Science.gov

Sample records for alboran sea system

  1. Atmospheric forcing and Sea Surface Temperature response in the Gulf of Cadiz-Alboran Sea system in a 20 years simulation

    NASA Astrophysics Data System (ADS)

    Boutov, D.; Peliz, A.

    2012-04-01

    In the frame of MedEX ("Inter-basin exchange in the changing Mediterranean Sea") Project a 20 years (1989-2008) simulation at 2km resolution covering Gulf of Cadiz and Alboran Sea, forced by 9 km winds (WRF downscaling of ERA-Interim reanalysis), is analyzed and compared with observations. Statistical methods, EOF techniques and two harmonic (including annual and semi-annual frequencies) data fit were performed for the analysis. Modeled SST fields are also compared with long-term (1996-2008) in-situ buoy observations provided by Puertos del Estado (Spain) and satellite derived Pathfinder SST database. Model SSTs generally follow observations data at annual and inter-annual scales with a global error not exceeding 0.17°C (model warmer than SST). No significant warming tendency was observed in both basins during the 20 years and the Interanual variability dominates, with the series showing a cooling period from 1991 to 1993 followed by a warming period started from 1994. In particular we show that SST cooling observed in the early 1990's in the Gulf of Cadiz - Alboran system is associated with the 1991 catastrophic eruption of Pinatubo volcano (Philippines).

  2. Flysch-type sedimentation in the Alboran Sea, Western Mediterranean.

    PubMed

    Stanley, D J; Gehin, C E; Bartolini, C

    1970-12-01

    The Quaternary deposits of the Alboran Sea and associated sediment dispersal patterns, and geographic and tectonic setting of the region, are closely similar to those of some ancient flysch basins preserved in the geological record. PMID:16059023

  3. Controls of picophytoplankton abundance and composition in a highly dynamic marine system, the Northern Alboran Sea (Western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Amorim, Ana L.; León, Pablo; Mercado, Jesús M.; Cortés, Dolores; Gómez, Francisco; Putzeys, Sebastien; Salles, Soluna; Yebra, Lidia

    2016-06-01

    The Alboran Sea is a highly dynamic basin which exhibits a high spatio-temporal variability of hydrographic structures (e.g. fronts, gyres, coastal upwellings). This work compares the abundance and composition of picophytoplankton observed across the northern Alboran Sea among eleven cruises between 2008 and 2012 using flow cytometry. We evaluate the seasonal and longitudinal variability of picophytoplankton on the basis of the circulation regimes at a regional scale and explore the presence of cyanobacteria ecotypes in the basin. The maximal abundances obtained for Prochlorococcus, Synechococcus and picoeukaryotes (12.7 × 104, 13.9 × 104 and 8.6 × 104 cells mL- 1 respectively) were consistent with those reported for other adjacent marine areas. Seasonal changes in the abundance of the three picophytoplankton groups were highly significant although they did not match the patterns described for other coastal waters. Higher abundances of Prochlorococcus were obtained in autumn-winter while Synechococcus and picoeukaryotes exhibited a different seasonal abundance pattern depending on the sector (e.g. Synechococcus showed higher abundance in summer in the west sector and during winter in the eastern study area). Additionally, conspicuous longitudinal gradients were observed for Prochlorococcus and Synechococcus, with Prochlorococcus decreasing from west to east and Synechococcus following the opposite pattern. The analysis of environmental variables (i.e. temperature, salinity and inorganic nutrients) and cell abundances indicates that Prochlorococcus preferred high salinity and nitrate to phosphate ratio. On the contrary, temperature did not seem to play a role in Prochlorococcus distribution as it was numerically important during the whole seasonal cycle. Variability in Synechococcus abundance could not be explained by changes in any environmental variable suggesting that different ecotypes were sampled during the surveys. In particular, our data would indicate

  4. Evolution of the Alboran Sea hydrographic structures during July 1993

    NASA Astrophysics Data System (ADS)

    Lafuente, Jesús García.; Cano, Natalio; Vargas, Manuel; Rubín, Juan P.; Hernández-Guerra, Alonso

    1998-01-01

    During the ICTIOALBORAN-0793 multidisciplinary oceanographic survey carried out in July 1993 by the Instituto Español de Oceanografı´a (IEO) in the Alboran Sea, some anomalous features were detected. One was the presence of a small cyclonic eddy in the western Alboran Basin, close to the African coast. The upper layer of the eddy consisted of Mediterranean Surface Water and was separated from its supposed source (the northern Alboran Sea) by the Atlantic Jet. Another feature was the probable temporary interruption of the flow of fresh Atlantic Water (S≈36.5) into the eastern Alboran Basin and its replacement by a modified (saltier) Atlantic Water. These features can be explained assuming a time evolution of the surface circulation in the Alboran Sea forced by speed variations in the inflowing Atlantic Water through the Strait of Gibraltar. A collection of satellite images covering the survey period and across-strait sea level difference data, indicative of the geostrophic velocity of the inflow through the Strait, were used to check this assumption. Both sets of data supplied independent but compatible information in the sense that they complemented each other and gave support to the proposed evolving model. Finally, some speculative ideas attempting to correlate the inferred variability in the Alboran Sea with the state of the baroclinic water exchange through the Strait of Gibraltar (maximal or submaximal) are discussed.

  5. New and rare sponges from the deep shelf of the Alboran Island (Alboran Sea, Western Mediterranean).

    PubMed

    Sitjà, Cèlia; Maldonado, Manuel

    2014-01-01

    The sponge fauna from the deep shelf (70 to 200 m) of the Alboran Island (Alboran Sea, Western Mediterranean) was investigated using a combination of ROV surveys and collecting devices in the frame of the EC LIFE+ INDEMARES Grant aimed to designate marine areas of the Nature 2000 Network within Spanish territorial waters. From ROV surveys and 351 examined specimens, a total of 87 sponge species were identified, most belonging in the Class Demospongiae, and one belonging in the Class Hexactinellida. Twenty six (29%) species can be regarded as either taxonomically or faunistically relevant. Three of them were new to science (Axinella alborana nov. sp.; Axinella spatula nov. sp.; Endectyon filiformis nov. sp.) and 4 others were Atlantic species recorded for the first time in the Mediterranean Sea (Jaspis eudermis Lévi & Vacelet, 1958; Hemiasterella elongata Topsent, 1928; Axinella vellerea Topsent, 1904; Gelliodes fayalensis Topsent, 1892). Another outstanding finding was a complete specimen of Rhabdobaris implicata Pulitzer-Finali, 1983, a species only known from its holotype, which had entirely been dissolved for its description. Our second record of the species has allowed a neotype designation and a restitution of the recently abolished genus Rhabdobaris Pulitzer-Finally, 1983, also forcing a slight modification of the diagnosis of the family Bubaridae. Additionally, 12 species were recorded for the first time from the shelf of the Alboran Island, including a few individuals of the large hexactinellid Asconema setubalense Kent, 1877 that provided the second Mediterranean record of this "North Atlantic" hexactinellid. ROV explorations also revealed that sponges are an important component of the deep-shelf benthos, particularly on rocky bottoms, where they make peculiar sponge gardens characterized by a wide diversity of small, erect species forming a dense "undergrowth" among a scatter of large sponges and gorgonians. The great abundance and the taxonomic

  6. Past and present active sedimentation and tectonics in the South Alboran Sea

    NASA Astrophysics Data System (ADS)

    d'Acremont, E.; Gorini, C.; El Abbassi, M.; Farran, M.; Leroy, S.; Mercier de Lépinay, B.; Migeon, S.; Poort, J.; Ammar, A.; Smit, J.; Do Couto, D.; Ercilla, G.; Alonso, B.

    2012-04-01

    Since the Tortonian, the thinned continental crust and the overlying sedimentary cover of the Alboran Sea are submitted to tectonic inversion due to the convergence between Eurasia and Africa. The past and present deformation is significant along the Moroccan margin where the MARLBORO-1 cruise in 2011, acquired 1100 km of mid-resolution seismic reflection along 20 profiles perpendicular and parallel to the margin, off Al Hoceima, to latitude 36°N. The study area located on the Xauen/Tofino banks and the South Alboran ridge off Morocco, shows signs of both past and present strong tectonic deformation, mass-movement deposits (mostly slides and mass flow deposits), and contourites. The lateral and longitudinal evolution of contourites and mass movement deposits and the geometric relationships between those deposits and active tectonic structures have been studied. In the distal margin, contourites and gravitational instabilities are the depositional systems that best record the tectonic signal of the area since at least the Messinian. On the two flanks of the Xauen/Tofino and South Alboran ridge, the sedimentary register affected by growth-faults is mainly composed of contourites. Internal strata pattern, spatial and temporal distribution of thickness and depocenters, and discontinuities help to infer sedimentary processes and their interaction with tectonics. In the southern Alboran Sea where the bathymetry shows abrupt slopes, the recurrent seismic activity seems to be the main factor triggering mass wasting as witnessed by the Mass transport complexes (MTCs). Recent MTCs originate from escarpments on the edge of the contourites. However, in most cases the seismic reflection data show the depositional bodies of numerous slides linked to the activity of growth-faults and thrusts observed on the Xauen and Tofino Bank's north flanks. Tectonic inversion is recorded since the late Miocene with an acceleration of the uplift and compressional activity evidenced during

  7. Modeling the impact of tidal flows on the biological productivity of the Alboran Sea

    NASA Astrophysics Data System (ADS)

    Sánchez-Garrido, José C.; Naranjo, C.; Macías, D.; García-Lafuente, J.; Oguz, T.

    2015-11-01

    The control of phytoplankton production by tidal forcing in the Alboran Sea is investigated with a high-resolution ocean circulation model coupled to an ecosystem model. The aim of the modeling efforts was to elucidate the role of tides in sustaining the high biological productivity of the Alboran Sea, as compared with the rest of the Mediterranean subbasins. It is shown that tidal forcing accounts for an increase of phytoplankton biomass and primary productivity in the basin of about 40% with respect to a nontidal circulation, and about 60% in the western Alboran Sea alone. The tidal dynamics of the Strait of Gibraltar is shown to be the primary factor in determining the enhancement of productivity, pumping nutrients from depth to the photic zone in the Alboran Sea. Model results indicate that the biological implications of the propagating internal tides are small. These results imply that nutrient transports through the Strait of Gibraltar have to be parametrized in ocean models that do not resolve tides in order to properly represent the biochemical budgets of the Alboran Sea.

  8. The depiction of Alboran Sea Gyre during Donde Va? using remote sensing and conventional data

    NASA Technical Reports Server (NTRS)

    Laviolette, P. E.

    1984-01-01

    Experienced oceanographic investigators have come to realize that remote sensing techniques are most successful when applied as part of programs of integrated measurements aimed at solving specific oceanographic problems. A good example of such integration occurred during the multi-platform international experiment, Donde Va? in the Alboran Sea during the period June through October, 1982. The objective of Donde Va? was to derive the interrelationship of the Atlantic waters entering the Mediterranean Sea and the Alboran Sea Gyre. The experimental plan conceived solely with this objective in mind consisted of a variety of remote sensing and conventional platforms: three ships, three aircraft, five current moorings, two satellites and a specialized beach radar (CODAR). Integrated analyses of these multiple-data sets are still being conducted. However, the initial results show detailed structure of the incoming Atlantic jet and Alboran Sea Gyre that would not have been possible by conventional means.

  9. Tectonic and stratigraphic evolution in South Alboran Sea (Morocco)

    NASA Astrophysics Data System (ADS)

    D'Acremont, E.; Gorini, C.; El Abbassi, M.; Farran, M.; Leroy, S.; Mercier De Lepinay, B. F.; Migeon, S.; Poort, J.; Ammar, A.; Smit, J.; Ercilla, G.; Alonso, B.; Scientific Team of the Marlboro project

    2011-12-01

    The Alboran Basin, in western Mediterranean, concentrates on a relatively small surface and densely-populated, a large structural complexity linked to seismic activity with recurrent mass-transport deposits that may trigger tsunamis. It was formed by Oligo-Miocene extension while tectonic inversion occurred since the Late Miocene (Tortonian) due to the African-European collision. This North-South compression produces a conjugated fault system located in the central area from Al Hoceima to Andalusia. Numerous instabilities are linked to the recent and present-day seismic activity and show the link between seismicity and erosion-sedimentation processes. On the Andalusia margin the active structures have been identified and recently mapped in detail by using MBES data (including backscatter), and high-resolution seismic data. Such detailed studies have not yet been carried out on the Moroccan margin. The Marlboro-1 oceanographic cruise (R/V Côtes de la Manche, July 2011) has imaged and constrained active structures and associated sedimentary systems through seismic reflection data (MCS). The Xauen/Tofino banks (growth folds), the Alboran Ridge, and the Al Hoceima basin offshore Morocco have been selected because they constitute key-study areas that record a complete deformation history since the Tortonian. Active features including faults, growth folds, channels, mass transport deposits, contourites and volcanoes has provided first order tectonic and sedimentary markers of the basin's evolution. A high chrono-stratigraphical resolution will constitute the basis for reconstructing the evolution of this tectonically active area marked by strong seismic activity. The Marlboro-1 cruise will allow determining key-study area of the Marlboro-2 cruise scheduled for 2012 (R/V Téthys-II, CNFC Call). These cruises should allow for the acquisition of data necessary to characterize basin morphology, active tectonic and sedimentary structures and also make the link with existing

  10. The transition from Alboran to Algerian basins (Western Mediterranean Sea): Chronostratigraphy, deep crustal structure and tectonic evolution at the rear of a narrow slab rollback system

    NASA Astrophysics Data System (ADS)

    Medaouri, Mourad; Déverchère, Jacques; Graindorge, David; Bracene, Rabah; Badji, Rabie; Ouabadi, Aziouz; Yelles-Chaouche, Karim; Bendiab, Fethi

    2014-07-01

    The eastern Alboran basin and its transition to the Algerian basin is a key area in the Mediterranean realm where controversial kinematic and geodynamical models are proposed. Models imply striking differences regarding the nature of the crust, the prevalence of brittle faulting and ductile shear, the origin of magmatism, the style of Miocene deformation and the driving mechanisms of the Alboran plate kinematics. Combining a new chronostratigraphic chart of the Alboran and Algerian basins based on the Habibas (HBB-1) core drill, deep seismic sections striking WSW-ENE and SSE-NNW, and potential field data, we re-assess the tectonic evolution that controlled the sedimentation and basement deformation of the westernmost limit of the Algerian basin and its transition with the Alboran domain. A WSW-directed extensional tectonic phase has shaped a stretched continental crust with typical tilted blocks along ∼100 km from Burdigalian to Tortonian times, which is assumed to result from the WSW-directed migration of the Alboran block driven by a narrow slab rollback. In the Algerian basin, this event was followed by the emplacement of an oceanic-type crust. Potential field signatures of the deep basin as well as geometrical correlations with onland outcrops of inner zones suggest a minimum WSW-directed displacement of the Alboran terrane of ∼200 km. At the southern foot of the Algerian basin, the continent-ocean transition is sharp and may result from the westward propagation of a slab tear at depth, forming two segments of STEP (Subduction-Transform Edge Propagator) margins. Our results support models of intense shear tractions at the base of an overriding plate governed by slab rollback-induced mantle flow. Finally, Messinian salt tectonics affected overlying deposits until today. A late Tortonian to Quaternary dominantly transpressive tectonic episode linked to the Africa-Iberia convergence post-dates previous events, deforming the whole margin.

  11. Evolution of the continental margin of southern Spain and the Alboran Sea

    USGS Publications Warehouse

    Dillon, William P.; Robb, James M.; Greene, H. Gary; Lucena, Juan Carlos

    1980-01-01

    Seismic reflection profiles and magnetic intensity measurements were collected across the southern continental margin of Spain and the Alboran basin between Spain and Africa. Correlation of the distinct seismic stratigraphy observed in the profiles to stratigraphic information obtained from cores at Deep Sea Drilling Project site 121 allows effective dating of tectonic events. The Alboran Sea basin occupies a zone of motion between the African and Iberian lithospheric plates that probably began to form by extension in late Miocene time (Tortonian). At the end of Miocene time (end of Messinian) profiles show that an angular unconformity was cut, and then the strata were block faulted before subsequent deposition. The erosion of the unconformity probably resulted from lowering of Mediterranean sea level by evaporation when the previous channel between the Mediterranean and Atlantic was closed. Continued extension probably caused the block faulting and, eventually the opening of the present channel to the Atlantic through the Strait of Gibraltar and the reflooding of the Mediterranean. Minor tectonic movements at the end of Calabrian time (early Pleistocene) apparently resulted in minor faulting, extensive transgression in southeastern Spain, and major changes in the sedimentary environment of the Alboran basin. Active faulting observed at five locations on seismic profiles seems to form a NNE zone of transcurrent movement across the Alboran Sea. This inferred fault trend is coincident with some bathymetric, magnetic and seismicity trends and colinear with active faults that have been mapped on-shore in Morocco and Spain. The faults were probably caused by stresses related to plate movements, and their direction was modified by inherited fractures in the lithosphere that floors the Alboran Sea.

  12. Heat flow in the Alboran Sea, western Mediterranean

    NASA Astrophysics Data System (ADS)

    Polyak, B. G.; Fernàndez, M.; Khutorskoy, M. D.; Soto, J. I.; Basov, I. A.; Comas, M. C.; Khain, V. Ye.; Alonso, B.; Agapova, G. V.; Mazurova, I. S.; Negredo, A.; Tochitsky, V. O.; de la Linde, J.; Bogdanov, N. A.; Banda, E.

    1996-10-01

    The results of the first regional heat flow survey carried out in the Alboran Basin are presented. The survey consists of 98 heat flow measurements obtained using a violin type probe, 697 nautic miles of gravity profiles, 1446 nautic miles of bathymetric survey, and 22 gravity cores. A remarkable difference in heat flow patterns exists between the western (WAB) and eastern (EAB) parts of the Alboran Basin. The average heat flow in the WAB is 69 ± 6 mW m -2 with a generally increasing trend towards the centre and to the east. In contrast, the heat flow pattern in the EAB shows an average value of 124 ± 8 mW m -2 and it is maintained rather constant for the overall area. Superimposed on this general pattern there are some local thermal anomalies, associated with hydrothermal activity, which have been detected in the central WAB (up to 123 mW m -2), in the South Alboran Basin (SAB) (up to 153 mW m -2) and in the Djibouti Bank (DB) (up to 254 mW m -2). After corrections for thermal refraction, sedimentation and cooling of volcanic bodies, the resulting heat flow distribution in the WAB is smoother, but still shows the increasing trend towards the centre and to the east. In the EAB, the application of these corrections did not lead to any noticeable changes. A 1-D approach that combines heat flow data, crustal structure and elevation shows a dramatic decrease in lithospheric thickness from the WAB (50-90 km) to the EAB (38-40 km). Likewise, the resulting crustal thickness is around 14-16 km in the central part of the WAB, increasing towards the borders of the basin, whereas in the EAB the crustal thickness varies between 12.5 and 14.5 km in its western part, and between 10 and 11.5 km in its eastern part.

  13. Application of the CARLIT index along a biogeographical gradient in the Alboran Sea (European Coast).

    PubMed

    Bermejo, Ricardo; de la Fuente, Gina; Vergara, Juan J; Hernández, Ignacio

    2013-07-15

    An index, based on littoral communities assemblages (CARLIT), was applied to assess the ecological status of Northwestern Mediterranean coastal waters, following the requirements of the European Water Framework Directive. The biogeographical particularities of the Alboran Sea suggested a reassessment of this index, and that was the main objective of this work. Due to these biogeographical particularities, two regions were proposed in the studied region, with new reference conditions for each region. Subsequently, by means of a multivariate analysis, littoral community abundances and the CARLIT index were compared with factors related to geomorphology, biogeography and anthropogenic pressures. Overall, the biogeographical component determined the distribution of littoral communities. In contrast, the ecological status yielded by the index only was significantly related to anthropogenic pressures. The results pointed out that the reassessment of the CARLIT index was suitable to evaluate the ecological status of the Alboran Sea. PMID:23673205

  14. Giant slide in the South Alboran margin: Upper Miocene margin inversion or Messinian sea level fall?

    NASA Astrophysics Data System (ADS)

    Gorini, C.; d'Acremont, E.; El Abbassi, M.; Do Couto, D.; Migeon, S.; Ammar, A.; Estrada, F.; Ercilla, G.; Alonso, B.; Poort, J.; Jabour, H.

    2012-04-01

    A series of submarine slides, from different periods and origin, were identified offshore Morroco using a new seismic reflection database available in the South Alboran Sea. The latest seismic reflection survey, used for this study, was acquired during the Marlboro-1 cruise (July 2011). This high resolution, two dimensional seismic data , provide evidence for a giant submarine landslide (mega-slide) with a volume of 200 km3, an area of 550 km2 and a maximum thickness of 540 m. It extends for over 40 km from the Xauen/Tofino banks at 200 m water depth to the deep basin floor of the Western Alboran Basin. The landslide is located on a steep, tectonically active margin and confined between structural highs. The seismic data allow a detailed imaging of internal structures, erosional headwall and the basal sliding surface of this mass transport deposit (MTD). The landslide is a complex deposit, involving a chaotic matrix, and preserved continuous reflectors evoquing floating giant blocks. The basal sliding surface reveals that significant amounts of seafloor erosion occured that cut into the Upper Miocene sediments. We will discuss the factors triggering the slope failure and the mechanism that caused the weakening. The origin of the mega-slide is the Xauen-Tofino banks bounded by thrust faults whose tectonic activity is recorded since the late Miocene. An acceleration of the uplift and compressional activity is evidenced during the Messinian with an increase of the volume of mass transport at the front of these thrusts. The top of the mega-slide is eroded by the Zanclean (5.33Ma) flooding event and thus occurred before or during the Messinian crisis. This timing correponds in the South Alboran Sea to a peak of tectonic activity and a huge and rapid sea level fall (about 1000m). We propose that both have played a role in triggering the South Alboran mega-slide.

  15. The Climatological Annual Cycle of Satellite-derived Phytoplankton Pigments in the Alboran Sea: A Physical Interpretation

    NASA Technical Reports Server (NTRS)

    Garcia-Gorriz, E.; Carr, M. E.

    1998-01-01

    The circulation and upwelling processes (coastal and gyre-induced) that control the phytoplankton distribution in the Alboran sea are examined by analyzing monthly climatological patterns of Coastal Zone Color Scanner (CZCS) pigment concentrations, sea surface temperatures, winds, and seasonal geostrophic fields.

  16. Seismic stratigraphy, subsidence history, and tectonic evolution of the Alboran Sea, western Mediterranean

    SciTech Connect

    Watts, A.B. ); Doherty, J.I.C.; Banda, E. ); Platt, J. )

    1991-08-01

    Seismic reflection profile, gravity and geoid data, and well data have been used to examine the tectonic evolution of the Alboran Sea, a small basin in the western Mediterranean. Previous seismic refraction data suggest that the basin is underlain by stretched continental crust which thins from about 40 km beneath Iberia and Morocco to as much as 15 km in the basin center. According to commercial well data, the earliest sediments are lower Burdigalian, suggesting that extension was initiated during the early Miocene. The thinning is part of a sidespread extensional event that appears have modified the crustal structure in the Balearic, Algerian, and Valencia Trough basins to the east. In the case of the Alboran Sea basin, however, the extent to which extensional processes account for the crustal structure is obscured by the competing effects of compression due, for example, to thrust/fold loading in the flanking Betic and Rif cordillera. Backstripping of commercial wells in the Iberian margin reveals an exponentially decreasing subsidence that is similar in form to that of many rift-type basins. However, DSDP Site 121, located on a basement high in the basin center, shows an accelerating subsidence that is more typical of foreland-type basins. Recent studies in the Valencia Trough, show that the relative of extensional and compressional processes can be estimated through an integrated approach of flexural backstripping, crustal restoration, and gravity and geoid modeling along selected transects of a basin. The authors paper presents the results of such an approach to the Alboran Sea and evaluates its implications for current models for the tectonic evolution of the basin.

  17. Geotechnical properties and preliminary assessment of sediment stability on the continental slope of the northwestern Alboran Sea

    USGS Publications Warehouse

    Baraza, J.; Ercilla, G.; Lee, H.J.

    1992-01-01

    Laboratory analysis of core samples from the western Alboran Sea slope reveal a large variability in texture and geotechnical properties. Stability analysis suggests that the sediment is stable under static gravitational loading but potentially unstable under seismic loading. Slope failures may occur if horizontal ground accelerations greater than 0.16 g are seismically induced. The, Alboran Sea is an active region, on which earthquakes inducing accelerations big enough to exceed the shear strength of the soft soil may occur. Test results contrast with the apparent stability deduced from seismic profiles. ?? 1992 Springer-Verlag New York Inc.

  18. ALBOREX: an intensive multi-platform and multidisciplinary experiment in the Alboran Sea

    NASA Astrophysics Data System (ADS)

    Ruiz, Simón; Pascual, Ananda; Allen, John; Olita, Antonio; Tovar, Antonio; Oguz, Temel; Mahadevan, Amala; Poulain, Pierre; Tintoré, Joaquín

    2015-04-01

    An intensive multi-platform and multidisciplinary experiment was completed in May 2014 as part of PERSEUS EU Project. 25 drifters, 2 gliders, 3 Argo floats and one ship were dedicated to sample an area of about 50x50 km in the eastern Alboran Sea during one week. The experiment, which also includes 66 CTD stations and 500 water samples (salinity, chlorophyll and nutrients), was designed to capture the intense but transient vertical exchanges associated with mesoscale and submesoscale features. The vertical motion associated with mesoscale and submesoscale features such as ocean eddies, filaments and fronts plays a major role in determining ocean productivity, due to the exchange of properties between the surface and the ocean interior. Understanding the relationship between these physical and biological processes is crucial for predicting the marine ecosystems response to changes in the climate system and to sustainable marine resource management. However, to understand the links between mesoscale and submesoscale features and ecosystem responses, it is necessary to collect data at a range of temporal and spatial scales, and then combine these data with coupled physical and biochemical models. Data from thermosalinograph revealed a sharp surface salinity front with values ranging from 36.6 (Atlantic Waters) to 38.2 (Mediterranean Waters) in conjunction with a filament in temperature. Drifters followed a massive anticyclonic gyre. Near real time data from ADCP showed coherent patterns with currents up to 1m/s. Gliders detected a subduction of chlorophyll located in areas adjacent to the front. We also present results on the horizontal strain rate, relative vorticity and quasi-geostrophic vertical motion to understand the dynamics of this intense ocean front.

  19. Numerical Modeling of physical-biological interactions in the Alboran Sea with a submesoscale-resolving model

    NASA Astrophysics Data System (ADS)

    Sánchez Garrido, José Carlos; Naranjo Rosa, Cristina; Sammartino, Simone; Macias Moy, Diego

    2014-05-01

    Ageostrophic motion, such those associated to internal hydraulic jumps, propagating nonlinear internal waves, and submesoscale vortices, are recognized to efficiently supply nutrients to the euphotic zone and thereby fuel biological productivity. These processes are ubiquitous in the Strait of Gibraltar and the adjacent Alboran Sea, and therefore are expected to play an important role in the overall biomass budget of the basin. This has been investigated with a three-dimensional, tidally-forced, high-resolution model [O(1km)] ocean model embedded with an ecosystem NPZD module. We found that tidal mixing in the Strait of Gibraltar enhances remarkably local primary production and drive a net flow of biomass to the Alboran Sea. Additionally, tides also cause an inflow of nutrients confined to the photic layer, which increase further the Alboran Sea biomass through the enhancement of local primary productivity. Subinertial accelerations of the Atlantic flow are also found to temporary enhance biological productivity through the advection of shear vorticity (and submesoscale eddies) from the Strait to the Alboran Sea.

  20. Tomographic imaging beneath Alboran sea and surrounding areas (southern Iberian Peninsula and northern Morocco)

    NASA Astrophysics Data System (ADS)

    Serrano, I.; Morales, J.

    2009-04-01

    The main aim of this study is to provide a detailed analysis of the structure of the crust and upper mantle below the Iberian Peninsula, Morocco and surrounding regions using the results of global seismic tomography. We have developed a detailed three-dimensional velocity structure of this region to 700-km depth using P-wave arrival times from more than 15,000 local and regional earthquakes and 145 teleseismic events. For teleseismic events we handpicked P-wave arrival times from high-quality original seismograms from 2000 to 2005 belonging to the Andalusian Seismic Network. We also handpicked data from seismic stations belonging to the GSN (Global Seismic Network) and monitored by IRIS. All events are located between 30° and 90° from the seismic networks. This new data set is superior, in terms of both station density and arrival time accuracy, to that used in previous studies because of the higher sensitivity of the seismographs monitored by the new broad band network of the Andalusian Institute of Geophysics. In this study we modified the original tomographic method of Zhao et al. (1992) to combine teleseismic residuals with local and regional earthquake arrival times in tomographic inversions. Several bodies of high P-wave seismic velocity are located between 5 and 15 km depth and the magnetic and gravimetric data indicate superposition of bodies at different depths in this zone with a complex geological structure. Pronounced low-velocity anomalies characterize the upper crust near the Strait of Gibraltar, both in Spain and Morocco, which could be interpreted as a sedimentary basin or crustal deformation in the flysch regions. Two high-velocity anomalies were obtained in the Alboran Sea, the first, located in the middle of the basin could be related to the existence of high density lithologies, while the second, situated in the eastern Rif and trending NE-SW, could be related to the NE-SW trending magnetic anomaly in the eastern Rif. One of the most robust

  1. Atmospheric patterns driving Holocene productivity in the Alboran Sea (Western Mediterranean): a multiproxy approach.

    NASA Astrophysics Data System (ADS)

    Ausin, Blanca; Flores, Jose-Abel; Sierro, Francisco Javier; Cacho, Isabel; Hernández-Almeida, Iván; Martrat, Belén; Grimalt, Joan

    2014-05-01

    This study is aimed to reconstruct productivity during the Holocene in the Western Mediterranean as well as to investigate what processes account for its short-term variability. Fossil coccolithophore assemblages have been studied along with Mg/Ca and Uk'37-estimated Sea Surface Temperature (SST) and other paleoenvironmental proxies. The study site is located in a semi-permanent area of upwelling in the Alboran Sea. This productive cell is of special interest since is closely related to local hydrological dynamics driven by the entering Atlantic Jet (AJ). The onset of this productive cell is suggested at 7.7 ka cal. B.P. and linked to the establishment of the anticyclonic gyres. From 7.7 ka cal. BP to present, the N ratio and accumulation rate of Florisphaera profunda show successive upwelling and stratification events. This alternation is simultaneous to changes in the Western Mediterranean Deep Water (WMDW) formation rate in the Gulf of Lions [Frigola et al., 2007], along with changes in Mg/Ca-estimated SST, relative abundance of reworked nannoliths, pollen grains record [Fletcher et al., 2012] and n-hexacosan-1-ol index. Two scenarios are proposed to explain short-term climatic and oceanographic variability: [1] Wetter climate and weaker north-westerlies blowing over the Gulf of Lions trigger a slackening of the WMDW formation. Consequently, a minor AJ inflows the Alboran Sea leading to less vertical mixing and a deepening of the nutricline and hence, long-term stratification events. [2] Arid climate and stronger north-westerlies enable WMDW reinforcement. In turn, increased AJ triggers vertical mixing and nutricline shoaling, and therefore, productive periods. Finally, changes in atmospheric patterns (e.g. the winter North Atlantic Oscillation; [Olsen et al., 2012]) prove to be useful in explaining the WMDW formation in the Gulf of Lions and associated short-term productivity variations in the Alboran Sea. References Fletcher, W. J., M. Debret, and M. F

  2. Active hydrocarbon (methane) seepage at the Alboran Sea mud volcanoes indicated by specific lipid biomarkers.

    NASA Astrophysics Data System (ADS)

    Lopez-Rodriguez, C.; Stadnitskaia, A.; De Lange, G. J.; Martínez-Ruiz, F.; Comas, M.; Sinninghe Damsté, J. S.

    2012-04-01

    AOM in the mud breccias. Preliminary δ13C measurements of crocetane/phytane reveal depleted values (from -65.4‰ to -36.6‰), supporting the existence of AOM in these MVs. The absence of the specific GDGT signal in combinations with other indications for AOM may suggest that predominantly ANME-2 archaea, which do not produce GDGTs, are responsible for AOM in the Northern Mud Volcano Field from the Alboran Sea. In summary, our biomarker study reveals: 1) the northern Alboran mud volcanoes derives from similar source rocks containing thermally immature organic-matter; 2) The organic-matter present in the extruded materials is affected by methane-rich fluids from low-activity seepage. Acknowledgements: Projects GASALB-CTM2009-07715, TOPOMED-CGL2008-03474 and CONSOLIDER-CSD2006-00041 (MICINN and FEDER funds, Spain)

  3. Origin of lipid biomarkers in mud volcanoes from the Alboran Sea, western Mediterranean

    NASA Astrophysics Data System (ADS)

    López-Rodríguez, C.; Stadnitskaia, A.; De Lange, G. J.; Martínez-Ruíz, F.; Comas, M.; Sinninghe Damsté, J. S.

    2013-11-01

    Mud volcanoes (MVs) are the most prominent indicators of active methane/hydrocarbon venting at the seafloor on both passive and active continental margins. Their occurrence in the Western Mediterranean is patent at the West Alboran Basin, where numerous MVs develop overlaying a major sedimentary depocenter containing overpressured shales. Although some of these MVs have been studied, the detailed biogeochemistry of expelled mud so far has not been examined in detail. This work provides the first results on the composition and origin of organic matter, Anaerobic Oxidation of Methane (AOM) processes and general characteristics on MV dynamics using lipid biomarkers as the main tool. Lipid biomarker analysis was performed on MV expelled material (mud breccias) and interbedded hemipelagic sediments from Perejil, Kalinin and Schneider's Heart MVs located in the northwest margin of the Alboran Sea. The n-alkane-distributions and n-alkane-derived indices (CPI and ACL), in combination with the epimerization degree of hopanes (22S/(22S + 22R)) indicate that all studied mud breccia have a similar biomarker composition consisting of mainly thermally immature organic matter with an admixture of petroleum-derived compounds. This concordant composition indicates that common source strata must feed all three studied MVs. The past or present AOM activity was established using lipid biomarkers specific for anaerobic methanotropic archaea (irregular isoprenoids and DGDs) and the depleted carbon isotope composition (δ13C) of crocetane/phytane. The presence of these lipid biomarkers, together with the low amounts of detected GDGTs, is consistent with the dominance of anaerobic methanotrophs of the ANME-2 over ANME-1, at least in mud breccia from Perejil MVs. In contrast, the scarce presence or lack of these AOM-related lipid biomarkers in sediments from Kalinin and Schneider's Heart MVs, suggest no recent active methane seepage has occurred at these sites. Moreover, the observed

  4. Consequences of a future climatic scenario for the anchovy fishery in the Alboran Sea (SW Mediterranean): A modeling study

    NASA Astrophysics Data System (ADS)

    Macías, D.; Castilla-Espino, D.; García-del-Hoyo, J. J.; Navarro, G.; Catalán, I. A.; Renault, L.; Ruiz, J.

    2014-07-01

    The Alboran basin is one of the most productive areas of the Mediterranean Sea and supports an anchovy fishery with a history of remarkably variable landings. Past and present anchovy recruitment levels are highly sensitive to changes in the strength and direction of the incoming jet of Atlantic waters, which modulate the hydrographic features of the basin. Here, we analyze plausible consequences for the anchovy fisheries in the region based on a projected physical scenario for the end of the century obtained using a coupled hydrological-biogeochemical model. Our model predicts a substantial increase in horizontal water velocity and a negligible change in the associated biological production, which likely indicates reductions in anchovy stock, catches and revenues. Alternative policies are analyzed here for the economic scenario that is expected to emerge under future conditions of oceanographic features, pelagic ecosystem dynamics and anchovy landings in the Alboran Sea.

  5. Processes driving submarine landslide geohazards in Alboran Sea: A complex interaction between fluid pressure, contouritic sedimentation and seismicity

    NASA Astrophysics Data System (ADS)

    Lafosse, M.; Gorini, C.

    2015-12-01

    The active Eurasia-Nubia plate boundary runs across the Alboran Sea in the Western Mediterranean Sea. Earthquakes of magnitude Mw >6, fluid escape and thick accumulations are potential triggers of submarine landslides along the Alboran contouritic margins. Over the last decade, international collaboration between Spanish, French and Moroccan marine geologists working has allowed a large amount of high-resolution multibeam and multi- and single channel seismic data to be collected from the Alboran Sea. Multibeam and echosounder data collected during the SARAS Eurofleet cruise reveal the distribution of slope failures along the northern flank of the Xauen-Tofiño bank along the Moroccan margin and the southern flank of the Alboran ridge. Those highs are active folds located on both sides of the Trans Alboran Shear Zone (TASZ). Here we provide a detailed mapping and description of the morphology of the Xauen-Tofiño landslides, including volumetric estimates of the failed mass and the related mass transport deposits over the last 2 myr. The most voluminous Holocene landslide mobilized ~0.5 km3 of sediment at the initial stage of slope failure, and formed a ~2.2-2.4 km3 mass transport deposit. Twenty-eight and thirty-eight Mass Transport Deposits (MTD) were described from the Xauen and Tofiño banks, respectively. Boreholes analysis of ODP sites 976 and 979 allowed the calibration of some of the reflectors and relative ages of the pulses of tectonic activity and MTD's events. Active uplift pulses are observed at 1.19, 0.79 and 0.46 Ma for the Alboran ridge, and at 1.19 and 0.79 Ma for the Xauen-Tofiño Bank. We compute different parameters for each MTD's from the literature, including the volume of sediments involved and the porosity, thanks to physical laws. For few MTD's, we also map associated slump scars and compute parameters such as the run-off and the volume of sediments, deduced from the scar with a simple geometric reconstitution of the paleo-topography. The

  6. Origin of lipid biomarkers in mud volcanoes from the Alboran Sea, western Mediterranean

    NASA Astrophysics Data System (ADS)

    López-Rodríguez, C.; Stadnitskaia, A.; De Lange, G. J.; Martínez-Ruíz, F.; Comas, M.

    2014-06-01

    Mud volcanoes (MVs) are the most prominent indicators of active methane/hydrocarbon venting at the seafloor on both passive and active continental margins. Their occurrence in the western Mediterranean is patent at the West Alboran Basin, where numerous MVs develop overlaying a major sedimentary depocentre containing overpressured shales. Although some of these MVs have been studied, the detailed biogeochemistry of expelled mud so far has not been examined in detail. This work provides the first results on the composition and origin of organic matter, anaerobic oxidation of methane (AOM) processes and general characteristics on MV dynamics using lipid biomarkers as the main tool. Lipid biomarker analysis was performed on MV expelled material (mud breccias) and interbedded hemipelagic sediments from Perejil, Kalinin and Schneider's Heart MVs located in the northwest margin of the Alboran Sea. The n alkane distributions and n alkane-derived indices (CPI and ACL), in combination with the epimerization degree of hopanes (22S/(22S+22R)) indicate that all studied mud breccia have a similar biomarker composition consisting of mainly thermally immature organic matter with an admixture of petroleum-derived compounds. This concordant composition indicates that common source strata must feed all three studied MVs. The past or present AOM activity was established using lipid biomarkers specific for anaerobic methanotrophic archaea (irregular isoprenoids and dialkyl glycerol diethers) and the depleted carbon isotope composition (δ13C) of crocetane/phytane. The presence of these lipid biomarkers, together with the low amounts of detected glycerol dialkyl glycerol tetraethers, is consistent with the dominance of anaerobic methanotrophs of the ANME-2 over ANME-1, at least in mud breccia from Perejil MVs. In contrast, the scarce presence or lack of these AOM-related lipid biomarkers in sediments from Kalinin and Schneider's Heart MVs, suggests that no recent active methane seepage

  7. Seismicity and active tectonics in the Alboran Sea, Western Mediterranean: Constraints from an offshore-onshore seismological network and swath bathymetry data

    NASA Astrophysics Data System (ADS)

    Grevemeyer, Ingo; Gràcia, Eulàlia; Villaseñor, Antonio; Leuchters, Wiebke; Watts, Anthony B.

    2015-12-01

    Seismicity and tectonic structure of the Alboran Sea were derived from a large amphibious seismological network deployed in the offshore basins and onshore in Spain and Morocco, an area where the convergence between the African and Eurasian plates causes distributed deformation. Crustal structure derived from local earthquake data suggests that the Alboran Sea is underlain by thinned continental crust with a mean thickness of about 20 km. During the 5 months of offshore network operation, a total of 229 local earthquakes were located within the Alboran Sea and neighboring areas. Earthquakes were generally crustal events, and in the offshore domain, most of them occurred at crustal levels of 2 to 15 km depth. Earthquakes in the Alboran Sea are poorly related to large-scale tectonic features and form a 20 to 40 km wide NNE-SSW trending belt of seismicity between Adra (Spain) and Al Hoceima (Morocco), supporting the case for a major left-lateral shear zone across the Alboran Sea. Such a shear zone is in accord with high-resolution bathymetric data and seismic reflection imaging, indicating a number of small active fault zones, some of which offset the seafloor, rather than supporting a well-defined discrete plate boundary fault. Moreover, a number of large faults known to be active as evidenced from bathymetry, seismic reflection, and paleoseismic data such as the Yusuf and Carboneras faults were seismically inactive. Earthquakes below the Western Alboran Basin occurred at 70 to 110 km depth and hence reflected intermediate depth seismicity related to subducted lithosphere.

  8. Fueling plankton production by a meandering frontal jet: a case study for the Alboran Sea (Western Mediterranean).

    PubMed

    Oguz, Temel; Macias, Diego; Garcia-Lafuente, Jesus; Pascual, Ananda; Tintore, Joaquin

    2014-01-01

    A three dimensional biophysical model was employed to illustrate the biological impacts of a meandering frontal jet, in terms of efficiency and persistency of the autotrophic frontal production, in marginal and semi-enclosed seas. We used the Alboran Sea of the Western Mediterranean as a case study. Here, a frontal jet with a width of 15-20 km, characterized by the relatively low density Atlantic water mass, flows eastward within the upper 100 m as a marked meandering current around the western and the eastern anticyclonic gyres prior to its attachment to the North African shelf/slope topography of the Algerian basin. Its inherent nonlinearity leads to the development of a strong ageostrophic cross-frontal circulation that supplies nutrients into the nutrient-starved euphotic layer and stimulates phytoplankton growth along the jet. Biological production is larger in the western part of the basin and decreases eastwards with the gradual weakening of the jet. The higher production at the subsurface levels suggests that the Alboran Sea is likely more productive than predicted by the satellite chlorophyll data. The Mediterranean water mass away from the jet and the interiors of the western and eastern anticyclonic gyres remain unproductive. PMID:25372789

  9. Microfossils, a Key to Unravel Cold-Water Carbonate Mound Evolution through Time: Evidence from the Eastern Alboran Sea

    PubMed Central

    Stalder, Claudio; Vertino, Agostina; Rosso, Antonietta; Rüggeberg, Andres; Pirkenseer, Claudius; Spangenberg, Jorge E.; Spezzaferri, Silvia; Camozzi, Osvaldo; Rappo, Sacha; Hajdas, Irka

    2015-01-01

    Cold-water coral (CWC) ecosystems occur worldwide and play a major role in the ocean's carbonate budget and atmospheric CO2 balance since the Danian (~65 m.y. ago). However their temporal and spatial evolution against climatic and oceanographic variability is still unclear. For the first time, we combine the main macrofaunal components of a sediment core from a CWC mound of the Melilla Mounds Field in the Eastern Alboran Sea with the associated microfauna and we highlight the importance of foraminifera and ostracods as indicators of CWC mound evolution in the paleorecord. Abundances of macrofauna along the core reveal alternating periods dominated by distinct CWC taxa (mostly Lophelia pertusa, Madrepora oculata) that correspond to major shifts in foraminiferal and ostracod assemblages. The period dominated by M. oculata coincides with a period characterized by increased export of refractory organic matter to the seafloor and rather unstable oceanographic conditions at the benthic boundary layer with periodically decreased water energy and oxygenation, variable bottom water temperature/density and increased sediment flow. The microfaunal and geochemical data strongly suggest that M. oculata and in particular Dendrophylliidae show a higher tolerance to environmental changes than L. pertusa. Finally, we show evidence for sustained CWC growth during the Alleröd-Younger-Dryas in the Eastern Alboran Sea and that this period corresponds to stable benthic conditions with cold/dense and well oxygenated bottom waters, high fluxes of labile organic matter and relatively strong bottom currents PMID:26447699

  10. Microfossils, a Key to Unravel Cold-Water Carbonate Mound Evolution through Time: Evidence from the Eastern Alboran Sea.

    PubMed

    Stalder, Claudio; Vertino, Agostina; Rosso, Antonietta; Rüggeberg, Andres; Pirkenseer, Claudius; Spangenberg, Jorge E; Spezzaferri, Silvia; Camozzi, Osvaldo; Rappo, Sacha; Hajdas, Irka

    2015-01-01

    Cold-water coral (CWC) ecosystems occur worldwide and play a major role in the ocean's carbonate budget and atmospheric CO2 balance since the Danian (~65 m.y. ago). However their temporal and spatial evolution against climatic and oceanographic variability is still unclear. For the first time, we combine the main macrofaunal components of a sediment core from a CWC mound of the Melilla Mounds Field in the Eastern Alboran Sea with the associated microfauna and we highlight the importance of foraminifera and ostracods as indicators of CWC mound evolution in the paleorecord. Abundances of macrofauna along the core reveal alternating periods dominated by distinct CWC taxa (mostly Lophelia pertusa, Madrepora oculata) that correspond to major shifts in foraminiferal and ostracod assemblages. The period dominated by M. oculata coincides with a period characterized by increased export of refractory organic matter to the seafloor and rather unstable oceanographic conditions at the benthic boundary layer with periodically decreased water energy and oxygenation, variable bottom water temperature/density and increased sediment flow. The microfaunal and geochemical data strongly suggest that M. oculata and in particular Dendrophylliidae show a higher tolerance to environmental changes than L. pertusa. Finally, we show evidence for sustained CWC growth during the Alleröd-Younger-Dryas in the Eastern Alboran Sea and that this period corresponds to stable benthic conditions with cold/dense and well oxygenated bottom waters, high fluxes of labile organic matter and relatively strong bottom currents.

  11. Microfossils, a Key to Unravel Cold-Water Carbonate Mound Evolution through Time: Evidence from the Eastern Alboran Sea.

    PubMed

    Stalder, Claudio; Vertino, Agostina; Rosso, Antonietta; Rüggeberg, Andres; Pirkenseer, Claudius; Spangenberg, Jorge E; Spezzaferri, Silvia; Camozzi, Osvaldo; Rappo, Sacha; Hajdas, Irka

    2015-01-01

    Cold-water coral (CWC) ecosystems occur worldwide and play a major role in the ocean's carbonate budget and atmospheric CO2 balance since the Danian (~65 m.y. ago). However their temporal and spatial evolution against climatic and oceanographic variability is still unclear. For the first time, we combine the main macrofaunal components of a sediment core from a CWC mound of the Melilla Mounds Field in the Eastern Alboran Sea with the associated microfauna and we highlight the importance of foraminifera and ostracods as indicators of CWC mound evolution in the paleorecord. Abundances of macrofauna along the core reveal alternating periods dominated by distinct CWC taxa (mostly Lophelia pertusa, Madrepora oculata) that correspond to major shifts in foraminiferal and ostracod assemblages. The period dominated by M. oculata coincides with a period characterized by increased export of refractory organic matter to the seafloor and rather unstable oceanographic conditions at the benthic boundary layer with periodically decreased water energy and oxygenation, variable bottom water temperature/density and increased sediment flow. The microfaunal and geochemical data strongly suggest that M. oculata and in particular Dendrophylliidae show a higher tolerance to environmental changes than L. pertusa. Finally, we show evidence for sustained CWC growth during the Alleröd-Younger-Dryas in the Eastern Alboran Sea and that this period corresponds to stable benthic conditions with cold/dense and well oxygenated bottom waters, high fluxes of labile organic matter and relatively strong bottom currents. PMID:26447699

  12. Characterization of the sub-mesoscale energy cascade in the Alboran Sea thermocline from spectral analysis of multichannel seismic data

    NASA Astrophysics Data System (ADS)

    Sallares, Valenti; Moncada, Jhon F.; Biescas, Berta; Klaeschen, Dirk

    2016-04-01

    Large-scale ocean dynamics is linked to small-scale mixing by means of turbulence, which enables the exchange of kinetic energy across the scales. At equilibrium, the energy flux that is injected at the production range must be balanced by mixing at the dissipation range. While the physics of the different ranges is now well established, an observational gap exists at the 103-101 m scale that prevents to characterize the transition from the anisotropic internal wave motions to isotropic turbulence. This lack of empirical evidence limits our understanding of the mechanisms governing the downward energy cascade, hampering the predictive capability of ocean circulation models. Here we show that this observational gap can be covered using high-resolution multichannel seismic (HR-MCS) data. Spectral analysis of acoustic reflectors imaged in the Alboran Sea (Western Mediterranean) thermocline evidences that this transition is caused by shear instabilities. In particular, we show that the averaged horizontal wavenumber (kx) spectra of the reflector's vertical displacements display three subranges that reproduce theoretical spectral slopes of internal waves [λx>100 m, with λx=kx-1], Kelvin-Helmholtz (KH)-type shear instabilities[100 m> λx>33 m], and turbulence[λx<33 m]. The presence of the transitional subrange in the averaged spectrum indicates that the whole chain of events is occurring continuously and simultaneously in the surveyed area. The availability of a system providing observational data at the appropriate scales opens new perspectives to incorporate small-scale mixing in predictive ocean modelling research.

  13. Geochemical proxies for reconstructing climate variability in marginal basins: the Alboran Sea record

    NASA Astrophysics Data System (ADS)

    Martinez-Ruiz, Francisca; Kastner, Miriam; Gallego-Torres, David; Rodrigo-Gámiz, Marta; Nieto-Moreno, Vanesa; Jiménez-Espejo, Francisco J.; Ortega-Huertas, Miguel

    2014-05-01

    High sedimentation rate sediment sections in the Alboran Sea basin (westernmost Mediterranean) have provided excellent paleoarchives for reconstructing past climate variability. The following diverse proxies have been used for such reconstruction, molecular biomarkers, stable and radiogenic isotopes, microfossil assemblages, sediment grain size, and mineral and chemical composition of marine sediments. The elemental ratios have revealed to be reliable paleoclimate proxies. Al-normalized concentrations of detrital elements have allowed to characterize the terrigenous inputs into this basin. Ti/Al, Zr/Al and Si/Al ratios have served as proxies for eolian dust input, and Mg/Al, K/Al and Rb/Al ratios have provided information on fluvial contribution. An in-depth interpretation of these terrigenous element proxies requires knowledge of the mineral composition. Redox sensitive elements have also provided a reliable reconstruction of oxygen conditions at the time of deposition, though these elements are particularly susceptible to diagenetic remobilization, and certain elements, such as U, may also be linked to organic matter, which affects bulk U concentrations. Regarding productivity, even though most of the paleoproductivity reconstructions are based on Ba proxies, the biogeochemistry of Ba is not fully understood and the mechanisms for barite precipitation in the water column are not yet known. Over the past 20,000 cal yr BP, ratios mirroring eolian input indicate a major input of dust from the end of the Last Glacial Maximum to the Oldest Dryas. Mg/Al, K/Al and Rb/Al ratios record humid conditions during the subsequent Bölling-Alleröd warm period, further supported by the decrease in the Zr/Al ratio. These ratios have also allowed a detailed reconstruction of paleoclimate conditions during the Younger Dryas and the Holocene. Ratios of redox sensitive elements such as U/Th, Zn/Al, Cu/Al, and V/Al ratios also show significant fluctuations in oxygen conditions over

  14. Seasonal and inter-annual changes in the planktonic communities of the northwest Alboran Sea (Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Mercado, Jesús M.; Cortés, Dolores; García, Alberto; Ramírez, Teodoro

    2007-08-01

    The response of the northwestern Alboran Sea pelagic ecosystem to temporal changes in hydrological conditions has been examined for the time period of 1992-2002. In addition, the bottom-up linkages between the lower trophic levels and the growth and nutritional status of sardine larvae were examined using quarterly data from 1992 to 2002 within the frame of the monitoring Project ECOMALAGA. The study area was characterised by the almost permanent presence of an upwelling which was intensified in the spring period. Consequently, an annual peak of nutrients was usually found during this season when the nitrate concentration averaged 1.35 μM. Accordingly, chlorophyll- a concentration and cell abundance of micro- plus nano-phytoplankton increased in that season (1.51 μg L -1 and 446 cell mL -1 compared to 0.85 μg L -1 and 225 cell mL -1 obtained from summer to fall). Despite these seasonal changes, the analysis of the taxonomic composition of the phytoplankton communities did not reveal a clear annual succession pattern. Contrastingly, peaks of zooplankton abundance were obtained in summer (1964 ind m -3) due to the increased presence of brachiopods with respect to copepods (which dominated from fall to spring). Significant inter-annual changes were obtained in the phytoplankton and zooplankton communities. Thus, dinoflagellate and coccolitophorid abundances relative to diatom abundances tended to increase from 1997 to 2002. This trend matched the progressive reduction of the upwelling intensity. These inter-annual changes significantly affected the larval growth of Sardine pilchardus and their nutritional condition, as higher growth rates in terms of body length coupled to higher somatic mass increases (expressed by DNA content) occurred in spring, matching with the higher chlorophyll- a concentration. Furthermore, the highest larval growth was obtained in 2001, coinciding with the change observed in the composition of phytoplankton community.

  15. Scenarios for earthquake-generated tsunamis on a complex tectonic area of diffuse deformation and low velocity: The Alboran Sea, Western Mediterranean

    USGS Publications Warehouse

    Alvarez-Gomez, J. A.; Aniel-Quiroga, I.; Gonzalez, M.; Olabarrieta, M.; Carreno, E.

    2011-01-01

    The tsunami impact on the Spanish and North African coasts of the Alboran Sea generated by several reliable seismic tsunamigenic sources in this area was modeled. The tectonic setting is complex and a study of the potential sources from geological data is basic to obtain probable source characteristics. The tectonic structures considered in this study as potentially tsunamigenic are: the Alboran Ridge associated structures, the Carboneras Fault Zone and the Yusuf Fault Zone. We characterized 12 probable tsunamigenic seismic sources in the Alboran Basin based on the results of recent oceanographical studies. The strain rate in the area is low and therefore its seismicity is moderate and cannot be used to infer characteristics of the major seismic sources. These sources have been used as input for the numerical simulation of the wave propagation, based on the solution of the nonlinear shallow water equations through a finite-difference technique. We calculated the Maximum Wave Elevations, and Tsunami Travel Times using the numerical simulations. The results are shown as maps and profiles along the Spanish and African coasts. The sources associated with the Alboran Ridge show the maximum potential to generate damaging tsunamis, with maximum wave elevations in front of the coast exceeding 1.5. m. The Carboneras and Yusuf faults are not capable of generating disastrous tsunamis on their own, although their proximity to the coast could trigger landslides and associated sea disturbances. The areas which are more exposed to the impact of tsunamis generated in the Alboran Sea are the Spanish coast between Malaga and Adra, and the African coast between Alhoceima and Melilla. ?? 2011 Elsevier B.V.

  16. A new diagnosis of the genus Delectona (Porifera, Demospongiae), with a description of a new species from the Alboran Sea (western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Rosell, D.

    1996-12-01

    A redescription of the genus Delectona is provided, based on information gained by the finding of a new species, D. alboransis, from the Alboran Sea (southwestern Mediterranean Sea). Up to now, this genus contained only one species: Delectona higgini, from the Indian Ocean, which has not been recorded since 1880. The presence of megascleres in the new species and the different ranges of amphiaster lengths of the two species are the main features allowing a differentiation. In addition, the excavating capability of sponges of this genus is questioned, following the observations on the external morphology of D. alboransis. Our results support the hypothesis of other authors that some areas of the circalittoral level of the Alboran Sea may represent a redoubt of relict species with Indo-Pacific affinities.

  17. Tectonic and stratigraphic evolution of the Western Alboran Sea basin since the last 25 Myrs

    NASA Astrophysics Data System (ADS)

    Do Couto, Damien; Gorini, Christian; Jolivet, Laurent; Lebret, Noëmie; Augier, Romain; Gumiaux, Charles; D'Acremont, Elia; Ammar, Abdellah; Auxietre, Jean-Luc

    2016-04-01

    The Western Alboran Basin (WAB) formation has always been a matter of debate and was either considered as a backarc or a forearc basin. Based on stratigraphic analysis of high-resolution 2D seismic profiles mostly located offshore Morocco, the tectonic and stratigraphic history of the WAB is clarified. A thick pre-rift sequence is observed beneath the Miocene basin and interpreted as the topmost Malaguide/Ghomaride complex composing the Alboran domain. The structural position of this unit compared with the HP-LT exhumed Alpujarride/Sebtide metamorphic basement, leads us to link the Early Miocene subsidence of the basin with an extensional detachment. Above the Early Miocene, a thick Serravallian sequence marked by siliciclastic deposits is nearly devoid of extensional structures. Its overall landward to basinward onlap geometry indicates that the WAB has behaved as a sag basin during most of its evolution, from the Serravallian to the Late Tortonian. Tectonic reconstructions in map view and cross-section further suggest that the basin has always represented a strongly subsiding topographic low without internal deformation that has migrated westward together with the retreating slab. We propose that the subsidence of the WAB was controlled by the pull of the dipping subducting lithosphere explaining the large thickness (10 km) of the mostly undeformed sedimentary infill.

  18. Tectonic and stratigraphic evolution of the Western Alboran Sea Basin in the last 25 Myrs

    NASA Astrophysics Data System (ADS)

    Do Couto, Damien; Gorini, Christian; Jolivet, Laurent; Lebret, Noëmie; Augier, Romain; Gumiaux, Charles; d'Acremont, Elia; Ammar, Abdellah; Jabour, Haddou; Auxietre, Jean-Luc

    2016-05-01

    The Western Alboran Basin (WAB) formation has always been the subject of debate and considered either as a back-arc or a forearc basin. Stratigraphic analyses of high-resolution 2D seismic profiles mostly located offshore Morocco, enabled us to clarify the tectonic and stratigraphic history of the WAB. The thick pre-rift sequence located beneath the Miocene basin is interpreted as the topmost Malaguide/Ghomaride complex composing the Alboran domain. The structural position of this unit compared with the HP-LT exhumed Alpujarride/Sebtide metamorphic basement, leads us to link the Early Miocene subsidence of the basin with an extensional detachment. Above the Early Miocene, a thick Serravallian sequence marked by siliciclastic deposits is nearly devoid of extensional structures. Its overall landward to basinward onlap geometry indicates that the WAB has behaved as a sag basin during most of its evolution from the Serravallian to the late Tortonian. Tectonic reconstructions in map view and in cross section further suggest that the basin has always represented a strongly subsiding topographic low without internal deformation that migrated westward together with the retreating slab. We propose that the subsidence of the WAB was controlled by the pull of the dipping subducting lithosphere hence explaining the considerable thickness (10 km) of the mostly undeformed sedimentary infill.

  19. Highly diverse molluscan assemblages of Posidonia oceanica meadows in northwestern Alboran Sea (W Mediterranean): Seasonal dynamics and environmental drivers

    NASA Astrophysics Data System (ADS)

    Urra, Javier; Mateo Ramírez, Ángel; Marina, Pablo; Salas, Carmen; Gofas, Serge; Rueda, José L.

    2013-01-01

    The seasonal dynamics of the molluscan fauna associated with the westernmost populations of the Mediterranean seagrass Posidonia oceanica, has been studied throughout an annual cycle in the northwestern coasts of the Alboran Sea. Samples were collected seasonally (5 replicated per season) using a non-destructive sampling technique (airlift sampler) on quadrats of 50 × 50 cm at 2 sites located 7 km apart. Several environmental variables from the water column (temperature, chlorophyll a), the sediment (percentage of organic matter) and the seagrass meadows (shoot density, leaf height and width, number of leaves per shoot) were also measured in order to elucidate their relationships with the dynamics of the molluscan assemblages. In these meadows, a total of 17,416 individuals of molluscs were collected, belonging to 71 families and 171 species, being Rissoidae, Pyramidellidae and Trochidae the best-represented families, and Mytilidae, Nassaridae and Trochidae the dominant ones in terms of abundance. The assemblages were dominated by micro-algal grazers, filter feeders and ectoparasites (including those feeding on sessile preys). The species richness and the abundance displayed significant maximum values in summer, whereas evenness and diversity displayed maximum values in spring, being significant for the evenness. Both abundance and species richness values were positively correlated to seawater temperature and percentage organic matter, only for the latter, and negatively to leaf width. Significant seasonal groupings were obtained with multivariate analyses (MDS, Cluster, ANOSIM) using qualitative and quantitative data that could be mainly related to biological aspects (i.e. recruitment) of single species. The molluscan assemblages are influenced by the biogeographical location of the area (Alboran Sea), reflected in the absence or scarcity of most Mediterranean species strictly associated with P. oceanica (e.g. Tricolia speciosa, Rissoa ventricosa) and by the

  20. Atmospheric-induced variability of hydrological and biogeochemical signatures in the NW Alboran Sea. Consequences for the spawning and nursery habitats of European anchovy

    NASA Astrophysics Data System (ADS)

    Macías, D.; Catalán, I. A.; Solé, J.; Morales-Nin, B.; Ruiz, J.

    2011-12-01

    The north-western Alboran Sea is a highly dynamic region in which the hydrological processes are mainly controlled by the entrance of the Atlantic Jet (AJ) through the Strait of Gibraltar. The biological patterns of the area are also related to this variability in which atmospheric pressure distributions and wind intensity and direction play major roles. In this work, we studied how changes in atmospheric forcing (from high atmospheric pressure over the Mediterranean to low atmospheric pressure) induced alterations in the physical and biogeochemical environment by re-activating coastal upwelling on the Spanish shore. The nursery area of European anchovy ( Engraulis encrasicolus) in the NW Alboran Sea, confirmed to be the very coastal band around Malaga Bay, did not show any drastic change in its biogeochemical characteristics, indicating that this coastal region is somewhat isolated from the rest of the basin. Our data also suggests that anchovy distribution is tightly coupled to the presence of microzooplankton rather than mesozooplankton. Finally, we use detailed physical and biological information to evaluate a hydrological-biogeochemical coupled model with a specific hydrological configuration to represent the Alboran basin. This model is able to reproduce the general circulation patterns in the region forced by the AJ movements only including two variable external forcings; atmospheric pressure over the western Mediterranean and realistic wind fields.

  1. The seasonal cycle of the Atlantic Jet dynamics in the Alboran Sea: direct atmospheric forcing versus Mediterranean thermohaline circulation

    NASA Astrophysics Data System (ADS)

    Macias, Diego; Garcia-Gorriz, Elisa; Stips, Adolf

    2016-02-01

    The Atlantic Jet (AJ) is the inflow of Atlantic surface waters into the Mediterranean Sea. This geostrophically adjusted jet fluctuates in a wide range of temporal scales from tidal to subinertial, seasonal, and interannual modifying its velocity and direction within the Alboran Sea. At seasonal scale, a clearly defined cycle has been previously described, with the jet being stronger and flowing towards the northeast during the first half of the year and weakening and flowing more southwardly towards the end of the year. Different hypothesis have been proposed to explain this fluctuation pattern but, up to now, no quantitative assessment of the importance of the different forcings for this seasonality has been provided. Here, we use a 3D hydrodynamic model of the entire Mediterranean Sea forced at the surface with realistic atmospheric conditions to study and quantify the importance of the different meteorological forcings on the velocity and direction of the AJ at seasonal time scale. We find that the direct effects of local zonal wind variations are much more important to explain extreme collapse events when the jet dramatically veers southward than to the seasonal cycle itself while sea level pressure variations over the Mediterranean seem to have very little direct effect on the AJ behavior at monthly and longer time scales. Further model results indicate that the annual cycle of the thermohaline circulation is the main driver of the seasonality of the AJ dynamics in the model simulations. The annual cycles in local wind forcing and SLP variations over the Mediterranean have no causal relationship with the AJ seasonality.

  2. Architectures of the Moroccan continental shelf of the Alboran Sea: insights from high-resolution bathymetry and seismic data.

    NASA Astrophysics Data System (ADS)

    Lafosse, Manfred; Gorini, Christian; Leroy, Pascal; d'Acremont, Elia; Rabineau, Marina; Ercilla, Gemma; Alonso, Belén; Ammar, Abdellah

    2016-04-01

    The MARLBORO and the SARAS oceanographic surveys have explored the continental shelf in the vicinity of the transtensive Nekor basin (South Alboran Sea, Western Mediterranean) and over three submarine highs located at several tens of kilometers from the shelf. Those surveys have produced high-resolution (≤29m²/pixel) bathymetry maps. Simultaneously, seismic SPARKER and TOPAS profiles were recorded. To quantify and understand Quaternary vertical motions of this tectonically active area, we searched for morphological and sedimentary paleobathymetric or paleo-elevations markers. Shelf-edge wedges associated marine terraces and paleo-shorelines have been identified on the bathymetry and on seismic cross-sections. These features reflect the trends of long term accommodation variations. Along the Moroccan continental shelf the lateral changes of shelf-edges geometries and the spatial distribution of marine landforms (sedimentary marine terraces, sediment wave fields, marine incisions) reflect the interaction between sea level changes and spatial variations of subsidence rates. Positions of paleo-shorelines identified in the studied area have been correlated with the relative sea-level curve (Rohling et al., 2014). Several still stands or slow stands periods have been recognized between -130-125m, -100-110m and -85-80m. The astronomical forcing controls the architecture of Mediterranean continental shelves. Marine landforms distribution also reveals the way sea level changed since the LGM. The comparison with observations on other western Mediterranean margins (e.g. the Gulf of Lion, the Ionian-Calabrian shelf) allowed a first order access to vertical motion rates.

  3. Role of the Alboran Sea volcanic arc choking the Mediterranean to the Messinian salinity crisis and foundering biota diversification in North Africa and Southeast Iberia

    NASA Astrophysics Data System (ADS)

    Booth-Rea, Guillermo; Ranero, Cesar R.; Grevemer, Ingo

    2016-04-01

    The Mediterranean Sea desiccated ~5.96 million years ago when it became isolated from the world oceans during the Messinian salinity crisis. This event permitted the exchange of terrestrial biota between Africa and Iberia contributing to the present rich biodiversity of the Mediterranean region. The cause chocking the Mediterranean has been proposed to be tectonic uplift and dynamic topography but the driving mechanism still remains debated. We present a new wide-angle seismic profile that provides a detailed image of the thickness and seismic velocity distribution of the crust in the eastern Alboran basin. The velocity model shows a characteristic structure of a subduction-related volcanic arc with a high-velocity lower crust and a 16-18 km total-thickness igneous crust that magmatic accreted mostly between ~10-6 Ma across the eastern Alboran basin. Estimation of the isostatically corrected depth of the arc crust taking into account the original thermal structure and sediment-loading subsidence since 6 Ma places a large area of the eastern Alboran basin above sea level at the time. This estimation is supported by geophysical data showing subaereal erosional unconformities for that time. This model may explain several up-to-now-disputed features of the Messinian salinity crisis, including: the progressive isolation of the Mediterranean since 7.1 Ma with the disappearance of open marine taxa, the existence of evaporites mostly to the east of the volcanic arc, the evidence that the Gibraltar straits were not a land bridge offered by continuous Messinian open marine sediments at ODP site 976 in the western Alboran basin, the importance of southeastern Iberia and North Africa as centres of biota diversification since before the salinity crisis, and patterns of speciation irradiating from SE Iberia and the eastern Rif in some taxons.

  4. Characterization of the submesoscale energy cascade in the Alboran Sea thermocline from spectral analysis of high-resolution MCS data

    NASA Astrophysics Data System (ADS)

    Sallares, Valenti; Mojica, Jhon F.; Biescas, Berta; Klaeschen, Dirk; Gràcia, Eulàlia

    2016-06-01

    Part of the kinetic energy that maintains ocean circulation cascades down to small scales until it is dissipated through mixing. While most steps of this downward energy cascade are well understood, an observational gap exists at horizontal scales of 103-101 m that prevents characterizing a key step in the chain: the transition from anisotropic internal wave motions to isotropic turbulence. Here we show that this observational gap can be covered using high-resolution multichannel seismic (HR-MCS) data. Spectral analysis of acoustic reflectors imaged in the Alboran Sea thermocline shows that this transition is likely caused by shear instabilities. In particular, we show that the averaged horizontal wave number spectra of the reflectors vertical displacements display three subranges that reproduce theoretical spectral slopes of internal waves (λx > 100 m), Kelvin-Helmholtz-type shear instabilities (100 m > λx > 33 m), and turbulence (λx < 33 m), indicating that the whole chain of events is occurring continuously and simultaneously in the surveyed area.

  5. Deep Chlorophyll Maximum distribution in the Alboran sea and its relationship with mesoscale and frontal features through syncronous glider observations.

    NASA Astrophysics Data System (ADS)

    Olita, Antonio; Ribotti, Alberto; Ruiz, Simon; Pascual, Ananda

    2015-04-01

    May 25 2014, two gliders were launched in the framework of the multiplatform and multidisciplinary experiment in the Alboran sea named ALBOREX (a PERSEUS project sampling) and of the JERICO TNA FRIPP project. The two instruments glided for 6 days, during which ADCP, ship based CTD, ARGO floats and surface drifters also sampled surface to deep waters allowing, togheter with bottle water samples, to collect a comprehensive dataset of oceanographic multidisciplinary quasi-synoptic data at (sub-)mesoscale. This preliminary work presents the results related to the two glider launched at approximatively 20 km each other. The two gliders intercepted in their pathway a frontal structure belonging to the northern margin of a quite large and strong anticyclonic structure originating by the meandering of Atlantic Waters entering in Mediterranean through Gibraltar. The vertical structure of Chlorophyll-a (as derived by fluorimeter measurements) shows the area of subsidence across the front and the deepening of isolines in the eddy interior. The analysis of the relatively low-cost glider data, combined with synoptic satellite measurements, shed light on the dynamics determining the re-distribution of the phytoplanktonic biomass and provide pretious hints, combined with dissolved oxygen data also collected by the unmanned autonomous vehicles, about the influence of such dynamical features on Primary Production.

  6. Last glacial to Holocene productivity and oxygen changes based on benthic foraminiferal assemblages from the western Alboran Sea

    NASA Astrophysics Data System (ADS)

    Pérez-Asensio, José N.; Cacho, Isabel; Frigola, Jaime; Pena, Leopoldo D.; Asioli, Alessandra; Kuhlmann, Jannis; Huhn, Katrin

    2016-04-01

    Late glacial to Holocene productivity and oxygen changes in the Alboran Sea were investigated analyzing benthic foraminiferal assemblages from the marine sediment core HER-GC-UB06. This 255 cm-long core was recovered at 946 m water depth in the Alboran Sea (western Mediterranean Sea) and includes homogeneous greyish clays from the last 23 ka. Nowadays, the core site is bathed by the Western Mediterranean Deep Water (WMDW) and near the overlying Levantine Intermediate Water (LIW). Benthic foraminifera from the size fraction >63 μm were identified at species level and counted until reaching at least 300 individuals. Q-mode principal component analyses (PCA) was performed to establish benthic foraminiferal assemblages. In addition, benthic foraminifera were classified according to their microhabitat preferences. Diversity was assessed with several diversity indices. Four benthic foraminiferal assemblages have been identified along the core. The distribution of these assemblages records changes in productivity and oxygen conditions during the last 23 ka. The last glacial and deglaciation interval, 23-12.5 ka, shows low diversity and is characterized by the Nonionella iridea assemblage, which includes Cassidulina laevigata, Bolivina dilatata, Nonionoides turgida and Cibicides pachyderma as secondary taxa. This assemblage can be interpreted as a moderately oxygenated mesotrophic environment with episodic pulses of fresh organic matter. Although general mesotrophic conditions prevail, the Last Glacial Maximum shows a more oligotrophic and better oxygenated setting as suggested by higher abundance of epifaunal-shallow infaunal taxa. In contrast, along the Bølling-Allerød eutrophic conditions with higher productivity and lower oxygenation are recorded by a deep infaunal taxa maximum. During the Younger Dryas (YD) and the earliest Holocene (12.5-10.5 ka), the Bolivina dilatata assemblage dominates coinciding with a lower diversity, especially during the YD. This species

  7. The Messinian erosional surface and early Pliocene reflooding in the Alboran Sea: New insights from the Boudinar basin, Morocco

    NASA Astrophysics Data System (ADS)

    Cornée, Jean-Jacques; Münch, Philippe; Achalhi, Mohammed; Merzeraud, Gilles; Azdimousa, Ali; Quillévéré, Frédéric; Melinte-Dobrinescu, Mihaela; Chaix, Christian; Moussa, Abdelkhalak Ben; Lofi, Johanna; Séranne, Michel; Moissette, Pierre

    2016-03-01

    New investigations in the Neogene Boudinar basin (Morocco) provide new information about the Messinian Salinity Crisis (MSC) and Zanclean reflooding in the southern part of the Alboran realm (westernmost Mediterranean). Based on a new field, sedimentological and palaeontological analyses, the age and the geometry of both the Messinian erosional surface (MES) and the overlying deposits have been determined. The MES is of late Messinian age and was emplaced in subaerial settings. In the Boudinar basin, a maximum of 200 m of Miocene sediments was eroded, including late Messinian gypsum blocks. The original geometry of the MES is preserved only when it is overlain by late Messinian continental deposits, conglomeratic alluvial fans or lacustrine marly sediments. These sediments are interpreted as indicators of the sea-level fall during the MSC. Elsewhere in the basin, the contact between late Messinian and early Pliocene deposits is a low-angle dipping, smooth surface that corresponds to the early Pliocene transgression surface that subsequently re-shaped the regressive MES. The early Pliocene deposits are characterized by: (i) their onlap onto either the basement of the Rif chain or the late Miocene deposits; (ii) lagoonal deposits at the base to offshore marls and sands at the top (earliest Pliocene; 5.33-5.04 Ma interval; foraminifer zone PL1); (iii) marine recovery occurring in the 5.32-5.26 Ma interval; and (iv) the change from lagoonal to offshore environments occurring within deposits tens of metres thick. This information indicates that at least the end of the reflooding period was progressive, not catastrophic as previously thought.

  8. Morphology of Submarine Canyons in the Palomares Margin (East of Alboran Sea, western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Perez-Hernandez, S.; Comas, M. C.; Escutia, C.

    2009-04-01

    . Longitudinal profiles show convex-up sections along the tributary system and concave-up sections from the merge in the main canyon down slope. The transition from an erosional canyon to a depositional channel is located at 2100m water depth. The mouth of the Alias-Almanzora Canyon-channel system is characterized by distributaries channels and lobated features. Morphological analyses from these Canyons indicate they have different origin and evolution. The connection of the Alias-Almanzora Canyon to a fluvial drainage system offshore suggests the canyon formed by erosion of the continental shelf edge during sea-level low stand periods, when entrapment of sediment on deltas and reduced sediment transport through submarine canyons occurred. The Gata Canyon has instead developed by head wards erosion and gravitational instabilities. Both canyon systems are highly influenced by recent tectonics, and structural trends influence their location and changes in pathways. Contribution from Projects SAGAS CTM2005-08071-03-01 and TOPO-IBERIA CSD2006-00041 (R & D National Plan of the Ministry of Science and Technology and FEDER funding, Spain).

  9. Cold-water coral carbonate mounds and associated habitats of the Chella Seamount (Alboran Sea - SW Mediterranean)

    NASA Astrophysics Data System (ADS)

    Lo Iacono, C.; Bartolomé, R.; Gràcia, E.; Monteys, X.; Perea, H.; Gori, A.; Event-Shelf Team

    2009-04-01

    This study focuses on the characterization of cold-water carbonate mounds and of the associated habitats detected and mapped in the Chella Seamount, off the Almeria Margin, along the eastern Alboran Sea (SW Mediterranean). The study has been carried out by means of an integrated geophysical dataset, comprising large-scale sidescan sonar (TOBI), high resolution swath-bathymetry, TOPAS and Sparker high-resolution seismics. The acoustic dataset has been ground-truthed by images from an ROV and a deep-towed video-camera. Carbonate mounds range from 10 to 60 m in height and from 150 to 250 m in width, typically displaying a sub-circular shape. They are found within a depth range of 80-400 m and generally occur along the structural ridges of the Chella Seamount. Some of the mounds are distributed NW-SE and N-S, coinciding with the orientation of the active fault lineations observed North and West of the study area. On the other hand, the orientation of some other mounds suggests that the presence of strong bottom currents and reduced sedimentary fluxes are environmental factors suitable for their development. The images obtained from video inspections have been key for the characterization of the benthic communities and abundance of the species identified along the mounds. Video stills suggest that most of the mounds are in a "sub-fossil" stage and are mainly composed of patchy distributed Madrepora oculata and Lophelia pertusa. Additionally, other environments have been detected, in which sponges, boulders, coarse sands and bedforms prevail. Wide and dense patches of gorgonian (Callogorgia verticillata) have been observed along the top of the Chella Seamount. The integration of different marine geophysical methods supported by ground-truthing calibrations, allowed to recognize in detail the structural, sedimentary and hydrodynamic constrains suitable for the development of cold-water coral carbonate mounds in the Chella Seamount and to recognize and map some of the

  10. Looking for long-term changes in hydroid assemblages (Cnidaria, Hydrozoa) in Alboran Sea (South-Western Mediterranean): a proposal of a monitoring point for the global warming

    NASA Astrophysics Data System (ADS)

    González-Duarte, Manuel María; Megina, Cesar; Piraino, Stefano

    2014-12-01

    In the last 20-30 years, the temperature of the Mediterranean Sea has increased and global warming is allowing the establishment of tropical-affinity species into more temperate zones. Sessile communities are particularly useful as a baseline for ecological monitoring; however, a lack of historical data series exists for sessile marine organisms without commercial interest. Hydroids are ubiquitous components of the benthic sessile fauna on rocky shores and have been used as bio-indicators of environmental conditions. In this study on the benthic hydroid assemblages of the Chafarinas Islands (Alboran Sea, South-Western Mediterranean), we characterized the hydroid assemblages, identified the bathymetric gradients, and compared them with a previous study carried out in 1991. Hydroid assemblages showed a significant difference both between year and among depths. Furthermore, eight species not present in 1991 were found, including two possible new species and the tropical and subtropical species Sertularia marginata. Due to its strategic position at the entrance of the Mediterranean and the existence of previous data on hydroid assemblages, the Chafarinas Islands are proposed as a possible monitoring point for entrance of Atlantic tropical species into the Mediterranean Sea.

  11. Tectono-sedimentary evolution of the peripheral basins of the Alboran Sea in the arc of Gibraltar during the latest Messinian-Pliocene

    NASA Astrophysics Data System (ADS)

    Guerra-Merchán, Antonio; Serrano, Francisco; Hlila, Rachid; El Kadiri, Khalil; Sanz de Galdeano, Carlos; Garcés, Miguel

    2014-07-01

    In the peripheral basins of the Alboran Sea, five stratigraphic units (latest Messinian-Pliocene) separated by discontinuities and representing transgressive-regressive cycles have been recognized. The first unit (LM) is latest Messinian in age and precisely characterizes the Lago-Mare event at the end of the Messinian Salinity Crisis, i.e. just before the opening of the Strait of Gibraltar at the beginning of the Pliocene. The three following units (Pl-1, Pl-2 and Pl-3) are Zanclean in age, whereas the last one (Pl-4) is Piacenzian. These four Pliocene units consist of alluvial, deltaic, and littoral deposits in the marginal areas, changing to open marine deposits with planktonic components in the basinal areas, although their extension varies in each basin. Regionally, these units do not necessarily stack in a single stratigraphic succession because of tectonics that controlled their hosting basins. Thus, the LM and Pl-1 units occur only in the Malaga and Estepona-Marbella basins, revealing that the onset of the sedimentation after the Messinian evaporitic stage and the Pliocene transgression was not a single and synchronous event in the western Alboran Sea. Moreover, the Pl-3 and Pl-4 units do not appear in all basins, so that the subsequent continentalization process of these Alboran peripheral areas during the Pliocene was also diachronous. The sedimentary evolution of the peripheral basins was controlled mainly by tectonics. During the latest Messinian-early Pliocene, the sedimentation took place in a context marked by a NNW-SSE compression and ENE-WSW perpendicular tension. The onset of the sedimentation (LM and Pl-1 units) could be linked to preexisting E-W faults that mark part of the borders of the Malaga basin and the Estepona-Marbella sector. During the deposition of the Pl-2 unit, the movements of E-W, NW-SE, and NE-SW normal faults determined a continuous subsidence in several basins, resulting in the accumulation of thick clastic marine sequences (i

  12. Crustal and upper mantle shear velocities of Iberia, the Alboran Sea, and North Africa from ambient noise and ballistic finite-frequency Rayleigh wave tomography

    NASA Astrophysics Data System (ADS)

    Palomeras, I.; Villasenor, A.; Thurner, S.; Levander, A.; Gallart, J.; mimoun, H.

    2013-12-01

    The complex Mesozoic-Cenozoic Alpine deformation in the western Mediterranean extends from the Pyrenees in northern Spain to the Atlas Mountains in southern Morocco. The Iberian plate was accreted to the European plate in late Cretaceous, resulting in the formation of the Pyrenees. Cenozoic African-European convergence resulted in subduction of the Tethys oceanic plate beneath Europe. Rapid Oligocene slab rollback from eastern Iberia spread eastward and southward, with the trench breaking into three segments by the time it reached the African coast. One trench segment moved southwestward and westward creating the Alboran Sea, floored by highly extended continental crust, and building the encircling Betics Rif mountains comprising the Gibraltar arc, and the Atlas mountains, which formed as the inversion of a Jurassic rift. A number of recent experiments have instrumented this region with broad-band arrays (the US PICASSO array, Spanish IberArray and Siberia arrays, the University of Munster array), which, including the Spanish, Portuguese, and Moroccan permanent networks, provide a combined array of 350 stations having an average interstation spacing of ~60 km. Taking advantage of this dense deployment, we have calculated the Rayleigh waves phase velocities from ambient noise for short periods (4 s to 40 s) and teleseismic events for longer periods (20 s to 167 s). Approximately 50,000 stations pairs were used to measure the phase velocity from ambient noise and more than 160 teleseismic events to measure phase velocity for longer periods. The inversion of the phase velocity dispersion curves provides a 3D shear velocity for the crust and uppermost mantle. Our results show differences between the various tectonic regions that extend to upper mantle depths (~200 km). In Iberia we obtain, on average, higher upper mantle shear velocities in the western Variscan region than in the younger eastern part. We map high upper mantle velocities (>4.6 km/s) beneath the

  13. Role of structural inheritances and major transfer fault-zones in the tectonic history of the Alboran Basin (Western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Comas, Menchu; Crespo-Blanc, Ana; Balanya, Juan Carlos

    2014-05-01

    The geodynamic evolution of the Gibraltar Arc System (GAS), which involves the origin and development of the Alboran back-arc basin, occurred during the Neogene related to the westward moving of the Alboran Domain (the Betic-Rifean hinterland) within a context of NNW-SSE plate-tectonic convergence. In this contribution we document shallow-crustal structures, deformation partitioning, and the different structural domains from the tectonic framework beneath the Alboran Sea. Furthermore, we focus the critical role of inherited crustal structures and major transfer faults within a coherent sequence of Miocene to Recent deformation phases. Early Miocene extensional processes conditioned substantial thinning and the exhumation of the metamorphic Alboran Domain before the opening of the Alboran Basin. Beneath the Alboran Sea, an ENE-SSW directed back-arc extension (from about 16 to 8.5 Ma, late Burdigalian to late Tortonian) affected both the metamorphic basement (the crustal Alboran Domain) and the overlying Miocene sedimentary units. This extension resulted in major low-angle normal faults, and NNW-SSE trending grabens connected by ENE-SSW transtensional transfer-faults, both happening in concomitance with the westward migration (around 200 km) of the Alboran Domain. The geometry of the extensional structures constrains the manner, timing and amount of the coeval crustal thinning. In the late Tortonian (about 8.5 Ma) a dominant N-S directed compressional phase caused inversions of former extensional faults, discrete folding, and strike-slip faulting. This compressional event triggered the spectacular West Alboran shale-diapirism from over-pressured basal units. At the South and Eastern Alboran and at the transition to the Algeria basins, a pervasive period of NW-SE directed compressional deformation (from about 7 Ma onwards) that affected the whole basin is patent. Long lasting compressional conditions since the late Tortonian resulted in a dramatic structural

  14. Alboran jets, gyres and eddies in a 20-year high resolution simulation

    NASA Astrophysics Data System (ADS)

    Peliz, A.

    2012-04-01

    The circulation of the Alboran Sea has long been described as being in a quasi-steady state composed of the Atlantic Jet meandering on the northern bound of two conspicuous gyres: the Western Alboran Gyre and Eastern Alboran Gyre (WAG and EAG). Changes to this 2 gyre flow system (transitions or transient events) are not very well explored yet. Periodic disappearances of the WAG (collapses or migrations) have been reported, but a single event of WAG migration, observed in fall 1996, is described in detail. These studies suggested that WAG is more likely to disappear in winter after drastic changes in the inflow, and that 2-gyre steady states are essentially observed in summer. The transition periods and the occurrence of smaller eddies are episodically referred in the literature but poorly known. Using a 20 yr 2km resolution Regional Ocean Modeling System simulation of the Gulf of Cadiz-Alboran Sea basins (from the "Inter-basin Exchange in a changing Mediterranean Sea" project MedEX), a classification of the circulation types and mesoscale structures in the Alboran Sea is conducted, characterizing their duration and frequency of occurrence, and temporal evolution. The 2-gyre quasi-steady state (or blocking situation) is confirmed as the most common flow type in the Alboran (occurring during about 42% of the simulation time) and that it is more frequent in summer. However, periods of double gyre flow in winter are also present although the gyre organization is slightly different and this state is described as a 2-gyre winter type. Long stable periods of a single gyre blocking were also identified, and they occupy about 17% of the 20-year period This single gyre usually constitutes a larger version of the WAG somewhat displaced to the east and occurs all year round although it is more common in winter months. The remaining time, the Alboran Sea is in relatively fast evolving flow transitions. The transitions were classified into, WAG migrations (when the WAG clearly

  15. Decompression and high-temperature low-pressure metamorphism in the exhumed floor of an extensional basin, Alboran Sea, western Mediterranean

    NASA Astrophysics Data System (ADS)

    Platt, J. P.; Soto, J. I.; Comas, M. C.; Leg 161 Shipboard Scientists

    1996-05-01

    Leg 161 of the Ocean Drilling Program (ODP) has made a major contribution to our understanding of the origin of the Alboran Basin by demonstrating that it is underlain by rocks of continental origin that have undergone high-temperature metamorphism and melting at exceptionally low pressure after exhumation and decompression. Basement rocks recovered from Site 976 consist of high-grade schist and gneiss derived from aluminous sediments, and minor amounts of marble, granitic dikes, and migmatitic segregations of granitic material. Mineral assemblages and textural relations show that an early assemblage including biotite, garnet, staurolite, plagioclase, and rutile is overprinted by a second assemblage of biotite, sillimanite, plagioclase, potassium feldspar, and ilmenite. Both assemblages are overprinted by andalusite, potassium feldspar, and minor garnet. Migmatitic gneiss contains relict andalusite, overprinted by sillimanite and cordierite coexisting with granitic leucosome. Preliminary pressure-temperature estimates suggest that the metamorphic evolution followed an approximately isothermal decompression path from 7 to 3 kbar at temperatures in the range 580 to 630 °C. After decompression, granitic melts formed at <3 kbar and >670 °C, after andalusite breakdown and within the sillimanite stability field. The cored rocks closely resemble high-grade metamorphic rocks in the adjacent Betic Cordillera of southern Spain, which yield early Miocene radiometric dates. At ODP Site 976 they are overlain by middle Miocene marine sediments. The combination of exhumation in an extensional tectonic environment and the evidence for high and increasing temperature during exhumation provide support for and new constraints on current models for the basin that involve the removal of lithospheric mantle below a zone of continental collision, accompanied or followed by extension.

  16. An integrated multiscale paleoseismic and neotectonic approach of the Carboneras Fault Zone, SE Spain, and its marine continuation in the Alboran Sea

    NASA Astrophysics Data System (ADS)

    Moreno, X.; Masana, E.; Gracia, E.; Bartolome, R.; Lo Iacono, C.; Rodés, A.; Pallàs, R.

    2009-12-01

    The slow convergence (4-5 mm/yr) between the African and Iberian plates characterises the southeastern Iberian Peninsula and surrounding margins with a wide zone of low to intermediate magnitude seismicity. Shortening is mainly accommodated by a left-lateral strike-slip fault system referred to as Eastern Betics Shear Zone (EBSZ). The NE-SW trending Carboneras Fault Zone (CFZ) with 50 km onshore and more than 100 km offshore is one of the longest structures of the EBSZ. Despite the low seismicity associated to this fault, its morphostructure reveals Quaternary activity, suggesting long recurrence (104 years) behaviour, as found in adjacent structures. Geomorphologic, microtopographic, trenching and dating analyses along the onshore La Serrata section show faulted Quaternary alluvial fans and colluvial wedges related to paleoearthquakes. Trench walls evidence a minimum of 6 events since the Mid Pleistocene. The 3 younger events occurred during the last 41.5 ka, suggesting a mean recurrence period of 13.5 ka. A faulted and buried paleochannel records a minimum of 2 events during the last 30 ka and constrain the last earthquake to AD 772-889. The horizontal maximum displacement observed for the paleochannel is 3 m, suggesting a minimum strike-slip rate of 0.1 mm/a for the last 30 ka, smaller than the 0.6 mm/a strike-slip rate calculated for the last 200 ka by displaced valleys across the NW boundary of La Serrata. This change in the slip-rate can be explained by an underestimation of the paleochannel displacement rate or by a decrease in the strike-slip rate throughout the Quaternary. Detailed bathymetric data from fault segments offshore show differences in the surface expression, and high resolution multi-channel and single-channel seismic profiles reveal the deep structure. From the shelf towards the SW, N45 trace with poor surface expression corresponds to a 2 km wide positive flower structure which smoothly turns into a single and then a couple of parallel traces

  17. Miocene magmatism and tectonics within the Peri-Alboran orogen (western Mediterranean)

    NASA Astrophysics Data System (ADS)

    El Azzouzi, M.; Bellon, H.; Coutelle, A.; Réhault, J.-P.

    2014-07-01

    The aim of this paper concerns Miocene igneous activity in the Alboran Sea and Peri-Alboran area (northern Morocco, western Algeria and Betic Cordilleras in Spain), considering its age and its location with regard to major tectonics structures. We have compiled previous K-Ar isotopic ages of lavas and plutonic boulders and intrusives with an error of ±1σ and completed this set by a new K-Ar isotopic age for andesitic tuffites from Alboran Island. Geochemistry of most of these samples has been considered after previous analyses completed with new data for Spain magmatism. These two sets of data allow us to place the magmatic activity within the regional stratigraphy and tectonics and their chronological framework of the three major tectonic phases of the Maghrebian orogen, at 17 Ma (Burdigalian), 15 Ma (Langhian) and 9 Ma (Tortonian). Petro-geochemical characteristics are compared through time and geographical locations. A major goal of this coupled approach is to help the elaboration of possible geodynamical processes. As an application, we present the case study of the Dellys, Djinet and Thenia region (east of Algiers) where the successive magmatic events between 19.4 ± 1 and 11.6 ± 0.5 Ma are closely related to the local tectonics and sedimentation. The Peri-Alboran igneous activity is placed in a multidisciplinary framework. Timing of activity is defined according to the ages of the neighbouring sedimentary units and the K-Ar ages of igneous rocks. In Spain, the Cabo de Gata-Carboneras magmatic province displays late Oligocene and early Miocene leucogranitic dikes, dated from 24.8 ± 1.3 to 18.1 ± 1.2 Ma; three following andesitic to rhyolitic events took place around 15.1 ± 0.8 to 14.0 ± 0.7 Ma, 11.8 ± 0.6 to 9.4 ± 0.4 Ma, 8.8 ± 0.4 to 7.9 ± 0.4 Ma; this last event displays also granitic rocks. Lamproitic magmas dated between 8.4 ± 0.4 and 6.76 ± 0.04 Ma were emplaced after the Tortonian phase. In Morocco, after the complex building of the Ras Tarf

  18. Structure of the mantle beneath the Alboran Basin from magnetotelluric soundings

    NASA Astrophysics Data System (ADS)

    Garcia, X.; Seillé, H.; Elsenbeck, J.; Evans, R. L.; Jegen, M.; Hölz, Sebastian; Ledo, J.; Lovatini, A.; Marti, A.; Marcuello, A.; Queralt, P.; Ungarelli, C.; Ranero, C. R.

    2015-12-01

    We present results of marine MT acquisition in the Alboran sea that also incorporates previously acquired land MT from southern Spain into our analysis. The marine data show complex MT response functions with strong distortion due to seafloor topography and the coastline, but inclusion of high resolution topography and bathymetry and a seismically defined sediment unit into a 3-D inversion model has allowed us to image the structure in the underlying mantle. The resulting resistivity model is broadly consistent with a geodynamic scenario that includes subduction of an eastward trending plate beneath Gibraltar, which plunges nearly vertically beneath the Alboran. Our model contains three primary features of interest: a resistive body beneath the central Alboran, which extends to a depth of ˜150 km. At this depth, the mantle resistivity decreases to values of ˜100 Ohm-m, slightly higher than those seen in typical asthenosphere at the same depth. This transition suggests a change in slab properties with depth, perhaps reflecting a change in the nature of the seafloor subducted in the past. Two conductive features in our model suggest the presence of fluids released by the subducting slab or a small amount of partial melt in the upper mantle (or both). Of these, the one in the center of the Alboran basin, in the uppermost-mantle (20-30 km depth) beneath Neogene volcanics and west of the termination of the Nekkor Fault, is consistent with geochemical models, which infer highly thinned lithosphere and shallow melting in order to explain the petrology of seafloor volcanics.

  19. Impacts of reprocessed altimetry on the surface circulation and variability of the Western Alboran Gyre

    NASA Astrophysics Data System (ADS)

    Juza, Mélanie; Escudier, Romain; Pascual, Ananda; Pujol, Marie-Isabelle; Taburet, Guillaume; Troupin, Charles; Mourre, Baptiste; Tintoré, Joaquín

    2016-08-01

    New altimetry products in semi-enclosed seas are of major interest given the importance of the coastal-open ocean interactions. This study shows how reprocessed altimetry products in the Mediterranean Sea from Archiving, Validation and Interpolation of Satellite Oceanographic data (AVISO) have improved the representation of the surface circulation over the 1993-2012 period. We focus on the Alboran Sea, which is the highest mesoscale activity area of the western Mediterranean. The respective impacts of the new mean dynamic topography (MDT) and mapped sea level anomaly (MSLA) on the description of the Western Alboran Gyre (WAG) are quantitatively evaluated. The temporal mean and variability of the total kinetic energy have been significantly increased in the WAG considering both the new MDT and MSLA (by more than 50%). The new MDT has added 39% to the mean kinetic energy, while the new MSLA has increased the eddy kinetic energy mean (standard deviation) by 53% (30%). The new MSLA has yielded higher variability of total (eddy) kinetic energy, especially in the annual frequency band by a factor of 2 (3). The MDT reprocessing has particularly increased the low-frequency variability of the total kinetic energy by a factor of 2. Geostrophic velocities derived from the altimetry products have also been compared with drifter data. Both reprocessed MDT and MSLA products intensify the velocities of the WAG making them closer to the in situ estimations, reducing the root mean square differences and increasing the correlation for the zonal and meridional components. The results obtained using refined coastal processing of altimetry products and new observational data are very encouraging to better understand the ocean circulation variability and coastal-open ocean interactions, and for potential improvements in other sub-basins, marginal seas and coastal global ocean.

  20. Plio-Quaternary tectonic evolution off Al Hoceima, Moroccan Margin of the Alboran Basin.

    NASA Astrophysics Data System (ADS)

    Lafosse, Manfred; d'Acremont, Elia; Rabaute, Alain; Mercier de Lépinay, Bernard; Gorini, Christian; Ammar, Abdellah; Tahayt, Abdelilah

    2015-04-01

    We use data from a compilation of industrial and academic 2D surveys and recent data from MARLBORO-1 (2011), MARLBORO-2 (2012), and SARAS (2012) surveys, which provide high resolution bathymetry and 2D seismic reflexion data. We focus on the key area located south of the Alboran Ridge and the Tofiño Bank, and encompassing the Nekor and Boudinar onshore-offshore basins on the Moroccan side of the Alboran Sea. The Nekor basin is a present pull-apart basin in relay between inherited N050° sinistral strike-slip faults. We consider that these faults define the Principal Displacement Zones (PDZ). The northern PDZ marks the position of the crustal Bokkoya fault, which is connected to the Al-Idrisi Fault Zone en relais with the Adra and Carboneras Fault Zones. On the seabed, right-stepping non-coalescent faults characterize the sinistral kinematics of the northern PDZ and give a general N050° azimuth for the crustal discontinuity. The southern PDZ corresponds to the Nekor fault Zone, a Miocene sinistral strike-slip fault acting as the structural limit of the External Rif. On its eastern edge, the Nekor basin is bounded by the N-S onshore-offshore Trougout fault, connecting the northern and the southern PDZ. The western boundary of the Nekor basin is marked by the Rouadi and El-Hammam Quaternary active N-S normal faults. In the offshore Nekor basin, recent N155° conjugated normal faults affect the seabed. Further east, the Boudinar basin is a Plio-Quaternary uplifted Neogene basin. The northeastern segment of the Nekor fault bounds this basin to the south but is inactive in the Quaternary. Normal east-dipping N150° faults are visible offshore in the continuity of the Boudinar fault. From our perspective, the orientation of major tectonic structures (Bokkoya, Nekor and Carboneras faults and the Alboran ridge) under the present compressive regime due to the Europe/Africa convergence is not compatible with a strike-slip motion. The orientation of the most recent Plio

  1. Timing and modes of granite magmatism in the core of the Alboran Domain, Rif chain, northern Morocco: Implications for the Alpine evolution of the western Mediterranean

    NASA Astrophysics Data System (ADS)

    Rossetti, Federico; Theye, Thomas; Lucci, Federico; Bouybaouene, Mohamed L.; Dini, Andrea; Gerdes, Axel; Phillips, David; Cozzupoli, Domenico

    2010-04-01

    The Betic-Rif orogen forms the western termination of the Alpine orogenic system in the Mediterranean region. The precise timing, structural evolution, and distribution of high-grade metamorphic units (Alpine versus pre-Alpine) in the inner zones of the orogen (Alboran Domain) remain controversial issues. In this paper we report occurrence of distinct generations of peraluminous granitic bodies intruded within Beni Bousera peridotites and their amphibolite-to-granulite facies envelope, in the core of the Alboran Domain of the Rif chain (northern Morocco). These granitic bodies are central to the reconstruction of the high-grade evolution of the Alboran Domain because they provide first-order structural markers to assess the P-T-t deformation history of the high-grade terranes. Here we document the petrography and structural relationships with the host rocks and constrain the timing of granite emplacement using laser ablation-inductively coupled plasma-mass spectrometry U-Pb zircon and/or monazite dating, complemented by 40Ar/39Ar dating. The results indicate that granite emplacement occurred in two major episodes of anatectic magmatism, during the Hercynian (circa 300 Ma) and Alpine (circa 22 Ma) periods, respectively. These data (1) provide conclusive evidence for an important phase of Hercynian magmatism and high-grade metamorphism in the Alboran Domain and (2) permit a revaluation of the significance of the high-grade early Miocene event documented in the Alboran Domain in terms of a late stage, thermal pulse that reworked a polymetamorphic (Hercynian and Alpine) nappe pile. These results provide new constraints for construction of a feasible tectonometamorphic model for the Alpine evolution of the western Mediterranean.

  2. Magmatic evolution of the Alboran region: The role of subduction in forming the western Mediterranean and causing the Messinian Salinity Crisis

    NASA Astrophysics Data System (ADS)

    Duggen, Svend; Hoernle, Kaj; van den Bogaard, Paul; Harris, Chris

    2004-01-01

    The magmatic evolution of the Alboran region (westernmost Mediterranean) contains important clues for improving our understanding of the origin of Mediterranean-style back-arc basins and the desiccation of the Mediterranean Sea in the Messinian. We use new laser 40Ar/ 39Ar age and geochemical (major and trace element and O-Sr-Nd-Pb isotope) data from igneous rocks from southern Spain, the Alboran Sea and northern Morocco to reconstruct the magmatic evolution of the westernmost Mediterranean since the Eocene. Lower Oligocene dikes near Malaga (33.6±0.6 Ma) and Middle to Upper Miocene volcanic rocks from the Alboran Sea area (6.57±0.04 to 11.8±0.4 Ma) can be subdivided into two groups: (1) LREE-depleted (relative to N-MORB), primarily tholeiitic series, and (2) LREE-enriched, primarily calc-alkaline series volcanic rocks. Both groups are generally enriched in fluid-mobile elements (e.g. Rb, Th, U, K and Pb) relative to fluid-immobile elements (e.g. Nb, Ta, LREE). The LREE-depleted group has 143Nd/ 144Nd (0.5128-0.5130) isotope ratios similar to Atlantic MORB but higher 87Sr/ 86Sr (0.7046-0.7100). In contrast, the LREE-enriched group has less radiogenic Nd (0.5121-0.5126) and tend to more radiogenic Sr (0.7066-0.7205) isotopic composition. Pb isotope ratios are surprisingly uniform and have compositions similar to marine sediments. Analyses of mineral separates show that mafic melts with relatively low δ 18O (5.6-7.2‰) had high 87Sr/ 86Sr (0.7048-0.7088), Δ7/4 (10.6-14.1) and Δ8/4 (40.0-49.3). Modeling of the trace elements and Sr-Nd-Pb-O isotopic compositions provides compelling evidence for the contamination of the mantle source with hydrous fluids/melts, which can be explained through subduction of oceanic lithosphere beneath the Alboran Basin but not through detachment/delamination of lithospheric mantle. We present a geodynamic model that reconstructs the Late Eocene to Quaternary evolution of the western Mediterranean through westward roll-back of

  3. Sea Ice Mapping using Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Solbø, S.; Storvold, R.

    2011-12-01

    Mapping of sea ice extent and sea ice features is an important task in climate research. Since the arctic coastal and oceanic areas have a high probability of cloud coverage, aerial platforms are superior to satellite measurements for high-resolution optical measurements. However, routine observations of sea ice conditions present a variety of problems using conventional piloted aircrafts. Specially, the availability of suitable aircrafts for lease does not cover the demand in major parts of the arctic. With the recent advances in unmanned aerial systems (UAS), there is a high possibility of establishing routine, cost effective aerial observations of sea ice conditions in the near future. Unmanned aerial systems can carry a wide variety of sensors useful for characterizing sea-ice features. For instance, the CryoWing UAS, a system initially designed for measurements of the cryosphere, can be equipped with digital cameras, surface thermometers and laser altimeters for measuring freeboard of ice flows. In this work we will present results from recent CryoWing sea ice flights on Svalbard, Norway. The emphasis will be on data processing for stitching together images acquired with the non-stabilized camera payload, to form high-resolution mosaics covering large spatial areas. These data are being employed to map ice conditions; including ice and lead features and melt ponds. These high-resolution mosaics are also well suited for sea-ice mechanics, classification studies and for validation of satellite sea-ice products.

  4. Medusa Sea Floor Monitoring System

    NASA Technical Reports Server (NTRS)

    Flynn, Michael

    2004-01-01

    The objective of the research described in this poster presentation is to develop technologies to enable fundamental research into understanding the potential for and limits to chemolithoautotrophic life. The Medusa Isosampler (isobaric sampler), for sampling fluids eminating from deep sea hydrothermal vents and cold seep sites analogous to extraterrestrial environments, is described by the presentation. The following instruments are integrated with the isosampler, and also described: in situ flow-through chemical sensor, intrinsic fluorescent-based microbial detector, isotope ratio spectral detector.

  5. The Red Sea Modeling and Forecasting System

    NASA Astrophysics Data System (ADS)

    Hoteit, Ibrahim; Gopalakrishnan, Ganesh; Latif, Hatem; Toye, Habib; Zhan, Peng; Kartadikaria, Aditya R.; Viswanadhapalli, Yesubabu; Yao, Fengchao; Triantafyllou, George; Langodan, Sabique; Cavaleri, Luigi; Guo, Daquan; Johns, Burt

    2015-04-01

    Despite its importance for a variety of socio-economical and political reasons and the presence of extensive coral reef gardens along its shores, the Red Sea remains one of the most under-studied large marine physical and biological systems in the global ocean. This contribution will present our efforts to build advanced modeling and forecasting capabilities for the Red Sea, which is part of the newly established Saudi ARAMCO Marine Environmental Research Center at KAUST (SAMERCK). Our Red Sea modeling system compromises both regional and nested costal MIT general circulation models (MITgcm) with resolutions varying between 8 km and 250 m to simulate the general circulation and mesoscale dynamics at various spatial scales, a 10-km resolution Weather Research Forecasting (WRF) model to simulate the atmospheric conditions, a 4-km resolution European Regional Seas Ecosystem Model (ERSEM) to simulate the Red Sea ecosystem, and a 1-km resolution WAVEWATCH-III model to simulate the wind driven surface waves conditions. We have also implemented an oil spill model, and a probabilistic dispersion and larval connectivity modeling system (CMS) based on a stochastic Lagrangian framework and incorporating biological attributes. We are using the models outputs together with available observational data to study all aspects of the Red Sea circulations. Advanced monitoring capabilities are being deployed in the Red Sea as part of the SAMERCK, comprising multiple gliders equipped with hydrographical and biological sensors, high frequency (HF) surface current/wave mapping, buoys/ moorings, etc, complementing the available satellite ocean and atmospheric observations and Automatic Weather Stations (AWS). The Red Sea models have also been equipped with advanced data assimilation capabilities. Fully parallel ensemble-based Kalman filtering (EnKF) algorithms have been implemented with the MITgcm and ERSEM for assimilating all available multivariate satellite and in-situ data sets. We

  6. Neogene tectonic evolution of the southwestern Alboran Basin as inferred from seismic data off Morocco

    SciTech Connect

    Chalouan, A.; Saji, R.; Michard, A.; Bally, A.W.

    1997-07-01

    The southwestern part of the western Mediterranean Alboran Basin, including part of the Alboran ridge (Xaouen Bank), was investigated through the analysis of 28 intersecting multichannel seismic lines. The seismic stratigraphy is tied to the Amoco well El-Jebha 1. Five seismic units or subunits are described from the Quaternary to the middle (and lower?) Miocene. The acoustic basement is interpreted to be mainly Paleozoic and Triassic metamorphic rocks of the Alboran Domain nappes, and, in places, middle Miocene-Messinian calc-alkalic volcanics. In the depocenters, the thickness of the sedimentary infill (mostly clays and turbidites) exceeds 9 km. Normal faults of middle Miocene-Tortonian age are broadly parallel to the coast, and dip either seaward or landward. They were mostly inverted during pre- and post-Messinian episodes of compression, which formed a set of en echelon, north-verging faulted folds in the Alboran ridge area, in relation with sinistral movement along the offshore projection of the Jebha fault. After Pliocene subsidence, a final episode of compression reactivated the earlier folds and pushed the Alboran ridge onto the Moroccan slope. The complex structural history suggests many structural and stratigraphic potential hydrocarbon traps. A high-resolution seismic survey could lead to the definition of new exploration plays.

  7. Medusa Sea Floor Monitoring System

    NASA Technical Reports Server (NTRS)

    Flynn, Michael

    2005-01-01

    This paper presents viewgraphs on the development of an instrument to enable fundamental research into understanding the potential for and limits to chemolithoautrophic life. The topics include: 1) Background; 2) Relevance to NASA Missions; 3) Technology Requirements; 4) Medusa System Description; 5) Medusa Components; 6) Medusa Science Capabilities; 7) Medusa Capabilities; and 8) Schedule

  8. The ancestral complement system in sea urchins.

    PubMed

    Smith, L C; Clow, L A; Terwilliger, D P

    2001-04-01

    The origin of adaptive immunity in the vertebrates can be traced to the appearance of the ancestral RAG genes in the ancestral jawed vertebrate; however, the innate immune system is more ancient. A central subsystem within innate immunity is the complement system, which has been identified throughout and seems to be restricted to the deuterostomes. The evolutionary history of complement can be traced from the sea urchins (members of the echinoderm phylum), which have a simplified system homologous to the alternative pathway, through the agnathans (hagfish and lamprey) and the elasmobranchs (sharks and rays) to the teleosts (bony fish) and tetrapods, with increases in the numbers of complement components and duplications in complement pathways. Increasing complexity in the complement system parallels increasing complexity in the deuterostome animals. This review focuses on the simplest of the complement systems that is present in the sea urchin. Two components have been identified that show significant homology to vertebrate C3 and factor B (Bf), called SpC3 and SpBf, respectively. Sequence analysis from both molecules reveals their ancestral characteristics. Immune challenge of sea urchins indicates that SpC3 is inducible and is present in coelomic fluid (the body fluids) in relatively high concentrations, while SpBf expression is constitutive and is present in much lower concentrations. Opsonization of foreign cells and particles followed by augmented uptake by phagocytic coelomocytes appears to be a central function for this simpler complement system and important for host defense in the sea urchin. These activities are similar to some of the functions of the homologous proteins in the vertebrate complement system. The selective advantage for the ancestral deuterostome may have been the amplification feedback loop that is still of central importance in the alternative pathway of complement in higher vertebrates. Feedback loop functions would quickly coat

  9. Severe rainfall events over the western Mediterranean Sea: A case study

    NASA Astrophysics Data System (ADS)

    Riesco Martín, Jesús; Mora García, Manuel; de Pablo Dávila, Fernando; Rivas Soriano, Luis

    2013-06-01

    A study of severe rainfall (≥ 100 mm in 24 h) over the Spanish provinces of Malaga, Granada y Almeria (close to the Alboran Sea, the westernmost part of the Mediterranean Sea) has been performed using 5 years (2006-2010) of data. The episodes of heavy rainfall were classified using the moisture flux at the 850 hPa pressure level and the lifted index. This gave three types, associated with situations of intense moisture flux and little static instability, moderate moisture flux and static instability, and moderate moisture flux and strong static instability. Representative cases of each type were analyzed, and it was found that both non-convective (41% of cases) and convective (59% of cases) systems caused the episodes of severe precipitation considered in this study. The convective structures included isolated and persistent convective systems, multicellular convective systems, and mesoscale convective systems.

  10. Ice sheet systems and sea level change.

    NASA Astrophysics Data System (ADS)

    Rignot, E. J.

    2015-12-01

    Modern views of ice sheets provided by satellites, airborne surveys, in situ data and paleoclimate records while transformative of glaciology have not fundamentally changed concerns about ice sheet stability and collapse that emerged in the 1970's. Motivated by the desire to learn more about ice sheets using new technologies, we stumbled on an unexplored field of science and witnessed surprising changes before realizing that most were coming too fast, soon and large. Ice sheets are integrant part of the Earth system; they interact vigorously with the atmosphere and the oceans, yet most of this interaction is not part of current global climate models. Since we have never witnessed the collapse of a marine ice sheet, observations and exploration remain critical sentinels. At present, these observations suggest that Antarctica and Greenland have been launched into a path of multi-meter sea level rise caused by rapid climate warming. While the current loss of ice sheet mass to the ocean remains a trickle, every mm of sea level change will take centuries of climate reversal to get back, several major marine-terminating sectors have been pushed out of equilibrium, and ice shelves are irremediably being lost. As glaciers retreat from their salty, warm, oceanic margins, they will melt away and retreat slower, but concerns remain about sea level change from vastly marine-based sectors: 2-m sea level equivalent in Greenland and 23-m in Antarctica. Significant changes affect 2/4 marine-based sectors in Greenland - Jakobshavn Isb. and the northeast stream - with Petermann Gl. not far behind. Major changes have affected the Amundsen Sea sector of West Antarctica since the 1980s. Smaller yet significant changes affect the marine-based Wilkes Land sector of East Antarctica, a reminder that not all marine-based ice is in West Antarctica. Major advances in reducing uncertainties in sea level projections will require massive, interdisciplinary efforts that are not currently in place

  11. The carbonate system in the Black Sea

    NASA Astrophysics Data System (ADS)

    Goyet, Catherine; Bradshaw, Alvin L.; Brewer, Peter G.

    We have measured both alkalinity and total carbon dioxide on a selected set of Black Sea samples from cruise 134 of R.V. Knorr, using gas extraction/coulometry techniques, and improved titration procedures that permit more accurate data than those obtained in earlier expeditions. Earlier results had shown an apparent excess in alkalinity, by a factor of 1.6, from the stoichiometric ratio predicted from the sequential oxidation of Redfield ratio organic matter by the species O 2, NO 3- and SO 42-. Thus both the nature of the organic substrate and our fundamental knowledge of reaction stoichiometry in anoxic systems were called into question. We show that the total CO 2 balance is consistent, within narrower limits than found earlier, with oxidation of organic matter by sulfate: 2CH 2O+SO 42- → 2HCO 3-+H 2S and consistent with work on sediment interstitial waters in anoxic conditions ( BERNERet al., 1970, Limnology and Oceanography, 15. 544-549: BEN YAAKOV, 1973, Limnology and Oceanography, 18, 86-94). The total CO 2 results are lower by 300 μmol kg -1 in surface waters, and 50 μmol kg -1 in deep waters, than data reported from the 1969 Atlantis II expedition. While changes in Black Sea hydrography have been documented, these CO 2 system changes are far too large to be accounted for by these processes and are more likely the result of improved technique, rather than geochemical evolution.

  12. Sea Ice in the NCEP Climate Forecast System

    NASA Astrophysics Data System (ADS)

    Wu, X.; Grumbine, R. W.

    2015-12-01

    Sea ice is known to play a significant role in the global climate system. For a weather or climate forecast system (CFS), it is important that the realistic distribution of sea ice is represented. Sea ice prediction is challenging; sea ice can form or melt, it can move with wind and/or ocean current; sea ice interacts with both the air above and ocean underneath, it influences by, and has impact on the air and ocean conditions. NCEP has developed coupled CFS (version 2, CFSv2) and carried out CFS reanalysis (CFSR), which includes a coupled model with the NCEP global forecast system, a land model, an ocean model (GFDL MOM4), and a sea ice model. In this work, we present the NCEP coupled model, the CFSv2 sea ice component that includes a dynamic thermodynamic sea ice model and a simple "assimilation" scheme, how sea ice has been assimilated in CFSR, the characteristics of the sea ice from CFSR and CFSv2, and the improvements of sea ice needed for future CFS (version 3) and the CFSR.

  13. Interferometric System for Measuring Thickness of Sea Ice

    NASA Technical Reports Server (NTRS)

    Hussein, Ziad; Jordan, Rolando; McDonald, Kyle; Holt, Benjamin; Huang, John; Kugo, Yasuo; Ishimaru, Akira; Jaruwatanadilok, Semsak; Akins, Torry; Gogineni, Prasad

    2006-01-01

    The cryospheric advanced sensor (CAS) is a developmental airborne (and, potentially, spaceborne) radar-based instrumentation system for measuring and mapping the thickness of sea ice. A planned future version of the system would also provide data on the thickness of snow covering sea ice. Frequent measurements of the thickness of polar ocean sea ice and its snow cover on a synoptic scale are critical to understanding global climate change and ocean circulation.

  14. A closed recirculated sea-water system

    USGS Publications Warehouse

    1967-01-01

    Study of a virus disease in the chinook salmon (Oncorhynchus tshawytscha) necessitated the use of a marine environment to study the long range effects of the disease and to complete the life cycle of its etiologic agent. A closed recirculated sea-water system was designed for use under experimental laboratory conditions so that controlled studies of the disease could be made. As others may wish to do marine environment studies in the laboratory, the design and operation of our system are presented. Other systems currently in use have been described by Chin (1959), DeWitt and Salo (1960), McCrimmon and Berst (1966), and the authors of collected papers edited by Clark and Clark (1964). Preparatory to the design and construction of the system in use in this laboratory, visits were made to marine systems in use at the University of Washington's College of Fisheries, Seattle, -washington, and Friday Harbor Laboratory, San Juan Island, Washington; the Washington State Department of Fisheries' Point whitney Shellfish Laboratory, Brinnon, Washington; Humboldt State College, Arcata, California; and the Steinhart Aquarium of the California Academy of Science, San Francisco, California.

  15. Sea ice in the paleoclimate system: the challenge of reconstructing sea ice from proxies - an introduction

    NASA Astrophysics Data System (ADS)

    de Vernal, Anne; Gersonde, Rainer; Goosse, Hugues; Seidenkrantz, Marit-Solveig; Wolff, Eric W.

    2013-11-01

    Sea ice is an important component of the Earth system with complex dynamics imperfectly documented from direct observations, which are primarily limited to the last 40 years. Whereas large amplitude variations of sea ice have been recorded, especially in the Arctic, with a strikingly fast decrease in recent years partly attributed to the impact of anthropogenic climate changes, little is known about the natural variability of the sea ice cover at multi-decadal to multi-millennial time scales. Hence, there is a need to establish longer sea ice time series to document the full range of sea ice variations under natural forcings. To do this, several approaches based on biogenic or geochemical proxies have been developed from marine, ice core and coastal records. The status of the sea ice proxies has been discussed by the Sea Ice Proxy (SIP) working group endorsed by PAGES during a first workshop held at GEOTOP in Montréal. The present volume contains a set of papers addressing various sea ice proxies and their application to large scale sea ice reconstruction. Here we summarize the contents of the volume, including a table of various proxies available in marine sediments and ice cores, with their possibilities and limitations.

  16. Lithospheric-scale effects of a subduction-driven Alboran plate: improved neotectonic modeling

    NASA Astrophysics Data System (ADS)

    Neres, Marta; Carafa, Michele; Terrinha, Pedro; Fernandes, Rui; Matias, Luis; Duarte, João; Barba, Salvatore

    2016-04-01

    The presence of a subducted slab under the Gibraltar arc is now widely accepted. However, discussion still remains on whether subduction is active and what is its influence in the lithospheric processes, in particular in the observed geodesy, deformation rates and seismicity. Aiming at bringing new insights into the discussion, we have performed a neotectonic numerical study of a segment of the Africa-Eurasia plate boundary, from the Gloria fault to the Northern Algerian margin. Specifically, we have tested the effect of including or excluding an independently driven Alboran plate, i.e. testing active subduction versus inactive subduction (2plates versus 3plates scenarios). We used the dynamic code SHELLS (Bird et al., 2008) to model the surface velocity field and the ongoing deformation, using a new up-to-date simplified tectonic map of the region, new available lithospheric data and boundary conditions determined from two alternative Africa-Eurasia angular velocities, respectively: SEGAL2013, a new pole based on stable Africa and stable Eurasia gps data (last decades); and MORVEL, a geological-scale pole (3.16 Ma). We also extensively studied the variation within the parametric space of fault friction coefficient, subduction resistance and surface velocities imposed to the Alboran plate. The final run comprised a total of 5240 experiments, and each generated model was scored against geodetic velocities, stress direction data and seismic strain rates. The preferred model corresponds to the 3plates scenario, SEGAL2013 pole and fault friction of 0.225, with scoring results: gps misfit of 0.78 mm/yr; SHmax misfit of 13.6° and correlation with seismic strain rate of 0.62, significantly better than previous models. We present predicted fault slip rates for the recognized active structures and off-faults permanent strain rates, which can be used for seismic and tsunami hazard calculations (the initial motivation for this work was contributing for calculation of

  17. Projected climate change impacts to the North Sea marine system

    NASA Astrophysics Data System (ADS)

    Schrum, Corinna

    2015-04-01

    Future climate change impacts to the North Sea marine system are driven by a combination of changes induced by the globally forced oceanic boundary conditions and the regional atmospheric and terrestrial changes. We reviewed the recent progress and the projected future change of the North Sea marine system as part of the North Sea Climate Change Assessment (NOSCCA) and focussed on three major aspects, namely the change of (i) sea level, the (ii) hydrographic and circulation changes of the North Sea and the (iii) changes in lower trophic level dynamics, biogeochemistry and ocean acidification. In recent years more and more regional climate change assessments became available for the North Sea and new developments contributed important understanding on regional processes mediating climate change impacts in the North Sea. Important new knowledge on regional future sea level change was gained by improved understanding of processes contributing to global sea level rise during the last decade. Assessment of climate change impacts to hydrography, circulation and biogeochemistry has benefited from new and advanced downscaling methods. The large number of regional studies enables now a critical review of the current knowledge on climate change impacts on the North Sea and allows the identification of challenges, robust changes, uncertainties and specific recommendations for future research. The long term trends in the climate conditions are superposed on the natural modes of variability and separating these to give a clear anthropogenic climate change signal is one of the 'grand challenges' of climate change impact studies in marine regions and of particular relevance for North Sea. The impact of natural variability on future annual average steric sea level, sea surface temperature and ocean acidification is less dominant compared to the climate change signal and their projected changes for the North Sea, namely rising future sea level, increasing surface temperature and

  18. Baltic Earth - Earth System Science for the Baltic Sea Region

    NASA Astrophysics Data System (ADS)

    Meier, Markus; Rutgersson, Anna; Lehmann, Andreas; Reckermann, Marcus

    2014-05-01

    The Baltic Sea region, defined as its river catchment basin, spans different climate and population zones, from a temperate, highly populated, industrialized south with intensive agriculture to a boreal, rural north. It encompasses most of the Scandinavian Peninsula in the west; most of Finland and parts of Russia, Belarus, and the Baltic states in the east; and Poland and small parts of Germany and Denmark in the south. The region represents an old cultural landscape, and the Baltic Sea itself is among the most studied sea areas of the world. Baltic Earth is the new Earth system research network for the Baltic Sea region. It is the successor to BALTEX, which was terminated in June 2013 after 20 years and two successful phases. Baltic Earth stands for the vision to achieve an improved Earth system understanding of the Baltic Sea region. This means that the research disciplines of BALTEX continue to be relevant, i.e. atmospheric and climate sciences, hydrology, oceanography and biogeochemistry, but a more holistic view of the Earth system encompassing processes in the atmosphere, on land and in the sea as well as in the anthroposphere shall gain in importance in Baltic Earth. Specific grand research challenges have been formulated, representing interdisciplinary research questions to be tackled in the coming years. A major means will be scientific assessments of particular research topics by expert groups, similar to the BACC approach, which shall help to identify knowledge gaps and develop research strategies. Preliminary grand challenges and topics for which Working Groups have been installed include: • Salinity dynamics in the Baltic Sea • Land-Sea biogeochemical feedbacks in the Baltic Sea region • Natural hazards and extreme events in the Baltic Sea region • Understanding sea level dynamics in the Baltic Sea • Understanding regional variability of water and energy exchange • Utility of Regional Climate Models • Assessment of Scenario Simulations

  19. Radiative transfer in atmosphere-sea ice-ocean system

    SciTech Connect

    Jin, Z.; Stamnes, K.; Weeks, W.F.; Tsay, S.C.

    1996-04-01

    Radiative energy is critical in controlling the heat and mass balance of sea ice, which significantly affects the polar climate. In the polar oceans, light transmission through the atmosphere and sea ice is essential to the growth of plankton and algae and, consequently, to the microbial community both in the ice and in the ocean. Therefore, the study of radiative transfer in the polar atmosphere, sea ice, and ocean system is of particular importance. Lacking a properly coupled radiative transfer model for the atmosphere-sea ice-ocean system, a consistent study of the radiative transfer in the polar atmosphere, snow, sea ice, and ocean system has not been undertaken before. The radiative transfer processes in the atmosphere and in the ice and ocean have been treated separately. Because the radiation processes in the atmosphere, sea ice, and ocean depend on each other, this separate treatment is inconsistent. To study the radiative interaction between the atmosphere, clouds, snow, sea ice, and ocean, a radiative transfer model with consistent treatment of radiation in the coupled system is needed and is under development.

  20. The future for the Global Sea Level Observing System (GLOSS) Sea Level Data Rescue

    NASA Astrophysics Data System (ADS)

    Bradshaw, Elizabeth; Matthews, Andrew; Rickards, Lesley; Aarup, Thorkild

    2016-04-01

    Historical sea level data are rare and unrepeatable measurements with a number of applications in climate studies (sea level rise), oceanography (ocean currents, tides, surges), geodesy (national datum), geophysics and geology (coastal land movements) and other disciplines. However, long-term time series are concentrated in the northern hemisphere and there are no records at the Permanent Service for Mean Sea Level (PSMSL) global data bank longer than 100 years in the Arctic, Africa, South America or Antarctica. Data archaeology activities will help fill in the gaps in the global dataset and improve global sea level reconstruction. The Global Sea Level Observing System (GLOSS) is an international programme conducted under the auspices of the WMO-IOC Joint Technical Commission for Oceanography and Marine Meteorology. It was set up in 1985 to collect long-term tide gauge observations and to develop systems and standards "for ocean monitoring and flood warning purposes". At the GLOSS-GE-XIV Meeting in 2015, GLOSS agreed on a number of action items to be developed in the next two years. These were: 1. To explore mareogram digitisation applications, including NUNIEAU (more information available at: http://www.mediterranee.cerema.fr/logiciel-de-numerisation-des-enregistrements-r57.html) and other recent developments in scanning/digitisation software, such as IEDRO's Weather Wizards program, to see if they could be used via a browser. 2. To publicise sea level data archaeology and rescue by: • maintaining and regularly updating the Sea Level Data Archaeology page on the GLOSS website • strengthening links to the GLOSS data centres and data rescue organisations e.g. linking to IEDRO, ACRE, RDA • restarting the sea level data rescue blog with monthly posts. 3. Investigate sources of funding for data archaeology and rescue projects. 4. Propose "Guidelines" for rescuing sea level data. These action items will aid the discovery, scanning, digitising and quality control

  1. A System of Oceanic Reanalysis (SOR) fot the Nordic Seas

    NASA Astrophysics Data System (ADS)

    Pnyushkov, A.

    2009-04-01

    A system of oceanic reanalysis of the Nordic seas (Norwegian, Greenland and Barents seas) directed to the investigations of long period changes in the oceanic climate of the Arctic sub-polar seas was developed. The system of oceanic reanalysys (SOR) includes hybrid coordinate 22-th level ocean model HYCOM [Bleck,2002] and modern oceanographic data assimilation technique based on spectral nudging method. A series of test experiments was carried out and optimal parameters for assimilation routine were choused. These parameters take into account the accuracy of spatial restoring by means objective analysis procedure and phase distortion in modeling fields during monotonous assimilation of monthly distributions. On the basis of modeling results a set of monthly mean hydrological distributions of thermohaline parameters was created for the Nordic seas that was used for climatic field compilations on the standard levels for period 1957-1990. The data of reanalysis system projections allow us to restore the information about structure and dynamic of oceanographic fields for the periods and areas with a small number of direct measurements, for example East-Greenland currents area, north and north-east parts of the Barents sea. A series of additional experiments with SOR were performed directed to the simple assimilation of sea ice concentration data. A significant improvement of the system of objectively analyzed field preparation was done during 2008 including additional validation procedure of gridded arrays with using the direct data of oceanographic stations. This work was supported by Russian Foundation for Basic Research (grant 07-05-00393).

  2. A system for telemetering sea wave parameters

    NASA Astrophysics Data System (ADS)

    Qian, Zhengxu; Jin, Junmo; Suckling, E. E.

    1982-04-01

    A wave staff to be anchored at sea and containing sensing and telemetering equipment is described. This gives a record at the land station of water level changes due to tides and of waves as they pass the staff. The staff is a 13 metre long PCV tube, the upper half comprising a capacitance with inner plate a foil layer, dielectric the tube wall, and outer electrode the sea. Wave direction is obtained by a separate device comprising a raft moored near to the staff. The raft streams behind its mooring and substantially points into the advancing waves and changes its slope as these pass under it. This slope and its direction referred to magnetic north, are telemetered to the land station to give the direction from which the waves arrive.

  3. The monitoring system of the Kazakhstan sector of Caspian Sea

    NASA Astrophysics Data System (ADS)

    Shabanova, Luydmila; Khachaturov, Vladimir; Zlotov, Aleksandr

    2010-05-01

    The monitoring system of the Kazakhstan sector of Caspian Sea The Caspian Sea is the largest closed reservoir in the world, which washes the western part of Kazakhstan. The area of water territory is 371,000 sq km; the sea level is lower than the level of the ocean on 28.5 m (1971). Maximum depth is 1,025m (in the southern part); the Kazakhstan part is not deep, and the depth of the North Caspian sea is about 15-20 m. The Caspian Sea is divided according to physical and geographical conditions to 3 parts - North Caspian, Middle Caspian and South Caspian Sea. Fauna is represented by 1809 species, 415 of which belong to the vertebrates, 101 species of fish, it also has the majority of the world's sturgeon, freshwater fish - roach, carp, pike, saltwater fish - carp, mullet, sprats, Kutum, bream, salmon, perch, pike, mammal - caspian seal. The plant world is represented by 728 species, of which algae are dominated - blue-green, diatoms, red, brown, Stoneworts and others, from flowering - eelgrass and seagrass. Development of sea oil-and-gas deposits of the Kazakhstan sector of Caspian sea entails increase of anthropogenous pressure on the environment. According to preliminary estimates, the volume of recoverable hydrocarbon resources in the Kazakhstan sector of Caspian Sea is about 8.0 billion tons per year. The impact of terrestrial and marine infrastructure, oil and gas facilities on natural systems is reflected in discharges and emissions into the environment of gaseous, solid and liquid pollutants, consumption of natural resources for industrial, farm and household needs, and violation of coastal landscapes. Dangerous influence on the environment is burning natural oil gas on torches. In this regard, there is a need for a system of state monitoring. In a basis of environmental monitoring system of the Kazakhstan sector of Caspian Sea has been put an ecosystem approach, creation of an automated system on the basis of GIS technologies and modeling of forecasts of

  4. Antarctic sea ice carbon dioxide system and controls

    NASA Astrophysics Data System (ADS)

    Fransson, Agneta; Chierici, Melissa; Yager, Patricia L.; Smith, Walker O., Jr.

    2011-12-01

    In austral summer, from December 2008 to January 2009, we investigated the sea-ice carbon dioxide (CO2) system and CO2 controls in the Amundsen and Ross Seas, Antarctica. We sampled seawater, brine and sea ice for the measurements of total alkalinity (AT), total inorganic carbon (DIC), pH, inorganic nutrients, particulate organic carbon (POC) and nitrogen (PON), chlorophyll a, pigments, salinity and temperature. Large variability in all measured parameters was observed in time and space due to the complex sea-ice dynamics. We discuss the controls of the sea-ice CO2 system, such as brine rejection, biological processes, calcium carbonate (CaCO3) precipitation/dissolution and CO2 exchange. Most (80 to 90%) of the DIC loss was due to brine rejection, which suggests that the sea ice acted as an efficient DIC sink from 0.8 and 2.6 mol m-2 yr-1 (9.6-31 g C m-2 yr-1). The remaining change in DIC was to a large extent explained by net biological production. The AT:DIC ratio in the sea ice was higher than in the under-ice water (UIW), with ratios reaching 1.7, which indicated CaCO3 precipitation and concomitant DIC loss in the sea ice. Elevated AT:DIC ratios and carbonate concentrations were also observed in the UIW, which reflect the solid CaCO3 rejected from the ice during melt. The potential for uptake of atmospheric CO2 in the mixed layer increased by approximately 56 μatm due to the combined effect of CaCO3 precipitation during ice formation, and ice melt in summer.

  5. Precise mean sea level measurements using the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Kelecy, Thomas M.; Born, George H.; Parke, Michael E.; Rocken, Christian

    1994-01-01

    This paper describes the results of a sea level measurement test conducted off La Jolla, California, in November of 1991. The purpose of this test was to determine accurate sea level measurements using a Global Positioning System (GPS) equipped buoy. These measurements were intended to be used as the sea level component for calibration of the ERS 1 satellite altimeter. Measurements were collected on November 25 and 28 when the ERS 1 satellite overflew the calibration area. Two different types of buoys were used. A waverider design was used on November 25 and a spar design on November 28. This provided the opportunity to examine how dynamic effects of the measurement platform might affect the sea level accuracy. The two buoys were deployed at locations approximately 1.2 km apart and about 15 km west of a reference GPS receiver located on the rooftop of the Institute of Geophysics and Planetary Physics at the Scripps Institute of Oceanography. GPS solutions were computed for 45 minutes on each day and used to produce two sea level time series. An estimate of the mean sea level at both locations was computed by subtracting tide gage data collected at the Scripps Pier from the GPS-determined sea level measurements and then filtering out the high-frequency components due to waves and buoy dynamics. In both cases the GPS estimate differed from Rapp's mean altimetric surface by 0.06 m. Thus, the gradient in the GPS measurements matched the gradient in Rapp's surface. These results suggest that accurate sea level can be determined using GPS on widely differing platforms as long as care is taken to determine the height of the GPS antenna phase center above water level. Application areas include measurement of absolute sea level, of temporal variations in sea level, and of sea level gradients (dominantly the geoid). Specific applications would include ocean altimeter calibration, monitoring of sea level in remote regions, and regional experiments requiring spatial and

  6. Comprehensive Measurements of Wind Systems at the Dead Sea

    NASA Astrophysics Data System (ADS)

    Metzger, Jutta; Corsmeier, Ulrich; Kalthoff, Norbert; Wieser, Andreas; Alpert, Pinhas; Lati, Joseph

    2016-04-01

    The Dead Sea is a unique place on earth. It is located at the lowest point of the Jordan Rift valley and its water level is currently at -429 m above mean sea level (amsl). To the West the Judean Mountains (up to 1000 m amsl) and to the East the Moab mountains (up to 1300 m amsl) confine the north-south oriented valley. The whole region is located in a transition zone of semi-arid to arid climate conditions and together with the steep orography, this forms a quite complex and unique environment. The Virtual Institute DEad SEa Research Venue (DESERVE) is an international project funded by the German Helmholtz Association and was established to study coupled atmospheric, hydrological, and lithospheric processes in the changing environment of the Dead Sea. Previous studies showed that the valley's atmosphere is often governed by periodic wind systems (Bitan, 1974), but most of the studies were limited to ground measurements and could therefore not resolve the three dimensional development and evolution of these wind systems. Performed airborne measurements found three distinct layers above the Dead Sea (Levin, 2005). Two layers are directly affected by the Dead Sea and the third is the commonly observed marine boundary layer over Israel. In the framework of DESERVE a field campaign with the mobile observatory KITcube was conducted to study the three dimensional structure of atmospheric processes at the Dead Sea in 2014. The combination of several in-situ and remote sensing instruments allows temporally and spatially high-resolution measurements in an atmospheric volume of about 10x10x10 km3. With this data set, the development and evolution of typical local wind systems, as well as the impact of regional scale wind conditions on the valley's atmosphere could be analyzed. The frequent development of a nocturnal drainage flow with wind velocities of over 10 m s-1, the typical lake breeze during the day, its onset and vertical extension as well as strong downslope winds

  7. Comprehensive Measurements of Wind Systems at the Dead Sea

    NASA Astrophysics Data System (ADS)

    Metzger, Jutta; Corsmeier, Ulrich; Kalthoff, Norbert; Wieser, Andreas; Alpert, Pinhas; Lati, Joseph

    2016-04-01

    The Dead Sea is a unique place on earth. It is located at the lowest point of the Jordan Rift valley and its water level is currently at -429 m above mean sea level (amsl). To the West the Judean Mountains (up to 1000 m amsl) and to the East the Moab mountains (up to 1300 m amsl) confine the north-south oriented valley. The whole region is located in a transition zone of semi-arid to arid climate conditions and together with the steep orography, this forms a quite complex and unique environment. The Virtual Institute DEad SEa Research Venue (DESERVE) is an international project funded by the German Helmholtz Association and was established to study coupled atmospheric, hydrological, and lithospheric processes in the changing environment of the Dead Sea. Previous studies showed that the valley's atmosphere is often governed by periodic wind systems (Bitan, 1974), but most of the studies were limited to ground measurements and could therefore not resolve the three dimensional development and evolution of these wind systems. Performed airborne measurements found three distinct layers above the Dead Sea (Levin, 2005). Two layers are directly affected by the Dead Sea and the third is the commonly observed marine boundary layer over Israel. In the framework of DESERVE a field campaign with the mobile observatory KITcube was conducted to study the three dimensional structure of atmospheric processes at the Dead Sea in 2014. The combination of several in-situ and remote sensing instruments allows temporally and spatially high-resolution measurements in an atmospheric volume of about 10x10x10 km3. With this data set, the development and evolution of typical local wind systems, as well as the impact of regional scale wind conditions on the valley's atmosphere could be analyzed. The frequent development of a nocturnal drainage flow with wind velocities of over 10 m s‑1, the typical lake breeze during the day, its onset and vertical extension as well as strong downslope

  8. The Trobriand Subduction System in the Western Solomon Sea

    NASA Astrophysics Data System (ADS)

    Lock, J.; Davies, H. L.; Tiffin, D. L.; Murakami, F.; Kisimoto, K.

    1987-09-01

    A south-dipping Subduction system which underlies the Trobriand Trough and 149° Embayment, on the southern margin of the Solomon Sea, is active or was recently active. Oceanic basement is overlain by 2.5 s, two-way travel time (TWTT), of sediment that shows at least two stages of deformation: early thrusts (inner wall) and normal faults (outer wall), and later normal faults that have elevated the outer trench margin. Thrust anticlines and slope basins are developed on the inner wall. The floor of the Solomon Sea Basin arches upward between the Trobriand Trough and the New Britain Trench to form isolated peaks and ridges in the east (152° Peaks) and an east-west Central Ridge in the west. Structures in the subduction system, and in the Solomon Sea Basin, plunge westward towards the point of collision with the New Britain Trench.

  9. Towards The Operational Oceanographic Model System In Estonian Coastal Sea, Baltic Sea

    NASA Astrophysics Data System (ADS)

    Kõuts, T.; Elken, J.; Raudsepp, U.

    An integrated system of nested 2D and 3D hydrodynamic models together with real time forcing data asquisition is designed and set up in pre-operational mode in the Gulf of Finland and Gulf of Riga, the Baltic Sea. Along the Estonian coast, implicit time-stepping 3D models are used in the deep bays and 2D models in the shallow bays with ca 200 m horizontal grid step. Specific model setups have been verified by in situ current measurements. Optimum configuration of initial parameters has been found for certain critical locations, usually ports, oil terminals, etc. Operational system in- tegrates also section of historical database of most important hydrologic parameters in the region, allowing use of certain statistical analysis and proper setup of initial conditions for oceanographic models. There is large variety of applications for such model system, ranging from environmental impact assessment at local coastal sea pol- lution problems to forecast of offshore blue algal blooms. Most probable risk factor in the coastal sea engineering is oil pollution, therefore current operational model sys- tem has direct custom oriented output the oil spill forecast for critical locations. Oil spill module of the operational system consist the automatic weather and hydromet- ric station (distributed in real time to internet) and prognostic model of sea surface currents. System is run using last 48 hour wind data and wind forecast and estimates probable oil deposition areas on the shoreline under certain weather conditions. Cal- culated evolution of oil pollution has been compared with some real accidents in the past and there was found good agreement between model and measurements. Graphi- cal user interface of oil spill model is currently installed at location of port authorities (eg. Muuga port), so in case of accidents it could be used in real time supporting the rescue operations. In 2000 current pre-operational oceanographic model system has been sucessfully used to

  10. Floating production systems hit stride in North Sea fields

    SciTech Connect

    Knott, D.

    1994-05-23

    Floating production system (FPS) technology has come of age in the North Sea. That's apparent in plans to use FPSs to tap two of Northwest Europe's largest offshore oil discoveries in the last 10 years. First North Sea oil production with a floater involved a converted semisubmersible drilling rig. Floaters have been in use for small field development projects ever since. Now, industry's rising interest in FPSs reflects two trends: As the North Sea matures, discoveries are likely to be in deeper, more remote locations; and Operators increasingly are under pressure to slash costs. The paper discusses UK trends, Norway's needs, the Norne field, Norne contract, discovery of oil west of the Shetland Islands, Shell-Esso plans, the UK Machar field test, the UK Fife field, and prospects for other potential floater developments.

  11. SeaWiFS technical report series. Volume 20: The SeaWiFS bio-optical archive and storage system (SeaBASS), part 1

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B. (Editor); Mcclain, Charles R.; Firestone, James K.; Westphal, Todd L.; Yeh, Eueng-Nan; Ge, Yuntao; Firestone, Elaine R.

    1994-01-01

    This document provides an overview of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Bio-Optical Archive and Storage System (SeaBASS), which will serve as a repository for numerous data sets of interest to the SeaWiFS Science Team and other approved investigators in the oceanographic community. The data collected will be those data sets suitable for the development and evaluation of bio-optical algorithms which include results from SeaWiFS Intercalibration Round-Robin Experiments (SIRREXs), prelaunch characterization of the SeaWiFS instrument by its manufacturer -- Hughes/Santa Barbara Research Center (SBRC), Marine Optical Characterization Experiment (MOCE) cruises, Marine Optical Buoy (MOBY) deployments and refurbishments, and field studies of other scientists outside of NASA. The primary goal of the data system is to provide a simple mechanism for querying the available archive and requesting specific items, while assuring that the data is made available only to authorized users. The design, construction, and maintenance of SeaBASS is the responsibility of the SeaWiFS Calibration and Validation Team (CVT). This report is concerned with documenting the execution of this task by the CVT and consists of a series of chapters detailing the various data sets involved. The topics presented are as follows: 1) overview of the SeaBASS file architecture, 2) the bio-optical data system, 3) the historical pigment database, 4) the SIRREX database, and 5) the SBRC database.

  12. Variational data assimilation system "INM RAS - Black Sea"

    NASA Astrophysics Data System (ADS)

    Parmuzin, Eugene; Agoshkov, Valery; Assovskiy, Maksim; Giniatulin, Sergey; Zakharova, Natalia; Kuimov, Grigory; Fomin, Vladimir

    2013-04-01

    Development of Informational-Computational Systems (ICS) for Data Assimilation Procedures is one of multidisciplinary problems. To study and solve these problems one needs to apply modern results from different disciplines and recent developments in: mathematical modeling; theory of adjoint equations and optimal control; inverse problems; numerical methods theory; numerical algebra and scientific computing. The problems discussed above are studied in the Institute of Numerical Mathematics of the Russian Academy of Science (INM RAS) in ICS for Personal Computers (PC). Special problems and questions arise while effective ICS versions for PC are being developed. These problems and questions can be solved with applying modern methods of numerical mathematics and by solving "parallelism problem" using OpenMP technology and special linear algebra packages. In this work the results on the ICS development for PC-ICS "INM RAS - Black Sea" are presented. In the work the following problems and questions are discussed: practical problems that can be studied by ICS; parallelism problems and their solutions with applying of OpenMP technology and the linear algebra packages used in ICS "INM - Black Sea"; Interface of ICS. The results of ICS "INM RAS - Black Sea" testing are presented. Efficiency of technologies and methods applied are discussed. The work was supported by RFBR, grants No. 13-01-00753, 13-05-00715 and by The Ministry of education and science of Russian Federation, project 8291, project 11.519.11.1005 References: [1] V.I. Agoshkov, M.V. Assovskii, S.A. Lebedev, Numerical simulation of Black Sea hydrothermodynamics taking into account tide-forming forces. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, 5-31 [2] E.I. Parmuzin, V.I. Agoshkov, Numerical solution of the variational assimilation problem for sea surface temperature in the model of the Black Sea dynamics. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, 69-94 [3] V.B. Zalesny, N.A. Diansky, V

  13. Using near infrared light for deep sea mining observation systems

    NASA Astrophysics Data System (ADS)

    Lu, Huimin; Li, Yujie; Li, Xin; Yang, Jianmin; Serikawa, Seiichi

    2015-10-01

    In this paper, we design a novel deep-sea near infrared light based imaging equipment for deep-sea mining observation systems. The spectral sensitivity peaks are in the red region of the invisible spectrum, ranging from 750nm to 900nm. In addition, we propose a novel underwater imaging model that compensates for the attenuation discrepancy along the propagation path. The proposed model fully considered the effects of absorption, scattering and refraction. We also develop a locally adaptive Laplacian filtering for enhancing underwater transmission map after underwater dark channel prior estimation. Furthermore, we propose a spectral characteristic-based color correction algorithm to recover the distorted color. In water tank experiments, we made a linear scale of eight turbidity steps ranging from clean to heavily scattered by adding deep sea soil to the seawater (from 500 to 2000 mg/L). We compared the results of different turbidity underwater scene, illuminated alternately with near infrared light vs. white light. Experiments demonstrate that the enhanced NIR images have a reasonable noise level after the illumination compensation in the dark regions and demonstrates an improved global contrast by which the finest details and edges are significantly enhanced. We also demonstrate that the effective distance of the designed imaging system is about 1.5 meters, which can meet the requirement of micro-terrain observation around the deep-sea mining systems. Remotely Operated Underwater Vehicle (ROV)-based experiments also certified the effectiveness of the proposed method.

  14. Microbial Geochemistry in Shallow-Sea Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Amend, J. P.; Pichler, T.

    2006-12-01

    Shallow-sea hydrothermal systems are far more ubiquitous than generally recognized. Approximately 50-60 systems are currently known, occurring world-wide in areas of high heat flow, such as, volcanic island arcs, near-surface mid-ocean ridges, and intraplate oceanic volcanoes. In contrast to deep-sea systems, shallow- sea vent fluids generally include a meteoric component, they experience phase separation near the sediment- water interface, and they discharge into the photic zone (<200 m). They also are characterized by wide ranges in chemical composition, hundreds of redox disequilibria that translate to potential metabolisms, and broad phylogenetic diversity among the thermophilic bacteria and archaea. Perhaps because deep-sea smokers and continental hot springs are visually more stunning, shallow-sea systems are often overlooked study sites. We will discuss their particular features that afford unique opportunities in microbial geochemistry. Two of the better studied examples are at Vulcano Island (Italy) and Ambitle Island (Papua New Guinea). The vents and sediment seeps at Vulcano are the "type locality" for numerous cultured hyperthermophiles, including the bacteria Aquifex and Thermotoga, the crenarchaeon Pyrodictium, and the Euryarchaeota Archaeoglobus and Pyrococcus. Isotope-labeled incubation experiments of heated sediments and an array of culturing studies have shown that simple organic compounds are predominantly fermented or anaerobically respired with sulfate. 16S rRNA gene surveys, together with fluorescent in situ hybridization studies, demonstrated the dominance of key thermophilic bacteria and archaea (e.g., Aquificales, Thermotogales, Thermococcales, Archaeoglobales) in the sediments and the presence of a broad spectrum of mostly uncultured crenarchaeota in several vent waters, sediment samples, and geothermal wells. Thermodynamic modeling quantified potential energy yields from aerobic and anaerobic respiration reactions and fermentation

  15. Structural systems for deep sea terminals

    SciTech Connect

    Rashid, A.

    1995-10-01

    This paper describes the various structural systems that can be used for loading and unloading crude oil and other by-products by small and large tankers using fixed berths. The overall facility generally consists of a long trestle supporting piping and roadway, loading and unloading platforms supporting loadings arms, metering skid, antenna towers, gangways, surge tanks, etc., breasting dolphins to absorb ships impact, mooring dolphins, and walkways. The paper examines each unit of the facility with the various structural systems applicable with their relative merits and demerits. Some of the structural systems examined are as follows: Use of multiple steel modules supported by free standing piles versus steel jackets/mini-jackets for loading platforms; Use of concrete platforms; Use of prestress concrete sections versus steel plate girders or steel trusses for trestles; Use of rubblemound causeway in lieu of a trestle in shallow waters; Use of large spare monopile dolphins versus multi-pile steel dolphins.

  16. Distribution of seawater fluorescence and dissolved flavins in the Almeria-Oran front (Alboran Sea, western Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Momzikoff, A.; Dallot, S.; Gondry, G.

    1994-08-01

    Seawater fluorescence in the blue region of the spectrum (excitation at 360 nm) due to fluorescent dissolved organic matter (FDOM), and dissolved flavins were investigated in the Almeria-Oran geostrophic front (western Mediterranean) in the 0-200 m layer. Seawater fluorescence increased with depth from a minimum in the jet divergence, increasing towards the oligotrophic waters located outside the jet zone, and reaching a maximum in the right side of the jet, a convergence zone. Comparisons with other recorded parameters suggested both physical and biological factors were involved in its distribution along the transect. Photodegradation due to light-penetration and seawater enrichment with FDOM due to biological activity appeared as driving factors of fluorescence distribution. Fluorescence increase along the secondary circulation of the jet was attributed to the combined effects of aging of a bloom (where it was suggested that both auto- and heterotrophic populations were involved) and photodegradation. FDOM of deeper waters (found in the divergence zone) was inferred to be less photodegradable than that generated in the productive layers (the convergence zone). From these data fluorescence in the oligotrophic sites was deduced to originate from prevaling biological activity. Three flavins were investigated: riboflavin and its photoproducts (lumichrome and lumiflavin). The vertical distribution of flavins was marked by a stratification into two layers of enhanced concentrations. The upper one was found to coincide with the upper chlorophyll layer (DCM or DCM1), the lower one with the lower chlorophyll layer (DCM2, where it occurred) and/or with the base of the halocline. From these depth coincidences both auto- and heterotrophic populations were inferred to be sources of flavins although their respective contributions were hard to determine. As for fluorescence, an increase of flavins was found in the jet zone. However significant differences were found between the oligotrophic sites. The effects of subduction in the jet zone were visible from depth distribution of riboflavin photoproducts. The contribution of flavins to seawater fluorescence was found to be low (or negligible). Both these parameters appeared as promising tools for studying mesoscale hydrodynamic processes despite the fact that some interpretations appeared delicate.

  17. Subduction initiation, recycling of Alboran lower crust, and intracrustal emplacement of subcontinental lithospheric mantle in the Westernmost Mediterranean

    NASA Astrophysics Data System (ADS)

    Varas-Reus, María Isabel; Garrido, Carlos J.; Bosch, Delphine; Marchesi, Claudio; Hidas, Károly; Booth-Rea, Guillermo; Acosta-Vigil, Antonio

    2015-04-01

    Unraveling the tectonic settings and processes involved in the annihilation of subcontinental mantle lithosphere is of paramount importance for our understanding of the endurance of continents through Earth history. Unlike ophiolites -- their oceanic mantle lithosphere counterparts -- the mechanisms of emplacement of the subcontinental mantle lithosphere in orogens is still poorly known. The emplacement of subcontinental lithospheric mantle peridotites is often attributed to extension in rifted passive margins or continental backarc basins, accretionary processes in subduction zones, or some combination of these processes. One of the most prominent features of the westernmost Mediterranean Alpine orogenic arcs is the presence of the largest outcrops worldwide of diamond facies, subcontinental mantle peridotite massifs; unveiling the mechanisms of emplacement of these massifs may provide important clues on processes involved in the destruction of continents. The western Mediterranean underwent a complex Alpine evolution of subduction initiation, slab fragmentation, and rollback within a context of slow convergence of Africa and Europe In the westernmost Mediterranean, the alpine orogeny ends in the Gibraltar tight arc, which is bounded by the Betic, Rif and Tell belts that surround the Alboran and Algero-Balearic basins. The internal units of these belts are mostly constituted of an allochthonous lithospheric domain that collided and overthrusted Mesozoic and Tertiary sedimentary rocks of the Mesozoic-Paleogene, South Iberian and Maghrebian rifted continental paleomargins. Subcontinental lithospheric peridotite massifs are intercalated between polymetamorphic internal units of the Betic (Ronda, Ojen and Carratraca massifs), Rif (Beni Bousera), and Tell belts. In the Betic chain, the internal zones of the allochthonous Alboran domain include, from bottom to top, polymetamorphic rock of the Alpujarride and Malaguide complexes. The Ronda peridotite massif -- the

  18. Assessment and intercomparison of numerical simulations in the Western Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Juza, Mélanie; Mourre, Baptiste; Renault, Lionel; Tintoré, Joaquin

    2014-05-01

    The Balearic Islands Coastal Observing and Forecasting System (SOCIB, www.socib.es) is developing high resolution numerical simulations (hindcasts and forecasts) in the Western Mediterranean Sea (WMOP). WMOP uses a regional configuration of the Regional Ocean Modelling System (ROMS, Shchepetkin and McWilliams, 2005) with a high spatial resolution of 1/50º (1.5-2km). Thus, theses simulations are able to reproduce mesoscale and in some cases sub-mesoscale features that are key in the Mediterranean Sea since they interact and modify the basin and sub-basin circulation. These simulations are initialized from and nested in either the Mediterranean Forecasting System (MFS, 1/16º) or Mercator-Océan simulations (MERCATOR, 1/12º). A repeated glider section in the Ibiza Channel, operated by SOCIB, has revealed significant differences between two WMOP simulations using either MFS or MERCATOR (hereafter WMOP-MFS and WMOP-MERC). In this study, MFS, MERCATOR, WMOP-MFS and WMOP-MERC are compared and evaluated using available multi-platform observations such as satellite products (Sea Level Anomaly, Sea Surface Temperature) and in situ measurements (temperature and salinity profiles from Argo floats, CTD, XBT, fixed moorings and gliders; velocity fields from HF radar and currentmeters). A quantitative comparison is necessary to evaluate the capacity of the simulations to reproduce observed ocean features, and to quantify the possible simulations biases. This will in turn allow to improve the simulations, so as to produce better ocean forecast systems, to study and better understand ocean processes and to address climate studies. Therefore, various statistical diagnostics have been developed to assess and intercompare the simulations at various spatial and temporal scales, in different sub-regions (Alboran Sea, Western and Eastern Algerian sub-basins, Balearic Sea, Gulf of Lion), in different dynamical zones (coastal areas, shelves and "open" sea), along key sections (Ibiza and

  19. SeaQuest/E906 Shift Alarm System

    NASA Astrophysics Data System (ADS)

    Kitts, Noah

    2014-09-01

    SeaQuest, Fermilab E906, is a fixed target experiment that measures the Drell-Yan cross-section ratio of proton-proton to proton-deuterium collisions in order to extract the sea anti-quark structure of the proton. SeaQuest will extend the measurements made by E866/NuSea with greater precision at higher Bjorken-x. The continuously running experiment is always being monitored. Those on shift must keep track of all of the detector readouts in order to make sure the experiment is running correctly. As an experiment that is still in its early stages of running, an alarm system for people on shift is being created to provide warnings, such as a plot showing a detector's performance is sufficiently different to need attention. This plan involves python scripts that track live data. When the data shows a problem within the experiment, a corresponding alarm ID is sent to the MySQL database which then sets off an alarm. These alarms, which will alert the person on shift through both an audible and visual response, are important for ensuring that issues do not go unnoticed, and to help make sure the experiment is recording good data.

  20. Measuring progress of the global sea level observing system

    NASA Astrophysics Data System (ADS)

    Woodworth, Philip L.; Aarup, Thorkild; Merrifield, Mark; Mitchum, Gary T.; Le Provost, Christian

    Sea level is such a fundamental parameter in the sciences of oceanography geophysics, and climate change, that in the mid-1980s, the Intergovernmental Oceanographic Commission (IOC) established the Global Sea Level Observing System (GLOSS). GLOSS was to improve the quantity and quality of data provided to the Permanent Service for Mean Sea Level (PSMSL), and thereby, data for input to studies of long-term sea level change by the Intergovernmental Panel on Climate Change (IPCC). It would also provide the key data needed for international programs, such as the World Ocean Circulation Experiment (WOCE) and later, the Climate Variability and Predictability Programme (CLIVAR).GLOSS is now one of the main observation components of the Joint Technical Commission for Oceanography and Marine Meteorology (JCOMM) of IOC and the World Meteorological Organization (WMO). Progress and deficiencies in GLOSS were presented in July to the 22nd IOC Assembly at UNESCO in Paris and are contained in the GLOSS Assessment Report (GAR) [IOC, 2003a].

  1. The Ebro Deep-Sea Fan system

    USGS Publications Warehouse

    Nelson, C.H.; Maldonado, A.; Coumes, F.; Got, H.; Manaco, A.

    1984-01-01

    The Ebro Fan System consists of en echelon channel-levee complexes, 50??20 km in area and 200-m thick. A few strong reflectors in a generally transparent seismic facies identify the sand-rich channel floors and levee crests. Numerous continuous acoustic reflectors characterize overbank turbidites and hemipelagites that blanket abandoned channel-levee complexes. The interlobe areas between channel complexes fill with homogeneous mud and sand from mass flow and overbank deposition; these exhibit a transparent seismic character. The steep continental rise and sediment 'drainage' of Valencia Trough at the end of the channel-levee complexes prevent the development of distributary channels and midfan lobe deposits. ?? 1984 Springer-Verlag New York Inc.

  2. Emergent Fermi sea in a system of interacting bosons

    NASA Astrophysics Data System (ADS)

    Wu, Ying-Hai; Jain, J. K.

    2015-06-01

    An understanding of the possible ways in which interactions can produce fundamentally new emergent many-body states is a central problem of condensed-matter physics. We ask if a Fermi sea can arise in a system of bosons subject to contact interaction. Based on exact diagonalization studies and variational wave functions, we predict that such a state is likely to occur when a system of two-component bosons in two dimensions, interacting via a species-independent contact interaction, is exposed to a synthetic magnetic field of strength that corresponds to a filling factor of unity. The fermions forming the SU(2) singlet Fermi sea are bound states of bosons and quantized vortices, formed as a result of the repulsive interaction between bosons in the lowest Landau level.

  3. Bioluminescence in the sea: photoprotein systems.

    PubMed

    Shimomura, O

    1985-01-01

    and recharged repeatedly. The regeneration of coelenterate photoproteins in this manner probably takes place in vivo, utilizing stored coelenterazine. The photoproteins of coelenterates, and their chemically modified forms, are useful in measuring and monitoring calcium ions in biological systems, especially in single cells.

  4. Global ice-sheet system interlocked by sea level

    SciTech Connect

    Denton, G.H.; Hughes, T.J.; Karlen, W.

    1986-01-01

    Denton and Hughes postulated that sea level linked a global ice-sheet system with both terrestrial and grounded marine components during later Quaternary ice ages. Summer temperature changes near Northern Hemisphere melting margins initiated sea-level fluctuations that controlled marine components in both polar hemispheres. It was further proposed that variations of this ice-sheet system amplified and transmitted Milankovitch summer half-year insolation changes between 45 and 75/sup 0/N into global climatic changes. New tests of this hypothesis implicate sea level as a major control of the areal extent of grounded portions of the Antarctic Ice Sheet. But factors other than areal changes of the grounded Antarctic Ice Sheet may have strongly influenced Southern Hemisphere climate and terminated the last ice age simultaneously in both polar hemispheres. Atmospheric carbon dioxide linked to high-latitude oceans is the most likely candidate, but another potential influence was high-frequency climatic oscillations. It is postulated that variations in atmospheric carbon dioxide acted through an Antarctic ice shelf linked to the grounded ice sheet to produce and terminate Southern Hemisphere ice-age climate. It is further postulated that Milankovitch summer insolation combined with a warm-high frequency oscillation caused marked recession of Northern Hemisphere ice-sheet melting margins and the North Atlantic polar front about 14,000 /sup 14/C yr B.P. This permitted renewed formation of North Atlantic Deep Water, which could well have controlled atmospheric carbon dioxide. Combined melting and consequent sea-level rise from the three warming factors initiated irreversible collapse of the interlocked global ice-sheet system, which was at its largest but most vulnerable configuration.

  5. Subduction initiation, recycling of Alboran lower crust, and intracrustal emplacement of subcontinental lithospheric mantle in the Westernmost Mediterranean

    NASA Astrophysics Data System (ADS)

    Varas-Reus, María Isabel; Garrido, Carlos J.; Bosch, Delphine; Marchesi, Claudio; Hidas, Károly; Booth-Rea, Guillermo; Acosta-Vigil, Antonio

    2015-04-01

    Unraveling the tectonic settings and processes involved in the annihilation of subcontinental mantle lithosphere is of paramount importance for our understanding of the endurance of continents through Earth history. Unlike ophiolites -- their oceanic mantle lithosphere counterparts -- the mechanisms of emplacement of the subcontinental mantle lithosphere in orogens is still poorly known. The emplacement of subcontinental lithospheric mantle peridotites is often attributed to extension in rifted passive margins or continental backarc basins, accretionary processes in subduction zones, or some combination of these processes. One of the most prominent features of the westernmost Mediterranean Alpine orogenic arcs is the presence of the largest outcrops worldwide of diamond facies, subcontinental mantle peridotite massifs; unveiling the mechanisms of emplacement of these massifs may provide important clues on processes involved in the destruction of continents. The western Mediterranean underwent a complex Alpine evolution of subduction initiation, slab fragmentation, and rollback within a context of slow convergence of Africa and Europe In the westernmost Mediterranean, the alpine orogeny ends in the Gibraltar tight arc, which is bounded by the Betic, Rif and Tell belts that surround the Alboran and Algero-Balearic basins. The internal units of these belts are mostly constituted of an allochthonous lithospheric domain that collided and overthrusted Mesozoic and Tertiary sedimentary rocks of the Mesozoic-Paleogene, South Iberian and Maghrebian rifted continental paleomargins. Subcontinental lithospheric peridotite massifs are intercalated between polymetamorphic internal units of the Betic (Ronda, Ojen and Carratraca massifs), Rif (Beni Bousera), and Tell belts. In the Betic chain, the internal zones of the allochthonous Alboran domain include, from bottom to top, polymetamorphic rock of the Alpujarride and Malaguide complexes. The Ronda peridotite massif -- the

  6. Sea Spotter: A fully staring Naval IRST System

    NASA Astrophysics Data System (ADS)

    Engel, Michael; Navot, Amir; Saban, Izhak; Engel, Yaakov; Arad, Eyal; Shahar, Nir

    2013-06-01

    Infrared sensor technology, high performance computing hardware and advanced detection and tracking algorithms have enabled a new generation of infrared warning systems for navy surface vessels. In this paper we describe Sea Spotter - a new third-generation naval IRST system, which is unique in offering a fully staring electro-optical imaging unit. Starting from naval IRST operational requirements, we describe the considerations and constraints that led us to the configuration of the sensor head and the supporting hardware. The second part of the paper is dedicated to the target acquisition methodology, including the use of originally developed machine learning technology for target acquisition and tracking.

  7. Forecasting system predicts presence of sea nettles in Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Brown, Christopher W.; Hood, Raleigh R.; Li, Zhen; Decker, Mary Beth; Gross, Thomas F.; Purcell, Jennifer E.; Wang, Harry V.

    Outbreaks of noxious biota, which occur in both aquatic and terrestrial systems, can have considerable negative economic impacts. For example, an increasing frequency of harmful algal blooms worldwide has negatively affected the tourism industry in many regions. Such impacts could be mitigated if the conditions that give rise to these outbreaks were known and could be monitored. Recent advances in technology and communications allow us to continuously measure and model many environmental factors that are responsible for outbreaks of certain noxious organisms. A new prototype ecological forecasting system predicts the likelihood of occurrence of the sea nettle (Chrysaora quinquecirrha), a stinging jellyfish, in the Chesapeake Bay.

  8. The SeaWiFS Bio-Optical Archive and Storage System (SeaBASS): Current Architecture and Implementation

    NASA Technical Reports Server (NTRS)

    Werdell, P. Jeremy; Fargion, Giulietta S. (Editor); McClain, Charles R. (Editor); Bailey, Sean W.

    2002-01-01

    Satellite ocean color missions require an abundance of high-quality in situ measurements for bio-optical and atmospheric algorithm development and post-launch product validation and sensor calibration. To facilitate the assembly of a global data set, the NASA Sea-viewing Wide Field-of-view (SeaWiFS) Project developed the Seafaring Bio-optical Archive and Storage System (SeaBASS), a local repository for in situ data regularly used in their scientific analyses. The system has since been expanded to contain data sets collected by the NASA Sensor Intercalibration and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project, as part of NASA Research Announcements NRA-96-MTPE-04 and NRA-99-OES-99. SeaBASS is a well moderated and documented hive for bio-optical data with a simple, secure mechanism for locating and extracting data based on user inputs. Its holdings are available to the general public with the exception of the most recently collected data sets. Extensive quality assurance protocols, comprehensive data and system documentation, and the continuation of an archive and relational database management system (RDBMS) suitable for bio-optical data all contribute to the continued success of SeaBASS. This document provides an overview of the current operational SeaBASS system.

  9. An objective reconstruction of the Mediterranean sea carbonate system

    NASA Astrophysics Data System (ADS)

    Lovato, Tomas; Vichi, Marcello

    2015-04-01

    An objective estimation of the current distribution of carbonate system variables for the Mediterranean Sea is proposed using empirical relationships derived from ship-based observations and combined with monthly climatological fields of hydrographic parameters. The high quality data of METEOR84/3 cruise were used to fit multiple linear regression models of Dissolved Inorganic Carbon (DIC) and Total Alkalinity (TA) from other hydrochemical parameters. These algorithms provided a robust estimation of DIC and TA, with corresponding Root Mean Squared Errors of 7.66 and 5.09 μmol/kg, by accounting only for potential temperature, salinity, pressure, and nitrate concentration. After the application of the identified regression models to a set of publicly available climatological fields, an objective assessment of the reconstructed carbonate system monthly distributions was derived and compared against different ship-based surveys. Results showed that the Mediterranean Sea interior was well reproduced with errors <14 μmol/kg, whereas the near surface layers still exhibited large uncertainties. The lower degree of confidence of this approach at the surface does not allow the direct application for studying anthropogenic CO2 trends, but some qualitative considerations were drawn from the comparison between the estimated inorganic carbon system and the available observational datasets. Most importantly, the present work showed that the estimated inventories are able to capture the linkages with the physical oceanic features of the system and we propose this method as an inexpensive solution to support the design of monitoring activities in the Mediterranean Sea, which is still poorly constrained by direct observations.

  10. The internal consistency of the North Sea carbonate system

    NASA Astrophysics Data System (ADS)

    Salt, Lesley A.; Thomas, Helmuth; Bozec, Yann; Borges, Alberto V.; de Baar, Hein J. W.

    2016-05-01

    In 2002 (February) and 2005 (August), the full suite of carbonate system parameters (total alkalinity (AT), dissolved inorganic carbon (DIC), pH, and partial pressure of CO2 (pCO2) were measured on two re-occupations of the entire North Sea basin, with three parameters (AT, DIC, pCO2) measured on four additional re-occupations, covering all four seasons, allowing an assessment of the internal consistency of the carbonate system. For most of the year, there is a similar level of internal consistency, with AT being calculated to within ± 6 μmol kg- 1 using DIC and pH, DIC to ± 6 μmol kg- 1 using AT and pH, pH to ± 0.008 using AT and pCO2, and pCO2 to ± 8 μatm using DIC and pH, with the dissociation constants of Millero et al. (2006). In spring, however, we observe a significant decline in the ability to accurately calculate the carbonate system. Lower consistency is observed with an increasing fraction of Baltic Sea water, caused by the high contribution of organic alkalinity in this water mass, not accounted for in the carbonate system calculations. Attempts to improve the internal consistency by accounting for the unconventional salinity-borate relationships in freshwater and the Baltic Sea, and through application of the new North Atlantic salinity-boron relationship (Lee et al., 2010), resulted in no significant difference in the internal consistency.

  11. Global ice-sheet system interlocked by sea level

    NASA Astrophysics Data System (ADS)

    Denton, George H.; Hughes, Terence J.; Karlén, Wibjörn

    1986-07-01

    Denton and Hughes (1983, Quaternary Research20, 125-144) postulated that sea level linked a global ice-sheet system with both terrestrial and grounded marine components during late Quaternary ice ages. Summer temperature changes near Northern Hemisphere melting margins initiated sea-level fluctuations that controlled marine components in both polar hemispheres. It was further proposed that variations of this ice-sheet system amplified and transmitted Milankovitch summer half-year insolation changes between 45 and 75°N into global climatic changes. New tests of this hypothesis implicate sea level as a major control of the areal extent of grounded portions of the Antarctic Ice Sheet, thus fitting the concept of a globally interlocked ice-sheet system. But recent atmospheric modeling results ( Manabe and Broccoli, 1985, Journal of Geophysical Research90, 2167-2190) suggest that factors other than areal changes of the grounded Antarctic Ice Sheet strongly influenced Southern Hemisphere climate and terminated the last ice age simultaneously in both polar hemispheres. Atmospheric carbon dioxide linked to high-latitude oceans is the most likely candidate ( Shackleton and Pisias, 1985, Atmospheric carbon dioxide, orbital forcing, and climate. In "The Carbon Cycle and Atmospheric CO 2: Natural Variations Archean to Present" (E. T. Sundquest and W. S. Broecker, Eds.), pp. 303-318. Geophysical Monograph 32, American Geophysical Union, Washington, D.C.), but another potential influence was high-frequency climatic oscillations (2500 yr). It is postulated that variations in atmospheric carbon dioxide acted through an Antarctic ice shelf linked to the grounded ice sheet to produce and terminate Southern Hemisphere ice-age climate. It is further postulated that Milankovitch summer insolation combined with a warm high-frequency oscillation caused marked recession of Northern Hemisphere ice-sheet melting margins and the North Atlantic polar front about 14,000 14C yr B.P. This

  12. Sea Level Data Archaeology for the Global Sea Level Observing System (GLOSS)

    NASA Astrophysics Data System (ADS)

    Bradshaw, Elizabeth; Matthews, Andy; Rickards, Lesley; Jevrejeva, Svetlana

    2015-04-01

    The Global Sea Level Observing System (GLOSS) was set up in 1985 to collect long term tide gauge observations and has carried out a number of data archaeology activities over the past decade, including sending member organisations questionnaires to report on their repositories. The GLOSS Group of Experts (GLOSS GE) is looking to future developments in sea level data archaeology and will provide its user community with guidance on finding, digitising, quality controlling and distributing historic records. Many records may not be held in organisational archives and may instead by in national libraries, archives and other collections. GLOSS will promote a Citizen Science approach to discovering long term records by providing tools for volunteers to report data. Tide gauge data come in two different formats, charts and hand-written ledgers. Charts are paper analogue records generated by the mechanical instrument driving a pen trace. Several GLOSS members have developed software to automatically digitise these charts and the various methods were reported in a paper on automated techniques for the digitization of archived mareograms, delivered to the GLOSS GE 13th meeting. GLOSS is creating a repository of software for scanning analogue charts. NUNIEAU is the only publically available software for digitising tide gauge charts but other organisations have developed their own tide gauge digitising software that is available internally. There are several other freely available software packages that convert image data to numerical values. GLOSS could coordinate a comparison study of the various different digitising software programs by: Sending the same charts to each organisation and asking everyone to digitise them using their own procedures Comparing the digitised data Providing recommendations to the GLOSS community The other major form of analogue sea level data is handwritten ledgers, which are usually observations of high and low waters, but sometimes contain higher

  13. Deep-sea channel/submarine-yazoo system of the Labrador Sea: A new deep-water facies model

    SciTech Connect

    Hesse, R.; Rakofsky, A. )

    1992-05-01

    The deep-sea channel/submarine-yazoo system is a newly recognized deep-water depositional environment that is significantly different from previously documented turbidite environments. The new system is in many ways the antithesis of classical deep-sea fans. The purpose of this paper is to present the characteristics and elements of the system, develop a facies model for it, establish the system variables, and discuss its possible significance in the geologic record and in subsurface exploration. Previous investigators of deepwater turbidite sediments often faced difficulties in trying to fit their sequences into traditional single-source, deep-sea fan models. The present model fills part of an obvious gap in interpretation schemes for deep-water clastic sediments.

  14. Sea surface temperature variations in the western Mediterranean Sea over the last 20 kyr: A dual-organic proxy (UK'37 and LDI) approach

    NASA Astrophysics Data System (ADS)

    Rodrigo-Gámiz, M.; Martínez-Ruiz, F.; Rampen, S. W.; Schouten, S.; Sinninghe Damsté, J. S.

    2014-02-01

    A high-resolution sea surface temperature (SST) reconstruction of the western Mediterranean was accomplished using two independent, algae-based molecular organic proxies, i.e., the UK'37 index based on long-chain unsaturated ketones and the novel long-chain diol index (LDI) based on the relative abundances of C28 and C30 1,13- and 1,15-diols. Two marine records, from the western and eastern Alboran Sea basin, spanning the last 14 and 20 kyr, respectively, were studied. Results from the surface sediments suggest that the two proxies presently reflect seasons with similar SST or simply annual mean SST. Both proxy records reveal the transition from the Last Glacial Maximum to the Holocene in the eastern Alboran Sea with an SST increase of approximately 7°C for UK'37 and 9°C for LDI. Minimum SSTs (10-12°C) are reached at the end of the Last Glacial Maximum and during the last Heinrich event with a subsequent rapid SST increase in LDI-SST toward the beginning of the Bölling period (20°C), while UK'37-SST remains constantly low (~12°C). The Bölling-Alleröd period is characterized by a rapid increase and subsequent decrease in UK'37-SST, while the LDI-SST decrease continuously. Short-term fluctuations in UK'37-SST are probably related to the availability of nutrients and seasonal changes. The Younger Dryas is recorded as a short cold interval followed by progressively warmer temperatures. During the Holocene, the general lower UK'37-derived temperature values in the eastern Alboran (by approximately 1.5-2°C) suggest a southeastward cold water migration by the western Alboran gyre and divergence in the haptophyte blooming season between both basins.

  15. A Robust Mechanical Sensing System for Unmanned Sea Surface Vehicles

    NASA Technical Reports Server (NTRS)

    Kulczycki, Eric A.; Magnone, Lee J.; Huntsberger, Terrance; Aghazarian, Hrand; Padgett, Curtis W.; Trotz, David C.; Garrett, Michael S.

    2009-01-01

    The need for autonomous navigation and intelligent control of unmanned sea surface vehicles requires a mechanically robust sensing architecture that is watertight, durable, and insensitive to vibration and shock loading. The sensing system developed here comprises four black and white cameras and a single color camera. The cameras are rigidly mounted to a camera bar that can be reconfigured to mount multiple vehicles, and act as both navigational cameras and application cameras. The cameras are housed in watertight casings to protect them and their electronics from moisture and wave splashes. Two of the black and white cameras are positioned to provide lateral vision. They are angled away from the front of the vehicle at horizontal angles to provide ideal fields of view for mapping and autonomous navigation. The other two black and white cameras are positioned at an angle into the color camera's field of view to support vehicle applications. These two cameras provide an overlap, as well as a backup to the front camera. The color camera is positioned directly in the middle of the bar, aimed straight ahead. This system is applicable to any sea-going vehicle, both on Earth and in space.

  16. WMOP: The SOCIB Western Mediterranean Sea OPerational forecasting system

    NASA Astrophysics Data System (ADS)

    Renault, Lionel; Juza, Mélanie; Garau, Bartolomé; Sayol, Juan Manuel; Orfila, Alejandro; Tintoré, Joaquín

    2013-04-01

    Development of science based ocean-forecasting systems at global, regional, sub-regional and local scales is needed to increase our understanding of ocean processes and to support knowledge based management of the marine environment. In this context, WMOP (Western Mediterranean sea /Balearic OPerational system) is the forecasting subsystem component of SOCIB, the new Balearic Islands Coastal Observing and Forecasting System. The WMOP system is operational since the end of 2010. The ROMS model is forced every 3 hours with atmospheric forcing derived from AEMET/Hirlam and daily boundary conditions provided by MFS2 from MyOcean/MOON. Model domain is implemented over an area extending from Gibraltar strait to Corsica/Sardinia (from 6°W to 9°E and from 35°N to 44.5°N), including Balearic Sea and Gulf of Lion. The grid is 631 x 539 points with a resolution of ~1.5km, which allows good representation of mesoscale and submesoscale features (first baroclinic Rossby radius ~10-15 km) of key relevance in this region. The model has 30 sigma levels, and the vertical s coordinate is stretched for boundary layer resolution, also essential to capture extreme events water masses formation and dynamical effects. Bottom topography is derived from a 2' resolution database. Online validation procedures based on inter-comparison of model outputs against observing systems and reference models such as MFS and Mercator are used to assess at what level the numerical models are able to reproduce the features observed from in-situ systems and remote sensing. The intrinsic three-dimensional variability of the coastal ocean and open-ocean exchanges imply the need of muti-plaform observing systems covering a variety of scales. Fixed moorings provide a good temporal resolution but poor spatial coverage, while satellite products provide a good spatial coverage but just on the surface layer. Gliders can provide a reasonable spatial variability in both horizontal and vertical axes. Thus, inter

  17. Factors controlling depositional patterns of Ebro turbidite systems, Mediterranean Sea

    SciTech Connect

    Nelson, C.H.; Maldonado, A.

    1988-06-01

    Tectonic control by subsiding grabens parallel to the Ebro continental margin created a steep narrow slope and rise that resulted in development of coexisting aprons, channel-levee complexes, and a fan, all fed by the same Ebro River source. In unstable steep-slope terrain, mass movement of material caused wide gullied canyons and deposition of nonchannelized base-of-slope aprons that extend 50 km across the rise. Within stable continental-margin areas, channelized turbidity currents formed individual narrow canyons and channel-levee complexes from north to south, successively, at different low sea level stands. Tectonically induced steep gradients (1:25-1:130) across the continental rise and northeastward in Valencia Trough caused sediment to bypass 200 km down Valencia Valley and deposit on Valencia Fan at its end, thus preventing direct development of Ebro channel-levee complexes into fans. When a single source fed channel B for a relatively long period, however, (1) fan-valley sinuosity increased, (2) channel walls were modified through undercutting, slumping, and crevasse splays, and (3) channel bifurcation occurred, although lower fan lobes and a complete fan never developed. The dominance of local tectonic control thus aborted fan development in proximal regions on the continental margin near the Ebro River source and displaced fan formation to a distal site in the Valencia Trough basin. During low sea level stands, continued different local tectonic and sediment-source controls resulted in aprons, channel-levee complexes, and fans forming simultaneously from the same source and without evolving from one type of turbidite system to another. Complex ancient turbidite systems similar to those along the Ebro margin may be anticipated in the stratigraphic record of tectonically active settings like the alpine basins of Europe. 11 figures, 3 tables.

  18. The Architecture and Utility of SeaBASS: the SeaWiFS Bio-optical Archive and Storage System

    NASA Astrophysics Data System (ADS)

    Werdell, P.; Bailey, S. W.; Fargion, G.; McClain, C.

    2001-12-01

    The accumulation and evaluation of in situ data is a critical aspect of both satellite ocean color sensor validation and algorithm development. NASA's Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Sensor Intercomparison and Merger for Biological and Oceanic Studies (SIMBIOS) Projects designed the SeaWiFS Bio-optical Archive and Storage System (SeaBASS) to be a local repository of radiometric, phytoplankton pigment, and other oceanographic and atmospheric data, collected using well-defined and consistent measurement protocols. These data have been used by the SIMBIOS Project to validate SeaWiFS, Ocean Color and Temperature Scanner (OCTS), and Modular Optoelectronic Scanner (MOS) data products, to develop and evaluate bio-optical algorithms used to generate such products, for data merger studies, and to characterize the calibration history and stability of the field instruments used to build validation data sets. Data archived in SeaBASS were collected using a number of instrument packages on a variety of different platforms. The archive consists of an organized directory structure where physical data files and documentation are stored and a relational database system for managing and controlling these data and metadata. A series of World Wide Web-based search engines provide the user community direct access to data files, metadata, and geophysical data products. Additionally, other online utilities are available for generating maps and plots of data archived in SeaBASS. Historically, to protect the publication rights of contributors' data and to limit user-support to active participants, access to SeaBASS has been limited to contributing researchers and to members of the SIMBIOS and other NASA-affiliated Science Teams. As of August 2001, however, data collected prior to December 31, 1999 are available to the public at large. These data are available online and via the National Oceanographic Data Center. This report elaborates on the architecture of SeaBASS and

  19. Decadal variability in coupled sea-ice-thermohaline circulation systems

    SciTech Connect

    Yang, J.; Neelin, J.D.

    1997-12-01

    An interdecadal oscillation in a coupled ocean-ice system was identified in a previous study. This paper extends that study to further examine the stability of the oscillation and the sensitivity of its frequency to various parameters and forcing fields. Three models are used: (i) an analytical box model; (ii) a two-dimensional model for the ocean thermohaline circulation (THC) coupled to a thermodynamic ice model, as in the authors` previous study; and (iii) a three-dimensional ocean general circulation model (OGCM) coupled to a similar ice model. The box model is used to elucidate the essential feedbacks that give rise to this oscillation and to identify the most important parameters and processes that determine the period. The counted model becomes more stable toward low coupling, greater diffusion, and weaker THC feedback. Nonlinear effects in the sea-ice model become important in the higher ocean-ice coupling regime where the effective sea-ice damping associated with this nonlinearity stabilizes the model. The 3D OGCM is used to test this coupled ocean-ice mechanism in a more realistic model setting. This model generates an interdecadal oscillation whose characteristics and phase relations among the model variables are similar to the oscillation obtained in the 2D models. The major difference is that the oscillation frequency is considerably lower. The difference can be explained in terms of the analytical box model solution in which the period of oscillation depends on the rate of anomalous density production by melting/cooling of sea ice per SST anomaly, times the rate of warming/cooling by anomalous THC heat advection per change in density anomaly. The 3D model has a smaller THC response to high-latitude density perturbations than the 2D model, and anomalous velocities in the 3D case tend to follow the mean isotherms so anomalous heat advection is reduced. This slows the ocean-ice feedback process, leading to the longer oscillation period. 36 refs., 27 figs.

  20. A global observing system for monitoring and prediction of sea level change

    NASA Astrophysics Data System (ADS)

    Fu, Lee-Lueng

    The rise of global sea level is a direct consequence of climate change. A one-meter rise by the end of the century is estimated to have global economic impacts by trillions of US dollars and displacement of 10% of the world’s population if no adaptation is applied. Before the advent of satellite observations of sea surface height with radar altimetry, it was not possible to make direct determination of the global mean sea level. The sparsely located tide gauges were not able to sample the uneven spatial distribution of sea level change, leading to biased measurement. The 20-year record from satellite altimetry is the first directly measured time series of the global mean sea level. The satellite’s uniform global sampling also reveals the complex geographic pattern of sea level change over the past 20 years, underscoring the uncertainty from sparse tide gauge measurement. The contributions to recent sea level rise have roughly equal partitions among the steric effect from ocean warming, the melting of mountain glaciers, and the melting of polar ice sheets. The measurement of the change of Earth’s gravity field from the GRACE Mission has for the first time provided direct observation of the mass added to the ocean from ice melting. The difference between altimetry and gravity measurements is attributed to the steric sea level change, which has been observed by an in-situ network of float measurement (Argo). The intercomparison of satellite and in-situ observations has provided cross-calibration and mutual validation of the measurement system, demonstrating a calibrated measurement system for global sea level. The ability to diagnose sea level change in terms of its various components represents a key step towards understanding the physical processes. In order to assess the societal impact of sea level rise, one must be able to predict its regional pattern, which involves a host of other factors. The prediction of sea level change thus requires an Earth system

  1. Seismic stratigraphy of the Qiongdongnan deep sea channel system, northwest South China Sea

    NASA Astrophysics Data System (ADS)

    Yuan, Shengqiang; Lü, Fuliang; Wu, Shiguo; Yao, Genshun; Ma, Yubo; Fu, Yanhui

    2009-05-01

    Based on more than 4000 km 2D seismic data and seismic stratigraphic analysis, we discussed the extent and formation mechanism of the Qiongdongnan deep sea channel. The Qiongdongnan deep sea channel is a large incised channel which extends from the east boundary of the Yinggehai Basin, through the whole Qiongdongnan and the Xisha trough, and terminates in the western part of the northwest subbasin of South China Sea. It is more than 570 km long and 4-8 km wide. The chaotic (or continuous) middle (or high) amplitude, middle (or high) continuity seismic facies of the channel reflect the different lithological distribution of the channel. The channel formed as a complex result of global sea level drop during early Pliocene, large scale of sediment supply to the Yinggehai Basin, inversion event of the Red River strike-slip fault, and tilted direction of the Qiongdongnan Basin. The large scale of sediment supply from Red River caused the shelf break of the Yinggehai Basin to move torwards the S and SE direction and developed large scale of prograding wedge from the Miocene, and the inversion of the Red River strike-slip fault induced the sediment slump which formed the Qiongdongnan deep sea channel.

  2. Improving Sea Ice Prediction in the NCEP Climate Forecast System Model

    NASA Astrophysics Data System (ADS)

    Collow, T. W.; Wang, W.; Kumar, A.

    2015-12-01

    Skillful prediction of Arctic sea ice is important for the wide variety of interests focused in that region. However, the current operational system used by the NOAA Climate Prediction Center does not adequately predict the seasonal climatology of sea ice extent and maintains too high sea ice coverage across the Arctic. It is thought that the primary reasoning for this lies in the initialization of sea ice thickness. Experiments are carried out using the Climate Forecast System (CFSv2) model with an improved sea ice thickness initialization from the Pan-Arctic Ice Ocean Analysis and Assimilation System (PIOMAS) rather than the default Climate Forecast System Reanalysis (CFSR) sea ice thickness data. All other variables are initialized from CFSR. In addition, physics parameterizations are adjusted to better simulate real world conditions. Here we focus on hindcasts initialized from 2005-2014. Although the seasonal cycle of sea ice is generally better captured in runs that use PIOMAS sea ice thickness initialization, local sea ice freeze in early winter in the Bering Strait and Chukchi Sea is delayed when both sea ice thickness configurations are used. In addition ice freeze in the North Atlantic is more pronounced than in the observations. This shows that simply changing initial sea ice thickness is not enough to improve forecasts for all locations. Modeled atmospheric and oceanic parameters are investigated including the radiation budget, land surface temperature advection, and sub-surface oceanic heat flow to diagnose possible reasons for the modeling deficiencies, and further modifications to the model will be discussed.

  3. Diel and seasonal variation of a molluscan taxocoenosis associated with a Zostera marina bed in southern Spain (Alboran Sea)

    NASA Astrophysics Data System (ADS)

    Rueda, Jose L.; Urra, Javier; Salas, Carmen

    2008-09-01

    The diel and seasonal variation of molluscs living in a Zostera marina bed (12-14 m depth) from southern Spain have been studied for one year using a small Agassiz trawl for collecting the samples (222 m2). The frequent and dominant species were very similar in both diurnal and nocturnal samples, including mainly gastropods such as Jujubinus striatus, Nassarius pygmaeus, Mitrella minor, Calliostoma planatum, Rissoa membranacea or Smaragdia viridis. Nevertheless, a significant increase of abundance of scavengers (e.g. Nassarius spp.) and carnivores (e.g. cephalopods) was registered in nocturnal samples. The abundance was maximal in spring and summer in diurnal and nocturnal samples and also in autumn for nocturnal ones, displaying significantly higher values in nocturnal samples. The species richness, diversity and evenness displayed a similar seasonal trend for diurnal and nocturnal samples, with maximum values during summer months. Monthly variation of the molluscan composition (species presence-absence data) was more acute than diel variation, according to the Cluster, MDS and ANOSIM results. Nevertheless, both monthly and diel changes in the structure (species abundance data) of the molluscan taxocoenosis were important throughout the year. Diel changes in the structure of the molluscan fauna are related to an increase of abundance of some species at nighttime due to vertical movements from the sediment to the shoots or along them (e.g. J. striatus, Nassarius spp.) or due to horizontal movements from adjacent habitats (e.g. cephalopods). Nevertheless, some species such as Rissoa spp. or Bittium spp. stay on the leaves of Z. marina during day as well as nighttime.

  4. SONARC: A Sea Ice Monitoring and Forecasting System to Support Safe Operations and Navigation in Arctic Seas

    NASA Astrophysics Data System (ADS)

    Stephenson, S. R.; Babiker, M.; Sandven, S.; Muckenhuber, S.; Korosov, A.; Bobylev, L.; Vesman, A.; Mushta, A.; Demchev, D.; Volkov, V.; Smirnov, K.; Hamre, T.

    2015-12-01

    Sea ice monitoring and forecasting systems are important tools for minimizing accident risk and environmental impacts of Arctic maritime operations. Satellite data such as synthetic aperture radar (SAR), combined with atmosphere-ice-ocean forecasting models, navigation models and automatic identification system (AIS) transponder data from ships are essential components of such systems. Here we present first results from the SONARC project (project term: 2015-2017), an international multidisciplinary effort to develop novel and complementary ice monitoring and forecasting systems for vessels and offshore platforms in the Arctic. Automated classification methods (Zakhvatkina et al., 2012) are applied to Sentinel-1 dual-polarization SAR images from the Barents and Kara Sea region to identify ice types (e.g. multi-year ice, level first-year ice, deformed first-year ice, new/young ice, open water) and ridges. Short-term (1-3 days) ice drift forecasts are computed from SAR images using feature tracking and pattern tracking methods (Berg & Eriksson, 2014). Ice classification and drift forecast products are combined with ship positions based on AIS data from a selected period of 3-4 weeks to determine optimal vessel speed and routing in ice. Results illustrate the potential of high-resolution SAR data for near-real-time monitoring and forecasting of Arctic ice conditions. Over the next 3 years, SONARC findings will contribute new knowledge about sea ice in the Arctic while promoting safe and cost-effective shipping, domain awareness, resource management, and environmental protection.

  5. Early Anthropogenic Transformation of the Danube-Black Sea System

    PubMed Central

    Giosan, Liviu; Coolen, Marco J. L.; Kaplan, Jed O.; Constantinescu, Stefan; Filip, Florin; Filipova-Marinova, Mariana; Kettner, Albert J.; Thom, Nick

    2012-01-01

    Over the last century humans have altered the export of fluvial materials leading to significant changes in morphology, chemistry, and biology of the coastal ocean. Here we present sedimentary, paleoenvironmental and paleogenetic evidence to show that the Black Sea, a nearly enclosed marine basin, was affected by land use long before the changes of the Industrial Era. Although watershed hydroclimate was spatially and temporally variable over the last ~3000 years, surface salinity dropped systematically in the Black Sea. Sediment loads delivered by Danube River, the main tributary of the Black Sea, significantly increased as land use intensified in the last two millennia, which led to a rapid expansion of its delta. Lastly, proliferation of diatoms and dinoflagellates over the last five to six centuries, when intensive deforestation occurred in Eastern Europe, points to an anthropogenic pulse of river-borne nutrients that radically transformed the food web structure in the Black Sea. PMID:22937219

  6. Sea breeze: Induced mesoscale systems and severe weather

    NASA Technical Reports Server (NTRS)

    Nicholls, M. E.; Pielke, R. A.; Cotton, W. R.

    1990-01-01

    Sea-breeze-deep convective interactions over the Florida peninsula were investigated using a cloud/mesoscale numerical model. The objective was to gain a better understanding of sea-breeze and deep convective interactions over the Florida peninsula using a high resolution convectively explicit model and to use these results to evaluate convective parameterization schemes. A 3-D numerical investigation of Florida convection was completed. The Kuo and Fritsch-Chappell parameterization schemes are summarized and evaluated.

  7. The Lighthouse Ocean Research Initiative: Sustained Cabled Ocean Observing Systems in the Sea of Oman and Arabian Sea

    NASA Astrophysics Data System (ADS)

    Ingle, S.; Du Vall, K.; Dimarco, S. F.

    2011-12-01

    In 2003 Lighthouse R & D Enterprises, Inc. began developing an ocean observing system that would help the Sultanate of Oman better manage the health of their fisheries. The resulting cutting-edge, fiber-optic cabled ocean observatory was installed in the northern Sea of Oman and became operational in August of 2005; this summer the system surpassed the milestone of 2100 days of successful operation. A second, deepwater cabled observatory was installed farther to the south, where the Sea of Oman meets the Arabian Sea, in January, 2010. Both systems monitor physical properties throughout the water column including current velocity, temperature, pressure, conductivity, dissolved oxygen and turbidity. The entirely subsea nature of the fiber-optic cabled observatory capitalizes on several advantages over traditional buoyed systems including a lack of exposure to environmental wear and tear, collision, vandalism and theft. The systems are both cabled to nearby shore facilities, where the data are relayed instantly to Houston via satellite for processing, analysis and modeling - the data may also be used in making real time decisions. Many challenges were encountered between the design / development stage and the operation a reliable, long-term, real-time observing system in a dynamic marine environment. Examples of obstacles we encountered and overcame include: maintaining upright mooring strings under differential current velocities; minimizing points of weakness in the system, especially the number of wet mates; recognizing the need for cathodic protection in unanticipated places; protecting vulnerable sensors from biofouling; developing a climate-controlled shore facility in a harsh and remote environment; ensuring an uninterrupted power supply and availability of additional power bursts when required; and lengthening the life of the system while reducing the need for maintenance. The design and obstacles and scientific questions being addressed by the Lighthouse

  8. Sea level and current validation for an early warning coastal system on the Catalan coast (NW Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Ràfols, Laura; abdelmalik, Sairouni; Bravo, Manel; Espino, Manuel; Grifoll, Manel

    2015-04-01

    An early warning coastal system is being implemented on the Catalan coast (North-western Mediterranean Sea) in order to provide high resolution forecast of sea levels, current velocities and wave conditions. The present investigation is focused on the oceanic model, which provides information about sea level and currents. The aim of this study is to validate the sea level and current forecasts obtained with the help of the Regional Ocean Model System (ROMS; Shchepetkin and McWilliams, 2005) in a high resolution domain (350 metres). In an attempt to reduce the high computational cost required for such a small grid, the Catalan coast has been divided into a few separate domains, which are run independently of each other. For the initial and boundary conditions, data from the MyOcean-IBI products have been used and the atmospheric forcing fields have been obtained from the Catalan Meteorological Service (SMC) and the Spanish Meteorological Agency (AEMET). For a validation purpose, different study periods have been taken into account. Then, the validation of the model has been done using the available in-situ tide-gauge and buoy measurements and HF satellite data. During energetic events, the interaction between currents and waves is expected to be relevant in the shallower areas. For this reason, a coupled wave-ocean system has been implemented to investigate the improvements in the forecasts when faced with the results of separated simulations. In this case, the ROMS model and the SWAN model (Simulating WAves Nearshore; Booij et al., 1999) have been run as part of the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System (Warner et al., 2010), which uses the Model Coupling Toolkit to exchange data fields between the models.

  9. Ebro margins sedimentary system in the western Mediterranean Sea, from delta to deep sea

    SciTech Connect

    Nelson, C.H.; Maldonado, A. )

    1988-08-01

    During Holocene high sea level, delta-front lobes of silty mud have deposited beside a lobate Ebro delta. Topset and foreset beds of these lobes extend up to 20 km offshore in up to 30 m of water. Geostrophic currents advect fine silt and clay from river discharge and storm wave resuspension in the delta front and deposit up to 20 m of bottomset beds in a distal prodelta clay belt formed on the inner to middle shelf for 70 km south from the delta. Intensified water circulation and increased bottom-current speeds inhibit prodelta progradation over the outer shelf and north of the delta and south of the clay belt, where the shelf narrows. Deposition of Holocene hemipelagic mud on the upper slope is restricted, but some modern Ebro sediment apparently bypasses to the deep margin. During Pleistocene low sea level, a series of shelf-edge deltas resulted in extensive progradation of foreset mud beds over the continental slope east of the modern delta and south to the Columbretes Islands. In the north, rapid sediment progradation has resulted in large canyons ({plus minus}5 km wide), unconfined sediment gravity flows, and deposition of large sediment aprons (50 km diameter) downslope from canyon mouths. In the south, narrow canyons ({plus minus}2 km wide) have funneled turbidity currents to side-by-side channel-levee complexes younger and smaller to the southwest. Subsidence of the Valencia trough has facilitated sediment transport from these channel-levee complexes into Valencia Valley and thence to the Valencia fan, 200 km to the northeast. Consequently, during low sea level stands a major portion of Ebro sediment is transported north to the Valencia fan, whereas the main progradational history of the Ebro margin has been offshore and to the south of the present delta.

  10. Systems and Methods for Automated Vessel Navigation Using Sea State Prediction

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terrance L. (Inventor); Rankin, Arturo (Inventor); Aghazarian, Hrand (Inventor); Howard, Andrew B. (Inventor); Reinhart, Rene Felix (Inventor)

    2015-01-01

    Systems and methods for sea state prediction and autonomous navigation in accordance with embodiments of the invention are disclosed. One embodiment of the invention includes a method of predicting a future sea state including generating a sequence of at least two 3D images of a sea surface using at least two image sensors, detecting peaks and troughs in the 3D images using a processor, identifying at least one wavefront in each 3D image based upon the detected peaks and troughs using the processor, characterizing at least one propagating wave based upon the propagation of wavefronts detected in the sequence of 3D images using the processor, and predicting a future sea state using at least one propagating wave characterizing the propagation of wavefronts in the sequence of 3D images using the processor. Another embodiment includes a method of autonomous vessel navigation based upon a predicted sea state and target location.

  11. Formation of the modern current system in the East China Sea since the early Holocene and its relationship with sea level and the monsoon system

    NASA Astrophysics Data System (ADS)

    Zheng, Xufeng; Li, Anchun; Wan, Shiming; Jiang, Fuqing; Yin, Xueming; Lu, Jian

    2015-07-01

    The Okinawa Trough is a natural laboratory for the study of air-sea interaction and paleoenvironmental change. It has been demonstrated that present offshore export of particles in the bottom nepheloid layer occur primarily with downwelling from the northeast winter monsoon, which is inhibited by a transverse circulation pattern in summer. This current system was very different during the Last Glacial Maximum owing to low sea level (-120 m) and exposure of a large shelf area. We collected sediment core Oki01 from the middle Okinawa Trough during 2012 using R/V Kexue No. 1 to elucidate the timing and cause of the current system transition in the East China Sea. Clay mineral, dry density, and elemental (Ti, Ca) composition of core Oki01 was analyzed. The results indicate that clay minerals derived mainly from the Huanghe (Yellow) and the Changjiang (Yangtze) Rivers during 16.0-11.6 ka, and the modern current system in the East China Sea formed beginning in the early Holocene. Therefore, mixing of East China Sea continental shelf, Changjiang River and partially Taiwan Island sediment are the major contributors. The decrease of log(Ti/Ca) and alternating provenance since the early Holocene indicate less sediment from the East China in summer because of resistance of the modern current system, i.e., a "water barrier" and upwelling. Conversely, sediment delivery persists in winter and log(Ti/Ca) indicates the winter monsoon signal since the early Holocene. Our evidence also suggests that sediment from Taiwan Island could be transported by the Kuroshio Current to the middle Okinawa Trough, where it mingles with winter monsoon-induced export of sediment from the Changjiang River and East China Sea continental shelf. Although the present research advances understanding of the evolutionary history of paleoenvironmental change in the Okinawa Trough, more sediment cores should be retrieved over wide areas to construct a larger scenario.

  12. [Design and application of hyperspectral radiation system for sea ice observation].

    PubMed

    Yang, Yue-Zhong; Xu, Zhan-Tang; Sun, Zhao-Hua; Cao, Wen-Xi; Lu, Gui-Xin

    2010-06-01

    Sea ice plays an important role in the global climate systems. In the present article, a hyperspectral radiation system for the observation of optical properties of sea ice was designed. The system consists of three optical channels, which can operate simultaneously. Two kinds of optical detectors were designed, and the problem relevant to the water-tightness was resolved. The system can be used to measure the solar radiation beneath the sea ice by an "L" bracket. Another bracket for detecting bidirectional reflectance was designed, which can fix the optical detector at any angle ranging over 0-180 measured with an angle detector. In order to make a most suitable and automatic integrated time, the system can adjust the integrated time intelligently by itself. The system can work stably under extremely low temperature. Furthermore, the system was equipped with four thermistors and one GPS. The system was validated showing a good stability and veracity in situ in the Liaodong Bay.

  13. Timing Improvements of SeaQuest Hodoscope System

    NASA Astrophysics Data System (ADS)

    Medlock, Lacey; SeaQuest Collaboration

    2013-10-01

    Experiment 906, SeaQuest, at Fermi National Accelerator Laboratory is a fixed-target experiment studying muon pairs produced through Drell-Yan scattering. The main goal is to determine the anti-down to anti-up quark asymmetry in the nucleon sea at a higher Bjorken-x than its predecessor, E866/NuSea. The SeaQuest detector relies on hodoscope arrays for its fast trigger. The signal pulses received from the hodoscopes last approximately 20 ns, which is an issue because the proton spills occur over a 1 ns period every 19 ns. These long pulses impact our ability to determine which proton spill produced the event. In order to reduce the pulse length to reach single spill resolution, 5 ns clip lines have been added to reflect part of the PMT signal, canceling out the long tail and shortening the pulses from the hodoscopes by a factor of two. This presentation will focus on improvements made to the trigger timing by the use of clip lines. Supported in part under US DOE grant number DE-FG02-03ER41243.

  14. Sea of Bubbles at Edge of Solar System

    NASA Video Gallery

    This animation summarizes the new heliospheric scenario and the formation of the “sea” of bubbles in the heliosheath. The Sun’s magnetic field points toward the Sun in the Northern hemisphere...

  15. Improving Arctic sea ice edge forecasts by assimilating high horizontal resolution sea ice concentration data into the US Navy's ice forecast systems

    NASA Astrophysics Data System (ADS)

    Posey, P. G.; Metzger, E. J.; Wallcraft, A. J.; Hebert, D. A.; Allard, R. A.; Smedstad, O. M.; Phelps, M. W.; Fetterer, F.; Stewart, J. S.; Meier, W. N.; Helfrich, S. R.

    2015-08-01

    This study presents the improvement in ice edge error within the US Navy's operational sea ice forecast systems gained by assimilating high horizontal resolution satellite-derived ice concentration products. Since the late 1980's, the ice forecast systems have assimilated near real-time sea ice concentration derived from the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSMI and then SSMIS). The resolution of the satellite-derived product was approximately the same as the previous operational ice forecast system (25 km). As the sea ice forecast model resolution increased over time, the need for higher horizontal resolution observational data grew. In 2013, a new Navy sea ice forecast system (Arctic Cap Nowcast/Forecast System - ACNFS) went into operations with a horizontal resolution of ~ 3.5 km at the North Pole. A method of blending ice concentration observations from the Advanced Microwave Scanning Radiometer (AMSR2) along with a sea ice mask produced by the National Ice Center (NIC) has been developed, resulting in an ice concentration product with very high spatial resolution. In this study, ACNFS was initialized with this newly developed high resolution blended ice concentration product. The daily ice edge locations from model hindcast simulations were compared against independent observed ice edge locations. ACNFS initialized using the high resolution blended ice concentration data product decreased predicted ice edge location error compared to the operational system that only assimilated SSMIS data. A second evaluation assimilating the new blended sea ice concentration product into the pre-operational Navy Global Ocean Forecast System 3.1 also showed a substantial improvement in ice edge location over a system using the SSMIS sea ice concentration product alone. This paper describes the technique used to create the blended sea ice concentration product and the significant improvements in ice edge forecasting in both of the

  16. A System of Systems Approach to Integrating Global Sea Level Change Application Programs

    NASA Astrophysics Data System (ADS)

    Bambachus, M. J.; Foster, R. S.; Powell, C.; Cole, M.

    2005-12-01

    The global sea level change application community has numerous disparate models used to make predications over various regional and temporal scales. These models have typically been focused on limited sets of data and optimized for specific areas or questions of interest. Increasingly, decision makers at the national, international, and local/regional levels require access to these application data models and want to be able to integrate large disparate data sets, with new ubiquitous sensor data, and use these data across models from multiple sources. These requirements will force the Global Sea Level Change application community to take a new system-of-systems approach to their programs. We present a new technical architecture approach to the global sea level change program that provides external access to the vast stores of global sea level change data, provides a collaboration forum for the discussion and visualization of data, and provides a simulation environment to evaluate decisions. This architectural approach will provide the tools to support multi-disciplinary decision making. A conceptual system of systems approach is needed to address questions around the multiple approaches to tracking and predicting Sea Level Change. A systems of systems approach would include (1) a forum of data providers, modelers, and users, (2) a service oriented architecture including interoperable web services with a backbone of Grid computing capability, and (3) discovery and access functionality to the information developed through this structure. Each of these three areas would be clearly designed to maximize communication, data use for decision making and flexibility and extensibility for evolution of technology and requirements. In contemplating a system-of-systems approach, it is important to highlight common understanding and coordination as foundational to success across the multiple systems. The workflow of science in different applications is often conceptually similar

  17. Measuring precise sea level from a buoy using the global positioning system

    SciTech Connect

    Rocken, C.; Kelecy, T.M.; Born, G.H. ); Young, L.E.; Purcell, G.H. Jr.; Wolf, S.K. )

    1990-11-01

    High-accuracy sea surface positioning is required for sea floor geodesy, satellite altimeter verification, and the study of sea level. An experiment to study the feasibility of using the Global Positioning System (GPS) for accurate sea surface positioning was conducted. A GPS-equipped buoy (floater) was deployed off the Scripps pier at La Jolla, California during December 13-15, 1989. Two reference GPS receivers were placed on land, one within {approximately}100 m of the floater, and the other about 80 km inland at the laser ranging site on Monument Peak. The position of the floater was determined relative to the land-fixed receivers using: (a) kinematic GPS processing software developed at the National Geodetic Survey (NGS), and (b) the Jet Propulsion Laboratory's GIPSY (GPS Inferred Positioning SYstem) software. Sea level and ocean wave spectra were calculated from GPPS measurements. These results were compared to measurements made with a NOAA tide gauge and a Paros{trademark} pressure transducer (PPT). GPS sea level for the short 100-m baseline agrees with the PPT sea level at the 1-cm level and has an rms variation of 5 mm over a period of 4 hours. Agreement between results with the two independent GPS analyses is on the order of a few millimeters. Processing of the longer Monument Peak - floater baseline is in progress and will require orbit adjustments and tropospheric modeling to obtain results comparable to the short baseline.

  18. A seamless approach to understanding and predicting Arctic sea ice in Met Office modelling systems.

    PubMed

    Hewitt, Helene T; Ridley, Jeff K; Keen, Ann B; West, Alex E; Peterson, K Andrew; Rae, Jamie G L; Milton, Sean F; Bacon, Sheldon

    2015-07-13

    Recent CMIP5 models predict large losses of summer Arctic sea ice, with only mitigation scenarios showing sustainable summer ice. Sea ice is inherently part of the climate system, and heat fluxes affecting sea ice can be small residuals of much larger air-sea fluxes. We discuss analysis of energy budgets in the Met Office climate models which point to the importance of early summer processes (such as clouds and meltponds) in determining both the seasonal cycle and the trend in ice decline. We give examples from Met Office modelling systems to illustrate how the seamless use of models for forecasting on time scales from short range to decadal might help to unlock the drivers of high latitude biases in climate models.

  19. Measuring precise sea level from a buoy using the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Rocken, Christian; Kelecy, Thomas M.; Born, George H.; Young, Larry E.; Purcell, George H., Jr.; Wolf, Susan Kornreich

    1990-01-01

    The feasibility of using the Global Positioning System (GPS) for accurate sea surface positioning was examined. An experiment was conducted on the Scripps pier at La Jolla, California from December 13-15, 1989. A GPS-equipped buoy was deployed about 100 m off the pier. Two fixed reference GPS receivers, located on the pier and about 80 km away on Monument Peak, were used to estimate the relative position of the floater. Kinematic GPS processing software, developed at the National Geodetic Survey, and the Jet Propulsion Laboratory's GPS Infrared Processing System software were used to determine the floater position relative to land-fixing receivers. Calculations were made of sea level and ocean wave spectra from GPS measurements. It is found that the GPS sea level for the short 100 m baseline agrees with the PPT sea level at the 1 cm level and has an rms variation of 5 mm over a period of 4 hours.

  20. Tsunami early warning system for the western coast of the Black Sea

    NASA Astrophysics Data System (ADS)

    Ionescu, Constantin; Partheniu, Raluca; Cioflan, Carmen; Constantin, Angela; Danet, Anton; Diaconescu, Mihai; Ghica, Daniela; Grecu, Bogdan; Manea, Liviu; Marmureanu, Alexandru; Moldovan, Iren; Neagoe, Cristian; Radulian, Mircea; Raileanu, Victor; Verdes, Ioan

    2014-05-01

    The Black Sea area is liable to tsunamis generation and the statistics show that more than twenty tsunamis have been observed in the past. The last tsunami was observed on 31st of March 1901 in the western part of the Black Sea, in the Shabla area. An earthquake of magnitude generated at a depth of 15 km below the sea level , triggered tsunami waves of 5 m height and material losses as well. The oldest tsunami ever recorded close to the Romanian shore-line dates from year 104. This paper emphasises the participation of The National Institute for Earth Physics (NIEP) to the development of a tsunami warning system for the western cost of the Black Sea. In collaboration with the National Institute for Marine Geology and Geoecology (GeoEcoMar), the Institute of Oceanology and the Geological Institute, the last two belonging to the Bulgarian Academy of Science, NIEP has participated as partner, to the cross-border project "Set-up and implementation of key core components of a regional early-warning system for marine geohazards of risk to the Romanian-Bulgarian Black Sea coastal area - MARINEGEOHAZARDS", coordinated by GeoEcoMar. The main purpose of the project was the implementation of an integrated early-warning system accompanied by a common decision-support tool, and enhancement of regional technical capability, for the adequate detection, assessment, forecasting and rapid notification of natural marine geohazards for the Romanian-Bulgarian Black Sea cross-border area. In the last years, NIEP has increased its interest on the marine related hazards, such as tsunamis and, in collaboration with other institutions of Romania, is acting to strengthen the cooperation and data exchanges with institutions from the Black Sea surrounding countries which already have tsunami monitoring infrastructures. In this respect, NIEP has developed a coastal network for marine seismicity, by installing three new seismic stations in the coastal area of the Black Sea, Sea Level Sensors

  1. Open-system coral ages reveal persistent suborbital sea-level cycles.

    PubMed

    Thompson, William G; Goldstein, Steven L

    2005-04-15

    Sea level is a sensitive index of global climate that has been linked to Earth's orbital variations, with a minimum periodicity of about 21,000 years. Although there is ample evidence for climate oscillations that are too frequent to be explained by orbital forcing, suborbital-frequency sea-level change has been difficult to resolve, primarily because of problems with uranium/thorium coral dating. Here we use a new approach that corrects coral ages for the frequently observed open-system behavior of uranium-series nuclides, substantially improving the resolution of sea-level reconstruction. This curve reveals persistent sea-level oscillations that are too frequent to be explained exclusively by orbital forcing.

  2. Multi-platform operational validation of the Western Mediterranean SOCIB forecasting system

    NASA Astrophysics Data System (ADS)

    Juza, Mélanie; Mourre, Baptiste; Renault, Lionel; Tintoré, Joaquin

    2014-05-01

    The development of science-based ocean forecasting systems at global, regional, and local scales can support a better management of the marine environment (maritime security, environmental and resources protection, maritime and commercial operations, tourism, ...). In this context, SOCIB (the Balearic Islands Coastal Observing and Forecasting System, www.socib.es) has developed an operational ocean forecasting system in the Western Mediterranean Sea (WMOP). WMOP uses a regional configuration of the Regional Ocean Modelling System (ROMS, Shchepetkin and McWilliams, 2005) nested in the larger scale Mediterranean Forecasting System (MFS) with a spatial resolution of 1.5-2km. WMOP aims at reproducing both the basin-scale ocean circulation and the mesoscale variability which is known to play a crucial role due to its strong interaction with the large scale circulation in this region. An operational validation system has been developed to systematically assess the model outputs at daily, monthly and seasonal time scales. Multi-platform observations are used for this validation, including satellite products (Sea Surface Temperature, Sea Level Anomaly), in situ measurements (from gliders, Argo floats, drifters and fixed moorings) and High-Frequency radar data. The validation procedures allow to monitor and certify the general realism of the daily production of the ocean forecasting system before its distribution to users. Additionally, different indicators (Sea Surface Temperature and Salinity, Eddy Kinetic Energy, Mixed Layer Depth, Heat Content, transports in key sections) are computed every day both at the basin-scale and in several sub-regions (Alboran Sea, Balearic Sea, Gulf of Lion). The daily forecasts, validation diagnostics and indicators from the operational model over the last months are available at www.socib.es.

  3. Assessment of the Black Sea observing system. A focus on 2005-2012 Argo campaigns

    NASA Astrophysics Data System (ADS)

    Grayek, Sebastian; Stanev, Emil V.; Schulz-Stellenfleth, Johannes

    2015-12-01

    An observing system in the Black Sea combining remote sensing data such as sea level anomalies from altimetry, sea surface temperature from satellite radiometer and data from Argo floats has been analyzed with the aim to quantify the contribution of different information sources when reconstructing the ocean state. The main research questions are: (1) do Argo float measurements substantially impact the quality of estimates, (2) what is the dependence of this quality upon the data and sampling used, and (3) are there specific Black Sea issues? Numerical model output and statistical analysis were used for this purpose. It has been demonstrated that the statistical method performs in a consistent way reproducing known geophysical patterns. Maximum footprints of sea level, salinity and temperature were illustrated, most of them clearly connected with specific thermohaline conditions and the general circulation. Reduced analysis capabilities were identified as associated with a low level of dynamical coupling between the shelf and the open ocean, mesoscale dynamics and representation of diapycnic processes in the models. The accuracy of Argo pressure measurements appeared very important to resolve the extremely sharp stratification in the upper layers. The present-day number of Argo floats operating in the Black Sea of about 10, seems optimal for operational purposes.

  4. Up in Arms: Immune and Nervous System Response to Sea Star Wasting Disease.

    PubMed

    Fuess, Lauren E; Eisenlord, Morgan E; Closek, Collin J; Tracy, Allison M; Mauntz, Ruth; Gignoux-Wolfsohn, Sarah; Moritsch, Monica M; Yoshioka, Reyn; Burge, Colleen A; Harvell, C Drew; Friedman, Carolyn S; Hewson, Ian; Hershberger, Paul K; Roberts, Steven B

    2015-01-01

    Echinoderms, positioned taxonomically at the base of deuterostomes, provide an important system for the study of the evolution of the immune system. However, there is little known about the cellular components and genes associated with echinoderm immunity. The 2013-2014 sea star wasting disease outbreak is an emergent, rapidly spreading disease, which has led to large population declines of asteroids in the North American Pacific. While evidence suggests that the signs of this disease, twisting arms and lesions, may be attributed to a viral infection, the host response to infection is still poorly understood. In order to examine transcriptional responses of the sea star Pycnopodia helianthoides to sea star wasting disease, we injected a viral sized fraction (0.2 μm) homogenate prepared from symptomatic P. helianthoides into apparently healthy stars. Nine days following injection, when all stars were displaying signs of the disease, specimens were sacrificed and coelomocytes were extracted for RNA-seq analyses. A number of immune genes, including those involved in Toll signaling pathways, complement cascade, melanization response, and arachidonic acid metabolism, were differentially expressed. Furthermore, genes involved in nervous system processes and tissue remodeling were also differentially expressed, pointing to transcriptional changes underlying the signs of sea star wasting disease. The genomic resources presented here not only increase understanding of host response to sea star wasting disease, but also provide greater insight into the mechanisms underlying immune function in echinoderms.

  5. Up in Arms: Immune and Nervous System Response to Sea Star Wasting Disease.

    PubMed

    Fuess, Lauren E; Eisenlord, Morgan E; Closek, Collin J; Tracy, Allison M; Mauntz, Ruth; Gignoux-Wolfsohn, Sarah; Moritsch, Monica M; Yoshioka, Reyn; Burge, Colleen A; Harvell, C Drew; Friedman, Carolyn S; Hewson, Ian; Hershberger, Paul K; Roberts, Steven B

    2015-01-01

    Echinoderms, positioned taxonomically at the base of deuterostomes, provide an important system for the study of the evolution of the immune system. However, there is little known about the cellular components and genes associated with echinoderm immunity. The 2013-2014 sea star wasting disease outbreak is an emergent, rapidly spreading disease, which has led to large population declines of asteroids in the North American Pacific. While evidence suggests that the signs of this disease, twisting arms and lesions, may be attributed to a viral infection, the host response to infection is still poorly understood. In order to examine transcriptional responses of the sea star Pycnopodia helianthoides to sea star wasting disease, we injected a viral sized fraction (0.2 μm) homogenate prepared from symptomatic P. helianthoides into apparently healthy stars. Nine days following injection, when all stars were displaying signs of the disease, specimens were sacrificed and coelomocytes were extracted for RNA-seq analyses. A number of immune genes, including those involved in Toll signaling pathways, complement cascade, melanization response, and arachidonic acid metabolism, were differentially expressed. Furthermore, genes involved in nervous system processes and tissue remodeling were also differentially expressed, pointing to transcriptional changes underlying the signs of sea star wasting disease. The genomic resources presented here not only increase understanding of host response to sea star wasting disease, but also provide greater insight into the mechanisms underlying immune function in echinoderms. PMID:26176852

  6. Up in arms: Immune and nervous system response to sea star wasting disease

    USGS Publications Warehouse

    Fuess, Lauren E; Eiselord, Morgan E.; Closek, Collin J.; Tracy, Allison M.; Mauntz, Ruth; Gignoux-Wolfsohn, Sarah; Moritsch, Monica M; Yoshioka, Reyn; Burge, Colleen A.; Harvell, Drew; Friedman, Carolyn S.; Hershberger, Paul K.; Roberts, Steven B.

    2015-01-01

    Echinoderms, positioned taxonomically at the base of deuterostomes, provide an important system for the study of the evolution of the immune system. However, there is little known about the cellular components and genes associated with echinoderm immunity. The 2013–2014 sea star wasting disease outbreak is an emergent, rapidly spreading disease, which has led to large population declines of asteroids in the North American Pacific. While evidence suggests that the signs of this disease, twisting arms and lesions, may be attributed to a viral infection, the host response to infection is still poorly understood. In order to examine transcriptional responses of the sea star Pycnopodia helianthoides to sea star wasting disease, we injected a viral sized fraction (0.2 μm) homogenate prepared from symptomatic P. helianthoides into apparently healthy stars. Nine days following injection, when all stars were displaying signs of the disease, specimens were sacrificed and coelomocytes were extracted for RNA-seq analyses. A number of immune genes, including those involved in Toll signaling pathways, complement cascade, melanization response, and arachidonic acid metabolism, were differentially expressed. Furthermore, genes involved in nervous system processes and tissue remodeling were also differentially expressed, pointing to transcriptional changes underlying the signs of sea star wasting disease. The genomic resources presented here not only increase understanding of host response to sea star wasting disease, but also provide greater insight into the mechanisms underlying immune function in echinoderms.

  7. Up in Arms: Immune and Nervous System Response to Sea Star Wasting Disease

    PubMed Central

    Burge, Colleen A.; Harvell, C. Drew; Friedman, Carolyn S.; Hewson, Ian; Hershberger, Paul K.; Roberts, Steven B.

    2015-01-01

    Echinoderms, positioned taxonomically at the base of deuterostomes, provide an important system for the study of the evolution of the immune system. However, there is little known about the cellular components and genes associated with echinoderm immunity. The 2013–2014 sea star wasting disease outbreak is an emergent, rapidly spreading disease, which has led to large population declines of asteroids in the North American Pacific. While evidence suggests that the signs of this disease, twisting arms and lesions, may be attributed to a viral infection, the host response to infection is still poorly understood. In order to examine transcriptional responses of the sea star Pycnopodia helianthoides to sea star wasting disease, we injected a viral sized fraction (0.2 μm) homogenate prepared from symptomatic P. helianthoides into apparently healthy stars. Nine days following injection, when all stars were displaying signs of the disease, specimens were sacrificed and coelomocytes were extracted for RNA-seq analyses. A number of immune genes, including those involved in Toll signaling pathways, complement cascade, melanization response, and arachidonic acid metabolism, were differentially expressed. Furthermore, genes involved in nervous system processes and tissue remodeling were also differentially expressed, pointing to transcriptional changes underlying the signs of sea star wasting disease. The genomic resources presented here not only increase understanding of host response to sea star wasting disease, but also provide greater insight into the mechanisms underlying immune function in echinoderms. PMID:26176852

  8. Small Autonomous Air/Sea System Concepts for Coast Guard Missions

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    2005-01-01

    A number of small autonomous air/sea system concepts are outlined in this paper that support and enhance U.S. Coast Guard missions. These concepts draw significantly upon technology investments made by NASA in the area of uninhabited aerial vehicles and robotic/intelligent systems. Such concepts should be considered notional elements of a greater as-yet-not-defined robotic system-of-systems designed to enable unparalleled maritime safety and security.

  9. ICE stereocamera system - photogrammetric setup for retrieval and analysis of small scale sea ice topography

    NASA Astrophysics Data System (ADS)

    Divine, Dmitry; Pedersen, Christina; Karlsen, Tor Ivan; Aas, Harald; Granskog, Mats; Renner, Angelika; Spreen, Gunnar; Gerland, Sebastian

    2013-04-01

    A new thin-ice Arctic paradigm requires reconsideration of the set of parameterizations of mass and energy exchange within the ocean-sea-ice-atmosphere system used in modern CGCMs. Such a reassessment would require a comprehensive collection of measurements made specifically on first-year pack ice with a focus on summer melt season when the difference from typical conditions for the earlier multi-year Arctic sea ice cover becomes most pronounced. Previous in situ studies have demonstrated a crucial importance of smaller (i.e. less than 10 m) scale surface topography features for the seasonal evolution of pack ice. During 2011-2012 NPI developed a helicopter borne ICE stereocamera system intended for mapping the sea ice surface topography and aerial photography. The hardware component of the system comprises two Canon 5D Mark II cameras, combined GPS/INS unit by "Novatel" and a laser altimeter mounted in a single enclosure outside the helicopter. The unit is controlled by a PXI chassis mounted inside the helicopter cabin. The ICE stereocamera system was deployed for the first time during the 2012 summer field season. The hardware setup has proven to be highly reliable and was used in about 30 helicopter flights over Arctic sea-ice during July-September. Being highly automated it required a minimal human supervision during in-flight operation. The deployment of the camera system was mostly done in combination with the EM-bird, which measures sea-ice thickness, and this combination provides an integrated view of sea ice cover along the flight track. During the flight the cameras shot sequentially with a time interval of 1 second each to ensure sufficient overlap between subsequent images. Some 35000 images of sea ice/water surface captured per camera sums into 6 Tb of data collected during its first field season. The reconstruction of the digital elevation model of sea ice surface will be done using SOCET SET commercial software. Refraction at water/air interface can

  10. A three-dimensional variational data assimilation system for the South China Sea: preliminary results from observing system simulation experiments

    NASA Astrophysics Data System (ADS)

    Peng, Shiqiu; Zeng, Xuezhi; Li, Zhijin

    2016-05-01

    A three-dimensional variational data assimilation (3DVAR) system based on the Regional Ocean Modeling System (ROMS) is established for the South China Sea (SCS). A set of Observing System Simulation Experiments (OSSEs) are performed to evaluate the performance of this data assimilation system and investigate the impacts of different types of observations on representation of three-dimensional large-scale circulations and meso-scale eddies in the SCS. The pseudo-observations that are examined include sea surface temperatures (SSTs), sea surface heights (SSHs), sparse temperature/salinity (T/S) profiles, sea surface velocities (SSVs), and sea surface salinities (SSSs). The results show that SSHs can extend their impacts into the subsurface or even the deep ocean while other surface observations only have impacts within surface mixed layer. SSVs have similar impacts though confined to their spatial coverage, suggesting that SSVs could be a substitute of SSHs nearshore where SSHs are of poor quality. Despite their sparseness, the T/S profiles improve the representation of the temperature and salinity structures below the mixed layer, and a combination of T/S profiles with surface observations leads to a better representation of the meso-scale eddies. Based on the OSSE results, an affordable observing network for the SCS in the near future is proposed.

  11. Video system for monitoring sea-surface characteristics in coastal zone

    NASA Astrophysics Data System (ADS)

    Konstantinov, Oleg G.; Pavlov, Andrey N.

    2012-11-01

    A method of investigation sea surface roughness by analysis polarization images is suggested. Equipment and software were developed and tested at the Pacific Oceanological Institute (POI) It is shown a possibility to study surface manifestations of hydrodynamic processes in coastal zone, such as the dynamics of vortex structures, internal waves, spatio-temporal properties of surface waves by using the panoramic video system for a sea surface control and by the imaging polarimeter. Analysis of a time sequence of transformed to the plane panoramic images obtained using the system allows to estimate a velocity field of vortex structure, phase velocity of surface manifestations of internal waves, intensity and dynamics of surface films of oil pollution. It is shown an ability of sea surface reconstruction by analyzing time sequence of the imaging polarimeter pictures. The results are compared with the height difference of the floats located on the vertical guides that are in the imaging polarimeter field of view. The float heights obtained from its image coordinates. Field experiments were conducted at the POI marine station in the Japan Sea. Moreover, the developed methods and equipment may be used as a source of unique in situ information on the sea surface roughness during satellite optical and radar sensing.

  12. Influence of Sea Ice on Arctic Marine Sulfur Biogeochemistry in the Community Climate System Model

    SciTech Connect

    Deal, Clara; Jin, Meibing

    2013-06-30

    Global climate models (GCMs) have not effectively considered how responses of arctic marine ecosystems to a warming climate will influence the global climate system. A key response of arctic marine ecosystems that may substantially influence energy exchange in the Arctic is a change in dimethylsulfide (DMS) emissions, because DMS emissions influence cloud albedo. This response is closely tied to sea ice through its impacts on marine ecosystem carbon and sulfur cycling, and the ice-albedo feedback implicated in accelerated arctic warming. To reduce the uncertainty in predictions from coupled climate simulations, important model components of the climate system, such as feedbacks between arctic marine biogeochemistry and climate, need to be reasonably and realistically modeled. This research first involved model development to improve the representation of marine sulfur biogeochemistry simulations to understand/diagnose the control of sea-ice-related processes on the variability of DMS dynamics. This study will help build GCM predictions that quantify the relative current and possible future influences of arctic marine ecosystems on the global climate system. Our overall research objective was to improve arctic marine biogeochemistry in the Community Climate System Model (CCSM, now CESM). Working closely with the Climate Ocean Sea Ice Model (COSIM) team at Los Alamos National Laboratory (LANL), we added 1 sea-ice algae and arctic DMS production and related biogeochemistry to the global Parallel Ocean Program model (POP) coupled to the LANL sea ice model (CICE). Both CICE and POP are core components of CESM. Our specific research objectives were: 1) Develop a state-of-the-art ice-ocean DMS model for application in climate models, using observations to constrain the most crucial parameters; 2) Improve the global marine sulfur model used in CESM by including DMS biogeochemistry in the Arctic; and 3) Assess how sea ice influences DMS dynamics in the arctic marine

  13. SEA Semester Undergraduates Research the Ocean's Role in Climate Systems in the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Meyer, A. W.; Becker, M. K.; Grabb, K. C.

    2014-12-01

    Sea Education Association (SEA)'s fully accredited Oceans & Climate SEA Semester program provides upper-level science undergraduates a unique opportunity to explore the ocean's role in the global climate system as they conduct real-world oceanographic research and gain first-hand understanding of and appreciation for the collaborative nature of the scientific research process. Oceans & Climate is an interdisciplinary science and policy semester in which students also explore public policy perspectives to learn how scientific knowledge is used in making climate-related policy. Working first at SEA's shore campus, students collaborate with SEA faculty and other researchers in the local Woods Hole scientific community to design and develop an original research project to be completed at sea. Students then participate as full, working members of the scientific team and sailing crew aboard the 134-foot brigantine SSV Robert C. Seamans; they conduct extensive oceanographic sampling, manage shipboard operations, and complete and present the independent research project they designed onshore. Oceans & Climate SEA Semester Cruise S-250 sailed from San Diego to Tahiti on a 7-week, >4000nm voyage last fall (November-December 2013). This remote open-ocean cruise track traversed subtropical and equatorial regions of the Pacific particularly well suited for a diverse range of climate-focused studies. Furthermore, as SEA has regularly collected scientific data along similar Pacific cruise tracks for more than a decade, students often undertake projects that require time-series analyses. 18 undergraduates from 15 different colleges and universities participated in the S-250 program. Two examples of the many projects completed by S-250 students include a study of the possible relationship between tropical cyclone intensification, driven by warm sea surface temperatures, and the presence of barrier layers; and a study of nutrient cycling in the eastern Pacific, focusing on primary

  14. Functional Metagenomic Investigations of Microbial Communities in a Shallow-Sea Hydrothermal System

    PubMed Central

    Tang, Kai; Liu, Keshao; Jiao, Nianzhi; Zhang, Yao; Chen, Chen-Tung Arthur

    2013-01-01

    Little is known about the functional capability of microbial communities in shallow-sea hydrothermal systems (water depth of <200 m). This study analyzed two high-throughput pyrosequencing metagenomic datasets from the vent and the surface water in the shallow-sea hydrothermal system offshore NE Taiwan. This system exhibited distinct geochemical parameters. Metagenomic data revealed that the vent and the surface water were predominated by Epsilonproteobacteria (Nautiliales-like organisms) and Gammaproteobacteria (Thiomicrospira-like organisms), respectively. A significant difference in microbial carbon fixation and sulfur metabolism was found between the vent and the surface water. The chemoautotrophic microorganisms in the vent and in the surface water might possess the reverse tricarboxylic acid cycle and the Calvin−Bassham−Benson cycle for carbon fixation in response to carbon dioxide highly enriched in the environment, which is possibly fueled by geochemical energy with sulfur and hydrogen. Comparative analyses of metagenomes showed that the shallow-sea metagenomes contained some genes similar to those present in other extreme environments. This study may serve as a basis for deeply understanding the genetic network and functional capability of the microbial members of shallow-sea hydrothermal systems. PMID:23940820

  15. Functional metagenomic investigations of microbial communities in a shallow-sea hydrothermal system.

    PubMed

    Tang, Kai; Liu, Keshao; Jiao, Nianzhi; Zhang, Yao; Chen, Chen-Tung Arthur

    2013-01-01

    Little is known about the functional capability of microbial communities in shallow-sea hydrothermal systems (water depth of <200 m). This study analyzed two high-throughput pyrosequencing metagenomic datasets from the vent and the surface water in the shallow-sea hydrothermal system offshore NE Taiwan. This system exhibited distinct geochemical parameters. Metagenomic data revealed that the vent and the surface water were predominated by Epsilonproteobacteria (Nautiliales-like organisms) and Gammaproteobacteria (Thiomicrospira-like organisms), respectively. A significant difference in microbial carbon fixation and sulfur metabolism was found between the vent and the surface water. The chemoautotrophic microorganisms in the vent and in the surface water might possess the reverse tricarboxylic acid cycle and the Calvin-Bassham-Benson cycle for carbon fixation in response to carbon dioxide highly enriched in the environment, which is possibly fueled by geochemical energy with sulfur and hydrogen. Comparative analyses of metagenomes showed that the shallow-sea metagenomes contained some genes similar to those present in other extreme environments. This study may serve as a basis for deeply understanding the genetic network and functional capability of the microbial members of shallow-sea hydrothermal systems.

  16. 46 CFR 15.818 - Global Maritime Distress and Safety System (GMDSS) at-sea maintainer.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Global Maritime Distress and Safety System (GMDSS) at-sea maintainer. 15.818 Section 15.818 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MERCHANT MARINE OFFICERS AND SEAMEN MANNING REQUIREMENTS Computations § 15.818 Global Maritime Distress and...

  17. A stochastic operational forecasting system of the Black Sea: Technique and validation

    NASA Astrophysics Data System (ADS)

    Vandenbulcke, Luc; Barth, Alexander

    2015-09-01

    In this article, we present the latest version of an ensemble forecasting system of the hydrodynamics of the Black Sea, based on the GHER model. The system includes the Weakly Constrained Ensembles algorithm to generate random, but physically balanced perturbations to initialize members of the ensemble. On top of initial conditions, the ensemble accounts also for uncertainty on the atmospheric forcing fields, and on some scalar parameters such as river flows or model diffusion coefficients. The forecasting system also includes the Ocean Assimilation Kit, a sequential data assimilation package implementing the SEEK and Ensemble Kalman filters. A novel aspect of the forecasting system is that not only our best estimate of the future ocean state is provided, but also the associated error estimated from the ensemble of models. The primary goal of this paper is to quantitatively show that the ensemble variability is a good estimation of the model error, regardless of the magnitude of the forecast errors themselves. In order for this estimation to be meaningful, the model itself should also be well validated. Therefore, we describe the model validation against general circulation patterns. Some particular aspects critical for the Black Sea circulation are validated as well: the mixed layer depth and the shelfopen sea exchanges. The model forecasts are also compared with observed sea surface temperature, and errors are compared to those of another operational model as well.

  18. Recent sea beam mapping of Ascension-Monterey Submarine Canyon System

    SciTech Connect

    Greene, H.G. )

    1990-06-01

    Extensive Sea Beam and Bathymetric Swatch Survey System (BS{sup 3}) data covering the Ascension-Monterey Submarine Canyon system and adjoining areas and canyons were collected offshore central California. Many discovered geomorphological features lead to significant new geologic conclusions about the formation and processes of submarine canyons in general and disclose unique sedimentary and tectonic features of the Ascension-Monterey Canyon system. The highly detailed bathymetric maps constructed from the Sea Beam data indicate that the seafloor topographic pattern is influenced by sedimentary and tectonic processes; both remain active along the central California margin. Interpretations of MOAA composite maps, final raw Sea Beam bathymetric maps, and three-dimensional physiographic renditions from bathymetric data indicate a diverse and complex geomorphology for the Ascension-Monterey Submarine Canyon system and adjoining region. Five distinct geomorphologic provinces and four well-defined geographic areas are mapped. Canyons cut by faults and canyon walls actively undergoing mass wasting are prominently displayed in the Sea Beam data. Sedimentary processes illustrating canyon channel capture and the formation of extensive mega-sedimentary wave fields where the canyons debouch onto the abyssal plain are spectacularly well defined. This new tool of seafloor mapping is contributing significant data for the geological interpretation of continental margins and seafloor in the world's oceans.

  19. The sea level response to ice sheet freshwater forcing in the Community Earth System Model

    NASA Astrophysics Data System (ADS)

    Slangen, Aimée B. A.; Lenaerts, Jan T. M.

    2016-10-01

    We study the effect of a realistic ice sheet freshwater forcing on sea-level change in the fully coupled Community Earth System Model (CESM) showing not only the effect on the ocean density and dynamics, but also the gravitational response to mass redistribution between ice sheets and the ocean. We compare the ‘standard’ model simulation (NO-FW) to a simulation with a more realistic ice sheet freshwater forcing (FW) for two different forcing scenario’s (RCP2.6 and RCP8.5) for 1850–2100. The effect on the global mean thermosteric sea-level change is small compared to the total thermosteric change, but on a regional scale the ocean steric/dynamic change shows larger differences in the Southern Ocean, the North Atlantic and the Arctic Ocean (locally over 0.1 m). The gravitational fingerprints of the net sea-level contributions of the ice sheets are computed separately, showing a regional pattern with a magnitude that is similar to the difference between the NO-FW and FW simulations of the ocean steric/dynamic pattern. Our results demonstrate the importance of ice sheet mass loss for regional sea-level projections in light of the projected increasing contribution of ice sheets to future sea-level rise.

  20. TOPAZ4: an ocean-sea ice data assimilation system for the North Atlantic and Arctic

    NASA Astrophysics Data System (ADS)

    Sakov, P.; Counillon, F.; Bertino, L.; Lisæter, K. A.; Oke, P. R.; Korablev, A.

    2012-08-01

    We present a detailed description of TOPAZ4, the latest version of TOPAZ - a coupled ocean-sea ice data assimilation system for the North Atlantic Ocean and Arctic. It is the only operational, large-scale ocean data assimilation system that uses the ensemble Kalman filter. This means that TOPAZ features a time-evolving, state-dependent estimate of the state error covariance. Based on results from the pilot MyOcean reanalysis for 2003-2008, we demonstrate that TOPAZ4 produces a realistic estimate of the ocean circulation in the North Atlantic and the sea-ice variability in the Arctic. We find that the ensemble spread for temperature and sea-level remains fairly constant throughout the reanalysis demonstrating that the data assimilation system is robust to ensemble collapse. Moreover, the ensemble spread for ice concentration is well correlated with the actual errors. This indicates that the ensemble statistics provide reliable state-dependent error estimates - a feature that is unique to ensemble-based data assimilation systems. We demonstrate that the quality of the reanalysis changes when different sea surface temperature products are assimilated, or when in-situ profiles below the ice in the Arctic Ocean are assimilated. We find that data assimilation improves the match to independent observations compared to a free model. Improvements are particularly noticeable for ice thickness, salinity in the Arctic, and temperature in the Fram Strait, but not for transport estimates or underwater temperature. At the same time, the pilot reanalysis has revealed several flaws in the system that have degraded its performance. Finally, we show that a simple bias estimation scheme can effectively detect the seasonal or constant bias in temperature and sea-level.

  1. TOPAZ4: an ocean-sea ice data assimilation system for the North Atlantic and Arctic

    NASA Astrophysics Data System (ADS)

    Sakov, P.; Counillon, F.; Bertino, L.; Lisæter, K. A.; Oke, P. R.; Korablev, A.

    2012-04-01

    We present a detailed description of TOPAZ4, the latest version of TOPAZ - a coupled ocean-sea ice data assimilation system for the North Atlantic Ocean and Arctic. It is the only operational, large-scale ocean data assimilation system that uses the ensemble Kalman filter. This means that TOPAZ features a time-evolving, state-dependent estimate of the state error covariance. Based on results from the pilot MyOcean reanalysis for 2003-2008, we demonstrate that TOPAZ4 produces a realistic estimate of the ocean circulation and the sea ice. We find that the ensemble spread for temperature and sea-level remains fairly constant throughout the reanalysis demonstrating that the data assimilation system is robust to ensemble collapse. Moreover, the ensemble spread for ice concentration is well correlated with the actual errors. This indicates that the ensemble statistics provide reliable state-dependent error estimates - a feature that is unique to ensemble-based data assimilation systems. We demonstrate that the quality of the reanalysis changes when different sea surface temperature products are assimilated, or when in situ profiles below the ice in the Arctic Ocean are assimilated. We find that data assimilation improves the match to independent observations compared to a free model. Improvements are particularly noticeable for ice thickness, salinity in the Arctic, and temperature in the Fram Strait, but not for transport estimates or underwater temperature. At the same time, the pilot reanalysis has revealed several flaws in the system that have degraded its performance. Finally, we show that a simple bias estimation scheme can effectively detect the seasonal or constant bias in temperature and sea-level.

  2. Telemetry narrows the search for sea lamprey spawning locations in the St. Clair-Detroit River System

    USGS Publications Warehouse

    Holbrook, Christopher; Jubar, Aaron K.; Barber, Jessica M.; Tallon, Kevin; Hondorp, Darryl W.

    2016-01-01

    Adult sea lamprey (Petromyzon marinus) abundance in Lake Erie has remained above targets set by fishery managers since 2005, possibly due to increased recruitment in the St. Clair-Detroit River System (SCDRS). Sea lamprey recruitment in the SCDRS poses an enormous challenge to sea lamprey control and assessment in Lake Erie because the SCDRS contains no dams to facilitate capture and discharge is at least an order of magnitude larger in the SCDRS than most other sea lamprey-producing tributaries in the Great Lakes. As a first step toward understanding population size, spatial distribution, and spawning habitat of adult sea lampreys in the SCDRS, we used acoustic telemetry to determine where sea lampreys ceased migration (due to spawning, death, or both) among major regions of the SCDRS. All tagged sea lampreys released in the lower Detroit River (N = 27) moved upstream through the Detroit River and entered Lake St. Clair. After entering Lake St. Clair, sea lampreys entered the St. Clair River (N = 22), Thames River (N = 1), or were not detected again (N = 4). Many sea lampreys (10 of 27) were last observed moving downstream (“fallback”) but we were unable to determine if those movements occurred before or after spawning, or while sea lampreys were dead or alive. Regardless of whether estimates of locations where sea lampreys ceased migration were based on the most upstream region occupied or final region occupied, most sea lampreys ceased migration in the St. Clair River or Lake St. Clair. Results suggest that spawning and rearing in the St. Clair River could be an important determinant of sea lamprey recruitment in the SCDRS and may direct future assessment and control activities in that system.

  3. Fiber optic security systems for land- and sea-based applications

    NASA Astrophysics Data System (ADS)

    Crickmore, Roger I.; Nash, Phillip J.; Wooler, John P. F.

    2004-11-01

    QinetiQ have been developing security systems for land and sea applications using interferometric based fiber optic sensors. We have constructed and tested a multi-channel fiber-optic hydrophone seabed array, which is designed for maritime surveillance and harbor security applications. During a recent trial it was deployed in a coastal location for an 8 day period during which it successfully detected and tracked a wide variety of traffic. The array can be interfaced with an open architecture processing system that carries out automatic detection and tracking of targets. For land based applications we have developed a system that uses high sensitivity fiber optic accelerometers and buried fiber optic cable as sensor elements. This uses the same opto-electronic interrogator as the seabed array, so a combined land and sea security system for coastal assets could be monitored using a single interrogator.

  4. Genome editing in sea urchin embryos by using a CRISPR/Cas9 system.

    PubMed

    Lin, Che-Yi; Su, Yi-Hsien

    2016-01-15

    Sea urchin embryos are a useful model system for investigating early developmental processes and the underlying gene regulatory networks. Most functional studies using sea urchin embryos rely on antisense morpholino oligonucleotides to knockdown gene functions. However, major concerns related to this technique include off-target effects, variations in morpholino efficiency, and potential morpholino toxicity; furthermore, such problems are difficult to discern. Recent advances in genome editing technologies have introduced the prospect of not only generating sequence-specific knockouts, but also providing genome-engineering applications. Two genome editing tools, zinc-finger nuclease (ZFN) and transcription activator-like effector nucleases (TALENs), have been utilized in sea urchin embryos, but the resulting efficiencies are far from satisfactory. The CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 (CRISPR-associated nuclease 9) system serves as an easy and efficient method with which to edit the genomes of several established and emerging model organisms in the field of developmental biology. Here, we apply the CRISPR/Cas9 system to the sea urchin embryo. We designed six guide RNAs (gRNAs) against the well-studied nodal gene and discovered that five of the gRNAs induced the expected phenotype in 60-80% of the injected embryos. In addition, we developed a simple method for isolating genomic DNA from individual embryos, enabling phenotype to be precisely linked to genotype, and revealed that the mutation rates were 67-100% among the sequenced clones. Of the two potential off-target sites we examined, no off-target effects were observed. The detailed procedures described herein promise to accelerate the usage of CRISPR/Cas9 system for genome editing in sea urchin embryos.

  5. Genome editing in sea urchin embryos by using a CRISPR/Cas9 system.

    PubMed

    Lin, Che-Yi; Su, Yi-Hsien

    2016-01-15

    Sea urchin embryos are a useful model system for investigating early developmental processes and the underlying gene regulatory networks. Most functional studies using sea urchin embryos rely on antisense morpholino oligonucleotides to knockdown gene functions. However, major concerns related to this technique include off-target effects, variations in morpholino efficiency, and potential morpholino toxicity; furthermore, such problems are difficult to discern. Recent advances in genome editing technologies have introduced the prospect of not only generating sequence-specific knockouts, but also providing genome-engineering applications. Two genome editing tools, zinc-finger nuclease (ZFN) and transcription activator-like effector nucleases (TALENs), have been utilized in sea urchin embryos, but the resulting efficiencies are far from satisfactory. The CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 (CRISPR-associated nuclease 9) system serves as an easy and efficient method with which to edit the genomes of several established and emerging model organisms in the field of developmental biology. Here, we apply the CRISPR/Cas9 system to the sea urchin embryo. We designed six guide RNAs (gRNAs) against the well-studied nodal gene and discovered that five of the gRNAs induced the expected phenotype in 60-80% of the injected embryos. In addition, we developed a simple method for isolating genomic DNA from individual embryos, enabling phenotype to be precisely linked to genotype, and revealed that the mutation rates were 67-100% among the sequenced clones. Of the two potential off-target sites we examined, no off-target effects were observed. The detailed procedures described herein promise to accelerate the usage of CRISPR/Cas9 system for genome editing in sea urchin embryos. PMID:26632489

  6. Geochemical Energy for Life in Deep-Sea Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Amend, J. P.; McCollom, T. M.; Hentscher, M.; Bach, W.

    2010-04-01

    Thermodynamic calculations show that the energetics of both catabolic and anabolic reactions are vastly different in peridotite- and troctolite-hosted hydrothermal systems compared with their basalt- and felsic rock-hosted counterparts.

  7. A review of underwater acoustic systems and methods for locating objects lost at sea

    NASA Technical Reports Server (NTRS)

    Lovelady, R. W.; Ferguson, R. L.

    1983-01-01

    Information related to the location of objects lost at sea is presented. Acoustic devices attached to an object prior to being transported is recommended as a homing beacon. Minimum requirements and some environmental constraints are defined. Methods and procedures for search and recovery are also discussed. Both an interim system and a more advanced system are outlined. Controlled acoustic emission to enhance security is the theme followed.

  8. Prognocean Plus: the Science-Oriented Sea Level Prediction System as a Tool for Public Stakeholders

    NASA Astrophysics Data System (ADS)

    Świerczyńska, M. G.; Miziński, B.; Niedzielski, T.

    2015-12-01

    The novel real-time system for sea level prediction, known as Prognocean Plus, has been developed as a new generation service available through the Polish supercomputing grid infrastructure. The researchers can access the service at https://prognocean.plgrid.pl/. Although the system is science-oriented, we wish to discuss herein its potentials to enhance ocean management studies carried out routinely by public stakeholders. The system produces the short- and medium-term predictions of global altimetric gridded Sea Level Anomaly (SLA) time series, updated daily. The spatial resolution of the SLA forecasts is 1/4° x 1/4°, while the temporal resolution of prognoses is equal to 1 day. The system computes the predictions of time-variable ocean topography using five data-based models, which are not computationally demanding, enabling us to compare their skillfulness in respect to physically-based approaches commonly used by different sea level prediction systems. However, the aim of the system is not only to compute the predictions for science purposes, but primarily to build a user-oriented platform that serves the prognoses and their statistics to a broader community. Thus, we deliver the SLA forecasts as a rapid service available online. In order to provide potential users with the access to science results the Web Map Service (WMS) for Prognocean Plus is designed. We regularly publish the forecasts, both in the interactive graphical WMS service, available from the browser, as well as through the Web Coverage Service (WCS) standard. The Prognocean Plus system, as an early-response system, may be interesting for public stakeholders. It may be used for marine navigation as well as for climate risk management (delineate areas vulnerable to local sea level rise), marine management (advise offered for offshore activities) and coastal management (early warnings against coastal floodings).

  9. Implementation and validation of a coastal forecasting system for wind waves in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Inghilesi, R.; Catini, F.; Bellotti, G.; Franco, L.; Orasi, A.; Corsini, S.

    2012-02-01

    A coastal forecasting system was implemented to provide wind wave forecasts over the whole Mediterranean Sea area, and with the added capability to focus on selected coastal areas. The goal of the system was to achieve a representation of the small-scale coastal processes influencing the propagation of waves towards the coasts. The system was based on a chain of nested wave models and adopted the WAve Model (WAM) to analyse the large-scale, deep-sea propagation of waves; and the Simulating WAves Nearshore (SWAN) to simulate waves in key coastal areas. Regional intermediate-scale WAM grids were introduced to bridge the gap between the large-scale and each coastal area. Even applying two consecutive nestings (Mediterranean grid → regional grid → coastal grid), a very high resolution was still required for the large scale WAM implementation in order to get a final resolution of about 400 m on the shores. In this study three regional areas in the Tyrrhenian Sea were selected, with a single coastal area embedded in each of them. The number of regional and coastal grids in the system could easily be modified without significantly affecting the efficiency of the system. The coastal system was tested in three Italian coastal regions in order to optimize the numerical parameters and to check the results in orographically complex zones for which wave records were available. Fifteen storm events in the period 2004-2009 were considered.

  10. Mapping sea ice using reflected GNSS signals in a bistatic radar system

    NASA Astrophysics Data System (ADS)

    Chew, Clara; Zuffada, Cinzia; Shah, Rashmi; Mannucci, Anthony

    2016-04-01

    Global Navigation Satellite System (GNSS) signals can be used as a kind of bistatic radar, with receivers opportunistically recording ground-reflected signals transmitted by the GNSS satellites themselves. This technique, GNSS-Reflectometry (GNSS-R), has primarily been explored using receivers flown on aircraft or balloons, or in modeling studies. Last year's launch of the TechDemoSat-1 (TDS-1) satellite represents an enormous opportunity to investigate the potential of using spaceborne GNSS receivers to sense changes in the land and ocean surface. Here, we examine the ability of reflected GNSS signals to estimate sea ice extent and sea ice age, as well as comment on the possibility of using GNSS-R to detect leads and polynyas within the ice. In particular, we quantify how the peak power of Delay Doppler Maps (DDMs) generated within the GNSS receiver responds as the satellite flies over the Polar Regions. To compute the effective peak power of each DDM, we first normalize the peak power of the DDM by the noise floor. We also correct for antenna gain, range, and incidence angle. Once these corrections are made, the effective peak power across DDMs may be used as a proxy for changes in surface permittivity and surface roughness. We compare our calculations of reflected power to existing sea ice remote sensing products such as data from the SSMI/S as well as Landsat imagery. Our analysis shows that GNSS reflections are extremely sensitive to the sea ice edge, with increases in reflected power of more than 10 dB relative to reflected power over the open ocean. As the sea ice ages, it thickens and roughens, and reflected power decreases, though it does not decrease below the power over the open ocean. Given the observed sensitivity of GNSS reflections to small features over land and the sensitivity to the sea ice edge, we hypothesize that reflection data could help map the temporal evolution of leads and polynyas.

  11. Characteristics of the Nordic Seas overflows in a set of Norwegian Earth System Model experiments

    NASA Astrophysics Data System (ADS)

    Guo, Chuncheng; Ilicak, Mehmet; Bentsen, Mats; Fer, Ilker

    2016-08-01

    Global ocean models with an isopycnic vertical coordinate are advantageous in representing overflows, as they do not suffer from topography-induced spurious numerical mixing commonly seen in geopotential coordinate models. In this paper, we present a quantitative diagnosis of the Nordic Seas overflows in four configurations of the Norwegian Earth System Model (NorESM) family that features an isopycnic ocean model. For intercomparison, two coupled ocean-sea ice and two fully coupled (atmosphere-land-ocean-sea ice) experiments are considered. Each pair consists of a (non-eddying) 1° and a (eddy-permitting) 1/4° horizontal resolution ocean model. In all experiments, overflow waters remain dense and descend to the deep basins, entraining ambient water en route. Results from the 1/4° pair show similar behavior in the overflows, whereas the 1° pair show distinct differences, including temperature/salinity properties, volume transport (Q), and large scale features such as the strength of the Atlantic Meridional Overturning Circulation (AMOC). The volume transport of the overflows and degree of entrainment are underestimated in the 1° experiments, whereas in the 1/4° experiments, there is a two-fold downstream increase in Q, which matches observations well. In contrast to the 1/4° experiments, the coarse 1° experiments do not capture the inclined isopycnals of the overflows or the western boundary current off the Flemish Cap. In all experiments, the pathway of the Iceland-Scotland Overflow Water is misrepresented: a major fraction of the overflow proceeds southward into the West European Basin, instead of turning westward into the Irminger Sea. This discrepancy is attributed to excessive production of Labrador Sea Water in the model. The mean state and variability of the Nordic Seas overflows have significant consequences on the response of the AMOC, hence their correct representations are of vital importance in global ocean and climate modelling.

  12. The motions of hinged-barge systems in regular seas

    NASA Astrophysics Data System (ADS)

    Kraemer, David Robert Burke

    Harnessing the oceans' vast, clean, and renewable energy to do useful work is a tempting prospect. For over a century, wave-energy conversion devices have been proposed, but none has emerged as a clearly practical and economical solution. One promising system is the McCabe Wave Pump (MWP), an articulated-barge system consisting of three barges hinged together with a large horizontal plate attached below the central barge. Water pumps are driven by the relative pitching motions of the barges excited by ocean waves. This high-pressure water can be used to produce potable water or electricity. A simulation of the motions of a generic hinged-barge system is developed. The equations of motion are developed so that the nonlinear interactions between the barges are included. The simulation is general so that it can be used to study other hinged-barge systems, such as causeway ferry systems or floating airports. The simulation is used to predict the motions of a scale model that was studied in wave-tank experiments. In the experimental study, it was observed that the plate attached to the central barge acted as a pendulum. It was also observed that the phases of the pitching motions of the barges was such that the motions were enhanced by the pendulum effect at all of the wave periods studied. Hence, the increased angular displacements produced greater relative pitching motions which would lead to higher volume rates of pumped water in the operational system. The numerical simulations are found to predict the pendulum effect. In addition, the theory predicted that the after barge motions were significantly less than those of the forward barge, as was observed in the experimental study. The good agreement between the two data sets gives confidence in the ability of the theory to predict the performance of the MWP prototype. The motions of the MWP prototype in regular ocean waves are predicted by the simulation, and its performance is calculated. By modifying the length of

  13. Sea Ice Topography Profiling using Laser Altimetry from Small Unmanned Aircraft Systems

    NASA Astrophysics Data System (ADS)

    Crocker, Roger Ian

    Arctic sea ice is undergoing a dramatic transition from a perennial ice pack with a high prevalence of old multiyear ice, to a predominantly seasonal ice pack comprised primarily of young first-year and second-year ice. This transition has brought about changes in the sea ice thickness and topography characteristics, which will further affect the evolution and survivability of the ice pack. The varying ice conditions have substantial implications for commercial operations, international affairs, regional and global climate, our ability to model climate dynamics, and the livelihood of Arctic inhabitants. A number of satellite and airborne missions are dedicated to monitoring sea ice, but they are limited by their spatial and temporal resolution and coverage. Given the fast rate of sea ice change and its pervasive implications, enhanced observational capabilities are needed to augment the current strategies. The CU Laser Profilometer and Imaging System (CULPIS) is designed specifically for collecting fine-resolution elevation data and imagery from small unmanned aircraft systems (UAS), and has a great potential to compliment ongoing missions. This altimeter system has been integrated into four different UAS, and has been deployed during Arctic and Antarctic science campaigns. The CULPIS elevation measurement accuracy is shown to be 95±25 cm, and is limited primarily by GPS positioning error (<25 cm), aircraft attitude determination error (<20 cm), and sensor misalignment error (<20 cm). The relative error is considerably smaller over short flight distances, and the measurement precision is shown to be <10 cm over a distance of 200 m. Given its fine precision, the CULPIS is well suited for measuring sea ice topography, and observed ridge height and ridge separation distributions are found to agree with theoretical distributions to within 5%. Simulations demonstrate the inability of course-resolution measurements to accurately represent the theoretical distributions

  14. Comparison and validation of global and regional ocean forecasting systems for the South China Sea

    NASA Astrophysics Data System (ADS)

    Zhu, Xueming; Wang, Hui; Liu, Guimei; Régnier, Charly; Kuang, Xiaodi; Wang, Dakui; Ren, Shihe; Jing, Zhiyou; Drévillon, Marie

    2016-07-01

    In this paper, the performance of two operational ocean forecasting systems, the global Mercator Océan (MO) Operational System, developed and maintained by Mercator Océan in France, and the regional South China Sea Operational Forecasting System (SCSOFS), by the National Marine Environmental Forecasting Center (NMEFC) in China, have been examined. Both systems can provide science-based nowcast/forecast products of temperature, salinity, water level, and ocean circulations. Comparison and validation of the ocean circulations, the structures of temperature and salinity, and some mesoscale activities, such as ocean fronts, typhoons, and mesoscale eddies, are conducted based on observed satellite and in situ data obtained in 2012 in the South China Sea. The results showed that MO performs better in simulating the ocean circulations and sea surface temperature (SST), and SCSOFS performs better in simulating the structures of temperature and salinity. For the mesoscale activities, the performance of SCSOFS is better than MO in simulating SST fronts and SST decrease during Typhoon Tembin compared with the previous studies and satellite data; but model results from both of SCSOFS and MO show some differences from satellite observations. In conclusion, some recommendations have been proposed for both forecast systems to improve their forecasting performance in the near future based on our comparison and validation.

  15. A Few Comments on Visual Systems of Ship Handling Simulator for Sea Pilot's Training

    NASA Astrophysics Data System (ADS)

    Murai, Koji; Okazaki, Tadatsugi; Hayashi, Yuji

    We are using a ship handling simulator for sea pilot's training; however, in case of entering a port, it is not enough for a visual image around own ship. The general ship handling simulator does not have the visual image (screen) around own ship. We challenge to clear the effect of a visual system around own ship for entering a port. The training for entering a port is one of important training factor for a sea pilot. This paper describes characteristics of captain's visual observation area and the mental workload for ship handling when entering a port. The visual observation area comes from eye movement and the mental workload comes from heart rate variability (R-R interval), nasal temperature. The results show that the visual system around own ship gives their safe ship handling for entering a port based on eye movement.

  16. Development of a genetic system for the deep-sea psychrophilic bacterium Pseudoalteromonas sp. SM9913

    PubMed Central

    2014-01-01

    Background Pseudoalteromonas species are a group of marine gammaproteobacteria frequently found in deep-sea sediments, which may play important roles in deep-sea sediment ecosystem. Although genome sequence analysis of Pseudoalteromonas has revealed some specific features associated with adaptation to the extreme deep-sea environment, it is still difficult to study how Pseudoalteromonas adapt to the deep-sea environment due to the lack of a genetic manipulation system. The aim of this study is to develop a genetic system in the deep-sea sedimentary bacterium Pseudoalteromonas sp. SM9913, making it possible to perform gene mutation by homologous recombination. Results The sensitivity of Pseudoalteromonas sp. SM9913 to antibiotic was investigated and the erythromycin resistance gene was chosen as the selective marker. A shuttle vector pOriT-4Em was constructed and transferred into Pseudoalteromonas sp. SM9913 through intergeneric conjugation with an efficiency of 1.8 × 10-3, which is high enough to perform the gene knockout assay. A suicide vector pMT was constructed using pOriT-4Em as the bone vector and sacB gene as the counterselective marker. The epsT gene encoding the UDP-glucose lipid carrier transferase was selected as the target gene for inactivation by in-frame deletion. The epsT was in-frame deleted using a two-step integration–segregation strategy after transferring the suicide vector pMT into Pseudoalteromonas sp. SM9913. The ΔepsT mutant showed approximately 73% decrease in the yield of exopolysaccharides, indicating that epsT is an important gene involved in the EPS production of SM9913. Conclusions A conjugal transfer system was constructed in Pseudoalteromonas sp. SM9913 with a wide temperature range for selection and a high transfer efficiency, which will lay the foundation of genetic manipulation in this strain. The epsT gene of SM9913 was successfully deleted with no selective marker left in the chromosome of the host, which thus make it

  17. Convective Systems Over the Japan Sea: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Yoshizaki, Masanori; Shie, Chung-Lin; Kato, Teryuki

    2002-01-01

    Wintertime observations of MCSs (Mesoscale Convective Systems) over the Sea of Japan - 2001 (WMO-01) were collected from January 12 to February 1, 2001. One of the major objectives is to better understand and forecast snow systems and accompanying disturbances and the associated key physical processes involved in the formation and development of these disturbances. Multiple observation platforms (e.g., upper-air soundings, Doppler radar, wind profilers, radiometers, etc.) during WMO-01 provided a first attempt at investigating the detailed characteristics of convective storms and air pattern changes associated with winter storms over the Sea of Japan region. WMO-01 also provided estimates of the apparent heat source (Q1) and apparent moisture sink (Q2). The vertical integrals of Q1 and Q2 are equal to the surface precipitation rates. The horizontal and vertical adjective components of Q1 and Q2 can be used as large-scale forcing for the Cloud Resolving Models (CRMs). The Goddard Cumulus Ensemble (GCE) model is a CRM (typically run with a 1-km grid size). The GCE model has sophisticated microphysics and allows explicit interactions between clouds, radiation, and surface processes. It will be used to understand and quantify precipitation processes associated with wintertime convective systems over the Sea of Japan (using data collected during the WMO-01). This is the first cloud-resolving model used to simulate precipitation processes in this particular region. The GCE model-simulated WMO-01 results will also be compared to other GCE model-simulated weather systems that developed during other field campaigns (i.e., South China Sea, west Pacific warm pool region, eastern Atlantic region and central USA).

  18. The Pianosa Contourite Depositional System (Northern Tyrrhenian Sea): drift morphology and Plio-Quaternary stratigraphic evolution

    NASA Astrophysics Data System (ADS)

    Miramontes Garcia, Elda; Cattaneo, Antonio; Jouet, Gwenael; Thereau, Estelle; Thomas, Yannick; Rovere, Marzia; Cauquil, Eric; Trincardi, Fabio

    2016-04-01

    The Pianosa Contourite Depositional System (CDS) is located in the Corsica Trough (Northern Tyrrhenian Sea), a confined basin dominated by mass transport and contour currents in the eastern flank and by turbidity currents in the western flank. The morphologic and stratigraphic characterisation of the Pianosa CDS is based on multibeam bathymetry, seismic reflection data (multi-channel high resolution mini GI gun, single-channel sparker and CHIRP), sediment cores and ADCP data. The Pianosa CDS is located at shallow to intermediate water depths (170 to 850 m water depth) and is formed under the influence of the Levantine Intermediate Water (LIW). It is 120 km long, has a maximum width of 10 km and is composed of different types of muddy sediment drifts: plastered drift, separated mounded drift, sigmoid drift and multicrested drift. The reduced tectonic activity in the Corsica Trough since the early Pliocene permits to recover a sedimentary record of the contourite depositional system that is only influenced by climate fluctuations. Contourites started to develop in the Middle-Late Pliocene, but their growth was enhanced since the Middle Pleistocene Transition (0.7-0.9 Ma). Although the general circulation of the LIW, flowing northwards in the Corsica Trough, remained active all along the history of the system, contourite drift formation changed, controlled by sediment influx and bottom current velocity. During periods of sea level fall, fast bottom currents often eroded the drift crest in the middle and upper slope. At that time the proximity of the coast to the shelf edge favoured the formation of bioclastic sand deposits winnowed by bottom currents. Higher sediment accumulation of mud in the drifts occurred during periods of fast bottom currents and high sediment availability (i.e. high activity of turbidity currents), coincident with periods of sea level low-stands. Condensed sections were formed during sea level high-stands, when bottom currents were more sluggish

  19. Evolution and fluxes of 137Cs in the Black Sea/Turkish Straits System/North Aegean Sea

    NASA Astrophysics Data System (ADS)

    Delfanti, R.; Özsoy, E.; Kaberi, H.; Schirone, A.; Salvi, S.; Conte, F.; Tsabaris, C.; Papucci, C.

    2014-07-01

    The vertical profiles of 137Cs were determined in the North Aegean, Marmara and Black Seas, to assess inventories and fluxes of the radionuclide in these basins. The inventory of 137Cs in the Western Black Sea integrated from the surface down to 400 m water depth is 3.4 ± 0.1 kBq m- 2, which is surprisingly close to the amount determined in 1988, decay corrected to 2007 (2.9 ± 0.1 kBq m- 2). On the other hand, based on the comparison of profiles roughly 20 years apart, it is estimated that about 1 kBq m- 2 has been transferred from above the halocline to depths below the halocline, emphasizing the effective redistribution of tracers within the same period. We estimate that about 12 TBq y- 1 of 137Cs presently leaves the Black Sea with the upper layer flow through the Bosphorus and only 2 TBq y- 1 is returned with the lower layer inflow of Mediterranean water from the Marmara Sea. Accounting for river fluxes, estimated on the order of 2 TBq y- 1 few years after the Chernobyl accident, and possibly decreased by now, we can thus estimate a net rate of loss of about 8-10 TBq y- 1. Investigating the effective redistribution in the upper water column, the supply by the inflowing Mediterranean water alone does not explain the increase of 137Cs concentration and inventory at intermediate depths in the Western Black Sea. The most important mechanism transferring 137Cs and dissolved contaminants from the surface water to the sub-pycnocline layer appears to be the turbulent entrainment of a larger quantity of Black Sea water into the inflowing plume of Mediterranean water through mixing processes on the southwestern shelf and continental slope following its exit from the Bosphorus. This process produces an extra export of some10 TBq y- 1 of 137Cs from the surface to the sub-pycnocline depths of the Black Sea, a quantity comparable in magnitude to the total export out from the basin. It is the entrainment flux resulting from the mixing, and the further advection and

  20. New GPS constraints on the kinematics of the southern Dead Sea Fault System

    NASA Astrophysics Data System (ADS)

    Gomez, F.; Abu Rajab, J.; Jaafar, R.; Al-Tarazi, E.; Ferry, M.

    2008-12-01

    The southern Dead Sea Fault System (DSFS) traces ~400 km from the Gulf of Aqaba in the south to the southern end of Lebanese Restraining Bend along the DSFS. The general structure involves two main segments, the Wadia Araba fault and the Jordan Valley fault, that control the Dead Sea pull-apart basin. This study assesses the present-day kinematics along the southern DSFS as expressed by present-day deformation. This study combines survey-mode (SGPS) and continuous GPS (CGPS) measurements from Jordan with other available GPS data to assess possible kinematic variations along the southern DSFS. The GPS network in Jordan consists of 15 SGPS sites that have been measured four times over a span of more than three years (2005 - 2008), along with two CGPS stations that have operated for more than 2 years. Preliminary velocities for SGPS sites yield uncertainties of approximately 1 mm/yr, and the CGPS sites yield uncertainties less than 0.8 mm/yr. Velocity patterns are generally consistent with locked faults accumulating strain. 1-D and 2-D Elastic dislocation models suggest slip rates of 3.8 - 4.6 mm/yr and 4.0 - 4.9 mm/yr for the Wadi Araba and Jordan Valley segments, respectively. These geodetically-based slip rates compare well with late Quaternary estimates based on faulted landforms. In addition to elastic models, the spatial coverage of GPS sites permits calculating velocity gradients and assessing infinitesimal strains and rotations along the fault, and within the Dead Sea pull-apart basin. Comparing the strain patterns with more detailed structural maps of the Dead Sea basin provides a means of assessing the kinematics involved in transferring displacement across a large releasing fault step. Furthermore, the rates of strain accumulation provide valuable constraints for assessing the earthquake hazard along the southern Dead Sea fault.

  1. Evaluation of the ecological state of the Sea of Japan and the Sea of Okhotsk using the DNase test system

    NASA Astrophysics Data System (ADS)

    Menzorova, N. I.; Rasskazov, V. A.

    2009-12-01

    A study of the state of the Russian coastal marine ecosystems of the Sea of Japan (the Tumen River mouth) and the Sea of Okhotsk (the eastern shelf of Sakhalin Island and the Sakhalin Gulf) and Kraternya Bight (Yankich Island, Kuril Islands) was carried out during the 29th expedition of the R/V Akademik Oparin. A highly sensitive express analysis using the DNase of the Strongylocentrotus intermedius sea urchin was utilized in order to evaluate the quality of the natural marine water of the areas experiencing different degrees of anthropogenic impact. The marine water quality was evaluated according to the degree of the DNase inhibition in the samples. The presence of ecological stress was shown at the aforementioned sites excluding Kraternya Bight. The method allows the fast (1 hour) analysis of the pollution of marine areas and, coupled with data on the hydrological, hydrochemical, and microbiological studies of water samples, provides the possibility to make an ecological forecast.

  2. Internal tides in the shallow water analysis and forecast system(SWAFS) in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Horton, C.; Clifford, M.; Schmitz, J.; Osterman, W.

    2003-04-01

    The Naval Oceanographic Office has been making daily forecasts of current speeds in the Mediterranean Sea, among other areas, using SWAFS since 1991. Our present Mediterranean model has a horizontal resolution of 1/35^o of latitude by 1/30^o of longitude with 47 sigma levels in the vertical. The normal configuration of our modelling system includes tides, and this is true for our Mediterranean Sea application. The relatively high resolution, both vertically and horizontally of the model grid in this basin, allows for the generation of internal tides from the imposed barotropic tide. As semidiurnal internal tides in the Mediterranean Sea have wavelengths of about 60-90 km, the approximately 3.3 km-resolution of the model grid is adequate. Furthermore, with 47 sigma levels, the thermocline is generally well-resolved. As internal tides are generated by the interaction of the barotropic tide with (steep) bathymetry, the modeling system also needs to use bathymetry with realistic bottom slopes. While the modeling system is built around a version of the Princeton Ocean Model having sigma coordinates in the vertical, horizontal pressure gradients are computed on level surfaces. The accuracy of this type of pressure gradient scheme is not limited by large bottom slopes, and the model bathymetry has not been smoothed to limit maximum bottom slopes. For these reasons, our modelling system for the Mediterranean Sea is potentially capable of generating internal tides with some fidelity. Considering the generally weak barotropic tides in the Mediterranean Sea, surprisingly strong internal tides are generated by the modelling system, especially near the Cretan Arc with its complex bathymetry. We will describe the internal tide field generated by the model, look at the major areas of internal tide generation, and describe the decay of the internal tides away from these sources. The internal tides are seen in the seasonal thermocline, and the corresponding seasonal changes in the

  3. Sustainability evaluation of different systems for sea cucumber ( Apostichopus japonicus) farming based on emergy theory

    NASA Astrophysics Data System (ADS)

    Wang, Guodong; Dong, Shuanglin; Tian, Xiangli; Gao, Qinfeng; Wang, Fang

    2015-06-01

    Emergy analysis is effective for analyzing ecological economic systems. However, the accuracy of the approach is affected by the diversity of economic level, meteorological and hydrological parameters in different regions. The present study evaluated the economic benefits, environmental impact, and sustainability of indoor, semi-intensive and extensive farming systems of sea cucumber ( Apostichopus japonicus) in the same region. The results showed that A. japonicus indoor farming system was high in input and output (yield) whereas pond extensive farming system was low in input and output. The output/input ratio of indoor farming system was lower than that of pond extensive farming system, and the output/input ratio of semi-intensive farming system fell in between them. The environmental loading ratio of A. japonicus extensive farming system was lower than that of indoor farming system. In addition, the emergy yield and emergy exchange ratios, and emergy sustainability and emergy indexes for sustainable development were higher in extensive farming system than those in indoor farming system. These results indicated that the current extensive farming system exerted fewer negative influences on the environment, made more efficient use of available resources, and met more sustainable development requirements than the indoor farming system. A. japonicus farming systems showed more emergy benefits than fish farming systems. The pond farming systems of A. japonicus exploited more free local environmental resources for production, caused less potential pressure on the local environment, and achieved higher sustainability than indoor farming system.

  4. Effects of sea-level rise on barrier island groundwater system dynamics: ecohydrological implications

    USGS Publications Warehouse

    Masterson, John P.; Fienen, Michael N.; Thieler, E. Robert; Gesch, Dean B.; Gutierrez, Benjamin T.; Plant, Nathaniel G.

    2014-01-01

    We used a numerical model to investigate how a barrier island groundwater system responds to increases of up to 60 cm in sea level. We found that a sea-level rise of 20 cm leads to substantial changes in the depth of the water table and the extent and depth of saltwater intrusion, which are key determinants in the establishment, distribution and succession of vegetation assemblages and habitat suitability in barrier islands ecosystems. In our simulations, increases in water-table height in areas with a shallow depth to water (or thin vadose zone) resulted in extensive groundwater inundation of land surface and a thinning of the underlying freshwater lens. We demonstrated the interdependence of the groundwater response to island morphology by evaluating changes at three sites. This interdependence can have a profound effect on ecosystem composition in these fragile coastal landscapes under long-term changing climatic conditions.

  5. Simple shear detachment fault system and marginal grabens in the southernmost Red Sea rift

    NASA Astrophysics Data System (ADS)

    Tesfaye, Samson; Ghebreab, Woldai

    2013-11-01

    The NNW-SSE oriented Red Sea rift, which separates the African and Arabian plates, bifurcates southwards into two parallel branches, southeastern and southern, collectively referred to as the southernmost Red Sea rift. The southern branch forms the magmatically and seismo-tectonically active Afar rift, while the less active southeastern branch connects the Red Sea to the Gulf of Aden through the strait of Bab el Mandeb. The Afar rift is characterized by lateral heterogeneities in crustal thickness, and along-strike variation in extension. The Danakil horst, a counterclockwise rotating, narrow sliver of coherent continental relic, stands between the two rift branches. The western margin of the Afar rift is marked by a series of N-S aligned right-lateral-stepping and seismo-tectonically active marginal grabens. The tectonic configuration of the parallel rift branches, the alignment of the marginal grabens, and the Danakil horst are linked to the initial mode of stretching of the continental crust and its progressive deformation that led to the breakup of the once contiguous African-Arabian plates. We attribute the initial stretching of the continental crust to a simple shear ramp-flat detachment fault geometry where the marginal grabens mark the breakaway zone. The rift basins represent the ramps and the Danakil horst corresponds to the flat in the detachment fault system. As extension progressed, pure shear deformation dominated and overprinted the initial low-angle detachment fault system. Magmatic activity continues to play an integral part in extensional deformation in the southernmost Red Sea rift.

  6. TIDE TOOL: Open-Source Sea-Level Monitoring Software for Tsunami Warning Systems

    NASA Astrophysics Data System (ADS)

    Weinstein, S. A.; Kong, L. S.; Becker, N. C.; Wang, D.

    2012-12-01

    A tsunami warning center (TWC) typically decides to issue a tsunami warning bulletin when initial estimates of earthquake source parameters suggest it may be capable of generating a tsunami. A TWC, however, relies on sea-level data to provide prima facie evidence for the existence or non-existence of destructive tsunami waves and to constrain tsunami wave height forecast models. In the aftermath of the 2004 Sumatra disaster, the International Tsunami Information Center asked the Pacific Tsunami Warning Center (PTWC) to develop a platform-independent, easy-to-use software package to give nascent TWCs the ability to process WMO Global Telecommunications System (GTS) sea-level messages and to analyze the resulting sea-level curves (marigrams). In response PTWC developed TIDE TOOL that has since steadily grown in sophistication to become PTWC's operational sea-level processing system. TIDE TOOL has two main parts: a decoder that reads GTS sea-level message logs, and a graphical user interface (GUI) written in the open-source platform-independent graphical toolkit scripting language Tcl/Tk. This GUI consists of dynamic map-based clients that allow the user to select and analyze a single station or groups of stations by displaying their marigams in strip-chart or screen-tiled forms. TIDE TOOL also includes detail maps of each station to show each station's geographical context and reverse tsunami travel time contours to each station. TIDE TOOL can also be coupled to the GEOWARE™ TTT program to plot tsunami travel times and to indicate the expected tsunami arrival time on the marigrams. Because sea-level messages are structured in a rich variety of formats TIDE TOOL includes a metadata file, COMP_META, that contains all of the information needed by TIDE TOOL to decode sea-level data as well as basic information such as the geographical coordinates of each station. TIDE TOOL can therefore continuously decode theses sea-level messages in real-time and display the time

  7. New step toward geodetic range observations at the sea floor with the BBOBS system

    NASA Astrophysics Data System (ADS)

    Shiobara, H.; Shinohara, M.; Isse, T.

    2011-12-01

    Since 1999, we had developed the broadband ocean bottom seismometer (BBOBS) and its new generation model (BBOBS-NX), and performed several practical observations with them in these ten years to create a category of the ocean floor broadband seismology. Now, the BBOBS data is proved to be acceptable for broadband seismic analyses. In these studies, the period range of the data used is about 10 - 200 s, but in longer period range, i.e. geodetic range, is an unknown region in observations at the sea floor. The acoustic GPS link observation is one of successful methods to know horizontal movement of the sea floor, but it is difficult to obtain continuous data in time. The borehole tilt-meter system is ideal in observational conditions, but it is impossible to expand spatially dense observation network. On the other hand, high mobility of our BBOBS and BBOBS-NX can be a breakthrough for this kind of observation network. So that, based on our BBOBS technology, two kinds of attempts to expand observation range toward the geodetic one have been started since 2009. Our aim in these attempts is to extend observation periods more than one week long for detecting slow slip events, as a first step. Finally, we would like to build the observation network by using them. The first attempt is a precise pressure measurement to detect vertical displacement at the sea floor by attaching an absolute pressure gauge and a parasitic data logger to the original OBS data recorder. The stable frequency oscillator (MCXO) in the data recorder is useful for precise pressure measurement of the gauge with frequency outputs. Although the final resolution of the pressure becomes smaller than 1 Pa, we still have problems due to the drift of the gauge and some scale of sea level change in practical observations. The total precision of the pressure value is also affected by the shift and drift of the frequency standard to measure frequency output signals of the gauge. In our measurements, this effect

  8. Autumn-time response of the ocean-atmospheric system to interannual changes in Arctic sea-ice extent

    NASA Astrophysics Data System (ADS)

    Orsolini, Y. J.; Senan, R.; Benestad, R. E.; Melsom, A.; Balmaseda, M. A.

    2010-09-01

    Sea-ice has a memory of several months and influences the atmosphere by modifying exchange of heat, moisture and momentum at the ocean-atmosphere interface, and by changing the albedo in summer. Thus, being a slowly evolving component of the Earth's climate, sea-ice could be very important for seasonal weather forecasting, especially in the polar regions. Arctic sea-ice extent reaches a minimum in September and sea-ice variability is highest during this period. Here we use a set of simulations from a state-of-the-art coupled ocean-atmosphere model to study the response of the northern hemispheric mid- to high-latitude ocean-atmospheric system to interannual changes in Arctic sea-ice extent during boreal Autumn-early winter. The model set-up consists of 5-member 5-month long simulations, with atmospheric and ocean initial conditions from 1 October 2007. Sea-ice in the model is prescribed, and is derived from observed SST for the years 2000 to 2007. We focus especially on 2007 when Arctic sea-ice extent reached a record lowest and show that there might be improved prediction skill associated with the low sea-ice conditions. Further, implications for seasonal weather predictability over western Europe and the Arctic region will be assessed.

  9. Natural analogue of CO2 dispersion at deep-sea hydrothermal system

    NASA Astrophysics Data System (ADS)

    Shitashima, K.; Maeda, Y.; Ohsumi, T.

    2006-12-01

    CO2 ocean sequestration is being investigated as one of possible options to limit the accumulation of anthropogenic CO2 into the atmosphere. To investigate the appropriateness of CO2 ocean sequestration, the observations for dispersion behavior of sequestrated CO2 into the ocean and influence of a high CO2 environment upon the ocean including marine ecosystem are important. Hydrothermal vent fluids are highly enriched in CO2 and the CO2 rich fluids are released into the ocean as a hydrothermal plume. Especially, the emission of hydrothermal-related liquid CO2 from the sea floor at about 1500m depth was discovered at the Okinawa Trough and Mariana Trough. At these areas, it is considered that the liquid CO2 rises up to shallow depth as a CO2 droplet and that the rising CO2 droplet dissolves gradually in ambient seawater. Deep-sea hydrothermal systems are suitable for natural analogue of CO2 dispersion in the ocean. New cost-effective observation techniques to monitor the dispersion of CO2 were developed. The in-situ pH/pCO2 sensor is high precision in-situ measurement technology of pH and pCO2 in seawater. This sensor can detect precisely and rapidly the changes of pH and pCO2 derived from high CO2. The towing multi-layer monitoring system is observation technology of CO2 dispersion in the ocean. This system can observe the dispersion behavior of CO2 by towing several in-situ sensors and SSBL transponders in the high CO2 plume. The in-situ pH/pCO2 sensor is installed to each transponder of the towing multi-layer monitoring system and in-situ data can be monitored by sound communication in real time on board. We will report the results of an application of these observation techniques to the deep-sea hydrothermal system.

  10. Optimization for Reduced-Fat / Low-NaCl Meat Emulsion Systems with Sea Mustard (Undaria pinnatifida) and Phosphate

    PubMed Central

    Kim, Cheon-Jei; Hwang, Ko-Eun; Song, Dong-Heon; Jeong, Tae-Jun; Kim, Hyun-Wook

    2015-01-01

    The effects of reducing fat levels from 30% to 20% and salt concentrations from 1.5% to 1.0% by partially substituting incorporated phosphate and sea mustard were investigated based on physicochemical properties of reduced-fat / low-NaCl meat emulsion systems. Cooking loss and emulsion stability, hardness, springiness, and cohesiveness for reduced-fat / low-NaCl meat emulsion systems with 20% pork back fat and 1.2% sodium chloride samples with incorporation of phosphate and sea mustard were similar to the control with 30% pork back fat and 1.5% sodium chloride. Results showed that reduced-fat / low-NaCl meat emulsion system samples containing phosphate and sea mustard had higher apparent viscosity. The results of this study show that the incorporation of phosphate and sea mustard in the formulation will successfully reduce fat and salt in the final meat products. PMID:26761874

  11. Real-Time Observations of Optical Properties of Arctic Sea Ice with an Autonomous System

    NASA Astrophysics Data System (ADS)

    Wang, C.; Gerland, S.; Nicolaus, M.; Granskog, M. A.; Hudson, S. R.; Perovich, D. K.; Karlsen, T. I.; Fossan, K.

    2012-12-01

    The recent drastic changes in the Arctic sea ice cover have altered the interaction of solar radiation and sea ice. To improve our understanding of this interaction, a Spectral Radiation Buoy (SRB) for measuring sea ice optical properties was developed, based on a system used during the last International Polar Year at the drift of "Tara" across the Arctic Ocean. A first version of the SRB was deployed on drifting ice in the high Arctic in April 2012. It includes three Satlantic spectral radiometers (two in air, one under ice), covering the wavelength range from 347 nm to 804 nm with 3.3 nm spectral resolution, a bio-shutter to protect the under-ice radiometer, a data logger to handle and store collected data, and an Iridium satellite modem to transfer data in real-time. The under-ice radiometer is mounted on an adjustable under-ice arm, and the other instruments are mounted on a triangular frame frozen into the ice. The SRB measures simultaneously, autonomously and continuously the spectral fluxes of incident and reflected solar radiation, as well as under-ice irradiance, water temperature and water pressure every hour. So far, between mid April and early August 2012, the system has drifted about 600 km, from the starting position near the North Pole towards the Fram Strait. The data collected during this deployment, so far, already demonstrate that this system is suitable for autonomous and long-term observations over and under sea ice in harsh conditions. Along with the SRB, commercially available Ice Mass Balance buoys (IMB) were deployed on the same ice floe. In the vicinity of the site, manned baseline measurements of snow and sea ice physical properties have been carried out during the SRB deployment. The combined datasets allow description of the evolution of the ice floe during seasonal melt. With snow melt, the spectral surface albedo decreased and the transmittance through the snow and ice increased after mid-April, especially when melt ponds started to

  12. Conceptual Design and Challenges for a Tsunami Early Warning System in the Sea of Marmara

    NASA Astrophysics Data System (ADS)

    Necmioglu, Ocal

    2015-04-01

    In this study, while discussing associated challenges such as contradictions between earthquake and tsunami mitigation activities in the Marmara Region, I suggest a conceptual design for a tsunami warning system in the Sea of Marmara upon an improved version of an applicable model for the near-field tsunami early warning and emergency planning in the Mediterranean Area presented by Papadopoulos and Fokaefs (2013). Due to the extreme short arrival times as a result of the close proximity of main fault lines to the coastal regions, and existence of potential submarine landslide sources, any tsunami early warning system in the Sea of Marmara has to be strongly coupled with the earthquake warning system and stakeholders of the tsunami mitigation activities, such as local and regional components of disaster and emergency management and civil protection units. Since 1900, around 90,000 people have lost their lives in 76 earthquakes in Turkey, with a total affected population of around 7 million and direct losses of around 25 billion USD (Erdik, 2013). Based on a time-dependent model that includes coseismic and postseismic effects of the 1999 Izmit earthquake with Mw = 7.4, the probability of an earthquake with Mw > 7 in the Sea of Marmara near Istanbul, as a mega-financial-city in the heart of the Marmara Region with a population around 13 million and 1,000,000 buildings, is 35% to 70% in the next 30 years (Parsons, 2004). Historical records indicate around 30 tsunamis in the Sea of Marmara until today (Altinok et al., 2011). Among those, catastrophic earthquakes such as 1509, 1766 and 1894 resulted in considerable tsunamis and some damage. Latest tsunami observed in Marmara was due to a triggered submarine landslide of 1999 Izmit earthquake which led to reported run-up heights of 1-3 m in most places (Tinti et al., 2006). Hence, the add-on impact of a tsunami generated by the anticipated next earthquake in the Sea of Marmara should not be neglected.

  13. The Pre-Messinian Total Petroleum System of the Provence Basin, Western Mediterranean Sea

    USGS Publications Warehouse

    Pawlewicz, Mark

    2004-01-01

    The Provence Basin is in that portion of the western Mediterranean Sea that is deeper than 2 kilometers. The basin lies essentially beyond the outer continental shelf, between the countries of France, Italy, and Algeria, the Balearic Islands, and the islands of Sardinia and Corsica. It encompasses nearly 300,000 square kilometers and includes the Rhone River submarine fan on the continental slope of southern France. It is province 4068 in the World Energy study. A single, hypothetical, total petroleum system (TPS), the Pre-Messinian TPS (406801), was described for the Provence Basin. The designation hypothetical is used because there is no hydrocarbon production from the basin. The Provence Basin is a deep-water Tertiary rift basin in which the geothermal gradients vary regionally. The Red Sea Basin shares a similar geologic and thermal history with the rifted western Mediterranean Sea and was used as an analog to better understand the genesis of the Provence Basin and as a guide to estimating possible undiscovered amounts of hydrocarbons. For this assessment the basin was given a potential, at the mean, for undiscovered resources of 51 trillion cubic feet (1.4 trillion cubic meters) gas, 0.42 billion barrels oil, and 2.23 million barrels natural gas liquids.

  14. Wave ensemble forecast in the Western Mediterranean Sea, application to an early warning system.

    NASA Astrophysics Data System (ADS)

    Pallares, Elena; Hernandez, Hector; Moré, Jordi; Espino, Manuel; Sairouni, Abdel

    2015-04-01

    The Western Mediterranean Sea is a highly heterogeneous and variable area, as is reflected on the wind field, the current field, and the waves, mainly in the first kilometers offshore. As a result of this variability, the wave forecast in these regions is quite complicated to perform, usually with some accuracy problems during energetic storm events. Moreover, is in these areas where most of the economic activities take part, including fisheries, sailing, tourism, coastal management and offshore renewal energy platforms. In order to introduce an indicator of the probability of occurrence of the different sea states and give more detailed information of the forecast to the end users, an ensemble wave forecast system is considered. The ensemble prediction systems have already been used in the last decades for the meteorological forecast; to deal with the uncertainties of the initial conditions and the different parametrizations used in the models, which may introduce some errors in the forecast, a bunch of different perturbed meteorological simulations are considered as possible future scenarios and compared with the deterministic forecast. In the present work, the SWAN wave model (v41.01) has been implemented for the Western Mediterranean sea, forced with wind fields produced by the deterministic Global Forecast System (GFS) and Global Ensemble Forecast System (GEFS). The wind fields includes a deterministic forecast (also named control), between 11 and 21 ensemble members, and some intelligent member obtained from the ensemble, as the mean of all the members. Four buoys located in the study area, moored in coastal waters, have been used to validate the results. The outputs include all the time series, with a forecast horizon of 8 days and represented in spaghetti diagrams, the spread of the system and the probability at different thresholds. The main goal of this exercise is to be able to determine the degree of the uncertainty of the wave forecast, meaningful

  15. COVIS Detects Interconnections Between Atmospheric, Oceanic and Geologic systems at a Deep Sea Hydrothermal Vent

    NASA Astrophysics Data System (ADS)

    Bemis, K. G.; Xu, G.; Lee, R.

    2015-12-01

    COVIS (Cabled Observatory Vent Imaging Sonar) is an innovative sonar system designed to quantitatively monitor focused and diffuse flows from deep-sea hydrothermal vent clusters. From 9/2010 to 9/2015, COVIS was connected to the NEPTUNE observatory at Grotto vent in the Main Endeavour Field, JdFR. COVIS monitored plumes and diffuse discharge by transmitting high-frequency (200-400 kHz), pulsed acoustic waves and recording the backscattered signals to yield time series of plume heat and volume transports, plume bending, and diffuse flow area. Temporal variations indicate the rate of hydrothermal plume mixing with the ambient seawater increases with the magnitude of ocean currents. Such current-driven entrainment links the dynamics of a deep-sea hydrothermal plume with oceanic and atmospheric processes. We estimate the direction and relative amplitude of the local bottom currents from the bending angles of the plumes. A comparison with currents from an ADCP (~80 m south of Grotto) reveals significant complexity in the mean bottom flow structure within a hydrothermal vent field. Diffuse flow area, temperature, and faunal densities vary periodically reflecting some combination of tidal pressure and current interactions. The heat transport time series suggests the heat source driving the plume remained relatively steady for 41 months. Local seismic data reveals that increased heat transport in 2000 followed seismic events in 1999 and 2000 and the steady heat flux from 10/2011 to 2/2015 coincided with quiescent seismicity. Such a correlation points to the close linkage of a seafloor hydrothermal system with geological processes. These findings demonstrate the intimate interconnections of seafloor hydrothermal systems with processes spanning the Earth's interior to the sea surface. Further, they (and the time-series acquired by COVIS) testify to the effectiveness and robustness of employing an acoustic-imaging sonar for long-term monitoring of a seafloor hydrothermal

  16. Compact optical system for imaging underwater and through the air/sea interface

    NASA Astrophysics Data System (ADS)

    Alley, Derek; Mullen, Linda; Laux, Alan

    2012-06-01

    Typical line-of-sight (LOS)/monostatic optical imaging systems include a laser source and receiver that are co-located on the same platform. The performance of such systems is deteriorated in turbid ocean water due to the large amount of light that is scattered on the path to and from an object of interest. Imagery collected with the LOS/monostatic system through the air/sea interface is also distorted due to wave focusing/defocusing effects. The approach of this project is to investigate an alternate, non-line-of-sight (NLOS)/bistatic approach that offers some advantages over these traditional LOS/monostatic imaging techniques. In this NLOS system the laser and receiver are located on separate platforms with the laser located closer to the object of interest. As the laser sequentially scans the underwater object, a time-varying intensity signal corresponding to reflectivity changes in the object is detected by the distant receiver. A modulated laser illuminator is used to communicate information about the scan to the distant receiver so it can recreate the image with the collected scattered light. This NLOS/bistatic configuration also enables one to view an underwater target through the air-sea interface (transmitter below the surface and receiver above the surface) without the distortions experienced with the LOS/monostatic sensor. In this paper, we will review the results of recent laboratory water tank experiments where an underwater object was imaged with the receiver both below and above the sea surface.

  17. Organic Carbon Geochemistry in the North-western Black Sea Danube River System

    NASA Astrophysics Data System (ADS)

    Galimov, E. M.; Kodina, L. A.; Zhiltsova, L. I.; Tokarev, V. G.; Vlasova, L. N.; Bogacheva, M. P.; Korobeinik, G. S.; Vaisman, T. I.

    2002-03-01

    The isotopic and chemical composition of organic matter from sediments collected on the north-western shelf of the Black Sea and the Danube River are discussed. The δ 13C distribution pattern in organic carbon from surface sediments (0-1 cm) of the western part of the Black Sea has been established. It reveals a rather complicated picture, reflecting the superposition of several factors: local marine primary productivity, terrestrial input to the Danube River discharge and possible contribution from anaerobic microbial activity. The analysis of organic carbon by a pyrolysis-chromatography technique showed that the H/O indices of organic matter from marine sediments are in correlation with δ 13C values. This is an indication of the mixed origin of the organic carbon in the littoral sediments. However, samples from the zone where H 2S conditions prevail deviate from the correlation line of δ 13C vs H/O indices. We believe that this is due to the contribution of the biomass of chemosynthetic bacteria in the sediments. Thus, we argue that in the Danube-Black Sea system several consecutive zones are distinguished. River discharge delivers organic carbon with δ 13C values from -28 to -26 (PSU is used). Mixing of the land-derived material with autochtonous marine primary production gives δ 13C values of about -26 to -23 for the organic carbon in coastal sediments. On the shelf area, beyond significant influence of both terrestrial and sulphide regime factors, plankton material dominates as a source of organic carbon in sediments. In the hydrogen sulphide zone, chemosynthetic bacteria produce additional amounts of organic matter with hydrogen to oxygen indices similar to those of plankton, but with different isotopic composition, which results in the appearance of relatively isotopically light organic carbon in the deep-sea sediments.

  18. An operational coupled wave-current forecasting system for the northern Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Russo, A.; Coluccelli, A.; Deserti, M.; Valentini, A.; Benetazzo, A.; Carniel, S.

    2012-04-01

    Since 2005 an Adriatic implementation of the Regional Ocean Modeling System (AdriaROMS) is being producing operational short-term forecasts (72 hours) of some hydrodynamic properties (currents, sea level, temperature, salinity) of the Adriatic Sea at 2 km horizontal resolution and 20 vertical s-levels, on a daily basis. The main objective of AdriaROMS, which is managed by the Hydro-Meteo-Clima Service (SIMC) of ARPA Emilia Romagna, is to provide useful products for civil protection purposes (sea level forecasts, outputs to run other forecasting models as for saline wedge, oil spills and coastal erosion). In order to improve the forecasts in the coastal area, where most of the attention is focused, a higher resolution model (0.5 km, again with 20 vertical s-levels) has been implemented for the northern Adriatic domain. The new implementation is based on the Coupled-Ocean-Atmosphere-Wave-Sediment Transport Modeling System (COAWST)and adopts ROMS for the hydrodynamic and Simulating WAve Nearshore (SWAN) for the wave module, respectively. Air-sea fluxes are computed using forecasts produced by the COSMO-I7 operational atmospheric model. At the open boundary of the high resolution model, temperature, salinity and velocity fields are provided by AdriaROMS while the wave characteristics are provided by an operational SWAN implementation (also managed by SIMC). Main tidal components are imposed as well, derived from a tidal model. Work in progress is oriented now on the validation of model results by means of extensive comparisons with acquired hydrographic measurements (such as CTDs or XBTs from sea-truth campaigns), currents and waves acquired at observational sites (including those of SIMC, CNR-ISMAR network and its oceanographic tower, located off the Venice littoral) and satellite-derived wave-heights data. Preliminary results on the forecast waves denote how, especially during intense storms, the effect of coupling can lead to significant variations in the wave

  19. Sulfur metabolizing microbes dominate microbial communities in Andesite-hosted shallow-sea hydrothermal systems.

    PubMed

    Zhang, Yao; Zhao, Zihao; Chen, Chen-Tung Arthur; Tang, Kai; Su, Jianqiang; Jiao, Nianzhi

    2012-01-01

    To determine microbial community composition, community spatial structure and possible key microbial processes in the shallow-sea hydrothermal vent systems off NE Taiwan's coast, we examined the bacterial and archaeal communities of four samples collected from the water column extending over a redoxocline gradient of a yellow and four from a white hydrothermal vent. Ribosomal tag pyrosequencing based on DNA and RNA showed statistically significant differences between the bacterial and archaeal communities of the different hydrothermal plumes. The bacterial and archaeal communities from the white hydrothermal plume were dominated by sulfur-reducing Nautilia and Thermococcus, whereas the yellow hydrothermal plume and the surface water were dominated by sulfide-oxidizing Thiomicrospira and Euryarchaeota Marine Group II, respectively. Canonical correspondence analyses indicate that methane (CH(4)) concentration was the only statistically significant variable that explains all community cluster patterns. However, the results of pyrosequencing showed an essential absence of methanogens and methanotrophs at the two vent fields, suggesting that CH(4) was less tied to microbial processes in this shallow-sea hydrothermal system. We speculated that mixing between hydrothermal fluids and the sea or meteoric water leads to distinctly different CH(4) concentrations and redox niches between the yellow and white vents, consequently influencing the distribution patterns of the free-living Bacteria and Archaea. We concluded that sulfur-reducing and sulfide-oxidizing chemolithoautotrophs accounted for most of the primary biomass synthesis and that microbial sulfur metabolism fueled microbial energy flow and element cycling in the shallow hydrothermal systems off the coast of NE Taiwan.

  20. Sulfur metabolizing microbes dominate microbial communities in Andesite-hosted shallow-sea hydrothermal systems.

    PubMed

    Zhang, Yao; Zhao, Zihao; Chen, Chen-Tung Arthur; Tang, Kai; Su, Jianqiang; Jiao, Nianzhi

    2012-01-01

    To determine microbial community composition, community spatial structure and possible key microbial processes in the shallow-sea hydrothermal vent systems off NE Taiwan's coast, we examined the bacterial and archaeal communities of four samples collected from the water column extending over a redoxocline gradient of a yellow and four from a white hydrothermal vent. Ribosomal tag pyrosequencing based on DNA and RNA showed statistically significant differences between the bacterial and archaeal communities of the different hydrothermal plumes. The bacterial and archaeal communities from the white hydrothermal plume were dominated by sulfur-reducing Nautilia and Thermococcus, whereas the yellow hydrothermal plume and the surface water were dominated by sulfide-oxidizing Thiomicrospira and Euryarchaeota Marine Group II, respectively. Canonical correspondence analyses indicate that methane (CH(4)) concentration was the only statistically significant variable that explains all community cluster patterns. However, the results of pyrosequencing showed an essential absence of methanogens and methanotrophs at the two vent fields, suggesting that CH(4) was less tied to microbial processes in this shallow-sea hydrothermal system. We speculated that mixing between hydrothermal fluids and the sea or meteoric water leads to distinctly different CH(4) concentrations and redox niches between the yellow and white vents, consequently influencing the distribution patterns of the free-living Bacteria and Archaea. We concluded that sulfur-reducing and sulfide-oxidizing chemolithoautotrophs accounted for most of the primary biomass synthesis and that microbial sulfur metabolism fueled microbial energy flow and element cycling in the shallow hydrothermal systems off the coast of NE Taiwan. PMID:22970260

  1. The influence of dissolved organic matter on the acid-base system of the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Kuliński, Karol; Schneider, Bernd; Hammer, Karoline; Machulik, Ulrike; Schulz-Bull, Detlef

    2014-04-01

    To assess the influence of dissolved organic matter (DOM) on the acid-base system of the Baltic Sea, 19 stations along the salinity gradient from Mecklenburg Bight to the Bothnian Bay were sampled in November 2011 for total alkalinity (AT), total inorganic carbon concentration (CT), partial pressure of CO2 (pCO2), and pH. Based on these data, an organic alkalinity contribution (Aorg) was determined, defined as the difference between measured AT and the inorganic alkalinity calculated from CT and pH and/or CT and pCO2. Aorg was in the range of 22-58 μmol kg- 1, corresponding to 1.5-3.5% of AT. The method to determine Aorg was validated in an experiment performed on DOM-enriched river water samples collected from the mouths of the Vistula and Oder Rivers in May 2012. The Aorg increase determined in that experiment correlated directly with the increased DOC concentration caused by enrichment of the > 1 kDa DOM fraction. To examine the effect of Aorg on calculations of the marine CO2 system, the pCO2 and pH values measured in Baltic Sea water were compared with calculated values that were based on the measured alkalinity and another variable of the CO2 system, but ignored the existence of Aorg. Large differences between measured and calculated pCO2 and pH were obtained when the computations were based on AT and CT. The calculated pCO2 was 27-56% lower than the measured value whereas the calculated pH was overestimated by more than 0.4 pH units. Since biogeochemical models are based on the transport and transformations of AT and CT, the acid-base properties of DOM should be included in calculations of the CO2 system in DOM-rich basins like the Baltic Sea. In view of our limited knowledge about the composition and acid/base properties of DOM, this is best achieved using a bulk dissociation constant, KDOM, that represents all weakly acidic functional groups present in DOM. Our preliminary results indicated that the bulk KDOM in the Baltic Sea is 2.94 · 10- 8 mol kg- 1

  2. Sea urchin embryos as a model system for studying autophagy induced by cadmium stress.

    PubMed

    Chiarelli, Roberto; Agnello, Maria; Roccheri, Maria Carmela

    2011-09-01

    It is well known that sea urchin embryos are able to activate different defense strategies against stress. We previously demonstrated that cadmium treatment triggers the accumulation of metal in embryonic cells and the activation of defense systems depending on concentration and exposure time, through the synthesis of heat shock proteins and/or the initiation of apoptosis. Here we show that Paracentrotus lividus embryos exposed to Cd adopt autophagy as an additional stratagem to safeguard the developmental program. At present, there are no data focusing on the role of this process in embryo development of marine organisms. PMID:21628995

  3. Tectonics of Chukchi Sea Shelf sedimentary basins and its influence on petroleum systems

    NASA Astrophysics Data System (ADS)

    Agasheva, Mariia; Antonina, Stoupakova; Anna, Suslova; Yury, Karpov

    2016-04-01

    The Chukchi Sea Shelf placed in the East Arctic offshore of Russia between East Siberian Sea Shelf and North Slope Alaska. The Chukchi margin is considered as high petroleum potential play. The major problem is absence of core material from drilling wells in Russian part of Chukchi Shelf, hence strong complex geological and geophysical analyses such as seismic stratigraphy interpretation should be provided. In addition, similarity to North Slope and Beaufort Basins (North Chukchi) and Hope Basin (South Chukchi) allow to infer the resembling sedimentary succession and petroleum systems. The Chukchi Sea Shelf include North and South Chukchi Basins, which are separated by Wrangel-Herald Arch and characterized by different opening time. The North Chukchi basin is formed as a general part of Canada Basin opened in Early Cretaceous. The South Chukchi Basin is characterized by a transtensional origin of the basin, this deformation related to motion on the Kobuk Fault [1]. Because seismic reflections follow chronostratigraphic correlations, it is possible to achieve stratigraphic interpretation. The main seismic horizons were indicated as: PU, JU, LCU, BU, mBU marking each regional unconformities. Reconstruction of main tectonic events of basin is important for building correct geological model. Since there are no drilling wells in the North and South Chukchi basins, source rocks could not be proven. Referring to the North Chukchi basin, source rocks equivalents of Lower Cretaceous Pebble Shale Formation, Lower Jurassic Kingdak shales and Upper Triassic Shublik Formation (North Slope) is possible exhibited [2]. In the South Chukchi, it is possible that Cretaceous source rocks could be mature for hydrocarbon generation. Erosions and uplifts that could effect on hydrocarbon preservation was substantially in Lower Jurassic and Early Cretaceous periods. Most of the structures may be connected with fault and stratigraphy traps. The structure formed at Wrangel-Herald Arch to

  4. Restoration and recovery of damaged eco-epidemiological systems: application to the Salton Sea, California, USA.

    PubMed

    Upadhyay, Ranjit Kumar; Raw, S N; Roy, P; Rai, Vikas

    2013-04-01

    In this paper, we have proposed and analysed a mathematical model to figure out possible ways to rescue a damaged eco-epidemiological system. Our strategy of rescue is based on the realization of the fact that chaotic dynamics often associated with excursions of system dynamics to extinction-sized densities. Chaotic dynamics of the model is depicted by 2D scans, bifurcation analysis, largest Lyapunov exponent and basin boundary calculations. 2D scan results show that μ, the total death rate of infected prey should be brought down in order to avoid chaotic dynamics. We have carried out linear and nonlinear stability analysis and obtained Hopf-bifurcation and persistence criteria of the proposed model system. The other outcome of this study is a suggestion which involves removal of infected fishes at regular interval of time. The estimation of timing and periodicity of the removal exercises would be decided by the nature of infection more than anything else. If this suggestion is carefully worked out and implemented, it would be most effective in restoring the health of the ecosystem which has immense ecological, economic and aesthetic potential. We discuss the implications of this result to Salton Sea, California, USA. The restoration of the Salton Sea provides a perspective for conservation and management strategy. PMID:23403372

  5. Restoration and recovery of damaged eco-epidemiological systems: application to the Salton Sea, California, USA.

    PubMed

    Upadhyay, Ranjit Kumar; Raw, S N; Roy, P; Rai, Vikas

    2013-04-01

    In this paper, we have proposed and analysed a mathematical model to figure out possible ways to rescue a damaged eco-epidemiological system. Our strategy of rescue is based on the realization of the fact that chaotic dynamics often associated with excursions of system dynamics to extinction-sized densities. Chaotic dynamics of the model is depicted by 2D scans, bifurcation analysis, largest Lyapunov exponent and basin boundary calculations. 2D scan results show that μ, the total death rate of infected prey should be brought down in order to avoid chaotic dynamics. We have carried out linear and nonlinear stability analysis and obtained Hopf-bifurcation and persistence criteria of the proposed model system. The other outcome of this study is a suggestion which involves removal of infected fishes at regular interval of time. The estimation of timing and periodicity of the removal exercises would be decided by the nature of infection more than anything else. If this suggestion is carefully worked out and implemented, it would be most effective in restoring the health of the ecosystem which has immense ecological, economic and aesthetic potential. We discuss the implications of this result to Salton Sea, California, USA. The restoration of the Salton Sea provides a perspective for conservation and management strategy.

  6. Investigating Western Dead Sea spring systems and their origin by application of hydrogeochemical patterns

    NASA Astrophysics Data System (ADS)

    Wilske, Cornelia; Siebert, Christian; Geyer, Stefan; Rödiger, Tino; Merkel, Broder

    2013-04-01

    One of the ecologic and touristic hot spots along the western Dead Sea shore is the spring system of Ein Feshkha (Enot Zukim), which suffers from a changing environment. Its feeding Cretaceous aquifers are hosted in the western Graben flank of the Jordan-Dead Sea Rift. However, the origin of water and the ratio of influence of the unconsolidated Quaternary Graben fill is a controversial issue. The aim of the study is to combine hydrogeochemical information of the spring waters and the potential source aquifers to characterize and differentiate the groundwater origins, groundwater flow paths and eventually groundwater mixtures. Within this case study, which is embedded in the SMART II project (Sustainable Management of Available Water Resources of the Lower Jordan Valley), the investigation area extends in the Judean Mountains from the vicinity of Ramallah down to Hebron and ends along the north-western shoreline of the Dead Sea. The Cretaceous limestone aquifers of Turonian/Upper Cenomanian and Albian age are widely separated by a clayey aquiclude. That so called Judea Group is underlaid by the Kurnub sandstone aquifer. Mainly due to the development of the Rift, the entire area is intensely folded and crossed by faults. Groundwater recharge takes place in the uplands and the groundwater flow gradient is oriented towards the Valley, where it transgresses into the Quaternary Graben fill. Our hypothesis is that Ein Feshkha springs are fed by groundwater originating in general in the mountain range, which also takes a detour through the Graben fill in the north of the Dead Sea. Groundwater from these aquifers emerges along the coast of the Dead Sea through springs. The methodological approach is to use geogenic and anthropogenic hydrochemical parameters like major- and trace elements, stable isotopes like δ2H, δ18O or δ87Sr and heavy metals. Sampling campaigns were and will be carried out quarterly within one hydrological year to uncover possible seasonal variations

  7. The Kufrah paleodrainage system in Libya: A past connection to the Mediterranean Sea?

    NASA Astrophysics Data System (ADS)

    Paillou, Philippe; Tooth, Stephen; Lopez, Sylvia

    2012-08-01

    Paillou et al. (2009) mapped a 900 km-long paleodrainage system in eastern Libya, the Kufrah River, that could have linked the southern Kufrah Basin to the Mediterranean coast through the Sirt Basin, possibly as long ago as the Middle Miocene. We study here the potential connection between the terminal part of the Kufrah River and the Mediterranean Sea through the Wadi Sahabi paleochannel, which may have constituted the northern extension of the lower Kufrah River paleodrainage system. New analysis of SRTM-derived topography combined with Synthetic Aperture Radar images from the Japanese PALSAR orbital sensor allowed the mapping of seven main paleochannels located west of the Kufrah River, each of which is likely to have formed a tributary that supplied water and sediment to the main paleodrainage system. The northernmost four paleochannels probably originated from the Al Haruj relief, a Pliocene alkaline basaltic intracontinental volcanic field, and potentially connected to the Wadi Sahabi paleochannel. The remaining three paleochannels are in the more southerly location of the Sarir Calanscio, North-East of the Tibesti mountains, and barely present a topographic signature in SRTM data. They end in the dunes of the Calanscio Sand Sea, forming alluvial fans. The most southern paleochannel, known as Wadi Behar Belama, was previously mapped by Pachur (1996) using LANDSAT-TM images, and was interpreted by Osborne et al. (2008) as representing part of an uninterrupted sediment pathway from the Tibesti mountains to the Mediterranean Sea. Processing of SRTM topographic data revealed local depressions which allow to connect the seven paleochannels and possibly the terminal alluvial fan of the Kufrah River to the Wadi Sahabi paleochannel, through a 400 km-long, south-north oriented, paleocorridor. These new findings support our previous hypothesis that proposed a connection between the lower Kufrah River in the region of the Sarir Dalmah and the Wadi Sahabi paleochannel

  8. A physical view of La Guajira Upwelling System, Colombian Basin, Caribbean Sea

    NASA Astrophysics Data System (ADS)

    Bernal, G.; Beier, E.; Barton, E. D.; Ruiz-Ochoa, M.; Correa, J. G.

    2013-05-01

    La Guajira Peninsula lies within a large upwelling system along the South Caribbean Coast, created by the NE trade winds. In this location, sea surface temperature (SST) exhibits the lowest mean value and the highest variability in the whole Colombian Basin. The seasonal variation of SST explains up to 75 % of the total variability. La Guajira coastal zone also experiences the highest values of wind stress and wind stress curl, with the greatest annual and semiannual variability in the Colombian Basin. It has been shown that wind stress curl enhances the upwelling over the region. Near 90% of the variability of SST in La Guajira can be explained by the seasonality plus the first three EOFs interannual modes: the first, synchronous throughout the Basin, is dominant, and consists of a uniform interannual variation in phase with the North Tropical Atlantic Index; the second co-varies strongly with the second mode of wind stress curl; and the third reflects the role of the vertical atmospheric circulation cell associated with the Caribbean Low Level Jet off Central America. The inclusion of wind stress curl with its maximum offshore of La Guajira explains in part the extension of cool coastal water into the Colombian Basin, with advection in filaments, eddies and meanders. In order to complement the physical knowledge of La Guajira upwelling system, an analysis of water masses, sea surface height, Ekman suction, Ekman transport and coastal upwelling index (CUI) was performed. Hydrographic data was obtained from gridded climatologies from the National Oceanographic Data Center (WOD01); sea surface height anomalies from the Archiving, Validation, and Interpretation of Satellite Oceanography (AVISO) data; and wind data from the Cross-Calibrated Multi-Platform Ocean Surface Wind Velocity Product for Meteorological and Oceanographic Applications (CCMP). The upwelling forms a local water mass, La Guajira surface water (LGSW), with the mixing of subtropical underwater and

  9. Progress of KOERI Tsunami Warning System for the Eastern Mediterranean, Aegean and Black Seas

    NASA Astrophysics Data System (ADS)

    Necmioglu, Ocal; Meral Ozel, Nurcan; Ozer Sozdinler, Ceren; Yilmazer, Mehmet; Cokacar, Tulay; Comoglu, Mustafa; Pinar, Ali; Kekovali, Kivanc

    2016-04-01

    This presentation provides a progress report on the activities of the Bogazici University / Kandilli Observatory and Earthquake Research Institute - Regional Earthquake and Tsunami Monitoring Center (KOERI-RETMC) which provides services as a Candidate Tsunami Service Provider (CTSP) of ICG/NEAMTWS in the Eastern Mediterranean, Aegean and Black Seas since 1 July 2012. KOERI continues to operate 178 BB and 97 strong motion and 6 short period sensors and the regional coverage includes 77 stations from GFZ and additional 16 stations through bilateral agreements. One radar-type tide-gauge has been installed in Fethiye within the framework of "Inexpensive Device for Sea-Level Measurement" (IDSL) initiative offered as donation by the EC/JRC and planning is in progress for the possible installation of three more IDSLs in selected locations in the Aegean Sea coast of Turkey. The capabilities and the limitations of HF Radar technology for the purpose of tsunami detection in the Eastern Mediterranean has been identified and the maturity and the applicability of these systems for the possible use under the Tsunami Warning System has been determined. The development of the TsuComp as a user-friendly interface to be used in the assessment of tsunamigenic potential and as a single-point entry for message dissemination has been finalized. The work towards the creation of Tsunami Inundation Maps at the Tsunami Forecast Points in Turkey is near finalization. This work is partially funded by project ASTARTE - Assessment, Strategy And Risk Reduction for Tsunamis in Europe - FP7-ENV2013 6.4-3, Grant 603839. The authors would like to thank EC/JRC and Mr. Alessandro Annunziato for their continuous support in the operational activities of RETMC and IDSL initiative.

  10. Development of an optical beam system for deep sea data acquisition

    SciTech Connect

    Shibata, Yozo

    1994-12-31

    Remotely Operated Vehicles (ROV) are an ideal method for acquiring data from instruments located on the seabed. Electrical, acoustic or optical signals can be used to communicate with the data acquisition system. While optical signals have high capacity, the power of the optical beam decreases rapidly with distance in sea water; however, the ROV`s ability to approach the instruments eliminates this problem. To investigate a feasibility of an optical beam system for underwater data acquisition, the author has developed and manufactured a prototype data acquisition instrument which the ROV can control. Based on the communication test results, he concludes that such a system is a practical means of short-range underwater data acquisition.

  11. FPGA-based Trigger System for the Fermilab SeaQuest Experimentz

    SciTech Connect

    Shiu, Shiuan-Hal; Wu, Jinyuan; McClellan, Randall Evan; Chang, Ting-Hua; Chang, Wen-Chen; Chen, Yen-Chu; Gilman, Ron; Nakano, Kenichi; Peng, Jen-Chieh; Wang, Su-Yin

    2015-09-10

    The SeaQuest experiment (Fermilab E906) detects pairs of energetic μ+ and μ-produced in 120 GeV/c proton–nucleon interactions in a high rate environment. The trigger system we used consists of several arrays of scintillator hodoscopes and a set of field-programmable gate array (FPGA) based VMEbus modules. Signals from up to 96 channels of hodoscope are digitized by each FPGA with a 1-ns resolution using the time-to-digital convertor (TDC) firmware. The delay of the TDC output can be adjusted channel-by-channel in 1-ns step and then re-aligned with the beam RF clock. The hit pattern on the hodoscope planes is then examined against pre-determined trigger matrices to identify candidate muon tracks. Finally, information on the candidate tracks is sent to the 2nd-level FPGA-based track correlator to find candidate di-muon events. The design and implementation of the FPGA-based trigger system for SeaQuest experiment are presented.

  12. FPGA-based Trigger System for the Fermilab SeaQuest Experimentz

    DOE PAGES

    Shiu, Shiuan-Hal; Wu, Jinyuan; McClellan, Randall Evan; Chang, Ting-Hua; Chang, Wen-Chen; Chen, Yen-Chu; Gilman, Ron; Nakano, Kenichi; Peng, Jen-Chieh; Wang, Su-Yin

    2015-09-10

    The SeaQuest experiment (Fermilab E906) detects pairs of energetic μ+ and μ-produced in 120 GeV/c proton–nucleon interactions in a high rate environment. The trigger system we used consists of several arrays of scintillator hodoscopes and a set of field-programmable gate array (FPGA) based VMEbus modules. Signals from up to 96 channels of hodoscope are digitized by each FPGA with a 1-ns resolution using the time-to-digital convertor (TDC) firmware. The delay of the TDC output can be adjusted channel-by-channel in 1-ns step and then re-aligned with the beam RF clock. The hit pattern on the hodoscope planes is then examined againstmore » pre-determined trigger matrices to identify candidate muon tracks. Finally, information on the candidate tracks is sent to the 2nd-level FPGA-based track correlator to find candidate di-muon events. The design and implementation of the FPGA-based trigger system for SeaQuest experiment are presented.« less

  13. Insight from Genomics on Biogeochemical Cycles in a Shallow-Sea Hydrothermal System

    NASA Astrophysics Data System (ADS)

    Lu, G. S.; Amend, J.

    2015-12-01

    Shallow-sea hydrothermal ecosystems are dynamic, high-energy systems influenced by sunlight and geothermal activity. They provide accessible opportunities for investigating thermophilic microbial biogeochemical cycles. In this study, we report biogeochemical data from a shallow-sea hydrothermal system offshore Paleochori Bay, Milos, Greece, which is characterized by a central vent covered by white microbial mats with hydrothermally influenced sediments extending into nearby sea grass area. Geochemical analysis and deep sequencing provide high-resolution information on the geochemical patterns, microbial diversity and metabolic potential in a two-meter transect. The venting fluid is elevated in temperature (~70oC), low in pH (~4), and enriched in reduced species. The geochemical pattern shows that the profile is affected by not only seawater dilution but also microbial regulation. The microbial community in the deepest section of vent core (10-12 cm) is largely dominated by thermophilic archaea, including a methanogen and a recently described Crenarcheon. Mid-core (6-8 cm), the microbial community in the venting area switches to the hydrogen utilizer Aquificae. Near the sediment-water interface, anaerobic Firmicutes and Actinobacteria dominate, both of which are commonly associated with subsurface and hydrothermal sites. All other samples are dominated by diverse Proteobacteria. The sulfate profile is strongly correlated with the population size of delta- and episilon-proteobactia. The dramatic decrease in concentrations of As and Mn in pore fluids as a function of distance from the vent suggests that in addition to seawater dilution, microorganisms are likely transforming these and other ions through a combination of detoxification and catabolism. In addition, high concentrations of dissolved Fe are only measurable in the shallow sea grass area, suggesting that iron-transforming microorganisms are controlling Fe mobility, and promoting biomineralization. Taken

  14. Tsunami Warning System for the Eastern Mediterranean, Aegean and Black Seas

    NASA Astrophysics Data System (ADS)

    Necmioglu, Ocal; Meral Ozel, Nurcan; Kalafat, Dogan; Comoglu, Mustafa; Ozer Sozdinler, Ceren; Yılmazer, Mehmet; Cevdet Yalçıner, Ahmet

    2015-04-01

    Bogazici University - KOERI is providing a Tsunami Warning System to Eastern Mediterranean, Aegean and Black Seas since 1 July 2012 as a Candidate Tsunami Service Provider (CTSP) within the ICG/NEAMTWS Framework. KOERI continues to operate 129 BB and 86 strong motion and 6 short period sensors. The regional coverage includes 77 stations from GFZ and additional 16 stations through bilateral agreements. During 2014, Romania and Russian Federation have subscribed to its services thanks to 2nd Tsunami Exercise of NEAMTWS - NEAMWave14, reaching a total of 11 NEAMTWS Member States as subscribers. No further progress could have been made in 2014 in the integration of the existing national-tide gauge stations due to the updated plans of the General Command of Mapping in charge of the operation of the national tide-gauge network. Collaborative activities with EC-JRC continued where a comprehensive tsunami scenario database for the Eastern Mediterranean, Aegean and Black Seas has been produced. In addition, KOERI also participated in EC-JRCs Global Tsunami Informal Monitoring Service Project and analyzed 16 tsunamigenic events around the globe. CTSP-TR continued to participate in the Communication Test Exercises (CTE) and Regular CTEs (RegCTE), and acted as the Message Provider for the NEAMWave14 Black Sea Scenario, where Black Sea was covered fort he first time in a NEAMTWS Tsunami Exercise. New Operational Centre has been built and full integration is expected in the first half of 2015. Data preparation activities for the inundation maps at TFPs continued. KOERI also continued to improve its TWS through its involvement of EC funded FP-7 Projects ASTARTE and MARSite and currently focuses on a detailed NEAMTWS Performance Monitoring Framework with associated Key Performance Indicators. This presentation provides a status overview of the operational system while focusing on selected events, such as 12 October 2013 Mw 6.6 and 24 May 2014 Mw 6.9 Northern Aegean earthquakes

  15. Combining rock physics and sedimentology for seismic reservoir characterization of North Sea turbidite systems

    NASA Astrophysics Data System (ADS)

    Avseth, Per Age

    The petroleum industry is increasing its focus on the exploration of reservoirs in turbidite systems. However, these sedimentary environments are often characterized by very complex sand distributions. Hence, reservoir description based on conventional seismic and well-log interpretation may be very uncertain. There is a need to employ more quantitative seismic techniques to reveal reservoirs units in these complex systems from seismic amplitude data. In this study we focus on North Sea turbidite systems. Our goal is to improve the ability to use 3D seismic data to map reservoirs in these systems. A cross-disciplinary methodology for seismic reservoir characterization is presented that combines rock physics, sedimentology, and statistical techniques. We apply this methodology to two turbidite systems of Paleocene age located in the South Viking Graben of the North Sea. First, we investigate the relationship between sedimentary petrography and rock physics properties. Next, we define seismic scale sedimentary units, referred to as seismic lithofacies. These facies represent populations of data that have characteristic geologic and seismic properties. We establish a statistically representative training database by identifying seismic lithofacies from thin-sections, cores, and well-log data. This procedure is guided by diagnostic rock physics modeling. Based on the training data, we perform multivariate classification of data from several wells in the area. Next, we assess uncertainties in amplitude versus offset (AVO) response related to the inherent natural variability of each seismic lithofacies. We generate bivariate probability density functions (pdfs) of two AVO parameters for different facies combinations. By combining the bivariate pdfs estimated from well-logs with the AVO parameters estimated from seismic data, we use both quadratic discriminant analysis and Bayesian classification to predict lithofacies and pore fluids from seismic amplitudes. The final

  16. Morphofunctional ontogeny of the urinary system of the European sea bass Dicentrarchus labrax.

    PubMed

    Nebel, Catherine; Nègre-Sadargues, Geneviève; Blasco, Claudine; Charmantier, Guy

    2005-02-01

    European sea bass (Dicentrarchus labrax) are euryhaline fish that tolerate wide salinity fluctuations owing to several morphofunctional adaptations. Among the osmoregulatory sites (tegument, branchial chambers, digestive tract, urinary system), little is known about the kidney and the urinary bladder. The present study describes the ontogeny of the urinary system (kidney and urinary bladder) and focuses on the progressive expression of the Na(+)/K(+)-ATPase in the cells of these ion-transporting epithelia. A structural approach has shown that two pronephric urinary tubules are already present at hatching while the urinary bladder starts to differentiate. The glomus, an ultrafiltration site, occurs at day 5 (D5). The opisthonephros differentiates at D19/25 from the pronephric collecting tubules, then it rapidly grows longer and becomes folded. Na(+)/K(+)-ATPase immunolocalization and transmission electron microscopy show that ionocyte-like cells line the urinary tubules and the dorsal wall of the urinary bladder from D2/D5 on. Tubule ionocytes present a basolateral-localized fluorescence. Ionocytes of the collecting ducts and of the dorsal wall of the bladder present a fluorescence distributed in the whole cytoplasm. Fluorescence becomes stronger in later stages, suggesting a progressively increasing functionality of the urinary system in active ion transports. This observation is closely correlated with the ontogeny of osmoregulatory abilities. In juvenile and preadult fish kept in seawater, osmolality measurements demonstrate that urine is isotonic to blood. At low salinity, urine is hypotonic to blood in both stages. The capacity to produce hypotonic urine increases during ontogeny, a fact that suggests an increasing involvement of the urinary system in osmoregulation. The occurrence and the progressive functionality of the urinary system during the ontogeny, along with those of other osmoregulatory sites, are major adaptations allowing the sea bass to live in

  17. Comparison of cells free in coelomic and water-vascular system of sea cucumber, Apostichopus japonicus.

    PubMed

    Li, Qiang; Qi, Rui-rong; Wang, Yi-nan; Ye, Shi-gen; Qiao, Guo; Li, Hua

    2013-11-01

    The sea cucumber, Apostichopus japonicus possesses a variety of cells populating in both the coelomic (cells in the coelomic are called coelomocytes) and water-vascular system. In this study, we compared cells in these two systems of A. japonicus on total cell number, cell types and surface antigens through monoclonal antibodies against coelomocytes. The results demonstrated that the cell types observed in coelomic also could be found in water-vascular system, but the total cell number and percentages of each type were different. The total number of coelomocytes was 2-3 times of that in water-vascular system. Lymphoid cells were numerically dominant in coelomic system, while spherulocytes with pseudopods in water-vascular system. Results of indirect immunofluorescence assay technique showed that both coelomocytes and cells in water-vascular system could be recognized by the corresponding MAbs, and the distribution of its positive signals was not different. In conclusion, cell types and surface antigens in coelomic and water-vascular system were same, but the total cell number and percentages of each type were different. And further researches are needed on whether there are differences in functions of the different composition.

  18. Towards a unified modeling system of predicting the transport of radionuclides in coastal sea regions

    NASA Astrophysics Data System (ADS)

    Jung, Kyung Tae; Brovchenko, Igor; Maderich, Vladimir; Kim, Kyeong Ok; Qiao, Fangli

    2016-04-01

    We present in this talk a recent progress in developing a unified modeling system of predicting three-dimensional transport of radionuclides coupled with multiple-scale circulation, wave and suspended sediment modules, keeping in mind the application to coastal sea regions with non-uniform distribution of suspended and bed sediments of both cohesive and non-cohesive types. The model calculates the concentration fields of dissolved and particulate radionuclides in bottom sediment as well as in water column. The transfer of radioactivity between the water column and the pore water in the upper layer of the bottom sediment is governed by diffusion processes. The phase change between dissolved and particulate radionuclides is written in terms of absorption/desorption rates and distribution coefficients. The dependence of distribution coefficients is inversely proportional to the sediment particle size. The hydrodynamic numerical model SELFE that solves equations for the multiple-scale circulation, the wave action and sand transport on the unstructured grids has been used as a base model. We have extended the non-cohesive sediment module of SELFE to the form applicable to mixture of cohesive and non-cohesive sedimentary regimes by implementing an extended form of erosional rate and a flocculation model for the determination of settling velocity of cohesive flocs. Issues related to the calibration of the sediment transport model in the Yellow Sea are described. The radionuclide transport model with one-step transfer kinetics and single bed layer has been initially developed and then applied to Fukushima Daiichi nuclear accident. The model has been in this study verified through the comparison with measurements of 137Cs concentration in bed sediments. Preliminary application to the Yellow and East China Seas with a hypothetical release scenario are described. On-going development of the radionuclide transport model using two-step transfer kinetics and multiple bed layers

  19. Tectonic evolution of the gulf of Aqaba-Dead Sea transform fault system

    NASA Astrophysics Data System (ADS)

    Barjous, M.; Mikbel, Sh

    1990-08-01

    Neogene tectonic phases related to stresses which created the Gulf of Aqaba-Dead Sea transform fault system were recorded from evidence in the central part of the Wadi Araba. The chronological sequence of deformation stages is as follows: (1) Epeirogeny (latest late Eocene-Oligocene). (2) Faulting and warping (?Oligocene-Middle Miocene). (3) Folding striking between north-northeast and northeast, E-W trending and N-S shear faulting, and NW-SE normal faulting (Miocene). (4) Uplift and faulting (Pliocene-Pleistocene). (5) Faulting with volcanic activity (Pleistocene). (6) Sinistral movement along the major shear fault in the Wadi Araba. Indications are that this phase is still active (Pleistocene-Recent). The re-strain phases recognised are clues for the investigated area and the entire region to the understanding of the tectonic evolution of the Gulf of Aqaba-Dead Sea transform. Structural features contributing to evidence of strike-slip movement are: drag folds, reverse and normal flower structures, alternation of the downthrown side along the fault trace, gently waved vertical fault planes, horizontal slickensides, transpressive and transtensional pressure ridges and rhombs, linear fault traces without marked vertical throw, and fault plane ridges. A sinistral offset of 40 km along the N-S Al Quweira Fault was deduced from the displacement of distinctive andesitic rocks found on both sides of the fault. For the E-W Salawan Fault, a dextral movement of at least 7 km was determined from the offset of formation boundaries. North-northeast-striking deformed belts containing monoclinal to recumbent en-echelon folds can be seen in the Gulf of Aqaba-Dead Sea transform fault zone. The axial planes of the folds dip southeast and face northwest. These structural elements indicate local SE-NW compressional stress.

  20. Neotectonics of the SW Iberia margin, Gulf of Cadiz and Alboran Sea: a reassessment including recent structural, seismic and geodetic data

    NASA Astrophysics Data System (ADS)

    Cunha, T. A.; Matias, L. M.; Terrinha, P.; Negredo, A. M.; Rosas, F.; Fernandes, R. M. S.; Pinheiro, L. M.

    2012-03-01

    We use a thin-shell approximation for the lithosphere to model the neotectonics of the Gulf of Cadiz, SW Iberia margin and the westernmost Mediterranean, in the eastern segment of the Azores-Gibraltar plate boundary. In relation to previous neotectonic models in the region, we utilize a better constrained structural map offshore, and the recent GPS measurements over NW Africa and Iberia have been taken into account, together with the seismic strain rate and stress data, to evaluate alternative geodynamic settings proposed for the region. We show that by assuming a relatively simple, two-plate tectonic framework, where Nubia and Eurasia converge NW-SE to WNW-ESE at a rate of 4.5-6 mm yr-1, the models correctly predict the amount of shortening and wrenching between northern Algeria-Morocco and southern Spain and between NW Morocco and SW Iberia, as estimated from both GPS data and geological constraints. The consistency between modelled and observed velocities in the vicinity of Gibraltar and NW Morocco indicates that forcing by slab sinking beneath Gibraltar is not required to reproduce current horizontal deformation in these areas. In the Gulf of Cadiz and SW Iberia, the modelling results support a diffuse Nubia-Eurasia Plate boundary, where the convergence is accommodated along NNE-SSW to NE-SW and ENE-WSW thrust faults and WNW-ESE right-lateral strike-slip faults, over an area >200 km wide, in good general agreement with the distribution of the seismic strain rate and associated faulting mechanisms. The modelling results are robust to regional uncertainties in the structure of the lithosphere and have important implications for the earthquake and tsunami hazard of Portugal, SW Spain and Morocco. We predict maximum, long-term average fault slip rates between 1-2 mm yr-1, that is, less than 50 per cent the average plate relative movement, suggesting very long return periods for high-magnitude (Mw > 8) earthquakes on individual structures.

  1. Evolution of the thermal cap in two wells from the Salton Sea geothermal system, California

    SciTech Connect

    Moore, Joseph N.; Adams, Michael C.

    1988-01-01

    The Salton Sea geothermal system is overlain by a thermal cap of low permeability rocks that restricts the upward movement of the high-temperature reservoir brines. Petrographic and fluid inclusion data from two wells show that the thermal cap in the southern part of the field consists of an upper layer of lacustrine and evaporite deposits with low initial permeabilities and a lower layer of deltaic sandstones. The sandstones were incorporated into the thermal cap as downward percolating fluids deposited anhydrite and calcite in the pore space of the rocks, reducing their permeabilities. During development of the thermal cap, base-metal sulfides, potassium feldspar and quartz veins were deposited by brines from higher temperature portions of the system.

  2. Engrailed is expressed in larval development and in the radial nervous system of Patiriella sea stars.

    PubMed

    Byrne, Maria; Cisternas, Paula; Elia, Laura; Relf, Bronwyn

    2005-12-01

    We documented expression of the pan-metazoan neurogenic gene engrailed in larval and juvenile Patiriella sea stars to determine if this gene patterns bilateral and radial echinoderm nervous systems. Engrailed homologues, containing conserved En protein domains, were cloned from the radial nerve cord. During development, engrailed was expressed in ectodermal (nervous system) and mesodermal (coeloms) derivatives. In larvae, engrailed was expressed in cells lining the larval and future adult coeloms. Engrailed was not expressed in the larval nervous system. As adult-specific developmental programs were switched on during metamorphosis, engrailed was expressed in the central nervous system and peripheral nervous system (PNS), paralleling the pattern of neuropeptide immunolocalisation. Engrailed was first seen in the developing nerve ring and appeared to be up-regulated as the nervous system developed. Expression of engrailed in the nerve plexus of the tube feet, the lobes of the hydrocoel along the adult arm axis, is similar to the reiterated pattern of expression seen in other animals. Engrailed expression in developing nervous tissue reflects its conserved role in neurogenesis, but its broad expression in the adult nervous system of Patiriella differs from the localised expression seen in other bilaterians. The role of engrailed in patterning repeated PNS structures indicates that it may be important in patterning the fivefold organisation of the ambulacrae, a defining feature of the Echinodermata.

  3. A regional ocean current forecast operational system for the sea around Taiwan

    NASA Astrophysics Data System (ADS)

    Yu, Hao-Cheng; Yu, Jason C. S.; Chu, Chi-Hao; Teyr, Terng-Chuen

    2014-05-01

    Ocean current prediction is an important and a challenging task on marine operational forecasting system. This has been a widely developed subject in recent year internationally. The system can provide information to various applications, i.e. coastal structure design, environment management, navigation operation, fishery and recreations. Another potential application of the current prediction is to provide information for marine rescue and emergency response. Through the aid from high performance computing techniques, ocean current forecasting can be efficiently operated within a feasible time by covering a wider domain of operation and with higher resolution. A multi-scale Regional Ocean Current Forecast Operational System (ROCFOS) is developed at Central Weather Bureau (CWB), Taiwan, since 2008. The system has coupled 4 different scales of model domains together, from the Pacific to the seas around Taiwan. The modeling system has been constructed based on ROMS and SELFE and implemented for daily operation. The system is re-initialized with HYCOM and RTOFS daily forecast and driven by meteorological predictions from NCEP GFS and WRF developed at CWB. Satellite data from GHRSST and AVISO are used the calibration and the verification of model results. An NCAR/ncl tool was also developed to process both structured and unstructured data. The modeling system and the analysis of the operational results will be presented.

  4. Assimilation of Sea Surface Temperature predicted by a satellite-based forecasting system in a doubly nested primitive equation model of the Ligurian Sea

    NASA Astrophysics Data System (ADS)

    Barth, A.; Alvera-Azcárate, A.; Alvarez, A.; Beckers, J.-M.

    Data assimilation is traditionally used to combine model dynamics and observations in a statistical optimal way. Assimilation of observations improves therefore hindcasts and nowcasts of the ocean state than otherwise obtained by the model alone. The observational constraints are necessary to reduce uncertainties and imperfections of the ocean model. Due to the obvious lack of future observations, the model forecast cannot be controlled by observations and the predictive skill degrades as the forecast time lag increases. The error grow is not only caused by the chaotic nature of the system but also by the biases and drifts of the model. The later part can be reduced by considering different models with different imperfections. Data assimilation provides the statistical frame for merging the different model results. A primitive equation model of the Mediterranean Sea (1/4° resolution) has been implemented with two successive grid refinements of the Liguro-Provençal Basin (1/20°) and the Ligurian Sea (1/60°) respectively (Barth et al, 2003). The dependence of the ``parent'' model and the embedded ``child'' model is bi-directional; it involves the exchange of boundary conditions and feedback between the models. Alvarez el al. (2004) developed a statistical predictor for forecasting the SST of the Ligurian Sea with a time lag of 7 days based on the previous remote sensed SST. The degrees of freedom of the SST are reduced by an Empirical Orthogonal Function (EOF) analysis. A genetic algorithm trained by the historical SST evolution in the Ligurian Sea is used to predict the EOF amplitudes. Observed and forecasted SST are assimilated in the hydrodynamic model and the results of this two experiments are compared to the model run without assimilation. The assimilation of the forecasted SST reduces the error of the model by an amount comparable to the assimilation of real SST, showing the potential of skill improvement of combining statistical and hydrodynamic models.

  5. Gasometric anomalies in bottom sediments of the Barents Sea as instrument of Modern Petroleum System study

    NASA Astrophysics Data System (ADS)

    Fokina, A.; Akhmanov, G.; Andreassen, K.; Yurchenko, A.

    2014-12-01

    Southern Barents Sea no gas anomalies were detected: low gas concentrations, the gas is of biogenic origin. Geochemical survey within North- Kildinsk field and Fedynskii high were unsuccessful. Petroleum system in the surface geochemical field practically do not manifest due to the low permeability of dense clay silts.

  6. Cloning of the sea urchin mitochondrial RNA polymerase and reconstitution of the transcription termination system

    PubMed Central

    Polosa, Paola Loguercio; Deceglie, Stefania; Falkenberg, Maria; Roberti, Marina; Di Ponzio, Barbara; Gadaleta, Maria Nicola; Cantatore, Palmiro

    2007-01-01

    Termination of transcription is a key process in the regulation of mitochondrial gene expression in animal cells. To investigate transcription termination in sea urchin mitochondria, we cloned the mitochondrial RNA polymerase (mtRNAP) of Paracentrotus lividus and used a recombinant form of the enzyme in a reconstituted transcription system, in the presence of the DNA-binding protein mtDBP. Cloning of mtRNAP was performed by a combination of PCR with degenerate primers and library screening. The enzyme contains 10 phage-like conserved motifs, two pentatricopeptide motifs and a serine-rich stretch. The protein expressed in insect cells supports transcription elongation in a promoter-independent assay. Addition of recombinant mtDBP caused arrest of the transcribing mtRNAP when the enzyme approached the mtDBP-binding site in the direction of transcription of mtDNA l-strand. When the polymerase encountered the protein-binding site in the opposite direction, termination occurred in a protein-independent manner, inside the mtDBP-binding site. Pulse-chase experiments show that mtDBP caused true transcription termination rather than pausing. These data indicate that mtDBP acts as polar termination factor and suggest that transcription termination in sea urchin mitochondria could take place by two alternative modes based on protein-mediated or sequence-dependent mechanisms. PMID:17392338

  7. The mixed mating system of the sea palm kelp Postelsia palmaeformis: few costs to selfing

    PubMed Central

    Barner, Allison K.; Pfister, Catherine A.; Wootton, J. Timothy

    2011-01-01

    Naturally isolated populations have conflicting selection pressures for successful reproduction and inbreeding avoidance. These species with limited seasonal reproductive opportunities may use selfing as a means of reproductive assurance. We quantified the frequency of selfing and the fitness consequences for inbred versus outcrossed progeny of an annual kelp, the sea palm (Postelsia palmaeformis). Using experimentally established populations and microsatellite markers to assess the extent of selfing in progeny from six founding parents, we found the frequency of selfing was higher than expected in every population, and few fitness costs were detected in selfed offspring. Despite a decline in heterozygosity of 30 per cent in the first generation of selfing, self-fertilization did not affect individual size or reproduction, and correlated only with a marginally significant decline in survival. Our results suggest both that purging of deleterious recessive alleles may have already occurred and that selfing may be key to reproductive assurance in this species with limited dispersal. Postelsia has an alteration of a free-living diploid and haploid stage, where the haploid stage may provide increased efficiency for purging the genetic load. This life history is shared by many seaweeds and may thus be an important component of mating system evolution in the sea. PMID:20961896

  8. Particulate and dissolved primary production along a pronounced hydrographic and trophic gradient (Turkish Straits System-NE Aegean Sea)

    NASA Astrophysics Data System (ADS)

    Lagaria, A.; Psarra, S.; Gogou, A.; Tuğrul, S.; Christaki, U.

    2013-06-01

    The rates of particulate (PPp) and dissolved primary production (PPd) were estimated along a trajectory of variable environmental regimes formed in a narrow shelf area, following the course of Black Sea water masses (BSW) passing through the Turkish Straits System (TSS) into the NE Aegean Sea (BS-AS outflow). Seven stations in total were sampled, covering a transect from the eastern edge of the Marmara Sea basin to the NE Aegean Sea, during two consecutive cruises performed in October 2008 within the framework of the EU SESAME project. Along the BS-AS outflow, depth-integrated over the surface BSW layer PPp decreased considerably from 91 to < 16 mg C m- 2 h- 1 whereas PPd increased from 3 to 10 mg C m- 2 h- 1. As a consequence, the relative importance of PPd over total production (percentage extracellular release, PER) increased from 6% (± 3% sd) in the Marmara Sea to 37% (± 4% sd) in the NE Aegean Sea. Total chlorophyll a concentration gradually decreased and phytoplankton community size-structure was modified, with pico-phytoplankton, that originally represented 35% (± 9% sd) in the Marmara Sea, gradually becoming dominant in the NE Aegean (77% ± 2% sd), substituting large nano- and micro-phytoplankton cells (> 5 μm). This study showed that PER increased along a gradient from mesotrophy to oligotrophy, probably due to nutrient deficiency constraining phytoplankton growth and was closely related to phytoplankton size-structure. In the oligotrophic NE Aegean Sea, phytoplankton exudation was a significant source of dissolved organic carbon for heterotrophic prokaryotes.

  9. Performance comparison of meso-scale ensemble wave forecasting systems for Mediterranean sea states

    NASA Astrophysics Data System (ADS)

    Pezzutto, Paolo; Saulter, Andrew; Cavaleri, Luigi; Bunney, Christopher; Marcucci, Francesca; Torrisi, Lucio; Sebastianelli, Stefano

    2016-08-01

    This paper compares the performance of two wind and wave short range ensemble forecast systems for the Mediterranean Sea. In particular, it describes a six month verification experiment carried out by the U.K. Met Office and Italian Air Force Meteorological Service, based on their respective systems: the Met Office Global-Regional Ensemble Prediction System and the Nettuno Ensemble Prediction System. The latter is the ensemble version of the operational Nettuno forecast system. Attention is focused on the differences between the two implementations (e.g. grid resolution and initial ensemble members sampling) and their effects on the prediction skill. The cross-verification of the two ensemble systems shows that from a macroscopic point of view the differences cancel out, suggesting similar skill. More in-depth analysis indicates that the Nettuno wave forecast is better resolved but, on average, slightly less reliable than the Met Office product. Assessment of the added value of the ensemble techniques at short range in comparison with the deterministic forecast from Nettuno, reveals that adopting the ensemble approach has small, but substantive, advantages.

  10. Life cycle assessment of different sea cucumber ( Apostichopus japonicus Selenka) farming systems

    NASA Astrophysics Data System (ADS)

    Wang, Guodong; Dong, Shuanglin; Tian, Xiangli; Gao, Qinfeng; Wang, Fang; Xu, Kefeng

    2015-12-01

    The life cycle assessment was employed to evaluate the environmental impacts of three farming systems (indoor intensive, semi-intensive and extensive systems) of sea cucumber living near Qingdao, China, which can effectively overcome the interference of inaccurate background parameters caused by the diversity of economic level and environment in different regions. Six indicators entailing global warming potential (1.86E + 04, 3.45E + 03, 2.36E + 02), eutrophication potential (6.65E + 01, -1.24E + 02, -1.65E + 02), acidification potential (1.93E + 02, 4.33E + 01, 1.30E + 00), photochemical oxidant formation potential (2.35E-01, 5.46E -02, 2.53E-03), human toxicity potential (2.47E + 00, 6.08E-01, 4.91E + 00) and energy use (3.36E + 05, 1.27E + 04, 1.48E + 03) were introduced in the current study. It was found that all environmental indicators in the indoor intensive farming system were much higher than those in semi-intensive and extensive farming systems because of the dominant role of energy input, while energy input also contributed as the leading cause factor for most of the indicators in the semi-intensive farming system. Yet in the extensive farming system, infrastructure materials played a major role. Through a comprehensive comparison of the three farming systems, it was concluded that income per unit area of indoor intensive farming system was much higher than those of semi-intensive and extensive farming systems. However, the extensive farming system was the most sustainable one. Moreover, adequate measures were proposed, respectively, to improve the environmental sustainability of each farming system in the present study.

  11. (Sulfide-oxide-silicate phase equilibria and associated fluid inclusion properties in the Salton Sea geothermal system, California)

    SciTech Connect

    McKibben, M.A.

    1988-06-01

    Our studies involved petrographic, fluid inclusion, geochemical and stable isotopic studies of drillcores and fluids from the Salton Sea geothermal system. Our initial studies revealed the presence of previously-unrecognized evaporitic anhydrite at depth throughout the geothermal system. The high salinity of the Salton Sea geothermal brines previously had been attributed to low-temperature dissolution of surficial evaporitic deposits by meteoric waters. Our microthermometric studies of halite--containing fluid inclusions in the meta-evaporites indicated that the high salinity of the geothermal brines is derived in part from the hydrothermal metamorphism of relatively deeply-buried salt and evaporites. In addition, our research concentrated on mineralized fractures in drillcores.

  12. Nitrogen and phosphorus budget of a polyculture system of sea cucumber ( Apostichopus japonicus), jellyfish ( Rhopilema esculenta) and shrimp ( Fenneropenaeus chinensis)

    NASA Astrophysics Data System (ADS)

    Li, Junwei; Dong, Shuanglin; Gao, Qinfeng; Zhu, Changbo

    2014-06-01

    The nitrogen (N) and phosphorus (P) budget and the ecological efficiency of a polyculture system of sea cucumber ( Apostichopus japonicus), jellyfish ( Rhopilema esculenta) and shrimp ( Fenneropenaeus chinensis) were studied in a cofferdam, 120.2 ha in size. The nutrients were supplied by spring tide inflow. In total, 139600 kg N yr-1 and 9730 kg P yr-1 input to the system; while 118900 kg N yr-1 and 2840 kg P yr-1 outflowed from the system concurrently, thus the outflow was 85.7% (N) and 29.2% (P) of inflow. The production of N and P was 889.5 kg yr-1 and 49.28 kg yr-1 (sea cucumber) and 204 kg yr-1 and 18.03 kg yr-1 (jellyfish and shrimp), respectively. The utilization rate of N and P by polycultured animals was 7.8‰ and 6.9‰, respectively, 21.9% and 38% higher than that of monocultured sea cucumber. Our results indicated that the polyculture system was an efficient culture system of animals and a remediation system of coastal environment as well; it scavenged 14.3% and 70.8% of N and P, respectively. Such an ecological efficiency may be improved further by increasing either the stocking density or the size of sea cucumber or both.

  13. On the Role of Arctic Sea Ice Deformations: An Evaluation of the Regional Arctic System Model Results with Observations.

    NASA Astrophysics Data System (ADS)

    Osinski, Robert; Maslowski, Wieslaw; Roberts, Andrew

    2016-04-01

    The atmosphere - sea ice - ocean fluxes and their contribution to rapid changes in the Arctic system are not well understood and generally are not resolved by global climate models (GCMs). While many significant model refinements have been made in the recent past, including the representation of sea ice rheology, surface albedo and ice-albedo feedback, other processes such as sea ice deformations, still require further studies and model advancements. Of particular potential interest here are linear kinematic features (LKFs), which control winter air-sea heat exchange and affect buoyancy forces in the ocean. Their importance in Arctic climate change, especially under an increasing first-year ice cover, is yet to be determined and their simulation requires representation of processes currently at sub-grid scale of most GCMs. To address some of the GCM limitations and to better understand the role of LKFs in air-sea exchange we use the Regional Arctic System Model (RASM), which allows high spatio-temporal resolution and regional focus on the Arctic. RASM is a fully coupled regional climate model, developed to study dynamic and thermodynamic processes and their coupling across the atmosphere-sea ice-ocean interface. It consists of the Weather Research and Forecasting (WRF) atmospheric model, the Parallel Ocean Program (POP), the Community Ice Model (CICE) and the Variable Infiltration Capacity (VIC) land hydrology model. The sea ice component has been upgraded to the Los Alamos Community Ice Model version 5.1 (CICE5.1), which allows either Elastic-Viscous-Plastic (EVP) or a new anisotropic (EPA) rheology. RASM's domain is pan-Arctic, with the ocean and sea ice components configured at an eddy-permitting horizontal resolution of 1/12-degree as well as 1/48-degree, for limited simulations. The atmosphere and land model components are configured at 50-km grids. All the components are coupled at a 20-minute time step. Results from multiple RASM simulations are analyzed and

  14. Qualitative chaos in geomorphic systems, with an example from wetland response to sea level rise

    SciTech Connect

    Phillips, J.D. )

    1992-05-01

    The spatial and temporal complexity of earth surface processes and landforms and the presence of deterministic chaos in many fundamental physical processes provide reasons to suspect chaos in geomorphic systems. A method is presented to assess the likelihood of chaotic behavior in a geomorphic system. The method requires identification of the fundamental system components, their positive, negative, or negligible influences on each other, and the relative strength or magnitudes of these links. Based on this information, the method can classify geomorphic systems as stable and nonchaotic, unstable and potentially chaotic, or unstable and generally chaotic. Positive, self-enhancing feedback is a key diagnostic of the likelihood of chaotic behavior. A sample application of the method to the problem of coastal marsh response to sea level rise is provided, which shows the marsh to be unstable. If changes in vegetation cover are partly dependent on vegetation density, the system is generally chaotic if marsh vegetation exhibits self-enhancing feedback (for example, seed source effects) and potentially chaotic if vegetation exhibits self-limiting feedback (competitive effects). The attractors controlling the chaotic dynamics represent states of pronounced erosion/drowning or accretion/expansion.

  15. Time domain simulation of nonlinear response of a coupled TLP system in random seas

    SciTech Connect

    Kim, C.H.; Kim, M.H.; Liu, Y.H.; Zhao, C.T.

    1994-12-31

    This paper presents a result of an analysis of the nonlinear interaction and response of the coupled ISSC-TLP System to the random seas in the time domain. The environmental load also includes the effect of the concurrent steady winds and currents. The first- and second-order wave-exciting forces are calculated using a robust higher-order boundary element method (HOBEM), while the nonlinear tendon dynamic analysis is performed using the three-dimensional hybrid element method with the upgated Lagrangian formulation. The Morison equation is employed for the wave and current load on slender structures. The analysis is focused on the nonlinear responses due to the nonlinear environmental load and nonlinear interaction between the platform and tendons that includes the offset, setdown, large coupled surge-heave motion in the low frequency and resonant heave/pitch responses with the springing loads in the high frequency.

  16. Transect across the West Antarctic rift system in the Ross Sea, Antarctica

    USGS Publications Warehouse

    Trey, H.; Cooper, A. K.; Pellis, G.; Della, Vedova B.; Cochrane, G.; Brancolini, Giuliano; Makris, J.

    1999-01-01

    In 1994, the ACRUP (Antarctic Crustal Profile) project recorded a 670-km-long geophysical transect across the southern Ross Sea to study the velocity and density structure of the crust and uppermost mantle of the West Antarctic rift system. Ray-trace modeling of P- and S-waves recorded on 47 ocean bottom seismograph (OBS) records, with strong seismic arrivals from airgun shots to distances of up to 120 km, show that crustal velocities and geometries vary significantly along the transect. The three major sedimentary basins (early-rift grabens), the Victoria Land Basin, the Central Trough and the Eastern Basin are underlain by highly extended crust and shallow mantle (minimum depth of about 16 km). Beneath the adjacent basement highs, Coulman High and Central High, Moho deepens, and lies at a depth of 21 and 24 km, respectively. Crustal layers have P-wave velocities that range from 5.8 to 7.0 km/s and S-wave velocities from 3.6 to 4.2 km/s. A distinct reflection (PiP) is observed on numerous OBS from an intra-crustal boundary between the upper and lower crust at a depth of about 10 to 12 km. Local zones of high velocities and inferred high densities are observed and modeled in the crust under the axes of the three major sedimentary basins. These zones, which are also marked by positive gravity anomalies, may be places where mafic dikes and sills pervade the crust. We postulate that there has been differential crustal extension across the West Antarctic rift system, with greatest extension beneath the early-rift grabens. The large amount of crustal stretching below the major rift basins may reflect the existence of deep crustal suture zones which initiated in an early stage of the rifting, defined areas of crustal weakness and thereby enhanced stress focussing followed by intense crustal thinning in these areas. The ACRUP data are consistent with the prior concept that most extension and basin down-faulting occurred in the Ross Sea during late Mesozoic time, with

  17. Evaluating Depth-Integrated Steric Contributions to Sea-Level Trends and Variability in Earth System Model Ensembles

    NASA Astrophysics Data System (ADS)

    Hogan, E.; Sriver, R. L.

    2015-12-01

    Earth system model ensembles exhibit considerable uncertainties surrounding trends and magnitude of steric sea-level variations, due in part to structural model differences, internal model variability, and parameterizations that influence ocean heat uptake. Here we analyze depth-integrated steric sea-level changes using the CMIP5 models and a new CESM ensemble that samples internal variability of the coupled Earth system. The CESM ensemble contains 50 members, with historical and future projections (1850-2100) initialized from unique model states sampled from a ~10,000 year fully coupled unforced equilibrium simulation. The CESM ensemble enables us to examine how initial conditions uncertainty (internal variability) within the full-ocean can influence depth-integrated steric sea-level variability. The second ensemble is comprised of runs from 32 different CMIP5 models. We performed grid-level drift correction for each model using the pre-industrial control simulations, which enables us to examine depth-integrated variability and trends due to different model structures. We compare and contrast our results with published observational datasets, and we analyze the effect of different sources of uncertainty on simulated sea-level variability and trends for different ocean depths. Results point to the importance of the deep ocean in attempting to attribute and predict temporal patterns of steric sea-level on a global scale.

  18. Temporal response of hydraulic head, temperature, and chloride concentrations to sea-level changes, Floridan aquifer system, USA

    NASA Astrophysics Data System (ADS)

    Hughes, J. D.; Vacher, H. L.; Sanford, Ward E.

    2009-06-01

    Three-dimensional density-dependent flow and transport modeling of the Floridan aquifer system, USA shows that current chloride concentrations are not in equilibrium with current sea level and, second, that the geometric configuration of the aquifer has a significant effect on system responses. The modeling shows that hydraulic head equilibrates first, followed by temperatures, and then by chloride concentrations. The model was constructed using a modified version of SUTRA capable of simulating multi-species heat and solute transport, and was compared to pre-development conditions using hydraulic heads, chloride concentrations, and temperatures from 315 observation wells. Three hypothetical, sinusoidal sea-level changes occurring over 100,000 years were used to evaluate how the simulated aquifer responds to sea-level changes. Model results show that hydraulic head responses lag behind sea-level changes only where the Miocene Hawthorn confining unit is thick and represents a significant restriction to flow. Temperatures equilibrate quickly except where the Hawthorn confining unit is thick and the duration of the sea-level event is long (exceeding 30,000 years). Response times for chloride concentrations to equilibrate are shortest near the coastline and where the aquifer is unconfined; in contrast, chloride concentrations do not change significantly over the 100,000-year simulation period where the Hawthorn confining unit is thick.

  19. Turkish Straits System and Southern Black Sea: Exchange. Mixing and Shelf / Canyon Interactions

    NASA Astrophysics Data System (ADS)

    Özsoy, Emin; Gürses, Özgür; Tutsak, Ersin

    2015-04-01

    Based largely on an experiment employing high-resolution measurements carried out in June-July 2013 and re-interpretation of past experiments, the oceanographic variability of the exchange through the Turkish Straits System (TSS) and the interactions with the southern Black Sea are revealed through CTD, ADCP, oxygen and light transmission measurements. The exchange flow is primarily governed by the complex topography spanning two narrow straits, wide continental shelf regions, steep slopes and numerous canyons connecting deep basins. Water properties and currents in the high energy environment depends on the mosaic of fine-scale processes and pathways. The TSS, often approximated as a two-layer system has a hydraulically controlled, upper ocean and straits intensified regime, leading to surface jets and bottom plumes participating in mixing and renewal processes. The exit of the 'Mediterranean effluent' onto the Black Sea past a sill overflow from the Bosphorus passes through two subsequent hydraulic jumps and proceeds along a narrow canyon that veers to the west clear of the greater Bosphorus Canyon finally cascading down the few small canyons. A diffusive spread from the bottom vein of salty water reforms to the east and spills down the Bosphorus Canyon. The suspended particulate signature of the cascade, as well as its influence in hydrography is traced over the shelf and slope waters and through the numerous canyons into deep water where the reformed flow is found to sustain signatures of the past evolution of intrusive waters. An evaluation of the processes is given with reference to model development carried out in parallel to the analyses of the measurements.

  20. Assimilation experiments for the Fishery Observing System in the Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Aydoǧdu, Ali; Pinardi, Nadia; Pistoia, Jenny; Martinelli, Michela; Belardinelli, Andrea; Sparnocchia, Stefania

    2016-10-01

    An impact assessment of a Fishery Observing System (FOS) network in the Adriatic Sea was carried out with an ocean circulation model fully-coupled with a data assimilation system. The FOS data are single point vertical values of temperature collected in 2007. In this study, we used the Observing System Experiment (OSE) and Observing System Simulation Experiment (OSSE) methodologies to estimate the impact of different FOS design and sensors implementation. OSEs were conducted to evaluate real observations and they show that the FOS network improves the analysis significantly, especially during the stratification season. Root mean square (RMS) of temperature errors are reduced by about 44% and 36% in the upper and lower layers respectively. We also demonstrated that a similar impact can be obtained with a reduced number of vessels if the spatial coverage of the data points does not change significantly. In the OSSE, the impact of the implementation of a CTD (conductivity-temperature-depth) sensor in place of the existing temperature sensor was tested with identical twin approaches between January and April 2007. The results imply that the assimilation of salinity does not improve the analysis significantly during the winter and spring seasons.

  1. Double-diffusive convection in geothermal systems: the salton sea, California, geothermal system as a likely candidate

    USGS Publications Warehouse

    Fournier, R.O.

    1990-01-01

    Much has been published about double-diffusive convection as a mechanism for explaining variations in composition and temperature within all-liquid natural systems. However, relatively little is known about the applicability of this phenomenon within the heterogeneous rocks of currently active geothermal systems where primary porosity may control fluid flow in some places and fractures may control it in others. The main appeal of double-diffusive convection within hydrothermal systems is-that it is a mechanism that may allow efficient transfer of heat mainly by convection, while at the same time maintaining vertical and lateral salinity gradients. The Salton Sea geothermal system exhibits the following reservoir characteristics: (1) decreasing salinity and temperature from bottom to top and center toward the sides, (2) a very high heat flow from the top of the system that seems to require a major component of convective transfer of heat within the chemically stratified main reservoir, and (3) a relatively uniform density of the reservoir fluid throughout the system at all combinations of subsurface temperature, pressure, and salinity. Double-diffusive convection can account for these characteristics very nicely whereas other previously suggested models appear to account either for the thermal structure or for the salinity variations, but not both. Hydrologists, reservoir engineers, and particularly geochemists should consider the possibility and consequences of double-diffusive convection when formulating models of hydrothermal processes, and of the response of reservoirs to testing and production. ?? 1990.

  2. Regional forecasting system of marine state and variability of dynamical processes in the easternmost part of the Black Sea

    NASA Astrophysics Data System (ADS)

    Kordzadze, Avtandil; Demetrashvili, Demuri

    2014-05-01

    The regional forecasting system for the easternmost part of the Black Sea developed at M. Nodia Institute of Geophysics of I. Javakhishvili Tbilisi State University under the EU framework projects ARENA and ECOOP is a part of the Black Sea basin-scale Nowcasting/Forecasting System. A core of the regional forecasting system is a baroclinic regional model of Black Sea dynamics with 1 km spacing based on hydrostatic primitive equations of ocean hydrothermodynamics, which are written in z-coordinates for deviations of thermodynamic values from their standard vertical distributions. To solve the problem the two-cycle method of splitting the model equation system with respect to both physical processes and coordinate planes and lines is used. The regional model of M. Nodia Institute of Geophysics is nested in the basin-scale model of Black Sea dynamics of Marine Hydrophysical Institute (Sevastopol/Ukraine). The regional forecasting system provides 3 days' forecasts of current, temperature and salinity for the easternmost part of the Black Sea, which is limited to the Caucasian and Turkish coastal lines and the western liquid boundary coinciding with the meridian 39.080E. Data needed on liquid and upper boundaries, also the 3-D initial hydrophysical fields for the easternmost regional area are provided in near operative mode from Marine hydrophysical Institute via Internet. These data on the liquid boundary are values of velocity components, temperature and salinity predicted by the basin-scale model of Black Sea dynamics of Marine Hydrophysical Institute and on the sea surface 2-D meteorological boundary fields - wind stress, heat fluxes, evaporation and precipitation rates predicted by the regional atmospheric model ALADIN are used. The analysis of the results of modeling and forecast of dynamic processes developed for 2010-2014 showed that the easternmost water area of the Black Sea is a dynamically very active zone, where continuously there are processes of generation

  3. Orthorhombic faults system at the onset of the Late Mesozoic-Cenozoic Barents Sea rifting

    NASA Astrophysics Data System (ADS)

    Collanega, Luca; Breda, Anna; Massironi, Matteo

    2016-04-01

    The structures of the Late Mesozoic/Cenozoic Barents Sea rifting have been investigated with multichannel 3D seismics, covering an area of 7700 sqKm in the Hoop Fault Complex, a transitional area between the platform and the marginal basins. The main structural lineaments have been mapped in a time domain 3D surface and their activity ranges have been constrained through the sin-sedimentary thickness variations detected in time-thickness maps. Two main fault systems have been identified: an orthorhombic fault system consisting of two fault sets trending almost perpendicularly one to the other (WNW-ESE and NNE-SSW) and a graben/half-graben system, elongated approximately N-S in the central part of the study area. While the graben/half-graben system can be explained through the theory of Anderson, this landmark theory fails to explain the simultaneous activity of the two fault sets of the orthorhombic system. So far, the models that can better explain orthorhombic fault arrangements are the slip model by Reches (Reches, 1978; Reches, 1983; Reches and Dieterich, 1983) and the odd-axis model by Krantz (Krantz, 1988). However, these models are not definitive and a strong quest to better understand polymodal faulting is actual (Healy et al., 2015). In the study area, the presence of both a classical Andersonian and an orthorhombic system indicates that these models are not alternative but are both effective and necessary to explain faulting in different circumstances. Indeed, the Andersonian plain strain and the orthorhombic deformation have affected different part of the succession during different phases of the rifting. In particular, the orthorhombic system has affected only the Late Mesozoic-Cenozoic interval of the succession and it was the main active system during the initial phase of the rifting. On the other hand, the graben/half-graben system has affected the whole sedimentary succession, with an increasing activity during the development of the rifting. It has

  4. Pelagic-benthic coupling and diagenesis of nucleic acids in a deep-sea continental margin and an open-slope system of the Eastern Mediterranean.

    PubMed

    Dell'anno, Antonio; Corinaldesi, Cinzia; Stavrakakis, Spyros; Lykousis, Vasilis; Danovaro, Roberto

    2005-10-01

    Downward fluxes of nucleic acids adsorbed onto settling particles play a key role in the supply of organic phosphorus and genetic material to the ocean interior. However, information on pelagic-benthic coupling, diagenesis, and processes controlling nucleic acid preservation in deep-sea sediments is practically nonexistent. In this study, we compared nucleic acid fluxes, sedimentary DNA and RNA concentrations, and the enzymatically hydrolyzable fraction of DNA in a bathyal continental margin (North Aegean Sea) and an open-sea system (South Aegean Sea) of the Eastern Mediterranean. The two systems displayed contrasting patterns of nucleic acid fluxes, which increased significantly with depth in the North Aegean Sea and decreased with depth in the South Aegean Sea. These results suggest that in continental margin and open-ocean systems different processes control the nucleic acid supply to the sea floor. Differences in nucleic acid fluxes were reflected by nucleic acid concentrations in the sediments, which reached extremely high values in the North Aegean Sea. In this system, a large fraction of DNA may be buried, as suggested by the large fraction of DNA resistant to nuclease degradation and by estimates of burial efficiency (ca. eight times higher in the North than in the South Aegean Sea). Overall, the results reported here suggest that the preservation of DNA in deeper sediment layers may be favored in benthic systems characterized by high sedimentation rates.

  5. Integrated modelling and management of nutrients and eutrophication in river basin - coast - sea systems: A southern Baltic Sea perspective

    NASA Astrophysics Data System (ADS)

    Schernewski, Gerald

    2014-05-01

    The Odra river basin (area: 120,000 km2, average discharge: 550 m³/s, annual N-load 60,000 t) and the Oder (Szczecin) Lagoon (687 km²) are the eutrophication hot-spot in the south-western Baltic region. To be able to carry out large scale, spatially integrative analyses, we linked the river basin nutrient flux model MONERIS to the coastal 3D-hydrodynamic and ecosystem model ERGOM. Objectives were a) to analyse the eutrophication history in the river basin and the resulting functional changes in the coastal waters between early 1960's and today and b) to analyse the effects of nitrogen and phosphorus management scenarios in the Oder/Odra river basin on coastal and Baltic Sea water quality. The models show that an optimal river basin management with reduced nutrient loads (e.g. N-load reduction of 35%) would have positive effects on lagoon water quality and algae biomass. The availability of nutrients, N/P ratios and processes like denitrification and nitrogen-fixation would show spatial and temporal changes. It would have positive consequences for ecosystems functions, like the nutrient retention capacity, as well. However, this optimal scenario is by far not sufficient to ensure a good coastal water quality according to the European Water Framework Directive. A "good" water quality in the river will not be sufficient to ensure a "good" water quality in the coastal waters. Further, nitrogen load reductions bear the risk of increased potentially toxic, blue-green algae blooms. The presentation will a) summarize recent results (Schernewski et al. 2009, Schernewski et al. 2011, 2012), b) give an overview how the models were used to provide a comprehensive and consistent set of water quality thresholds and maximum allowable riverine loads for the Water Framework Directive and c) will show the implications for an optimised river basin - lagoon quality management.

  6. Plankton in the open Mediterranean Sea: a review

    NASA Astrophysics Data System (ADS)

    Siokou-Frangou, I.; Christaki, U.; Mazzocchi, M. G.; Montresor, M.; Ribera D'Alcalá, M.; Vaqué, D.; Zingone, A.

    2010-05-01

    We present an overview of the plankton studies conducted during the last 25 years in the epipelagic offshore waters of the Mediterranean Sea. This quasi-enclosed sea is characterized by a rich and complex physical dynamics with distinctive traits, especially in regard to the thermohaline circulation. Recent investigations have basically confirmed the long-recognised oligotrophic nature of this sea, which increases along both the west-east and the north-south directions. Nutrient availability is low, especially for phosphorous (N:P up to 60), though this limitation may be buffered by inputs from highly populated coasts and from the atmosphere. Phytoplankton biomass, as chl a, generally displays low values (less than 0.2 μg chl a l-1) over large areas, with a modest late winter increase. A large bloom (up to 3 μg l-1) is observed throughout the late winter and spring exclusively in the NW area. Relatively high biomass values are recorded in fronts and cyclonic gyres. A deep chlorophyll maximum is a permanent feature for the whole basin, except during the late winter mixing. It is found at increasingly greater depths ranging from 30 m in the Alboran Sea to 120 m in the easternmost Levantine basin. Primary production reveals a west-east decreasing trend and ranges between 59 and 150 g C m-2 y-1 (in situ measurements). Overall, the basin is largely dominated by small autotrophs, microheterotrophs and egg-carrying copepod species. The microorganisms (phytoplankton, viruses, bacteria, flagellates and ciliates) and zooplankton components reveal a considerable diversity and variability over spatial and temporal scales, although the latter is poorly studied. Examples are the wide diversity of dinoflagellates and coccolithophores, the multifarious role of diatoms or picoeukaryotes, and the distinct seasonal or spatial patterns of the species-rich copepod genera or families which dominate the basin. Major dissimilarities between western and eastern basins have been

  7. Plankton in the open Mediterranean Sea: a review

    NASA Astrophysics Data System (ADS)

    Siokou-Frangou, I.; Christaki, U.; Mazzocchi, M. G.; Montresor, M.; Ribera D'Alcalá, M.; Vaqué, D.; Zingone, A.

    2009-11-01

    We present an overview of the plankton studies conducted during the last 25 years in the epipelagic offshore waters of the Mediterranean Sea. This quasi-enclosed sea is characterized by a rich and complex physical dynamics that includes unique thermohaline features, particular multilayer circulation, topographic gyres, and meso- and sub-mesoscale activity. Recent investigations have basically confirmed the long-recognised oligotrophic character of this sea, which enhances along both the west-east, and the north-south directions. Nutrient availability is low, especially for phosphorous (N:P up to 60), although limitation may be relaxed by inputs from highly populated coasts and from the atmosphere. Phytoplankton biomass as chl-a, generally displays low values (less than 0.2 μg chl-a l-1) over large areas, with a modest late winter increase. A large bloom (up to 3 μg l-1) throughout the late winter and early spring is only observed in the NW area. Relatively high biomass peaks are also recorded in fronts and cyclonic gyres. A deep chlorophyll maximum is a~permanent feature for the whole basin (except during the late winter mixing). It progressively deepens from the Alboran Sea (30 m) to the easternmost Levantine basin (120 m). Primary production reveals a similar west-east decreasing trend and ranges from 59 to 150 g C m-2 y-1 (in situ measurements). Overall the basin is largely dominated by small-sized autotrophs, microheterotrophs and egg-carrying copepod species. The phytoplankton, the microbial (both autotrophic and heterotrophic) and the zooplankton components reveal a considerable diversity and variability over spatial and temporal scales, the latter less explored though. Examples are the wide diversity of dinoflagellates and coccolithophores, the multifarious role of diatoms or picoeukaryotes, and the distinct seasonal or spatial patterns of the species-reach copepod genera or families which dominate in the basin. Major dissimilarities between western and

  8. Convective Systems Over the South China Sea: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Shie, C.-L.; Johnson, D.; Simpson, J.; Braun, S.; Johnson, R.; Ciesielski, P. E.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The South China Sea Monsoon Experiment (SCSMEX) was conducted in May-June 1998. One of its major objectives is to better understand the key physical processes for the onset and evolution of the summer monsoon over Southeast Asia and southern China. Multiple observation platforms (e.g., upper-air soundings, Doppler radar, ships, wind profilers, radiometers, etc.) during SCSMEX provided a first attempt at investigating the detailed characteristics of convective storms and air pattern changes associated with monsoons over the South China Sea region. SCSMEX also provided rainfall estimates which allows for comparisons with those obtained from the Tropical Rainfall Measuring Mission (TRMM), a low earth orbit satellite designed to measure rainfall from space. The Goddard Cumulus Ensemble (GCE) model (with 1-km grid size) is used to understand and quantify the precipitation processes associated with the summer monsoon over the South China Sea. This is the first (loud-resolving model used to simulate precipitation processes in this particular region. The GCE-model results captured many of the observed precipitation characteristics because it used a fine grid size. For example, the temporal variation of the simulated rainfall compares quite well to the sounding-estimated rainfall variation. The time and domain-averaged temperature (heating/cooling) and water vapor (drying/ moistening) budgets are in good agreement with observations. The GCE-model-simulated rainfall amount also agrees well with TRMM rainfall data. The results show there is more evaporation from the ocean surface prior to the onset of the monsoon than after the on-et of monsoon when rainfall increases. Forcing due to net radiation (solar heating minus longwave cooling) is responsible for about 25% of the precipitation in SCSMEX The transfer of heat from the ocean into the atmosphere does not contribute significantly to the rainfall in SCSMEX. Model sensitivity tests indicated that total rain production is

  9. A safety management system for an offshore Azerbaijan Caspian Sea Project

    SciTech Connect

    Brasic, M.F.; Barber, S.W.; Hill, A.S.

    1996-11-01

    This presentation will describe the Safety Management System that Azerbaijan International Operating Company (AIOC) has structured to assure that Company activities are performed in a manner that protects the public, the environment, contractors and AIOC employees. The Azerbaijan International Oil Company is a consortium of oil companies that includes Socar, the state oil company of Azerbaijan, a number of major westem oil companies, and companies from Russia, Turkey and Saudi Arabia. The Consortium was formed to develop and produce a group of large oil fields in the Caspian Sea. The Management of AIOC, in starting a new operation in Azerbaijan, recognized the need for a formal HSE management system to ensure that their HSE objectives for AIOC activities were met. As a consortium of different partners working together in a unique operation, no individual partner company HSE Management system was appropriate. Accordingly AIOC has utilized the E & P Forum {open_quotes}Guidelines for the Development and Application of Health Safety and Environmental Management Systems{close_quotes} as the framework document for the development of the new AIOC system. Consistent with this guideline, AIOC has developed 19 specific HSE Management System Expectations for implementing its HSE policy and objectives. The objective is to establish and continue to maintain operational integrity in all AIOC activities and site operations. An important feature is the use of structured Safety Cases for the design engineering activity. The basis for the Safety Cases is API RP 75 and 14 J for offshore facilities and API RP 750 for onshore facilities both complimented by {open_quotes}Best International Oilfield Practice{close_quotes}. When viewed overall, this approach provides a fully integrated system of HSE management from design into operation.

  10. Subduction initiation and recycling of Alboran domain derived crustal components prior to the intra-crustal emplacement of mantle peridotites in the Westernmost Mediterranean: isotopic evidence from the Ronda peridotite

    NASA Astrophysics Data System (ADS)

    Varas-Reus, María Isabel; Garrido, Carlos J.; Bosch, Delphine; Marchesi, Claudio Claudio; Acosta-Vigil, Antonio; Hidas, Károly; Barich, Amel

    2014-05-01

    During Late Oligocene-Early Miocene different domains formed in the region between Iberia and Africa in the westernmost Mediterranean, including thinned continental crust and a Flysch Trough turbiditic deposits likely floored by oceanic crust [1]. At this time, the Ronda peridotite likely constituted the subcontinental lithospheric mantle of the Alboran domain, which mantle lithosphere was undergoing strong thinning and melting [2] [3] coevally with Early Miocene extension in the overlying Alpujárride-Maláguide stacked crust [4, 5]. Intrusive Cr- rich pyroxenites in the Ronda massif records the geochemical processes occurring in the subcontinental mantle of the Alboran domain during the Late Oligocene [6]. Recent isotopic studies of these pyroxenites indicate that their mantle source was contaminated by a subduction component released by detrital crustal sediments [6]. This new data is consistent with a subduction setting for the late evolution of the Alboran lithospheric mantle just prior to its final intracrustal emplacement in the early Miocene Further detailed structural studies of the Ronda plagioclase peridotites-related to the initial stages of ductile emplacement of the peridotite-have led to Hidas et al. [7] to propose a geodynamic model where folding and shearing of an attenuated mantle lithosphere occurred by backarc basin inversion followed by failed subduction initiation that ended into the intracrustal emplacement of peridotite into the Alboran wedge in the earliest Miocene. This hypothesis implies that the crustal component recorded in late, Cr-rich websterite dykes might come from underthrusted crustal rocks from the Flysch and/or Alpujárrides units that might have been involved in the earliest stages of this subduction initiation stage. To investigate the origin of crustal component in the mantle source of this late magmatic event recorded by Cr-pyroxenites, we have carried out a detail Sr-Nd-Pb-Hf isotopic study of a variety of Betic

  11. Development of decision support system for oil spill management in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Liubartseva, Svitlana; Coppini, Giovanni; Pinardi, Nadia; De Dominicis, Michela; Marra, Palmalisa; Lecci, Rita; Turrisi, Giuseppe; Creti, Sergio; Martinelli, Sara; Agostini, Paola; Palermo, Francesco

    2016-04-01

    developed as a part of TESSA Project portfolio providing the unified access to others services. Thus, SEACONDITIONS (http://www.sea-conditions.com) performs visualization and on-line delivery of forecast of surface currents, sea surface temperature, significant wave height and direction, wave period and direction; air temperature, surface pressure, precipitation, cloud coverage, wind speed, etc. Apart from the basin scale visualization SEACONDITIONS supports the zooming capability. User feedback reports from fishermen, port authorities including Coast Guard, offshore companies, aquatic and coastal tourism managers, and academia have been collected and used for the system improvements. User-friendliness of GUI, tooltips, an opportunity to vary the advanced parameters, efficiency of the visualization tool, and a help section were appreciated in these reports. In accordance with the users' requirements, a to-do list is composed for the further development of WITOIL. This work was performed in the framework of the TESSA Project (Sviluppo di TEcnologie per la Situational Sea Awareness) supported by PON (Ricerca & Competitività 2007-2013) cofunded by UE (Fondo Europeo di sviluppo regionale), MIUR (Ministero Italiano dell'Università e della Ricerca), and MSE (Ministero dello Sviluppo Economico). References De Dominicis, M., Pinardi, N., Zodiatis, G., and Lardner, R., 2013. MEDSLIK-II, a Lagrangian marine surface oil spill model for short term forecasting - Part 1: Theory. Geosci. Model Dev. 6, 1851-1869.

  12. Special data base of Informational - Computational System 'INM RAS - Black Sea' for solving inverse and data assimilation problems

    NASA Astrophysics Data System (ADS)

    Zakharova, Natalia; Piskovatsky, Nicolay; Gusev, Anatoly

    2014-05-01

    Development of Informational-Computational Systems (ICS) for data assimilation procedures is one of multidisciplinary problems. To study and solve these problems one needs to apply modern results from different disciplines and recent developments in: mathematical modeling; theory of adjoint equations and optimal control; inverse problems; numerical methods theory; numerical algebra and scientific computing. The above problems are studied in the Institute of Numerical Mathematics of the Russian Academy of Science (INM RAS) in ICS for personal computers. In this work the results on the Special data base development for ICS "INM RAS - Black Sea" are presented. In the presentation the input information for ICS is discussed, some special data processing procedures are described. In this work the results of forecast using ICS "INM RAS - Black Sea" with operational observation data assimilation are presented. This study was supported by the Russian Foundation for Basic Research (project No 13-01-00753) and by Presidium Program of Russian Academy of Sciences (project P-23 "Black sea as an imitational ocean model"). References 1. V.I. Agoshkov, M.V. Assovskii, S.A. Lebedev, Numerical simulation of Black Sea hydrothermodynamics taking into account tide-forming forces. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, pp. 5-31. 2. E.I. Parmuzin, V.I. Agoshkov, Numerical solution of the variational assimilation problem for sea surface temperature in the model of the Black Sea dynamics. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, pp. 69-94. 3. V.B. Zalesny, N.A. Diansky, V.V. Fomin, S.N. Moshonkin, S.G. Demyshev, Numerical model of the circulation of Black Sea and Sea of Azov. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, pp. 95-111. 4. Agoshkov V.I.,Assovsky M.B., Giniatulin S. V., Zakharova N.B., Kuimov G.V., Parmuzin E.I., Fomin V.V. Informational Computational system of variational assimilation of observation data "INM RAS - Black sea"// Ecological

  13. Kimmeridgian Shales Total Petroleum System of the North Sea Graben Province

    USGS Publications Warehouse

    Gautier, Donald L.

    2005-01-01

    The North Sea Graben of northwestern Europe, World Energy Project Province 4025, is entirely offshore within the territorial waters of Denmark, Germany, the Netherlands, Norway, and the United Kingdom. Extensional tectonics and failed rifting are fundamental to the distribution of oil and gas in the province. Accordingly, the geologic history and reser-voir rocks of the province are considered in the context of their temporal relationship to the principal extension and rifting events. The oil and gas accumulations of the province are considered part of a single petroleum system: the Kimmeridg-ian Shales Total Petroleum System (TPS). Source rocks of the Kimmeridgian Shales TPS were deposited in Late Jurassic to earliest Cretaceous time during the period of intensive exten-sion and rifting. The Kimmeridgian Shales contain typical 'type II' mixed kerogen. Oil and gas generation began locally in the North Sea Graben Province by Cretaceous time and has continued in various places ever since. Reservoirs are found in strata with ages ranging from Devonian to Eocene. Pre-rift reservoirs are found in fault-block structures activated during rifting and can be of any age prior to the Late Jurassic. Syn-rift reservoirs are restricted to strata actually deposited during maximum extension and include rocks of Late Jurassic to earliest Cretaceous age. Post-rift reservoirs formed after rifting and range in age from Early Cretaceous to Eocene. Seals are diverse, depending upon the structural setting and reservoir age. Pre-rift reservoirs com-monly have seals formed by fine-grained, post-rift sedimentary sequences that drape the Late Jurassic to earliest Cretaceous structures. Contemporaneous shales such as the Kimmeridge Clay seal many syn-rift reservoirs. Fields with post-rift res-ervoirs generally require seals in fine-grained Tertiary rocks. In most of the North Sea Graben, source rocks have been continuously buried since deposition. Structural trap forma-tion has also taken

  14. The forced and free response of the South China Sea to the large scale monsoon system

    NASA Astrophysics Data System (ADS)

    Chen, H.; Tkalich, P.; Malanotte-Rizzoli, P.

    2012-04-01

    Non-tidal sea level anomalies (SLAs) can be produced by many different dynamical phenomena over many time scales, and they can induce serious damages in coastal regions especially during extreme events. In this work we focus on the SLAs in the South China Sea (SCS) to understand whether and how they can be related to the large scale, seasonal monsoon system which dominates the SCS circulation and dynamics. We have two major objectives. The first one is to understand whether the NE (winter) and SW (summer) monsoons can be responsible for the persistent SLAs, both positive and negative, observed at the SCS ends along the main monsoon path. The second objective is to understand the SCS response as a free system upon onset/relaxation or sudden changes in the forcing wind. It is well known that sudden changes in the forcing mechanism induce free oscillations, or seiches, in closed, semi-enclosed basins and harbors, and we want to identify the possible seiche modes of the SCS. To our knowledge, these two objectives have not been previously addressed. We address these objectives both through observational analysis and modeling simulations. Multi-year tide-gauge data from stations along the coastal regions of the SCS are analyzed examining their spatial correlations. Strong negative correlations are found between the northeast and southwest stations at the two ends of the SCS under the path of the NE/SW monsoons. They correspond to wind-induced positive/negative sea level set-ups lasting for the entire monsoon season and changing sign from winter to summer. Short periods of negative correlations are also found between the SLAs at eastern and western stations during El Nino years in which the monsoons are weaker and have an enhanced E/W component inducing corresponding sea level set-ups. The tide gauge station at Tanjong Pagar at the southwest SCS end near Singapore is chosen to study four extreme SLAs events in the observational record during 1999. Modeling simulations are

  15. Multi-year study of the carbonate system in the Chukchi Sea with emphasizes on its western part

    NASA Astrophysics Data System (ADS)

    Semiletov, I. P.; Pipko, I.; Pugach, S.

    2015-12-01

    Variability of the Arctic climate has affected many aspects of the Arctic environment, especially in the Pacific sector of the Arctic. The primary implication is that today's Arctic cryosphere (glaciers, frozen ground, and sea ice) and biosphere (terrestrial, lacustrine, and marine) are not at steady state; they have changed and will continue to change in response to evolving Arctic climate. Over the decade 2004-2013 environmental changes in the Pacific sector of the Arctic have been dramatic enough to suggest that a 'new normal' climate is emerging (Wood et al., 2015). Like everywhere in the Arctic, understanding of environmental change in the Chukchi Sea is hindered by sparse data. Dynamics of the carbonate system (CS) in the eastern Chukchi Sea (US EEZ) has been studied more extensively for a longer period and is better understood than in its western (Russian EEZ) part. Here we focus on the carbonate system data collected in the Russian part of the Chukchi Sea over > 10 years (2000-2011). Our data exhibit a strong mesoscale and interannual dynamics of carbonate system parameters in the surface seawater. The aragonite saturation state (WAr) was highly variable but also has generally been decreasing in the upper waters from 2000 to 2011. It was shown that despite strong sea ice loss, waters heating and storm increasing, the surface waters in this area have been consistently undersaturated by CO2 with respect to the atmosphere. Notable localized exceptions, where CO2 outgassing occurs, include the well-mixed waters near Bering Strait. Combining our long-term carbonate system data set (1996-2011) with the available literature data we felt in conclusion that the entire Chukchi Sea during ice-free season absorbs ~12-15× 1012 g C and a significant part of this carbon was transferred to the deep layers and insulated from contact with the atmosphere for a long time. Note that the CO2 invasion is a similar value with the CO2 outgassing from the shallow eastern Laptev Sea

  16. All That Unplowed Sea

    ERIC Educational Resources Information Center

    MOSAIC, 1975

    1975-01-01

    Hunting and gathering at sea may fast be approaching their productive limits. Aquaculture - farming at sea - linked to conservation represents the sea's promise. If the system works, it might prove to be the key to supplying large amounts of food and fresh water at no cost in nonrenewable energy resources. (BT)

  17. Serving data from the SCAR Southern Ocean Observing System (SOOS) using the SeaDataNet infrastructure

    NASA Astrophysics Data System (ADS)

    de Bruin, T. F.

    2010-09-01

    The Scientific Committee on Antarctic Research (SCAR) and the Scientific Committee on Oceanic Research (SCOR) jointly intend to build a Southern Ocean Observing System (SOOS). This paper addresses the required data flow infrastructure. SOOS will use a system of systems approach, using existing observation programmes and projects. Data should be submitted to professional data centres. The problem arises how to link all these data centres and get a central overview of the SOOS data as well as direct access to the data. The Netherlands National Oceanographic Data Committee (NL-NODC) has successfully built a national distributed oceanographic data acccess infrastructure, adopting and implementing technology developed by the European SeaDataNet project. The Dutch system has been operational since early 2009. The conclusion is that the SeaDataNet technology can be used to build an operational, distributed data delivery infrastructure, featuring all elements required by the Southern Ocean Observing System (SOOS).

  18. Biooptical variability in the Greenland Sea observed with the Multispectral Airborne Radiometer System (MARS)

    NASA Technical Reports Server (NTRS)

    Mueller, James L.; Trees, Charles C.

    1989-01-01

    A site-specific ocean color remote sensing algorithm was developed and used to convert Multispectral Airborne Radiometer System (MARS) spectral radiance measurements to chlorophyll-a concentration profiles along aircraft tracklines in the Greenland Sea. The analysis is described and the results given in graphical or tabular form. Section 2 describes the salient characteristics and history of development of the MARS instrument. Section 3 describes the analyses of MARS flight segments over consolidated sea ice, resulting in a set of altitude dependent ratios used (over water) to estimate radiance reflected by the surface and atmosphere from total radiance measured. Section 4 presents optically weighted pigment concentrations calculated from profile data, and spectral reflectances measured in situ from the top meter of the water column; this data was analyzed to develop an algorithm relating chlorophyll-a concentrations to the ratio of radiance reflectances at 441 and 550 nm (with a selection of coefficients dependent upon whether significant gelvin presence is implied by a low ratio of reflectances at 410 and 550 nm). Section 5 describes the scaling adjustments which were derived to reconcile the MARS upwelled radiance ratios at 410:550 nm and 441:550 nm to in situ reflectance ratios measured simultaneously on the surface. Section 6 graphically presents the locations of MARS data tracklines and positions of the surface monitoring R/V. Section 7 presents stick-plots of MARS tracklines selected to illustrate two-dimensional spatial variability within the box covered by each day's flight. Section 8 presents curves of chlorophyll-a concentration profiles derived from MARS data along survey tracklines. Significant results are summarized in Section 1.

  19. The seamod.ro operational stochastic forecasting system of the Black Sea

    NASA Astrophysics Data System (ADS)

    Vandenbulcke, Luc; Barth, Alexander; Capet, Arthur; Gregoire, Marilaure

    2015-04-01

    Since the end of 2011, the GHER hydrodynamic model is ran daily to provide operational weekly forecasts of the Black Sea hydrodynamics, as well as the associated uncertainty. The model has ~4km horizontal resolution, 31 vertical layers, comprises 6 rivers with climatological fluxes, and is laterally forced with NCEP GFS atmospheric fields. The free model has been extensively validated in previous studies (Capet et al, 2012). Among others, it presents all the expected features in the Black Sea, and has also been shown to run 40 years without nudging or data assimilation while conserving total quantities and maintaining the mixed layer depth and the halocline. The operational model has been transformed into an ensemble, by perturbing the initial conditions with the Weakly Constrained Ensembles algorithm, by perturbing the wind (and other atmospheric forcing fields) using additive noise obtained from an EOF decomposition, and by perturbing viscosity and diffusion coefficients, and river fluxes. SST images and ARGO profiles are then assimilated daily, using the Ocean Assimilation Kit. Data assimilation is tuned so that it is not too brutal, and hence error magnitudes (computed a posteriori with independent observations) increase only slightly with lead days. The short-term ensemble forecasts are further validated (Rim Current and semi-permanent eddies, SST maps, mixed layer depth maps, cross-shelf exchanges...). The a priori model error, estimated by the ensemble spread, is also shown to correspond well to the a posteriori model errors (the difference between ensemble mean and independent observations). Future improvements to the forecasting system may include better atmospheric forcing fields, the inclusion of a biological/optical model (critical for SST), a nested model in the shelf area, a non-gaussian and non-intrusive data assimilation scheme, and the inclusion of different hydrodynamical models in the ensemble.

  20. Processes controlling water and hydrocarbon composition in seeps from the Salton Sea geothermal system, California, USA

    NASA Astrophysics Data System (ADS)

    Svensen, Henrik; Karlsen, Dag A.; Sturz, Anne; Backer-Owe, Kristian; Banks, David A.; Planke, Sverre

    2007-01-01

    Water-, mud-, gas-, and petroleum-bearing seeps are part of the Salton Sea geothermal system (SSGS) in Southern California. Seeps in the Davis-Schrimpf seep field (˜14,000 m2) show considerable variations in water temperature, pH, density, and solute content. Water-rich springs have low densities (<1.4 g/cm3), Cl contents as high as 45,000 ppm, and temperatures between 15 and 34 °C. Gryphons expel denser water-mud mixtures (to 1.7 g/cm3), have low salinities (3600 5200 ppm Cl), and have temperatures between 23 and 63 °C. The main driver for the seep system is CO2 (>98 vol%). Halogen geochemistry of the waters indicates that mixing of deep and shallow waters occurs and that near-surface dissolution of halite may overprint the original fluid compositions. Carbon isotopic analyses suggest that hydrocarbon seep gases have a thermogenic origin. This hypothesis is supported by the presence of petroleum in a water-dominated spring, composed of 53% saturated compounds, 35% aromatics, and 12% polar compounds. The abundance of polyaromatic hydrocarbons and immature biomarkers suggests a hydrothermal formation of the petroleum, making the SSGS a relevant analogue to less accessible hydrothermal seep systems, e.g., the Guaymas Basin in the Gulf of California.

  1. East China Sea Storm Surge Modeling and Visualization System: the Typhoon Soulik case.

    PubMed

    Deng, Zengan; Zhang, Feng; Kang, Linchong; Jiang, Xiaoyi; Jin, Jiye; Wang, Wei

    2014-01-01

    East China Sea (ECS) Storm Surge Modeling System (ESSMS) is developed based on Regional Ocean Modeling System (ROMS). Case simulation is performed on the Typhoon Soulik, which landed on the coastal region of Fujian Province, China, at 6 pm of July 13, 2013. Modeling results show that the maximum tide level happened at 6 pm, which was also the landing time of Soulik. This accordance may lead to significant storm surge and water level rise in the coastal region. The water level variation induced by high winds of Soulik ranges from -0.1 to 0.15 m. Water level generally increases near the landing place, in particular on the left hand side of the typhoon track. It is calculated that 0.15 m water level rise in this region can cause a submerge increase of ~0.2 km(2), which could be catastrophic to the coastal environment and the living. Additionally, a Globe Visualization System (GVS) is realized on the basis of World Wind to better provide users with the typhoon/storm surge information. The main functions of GVS include data indexing, browsing, analyzing, and visualization. GVS is capable of facilitating the precaution and mitigation of typhoon/storm surge in ESC in combination with ESSMS.

  2. A Unified Air-Sea Visualization System: Survey on Gridding Structures

    NASA Technical Reports Server (NTRS)

    Anand, Harsh; Moorhead, Robert

    1995-01-01

    The goal is to develop a Unified Air-Sea Visualization System (UASVS) to enable the rapid fusion of observational, archival, and model data for verification and analysis. To design and develop UASVS, modelers were polled to determine the gridding structures and visualization systems used, and their needs with respect to visual analysis. A basic UASVS requirement is to allow a modeler to explore multiple data sets within a single environment, or to interpolate multiple datasets onto one unified grid. From this survey, the UASVS should be able to visualize 3D scalar/vector fields; render isosurfaces; visualize arbitrary slices of the 3D data; visualize data defined on spectral element grids with the minimum number of interpolation stages; render contours; produce 3D vector plots and streamlines; provide unified visualization of satellite images, observations and model output overlays; display the visualization on a projection of the users choice; implement functions so the user can derive diagnostic values; animate the data to see the time-evolution; animate ocean and atmosphere at different rates; store the record of cursor movement, smooth the path, and animate a window around the moving path; repeatedly start and stop the visual time-stepping; generate VHS tape animations; work on a variety of workstations; and allow visualization across clusters of workstations and scalable high performance computer systems.

  3. Evolutionary strategies of cells and viruses in deep-sea hydrothermal systems revealed through comparative metagenomics

    NASA Astrophysics Data System (ADS)

    Anderson, R.; Sogin, M. L.; Baross, J. A.

    2013-12-01

    The deep-sea hydrothermal vent habitat hosts a diverse community of archaea and bacteria that withstand extreme fluctuations in environmental conditions. Abundant viruses in these systems must also withstand these environmental extremes, and a high proportion of viruses in these systems are lysogenic. Comparative analysis of a cellular and viral metagenome from a diffuse flow hydrothermal vent has provided insights into the evolutionary strategies of both cells and viruses in hydrothermal systems. We detected numerous mobile elements in the viral and cellular gene pools as well as a large number of prophage in the cellular fraction. We show that the hydrothermal vent viral gene pool is relatively enriched in genes related to energy metabolism, a feature that is unique to the hydrothermal vent viral gene pool compared to viral gene pools from other environments, indicating a potential for integrated prophage to enhance host metabolic flexibility. We also detected stronger purifying selection in the viral versus cellular gene pool, indicating selection pressures that promote prolonged viral integration in the host. Our results support the hypothesis that viruses enhance host genomic plasticity and adaptability in this extreme and dynamic environment. Finally, we will discuss general implications of this work for understanding the viral impact on biogeochemical cycles and evolutionary trajectories of microbial populations in the deep subsurface biosphere.

  4. Empirical estimates of the dominant environmental forcings on the relative sea level change of river delta systems

    NASA Astrophysics Data System (ADS)

    Tessler, Z. D.; Vorosmarty, C. J.

    2012-12-01

    A global, empirically derived projection of river delta systems at risk of future relative sea level rise is presented based on a set of global environmental risk indicators. Indicators are drawn from upstream basin, coastal zone, and oceanic domains. They include human dimension variables such as population density, urban development, and water engineering, as well as biogeophysical variables such as the local wave environment and cyclone risk. All indicators are hypothesized to have a significant level of direct or indirect control on the local rate of relative sea level rise, commonly through changes in sediment delivery and deposition on the delta plain. Indicators are statistically weighted based on observed rates of relative sea level rise in the literature. These weightings, applied to time series of risk indicators from river network and ocean models and the satellite record, enable identification of regions at greatest risk as a function of time and space. We find regional differences in the dominant sources of sea level rise risk, with higher latitude sites along the Arctic Ocean and in southern Africa and Australia dominated by oceanic risks. In Southeast Asia, the coastal zones with large deltaic megacities dominate ocean and basin source risks, while broadly developed river basins in East Asia and parts of Europe contribute strongly to sea level rise risk in those regions. Future work that will enable rigorous testing of alternative weighting schemes from which overall risk is determined will be discussed.

  5. Real-time seismic observation using new compact ocean bottom cabled system in Japan Sea

    NASA Astrophysics Data System (ADS)

    Shinohara, M.; Kanazawa, T.; Yamada, T.; Sakai, S.; Shiobara, H.; Mochizuki, K.; Machida, Y.; Shinbo, T.; Nakahigashi, K.; Utada, H.; Yamazaki, K.

    2010-12-01

    Ocean Bottom Cabled Seismometers (OBCS), where the sensors are equipped in a hermetically-sealed case and these cases are connected with cables, is the best solution for seismic observation in marine area. A few OBCSs, consisting of a few cabled seismometers, were developed based on a submarine telecommunication cable technology, and have been used over the past 25 years in Japan. Although the existing OBCSs have realized a significant contribution to the study of seismic activity, the number of seismometers is insufficient for high resolution observations of a marine area. Therefore we developed a new OBCS system to make a high density observation in the marine areas. In Japan, GPS observations with a dense station distribution revealed that the central coastal area of the Japan Sea has large strain rate, which is named the Niigata-Kobe Tectonic Zone (NKTZ). The formation of the NKTZ is believed to be related to the plate subduction. In the NKTZ, there were several large earthquakes with magnitude greater than 7. For example, Niigata earthquake occurred in 1963, and gave large damage. Because the source region of the Niigata earthquake was located in the Japan Sea off Niigata, central Japan and the number of seismic stations of the regional seismic network was limited at the occurrence, characteristics of the earthquake have not been revealed well. There is a possibility to clarify the nature of the Niigata earthquake by detailed research of the seismic activity at the present. Therefore we decided to install the first practical OBCS system in the source area of the Niigata earthquake. The developed OBCS uses small three accelerometers as a seismic sensor. The CS is controlled by Linux system. Data collected with a time stamp at each CS are transmitted using standard IP data transmission to landing station. The network of the OBCS has redundant configuration. The electronics unit, three seismometers, power unit including zener diodes, and six SPFs are mounted into

  6. Microbial heterotrophy coupled to Fe-S-As cycling in a shallow-sea hydrothermal system

    NASA Astrophysics Data System (ADS)

    Lu, G.; Amend, J.

    2013-12-01

    To date, there are only a few known heterotrophic arsenite oxidizers and arsenate reducers. They utilize organic compounds as their carbon source and/or as important electron donors in the transfer arsenic in high temperature environments. Arsenic in hydrothermal vent systems can be immobilized at low temperatures through (ad)sorption on iron oxide and other iron-bearing minerals. Interactions with sulfur species can also affect the redox state of arsenic species. A better understanding of microbially-catalyzed reactions involving carbon, arsenic, iron and sulfur would provide constraints on the mobility of arsenic in a wide variety of natural and engineered systems. The aim of this study is to establish links between microbial distribution and in situ Fe-S-As cycling processes in a shallow-sea hydrothermal vent system. We investigated three shallow-sea hydrothermal vents, Champagne Hot Spring (CHS), Soufriere Spring (SOU) and Portsmouth Spring (PM), located off the western coast of Dominica, Lesser Antilles. CHS and SOU are characterized by moderate temperatures (46oC and 55oC, respectively), and PM is substantially hotter (~90-111 oC). Two sediment cores (one close to and one far from the thermal source) were collected from CHS and from SOU. Porewaters in both background cores had low concentrations of arsenic (mostly As3+, to a lesser extent As5+, DMA, MMA) and ferrous iron. The arsenic concentrations (predominantly As3+) in the CHS high temperature core were 30-90 nM, tracking with dissolved iron. Similar to CHS, the arsenic concentration in the SOU high temperature core was dominated by As3+ and controlled by ferrous iron. However, the arsenic concentration at SOU is comparatively higher, up to 1.9 mM. At the hotter and deeper PM site, highly elevated arsenic levels (1-2.5 mM) were measured, values that are among the highest arsenic concentrations ever reported in a marine hydrothermal system. Several autotrophic and heterotrophic media at two pHs (5.5 and 8

  7. The governance of the mitigation of the Baltic Sea eutrophication: exploring the challenges of the formal governing system.

    PubMed

    Tynkkynen, Nina; Schönach, Paula; Pihlajamäki, Mia; Nechiporuk, Dmitry

    2014-02-01

    This article focuses on the governing system of the mitigation of eutrophication in the Baltic Sea. Policies and measures of the Baltic Sea coastal countries, the macro--regional (HELCOM) level, and the level of the European Union are described and governance challenges explicated. We found that the main challenges at different governance levels include: differences between coastal countries in terms of environmental conditions including environmental awareness, overlaps of policies between different levels, the lack of adequate spatial and temporal specification of policies, and the lack of policy integration. To help to meet these challenges, we suggest closer involvement of stakeholders and the public, the improvement of the interplay of institutions, and the introduction of a "primus motor" for the governance of the mitigation of eutrophication in the Baltic Sea.

  8. Sedimentary modeling and analysis of petroleum system of the upper Tertiary sequences in southern Ulleung sedimentary Basin, East Sea (Sea of Japan)

    NASA Astrophysics Data System (ADS)

    Cheong, D.; Kim, D.; Kim, Y.

    2010-12-01

    The block 6-1 located in the southwestern margin of the Ulleung basin, East Sea (Sea of Japan) is an area where recently produces commercial natural gas and condensate. A total of 17 exploratory wells have been drilled, and also many seismic explorations have been carried out since early 1970s. Among the wells and seismic sections, the Gorae 1 well and a seismic section through the Gorae 1-2 well were chosen for this simulation work. Then, a 2-D graphic simulation using SEDPAK elucidates the evolution, burial history and diagenesis of the sedimentary sequence. The study area is a suitable place for modeling a petroleum system and evaluating hydrocarbon potential of reservoir. Shale as a source rock is about 3500m deep from sea floor, and sandstones interbedded with thin mud layers are distributed as potential reservoir rocks from 3,500m to 2,000m deep. On top of that, shales cover as seal rocks and overburden rocks upto 900m deep. Input data(sea level, sediment supply, subsidence rate, etc) for the simulation was taken from several previous published papers including the well and seismic data, and the thermal maturity of the sediment was calculated from known thermal gradient data. In this study area, gas and condensate have been found and commercially produced, and the result of the simulation also shows that there is a gas window between 4000m and 6000m deep, so that three possible interpretations can be inferred from the simulation result. First, oil has already moved and gone to the southeastern area along uplifting zones. Or second, oil has never been generated because organic matter is kerogen type 3, and or finally, generated oil has been converted into gas by thermally overcooking. SEDPAK has an advantage that it provides the timing and depth information of generated oil and gas with TTI values even though it has a limit which itself can not perform geochemical modeling to analyze thermal maturity level of source rocks. Based on the result of our simulation

  9. The Two Sets of DMSO Respiratory Systems of Shewanella piezotolerans WP3 Are Involved in Deep Sea Environmental Adaptation.

    PubMed

    Xiong, Lei; Jian, Huahua; Zhang, Yuxia; Xiao, Xiang

    2016-01-01

    Dimethyl sulfoxide (DMSO) is an abundant methylated sulfur compound in deep sea ecosystems. However, the mechanism underlying DMSO-induced reduction in benthic microorganisms is unknown. Shewanella piezotolerans WP3, which was isolated from a west Pacific deep sea sediment, can utilize DMSO as the terminal electron acceptor. In this study, two putative dms gene clusters [type I (dmsEFA1B1G1H1) and type II (dmsA2B2G2H2)] were identified in the WP3 genome. Genetic and physiological analyses demonstrated that both dms gene clusters were functional and the transcription of both gene clusters was affected by changes in pressure and temperature. Notably, the type I system is essential for WP3 to thrive under in situ conditions (4°C/20 MPa), whereas the type II system is more important under high pressure or low temperature conditions (20°C/20 MPa, 4°C/0.1 MPa). Additionally, DMSO-dependent growth conferred by the presence of both dms gene clusters was higher than growth conferred by either of the dms gene clusters alone. These data collectively suggest that the possession of two sets of DMSO respiratory systems is an adaptive strategy for WP3 survival in deep sea environments. We propose, for the first time, that deep sea microorganisms might be involved in global DMSO/DMS cycling. PMID:27656177

  10. The Two Sets of DMSO Respiratory Systems of Shewanella piezotolerans WP3 Are Involved in Deep Sea Environmental Adaptation

    PubMed Central

    Xiong, Lei; Jian, Huahua; Zhang, Yuxia; Xiao, Xiang

    2016-01-01

    Dimethyl sulfoxide (DMSO) is an abundant methylated sulfur compound in deep sea ecosystems. However, the mechanism underlying DMSO-induced reduction in benthic microorganisms is unknown. Shewanella piezotolerans WP3, which was isolated from a west Pacific deep sea sediment, can utilize DMSO as the terminal electron acceptor. In this study, two putative dms gene clusters [type I (dmsEFA1B1G1H1) and type II (dmsA2B2G2H2)] were identified in the WP3 genome. Genetic and physiological analyses demonstrated that both dms gene clusters were functional and the transcription of both gene clusters was affected by changes in pressure and temperature. Notably, the type I system is essential for WP3 to thrive under in situ conditions (4°C/20 MPa), whereas the type II system is more important under high pressure or low temperature conditions (20°C/20 MPa, 4°C/0.1 MPa). Additionally, DMSO-dependent growth conferred by the presence of both dms gene clusters was higher than growth conferred by either of the dms gene clusters alone. These data collectively suggest that the possession of two sets of DMSO respiratory systems is an adaptive strategy for WP3 survival in deep sea environments. We propose, for the first time, that deep sea microorganisms might be involved in global DMSO/DMS cycling.

  11. The Two Sets of DMSO Respiratory Systems of Shewanella piezotolerans WP3 Are Involved in Deep Sea Environmental Adaptation

    PubMed Central

    Xiong, Lei; Jian, Huahua; Zhang, Yuxia; Xiao, Xiang

    2016-01-01

    Dimethyl sulfoxide (DMSO) is an abundant methylated sulfur compound in deep sea ecosystems. However, the mechanism underlying DMSO-induced reduction in benthic microorganisms is unknown. Shewanella piezotolerans WP3, which was isolated from a west Pacific deep sea sediment, can utilize DMSO as the terminal electron acceptor. In this study, two putative dms gene clusters [type I (dmsEFA1B1G1H1) and type II (dmsA2B2G2H2)] were identified in the WP3 genome. Genetic and physiological analyses demonstrated that both dms gene clusters were functional and the transcription of both gene clusters was affected by changes in pressure and temperature. Notably, the type I system is essential for WP3 to thrive under in situ conditions (4°C/20 MPa), whereas the type II system is more important under high pressure or low temperature conditions (20°C/20 MPa, 4°C/0.1 MPa). Additionally, DMSO-dependent growth conferred by the presence of both dms gene clusters was higher than growth conferred by either of the dms gene clusters alone. These data collectively suggest that the possession of two sets of DMSO respiratory systems is an adaptive strategy for WP3 survival in deep sea environments. We propose, for the first time, that deep sea microorganisms might be involved in global DMSO/DMS cycling. PMID:27656177

  12. Tectonics of East Siberian Sea Basin and its influence on petroleum systems

    NASA Astrophysics Data System (ADS)

    Karpov, Yury; Antonina, Stoupakova; Anna, Suslova; Mariia, Agasheva

    2016-04-01

    The East Siberian Sea basin (ESSB) is the largest part of the Siberian Arctic shelf, extending for over 1000 km from New Siberian Islands archipelago to Wrangel Island. Nowadays East Siberian Sea margin is considered as a region with probable high petroleum potential. This part of Russian Arctic shelf is the least studied. The major problems in geological investigation of East Siberian Sea shelf are absence of deep wells in area and low seismic exploration maturity. Only general conclusions on its geology and hydrocarbon systems can be drawn based on limited seismic, gravity and magnetic data, supported by projection of onshore geological data to offshore. So, that's why now only complex geological and seismic stratigraphy interpretations are provided. Today we have several concepts and can summarize the tectonic history of the basin. The basin is filled with siliclastic sediments. In the deepest depocentres sediments thickness exceed 8 km in average. Seismic data was interpreted using methods of seismic stratigraphy. Stratigraphic interpretation was possible to achieve because seismic reflections follow chronostratigraphic correlations. Finally, main seismic horizons were indicated. Each indicated horizon follows regional stratigraphic unconformity. In case of absence of deep wells in ESSB, we can only prove possible source rocks by projection of data about New Siberian Islands archipelago source rocks on offshore. The petroleum potential of these rocks was investigated by several authors [1, 2, 3]. Perspective structures, investigated in ESSB were founded out by comparing seismogeological cross-sections with explored analogs in other Russian and foreign onshore and offshore basins. The majority of structures could be connected with stratigraphic and fault traps. New data on possible petroleum plays was analyzed, large massif of data on geology and tectonic history of the region was collected, so now we can use method of basin modelling to evaluate hydrocarbon

  13. Design and challenges for a tsunami early warning system in the Marmara Sea

    NASA Astrophysics Data System (ADS)

    Necmioğlu, Öcal

    2016-01-01

    Since 1900, around 90,000 people have lost their lives in 76 earthquakes in Turkey, with a total affected population of around 7 million and direct losses of around 25 billion USD. Based on a time-dependent model that includes coseismic and post-seismic effects of the 1999 Kocaeli earthquake with moment magnitude Mw = 7.4, Parsons (J Geophys Res. 109, 2004) concluded that the probability of an earthquake with Mw > 7 in the Sea of Marmara near Istanbul is 35 to 70 % in the next 30 years. According to a 2011 study, an earthquake with Mw = 7.25 on the Main Marmara Fault is expected to heavily damage or destroy 2 to 4 % of around 1,000,000 buildings in Istanbul with a population around 13 million, with 9 to 15 % of the buildings receiving medium damage and 20 to 34 % of the buildings damaged lightly (Erdik, Science 341:72, 2013). In the absence of adequate post-earthquake assembly areas especially in the heavily urbanized Istanbul, it is evident that after a major earthquake, especially in the coastal parts of the city, citizens would be storming to landfill assembly and recreational areas. Besides earthquakes, around 30 tsunamis have been reported by Altınok et al. (Natural Hazards Earth System Science 11:273-293, 2011) in the Marmara Sea. Among those, catastrophic earthquakes such as 1509, 1766, and 1894 resulted in considerable tsunamis and some damage. The latest tsunami observed in Marmara was due to a triggered submarine landslide of the 1999 Mw = 7.4 Kocaeli earthquake which led to reported run-up heights of 1-3 m in most places (Tinti et al., Marine Geology 225:311-330, 2006). In this study, I propose a design for a tsunami warning system specific for the Marmara region that is strongly coupled with the earthquake early warning system (due to the short arrival times of tsunami) and stakeholders of the tsunami mitigation activities, such as local and regional components of disaster and emergency management and civil protection units, to ensure that the citizens

  14. CO{sub 2} supply from deep-sea hydrothermal systems

    SciTech Connect

    Shitashima, Kiminori

    1998-07-01

    Deep-sea hydrothermal systems are aimed as an on-site field analysis on the behavior and diffusion of CO{sub 2} in deep ocean. Through ocean ridge volcanism, a large amount of elements including carbon as a form of CO{sub 2} are supplied to deep ocean. Hydrothermal vent fluids at highly enriched in CO{sub 2} and show low pH ({approximately} pH 3) relative to seawater. Total carbonate, total CO{sub 2} in seawater, and pH were determined in samples at hydrothermal active area in S-EPR. The concentration of total carbonate and pH in the hydrothermal fluid samples ranged from 16 to 5 mM and from 3.1 to 7.6, respectively. The hydrothermal fluids discharged from the vents were rapidly diluted with ambient seawater, therefore total carbonate concentration and pH value in the plume waters become close to that of ambient seawater near the vents. The positive anomaly of total carbonate and negative anomaly of pH associated with hydrothermal plumes were observed on the seafloor along S-EPR axis. The diffusion of total carbonate plumes both westward and eastward in the bottom water along 15{degree}S across the S-EPR were also detected, but pH anomalies were not obtained in the plume. These suggest the possibility of discharging of CO{sub 2} through hydrothermal systems to the ocean. Recent estimation of CO{sub 2} fluxes to the ocean through MOR was calculated at 0.7--15 {times} 10{sup 12} mol C year{sup {minus}1}. These values are 3--4 orders of magnitude smaller than the annual CO{sub 2} fluxes through terrestrial and marine respiration, therefore the importance of CO{sub 2} input from MOR on oceanic carbon cycle is thus minimal on shorter-term time scale. However, the CO{sub 2} input from MOR is significant at 10{sup 6}--10{sup 7} years scales, and CO{sub 2} concentration in hydrothermal fluids at hotspot and back-arc basin is 10--100 times higher than that of MOR. The flux of CO{sub 2} from deep-sea hydrothermal systems to the ocean may be significant.

  15. Drilling of Submarine Shallow-water Hydrothermal Systems in Volcanic Arcs of the Tyrrhenian Sea, Italy

    NASA Astrophysics Data System (ADS)

    Petersen, S.; Augustin, N.; de Benedetti, A.; Esposito, A.; Gaertner, A.; Gemmell, B.; Gibson, H.; He, G.; Huegler, M.; Kleeberg, R.; Kuever, J.; Kummer, N. A.; Lackschewitz, K.; Lappe, F.; Monecke, T.; Perrin, K.; Peters, M.; Sharpe, R.; Simpson, K.; Smith, D.; Wan, B.

    2007-12-01

    Seafloor hydrothermal systems related to volcanic arcs are known from several localities in the Tyrrhenian Sea in water depths ranging from 650 m (Palinuro Seamount) to less than 50 m (Panarea). At Palinuro Seamount 13 holes (<5m) were drilled using Rockdrill 1 of the British Geological Survey 1 into the heavily sediment-covered deposit recovering 11 m of semi-massive to massive sulfides. Maximum recovery within a single core was 4.8 m of massive sulfides/sulfates with abundant late native sulfur overprint. The deposit is open to all sides and to depth since all drill holes ended in mineralization. Metal enrichment at the top of the deposit is evident in some cores with polymetallic (Zn, Pb, Ag) sulfides overlying more massive and dense pyritic ore. The massive sulfide mineralization at Palinuro Seamount contains a number of unusual minerals, including enargite, tennantite, luzonite, and Ag-sulfosalts, that are not commonly encountered in mid-ocean ridge massive sulfides. In analogy to epithermal deposits forming on land, the occurrence of these minerals suggests a high sulfidation state of the hydrothermal fluids during deposition implying that the mineralizing fluids were acidic and oxidizing rather than near-neutral and reducing as those forming typical base metal rich massive sulfides along mid-ocean ridges. Oxidizing conditions during sulfide deposition can probably be related to the presence of magmatic volatiles in the mineralizing fluids that may be derived from a degassing magma chamber. Elevated temperatures within sediment cores and TV-grab stations (up to 60°C) indicate present day hydrothermal fluid flow. This is also indicated by the presence of small tube-worm bushes present on top the sediment. A number of drill holes were placed around the known phreatic gas-rich vents of Panarea and recovered intense clay-alteration in some holes as well as abundant massive anhydrite/gypsum with only trace sulfides along a structural depression suggesting the

  16. Dust in the Earth system: the biogeochemical linking of land, air and sea.

    PubMed

    Ridgwell, Andy J

    2002-12-15

    Understanding the response of the Earth's climate system to anthropogenic perturbation has been a pressing priority for society since the late 1980s. However, recent years have seen a major paradigm shift in how such an understanding can be reached. Climate change demands analysis within an integrated 'Earth-system' framework, taken to encompass the suite of interacting physical, chemical, biological and human processes that, in transporting and transforming materials and energy, jointly determine the conditions for life on the whole planet. This is a highly complex system, characterized by multiple nonlinear responses and thresholds, with linkages often between apparently disparate components. The interconnected nature of the Earth system is wonderfully illustrated by the diverse roles played by atmospheric transport of mineral 'dust', particularly in its capacity as a key pathway for the delivery of nutrients essential to plant growth, not only on land, but perhaps more importantly, in the ocean. Dust therefore biogeochemically links land, air and sea. This paper reviews the biogeochemical role of mineral dust in the Earth system and its interaction with climate, and, in particular, the potential importance of both past and possible future changes in aeolian delivery of the micro-nutrient iron to the ocean. For instance, if, in the future, there was to be a widespread stabilization of soils for the purpose of carbon sequestration on land, a reduction in aeolian iron supply to the open ocean would occur. The resultant weakening of the oceanic carbon sink could potentially offset much of the carbon sequestered on land. In contrast, during glacial times, enhanced dust supply to the ocean could have 'fertilized' the biota and driven atmospheric CO(2) lower. Dust might even play an active role in driving climatic change; since changes in dust supply may affect climate, and changes in climate, in turn, influence dust, a 'feedback loop' is formed. Possible feedback

  17. Reconstruction of the sea surface elevation from the analysis of the data collected by a wave radar system

    NASA Astrophysics Data System (ADS)

    Ludeno, Giovanni; Soldovieri, Francesco; Serafino, Francesco; Lugni, Claudio; Fucile, Fabio; Bulian, Gabriele

    2016-04-01

    X-band radar system is able to provide information about direction and intensity of the sea surface currents and dominant waves in a range of few kilometers from the observation point (up to 3 nautical miles). This capability, together with their flexibility and low cost, makes these devices useful tools for the sea monitoring either coastal or off-shore area. The data collected from wave radar system can be analyzed by using the inversion strategy presented in [1,2] to obtain the estimation of the following sea parameters: peak wave direction; peak period; peak wavelength; significant wave height; sea surface current and bathymetry. The estimation of the significant wave height represents a limitation of the wave radar system because of the radar backscatter is not directly related to the sea surface elevation. In fact, in the last period, substantial research has been carried out to estimate significant wave height from radar images either with or without calibration using in-situ measurements. In this work, we will present two alternative approaches for the reconstruction of the sea surface elevation from wave radar images. In particular, the first approach is based on the basis of an approximated version of the modulation transfer function (MTF) tuned from a series of numerical simulation, following the line of[3]. The second approach is based on the inversion of radar images using a direct regularised least square technique. Assuming a linearised model for the tilt modulation, the sea elevation has been reconstructed as a least square fitting of the radar imaging data[4]. References [1]F. Serafino, C. Lugni, and F. Soldovieri, "A novel strategy for the surface current determination from marine X-band radar data," IEEE Geosci.Remote Sens. Lett., vol. 7, no. 2, pp. 231-235, Apr. 2010. [2]Ludeno, G., Brandini, C., Lugni, C., Arturi, D., Natale, A., Soldovieri, F., Serafino, F. (2014). Remocean System for the Detection of the Reflected Waves from the Costa

  18. Ethnomedicine in healthcare systems of the world: a Semester at Sea pilot survey in 11 countries

    PubMed Central

    Muleady-Mecham, Nancy E.; Schley, Stephanie

    2009-01-01

    Background An understanding and appreciation for the varied healthcare systems in use throughout the world are increasingly vital for medical personnel as patient populations are now composed of ethnically diverse people with wide-ranging belief systems. Objective While not a statistically valid survey, this pilot study gives a global overview of healthcare differences around the world. Design A pilot study of 459 individuals from 11 different countries around the world was administered by 33 students in the upper division course, People, Pathology, and World Medicine from Semester at Sea, Fall 2007, to ascertain trends in healthcare therapies. Open-ended surveys were conducted in English, through an interpreter, or in the native language. Results Western hospital use ranked highly for all countries, while ethnomedical therapies were utilized to a lesser degree. Among the findings, mainland China exhibited the greatest overall percentage of ethnomedical therapies, while the island of Hong Kong, the largest use of Western hospitals. Conclusions The figures and trends from the surveys suggest the importance of understanding diverse cultural healthcare beliefs when treating individuals of different ethnic backgrounds. The study also revealed the increasingly complex and multisystem-based medical treatments being used internationally. PMID:20027263

  19. Response of a coastal hydrogeological system to a rapid decline in sea level; the case of Zuqim springs - The largest discharge area along the Dead Sea coast

    NASA Astrophysics Data System (ADS)

    Burg, Avihu; Yechieli, Yoseph; Galili, Udi

    2016-05-01

    The almost instantaneous response of a natural on-shore groundwater system to an extremely rapid drop in the level of an adjacent lake is described in this study. The study is focused on the Zuqim (Feshcha) spring complex located on the northwestern shore of the Dead Sea, which exhibits a drop of tens of meters in its water level over the last few decades. In this exceptional "field lab", fluctuations and trends in the flow regime are recognized, as well as the contemporaneous geochemical variations. Lithological facies variations have a pronounced effect on the underground flow regime. The following main processes were recognized: (a) slight shifting of the long-standing springs eastward, following the retreating shore; (b) extension of the hydrologic system southward without significant change in the total discharge of the entire spring complex. The new seepages are characterized by high variability in salinity; and (c) continuous refreshing of the spring water as a result of prolonged flushing of old trapped brines. The water of the Zuqim springs lie on mixing lines between two local brine types and diluted brine of the Lisan Lake - the precursor of the Dead Sea. Based on our findings, future development processes in the spring complex are predicted, which is essential because of their impact on the endemic ecosystem that relies on this water. In addition, continuation of the rapid drop in lake level is expected to cause intensification of erosional processes, such as deepening of flow gullies. Shifting of the entire hydrological system southward and migration along with the retreating shore is also expected to continue, as well as the continuous decrease in the water salinity.

  20. Assimilating high horizontal resolution sea ice concentration data into the US Navy's ice forecast systems: Arctic Cap Nowcast/Forecast System (ACNFS) and the Global Ocean Forecast System (GOFS 3.1)

    NASA Astrophysics Data System (ADS)

    Posey, P. G.; Metzger, E. J.; Wallcraft, A. J.; Hebert, D. A.; Allard, R. A.; Smedstad, O. M.; Phelps, M. W.; Fetterer, F.; Stewart, J. S.; Meier, W. N.; Helfrich, S. R.

    2015-04-01

    This study presents the improvement in the US Navy's operational sea ice forecast systems gained by assimilating high horizontal resolution satellite-derived ice concentration products. Since the late 1980's, the ice forecast systems have assimilated near real-time sea ice concentration derived from the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSMI and then SSMIS). The resolution of the satellite-derived product was approximately the same as the previous operational ice forecast system (25 km). As the sea ice forecast model resolution increased over time, the need for higher horizontal resolution observational data grew. In 2013, a new Navy sea ice forecast system (Arctic Cap Nowcast/Forecast System - ACNFS) went into operations with a horizontal resolution of ~3.5 km at the North Pole. A method of blending ice concentration observations from the Advanced Microwave Scanning Radiometer (AMSR2) along with a sea ice mask produced by the National Ice Center (NIC) has been developed resulting in an ice concentration product with very high spatial resolution. In this study, ACNFS was initialized with this newly developed high resolution blended ice concentration product. The daily ice edge locations from model hindcast simulations were compared against independent observed ice edge locations. ACNFS initialized using the high resolution blended ice concentration data product decreased predicted ice edge location error compared to the operational system that only assimilated SSMIS data. A second evaluation assimilating the new blended sea ice concentration product into the pre-operational Navy Global Ocean Forecast System 3.1 also showed a substantial improvement in ice edge location over a system using the SSMIS sea ice concentration product alone. This paper describes the technique used to create the blended sea ice concentration product and the significant improvements to both of the Navy's sea ice forecasting systems.

  1. Deltaic Depositional Systems, Evolution Characteristics, and Petroleum Potential, Palaeogene Sub-Basin, South China Sea

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Wang, Hua; Zhang, Guotao

    2015-04-01

    Deltaic depositional systems are detailed characterized by morphology and facies in a Palaeogene continental sub-basin of Beibuwan Basin, South China Sea. Based on examination of 435 m of conventional cores from 30 wells, three major types of deltaic facies have been recognized: delta, beach and shoreface. Morphology and facies asymmetry between the down-drift and the up-drift sides present a typical asymmetric delta system:1) the down-rift, sourced primarily by the feeding river, are influenced by mixed river and wave processes. Deposits on this side are muddy and consist of barrier, bar, bay-fill, and bayhead delta facies with variable bioturbation intensity; 2)the up-rift, in contrast, is sourced by a second sediment source and typically consists of laterally continuous sandy beach and shoreface facies. Finally, two fundamentally different depositional models are established and reflect a different style of sequence stratigraphic patterns: 1) Multiple-stage faults slopes developed in the down-rift side feed fine grained sediment into two stages channelized front deltaic system; 2) Flexure slope break of the up-rift side, combining with deeper gradual slopes, conversely, feed coarser grained sediment from larger drainages into sandy beach and shoreface systems. Such a distinction has well explained the differentiation of the proven hydrocarbon reserves because the up-rift consists of well-sorted, mature, and laterally continuous homogeneous beach-shoreface reservoirs, whereas the down-rift, in contrast, is muddier and consists of less continuous, less mature, heterolithic reservoirs. The Delta asymmetry concepts and models don't only challenge the traditional definition of deltas in Fushan sub-basin, but also provides strong theoretical support for the future exploration. This process-based model may be applicable to many deep-water settings and provides a framework within which to interpret the stratigraphic and spatial distribution of these complex deposits.

  2. Assessment of Coastal Vulnerability to Sea Level Rise of Bolinao, Pangasinan Using Remote Sensing and Geographic Information Systems

    NASA Astrophysics Data System (ADS)

    Reyes, S. R. C.; Blanco, A. C.

    2012-07-01

    A number of studies assessing the vulnerability of Southeast Asia to climate change have classified the Philippines as one of the vulnerable countries in the region. Bolinao, Pangasinan is a municipality located in northwestern Luzon, situated in the western part of the Lingayen Gulf and is bounded on the north and west by the South China Sea (West Philippine Sea). Recent studies have verified the varying trends in sea level across the South China Sea, which is considered as one of the largest, semi-enclosed marginal seas in the northwest Pacific Ocean. Three barangays (villages) were included in the study: (1) Luciente 1.0, (2) Concordia and (3) Germinal. The Socioeconomic Vulnerability Index (SVI) was computed based on population, age, gender, employment, source of income and household size, which were gathered through a qualitative survey in the selected barangays. The Coastal Vulnerability Index (CVI) described the physical vulnerability of these coastal communities based on recorded sea level anomalies and significant wave heights of multiple satellite altimetry missions, coastal topography derived from the 25-m SRTM digital elevation model (DEM), bathymetry from WorldView-2 and additional elevation data from terrestrial laser scanning surveys. The research utilized merged satellite altimetry data downloaded from the Radar Altimetry Database System (RADS), which covered the period from 1991-2010. The SVI and CVI were calculated and evaluated in ArcGIS. The SVI and CVI were integrated to determine the Total Vulnerability Index (TVI), which characterized the vulnerability of the three barangays in five classes, from very low to very high vulnerability.

  3. The Effect of Ice Shelf Meltwater on Antarctic Sea Ice and the Southern Ocean in an Earth System Model

    NASA Astrophysics Data System (ADS)

    Pauling, A.; Bitz, C. M.; Smith, I.; Langhorne, P.

    2015-12-01

    It has been suggested that recent Antarctic sea ice expansion resulted from an increase in fresh water reaching the Southern Ocean. This presentation investigates this conjecture in an Earth System Model. The freshwater flux from ice sheet and ice shelf mass imbalance is largely missing in models that participated in the Fifth Coupled Model Intercomparison Project (CMIP5). However, CMIP5 models do account for the fresh water from precipitation minus evaporation (P-E). On average in CMIP5 models P- E reaching the Southern Ocean has increased to a present value of about 2600 Gt yr-1 greater than pre-industrial times and 3-8 times larger than estimates of the mass imbalance of Antarctic ice sheets and shelves. Two sets of model experiments were conducted from 1980-2013 in CESM1-CAM5 artificially distributing fresh water either at the ocean surface according to an estimate of iceberg melt, or at the ice shelf fronts at depth. An anomalous reduction in vertical advection of heat into the surface mixed layer resulted in sea surface cooling at high southern latitudes, and an associated increase in sea ice area. A freshwater enhancement of 1780 Gt yr-1 (approximately 1.3 times either present day basal melt or iceberg calving freshwater fluxes) raised the sea ice total area by 1×106 km2. Yet, even a freshwater enhancement up to 2670 Gt yr-1 was insufficient to offset the sea ice decline due to anthropogenic forcing for any period of 20 years or longer. Further, the sea ice response was found to be insensitive to the depth of fresh water injection.

  4. Development of floating-type system for uranium extraction from seawater using sea current and wave power

    SciTech Connect

    Nobukawa, Hisashi; Kitamura, Mitsuru; Swilem, S.A.M.; Ishibashi, Kozo

    1994-12-31

    The concept of a system for extracting uranium from seawater utilizing sea current and wave power is presented in this paper. The uranium absorption tests using model bed units whose size is 1/4 of the real absorbent system were carried out based on the concept design of the system. The model units are towed in the seawater with the velocity of about 2 knots for 30 hours. After the towing, the units were moored for 36 days in Imari Bay. Another absorption test, hanging the model bed units from a mooring ship in an open sea, was performed for 40 hours for assessing the effect of wave power in the uranium absorption. Based on the data obtained from the above tests, the production cost of uranium extraction was also calculated. It becomes about 34,000 yen/kg-uranium for extraction period of 60 days.

  5. From the Highest to the Deepest: A River-Sea Dispersal System that Links A Mountainous Catchment to the Deep-Sea Basin (Invited)

    NASA Astrophysics Data System (ADS)

    Liu, J. T.; Hsu, R. T.

    2013-12-01

    . Consequently, a new paradigm is proposed that ';fresh sediments exported from highly disturbed catchments during floods are old sediments'. The upper reaches of the canyon act as a sink for coarser TC deposits (turbidites). Finer turbidites are abundant in the middle and lower reaches. These findings also suggest rapid transport of fluvial sediment from the GPR down the GPSC, delivered by hyperpycnal TCs. Earthquake-triggered episodic gravity flows are also important transport agents of reworked marine sediment in the GPSC. The GPR-GPSC represents a type of source-to-sink systems in which terrestrial sediment in a mountainous catchment is promptly removed and transported to the river mouth by fluvial processes, and then efficiently and quickly transported to the deep-sea by turbidity currents along a submarine conduit during episodic typhoon events. This is also a pathway by which fresh terrestrial carbon could be quickly and effectively delivered to the deep-sea with little oxidation, which is a substantial step in the sequestration of carbon.

  6. A brine interface in the Salton Sea Geothermal System, California: Fluid geochemical and isotopic characteristics

    SciTech Connect

    Williams, A.E.; McKibben, M.A. )

    1989-08-01

    Data from 71 geothermal production intervals in 48 wells from the Salton Sea Geothermal System (SSGS) indicate that fluids in that system cluster into two distinct populations in terms of their salinity and their stable isotopic compositions. The distinctive, hot, hypersaline brine (typically >20 wt% total dissolved solids) for which the SSGS is known is overlain by a cooler (<260{degree}C) fluid with distinctly lower salinity (typically <10 wt% total dissolved solids). Hypersaline brines have high and rather consistent {sup 18}O shifts produced by water-rock interaction and have a very narrow range in {delta}D values. Low TDS fluids, on the other hand, show a wide range in both {delta}D and {delta}{sup 18}O. production of both types of fluid from closely spaced geothermal wells in many regions of the SSGS indicates that a relatively sharp salinity interface exists over much of the field. The fluid interface typically cross-cuts sedimentary bedding but is consistently found where reservoir temperatures are approximately 260{degree}C. At these temperatures, hypersaline brines have densities of approximately 1.0 gm/cm{sup 3}, while the low TDS fluids have densities as low as 0.85 gm/cm{sup 3}. This stable, density-stratified interface acts as a barrier to convective heat and mass transfer in the SSGS, isolating the hypersaline reservoir from overlying dilute fluids. A lithologic cap implied by previous SSGS models is unnecessary in such a stratified system since heat and mass transfer across the interface must occur by slow conductive, diffusional and interface mixing processes regardless of local permeability.

  7. Use of Unmanned Aircraft Systems in Observations of Glaciers, Ice Sheets, Sea Ice and Snow Fields

    NASA Astrophysics Data System (ADS)

    Herzfeld Mayer, M. U.

    2015-12-01

    Unmanned Aircraft Systems (UAS) are being used increasingly in observations of the Earth, especially as such UAS become smaller, lighter and hence less expensive. In this paper, we present examples of observations of snow fields, glaciers and ice sheets and of sea ice in the Arctic that have been collected from UAS. We further examine possibilities for instrument miniaturization, using smaller UAS and smaller sensors for collecting data. The quality and type of data is compared to that of satellite observations, observations from manned aircraft and to measurements made during field experiments on the ground. For example, a small UAS can be sent out to observe a sudden event, such as a natural catastrophe, and provide high-resolution imagery, but a satellite has the advantage of providing the same type of data over much of the Earth's surface and for several years, but the data is generally of lower resolution. Data collected on the ground typically have the best control and quality, but the survey area is usually small. Here we compare micro-topographic measurements made on snow fields the Colorado Rocky Mountains with airborne and satellite data.

  8. The Etesian wind system and wind energy potential over the Aegean Sea

    NASA Astrophysics Data System (ADS)

    Dafka, Stella; Xoplaki, Elena; Garcia-Bustamante, Elena; Toreti, Andrea; Zanis, Prodromos; Luterbacher, Juerg

    2013-04-01

    The Mediterranean region lies in an area of great climatic interest since it is influenced by some of the most relevant mechanisms of the global climate system. In the frame of the three Europe 2020 priorities for a smart, sustainable and inclusive economy delivering high levels of employment, productivity and social cohesion, the Mediterranean energy plan is of paramount importance at the European level, being an area with a significant potential for renewable energy from natural sources that could play an important role in responding to climate change effects over the region. We present preliminary results on a study of the Etesian winds in the past, present and future time. We investigate the variability and predictability of the wind field over the Aegean. Statistical downscaling based on several methodologies will be applied (e.g. canonical correlation analysis and multiple linear regression). Instrumental time series, Era-Interim and the 20CR reanalyses will be used. Large-scale climate drivers as well as the influence of local/regional factors and their interaction with the Etesian wind field will be addressed. Finally, the Etesian wind resources on the present and future climate will be assessed in order to identify the potential areas suitable for the establishment of wind farms and the production of wind power in the Aegean Sea.

  9. Integrated analysis of beach ridge and lagoon systems as indicator of sea-level changes

    NASA Astrophysics Data System (ADS)

    Sander, Lasse; Hede, Mikkel U.; Fruergaard, Mikkel; Morigi, Caterina; Johannessen, Peter N.; Nielsen, Lars; Clemmensen, Lars B.; Nielsen, Lars H.; Pejrup, Morten

    2015-04-01

    Beach ridges and lagoons are common features of the modern coastal landscape in much of Denmark and represent an important part of the Holocene raised marine deposits. We here present our results from investigations into the possibilities of retrieving continuous relative sea-level (RSL) information from these sedimentary archives, as facilitated by the analysis of surface morphology, coring, subsurface imaging, absolute chronology, and modern analogues. The island of Samsø (55˚51'N, 10˚36'E) was chosen as a case study example. While each of the used archives merely covers a part of the mid to late Holocene developments, their joint analysis allows identifying and separating periods of rapid RSL rise, stability and fall over most of the island's marine stage. We present possible correlations of the data from the lagoons with data from a wide beach-ridge system and suggest causal relations of the RSL reconstruction with the spatial arrangements of marine and glacial landforms on Samsø. The integrated use of a geographical perspective combined with geological precision and methodology has proven to be of great value for understanding temporal, spatial, and process relations in the investigated coastal environment. The study stresses the value of analyzing genetically independent though complementary sedimentary archives to retrieve more complete and potentially more robust results. The presented approach may be useful in microtidal, sediment-surplus environments with a transgressive-regressive Holocene RSL history.

  10. Corrosion of carbon steel by bacteria from North Sea offshore seawater injection systems: laboratory investigation.

    PubMed

    Stipanicev, Marko; Turcu, Florin; Esnault, Loïc; Rosas, Omar; Basseguy, Régine; Sztyler, Magdalena; Beech, Iwona B

    2014-06-01

    Influence of sulfidogenic bacteria, from a North Sea seawater injection system, on the corrosion of S235JR carbon steel was studied in a flow bioreactor; operating anaerobically for 100days with either inoculated or filtrated seawater. Deposits formed on steel placed in reactors contained magnesium and calcium minerals plus iron sulfide. The dominant biofilm-forming organism was an anaerobic bacterium, genus Caminicella, known to produce hydrogen sulfide and carbon dioxide. Open Circuit Potentials (OCP) of steel in the reactors was, for nearly the entire test duration, in the range -80045), suggested pitting on steel samples within the inoculated environment. However, the actual degree of corrosion could neither be directly correlated with the electrochemical data and nor with the steel corrosion in the filtrated seawater environment. Further laboratory tests are thought to clarify the noticed apparent discrepancies.

  11. Coastal wetland response to sea level rise in a marine and fluvial estuarine system

    NASA Astrophysics Data System (ADS)

    Alizad, K.; Hagen, S. C.; Morris, J. T.; Bilskie, M. V.; Passeri, D. L.; Medeiros, S. C.

    2014-12-01

    . Most of the salt marshes become flooded and some of them migrate under higher SLR scenarios. These examples show how this tool can be used in any estuarine system to project salt marsh productivity and accretion under sea level change scenarios to better interpret responses and improve restoration and planning management decisions.

  12. Innate Immune Complexity in the Purple Sea Urchin: Diversity of the Sp185/333 System

    PubMed Central

    Smith, L. Courtney

    2012-01-01

    The California purple sea urchin, Strongylocentrotus purpuratus, is a long-lived echinoderm with a complex and sophisticated innate immune system. There are several large gene families that function in immunity in this species including the Sp185/333 gene family that has ∼50 (±10) members. The family shows intriguing sequence diversity and encodes a broad array of diverse yet similar proteins. The genes have two exons of which the second encodes the mature protein and has repeats and blocks of sequence called elements. Mosaics of element patterns plus single nucleotide polymorphisms-based variants of the elements result in significant sequence diversity among the genes yet maintains similar structure among the members of the family. Sequence of a bacterial artificial chromosome insert shows a cluster of six, tightly linked Sp185/333 genes that are flanked by GA microsatellites. The sequences between the GA microsatellites in which the Sp185/333 genes and flanking regions are located, are much more similar to each other than are the sequences outside the microsatellites suggesting processes such as gene conversion, recombination, or duplication. However, close linkage does not correspond with greater sequence similarity compared to randomly cloned and sequenced genes that are unlikely to be linked. There are three segmental duplications that are bounded by GAT microsatellites and include three almost identical genes plus flanking regions. RNA editing is detectible throughout the mRNAs based on comparisons to the genes, which, in combination with putative post-translational modifications to the proteins, results in broad arrays of Sp185/333 proteins that differ among individuals. The mature proteins have an N-terminal glycine-rich region, a central RGD motif, and a C-terminal histidine-rich region. The Sp185/333 proteins are localized to the cell surface and are found within vesicles in subsets of polygonal and small phagocytes. The coelomocyte proteome shows full

  13. The effect of sea ice on the solar energy budget in the astmosphere-sea ice-ocean system: A model study

    NASA Technical Reports Server (NTRS)

    Jin, Z.; Stamnes, Knut; Weeks, W. F.; Tsay, Si-Chee

    1994-01-01

    A coupled one-dimensional multilayer and multistream radiative transfer model has been developed and applied to the study of radiative interactions in the atmosphere, sea ice, and ocean system. The consistent solution of the radiative transfer equation in this coupled system automatically takes into account the refraction and reflection at the air-ice interface and allows flexibility in choice of stream numbers. The solar radiation spectrum (0.25 micron-4.0 micron) is divided into 24 spectral bands to account adequately for gaseous absorption in the atmosphere. The effects of ice property changes, including salinity and density variations, as well as of melt ponds and snow cover variations over the ice on the solar energy distribution in the entire system have been studied quantitatively. The results show that for bare ice it is the scattering, determined by air bubbles and brine pockets, in just a few centimeters of the top layer of ice that plays the most important role in the solar energy absorption and partitioning in the entire system. Ice thickness is important to the energy distribution only when the ice is thin, while the absorption in the atmosphere is not sensitive to ice thickness exceeds about 70 cm. The presence of clouds moderates all the sensitivities of the absorptive amounts in each layer to the variations in the ice properties and ice thickness. Comparisons with observational spectral albedo values for two simple ice types are also presented.

  14. Comparative morphology and sex identification of the reproductive system in formalin-preserved sea turtle specimens.

    PubMed

    Ceriani, Simona A; Wyneken, Jeanette

    2008-01-01

    Sex identification in young sea turtles is challenging. Sea turtle neonates lack external dimorphic characteristics and heteromorphic sex chromosomes. We compared the morphology of the gonads and reproductive ducts of dead formalin-preserved hatchling and post-hatchling Caretta caretta, Dermochelys coriacea, and Chelonia mydas and identified sex-specific differences in these structures that are useful in assigning sex. We tested 11 gross gonadal and reproductive duct characteristics in 57 neonate sea turtles and verified the sex by histological examination. A suite of four characters was found to reliably indicate sex in the three species considered: paramesonephric duct size, mobility of the duct, presence of a complete lumen and gonad mobility. Additionally, gonad shape and edge form were dependable sex-specific characters in cheloniids but not in D. coriacea. Together, these morphological characteristics provide new and reliable methods to quickly distinguish sex in preserved neonate sea turtles without using more extensive histological methods.

  15. A North Sea template well tieback system: design and operational experience

    SciTech Connect

    Ingram, G.W.; Humphrey, B.

    1983-09-01

    The North West Hutton field is located in Block 211/27 of the UK sector of the North Sea. It is 80 miles north east of the Shetland Islands, in 473' of water. The field was discovered in 1974. Amoco (U.K.) Exploration Company is operator on behalf of British Gas North Sea Oil Holdings Limited, Amerada Petroleum Corporation of the United Kingdom Limited, Texas Eastern North Sea Inc. and Mobil North Sea Oil Limited. Attention to accuracy and alignment in drilling the wells and in fabricating and installing the template and jacket can ensure that the tieback operation is relatively straightforward. Wellhead survey tools extending from the platform through the wave zone are adversely affected by wave action. Wellhead surveys would be more conveniently and accurately performed using tools carried to the wellhead and manipulated by diver or RCV.

  16. Effects of brevetoxin exposure on the immune system of loggerhead sea turtles.

    PubMed

    Walsh, Catherine J; Leggett, Stephanie R; Carter, Barbara J; Colle, Clarence

    2010-05-10

    Blooms of the toxic dinoflagellate, Karenia brevis, occur almost annually off the Florida coast. These blooms, commonly called "red tides", produce a group of neurotoxins collectively termed brevetoxins. Many species of sealife, including sea turtles, are severely impacted by brevetoxin exposure. Effects of brevetoxins on immune cells were investigated in rescued loggerhead sea turtles, Caretta caretta, as well as through in vitro experiments using peripheral blood leukocytes (PBL) collected from captive sea turtles. In rescued animals, plasma brevetoxin concentrations were measured using a competitive ELISA. Plasma lysozyme activity was measured using a turbidity assay. Lysozyme activity correlated positively with plasma brevetoxin concentrations. Differential expression of genes affected by brevetoxin exposure was determined using two separate suppression subtractive hybridization experiments. In one experiment, genes from PBL collected from sea turtles rescued from red tide toxin exposure were compared to genes from PBL collected from healthy captive loggerhead sea turtles. In the second experiment, PBL from healthy captive loggerhead sea turtles were exposed to brevetoxin (500 ng PbTx-2/ml) in vitro for 18 h and compared to unexposed PBL. Results from the subtraction hybridization experiment conducted with red tide rescued sea turtle PBL indicated that genes involved in oxidative stress or xenobiotic metabolism were up-regulated. Using quantitative real-time PCR, a greater than 2-fold increase in superoxide dismutase and thioredoxin and greater than 10-fold increase in expression of thiopurine S-methyltransferase were observed. Results from the in vitro subtraction hybridization experiment indicated that genes coding for cytochrome c oxidases were the major up-regulated genes. Using quantitative real-time PCR, a greater than 8-fold increase in expression of beta-tubulin and greater than 3-fold increase in expression of ubiquinol were observed. Brevetoxin

  17. Ikaite crystal distribution in Arctic winter sea ice and implications for CO2 system dynamics

    NASA Astrophysics Data System (ADS)

    Rysgaard, S.; Søgaard, D. H.; Cooper, M.; Pućko, M.; Lennert, K.; Papakyriakou, T. N.; Wang, F.; Geilfus, N. X.; Glud, R. N.; Ehn, J.; McGinnnis, D. F.; Attard, K.; Sievers, J.; Deming, J. W.; Barber, D.

    2012-12-01

    The precipitation of ikaite (CaCO3·6H2O) in polar sea ice is critical to the efficiency of the sea ice-driven carbon pump and potentially important to the global carbon cycle, yet the spatial and temporal occurrence of ikaite within the ice is poorly known. We report unique observations of ikaite in unmelted ice and vertical profiles of ikaite abundance and concentration in sea ice for the crucial season of winter. Ice was examined from two locations: a 1 m thick land-fast ice site and a 0.3 m thick polynya site, both in the Young Sound area (74° N, 20° W) of NE Greenland. Ikaite crystals, ranging in size from a few µm to 700 µm were observed to concentrate in the interstices between the ice platelets in both granular and columnar sea ice. In vertical sea-ice profiles from both locations, ikaite concentration determined from image analysis, decreased with depth from surfaceice values of 700-900 µmol kg-1 ice (~ 25 × 106 crystals kg-1) to bottom-layer values of 100-200 µmol kg-1 ice (1-7 × 106 kg-1), all of which are much higher (4-10 times) than those reported in the few previous studies. Direct measurements of total alkalinity (TA) in surface layers fell within the same range as ikaite concentration whereas TA concentrations in bottom layers were twice as high. This depth-related discrepancy suggests interior ice processes where ikaite crystals form in surface sea ice layers and partly dissolved in bottom layers. From these findings and model calculations we relate sea ice formation and melt to observed pCO2 conditions in polar surface waters, and hence, the air-sea CO2 flux.

  18. Feasibility study on wave energy power plant with oscillating water column system in Bawean Island Seas Indonesia

    NASA Astrophysics Data System (ADS)

    Ali, A. F.; Hadi, S.

    2016-03-01

    As a huge archipelago with 17,480 islands, Indonesia still has difficulties to electrify all of its islands especially on the remote ones (areas) because of a power grid coverage limitation of National Electrical Company (PLN). This research discusses the potential calculation of sea wave power conversion by utilizing Oscillating Water Column (OWC) system in remote islands, especially on Bawean Island Seas. OWC system is chosen because of its advantages compared to other systems and also because of its suitability towards sea and coast areas in Indonesia. Kim Nielsen and David Ross Law were used for the power calculation. The research took data sampling during one month in 2015 with the result of wave height average of 2.09 meters. That obtained data resulted wave energy of within 270.19 and electrical power output of about 52.7 kW by using Oscillating Water Column system. Based on this result, Break Even Point (BEP) for one plant covering 117 houses will become zero in the period of 3 years 8 months.

  19. Trophic ecology of sea urchins in coral-rocky reef systems, Ecuador.

    PubMed

    Cabanillas-Terán, Nancy; Loor-Andrade, Peggy; Rodríguez-Barreras, Ruber; Cortés, Jorge

    2016-01-01

    Sea urchins are important grazers and influence reef development in the Eastern Tropical Pacific (ETP). Diadema mexicanum and Eucidaris thouarsii are the most important sea urchins on the Ecuadorian coastal reefs. This study provided a trophic scenario for these two species of echinoids in the coral-rocky reef bottoms of the Ecuadorian coast, using stable isotopes. We evaluated the relative proportion of algal resources assimilated, and trophic niche of the two sea urchins in the most southern coral-rocky reefs of the ETP in two sites with different disturbance level. Bayesian models were used to estimate the contribution of algal sources, niche breadth, and trophic overlap between the two species. The sea urchins behaved as opportunistic feeders, although they showed differential resource assimilation. Eucidaris thouarsii is the dominant species in disturbed environments; likewise, their niche amplitude was broader than that of D. mexicanum when conditions were not optimal. However, there was no niche overlap between the species. The Stable Isotope Analysis in R (SIAR) indicated that both sea urchins shared limiting resources in the disturbed area, mainly Dictyota spp. (contributions of up to 85% for D. mexicanum and up to 75% for E. thouarsii). The Stable Isotope Bayesian Ellipses in R (SIBER) analysis results indicated less interspecific competition in the undisturbed site. Our results suggested a trophic niche partitioning between sympatric sea urchin species in coastal areas of the ETP, but the limitation of resources could lead to trophic overlap and stronger habitat degradation.

  20. Trophic ecology of sea urchins in coral-rocky reef systems, Ecuador

    PubMed Central

    Loor-Andrade, Peggy; Rodríguez-Barreras, Ruber; Cortés, Jorge

    2016-01-01

    Sea urchins are important grazers and influence reef development in the Eastern Tropical Pacific (ETP). Diadema mexicanum and Eucidaris thouarsii are the most important sea urchins on the Ecuadorian coastal reefs. This study provided a trophic scenario for these two species of echinoids in the coral-rocky reef bottoms of the Ecuadorian coast, using stable isotopes. We evaluated the relative proportion of algal resources assimilated, and trophic niche of the two sea urchins in the most southern coral-rocky reefs of the ETP in two sites with different disturbance level. Bayesian models were used to estimate the contribution of algal sources, niche breadth, and trophic overlap between the two species. The sea urchins behaved as opportunistic feeders, although they showed differential resource assimilation. Eucidaris thouarsii is the dominant species in disturbed environments; likewise, their niche amplitude was broader than that of D. mexicanum when conditions were not optimal. However, there was no niche overlap between the species. The Stable Isotope Analysis in R (SIAR) indicated that both sea urchins shared limiting resources in the disturbed area, mainly Dictyota spp. (contributions of up to 85% for D. mexicanum and up to 75% for E. thouarsii). The Stable Isotope Bayesian Ellipses in R (SIBER) analysis results indicated less interspecific competition in the undisturbed site. Our results suggested a trophic niche partitioning between sympatric sea urchin species in coastal areas of the ETP, but the limitation of resources could lead to trophic overlap and stronger habitat degradation. PMID:26839748

  1. Trophic ecology of sea urchins in coral-rocky reef systems, Ecuador.

    PubMed

    Cabanillas-Terán, Nancy; Loor-Andrade, Peggy; Rodríguez-Barreras, Ruber; Cortés, Jorge

    2016-01-01

    Sea urchins are important grazers and influence reef development in the Eastern Tropical Pacific (ETP). Diadema mexicanum and Eucidaris thouarsii are the most important sea urchins on the Ecuadorian coastal reefs. This study provided a trophic scenario for these two species of echinoids in the coral-rocky reef bottoms of the Ecuadorian coast, using stable isotopes. We evaluated the relative proportion of algal resources assimilated, and trophic niche of the two sea urchins in the most southern coral-rocky reefs of the ETP in two sites with different disturbance level. Bayesian models were used to estimate the contribution of algal sources, niche breadth, and trophic overlap between the two species. The sea urchins behaved as opportunistic feeders, although they showed differential resource assimilation. Eucidaris thouarsii is the dominant species in disturbed environments; likewise, their niche amplitude was broader than that of D. mexicanum when conditions were not optimal. However, there was no niche overlap between the species. The Stable Isotope Analysis in R (SIAR) indicated that both sea urchins shared limiting resources in the disturbed area, mainly Dictyota spp. (contributions of up to 85% for D. mexicanum and up to 75% for E. thouarsii). The Stable Isotope Bayesian Ellipses in R (SIBER) analysis results indicated less interspecific competition in the undisturbed site. Our results suggested a trophic niche partitioning between sympatric sea urchin species in coastal areas of the ETP, but the limitation of resources could lead to trophic overlap and stronger habitat degradation. PMID:26839748

  2. The impact of sedimentary alkalinity release on the water column CO2 system in the North Sea

    NASA Astrophysics Data System (ADS)

    Brenner, H.; Braeckman, U.; Le Guitton, M.; Meysman, F. J. R.

    2016-02-01

    It has been previously proposed that alkalinity release from sediments can play an important role in the carbonate dynamics on continental shelves, lowering the pCO2 of seawater and hence increasing the CO2 uptake from the atmosphere. To test this hypothesis, sedimentary alkalinity generation was quantified within cohesive and permeable sediments across the North Sea during two cruises in September 2011 (basin-wide) and June 2012 (Dutch coastal zone). Benthic fluxes of oxygen (O2), alkalinity (AT) and dissolved inorganic carbon (DIC) were determined using shipboard closed sediment incubations. Our results show that sediments can form an important source of alkalinity for the overlying water, particularly in the shallow southern North Sea, where high AT and DIC fluxes were recorded in near-shore sediments of the Belgian, Dutch and German coastal zone. In contrast, fluxes of AT and DIC are substantially lower in the deeper, seasonally stratified, northern part of the North Sea. Based on the data collected, we performed a model analysis to constrain the main pathways of alkalinity generation in the sediment, and to quantify how sedimentary alkalinity drives atmospheric CO2 uptake in the southern North Sea. Overall, our results show that sedimentary alkalinity generation should be regarded as a key component in the CO2 dynamics of shallow coastal systems.

  3. Theoretical prediction of phase relations among aqueous solutions and minerals: Salton Sea geothermal system

    NASA Astrophysics Data System (ADS)

    Bird, Dennis K.; Norton, Denis L.

    1981-09-01

    Thermodynamic calculations of compositional relations among aqueous solutions and minerals in the system Na2O-K2O-CaO-MgO-Fe2O3 Al2O3-SiO2-H2O-CO2 HCl at pressures and temperatures corresponding to liquid-vapor equilibrium of H2O permit quantitative description and interpretation of phase relations among rock forming minerals and aqueous solutions in magma-hydrothermal systems. The extensive data base on the Salton Sea geothermal system provides an exemplary case for predicting the chemical characteristics of geothermal fluids associated with metasomatic mineral zones observed in deep drillhole samples. Near the Elmore No. 1 well aqueous species activity ratios of {aNa+}/{aH+} and {aK+}/{aH+} vary several tenths of a log unit with increasing depth and temperature from ∼ 0.6 km and ∼250°C to ∼ 2.2 km and ∼350°C, whereas {aCa2+}/{a2H+} decreases ∼ 2 orders of magnitude for a comparable range in depth and temperature. The fugacity of CO2 gas is ∼1.5-6 bars at ≲ 310°C. Calculated values of aSio2(aq), {aNa+}/{aK+}, {aCa2+}/{aMg2+} and fCO2(g), in the fluid phase coexisting with observed mineralogic phase relations are in remarkably close agreement with measured solute concentrations in geothermal fluids produced from deep drillholes near the Salton Sea. Hydrolysis reactions representing observed phase relations and written with alkali and alkaline earth cations as products have negative standard molal enthalpies (ΔH0P,T,r) and volumes (ΔV0P,T,r) of reactions; consequently, {aNa+}/{aH+}, {aK+}/{aH+}, {aCa2+}/{a2H+}, and {aMg2+}/{a2H+} decrease with increasing temperature at constant pressure, but increase with increasing pressure at constant temperature. An approximate linear relationship exists among these activity ratios and the reciprocal of absolute temperatures because ΔH0P,T,r varies only slightly with increasing temperature at ≲ 250 to 300°C. However, at ≳300°C, ΔH0P,T,r and ΔV0P,T,R decrease dramatically as a consequence of extrema in

  4. Sediment dispersal system in the Taiwan-South China Sea collision zone along a convergent margin: A comparison with the Papua New Guinea collision zone of the western Solomon Sea

    NASA Astrophysics Data System (ADS)

    Hsiung, Kan-Hsi; Yu, Ho-Shing

    2013-01-01

    Through a large-scale examination of the morpho-sedimentary features on sea floors in the Taiwan-Luzon convergent margin, we determined the main sediment dispersal system which stretches from 23°N to 20°N and displays as an aligned linear sediment pathway, consisting of the Penghu Canyon, the deep-sea Penghu Channel and northern Manila Trench. The seafloor of South China Sea north of 21°N are underlain by a triangle-shaped collision marine basin, resulting from oblique collision between the Luzon Arc and Chinese margin, and are mainly occupied by two juxtaposed slopes, the South China Sea and Kaoping Slopes, and a southward tilting basin axis located along the Penghu Canyon. Two major tributary canyons of the Formosa and Kaoping and small channels and gullies on both slopes join into the axial Penghu Canyon and form a dendritic canyon drainage system in this collision marine basin. The canyon drainage system is characteristic of lateral sediment supply from flank slopes and axial sediment transport down-canyon following the tilting basin axis. The significance of the collision marine basin in term of source to sink is that sediments derived from nearby orogen and continental margins are transported to and accumulated in the collision basin, serving as a temporary sediment sink and major marine transport route along the basin axis. The comparison of the Taiwan-South China Sea collision zone with the Papua New Guinea collision zone of the western Solomon Sea reveals remarkable similarities in tectonic settings and sedimentary processes that have resulted in similar sediment dispersal systems consisting of (1) a canyon drainage network mainly in the collision basin and (2) a longitudinal sediment transport system comprising a linear connection of submarine canyon, deep-sea channel and oceanic trench beyond the collision marine basin.

  5. Research drilling in an active geothermal system: Salton Sea Scientific Drilling Project (SSSDP)

    SciTech Connect

    Elders, W.A.

    1987-05-01

    In March 1986 a research borehole, designed to study the processes occurring in an active, high-temperature, magmatically driven hydrothermal system, reached a depth of 3.22 km in the Salton Sea geothermal field at the northern end of the Gulf of California. Only 10% of the borehole was cored; however, an integrated set of drill cuttings, wireline logs, and downhole measurements were obtained using high-temperature tools and cables. Similarly, downhole VSP, gravity, and fluid sampling tools were successfully deployed. The borehole penetrates Pleistocene and upper Pliocene lake and delta sediments with minor extrusive and intrusive igneous rocks, all of which are being progressively altered to greenschist facies hornfelses. A flow test of a zone at 1865 m with a temperature of 305/sup 0/C, produced Na, Ca, and K chloride brines containing 24% of dissolved salts. Flows of up to 200 tons/hr of steam and brine were obtained. An even more productive zone, the deepest tested at 3215 m where the temperature was 355/sup 0/C, briefly attained a peak flow of 400 tons/hr during a 48-hour test. However, this test was marred by interference from other flow zones. Although the borehole was shut in after the 7-in. (17.78-cm) diameter liner parted, a comprehensive program of laboratory studies is underway in about 40 different institutions. Results to date have more than met their original goals. In the summer of 1987, field operations will resume and will include extensive reservoir engineering. However, drilling deeper to penetrate the magmatic rocks that underlie the explored hydrothermal system must await future funding.

  6. Slip history of the Dead Sea fault system since 100 ka

    NASA Astrophysics Data System (ADS)

    Ferry, M.; Gold, R. D.; Meghraoui, M.

    2012-04-01

    The long-term behavior of active faults may be recorded in the landscape as cumulative earthquakes progressively offset landforms such as streams, fans, and ridges. To achieve the best understanding of the slip history for a given fault, high accuracy offset and age constraints for a significant number of these landforms should be obtained. In the present work we construct a slip history for the Dead Sea fault (DSF) system from Turkey to Jordan. Our analysis focuses on utilizing the paleoclimate history of the Eastern Mediterranean for the last 140 kyr with an emphasis on Intense Precipitation Episodes (IPEs) likely to have triggered systematic stream gully erosion and alluvial fan aggradation. IPEs are documented by the occurrence of sapropel layers, high lake stands and significant changes in vegetation and dated by multiproxy approaches of which we favor speleothems from caves located along the DSF. Overall, we define 11 IPEs during the last 140 kyr. In parallel, we compile 181 cumulative offset values along nine segments of the DSF system between Turkey and Jordan, only 55 of which were previously associated with an age determination. We employ an offset clustering analysis that we link to the defined IPEs chronology to propose new ages for 57 undated offsets, revise 18 published values and discard 6 more. Our consolidated dataset is composed of 106 offset values with related ages spanning the entire DSF system. Monte Carlo analysis of this high-resolution datasets indicate consistent along-strike slip rates along the DSF system with values ranging from 5.0 to 5.8 mm/yr (2-sigma), outside of the geometrically complex Lebanese Bend. A slight, but statistically significant positive gradient may be observed from south to north. Over observation windows of 2-121 kyr individual datasets indicate that temporal slip-rate variability is unlikely along the Yammouneh fault, possible along the Roum, Jordan Valley and Wadi Araba faults and likely along the Hacipasa and

  7. Slip history of the Dead Sea fault system for the last 100 ka

    NASA Astrophysics Data System (ADS)

    Ferry, M.; Gold, R. D.; Meghraoui, M.

    2011-12-01

    The long-term earthquake behavior of active faults may be recorded by progressively offset landforms such as streams, fans, and ridges. High accuracy offset measurements and age constraints for a significant number of landforms are required to best understand the slip history of a given fault. In the present work we construct a slip history for the Dead Sea fault (DSF) system from Turkey to Jordan using offset landforms. Our analysis focuses on utilizing the paleoclimate history of the Eastern Mediterranean for the last 140 kyr with an emphasis on Intense Precipitation Episodes (IPEs) likely to have triggered systematic stream gully erosion and alluvial-fan aggradation. IPEs are documented by the occurrence of sapropel layers, high lake stands and significant changes in vegetation, and are dated by multiproxy approaches such as speleothems from caves located along the DSF. Overall, these data define 11 IPEs during the last 140 kyr. We document 126 new cumulative offset landforms in addition to 55 previously reported features along nine segments of the DSF system between Turkey and Jordan. We employ an offset clustering analysis that we link to the defined IPEs chronology to propose new ages for 57 undated offsets, revise 18 published values and reject six more. Our consolidated dataset is composed of 106 offset values and related ages that span entire DSF system. Monte Carlo analysis of this high-resolution dataset indicates consistent along-strike slip rates along the DSF system of 5.0 to 5.8 mm/yr (2-sigma), outside of the geometrically complex Lebanese Bend. A slight, but statistically significant positive gradient may exist from south to north. Over time windows of 2-121 kyr, individual datasets indicate no temporal slip-rate variability along the Yammouneh fault, possibly along the Roum, Jordan Valley and Wadi Araba faults and likely along the Hacipasa and Missyaf faults. Where apparent, the largest slip rate gradient occurs at 7.5-8.5 ka and appears to have

  8. A New Towed Digital DeepSea Camera and Multi-Rock Coring System: The WHOI TowCam

    NASA Astrophysics Data System (ADS)

    Billings, A.; Fornari, D.

    2002-12-01

    This year, a team of engineers at the Woods Hole Oceanographic Institution (WHOI) developed and successfully tested a new, digital deep-sea camera system as part of a NSF equipment development grant. The system has been used during two expeditions, one to the Galapagos Rift, and the most recent one to the Hess Deep. To date it has acquired nearly 20,000 digital seafloor images. The new WHOI Towed Digital Camera and Multi-Rock Coring System (TowCam) is an internally recording digital deep sea camera system that also permits acquisition of volcanic glass samples using up to six rock cores in conjunction with CTD water properties data. The TowCam is towed on a standard UNOLS coaxial CTD sea cable, thereby permitting real-time acquisition of digital depth and altitude data that can be used to help quantify objects in the digital images. The use of the conducting sea cable and CTD system also permits triggering of six rock core units on the sled so that discrete samples of volcanic glass can be collected during a lowering. By operating either at night in between Alvin dives, or during other seagoing programs, photographic information of the seafloor can be recorded for near real-time analysis and for planning subsequent Alvin dives or other sampling and surveying programs. The new WHOI TowCam is a self-recording, deep-sea towed camera system rated to 6000m. It is capable of remotely taking 1000 high-resolution color digital photographs on each lowering at intervals of 10-60 sec, while being towed 5-7m above the bottom at speeds of up to 1/2 knot. The digital camera (DigiSeaCam) was developed by DeepSea Power and Light of San Diego, CA and uses a 3.3 Megapixel Nikon995. The onboard CTD (SeaBird25) permits real-time display and recording of digital depth, altitude and other standard CTD sensors (e.g. conductivity, temperature, turbidity), and provides connectivity to the pylon that permits triggering of the rock corers. A strobe monitor connected to a spare serial port in

  9. Evaluating Land-Atmosphere-Ocean-Sea Ice Interface Processes in the Regional Arctic System Model (RASM1.0)

    NASA Astrophysics Data System (ADS)

    Brunke, M.; Zeng, X.

    2015-12-01

    Earth System Models (ESMs) have problems simulating climate in the Arctic region. For instance, there continues to be a wide spread in the simulations of the interannual variability and long-term trends of sea ice in the 20th century in the Coupled Model Intercomparison Project (CMIP5) models. Thus, there is also a wide spread in the trends in sea ice decline projected for the 21st century in the CMIP5 models. Recently, the Regional Arctic System Model version 1.0 (RASM1.0) has been developed to provide improved high-resolution simulations of the Arctic atmosphere-ocean-sea ice-land system. A major baseline for the performance of RASM is its comparison with reanalysis (that provides the lateral boundary condition to drive RASM) and with the coarser-resolution ESMs. In this presentation, we will provide such a baseline with respect to the land-atmosphere-ocean-sea ice interface processes by comparing RASM with the Community Earth System Model (CESM) and three reanalysis products. First, 2-m air temperature, surface radiative and turbulent fluxes, and precipitation are compared to global datasets to assess the representation of these quantities in the models and reanalyses regionally. It is found that these quantities are generally better represented over land than over the oceans and sea ice. Then, we will further compare RASM, CESM, and reanalysis products with surface observations made at land flux towers, during northern high-latitude ship cruises over the oceans, and during the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment over sea ice. In these comparisons, we will focus on both the annual and diurnal cycles. For instance, the snow versus snow-free period over land will be emphasized, because the land-atmosphere coupling mechanism differs between the two periods. The impact of radiative fluxes on the diurnal temperature errors will also be emphasized. Furthermore, our newly-developed snow depth and snow water equivalent data over several 2deg X 2

  10. The last glacial-interglacial transition and dinoflagellate cysts in the western Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Rouis-Zargouni, Imene; Turon, Jean-Louis; Londeix, Laurent; Kallel, Néjib; Essallami, Latifa

    2012-02-01

    Using the analysis of dinoflagellate cysts in three deep-sea sediments cores situated in the Sicilian-Tunisian Strait, in the Gulf of Lions and in the Alboran Sea, we reconstruct the paleoenvironmental changes that took place during the last glacial-interglacial transition in the western Mediterranean Sea. The development of the warm microflora Impagidinium aculeatum and especially Spiniferites mirabilis appears to be an important proxy for recognizing warm periods as the Bölling/Alleröd and the Early Holocene. Bitectatodinium tepikiense, Spiniferites elongatus and Nematosphaeropsis labyrinthus mark the end of the Heinrich event 1 and the Younger Dryas. This cold microfloral association confirms the drastic climate changes in the western Mediterranean Sea synchronous to the dry and cold climate which occurred in the South European margin. The dinocyst N. labyrinthus shows high percentages in all studied regions during the Younger Dryas. Its distribution reveals a significant increase from the South to the North of this basin during this cold brief event. Thus, we note that this species can be considered as a new eco-stratigraphical tracer of the Younger Dryas in the western Mediterranean Sea.

  11. Approaches to Improve the Performances of the Sea Launch System Performances

    NASA Astrophysics Data System (ADS)

    Tatarevs'kyy, K.

    2002-01-01

    The paper dwells on the outlines of the techniques of on-line pre-launch analysis on possibility of safe and reliable LV launch off floating launch system, when actual launch conditions (weather, launcher motion parameters) are beyond design limitations. The technique guarantees to follow the take-off LV trajectory limitations (the shock-free launch) and allows the improvement of the operat- ing characteristics of the floating launch systems at the expense of possibility to authorize the launch even if a number of weather and launcher motion parameters restrictions are exceeded. This paper ideas are applied for LV of Zenit-type launches off tilting launch platform, operative within Sea Launch. The importance, novelty and urgency of the approach under consideration is explained by the fact that the application during floating launch systems operation allows the bringing down of the num- ber of weather-conditioned launch abort cases. And this, in its part, increases the trustworthiness of the mission fulfillment on specific spacecraft injection, since, in the long run, the launch abort may cause the crossing of allowable wait threshold and accordingly the mission abort. All previous launch kinds for these LV did not require the development of the special technique of pre-launch analysis on launch possibility, since weather limitations for stationary launcher condi- tions are basically reduced to the wind velocity limitations. This parameter is reliably monitored and is sure to influence the launch dynamics. So the measured wind velocity allows the thorough picture on the possibility of the launch off the ground-based launcher. Since the floating launch systems commit complex and continuous movements under the exposure of the wind and the waves, the number of parameters is increased and, combined differently, they do not always make the issue on shockless launch critical. The proposed technique of the pre-launch analysis of the forthcoming launch dynamics with the

  12. High-Frequency CTD Measurements for Accurate GPS/acoustic Sea-floor Crustal Deformation Measurement System

    NASA Astrophysics Data System (ADS)

    Tadokoro, K.; Yasuda, K.; Taniguchi, S.; Uemura, Y.; Matsuhiro, K.

    2015-12-01

    The GPS/acoustic sea-floor crustal deformation measurement system has developed as a useful tool to observe tectonic deformation especially at subduction zones. One of the factors preventing accurate GPS/acoustic sea-floor crustal deformation measurement is horizontal heterogeneity of sound speed in the ocean. It is therefore necessary to measure the gradient directly from sound speed structure. We report results of high-frequency CTD measurements using Underway CTD (UCTD) in the Kuroshio region. We perform the UCTD measurements on May 2nd, 2015 at two stations (TCA and TOA) above the sea-floor benchmarks installed across the Nankai Trough, off the south-east of Kii Peninsula, middle Japan. The number of measurement points is six at each station along circles with a diameter of 1.8 nautical miles around the sea-floor benchmark. The stations TCA and TOA are located on the edge and the interior of the Kuroshio current, respectively, judging from difference in sea water density measured at the two stations, as well as a satellite image of sea-surface temperature distribution. We detect a sound speed gradient of high speeds in the southern part and low speeds in the northern part at the two stations. At the TCA station, the gradient is noticeable down to 300 m in depth; the maximum difference in sound speed is +/- 5 m/s. The sound speed difference is as small as +/- 1.3 m/s at depths below 300 m, which causes seafloor benchmark positioning error as large as 1 m. At the TOA station, the gradient is extremely small down to 100 m in depth. The maximum difference in sound speed is less than +/- 0.3 m/s that is negligible small for seafloor benchmark positioning error. Clear gradient of high speed is observed to the depths; the maximum difference in sound speed is +/- 0.8-0.9 m/s, causing seafloor benchmark positioning error of several tens centimeters. The UCTD measurement is effective tool to detect sound speed gradient. We establish a method for accurate sea

  13. Development of a GPS buoy system for monitoring tsunami, sea waves, ocean bottom crustal deformation and atmospheric water vapor

    NASA Astrophysics Data System (ADS)

    Kato, Teruyuki; Terada, Yukihiro; Nagai, Toshihiko; Koshimura, Shun'ichi

    2010-05-01

    We have developed a GPS buoy system for monitoring tsunami for over 12 years. The idea was that a buoy equipped with a GPS antenna and placed offshore may be an effective way of monitoring tsunami before its arrival to the coast and to give warning to the coastal residents. The key technology for the system is real-time kinematic (RTK) GPS technology. We have successfully developed the system; we have detected tsunamis of about 10cm in height for three large earthquakes, namely, the 23 June 2001 Peru earthquake (Mw8.4), the 26 September 2003 Tokachi earthquake (Mw8.3) and the 5 September 2004 earthquake (Mw7.4). The developed GPS buoy system is also capable of monitoring sea waves that are mainly caused by winds. Only the difference between tsunami and sea waves is their frequency range and can be segregated each other by a simple filtering technique. Given the success of GPS buoy experiments, the system has been adopted as a part of the Nationwide Ocean Wave information system for Port and HArborS (NOWPHAS) by the Ministry of Land, Infrastructure, Transport and Tourism of Japan. They have established more than eight GPS buoys along the Japanese coasts and the system has been operated by the Port and Airport Research Institute. As a future scope, we are now planning to implement some other additional facilities for the GPS buoy system. The first application is a so-called GPS/Acoustic system for monitoring ocean bottom crustal deformation. The system requires acoustic waves to detect ocean bottom reference position, which is the geometrical center of an array of transponders, by measuring distances between a position at the sea surface (vessel) and ocean bottom equipments to return the received sonic wave. The position of the vessel is measured using GPS. The system was first proposed by a research group at the Scripps Institution of Oceanography in early 1980's. The system was extensively developed by Japanese researchers and is now capable of detecting ocean

  14. Towards a coastal ocean forecasting system in Southern Adriatic Northern Ionian seas based on unstructured-grid model

    NASA Astrophysics Data System (ADS)

    Federico, Ivan; Oddo, Paolo; Pinardi, Nadia; Coppini, Giovanni

    2014-05-01

    The Southern Adriatic Northern Ionian Forecasting System (SANIFS) operational chain is based on a nesting approach. The large scale model for the entire Mediterranean basin (MFS, Mediterranean Forecasting system, operated by INGV, e.g. Tonani et al. 2008, Oddo et al. 2009) provides lateral open boundary conditions to the regional model for Adriatic and Ionian seas (AIFS, Adriatic Ionian Forecasting System) which provides the open-sea fields (initial conditions and lateral open boundary conditions) to SANIFS. The latter, here presented, is a coastal ocean model based on SHYFEM (Shallow HYdrodynamics Finite Element Model) code, which is an unstructured grid, finite element three-dimensional hydrodynamic model (e.g. Umgiesser et al., 2004, Ferrarin et al., 2013). The SANIFS hydrodynamic model component has been designed to provide accurate information of hydrodynamics and active tracer fields in the coastal waters of Southern Eastern Italy (Apulia, Basilicata and Calabria regions), where the model is characterized by a resolution of about of 200-500 m. The horizontal resolution is also accurate in open-sea areas, where the elements size is approximately 3 km. During the development phase the model has been initialized and forced at the lateral open boundaries through a full nesting strategy directly with the MFS fields. The heat fluxes has been computed by bulk formulae using as input data the operational analyses of European Centre for Medium-Range Weather Forecasts. Short range pre-operational forecast tests have been performed in different seasons to evaluate the robustness of the implemented model in different oceanographic conditions. Model results are validated by means of comparison with MFS operational results and observations. The model is able to reproduce the large-scale oceanographic structures of the area (keeping similar structures of MFS in open sea), while in the coastal area significant improvements in terms of reproduced structures and dynamics are

  15. Comparison of Geodetic and Late Pleistocene Slip Rates for the Southern Dead Sea Fault System

    NASA Astrophysics Data System (ADS)

    Cochran, W. J.; Gomez, F.; Abu Rajab, J. S.; Al-Tarazi, E.

    2012-12-01

    Comparisons of short-term (geodetic) and Late Quaternary slip rates have been used to assess time-variable fault kinematics along various active faults, globally. Differences between such types slip rates may have implications for crustal rheology and/or temporal variations in plate motion. This research aims to compare the geodetically-derived slip rates with slip rates based on Late Pleistocene landforms along the southern Dead Sea fault system (DSFS). The DSFS is an active, left-lateral transform that accommodates differential movement between the Arabian and Sinai plates. A number of slip rates have been previously reported ranging from 2 to 6mm/yr. However, comparison of various slip rates requires ensuring that associated uncertainties are assessed using a standard. New GPS velocities from Jordan are combined with other available GPS data, and are used to model slip rates using elastic block models. Resulting slip rates are 4.3 to 5.3 mm/yr with fault locking depths of 8 - 15 km. Late Pleistocene rates are assessed from published observations, as well as new data. New mapping of offset alluvial fans in the southern Wadi Araba was facilitated by multi-spectral imagery and high-resolution digital elevation model. These fans correlate with regional aggradation events, with the resulting Late Pleistocene slip rates ranging from 4.2 to 5.1 mm/yr. Statistically, the geodetic and neotectonic slip rates are identical. Additionally, a 3-dimensional slip vector for the last earthquake in the northern Wadi Araba is constructed using close-range photogrammetry of a faulted Byzantine aqueduct that indicates both horizontal and vertical displacements. Previous studies suggested characteristic earthquake slip, so slip rates and this slip vector provide a means of assessing mean EQ recurrence interval, as well as the role of earthquakes in constructing the long-term topography along this part of the transform.

  16. Sea surface temperature and ocean colour (MODIS/AQUA) space and time variability in Indonesian Sea coral reef systems from 2002 to 2011

    NASA Astrophysics Data System (ADS)

    Polónia, A. R.; Figueiredo, M.; Cleary, D. F. R.; de Voogd, N. J.; Martins, A.

    2011-11-01

    Presently, there are already Indonesian coral reefs experiencing massive destruction caused by anthropogenic localscale sources (sedimentation, eutrophication) and/or natural climatic global-scale sources (temperature) which can inflict acute and/or chronic impacts on these ecosystems. This study was carried out with the aim of identifying possible sources of impact in coral reef systems associated with two of the most populated Indonesian cities (Makassar and Jakarta). MODIS/AQUA satellite-derived Ocean Colour (Chl a in mg m-3) and Sea Surface Temperature (SST in °C) data were used for the 2002-2011 period. These were related with large-scale atmospheric climatic indices, namely the Southern Oscillation Index (SOI), the Dipole Mode Index (DMI), and the North Atlantic Oscillation Index (NAOI). Beyond the expected influence of the El Niño Index over the Indonesian region, we present first evidence of the significant influence of the NAOI in Indonesian ecosystems. The results show strong seasonal correlation between the NAOI and two key parameters for the coral reef health: chlorophyll a (at Jakarta) and SST (at Makassar). During the dry season, and especially over the Spermonde coral reef system, a seasonal SST uptrend was observed culminating in the first bleaching event registered in this area during the hottest year (2010) since 2002.

  17. GNI - A System for the Impaction and Automated Optical Sizing of Giant Aerosol Particles with Emphasis on Sea Salt

    NASA Astrophysics Data System (ADS)

    Jensen, Jorgen

    2013-04-01

    Size distributions of giant aerosol particles (e.g. sea-salt particles, dry radius larger than 0.5 μm) are not well characterized in the atmosphere, yet they contribute greatly to both direct and indirect aerosol effects. Measurements are problematic for these particles because they (i) occur in low concentrations, (ii) have difficulty in passing through air inlets, (iii) there are problems in discriminating between dry and deliquesced particles, (iv) and impaction sampling requires labor intensive methods. In this study, a simple, high-volume impaction system called the Giant Nuclei Impactor (GNI), based on free-stream exposure of polycarbonate slides from aircraft is described, along with an automated optical microscope-based system for analysis of the impacted particles. The impaction slides are analyzed in a humidity-controlled box (typically 90% relative humidity) that allows for deliquescence of sea salt particles. A computer controlled optical microscope with two digital cameras is used to acquire and analyze images of the aerosol particles. Salt particles will form near-spherical cap solution drops at high relative humidity. The salt mass in each giant aerosol particle is then calculated using simple geometry and K ̈ohler theory by assuming a NaCl composition. The system has a sample volume of about 10 L/s at aircraft speeds of 105 m/s. For salt particles, the measurement range is from about 0.7 μm dry radius to tens of micrometers, with a size-bin resolution of 0.2 μm dry radius. The sizing accuracy was tested using glass beads of known size. Characterizing the uncertainties of observational data is critical for applications to atmospheric science studies. A comprehensive uncertainty analysis is performed for the airborne GNI manual impaction and automatic optical microscope system for sizing giant aerosol particles, with particular emphasis on sea-salt particles. The factors included are (i) sizing accuracy, (ii) concentration accuracy, (iii

  18. Design, construction, and operation of an actively controlled deep-sea CO2 enrichment experiment using a cabled observatory system

    NASA Astrophysics Data System (ADS)

    Kirkwood, William J.; Walz, Peter M.; Peltzer, Edward T.; Barry, James P.; Herlien, Robert A.; Headley, Kent L.; Kecy, Chad; Matsumoto, George I.; Maughan, Thom; O'Reilly, Thomas C.; Salamy, Karen A.; Shane, Farley; Brewer, Peter G.

    2015-03-01

    We describe the design, testing, and performance of an actively controlled deep-sea Free Ocean CO2 Enrichment (dp-FOCE) system for the execution of seafloor experiments relating to the impacts of ocean acidification on natural ecosystems. We used the 880 m deep MARS (Monterey Accelerated Research System) cable site offshore Monterey Bay, California for this work, but the Free Ocean CO2 Enrichment (FOCE) system concept is designed to be scalable and can be modified to be used in a wide variety of ocean depths and locations. The main frame is based on a flume design with active thruster control of flow and a central experimental chamber. The unit was allowed to free fall to the seafloor and connected to the cable node by remotely operated vehicle (ROV) manipulation. For operation at depth we designed a liquid CO2 containment reservoir which provided the CO2 enriched working fluid as ambient seawater was drawn through the reservoir beneath the more buoyant liquid CO2. Our design allowed for the significant lag time associated with the hydration of the dissolved CO2 molecule, resulting in an e-folding time, τ, of 97 s between fluid injection and pH sensing at the mean local T=4.31±0.14 °C and pHT of 7.625±0.011. The system maintained a pH offset of ~0.4 pH units compared to the surrounding ocean for a period of ~1 month. The unit allows for the emplacement of deep-sea animals for testing. We describe the components and software used for system operation and show examples of each. The demonstrated ability for active control of experimental systems opens new possibilities for deep-sea biogeochemical perturbation experiments of several kinds and our developments in open source control systems software and hardware described here are applicable to this end.

  19. Predicting Land-Ice Retreat and Sea-Level Rise with the Community Earth System Model

    SciTech Connect

    Lipscomb, William

    2012-06-19

    Coastal stakeholders need defensible predictions of 21st century sea-level rise (SLR). IPCC assessments suggest 21st century SLR of {approx}0.5 m under aggressive emission scenarios. Semi-empirical models project SLR of {approx}1 m or more by 2100. Although some sea-level contributions are fairly well constrained by models, others are highly uncertain. Recent studies suggest a potential large contribution ({approx}0.5 m/century) from the marine-based West Antarctic Ice Sheet, linked to changes in Southern Ocean wind stress. To assess the likelihood of fast retreat of marine ice sheets, we need coupled ice-sheet/ocean models that do not yet exist (but are well under way). CESM is uniquely positioned to provide integrated, physics based sea-level predictions.

  20. Effects of sea-level rise on ground water flow in a coastal aquifer system

    USGS Publications Warehouse

    Masterson, J.P.; Garabedian, S.P.

    2007-01-01

    The effects of sea-level rise on the depth to the fresh water/salt water interface were simulated by using a density-dependent, three-dimensional numerical ground water flow model for a simplified hypothetical fresh water lens that is similar to shallow, coastal aquifers found along the Atlantic coast of the United States. Simulations of sea-level rise of 2.65 mm/year from 1929 to 2050 resulted in an increase in water levels relative to a fixed datum, yet a net decrease in water levels relative to the increased sea-level position. The net decrease in water levels was much greater near a gaining stream than farther from the stream. The difference in the change in water levels is attributed to the dampening effect of the stream on water level changes in response to sea-level rise. In response to the decreased water level altitudes relative to local sea level, the depth to the fresh water/salt water interface decreased. This reduction in the thickness of the fresh water lens varied throughout the aquifer and was greatly affected by proximity to a ground water fed stream and whether the stream was tidally influenced. Away from the stream, the thickness of the fresh water lens decreased by about 2% from 1929 to 2050, whereas the fresh water lens thickness decreased by about 22% to 31% for the same period near the stream, depending on whether the stream was tidally influenced. The difference in the change in the fresh water/salt water interface position is controlled by the difference in the net decline in water levels relative to local sea level. ?? 2007 National Ground Water Association.

  1. Modelling the impact of Global Change on the hydrological system of the Aral Sea basin

    NASA Astrophysics Data System (ADS)

    Aus der Beek, T.; Voß, F.; Flörke, M.

    During the last decades the Aral Sea basin has suffered an enormous depletion of water resources within its lakes and rivers with consequences for society, economy, and nature. Within this model study, Global Change impacts on the Amu Darya and Syr Darya rivers, as well as on the Aral Sea itself, are being analysed for the period 1958-2002. In a first step, a multi-annual data base on crop specific irrigated areas has been set-up, which has then been integrated in the hydrology and water use model WaterGAP3. As a second step, anthropogenic water abstractions have been calculated, which were then assimilated in the simulation of river runoff of the Amu Darya and Syr Darya. The last step includes the simulation of the water balance of the Aral Sea, by taking into account modelled river inflow. Within WaterGAP3, the water use module has been switched on and off to separate the impacts of Climate and Global Change (i.e. water abstractions). Irrigation water abstractions are very well represented by WaterGAP3 and lie within the range of reported values. Modelled river discharge also shows a good fit to observed data, whereas phases are in sync but volumes are slightly overestimated. Simulated volumes of the Aral Sea itself are well reflected by the model, though results for the period 1990-2002 are too high. In this study, the Climate Change impacts are much smaller (14%) than the water use impacts (86%) on the shrinkage of the Aral Sea. Finally, an outlook on potential scenario model studies is given, which could analyse the different strategies of mitigation and adaptation of Global Change in the Aral Sea basin.

  2. Decline in sea snake abundance on a protected coral reef system in the New Caledonian Lagoon

    NASA Astrophysics Data System (ADS)

    Goiran, C.; Shine, R.

    2013-03-01

    Monitoring results from a small reef (Ile aux Canards) near Noumea in the New Caledonian Lagoon reveal that numbers of turtle-headed sea snakes ( Emydocephalus annulatus) have been in consistent decline over a 9-year period, with average daily counts of snakes decreasing from >6 to <2 over this period. Causal factors for the decline are unclear, because the site is a protected area used only for tourism. Our results suggest that wildlife management authorities should carefully monitor sea snake populations to check whether the declines now documented for New Caledonia and in nearby Australian waters also occur around the islands of the Indo-Pacific.

  3. The Effect of Excess Snow on Sea Ice in a Global Ice-Ocean Prediction System

    NASA Astrophysics Data System (ADS)

    Winter, B.; Bélair, S.; Lemieux, J. F.

    2014-12-01

    Snow cover on sea ice acts as a thermal insulator, greatly reducing the upward heat flux from the ocean through the ice, specifically through thin ice. The treatment of snow in the CICE sea ice model does not include the effects of blowing snow, thereby leading to an unrealistically thick snow layer on the ice. We investigate the consequences of this excess snow for the upward heat fluxes throughout the year, and how this impacts forecast accuracy in a global ice-ocean prediction model (GIOPS). First results will be presented, and computationally efficient solutions will be discussed.

  4. Water quality assessment using water quality index and geographical information system methods in the coastal waters of Andaman Sea, India.

    PubMed

    Jha, Dilip Kumar; Devi, Marimuthu Prashanthi; Vidyalakshmi, Rajendran; Brindha, Balan; Vinithkumar, Nambali Valsalan; Kirubagaran, Ramalingam

    2015-11-15

    Seawater samples at 54 stations in the year 2011-2012 from Chidiyatappu, Port Blair, Rangat and Aerial Bays of Andaman Sea, have been investigated in the present study. Datasets obtained have been converted into simple maps using coastal water quality index (CWQI) and Geographical Information System (GIS) based overlay mapping technique to demarcate healthy and polluted areas. Analysis of multiple parameters revealed poor water quality in Port Blair and Rangat Bays. The anthropogenic activities may be the likely cause for poor water quality. Whereas, good water quality was witnessed at Chidiyatappu Bay. Higher CWQI scores were perceived in the open sea. However, less exploitation of coastal resources owing to minimal anthropogenic activity indicated good water quality index at Chidiyatappu Bay. This study is an attempt to integrate CWQI and GIS based mapping technique to derive a reliable, simple and useful output for water quality monitoring in coastal environment.

  5. Improving a prediction system for oil spills in the Yellow Sea: effect of tides on subtidal flow.

    PubMed

    Kim, Chang-Sin; Cho, Yang-Ki; Choi, Byoung-Ju; Jung, Kyung Tae; You, Sung Hyup

    2013-03-15

    A multi-nested prediction system for the Yellow Sea using drifter trajectory simulations was developed to predict the movements of an oil spill after the MV Hebei Spirit accident. The speeds of the oil spill trajectories predicted by the model without tidal forcing were substantially faster than the observations; however, predictions taking into account the tides, including both tidal cycle and subtidal periods, were satisfactorily improved. Subtidal flow in the simulation without tides was stronger than in that with tides because of reduced frictional effects. Friction induced by tidal stress decelerated the southward subtidal flows driven by northwesterly winter winds along the Korean coast of the Yellow Sea. These results strongly suggest that in order to produce accurate predictions of oil spill trajectories, simulations must include tidal effects, such as variations within a tidal cycle and advections over longer time scales in tide-dominated areas.

  6. Water quality assessment using water quality index and geographical information system methods in the coastal waters of Andaman Sea, India.

    PubMed

    Jha, Dilip Kumar; Devi, Marimuthu Prashanthi; Vidyalakshmi, Rajendran; Brindha, Balan; Vinithkumar, Nambali Valsalan; Kirubagaran, Ramalingam

    2015-11-15

    Seawater samples at 54 stations in the year 2011-2012 from Chidiyatappu, Port Blair, Rangat and Aerial Bays of Andaman Sea, have been investigated in the present study. Datasets obtained have been converted into simple maps using coastal water quality index (CWQI) and Geographical Information System (GIS) based overlay mapping technique to demarcate healthy and polluted areas. Analysis of multiple parameters revealed poor water quality in Port Blair and Rangat Bays. The anthropogenic activities may be the likely cause for poor water quality. Whereas, good water quality was witnessed at Chidiyatappu Bay. Higher CWQI scores were perceived in the open sea. However, less exploitation of coastal resources owing to minimal anthropogenic activity indicated good water quality index at Chidiyatappu Bay. This study is an attempt to integrate CWQI and GIS based mapping technique to derive a reliable, simple and useful output for water quality monitoring in coastal environment. PMID:26346804

  7. Biogeochemical control of the coupled CO2-O 2 system of the Baltic Sea: a review of the results of Baltic-C.

    PubMed

    Omstedt, Anders; Humborg, Christoph; Pempkowiak, Janusz; Perttilä, Matti; Rutgersson, Anna; Schneider, Bernd; Smith, Benjamin

    2014-02-01

    Past, present, and possible future changes in the Baltic Sea acid-base and oxygen balances were studied using different numerical experiments and a catchment-sea model system in several scenarios including business as usual, medium scenario, and the Baltic Sea Action Plan. New CO2 partial pressure data provided guidance for improving the marine biogeochemical model. Continuous CO2 and nutrient measurements with high temporal resolution helped disentangle the biogeochemical processes. These data and modeling indicate that traditional understandings of the nutrient availability-organic matter production relationship do not necessarily apply to the Baltic Sea. Modeling indicates that increased nutrient loads will not inhibit future Baltic Sea acidification; instead, increased mineralization and biological production will amplify the seasonal surface pH cycle. The direction and magnitude of future pH changes are mainly controlled by atmospheric CO2 concentration. Apart from decreasing pH, we project a decreasing calcium carbonate saturation state and increasing hypoxic area.

  8. Polar versus temperate grounding-line sedimentary systems and marine glacier stability during sea level rise by global warming

    SciTech Connect

    Powell, R.D. . Geology Dept.); Pyne, A.R. . Antarctic Research Center); Hunter, L.E.; Rynes, N.R.

    1992-01-01

    Marine-ending glaciers may retreat with global warming as sea level rises by ocean thermal expansion. If the sea floor rises by sediment accumulation, then glaciers may not feel the effect of sea level rise. A submersible ROV and other techniques have been used to collect data from temperate and polar glaciers to compare sediment production and mass balance of their grounding-line systems. Temperature Alaskan valley glaciers flow at about 0.2--2 km/a and have high volumes of supraglacial, englacial and subglacial debris. However, most sediment contributed to the base of their tidewater cliffs comes from subglacial streams or squeezing out subglacial sediment and pushing it with other marine sediment into a morainal bank. Blue Glacier, a thin, locally fed polar glacier in Antarctica, flows slowly and has minimal glacial debris. The grounding-line system at the tidewater cliff is a morainal bank that forms solely by pushing of marine sediment. An Antarctic polar outlet glacier, Mackay Glacier, terminating as a floating glacier-tongue, has similar volumes of basal debris to Alaskan temperature glaciers and flows at 250 m/a. However, no subglacial streams issued from Mackay's grounding line and all sedimentation was by rockfall and grainfall rainout from seawater undermelt of the tongue. A grounding-line wedge of glacimarine diamicton is deposited over subglacial (lodgement ) till. Although Antarctic grounding-line accumulation rates are three orders of magnitude smaller than Alaskan rates, both are capable of compensating for predicted rises in sea level by thermal heating from global warming.

  9. Using Digital Globes to Explore the Deep Sea and Advance Public Literacy in Earth System Science

    NASA Astrophysics Data System (ADS)

    Beaulieu, S. E.; Brickley, A.; Emery, M.; Spargo, A.; Patterson, K.; Joyce, K.; Silva, T.; Madin, K.

    2014-12-01

    Digital globes are new technologies increasingly used in both informal and formal education to display global datasets. By creating a narrative using multiple datasets, linkages between Earth systems - lithosphere, hydrosphere, atmosphere, and biosphere - can be conveyed. But how effective are digital globes in advancing public literacy in Earth system science? We addressed this question in developing new content for digital globes that interweaves imagery obtained by deep-diving vehicles with global datasets, including a new dataset locating the world's known hydrothermal vents. Our two narratives, "Life Without Sunlight" (LWS) and "Smoke and Fire Underwater" (SFU), each focus on STEM (science, technology, engineering, and mathematics) principles related to geology, biology, and exploration. We are preparing a summative evaluation for our content delivered on NOAA's Science on a Sphere as interactive presentations and as movies. We tested knowledge gained with respect to the STEM principles and the level of excitement generated by the virtual deep-sea exploration. We conducted a Post-test Only Design with quantitative data based on self-reporting on a Likert scale. A total of 75 adults and 48 youths responded to our questionnaire, distributed into test groups that saw either one of the two narratives delivered either as a movie or as an interactive presentation. Here, we report preliminary results for the youths, the majority (81%) of which live in towns with lower income and lower levels of educational attainment as compared to other towns in Massachusetts. For both narratives, there was knowledge gained for all 6 STEM principles and "Quite a Bit" of excitement. The mode in responses for knowledge gained was "Quite a Bit" for both the movie and the interactive presentation for 4 of the STEM principles (LWS geology, LWS biology, SFU geology, and SFU exploration) and "Some" for SFU biology. Only for LWS exploration was there a difference in mode between the

  10. Use of a free ocean CO₂ enrichment (FOCE) system to evaluate the effects of ocean acidification on the foraging behavior of a deep-sea urchin.

    PubMed

    Barry, James P; Lovera, Chris; Buck, Kurt R; Peltzer, Edward T; Taylor, Josi R; Walz, Peter; Whaling, Patrick J; Brewer, Peter G

    2014-08-19

    The influence of ocean acidification in deep-sea ecosystems is poorly understood but is expected to be large because of the presumed low tolerance of deep-sea taxa to environmental change. We used a newly developed deep-sea free ocean CO2 enrichment (dp-FOCE) system to evaluate the potential consequences of future ocean acidification on the feeding behavior of a deep-sea echinoid, the sea urchin, Strongylocentrotus fragilis. The dp-FOCE system simulated future ocean acidification inside an experimental enclosure where observations of feeding behavior were performed. We measured the average movement (speed) of urchins as well as the time required (foraging time) for S. fragilis to approach its preferred food (giant kelp) in the dp-FOCE chamber (-0.46 pH units) and a control chamber (ambient pH). Measurements were performed during each of 4 trials (days -2, 2, 24, 27 after CO2 injection) during the month-long period when groups of urchins were continuously exposed to low pH or control conditions. Although urchin speed did not vary significantly in relation to pH or time exposed, foraging time was significantly longer for urchins in the low-pH treatment. This first deep-sea FOCE experiment demonstrated the utility of the FOCE system approach and suggests that the chemosensory behavior of a deep-sea urchin may be impaired by ocean acidification.

  11. Southern Hemisphere Sea Ice and the Atmospheric Boundary Layer in a High-Resolution Simulation of the Community Earth System Model

    NASA Astrophysics Data System (ADS)

    Ordóñez, A.; Bitz, C. M.

    2015-12-01

    Increasing the horizontal resolution of the sea ice and ocean components in a global climate model has been shown to affect the extent of sea ice and the strength of atmosphere/ocean fluxes. Since existing high-resolution (0.1°) coupled simulations include a dynamical ocean, it is difficult to pinpoint how these results are influenced by the resolution of the sea ice. This project takes a closer look at the impact of sea ice resolution on ocean/atmosphere interactions in the Southern Hemisphere using the Community Earth System Model (CESM1-CAM5) in a slab ocean configuration. In this set-up, sea ice and mixed layer ocean models on a 0.1° grid (high resolution) or 1° grid (standard resolution) are coupled with atmosphere and land models run at the same 0.5° resolution. The high resolution model can produce fine scale, open water areas within the ice pack that facilitate air/sea flux exchanges and reduce the stability of the lower atmosphere in the model. Correlations between sea ice concentration and boundary layer variables will be described at different spatial scales to understand the effects of resolving small scale features. Finally, a kernel feedback analysis will be shown on a 0.1°, double CO2 run to look at the impact of sea ice resolution on the regional lapse rate feedback.

  12. Discovery of 3 km long seafloor fracture system in the Central North Sea

    NASA Astrophysics Data System (ADS)

    Pedersen, R. B.; Blomberg, A.; Landschulze, K.; Baumberger, T.; Økland, I.; Reigstad, L.; Gracias, N.; Mørkved, P. T.; Stensland, A.; Lilley, M. D.; Thorseth, I. H.

    2013-12-01

    We have discovered a 3 km long seafloor fracture system in the Central North Sea (block 16/4). The discovery was made using a synthetic aperture sonar (HISAS) mounted on a Kongsberg Hugin AUV. The surface expression of the structure - named the Hugin Fracture - changes along the strike and it is characterized by: 1) linear; 2) en echelon; and 3) branching segments. Ring-structures, that typically are 5-10 meters across, are common along the feature. Micro-bathymetry acquired using the HISAS system demonstrates that sub-meter scale elevation changes occur across the fracture. Microbial mats occur along different parts of the structure showing that active seepage is taking place. AUV based photo-imaging of parts of the structure shows that the microbial mats predominantly are associated with ring structures and some of the linear fracture segments. Sediment pore waters extracted from push cores show Na, Cl and Mg contents that are 10-15% lower compared to background pore fluid concentrations. This points towards a fresh water input. The fracture pore fluid compositions are also characterized by elevated methane, ammonium and hydrogen sulphide contents compared to the background seawater. The presence of these volatiles is likely caused by subsurface microbial activity, and carbon isotope analyses confirm a biological source of the detected methane. However, the presence of ethane (CH4/C2H6 of 126) indicates a small input of a thermogenic carbon to these fluids. Subsurface imaging using a hull mounted parametric sub bottom profiler reveal Holocene stratified sediments overlying quaternary moraine in the area. The sub bottom profiler data show sub-meter scale vertical movements along the fracture. Associated with the structures are small bright spots that may reflect gas accumulations. No deep-seated fault system is apparent below the fracture in 3D seismic data from the area. However, the 3D seismic data show that the structure is located above the boundary of a

  13. Functional traits of two co-occurring sea urchins across a barren/forest patch system

    NASA Astrophysics Data System (ADS)

    Agnetta, D.; Bonaviri, C.; Badalamenti, F.; Scianna, C.; Vizzini, S.; Gianguzza, P.

    2013-02-01

    Temperate rocky reefs may occur in two alternative states (coralline barrens and erect algal forests), whose formation and maintenance are often determined by sea urchin grazing. The two sea urchin species Paracentrotus lividus and Arbacia lixula are considered to play a similar ecological role despite their differing morphological traits and diets. The patchy mosaic areas of Ustica Island, Italy, offer an ideal environment in which to study differences in the performance of P. lividus and A. lixula in barren versus forest states. Results show that the two sea urchin species differ in diet, trophic position, grazing adaptation, movement ability and fitness in both barren and forest patches. We confirmed herbivory in P. lividus and omnivory with a strong tendency to carnivory in A. lixula. When the sea urchin escape response to a predator was triggered, P. lividus responded faster in barren and forest patches. Forest patch restricted movement, especially in A. lixula (velocity in barren ≈ 10-fold greater than in forest). A large Aristotle's lantern, indicative of durophagy, confirmed adaptation of A. lixula to barren state.

  14. Novel Insights into the Echinoderm Nervous System from Histaminergic and FMRFaminergic-Like Cells in the Sea Cucumber Leptosynapta clarki

    PubMed Central

    Hoekstra, Luke A.; Moroz, Leonid L.; Heyland, Andreas

    2012-01-01

    Understanding of the echinoderm nervous system is limited due to its distinct organization in comparison to other animal phyla and by the difficulty in accessing it. The transparent and accessible, apodid sea cucumber Leptosynapta clarki provides novel opportunities for detailed characterization of echinoderm neural systems. The present study used immunohistochemistry against FMRFamide and histamine to describe the neural organization in juvenile and adult sea cucumbers. Histaminergic- and FMRFaminergic-like immunoreactivity is reported in several distinct cell types throughout the body of L. clarki. FMRFamide-like immunoreactive cell bodies were found in the buccal tentacles, esophageal region and in proximity to the radial nerve cords. Sensory-like cells in the tentacles send processes toward the circumoral nerve ring, while unipolar and bipolar cells close to the radial nerve cords display extensive processes in close association with muscle and other cells of the body wall. Histamine-like immunoreactivity was identified in neuronal somatas located in the buccal tentacles, circumoral nerve ring and in papillae distributed across the body. The tentacular cells send processes into the nerve ring, while the processes of cells in the body wall papillae extend to the surface epithelium and radial nerve cords. Pharmacological application of histamine produced a strong coordinated, peristaltic response of the body wall suggesting the role of histamine in the feeding behavior. Our immunohistochemical data provide evidence for extensive connections between the hyponeural and ectoneural nervous system in the sea cucumber, challenging previously held views on a clear functional separation of the sub-components of the nervous system. Furthermore, our data indicate a potential function of histamine in coordinated, peristaltic movements; consistent with feeding patterns in this species. This study on L. clarki illustrates how using a broader range of neurotransmitter systems

  15. Multi-element study of sediments from the river Khai River - Nha Trang Bay estuarine system, South China Sea.

    NASA Astrophysics Data System (ADS)

    Koukina, Sofia; Lobus, Nikolai; Peresypkin, Valery; Baturin, Gleb; Smurov, Andrey

    2013-04-01

    Major (Al, Fe, Ti, Mg, Ca, Na, K), minor (Mn) and trace (Cr, Ni, Cd, V, Zn, Cu, Pb, Sb, Bi, Sn, Ag, Li, Co, As, Zr, Mo, Hg) elements along with nutrients (TOC, TS, TP) and TIC were first determined in ten surface sediment samples from the Khai River - Nha Trang Bay estuarine system, South China Sea. According to the sediment quality guidelines and reference background values, most of the element contents that were studied were below the threshold levels, while the content of Ag exceeded significantly the hazardous levels in the most of the samples along the river - sea transect. The local anthropogenic and/or environmental sources of Ag within the region need special study. Aluminum and lithium normalization indicated some specific features in the abundance and distribution of the elements along the salinity gradient. The mean grain size of the sediments decreased from the river part to the bay part of the transect. Sedimentary TOC was relatively low (1-2 %) and showed independent distribution along the river - sea transect in relation to the other elements that were studied. Ca, Ba and Sr distribution showed some sporadic enrichment and were largely controlled by the TIC content in sediments. Sedimentary TP, Al, Fe, Mn, Ti, Na, K, Li, Co, Cs, Zn and V varied within the narrow range and tended to increase seaward. These elements are most likely controlled by the accumulation of their fine grained aluminosilicate host minerals and materials at sites determined by hydrodynamic conditions, i. e., in the sea floor depression. TS, As, Sn, Bi, U, Cd and Mo were relatively low in the sediments studied and tended to decrease seaward with the slight elevation in the intermediate part of the transect. These elements can be scavenged by and/or co-precipitated with the dissolved and particulate materials of the river discharge and further deposited on the river - sea geochemical barrier in the course of estuarine sedimentation. The distribution of Ni, Cr, Zr Cu, Pb, Sb, Hg and

  16. Augmenting an operational forecasting system for the North and Baltic Seas by in situ T and S data assimilation

    NASA Astrophysics Data System (ADS)

    Losa, Svetlana; Danilov, Sergey; Schröter, Jens; Nerger, Lars; Maßmann, Silvia; Janssen, Frank

    2014-05-01

    In order to improve the hydrography forecast of the North and Baltic Seas, the operational circulation model of the German Federal Maritime and Hydrographic Agency (BSH) has been augmented by a data assimilation (DA) system. The DA system has been developed based on the Singular Evolution Interpolated Kalman (SEIK) filter algorithm (Pham, 1998) coded within the Parallel Data Assimilation Framework (Nerger et al., 2004, Nerger and Hiller, 2012). Previously the only data assimilated were sea surface temperature (SST) measurements obtained with the Advanced Very High Resolution Radiometer (AVHRR) aboard NOAA's polar orbiting satellites. While the quality of the forecast has been significantly improved by assimilating the satellite data (Losa et al., 2012, Losa et al., 2014), assimilation of in situ observational temperature (T) and salinity (S) profiles has allowed for further improvement. Assimilating MARNET time series and CTD and Scanfish measurements, however, required a careful calibration of the DA system with respect to local analysis. The study addresses the problem of the local SEIK analysis accounting for the data within a certain radius. The localisation radius is considered spatially variable and dependent on the system local dynamics. As such, we define the radius of the data influence based on the energy ratio of the baroclinic and barotropic flows. D. T. Pham, J. Verron, L. Gourdeau, 1998. Singular evolutive Kalman filters for data assimilation in oceanography, C. R. Acad. Sci. Paris, Earth and Planetary Sciences, 326, 255-260. L. Nerger, W. Hiller, J. Schröter, 2004. PDAF - The Parallel Data Assimilation Framework: Experiences with Kalman Filtering, In: Zwieflhofer, W., Mozdzynski, G. (Eds.), Use of high performance computing in meteorology: proceedings of the Eleventh ECMWF Workshop on the Use of High Performance Computing in Meteorology. Singapore: World Scientific, Reading, UK, 63-83. L. Nerger, W. Hiller, 2012. Software for Ensemble-based Data

  17. Sea-level and tectonic control of middle to late Pleistocene turbidite systems in Santa Monica Basin, offshore California

    USGS Publications Warehouse

    Normark, W.R.; Piper, D.J.W.; Sliter, R.

    2006-01-01

    Small turbidite systems offshore from southern California provide an opportunity to track sediment from river source through the turbidity-current initiation process to ultimate deposition, and to evaluate the impact of changing sea level and tectonics. The Santa Monica Basin is almost a closed system for terrigenous sediment input, and is supplied principally from the Santa Clara River. The Hueneme fan is supplied directly by the river, whereas the smaller Mugu and Dume fans are nourished by southward longshore drift. This study of the Late Quaternary turbidite fill of the Santa Monica Basin uses a dense grid of high-resolution seismic-reflection profiles tied to new radiocarbon ages for Ocean Drilling Program (ODP) Site 1015 back to 32 ka. Over the last glacial cycle, sedimentation rates in the distal part of Santa Monica Basin averaged 2-3 mm yr-1, with increases at times of extreme relative sea-level lowstand. Coarser-grained mid-fan lobes prograded into the basin from the Hueneme, Mugu and Dume fans at times of rapid sea-level fall. These pulses of coarse-grained sediment resulted from river channel incision and delta cannibalization. During the extreme lowstand of the last glacial maximum, sediment delivery was concentrated on the Hueneme Fan, with mean depositional rates of up to 13 mm yr-1 on the mid- and upper fan. During the marine isotope stage (MIS) 2 transgression, enhanced rates of sedimentation of > 4 mm yr-1 occurred on the Mugu and Dume fans, as a result of distributary switching and southward littoral drift providing nourishment to these fan systems. Longer-term sediment delivery to Santa Monica Basin was controlled by tectonics. Prior to MIS 10, the Anacapa ridge blocked the southward discharge of the Santa Clara River into the Santa Monica Basin. The pattern and distribution of turbidite sedimentation was strongly controlled by sea level through the rate of supply of coarse sediment and the style of initiation of turbidity currents. These two

  18. Growth and immune system performance to assess the effect of dispersed oil on juvenile sea bass (Dicentrarchus labrax).

    PubMed

    Dussauze, Matthieu; Danion, Morgane; Floch, Stéphane Le; Lemaire, Philippe; Theron, Michaël; Pichavant-Rafini, Karine

    2015-10-01

    The potential impact of chemically and mechanically dispersed oil was assessed in a model fish of European coastal waters, the sea bass Dicentrarchus labrax. Juvenile sea bass were exposed for 48h to dispersed oil (mechanically and chemically) or dispersants alone. The impact of these exposure conditions was assessed using growth and immunity. The increase observed in polycyclic aromatic hydrocarbon metabolites in bile indicated oil contamination in the fish exposed to chemical and mechanical dispersion of oil without any significant difference between these two groups. After 28 days of exposure, no significant differences were observed in specific growth rate,apparent food conversion efficiency and daily feeding). Following the oil exposure, fish immunity was assessed by a challenge with Viral Nervous Necrosis Virus (VNNV). Fish mortality was observed over a 42 day period. After 12 days post-infection, cumulative mortality was significantly different between the control group (16% p≤0.05) and the group exposed to chemical dispersion of oil (30% p≤0.05). However, at the end of the experiment, no significant difference was recorded in cumulative mortality or in VNNV antibodies secreted in fish in responses to the treatments. These data suggested that in our experimental condition, following the oil exposure, sea bass growth was not affected whereas an impact on immunity was observed during the first days. However, this effect on the immune system did not persist over time. PMID:26092553

  19. Calculating model for equivalent consumption efficiency in polarization measurement system of oil-spilled on the sea

    NASA Astrophysics Data System (ADS)

    Xu, Jiang; Qian, Weixian; Lu, Dongming; Lu, Yingcheng

    2016-07-01

    As a new analytical method to identify oil spill on sea, the main effect of polarization measurement system is the scattering polarization information of different measured parts. This paper observed the polarization characteristic of oil film and seawater, and analyzed the transmission path of polarized light in the samples. Combined with Fresnel formula and law of Beer, the path of polarized light was divided into three parts, and the light propagation between the molecules was analyzed in detail. The results were affected by the capacity to change the polarization state. In order to quantify the equivalence, we defined an equivalent consumption efficiency (ECE). The ECE describes the ability of the molecules to weaken the polarization attribute of incident light. Then according to the polarization information in Mueller matrix, we inferred that the oil film and seawater had different polarization characteristics. In order to verify the correctness of the model, we applied it to detect the actual oil spill on sea in the case of simulated sunlight finally. Research indicated that the propagation path of polarization light was in connection with the molecular structure and interactions of medium. Under the different measuring angles, the ECE of oil film and seawater have both differences and regularities, the experimental results indicated that it can be used for rapid detection of oil spill on sea, and the data is accurate and reliable.

  20. Anatomy of landslides along the Dead Sea Transform Fault System in NW Jordan

    NASA Astrophysics Data System (ADS)

    Dill, H. G.; Hahne, K.; Shaqour, F.

    2012-03-01

    In the mountainous region north of Amman, Jordan, Cenomanian calcareous rocks are being monitored constantly for their mass wasting processes which occasionally cause severe damage to the Amman-Irbid Highway. Satellite remote sensing data (Landsat TM, ASTER, and SRTM) and ground measurements are applied to investigate the anatomy of landslides along the Dead Sea Transform Fault System (DSTFS), a prominent strike-slip fault. The joints and faults pertinent to the DSTFS match the architectural elements identified in landslides of different size. This similarity attests to a close genetic relation between the tectonic setting of one of the most prominent fault zones on the earth and modern geomorphologic processes. Six indicators stand out in particular: 1) The fractures developing in N-S and splay faults represent the N-S lateral movement of the DSTFS. They governed the position of the landslides. 2) Cracks and faults aligned in NE-SW to NNW-SSW were caused by compressional strength. They were subsequently reactivated during extensional processes and used in some cases as slip planes during mass wasting. 3) Minor landslides with NE-SW straight scarps were derived from compressional features which were turned into slip planes during the incipient stages of mass wasting. They occur mainly along the slopes in small wadis or where a wide wadi narrows upstream. 4) Major landslides with curved instead of straight scarps and rotational slides are representative of a more advanced level of mass wasting. These areas have to be marked in the maps and during land management projects as high-risk area mainly and may be encountered in large wadis with steep slopes or longitudinal slopes undercut by road construction works. 5) The spatial relation between minor faults and slope angle is crucial as to the vulnerability of the areas in terms of mass wasting. 6) Springs lined up along faults cause serious problems to engineering geology in that they step up the behavior of marly

  1. A New System of Marginal Arc in the North of the South China Sea of Today

    NASA Astrophysics Data System (ADS)

    Fang, N.; Dong, H.; Zhao, H.; Liu, H.; Shen, P.; Liang, X.

    2014-12-01

    The South China Sea (SCS) of today results from rupturing of the marginal continent of South China. Both its north and west margins are of typical passivity. Some records mirroring a Cretaceous active margin were reported in the study area. Generally they were attributed to westward subduction from the fossil Pacific plate. With respect of the problem, however, whether the subduction may induce response of an area far from the Pacific margin is an open question. The present approach has been primitively undertaken with the comparison of magmatic formation between the proto-SCS and the Pacific. The adakitic granite and Mg-rich andesite collected from the southern Hainan Island have their own petrologic and chemical characters as distinct from those igneous rocks from Zhejiang-Fujian province just bordering the western Pacific. Interestingly, the characters displayed in the Hainan are repeated in the Nha Trang-Tuy hoa area, South Vietnam. According to Tapponier's model (1986), Indo-China block was SE-ward slid 500-700km along the Red River Fault since the late Eocene. If restoring it, the Nha Trang-Tuy hoa area should be on the line extended westward from the Hainan Island. The above two sites constitute a latitudinal zone representing the active margin of the proto-SCS differing from the Pacific system. Actually some elements can be concentrated as follows to illustrate the framework in the northern margin of the SCS (fig. 1): (1) the late Jurassic to late Cretaceous volcano-sedimentary sequence drilled from the Chaoshan depression 150 mile off the Pearl River Delta, accumulating in the fore-arc environment, (2) the arc-related granite, diorite and monzodiorite (118-72Ma) drilled from the northern continental shelf, the SCS, (3) the Cretaceous andesite, andesitic basalt, granite, and pyroclastic sediments, afore-said, outcropping both in Hainan and South Vietnam, (4) granite-gneiss (75Ma) drilled in the Xisha foundation of reef platform, which might be the output of

  2. Applications of network analysis for adaptive management of artificial drainage systems in landscapes vulnerable to sea level rise

    NASA Astrophysics Data System (ADS)

    Poulter, Benjamin; Goodall, Jonathan L.; Halpin, Patrick N.

    2008-08-01

    SummaryThe vulnerability of coastal landscapes to sea level rise is compounded by the existence of extensive artificial drainage networks initially built to lower water tables for agriculture, forestry, and human settlements. These drainage networks are found in landscapes with little topographic relief where channel flow is characterized by bi-directional movement across multiple time-scales and related to precipitation, wind, and tidal patterns. The current configuration of many artificial drainage networks exacerbates impacts associated with sea level rise such as salt-intrusion and increased flooding. This suggests that in the short-term, drainage networks might be managed to mitigate sea level rise related impacts. The challenge, however, is that hydrologic processes in regions where channel flow direction is weakly related to slope and topography require extensive parameterization for numerical models which is limited where network size is on the order of a hundred or more kilometers in total length. Here we present an application of graph theoretic algorithms to efficiently investigate network properties relevant to the management of a large artificial drainage system in coastal North Carolina, USA. We created a digital network model representing the observation network topology and four types of drainage features (canal, collector and field ditches, and streams). We applied betweenness-centrality concepts (using Dijkstra's shortest path algorithm) to determine major hydrologic flowpaths based off of hydraulic resistance. Following this, we identified sub-networks that could be managed independently using a community structure and modularity approach. Lastly, a betweenness-centrality algorithm was applied to identify major shoreline entry points to the network that disproportionately control water movement in and out of the network. We demonstrate that graph theory can be applied to solving management and monitoring problems associated with sea level rise

  3. In vitro translation of oogenetic messenger RNA of sea urchin eggs and picornavirus RNA with a cell-free system from sarcoma 180.

    PubMed

    Jenkins, N; Taylor, M W; Raff, R A

    1973-12-01

    A cell-free protein-synthesizing system prepared from mouse sarcoma 180 was characterized by use of RNA from mengo virus and sea urchin egg. In the presence of exogenous mammalian transfer RNA, total sea urchin egg RNA and mengo RNA direct incorporation of [(3)H]leucine into acid-insoluble material. The system is extremely efficient in that a stimulation of 100-times over background can be obtained. Studies with formylmethionyl-transfer RNA, as well as with inhibitors of initiation, indicate that multiple initiation occurs; further, 85-90% of all chains made in vitro are subsequently released from ribosomes. An average translation time of 3.5 min was determined with messenger RNA of sea urchin egg, and product analysis indicates that high-molecular-weight products (greater than 50,000 molecular weight) are being made in vitro. Sequences of sea urchin egg RNA containing poly(A) act as messenger RNA.

  4. Physiography and deposition on a distal deep-sea system: The Valencia Fan (Northwestern Mediterranean)

    USGS Publications Warehouse

    Maldonado, A.; Palanques, A.; Alonso, B.; Kastens, K.A.; Nelson, C.H.; O'Connell, S.; Ryan, William B. F.

    1985-01-01

    The Valencia Fan developed as the distal fill of a deep-sea valley, detached from the continental slope and the main sedimentary source. A survey of side-scan sonar, Sea Beam and reflection seismics shows that the sediment is largely fed through the Valencia Valley. The upper fan comprises large channels with low-relief levees, and the middle fan has sinuous distributary channels. Depositional bedforms predominate on the valley floor and levees, and erosional bedforms are common in the valley walls. A change to slope on the fan apex and the presence of volcanoes on the upper fan are the main factors influencing fan-growth pattern. ?? 1985 Springer-Verlag New York Inc.

  5. Sequence stratigraphic model and Evolution of the Channelized depositional systems during Miocene in Ulleung Basin southeastern margin, East Sea

    NASA Astrophysics Data System (ADS)

    Baek, Y.; Lee, S. H.; Kim, H. J.; Jou, H. T.

    2015-12-01

    The southwestern margin of Ulleung Basin consists of broad and gentle slope continental shelf and shelf break. The sedimentary succession of the continental shelf is divided into nine sequences (S1-S9). The sedimentary succession is consists of the lower pro-graded sequences (from S2 to S6; 16.5-8.2 Ma) and upper channelized depositional sequences (S7 and S8; 8.2-5.5 Ma) in the Miocene. It progressively thickens northeast ward, suggesting a significant contribution of sediments into the basin margin. The channelized depositional system of S7 is divided into two subunits in which lower boundaries of each subunit are indicated by erosional truncation and channel incision. The underlying subunit 1 has two main streams; the progressive directions are to the NNE (a) and ENE (b). The main stream of subunit 2, developed after giving rise to the low-relief topography of the subunit 1, is only overlapping main stream (a) of subunit 1. The gentle sloped proximal-middle zone has different internal reflector, subunit 1 is characterized by parallel to chaotic reflections, whereas the subunit 2 is dominated by continuous and inclined reflectors, which can be interpreted that sediments supply is increase in subunit 2 than subunit 1. The steep sloped distal zone of channelized depositional systems connected the shelf break. The slope gradient is more slanted subunit 2 than 1. The internal structures are dis-continuous and inclined chaotic internal reflectors, which is interpreted mass transport deposits (MTDs). The slope failures commonly start near the shelf break, but some others are connected perpendicular to the main stream. The upper boundary of subunit 2 is truncated by transgressive surface. The stacking pattern of sequence 7 suggests the type-1 sequence controlled by sea level change, and the internal erosional surface in the channelized depositional systems can be interpreted that formed by tectonic or relative sea level flocculation during late Miocene in East Sea.

  6. The central nervous system of sea cucumbers (Echinodermata: Holothuroidea) shows positive immunostaining for a chordate glial secretion

    PubMed Central

    Mashanov, Vladimir S; Zueva, Olga R; Heinzeller, Thomas; Aschauer, Beate; Naumann, Wilfried W; Grondona, Jesus M; Cifuentes, Manuel; Garcia-Arraras, Jose E

    2009-01-01

    Background Echinoderms and chordates belong to the same monophyletic taxon, the Deuterostomia. In spite of significant differences in body plan organization, the two phyla may share more common traits than was thought previously. Of particular interest are the common features in the organization of the central nervous system. The present study employs two polyclonal antisera raised against bovine Reissner's substance (RS), a secretory product produced by glial cells of the subcomissural organ, to study RS-like immunoreactivity in the central nervous system of sea cucumbers. Results In the ectoneural division of the nervous system, both antisera recognize the content of secretory vacuoles in the apical cytoplasm of the radial glia-like cells of the neuroepithelium and in the flattened glial cells of the non-neural epineural roof epithelium. The secreted immunopositive material seems to form a thin layer covering the cell apices. There is no accumulation of the immunoreactive material on the apical surface of the hyponeural neuroepithelium or the hyponeural roof epithelium. Besides labelling the supporting cells and flattened glial cells of the epineural roof epithelium, both anti-RS antisera reveal a previously unknown putative glial cell type within the neural parenchyma of the holothurian nervous system. Conclusion Our results show that: a) the glial cells of the holothurian tubular nervous system produce a material similar to Reissner's substance known to be synthesized by secretory glial cells in all chordates studied so far; b) the nervous system of sea cucumbers shows a previously unrealized complexity of glial organization. Our findings also provide significant clues for interpretation of the evolution of the nervous system in the Deuterostomia. It is suggested that echinoderms and chordates might have inherited the RS-producing radial glial cell type from the central nervous system of their common ancestor, i.e., the last common ancestor of all the

  7. The influence of dissolved organic matter on the acid-base system of the Baltic Sea: A pilot study

    NASA Astrophysics Data System (ADS)

    Kulinski, Karol; Schneider, Bernd; Hammer, Karoline; Schulz-Bull, Detlef

    2015-04-01

    To assess the influence of dissolved organic matter (DOM) on the acid-base system of the Baltic Sea, 19 stations along the salinity gradient from Mecklenburg Bight to the Bothnian Bay were sampled in November 2011 for total alkalinity (AT), total inorganic carbon concentration (CT), partial pressure of CO2 (pCO2), and pH. Based on these data, an organic alkalinity contribution (Aorg) was determined, defined as the difference between measured AT and the inorganic alkalinity calculated from CT and pH and/or CT and pCO2. Aorg was in the range of 22-58 µmol kg-1, corresponding to 1.5-3.5% of AT. The method to determine Aorg was validated in an experiment performed on DOM-enriched river water samples collected from the mouths of the Vistula and Oder Rivers in May 2012. The Aorg increase determined in that experiment correlated directly with the increase of DOC concentration caused by enrichment of the >1 kDa DOM fraction. To examine the effect of Aorg on calculations of the marine CO2 system, the pCO2 and pH values measured in Baltic Sea water were compared with calculated values that were based on the measured alkalinity and another variable of the CO2 system, but ignored the existence of Aorg. Large differences between measured and calculated pCO2 and pH were obtained when the computations were based on AT and CT. The calculated pCO2 was 27-56% lower than the measured values whereas the calculated pH was overestimated by more than 0.4 pH units. Since biogeochemical models are based on the transport and transformations of AT and CT, the acid-base properties of DOM should be included in calculations of the CO2 system in DOM-rich basins like the Baltic Sea. In view of our limited knowledge about the composition and acid/base properties of DOM, this is best achieved using a bulk dissociation constant, KDOM, that represents all weakly acidic functional groups present in DOM. Our preliminary results indicated that the bulk KDOM in the Baltic Sea is 2.94•10-8 mol kg-1

  8. Acidification of the Mediterranean Sea from anthropogenic carbon penetration

    NASA Astrophysics Data System (ADS)

    Hassoun, Abed El Rahman; Gemayel, Elissar; Krasakopoulou, Evangelia; Goyet, Catherine; Abboud-Abi Saab, Marie; Guglielmi, Véronique; Touratier, Franck; Falco, Cédric

    2015-08-01

    This study presents an estimation of the anthropogenic CO2 (CANT) concentrations and acidification (ΔpH=pH2013-pHpre-industrial) in the Mediterranean Sea, based upon hydrographic and carbonate chemistry data collected during the May 2013 MedSeA cruise. The concentrations of CANT were calculated using the composite tracer TrOCA. The CANT distribution shows that the most invaded waters (>60 μmol kg-1) are those of the intermediate and deep layers in the Alboran, Liguro- and Algero-Provencal Sub-basins in the Western basin, and in the Adriatic Sub-basin in the Eastern basin. Whereas the areas containing the lowest CANT concentrations are the deep layers of the Eastern basin, especially those of the Ionian Sub-basin, and those of the northern Tyrrhenian Sub-basin in the Western basin. The acidification level in the Mediterranean Sea reflects the excessive increase of atmospheric CO2 and therefore the invasion of the sea by CANT. This acidification varies between -0.055 and -0.156 pH unit and it indicates that all Mediterranean Sea waters are already acidified, especially those of the Western basin where ΔpH is rarely less than -0.1 pH unit. Both CANT concentrations and acidification levels are closely linked to the presence and history of the different water masses in the intermediate and deep layers of the Mediterranean basins. Despite the high acidification levels, both Mediterranean basins are still highly supersaturated in calcium carbonate minerals.

  9. Variability in surface meteorology and air-sea fluxes due to cumulus convective systems observed during CINDY/DYNAMO

    NASA Astrophysics Data System (ADS)

    Yokoi, Satoru; Katsumata, Masaki; Yoneyama, Kunio

    2014-03-01

    This study examines the variability in surface meteorological parameters and air-sea heat fluxes due to cold pools emanating from cumulus convective systems observed over the tropical Indian Ocean in November 2011. In particular, this study focuses on convective systems that are spatially smaller than mesoscale convective systems in a southeasterly trade wind environment. Composite analyses of convectively active periods show an increase in the sensible heat flux by 15-20 W m-2 that is primarily attributed to an increase in the difference between the surface air temperature and sea surface temperature and an increase in the latent heat flux by 30-70 W m-2 due to enhanced surface wind speeds. A succession of convectively active periods leads to a greater influence than those occurring independently. The direction of the surface wind velocity anomaly due to cold pools tends to be close to that of the environmental wind velocity, resulting in an efficient enhancement of wind speed. This study also demonstrates the close relation between cold pool intensities and convective activity. In particular, two measures of cold pool intensity, a minimum surface air temperature and a maximum amount of surface wind speed enhancement, are correlated with each other and with the convective activity around the observation point measured by radar-estimated rainfall and radar echo coverage.

  10. Automatic guided wave PPM communication system for potential SHM of flooding members in sub-sea oilrigs

    NASA Astrophysics Data System (ADS)

    Mijarez, Rito; Gaydecki, Patrick

    2013-05-01

    An automatic guided wave pulse position modulation system, using steel tubes as the communication channel, for detecting flooding in the hollow sub-sea structures of newly built offshore oilrigs is presented. Underwater close visual inspections (CVI) are normally conducted during swim-round surveys in pre-selected areas or areas suspected of damage. An acceptable alternative to CVI is a non-destructive testing (NDT) technique called flood member detection (FMD). Usually, this NDT technique employs ultrasound or x-rays to detect the presence of seawater in the tubular structures, requiring divers or remote operating vehicles (ROVs). The field-proven FMD technique, integrated within the concept of structural health monitoring, offers an alternative to these traditional inspection methods. The system employs two smart sensors and modulators, which transmit 40 kHz guided wave pulses, and a digital signal processing demodulator, which performs automatic detection of guided wave energy packets. Experiments were performed in dry conditions, inside and outside the laboratory; in the former using a steel tube 1.5 m×0.27 m×2 mm, and in the latter using a tubular steel heliport structure approximately 15 m×15 m in area and the base deck of an oilrig under construction. Results confirm that, although there was significant dispersion of the transmitted pulses, the system successfully distinguished automatically guided wave encoded information that could potentially be used in sub-sea oilrigs.

  11. Regional seismic stratigraphic correlations of the Ross Sea: Implications for the tectonic history of the West Antarctic Rift System

    USGS Publications Warehouse

    Decesari, Robert C.; Sorlien, Christopher C.; Luyendyk, Bruce P.; Wilson, Douglas S.; Bartek, Louis; Diebold, John; Hopkins, Sarah E.

    2007-01-01

    Using existing and new seismic reflection data, new and updated correlations of late Oligocene-early Miocene RSS-2 strata were made between the southern parts of Ross Sea basins. Previous studies documented Cretaceous extension across much of Ross Sea. We interpret that Cenozoic extension also occurred across Ross Sea. Subsidence during and following this extension deepened existing basins and may have initiated basins in the west, subsiding ridges between basins below sea level during the late Oligocene. Pre-Oligocene strata record cessation of L. Cretaceous extension in easternmost Ross Sea. Successively younger Cenozoic extension occurred from east to west across the rest of Ross Sea.

  12. A 1/16° eddying simulation of the global ocean/sea ice system

    NASA Astrophysics Data System (ADS)

    Iovino, Dorotea; Masina, Simona; Storto, Andrea; Cipollone, Andrea; Stepanov, Vladimir N.

    2016-04-01

    Analysis of a global eddy-resolving simulation using the NEMO general circulation model is presented. The model has 1/16° horizontal spacing at the equator, employs two displaced poles in the Northern Hemisphere, and uses 98 vertical levels. The simulation was spun up from rest and integrated for 11 model years, using ERA-Interim reanalysis as surface forcing. Primary intent of this hindcast is to test how the model represents upper ocean characteristics and sea ice properties. Numerical results show that, overall, the general circulation is well reproduced, with realistic values for overturning mass and heat transports. Analysis of the zonal averaged temperature and salinity, and the mixed layer depth indicate that the model average state is in good agreement with observed fields. Comparisons against observational estimates of mass transports through key straits indicate that most aspects of the model circulation are realistic. As expected, the simulation exhibits turbulent behaviour. The spatial distribution of the sea surface height variability from the model is close to the observed pattern. Despite the increase in resolution, the variability amplitude is still weak, in particular in the Southern Ocean. The distribution and volume of the sea ice are, to a large extent, comparable to observed values. Compared with a corresponding coarse-resolution configuration, the performance of the model is significantly improved, although relatively minor weaknesses still exist. We conclude that the model output is suitable for broader analysis to better understand upper ocean dynamics and ocean variability at global scales. This simulation represents a major step forward in the CMCC global ocean modelling, and constitutes the groundwork for future applications to short-range ocean forecasting.

  13. A multi-purpose system for water purification and sea-water softening.

    PubMed

    Barsky, L; Rubinstein, J; Barsky, S; Kirzhner, F; Bodul, O

    1998-01-01

    A novel technique that can be used for reacting toxic carbon dioxide (CO2) emissions from power plants and other combustion wastes with sea water is described. A chemical interaction between CO2 and the cations in sea water, with the pH electrolytically regulated, can precipitate almost all the calcium and magnesium ions, as well as some sodium and potassium ions, as carbonates and bicarbonates. The carbonates and bicarbonates thus prepared can then be mixed with ash to yield a building material. Sulfur ions will be neutralized with calcium and magnesium, and the remaining ions can be removed using reverse osmosis or some other method. The technology and equipment for purification are based on modules that can be used for industrial waste-water, sea water, solutions, and otherwise. The module for separation of sand and suspended coarse substances consists of a tank for flocculation, coagulation, and precipitation of solid particles; and a low-pressure hydrocyclone. The module for purification from oil and fine suspensions is based on column flotation, flotation with a special ejector, and adhesion flotation. The module for ions and colloids consists of an absorbing filter with zeolite, fly ash, and other absorbing materials. Using a laboratory model consisting of a special mini-plant, we processed 10 L of factory-waste water containing more than 20 g/L organic content (compare with the upper limit of 0.02 g/L allowed by the Ministry of Environmental Protection in Israel). After the experimental solution was treated and evaporated to a small bulk, the water obtained was almost clear. On the basis of the results in the model, we present a scaled-up process for the design, development, and production of equipment for and the assembly of a large installation for drainage and water purification.

  14. A 1/16° eddying simulation of the global NEMO sea-ice-ocean system

    NASA Astrophysics Data System (ADS)

    Iovino, Doroteaciro; Masina, Simona; Storto, Andrea; Cipollone, Andrea; Stepanov, Vladimir N.

    2016-08-01

    Analysis of a global eddy-resolving simulation using the NEMO general circulation model is presented. The model has 1/16° horizontal spacing at the Equator, employs two displaced poles in the Northern Hemisphere, and uses 98 vertical levels. The simulation was spun up from rest and integrated for 11 model years, using ERA-Interim reanalysis as surface forcing. Primary intent of this hindcast is to test how the model represents upper ocean characteristics and sea ice properties. Analysis of the zonal averaged temperature and salinity, and the mixed layer depth indicate that the model average state is in good agreement with observed fields and that the model successfully represents the variability in the upper ocean and at intermediate depths. Comparisons against observational estimates of mass transports through key straits indicate that most aspects of the model circulation are realistic. As expected, the simulation exhibits turbulent behaviour and the spatial distribution of the sea surface height (SSH) variability from the model is close to the observed pattern. The distribution and volume of the sea ice are, to a large extent, comparable to observed values. Compared with a corresponding eddy-permitting configuration, the performance of the model is significantly improved: reduced temperature and salinity biases, in particular at intermediate depths, improved mass and heat transports, better representation of fluxes through narrow and shallow straits, and increased global-mean eddy kinetic energy (by ˜ 40 %). However, relatively minor weaknesses still exist such as a lower than observed magnitude of the SSH variability. We conclude that the model output is suitable for broader analysis to better understand upper ocean dynamics and ocean variability at global scales. This simulation represents a major step forward in the global ocean modelling at the Euro-Mediterranean Centre on Climate Change and constitutes the groundwork for future applications to short

  15. Rapid identification of lectin receptors and their possible function in sea urchin cell systems.

    PubMed

    Latham, V H; Herrera, S; Rostamiani, K; Chun, H H; Oppenheimer, S B

    1995-10-01

    An assay using lectin derivatized agarose beads to rapidly and inexpensively identify cell surface lectin receptors was recently described by Latham et al. (1995). In this earlier study, the assay was tested on large, early stage sea urchin embryo cells. In this study this assay was used to examine lectin receptors on small, later stage sea urchin embryo cells that are more typical of cells that most investigators deal with, to ascertain if cell size is a determining factor in the assay's validity. The results indicated that the assay is a valid method to identify lectin receptors on small as well as large cells. Twenty-three hour Strongylocentrotus purpuratus embryo cells strongly bound Triticum vulgaris, concanavalin A, Artocarpus integrifolia and Vicia villosa using both the agarose bead and fluorescence assays, while three other lectins, Ulex europaeus I, Lotus tetragonolobus and Lens culinaris did not strongly bind to the cells using these two assays. As in earlier studies agglutinability results did not correlate well with results using the two other assays. In all cases where lectin bead binding, fluorescent lectin binding or lectin-mediated agglutination occurred, specific sugars reduced the observed binding. The second part of this study examined the putative role of concanavilin A receptors in a specific cellular interaction: sperm-egg binding. Concanavalin A inhibited fertilization of dejellied sea urchin eggs when their vitelline layers were intact and to a lesser extent when their vitelline layers were removed. This effect was counteracted by alpha methyl glucose. The major differences between these studies and previous work is that here concanavalin A was washed out after incubation with eggs, making it more likely that results reflect binding to cell surface lectin receptors rather than toxicity. In addition, performing the experiments on eggs with or without vitelline layers provided information on the location of concanavalin A receptors that may

  16. Interactions between barrier islands and backbarrier marshes affect island system response to sea level rise: Insights from a coupled model

    NASA Astrophysics Data System (ADS)

    Walters, David; Moore, Laura J.; Duran Vinent, Orencio; Fagherazzi, Sergio; Mariotti, Giulio

    2014-09-01

    Interactions between backbarrier marshes and barrier islands will likely play an important role in determining how low-lying coastal systems respond to sea level rise and changes in storminess in the future. To assess the role of couplings between marshes and barrier islands under changing conditions, we develop and apply a coupled barrier island-marsh model (GEOMBEST+) to assess the impact of overwash deposition on backbarrier marsh morphology and of marsh morphology on rates of island migration. Our model results suggest that backbarrier marsh width is in a constant state of change until either the backbarrier basin becomes completely filled or backbarrier marsh deposits have completely eroded away. Results also suggest that overwash deposition is an important source of sediment, which allows existing narrow marshes to be maintained in a long-lasting alternate state (~500 m wide in the Virginia Barrier Islands) within a range of conditions under which they would otherwise disappear. The existence of a narrow marsh state is supported by observations of backbarrier marshes along the eastern shore of Virginia. Additional results suggest that marshes reduce accommodation in the backbarrier bay, which, in turn, decreases island migration rate. As climate change results in sea level rise, and the increased potential for intense hurricanes resulting in overwash, it is likely that these couplings will become increasingly important in determining future system behavior.

  17. Geoengineering by cloud seeding: influence on sea ice and climate system

    SciTech Connect

    Rasch, Philip J.; Latham, John; Chen, Chih-Chieh

    2009-12-18

    GCM computations using a fully coupled ocean atmosphere model indicate that increasing cloud reflectivity by seeding maritime boundary layer clouds with particles made from seawater may compensate for some of the effects on climate of increasing greenhouse gas concentrations. The chosen seeding strategy (one of many possible scenarios) can restore global averages of temperature, precipitation and sea ice to present day values, but not simultaneously. The response varies nonlinearly with extent of the seeding, and geoengineering generates local changes to important climatic features. The global tradeoffs of restoring ice cover and cooling the planet must be assessed alongside the local changes to climate features.

  18. Depositional architecture and evolution of inner shelf to shelf edge delta systems since the Late Oliocene and their respone to the tectonic and sea level change, Pear River Mouth Basin, northern South China Sea

    NASA Astrophysics Data System (ADS)

    Lin, Changsong; Zhang, Zhongtao; liu, Jingyan; Jiang, Jing

    2016-04-01

    The Pear River Mouth Basin is located in the northern continent margin of the South China Sea. Since the Late Oligocene, the long-term active fluvial systems (Paleo-Zhujiang) from the western basin margin bebouched into the northern continental margin of the South China Sea and formed widespread deltaic deposits in various depositional geomorphologies and tectonic settings. Based of integral analysys of abundant seismic, well logging and drilling core data, Depositional architecture and evolution of these delta systems and their respone to the tectonic and sea level change are documented in the study. There are two basic types of the delta systems which have been recognized: inner shelf delta deposited in shallow water enviroments and the outer shelf or shelf-edge delta systems occurred in deep water settings. The paleowater depths of these delta systems are around 30 to 80m (inner shelf delta) and 400-1000m (shelf-edge delta) estimated from the thickness (decompaction) of the delta front sequences. The study shows that the inner shelf delta systems are characterized by relatively thin delta forests (20-40m), numereous stacked distributary channel fills, relative coarse river mouth bar deposits and thin distal delta front or distal bar and prodelta deposits. In contrast, the outer shelf or shelf edge delta systems are characteristic of thick (300-800m) and steep (4-60) of deltaic clinoforms, which commonly display in 3D seismic profiles as "S" shape reflection. Large scale soft-sediment deformation structures, slump or debris flow deposits consisting mainly of soft-sediment deformed beds, blocks of sandstones and siltstones or mudstones widely developed in the delta front deposits. The shelf edge delta systems are typically associated with sandy turbidite fan deposits along the prodelta slopes, which may shift basinwards as the progradation of the delta systems. The delta systems underwent several regional cycles of evolution from inner shelf deltas to shelf edge

  19. A micro-hydropower system model with PD load frequency controller for Resort Islands in the South China Sea

    NASA Astrophysics Data System (ADS)

    Reyasudin Basir Khan, M.; Pasupuleti, Jagadeesh; Jidin, Razali

    2016-03-01

    A model of high-penetration micro-hydropower system with no storage is presented in this paper. This technology is designed in order to reduce the diesel fuel consumption and cost of electricity supply in a resort island located in the South China Sea. The optimal hydropower generation for this system depends on the available stream flow at the potential sites. At low stream flow, both the micro-hydropower system and the currently installed diesel generators are required to feed the load. However, when the hydropower generation exceeds the load demand, the diesel generator is shut down. Meanwhile, the system frequency is controlled by a secondary load bank that absorbs the hydropower which exceeds the consumer demand. This paper also presents a discrete frequency control system using proportional-derivative (PD) controller. The controller is employed in order to manipulate the system frequency by controlling the secondary load system. The simulation results indicate that a variety of load conditions can be satisfactorily controlled by the PD controller. Hence, this particular type of controller is suitable to be implemented in micro-grid systems for remote areas that require low cost and easy-to- maintain controllers.

  20. N-ICE2015: Multi-disciplinary study of the young sea ice system north of Svalbard from winter to summer.

    NASA Astrophysics Data System (ADS)

    Steen, Harald; Granskog, Mats; Assmy, Philipp; Duarte, Pedro; Hudson, Stephen; Gerland, Sebastian; Spreen, Gunnar; Smedsrud, Lars H.

    2016-04-01

    The Arctic Ocean is shifting to a new regime with a thinner and smaller sea-ice area cover. Until now, winter sea ice extent has changed less than during summer, as the heat loss to the atmosphere during autumn and winter is large enough form an ice cover in most regions. The insulating snow cover also heavily influences the winter ice growth. Consequently, the older, thicker multi-year sea ice has been replace by a younger and thinner sea. These large changes in the sea ice cover may have dramatic consequences for ecosystems, energy fluxes and ultimately atmospheric circulation and the Northern Hemisphere climate. To study the effects of the changing Arctic the Norwegian Polar Institute, together with national and international partners, launched from January 11 to June 24, 2015 the Norwegian Young Sea ICE cruise 2015 (N-ICE2015). N-ICE2015 was a multi-disciplinary cruise aimed at simultaneously studying the effect of the Arctic Ocean changes in the sea ice, the atmosphere, in radiation, in ecosystems. as well as water chemistry. R/V Lance was frozen into the drift ice north of Svalbard at about N83 E25 and drifted passively southwards with the ice until she was broken loose. When she was loose, R/V Lance was brought back north to a similar starting position. While fast in the ice, she served as a living and working platform for 100 scientist and engineers from 11 countries. One aim of N-ICE2015 is to present a comprehensive data-set on the first year ice dominated system available for the scientific community describing the state and changes of the Arctic sea ice system from freezing to melt. Analyzing the data is progressing and some first results will be presented.

  1. Summertime synoptic variability of frontal systems in the northern Bering Sea

    NASA Astrophysics Data System (ADS)

    Gawarkiewicz, Glen; Haney, J. Christopher; Caruso, Michael J.

    1994-04-01

    Hydrographic observations in the northern Bering Sea during August and September 1987 indicate the presence of a front dividing relatively warm, fresh Bering Shelf Water from relatively cool, saline Anadyr Water along the western and northern coasts of St. Lawrence Island near Anadyr Strait. A buoyant layer 20 m thick with surface salinities as low as 29.5 practical salinity units and a maximum temperature of 10°C was present adjacent to the island. The surface outcrop of the front migrated 80 km north during the nine-day time period of the hydrographic observations. Surface thermal patterns suggest that this front may extend the length of the northern coastline of St. Lawrence Island during the summer. The front veers north and passes through the Bering Strait, where temperature differences as large as 6°C exist across the strait. An examination of the water mass properties of the Bering Sea suggests that the buoyant water north of St. Lawrence Island is Bering Shelf Water which has been carried northward through Anadyr Strait. The baroclinic transport (assuming no flow at the bottom) associated with the front is 0.07 Sv, which is roughly a third of the seasonal increase in transport through the Bering Strait in the summer.

  2. A high-resolution ocean and sea-ice modelling system for the Arctic and North Atlantic Oceans

    NASA Astrophysics Data System (ADS)

    Dupont, F.; Higginson, S.; Bourdallé-Badie, R.; Lu, Y.; Roy, F.; Smith, G. C.; Lemieux, J.-F.; Garric, G.; Davidson, F.

    2015-01-01

    As part of the CONCEPTS (Canadian Operational Network of Coupled Environmental PredicTion Systems) initiative, The Government of Canada is developing a high resolution (1/12°) ice-ocean regional model covering the North Atlantic and the Arctic oceans. The objective is to provide Canada with short-term ice-ocean predictions and hazard warnings in ice infested regions. To evaluate the modelling component (as opposed to the analysis - or data-assimilation - component), a series of hindcasts for the period 2003-2009 is carried out, forced at the surface by the Canadian Global Re-Forecasts. These hindcasts test how the model represent upper ocean characteristics and ice cover. Each hindcast implements a new aspect of the modelling or the ice-ocean coupling. Notably, the coupling to the multi-category ice model CICE is tested. The hindcast solutions are then assessed using a validation package under development, including in-situ and satellite ice and ocean observations. The conclusions are: (1) the model reproduces reasonably well the time mean, variance and skewness of sea surface height. (2) The model biases in temperature and salinity show that while the mean properties follow expectations, the Pacific Water signature in the Beaufort Sea is weaker than observed. (3) However, the modelled freshwater content of the Arctic agrees well with observational estimates. (4) The distribution and volume of the sea ice is shown to be improved in the latest hindcast thanks to modifications to the drag coefficients and to some degree as well to the ice thickness distribution available in CICE. (5) On the other hand, the model overestimates the ice drift and ice thickness in the Beaufort Gyre.

  3. A high-resolution ocean and sea-ice modelling system for the Arctic and North Atlantic oceans

    NASA Astrophysics Data System (ADS)

    Dupont, F.; Higginson, S.; Bourdallé-Badie, R.; Lu, Y.; Roy, F.; Smith, G. C.; Lemieux, J.-F.; Garric, G.; Davidson, F.

    2015-05-01

    As part of the CONCEPTS (Canadian Operational Network of Coupled Environmental PredicTion Systems) initiative, a high-resolution (1/12°) ice-ocean regional model is developed covering the North Atlantic and the Arctic oceans. The long-term objective is to provide Canada with short-term ice-ocean predictions and hazard warnings in ice-infested regions. To evaluate the modelling component (as opposed to the analysis - or data-assimilation - component, which is not covered in this contribution), a series of hindcasts for the period 2003-2009 is carried out, forced at the surface by the Canadian GDPS reforecasts (Smith et al., 2014). These hindcasts test how the model represents upper ocean characteristics and ice cover. Each hindcast implements a new aspect of the modelling or the ice-ocean coupling. Notably, the coupling to the multi-category ice model CICE is tested. The hindcast solutions are then assessed using a verification package under development, including in situ and satellite ice and ocean observations. The conclusions are as follows: (1) the model reproduces reasonably well the time mean, variance and skewness of sea surface height; (2) the model biases in temperature and salinity show that while the mean properties follow expectations, the Pacific Water signature in the Beaufort Sea is weaker than observed; (3) the modelled freshwater content of the Arctic agrees well with observational estimates; (4) the distribution and volume of the sea ice are shown to be improved in the latest hindcast due to modifications to the drag coefficients and to some degree to the ice thickness distribution available in CICE; (5) nonetheless, the model still overestimates the ice drift and ice thickness in the Beaufort Gyre.

  4. An observatory system for physical and biogeochemical parameters in the northern Adriatic Sea: the "Acqua Alta" oceanographic platform

    NASA Astrophysics Data System (ADS)

    Benetazzo, Alvise; Barbariol, Francesco; Bastianini, Mauro; Bergamasco, Andrea; Bergamasco, Filippo; Bernardi Aubry, Fabrizio; Bertotti, Luciana; Bonaldo, Davide; Cavaleri, Luigi; Carniel, Sandro; Falcieri, Francesco M.; Finotto, Stefania; Lester, Graham; Licer, Matjaz; Malacic, Vlado; Minuzzo, Tiziano; Sclavo, Mauro

    2015-04-01

    The history of the "Acqua Alta" oceanographic platform (http://www.ismar.cnr.it/infrastructures/piattaforma-acqua-alta) started more than forty years ago, shortly after the dramatic surge that affected the city of Venice in late 1966. Since then, benefiting also from recent funding acquired within the National Flagship Project RITMARE, great efforts have been devoted to monitor the oceanographic and atmospheric conditions in the Northern Adriatic Sea (NA), in the proximity of the Venice lagoon. Nowadays the "Acqua Alta", located on a 16 m depth area, represents a success story of the Institute of Marine Sciences (ISMAR) of the Italian National Research Council (CNR), that manages the structure and used collected data to improve the knowledge of the fragile sea environment that surrounds the Venetian littoral. The directional wave observations started in 1979, representing one of the world longest continuous series. On the sea surface, waves are now routinely observed by means of a submerged acoustic-Doppler system that provides burst of directional wave data, including significant wave height, mean wave period and direction of propagation. Currently these wave parameters are integrated with the data collected by a stereo-video system (namely Wave Acquisition Stereo System, WASS) that provides the 3-D profile of the wavy sea surface. WASS data are unleashing a "new view" for ocean waves providing the complete space-time dynamics of wave groups. Moreover, a series of multiparameters probes permits to measure the vertical distribution of sea temperature (at nine depths from the surface to the bottom), salinity (three positions), dissolved oxygen (two positions), and turbidity close to the sea bottom. The collected data are continuously used to track the water masses that enter, leave, and are produced within the NA. A striking example is provided by the temperature and salinity data used to follow the exceptional dense water formation that occurred in this basin

  5. An observatory system for physical and biogeochemical parameters in the northern Adriatic Sea: the "Acqua Alta" oceanographic platform

    NASA Astrophysics Data System (ADS)

    Benetazzo, Alvise; Barbariol, Francesco; Bastianini, Mauro; Bergamasco, Andrea; Bergamasco, Filippo; Bernardi Aubry, Fabrizio; Bertotti, Luciana; Bonaldo, Davide; Cavaleri, Luigi; Carniel, Sandro; Falcieri, Francesco M.; Finotto, Stefania; Lester, Graham; Licer, Matjaz; Malacic, Vlado; Minuzzo, Tiziano; Sclavo, Mauro

    2015-04-01

    The history of the "Acqua Alta" oceanographic platform (http://www.ismar.cnr.it/infrastructures/piattaforma-acqua-alta) started more than forty years ago, shortly after the dramatic surge that affected the city of Venice in late 1966. Since then, benefiting also from recent funding acquired within the National Flagship Project RITMARE, great efforts have been devoted to monitor the oceanographic and atmospheric conditions in the Northern Adriatic Sea (NA), in the proximity of the Venice lagoon. Nowadays the "Acqua Alta", located on a 16 m depth area, represents a success story of the Institute of Marine Sciences (ISMAR) of the Italian National Research Council (CNR), that manages the structure and used collected data to improve the knowledge of the fragile sea environment that surrounds the Venetian littoral. The directional wave observations started in 1979, representing one of the world longest continuous series. On the sea surface, waves are now routinely observed by means of a submerged acoustic-Doppler system that provides burst of directional wave data, including significant wave height, mean wave period and direction of propagation. Currently these wave parameters are integrated with the data collected by a stereo-video system (namely Wave Acquisition Stereo System, WASS) that provides the 3-D profile of the wavy sea surface. WASS data are unleashing a "new view" for ocean waves providing the complete space-time dynamics of wave groups. Moreover, a series of multiparameters probes permits to measure the vertical distribution of sea temperature (at nine depths from the surface to the bottom), salinity (three positions), dissolved oxygen (two positions), and turbidity close to the sea bottom. The collected data are continuously used to track the water masses that enter, leave, and are produced within the NA. A striking example is provided by the temperature and salinity data used to follow the exceptional dense water formation that occurred in this basin

  6. Red Sea

    Atmospheric Science Data Center

    2013-04-16

    article title:  The Red Sea     View Larger Image ... Imaging SpectroRadiometer (MISR) image of the Red Sea was acquired on August 13, 2000. Located between the East African coast and the Saudi Arabian peninsula, the Red Sea got its name because the blooms of a type of algae,  Trichodesmium ...

  7. Application of the Doppler lidar system to agricultural burning and air-sea interactions

    NASA Technical Reports Server (NTRS)

    Fitzjarrald, D.

    1980-01-01

    The Doppler lidar system is potentially a very powerful measurement system. Three areas concerning the system are discussed: (1) error analysis of the system to verify the results; (2) application of the system to agricultural burning in California central valley; and (3) oceanographic possibilities of the system.

  8. High-resolution wave forecasting system for the seasonally ice-covered Baltic Sea

    NASA Astrophysics Data System (ADS)

    Tuomi, Laura; Lehtiranta, Jonni

    2016-04-01

    When forecasting surface waves in seasonally ice-covered seas, the inclusion of ice conditions in the modelling is important. The ice cover affects the propagation and also changes the fetch over which the waves grow. In wave models the ice conditions are often still given as a boundary condition and handled by excluding areas where the ice concentration exceeds a certain threshold value. The ice data used are typically based on satellite analysis or expert analysis of local Ice Services who combine data from different sources. This type of data is sufficiently accurate to evaluate the near-real time ice concentrations, but when making forecasts it is also important to account for the possible changes in ice conditions. For example in a case of a high wind situation, there can be rapid changes in the ice field, when the wind and waves may push the ice towards shores and cause fragmentation of ice field. To enhance handling of ice conditions in the Baltic Sea wave forecasts, utilisation of ice model data was studied. Ice concentration, thickness produced by FMI's operational ice model HELMI were used to provide ice data to wave model as follows: Wave model grid points where the ice concentration was more than or equal to 70% and the ice thickness more than1 cm, were excluded from calculations. Ice concentrations smaller than that were taken into account as additional grid obstructions by decreasing the wave energy passed from one grid cell to another. A challenge in evaluating wave forecast accuracy in partly ice covered areas it that there's typically no wave buoy data available, since the buoys have to be recovered well before the sea area freezes. To evaluate the accuracy of wave forecast in partially ice covered areas, significant wave heights from altimeter's ERS2, Envisat, Jason-1 and Jason-2 were extracted from Ifremer database. Results showed that the more frequent update of the ice data was found to improve the wave forecast especially during high wind

  9. Microbial diversity in deep-sea sediments from the Menez Gwen hydrothermal vent system of the Mid-Atlantic Ridge.

    PubMed

    Cerqueira, Teresa; Pinho, Diogo; Egas, Conceição; Froufe, Hugo; Altermark, Bjørn; Candeias, Carla; Santos, Ricardo S; Bettencourt, Raul

    2015-12-01

    Deep-sea hydrothermal sediments are known to support remarkably diverse microbial consortia. Cultureindependent sequence-based technologies have extensively been used to disclose the associated microbial diversity as most of the microorganisms inhabiting these ecosystems remain uncultured. Here we provide the first description of the microbial community diversity found on sediments from Menez Gwen vent system. We compared hydrothermally influenced sediments, retrieved from an active vent chimney at 812 m depth, with non-hydrothermally influenced sediments, from a 1400 m depth bathyal plain. Considering the enriched methane and sulfur composition of Menez Gwen vent fluids, and the sediment physicochemical properties in each sampled area, we hypothesized that the site-associated microbes would be different. To address this question, taxonomic profiles of bacterial, archaeal and micro-eukaryotic representatives were studied by rRNA gene tag pyrosequencing. Communities were shown to be significantly different and segregated by sediment geographical area. Specific mesophilic, thermophilic and hyperthermophilic archaeal (e.g., Archaeoglobus, ANME-1) and bacterial (e.g., Caldithrix, Thermodesulfobacteria) taxa were highly abundant near the vent chimney. In contrast, bathyal-associated members affiliated to more ubiquitous phylogroups from deep-ocean sediments (e.g., Thaumarchaeota MGI, Gamma- and Alphaproteobacteria). This study provides a broader picture of the biological diversity and microbial biogeography, and represents a preliminary approach to the microbial ecology associated with the deep-sea sediments from the Menez Gwen hydrothermal vent field.

  10. Microbial diversity in deep-sea sediments from the Menez Gwen hydrothermal vent system of the Mid-Atlantic Ridge.

    PubMed

    Cerqueira, Teresa; Pinho, Diogo; Egas, Conceição; Froufe, Hugo; Altermark, Bjørn; Candeias, Carla; Santos, Ricardo S; Bettencourt, Raul

    2015-12-01

    Deep-sea hydrothermal sediments are known to support remarkably diverse microbial consortia. Cultureindependent sequence-based technologies have extensively been used to disclose the associated microbial diversity as most of the microorganisms inhabiting these ecosystems remain uncultured. Here we provide the first description of the microbial community diversity found on sediments from Menez Gwen vent system. We compared hydrothermally influenced sediments, retrieved from an active vent chimney at 812 m depth, with non-hydrothermally influenced sediments, from a 1400 m depth bathyal plain. Considering the enriched methane and sulfur composition of Menez Gwen vent fluids, and the sediment physicochemical properties in each sampled area, we hypothesized that the site-associated microbes would be different. To address this question, taxonomic profiles of bacterial, archaeal and micro-eukaryotic representatives were studied by rRNA gene tag pyrosequencing. Communities were shown to be significantly different and segregated by sediment geographical area. Specific mesophilic, thermophilic and hyperthermophilic archaeal (e.g., Archaeoglobus, ANME-1) and bacterial (e.g., Caldithrix, Thermodesulfobacteria) taxa were highly abundant near the vent chimney. In contrast, bathyal-associated members affiliated to more ubiquitous phylogroups from deep-ocean sediments (e.g., Thaumarchaeota MGI, Gamma- and Alphaproteobacteria). This study provides a broader picture of the biological diversity and microbial biogeography, and represents a preliminary approach to the microbial ecology associated with the deep-sea sediments from the Menez Gwen hydrothermal vent field. PMID:26375668

  11. Erosion of continental margins in the Western Mediterranean due to sea-level stagnancy during the Messinian Salinity Crisis

    NASA Astrophysics Data System (ADS)

    Just, Janna; Hübscher, Christian; Betzler, Christian; Lüdmann, Thomas; Reicherter, Klaus

    2011-02-01

    High-resolution multi-channel seismic data from continental slopes with minor sediment input off southwest Mallorca Island, the Bay of Oran (Algeria) and the Alboran Ridge reveal evidence that the Messinian erosional surface is terraced at an almost constant depth interval between 320 and 380 m below present-day sea level. It is proposed that these several hundred- to 2,000-m-wide terraces were eroded contemporaneously and essentially at the same depth. Present-day differences in these depths result from subsidence or uplift in the individual realms. The terraces are thought to have evolved during one or multiple periods of sea-level stagnancy in the Western Mediterranean Basin. According to several published scenarios, a single or multiple periods of relative sea-level stillstand occurred during the Messinian desiccation event, generally known as the Messinian Salinity Crisis. Some authors suggest that the stagnancy started during the refilling phase of the Mediterranean basins. When the rising sea level reached the height of the Sicily Sill, the water spilled over this swell into the eastern basin. The stagnancy persisted until sea level in the eastern basin caught up with the western Mediterranean water level. Other authors assigned periods of sea-level stagnancy to drawdown phases, when inflowing waters from the Atlantic kept the western sea level constant at the depth of the Sicily Sill. Our findings corroborate all those Messinian sea-level reconstructions, forwarding that a single or multiple sea-level stagnancies at the depth of the Sicily Sill lasted long enough to significantly erode the upper slope. Our data also have implications for the ongoing debate of the palaeo-depth of the Sicily Sill. Since the Mallorcan plateau experienced the least vertical movement, the observed terrace depth of 380 m there is inferred to be close to the Messinian depth of this swell.

  12. The Health Status of the Reproductive System in Women Living In the Aral Sea Region.

    PubMed

    Turdybekova, Yasminur G; Dosmagambetova, Raushan S; Zhanabayeva, Symbat U; Bublik, Gena V; Kubayev, Alik B; Ibraibekov, Zhanbolat G; Kopobayeva, Irina L; Kultanov, Berikbay Zh

    2015-09-15

    In order to assess women's reproductive health in the Kyzylorda region (the Aral Sea) of Kazakhstan, 1406 women were involved in an integrated clinical-functional and laboratory examination, given regional and environmental ecological factors. The high level of endocrine gynecological pathology is indicated in the examined women. In both examined zones, there is a late menarche over 16 years old, which is 39%. It is indicated a trend towards younger age of menopause onset. Inflammatory diseases of the female genital organs affect a third of the examined women. In the zone of ecological disaster, every fourth woman has fetal losses, cases of spontaneous pregnancy termination and/or non-developing pregnancies in anamnesis, which can be repeated many times. PMID:27275273

  13. Earth System Science at NASA: Teleconnections Between Sea Surface Temperature and Epidemics in Africa

    NASA Technical Reports Server (NTRS)

    Meeson, Blanche W.

    2000-01-01

    The research carried out in the Earth Sciences in NASA and at NASA's Goddard Space Flight Center will be the focus of the presentations. In addition, one research project that links sea surface temperature to epidemics in Africa will be highlighted. At GSFC research interests span the full breath of disciplines in Earth Science. Branches and research groups focus on areas as diverse as planetary geomagnetics and atmospheric chemistry. These organizations focus on atmospheric sciences (atmospheric chemistry, climate and radiation, regional processes, atmospheric modeling), hydrological sciences (snow, ice, oceans, and seasonal-to-interannual prediction), terrestrial physics (geology, terrestrial biology, land-atmosphere interactions, geophysics), climate modeling (global warming, greenhouse gases, climate change), on sensor development especially using lidar and microwave technologies, and on information technologies, that enable support of scientific and technical research.

  14. The Health Status of the Reproductive System in Women Living In the Aral Sea Region

    PubMed Central

    Turdybekova, Yasminur G.; Dosmagambetova, Raushan S.; Zhanabayeva, Symbat U.; Bublik, Gena V.; Kubayev, Alik B.; Ibraibekov, Zhanbolat G.; Kopobayeva, Irina L.; Kultanov, Berikbay Zh.

    2015-01-01

    In order to assess women’s reproductive health in the Kyzylorda region (the Aral Sea) of Kazakhstan, 1406 women were involved in an integrated clinical-functional and laboratory examination, given regional and environmental ecological factors. The high level of endocrine gynecological pathology is indicated in the examined women. In both examined zones, there is a late menarche over 16 years old, which is 39%. It is indicated a trend towards younger age of menopause onset. Inflammatory diseases of the female genital organs affect a third of the examined women. In the zone of ecological disaster, every fourth woman has fetal losses, cases of spontaneous pregnancy termination and/or non-developing pregnancies in anamnesis, which can be repeated many times. PMID:27275273

  15. Impact of sea level rise on the sedimentology and stratigraphy of estuarine systems

    SciTech Connect

    Ward, R.F.; Kearney, M.S.

    1988-01-01

    Drowned-river valley estuaries are characteristic features of trailing-edge continental margins, as exemplified by the United States Atlantic Coast. During marine transgressions, the classic cycle of estuarine development is one of initial submergence and subsequent infilling, with the latter stages marked by extensive accumulations of fine-grained sediments in expanding marshes, deltas, and floodplains. Seismic surveys, vibracoring, and radiocarbon dating in the estuarine tributaries in middle Chesapeake Bay (The largest estuary along the Atlantic Coast), indicate that thick accumulations (>25 m) of organic-rich fine-grained sediments have been deposited since the middle Holocene. However, studies of recent accretion rate (based on pollen and radionuclide analyses) suggest the marshes, which represent a near-end member of the estuarine depositional sequence, may no longer be accumulating significant volumes of sediment. Relatively rapid crustal subsidence plus eustatic sea level rise produces a local submergence of approx. 4 mm/yr. Although marsh accretion rates in the upper estuarine tributaries approach 1 cm/yr, marsh accretion rates in the middle and lower reaches are significantly less (<2 mm/yr) than submergence. Here, numerous marshes are converting to open water as they become increasingly flooded by the tides. This change in depositional regime is also reflected in the carbon content (decreasing) and grain size (coarsening) of the marsh sediments and tidal channel migrations. In the coming decades, the rate of the world sea level rise is projected to increase significantly. This acceleration in the global eustatic trend together with lower sediment inputs from surrounding watersheds may reverse the historic trend of estuarine infilling.

  16. Impact of sea level rise don the sedimentology and stratigraphy of estuarine systems

    SciTech Connect

    Ward, L.G.; Kearney, M.S.

    1988-02-01

    Drowned-river valley estuaries are characteristic features of trailing-edge continental margins, as exemplified by the US Atlantic Coast. During marine transgressions, the classic cycle of estuarine development is one of the initial submergence and subsequent infilling, with the latter stages marked by extensive accumulations of fine-grained sediments in expanding marshes, deltas, and floodplains. Seismic surveys, vibracoring, and radiocarbon dating in the estuarine tributaries in middle Chesapeake Bay (the largest estuary along the Atlantic Coast) indicate that thick accumulations (> 25 m) of organic-rich fine-grained sediments have been deposited since the middle Holocene. However, studies of recent accretion rates (based on pollen and radionuclide analyses) suggest the marshes, which represent a near-end member of the estuarine depositional sequence, may no longer be accumulating significant volumes of sediment. Relatively rapid crustal subsidence plus eustatic sea level rise produces a local submergence of /approximately/4 mm/yr. Although marsh accretion rates in the upper eustarine tributaries approach 1 cm/yr, marsh accretion rates in the middle and lower reaches are significantly less (< 2 mm/yr) than submergence. Here, numerous marshes are converting to open water as they become increasingly flooded by the tides. This change in depositional regime is also reflected in the carbon content (decreasing) and grain size (coarsening) of the marsh sediments and tidal channel migrations. In the coming decades, the rate of the world sea level rise is projected to increase significantly. This acceleration in the global eustatic trend together with lower sediment inputs from surrounding watersheds may reverse the historic trend of estuarine infilling.

  17. Sea Ice

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.; Cavalieri, Donald J.

    2005-01-01

    Sea ice covers vast areas of the polar oceans, with ice extent in the Northern Hemisphere ranging from approximately 7 x 10(exp 6) sq km in September to approximately 15 x 10(exp 6) sq km in March and ice extent in the Southern Hemisphere ranging from approximately 3 x 10(exp 6) sq km in February to approximately 18 x 10(exp 6) sq km in September. These ice covers have major impacts on the atmosphere, oceans, and ecosystems of the polar regions, and so as changes occur in them there are potential widespread consequences. Satellite data reveal considerable interannual variability in both polar sea ice covers, and many studies suggest possible connections between the ice and various oscillations within the climate system, such as the Arctic Oscillation, North Atlantic Oscillation, and Antarctic Oscillation, or Southern Annular Mode. Nonetheless, statistically significant long-term trends are also apparent, including overall trends of decreased ice coverage in the Arctic and increased ice coverage in the Antarctic from late 1978 through the end of 2003, with the Antarctic ice increases following marked decreases in the Antarctic ice during the 1970s. For a detailed picture of the seasonally varying ice cover at the start of the 21st century, this chapter includes ice concentration maps for each month of 2001 for both the Arctic and the Antarctic, as well as an overview of what the satellite record has revealed about the two polar ice covers from the 1970s through 2003.

  18. The rise of the starlet sea anemone Nematostella vectensis as a model system to investigate development and regeneration.

    PubMed

    Layden, Michael J; Rentzsch, Fabian; Röttinger, Eric

    2016-07-01

    Reverse genetics and next-generation sequencing unlocked a new era in biology. It is now possible to identify an animal(s) with the unique biology most relevant to a particular question and rapidly generate tools to functionally dissect that biology. This review highlights the rise of one such novel model system, the starlet sea anemone Nematostella vectensis. Nematostella is a cnidarian (corals, jellyfish, hydras, sea anemones, etc.) animal that was originally targeted by EvoDevo researchers looking to identify a cnidarian animal to which the development of bilaterians (insects, worms, echinoderms, vertebrates, mollusks, etc.) could be compared. Studies in Nematostella have accomplished this goal and informed our understanding of the evolution of key bilaterian features. However, Nematostella is now going beyond its intended utility with potential as a model to better understand other areas such as regenerative biology, EcoDevo, or stress response. This review intends to highlight key EvoDevo insights from Nematostella that guide our understanding about the evolution of axial patterning mechanisms, mesoderm, and nervous systems in bilaterians, as well as to discuss briefly the potential of Nematostella as a model to better understand the relationship between development and regeneration. Lastly, the sum of research to date in Nematostella has generated a variety of tools that aided the rise of Nematostella to a viable model system. We provide a catalogue of current resources and techniques available to facilitate investigators interested in incorporating Nematostella into their research. WIREs Dev Biol 2016, 5:408-428. doi: 10.1002/wdev.222 For further resources related to this article, please visit the WIREs website. PMID:26894563

  19. The rise of the starlet sea anemone Nematostella vectensis as a model system to investigate development and regeneration

    PubMed Central

    Rentzsch, Fabian; Röttinger, Eric

    2016-01-01

    Reverse genetics and next‐generation sequencing unlocked a new era in biology. It is now possible to identify an animal(s) with the unique biology most relevant to a particular question and rapidly generate tools to functionally dissect that biology. This review highlights the rise of one such novel model system, the starlet sea anemone Nematostella vectensis. Nematostella is a cnidarian (corals, jellyfish, hydras, sea anemones, etc.) animal that was originally targeted by EvoDevo researchers looking to identify a cnidarian animal to which the development of bilaterians (insects, worms, echinoderms, vertebrates, mollusks, etc.) could be compared. Studies in Nematostella have accomplished this goal and informed our understanding of the evolution of key bilaterian features. However, Nematostella is now going beyond its intended utility with potential as a model to better understand other areas such as regenerative biology, EcoDevo, or stress response. This review intends to highlight key EvoDevo insights from Nematostella that guide our understanding about the evolution of axial patterning mechanisms, mesoderm, and nervous systems in bilaterians, as well as to discuss briefly the potential of Nematostella as a model to better understand the relationship between development and regeneration. Lastly, the sum of research to date in Nematostella has generated a variety of tools that aided the rise of Nematostella to a viable model system. We provide a catalogue of current resources and techniques available to facilitate investigators interested in incorporating Nematostella into their research. WIREs Dev Biol 2016, 5:408–428. doi: 10.1002/wdev.222 For further resources related to this article, please visit the WIREs website. PMID:26894563

  20. Diurnal and seasonal variations of carbonate system parameters on Luhuitou fringing reef, Sanya Bay, Hainan Island, South China Sea

    NASA Astrophysics Data System (ADS)

    Zhang, Chenglong; Huang, Hui; Ye, Cheng; Huang, Liangmin; Li, Xiubao; Lian, Jiansheng; Liu, Sheng

    2013-11-01

    The 3-day diurnal dynamics of carbonate system and related parameters on Luhuitou fringing reef of Sanya Bay-adjacent to the South China Sea (SCS) were observed in December of 2009 (early winter), April (spring), July (summer) and November (late-autumn) of 2010. The Luhuitou fringing reef ecosystem was generally dominated by macro and planktonic algae throughout the year except by coralline algae in winter. The system parameters showed distinct diurnal trends in the four seasons. Averaged ranges of diurnal variation for dissolved oxygen and partial pressure of CO2 (pCO2) were higher in the autumn, 4.67mgL-1 and 218.2μatm, respectively than other seasons. Averaged ranges of diurnal variation for normalized total alkalinity (NTA) was higher in the winter (61.3μmolkg-1), and lower in the spring (16.0μmolkg-1). The diurnal variations are mainly controlled by biological activities, especially by the processes of photosynthesis and respiration in the reef ecosystem. In winter, however, calcification and dissolution contributed more to the diurnal variations, compared with the other three seasons. Total alkalinity was largely related to seasonal changes in river inflow rates. Dissolved oxygen, pH, total CO2 and aragonite saturation also showed seasonal variations. These variations were mainly controlled by the seasonal changes of photosynthesis and respiration, which were mainly affected by changes in benthic community structure, temperature and river inflow rates. The oversaturated pCO2 in the reef ecosystem with respect to the atmosphere in the winter and summer resulted in CO2 discharge from the reef ecosystem to the SCS. The whole system served as net source of CO2 to the atmosphere and the adjacent South China Sea on an annual time scale.

  1. In vitro interaction of emerging contaminants with the cytochrome p450 system of Mediterranean deep-sea fish.

    PubMed

    Ribalta, Carla; Solé, Montserrat

    2014-10-21

    The interactions of emerging contaminants with the xenobiotic and endogenous metabolizing system of deep-sea fish were compared. The drugs diclofenac, fluoxetine, and gemfibrozil belong to different pharmaceutical classes with diverse mechanistic actions, and the personal care products triclosan, galaxolide, and nonylphenol are representative of antibacterial agents, nitro-musks, and surfactants, respectively. The fish compared are representative of the middle and lower slope of deep-sea habitats. The species were adults of Trachyrynchus scabrus, Mora moro, Cataetix laticeps, and Alepocehalus rostratus. The hepatic metabolic system studied were the activities associated with several cytochrome P450 isoforms (CYPs): 7-ethoxyresorufin-O-deethylase (EROD), benzyloxy-4-[trifluoromethyl]-coumarin-O-debenzyloxylase (BFCOD), and 7-ethoxycoumarin-O-deethylase (ECOD). Results showed differences in baseline activities and sensitivity to chemicals which were species, chemical, and pathway dependent. T. scabrous was the most sensitive species to chemical interactions with the xenobiotic and endogenous metabolizing (EROD and BFCOD) systems, especially in the case of diclofenac interference with BFCOD activity (IC50 = 15.7 ± 2.2 μM). Moreover, T. scabrous and A. rostratus possessed high basal ECOD activity, and this was greatly affected by in vitro exposure to diclofenac in T. scabrous also (IC50 = 6.86 ± 1.4 μM). These results highlight the sensitivity of marine fish to emerging contaminants and propose T. scabrous (middle slope) and A. rostratus (lower slope) as sentinels and the inclusion of ECOD activity as a sensitive biomarker to these exposures. PMID:25225740

  2. A fully coupled atmosphere-ocean wave modeling system for the Mediterranean Sea: interactions and sensitivity to the resolved scales and mechanisms

    NASA Astrophysics Data System (ADS)

    Katsafados, P.; Papadopoulos, A.; Korres, G.; Varlas, G.

    2016-01-01

    It is commonly accepted that there is a need for a better understanding of the factors that contribute to air-sea interactions and their feedbacks. In this context it is important to develop advanced numerical prediction systems that treat the atmosphere and the ocean as a unified system. The realistic description and understanding of the exchange processes near the ocean surface requires knowledge of the sea state and its evolution. This can be achieved by considering the sea surface and the atmosphere as a continuously cross-talking dynamic system. Following and adapting concepts already developed and implemented in large-scale numerical weather models and in hurricane simulations, this study aims to present the effort towards developing a new, high-resolution, two-way fully coupled atmosphere-ocean wave model in order to support both operational and research activities. A specific issue that is emphasized is the determination and parameterization of the air-sea momentum fluxes in conditions of extremely high and time-varying winds. Software considerations, data exchange as well as computational and scientific performance of the coupled system, the so-called WEW (worketa-wam), are also discussed. In a case study of a high-impact weather and sea-state event, the wind-wave parameterization scheme reduces the resulted wind speed and the significant wave height as a response to the increased aerodynamic drag over rough sea surfaces. Overall, WEW offers a more realistic representation of the momentum exchanges in the ocean wind-wave system and includes the effects of the resolved wave spectrum on the drag coefficient and its feedback on the momentum flux.

  3. Real-time forecasting at weekly timescales of the SST and SLA of the Ligurian Sea with a satellite-based ocean forecasting (SOFT) system

    NASA Astrophysics Data System (ADS)

    ÁLvarez, A.; Orfila, A.; Tintoré, J.

    2004-03-01

    Satellites are the only systems able to provide continuous information on the spatiotemporal variability of vast areas of the ocean. Relatively long-term time series of satellite data are nowadays available. These spatiotemporal time series of satellite observations can be employed to build empirical models, called satellite-based ocean forecasting (SOFT) systems, to forecast certain aspects of future ocean states. SOFT systems can predict satellite-observed fields at different timescales. The forecast skill of SOFT systems forecasting the sea surface temperature (SST) at monthly timescales has been extensively explored in previous works. In this work we study the performance of two SOFT systems forecasting, respectively, the SST and sea level anomaly (SLA) at weekly timescales, that is, providing forecasts of the weekly averaged SST and SLA fields with 1 week in advance. The SOFT systems were implemented in the Ligurian Sea (Western Mediterranean Sea). Predictions from the SOFT systems are compared with observations and with the predictions obtained from persistence models. Results indicate that the SOFT system forecasting the SST field is always superior in terms of predictability to persistence. Minimum prediction errors in the SST are obtained during winter and spring seasons. On the other hand, the biggest differences between the performance of SOFT and persistence models are found during summer and autumn. These changes in the predictability are explained on the basis of the particular variability of the SST field in the Ligurian Sea. Concerning the SLA field, no improvements with respect to persistence have been found for the SOFT system forecasting the SLA field.

  4. Comprehensive enzymatic analysis of the cellulolytic system in digestive fluid of the Sea Hare Aplysia kurodai. Efficient glucose release from sea lettuce by synergistic action of 45 kDa endoglucanase and 210 kDa ß-glucosidase.

    PubMed

    Tsuji, Akihiko; Tominaga, Keiko; Nishiyama, Nami; Yuasa, Keizo

    2013-01-01

    Although many endo-ß-1,4-glucanases have been isolated in invertebrates, their cellulolytic systems are not fully understood. In particular, gastropod feeding on seaweed is considered an excellent model system for production of bioethanol and renewable bioenergy from third-generation feedstocks (microalgae and seaweeds). In this study, enzymes involved in the conversion of cellulose and other polysaccharides to glucose in digestive fluids of the sea hare (Aplysia kurodai) were screened and characterized to determine how the sea hare obtains glucose from sea lettuce (Ulva pertusa). Four endo-ß-1,4-glucanases (21K, 45K, 65K, and 95K cellulase) and 2 ß-glucosidases (110K and 210K) were purified to a homogeneous state, and the synergistic action of these enzymes during cellulose digestion was analyzed. All cellulases exhibited cellulase and lichenase activities and showed distinct cleavage specificities against cellooligosaccharides and filter paper. Filter paper was digested to cellobiose, cellotriose, and cellotetraose by 21K cellulase, whereas 45K and 65K enzymes hydrolyzed the filter paper to cellobiose and glucose. 210K ß-glucosidase showed unique substrate specificity against synthetic and natural substrates, and 4-methylumbelliferyl (4MU)-ß-glucoside, 4MU-ß-galactoside, cello-oligosaccharides, laminarin, and lichenan were suitable substrates. Furthermore, 210K ß-glucosidase possesses lactase activity. Although ß-glucosidase and cellulase are necessary for efficient hydrolysis of carboxymethylcellulose to glucose, laminarin is hydrolyzed to glucose only by 210K ß-glucosidase. Kinetic analysis of the inhibition of 210K ß-glucosidase by D-glucono-1,5-lactone suggested the presence of 2 active sites similar to those of mammalian lactase-phlorizin hydrolase. Saccharification of sea lettuce was considerably stimulated by the synergistic action of 45K cellulase and 210K ß-glucosidase. Our results indicate that 45K cellulase and 210K ß-glucosidase are the

  5. Serving data from the SCAR Southern Ocean Observing System (SOOS) using the SeaDataNet infrastructure

    NASA Astrophysics Data System (ADS)

    de Bruin, T.

    2009-04-01

    The importance of the Southern Ocean to the global climate system and the uniqueness of its ecosystems are well known. The region is remote and logistically difficult to access and thus is one of the least sampled regions on the planet. Design and implementation of an observing system that encompasses physical, biogeochemical and ecological processes is therefore a formidable challenge. The Scientific Committee on Antarctic Research (SCAR) has, jointly with the SCAR/SCOR Expert Group on the Southern Ocean, started the process to develop such a Southern Ocean Observing System (SOOS). The goals are to address major scientific questions and to coordinate measurement campaigns to do so. The SCAR Standing Committee on Antarctic Data Management (SC-ADM) is responsible for the design of the SOOS data flow system or Virtual Observatory, which will be used to archive and exchange data. SC-ADM is working in close cooperation with National Oceanographic Data Centres (NODCs), the International Oceanographic Data and Information Exchange Committee of the Intergovernmental Oceanographic Commission (IOC-IODE) and the IOC-WMO Joint Committee on Oceanography and Marine Meteorology (JCOMM). This presentation will focus on the European SeaDataNet project (www.seadatanet.org), which provides a real-world, operational model for access to and exchange of data from big observing systems such as the proposed SOOS and the European Marine Observation and Data Network (EMODNet).

  6. Geochemical constraints on sources of metabolic energy for chemolithoautotrophy in ultramafic-hosted deep-sea hydrothermal systems.

    PubMed

    McCollom, Thomas M

    2007-12-01

    Numerical models are employed to investigate sources of chemical energy for autotrophic microbial metabolism that develop during mixing of oxidized seawater with strongly reduced fluids discharged from ultramafic-hosted hydrothermal systems on the seafloor. Hydrothermal fluids in these systems are highly enriched in H(2) and CH(4) as a result of alteration of ultramafic rocks (serpentinization) in the subsurface. Based on the availability of chemical energy sources, inferences are made about the likely metabolic diversity, relative abundance, and spatial distribution of microorganisms within ultramafic-hosted systems. Metabolic reactions involving H(2) and CH(4), particularly hydrogen oxidation, methanotrophy, sulfate reduction, and methanogenesis, represent the predominant sources of chemical energy during fluid mixing. Owing to chemical gradients that develop from fluid mixing, aerobic metabolisms are likely to predominate in low-temperature environments (<20-30 degrees C), while anaerobes will dominate higher-temperature environments. Overall, aerobic metabolic reactions can supply up to approximately 7 kJ of energy per kilogram of hydrothermal fluid, while anaerobic metabolic reactions can supply about 1 kJ, which is sufficient to support a maximum of approximately 120 mg (dry weight) of primary biomass production by aerobic organisms and approximately 20-30 mg biomass by anaerobes. The results indicate that ultramafic-hosted systems are capable of supplying about twice as much chemical energy as analogous deep-sea hydrothermal systems hosted in basaltic rocks.

  7. Research on the Multi-Flexible-Body System Dynamics Model of Highline Cable of Alongside Replenishment at Sea

    NASA Astrophysics Data System (ADS)

    Li, Nan; Wei, Zhuobin; Zhang, Shiyun

    In order to solve the problem that naval replenishment equipment could not be independent development and production, and In view of the present status that there is not a engineering model for sealift highline cable, the paper researched, The paper research multi-flexible-body system dynamics model of the rope and used it to simulate sealift Highline cable based on the multi-body dynamics theory. Meanwhile the paper simulated to the transverse replenishment process for sea dry cargo by using dynamics tools ADAMS, through the analysis of simulation results. Then the conclusion is gained, which the multi-flexible-body dynamic model is more close to the sealift highline cable and the dynamic calculation results is closer to the actual situation.

  8. Seasonal to Decadal-Scale Variability in Satellite Ocean Color and Sea Surface Temperature for the California Current System

    NASA Technical Reports Server (NTRS)

    Mitchell, B. Greg; Kahru, Mati; Marra, John (Technical Monitor)

    2002-01-01

    Support for this project was used to develop satellite ocean color and temperature indices (SOCTI) for the California Current System (CCS) using the historic record of CZCS West Coast Time Series (WCTS), OCTS, WiFS and AVHRR SST. The ocean color satellite data have been evaluated in relation to CalCOFI data sets for chlorophyll (CZCS) and ocean spectral reflectance and chlorophyll OCTS and SeaWiFS. New algorithms for the three missions have been implemented based on in-water algorithm data sets, or in the case of CZCS, by comparing retrieved pigments with ship-based observations. New algorithms for absorption coefficients, diffuse attenuation coefficients and primary production have also been evaluated. Satellite retrievals are being evaluated based on our large data set of pigments and optics from CalCOFI.

  9. Late quaternary depositional systems and sea level change-Santa Monica and San Pedro Basins, California continental borderland

    SciTech Connect

    Nardin, T.R.

    1983-07-01

    A suite of seismic reflection data that provides different degrees of resolution and penetration was used to map the depositional systems that have developed in Santa Monica and San Pedro basins during the late Quaternary. Submarine fan growth, particularly at the mouths of Hueneme and Redondo Canyons, has been the dominant mode of basin filling. Mass movement processes, ranging from creep to large-scale catastrophic slumping, have been important locally. In general, large-scale fan growth fits Normark's model in which the suprafan is the primary locus of coarse sediment deposition. Smaller scale morphologic and depositional patterns on the Hueneme and Redondo fans (e.g., distributary channels and coarse sediment concentrations basinward of the inner suprafan) suggest that a significant amount of coarse sediment presently bypasses the suprafans, however. Long-distance coarse sediment transport was particularly pronounced during late Wisconsinan lowstand of sea level and resulted in progradation of lower mid-fan and lower fan deposits.

  10. Insights into the ancient Mississippi drainage system from detrital zircons analyses of the modern Mississippi deep-sea fan

    NASA Astrophysics Data System (ADS)

    Fildani, A.; McKay, M. P.; Stockli, D. F.; Clark, J. D.; Weislogel, A. L.; Dykstra, M.; Hessler, A. M.

    2014-12-01

    The modern Mississippi deep-sea fan is a large-scale accumulation of Quaternary sediment deposited in the Gulf of Mexico by the modern Mississippi River via the Mississippi delta. The Mississippi River has a well-characterized drainage system extending across North America from the western Rocky Mountains to the Appalachians in the east. Deep-water sand samples of buried channel-fill and lobe deposits of the Mississippi fan from selected Sites of Leg 96 of the Deep Sea Drilling Project (DSDP) and were integrated with USGS piston core samples from the most recent lobe for detrital zircon U-Pb isotopic analysis. Since the modern Mississippi River has a well-known catchment, the detrital zircon age 'signal' observed in the deep-water sediments can therefore be used as an actualistic study of the detrital zircon provenance signatures resulting from modern drainage patterns. Based on this approach, we compare this dataset with published data and observe minor variability in the detrital zircon signature through time. Populations sourced from the Western North American Cordillera are consistent through time in terms of ages, however Paleocene sediments are slightly enriched in Yavapai-Mazatzal zircons sourced from southwestern continental U.S.. Grenville- and Appalachian-derived zircons reflect minor variation in sediment input from the Appalachian Mountains and related deposits in the eastern Mississippi River catchment. When compared to published Upper Jurassic Norphlet formation detrital zircon data, the Paleocene published dataset and the newly acquired modern sands are partly depleted of Appalachian-derived zircons. This paucity in Appalachian age zircon in Paleocene-to-modern sediments suggests a reconfiguration of the Mississippi River drainage prior to Tertiary time. Since this realignment, the Mississippi River drainage has remained relatively unchanged. Piston core samples from the most recent lobe yielded zircons indicating a recent influx of Appalachian

  11. Phreatomagmatic volcanic hazards where rift-systems meet the sea, a study from Ambae Island, Vanuatu

    NASA Astrophysics Data System (ADS)

    Németh, Károly; Cronin, Shane J.

    2009-03-01

    Ambae Island is a mafic stratovolcano located in the northern Vanuatu volcanic arc and has a NE-SW rift-controlled elongated shape. Several hundred scoria cones and fissure-fed lava fields occur along its long axis. After many decades of quiescence, Ambae Island erupted on the 28th of November 2005, disrupting the lives of its 10,000 inhabitants. Its activity remained focused at the central (crater-lake filled) vent and this is where hazard-assessments were focused. These assessments initially neglected that maars, tephra cones and rings occur at each tip of the island where the eruptive activity occurred < 500 and < 300 yr B.P. The products of this explosive phreatomagmatic activity are located where the rift axis meets the sea. At the NE edge of the island five tephra rings occur, each comparable in size to those on the summit of Ambae. Along the NE coastline, a near-continuous cliff section exposes an up to 25 m thick succession of near-vent phreatomagmatic tephra units derived from closely spaced vents. This can be subdivided into two major lithofacies associations. The first association represents when the locus of explosions was below sea level and comprises matrix-supported, massive to weakly stratified beds of coarse ash and lapilli. These are dominant in the lowermost part of the sequence and commonly contain coral fragments, indicating that the loci of explosion were located within a reef or coral sediment near the syn-eruptive shoreline. The second type indicate more stable vent conditions and rapidly repeating explosions of high intensity, producing fine-grained tephra with undulatory bedding and cross-lamination as well as megaripple bedforms. These surge and fall beds are more common in the uppermost part of the succession and form a few-m-thick pile. An older tephra succession of similar character occurs below, and buried trees in growth position, as well as those flattened within base surge beds. This implies that the centre of this eruption was

  12. Tracking and responding to a changing Arctic sea-ice cover: How ice users can help the scientific community design better observing systems (Louis Agassiz Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Eicken, Hajo

    2010-05-01

    The Arctic sea-ice cover is undergoing a major transformation, with substantial reductions in summer ice extent reflecting changes in ice thickness, age, and circulation. These changes are impacting Arctic ecosystems and a range of human activities. Anticipating and responding to such impacts, exacerbated by increasing economic activity in parts of the Arctic, requires a foundation of environmental observations and model predictions. Recent increases in industrial activities such as shipping and resource development in parts of the Arctic have further highlighted the need for an integrated observing system. In the case of a changing sea-ice cover, how would one best design and optimize such a system? One of the challenges is to meet the information needs of the scientific community in furthering fundamental understanding of the Arctic system, as well as those of key stakeholders and society, helping them to prepare for and respond to Arctic change. This presentation focuses on how the concept of sea-ice system services, i.e., the uses and benefits (or harm) derived from sea ice, may help guide the implementation of an effective observing system. Principal service categories are (1) sea ice as climate regulator, marine hazard, and coastal buffer; (2) transportation and use of ice as a platform; (3) cultural services obtained from the "icescape"; and (4) support of food webs and biological diversity by sea ice. An analysis of the different ice services provided to different user groups can help prioritize different types of observations and determine optimal measurement strategies. Moreover, the focus on different uses of the ice cover may also help synthesize fundamental and applied research to help Arctic communities adapt in a changing environment. Alaska has experienced some of the most substantial changes in sea-ice conditions throughout the Arctic over the past three decades and is used to illustrate the concepts discussed above. Specifically, we have examined

  13. Mercury isotopic composition of hydrothermal systems in the Yellowstone Plateau volcanic field and Guaymas Basin sea-floor rift

    USGS Publications Warehouse

    Sherman, L.S.; Blum, J.D.; Nordstrom, D.K.; McCleskey, R.B.; Barkay, T.; Vetriani, C.

    2009-01-01

    To characterize mercury (Hg) isotopes and isotopic fractionation in hydrothermal systems we analyzed fluid and precipitate samples from hot springs in the Yellowstone Plateau volcanic field and vent chimney samples from the Guaymas Basin sea-floor rift. These samples provide an initial indication of the variability in Hg isotopic composition among marine and continental hydrothermal systems that are controlled predominantly by mantle-derived magmas. Fluid samples from Ojo Caliente hot spring in Yellowstone range in δ202Hg from - 1.02‰ to 0.58‰ (± 0.11‰, 2SD) and solid precipitate samples from Guaymas Basin range in δ202Hg from - 0.37‰ to - 0.01‰ (± 0.14‰, 2SD). Fluid samples from Ojo Caliente display mass-dependent fractionation (MDF) of Hg from the vent (δ202Hg = 0.10‰ ± 0.11‰, 2SD) to the end of the outflow channel (&delta202Hg = 0.58‰ ± 0.11‰, 2SD) in conjunction with a decrease in Hg concentration from 46.6pg/g to 20.0pg/g. Although a small amount of Hg is lost from the fluids due to co-precipitation with siliceous sinter, we infer that the majority of the observed MDF and Hg loss from waters in Ojo Caliente is due to volatilization of Hg0(aq) to Hg0(g) and the preferential loss of Hg with a lower δ202Hg value to the atmosphere. A small amount of mass-independent fractionation (MIF) was observed in all samples from Ojo Caliente (Δ199Hg = 0.13‰ ±1 0.06‰, 2SD) but no significant MIF was measured in the sea-floor rift samples from Guaymas Basin. This study demonstrates that several different hydrothermal processes fractionate Hg isotopes and that Hg isotopes may be used to better understand these processes.

  14. Cyclonic variability in the Mediterranean-Black Sea region associated with global processes in the ocean-atmosphere system

    NASA Astrophysics Data System (ADS)

    Maslova, V. N.; Voskresenskaya, E. N.; Yurovskiy, A. V.

    2010-09-01

    November-December is responsible for about 24% of climate/weather anomalies in spring (r = 0.49); ENSO in May-July determines approximately 12% of autumn weather anomalies (r = 0.34). Thus, we can conclude that the joint NAO and ENSO influence is responsible for more than 50% of cyclonic variability in winter and spring in the Mediterranean-Black Sea region. Decadal variability of cyclonic activity was studied with the focus on PDO influence since its phase change reflects the shift in global climatic system. Using composite analyses, quasi-decadal differences of values of the main parameters (frequency, area, depth and intensity) of the Mediterranean-Black Sea cyclones associated with the alteration of PDO phases were calculated for each month. It was shown that during the negative PDO phase frequency of winter cyclones is about twice greater, the area and depth (intensity) are about 500 thnd sq. km and ~5 hPa greater, respectively, than in the positive phase. Hence, climatic shift in the variability of parameters of cyclones associated with PDO phase change in the middle of 1970s was detected. Strong manifestations of the global climatic signals were also shown in different hydrometeorological fields in the studied regions which confirm the results obtained for the variability of cyclonic activity.

  15. Monitoring the mesoscale circulation of the Western Mediterranean Sea using SSS derived from SMOS

    NASA Astrophysics Data System (ADS)

    Olmedo, Estrella; Isern-Fontanet, Jordi; Turiel, Antonio; Portabella, Marcos; Ballabrera-Poy, Joaquim

    2016-04-01

    The circulation in the Mediterranean Sea is characterized by the inflow of fresh waters from the Atlantic Ocean through the Strait of Gibraltar. These waters, characterized by their lower salinity, create baroclinic instabilities that spawn eddies with sizes of the order of 100 km. These eddies have been widely analyzed using Sea Surface Temperature (SST) observations. Recent improvements in the Sea Surface Salinity (SSS) retrieval and bias correction methodologies applied to the Soil Moisture and Ocean Salinity (SMOS) satellite data have led, for the first time, to the generation of SSS maps that capture the signature of these structures. This opens the door for the generation of high spatial and temporal density maps in the Mediterranean, which can be used in a wide variety of oceanographic applications. In particular, the signature of the Alboran gyre and the eddy propagation across the Algerian coast are well reproduced, allowing for the first time to characterize the baroclinicity of the flow. The SMOS data are strongly affected by Radio Frequency Interference (RFI) and land-sea contamination in the Mediterranean Sea. Two important SSS retrieval algorithm improvements are proposed in this study. First, with more than six years of SMOS data acquisitions, there is enough data to empirically characterize and correct systematic biases. Second, the filtering criterion has been modified to account for the statistical distributions of SSS at each ocean grid point. This allows retrieving a value of SSS which is less affected by outliers originated from RFI and other effects. In this study, high level (spatio-temporally consistent) SSS maps are obtained by averaging the SMOS SSS retrievals using a classical objective analysis scheme and then combining the resulting maps with Sea Surface Temperature (SST) maps by means of multifractal fusion. The SSS fused maps contain well-defined spatial structures, suitable for studying the mesoscale activity in the Western

  16. Morphology of the triggering and evolution of a deep moist convective system in the Mediterranean Sea.

    NASA Astrophysics Data System (ADS)

    Fiori, Elisabetta; Ferraris, Luca; Molini, Luca; Siccardi, Franco; Kranzlmueller, Dieter; Parodi, Antonio

    2016-04-01

    Gaining a deeper physical understanding of the high impact weather events (HIWE) which affected the Western Mediterranean Basin (WMB) in the last years (Cinqueterre 2011, Southern France 2011, Genoa 2011, Southern Spain 2012, and Genoa 2014) is strongly motivated by the social request to reduce the casualties and the economical impacts due to these highly-localized and hardly-predictable phenomena. One of the most recent HIWE observed in the WMB hit the Genoa city center, on October 2014 less than 3 years after the very similar one which already affected the city on November 2011. Taking advantage of the availability of both observational data and modelling results (WRF-ARW runs) at the micro-α meteorological scale (2 km - 0.2 km and 1 hour or less, Orlanski, 1975), this paper provides new insights about the triggering mechanism and the subsequent spatio-temporal evolution of 2014 HIWE. The major feature that emerged from the very fine grid spacing simulations is the effect of a kind of virtual topography created on the Ligurian sea by the convergence of the cold current outflowing from the Po valley and the warm and moist south-easterly flow.

  17. GPS measurements of near-field deformation along the southern Dead Sea Fault System

    NASA Astrophysics Data System (ADS)

    Al Tarazi, Eid; Abu Rajab, Jafar; Gomez, Francisco; Cochran, William; Jaafar, Rani; Ferry, Matthieu

    2011-12-01

    Analysis of short-term deformation along the southern part of Dead Sea Fault (DSF) provides a systematic view of kinematics this part of the continental transform. The southern DSF consists of two principal segments: the Wadi Araba and Jordan Valley faults. In addition to other regional continuous GPS data, this study uses new data from 25 survey sites and 4 continuous GPS stations in Jordan for improved near-field observations. Resulting velocities are reported with 1-σ uncertainties ranging from 0.4-1.0 mm/yr. Application of elastic dislocation models yields estimates of slip rates for Wadi Araba and Jordan Valley faults are 4.9 ± 0.4 mm/yr and 4.7 ± 0.4 mm/yr, respectively. Modeling also suggests different depths of effective fault locking with 15 ± 5 km and 8 ± 5 km for the Wadi Araba and Jordan Valley faults, respectively. These slip rates are generally consistent with the upper end of the range of slip rates estimated from late Quaternary geology. Spatial variations in effective fault locking generally correspond with a heterogeneous mantle lithosphere. A similar observation can be observed along the southern San Andreas Fault, and this may reflect the influence of heterogeneity in the uppermost mantle on crustal faulting processes.

  18. Strain localisation and population changes during fault system growth within the Inner Moray Firth, Northern North Sea

    NASA Astrophysics Data System (ADS)

    Walsh, J. J.; Childs, C.; Imber, J.; Manzocchi, T.; Watterson, J.; Nell, P. A. R.

    2003-02-01

    The evolution of fault populations is established for an area within the Late Jurassic Inner Moray Firth sub-basin of the North Sea. Sedimentation rates outstripped fault displacement rates resulting in the blanketing of fault scarps and the preservation of fault displacement histories. Displacement backstripping is used to establish the growth history of the fault system. Fault system evolution is characterised by early generation of the main fault pattern and progressive localisation of strain onto larger faults. This localisation is accompanied by the death of smaller faults and an associated change in the active fault population from power-law to scale-bound. Fault length populations evolve from a power-law frequency distribution containing all faults, to a power-law distribution with a marked non-power-law tail containing the largest faults. This change in population character is synchronous with the development of a fully-connected fault system extending across the mapped area and the accommodation of displacements almost exclusively on the largest faults. Strain localisation onto fewer and better connected faults represents the most efficient means of accommodating fault-related deformation and is considered to be a fundamental characteristic of the spatio-temporal evolution of fault systems. Progressive strain localisation requires complementary changes in the characteristics of associated earthquake populations.

  19. A Permanent Automated Real-Time Passive Acoustic Monitoring System for Bottlenose Dolphin Conservation in the Mediterranean Sea

    PubMed Central

    Brunoldi, Marco; Bozzini, Giorgio; Casale, Alessandra; Corvisiero, Pietro; Grosso, Daniele; Magnoli, Nicodemo; Alessi, Jessica; Bianchi, Carlo Nike; Mandich, Alberta; Morri, Carla; Povero, Paolo; Wurtz, Maurizio; Melchiorre, Christian; Viano, Gianni; Cappanera, Valentina; Fanciulli, Giorgio; Bei, Massimiliano; Stasi, Nicola; Taiuti, Mauro

    2016-01-01

    Within the framework of the EU Life+ project named LIFE09 NAT/IT/000190 ARION, a permanent automated real-time passive acoustic monitoring system for the improvement of the conservation status of the transient and resident population of bottlenose dolphin (Tursiops truncatus) has been implemented and installed in the Portofino Marine Protected Area (MPA), Ligurian Sea. The system is able to detect the simultaneous presence of dolphins and boats in the area and to give their position in real time. This information is used to prevent collisions by diffusing warning messages to all the categories involved (tourists, professional fishermen and so on). The system consists of two gps-synchronized acoustic units, based on a particular type of marine buoy (elastic beacon), deployed about 1 km off the Portofino headland. Each one is equipped with a four-hydrophone array and an onboard acquisition system which can record the typical social communication whistles emitted by the dolphins and the sound emitted by boat engines. Signals are pre-filtered, digitized and then broadcast to the ground station via wi-fi. The raw data are elaborated to get the direction of the acoustic target to each unit, and hence the position of dolphins and boats in real time by triangulation. PMID:26789265

  20. A Permanent Automated Real-Time Passive Acoustic Monitoring System for Bottlenose Dolphin Conservation in the Mediterranean Sea.

    PubMed

    Brunoldi, Marco; Bozzini, Giorgio; Casale, Alessandra; Corvisiero, Pietro; Grosso, Daniele; Magnoli, Nicodemo; Alessi, Jessica; Bianchi, Carlo Nike; Mandich, Alberta; Morri, Carla; Povero, Paolo; Wurtz, Maurizio; Melchiorre, Christian; Viano, Gianni; Cappanera, Valentina; Fanciulli, Giorgio; Bei, Massimiliano; Stasi, Nicola; Taiuti, Mauro

    2016-01-01

    Within the framework of the EU Life+ project named LIFE09 NAT/IT/000190 ARION, a permanent automated real-time passive acoustic monitoring system for the improvement of the conservation status of the transient and resident population of bottlenose dolphin (Tursiops truncatus) has been implemented and installed in the Portofino Marine Protected Area (MPA), Ligurian Sea. The system is able to detect the simultaneous presence of dolphins and boats in the area and to give their position in real time. This information is used to prevent collisions by diffusing warning messages to all the categories involved (tourists, professional fishermen and so on). The system consists of two gps-synchronized acoustic units, based on a particular type of marine buoy (elastic beacon), deployed about 1 km off the Portofino headland. Each one is equipped with a four-hydrophone array and an onboard acquisition system which can record the typical social communication whistles emitted by the dolphins and the sound emitted by boat engines. Signals are pre-filtered, digitized and then broadcast to the ground station via wi-fi. The raw data are elaborated to get the direction of the acoustic target to each unit, and hence the position of dolphins and boats in real time by triangulation.

  1. Final Report DE-EE0005380: Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems

    SciTech Connect

    Ling, Hao; Hamilton, Mark F.; Bhalla, Rajan; Brown, Walter E.; Hay, Todd A.; Whitelonis, Nicholas J.; Yang, Shang-Te; Naqvi, Aale R.

    2013-09-30

    Offshore wind energy is a valuable resource that can provide a significant boost to the US renewable energy portfolio. A current constraint to the development of offshore wind farms is the potential for interference to be caused by large wind farms on existing electronic and acoustical equipment such as radar and sonar systems for surveillance, navigation and communications. The US Department of Energy funded this study as an objective assessment of possible interference to various types of equipment operating in the marine environment where offshore wind farms could be installed. The objective of this project was to conduct a baseline evaluation of electromagnetic and acoustical challenges to sea surface, subsurface and airborne electronic systems presented by offshore wind farms. To accomplish this goal, the following tasks were carried out: (1) survey electronic systems that can potentially be impacted by large offshore wind farms, and identify impact assessment studies and research and development activities both within and outside the US, (2) engage key stakeholders to identify their possible concerns and operating requirements, (3) conduct first-principle modeling on the interactions of electromagnetic signals with, and the radiation of underwater acoustic signals from, offshore wind farms to evaluate the effect of such interactions on electronic systems, and (4) provide impact assessments, recommend mitigation methods, prioritize future research directions, and disseminate project findings. This report provides a detailed description of the methodologies used to carry out the study, key findings of the study, and a list of recommendations derived based the findings.

  2. A Permanent Automated Real-Time Passive Acoustic Monitoring System for Bottlenose Dolphin Conservation in the Mediterranean Sea.

    PubMed

    Brunoldi, Marco; Bozzini, Giorgio; Casale, Alessandra; Corvisiero, Pietro; Grosso, Daniele; Magnoli, Nicodemo; Alessi, Jessica; Bianchi, Carlo Nike; Mandich, Alberta; Morri, Carla; Povero, Paolo; Wurtz, Maurizio; Melchiorre, Christian; Viano, Gianni; Cappanera, Valentina; Fanciulli, Giorgio; Bei, Massimiliano; Stasi, Nicola; Taiuti, Mauro

    2016-01-01

    Within the framework of the EU Life+ project named LIFE09 NAT/IT/000190 ARION, a permanent automated real-time passive acoustic monitoring system for the improvement of the conservation status of the transient and resident population of bottlenose dolphin (Tursiops truncatus) has been implemented and installed in the Portofino Marine Protected Area (MPA), Ligurian Sea. The system is able to detect the simultaneous presence of dolphins and boats in the area and to give their position in real time. This information is used to prevent collisions by diffusing warning messages to all the categories involved (tourists, professional fishermen and so on). The system consists of two gps-synchronized acoustic units, based on a particular type of marine buoy (elastic beacon), deployed about 1 km off the Portofino headland. Each one is equipped with a four-hydrophone array and an onboard acquisition system which can record the typical social communication whistles emitted by the dolphins and the sound emitted by boat engines. Signals are pre-filtered, digitized and then broadcast to the ground station via wi-fi. The raw data are elaborated to get the direction of the acoustic target to each unit, and hence the position of dolphins and boats in real time by triangulation. PMID:26789265

  3. Short-term sea ice forecasting: An assessment of ice concentration and ice drift forecasts using the U.S. Navy's Arctic Cap Nowcast/Forecast System

    NASA Astrophysics Data System (ADS)

    Hebert, David A.; Allard, Richard A.; Metzger, E. Joseph; Posey, Pamela G.; Preller, Ruth H.; Wallcraft, Alan J.; Phelps, Michael W.; Smedstad, Ole Martin

    2015-12-01

    In this study the forecast skill of the U.S. Navy operational Arctic sea ice forecast system, the Arctic Cap Nowcast/Forecast System (ACNFS), is presented for the period February 2014 to June 2015. ACNFS is designed to provide short term, 1-7 day forecasts of Arctic sea ice and ocean conditions. Many quantities are forecast by ACNFS; the most commonly used include ice concentration, ice thickness, ice velocity, sea surface temperature, sea surface salinity, and sea surface velocities. Ice concentration forecast skill is compared to a persistent ice state and historical sea ice climatology. Skill scores are focused on areas where ice concentration changes by ±5% or more, and are therefore limited to primarily the marginal ice zone. We demonstrate that ACNFS forecasts are skilful compared to assuming a persistent ice state, especially beyond 24 h. ACNFS is also shown to be particularly skilful compared to a climatologic state for forecasts up to 102 h. Modeled ice drift velocity is compared to observed buoy data from the International Arctic Buoy Programme. A seasonal bias is shown where ACNFS is slower than IABP velocity in the summer months and faster in the winter months. In February 2015, ACNFS began to assimilate a blended ice concentration derived from Advanced Microwave Scanning Radiometer 2 (AMSR2) and the Interactive Multisensor Snow and Ice Mapping System (IMS). Preliminary results show that assimilating AMSR2 blended with IMS improves the short-term forecast skill and ice edge location compared to the independently derived National Ice Center Ice Edge product.

  4. On the determination of net bedload transport patters in a natural tidal inlet system (Knudedyb in the Danish Wadden Sea)

    NASA Astrophysics Data System (ADS)

    Ernstsen, V. B.; Lefebvre, A.; Bartholdy, J.; Bartholomä, A.; Winter, C.

    2012-04-01

    An airborne swath topography survey using a LIDAR (Laser Induced Detection And Ranging or Light Detection And Ranging) system and a ship borne swath bathymetry survey using a multibeam echosounder (MBES) system were carried out within a 100 km2 quadratic section of the natural tidal inlet system Knudedyb in the Danish Wadden Sea. On the basis of the LIDAR data a detailed (0.5 m grid cell size) digital elevation model (DEM) of the dry-lying areas around low water (with the intertidal flats being of primary concern) was generated; whereas the MBES data were used to generate a detailed (also 0.5 m grid cell size) DEM of the tidal inlet main channel. The spatial distribution and characteristics of bedforms in a coastal system potentially yield information on the net bedload transport patterns in the system. The sandy main channel and intertidal flats of the Knudedyb tidal inlet are covered by bedforms. Bedform characterisation using a random field statistical approach (2D spectral analysis, cf. Lefebvre et al. 2011) as well as a discrete approach, in which the geometric variables of individual bedforms are determined (cf. Ernstsen et al. 2010), will be applied to the high-resolution DEMs. Based on these analyses net bedload transport patterns in the Knudedyb tidal inlet system will be determined. The findings will be used to investigate a potential exchange of sand between the main tidal channel and the adjacent intertidal flats. Acknowledgements This work is funded by the Danish Council for Independent Research | Natural Sciences (grant 10-081102) and the German Research Foundation DFG-Research Center / Excellence Cluster "The Ocean in the Earth System".

  5. Implications for a rapid early to mid-Holocene sea-level rise from the Mekong River incised-valley system

    NASA Astrophysics Data System (ADS)

    Tjallingii, R.; Stattegger, K.; Wetzel, A.

    2009-12-01

    The abrupt transition from fluvial to marine deposition of incised-valley-infill sediments retrieved from the SE Vietnamese shelf, accurately records the postglacial transgression after 14 ka before present (BP). Incised-valley-infill sediments deposited prior to the transgression consist of fluvial mud, whereas sedimentation after the transgression is characterized by shallow-marine carbonate sands. Intertidal sedimentation at this transgressive surface is further suggested by the appearance of Glossifungites ichnofacies borrows. High resolution XRF core scanning was used to accurately locate the stratigraphical transition indicating the transgressive flooding surface in the incised-valley system and in deeper shelf sediment. Detailed XRF records reveal that infilling of the incised-valley system kept up with sea-level rise until the valley system was nearly completely filled, and after which the system stepped back. The deeper shelf records reveal that lithogenic sedimentation on the deeper shelf reduced after the accumulation of fluvial sediments in the valley system started. The sedimentological response of the Mekong river-mouth system on the transgression between 14 and 6 ka BP is completed by the comparison with land-based drill sites. This compilation of SE Asian sediment records suggest an alternative interpretation of the deglacial sea-level evolution with respect to the melt-water pulses retrieved from coral records. These records do not support a sea-level jump during melt water pulse (MWP) 1B, but strongly suggest a sea-level jump of around 14 m between 9.1 ka and 8.7 ka BP corresponding with MWP 1C. This latter sea-level jump contributed to the vast inland shore line transgression from the present-day Vietnamese coastline to the Cambodian lowlands.

  6. The forced and free response of the South China Sea to the large-scale monsoon system

    NASA Astrophysics Data System (ADS)

    Chen, Haoliang; Tkalich, Pavel; Malanotte-Rizzoli, Paola; Wei, Jun

    2012-03-01

    Non-tidal sea level anomalies (SLAs) can be produced by many different dynamical phenomena over many time scales, and they can induce serious damages in coastal regions especially during extreme events. In this work, we focus on the SLAs in the South China Sea (SCS) to understand whether and how they can be related to the large-scale, seasonal monsoon system which dominates the SCS circulation and dynamics. We have two major objectives. The first one is to understand whether the NE (winter) and SW (summer) monsoons can be responsible for the persistent SLAs, both positive and negative, observed at the SCS ends along the main monsoon path. The second objective is to understand the SCS response as a free system upon onset/relaxation or sudden changes in the forcing wind. It is well known that sudden changes in the forcing mechanism induce free oscillations, or seiches, in closed, semi-enclosed basins and harbors, and we want to identify the possible seiche modes of the SCS. To our knowledge, these two objectives have not been previously addressed. We address these objectives both through observational analysis and modeling simulations. Multi-year tide-gauge data from stations along the coastal regions of the SCS are analyzed examining their spatial correlations. Strong negative correlations are found between the northeast and southwest stations at the two ends of the SCS under the path of the NE/SW monsoons. They correspond to wind-induced positive/negative sea level set-ups lasting for the entire monsoon season and changing sign from winter to summer. Short periods of negative correlations are also found between the SLAs at eastern and western stations during El Niño years in which the monsoons are weaker and have an enhanced E/W component inducing corresponding sea level set-ups. The tide-gauge station at Tanjong Pagar at the southwest SCS end near Singapore is chosen to study four extreme SLAs events in the observational record during 1999. Modeling simulations

  7. Acidified seawater impacts sea urchin larvae pH regulatory systems relevant for calcification

    PubMed Central

    Stumpp, Meike; Hu, Marian Y.; Melzner, Frank; Gutowska, Magdalena A.; Dorey, Narimane; Himmerkus, Nina; Holtmann, Wiebke C.; Dupont, Sam T.; Thorndyke, Michael C.; Bleich, Markus

    2012-01-01

    Calcifying echinoid larvae respond to changes in seawater carbonate chemistry with reduced growth and developmental delay. To date, no information exists on how ocean acidification acts on pH homeostasis in echinoderm larvae. Understanding acid–base regulatory capacities is important because intracellular formation and maintenance of the calcium carbonate skeleton is dependent on pH homeostasis. Using H+-selective microelectrodes and the pH-sensitive fluorescent dye BCECF, we conducted in vivo measurements of extracellular and intracellular pH (pHe and pHi) in echinoderm larvae. We exposed pluteus larvae to a range of seawater CO2 conditions and demonstrated that the extracellular compartment surrounding the calcifying primary mesenchyme cells (PMCs) conforms to the surrounding seawater with respect to pH during exposure to elevated seawater pCO2. Using FITC dextran conjugates, we demonstrate that sea urchin larvae have a leaky integument. PMCs and spicules are therefore directly exposed to strong changes in pHe whenever seawater pH changes. However, measurements of pHi demonstrated that PMCs are able to fully compensate an induced intracellular acidosis. This was highly dependent on Na+ and HCO3−, suggesting a bicarbonate buffer mechanism involving secondary active Na+-dependent membrane transport proteins. We suggest that, under ocean acidification, maintained pHi enables calcification to proceed despite decreased pHe. However, this probably causes enhanced costs. Increased costs for calcification or cellular homeostasis can be one of the main factors leading to modifications in energy partitioning, which then impacts growth and, ultimately, results in increased mortality of echinoid larvae during the pelagic life stage. PMID:23077257

  8. Advanced Water Quality Modelling in Marine Systems: Application to the Wadden Sea, the Netherlands

    NASA Astrophysics Data System (ADS)

    Boon, J.; Smits, J. G.

    2006-12-01

    There is an increasing demand for knowledge and models that arise from water management in relation to water quality, sediment quality (ecology) and sediment accumulation (ecomorphology). Recently, models for sediment diagenesis and erosion developed or incorporated by Delft Hydraulics integrates the relevant physical, (bio)chemical and biological processes for the sediment-water exchange of substances. The aim of the diagenesis models is the prediction of both sediment quality and the return fluxes of substances such as nutrients and micropollutants to the overlying water. The resulting so-called DELWAQ-G model is a new, generic version of the water and sediment quality model of the DELFT3D framework. One set of generic water quality process formulations is used to calculate process rates in both water and sediment compartments. DELWAQ-G involves the explicit simulation of sediment layers in the water quality model with state-of-the-art process kinetics. The local conditions in a water layer or sediment layer such as the dissolved oxygen concentration determine if and how individual processes come to expression. New processes were added for sulphate, sulphide, methane and the distribution of the electron-acceptor demand over dissolved oxygen, nitrate, sulphate and carbon dioxide. DELWAQ-G also includes the dispersive and advective transport processes in the sediment and across the sediment-water interface. DELWAQ-G has been applied for the Wadden Sea. A very dynamic tidal and ecologically active estuary with a complex hydrodynamic behaviour located at the north of the Netherlands. The predicted profiles in the sediment reflect the typical interactions of diagenesis processes.

  9. In situ Raman analyses of deep-sea hydrothermal and cold seep systems (Gorda Ridge and Hydrate Ridge)

    NASA Astrophysics Data System (ADS)

    White, S. N.; Dunk, R. M.; Peltzer, E. T.; Freeman, J. J.; Brewer, P. G.

    2006-05-01

    The Deep Ocean Raman In Situ Spectrometer (DORISS) instrument was deployed at the Sea Cliff Hydrothermal Field and Hydrate Ridge in July 2004. The first in situ Raman spectra of hydrothermal minerals, fluids, and bacterial mats were obtained. These spectra were analyzed and compared to laboratory Raman measurements of standards and samples collected from the site. Spectra of vent fluid (˜294°C at the orifice) at ˜2700 m depth were collected with noncontact and immersion sampling optics. Compared to spectra of ambient (˜2°C) seawater, the vent fluid spectra show changes in the intensity and positions of the water O-H stretch bands due to the elevated temperature. The sulfate band observed in seawater spectra is reduced in vent fluid spectra as sulfate is removed from vent fluid in the subseafloor. Additional components of hydrothermal fluid are present in concentrations too low to be detected with the current Raman system. A precision underwater positioner (PUP) was used to focus the laser spot on opaque samples such as minerals and bacterial mats. Spectra were obtained of anhydrite from actively venting chimneys, and of barite deposits in hydrothermal crusts. Laboratory analysis of rock samples collected in the vent field also detected the presence of gypsum. Spectra of bacterial mats revealed the presence of elemental sulfur (S8) and the carotenoid beta-carotene. Challenges encountered include strong fluorescence from minerals and organics and insufficient sensitivity of the instrument. The next generation DORISS instrument addresses some of these challenges and holds great potential for use in deep-sea vent environments.

  10. Calibration of a Forecasting Algae Bloom Operational System in the North Sea: Use of Remote Sensing Images

    NASA Astrophysics Data System (ADS)

    El Serafy, Ghada

    2015-04-01

    The ecological state of the North Sea surface water can be indicated by ocean variables such as the Chlorophyll-a (Chlfa) concentration. Chlfa is the principal photosynthetic pigment and is common to all phytoplankton and can therefore be used as a measure of phytoplankton biomass. The D-Water Quality (GEM) model developed at Deltares is a generic ecological model that simulates transport of substances in a water system along with various ecological processes. This model is able to estimate the Chlfa concentration operationally for the North Sea. Models are always prone to errors due to assumptions made for simplification and the use of numerical approximations. Such errors can be reduced through the use data assimilation and thus can significantly improve the forecast. The use of remote sensing images in improving the forecast is attractive due to its spatial coverage. A sensitivity analysis using the model-independent and computationally inexpensive adaptive Morris method has been carried out to identify the significant parameters. Accordingly, the model has been optimized with respect to the MERIS remote sensing data of Chla by means of the generic simulated annealing algorithm. The algorithm has been redesigned in an innovative parallel framework that optimizes the searching procedure while considerably reducing the number of iterations. The optimization is carried out over the years 2003-2008. From the results we conclude that the optimization has improved the model results to better match the MERIS data at the surface in all regions, and in particular along the Dutch and the English coast. Validation of the optimised model results to independent in situ data indicates global improvements. The model forecasting capability is validated against insitu measurement and presented in this paper.

  11. Two myomodulins isolated from central nervous system of Northwest Pacific Sea Hare, Aplysia kurodai, and their activities on other mollusks.

    PubMed

    Kim, Chan-Hee; Go, Hye-Jin; Park, Nam Gyu

    2015-01-01

    The central nervous system (CNS) of Aplysia is a fascinating source to identify and characterize neuropeptides and neurotransmitters because of offering many useful divergent and convergent neuronal aggregates. Here, two neuropeptides were isolated from the extract of CNS of the northwest pacific sea hare, Aplysia kurodai, using HPLC system for fractionation and the anterior byssus retractor muscle (ABRM) of the Mytilis edulis as the bioassay system. Purified peptides, myomodulin A (MMA) and E (MME), were determined by amino acid sequencing and molecular mass analysis. MMA showed a potentiating effect at 100 nM or lower, on the contrary, an inhibitory effect at higher doses from 100 nM on phasic contraction elicited by repetitive electrical stimulation on the ABRM of Mytilus. However, MME only inhibited phasic contraction with all examined concentrations. MME revealed 100 times more potent activity than that of MMA on the relaxing catch-tension of ABRM stimulated by acetylcholine. Both MMA and MME potently stimulated a response on the crop and penial retractor muscle of the African giant snail, Achatina fulica, compared with other known mollusks neuropeptides. These results suggest that MMA and MME may be broadly distributed in CNS of Aplysia to function a neuromodulatory role controlled via excitatory and inhibitory neurons, and may be involved in the digestive and reproductive activity in other mollusk.

  12. Atmospheric dry deposition in the vicinity of the Salton Sea, California - II: Measurement and effects of an enhanced evaporation system

    USGS Publications Warehouse

    Alonso, R.; Bytnerowicz, A.; Yee, J.L.; Boarman, W.I.

    2005-01-01

    A study was conducted to determine the effects of salt spray drift from pilot technologies employed by the US Bureau of Reclamation on deposition rates of various air-born ions. An enhanced evaporation system (EES) was tested in the field at the Salton Sea, California. Dry deposition of NO3-, NH4+, SO42-, Cl-, Ca2+, Na+, K+ and Se was assessed by using nylon filters and branches of natural vegetation exposed for one-week long periods. The simultaneous exposure of both lyophilized branches and branches of live plants offered important information highlighting the dynamics of deposited ions on vegetation. The EES significantly increased the deposition rates of Cl-, SO42- and Na+ in an area of about 639-1062 m surrounding the sprayers. Similarly, higher deposition of Ca 2+ and K+ caused by the EES was detected only when deposition was assessed using nylon filters or lyophilized branches. Deposition fluxes of NO3-, NH4+ and Se were not affected by the spraying system. Techniques for measuring dry deposition and calculating landscape-level depositional loads in non-forested systems need further development. ?? 2005 Elsevier Ltd. All rights reserved.

  13. Investigating the Biases in the Antarctic Sea Ice - Ocean System of Climate Models using Process-oriented Diagnostics

    NASA Astrophysics Data System (ADS)

    Lecomte, O.; Goosse, H.; Fichefet, T.; Holland, P.; Uotila, P.; Zunz, V.

    2015-12-01

    Most analyses of Antarctic sea ice in simulations of the CMIP5 archive have so far been oriented towards the quantification of the disagreement between model results and sea ice observations only. Since the decomposition of those biases into distinct physical components is necessary to understand their origins, we propose here an ocean-sea ice-atmosphere integrated and process-oriented approach. Not only the biases in variables essential to the sea ice seasonal evolution are estimated regionally with regard to observations, but their contributions to the sea ice concentration budget are estimated. Following a previously developed method, the sea ice concentration balance over the autumn-winter seasons is decomposed into four terms, including the sea ice concentration change during the period of interest, advection, divergence and a residual accounting for the net contribution of thermodynamics and ice deformation. Concurrently, correlations between trends in ocean temperature at depth and trends in ice concentration are calculated directly from various model output fields (including CMIP5 models) to disentangle the role of ice-ocean interactions. Results show that the geographical patterns of all mean sea ice concentration budget terms over 1992-2005 are in qualitative agreement with the observed ones. Sea ice thermodynamic growth is maintained by horizontal divergence near the continent and in the central ice pack, whereas melting close to the ice edge is led by sea ice advection. However, significant errors in all budget terms are observed due to ice velocities that tend to be overestimated all around Antarctica in several models, leading to a relatively weak divergence in the inner ice pack and to an excessive advection in the marginal ice zone. Biases in ice drift speed and direction are ultimately related to biases in winds in all models. This method paves the way for a systematic assessment of forthcoming CMIP6 sea ice model outputs in the Southern Hemisphere.

  14. The biodiversity of the Mediterranean Sea: estimates, patterns, and threats.

    PubMed

    Coll, Marta; Piroddi, Chiara; Steenbeek, Jeroen; Kaschner, Kristin; Ben Rais Lasram, Frida; Aguzzi, Jacopo; Ballesteros, Enric; Bianchi, Carlo Nike; Corbera, Jordi; Dailianis, Thanos; Danovaro, Roberto; Estrada, Marta; Froglia, Carlo; Galil, Bella S; Gasol, Josep M; Gertwagen, Ruthy; Gil, João; Guilhaumon, François; Kesner-Reyes, Kathleen; Kitsos, Miltiadis-Spyridon; Koukouras, Athanasios; Lampadariou, Nikolaos; Laxamana, Elijah; López-Fé de la Cuadra, Carlos M; Lotze, Heike K; Martin, Daniel; Mouillot, David; Oro, Daniel; Raicevich, Sasa; Rius-Barile, Josephine; Saiz-Salinas, Jose Ignacio; San Vicente, Carles; Somot, Samuel; Templado, José; Turon, Xavier; Vafidis, Dimitris; Villanueva, Roger; Voultsiadou, Eleni

    2010-08-02

    Gibraltar and the adjacent Alboran Sea), western African coast, the Adriatic, and the Aegean Sea, which show high concentrations of endangered, threatened, or vulnerable species. The Levantine Basin, severely impacted by the invasion of species, is endangered as well. This abstract has been translated to other languages (File S1).

  15. The Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats

    PubMed Central

    Coll, Marta; Piroddi, Chiara; Steenbeek, Jeroen; Kaschner, Kristin; Ben Rais Lasram, Frida; Aguzzi, Jacopo; Ballesteros, Enric; Bianchi, Carlo Nike; Corbera, Jordi; Dailianis, Thanos; Danovaro, Roberto; Estrada, Marta; Froglia, Carlo; Galil, Bella S.; Gasol, Josep M.; Gertwagen, Ruthy; Gil, João; Guilhaumon, François; Kesner-Reyes, Kathleen; Kitsos, Miltiadis-Spyridon; Koukouras, Athanasios; Lampadariou, Nikolaos; Laxamana, Elijah; López-Fé de la Cuadra, Carlos M.; Lotze, Heike K.; Martin, Daniel; Mouillot, David; Oro, Daniel; Raicevich, Saša; Rius-Barile, Josephine; Saiz-Salinas, Jose Ignacio; San Vicente, Carles; Somot, Samuel; Templado, José; Turon, Xavier; Vafidis, Dimitris; Villanueva, Roger; Voultsiadou, Eleni

    2010-01-01

    Gibraltar and the adjacent Alboran Sea), western African coast, the Adriatic, and the Aegean Sea, which show high concentrations of endangered, threatened, or vulnerable species. The Levantine Basin, severely impacted by the invasion of species, is endangered as well. This abstract has been translated to other languages (File S1). PMID:20689844

  16. The interplay between tectonics, sediment dynamics and gateways evolution in the Danube system from the Pannonian Basin to the western Black Sea.

    PubMed

    Matenco, Liviu; Munteanu, Ioan; ter Borgh, Marten; Stanica, Adrian; Tilita, Marius; Lericolais, Gilles; Dinu, Corneliu; Oaie, Gheorghe

    2016-02-01

    Understanding the natural evolution of a river-delta-sea system is important to develop a strong scientific basis for efficient integrated management plans. The distribution of sediment fluxes is linked with the natural connection between sediment source areas situated in uplifting mountain chains and deposition in plains, deltas and, ultimately, in the capturing oceans and seas. The Danube River-western Black Sea is one of the most active European systems in terms of sediment re-distribution that poses significant societal challenges. We aim to derive the tectonic and sedimentological background of human-induced changes in this system and discuss their interplay. This is obtained by analysing the tectonic and associated vertical movements, the evolution of relevant basins and the key events affecting sediment routing and deposition. The analysis of the main source and sink areas is focused in particular on the Miocene evolution of the Carpatho-Balkanides, Dinarides and their sedimentary basins including the western Black Sea. The vertical movements of mountains chains created the main moments of basin connectivity observed in the Danube system. Their timing and effects are observed in sediments deposited in the vicinity of gateways, such as the transition between the Pannonian/Transylvanian and Dacian basins and between the Dacian Basin and western Black Sea. The results demonstrate the importance of understanding threshold conditions driving rapid basins connectivity changes superposed over the longer time scale of tectonic-induced vertical movements associated with background erosion and sedimentation. The spatial and temporal scale of such processes is contrastingly different and challenging. The long-term patterns interact with recent or anthropogenic induced modifications in the natural system and may result in rapid changes at threshold conditions that can be quantified and predicted. Their understanding is critical because of frequent occurrence during

  17. An assessment of Indian monsoon seasonal forecasts and mechanisms underlying monsoon interannual variability in the Met Office GloSea5-GC2 system

    NASA Astrophysics Data System (ADS)

    Johnson, Stephanie J.; Turner, Andrew; Woolnough, Steven; Martin, Gill; MacLachlan, Craig

    2016-06-01

    We assess Indian summer monsoon seasonal forecasts in GloSea5-GC2, the Met Office fully coupled subseasonal to seasonal ensemble forecasting system. Using several metrics, GloSea5-GC2 shows similar skill to other state-of-the-art seasonal forecast systems. The prediction skill of the large-scale South Asian monsoon circulation is higher than that of Indian monsoon rainfall. Using multiple linear regression analysis we evaluate relationships between Indian monsoon rainfall and five possible drivers of monsoon interannual variability. Over the time period studied (1992-2011), the El Niño-Southern Oscillation (ENSO) and the Indian Ocean dipole (IOD) are the most important of these drivers in both observations and GloSea5-GC2. Our analysis indicates that ENSO and its teleconnection with Indian rainfall are well represented in GloSea5-GC2. However, the relationship between the IOD and Indian rainfall anomalies is too weak in GloSea5-GC2, which may be limiting the prediction skill of the local monsoon circulation and Indian rainfall. We show that this weak relationship likely results from a coupled mean state bias that limits the impact of anomalous wind forcing on SST variability, resulting in erroneous IOD SST anomalies. Known difficulties in representing convective precipitation over India may also play a role. Since Indian rainfall responds weakly to the IOD, it responds more consistently to ENSO than in observations. Our assessment identifies specific coupled biases that are likely limiting GloSea5-GC2 Indian summer monsoon seasonal prediction skill, providing targets for model improvement.

  18. Development of a WebGIS-based monitoring and environmental protection and preservation system for the Black Sea: The ECO-Satellite project

    NASA Astrophysics Data System (ADS)

    Tziavos, Ilias N.

    2013-04-01

    The ECO-Satellite project has been approved in the frame of the Joint Operational Program "Black Sea Basin 2007-2013" and it is co-financed by the European Union through the European Neighborhood and Partnership Instrument and the Instrument for Pre-Accession Assistance and National Funds. The overall objective of the project is to contribute to the protection and preservation of the water system of the Black Sea, with its main emphasis given to river deltas and protected coastal regions at the seaside. More specifically, it focuses on the creation of an environmental monitoring system targeting the marine, coastal and wetland ecosystems of the Black Sea, thus strengthening the development of common research among the involved partners and increasing the intraregional knowledge for the corresponding coastal zones. This integrated multi-level system is based on the technological assets provided by satellite Earth observation data and Geo-Informatics innovative tools and facilities, as well as on the development of a unified, easy to update geodatabase including a wide range of appropriately selected environmental parameters. Furthermore, a Web-GIS system is under development aiming in principle to support environmental decision and policy making by monitoring the state of marine, coastal and wetland ecosystems of the Black Sea and managing all the aforementioned data sources and derived research results. The system is designed in a way that is easily expandable and adaptable for environmental management in local, regional national and trans-national level and as such it will increase the capacity of decision makers who are related to Black Sea environmental policy. Therefore, it is expected that administrative authorities, scientifically related institutes and environmental protection bodies in all eligible areas will show interest in the results and applications of the information system, since the ECO-Satellite project could serve as a support tool for the

  19. Using Digital Globes to Explore the Deep Sea and Advance Public Literacy in Earth System Science

    ERIC Educational Resources Information Center

    Beaulieu, Stace E.; Emery, Emery; Brickley, Annette; Spargo, Abbey; Patterson, Kathleen; Joyce, Katherine; Silva, Tim; Madin, Katherine

    2015-01-01

    Digital globes are new technologies increasingly used in informal and formal education to display global datasets and show connections among Earth systems. But how effective are digital globes in advancing public literacy in Earth system science? We addressed this question by developing new content for digital globes with the intent to educate and…

  20. Impact of Lake Okeechobee Sea Surface Temperatures on Numerical Predictions of Summertime Convective Systems over South Florida

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Splitt, Michael E.; Fuell, Kevin K.; Santos, Pablo; Lazarus, Steven M.; Jedlovec, Gary J.

    2009-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center, the Florida Institute of Technology, and the NOAA/NWS Weather Forecast Office at Miami, FL (MFL) are collaborating on a project to investigate the impact of using high-resolution, 2-km Moderate Resolution Imaging Spectroradiometer (MODIS) sea surface temperature (SST) composites within the Weather Research and Forecasting (WRF) prediction system. The NWS MFL is currently running WRF in real-time to support daily forecast operations, using the National Centers for Environmental Prediction Nonhydrostatic Mesoscale Model dynamical core within the NWS Science and Training Resource Center's Environmental Modeling System (EMS) software. Twenty-seven hour forecasts are run daily initialized at 0300, 0900, 1500, and 2100 UTC on a domain with 4-km grid spacing covering the southern half of Florida and adjacent waters of the Gulf of Mexico and Atlantic Ocean. The SSTs are initialized with the NCEP Real-Time Global (RTG) analyses at 1/12deg resolution. The project objective is to determine whether more accurate specification of the lower-boundary forcing over water using the MODIS SST composites within the 4-km WRF runs will result in improved sea fluxes and hence, more accurate e\\olutiono f coastal mesoscale circulations and the associated sensible weather elements. SPoRT conducted parallel WRF EMS runs from February to August 2007 identical to the operational runs at NWS MFL except for the use of MODIS SST composites in place of the RTG product as the initial and boundary conditions over water. During the course of this evaluation, an intriguing case was examined from 6 May 2007, in which lake breezes and convection around Lake Okeechobee evolved quite differently when using the high-resolution SPoRT MODIS SST composites versus the lower-resolution RTG SSTs. This paper will analyze the differences in the 6 May simulations, as well as examine other cases from the summer 2007 in which the WRF

  1. Study on the geochemical character of carbon and nitrogen and sedimentary environment evolution of radial tidal sand ridges system in the South Yellow Sea, China

    NASA Astrophysics Data System (ADS)

    Ge, C.

    2015-12-01

    07SR03 core was collected from Dabei trough eastern sand ridge of radial tidal and ridge system in Jiangsu offshore, South Yellow Sea in China. The present work integrates sedimentary facies,14C dating, δ13C, and C/N with geologic and geomorphologic data available from literature. Twenty-eight sediment samples recorded ages ranging from 7490±50 to 41420±61514C yr B.P.. Facies analysis indicated fine to coarse grained sands with parallel lamination or cross stratification, massive or laminated muds . δ13C values are in the range of -26.504‰ to -21.812‰, and C/N ratios are in the range of 0.045 to 64.156. These indicate the organic matters have typical characteristics of mixed terrigenous and marine provenance. The results confirm an obvious land-sea interaction in the South Yellow Sea since late Pleistocene. At the depth of 18-20 m and 55.6 to 70 m corresponding to the sedimentary facies of land clay and river deposition respectively, which indicate the regression period in lower sea level, δ13C values are higher obviously. These may result from the C4 plant growing in the study area during those times. According to the 07SR03 information and relevant literature, determine the sea level fluctuations in DaBei trough area around the South Yellow Sea since late pleistocene. Transgressive and regressive were alternating since 50kaB.P.. About 20kaB. P. with the Last Glacial Maximum coming the relative sea-level dropped to -100m. With the increasing temperature, the sea level rises gradually except for the little regression during Younger Dryas period. From then on, the sea level rises rapidly with the advent of Holocene transgression, followed by the slow falling and then being relatively stable. The distribution of δ13C, and C/N with the depth of the core, together with facies associations, led to identify depositional settings related to tidal sand ridge facies, shoreland, tidal flat, land clay sedimentation, tidal flat and river deposition (from the top

  2. Optimizing HF antenna systems on the Dolphin and Sea Hawk helicopters

    NASA Astrophysics Data System (ADS)

    Crawford, James B.

    1987-09-01

    Making an aircraft available and modifying it to test various antenna systems and configurations is extremely costly. The computer model is an excellent alternative means of analyzing antenna systems for optimum communication system performance. In this study electromagnetic wire grid computer models of two helicopters and eight HF antenna configurations are developed using Interactive Graphics Utility for Automated NEC Analysis (IGUANA). Numerical Electromagnetics Code (NEC) is used to obtain radiation patterns, and the Advanced Prophet program is used to develop the criteria for judging system effectiveness. These computer results compare favorably with test range data, showing great savings of cost. They provide the additional advantage of showing radiation patterns at an elevated angle for sky wave propagation analysis (patterns which cannot be obtained on an antenna test range).

  3. Heavy metal bioaccumulation and metallothionein content in tissues of the sea bream Sparus aurata from three different fish farming systems.

    PubMed

    Cretì, Patrizia; Trinchella, Francesca; Scudiero, Rosaria

    2010-06-01

    The distribution and potential bioaccumulation of dietary and waterborne cadmium and lead in tissues of sea bream (Sparus aurata), a major aquaculture species, was studied in relation to three different fish farming systems. Metallothionein levels in fish tissues were also evaluated. Results demonstrate that metal concentrations in various tissues significantly vary among fish culture systems. Different tissues show different capacity for accumulating heavy metals. The content of both cadmium and lead is not strictly correlated with that of metallothionein. Indeed, the marked accumulation of both metals in liver, as well as the high lead content found in gills and kidney, are not accompanied by a concomitant accumulation of metallothioneins in these tissues. No correlation is present between heavy metals and metallothionein content in muscle tissue. The results also demonstrate that cadmium accumulates mainly via dietary food, whereas lead accumulation is not of food origin. Noteworthy is that the concentration of the two metals found in muscle in all instances is lower than the limits established by European Union legislation for fish destined for human consumption.

  4. Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water. Version 2

    SciTech Connect

    Dickson, A.G.; Goyet, C.

    1994-09-01

    The collection of extensive, reliable, oceanic carbon data is a key component of the Joint Global Ocean Flux Study (JGOFS). A portion of the US JGOFS oceanic carbon dioxide measurements will be made during the World Ocean Circulation Experiment Hydrographic Program. A science team has been formed to plan and coordinate the various activities needed to produce high quality oceanic carbon dioxide measurements under this program. This handbook was prepared at the request of, and with the active participation of, that science team. The procedures have been agreed on by the members of the science team and describe well tested methods. They are intended to provide standard operating procedures, together with an appropriate quality control plan, for measurements made as part of this survey. These are not the only measurement techniques in use for the parameters of the oceanic carbon system; however, they do represent the current state-of-the-art for ship-board measurements. In the end, the editors hope that this handbook can serve widely as a clear and unambiguous guide to other investigators who are setting up to analyze the various parameters of the carbon dioxide system in sea water.

  5. Lessons learned from the NEPTUNE power system and other deep-sea adventures

    NASA Technical Reports Server (NTRS)

    Kirkham, Harold

    2005-01-01

    The development of underwater science systems presents some challenging technical issues. It seems that the best efforts of the engineers and scientists involved are sometimes inadequate, and projects that once seemed straightforward end up being late, or overbudget, or cancelled. This paper will review some of the lessons that may be learned from the examples of three science projects in the deep ocean: the DUMAND neutrino detector, the H20 observatory, and the power system part of the NEPTUNE regional cabled observatory.

  6. New insights into the organic carbon export in