatic Sea basin

    NASA Astrophysics Data System (ADS)

    Fiori, Emanuela; Zavatarelli, Marco; Pinardi, Nadia; Mazziotti, Cristina; Ferrari, Carla Rita

    2016-09-01

    The main scope of the Marine Strategy Framework Directive is to achieve good environmental status (GES) of the EU's marine waters by 2020, in order to protect the marine environment more effectively. The trophic index (TRIX) was developed by Vollenweider in 1998 for the coastal area of Emilia-Romagna (northern Adriatic Sea) and was used by the Italian legislation to characterize the trophic state of coastal waters. We compared the TRIX index calculated from in situ data ("in situ TRIX") with the corresponding index simulated with a coupled physics and biogeochemical numerical model ("model TRIX") implemented in the overall Adriatic Sea. The comparison between in situ and simulated data was carried out for a data time series on the Emilia-Romagna coastal strip. This study shows the compatibility of the model with the in situ TRIX and the importance of the length of the time series in order to get robust index estimates. The model TRIX is finally calculated for the whole Adriatic Sea, showing trophic index differences across the Adriatic coastal areas.

  18. Late quaternary deltaic and carbonate sedimentation in the Gulf of Papua foreland basin: Response to sea-level change

    USGS Publications Warehouse

    Harris, P.T.; Pattiaratchi, C.B.; Keene, J.B.; Dalrymple, R.W.; Gardner, J.V.; Baker, E.K.; Cole, A.R.; Mitchell, D.; Gibbs, P.; Schroeder, W.W.

    1996-01-01

    The rivers that drain the wet, mountainous island of New-Guinea discharge about 1.5 billion tonnes/yr of sediments into the adjacent seas, including the foreland basin between New Guinea and Australia. Despite this huge sediment input, there appears to have been only limited deposition in the Gulf of Papua during the (Holocene) postglacial rise in sea level. Seismic and core data indicate that the transgressive systems tract in the Gulf of Papua is thin and patchy. It is confined to regions within and north of an incised, east-west-trending shelf-valley system. Of the possible explanations for the absence of a significant transgressive systems tract, inland storage and along- and off-shelf transport of the sediment are of greatest significance. Reef growth up to the latitude of the east-west-trending incised-valley system in the southern Gulf of Papua is considered to have been facilitated by a northward-flowing coastal boundary current, the Coral Sea Coastal Current. This current now sweeps turbid, brackish waters and terrigenous sediments discharged by the rivers northwards away from the reefs. An observed northward offset in transgressive sediments in relation to the axis of the shelf valleys suggests that such a northward-flowing shelf current operated during the late Pleistocene and early Holocene. The northern limit of the Great Barrier Reef could thus be controlled by the balance between fluvial sediment supply and northward advection of suspended sediment by the Coral Sea Coastal Current. This current may also be important in maintaining a supply of clear water to the eastern Gulf of Papua, thus enabling photosynthesis and the flourishing of calcareous-algae (Halimeda) bioherms or biostromes at depths of up to 100 m over much of the middle and outer shelf, directly offshore of the modern Fly Delta. These carbonate sediments represent the exposed maximum flooding surface and condensed section. Modern highstand delta deposits have begun to prograde over this

  19. Planktonic foraminiferal shell weight reflects sea surface temperature over the past 150 years in Santa Barbara Basin, California

    NASA Astrophysics Data System (ADS)

    Pak, D. K.; Clayman, L.; Weaver, J.; Schimmelmann, A.; Hendy, I. L.

    2011-12-01

    Size-normalized foraminiferal shell weight has been used as a proxy for past carbonate ion concentration in seawater, assuming that reduced carbonate ion concentration and pH lead to lower calcification rates and lighter, thinner shells. Previous research suggested that the uptake of anthropogenic CO2 and ocean acidification over the last century has resulted in lower shell weight, but this has not yet been documented at high resolution. Here, we present an approximately annual record of size-normalized shell weight and Mg/Ca of the near-surface dwelling planktonic foraminifera Globigerina bulloides to investigate the relationship between shell weight and sea surface temperature in Santa Barbara Basin, California (34° 16.847' N, 120° 02.268' W), over the last 150 years. Results indicate that foraminiferal shell weight is inversely correlated with instrumental sea surface temperature since 1850. Foraminiferal shell weights were highest between 1900 and 1920, corresponding to the lowest instrumental and Mg/Ca-derived sea surface temperatures. Shell weights gradually decreased to their lowest values after the mid-1970s, coincident with northeast Pacific warming as the Pacific Decadal Oscillation shifted from cool to warm phase. G. bulloides Mg/Ca temperatures also gradually increased after 1970, from 13 ± 1°C to 14.5 ± 1°C. Scanning electron microscopy indicates that the lowest shell-weight foraminifera, those deposited since the mid-1970s shift, exhibit a distinctive smooth shell texture devoid of spine bases, in contrast with higher shell-weight foraminifera, which have numerous spine bases and large pores. The smooth-shell surface morphology is replicated in laboratory dissolution experiments, consistent with removal of an outer layer of calcite during shell thinning and partial dissolution of G. bulloides. These results suggest that G. bulloides calcification rates were related to sea surface temperatures over the last 150 years, and that shells deposited

  20. Geochemical assessment of hydrocarbon migration phenomena: Case studies from the south-western margin of the Dead Sea Basin

    NASA Astrophysics Data System (ADS)

    Sokol, Ella; Kozmenko, Olga; Smirnov, Sergey; Sokol, Ivan; Novikova, Sofya; Tomilenko, Anatoliy; Kokh, Svetlana; Ryazanova, Tatyana; Reutsky, Vadim; Bul'bak, Taras; Vapnik, Yevgeny; Deyak, Michail

    2014-10-01

    with the existing views of maturation, migration, and accumulation of hydrocarbons, as well as basin fluid transport processes in the Dead Sea area.

  1. Base of brackish-water mud as key regional stratigraphic marker of mid-Holocene marine flooding of the Baltic Sea Basin

    NASA Astrophysics Data System (ADS)

    Virtasalo, Joonas J.; Endler, Michael; Moros, Matthias; Jokinen, Sami A.; Hämäläinen, Jyrki; Kotilainen, Aarno T.

    2016-08-01

    Many modern epicontinental seas were dry land before their marine flooding by the mid-Holocene glacioeustatic sea-level rise, whereas the Baltic Sea Basin was covered by a huge postglacial lake. This change from a postglacial lake to the present-day semi-enclosed brackish-water sea is studied here in sediment cores and acoustic profiles from the Baltic Sea major sub-basins, based on novel datasets combined with information extracted from earlier publications. In shallow areas (<50m water depth), the base of the brackish-water mud is erosional and covered by a patchy, thin, transgressive silt-sand sheet resulting from decreased sediment supply, winnowing and the redistribution of material from local coarse-grained deposits during transgression. This erosional marine flooding surface becomes sharp and possibly erosional in deep areas (>50m water depth), where it may be locally less clearly expressed due to reworking and bioturbation. Both in the shallow and deep areas, the brackish-water mud is strongly enriched in organic matter compared to underlying sediments. Bioturbation type changes at the flooding surface in response to the increased sedimentary organic content, but no firm-ground ichnofacies were developed because of low erosion. It is concluded that the base of the brackish-water mud is a robust allostratigraphic bounding surface that is identifiable by the lithologic examination of cores over the Baltic Sea. The surface is a distinct reflector in seismic-acoustic profiles, which facilitates mapping and basin-wide stratigraphic subdivision. Detailed geochronologic studies are required to confirm if sediments immediately overlying the erosional flooding surface in shallow areas are younger than the basal part of the brackish-water mud in deep areas that is predicted to be time-equivalent to the erosion.

  2. Sediment flux history of Pearl River mouth basin, North margin of South China Sea

    NASA Astrophysics Data System (ADS)

    Wu, S.

    2004-12-01

    This work estimates the solid sediment flux in Pearl River mouth basin from Cenozoic (42Ma). The estimates were derived from isopach maps, seismic reflection profiles and drill holes. Average solid sediment fluxes were calculated for six epochs approximately corresponding to geological periods: Eocene-Lower Oligocene (42-29.3), Upper Oligocene (29.3-23.8), Lower Miocene (23.8-16.4), Middle Miocene (16.4-11.2), Upper Miocene (11.2-5.32), and Pliocene-Pleistocene (5.32-0). The total sediment flux from 42 Ma is 392071.3 km3 and 0.89 km of erosion formed from the onshore drainage basin area. The average erosion rate is 22 m/ Ma. The sediment flux curve shows 3 episodes massive increase in sediment supply, i.e. Upper Oligocene, Middle Miocene and Pliocene-Pleistocene. The first increase related to the break up activity and is the product of elevated rift shoulder. The other two increase peak link to the changing of climate.

  3. Prospect ranking in the North Sea: New frontiers in 3D basin modeling

    SciTech Connect

    Bracaccia, V.; Bozzoni, P.; Cavecchi, C.

    1995-08-01

    The application of Agip`s 3D basin modeling code (SEBE3) in a block of the Norwegian Sector of the South Viking Graben has demonstrated the capability of this methodology, which integrates in a three-dimensional time-dependent simulation the geological, hydrodynamic and maturation models of a basin, to represent an effective tool in ranking different structures. The deceiving results of the first exploration phase during which two dry wells were drilled, have suggested that, although hydrocarbons could reach the block from the Fisher Bank area and from the Sleipner Complex through spillover mechanisms, hydrodynamic constraints and morphological divides have probably played a major role in regulating the migration of hydrocarbons in the area. The effect of these constraints was confirmed and better understood through a regional application of the code on the South Viking Graben, whose results entered in the block scale simulation as boundary conditions. The block scale simulation has indicated that hydrodynamic constraints (Tornquist Lineaments) to the north and the morphology of the carrier in the northwestern edge of the block, seem to have highly constrained fluid flow up to the complete compartmentalization of the system (Pliocene to Recent), preventing large amounts of hydrocarbons from spilling into the structure that extends over most of the retained acreage of the Block. Nonetheless, the simulation has singled out a possible migration route in the northeastern corner of the block where a different and alternative prospect is located.

  4. Geophysical Investigations of Crustal Structure of Cenozoic Rifting Basin in Passive Continental Margin: The Pearl River Mouth Basin, South China Sea

    NASA Astrophysics Data System (ADS)

    Qiu, N.

    2015-12-01

    The Pearl River Mouth Basin (PRMB) initiated in the Cenozoic with rifting, and became a part of the South China Sea (SCS) rifted passive continental margin. Decades of industrial exploration in this proliferous region have produced lots of geological and geophysical data. In order to get the first order crustal scale structure, we integrate well data, multi channel seismic reflection, and the observed gravity field for a joint inversion. The Cenozoic sediment of PRMB comprises of several stratigraphic sequences, including the terrestrial facies, the marine facies and the transitional facies. The sedimentary model takes into account of two main parts that refer to the Paleogene to Neogene unit and the Neogene to Quaternary unit, which were respectively formed during the intercontinental rifting stage and the passive continental margin post-rifting stage. By integrating long cable seismic profiles, interval velocity and performing gravity modelling, we have modelled the sub-sedimentary basement. There are some high-density bodies in the lower part of crust (ρ> 2.8 g/cm3), most of which were probably made up by emplacement from the upper mantle into the lower crust. The crystalline continental crust spans from unstretched domains (as thick as about 25 km) near the continental shelf to extremely thinned domains (of less than 6 km thickness) in the sag center. The presented crust-scale structural model shows that the crystalline crust of the Liwan Sag (LWS) and Baiyun sag (BYS) are thinner than other parts of PRMB, especially, the crystalline crust thickness in BYS is even less than 6 km. we could preliminary infer that the crystalline crust may be more easily stretched and be thinned by the existence of hot and soft substances at the lower crust.

  5. Molecular signatures of lineage-specific adaptive evolution in a unique sea basin: the example of an anadromous goby Leucopsarion petersii.

    PubMed

    Kokita, Tomoyuki; Takahashi, Sayaka; Kumada, Hiroki

    2013-03-01

    Climate changes on various time scales often shape genetic novelty and adaptive variation in many biotas. We explored molecular signatures of directional selection in populations of the ice goby Leucopsarion petersii inhabiting a unique sea basin, the Sea of Japan, where a wide variety of environments existed in the Pleistocene in relation to shifts in sea level by repeated glaciations. This species consisted of two historically allopatric lineages, the Japan Sea (JS) and Pacific Ocean (PO) lineages, and these have lived under contrasting marine environments that are expected to have imposed different selection regimes caused by past climatic and current oceanographic factors. We applied a limited genome-scan approach using seven candidate genes for phenotypic differences between two lineages in combination with 100 anonymous microsatellite loci. Neuropeptide Y (NPY) gene, which is an important regulator of food intake and potent orexigenic agent, and three anonymous microsatellites were identified as robust outliers, that is, candidate loci potentially under directional selection, by multiple divergence- and diversity-based outlier tests in comparisons focused on multiple populations of the JS vs. PO lineages. For these outlier loci, populations of the JS lineage had putative signals of selective sweeps. Additionally, real-time quantitative PCR analysis using fish reared in a common environment showed a higher expression level for NPY gene in the JS lineage. Thus, this study succeeded in identifying candidate genomic regions under selection across populations of the JS lineage and provided evidence for lineage-specific adaptive evolution in this unique sea basin.

  6. Late Pleistocene and Holocene palaeoenvironments in and around the middle Caspian basin as reconstructed from a deep-sea core

    NASA Astrophysics Data System (ADS)

    Leroy, Suzanne A. G.; López-Merino, Lourdes; Tudryn, Alina; Chalié, Françoise; Gasse, Françoise

    2014-10-01

    Late Pleistocene and/or Holocene high-resolution palynological studies are available for the south basin of the Caspian Sea (CS), the world's largest lake. However, the north and middle basins have not been the object of high-resolution palynological reconstructions. This new study presents the pollen, spores and dinoflagellate cysts records obtained from a 10 m-long sediment core recovered in the middle basin, which currently has brackish waters and is surrounded by arid and semi-arid vegetation. An age-depth model built based on six radiocarbon dates on ostracod shells indicates that the sequence spans the period from 14.47 to 2.43 cal. ka BP. The present palaeoenvironmental study focuses on the top 666 cm, or from 12.44 to 2.43 cal. ka BP. At the vegetation level, the Younger Dryas is characterised by an open landscape dominated by desert vegetation composed by Amaranthaceae with shrubs and salt-tolerant plants. However, although the Early Holocene is also characterised by desert vegetation, it is enriched in various shrubs such as Ephedra and Calligonum, but tree expansion is not important at the Holocene onset. After a major shift at 8.19 cal. ka BP, the Middle Holocene displays now both the character of desert and of steppe, although some trees such as Quercus and Corylus slightly spread. The Late Holocene records steppe vegetation as dominant, with more tree diversity. Regarding the lacustrine signal, the dinocyst assemblage record fluctuates between slightly brackish conditions highlighted by Pyxidinopsis psilata and Spiniferites cruciformis, and more brackish ones - similar to the present day - with the dominance of Impagidinium caspienense. The Late Pleistocene is characterised by low salinities, related to the Khvalynian highstand. From 11.56 cal. ka BP, slightly more saline waters are reconstructed with an increase of I. caspienense for a period of 1000 years, which could be attributed to the Mangyshlak lowstand. From 10.55 cal. ka BP, low salinity

  7. Chemical contamination baseline in the Western basin of the Mediterranean Sea based on transplanted mussels.

    PubMed

    Andral, Bruno; Galgani, François; Tomasino, Corinne; Bouchoucha, Marc; Blottiere, Charlotte; Scarpato, Alfonso; Benedicto, José; Deudero, Salud; Calvo, Monica; Cento, Alexandro; Benbrahim, Samir; Boulahdid, Moustapha; Sammari, Cherif

    2011-08-01

    The MYTILOS project aimed at drawing up a preliminary report on coastal chemical contamination at the scale of the Western Mediterranean (continental coasts of the Balearic Islands, Sicily, Sardinia, Corsica and Maghreb) based on a transplanted mussels methodology validated along the French coasts since 1996 by Ifremer and the Rhône Méditerranée & Corsica water board. MYTILOS is backed up by the INTERREG III B/MEDOC programme, the PNUE/PAM-MEDPOL and Rhône Méditerranée & Corsica water board. Three cruises (2004, 2005, 2006) have taken place to assess the first state of chemical contamination along the Western Mediterranean shores with the same methodology. Approximately 120 days were spent at sea deploying and retrieving 123 mussel bags. The results obtained for all studied contaminants were equivalent to those obtained along the French coast according the RINBIO network. These similarities relate to both the highest measured levels and background levels throughout the 123 stations. The areas of greatest impact were mainly urban and industrial centers and the outlets of major rivers, with a far higher midsea impact on the dilution of organic compounds than on metals. Metal levels measured in midsea zones were found to be similar to those in natural shellfish populations living along the coast. On a global scale we can observe that the contaminants levels in the Mediterranean Sea are in the same range as in other areas worldwide. Overall, the research demonstrates the reliability of this methodology for marine pollution monitoring, especially in the Mediterranean sea. PMID:20862467

  8. Relative sea-level variations in the Amerasia Basin since the Lower Cretaceous (Invited)

    NASA Astrophysics Data System (ADS)

    Jokat, W.; Hegewald, A.

    2010-12-01

    In 2008, the Alfred Wegener Institute (AWI) of Germany, using the RV Polarstern, collected multi-channel seismic reflection data in the eastern Arctic Ocean (73-78°N and 170°E-170°W), namely across the East Siberian Shelf, the Chukchi Plateau and the southern part of the Mendeleev Ridge. For the seismic data acquisition an airgun array with up to six airguns (48 ltr. total volume fired at 200 bar) and a 3000 m long streamer with 240 active channels were used. One of the profiles, collected from the Chukchi Shelf towards the north into deep water, shows the paleo-shelf break structures over 250 km length as prograding, retrograding and aggrading sequences with a total thickness of 3500 m. To receive the ages of these sequences, five exploration wells near the coast of Alaska were used. An existing network of 194 seismic reflection lines from the United States Geological Service (USGS), collected between 1977 and 1993, from the Norwegian company TGS-NOPEC (2006), and the American HOTRAX Expedition (2005) were used to correlate the well logging information into the AWI data. With the help of this network, it was possible to correlate tentatively four prominent horizons with ages between the Paleocene and Lower Cretaceous into the new data. The interpreted sequence boundaries in the seismic reflection profile were used to determine its chronostratigraphic significance, and concluded from that, the relative sea-level changes. Finally, in this presentation the Arctic Ocean sea-level changes will be compared with the global sea-level curve.

  9. Linking basin-scale connectivity, oceanography and population dynamics for the management of marine ecosystems in the Mediterranean sea

    NASA Astrophysics Data System (ADS)

    Rossi, Vincent; Dubois, Mélodie; Ser-Giacomi, Enrico; Arnaud-Haond, Sophie; Lopez, Cristobal; Hernandez-Garcia, Emilio

    2015-04-01

    A major challenge in marine ecology is to describe properly larval dispersal and marine connectivity since they structure marine populations and are thus crucial criteria to design Marine Protected Areas (MPAs). Focusing on larval dispersal by ocean currents in the entire Mediterranean Sea, I present a new approach coupling Lagrangian modeling and Network Theory tools to characterize broad-scale connectivity of marine populations. The Mediterranean basin is subdivided into an ensemble of sub-regions that are interconnected through oceanic transport. Passive larvae of different pelagic durations and seasons are advected in a simulated surface flow from which a network of connected areas is constructed. First, the global analysis of the transport network using a community detection algorithm enables the extraction of hydrodynamical provinces which are delimited by frontiers matching multiscale oceanographic features. By examining the repeated occurrence of such boundaries, we identify the spatial scales and geographic structures that control larval dispersal across the entire seascape. We also analyze novel connectivity metrics for the existing marine reserves and we discussed our results in the context of ocean biogeography and MPAs design. Secondly, we studied the local properties of the network with the computation of proxies commonly used in population ecology to measure local retention, self-recruitment and larval sources/sinks. Our results confirmed that retention processes are favored along certain coastlines due to specific oceanographic conditions while they are weak in the open ocean. Moreover, we found that divergent (convergent) oceanic zones resulting from Ekman theory are systematically characterized by larval sources (sinks). Finally, although these proxies are often studied separately in the literature, we suggest they are inter-related under certain conditions. Their integrated interpretation leads to a better understanding of population dynamics and

  10. Linking River Basin Modifications and Rural Soil and Water Management Practices in Tropical Deltas to Sea Level Rise Vulnerability

    NASA Astrophysics Data System (ADS)

    Rogers, K. G.; Brondizio, E.; Roy, K.; Syvitski, J. P.

    2015-12-01

    The increased vulnerability of deltaic communities to coastal flooding as a result of upstream engineering has been acknowledged for decades. What has received less attention is the sensitivity of deltas to the interactions between river basin modifications and local scale cultivation and irrigation. Combined with reduced river and sediment discharge, soil and water management practices in coastal areas may exacerbate the risk of tidal flooding, erosion of arable land, and salinization of soils and groundwater associated with sea level rise. This represents a cruel irony to smallholder subsistence farmers whose priorities are food, water and economic security, rather than sustainability of the environment. Such issues challenge disciplinary approaches and require integrated social-biophysical models able to understand and diagnose these complex relationships. This study applies a new conceptual framework to define the relevant social and physical units operating on the common pool resources of climate, water and sediment in the Bengal Delta (Bangladesh). The new framework will inform development of a nested geospatial analysis and a coupled model to identify multi-scale social-biophysical feedbacks associated with smallholder soil and water management practices, coastal dynamics, basin modification, and climate vulnerability in tropical deltas. The framework was used to create household surveys for collecting data on climate perceptions, land and water management, and governance. Test surveys were administered to rural farmers in 14 villages during a reconnaissance visit to coastal Bangladesh. Initial results demonstrate complexity and heterogeneity at the local scale in both biophysical conditions and decision-making. More importantly, the results illuminate how national and geopolitical-level policies scale down to impact local-level environmental and social stability in communities already vulnerable to coastal flooding. Here, we will discuss components of the

  11. Geophysical evidence and inferred triggering factors of submarine landslides on the western continental margin of the Ulleung Basin, East Sea

    NASA Astrophysics Data System (ADS)

    Cukur, Deniz; Kim, Seong-Pil; Kong, Gee-Soo; Bahk, Jang-Jun; Horozal, Senay; Um, In-Kwon; Lee, Gwang-Soo; Chang, Tae-Soo; Ha, Hun-Jun; Völker, David; Kim, Jung-Ki

    2016-08-01

    Submarine landslides form very complex depositional and erosional features on the seafloor, and their dynamics and triggering processes are yet to be understood completely. Numerous studies are being undertaken both because of the scientific significance but also for their potential harm to seafloor infrastructure and coastal areas. This study investigates the styles and causes of landsliding along the western margin of the Ulleung Basin in the East Sea, based on multiple sparker, subbottom profiler, multibeam echosounder and sediment core datasets collected in 2015. The bathymetric analyses indicate that the southern slope of the Ulleung Basin has experienced at least seven submarine failures. These failures left clear arcuate-shaped scarps that initiated at water depths of ~600 m. The observed headwall scarps have heights that exceed 60 m and appear to be the result of retrogressive-type failures. Seismic reflection data clearly image the basal sliding surface that is characterized by a prominent high-amplitude reflector. Chaotic-to-transparent seismic facies occur immediately downslope of the headwall scarps; these represent ~20 m thick landslide deposits. Gravity cores taken from areas adjacent to the scars suggest that these slides are older than ca. 97 ka. Interpretation of the present data shows that faults appear to cut recent sediments upslope of scarps, and that the slope may still be in an active phase of failure. Seismic data also image various overpressurized gases and/or gas fluids, as evidenced by the occurrence of pockmarks and seismic chimneys in upslope or adjacent areas of the scarps. Hence, earthquakes associated with tectonic activity and development of fluid overpressure may have acted as the main conditioning factor for destabilizing the slope sediments. Geotechnical stability analyses indicate that the sampled slope sediments are exceptionally stable under present-day conditions, even under seismic loading. This finding points to additional

  12. Sediment-water exchange of nutrients in the Marsdiep basin, western Wadden Sea: Phosphorus limitation induced by a controlled release?

    NASA Astrophysics Data System (ADS)

    Leote, Catarina; Epping, Eric H. G.

    2015-01-01

    To quantify the release of inorganic phosphorus from the sediments and assess its contribution to present primary production, a basin-wide study of the Marsdiep (western Wadden Sea, The Netherlands) was performed. Two distinct sedimentary zones were identified: a depositional area characterized by a high content of silt and organic carbon and a small grain size and the majority of the area, composed of fine/medium sand and a low organic carbon content. The sediment-water exchange was higher in the fine grained depositional area and based on a relationship found between the release of inorganic phosphorus and the silt content, a total annual release of 1.0×107 mol P was estimated for the whole Marsdiep basin. A spatial variability in the processes controlling the nutrient release was found. The exchange in the depositional area resulted mainly from molecular diffusive transport, with mineralization and sorption determining the concentration of inorganic phosphorus in the porewater. For the coarser sediment stations the activity of macrofauna clearly enhanced the fluxes. Given the relative demand of nutrients (N:P:Si) for phytoplankton growth, the release was phosphorus deficient during most of the year. Nevertheless, it increased from February until September, in parallel with the increase in temperature and light, thus having the potential to fuel primary prod