Science.gov

Sample records for albumin bsa lysozyme

  1. Foam fractionation of binary mixtures of lysozyme and albumin.

    PubMed

    Lockwood, C E; Jay, M; Bummer, P M

    2000-06-01

    A nitrogen gas-based foam fractionation method was employed to separate model proteins, bovine serum albumin (BSA) and hen egg white lysozyme, from each other. Fractionation was characterized by the separation ratio and by recovery of proteins in the retentate as a function of the nominal pore size of the gas dispersion frit and solution conditions (pH and ionic strength). For binary mixtures of the proteins at pH 7.4, and ionic strength (mu) of 0.18 M, the recovery of lysozyme and the separation ratio were both dependent on the frit size employed to generate the foam. At low ionic strength (mu = 0.01 M), separation was only somewhat greater with the small pore size frits, although at values significantly lower than those found for high ionic strength. The diminished separations appear to be due to the only slight changes in recoveries observed for BSA and lysozyme.%Separation ratios of lysozyme from BSA in solutions either of high or low ionic strength were maximal at pH values equal to or less than the isoelectric point (pI) of BSA. Separation ratios were lower when foaming was carried out under low compared with high ionic strength. The recovery of lysozyme was enhanced by foaming from solutions of low pH and high ionic strength. Recoveries of BSA were greatest when the molecule was negatively charged. Electrical interactions between the positively charged lysozyme and negatively charged BSA may explain the diminished separation ratios and enhanced recoveries. Enzyme activity studies of lysozyme remaining in the retentate showed no change from prefoam activity.

  2. A comparison of the physical properties of ultrasonically synthesized lysozyme- and BSA-shelled microbubbles.

    PubMed

    Vong, Fiona; Son, Younggyu; Bhuiyan, Sadia; Zhou, Meifang; Cavalieri, Francesca; Ashokkumar, Muthupandian

    2014-01-01

    Ultrasonic technique has been used for synthesising protein microspheres possessing specific physical and functional properties. Various proteins have been used as shell materials under different experimental conditions. In previous studies, thermal or chemical denaturation of the proteins was used to obtain stable bovine-serum albumin (BSA) and lysozyme microbubbles (MBs), respectively. It is ideal to establish a generic procedure to synthesise microspheres irrespective of the nature of the protein. In order to see if a generic procedure can be established, ultrasonic synthesis of lysozyme and BSA MBs was carried out under similar experimental conditions and their properties were evaluated. The size, size distribution and the stability of the MBs were significantly different for the lysozyme and BSA MBs. The size and size distribution of the lysozyme coated MBs were larger than BSA bubbles. The mechanical strength of MBs against the shear forces, generated when irradiated by high frequency ultrasound, was studied using pulsed-sonoluminescence (SL). This study indicated that lysozyme MBs were significantly more stable than BSA MBs. An increase in mechanical strength of the MBs may lead to an increase in their storage lifetime and stability against gas diffusion. Possible reasons for such observations have been discussed.

  3. On the mechanical properties of bovine serum albumin (BSA) adhesives.

    PubMed

    Berchane, N S; Andrews, M J; Kerr, S; Slater, N K H; Jebrail, F F

    2008-04-01

    Biological adhesives, natural and synthetic, are of current active interest. These adhesives offer significant advantages over traditional sealant techniques, in particular, they are easier to use, and can play an integral part in the healing mechanism of tissue. Thus, biological adhesives can play a major role in medical applications if they possess adequate mechanical behavior and stability over time. In this work, we report on the method of preparation of bovine serum albumin (BSA) into a biological adhesive. We present quantitative measurements that show the effect of BSA concentration and cross-linker content on the bonding strength of BSA adhesive to wood. A comparison is then made with synthetic poly(glycidyl methacrylate) (PGMA) adhesive, and a commercial cyanoacrylate glue, which was used as a control adhesive. In addition, BSA samples were prepared and characterized for their water content, tensile strength, and elasticity. We show that on dry surface, BSA adhesive exhibits a high bonding strength that is comparable with non-biological commercial cyanoacrylate glues, and synthetic PGMA adhesive. Tensile testing on wet wood showed a slight increase in the bonding strength of BSA adhesive, a considerable decrease in the bonding strength of cyanoacrylate glue, and negligible adhesion of PGMA. Tests performed on BSA samples demonstrate that initial BSA concentration and final water content have a significant effect on the stress-strain behavior of the samples.

  4. Effect of bovine serum albumin (BSA) on enzymatic cellulose hydrolysis.

    PubMed

    Wang, Hui; Mochidzuki, Kazuhiro; Kobayashi, Shinichi; Hiraide, Hatsue; Wang, Xiaofen; Cui, Zongjun

    2013-06-01

    Bovine serum albumin (BSA) was added to filter paper during the hydrolysis of cellulase. Adding BSA before the addition of the cellulase enhances enzyme activity in the solution, thereby increasing the conversion rate of cellulose. After 48 h of BSA treatment, the BSA adsorption quantities are 3.3, 4.6, 7.8, 17.2, and 28.3 mg/g substrate, each with different initial BSA concentration treatments at 50 °C; in addition, more cellulase was adsorbed onto the filter paper at 50 °C compared with 35 °C. After 48 h of hydrolysis, the free-enzyme activity could not be measured without the BSA treatment, whereas the remaining activity of the filter paper activity was approximately 41 % when treated with 1.0 mg/mL BSA. Even after 96 h of hydrolysis, 25 % still remained. Meanwhile, after 48 h of incubation without substrate, the remaining enzyme activities were increased 20.7 % (from 43.7 to 52.7 %) and 94.8 % (from 23.3 to 45.5 %) at 35 and 50 °C, respectively. Moreover, the effect of the BSA was more obvious at 35 °C compared with 50 °C. When using 15 filter paper cellulase units per gram substrate cellulase loading at 50 °C, the cellulose conversion was increased from 75 % (without BSA treatment) to ≥90 % when using BSA dosages between 0.1 and 1.5 mg/mL. Overall, these results suggest that there are promising strategies for BSA treatment in the reduction of enzyme requirements during the hydrolysis of cellulose.

  5. Investigation on the interactions of clenbuterol to bovine serum albumin and lysozyme by molecular fluorescence technique.

    PubMed

    Bi, Shuyun; Pang, Bo; Wang, Tianjiao; Zhao, Tingting; Yu, Wang

    2014-01-01

    Clenbuterol interacting with bovine serum albumin (BSA) or lysozyme (LYS) in physiological buffer (pH 7.4) was investigated by the fluorescence spectroscopy and UV-vis absorption spectroscopy. The results indicated that clenbuterol quenched the intrinsic fluorescence of BSA and LYS via a static quenching procedure. The binding constants of clenbuterol with BSA and LYS were 1.16×10(3) and 1.49×10(3) L mol(-1) at 291 K. The values of ΔH and ΔS implied that hydrophobic and electrostatic interaction played a major role in stabilizing the complex (clenbuterol-BSA or clenbuterol-LYS). In the presence of Fe2+, Fe3+, Cu2+, Mg2+, Ca2+, or Zn2+, the binding constants of clenbuterol to BSA or LYS had no significant differences. The distances between the donor (BSA or LYS) and acceptor (clenbuterol) were 2.61 and 2.19 nm for clenbuterol-BSA and clenbuterol-LYS respectively. Furthermore, synchronous fluorescence spectrometry was used to analyze the conformational changes of BSA and LYS.

  6. Size-dependent interaction of silica nanoparticles with lysozyme and bovine serum albumin proteins

    NASA Astrophysics Data System (ADS)

    Yadav, Indresh; Aswal, Vinod K.; Kohlbrecher, Joachim

    2016-05-01

    The interaction of three different sized (diameter 10, 18, and 28 nm) anionic silica nanoparticles with two model proteins—cationic lysozyme [molecular weight (MW) 14.7 kDa)] and anionic bovine serum albumin (BSA) (MW 66.4 kDa) has been studied by UV-vis spectroscopy, dynamic light scattering (DLS), and small-angle neutron scattering (SANS). The adsorption behavior of proteins on the nanoparticles, measured by UV-vis spectroscopy, is found to be very different for lysozyme and BSA. Lysozyme adsorbs strongly on the nanoparticles and shows exponential behavior as a function of lysozyme concentration irrespective of the nanoparticle size. The total amount of adsorbed lysozyme, as governed by the surface-to-volume ratio, increases on lowering the size of the nanoparticles for a fixed volume fraction of the nanoparticles. On the other hand, BSA does not show any adsorption for all the different sizes of the nanoparticles. Despite having different interactions, both proteins induce similar phase behavior where the nanoparticle-protein system transforms from one phase (clear) to two phase (turbid) as a function of protein concentration. The phase behavior is modified towards the lower concentrations for both proteins with increasing the nanoparticle size. DLS suggests that the phase behavior arises as a result of the nanoparticles' aggregation on the addition of proteins. The size-dependent modifications in the interaction potential, responsible for the phase behavior, have been determined by SANS data as modeled using the two-Yukawa potential accounting for the repulsive and attractive interactions in the systems. The protein-induced interaction between the nanoparticles is found to be short-range attraction for lysozyme and long-range attraction for BSA. The magnitude of attractive interaction irrespective of protein type is enhanced with increase in the size of the nanoparticles. The total (attractive+repulsive) potential leading to two-phase formation is found to be

  7. Terahertz spectroscopy of native-conformation and thermally denatured bovine serum albumin (BSA).

    PubMed

    Yoneyama, H; Yamashita, M; Kasai, S; Kawase, K; Ueno, R; Ito, H; Ouchi, T

    2008-07-07

    Proteins are expected to exhibit collective vibrational modes at terahertz frequencies. We have developed a promising approach to measure these motions by using a membrane device to hold samples. Samples of bovine serum albumin (BSA) in native and thermally denatured conformations were measured using terahertz time-domain spectroscopy. Clear differences were observed in transmittance and phase between native-conformation BSA samples and thermally denatured BSA samples. Time-domain data shows that samples exhibited relative time shifts when compared with a standard. Results suggest that there were differences in dielectric responses in the BSA samples, and these are probably associated with molecular conformational changes in the membrane device.

  8. Spectroscopic Study on the Interaction between Naphthalimide-Polyamine Conjugates and Bovine Serum Albumin (BSA).

    PubMed

    Tian, Zhi-Yong; Song, Li-Na; Zhao, Yuan; Zang, Feng-Lei; Zhao, Zhong-Hua; Chen, Nan-Hao; Xu, Xue-Jun; Wang, Chao-Jie

    2015-09-11

    The effect of a naphthalimide pharmacophore coupled with diverse substituents on the interaction between naphthalimide-polyamine conjugates 1-4 and bovine serum albumin (BSA) was studied by UV absorption, fluorescence and circular dichroism (CD) spectroscopy under physiological conditions (pH = 7.4). The observed spectral quenching of BSA by the compounds indicated that they could bind to BSA. Furthermore, caloric fluorescent tests revealed that the quenching mechanisms of compounds 1-3 were basically static type, but that of compound 4 was closer to a classical type. The Ksv values at room temperature for compound-BSA complexes-1-BSA, 2-BSA, 3-BSA and 4-BSA were 1.438 × 10⁴, 3.190 × 10⁴, 5.700 × 10⁴ and 4.745 × 10⁵, respectively, compared with the value of MINS, 2.863 × 10⁴ at Ex = 280 nm. The obtained quenching constant, binding constant and thermodynamic parameter suggested that the binding between compounds 1-4 with BSA protein, significantly affected by the substituted groups on the naphthalene backbone, was formed by hydrogen bonds, and other principle forces mainly consisting of charged and hydrophobic interactions. Based on results from the analysis of synchronous three-dimensional fluorescence and CD spectra, we can conclude that the interaction between compounds 1-4 and BSA protein has little impact on the BSA conformation. Calculated results obtained from in silico molecular simulation showed that compound 1 did not prefer either enzymatic drug sites I or II over the other. However, DSII in BSA was more beneficial than DSI for the binding between compounds 2-4 and BSA protein. The binding between compounds 1-3 and BSA was hydrophobic in nature, compared with the electrostatic interaction between compound 4 and BSA.

  9. Spectroscopic study on the interaction between mononaphthalimide spermidine (MINS) and bovine serum albumin (BSA).

    PubMed

    Tian, Zhiyong; Zang, Fenglei; Luo, Wen; Zhao, Zhonghua; Wang, Yueqiao; Xu, Xuejun; Wang, Chaojie

    2015-01-01

    The interaction mononaphthalimide spermidine (MINS, 1) and bovine serum albumin (BSA) was studied by UV/vis absorption, fluorescence and circular dichroism spectra (CD) under physiological conditions (pH=7.4). The observed spectral quenching of BSA by compound 1 indicated compound 1 could bind to BSA. Further fluorescent tests revealed that the quenching mechanism of BSA by compound 1 was overall static. Meanwhile, the obtained binding constant and thermodynamic parameters on compound-BSA interaction showed that the type of interaction force of compound 1 and BSA was mainly hydrophobic. The analysis of synchronous, three-dimensional fluorescence and CD showed that compound 1 had weak influence on the conformational changes in BSA. Molecular docking simulation was performed and docking model in silico suggested that the configuration of compound 1 was localized in enzymatic drug site II in BSA. Furthermore, naphthalimide moiety of compound 1 greatly contributed to the hydrophobic interaction between compound 1 and BSA protein, as confirmed by experimental data.

  10. Comprehensive spectroscopic probing the interaction and conformation impairment of bovine serum albumin (BSA) by herbicide butachlor.

    PubMed

    Liu, Xiaoyi; Ling, Zhaoxing; Zhou, Xing; Ahmad, Farooq; Zhou, Ying

    2016-09-01

    Butachlor is an effective herbicide to deal with undesired weeds selectively and is used at high levels in Asian countries. However, its interaction and impairment effect on BSA was still not clear. In this study, we investigated the interaction between butachlor and bovine serum albumin (BSA) by multi-spectroscopic methods including UV absorption, circular dichroism (CD) spectra, Fourier transform infrared (FTIR) spectra and fluorescence spectra under physiological conditions (pH=7.4). The results revealed that there was a static quenching of BSA induced by butachlor stemmed from the formation of complex. Based on thermodynamic data, the interaction of butachlor with BSA was due to happen, and van der Waals force as well as hydrogen bond were the major forces contributed to the interaction. The binding constant Kb and number of binding site of butachlor with BSA were 5.158×10(5) and 1.372 at 303K, respectively. The distance r between donor (BSA) and acceptor (butachlor) was 0.113nm, obtained according to the Förster theory. The results revealed that butachlor induced conformational changes in BSA but the secondary structure of BSA was still retained. In addition, the microenvironment around chromophore residues of BSA, for example, tryptophan, changed as well, resulting from the formation of more hydrogen bonds.

  11. Residual bovine serum albumin (BSA) quantitation in vaccines using automated Capillary Western technology.

    PubMed

    Loughney, John W; Lancaster, Catherine; Ha, Sha; Rustandi, Richard R

    2014-09-15

    Bovine serum albumin (BSA) is a major component of fetal bovine serum (FBS), which is commonly used as a culture medium during vaccine production. Because BSA can cause allergic reactions in humans the World Health Organization (WHO) has set a guidance of 50 ng or less residual BSA per vaccine dose. Vaccine manufacturers are expected to develop sensitive assays to detect residual BSA. Generally, sandwich enzyme-linked immunosorbent assays (ELISA) are used in the industry to detect these low levels of BSA. We report the development of a new improved method for residual BSA detection using the SimpleWestern technology to analyze residual BSA in an attenuated virus vaccine. The method is based on automated Capillary Western and has linearity of two logs, >80% spike recovery (accuracy), intermediate precision of CV <15%, and LOQ of 5.2 ng/ml. The final method was applied to analyze BSA in four lots of bulk vaccine products and was used to monitor BSA clearance during vaccine process purification.

  12. Glycation does not modify bovine serum albumin (BSA)-induced reduction of rat aortic relaxation: the response to glycated and nonglycated BSA is lost in metabolic syndrome.

    PubMed

    Rubio-Ruiz, Maria Esther; Díaz-Díaz, Eulises; Cárdenas-León, Mario; Argüelles-Medina, Rabindranath; Sánchez-Canales, Patricia; Larrea-Gallo, Fernando; Soria-Castro, Elizabeth; Guarner-Lans, Verónica

    2008-07-01

    The effects of nonglycated bovine serum albumin (BSA) and advanced glycosylation end products of BSA (AGE-BSA) on vascular responses of control and metabolic syndrome (MS) rats characterized by hypertriglyceridemia, hypertension, hyperinsulinemia, and insulin resistance were studied. Albumin and in vitro prepared AGE-BSA have vascular effects; however, recent studies indicate that some effects of in vitro prepared AGEs are due to the conditions in which they were generated. We produced AGEs by incubating glucose with BSA for 60 days under sterile conditions in darkness and at 37 degrees C. To develop MS rats, male Wistar animals were given 30% sucrose in drinking water since weanling. Six month old animals were used. Blood pressure, insulin, triglycerides, and serum albumin were increased in MS rats. Contraction of aortic rings elicited with norepinephrine was stronger. There were no effects of nonglycated BSA or AGE-BSA on contractions in control or MS rats; however, both groups responded to L-NAME, an inhibitor of nitric oxide synthesis. Arterial relaxation induced using acetylcholine was smaller in MS rats. Nonglycated BSA and AGE-BSA significantly diminished relaxation in a 35% in the control group but the decrease was similar when using nonglycated BSA and AGE-BSA. This decrease was not present in the MS rats and was not due to increased RAGEs or altered biochemical characteristics of BSA. In conclusion, both BSA and AGE-BSA inhibit vascular relaxation in control artic rings. In MS rats the effect is lost possibly due to alterations in endothelial cells that are a consequence of the illness.

  13. The studies of density, apparent molar volume, and viscosity of bovine serum albumin, egg albumin, and lysozyme in aqueous and RbI, CsI, and DTAB aqueous solutions at 303.15 K.

    PubMed

    Singh, Man; Chand, Hema; Gupta, K C

    2005-06-01

    Density (rho), apparent molar volume (V(phi)), and viscosity (eta) of 0.0010 to 0.0018% (w/v) of bovine serum albumin (BSA), egg albumin, and lysozyme in 0.0002, 0.0004, and 0.0008 M aqueous RbI and CsI, and (dodecyl)(trimethyl)ammonium bromide (DTAB) solutions were obtained. The experimental data were regressed against composition, and constants are used to elucidate the conformational changes in protein molecules. With salt concentration, the density of proteins is found to decrease, and the order of the effect of additives on density is observed as CsI > RbI > DTAB. The trend of apparent molar volume of proteins is found as BSA > egg-albumin > lysozyme for three additives. In general, eta values of BSA remain higher for all compositions of RbI than that of egg-albumin for CsI and DTAB. These orders of the data indicate the strength of intermolecular forces between proteins and salts, and are helpful for understanding the denaturation of proteins.

  14. Studies on interaction of colloidal Ag nanoparticles with Bovine Serum Albumin (BSA).

    PubMed

    Ravindran, Aswathy; Singh, Anupam; Raichur, Ashok M; Chandrasekaran, N; Mukherjee, Amitava

    2010-03-01

    Biofunctionalization of noble metal nanoparticles like Ag, Au is essential to obtain biocompatibility for specific biomedical applications. Silver nanoparticles are being increasingly used in bio-sensing applications owing to excellent optoelectronic properties. Among the serum albumins, the most abundant proteins in plasma, a wide range of physiological functions of Bovine Serum Albumin (BSA) has made it a model system for biofunctionalization. In absence of adequate prior reports, this study aims to investigate the interaction between silver nanoparticles and BSA. The interaction of BSA [0.05-0.85% concentrations] with Ag nanoparticles [50ppm concentration] in aqueous dispersion was studied through UV-vis spectral changes, morphological and surface structural changes. At pH 7, which is more than the isoelectric point of BSA, a decrease in absorbance at plasmon peak of uninteracted nanoparticles (425nm) was noted till 0.45% BSA, beyond that a blue shift towards 410nm was observed. The blue shift may be attributed to enhanced electron density on the particle surfaces. Increasing pH to 12 enhanced the blue shift further to 400nm. The conformational changes in BSA at alkaline pH ranges and consequent hydrophobic interactions also played an important role. The equilibrium adsorption data fitted better to Freundlich isotherm compared to Langmuir curve. The X-ray diffraction study revealed complete coverage of Ag nanoparticles by BSA. The scanning electron microscopic study of the interacted nanoparticles was also carried out to decipher morphological changes. This study established that tailoring the concentration of BSA and pH of the interaction it was possible to reduce aggregation of nanoparticles. Biofunctionalized Ag nanoparticles with reduced aggregation will be more amenable towards bio-sensing applications.

  15. Correlation of diafiltration sieving behavior of lysozyme-BSA mixtures with osmotic second virial cross-coefficients.

    PubMed

    Tessier, Peter M; Verruto, Vincent J; Sandler, Stanley I; Lenhoff, Abraham M

    2004-08-05

    The role of protein-protein interactions in membrane separations of protein mixtures remains incompletely understood, largely due to the difficulty of characterizing protein self- and, especially, cross-association. Recently, a novel technique, cross-interaction chromatography, has been developed to measure weak protein cross-association in terms of the osmotic second virial cross-coefficient. In this work the relationship between protein cross-association and the sieving behavior of lysozyme in the presence of BSA has been investigated. Sieving coefficients were measured using a stirred diafiltration cell over a range of pH and ionic strength, and a striking correlation between the lysozyme sieving and second virial cross-coefficients for BSA/lysozyme mixtures has been found: when the protein cross-interactions are most attractive (negative second virial cross-coefficient), the lysozyme sieving coefficients are lowest, and vice versa. The correlation between the sieving and second virial cross-coefficients may be due to the physically similar environments in the chromatography and filtration experiments since one protein is passed through a concentrated region of the second protein either immobilized on the column or accumulated at the membrane surface, and the migration rate of the mobile protein in both cases is influenced by protein cross-association. This study represents the first time that molecular interactions in binary mixtures have been related directly to filtration behavior, and may provide a useful approach to optimize the separation of other binary protein mixtures.

  16. Hepatoma-Targeted Radionuclide Immune Albumin Nanospheres: 131I-antiAFPMcAb-GCV-BSA-NPs

    PubMed Central

    Lin, Mei; Huang, Junxing; Zhang, Dongsheng; Jiang, Xingmao; Zhang, Jia; Yu, Hong; Xiao, Yanhong; Shi, Yujuan; Guo, Ting

    2016-01-01

    An effective strategy has been developed for synthesis of radionuclide immune albumin nanospheres (131I-antiAFPMcAb-GCV-BSA-NPs). In vitro as well as in vivo targeting of 131I-antiAFPMcAb-GCV-BSA-NPs to AFP-positive hepatoma was examined. In cultured HepG2 cells, the uptake and retention rates of 131I-antiAFPMcAb-GCV-BSA-NPs were remarkably higher than those of 131I alone. As well, the uptake rate and retention ratios of 131I-antiAFPMcAb-GCV-BSA-NPs in AFP-positive HepG2 cells were also significantly higher than those in AFP-negative HEK293 cells. Compared to 131I alone, 131I-antiAFPMcAb-GCV-BSA-NPs were much more easily taken in and retained by hepatoma tissue, with a much higher T/NT. Due to good drug-loading, high encapsulation ratio, and highly selective affinity for AFP-positive tumors, the 131I-antiAFPMcAb-GCV-BSA-NPs are promising for further effective radiation-gene therapy of hepatoma. PMID:26981334

  17. Spectrometry researches on interaction and sonodynamic damage of riboflavin (RF) to bovine serum albumin (BSA).

    PubMed

    Wang, Zhiqiu; Li, Jushi; Wang, Jun; Zou, Mingming; Wang, Siyu; Li, Ying; Kong, Yumei; Xia, Lixin

    2012-02-15

    In this paper, the riboflavin (RF) was used to study the interaction and sonodynamic damage to bovine serum albumin (BSA) by fluorescence and UV-vis spectroscopy. The results showed that the RF could efficiently bind to BSA in aqueous solution. Under ultrasonic irradiation, the RF could obviously damage the BSA. In addition, synchronous fluorescence spectroscopy revealed that the RF showed more accessible to tryptophan (Trp) residues than to tyrosine (Tyr) residues. Also, it damaged Trp residues more seriously than Tyr residues under ultrasonic irradiation. At last, the generation of reactive oxygen species (ROS) in sonodynamic process was estimated by the method of Oxidation-Extraction Spectrometry (OES). And then, several radical scavengers were used to determine the kind of ROS. It was found that at least the singlet oxygen ((1)O(2)) and hydroxyl radicals (*OH) were generated.

  18. Extraction and stability of bovine serum albumin (BSA) using cholinium-based Good's buffers ionic liquids.

    PubMed

    Taha, Mohamed; Quental, Maria V; Correia, Isabel; Freire, Mara G; Coutinho, João A P

    2015-07-01

    Good's buffers ionic liquids (GB-ILs), composed of cholinium-based cations and Good's buffers anions, display self-buffering characteristics in the biological pH range, and their polarity and hydrophobicity can be easily tuned by a proper manipulation of their ions chemical structures. In this work, the extraction ability for bovine serum albumin (BSA) of aqueous biphasic systems (ABS) formed by polypropylene glycol 400 (PPG 400) and several GB-ILs was evaluated. ABS formed by PPG 400 and cholinium chloride ([Ch]Cl), GBs, and sucrose were also investigated for comparison purposes. It is shown that BSA preferentially migrates for the GB-IL-rich phase, with extraction efficiencies of 100%, achieved in a single-step. Dynamic light scattering, and circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopies were employed to evaluate the effect of the investigated cholinium-based GB-ILs on the BSA stability, and compared with results obtained for the respective GBs precursors, [Ch]Cl and sucrose, a well-known protein stabilizer. Molecular docking studies were also carried out to investigate on the binding sites of GB-IL ions to BSA. The experimental results confirm that BSA has a higher stability in GB-ILs than in any of the other compounds investigated.

  19. Preparation of Bovine Serum Albumin (BSA) nanoparticles by desolvation using a membrane contactor: a new tool for large scale production.

    PubMed

    Yedomon, B; Fessi, H; Charcosset, C

    2013-11-01

    Albumin nanoparticles are attractive drug delivery systems as they can be prepared under soft conditions and incorporate several kinds of molecules. The aim of this study was to upscale the desolvation process for preparing Bovine Serum Albumin (BSA) nanoparticles using a membrane contactor. At a first step, the BSA nanoparticles were prepared at small scale using a syringe pump. BSA nanoparticles of 139 nm in size, with a polydispersity index of 0.046, were obtained at the optimal conditions: pH 8.2, 100 mg mL(-1) BSA albumin solution (2 mL), and 1 mL min(-1) flow rate of ethanol addition (8 mL). The upscaling with a membrane contactor was achieved by permeating ethanol through the pores of a Shirasu Porous Glass (SPG Technology Co., Japan) membrane and circulating the aqueous phase tangentially to the membrane surface. By increasing the pressure of the ethanol from 1 to 2.7 bars, a progressive decrease in nanoparticle size was obtained with a high nanoparticles yield (around 94-96%). In addition, the flow rate of the circulating phase did not affect the BSA nanoparticle characteristics. At the optimal conditions (pH 8.2, 100 mg mL(-1) BSA albumin solution, pressure of ethanol 2.7 bars, flow rate of the circulating phase 30.7 mL s(-1)), the BSA nanoparticles showed similar characteristics to those obtained with the syringe pump. Large batches of BSA nanoparticles were prepared up to 10 g BSA. The BSA nanoparticles were stable at least during 2 months at 4 °C, and their characteristics were reproducible. It was then concluded that the membrane contactor technique could be a suitable method for the preparation of albumin nanoparticles at large scale with properties similar to that obtained at small scale.

  20. Albumin (BSA) Adsorption over Graphene in Aqueous Environment: Influence of Orientation, Adsorption Protocol, and Solvent Treatment.

    PubMed

    Vilhena, J G; Rubio-Pereda, Pamela; Vellosillo, Perceval; Serena, P A; Pérez, Rubén

    2016-02-23

    We report 150 ns explicit solvent MD simulations of the adsorption on graphene of albumin (BSA) in two orientations and using two different adsorption protocols, i.e., free and forced adsorption. Our results show that free adsorption occurs with little structural rearrangements. Even taking adsorption to an extreme, by forcing it with a 5 nN downward force applied during the initial 20 ns, we show that along a particular orientation BSA is able to preserve the structural properties of the majority of its binding sites. Furthermore, in all the cases considered in this work, the ibuprofen binding site has shown a strong resilience to structural changes. Finally, we compare these results with implicit solvent simulations and find that the latter predicts an extreme protein unfolding upon adsorption. The origin of this discrepancy is attributed to a poor description of the water entropic forces at interfaces in the implicit solvent methods.

  1. Fluorescence dynamics of bovine serum albumin (BSA) conjugated CdZnS nanocrystallites

    NASA Astrophysics Data System (ADS)

    Mohanta, D.; Narayanan, S. S.; Pal, S. K.; Raychaudhuri, A. K.

    2008-08-01

    We report on the production of composite semiconductor CdZnS nanoparticles by adopting an inverse micellar route, using bis (2-ethylhexyl) sulfosuccinate (aerosol-AOT) as surfactant and with a degree of hydration w0 = [ H{2}O] : [AOT] = 8.9. Prior to bioconjugation (conjugation with bovine serum albumin (BSA)), the hydrophobic surface of the nanocrystals were made hydrophilic with thiol treatment (reacting with mercapto acetic acid). We compare photophysical nature of as prepared, thio-stabilized and bioconjugated CdZnS nanoparticles using absorption/emission spectroscopy and ultrafast photoluminescence decay measurements. The change-over from nonzero anisotropy (untreated) to zero anisotropy (bioconjugated) is assigned to the depolarized emission due to the surface reconstruction owing to BSA adsorption into the surface vacancies. Exploration of the dynamics of photophysical features would be promising for biomolecular sensing, labeling, and imaging applications.

  2. Binding interaction of ramipril with bovine serum albumin (BSA): Insights from multi-spectroscopy and molecular docking methods.

    PubMed

    Shi, Jie-Hua; Pan, Dong-Qi; Jiang, Min; Liu, Ting-Ting; Wang, Qi

    2016-11-01

    The binding interaction between a typical angiotensin-converting enzyme inhibitor (ACEI), ramipril, and a transport protein, bovine serum albumin (BSA), was studied in vitro using UV-vis absorption spectroscopy, steady-state fluorescence spectroscopic titration, synchronous fluorescence spectroscopy, three dimensional fluorescence spectroscopy, circular dichroism and molecular docking under the imitated physiological conditions (pH=7.4). The experimental results suggested that the intrinsic fluorescence of BSA was quenched by ramipril thought a static quenching mechanism, indicating that the stable ramipril-BSA complex was formed by the intermolecular interaction. The number of binding sites (n) and binding constant of ramipril-BSA complex were about 1 and 3.50×10(4)M(-1) at 298K, respectively, suggesting that there was stronger binding interaction of ramipril with BSA. The thermodynamic parameters together with molecular docking study revealed that both van der Waal's forces and hydrogen bonding interaction dominated the formation of the ramipril-BSA complex and the binding interaction of BSA with ramipril is enthalpy-driven processes due to |ΔH°|>|TΔS°| and ΔG°<0. The spatial distance between ramipril and BSA was calculated to be 3.56nm based on Förster's non-radiative energy transfer theory. The results of the competitive displacement experiments and molecular docking confirmed that ramipril inserted into the subdomain IIA (site I) of BSA, resulting in a slight change in the conformation of BSA but BSA still retained its secondary structure α-helicity.

  3. Spectroscopic and molecular docking studies of binding interaction of gefitinib, lapatinib and sunitinib with bovine serum albumin (BSA).

    PubMed

    Shen, Guo-Feng; Liu, Ting-Ting; Wang, Qi; Jiang, Min; Shi, Jie-Hua

    2015-12-01

    The binding interactions of three kinds of tyrosine kinase inhibitors (TKIs), such as gefitinib, lapatinib and sunitinib, with bovine serum albumin (BSA) were studied using ultraviolet spectrophotometry, fluorescence spectroscopy, circular dichroism (CD), Fourier transform infrared spectroscopy (FT-IR) and molecular docking methods. The experimental results showed that the intrinsic fluorescence quenching of BSA induced by the three TKIs resulted from the formation of stable TKIs-BSA complexes through the binding interaction of TKIs with BSA. The stoichiometry of three stable TKIs-BSA complexes was 1:1 and the binding constants (Kb) of the three TKIs-BSA complexes were in the order of 10(4)M(-1) at 310 K, indicating that there was a strong binding interaction of the three TKIs with BSA. Based on the analysis of the signs and magnitudes of the free energy change (ΔG(0)), enthalpic change (ΔH(0)) and entropic change (ΔS(0)) in the binding process, it can be deduced that the binding process of the three TKIs with BSA was spontaneous and enthalpy-driven process, and the main interaction forces between the three TKIs and BSA were van der Waals force and hydrogen bonding interaction. Moreover, from the results of CD, FT-IR and molecular docking, it can be concluded that there was a significant difference between the three TKIs in the binding site on BSA, lapatinib was located on site II (m) of BSA while gefitinib and sunitinib were bound on site I of BSA, and there were some changes in the BSA conformation when binding three TKIs to BSA but BSA still retains its secondary structure α-helicity.

  4. Probing into the binding interaction between medroxyprogesterone acetate and bovine serum albumin (BSA): spectroscopic and molecular docking methods.

    PubMed

    Fang, Fang; Pan, Dong-Qi; Qiu, Min-Jie; Liu, Ting-Ting; Jiang, Min; Wang, Qi; Shi, Jie-Hua

    2016-09-01

    To further understand the mechanism of action and pharmacokinetics of medroxyprogesterone acetate (MPA), the binding interaction of MPA with bovine serum albumin (BSA) under simulated physiological conditions (pH 7.4) was studied using fluorescence emission spectroscopy, synchronous fluorescence spectroscopy, circular dichroism and molecular docking methods. The experimental results reveal that the fluorescence of BSA quenches due to the formation of MPA-BSA complex. The number of binding sites (n) and the binding constant for MPA-BSA complex are ~1 and 4.6 × 10(3)  M(-1) at 310 K, respectively. However, it can be concluded that the binding process of MPA with BSA is spontaneous and the main interaction forces between MPA and BSA are van der Waals force and hydrogen bonding interaction due to the negative values of ΔG(0) , ΔH(0) and ΔS(0) in the binding process of MPA with BSA. MPA prefers binding on the hydrophobic cavity in subdomain IIIA (site II'') of BSA resulting in a slight change in the conformation of BSA, but BSA retaining the α-helix structure. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Attenuation of non-enzymatic thermal glycation of bovine serum albumin (BSA) using β-carotene.

    PubMed

    Bodiga, Vijaya Lakshmi; Eda, Sasidhar Reddy; Veduruvalasa, Vijaya Durga; Mididodla, Lalitha Devi; Parise, Prabhu Kumar; Kodamanchili, Sujitha; Jallepalli, Swetha; Inapurapu, Santhi Priya; Neerukonda, Manjusha; Vemuri, Praveen Kumar; Bodiga, Sreedhar

    2013-05-01

    Although heat treatment of proteins is believed to promote and accelerate glycation, the accompanying structural changes in proteins because of heat denaturation and/or glycation are not completely understood. In addition, there is an increasing interest for inhibitors of thermal glycation in food processing. β-Carotene is a naturally occurring carotenoid found in many vegetables, fruits and herbs, with known antioxidant activity. However, it has not been identified if β-carotene possesses anti-glycation activity. We have tested the anti-glycation capacity of β-carotene in the bovine serum albumin (BSA)/glucose system that was heated to 55 and 65 °C for 3 days and studied the level of glycation, conformational alterations in BSA, and changes in hydrophobicity, due to thermal treatment and/or glycation. β-Carotene exhibited significant inhibitory effects on the formation of advanced glycation end products (AGEs) and also prevented the secondary structural changes in BSA due to thermal glycation. Our results represent the anti-glycative properties of β-carotene in food systems where such thermal conditions prevail.

  6. Effect of grafted PEG chain conformation on albumin and lysozyme adsorption: A combined study using QCM-D and DPI.

    PubMed

    Jin, Jing; Han, Yuanyuan; Zhang, Chang; Liu, Jingchuan; Jiang, Wei; Yin, Jinghua; Liang, Haojun

    2015-12-01

    In this study, elucidation of protein adsorption mechanism is performed using dual polarization interferometry (DPI) and quartz crystal microbalance with dissipation (QCM-D) to study adsorption behaviors of bovine serum albumin (BSA) and lysozyme (LYZ) on poly (ethylene glycol) (PEG) layers. From the analysis of DPI, PEG2000 and PEG5000 show tight and loose mushroom conformations, respectively. Small amount of LYZ could displace the interfacial water surrounding the tight mushroomed PEG2000 chains by hydrogen bond attraction, leading to protein adsorption. The loose mushroomed PEG5000 chains exhibit a more flexible conformation and high elastic repulsion energy that could prevent protein adsorption of all BSA and most of LYZ. From the analysis of QCM, PEG2000 and PEG5000 show tight and extended brush conformations. The LYZ adsorbed mass has critical regions of PEG2000 (0.19 chain/nm(2)) and PEG5000 (0.16 chain/nm(2)) graft density. When graft density of PEG is higher than the critical region (brush conformations), the attraction of hydrogen bonds between PEG and LYZ is the dominant factor. When graft density of PEG is lower than the critical region (mushroom conformations), elastic repulsion between PEG and proteins is driven by the high conformation entropy of PEG chains, which is the dominant force of steric repulsion in PEG-protein systems. Therefore, the adsorption of BSA is suppressed by the high elastic repulsion energy of PEG chains, whereas the adsorption of LYZ is balanced by the interactions between the repulsion of entropy elasticity and the attraction of hydrogen bonds.

  7. Characterization of Silver/Bovine Serum Albumin (Ag/BSA) nanoparticles structure: morphological, compositional, and interaction studies.

    PubMed

    Gebregeorgis, A; Bhan, C; Wilson, O; Raghavan, D

    2013-01-01

    The primary objective of this study was to elucidate the structure of protein conjugated silver nanoparticles prepared by chemical reduction of AgNO(3) and bovine serum albumin (BSA) mixture. The role of BSA in the formation of Ag/BSA nanoparticles was established by UV-Vis Spectroscopy. The association of silver with BSA in Ag/BSA nanoparticles was studied by the decrease in the intensity of absorbance peak at 278 nm in UV-Vis spectra and shift in cathodic peak potential in cyclic voltammogram. The molar ratio of silver to BSA in the Ag/BSA nanoparticles is 27:1, as ascertained by thermogravimetric analysis and atomic absorption spectrometry. Based on atomic force microscopy, dynamic light scattering and transmission electron microscopy (TEM) measurements, the average particle size of nanoparticles was found to be range of 11-15 nm. TEM image showed that the nanoparticle has two distinct phases and selected area electron diffraction pattern of nanoparticles indicated that the silver phase in Ag/BSA is fcc. X-ray photo electron spectroscopy measurements of freshly prepared and argon sputtered nanoparticles provided evidence that the outer and inner region of nanoparticles are mainly composed of BSA and silver respectively. The structural and compositional findings of nanoparticles could have a strong bearing on the bioavailability and antimicrobial activity of nanoparticles.

  8. Characterizing the binding interaction between antimalarial artemether (AMT) and bovine serum albumin (BSA): Spectroscopic and molecular docking methods.

    PubMed

    Shi, Jie-Hua; Pan, Dong-Qi; Wang, Xiou-Xiou; Liu, Ting-Ting; Jiang, Min; Wang, Qi

    2016-09-01

    Artemether (AMT), a peroxide sesquiterpenoides, has been widely used as an antimalarial for the treatment of multiple drug-resistant strains of plasmodium falciparum malaria. In this work, the binding interaction of AMT with bovine serum albumin (BSA) under the imitated physiological conditions (pH7.4) was investigated by UV spectroscopy, fluorescence emission spectroscopy, synchronous fluorescence spectroscopy, Fourier transform infrared spectroscopy (FT-IR), circular dichroism (CD), three-dimensional fluorescence spectroscopy and molecular docking methods. The experimental results indicated that there was a change in UV absorption of BSA along with a slight red shift of absorption wavelength, indicating that the interaction of AMT with BSA occurred. The intrinsic fluorescence of BSA was quenched by AMT due to the formation of AMT-BSA complex. The number of binding sites (n) and binding constant of AMT-BSA complex were about 1 and 2.63×10(3)M(-1) at 298K, respectively, suggesting that there was stronger binding interaction of AMT with BSA. Based on the analysis of the signs and magnitudes of the free energy change (ΔG(0)), enthalpic change (ΔH(0)) and entropic change (ΔS(0)) in the binding process, it can be concluded that the binding of AMT with BSA was enthalpy-driven process due to |ΔH°|>|TΔS°|. The results of experiment and molecular docking confirmed the main interaction forces between AMT and BSA were van der Waals force. And, there was a slight change in the BSA conformation after binding AMT but BSA still retains its secondary structure α-helicity. However, it had been confirmed that AMT binds on the interface between sub-domain IIA and IIB of BSA.

  9. Adsorption of Bovine Serum Albumin (BSA) at the Oil/Water Interface: A Neutron Reflection Study.

    PubMed

    Campana, M; Hosking, S L; Petkov, J T; Tucker, I M; Webster, J R P; Zarbakhsh, A; Lu, J R

    2015-05-26

    The structure of the adsorbed protein layer at the oil/water interface is essential to the understanding of the role of proteins in emulsion stabilization, and it is important to glean the mechanistic events of protein adsorption at such buried interfaces. This article reports on a novel experimental methodology for probing protein adsorption at the buried oil/water interface. Neutron reflectivity was used with a carefully selected set of isotopic contrasts to study the adsorption of bovine serum albumin (BSA) at the hexadecane/water interface, and the results were compared to those for the air/water interface. The adsorption isotherm was determined at the isoelectric point, and the results showed that a higher degree of adsorption could be achieved at the more hydrophobic interface. The adsorbed BSA molecules formed a monolayer on the aqueous side of the interface. The molecules in this layer were partially denatured by the presence of oil, and once released from the spatial constraint by the globular framework they were free to establish more favorable interactions with the hydrophobic medium. Thus, a loose layer extending toward the oil phase was clearly observed, resulting in an overall broader interface. By analogy to the air/water interface, as the concentration of BSA increased to 1.0 mg mL(-1) a secondary layer extending toward the aqueous phase was observed, possibly resulting from the steric repulsion upon the saturation of the primary monolayer. Results clearly indicate a more compact arrangement of molecules at the oil/water interface: this must be caused by the loss of the globular structure as a consequence of the denaturing action of the hexadecane.

  10. Enzyme-linked immunosorbent assay (ELISA) and blocking with bovine serum albumin (BSA)--not all BSAs are alike.

    PubMed

    Xiao, Yuhong; Isaacs, Stuart N

    2012-10-31

    The enzyme-linked immunosorbent assay (ELISA) is an extremely common and powerful laboratory technique for detecting proteins by antibodies. Researchers frequently use bovine serum albumin (BSA) as a blocking agent to prevent non-specific binding of antigens and antibodies to the microtiter well. While studying the interactions of the vaccinia virus complement control protein (VCP) with complement, we found non-specific binding of VCP to BSA and identify a BSA preparation that did not result in non-specific binding. This work draws attention to the fact that not all BSA preparations are alike. It also highlights the need to perform critical controls to ensure that ELISA reactants do not inappropriately bind to the blocking agent.

  11. Spectroscopic, structural and thermodynamic properties of chlorpyrifos bound to serum albumin: A comparative study between BSA and HSA.

    PubMed

    Han, Xiao-Le; Tian, Fang-Fang; Ge, Yu-Shu; Jiang, Feng-Lei; Lai, Lu; Li, Dong-Wei; Yu, Qiu-Liyang; Wang, Jia; Lin, Chen; Liu, Yi

    2012-04-02

    Chlorpyrifos (CPF) is a widely used organophosphate insecticide which could bind with human serum albumin (HSA) and bovine serum albumin (BSA). The binding behavior was studied employing fluorescence, three-dimensional fluorescence, Circular dichroism (CD) spectroscopy, UV-vis absorption spectroscopy, electrochemistry and molecular modeling methods. The fluorescence spectra revealed that CPF causes the quenching of the fluorescence emission of serum albumin. Stern-Volmer plots were made and quenching constants were thus obtained. The results suggested the formation of the complexes of CPF with serum albumins, which were in good agreement with the results from electrochemical experiments. Association constants at 25°C were 3.039 × 10(5) mol L(-1) for HSA, and 0.3307 × 10(5) mol L(-1) for BSA, which could affect the distribution, metabolism, and excretion of pesticide. The alterations of protein secondary structure in the presence of CPF were confirmed by the evidences from UV and CD spectra. Site competitive experiments also suggested that the primary binding site for CPF on serum albumin is close to tryptophan residues 214 of HSA and 212 of BSA, which was further confirmed by molecular modeling.

  12. Binding studies of lophirone B with bovine serum albumin (BSA): Combination of spectroscopic and molecular docking techniques

    NASA Astrophysics Data System (ADS)

    Chaves, Otávio Augusto; da Silva, Veridiana A.; Sant'Anna, Carlos Maurício R.; Ferreira, Aurélio B. B.; Ribeiro, Tereza Auxiliadora N.; de Carvalho, Mário G.; Cesarin-Sobrinho, Dari; Netto-Ferreira, José Carlos

    2017-01-01

    The interaction between the transport protein bovine serum albumin (BSA) and the natural product lophirone B, was investigated by spectroscopic techniques combined with a computational method (molecular docking). From the KSV and kq values it was concluded that lophirone B quenches the fluorescence of BSA by dynamic and static mechanisms. The Ka values, of the order of 104 M-1, and the number of binding sites (n ≈ 1), indicate that the binding is moderate and there is just one main binding site in BSA for lophirone B. The negative ΔG° values are in accordance with the spontaneity of the process and the positive ΔH° and ΔS° values indicate that the binding is entropically driven; the main binding forces for the association BSA:lophirone B are probably lipophilic interactions. Circular dichroism (CD) studies show there is not a significant perturbation on the secondary structure of the albumin upon the binding process. In order to better understand the spectroscopic results, a computational method was applied: molecular docking suggests Trp-213 site, as the main binding site for the ligand. Lophirone B seems to be exposed to the aqueous media as well as accommodated inside the protein cavity, resulting in a moderate affinity for the albumin. The Arg-198, His-287, Lys-294 and Lys-439 residues are interacting via hydrogen bonding with lophirone B, whereas the interaction with Trp-213 residue occurs through a lipophilic interaction.

  13. Effects of ions on partitioning of serum albumin and lysozyme in aqueous two-phase systems containing ethylene oxide/propylene oxide co-polymers.

    PubMed

    Johansson, H O; Lundh, G; Karlström, G; Tjerneld, F

    1996-08-13

    Aqueous two-phase systems composed of ethylene oxide/propylene oxide random co-polymers, EO30/PO70 or Ucon (EO50/PO50), in the top phase and dextran T500 in the bottom phase, have been studied. The cloud point diagram for EO30/PO70 in water solution was determined. EO30/PO70 has a cloud point of 32 degrees C at a concentration of 10% (w/w). The phase diagram for the system EO30/PO70-dextran T500-water was determined. Salt effects have been studied on the partitioning of two model proteins, bovine serum albumin and hen egg white lysozyme, in EO30/PO70-dextran and Ucon-dextran systems. Ions with different hydrophobicity, i.e., with different position in the Hofmeister or lyotropic series, were investigated with reference to their effect on protein partition. The counterion hydrophobicity was shown to have a strong influence on the partitioning of BSA and lysozyme. Most extreme partitioning was obtained with hydrophobic (chaotropic) ions like CIO4- and I-. A comparison of protein partitioning between PEG-dextran and EO30/PO70-dextran has been done. A more extreme protein partitioning was obtained in the EO30/PO70-dextran containing system. Temperature-induced phase separation was studied with EO30/PO70 at 45 degrees C. Both BSA and lysozyme were completely partitioned to the water phase formed above the cloud point of EO30/PO70. Model calculations, based on Flory-Huggins theory of polymer solutions, have been done which could reproduce the salt effect on the protein partitioning in aqueous-two phase system.

  14. Exploration of zwitterionic cellulose acetate antifouling ultrafiltration membrane for bovine serum albumin (BSA) separation.

    PubMed

    Liu, Yang; Huang, Haitao; Huo, Pengfei; Gu, Jiyou

    2017-06-01

    This study focused on the preparation of a new kind of membrane material, zwitterionic cellulose acetate (ZCA), via a three-step procedure consist of oxidization, Schiff base and quaternary amination reaction, and the fabrication of antifouling ZCA ultrafiltration membrane by the non-solvent-induced phase separation method (NIPS). The morphologies, surface chemical structures and compositions of the obtained CA and ZCA membranes were thoroughly characterized by field emission scanning electron microscopy (FE-SEM) with energy dispersive X-ray (EDX) spectroscopy, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS), respectively. Meanwhile, the thermal stability, porosity and average pore size of two investigated membranes were also studied. As a result, the ZCA membrane displayed significantly improved hydrophilicity and water permeability compared with those of the reference CA membrane, despite a slight decrease in the protein rejection ratio. According to the cycle ultrafiltration performance of bovine serum albumin (BSA) solution and protein adsorption experiment, ZCA membrane exhibited better flux recovery property and fouling resistant ability, especially irreversible fouling resistant ability, suggesting superior antifouling performance. This new approach gives polymer-based membrane a long time life and excellent ultrafiltration performance, and seems promising for potential applications in the protein separation.

  15. Adsorption of bovine serum albumin (BSA) onto lecithin studied by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy.

    PubMed

    Tantipolphan, R; Rades, T; McQuillan, A J; Medlicott, N J

    2007-06-07

    The adsorption of bovine serum albumin (BSA) to lecithin was investigated by ATR-FTIR spectroscopy. Lecithin films were prepared by casting aliquots of 3.2 microg lecithin in methanol onto ZnSe ATR prisms. Surface morphology and the thickness of the films were investigated by laser scanning confocal electron microscopy and scanning electron microscopy and the thickness of the films used for adsorption studies was estimated to be 40 A. The dependency of the CO peak area on the lecithin mass in the calibration curve confirms that the thickness of the film is below the penetration depth of the infrared evanescent wave. Size exclusion HPLC and fluorescence spectroscopy show that BSA conformation in up to 1M NaCl and CaCl(2) solutions is similar to that in water with no aggregation or changes in protein conformation seen over 4h. The kinetics of BSA adsorption on the lecithin film from water, NaCl and CaCl(2) solutions demonstrates that ions promote the protein adsorption. BSA bound more in the presence of NaCl compared to CaCl(2) at equivalent concentrations. The adsorption appeared greatest at a 0.1M concentration for both NaCl and CaCl(2). The results are explained in terms of absorptive reactivity of BSA and lecithin surfaces upon salt addition.

  16. Extraction and stability of bovine serum albumin (BSA) using cholinium-based Good’s buffers ionic liquids

    PubMed Central

    Taha, Mohamed; Quental, Maria V.; Correia, Isabel; Freire, Mara G.; Coutinho, João A. P.

    2017-01-01

    Good’s buffers ionic liquids (GB-ILs), composed of cholinium-based cations and Good’s buffers anions, display self-buffering characteristics in the biological pH range, and their polarity and hydrophobicity can be easily tuned by a proper manipulation of their ions chemical structures. In this work, the extraction ability for bovine serum albumin (BSA) of aqueous biphasic systems (ABS) formed by polypropylene glycol 400 (PPG 400) and several GB-ILs was evaluated. ABS formed by PPG 400 and cholinium chloride ([Ch]Cl), GBs, and sucrose were also investigated for comparison purposes. It is shown that BSA preferentially migrates for the GB-IL-rich phase, with extraction efficiencies of 100%, achieved in a single-step. Dynamic light scattering, and circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopies were employed to evaluate the effect of the investigated cholinium-based GB-ILs on the BSA stability, and compared with results obtained for the respective GBs precursors, [Ch]Cl and sucrose, a well-known protein stabilizer. Molecular docking studies were also carried out to investigate on the binding sites of GB-IL ions to BSA. The experimental results confirm that BSA has a higher stability in GB-ILs than in any of the other compounds investigated.

  17. Hydrophobic interaction adsorption of hen egg white proteins albumin, conalbumin, and lysozyme.

    PubMed

    Rojas, Edwin E Garcia; dos Reis Coimbra, Jane S; Minim, Luis A; Saraiva, Sérgio H; da Silva, César A Sodré

    2006-08-18

    Hydrophobic adsorption equilibrium data of the hen egg white proteins albumin, conalbumin, and lysozyme were obtained in batch systems, at 25 degrees C, using the Streamline Phenyl resin as adsorbent. The influence of three types of salt, NaCl, Na(2)SO(4), or (NH(4))(2)SO(4), and their concentration on the equilibrium data were evaluated. The salt Na(2)SO(4) showed the higher interaction with the studied proteins, thus favoring the adsorption of proteins by the adsorbent, even though each type of salt interacted in a distinct manner with each protein. The isotherm models of Langmuir, Langmuir exponential, and Chen and Sun were well fitted to the equilibrium data, with no significant difference being observed at the 5% level of significance. The mass transfer model applied simulated correctly adsorption kinetics of the proteins under the studied conditions.

  18. Binding of an Oligomeric Ellagitannin Series to Bovine Serum Albumin (BSA): Analysis by Isothermal Titration Calorimetry (ITC).

    PubMed

    Karonen, Maarit; Oraviita, Marianne; Mueller-Harvey, Irene; Salminen, Juha-Pekka; Green, Rebecca J

    2015-12-16

    A unique series of oligomeric ellagitannins was used to study their interactions with bovine serum albumin (BSA) by isothermal titration calorimetry. Oligomeric ellagitannins, ranging from monomer to heptamer and a mixture of octamer-undecamers, were isolated as individual pure compounds. This series allowed studying the effects of oligomer size and other structural features. The monomeric to trimeric ellagitannins deviated most from the overall trends. The interactions of ellagitannin oligomers from tetramers to octa-undecamers with BSA revealed strong similarities. In contrast to the equilibrium binding constant, enthalpy showed an increasing trend from the dimer to larger oligomers. It is likely that first the macrocyclic part of the ellagitannin binds to the defined binding sites on the protein surface and then the "flexible tail" of the ellagitannin coats the protein surface. The results highlight the importance of molecular flexibility to maximize binding between the ellagitannin and protein surfaces.

  19. In vitro study on binding interaction of quinapril with bovine serum albumin (BSA) using multi-spectroscopic and molecular docking methods.

    PubMed

    Shi, Jie-Hua; Pan, Dong-Qi; Jiang, Min; Liu, Ting-Ting; Wang, Qi

    2016-08-07

    The binding interaction between quinapril (QNPL) and bovine serum albumin (BSA) in vitro has been investigated using UV absorption spectroscopy, steady-state fluorescence spectroscopic, synchronous fluorescence spectroscopy, 3D fluorescence spectroscopy, Fourier transform infrared spectroscopy, circular dichroism, and molecular docking methods for obtaining the binding information of QNPL with BSA. The experimental results confirm that the quenching mechanism of the intrinsic fluorescence of BSA induced by QNPL is static quenching based on the decrease in the quenching constants of BSA in the presence of QNPL with the increase in temperature and the quenching rates of BSA larger than 10(10) L mol(-1) s(-1), indicating forming QNPL-BSA complex through the intermolecular binding interaction. The binding constant for the QNPL-BSA complex is in the order of 10(5) M(-1), indicating there is stronger binding interaction of QNPL with BSA. The analysis of thermodynamic parameters together with molecular docking study reveal that the main binding forces in the binding process of QNPL with BSA are van der Waal's forces and hydrogen bonding interaction. And, the binding interaction of BSA with QNPL is an enthalpy-driven process. Based on Förster resonance energy transfer, the binding distance between QNPL and BSA is calculated to be 2.76 nm. The results of the competitive binding experiments and molecular docking confirm that QNPL binds to sub-domain IIA (site I) of BSA. It is confirmed there is a slight change in the conformation of BSA after binding QNPL, but BSA still retains its secondary structure α-helicity.

  20. Investigation on interaction and sonodynamic damage of fluorescein derivants to bovine serum albumin (BSA) under ultrasonic irradiation.

    PubMed

    Zou, Mingming; Zhang, Lei; Wang, Jun; Wang, Qi; Gao, Jingqun; Fan, Ping

    2013-06-01

    The fluorescein derivants (Fluorescein: (2-(6-Hydroxy-3-oxo-(3H)-xanthen-9-yl) benzoic acid), Fluorescein-DA: (Bis [N,N-bis (carboxymethyl) aminomethyl] fluorescein) and Fluorescein-DA-Fe(III): (Bis [N,N-bis (carboxymethyl) aminomethyl] fluorescein-Ferrous(III)) with a tricyclic plane structure were used to study the interaction and sonodynamic damage to bovine serum albumin (BSA) under ultrasonic irradiation through fluorospectrometry and UV-vis spectrophotometry. Besides, because of the existence of Fe(III) ion in Fluorescein-DA-Fe(III), under ultrasonic irradiation the sonocatalytic activity in the damage of BSA molecules was also found. Three-dimensional fluorescence spectra and three-dimensional fluorescence contour profile spectra were mentioned to determine the fluorescence quenching and the conformation change of BSA in the absence and presence of these fluorescein derivants. As judged from the experimental results, the fluorescence quenching of BSA in aqueous solution caused by these fluorescein derivants were all attributed to static quenching process. The damage degree and mode were related to some factors such as ultrasonic irradiation time, fluorescein derivant concentration and ionic strength. Finally, several quenchers were used to determine the amount and kind of generated reactive oxygen species (ROS) during sonodynamic and sonocatalytic reaction processes. It suggests that these fluorescein derivants induce protein damage via various ROS, at least, including singlet oxygen ((1)O2) and hydroxyl radicals (OH). Perhaps, this paper may offer some important subjects for broadening the application of these fluorescein derivants in sonodynamic therapy (SDT) and sonocatalytic therapy (SCT) technologies for tumor treatment.

  1. Investigation on interaction and sonodynamic damage of fluorescein derivants to bovine serum albumin (BSA) under ultrasonic irradiation

    NASA Astrophysics Data System (ADS)

    Zou, Mingming; Zhang, Lei; Wang, Jun; Wang, Qi; Gao, Jingqun; Fan, Ping

    2013-06-01

    The fluorescein derivants (Fluorescein: (2-(6-Hydroxy-3-oxo-(3H)-xanthen-9-yl) benzoic acid), Fluorescein-DA: (Bis [N,N-bis (carboxymethyl) aminomethyl] fluorescein) and Fluorescein-DAsbnd Fe(III): (Bis [N,N-bis (carboxymethyl) aminomethyl] fluoresceinsbnd Ferrous(III)) with a tricyclic plane structure were used to study the interaction and sonodynamic damage to bovine serum albumin (BSA) under ultrasonic irradiation through fluorospectrometry and UV-vis spectrophotometry. Besides, because of the existence of Fe(III) ion in Fluorescein-DAsbnd Fe(III), under ultrasonic irradiation the sonocatalytic activity in the damage of BSA molecules was also found. Three-dimensional fluorescence spectra and three-dimensional fluorescence contour profile spectra were mentioned to determine the fluorescence quenching and the conformation change of BSA in the absence and presence of these fluorescein derivants. As judged from the experimental results, the fluorescence quenching of BSA in aqueous solution caused by these fluorescein derivants were all attributed to static quenching process. The damage degree and mode were related to some factors such as ultrasonic irradiation time, fluorescein derivant concentration and ionic strength. Finally, several quenchers were used to determine the amount and kind of generated reactive oxygen species (ROS) during sonodynamic and sonocatalytic reaction processes. It suggests that these fluorescein derivants induce protein damage via various ROS, at least, including singlet oxygen (1O2) and hydroxyl radicals (rad OH). Perhaps, this paper may offer some important subjects for broadening the application of these fluorescein derivants in sonodynamic therapy (SDT) and sonocatalytic therapy (SCT) technologies for tumor treatment.

  2. Spectroscopic investigation on assisted sonocatalytic damage of bovine serum albumin (BSA) by metronidazole (MTZ) under ultrasonic irradiation combined with nano-sized ZnO.

    PubMed

    Gao, Jingqun; Liu, Bin; Wang, Jun; Jin, Xudong; Jiang, Renzheng; Liu, Lijun; Wang, Baoxin; Xu, Yongnan

    2010-11-01

    The previous work proved that the bovine serum albumin (BSA) could be damaged under the combined action of ultrasonic irradiation and ZnO. In this work, the assisted sonocatalytic damage of BSA using metronidazole (MTZ) as a sensitizer was further investigated by means of UV-vis and fluorescence spectra. The results indicated that the adding of MTZ could obviously promote the sonocatalytic damage of BSA under ultrasonic irradiation in the presence of nano-sized ZnO powder. Furthermore, it was found that the damage degree of BSA was aggravated by some influencing factors except ionic kind and strength. In addition, the damage site of BSA was also studied with synchronous fluorescence technology. It was found that the damage site was mainly at tryptophan (Trp) residue.

  3. Spectroscopic investigation on assisted sonocatalytic damage of bovine serum albumin (BSA) by metronidazole (MTZ) under ultrasonic irradiation combined with nano-sized ZnO

    NASA Astrophysics Data System (ADS)

    Gao, Jingqun; Liu, Bin; Wang, Jun; Jin, Xudong; Jiang, Renzheng; Liu, Lijun; Wang, Baoxin; Xu, Yongnan

    2010-11-01

    The previous work proved that the bovine serum albumin (BSA) could be damaged under the combined action of ultrasonic irradiation and ZnO. In this work, the assisted sonocatalytic damage of BSA using metronidazole (MTZ) as a sensitizer was further investigated by means of UV-vis and fluorescence spectra. The results indicated that the adding of MTZ could obviously promote the sonocatalytic damage of BSA under ultrasonic irradiation in the presence of nano-sized ZnO powder. Furthermore, it was found that the damage degree of BSA was aggravated by some influencing factors except ionic kind and strength. In addition, the damage site of BSA was also studied with synchronous fluorescence technology. It was found that the damage site was mainly at tryptophan (Trp) residue.

  4. Experimental study of albumin and lysozyme adsorption onto acrylic acid (AA) and 2-hydroxyethyl methacrylate (HEMA) surfaces.

    PubMed

    Moradi, Omid; Modarress, Hamid; Noroozi, Mehdi

    2004-03-01

    Many commercial soft contact lenses are based on poly-2-hydroxyethyl methacrylate (HEMA) and acrylic acid (AA) hydrogels. The adsorption of proteins, albumin and lysozyme, on such contact lens surfaces may cause problems in their applications. In this work the adsorption of proteins, albumin and lysozyme, on hydrogel surfaces, AA and HEMA, was investigated as a function of concentration of protein. Also the effects of pH and ionic strength of protein solution on the adsorption of protein were examined. The obtained results indicated that the degree of adsorption of protein increased with the concentration of protein, and the adsorption of albumin on HEMA surface at the studied pHs (6.2-8.6) was higher than AA surface, whereas the adsorption of lysozyme on AA surface at the same pHs was higher than HEMA. The change in ionic strength of protein solution affected the proteins adsorption on both AA and HEMA surfaces. Also, the amount of sodium ions deposited on the AA surface was much higher than HEMA surface. This effect can be related to the negative surface charge of AA and its higher tendency for adsorption of sodium ions compared to the HEMA surface.

  5. Interaction of bovine serum albumin (BSA) with novel gemini surfactants studied by synchrotron radiation scattering (SR-SAXS), circular dichroism (CD), and nuclear magnetic resonance (NMR).

    PubMed

    Gospodarczyk, W; Szutkowski, K; Kozak, M

    2014-07-24

    The interaction of three dicationic (gemini) surfactants-3,3'-[1,6-(2,5-dioxahexane)]bis(1-dodecylimidazolium) chloride (oxyC2), 3,3'-[1,16-(2,15-dioxahexadecane)]bis(1-dodecylimidazolium) chloride (oxyC12), and 1,4-bis(butane)imidazole-1-yl-3-dodecylimidazolium chloride (C4)--with bovine serum albumin (BSA) has been studied by the use of small-angle X-ray scattering (SAXS), circular dichroism (CD), and (1)H nuclear magnetic resonance diffusometry. The results of CD studies show that the conformation of BSA was changed dramatically in the presence of all studied surfactants. The greater decrease (from 56 to 24%) in the α-helical structure of BSA was observed for oxyC2 surfactant. The radii of gyration estimated from SAXS data varied between 3 and 26 nm for the BSA/oxyC2 and BSA/oxyC12 systems. The hydrodynamic radius of the BSA/surfactant system estimated from NMR diffusometry varies between 5 and 11 nm for BSA/oxyC2 and 5 and 8 nm for BSA/oxyC12.

  6. Effect of apatite formation of biphasic calcium phosphate ceramic (BCP) on osteoblastogenesis using simulated body fluid (SBF) with or without bovine serum albumin (BSA).

    PubMed

    Huang, Li; Zhou, Bo; Wu, Huayu; Zheng, Li; Zhao, Jinmin

    2017-01-01

    Although biphasic calcium phosphate ceramic (BCP) holds promise in therapy of bone defect, surface mineralization prior to implantation may improve the bioactivity to better integrate with the host. Immersion in simulated body fluid (SBF) and bovine serum albumin-simulated body fluid (BSA-SBF) are common methods to form apatite interface layer. This study was intended to investigate the effect of SBF and BSA-SBF treatment on the bioactivity of BCP in vitro. In this study, osteoblasts were grown on BCP with or without treatment of SBF or BSA-SBF, and detected with general observation, scanning electron microscope (SEM), cell proliferation assay, morphology observation, viability assay, alkaline phosphatase (ALP) activity assay, and osteogenic specific gene expression of alkaline phosphatase (ALPL), bone gamma-carboxyglutamate (gla) protein (BGLAP), bone morphogenetic protein 2 (BMP2), bone sialoprotein (BSP), type I collagen (COLI) and runt-related transcription factor 2 (RUNX2) after culture of 2, 5 and 8days. As the results shown, BCP pre-incubated in SBF and BSA-SBF up-regulated ALP activity and osteogenic related genes and proteins, which testified the positive effect of SBF and BSA-SBF. Especially, BSA-SBF enhanced the cell growth significantly. This study indicated that treatment by BSA-SBF is of importance for BCP before clinical application.

  7. Spectroscopic analyses on interaction of o-Vanillin-D-Phenylalanine, o-Vanillin-L-Tyrosine and o-Vanillin-L-Levodopa Schiff Bases with bovine serum albumin (BSA).

    PubMed

    Gao, Jingqun; Guo, Yuwei; Wang, Jun; Wang, Zhiqiu; Jin, Xudong; Cheng, Chunping; Li, Ying; Li, Kai

    2011-04-01

    In this work, three o-Vanillin Schiff Bases (o-VSB: o-Vanillin-D-Phenylalanine (o-VDP), o-Vanillin-L-Tyrosine (o-VLT) and o-Vanillin-L-Levodopa (o-VLL)) with alanine constituent were synthesized by direct reflux method in ethanol solution, and then were used to study the interaction to bovine serum albumin (BSA) molecules by fluorescence spectroscopy. Based on the fluorescence quenching calculation, the bimolecular quenching constant (K(q)), apparent quenching constant (K(sv)), effective binding constant (K(A)) and corresponding dissociation constant (K(D)) as well as binding site number (n) were obtained. In addition, the binding distance (r) was also calculated according to Foster's non-radioactive energy transfer theory. The results show that these three o-VSB can efficiently bind to BSA molecules, but the binding array order is o-VDP-BSA>o-VLT-BSA>o-VLL-BSA. Synchronous fluorescence spectroscopy indicates that the o-VDP is more accessibility to tryptophan (Trp) residues of BSA molecules than to tyrosine (Tyr) residues. Nevertheless, the o-VLT and o-VLL are more accessibility to Tyr residues than to Trp residues.

  8. Antimicrobial and cell viability measurement of bovine serum albumin capped silver nanoparticles (Ag/BSA) loaded collagen immobilized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) film.

    PubMed

    Bakare, Rotimi; Hawthrone, Samantha; Vails, Carmen; Gugssa, Ayele; Karim, Alamgir; Stubbs, John; Raghavan, Dharmaraj

    2016-03-01

    Bacterial infection of orthopedic devices has been a major concern in joint replacement procedures. Therefore, this study is aimed at formulating collagen immobilized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) film loaded with bovine serum albumin capped silver nanoparticles (Ag/BSA NPs) to inhibit bacterial growth while retaining/promoting osteoblast cells viability. The nanoparticles loaded collagen immobilized PHBV film was characterized for its composition by X-ray Photoelectron Spectroscopy and Anodic Stripping Voltammetry. The extent of loading of Ag/BSA NPs on collagen immobilized PHBV film was found to depend on the chemistry of the functionalized PHBV film and the concentration of Ag/BSA NPs solution used for loading nanoparticles. Our results showed that more Ag/BSA NPs were loaded on higher molecular weight collagen immobilized PHEMA-g-PHBV film. Maximum loading of Ag/BSA NPs on collagen immobilized PHBV film was observed when 16ppm solution was used for adsorption studies. Colony forming unit and optical density measurements showed broad antimicrobial activity towards Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa at significantly lower concentration i.e., 0.19 and 0.31μg/disc, compared to gentamicin and sulfamethoxazole trimethoprim while MTT assay showed that released nanoparticles from Ag/BSA NPs loaded collagen immobilized PHBV film has no impact on MCTC3-E1 cells viability.

  9. CdSe-ZnS quantum dots as temperature sensors during thermal coagulation of bovine serum albumin (BSA) solder

    NASA Astrophysics Data System (ADS)

    Jaschinski, Evelin; Wehner, Martin

    2012-06-01

    Laser tissue soldering (LTS) has variously interesting applications such as wound closure, anastomosis of blood vessels, and sealing corneal wounds. Since tissue properties such as optical absorption or thermal conductivity may differ, temperature control is essential to obtain full coagulation and to minimize thermal side effects. In this article, a non-invasive technique is proposed for temperature sensing by using CdSe-ZnS quantum dots (QDs) dissolved in protein solder, namely bovine serum albumin (BSA). The temperature measurement is conducted by monitoring the change in the photoluminescence spectra of the QDs. It is shown that the peak emission wavelength of about 653 nm of CdSe-ZnS QDs shifts linearly in a temperature range from 30 °C to 70 °C, with a coefficient of 0.153 nm °C-1 with increasing temperature. The wavelength shift can be determined by applying a small spectrometer with a CCD-array detector. The uncertainty associated with this method is estimated to be less than 6 °C in temperature. As the temperature increases, the measured signal strength initially remains constant and then falls off abruptly when exceeding 55 °C. The signal drop correlates with a phase change from a clear, low-scattering protein solution to strong-scattering solid material.

  10. Interaction of phenolic compounds with bovine serum albumin (BSA) and α-amylase and their relationship to astringency perception.

    PubMed

    Ferrer-Gallego, Raúl; Gonçalves, Rui; Rivas-Gonzalo, Julián Carlos; Escribano-Bailón, María Teresa; de Freitas, Victor

    2012-11-15

    The ability of grape seed extracts to bind to bovine serum albumin (BSA) and α-amylase was studied by fluorescence quenching of protein intrinsic fluorescence and nephelometry. The influence of grape seed ripeness on astringency was also evaluated. From the spectra obtained, the modified Sterm-Volmer (K(app)) and the bimolecular quenching constants were calculated. Results showed that grape seed extracts had good affinity for proteins. The association strength of tannin-protein interactions varied with changes in tannin structure associated with the degree of ripeness affecting the binding/quenching process. In all cases studied, higher values of K(app) were obtained in samples at harvest which have greater ability to bind to proteins than have samples at post-veraison time. Nephelometric assays show the same trend as do fluorescence quenching studies. A possible explanation for this is that, as seeds ripen, their tannins increase in molecular mass, which relates to an increase in hydrophobicity of the molecules, and this increases protein affinity. However, that is contrary to the reported decrease in astringency of grape seeds during maturity. This indicates that tannin-protein interactions are not the only explanation for the complex sensations of astringency of grape seeds.

  11. [Investigation on damage of bovine serum albumin (BSA) catalyzed by nano-sized silicon dioxide (SiO2) under ultrasonic irradiation using spectral methods].

    PubMed

    Wang, Jun; Ding, Na; Zhang, Zhao-hong; Guo, Ying; Wang, Shi-xian; Xu, Rui; Zhang, Xiang-dong

    2009-04-01

    The damage of bovine serum albumin (BSA) molecules under ultrasonic irradiation in the presence of nano-sized silicon dioxide (SiO2) particles was studied by UV-Vis and fluorescence spectra. In addition, the influences of ultrasonic irradiation time, nano-sized SiO2 addition amount, solution acidity (pH) and ultrasonic irradiation power on the damage of BSA molecules in aqueous solution were also detected. For BSA solution of 1.0 x 10(-5) mol x L(-1) at (37.0+/-0.2) degrees C, the UV-Vis spectra of BSA solutions showed that the absorption peaks of BSA displayed obvious hyperchromic effect with the increase in some influence factors such as ultrasonic irradiation time, nano-sized SiO2 addition amount, pH value and ultrasonic irradiation power. However, the fluorescence spectra of BSA solutions showed the phenomenon of fluorescence quenching with the increase in ultrasonic irradiation time, nano-sized SiO2 addition amount, pH value and ultrasonic irradiation power. Moreover, the possible mechanism behind the damage of BSA molecule in the presence of nano-sized SiO2 powders under ultrasonic irradiation was discussed. It was considered that the damage of BSA molecules was attributed to the formation of *OH radicals resulting from the sonoluminescence and high-heat excitation of ultrasonic cavitation. The research results could be of great significance to using sonocatalytic method to treat tumour in clinic application and for developing nano-sized drug in the future.

  12. Effect of human serum albumin on the kinetics of 4-methylumbelliferyl-β-D-N-N'-N″ Triacetylchitotrioside hydrolysis catalyzed by hen egg white lysozyme.

    PubMed

    Calderon, Cristian; Abuin, Elsa; Lissi, Eduardo; Montecinos, Rodrigo

    2011-08-01

    The effect of human serum albumin (HSA) addition on the rate of hydrolysis of the synthetic substrate 4-methylumbelliferyl-β-D-N-N'-N″ triacetylchitotrioside ((NAG)(3)-MUF) catalyzed by hen egg white lysozyme has been measured in aqueous solution (citrate buffer 50 mM pH = 5.2 at 37 °C). The presence of HSA leads to a decrease in the rate of the process. The reaction follows a Michaelis-Menten mechanism under all the conditions employed. The catalytic rate constant decreases tenfold when the albumin concentration increases, while the Michaelis constant remains almost constant in the albumin concentration range employed. Ultracentrifugation experiments indicate that the main origin of the observed variation in the kinetic behavior is related to the existence of an HSA-lysozyme interaction. Interestingly, the dependence of the catalytic rate constant with albumin concentration parallels the decrease of the free enzyme concentration. We interpret these results in terms of the presence in the system of two enzyme populations; namely, the HSA associated enzyme which does not react and the free enzyme reacting as in the absence of albumin. Other factors such as association of the substrate to albumin or macromolecular crowding effects due to the presence of albumin are discarded. Theoretical modeling of the structure of the HSA-lysozyme complex shows that the Glu35 and Asp52 residues located in the active site of lysozyme are oriented toward the HSA surface. This conformation will inactivate lysozyme molecules bound to HSA.

  13. Intercalation of bovine serum albumin coated gold clusters between phospholipid bilayers: temperature-dependent behavior of lipid-AuQC@BSA assemblies with red emission and superlattice structure.

    PubMed

    Söptei, Balázs; Mihály, Judith; Visy, Júlia; Wacha, András; Bóta, Attila

    2014-04-10

    A method has been developed to encapsulate bovine serum albumin (BSA)-coated gold quantum clusters (AuQC@BSA) in a multilamellar system of dipalmitoylphosphatidylcholine (DPPC). Results have shown that intercalation of AuQC@BSA particles into lipid bilayers occurs in the presence of CaCl2. Intense red photoluminescence emission was observed after encapsulation of the clusters. A well-defined structure was found with periodic distances drastically larger than that in the pure DPPC/water system. Although Ca(2+) ions can change the dipole characteristics of the lipid bilayer surface, leading to unbinding between the bilayers of multilamellar DPPC/water system, the repulsion is shielded in the presence of AuQC@BSA particles. A coherent superlattice structure evolves due to mixed Ca(2+)-DPPC and Ca(2+)-AuQC@BSA interactions. Studies at different temperatures have suggested a correlation between the luminescence properties of the clusters and phase transition of the lipid layers. The temperature-dependent behavior assumes the connection between the coating and the lipid bilayer surface. Temperature-dependent features of lipid intercalated Au clusters provide new opportunities in their application.

  14. Robust size control of bovine serum albumin (BSA) nanoparticles by intermittent addition of a desolvating agent and the particle formation mechanism.

    PubMed

    Paik, Sae-Yeol-Rim; Nguyen, Hoang Hai; Ryu, Jina; Che, Jeong-Hwan; Kang, Tae Seok; Lee, Jong Kwon; Song, Chi Won; Ko, Sanghoon

    2013-11-15

    In polymeric nanoparticle preparation, despite similar conditions, large fluctuations in particle size distributions are usually observed. Herein, we demonstrate that the intermittent addition of a desolvating agent can improve reproducibility in the preparation of polymeric bovine serum albumin (BSA) nanoparticles. Using this modification, BSA nanoparticles of controlled size can be manufactured with narrow particle size distributions. In our study, ethanol as a desolvating agent was added intermittently to 1% BSA solutions at different pHs with stirring at 700rpm. The effect of the preparation parameters on size and optical density of the fabricated nanoparticles were studied. The average particles sizes of BSA nanoparticles prepared at pH values of 6, 7 and 9 were approximately 100, 200 and 300nm, respectively. As ethanol addition increased, desolvation of BSA molecules resulted in formation of loose-structured particles with pH-dependent size. Beyond that, only particle density increased, but size remained unchanged with further addition of ethanol. Consistently uniform particle size distribution was achieved by adding ethanol intermittently.

  15. Highly sensitive chemiluminescent analysis of residual bovine serum albumin (BSA) based on a pair of specific monoclonal antibodies and peroxyoxalate-glyoxaline-PHPPA dimer chemiluminescent system in vaccines.

    PubMed

    Xue, Pan; Zhang, Kui; Zhang, Zhujun; Li, Yun; Liu, Feng; Sun, Yuanjie; Zhang, Xiaoming; Song, Chaojun; Fu, Aihua; Jin, Boquan; Yang, Kun

    2012-03-01

    Enzyme-linked immunosorbent assay (ELISA), horseradish peroxidase (HRP)-catalyzed fluorescent reaction, and oxalate chemiluminescence analysis have been combined to develop a highly sensitive, simple, and rapid method for analysis of bovine serum albumin (BSA) based on a pair of specific monoclonal antibodies in vaccines. A typical "sandwich type" immunoassay was used. Reaction of 3-(4-hydroxyphenyl propionate) (PHPPA) with hydrogen peroxide-urea, catalyzed by HRP, produced fluorescence of 3-(4-hydroxyphenyl propionate) dimer, which was detected by chemiluminescence analysis with the bis(2,4,6-trichlorophenyl)oxalate (TCPO)-H(2)O(2)-glyoxaline-PHPPA dimer chemiluminescent system. This method exhibited high performance with a linear correlation between response and amount of bovine serum albumin (BSA) in the range 0.1 to 100.0 ng mL(-1) (r = 0.9988), and the detection limit was 0.03 ng mL(-1) (S/N = 3). Intra- and interassay coefficient variations were all lower than 9.0% at three concentrations (1.0, 20.0, and 80.0 ng mL(-1)). The proposed method has been used for successful analysis of the amount of residual BSA in vaccines. The results obtained compared well with those obtained by conventional colorimetric ELISA and luminol chemiluminescent ELISA.

  16. Spectroscopic analyses on sonocatalytic damage to bovine serum albumin (BSA) induced by ZnO/hydroxylapatite (ZnO/HA) composite under ultrasonic irradiation.

    PubMed

    Wang, Zhiqiu; Li, Ying; Wang, Jun; Zou, Mingming; Gao, Jingqun; Kong, Yumei; Li, Kai; Han, Guangxi

    2012-08-01

    ZnO/hydroxylapatite (ZnO/HA) composite with HA molar content of 6.0% was prepared by the method of precipitation and heat-treated at 500°C for 40min and was characterized by powder X-ray diffraction (XRD). The sonocatalytic activities of ZnO/HA composite was carried out through the damage of bovine serum albumin (BSA) in aqueous solution. Furthermore, the effects of several factors on the damage of BSA molecules were evaluated by means of UV-vis and fluorescence spectra. Experimental results indicated that the damage degree of BSA aggravated with the increase of ultrasonic irradiation time, irradiation power and ZnO/HA addition amount, but weakened with the increase of solution acidity and ionic strength. In addition, the damage site to BSA was also studied by synchronous fluorescence technology and the damage site was mainly at tryptophan (Trp) residue. This paper provides a valuable reference for driving sonocatalytic method to treat tumor in clinic application.

  17. Savinase action on bovine serum albumin (BSA) monolayers demonstrated with measurements at the air-water interface and liquid Atomic Force Microscopy (AFM) imaging.

    PubMed

    Balashev, Konstantin; Callisen, Thomas H; Svendsen, Allan; Bjørnholm, Thomas

    2011-12-01

    We studied the enzymatic action of Savinase on bovine serum albumin (BSA) organized in a monolayer spread at the air/water interface or adsorbed at the mica surface. We carried out two types of experiments. In the first one we followed the degradation of the protein monolayer by measuring the surface pressure and surface area decrease versus time. In the second approach we applied AFM imaging of the supported BSA monolayers adsorbed on mica solid supports and extracted information for the enzyme action by analyzing the obtained images of the surface topography in the course of enzyme action. In both cases we obtained an estimate for the turnover number (TON) of the enzyme reaction.

  18. Rapid detection of Cu(2+) by a paper-based microfluidic device coated with bovine serum albumin (BSA)-Au nanoclusters.

    PubMed

    Fang, Xueen; Zhao, Qianqian; Cao, Hongmei; Liu, Juan; Guan, Ming; Kong, Jilie

    2015-11-21

    In this work, bovine serum albumin (BSA)-Au nanoclusters were used to coat a paper-based microfluidic device. This device acted as a Cu(2+) biosensor that showed fluorescence quenching on detection of copper ions. The detection limit of this sensor could be adjusted by altering the water absorbing capacity of the device. Qualitative and semi-quantitative results could be obtained visually without the aid of any advanced instruments. This sensor could test Cu(2+) rapidly with high specificity and sensitivity, which would be useful for point-of-care testing (POCT).

  19. Fabrication of coated bovine serum albumin (BSA)-epigallocatechin gallate (EGCG) nanoparticles and their transport across monolayers of human intestinal epithelial Caco-2 cells.

    PubMed

    Li, Zheng; Ha, Jungheun; Zou, Tao; Gu, Liwei

    2014-06-01

    The bovine serum albumin (BSA)-epigallocatechin gallate (EGCG) nanoparticles were fabricated using a desolvation method, and coated with poly-ε-lysine or chitosan. BSA-EGCG nanoparticles (BEN), poly-ε-lysine coated BSA-EGCG nanoparticles (PBEN), and chitosan coated BSA-EGCG nanoparticles (CBEN) had a spherical morphology and a size of 186, 259, and 300 nm, respectively. The loading efficiency of EGCG in these nanoparticles was 32.3%, 35.4%, and 32.7%, whereas the loading capacity was 18.9%, 17.0%, and 16.0% (w/w), respectively. Poly-ε-lysine or chitosan coating prevented the aggregation of nanoparticles at pH 4.5-5.0. However, they caused particle aggregation at pH 6.5-7.0. BEN had negative zeta-potentials between pH 4.5 and 6.0. Poly-ε-lysine or chitosan coating changed the zeta-potentials to positive. The release study of EGCG from the nanoparticles in the simulated gastric or intestinal fluid with or without digestive enzymes showed that poly-ε-lysine and chitosan coatings delayed EGCG release from the nanoparticles. Poly-ε-lysine or chitosan coating improved the stability of EGCG during storage at 60 °C compared with EGCG in the uncoated particles. EGCG in BEN, PBEN, and CBEN had a decreasing apparent permeability coefficient (Papp) on Caco-2 monolayers, whereas pure EGCG showed relatively stable Papp during the incubation over time. EGCG in CBEN showed significantly higher Papp, suggesting that chitosan coated BSA-EGCG nanoparticles may improve the absorption of EGCG.

  20. Mixed-mode chromatography integrated with high-performance liquid chromatography for protein analysis and separation: Using bovine serum albumin and lysozyme as the model target.

    PubMed

    Xia, Hai-Feng; Don, Bin-Bin; Zheng, Meng-Jie

    2016-05-01

    A type of mixed-mode chromatography was integrated with high-performance liquid chromatography for protein analysis and separation. The chromatographic behavior was tested using bovine serum albumin and lysozyme as model proteins. For the mixed-mode column, the silica beads were activated with γ-(2,3-epoxypropoxy)-propytrimethoxysilane and coupled with 4-mercaptopyridine as the functional ligand. The effects of pH, salt, and the organic solvent conditions of the mobile phase on the retention behavior were studied, which provided valuable clues for separation strategy. When eluted with a suitable pH gradient, salt concentration gradient, and acetonitrile content gradient, the separation behavior of bovine serum albumin and lysozyme could be controlled by altering the conditions of the mobile phase. The results indicated this type of chromatography might be a useful method for protein analysis and separation.

  1. Spectroscopic analyses on interaction of Amantadine-Salicylaldehyde, Amantadine-5-Chloro-Salicylaldehyde and Amantadine-o-Vanillin Schiff-Bases with bovine serum albumin (BSA)

    NASA Astrophysics Data System (ADS)

    Wang, Zhiqiu; Gao, Jingqun; Wang, Jun; Jin, Xudong; Zou, Mingming; Li, Kai; Kang, Pingli

    2011-12-01

    In this work, three Tricyclo [3.3.1.1(3,7)] decane-1-amine (Amantadine) Schiff-Bases, Amantadine-Salicylaldehyde (AS), Amantadine-5-Chloro-Salicylaldehyde (AS-5-C) and Amantadine-o-Vanillin (AS-o-V), were synthesized by direct heating reflux method in ethanol solution and characterized by infrared spectrum and elementary analysis. Fluorescence quenching was used to study the interaction of these Amantadine Schiff-Bases (AS, AS-5-C and AS-o-V) with bovine serum albumin (BSA). According to fluorescence quenching calculations the bimolecular quenching constant ( Kq), apparent quenching constant ( KSV), effective binding constant ( KA) and corresponding dissociation constant ( KD), binding site number ( n) and binding distance ( r) were obtained. The results show that these Amantadine Schiff-Bases can obviously bind to BSA molecules and the binding strength order is AS < AS-5-C = AS-o-V. Synchronous fluorescence spectroscopy reveals that these Amantadine Schiff-Bases adopt different way to bind with BSA molecules. That is, the AS and AS-5-C are accessibility to tryptophan (Trp) residues more than the tyrosine (Tyr) residues, while the AS-o-V is equally close to the Tyr and Trp residues.

  2. Spectroscopic analyses on interaction of Amantadine-Salicylaldehyde, Amantadine-5-Chloro-Salicylaldehyde and Amantadine-o-Vanillin Schiff-Bases with bovine serum albumin (BSA).

    PubMed

    Wang, Zhiqiu; Gao, Jingqun; Wang, Jun; Jin, Xudong; Zou, Mingming; Li, Kai; Kang, Pingli

    2011-12-01

    In this work, three Tricyclo [3.3.1.1(3,7)] decane-1-amine (Amantadine) Schiff-Bases, Amantadine-Salicylaldehyde (AS), Amantadine-5-Chloro-Salicylaldehyde (AS-5-C) and Amantadine-o-Vanillin (AS-o-V), were synthesized by direct heating reflux method in ethanol solution and characterized by infrared spectrum and elementary analysis. Fluorescence quenching was used to study the interaction of these Amantadine Schiff-Bases (AS, AS-5-C and AS-o-V) with bovine serum albumin (BSA). According to fluorescence quenching calculations the bimolecular quenching constant (K(q)), apparent quenching constant (K(SV)), effective binding constant (K(A)) and corresponding dissociation constant (K(D)), binding site number (n) and binding distance (r) were obtained. The results show that these Amantadine Schiff-Bases can obviously bind to BSA molecules and the binding strength order is ASBSA molecules. That is, the AS and AS-5-C are accessibility to tryptophan (Trp) residues more than the tyrosine (Tyr) residues, while the AS-o-V is equally close to the Tyr and Trp residues.

  3. Electrolyte effect on the phase behavior of silica nanoparticles with lysozyme and bovine-serum-albumin proteins

    NASA Astrophysics Data System (ADS)

    Yadav, Indresh; Aswal, V. K.; Kohlbrecher, J.

    2015-05-01

    Small-angle neutron scattering (SANS) and dynamic light scattering (DLS) studies have been carried out to investigate the effect of an electrolyte on the phase behavior of anionic silica nanoparticles with two globular proteins—cationic lysozyme [molecular weight (MW) 14.7 kDa] and anionic bovine serum albumin (MW 66.4 kDa). The results are compared with our earlier published work on similar systems without any electrolyte [I. Yadav, S. Kumar, V. K. Aswal, and J. Kohlbrecher, Phys. Rev. E 89, 032304 (2014), 10.1103/PhysRevE.89.032304]. Both the nanoparticle-protein systems transform to two phase at lower concentration of protein in the presence of an electrolyte. The autocorrelation function in DLS suggests that the diffusion coefficient (D) of a nanoparticle-protein system decreases in approaching two phase with the increase in protein concentration. This variation in D can be attributed to increase in attractive interaction and/or overall increase in the size. Further, these two contributions (interaction and structure) are determined from the SANS data. The changes in the phase behavior of nanoparticle-protein systems in the presence of an electrolyte are explained in terms of modifications in both the repulsive and attractive components of interaction between nanoparticles. In a two-phase system individual silica nanoparticles coexist along with their fractal aggregates.

  4. Mass spectrometry-based proteomics of oxidative stress: Identification of 4-hydroxy-2-nonenal (HNE) adducts of amino acids using lysozyme and bovine serum albumin as model proteins.

    PubMed

    Aslebagh, Roshanak; Pfeffer, Bruce A; Fliesler, Steven J; Darie, Costel C

    2016-10-01

    Modification of proteins by 4-hydroxy-2-nonenal (HNE), a reactive by-product of ω6 polyunsaturated fatty acid oxidation, on specific amino acid residues is considered a biomarker for oxidative stress, as occurs in many metabolic, hereditary, and age-related diseases. HNE modification of amino acids can occur either via Michael addition or by formation of Schiff-base adducts. These modifications typically occur on cysteine (Cys), histidine (His), and/or lysine (Lys) residues, resulting in an increase of 156 Da (Michael addition) or 138 Da (Schiff-base adducts), respectively, in the mass of the residue. Here, we employed biochemical and mass spectrometry (MS) approaches to determine the MS "signatures" of HNE-modified amino acids, using lysozyme and BSA as model proteins. Using direct infusion of unmodified and HNE-modified lysozyme into an electrospray quadrupole time-of-flight mass spectrometer, we were able to detect up to seven HNE modifications per molecule of lysozyme. Using nanoLC-MS/MS, we found that, in addition to N-terminal amino acids, Cys, His, and Lys residues, HNE modification of arginine (Arg), threonine (Thr), tryptophan (Trp), and histidine (His) residues can also occur. These sensitive and specific methods can be applied to the study of oxidative stress to evaluate HNE modification of proteins in complex mixtures from cells and tissues under diseased versus normal conditions.

  5. Interaction of bovine (BSA), rabbit (RSA), and porcine (PSA) serum albumins with cationic single-chain/gemini surfactants: a comparative study.

    PubMed

    Gull, Nuzhat; Sen, Priyankar; Khan, Rizwan Hasan; Kabir-ud-Din

    2009-10-06

    The interactions among bovine, rabbit, and porcine serum albumins and single-chain cationic surfactant cetyltrimethylammonium bromide (CTAB) versus its gemini counterpart (designated as G4) have been studied. The studies were carried out in an aqueous medium at pH 7.0 using UV, intrinsic and extrinsic fluorescence spectroscopy, and far-UV circular dichroism techniques. The results indicate that compared to CTAB, G4 interacts strongly with the serum albumins, resulting in a significantly larger unfolding or decrease in alpha-helical content as reflected by the significantly larger decrease in ellipticity in the far-UV range. Unlike CTAB, a remarkable increase in the alpha-helical content of BSA at 625 microM G4 and at 250 microM G4 for RSA and PSA is observed. The appearance of conformational changes and saturation points in the proteins occurs at considerably lower [G4] compared to [CTAB]. The results obtained from the multi-technique approach are ascribed to the stronger forces in G4 owing to the presence of two charged headgroups and two hydrocarbon tails. Keeping the results in view, it is suggested that the gemini surfactants may be effectively used in the renaturation of proteins produced in genetically engineered cells via the artificial chaperone protocol and may also prove useful in drug delivery as solubilizing agents to recover proteins from insoluble inclusion bodies.

  6. Sugar-dependent photodynamic effect of glycoconjugated porphyrins: a study on photocytotoxicity, photophysical properties and binding behavior to bovine serum albumin (BSA).

    PubMed

    Obata, Makoto; Hirohara, Shiho; Sharyo, Kohei; Alitomo, Hiroki; Kajiwara, Kazumi; Ogata, Shin-ichi; Tanihara, Masao; Ohtsuki, Chikara; Yano, Shigenobu

    2007-08-01

    The photocytotoxicity of four glycoconjugated porphyrins, namely 5,10,15,20-tetrakis[4-(beta-D-glucopyranosyloxy)phenyl]porphyrin (p-1a), 5,10,15,20-tetrakis[4-(beta-D-galactopyranosyloxy)phenyl]porphyrin (p-1b), 5,10,15,20-tetrakis[4-(beta-D-xylopyranosyloxy)phenyl]porphyrin (p-1c) and 5,10,15,20-tetrakis[4-(beta-D-arabinopyranosyloxy)phenyl]porphyrin (p-1d), was evaluated in HeLa cells in the concentration range from 1 to 7 microM using a light dose of 16 J x cm(-2) with a wavelength greater than 500 nm. The photocytotoxicity depends on the sugar moieties, and increases in the order of p-1dalbumin (BSA). In particular, the oscillator strength in the range above 500 nm increases in the order of p-1d=p-1aBSA was evaluated by means of electronic absorption, fluorometric and circular dichroic (CD) titrations. Fluorometric titration showed no differences in the apparent binding constants, K, between the glycoconjugated porphyrins p-1a, p-1b, p-1c and p-1d. On the other hand, the number of binding sites, n, depends on the sugar moieties of the glycoconjugated porphyrin, and increases in the order of p-1bBSA. However, it was found that the n value was poorly related to the photophysical properties in physiological media and the photocytotoxicity. Even though the role of the sugar moieties on

  7. Influence of core and maltose surface modification of PEIs on their interaction with plasma proteins-Human serum albumin and lysozyme.

    PubMed

    Wrobel, Dominika; Marcinkowska, Monika; Janaszewska, Anna; Appelhans, Dietmar; Voit, Brigitte; Klajnert-Maculewicz, Barbara; Bryszewska, Maria; Štofik, Marcel; Herma, Regina; Duchnowicz, Piotr; Maly, Jan

    2017-04-01

    Regardless of the route of administration, some or all of a therapeutic agent will appear in the blood stream, where it can act on blood cells and other components of the plasma. Recently we have shown that poly(ethylene imines) (PEIs) which interact with plasma proteins are taken up into erythrocyte membranes. These observations led us to investigate the interactions between maltose functionalized hyperbranched PEIs (PEI-Mal) and plasma proteins. Two model proteins were chosen - human serum albumin (HSA) (albumins constitute ∼60% of all plasma proteins), and lysozyme. HSA is a negatively charged 66kDa protein at neutral pH, whereas lysozyme is a positively charged 14kDa protein. Fluorescence quenching and changes in the conformation of the amino acid tryptophan, diameter and zeta potential of proteins were investigated to evaluate the interaction of PEI-Mal with proteins. PEI-Mal interacts with both types of proteins. The strength of dendritic glycopolymer interactions was generally weak, especially with lysozyme. Greater changes were found with HSA, mainly triggered by hydrogen bonds and the electrostatic interaction properties of dendritic glycopolymers. Moreover, the structure and the size of PEI-Mal macromolecules affected these interactions; larger macromolecules with more sugar groups (95% maltose units) interacted more strongly with proteins than smaller ones with lower sugar modification (33% maltose units). Due to (i) the proven overall low toxicity of sugar-modified PEIs and, (ii) their ability to interact preferentially through hydrogen bonds with proteins of human plasma or possibly with other interesting protein targets, PEI-Mal is a good candidate for creating therapeutic nanoparticles in the fast developing field of nanomedicine.

  8. Spectroscopic analyses on interaction of o-Vanillin- D-Phenylalanine, o-Vanillin- L-Tyrosine and o-Vanillin- L-Levodopa Schiff Bases with bovine serum albumin (BSA)

    NASA Astrophysics Data System (ADS)

    Gao, Jingqun; Guo, Yuwei; Wang, Jun; Wang, Zhiqiu; Jin, Xudong; Cheng, Chunping; Li, Ying; Li, Kai

    2011-04-01

    In this work, three o-Vanillin Schiff Bases (o-VSB: o-Vanillin- D-Phenylalanine (o-VDP), o-Vanillin- L-Tyrosine (o-VLT) and o-Vanillin- L-Levodopa (o-VLL)) with alanine constituent were synthesized by direct reflux method in ethanol solution, and then were used to study the interaction to bovine serum albumin (BSA) molecules by fluorescence spectroscopy. Based on the fluorescence quenching calculation, the bimolecular quenching constant ( Kq), apparent quenching constant ( Ksv), effective binding constant ( KA) and corresponding dissociation constant ( KD) as well as binding site number ( n) were obtained. In addition, the binding distance ( r) was also calculated according to Foster's non-radioactive energy transfer theory. The results show that these three o-VSB can efficiently bind to BSA molecules, but the binding array order is o-VDP-BSA > o-VLT-BSA > o-VLL-BSA. Synchronous fluorescence spectroscopy indicates that the o-VDP is more accessibility to tryptophan (Trp) residues of BSA molecules than to tyrosine (Tyr) residues. Nevertheless, the o-VLT and o-VLL are more accessibility to Tyr residues than to Trp residues.

  9. Interaction between the Natural Components in Danhong Injection (DHI) with Serum Albumin (SA) and the Influence of the Coexisting Multi-Components on the SaB-BSA Binding System: Fluorescence and Molecular Docking Studies

    PubMed Central

    Hao, Jia; Zhang, Yingyue; Wang, Xingrui; Yan, Huo; Liu, Erwei; Gao, Xiumei

    2015-01-01

    Danhong injection (DHI) is a widely used Chinese Materia Medica standardized product for the clinical treatment of ischemic encephalopathy and coronary heart disease. The bindings of eight natural components in DHI between bovine serum albumin (BSA) were studied by fluorescence spectroscopy technology and molecular docking. According to the results, the quenching process of salvianolic acid B and hydroxysafflor yellow A was a static quenching procedure through the analysis of quenching data by the Stern-Volmer equation, the modified Stern-Volmer equation, and the modified Scatchard equation. Meanwhile, syringin (Syr) enhanced the fluorescence of BSA, and the data were analyzed using the Lineweaver-Burk equation. Molecular docking suggested that all of these natural components bind to serum albumin at the site I location. Further competitive experiments of SaB confirmed the result of molecular docking studies duo to the displacement of warfarin by SaB. Base on these studies, we selected SaB as a research target because it presented the strongest binding ability to BSA and investigated the influence of the multi-components coexisting in DHI on the interaction between the components of the SaB-BSA binding system. The participation of these natural components in DHI affected the interaction between the components of the SaB-BSA system. Therefore, when DHI is used in mammals, SaB is released from serum albumin more quickly than it is used alone. This work would provide a new experiment basis for revealing the scientific principle of compatibility for Traditional Chinese Medicine. PMID:26035712

  10. Interaction between the Natural Components in Danhong Injection (DHI) with Serum Albumin (SA) and the Influence of the Coexisting Multi-Components on the SaB-BSA Binding System: Fluorescence and Molecular Docking Studies.

    PubMed

    Hao, Jia; Zhang, Yingyue; Wang, Xingrui; Yan, Huo; Liu, Erwei; Gao, Xiumei

    2015-01-01

    Danhong injection (DHI) is a widely used Chinese Materia Medica standardized product for the clinical treatment of ischemic encephalopathy and coronary heart disease. The bindings of eight natural components in DHI between bovine serum albumin (BSA) were studied by fluorescence spectroscopy technology and molecular docking. According to the results, the quenching process of salvianolic acid B and hydroxysafflor yellow A was a static quenching procedure through the analysis of quenching data by the Stern-Volmer equation, the modified Stern-Volmer equation, and the modified Scatchard equation. Meanwhile, syringin (Syr) enhanced the fluorescence of BSA, and the data were analyzed using the Lineweaver-Burk equation. Molecular docking suggested that all of these natural components bind to serum albumin at the site I location. Further competitive experiments of SaB confirmed the result of molecular docking studies duo to the displacement of warfarin by SaB. Base on these studies, we selected SaB as a research target because it presented the strongest binding ability to BSA and investigated the influence of the multi-components coexisting in DHI on the interaction between the components of the SaB-BSA binding system. The participation of these natural components in DHI affected the interaction between the components of the SaB-BSA system. Therefore, when DHI is used in mammals, SaB is released from serum albumin more quickly than it is used alone. This work would provide a new experiment basis for revealing the scientific principle of compatibility for Traditional Chinese Medicine.

  11. Fluorescence enhancement of europium(III) perchlorate by benzoic acid on bis(benzylsulfinyl)methane complex and its binding characteristics with the bovine serum albumin (BSA).

    PubMed

    Zhang, Jing; Li, Wen-Xian; Ao, Bo-Yang; Feng, Shu-Yan; Xin, Xiao-Dong

    2014-01-24

    A novel ligand with double sulfinyl groups, bis(benzylsulfinyl)methane L, was synthesized by a new method. Its novel ternary complex, EuL2.5⋅L'·(ClO4)2⋅5H2O, has been synthesized [using L as the first ligand, and benzoic acid L' as the second ligand], and characterized by elemental analysis, molar conductivity, coordination titration analysis, FTIR, TG-DSC, (1)H NMR and UV-vis. In order to study the effect of the second ligand on the fluorescence properties of rare-earth sulfoxide complex, a novel binary complex EuL2.5·(ClO4)3·3H2O has been synthesized. Photoluminescent measurement showed that the first ligand L could efficiently transfer the energy to Eu(3+) ions in the complex. Furthermore, the detailed luminescence analyses on the rare earth complexes indicated that the ternary Eu (III) complex manifested stronger fluorescence intensities, longer lifetimes, and higher fluorescence quantum efficiencies than the binary Eu (III) materials. After introducing the second ligand L', the fluorescence emission intensities and fluorescence lifetimes of the ternary complex enhanced more obviously than the binary complex. This illustrated that the presence of both the first ligand L and the second ligand L' could sensitize fluorescence intensities of Eu (III) ions. The fluorescence spectra, fluorescence lifetime and phosphorescence spectra were also discussed. To explore the potential biological value of Eu (III) complexes, the binding interaction among Eu (III) complexes and bovine serum albumin (BSA) was studied by fluorescence spectrum. The result indicated that the reaction between Eu (III) complexes and BSA was a static quenching procedure. The binding site number, n, of 0.60 and 0.78, and binding constant, Ka, of 0.499 and 4.46 were calculated according to the double logarithm regression equation, respectively for EuL2.5⋅L'⋅(ClO4)2⋅5H2O and EuL2.5⋅(ClO4)3⋅3H2O systems.

  12. Fluorescence enhancement of europium(III) perchlorate by benzoic acid on bis(benzylsulfinyl)methane complex and its binding characteristics with the bovine serum albumin (BSA)

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Li, Wen-Xian; Ao, Bo-Yang; Feng, Shu-Yan; Xin, Xiao-Dong

    2014-01-01

    A novel ligand with double sulfinyl groups, bis(benzylsulfinyl)methane L, was synthesized by a new method. Its novel ternary complex, EuL2.5ṡL‧·(ClO4)2ṡ5H2O, has been synthesized [using L as the first ligand, and benzoic acid L‧ as the second ligand], and characterized by elemental analysis, molar conductivity, coordination titration analysis, FTIR, TG-DSC, 1H NMR and UV-vis. In order to study the effect of the second ligand on the fluorescence properties of rare-earth sulfoxide complex, a novel binary complex EuL2.5·(ClO4)3·3H2O has been synthesized. Photoluminescent measurement showed that the first ligand L could efficiently transfer the energy to Eu3+ ions in the complex. Furthermore, the detailed luminescence analyses on the rare earth complexes indicated that the ternary Eu (III) complex manifested stronger fluorescence intensities, longer lifetimes, and higher fluorescence quantum efficiencies than the binary Eu (III) materials. After introducing the second ligand L‧, the fluorescence emission intensities and fluorescence lifetimes of the ternary complex enhanced more obviously than the binary complex. This illustrated that the presence of both the first ligand L and the second ligand L‧ could sensitize fluorescence intensities of Eu (III) ions. The fluorescence spectra, fluorescence lifetime and phosphorescence spectra were also discussed. To explore the potential biological value of Eu (III) complexes, the binding interaction among Eu (III) complexes and bovine serum albumin (BSA) was studied by fluorescence spectrum. The result indicated that the reaction between Eu (III) complexes and BSA was a static quenching procedure. The binding site number, n, of 0.60 and 0.78, and binding constant, Ka, of 0.499 and 4.46 were calculated according to the double logarithm regression equation, respectively for EuL2.5ṡL‧ṡ(ClO4)2ṡ5H2O and EuL2.5ṡ(ClO4)3ṡ3H2O systems.

  13. A novel immunoassay for residual bovine serum albumin (BSA) in vaccines using laser-induced fluorescence millimeter sensor array detection platform.

    PubMed

    Zhang, Xiaoming; Song, Chaojun; Chen, Lili; Zhang, Kui; Fu, Aihua; Jin, Boquan; Zhang, Zhujun; Yang, Kun

    2011-05-15

    A highly sensitive and stable sandwich fluorescence immunoassay for the quantitative detection of residual BSA in vaccines based on the labels of the functionalized fluorescent core-shell silica nanoparticles and laser-induced fluorescence millimeter sensor array detection platform has been developed. On a glass slide with low fluorescence background, capture antibody against BSA was immobilized, after BSA was captured, another identify antibody against BSA which was labeled with the new fluorescent silica nanoparticles was used to recognize the BSA. The fluorescence issued from the fluorescent silica nanoparticles was successfully detected by the laser induced fluorescence millimeter sensor assay detection platform which was made by us. This method exhibited high performance with a linear correlation between response and amount of BSA in the range 1.0-100 ng/mL and the detection limit was 0.3 ng/mL (3σ). The relative standard deviation (R.S.D.) was 6.7% at the concentration of 20 ng/mL for 5 parallel measurements of BSA.

  14. Investigation of Bovine Serum Albumin (BSA) Attachment onto Self-Assembled Monolayers (SAMs) Using Combinatorial Quartz Crystal Microbalance with Dissipation (QCM-D) and Spectroscopic Ellipsometry (SE).

    PubMed

    Phan, Hanh T M; Bartelt-Hunt, Shannon; Rodenhausen, Keith B; Schubert, Mathias; Bartz, Jason C

    2015-01-01

    Understanding protein adsorption kinetics to surfaces is of importance for various environmental and biomedical applications. Adsorption of bovine serum albumin to various self-assembled monolayer surfaces including neutral and charged hydrophilic and hydrophobic surfaces was investigated using in-situ combinatorial quartz crystal microbalance with dissipation and spectroscopic ellipsometry. Adsorption of bovine serum albumin varied as a function of surface properties, bovine serum albumin concentration and pH value. Charged surfaces exhibited a greater quantity of bovine serum albumin adsorption, a larger bovine serum albumin layer thickness, and increased density of bovine serum albumin protein compared to neutral surfaces at neutral pH value. The quantity of adsorbed bovine serum albumin protein increased with increasing bovine serum albumin concentration. After equilibrium sorption was reached at pH 7.0, desorption of bovine serum albumin occurred when pH was lowered to 2.0, which is below the isoelectric point of bovine serum albumin. Our data provide further evidence that combinatorial quartz crystal microbalance with dissipation and spectroscopic ellipsometry is a sensitive analytical tool to evaluate attachment and detachment of adsorbed proteins in systems with environmental implications.

  15. Investigation of Bovine Serum Albumin (BSA) Attachment onto Self-Assembled Monolayers (SAMs) Using Combinatorial Quartz Crystal Microbalance with Dissipation (QCM-D) and Spectroscopic Ellipsometry (SE)

    PubMed Central

    Phan, Hanh T. M.; Bartelt-Hunt, Shannon; Rodenhausen, Keith B.; Schubert, Mathias; Bartz, Jason C.

    2015-01-01

    Understanding protein adsorption kinetics to surfaces is of importance for various environmental and biomedical applications. Adsorption of bovine serum albumin to various self-assembled monolayer surfaces including neutral and charged hydrophilic and hydrophobic surfaces was investigated using in-situ combinatorial quartz crystal microbalance with dissipation and spectroscopic ellipsometry. Adsorption of bovine serum albumin varied as a function of surface properties, bovine serum albumin concentration and pH value. Charged surfaces exhibited a greater quantity of bovine serum albumin adsorption, a larger bovine serum albumin layer thickness, and increased density of bovine serum albumin protein compared to neutral surfaces at neutral pH value. The quantity of adsorbed bovine serum albumin protein increased with increasing bovine serum albumin concentration. After equilibrium sorption was reached at pH 7.0, desorption of bovine serum albumin occurred when pH was lowered to 2.0, which is below the isoelectric point of bovine serum albumin. Our data provide further evidence that combinatorial quartz crystal microbalance with dissipation and spectroscopic ellipsometry is a sensitive analytical tool to evaluate attachment and detachment of adsorbed proteins in systems with environmental implications. PMID:26505481

  16. Molecular interactions between some non-steroidal anti-inflammatory drugs (NSAID's) and bovine (BSA) or human (HSA) serum albumin estimated by means of isothermal titration calorimetry (ITC) and frontal analysis capillary electrophoresis (FA/CE).

    PubMed

    Ràfols, Clara; Zarza, Sílvia; Bosch, Elisabeth

    2014-12-01

    The interactions between some non-steroidal anti-inflammatory drugs, NSAIDs, (naproxen, ibuprofen and flurbiprofen) and bovine (BSA) or human (HSA) serum albumin have been examined by means of two complementary techniques, isothermal titration calorimetry (ITC) and frontal analysis/capillary electrophoresis (FA/CE). It can be concluded that ITC is able to measure with high precision the strongest drug-albumin interactions but the higher order interactions can be better determined by means of FA/CE. Then, the combination of both techniques leads to a complete evaluation of the binding profiles between the selected NSAIDs and both kind of albumin proteins. When BSA is the binding protein, the NSAIDs show a strong primary interaction (binding constants: 1.5 × 10(7), 8 × 10(5) and 2 × 10(6) M(-1) for naproxen, ibuprofen and flurbiprofen, respectively), and also lower affinity interactions of the same order for the three anti-inflammatories (about 1.7 × 10(4) M(-1)). By contrast, when HSA is the binding protein two consecutive interactions can be observed by ITC for naproxen (9 × 10(5) and 7 × 10(4) M(-1)) and flurbiprofen (5 × 10(6) and 6 × 10(4) M(-1)) whereas only one is shown for ibuprofen (9 × 10(5) M(-1)). Measurements by FA/CE show a single interaction for each drug being the ones of naproxen and flurbiprofen the same that those evaluated by ITC as the second interaction events. Then, the ability of both techniques as suitable complementary tools to establish the whole interaction NSAIDs-albumin profile is experimentally demonstrated and allows foreseeing suitable strategies to establish the complete drug-protein binding profile. In addition, for the interactions analyzed by means of ITC, the thermodynamic signature is established and the relative contributions of the enthalpic and entropic terms discussed.

  17. Human serum albumin-coated gold nanoparticles for selective extraction of lysozyme from real-world samples prior to capillary electrophoresis.

    PubMed

    Yeh, Pei-Rong; Tseng, Wei-Lung

    2012-12-14

    This study describes the use of human serum albumin (HSA)-modified gold nanoparticles (HSA-AuNPs) for the selective extraction and enrichment of high-pI protein, lysozyme (Lyz) prior to analysis by capillary electrophoresis (CE) with UV detection. HSA-AuNPs are capable of extracting Lyz from a complex matrix because a HSA capping layer not only stabilizes gold nanoparticles in a high-salt environment but also exhibits strong electrostatic attraction with Lyz under neutral pH condition. Efficient separation of Lyz and other high-pI proteins has been successfully achieved by the filling of cationic polyelectrolyte, poly(diallydimethylammonium chloride) (PDDAC), to the background electrolyte. After capturing Lyz with HSA-AuNPs, PDDAC-filled CE can be directly used for the analysis of the extracted Lyz without the addition of the releasing agent into the extractor. The extraction efficiency relied on the pH of the solution and the concentration of HSA-AuNPs. Under optimal extraction conditions, the limit of detection at a signal-to-noise ratio of 3 for Lyz was down to 8 nM. The combination of HSA-AuNP extraction and PDDAC-filled CE has been applied the analyses of Lyz in hen egg white, human milk, and human tear. Also, this NP-based extraction can be coupled to matrix-assisted desorption/ionization time-of-flight mass spectrometry and sodium dodecyl sulfate-polyacrylamide gel electrophoresis.

  18. SPR studies of the adsorption of silver/bovine serum albumin nanoparticles (Ag/BSA NPs) onto the model biological substrates.

    PubMed

    Bhan, Chandra; Brower, Tina Louise; Raghavan, Dharmaraj

    2013-07-15

    The primary objective of this study is to investigate the interactive forces that promote the adsorption of bio-conjugated nanoparticles onto proteins. To elucidate the interactive forces, we demonstrate an approach using synthetic and model biological surfaces to study adsorption of bio-conjugated nanoparticles. Real-time adsorption of BSA conjugated silver nanoparticles (Ag/BSA NPs) on the immobilized substrates was followed by surface plasmon resonance (SPR). The extent of adsorption of the nanoparticles on the synthetic surface was found to be larger for self-assembled monolayers (SAMs) with ionizable terminal groups and lower for SAMs with unionizable terminal groups. For model biological substrate, the extent of nanoparticles adsorption was found to relate to the pKa of immobilized proteins. For collagen immobilized substrate, the adsorption of Ag/BSA nanoparticles showed a significantly higher SPR response than that of free BSA. The extent of nanoparticles adsorption on the collagen immobilized substrate was also influenced by the type and concentration of electrolyte used in dispersing nanoparticles. Our findings indicate that the adsorption of nanoparticles to immobilized surface has contributions from electrostatic interactions, hydrophobic, and/or hydrogen bonding. This work provides the framework to study interactions that may arise when bio-conjugated nanoparticles are transported in biological systems.

  19. Interaction of two imidazolium gemini surfactants with two model proteins BSA and HEWL.

    PubMed

    Gospodarczyk, W; Kozak, M

    Gemini surfactants and their interactions with proteins have gained considerable scientific interest, especially when amyloidogenic proteins are taken into account. In this work, the influence of two selected dicationic (gemini) surfactants (3,3'-[1,8-(2,7-dioxaoctane)]bis(1-dodecylimidazolium) chloride and 3,3'-[1,12-(2,11-dioxadodecane)]bis(1-dodecylimidazolium) chloride) on two model proteins, bovine serum albumin (BSA) and hen egg white lysozyme (HEWL), have been investigated. A pronounced and sophisticated influence on BSA structure has been revealed, including a considerable change of protein radius of gyration as well as substantial alteration of its secondary structure. Radius of gyration has been found to rise significantly with addition of surfactants and to fall down for high surfactants concentration. Similarly, a remarkable fall of secondary structure (α-helix content) has been observed, followed by its partial retrieval for high surfactants concentration. A strong aggregation of BSA has been observed for a confined range of surfactants concentrations as well. In case of HEWL-gemini system, on the other hand, the protein-surfactant interaction was found to be weak. Molecular mechanisms explaining such behaviour of protein-surfactant systems have been proposed. The differences of properties of both studied surfactants have also been discussed.

  20. The establishment of a highly sensitive ELISA for detecting bovine serum albumin (BSA) based on a specific pair of monoclonal antibodies (mAb) and its application in vaccine quality control.

    PubMed

    Zhang, Kui; Song, Chaojun; Li, Qi; Li, Yongming; Sun, Yuanjie; Yang, Kun; Jin, Boquan

    2010-08-01

    A highly sensitive sandwich enzyme-linked immunosorbent assay (ELISA) for quantifying BSA was established, based on two mAbs that recognize different epitopes on a BSA molecule. Our ELISA system was used to detect BSA concentrations in several vaccines, such as the MMR (measles, mumps and rubella) vaccine, hepatitis A vaccine, and hepatitis B vaccine. Moreover, we compared the mAb ELISA and the present pAb ELISA by detecting BSA standards and bovine serum samples. The results showed that our ELISA system was in good accordance with the pAb ELISA system. A pair of mAbs (FMU-BSA NO.6 and FMU-BSA NO.11) from 11 murine hybridomas secreting BSA-specific mAbs was selected for the development of the sandwich ELISA. The detection limit of this quantitative assay reaches 0.38 μg/L, which is 10-fold more sensitive than those previously reported. The quantitative range of BSA concentration is from 0.5 to 40 μg/L, which is comparable to the currently used polyclonal antibody (pAb) ELISA. Intra-assay and inter-assay coefficient variations are both lower than 10% at the three concentrations used (10, 20, and 40 μg/L). Thus, the mAb sandwich ELISA developed herein may provide a stable, precise, and highly sensitive method for quantifying BSA, which is very useful in the quality control of some vaccines.

  1. Esterase activity of BSA-ZnO nanoparticle complex

    NASA Astrophysics Data System (ADS)

    Bhogale, A.; Nair, A.; Patel, N.; Miotello, A.; Kothari, D. C.

    2014-04-01

    The effect of Zinc Oxide Nanoparticles (ZnO NPs) on functional properties of Bovine Serum Albumin (BSA) protein was studied. ZnO NPs were synthesized with average size of ˜7.5 nm as obtained from TEM analysis. The catalytic conversion of p-nitrophenylacetate (PNPA) to p-nitrophenol in the presence of BSA attached with ZnO NPs was examined by UV-Vis spectroscopy at room temperature. The result suggests that esterase activity of BSA is significantly enhanced (6 times) due to the ground state BSA-ZnO complex formation.

  2. Purification of Lysozyme by Intrinsically Shielded Hydrogel Beads

    NASA Astrophysics Data System (ADS)

    Li, Cong; Zhang, R.; Wang, L.; Bowyer, A.; Eisenthal, R.; Shen, Yehua; Hubble, J.

    2013-07-01

    Macro-sized intrinsically shielded hydrogel beads have been prepared from BSA and CM-dextran grafted with CB using a technique based on freeze-thawing gelation method. The size of the beads lies in around 500 μm. Isothemal titration calorimetry (ITC) showed that the relative binding affinities of the lysozyme for CB, compared with BSA, at pH 3.0 was stronger than that at pH 7.4. They were employed for the affinity separation of lysozyme using chromatography column. Their adsorption capacity for lysozyme at pH 3.0 is higher than that at pH 9. In a binary mixture of lysozyme and ovalbumin, the beads showed very high selectivity toward lysozyme. Lysozyme of very high purity (> 93%) was obtained from a mixture of lysozyme and ovalbumin, and 85% from egg white solution. The results indicate that the macro-sized bead can be used for the separation, purification, and recovery of lysozyme in a chromatograph column.

  3. Lysozyme Crystal

    NASA Technical Reports Server (NTRS)

    2004-01-01

    To the crystallographer, this may not be a diamond but it is just as priceless. A Lysozyme crystal grown in orbit looks great under a microscope, but the real test is X-ray crystallography. The colors are caused by polarizing filters. Proteins can form crystals generated by rows and columns of molecules that form up like soldiers on a parade ground. Shining X-rays through a crystal will produce a pattern of dots that can be decoded to reveal the arrangement of the atoms in the molecules making up the crystal. Like the troops in formation, uniformity and order are everything in X-ray crystallography. X-rays have much shorter wavelengths than visible light, so the best looking crystals under the microscope won't necessarily pass muster under the X-rays. In order to have crystals to use for X-ray diffraction studies, crystals need to be fairly large and well ordered. Scientists also need lots of crystals since exposure to air, the process of X-raying them, and other factors destroy them. Growing protein crystals in space has yielded striking results. Lysozyme's structure is well known and it has become a standard in many crystallization studies on Earth and in space.

  4. Morphological Analysis and Interaction of Chlorophyll and BSA

    PubMed Central

    Gorza, Filipe D. S.; Pedro, Graciela C.; Trescher, Tarquin F.; da Silva, Romário J.; Silva, Josmary R.; de Souza, Nara C.

    2014-01-01

    Interactions between proteins and drugs, which can lead to formation of stable drug-protein complexes, have important implications on several processes related to human health. These interactions can affect, for instance, free concentration, biological activity, and metabolism of the drugs in the blood stream. Here, we report on the UV-Visible spectroscopic investigation on the interaction of bovine serum albumin (BSA) with chlorophyll (Chl) in aqueous solution under physiological conditions. Binding constants at different temperatures—obtained by using the Benesi-Hildebrand equation—were found to be of the same order of magnitude (~104 M−1) indicating low affinity of Chl with BSA. We have found a hyperchromism, which suggested an interaction between BSA and Chl occurring through conformational changes of BSA caused by exposition of tryptophan to solvent. Films from BSA and Chl obtained at different Chl concentrations showed fractal structures, which were characterized by fractal dimension calculated from microscopic image analysis. PMID:24963490

  5. Synthesis and characterization of collagen grafted poly(hydroxybutyrate-valerate) (PHBV) scaffold for loading of bovine serum albumin capped silver (Ag/BSA) nanoparticles in the potential use of tissue engineering application.

    PubMed

    Bakare, Rotimi A; Bhan, Chandra; Raghavan, Dharmaraj

    2014-01-13

    The objective of this study is to synthesize and characterize collagen grafted poly(3-hydroxylbutyrate-co-3-hydroxylvalerate) (PHBV) film for loading of BSA capped silver (Ag/BSA) nanoparticles. Thermal radical copolymerization and aminolysis methods were used to functionalize macroporous PHBV, followed by collagen grafting so as to formulate collagen-g-poly(hydroxyethylmethyl acrylate)-g-poly(3-hydroxylbutyrate-co-3-hydroxylvalerate) [collagen-g-PHEMA-g-PHBV] and collagen-g-aminated-poly(3-hydroxylbutyrate-co-3-hydroxylvalerate) [collagen-g-NH2-PHBV] films, respectively. Spectroscopic (FTIR, XPS), physical (SEM), and thermal (TGA) techniques were used to characterize the functionalized PHBV films. The amount of collagen present on grafted PHBV film was quantified by the Bradford method. The Ag/BSA nanoparticles were then loaded on collagen grafted and untreated PHBV films, and the nanoparticles loading were determined by atomic absorption spectrometry. The amount of nanoparticles loaded on collagen grafted PHBV film was found to be significantly greater than that on the untreated PHBV film. The nanoparticles loaded PHBV film can potentially serve as a scaffold to promote the growth of bone cells while inhibiting the bacterial growth.

  6. An intrinsically shielded hydrogel for the adsorptive recovery of lysozyme.

    PubMed

    Wang, Lu; Zhang, Rongsheng; Eisenthal, Robert; Hubble, John

    2006-07-01

    The present paper addresses the selective recovery of lysozyme from egg white using CM-dextran (carboxymethyldextran)-based hydrogels containing Cibacron Blue as an affinity ligand and co-immobilized BSA intended to act as a shielding agent to reduce non-specific adsorption. Initial studies using pure lysozyme were conducted that indicated that the adsorption capacity increased with ligand density and that adsorption was well described by a Langmuir-type isotherm. The inclusion of BSA as a putative shielding agent did not decrease the adsorption capacity for lysozyme in single-adsorbate experiments. To assess the effectiveness of the shielding strategy, subsequent experiments were conducted with both defined lysozyme/ovalbumin mixtures and hen's-egg white. From these studies, the optimal operating conditions for lysozyme recovery have been determined. These include: optimal initial egg-white concentration [a 10% (v/v) solution of native egg white in the chosen buffer], affinity-ligand density (1.86 mM) and ligand-to-shielding-agent ratio (4:1). The purity of lysozyme obtained from egg white was improved from 69% with a non-shielded hydrogel to 94% with an intrinsically shielded hydrogel. Finally, the possibility of using a protein, rather than dextran-backbone-based, hydrogel was investigated. It was found that BSA could take the place of CM-dextran as the gel backbone in a simplified synthesis, producing a gel which also proved effective for lysozyme recovery with a 30% lysozyme in egg-white solution purified to approx. 92% in a single adsorption-desorption cycle.

  7. Effect of temperature on the methotrexate BSA interaction: Spectroscopic study

    NASA Astrophysics Data System (ADS)

    Sułkowska, A.; Maciążek, M.; Równicka, J.; Bojko, B.; Pentak, D.; Sułkowski, W. W.

    2007-05-01

    Rheumatoid arthritis (RA) is an autoimmune and chronic inflammatory illness which affects about one percent of the world's population. Methotrexate (4-amino-10-methylfolic acid) (MTX) also known as amethopterin is commonly used to treat rheumatoid arthritis (RA). It is transported in the circulary system as a complex with serum albumin. The aim of this study was to investigate the interactions of MTX with transporting protein with the use of spectroscopic methods. The binding of MTX to bovine serum albumin (BSA) was studied by monitoring the changes in the emission fluorescence spectra of protein in the presence of MTX at excitation wavelength of 280 nm and 295 nm. The quenching of protein fluorescence at temperature range from 298 K to 316 K was observed. Energy transfer between methotrexate and fluorophores contained in the serum albumin structure was found at the molar ratio MTX:BSA 7.5:1. The relative fluorescence intensity of BSA decreases with increase of temperature. Similar results were observed for BSA excited with 280 nm and 295 nm at the same temperature range. The presence of MTX seems to prevent these changes. Temperature dependence of the binding constant has been presented. The binding and quenching constants for equilibrium complex were calculated using Scatchard and Stern-Volmer method, respectively. The results show that MTX forms π-π complex with aromatic amino acid residues of BSA. The binding site for MTX on BSA was found to be situated in the hydrophobic IIA or IB subdomain where the Trps were located. The spontaneity of MTX-BSA complex formation in the temperature range 298-316 K was ascertained.

  8. Comparison of tryptophan interactions to free and grafted BSA protein.

    PubMed

    Garnier, F; Randon, J; Rocca, J L

    2000-04-28

    The binding of d- and l-tryptophan molecules to bovine serum albumin (BSA) protein has been studied using liquid chromatography and ultrafiltration in the pH range from 7 to 11. A hydrophobic interaction between tryptophan and BSA has been observed at pH 7.0 on BSA grafted chromatographic column. However, this interaction is negligible at higher pH for which the interaction to the stereospecific site was predominant. For both grafted and free proteins, the complexation mechanism was a competitive binding of d- and l-enantiomers on a single site. The apparent complexation constants for both d- and l-tryptophan show a maximum in the pH range 9-10. The variations of the apparent complexation constants versus pH were the result of the protonation of both the amino acid and a single site of the protein assuming that the complexation occurs between the zwitter-ionic amino acid form and the unprotonated BSA site. The apparent pK(BSA) is slightly shifted from 8.3 for grafted BSA protein to 9.4 for free BSA protein. This shift is presumably as a result of the different protein conformation.

  9. Encapsulation of catechin and epicatechin on BSA NPS improved their stability and antioxidant potential

    PubMed Central

    Yadav, Ramdhan; Kumar, Dharmesh; Kumari, Avnesh; Yadav, Sudesh Kumar

    2014-01-01

    Nanoencapsulation of antioxidant molecules on protein nanoparticles (NPs) could be an advanced approach for providing stable, better food nutraceuticals and anticancer drugs. The bioavailability and stability of catechin (CAT) and epicatechin (ECAT) were very poor. In the present study, the CAT and ECAT were loaded on bovine serum albumin (BSA) NPs following desolvation method. The transmission electron microscope (TEM) and atomic force microscope (AFM) recorded size of CAT-BSA NPs and ECAT-BSA NPs were 45 ± 5 nm and 48 ± 5 nm respectively. The encapsulation efficiency of CAT and ECAT on BSA NPs was found to be 60.5 and 54.5 % respectively. CAT-BSA NPs and ECAT-BSA NPs show slow and sustained in vitro release. The CAT-BSA NPs and ECAT-BSA NPs were stable in solution at various temperatures 37 °C, 47 °C and 57 °C. DPPH assay revealed that CAT and ECAT maintained their functional activity even after encapsulation on BSA NPs. Furthermore, the efficacy of CAT-BSA NPs and ECAT-BSA NPs determined against A549 cell lines was found to be improved. CAT and ECAT aptly encapsulated in BSA NPs, showed satisfactory sustained release, maintained antioxidant potential and found improved efficacy. This has thus suggested their more effective use in food and nutraceuticals as well as in medical field. PMID:26417264

  10. Adsorption of bovine serum albumin on silver surfaces enhances the release of silver at pH neutral conditions.

    PubMed

    Wang, X; Herting, G; Wallinder, I Odnevall; Blomberg, E

    2015-07-28

    Metallic biomaterials are widely used to replace and/or restore the function of damaged bodily parts. The use of silver as antibacterial coatings onto implants has recently gained large interest in medical applications. The extent of silver that can be released into different biological fluids from such coatings is, except for the surface characteristics of the coating, governed by parameters such as protein characteristics, adsorbed layer properties, formation of silver-protein complexes as well as concentrations of proteins in the solution. This study aims to relate the structure of adsorbed net negatively charged bovine serum albumin (BSA), which is the most abundant protein in serum, to the release of silver from metallic silver surfaces in order to elucidate if the net charge of the protein has any effect of the silver release. Simultaneous adsorption measurements were performed in real time on the very same surface using combined ellipsometry and quartz crystal microbalance with dissipation monitoring (QCM-D) measurements to provide a more comprehensive understanding on adsorption kinetics and layer structures. The amount of released silver into solution was measured by means of graphite furnace atomic absorption spectroscopy (GF-AAS). The structure of the adsorbed BSA layer largely influenced the amount of released silver, an enhancement that increased with BSA concentration. These observations are in complete contrast to the effect of net positively charged lysozyme (LSZ) adsorbed on silver, previously studied by the authors, for which a complete surface coverage suppressed the possibility for silver release. The underlying mechanisms behind the enhanced release of silver in the presence of BSA were mainly attributed to surface complexation between BSA and silver followed by an enhanced exchange rate of these surface complexes with BSA molecules in the solution, which in turn increase the amount of released silver in solution.

  11. Purification and Characterization of Bovine Serum Albumin Using Chromatographic Method

    PubMed Central

    Balkani, Sanaz; Shamekhi, Sara; Raoufinia, Ramin; Parvan, Reza; Abdolalizadeh, Jalal

    2016-01-01

    Purpose: Albumin is an abundant protein of blood and has many biopharmaceutical applications. The aim of this study was to purify bovine serum albumin (BSA) using produced rabbit anti-BSA antibody. Methods: The polyclonal antibody was produced against the BSA in rabbits. Then, the pure BSA was injected to three white New Zealand rabbits. ELISA test was done to evaluate antibody production. After antibody purification,the purified antibody was attached to CNBr-activated sepharose and finally it was used for purification of albumin from bovine serum. Western blotting analysis was used for functional assessment of immunoaffinity purified BSA. Results: The titer of anti-bovine albumin determined by ELISA was obtained 1: 256000. The SDS-PAGE showed up to 98% purity of isolated BSA and western blotting confirmed the BSA functionality. Purified bovine serum albumin by affinity chromatography showed a single band with molecular weight of 66 KDa. Conclusion: Affinity chromatography using produced rabbit anti-BSA antibody would be an economical and safe method for purification of BSA. PMID:28101473

  12. Protein imprinted ionic liquid polymer on the surface of multiwall carbon nanotubes with high binding capacity for lysozyme.

    PubMed

    Yuan, Shifang; Deng, Qiliang; Fang, Guozhen; Wu, Jianhua; Li, Wangwang; Wang, Shuo

    2014-06-01

    In this research, ionic liquid as functional monomer to prepare molecularly imprinted polymers for protein recognition was for the first time demonstrated, in which, 1-vinyl-3-butylimidazolium chloride was selected as functional monomer, acrylamide as co-functional monomer and lysozyme (Lyz) as template protein to synthesize imprinted polymers on the surface of multiwall carbon nanotubes in aqueous medium. The results indicated that ionic liquid was helpful to improve binding capacity of imprinted polymers, which had a maximum binding capacity of 763.36 mg/g in the optimum adsorption conditions. The prepared imprinted polymers had a fast adsorption rate and a much higher adsorption capacity than the corresponding non-imprinted polymers, with the difference in adsorption capacity up to 258.31 mg/g. The obtained polymer was evaluated by Lyz, bovine serum albumin (BSA), bovine hemoglobin (BHb), equine myoglobin (MB) and cytochrome c (Cyt c). The selectivity factor (β) for Lyz/BSA, Lyz/Mb, Lyz/BHb, and Lyz/Cyt c were 7.17, 2.12, 1.76 and 1.57, respectively, indicating the imprinted polymers had a good selectivity. Easy preparation of the imprinted polymers as well as high ability and selectivity to adsorb template proteins makes this polymer attractive and broadly applicable in biomacromolecular separation, biotechnology and sensors.

  13. Evaluating interaction forces between BSA and rabbit anti-BSA in sulphathiazole sodium, tylosin and levofloxacin solution by AFM

    NASA Astrophysics Data System (ADS)

    Wang, Congzhou; Wang, Jianhua; Deng, Linhong

    2011-11-01

    Protein-protein interactions play crucial roles in numerous biological processes. However, it is still challenging to evaluate the protein-protein interactions, such as antigen and antibody, in the presence of drug molecules in physiological liquid. In this study, the interaction between bovine serum albumin (BSA) and rabbit anti-BSA was investigated using atomic force microscopy (AFM) in the presence of various antimicrobial drugs (sulphathiazole sodium, tylosin and levofloxacin) under physiological condition. The results show that increasing the concentration of tylosin decreased the single-molecule-specific force between BSA and rabbit anti-BSA. As for sulphathiazole sodium, it dramatically decreased the specific force at a certain critical concentration, but increased the nonspecific force as its concentration increasing. In addition, the presence of levofloxacin did not greatly influence either the specific or nonspecific force. Collectively, these results suggest that these three drugs may adopt different mechanisms to affect the interaction force between BSA and rabbit anti-BSA. These findings may enhance our understanding of antigen/antibody binding processes in the presence of drug molecules, and hence indicate that AFM could be helpful in the design and screening of drugs-modulating protein-protein interaction processes.

  14. SANS study of interaction of silica nanoparticles with BSA protein and their resultant structure

    SciTech Connect

    Yadav, Indresh Aswal, V. K.; Kohlbrecher, J.

    2014-04-24

    Small angle neutron scattering (SANS) has been carried out to study the interaction of anionic silica nanoparticles (88 Å) with globular protein Bovine Serum Albumin (BSA) (M.W. 66.4 kD) in aqueous solution. The measurements have been carried out on fixed concentration (1 wt %) of Ludox silica nanoparticles with varying concentration of BSA (0–5 wt %) at pH7. Results show that silica nanoparticles and BSA coexist as individual entities at low concentration of BSA where electrostatic repulsive interactions between them prevent their aggregation. However, as the concentration of BSA increases (≥ 0.5 wt %), it induces the attractive depletion interaction among nanoparticles leading to finally their aggregation at higher BSA concentration (2 wt %). The aggregates are found to be governed by the diffusion limited aggregation (DLA) morphology of fractal nature having fractal dimension about 2.4.

  15. Spectroscopic, biological, and molecular modeling studies on the interactions of [Fe(III)-meloxicam] with G-quadruplex DNA and investigation of its release from bovine serum albumin (BSA) nanoparticles.

    PubMed

    Ebrahimi, Malihe; Khayamian, Taghi; Hadadzadeh, Hassan; Sayed Tabatabaei, Badraldin Ebrahim; Jannesari, Zahra; Khaksar, Ghazale

    2015-01-01

    The guanine-rich sequence, specifically in DNA, telomeric DNA, is a potential target of anticancer drugs. In this work, a mononuclear Fe(III) complex containing two meloxicam ligands was synthesized as a G-quadruplex stabilizer. The interaction between the Fe(III) complex and G-quadruplex with sequence of 5'-G3(T2AG3)3-3' (HTG21) was investigated using spectroscopic methods, molecular modeling, and polymerase chain reaction (PCR) assays. The spectroscopic methods of UV-vis, fluorescence, and circular dichroism showed that the metal complex can effectively induce and stabilize G-quadruplex structure in the G-rich 21-mer sequence. Also, the binding constant between the Fe(III) complex and G-quadruplex was measured by these methods and it was found to be 4.53(±0.30) × 10(5) M(-1)). The PCR stop assay indicated that the Fe(III) complex inhibits DNA amplification. The cell viability assay showed that the complex has significant antitumor activities against Hela cells. According to the UV-vis results, the interaction of the Fe(III) complex with duplex DNA is an order of magnitude lower than G-quadruplex. Furthermore, the release of the complex incorporated in bovine serum albumin nanoparticles was also investigated in physiological conditions. The release of the complex followed a bi-phasic release pattern with high and low releasing rates at the first and second phases, respectively. Also, in order to obtain the binding mode of the Fe(III) complex with G-quadruplex, molecular modeling was performed. The molecular docking results showed that the Fe(III) complex was docked to the end-stacked of the G-quadruplex with a π-π interaction, created between the meloxicam ligand and the guanine bases of the G-quadruplex.

  16. A novel method for determination of aflatoxin B1 mediated by FCLA + BSA

    NASA Astrophysics Data System (ADS)

    Chen, WenLi; Xing, Da

    2005-02-01

    As a chemiluminescence (CL) probe, 3,7-dihydro-6-{4-{2-(N"-(5-fluoresceinyl) thioureido)ethoxy}phenyl}-2-met -hylimi-dazo{1,2-a}pyrazin-3-one dosium salt (FCLA) can sensitively and specifically react with singlet oxygen (1O2 ) and superoxide(O2""). BSA (Bovine Serum Albumin) can enlarge the CL intensity of FCLA to 860%. This report presents a novel method for determination of Aflatoxin B1 (AfB1) mediated by FCLA+BSA. The concentration of AFB1 showed an obvious positive correlation with the CL intensity mediated by FCLA+BSA. This method could measure accurately ng/ml of AfB1 concentration. At the same time, the fluorescence spectrum of FCLA+BSA and FCLA+BSA+AfB1 were measured respectively, which showed that the fluorescence intensity of FCLA+BSA+AfB1 was higher than FCLA+BSA. Comparing the peak value of FCLA, FCLA+BSA and FCLA+BSA+AfB1 had a 6nm Einstein shift (red shift). The study suggested that CL method mediated by FCLA+BSA might be applicable to the determination of AfB1 concentration.

  17. Binding sites of retinol and retinoic acid with serum albumins.

    PubMed

    Belatik, A; Hotchandani, S; Bariyanga, J; Tajmir-Riahi, H A

    2012-02-01

    Retinoids are effectively transported in the bloodstream via serum albumins. We report the complexation of bovine serum albumin (BSA) with retinol and retinoic acid at physiological conditions, using constant protein concentration and various retinoid contents. FTIR, CD and fluorescence spectroscopic methods and molecular modeling were used to analyze retinoid binding site, the binding constant and the effects of complexation on BSA stability and secondary structure. Structural analysis showed that retinoids bind BSA via hydrophilic and hydrophobic interactions with overall binding constants of K(Ret)(-BSA) = 5.3 (±0.8) × 10(6) M(-1) and K(Retac-BSA) = 2.3 (±0.4) × 10(6) M(-1). The number of bound retinoid molecules (n) was 1.20 (±0.2) for retinol and 1.8 (±0.3) for retinoic acid. Molecular modeling showed the participation of several amino acids in retinoid-BSA complexes stabilized by H-bonding network. The retinoid binding altered BSA conformation with a major reduction of α-helix from 61% (free BSA) to 36% (retinol-BSA) and 26% (retinoic acid-BSA) with an increase in turn and random coil structures indicating a partial protein unfolding. The results indicate that serum albumins are capable of transporting retinoids in vitro and in vivo.

  18. Interaction of amphiphilic drugs with human and bovine serum albumins

    NASA Astrophysics Data System (ADS)

    Khan, Abbul Bashar; Khan, Javed Masood; Ali, Mohd. Sajid; Khan, Rizwan Hasan; Kabir-ud-Din

    2012-11-01

    To know the interaction of amphiphilic drugs nortriptyline hydrochloride (NOT) and promazine hydrochloride (PMZ) with serum albumins (i.e., human serum albumin (HSA) and bovine serum albumin (BSA)), techniques of UV-visible, fluorescence, and circular dichroism (CD) spectroscopies are used. The binding affinity is more in case of PMZ with both the serum albumins. The quenching rate constant (kq) values suggest a static quenching process for all the drug-serum albumin interactions. The UV-visible results show that the change in protein conformation of PMZ-serum albumin interactions are more prominent as compared to NOT-serum albumin interactions. The CD results also explain the conformational changes in the serum albumins on binding with the drugs. The increment in %α-helical structure is slightly more for drug-BSA complexes as compared to drug-HSA complexes.

  19. Interaction of amphiphilic drugs with human and bovine serum albumins.

    PubMed

    Khan, Abbul Bashar; Khan, Javed Masood; Ali, Mohd Sajid; Khan, Rizwan Hasan; Kabir-Ud-Din

    2012-11-01

    To know the interaction of amphiphilic drugs nortriptyline hydrochloride (NOT) and promazine hydrochloride (PMZ) with serum albumins (i.e., human serum albumin (HSA) and bovine serum albumin (BSA)), techniques of UV-visible, fluorescence, and circular dichroism (CD) spectroscopies are used. The binding affinity is more in case of PMZ with both the serum albumins. The quenching rate constant (k(q)) values suggest a static quenching process for all the drug-serum albumin interactions. The UV-visible results show that the change in protein conformation of PMZ-serum albumin interactions are more prominent as compared to NOT-serum albumin interactions. The CD results also explain the conformational changes in the serum albumins on binding with the drugs. The increment in %α-helical structure is slightly more for drug-BSA complexes as compared to drug-HSA complexes.

  20. Binding of several benzodiazepines to bovine serum albumin: Fluorescence study

    NASA Astrophysics Data System (ADS)

    Machicote, Roberta G.; Pacheco, María E.; Bruzzone, Liliana

    2010-10-01

    The interactions of lorazepam, oxazepam and bromazepam with bovine serum albumin (BSA) were studied by fluorescence spectrometry. The Stern-Volmer quenching constants and corresponding thermodynamic parameters Δ H, Δ G and Δ S were calculated. The binding constants and the number of binding sites were also investigated. The distances between the donor (BSA) and the acceptors (benzodiazepines) were obtained according to fluorescence resonance energy transfer and conformational changes of BSA were observed from synchronous fluorescence spectra.

  1. Resonance energy transfer between fluorescent BSA protected Au nanoclusters and organic fluorophores

    NASA Astrophysics Data System (ADS)

    Raut, Sangram; Rich, Ryan; Fudala, Rafal; Butler, Susan; Kokate, Rutika; Gryczynski, Zygmunt; Luchowski, Rafal; Gryczynski, Ignacy

    2013-12-01

    Bovine serum albumin (BSA) protected nanoclusters (Au and Ag) represent a group of nanomaterials that holds great promise in biophysical applications due to their unique fluorescence properties and lack of toxicity. These metal nanoclusters have utility in a variety of disciplines including catalysis, biosensing, photonics, imaging and molecular electronics. However, they suffer from several disadvantages such as low fluorescence quantum efficiency (typically near 6%) and broad emission spectrum (540 nm to 800 nm). We describe an approach to enhance the apparent brightness of BSA Au clusters by linking them with a high extinction donor organic dye pacific blue (PB). In this conjugate PB acts as a donor to BSA Au clusters and enhances its brightness by resonance energy transfer (RET). We found that the emission of BSA Au clusters can be enhanced by a magnitude of two-fold by resonance energy transfer (RET) from the high extinction donor PB, and BSA Au clusters can act as an acceptor to nanosecond lifetime organic dyes. By pumping the BSA Au clusters using a high extinction donor, one can increase the effective brightness of less bright fluorophores like BSA Au clusters. Moreover, we prepared another conjugate of BSA Au clusters with the near infrared (NIR) dye Dylight 750 (Dy750), where BSA Au clusters act as a donor to Dy750. We observed that BSA Au clusters can function as a donor, showing 46% transfer efficiency to the NIR dye Dy750 with a long lifetime component in the acceptor decay through RET. Such RET-based probes can be used to prevent the problems of a broad emission spectrum associated with the BSA Au clusters. Moreover, transferring energy from BSA Au clusters to Dy750 will result in a RET probe with a narrow emission spectrum and long lifetime component which can be utilized in imaging applications.Bovine serum albumin (BSA) protected nanoclusters (Au and Ag) represent a group of nanomaterials that holds great promise in biophysical applications due to

  2. Calcium inhibits diacylglycerol uptake by serum albumin.

    PubMed

    Ahyayauch, Hasna; Arana, Gorka; Sot, Jesús; Alonso, Alicia; Goñi, Félix M

    2009-03-01

    Serum albumin is an abundant protein in blood plasma, that is well-known for its ability to transport hydrophobic biomolecules and drugs. Recent hypotheses propose that serum albumin plays a role in the regulation of lipid metabolism in addition to its lipid transport properties. The present work explores the capacity of bovine serum albumin (BSA) to extract diacylglycerols (DAG) from phospholipid bilayers, and the inhibition of such interaction by divalent cations. Quantitative measurements using radioactive DAG and morphological evidence derived from giant unilamellar vesicles examined by confocal microscopy provide concurrent results. BSA extracts DAG from vesicles consisting of phosphatidylinositol/DAG. Long, saturated DAG species are incorporated more readily than the shorter-chain or unsaturated ones. Divalent cations hinder DAG uptake by BSA. For Ca(2+), the concentration causing half-maximal inhibition is approximately 10 muM; 90% inhibition is caused by 100 muM Ca(2+). Sr(2+) requires concentrations one order of magnitude higher, while Mg(2+) has virtually no effect. As an example on how DAG uptake by BSA, and its inhibition by Ca(2+), could play a regulating role in lipid metabolism, a PI-specific phospholipase C has been assayed in the presence of BSA and/or Ca(2+). BSA activates the enzyme by removing the end-product DAG, but the activation is reverted by Ca(2+) that inhibits DAG uptake.

  3. A selective, long-lived deep-red emissive ruthenium(II) polypyridine complexes for the detection of BSA.

    PubMed

    Babu, Eththilu; Muthu Mareeswaran, Paulpandian; Singaravadivel, Subramanian; Bhuvaneswari, Jayaraman; Rajagopal, Seenivasan

    2014-09-15

    A selective, label free luminescence sensor for bovine serum albumin (BSA) is investigated using ruthenium(II) complexes over the other proteins. Interaction between BSA and ruthenium(II) complexes has been studied using absorption, emission, excited state lifetime and circular dichroism (CD) spectral techniques. The luminescence intensity of ruthenium(II) complexes (I and II), has enhanced at 602 and 613 nm with a large hypsochromic shift of 18 and 5 nm respectively upon addition of BSA. The mode of binding of ruthenium(II) complexes with BSA has analyzed using computational docking studies.

  4. Synthesis and Characterization of BSA Conjugated Silver Nanoparticles (Ag/BSA Nanoparticles) and Evaluation of Biological Properties of Ag/BSA Nanoparticles and Ag/BSA Nanoparticles Loaded Poly(hydroxy butyrate valerate) PHBV Films

    NASA Astrophysics Data System (ADS)

    Ambaye, Almaz

    Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa are the etiological agents of several infectious diseases. Antibiotic resistance by these three microbes has emerged as a prevalent problem due in part to the misuse of existing antibiotics and the lack of novel antibiotics. Nanoparticles have emerged as an alternative antibacterial agents to conventional antibiotics owing to their high surface area to volume ratio and their unique chemical and physical properties. Among the nanoparticles, silver nanoparticles have gained increasing attention because silver nanoparticles exhibit antibacterial activity against a range of gram positive and gram negative bacteria. Nanoparticles of well-defined chemistry and morphology can be used in broad biomedical applications, especially in bone tissue engineering applications, where bone infection by bacteria can be acute and lethal. It is commonly noted in the literature that the activity of nanoparticles against microorganisms is dependent upon the size and concentration of the nanoparticles as well as the chemistry of stabilizing agent. To the best of our knowledge, a comprehensive study that evaluates the antibacterial activity of well characterized silver nanoparticles in particular Bovine Serum Albumin (BSA) stabilized against S. aureus and E. coli and cytotoxicity level of BSA stabilized silver nanoparticles towards osteoblast cells (MC3T3-E1) is currently lacking. Therefore, the primary objective of this study was to characterize protein conjugated silver nanoparticles prepared by chemical reduction of AgNO3 and BSA mixture. The formation of Ag/BSA nanoparticles was studied by UV-Vis spectroscopy. The molar ratio of silver to BSA in the Ag/BSA nanoparticles was established to be 27+/- 3: 1, based on Thermogravimetric Analysis and Atomic Absorption Spectroscopy. Based on atomic force microscopy, dynamic light scattering,and transmission electron microscopy(TEM) measurements, the particle size (diameter) of

  5. Spectroscopic studies on the interaction between phycocyanin and bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Kathiravan, A.; Chandramohan, M.; Renganathan, R.; Sekar, S.

    2009-02-01

    Bluish phycocyanin was obtained from the cyanobacteria namely Spirulina sp. (marine form). The interaction between phycocyanin and bovine serum albumin (BSA) was studied by using absorption, FT-IR, steady-state, time resolved and synchronous fluorescence spectroscopy. Phycocyanin effectively quenched the intrinsic fluorescence of BSA. The number of binding sites ( n) and binding constant ( K) was measured by fluorescence quenching method. The interaction between phycocyanin and BSA occurs through static quenching and conformational changes of BSA were observed.

  6. Fluorescence resonance energy transfer between bovine serum albumin and fluoresceinamine.

    PubMed

    Bai, Zhijun; Liu, Yushuang; Zhang, Ping; Guo, Jun; Ma, Yuxing; Yun, Xiaoling; Zhao, Xinmin; Zhong, Ruibo; Zhang, Feng

    2016-05-01

    Physical binding-mediated organic dye direct-labelling of proteins could be a promising technology for bio-nanomedical applications. Upon binding, it was found that fluorescence resonance energy transfer (FRET) occurred between donor bovine serum albumin (BSA; an amphiphilic protein) and acceptor fluoresceinamine (FA; a hydrophobic fluorophore), which could explain fluorescence quenching found for BSA. FRET efficiency and the distance between FA and BSA tryptophan residues were determined to 17% and 2.29 nm, respectively. Using a spectroscopic superimposition method, the saturated number of FAs that bound to BSA was determined as eight to give a complex formula of FA8-BSA. Finally, molecular docking between BSA and FA was conducted, and conformational change that occurred in BSA upon binding to FA molecules was also studied by three-dimensional fluorescence microscopy.

  7. Effect of albumin on the kinetics of ascorbate oxidation.

    PubMed

    Lozinsky, E; Novoselsky, A; Shames, A I; Saphier, O; Likhtenshtein, G I; Meyerstein, D

    2001-04-03

    The fluorescence intensity of the fluorophore in dansyl piperidine-nitroxide is intramolecularly quenched by the nitroxyl fragment. Therefore, the oxidation of ascorbic acid by the fluorophore-nitroxide (FN) probe can be monitored by two independent methods: steady-state fluorescence and electron paramagnetic resonance. Bovine serum albumin (BSA) affects the rate of this reaction. The influence of BSA on the rate is attributed to the adsorption of both ascorbate and the probe to BSA. Adsorption of ascorbate to BSA is confirmed by NMR relaxation experiments. The spatial distribution of the molecules on the BSA surface changes the availability of ascorbate and FN to each other. The results also point out that, in the presence of BSA, the autoxidation of ascorbate is significantly slowed down. The effect is studied at different pH values and explained in terms of the electrostatic interaction between the ascorbate anion and the BSA molecule.

  8. Binding of Sulpiride to Seric Albumins.

    PubMed

    da Silva Fragoso, Viviane Muniz; de Morais Coura, Carla Patrícia; Hoppe, Luanda Yanaan; Soares, Marília Amável Gomes; Silva, Dilson; Cortez, Celia Martins

    2016-01-04

    The aim of this work was to study the interaction of sulpiride with human serum albumin (HSA) and bovine serum albumin (BSA) through the fluorescence quenching technique. As sulpiride molecules emit fluorescence, we have developed a simple mathematical model to discriminate the quencher fluorescence from the albumin fluorescence in the solution where they interact. Sulpiride is an antipsychotic used in the treatment of several psychiatric disorders. We selectively excited the fluorescence of tryptophan residues with 290 nm wavelength and observed the quenching by titrating HSA and BSA solutions with sulpiride. Stern-Volmer graphs were plotted and quenching constants were estimated. Results showed that sulpiride form complexes with both albumins. Estimated association constants for the interaction sulpiride-HSA were 2.20 (±0.08) × 10⁴ M(-1), at 37 °C, and 5.46 (±0.20) × 10⁴ M(-1), at 25 °C. Those for the interaction sulpiride-BSA are 0.44 (±0.01) × 10⁴ M(-1), at 37 °C and 2.17 (±0.04) × 10⁴ M(-1), at 25 °C. The quenching intensity of BSA, which contains two tryptophan residues in the peptide chain, was found to be higher than that of HSA, what suggests that the primary binding site for sulpiride in albumin should be located next to the sub domain IB of the protein structure.

  9. Binding of Sulpiride to Seric Albumins

    PubMed Central

    da Silva Fragoso, Viviane Muniz; de Morais Coura, Carla Patrícia; Hoppe, Luanda Yanaan; Soares, Marília Amável Gomes; Silva, Dilson; Cortez, Celia Martins

    2016-01-01

    The aim of this work was to study the interaction of sulpiride with human serum albumin (HSA) and bovine serum albumin (BSA) through the fluorescence quenching technique. As sulpiride molecules emit fluorescence, we have developed a simple mathematical model to discriminate the quencher fluorescence from the albumin fluorescence in the solution where they interact. Sulpiride is an antipsychotic used in the treatment of several psychiatric disorders. We selectively excited the fluorescence of tryptophan residues with 290 nm wavelength and observed the quenching by titrating HSA and BSA solutions with sulpiride. Stern-Volmer graphs were plotted and quenching constants were estimated. Results showed that sulpiride form complexes with both albumins. Estimated association constants for the interaction sulpiride–HSA were 2.20 (±0.08) × 104 M−1, at 37 °C, and 5.46 (±0.20) × 104 M−1, at 25 °C. Those for the interaction sulpiride-BSA are 0.44 (±0.01) × 104 M−1, at 37 °C and 2.17 (±0.04) × 104 M−1, at 25 °C. The quenching intensity of BSA, which contains two tryptophan residues in the peptide chain, was found to be higher than that of HSA, what suggests that the primary binding site for sulpiride in albumin should be located next to the sub domain IB of the protein structure. PMID:26742031

  10. Competitive interactions between glucose and lactose with BSA: which sugar is better for children?

    PubMed

    Zhang, Qiulan; Ni, Yongnian; Kokot, Serge

    2016-04-07

    The interactions of the sugars glucose and lactose with the transport protein bovine serum albumin (BSA) were investigated using fluorescence, FT-IR and circular dichroism (CD) techniques. The results indicated that glucose could be bonded and transported by BSA, mainly involving hydrogen bonds and van der Waals interactions (ΔH = -86.13 kJ mol(-1)). The obtained fluorescence data from the binding of sugar and BSA were processed by the multivariate curve resolution-alternating least squares (MCR-ALS) method, and the extracted concentration profiles showed that the equilibrium constant, rglucose:BSA, was about 7. However, the binding of lactose to BSA did not quench the fluorescence significantly, and this indicated that lactose could not be directly transported by BSA. The binding experiments were further performed using the fluorescence titration method in the presence of calcium and BSA. Calcium was added so that the calcium/BSA reactions could be studied in the presence or absence of glucose, lactose or hydrolysis products. The results showed that hydrolyzed lactose seemed to enhance calcium absorption in bovine animals. It would also appear that for children, lactose provides better nutrition; however, glucose is better for adults.

  11. BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates.

    PubMed

    Yang, Bin; Wyman, Charles E

    2006-07-05

    Cellulase and bovine serum albumin (BSA) were added to Avicel cellulose and solids containing 56% cellulose and 28% lignin from dilute sulfuric acid pretreatment of corn stover. Little BSA was adsorbed on Avicel cellulose, while pretreated corn stover solids adsorbed considerable amounts of this protein. On the other hand, cellulase was highly adsorbed on both substrates. Adding a 1% concentration of BSA to dilute acid pretreated corn stover prior to enzyme addition at 15 FPU/g cellulose enhanced filter paper activity in solution by about a factor of 2 and beta-glucosidase activity in solution by about a factor of 14. Overall, these results suggested that BSA treatment reduced adsorption of cellulase and particularly beta-glucosidase on lignin. Of particular note, BSA treatment of pretreated corn stover solids prior to enzymatic hydrolysis increased 72 h glucose yields from about 82% to about 92% at a cellulase loading of 15 FPU/g cellulose or achieved about the same yield at a loading of 7.5 FPU/g cellulose. Similar improvements were also observed for enzymatic hydrolysis of ammonia fiber explosion (AFEX) pretreated corn stover and Douglas fir treated by SO(2) steam explosion and for simultaneous saccharification and fermentation (SSF) of BSA pretreated corn stover. In addition, BSA treatment prior to hydrolysis reduced the need for beta-glucosidase supplementation of SSF. The results are consistent with non-specific competitive, irreversible adsorption of BSA on lignin and identify promising strategies to reduce enzyme requirements for cellulose hydrolysis.

  12. Spectroscopic identification of interactions of Pb2+ with bovine serum albumin.

    PubMed

    Liu, Yihong; Zhang, Lijun; Liu, Rutao; Zhang, Pengjun

    2012-01-01

    The effect of Pb(2+) targeted to bovine serum albumin (BSA) in vitro was investigated by fluorescence, synchronous fluorescence, UV absorption and circular dichroism (CD) spectrophotometry. The characteristic fluorescence of BSA was quenched, which indicated that Pb(2+) changed the skeleton of BSA and caused the gradual exposure of aromatic amino acid residues (Trp, Tyr, Phe) in the internal hydrophobic region of BSA. When the concentration of Pb(2+) was higher than 1 × 10(-4) mol/L, the BSA was completely denatured. The excess lead ion interacted with the aromatic amino acid residues of BSA exposed to the solution, which decreased the fluorescence of BSA further. According to the experiment results, we found that a lead-BSA complex was formed following static quenching and the binding site was calculated approximately equal to 1. This work reflected the interaction mechanism of BSA and Pb(2+) from the perspective of spectroscopy.

  13. Albumin Test

    MedlinePlus

    ... may also be ordered to evaluate a person's nutritional status. ^ Back to top When is it ordered? An ... albumin test to check or monitor a person's nutritional status. However, since albumin concentrations respond to a variety ...

  14. Bovine serum albumin promotes IL-1beta and TNF-alpha secretion by N9 microglial cells.

    PubMed

    Zhao, Tian-zhi; Xia, Yong-zhi; Li, Lan; Li, Jian; Zhu, Gang; Chen, Shi; Feng, Hua; Lin, Jiang-kai

    2009-10-01

    Bovine serum albumin (BSA) is generally used in biomedical experiments. In the solution of some reagents, BSA is necessary to maintain the stability and concentration of the effective component. Therefore, the potential impact of BSA on experimental results should not be neglected when BSA is used. In this study, we observed that BSA induced significant upregulation of mRNA expression and release of pro-inflammatory cytokines, IL-1beta, and TNF-alpha, by N9 microglial cells. Our results suggest that the effects of BSA should be taken into account in experiments on microglia or the central nervous system when BSA is used. In light of the high similarity and homology among mammalian albumins, our findings also indicate that serum albumin may be a potent trigger of cytokine release by microglia.

  15. Production of BSA-poly(ethyl cyanoacrylate) nanoparticles as a coating material that improves wetting property

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alkyl cyanoacrylates have long been used for the synthesis of colloidal nanoparticles. In the involved polymerization reaction, OH- ions derived from dissociation of water have been used as an initiator. In the current research, an animal protein, bovine serum albumin (BSA) molecules were utilized a...

  16. Albumin holograms

    NASA Astrophysics Data System (ADS)

    Ordóñez-Padilla, M. J.; Olivares-Pérez, A.; Vega-Criollo, R.; Berriel-Valdos, L. R.; Mejias-Brizuela, N. Y.

    2011-02-01

    A Characterization is made with performance analysis of new photosensitive films of albumin to certain conditions for holographic recording based on interferometric array. We carried out the photo-oxidation of gallus gallus albumin albumin chemically combining powdered sugar (Glass ®) to an aqueous solution of ammonium dichromate. It was the analysis of the behavior of diffraction efficiency parameter through the intensity diffraction pattern produced by the gratings made with albumin.

  17. Purification of lysozyme using ultrafiltration.

    PubMed

    Ghosh, R; Cui, Z F

    2000-04-20

    This article examines the separation of lysozyme from chicken egg white by ultrafiltration with 25 kDa and 50 kDa MWCO polysulfone membranes. The effects of pH, system hydrodynamics, feed concentration, and transmembrane pressure on permeate flux, lysozyme transmission, purification factor, and productivity have been discussed. With both types of membranes, higher permeate flux and lysozyme transmission were observed at higher pH. Higher lysozyme purity was generally obtained with the 25 kDa MWCO membrane. Purity of lysozyme decreased when the feed concentration was increased. With the 50 kDa MWCO membrane permeate flux, productivity and the purity of lysozyme were found to increase with increase in transmembrane pressure. The possibility of using a two-step ultrafiltration process for achieving high productivity along with high purity of lysozyme was also investigated.

  18. Bovine serum albumin with glycated carboxyl groups shows membrane-perturbing activities.

    PubMed

    Yang, Shin-Yi; Chen, Ying-Jung; Kao, Pei-Hsiu; Chang, Long-Sen

    2014-12-15

    The aim of the present study aimed to investigate whether glycated bovine serum albumin (BSA) showed novel activities on the lipid-water interface. Mannosylated BSA (Man-BSA) was prepared by modification of the carboxyl groups with p-aminophenyl α-d-mannopyranoside. In contrast to BSA, Man-BSA notably induced membrane permeability of egg yolk phosphatidylcholine (EYPC)/egg yolk sphingomyelin (EYSM)/cholesterol (Chol) and EYPC/EYSM vesicles. Noticeably, Man-BSA induced the fusion of EYPC/EYSM/Chol vesicles, but not of EYPC/EYSM vesicles. Although BSA and Man-BSA showed similar binding affinity for lipid vesicles, the lipid-bound conformation of Man-BSA was distinct from that of BSA. Moreover, Man-BSA adopted distinct structure upon binding with the EYPC/EYSM/Chol and EYPC/EYSM vesicles. Man-BSA could induce the fusion of EYPC/EYSM/Chol vesicles with K562 and MCF-7 cells, while Man-BSA greatly induced the leakage of Chol-depleted K562 and MCF-7 cells. The modified BSA prepared by conjugating carboxyl groups with p-aminophenyl α-d-glucopyranoside also showed membrane-perturbing activities. Collectively, our data indicate that conjugation of carboxyl groups with monosaccharide generates functional BSA with membrane-perturbing activities on the lipid-water interface.

  19. Lysozymes in the animal kingdom.

    PubMed

    Callewaert, Lien; Michiels, Chris W

    2010-03-01

    Lysozymes (EC 3.2.1.17) are hydrolytic enzymes, characterized by their ability to cleave the beta-(1,4)-glycosidic bond between N-acetylmuramic acid and N-acetylglucosamine in peptidoglycan, the major bacterial cell wall polymer. In the animal kingdom, three major distinct lysozyme types have been identified--the c-type (chicken or conventional type), the g-type (goose-type) and the i-type (invertebrate type) lysozyme. Examination of the phylogenetic distribution of these lysozymes reveals that c-type lysozymes are predominantly present in the phylum of the Chordata and in different classes of the Arthropoda. Moreover, g-type lysozymes (or at least their corresponding genes) are found in members of the Chordata, as well as in some bivalve mollusks belonging to the invertebrates. In general, the latter animals are known to produce i-type lysozymes. Although the homology in primary structure for representatives of these three lysozyme types is limited, their three-dimensional structures show striking similarities. Nevertheless, some variation exists in their catalytic mechanisms and the genomic organization of their genes. Regarding their biological role, the widely recognized function of lysozymes is their contribution to antibacterial defence but, additionally, some lysozymes (belonging to different types) are known to function as digestive enzymes.

  20. Chemiluminescence and fluorescence spectrum methods for determination of Aflatoxin B1 mediated by FCLA + BSA

    NASA Astrophysics Data System (ADS)

    Chen, WenLi; Xing, Da

    2005-04-01

    BSA (Bovine Serum Albumin) can enlarge the CL intensity of FCLA(3,7-dihydro-6-{4-{2-(N'-(5-fluoresceinyl) thioureido)ethoxy}phenyl}-2-methylimi-dazo{1,2-a}pyrazin-3-one dosium salt) to 763%. This report presents novel methods for determination of Aflatoxin B1 (AfB1) mediated by FCLA+BSA. The concentration of AFB1 showed an obvious positive correlation with the chemiluminescence (CL) intensity mediated by FCLA+BSA, correlative coefficient R@0.94. This method could measure accurately ng/ml of AfB1 concentration. 365nm as excitated wavelength, 440nm and 520nm-two fluorescence peaks of FCLA+BSA+AfB1 were found. The fluorescence intensity of peak at 440nm showed an obvious positive correlation with the concentration of AFB1, R@0.97; the fluorescence intensity of peak at 520nm showed a positive correlation with the concentration of AFB1, R@0.90. Comparing the peak of FCLA, FCLA+BSA and FCLA+BSA+AfB1 had a 6nm Einstein shift (red shift). The study suggested that CL and fluorescence spectrum methods mediated by FCLA+BSA might be applicable to the determination of AfB1 concentration.

  1. Complexation of serum albumins and triton X-100: Quenching of tryptophan fluorescence and analysis of the rotational diffusion of complexes

    NASA Astrophysics Data System (ADS)

    Vlasova, I. M.; Vlasov, A. A.; Saletskii, A. M.

    2016-07-01

    The polarized and nonpolarized fluorescence of bovine serum albumin and human serum albumin in Triton X-100 solutions is studied at different pH values. Analysis of the constants of fluorescence quenching for BSA and HSA after adding Triton X-100 and the hydrodynamic radii of BSA/HSA-detergent complexes show that the most effective complexation between both serum albumins and Triton X-100 occurs at pH 5.0, which lies near the isoelectric points of the proteins. Complexation between albumin and Triton X-100 affects the fluorescence of the Trp-214 residing in the hydrophobic pockets of both BSA and HSA.

  2. Gold nanoparticles surface modification using BSA and cysteine

    NASA Astrophysics Data System (ADS)

    Cardoso-Avila, P. E.; Pichardo-Molina, J. L.; Upendra Kumar, K.; Barbosa-Sabanero, G.; Barbosa-Garcia, O.

    2011-08-01

    Metal nanometer-size particles show intriguing optical properties which depend on their shape, size and local environment. For these reasons, these materials have received a lot of attention in different scientific areas, and several applications can be found, for example: fabrication of bio-sensor, electronic devices, catalysis and new drugs. However, in the case of biomedical applications, metallic nanoparticles need to satisfy several requirements: bio-compatibility, stability and functionality. To satisfy these requirements, metallic nanoparticles need to be modified in their surfaces. In this work we report the synthesis and the modification of gold nanoparticles (GNPs) surface. GNPs were fabricated following the Turkevich's method, and the bio-conjugation (surface modification) was done using cysteine and bovine serum albumin (BSA). Our results of Uv-vis spectroscopy show that BSA and cysteine permit to increase the stability of GNPs in presence of NaCl, the stability is function of BSA concentration. Also to verify the bio-conjugation we used Raman spectroscopy and gel electrophoresis.

  3. Interaction of potassium mono and di phosphates with bovine serum albumin studied by fluorescence quenching method.

    PubMed

    Bakkialakshmi, S; Shanthi, B; Chandrakala, D

    2011-03-01

    The interactions between potassium mono and di phosphates and bovine serum albumin (BSA) were studied using fluorescence spectroscopy (FS) and ultraviolet spectroscopy (UV). The experimental results showed that the potassium mono and di phosphates could insert into the BSA and quench the inner fluorescence of BSA by forming the potassium mono phosphate-BSA and pottassium di phosphate-BSA complexes. It was found that the static quenching was the main reason leading to the fluorescence quenching. It was conformed by XRD and SEM techniques.

  4. Complexes of photosensitizer and CdSe/ZnS quantum dots passivated with BSA: optical properties and intracomplex energy transfer

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Vera; Orlova, Anna; Martynenko, Irina; Kundelev, Evgeny; Maslov, Vladimir; Fedorov, Anatoly; Baranov, Alexander; Gun'ko, Yurii

    2016-04-01

    Here we report our investigations of the formation conditions and photophysical properties of complexes between luminescent semiconducting nanoparticles (quantum dots, QDs) and the photosensitizer chlorin e6, which is widely used for the photodynamic therapy. In our complexes, bovine serum albumin (BSA), the most abundant protein in blood serum, was used as a linker between QDs and chlorin e6 molecules. The influence of BSA on the optical properties of Ce6 and QDs in complexes was properly examined using spectral-luminescent methods. It was found that BSA passivated QD surface and substantially QD quantum yield of luminescence was increased. In addition, BSA prevented the aggregation of chlorin e6 molecules in complexes with QDs. We demonstrated that the use of BSA as a linker allows to create functional QD-chlorin e6 complexes with effective photoexcitation energy transfer from QDs to the molecules.

  5. Ultrastable BSA-capped gold nanoclusters with a polymer-like shielding layer against reactive oxygen species in living cells

    NASA Astrophysics Data System (ADS)

    Zhou, Wenjuan; Cao, Yuqing; Sui, Dandan; Guan, Weijiang; Lu, Chao; Xie, Jianping

    2016-05-01

    The prevalence of reactive oxygen species (ROS) production and the enzyme-containing intracellular environment could lead to the fluorescence quenching of bovine serum albumin (BSA)-capped gold nanoclusters (AuNCs). Here we report an efficient strategy to address this issue, where a polymer-like shielding layer is designed to wrap around the Au core to significantly improve the stability of AuNCs against ROS and protease degradation. The key of our design is to covalently incorporate a thiolated AuNC into the BSA-AuNC via carbodiimide-activated coupling, leading to the formation of a AuNC pair inside the cross-linked BSA molecule. The as-designed paired AuNCs in BSA (or BSA-p-AuNCs for short) show improved performances in living cells.The prevalence of reactive oxygen species (ROS) production and the enzyme-containing intracellular environment could lead to the fluorescence quenching of bovine serum albumin (BSA)-capped gold nanoclusters (AuNCs). Here we report an efficient strategy to address this issue, where a polymer-like shielding layer is designed to wrap around the Au core to significantly improve the stability of AuNCs against ROS and protease degradation. The key of our design is to covalently incorporate a thiolated AuNC into the BSA-AuNC via carbodiimide-activated coupling, leading to the formation of a AuNC pair inside the cross-linked BSA molecule. The as-designed paired AuNCs in BSA (or BSA-p-AuNCs for short) show improved performances in living cells. Electronic supplementary information (ESI) available: Detailed experimental materials, apparatus, experimental procedures and characterization data. See DOI: 10.1039/c6nr02178f

  6. Concentration of BSA using a superabsorbent polymer: process evaluation.

    PubMed

    Prazeres, D M

    1995-04-15

    A commercially available super absorbent polymer from Hoechst (Sanwet IM-5000-SG) was tested for the concentration of dilute solutions of bovine serum albumin (BSA). A systematic study was undertaken in order to evaluate the possibility of scaling-up the process. The polymer was first characterized by determining the swelling ratio (or mass increase) in aqueous solution as a function of time, temperature, pH, salt and polymer concentration. The swelling ratio was found to be independent of the polymer concentration, temperature (range 15-50 degree C), and pH (range 4-10), but decreased significantly with an increase in NaCL concentration. The polymer was capable of absorbing as much as 300-times its own weight in water, when using the most favorable conditions (0 mM NaCL). BSA was concentrated up to 3.5-times when using the appropriate polymer concentration. The recovery of protein was around 100% for concentration factors below 2.0, but decreased for higher concentration factors. As expected from the characterization results, higher amounts of polymer were needed to concentrate BSA solutions with higher salt concentrations. The performance of the process improved when using lower concentration BSA solutions (0.15 to 0.5 mg ml-1). The initial volume (10 to 500 ml) had a slight effect on the process due to a decrease in the rate of the absorption process. The concentration factor was predicted from the NaCL and polymer concentrations through a semi empirical model.

  7. Quenching interaction of BSA with DTAB is dynamic in nature: A spectroscopic insight

    NASA Astrophysics Data System (ADS)

    Das, Nirmal Kumar; Pawar, Lavanya; Kumar, Naveen; Mukherjee, Saptarshi

    2015-08-01

    The role of electrostatic interactions between the protein, Bovine Serum Albumin (BSA) and the cationic surfactant, dodecyltrimethylammonium bromide (DTAB) has been substantiated using spectroscopic approaches. The primary mechanism of fluorescence quenching of the tryptophan of BSA is most probably dynamic in nature as the complex formation resulting in a protein-surfactant assembly is not very spontaneous. The weak interaction buries the tryptophan amino acid residue inside the protein scaffolds which have been quantitatively proved by our acrylamide quenching studies. The loss in the secondary structure of the protein as a result of interaction with DTAB has been elucidated by CD spectroscopy.

  8. Symmetrical and asymmetrical cyanine dyes. Synthesis, spectral properties, and BSA association study.

    PubMed

    Pisoni, Diego S; Todeschini, Letícia; Borges, Antonio César A; Petzhold, Cesar L; Rodembusch, Fabiano S; Campo, Leandra F

    2014-06-20

    New cyanines were prepared by an efficient and practical route with satisfactory overall yield from low-cost starting materials. The photophysical behavior of the cyanines was investigated using UV-vis and steady-state fluorescence in solution, as well as their association with bovine serum albumin (BSA) in phosphate buffer solution (PBS). No cyanine aggregation was observed in organic solvents or in phosphate buffer solution. The alkyl chain length in the quaternized nitrogen was shown to be fundamental for BSA detection in PBS in these dyes.

  9. Structures of bovine, equine and leporine serum albumin.

    PubMed

    Bujacz, Anna

    2012-10-01

    Serum albumin first appeared in early vertebrates and is present in the plasma of all mammals. Its canonical structure supported by a conserved set of disulfide bridges is maintained in all mammalian serum albumins and any changes in sequence are highly correlated with evolution of the species. Previous structural investigations of mammalian serum albumins have only concentrated on human serum albumin (HSA), most likely as a consequence of crystallization and diffraction difficulties. Here, the crystal structures of serum albumins isolated from bovine, equine and leporine blood plasma are reported. The structure of bovine serum albumin (BSA) was determined at 2.47 Å resolution, two crystal structures of equine serum albumin (ESA) were determined at resolutions of 2.32 and 2.04 Å, and that of leporine serum albumin (LSA) was determined at 2.27 Å resolution. These structures were compared in detail with the structure of HSA. The ligand-binding pockets in BSA, ESA and LSA revealed different amino-acid compositions and conformations in comparison to HSA in some cases; however, much more significant differences were observed on the surface of the molecules. BSA, which is one of the most extensively utilized proteins in laboratory practice and is used as an HSA substitute in many experiments, exhibits only 75.8% identity compared with HSA. The higher resolution crystal structure of ESA highlights the binding properties of this protein because it includes several bound compounds from the crystallization solution that provide additional structural information about potential ligand-binding pockets.

  10. Improved dermal delivery of FITC-BSA using a combination of passive and active methods.

    PubMed

    Wang, Qing; Jaimes-Lizcano, Yuly A; Lawson, Louise B; John, Vijay T; Papadopoulos, Kyriakos D

    2011-11-01

    This work presents results on the in vitro penetration of a model macromolecule [fluorescein isothiocyanate-labeled bovine serum albumin (FITC-BSA)] through porcine skin, mediated with a microneedle skinroller (200-µm-length needle) and different novel formulations. After perforating the porcine skin with a microneedle skinroller, the efficiency of delivering FITC-BSA via different novel formulations was evaluated and compared. Formulations, including l-α-phosphatidylcholine (PC) liposomes, double emulsions, and double-encapsulation formulations were used. High-resolution cryo-scanning electron microscopy was used to visualize surface morphology and cross-section of perforated porcine skin. By the use of confocal microscopy, the penetration pathway and penetration depth of FITC-BSA through the perforated porcine skin under different formulations were analyzed. FITC-BSA was extracted from stratum corneum and viable skin, and analyzed by fluorimetry, indicating that there is no significant difference in the amount of FITC-BSA delivered to viable skin by PC-liposome suspension (12.90 ± 1.25 µg/cm(2)) versus double-encapsulation formulations (10.47 ± 0.80 µg/cm(2)); however, both formulations showed a significant increase as compared with an aqueous solution of FITC-BSA. In this work, double-encapsulation formulations were used in dermal delivery for the first time and combined with microneedle skinroller treatment, the results showed a high efficiency in delivering macromolecules.

  11. Evaluation of BSA protein release from hollow hydroxyapatite microspheres into PEG hydrogel

    PubMed Central

    Fu, Hailuo; Rahaman, Mohamed N.; Brown, Roger F.; Day, Delbert E.

    2013-01-01

    Implants that simultaneously function as an osteoconductive matrix and as a device for local drug or growth factor delivery could provide an attractive system for bone regeneration. In our previous work, we prepared hollow hydroxyapatite (abbreviated HA) microspheres with a high surface area, mesoporous shell wall and studied the release of a model protein, bovine serum albumin (BSA), from the microspheres into phosphate-buffered saline (PBS). The present work is an extension of our previous work to study the release of BSA from similar HA microspheres into a biocompatible hydrogel, poly(ethylene glycol) (PEG). BSA-loaded HA microspheres were placed in a PEG solution which was rapidly gelled using ultraviolet radiation. The BSA release rate into the PEG hydrogel, measured using a spectrophotometric method, was slower than into PBS, and it was dependent on the initial BSA loading and on the microstructure of the microsphere shell wall. A total of 35–40% of the BSA initially loaded into the microspheres was released into PEG over ~14 days. The results indicate that these hollow HA microspheres have promising potential as an osteoconductive device for local drug or growth factor delivery in bone regeneration and in the treatment of bone diseases. PMID:23498254

  12. Synthesis of fluorescent BSA-Au NCs for the detection of Hg2+ ions

    NASA Astrophysics Data System (ADS)

    Chen, Po-Cheng; Chiang, Cheng-Kang; Chang, Huan-Tsung

    2013-01-01

    In this study, we present a simple heating approach for preparation of gold nanoclusters (Au NCs) using bovine serum albumin (BSA) as a template. At 70 °C, the reaction for the preparation of BSA-Au NCs is completed within 20 min. By conducting matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), we have found that the main product is BSA-Au20 NCs that emit at 660 nm when excited at 330 nm due to "molecular-like" behavior. The X-ray photoelectron spectroscopy data reveal that there are Au+ ions and Au atoms coexisting in the BSA-Au NCs. The as-prepared Au NCs show excellent stability over a wide pH range (2.0-10.0). The fluorescence and MALDI-MS data reveal that the changes in their fluorescence properties are due to the formation of various sizes of BSA-Au NCs for different periods of reaction time. The as-prepared BSA-Au NCs are selective and sensitive (limit of detection of 4 nM at a signal-to noise ratio 3) for the detection of Hg2+ ions through the d10-d10 metallophilic interaction of Au+ and Hg2+ that leads to a decrease in fluorescence. The present assay has been validated for the detection of Hg2+ ions in real water samples, with a result being in good agreement with that from inductively coupled plasma mass spectrometry.

  13. Effect of temperature on the metronidazole BSA interaction: Multi-spectroscopic method

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Jiang, Xin Yu; Chen, Xiao Qing; Chen, Yue

    2008-03-01

    The interaction between metronidazole and bovine serum albumin (BSA) was investigated using fluorescence spectroscopy (FS) and resonance light scattering spectroscopy (RLS). The apparent binding constants ( Ka) between metronidazole and BSA were 3.42 × 10 4 (20 °C), 5.78 × 10 4 (30 °C) and 8.23 × 10 4 L mol -1 (40 °C), and the binding sites values ( n) were 1.48 ± 0.03. The experimental results showed that the metronidazole could be inserted into the BSA, quenching the inner fluorescence by forming the metronidazole-BSA complex. The addition of increasing metronidazole to BSA solution leads to the gradual enhancement in RLS intensity, exhibiting the formation of the aggregate in solution. It was found that both static quenching and non-radiation energy transfer were the main reasons for the fluorescence quenching. The entropy change and enthalpy change were positive, which indicated that the interaction of metronidazole and BSA was driven mainly by hydrophobic forces. The process of binding was a spontaneous process in which Gibbs free energy change was negative.

  14. Peroxidase mediated conjugation of corn fibeer gum and bovine serum albumin to improve emulsifying properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The emulsifying properties of corn fiber gum (CFG), a naturally-occurring polysaccharide protein complex, were improved by kinetically controlled formation of hetero-covalent linkages with bovine serum albumin (BSA), using horseradish peroxidase. The formation of hetero-crosslinked CFG-BSA conjugate...

  15. Long-circulating self-assembled cholesteryl albumin nanoparticles enhance tumor accumulation of hydrophobic anticancer drug.

    PubMed

    Battogtokh, Gantumur; Kang, Ji Hee; Ko, Young Tag

    2015-10-01

    The objective of this study was to develop an albumin nanoparticle with improved stability and drug loading capacity. Generation of nanomaterials having physiologically stable and high potential for drug delivery is still challenging. Herein we synthesized cholesteryl albumin conjugate using N,N-disuccinimidyl carbonate coupling reagent and prepared paclitaxel-loaded cholesteryl albumin nanoparticle (PTX-Chol-BSA) by self-assembly with the mean hydrodynamic diameter of 147.6±1.6nm and with high loading capacity. PTX-Chol-BSA nanoparticle showed much higher colloidal stability than a simple complex of PTX and BSA (PTX-BSA) and sustained release profile. PTX-Chol-BSA nanoparticles exhibited greater cellular uptake and cytotoxicity in B16F10 and MCF-7 cancer cell lines, as compared with PTX in Cremophor EL/ethanol (PTX-Cre/EtOH) and PTX-BSA formulations. A pharmacokinetic study in tumor-bearing mice showed that the area under the concentration-time curve (AUC0-8 h) following the administration of PTX-Chol-BSA was 1.6-2-fold higher than those following the administration of PTX-Cre/EtOH and PTX-BSA. In addition, the tumor AUC0-8 h of PTX-Chol-BSA was around 2-fold higher than that of PTX-BSA. Furthermore, in vivo antitumor efficacy results revealed that PTX-Chol-BSA nanoparticles have greater antitumor efficacy. In conclusion, we demonstrated the potential of PTX-Chol-BSA nanoparticles for anti-tumor chemotherapy, with enhanced in vitro and in vivo behaviors, as compared to PTX-BSA and PTX-Cre/EtOH.

  16. The effect of different desolvating agents on BSA nanoparticle properties and encapsulation of curcumin

    NASA Astrophysics Data System (ADS)

    Sadeghi, R.; Moosavi-Movahedi, A. A.; Emam-jomeh, Z.; Kalbasi, A.; Razavi, S. H.; Karimi, M.; Kokini, J.

    2014-09-01

    The desolvation method was successfully used to prepare nanoparticles from bovine serum albumin (BSA) using ethanol, acetone, and their mixtures (70:30 and 50:50, respectively). Ethanol and mixtures of ethanol and acetone led to the most spherical nanoparticles, while using pure acetone resulted in a mixture of spherical and rod shape nanoparticle. Acetone was the solvent with higher encapsulation efficiency equal to 99.2 ± 0.36 %. The polydispersity values of BSA NPs in this study were 0.045 ± 0.007, 0.065 ± 0.013, 0.091 ± 0.012, and 0.120 ± 0.016 for ethanol (100) 4×, Et:Ac (70:30) 4×, Et:Ac (50:50) 4×, and acetone (100) 3×, respectively. Encapsulation efficiencies of curcumin inside BSA NPs were 19.4 ± 2.2 and 19.8 ± 1.6 % for 1.0 and 1.5 molar ratios of curcumin to BSA, respectively. Crosslinking using glutaraldehyde improved the stability of BSA NPs and curcumin-loaded BSA NPs and both groups of nanoparticles were stable for 1 month; the lyophilized curcumin-loaded BSA NPs were able to redisperse in water. The particle size and polydispersity index of redispersed NPs were higher than the original NPs before lyophilization. The size distribution study shows that after 10 s of sonication most nanoparticles were well dispersed; however, a small but significant fraction formed aggregates. Sonication for 10 s decreased the effective diameter and polydispersity of the redispersed nanoparticles, while increasing the sonication time to 20 s did not show significant changes. In vitro release study of curcumin from BSA NPs showed that these biocompatible nanoparticles have the ability to be used as a carrier to improve controlled release of curcumin.

  17. Study on the interactions of mapenterol with serum albumins using multi-spectroscopy and molecular docking.

    PubMed

    Bi, Shuyun; Zhao, Tingting; Wang, Yu; Zhou, Huifeng

    2016-03-01

    The interactions of mapenterol with bovine serum albumin (BSA) and human serum albumin (HSA) have been investigated systematically using fluorescence spectroscopy, absorption spectroscopy, circular dichroism (CD) and molecular docking techniques. Mapenterol has a strong ability to quench the intrinsic fluorescence of BSA and HSA through static quenching procedures. At 291 K, the binding constants, Ka, were 1.93 × 10(3) and 2.73 × 10(3) L/mol for mapenterol-BSA and mapenterol-HAS, respectively. Electrostatic forces and hydrophobic interactions played important roles in stabilizing the mapenterol-BSA/has complex. Using site marker competitive studies, mapenterol was found to bind at Sudlow site I on BSA/HSA. There was little effect of K(+), Ca(2+), Cu(2+), Zn(2+) and Fe(3+) on the binding. The conformation of BSA/HSA was changed by mapenterol, as seen from the synchronous fluorescence spectra. The CD spectra showed that the binding of mapenterol to BSA/HSA changed the secondary structure of BSA/HSA. Molecular docking further confirmed that mapenterol could bind to Sudlow site I of BSA/HSA. According to Förster non-radiative energy transfer theory (FRET), the distances r0 between the donor and acceptor were calculated as 3.18 and 2.75 nm for mapenterol-BSA and mapenterol-HAS, respectively.

  18. Rotational diffusion of bovine serum albumin denaturated by sodium dodecylsulfate, According to data from tryptophan fluorescence

    NASA Astrophysics Data System (ADS)

    Vlasova, I. M.; Zhuravleva, V. V.; Saletskii, A. M.

    2014-03-01

    The rotational diffusion of bovine serum albumin (BSA) molecules in solutions with different concentrations of the anionic detergent sodium dodecylsulfate (SDS) at different pH values is investigated, yielding information on the denaturation of BSA under the action of SDS. It is found from the increased degree of polarization in the tryptophan fluorescence of BSA and the registered parameters for the rotational diffusion of BSA molecules that the denaturation of BSA under the action of SDS at pH values less than the isoelectric point (pI) of BSA (4-9) is a two-stage process. It is shown that the first stage of BSA denaturation common for all pH values is the decondensation of BSA globules, while the second stage of BSA denaturation at pH greater than the pI of BSA is the unfolding of the protein's amino acid chain. It is concluded that the denaturation of BSA under the action of SDS proceeds more deeply at pH values greater than the pI of BSA.

  19. alpha-Glucosidase-albumin conjugates: effect of chronic administration in mice

    SciTech Connect

    Allen, T.M.; Murray, L.; Bhardwaj, D.; Poznansky, M.J.

    1985-07-01

    Enzyme albumin conjugates have been proposed as a means of increasing the efficacy of enzyme use in vivo and decreasing immune response to the enzyme. Particulate drug carriers, however, have a pronounced tendency to localize in the mononuclear phagocyte (reticuloendothelial) system. The authors have examined in mice the effect on phagocytic index, tissue distribution and organ size of continued administration of conjugates of alpha-glucosidase with either homologous or heterologous albumin. Mice received 10 X 2-mg injections of bovine serum albumin (BSA) or mouse serum albumin (MSA), either free, polymerized or conjugated with alpha-glucosidase. Experiments involving BSA had to be terminated before the end of the experiment because of anaphylaxis, but these reactions were less severe to the polymerized albumin than to free albumin. Free BSA, BSA polymer and BSA-enzyme conjugates all caused a decrease in phagocytic index after six injections. Mice receiving MSA showed no evidence of anaphylaxis, but mice receiving six or more injections of free MSA, MSA polymer or MSA-enzyme conjugate had significantly decreased phagocytic indices as compared to controls. Phagocytic indices had returned to normal by 7 days after the final injection. Tissue distribution of /sup 125/I-labeled albumin preparations was determined in either naive or chronically injected mice.

  20. Denaturation of bovine serum albumin under the action of cetyltrimethylammonium bromide, according to data from fluorescence analysis

    NASA Astrophysics Data System (ADS)

    Vlasova, I. M.; Zhuravleva, V. V.; Saletskii, A. M.

    2013-06-01

    The tryptophan fluorescence of bovine serum albumin (BSA) in solutions with different concentrations of cationic detergent cetyltrimethylammonium bromide (CTAB) at different pH is investigated, providing information on BSA denaturation under the action of CTAB. It is found that BSA denaturation under the action of CTAB at all of the investigated pH values (3.5-8.0) is a single-stage process, as determined by BSA tryptophan fluorescence quenching, by an increased degree of the BSA tryptophan fluorescence polarization, and by the values of the parameters for the rotational diffusion of BSA molecules in CTAB solutions. It is shown that the cationic detergent CTAB is more efficient for BSA denaturation at pH values higher than the BSA isoelectric point (4.9).

  1. Bioactivity of albumins bound to silver nanoparticles.

    PubMed

    Mariam, Jessy; Sivakami, S; Kothari, D C; Dongre, P M

    2014-06-01

    The last decade has witnessed a tremendous rise in the proposed applications of nanomaterials in the field of medicine due to their very attractive physiochemical properties and novel actions such as the ability to reach previously inaccessible targets such as brain. However biological activity of functional molecules bound to nanoparticles and its physiological consequences is still unclear and hence this area requires immediate attention. The functional properties of Human Serum Albumin (HSA) and Bovine Serum Albumin (BSA) bound to silver nanoparticles (~60 nm) have been studied under physiological environment. Esterase activity, binding of drugs (warfarin and ibuprofen), antioxidant activity and copper binding by albumins was evaluated. The catalytic efficiencies of HSA and BSA diminished upon binding to silver nanoparticles. Perturbation in binding of warfarin and ibuprofen, loss of free sulphydryls, antioxidant activity and enhancement of copper binding were observed in albumins bound to nanoparticles. These alterations in functional activity of nanoparticle bound albumins which will have important consequences should be taken into consideration while using nanoparticles for diagnostic and therapeutic purposes.

  2. Lipid-rich bovine serum albumin improves the viability and hatching ability of porcine blastocysts produced in vitro

    PubMed Central

    SUZUKI, Chie; SAKAGUCHI, Yosuke; HOSHI, Hiroyoshi; YOSHIOKA, Koji

    2015-01-01

    The effects of lipid-rich bovine serum albumin (LR-BSA) on the development of porcine blastocysts produced in vitro were examined. Addition of 0.5 to 5 mg/ml LR-BSA to porcine blastocyst medium (PBM) from Day 5 (Day 0 = in vitro fertilization) significantly increased the hatching rates of blastocysts on Day 7 and the total cell numbers in Day-7 blastocysts. When Day-5 blastocysts were cultured with PBM alone, PBM containing LR-BSA, recombinant human serum albumin or fatty acid-free BSA, addition of LR-BSA significantly enhanced hatching rates and the cell number in blastocysts that survived compared with other treatments. The diameter, ATP content and numbers of both inner cell mass and total cells in Day-6 and Day-7 blastocysts cultured with PBM containing LR-BSA were significantly higher than in blastocysts cultured with PBM alone, whereas LR-BSA had no effect on mitochondrial membrane potential. The mRNA levels of enzymes involved in fatty acid metabolism and β-oxidation (ACSL1, ACSL3, CPT1, CPT2 and KAT) in Day-7 blastocysts were significantly upregulated by the addition of LR-BSA. The results indicated that LR-BSA enhanced hatching ability and quality of porcine blastocysts produced in vitro, as determined by ATP content, blastocyst diameter and expression levels of the specific genes, suggesting that the stimulatory effects of LR-BSA arise from lipids bound to albumin. PMID:26582048

  3. Lipid-rich bovine serum albumin improves the viability and hatching ability of porcine blastocysts produced in vitro.

    PubMed

    Suzuki, Chie; Sakaguchi, Yosuke; Hoshi, Hiroyoshi; Yoshioka, Koji

    2016-01-01

    The effects of lipid-rich bovine serum albumin (LR-BSA) on the development of porcine blastocysts produced in vitro were examined. Addition of 0.5 to 5 mg/ml LR-BSA to porcine blastocyst medium (PBM) from Day 5 (Day 0 = in vitro fertilization) significantly increased the hatching rates of blastocysts on Day 7 and the total cell numbers in Day-7 blastocysts. When Day-5 blastocysts were cultured with PBM alone, PBM containing LR-BSA, recombinant human serum albumin or fatty acid-free BSA, addition of LR-BSA significantly enhanced hatching rates and the cell number in blastocysts that survived compared with other treatments. The diameter, ATP content and numbers of both inner cell mass and total cells in Day-6 and Day-7 blastocysts cultured with PBM containing LR-BSA were significantly higher than in blastocysts cultured with PBM alone, whereas LR-BSA had no effect on mitochondrial membrane potential. The mRNA levels of enzymes involved in fatty acid metabolism and β-oxidation (ACSL1, ACSL3, CPT1, CPT2 and KAT) in Day-7 blastocysts were significantly upregulated by the addition of LR-BSA. The results indicated that LR-BSA enhanced hatching ability and quality of porcine blastocysts produced in vitro, as determined by ATP content, blastocyst diameter and expression levels of the specific genes, suggesting that the stimulatory effects of LR-BSA arise from lipids bound to albumin.

  4. BSA adsorption on bimodal PEO brushes.

    PubMed

    Bosker, W T E; Iakovlev, P A; Norde, W; Cohen Stuart, M A

    2005-06-15

    BSA adsorption onto bimodal PEO brushes at a solid surface was measured using optical reflectometry. Bimodal brushes consist of long (N=770) and short (N=48) PEO chains and were prepared on PS surfaces, applying mixtures of PS(29)-PEO(48) and PS(37)-PEO(770) block copolymers and using the Langmuir-Blodgett technique. Pi-A isotherms of (mixtures of) the block copolymers were measured to establish the brush regime. The isotherms of PS(29)-PEO(48) show hysteresis between compression and expansion cycles, indicating aggregation of the PS(29)-PEO(48) upon compression. Mixtures of PS(29)-PEO(48) and PS(37)-PEO(770) demonstrate a similar hysteresis effect, which eventually vanishes when the ratio of PS(37)-PEO(770) to PS(29)-PEO(48) is increased. The adsorption of BSA was determined at brushes for which the grafting density of the long PEO chains was varied, while the total grafting density was kept constant. BSA adsorption onto monomodal PEO(48) and PEO(770) brushes was determined for comparison. The BSA adsorption behavior of the bimodal brushes is similar to the adsorption of BSA at PEO(770) monomodal brushes. The maximum of BSA adsorption at low grafting density of PEO(770) can be explained by ternary adsorption, implying an attraction between BSA and PEO. The contribution of primary adsorption to the total adsorbed amount is negligible.

  5. Multi-spectroscopic and molecular modeling studies of bovine serum albumin interaction with sodium acetate food additive.

    PubMed

    Mohammadzadeh-Aghdash, Hossein; Ezzati Nazhad Dolatabadi, Jafar; Dehghan, Parvin; Panahi-Azar, Vahid; Barzegar, Abolfazl

    2017-08-01

    Sodium acetate (SA) has been used as a highly effective protectant in food industry and the possible effect of this additive on the binding to albumin should be taken into consideration. Therefore, for the first time, the mechanism of SA interaction with bovine serum albumin (BSA) has been investigated by multi-spectroscopic and molecular modeling methods under physiological conditions. Stern-Volmer fluorescence quenching analysis showed an increase in the fluorescence intensity of BSA upon increasing the amounts of SA. The high affinity of SA to BSA was demonstrated by a binding constant value (1.09×10(3) at 310°K). The thermodynamic parameters indicated that hydrophobic binding plays a main role in the binding of SA to Albumin. Furthermore, the results of UV-vis spectra confirmed the interaction of this additive to BSA. In addition, molecular modeling study demonstrated that A binding sites of BSA play the main role in the interaction with acetate.

  6. FBS or BSA Inhibits EGCG Induced Cell Death through Covalent Binding and the Reduction of Intracellular ROS Production

    PubMed Central

    Zhang, Yin; Xu, Yu-Ying; Sun, Wen-Jie; Zhang, Mo-Han; Zheng, Yi-Fan; Shen, Han-Ming; Yang, Jun

    2016-01-01

    Previously we have shown that (−)-epigallocatechin gallate (EGCG) can induce nonapoptotic cell death in human hepatoma HepG2 cells only under serum-free condition. However, the underlying mechanism for serum in determining the cell fate remains to be answered. The effects of fetal bovine serum (FBS) and its major component bovine serum albumin (BSA) on EGCG-induced cell death were investigated in this study. It was found that BSA, just like FBS, can protect cells from EGCG-induced cell death in a dose-dependent manner. Detailed analysis revealed that both FBS and BSA inhibited generation of ROS to protect against toxicity of EGCG. Furthermore, EGCG was shown to bind to certain cellular proteins including caspase-3, PARP, and α-tubulin, but not LC3 nor β-actin, which formed EGCG-protein complexes that were inseparable by SDS-gel. On the other hand, addition of FBS or BSA to culture medium can block the binding of EGCG to these proteins. In silico docking analysis results suggested that BSA had a stronger affinity to EGCG than the other proteins. Taken together, these data indicated that the protective effect of FBS and BSA against EGCG-induced cell death could be due to (1) the decreased generation of ROS and (2) the competitive binding of BSA to EGCG. PMID:27830147

  7. Suppressing the cytotoxicity of CuO nanoparticles by uptake of curcumin/BSA particles

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjing; Jiang, Pengfei; Chen, Ying; Luo, Peihua; Li, Guanqun; Zheng, Botuo; Chen, Wei; Mao, Zhengwei; Gao, Changyou

    2016-05-01

    The adverse effects of metal-based nanoparticles on human beings and the environment have received extensive attention recently. It is urgently required to develop a simple and effective method to suppress the toxicity of metal-based nanomaterials. In this study, a hydrophobic antioxidant and a chelation agent curcumin (CUR) were encapsulated into bovine serum albumin (BSA) particles by a simple co-precipitation method, and followed by glutaraldehyde cross-linking. The CUR/BSA particles had an average size of 300 nm in diameter with a negatively charged surface and sustained curcumin release properties. The cellular uptake and cytotoxicity of CUR/BSA particles were followed on A549 cells, HepG2 cells and RAW264.7 cells. The CUR/BSA particles had higher intracellular accumulation and lower cytotoxicity compared with the free curcumin at the same drug concentration. The CUR/BSA particles could suppress the cytotoxicity generated by CuO nanoparticles as a result of decrease of both the intracellular reactive oxygen species (ROS) level and Cu2+ concentration, while the free curcumin did not show any obvious detoxicating effect. The detoxicating effects of CUR/BSA particles were further studied in an intratracheal instillation model in vivo, demonstrating significant reduction of toxicity and inflammatory response in rat lungs induced by CuO nanoparticles. The concept-proving study demonstrates the potential of the CUR/BSA particles in suppressing cytotoxicity of metal-based nanomaterials, which is a paramount requirement for the safe application of nanotechnology.

  8. Spectroscopic Studies on Binding of Lotus Seedpod Oligomeric Procyanidins to Bovine Serum Albumin

    NASA Astrophysics Data System (ADS)

    Wu, Q.; Li, Sh.; Fu, X.; Yang, T.; Chen, H.; Guan, Y.; Xie, B.; Sun, Zh.

    2014-01-01

    The binding of lotus seedpod oligomeric procyanidins (LSOPC) and catechin (a major constituent unit of LSOPC) to bovine serum albumin (BSA) was studied by a fluorescence quenching technique. The results revealed that LSOPC could strongly quench the intrinsic fluorescence of BSA through a static quenching procedure, but catechin could not. The Stern-Volmer quenching constant, K SV, and corresponding thermodynamic parameters, Δ G 0, Δ H 0 and Δ S 0, were calculated. The results of synchronous fluorescence and circular dichroism studies showed that LSOPC could cause a conformational change in BSA. In addition, glucose and metal ions could affect the interaction between LSOPC and BSA.

  9. Photophysical investigations of squaraine and cyanine dyes and their interaction with bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Saikiran, M.; Sato, D.; Pandey, S. S.; Kato, T.

    2016-04-01

    A model far-red sensitive symmetrical squaraine dye (SQ-3) and unsymmetrical near infra-red sensitive cyanine dye (UCD-1) bearing direct-COOH functionalized indole ring were synthesized, characterized and subjected to photophysical investigations including their interaction with bovine serum albumin (BSA) as a model protein in phosphate buffer solution (PBS). Both of the dyes exhibit strong interaction with BSA in phosphate buffer with high apparent binding constant. A judicious tuning of hydrophobic main backbone with reactive functionality for associative interaction with active site of BSA has been found to be necessary for BSA detection in PBS.

  10. Spectroscopic studies of the interaction between tetra-substituted aluminum phthalocyanines and bovine serum albumin

    NASA Astrophysics Data System (ADS)

    He, Yipeng; Zheng, Liqin; Huang, Yide; Lin, Pingping; Yang, Hongqin; Peng, Yiru

    2014-11-01

    Serum albumin, the most abundant plasma protein in mammalian blood, shows significant effects on delivery and therapeutic efficacy of drugs, therefore, the investigation of binding interaction between serum albumin and drugs is vital and necessary. In the present study, the binding interaction of two aluminum (III) phthalocyanine (AlPc) derivatives, tetrasulfonate- and tetra-(p-sulfoazophenyl-4-aminosulfonyl)-substituted AlPc (complexes 1 and 2), with bovine serum albumin (BSA) was investigated by UV-Vis and fluorescence spectroscopy. Adding BSA to the Pc complexes in water caused remarkable changes in the Q-band of the Pc complexes, indicating an altered aggregation behavior. When titrating these AlPcs with BSA in PBS, the intrinsic fluorescence of BSA was significantly quenched through a static quenching process. The binding of Pc complexes to BSA might change its conformation, evidenced by the red shift of maximum emission wavelength. Furthermore, binding constants and binding sites were obtained and binding ability between the Pc complexes and BSA was assessed. Our results suggest that complexes 1 and 2 readily interact with BSA whereas the latter shows more affinity (with higher binding constant value) to BSA, implying the stretched amphiphilic substituents of complex 2 may contribute to their transportation in the blood.

  11. Spectral and Fluorescent Studies of the Interaction of an Anionic Oxacarbocyanine Dye with Bovine Serum Albumin

    NASA Astrophysics Data System (ADS)

    Pronkin, P. G.; Tatikolov, A. S.

    2017-01-01

    The influence of the formation of noncovalent intermolecular complexes with bovine serum albumin (BSA) on the spectral and fluorescent properties of the anionic oxacarbocyanine dye 3,3'-di-(γ-sulfopropyl)-5,5'-diphenyl-9-ethyloxacarbocyanine betaine (OCC) was studied. Binding of OCC to BSA increased significantly the dye fluorescence. Changes in the absorption and fluorescence spectra of OCC upon interaction with BSA argued in favor of a shift of the dye cis-trans equilibrium in the complex. The effects of adding albumin-denaturing compounds (urea, sodium dodecyl sulfate) on the spectral and fluorescent properties of the dye in the OCC-BSA complex were studied. It was concluded that OCC can act as a probe for albumins and can be used to study protein denaturing.

  12. [The entrapped efficiency of BSA liposome].

    PubMed

    Hou, Dong-Zhi; Liu, Chang-Ke; Ping, Qi-Neng; Liang, Xiao-Hui

    2007-05-01

    BSA liposomes were prepared with approximately 100 nm mean particle size under rather gentle experiment conditions, and two-colorimetric coomassie brilliant blue protein was employed to measure the free drug in the entrapped efficiency (EE%) determination of BSA liposomes. Gel filtration was used to measure the EE%, and several Sephadex gels were examined by the separation of liposomes and free drug. To determine the free drug, three methods were compared on two-colorimetric UV spectrophotography, Bradford and two-colorimetric coomassie brilliant blue, separately. Two-colorimetric coomassie brilliant blue process increased the accuracy and improved the sensitivity of the assay about 20-fold comparing with the Bradford method. Two-colorimetric coomassie brilliant blue assay appeared to be more sensitive and showed broader dynamic range to measure the free BSA in the EE% determination of BSA liposome.

  13. Chemical conversion of benzo(e)pyrene by aqueous serum albumin to pyrene-like product: fluorescence method

    SciTech Connect

    Srinivasan, B.N.; Fujimori, E.

    1980-01-01

    The interaction of benzo(e)pyrene, an atmospheric pollutant formed during the burning of organic materials, and bovine serum albumin (BSA) was studied to determine a pyrene-type metabolite is formed. (ACR)

  14. In vitro evaluation of potential complexation between bovine insulin and bovine serum albumin.

    PubMed

    Al-Domi, Hayder; Alzweiri, Muhammed; Hamdan, Imad; Jaradat, Ziad

    2014-03-01

    The objective of this study was to examine the possible binding of bovine insulin (BI) with bovine serum albumin (BSA) to form a new potential diabetogenic irreversible complex protein. Several preparations of BSA and BI were prepared. Both capillary electrophoresis and spectrophotometric analysis were undertaken to test the possibility of complexation between BI and BSA. HPLC was used to test whether the potential complex of BI and BSA is reversible or irreversible. The optimum deviation between the real and calculated absorbances was observed at a BI/BSA ratio of 2. Moreover, the migration time of BI decreased substantially with increasing ratio of BI to BSA until it became almost constant at equal molar ratio of BI/BSA. While the majority of the 2:1 BI-BSA sample detached during the HPLC analysis, which confirms the reversible character of BI-BSA binding, the HPLC chromatogram also emphasizes the formation of an irreversible complexation between the two proteins. This study provides evidence of the formation of reversible and irreversible new BI-BSA complexes under physiological conditions. This highlights the importance of examining the possible diabetogenicity of BI-BSA complex in genetically susceptible people.

  15. Ribosylation of bovine serum albumin induces ROS accumulation and cell death in cancer line (MCF-7).

    PubMed

    Khan, Mohd Shahnawaz; Dwivedi, Sourabh; Priyadarshini, Medha; Tabrez, Shams; Siddiqui, Maqsood Ahmed; Jagirdar, Haseeb; Al-Senaidy, Abdulrahman M; Al-Khedhairy, Abdulaziz A; Musarrat, Javed

    2013-12-01

    Formation of advanced glycation end products (AGE) is crucially involved in the several pathophysiologies associated with ageing and diabetes, for example arthritis, atherosclerosis, chronic renal insufficiency, Alzheimer's disease, nephropathy, neuropathy, and cataracts. Because of devastating effects of AGE and the significance of bovine serum albumin (BSA) as a transport protein, this study was designed to investigate glycation-induced structural modifications in BSA and their functional consequences in breast cancer cell line (MCF-7). We incubated D-ribose with BSA and monitored formation of D-ribose-glycated BSA by observing changes in the intensity of fluorescence at 410 nm. NBT (nitro blue tetrazolium) assay was performed to confirm formation of keto-amine during glycation. Absorbance at 540 nm (fructosamine) increased markedly with time. Furthermore, intrinsic protein and 8-anilino-1-naphthalenesulfonate (ANS) fluorescence revealed marked conformational changes in BSA upon ribosylation. In addition, a fluorescence assay with thioflavin T (ThT) revealed a remarkable increase in fluorescence at 485 nm in the presence of glycated BSA. This suggests that glycation with D-ribose induced aggregation of BSA into amyloid-like deposits. Circular dichroism (CD) study of native and ribosylated BSA revealed molten globule formation in the glycation pathway of BSA. Functional consequences of ribosylated BSA on cancer cell line, MCF-7 was studied by MTT assay and ROS estimation. The results revealed cytotoxicity of ribosylated BSA on MCF-7 cells.

  16. Facilitation by serum albumin of renal tubular secretion of organic anions.

    PubMed

    Besseghir, K; Mosig, D; Roch-Ramel, F

    1989-03-01

    The role of albumin in tubular secretion of the organic anions p-aminohippurate (PAH, 21% albumin-bound at 1 microM) and methotrexate (MTX, 55% bound at 1 microM), and of the organic cation N1-methylnicotinamide (NMN, not bound), was investigated in isolated rabbit S2 proximal tubules. PAH or MTX secretory rates were low in the absence of colloids or in the presence of 1 g/dl dextran 40, and were reversibly two- to sevenfold stimulated by either 1 g/dl bovine (BSA, either regular, defatted, and/or dialyzed) or rabbit serum albumin, or by dialyzed native rabbit plasma. NMN secretion was not stimulated by either dextran or albumin. Luminal BSA had no effect, but stimulation of PAH secretion was observed when albumin was present in both lumen and bath. This secretion was BSA concentration-dependent up to a 1 g/dl BSA. Saturation experiments suggested that 1 g/dl BSA may increase PAH apparent affinity for secretion, with no change in its maximum velocity. Albumin appears therefore to facilitate organic anion proximal secretion by an effect unrelated to oncotic pressure or to the extent of organic anion binding.

  17. Investigation of Cu(II) Binding to Bovine Serum Albumin by Potentiometry with an Ion Selective Electrode

    ERIC Educational Resources Information Center

    Jie Liu

    2004-01-01

    A laboratory project that investigates Cu(II) bind to bovine serum albumin (BSA) in an aqueous solution is developed to assist undergraduate students in gaining better understanding of the interaction of ligands with biological macromolecule. Thus, students are introduced to investigation of Cu(II) binding to BSA by potentiometry with the Cu(II)…

  18. Bromophenol blue binding to mammalian albumins and displacement of albumin-bound bilirubin.

    PubMed

    Kim, B Boon; Abdul Kadir, H; Tayyab, S

    2008-10-15

    Interaction of bromophenol blue (BPB) with serum albumins from different mammalian species, namely, human (HSA), bovine (BSA), goat (GSA), sheep (SSA), rabbit (RbSA), porcine (PSA) and dog (DSA) was studied using absorption and absorption difference spectroscopy. BPB-albumin complexes showed significant differences in the spectral characteristics, i.e., extent of bathochromic shift and hypochromism relative to the spectral features of free BPB. Absorption difference spectra of these complexes also showed variations in the position of maxima and absorption difference (deltaAbs.) values. Absorption difference spectra of different bilirubin (BR)-albumin complexes showed a significant blue shift accompanied by decrease in deltaAbs. values in presence of BPB which were indicative of the displacement of bound BR from its binding site in BR-albumin complexes. These changes in the difference spectral characteristics of BR-albumin complexes were more marked at higher BPB concentration. However, the extent of these changes was different for different BR-albumin complexes. Taken together, all these results suggest that BPB partially shares BR binding site on albumin and different mammalian albumins show differences in the microenvironment of the BR/BPB binding site.

  19. Intermolecular forces in bovine serum albumin solutions exhibiting solidlike mechanical behaviors.

    PubMed

    Ikeda, S; Nishinari, K

    2000-01-01

    Mechanical properties of bovine serum albumin (BSA) solutions were analyzed to gain information on intermolecular forces that stabilize the system under normal physiological conditions. BSA solutions showed unexpectedly large zero shear viscosity values under steady shear flows but responded like solids to sinusoidal linear strains: the storage shear moduli were always larger than the loss shear moduli in the frequency range 1-100 rad/s. These results suggest that BSA solutions are so-called colloidal crystals in which colloidal particles are ordered in an array due to strong repulsive forces among particles. However, the pair potential between BSA molecules predicted based on the conventional Derjaguin-Landau-Verwey-Overbeek theory failed to explain these remarkable mechanical properties of BSA solutions. Additional repulsive forces other than electrostatic must be introduced to explain stability of BSA aqueous dispersions.

  20. Spectrometric studies on the interaction of fluoroquinolones and bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Ni, Yongnian; Su, Shaojing; Kokot, Serge

    2010-02-01

    The interaction between fluoroquinolones (FQs), ofloxacin and enrofloxacin, and bovine serum albumin (BSA) was investigated by fluorescence and UV-vis spectroscopy. It was demonstrated that the fluorescence quenching of BSA by FQ is a result of the formation of the FQ-BSA complex stabilized, in the main, by hydrogen bonds and van der Waals forces. The Stern-Volmer quenching constant, KSV, and the corresponding thermodynamic parameters, Δ H, Δ S and Δ G, were estimated. The distance, r, between the donor, BSA, and the acceptor, FQ, was estimated from fluorescence resonance energy transfer (FRET). The effect of FQ on the conformation of BSA was analyzed with the aid of UV-vis absorbance spectra and synchronous fluorescence spectroscopy. Spectral analysis showed that the two FQs affected the conformation of the BSA but in a different manner. Thus, with ofloxacin, the polarity around the tryptophan residues decreased and the hydrophobicity increased, while for enrofloxacin, the opposite effect was observed.

  1. Interaction between pirenoxine and bovine serum albumin in aqueous solution

    NASA Astrophysics Data System (ADS)

    Liao, Zhixi; Yu, Xianyong; Yao, Qing; Yi, Pinggui

    2014-08-01

    This work concerns the interaction of prenoxine sodium (PRX) and bovine serum albumin (BSA), which was conducted by spectroscopic means: fluorescence spectra, ultraviolet-visible spectra (UV-vis) and circular dichroism spectra (CD spectra) in physiological conditions. The results revealed the PRX can quench the fluorescence of BSA remarkably in aqueous solution. The quench mechanism has been obtained after corrected the fluorescence intensities for inner filter effects. The binding constants (Ka) were calculated according to the relevant fluorescence data at different temperatures. Moreover, from a series of analyses, we have obtained the binding sites, the binding distance and binding force. The effect of PRX on the conformation of BSA has been analyzed using synchronous fluorescence under experimental conditions. In addition, the CD spectra proved that the secondary structure of BSA changed in the presence of PRX in aqueous solution.

  2. Interaction between pirenoxine and bovine serum albumin in aqueous solution.

    PubMed

    Liao, Zhixi; Yu, Xianyong; Yao, Qing; Yi, Pinggui

    2014-08-14

    This work concerns the interaction of prenoxine sodium (PRX) and bovine serum albumin (BSA), which was conducted by spectroscopic means: fluorescence spectra, ultraviolet-visible spectra (UV-vis) and circular dichroism spectra (CD spectra) in physiological conditions. The results revealed the PRX can quench the fluorescence of BSA remarkably in aqueous solution. The quench mechanism has been obtained after corrected the fluorescence intensities for inner filter effects. The binding constants (Ka) were calculated according to the relevant fluorescence data at different temperatures. Moreover, from a series of analyses, we have obtained the binding sites, the binding distance and binding force. The effect of PRX on the conformation of BSA has been analyzed using synchronous fluorescence under experimental conditions. In addition, the CD spectra proved that the secondary structure of BSA changed in the presence of PRX in aqueous solution.

  3. [Interaction of new pyridylporphyrins with bovine serum albumin].

    PubMed

    Karapetian, N G; Madakian, V N

    2004-01-01

    The interaction of meso-tetra(4-N-hydroxyethylpyridyl)porphyrin, meso-tetra(3-N-hydroxyethylpyridyl)porphyrin, and their zinc complexes with bovine serum albumin (BSA) was studied by electronic spectroscopy, CD, and equilibrium dialysis at pH 7.2. The titration of the porphyrins with BSA was accompanied by a decrease in light absorption and a bathochromic shift of the Soret band, as well as by the appearance of an isobestic point. The porphyrin interaction with BSA also led to the induction of positive CD spectra in the visible region, which is explained by the porphyrin sorption on the protein globule. The equilibrium dialysis helped in determining the stoichiometry of binding and the binding constants of the porphyrins under study with BSA using Scatchard plots. This interaction is nonspecific and reversible. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2004, vol. 30, no. 2; see also http://www.maik.ru.

  4. Elucidation of structural and functional properties of albumin bound to gold nanoparticles.

    PubMed

    Mariam, Jessy; Sivakami, S; Dongre, P M

    2017-02-01

    Nanoparticle-albumin complexes are being designed for targeted drug delivery and imaging. However, the changes in the functional properties of albumin due to adsorption on nanoparticles remain elusive. Thus, the objective of this work was to elucidate the structural and functional properties of human and bovine serum albumin bound to negatively charged gold nanoparticles (GNPs). Fluorescence data demonstrated static quenching of albumin by GNP with the quenching of buried as well as surface tryptophan in BSA. The binding process was enthalpy and entropy-driven in HSA and BSA, respectively. At lower concentrations of GNP there was a higher affinity for tryptophan, whereas at higher concentrations both tryptophan and tyrosine participated in the interaction. Synchronous fluorescence spectra revealed that the microenvironment of tryptophan in HSA turned more hydrophilic upon exposure to GNP. The α-helical content of albumin was unaltered by GNP. Approximately 37 and 23% reduction in specific activity of HSA and BSA was observed due to GNP binding. In presence of warfarin and ibuprofen the binding constants of albumin-GNP complexes were altered. A very interesting observation not reported so far is the retained antioxidant activity of albumin in presence of GNP i.e. we believe that GNPs did not bind to the free sulfhydryl groups of albumin. However enhanced levels of copper binding were observed. We have also highlighted the differential response in albumin due to gold and silver nanoparticles which could be attributed to differences in the charge of the nanoparticle.

  5. Elucidating the influence of gold nanoparticles on the binding of salvianolic acid B and rosmarinic acid to bovine serum albumin.

    PubMed

    Peng, Xin; Qi, Wei; Huang, Renliang; Su, Rongxin; He, Zhimin

    2015-01-01

    Salvianolic acid B and rosmarinic acid are two main water-soluble active ingredients from Salvia miltiorrhiza with important pharmacological activities and clinical applications. The interactions between salvianolic acid B (or rosmarinic acid) and bovine serum albumin (BSA) in the presence and absence of gold nanoparticles (Au NPs) with three different sizes were investigated by using biophysical methods for the first time. Experimental results proved that two components quenched the fluorescence of BSA mainly through a static mechanism irrespective of the absence or presence of Au NPs. The presence of Au NPs decreased the binding constants of salvianolic acid B with BSA from 27.82% to 10.08%, while Au NPs increased the affinities of rosmarinic acid for BSA from 0.4% to 14.32%. The conformational change of BSA in the presence of Au NPs (caused by a noncompetitive binding between Au NPs and drugs at different albumin sites) induced changeable affinity and binding distance between drugs and BSA compared with no Au NPs. The competitive experiments revealed that the site I (subdomain IIA) of BSA was the primary binding site for salvianolic acid B and rosmarinic acid. Additionally, two compounds may induce conformational and micro-environmental changes of BSA. The results would provide valuable binding information between salvianolic acid B (or rosmarinic acid) and BSA, and also indicated that the Au NPs could alter the interaction mechanism and binding capability of drugs to BSA, which might be beneficial to understanding the pharmacokinetics and biological activities of the two drugs.

  6. BSA-directed synthesis of CuS nanoparticles as a biocompatible photothermal agent for tumor ablation in vivo.

    PubMed

    Zhang, Cai; Fu, Yan-Yan; Zhang, Xuejun; Yu, Chunshui; Zhao, Yan; Sun, Shao-Kai

    2015-08-07

    Photothermal therapy as a physical therapeutic approach has greatly attracted research interest due to its negligible systemic effects. Among the various photothermal agents, CuS nanoparticles have been widely used due to their easy preparation, low cost, high stability and strong absorption in the NIR region. However, the ambiguous biotoxicity of CuS nanoparticles limited their bio-application. So it is highly desirable to develop biocompatible CuS photothermal agents with the potential of clinical translation. Herein, we report a novel method to synthesize biocompatible CuS nanoparticles for photothermal therapy using bovine serum albumin (BSA) as a template via mimicking biomaterialization processes. Owing to the inherent biocompatibility of BSA, the toxicity assays in vitro and in vivo showed that BSA-CuS nanoparticles possessed good biocompatibility. In vitro and in vivo photothermal therapies were performed and good results were obtained. The bulk of the HeLa cells treated with BSA-CuS nanoparticles under laser irradiation (808 nm) were killed, and the tumor tissues of mice were also successfully eliminated without causing any obvious systemic damage. In summary, a novel strategy for the synthesis of CuS nanoparticles was developed using BSA as the template, and the excellent biocompatibility and efficient photothermal therapy effects of BSA-CuS nanoparticles show great potential as an ideal photothermal agent for cancer treatment.

  7. Human lung lysozyme: sources and properties.

    PubMed

    Konstan, M W; Chen, P W; Sherman, J M; Thomassen, M J; Wood, R E; Boat, T F

    1981-01-01

    Lysozyme in human airway secretions is thought to defend the lung against airborne bacteria. Although lysozyme has been purified and characterized from human tears, milk, saliva, and other sources (1-5), human lung lysozyme has received little attention except for measurements of concentrations in sputum (6, 7), immunocytochemical and histochemical localization (8-12),and studies of secretion by alveolar macrophages (13). This study was designed to identify the sources of secreted lung lysozyme, to quantitate the secretory activities of the various sources,and to compare the properties of lysozyme from lung cells with those from other tissues.

  8. Sensitive detection of cyanide using bovine serum albumin-stabilized cerium/gold nanoclusters.

    PubMed

    Wang, Chia-Wei; Chen, Ya-Na; Wu, Bo-Yi; Lee, Cheng-Kai; Chen, Ying-Chieh; Huang, Yu-Huei; Chang, Huan-Tsung

    2016-01-01

    A simple, sensitive, and selective fluorescence assay for the detection of CN(-) has been demonstrated using bovine serum albumin-stabilized cerium/gold nanoclusters (BSA-Ce/Au NCs). When excited at 325 nm, BSA-Ce/Au NCs have two fluorescence bands centered at 410 and 658 nm, which are assigned to BSA-Ce/Au complexes and Au NCs, respectively. Each BSA-Ce/Au NC contains 22 Au atoms and 8 Ce ions. Through etching of the Au core in BSA-Ce/Au NCs by CN(-), the fluorescence at 658 nm is quenched, while that at 410 nm enhances during the formation of complexes among BSA, Ce(4+), and [Au(CN)2](-). The circular dichroism spectra reveal that relative to BSA-Au NCs, BSA-Ce/Au NCs have looser structures of the BSA templates. As a result, it is easier for CN(-) to access the Au cores in BSA-Ce/Au NCs, allowing faster (within 15 min) etching of the Au cores by CN(-). At pH 12.0, this assay allows the detection of CN(-) down to 50 nM, with linearity over 0.1-15 μM. This assay has been applied to the determination of the concentrations of CN(-) in spiked drinking water and pond water samples.

  9. A comparison study on the binding of hesperetin and luteolin to bovine serum albumin by spectroscopy

    NASA Astrophysics Data System (ADS)

    Tang, Lin; Jia, Wanteng

    2013-02-01

    Binding mechanism of luteolin (LUT) and hesperetin (HES) to bovine serum albumin (BSA) was investigated at 288,298,310 K and pH = 7.40 by UV absorption spectroscopy, fluorescence quenching and synchronous fluorescence spectroscopy. Under simulated physiological conditions, the fluorescence data indicated that hesperetin binding to BSA mainly occurs through a static mechanism. In contrast, binding of luteolin to BSA is a combined quenching process while static quenching is prevailing. Linear interval of the Stern-Volmer plot of LUT-BSA for the concentration ratio of LUT to BSA ranged from 0.5 to 1.25 was obtained. The thermodynamic parameters obtained from the Van't Hoff equation indicated that electrostatic force was the predominant force in the LUT-BSA and HES-BSA complex. The inner filter effect was eliminated to get accurate data. The conformational changes of BSA caused by LUT and HES were observed in the UV absorption. Results of fluorescence quenching and synchronous fluorescence showed that degree of luteolin-BSA quenching was higher than hesperetin-BSA quenching, which indicated that the 4'-hydroxide radical was more helpful to the ligand binding to proteins than 4'-methoxyl group for flavones.

  10. Binding interaction of sorafenib with bovine serum albumin: Spectroscopic methodologies and molecular docking.

    PubMed

    Shi, Jie-Hua; Chen, Jun; Wang, Jing; Zhu, Ying-Yao; Wang, Qi

    2015-01-01

    The binding interaction of sorafenib with bovine serum albumin (BSA) was studied using fluorescence, circular dichrosim (CD) and molecular docking methods. The results revealed that there was a static quenching of BSA induced by sorafenib due to the formation of sorafenib-BSA complex. The binding constant and number of binding site of sorafenib with BSA under simulated physiological condition (pH=7.4) were 6.8×10(4) M(-1) and 1 at 310 K, respectively. Base on the sign and magnitude of the enthalpy and entropy changes (ΔH(0)=-72.2 kJ mol(-1) and ΔS(0)=-140.4J mol(-1) K(-1)) and the results of molecular docking, it could be suggested that the binding process of sorafenib and BSA was spontaneous and the main interaction forces of sorafenib with BSA were van der Waals force and hydrogen bonding interaction. From the results of site marker competitive experiments and molecular docking, it could be deduced that sorafenib was inserted into the subdomain IIA (site I) of BSA and leads to a slight change of the conformation of BSA. And, the significant change of conformation of sorafenib occurred in the binding process with BSA to increase the stability of the sorafenib-BSA system, implying that the flexibility of sorafenib played an important role in the binding process.

  11. Interactions and effects of BSA-functionalized single-walled carbon nanotubes on different cell lines

    NASA Astrophysics Data System (ADS)

    Muzi, Laura; Tardani, Franco; La Mesa, Camillo; Bonincontro, Adalberto; Bianco, Alberto; Risuleo, Gianfranco

    2016-04-01

    Functionalized carbon nanotubes (CNTs) have shown great promise in several biomedical contexts, spanning from drug delivery to tissue regeneration. Thanks to their unique size-related properties, single-walled CNTs (SWCNTs) are particularly interesting in these fields. However, their use in nanomedicine requires a clear demonstration of their safety in terms of tissue damage, toxicity and pro-inflammatory response. Thus, a better understanding of the cytotoxicity mechanisms, the cellular interactions and the effects that these materials have on cell survival and on biological membranes is an important first step for an appropriate assessment of their biocompatibility. In this study we show how bovine serum albumin (BSA) is able to generate homogeneous and stable dispersions of SWCNTs (BSA-CNTs), suggesting their possible use in the biomedical field. On the other hand, this study wishes to shed more light on the impact and the interactions of protein-stabilized SWCNTs with two different cell types exploiting multidisciplinary techniques. We show that BSA-CNTs are efficiently taken up by cells. We also attempt to describe the effect that the interaction with cells has on the dielectric characteristics of the plasma membrane and ion flux using electrorotation. We then focus on the BSA-CNTs’ acute toxicity using different cellular models. The novel aspect of this work is the evaluation of the membrane alterations that have been poorly investigated to date.

  12. Tracing the conformational changes in BSA using FRET with environmentally-sensitive squaraine probes

    NASA Astrophysics Data System (ADS)

    Govor, Iryna V.; Tatarets, Anatoliy L.; Obukhova, Olena M.; Terpetschnig, Ewald A.; Gellerman, Gary; Patsenker, Leonid D.

    2016-06-01

    A new potential method of detecting the conformational changes in hydrophobic proteins such as bovine serum albumin (BSA) is introduced. The method is based on the change in the Förster resonance energy transfer (FRET) efficiency between protein-sensitive fluorescent probes. As compared to conventional FRET based methods, in this new approach the donor and acceptor dyes are not covalently linked to protein molecules. Performance of the new method is demonstrated using the protein-sensitive squaraine probes Square-634 (donor) and Square-685 (acceptor) to detect the urea-induced conformational changes of BSA. The FRET efficiency between these probes can be considered a more sensitive parameter to trace protein unfolding as compared to the changes in fluorescence intensity of each of these probes. Addition of urea followed by BSA unfolding causes a noticeable decrease in the emission intensities of these probes (factor of 5.6 for Square-634 and 3.0 for Square-685), and the FRET efficiency changes by a factor of up to 17. Compared to the conventional method the new approach therefore demonstrates to be a more sensitive way to detect the conformational changes in BSA.

  13. Interaction of coffee compounds with serum albumins. Part II: Diterpenes.

    PubMed

    Guercia, Elena; Forzato, Cristina; Navarini, Luciano; Berti, Federico

    2016-05-15

    Cafestol and 16-O-methylcafestol are diterpenes present in coffee, but whilst cafestol is found in both Coffea canephora and Coffea arabica, 16-O-methylcafestol (16-OMC) was reported to be specific of only C. canephora. The interactions of such compounds, with serum albumins, have been studied. Three albumins have been considered, namely human serum albumin (HSA), fatty acid free HSA (ffHSA) and bovine serum albumin (BSA). The proteins interact with the diterpenes at the interface between Sudlow site I and the fatty acid binding site 6 in a very peculiar way, leading to a significant change in the secondary structure. The diterpenes do not displace reference binding drugs of site 2, but rather they enhance the affinity of the site for the drugs. They, therefore, may alter the pharmacokinetic profile of albumin - bound drugs.

  14. Interaction of sulpiride and serum albumin: Modeling from spectrofluorimetric data

    NASA Astrophysics Data System (ADS)

    Fragoso, Viviane Muniz da Silva; Silva, Dilson

    2015-12-01

    We have applied the fluorescence quenching modeling to study the process of interaction of sulpiride with human serum albumin (HSA) and bovine (BSA). Albumin is more abundant protein in blood and it emits fluorescence when excited by 260-295 nm. Sulpiride is an atypical antipsychotic used in the treatment of many psychiatric disorders. As sulpiride is fluorescent, we developed a mathematical model to analyzing the interaction of two fluorescent substances. This model was able to separate the albumin fluorescence from the quencher fluorescence. Results have shown that sulpiride quenches the fluorescence of both albumins by a static process, due to the complex formation drugalbumin. The association constants calculated for sulpiride-HSA was 2.20 (± 0.08) × 104 M-1 at 37° C, and 5.46 (± 0.20) × 104 M-1, 25 ° C, and the primary binding site to sulpiride in the albumin is located closer to the subdomain IB.

  15. Spectroscopic approach of the interaction study of amphiphilic drugs with the serum albumins.

    PubMed

    Khan, Abbul Bashar; Khan, Javed Masood; Ali, Mohd Sajid; Khan, Rizwan Hasan; Kabir-ud Din

    2011-10-15

    The interaction of the amphiphilic drugs, i.e., amitriptyline hydrochloride (AMT) and promethazine hydrochloride (PMT), with serum albumins (i.e., human serum albumin (HSA) and bovine serum albumin (BSA)), has been examined by the various spectroscopic techniques, like fluorescence, UV-vis, and circular dichroism (CD). Fluorescence results indicate that in case of HSA-drug complexes the quenching of fluorescence intensity at 280 nm is less effective as compared to at 295 nm while in case of BSA-drug complexes both have almost same effect and for most of drug-serum albumin complexes there is only one independent class of binding. For all drug-serum albumin complexes the quenching rate constant (K(q)) values suggest the static quenching procedure. The UV-vis results show that the change in protein conformation of PMT-serum albumin complexes was more prominent as compared to AMT-serum albumin complexes. The CD results also explain the conformational changes in the serum albumins on binding with drugs. The increase in α-helical structure for AMT-serum albumin complexes is found to be more as compared to PMT-serum albumin complexes. Hence, the various spectroscopic techniques provide a quantitative understanding of the binding of amphiphilic drugs with serum albumins.

  16. Synthesis, X-Ray Crystallographic Analysis and BSA Interaction of a New α-Aminophosphonate

    NASA Astrophysics Data System (ADS)

    Wang, Q.-M.; Gao, W.; Song, J.-L.; Liu, Y.; Qi, H.; Tang, X.-H.

    2016-09-01

    A new α-aminophosphonate ( 1) was synthesized and its composition and structure were established by EA, FT-IR, ESI-MS, NMR (1H, 13C, and 31P), and X-ray crystallography. Compound 1 crystallizes in a monoclinic system with space group C2/c. The interaction between α-aminophosphonate ( 1) and bovine serum albumin (BSA) at three different temperatures (298, 303, and 310 K) under simulated physiological condition were studied by fluorescence spectroscopy. The results showed that the fluorescence quenching mechanism between 1 and BSA was a static quenching procedure. The binding constant (Ka) and binding sites (n) were obtained. The corresponding thermodynamic parameters (ΔH, ΔS, and ΔG) of the interaction system were calculated at different temperatures. The results revealed that the binding process was spontaneous; hydrogen bonds and van der Waals forces were the main forces that stabilize the complex.

  17. Albumin extravasation rates in tissues of anesthetized and unanesthetized rats

    SciTech Connect

    Renkin, E.M.; Joyner, W.L.; Gustafson-Sgro, M.; Plopper, G.; Sibley, L.

    1989-05-01

    Bovine serum albumin (BSA) labeled with /sup 131/I was injected intravenously in chronically prepared, unanesthetized rats and into pentobarbital-anesthetized rats that had received 2 ml 5% BSA to help sustain plasma volume. Initial uptake rates (clearances) in skin, skeletal muscles, diaphragm, and heart (left ventricle) were measured over 1 h. BSA labeled with /sup 125/I was injected terminally to correct for intravascular /sup 131/I-BSA. Observed clearances were in the following order in both groups of animals: heart much greater than diaphragm approximately equal to skin greater than resting skeletal muscles. Differences between unanesthetized and anesthetized animals were small and inconsistently directed. Our results suggest that the lower albumin clearances reported in the literature for anesthetized rats are not the result of their immobility or any direct effect of anesthesia on albumin transport in these tissues. The lower transport rates appear to result indirectly from changes produced by anesthesia and/or surgery in controllable parameters such as plasma volume and intravascular protein mass.

  18. The Effect of Albumin on MRP2 and BCRP in the Vesicular Transport Assay

    PubMed Central

    Kidron, Heidi

    2016-01-01

    The ABC transporters multidrug resistance associated protein 2 (MRP2) and breast cancer resistance protein (BCRP) are of interest in drug development, since they affect the pharmacokinetics of several drugs. Membrane vesicle transport assays are widely used to study interactions with these proteins. Since albumin has been found to affect the kinetics of metabolic enzymes in similar membrane preparations, we investigated whether albumin affects the kinetic parameters of efflux transport. We found that albumin increased the Vmax of 5(6)-carboxy-2’,7’-dichlorofluorescein (CDCF) and estradiol-17-β-D-glucuronide uptake into MRP2 vesicles in the presence of 0.1% bovine serum albumin (BSA) by 2 and 1.5-fold, respectively, while BSA increased Lucifer yellow uptake by 30% in BCRP vesicles. Km values increased slightly, but the change was not statistically significant. The effect of BSA on substrate uptake was dependent on the vesicle amount, while increasing BSA concentration did not significantly improve substrate uptake. These results indicate a minor effect of albumin on MRP2 and BCRP, but it should be considered if albumin is added to transporter assays for example as a solubilizer, since the effect may be substrate or transporter specific. PMID:27706255

  19. Elevation of CSF albumin in old sheep: relations to CSF turnover and albumin extraction at blood-CSF barrier.

    PubMed

    Chen, Ruo-Li; Chen, Carl Pai-Chu; Preston, Jane Elizabeth

    2010-06-01

    Albumin is the most abundant protein in both CSF and plasma, and albumin quotient is often used to assess the functions of brain barriers especially that of the blood-CSF barrier [i.e. the choroid plexus (CP) which also secretes CSF]. In this study, we took albumin as a model molecule to investigate ageing-related alterations in the CSF-CP system in sheep. We found significant ageing-related increases in the weight of lateral CP [122.4 +/- 14.0 mg in the young, 198.6 +/- 35.4 mg in the middle aged, 286.1 +/- 25.1 mg in the old (p < 0.05)], in the CSF albumin as well as the albumin quotient. Albumin protein spots in old CSF displayed wider on 2D western immunoblotting images, and had higher densities on images of 2D large gels stained with Pro-Q Emerald 488 compared to the young samples, suggesting ageing-related post-translational modification in the albumin. CSF secretion was reduced with age: 0.148 +/- 0.013 mL/min/g in the young, 0.092 +/- 0.02 mL/min/g in the middle aged, 0.070 +/- 0.013 mL/min/g in the old (p < 0.05). The (125)I-BSA extraction was not different among the sheep groups, nor was altered by temperature reduction, monensin, nocodazole, anti-transforming growth factor beta receptor II antibody, as well as unlabelled albumins. In conclusion, elevation of albumin in old CSF is associated with reduced CSF secretion by the CP, which size increases with age. (125)I-BSA extract, reflecting the extracellular space rather than the active albumin uptake in the CP, is not different between ages. These early changes in health ageing may result in the accumulation and modifications of CSF proteins leading to neurotoxicity.

  20. Study on the interaction of sulforaphane with human and bovine serum albumins.

    PubMed

    Abassi, Parvane; Abassi, Farzane; Yari, Faramarz; Hashemi, Mehrdad; Nafisi, Shohreh

    2013-05-05

    Sulforaphane; [1-isothiocyanato-4-(methylsulfinyl) butane], (SFN) is an isothiocyanate derived from glucoraphanin present in cruciferous vegetables and has a variety of potential chemopreventive actions. This study was designed to examine the interaction of sulforaphane with HSA and BSA. FTIR, UV-Vis spectroscopic methods as well as molecular modeling were used to determine the drug binding mode, binding constant and the effect of drug complexation on serum albumins stability and conformation. Structural analysis showed that SFN bind HSA and BSA via polypeptide polar groups with overall binding constants of KSFN-HSA=6.54×10(4) and KSFN-BSA=8.55×10(4) M(-1). HSA and BSA conformations were altered by a major reduction of α-helix upon SFN interaction. These results suggest that serum albumins might act as carrier proteins for SFN in delivering them to target tissues.

  1. Studies on binding interactions between clenbuterol hydrochloride and two serum albumins by multispectroscopic approaches in vitro.

    PubMed

    Wang, Qin; Zhang, Shengrui

    2014-08-01

    In this study, binding properties of clenbuterol hydrochloride (CL) with human serum albumin (HSA) and bovine serum albumin (BSA) were examined using constant protein concentrations and various CL contents under physiological conditions. The binding parameters were confirmed using fluorescence quenching spectroscopy at various temperatures. The experimental results confirmed that the quenching mechanisms of CL and HSA/BSA were both static quenching processes. The thermodynamic parameters, namely, enthalpy change (ΔH) and entropy change (ΔS), were calculated according to the van't Hoff equation, which suggested that the electrostatic interactions were the predominant intermolecular forces in stabilizing the CL-HSA complex, and hydrogen bonds and van der Waals force were the predominant intermolecular forces in stabilizing the CL-BSA complex. Furthermore, the conformational changes of HSA/BSA in the presence of CL were determined using the data obtained from three-dimensional fluorescence spectroscopy, ultraviolet-visible absorption spectroscopy and circular dichroism spectroscopy.

  2. β-Carotene and astaxanthin with human and bovine serum albumins.

    PubMed

    Li, Xiangrong; Wang, Gongke; Chen, Dejun; Lu, Yan

    2015-07-15

    β-Carotene and astaxanthin are two carotenoids with powerful antioxidant properties. In this study, the interaction of these two carotenoids with human serum albumin (HSA) and bovine serum albumin (BSA) under physiological conditions was investigated using several spectroscopic techniques. The experimental results indicate the quenching mechanism of HSA/BSA, by the two carotenoids, is a static process. The binding constants and number of binding sites were evaluated at different temperatures. Thermodynamic investigations revealed the interaction between the two carotenoids and HSA/BSA is synergistically driven by enthalpy and entropy, and hydrophobic forces and electrostatic attraction have a significant role in the reactions. Binding site I was found to be the primary binding site for β-carotene and astaxanthin. In addition, as shown by synchronous fluorescence spectroscopy and FT-IR, the two carotenoids may induce conformational and micro-environmental changes in HSA/BSA.

  3. Lysozyme-lysozyme and lysozyme-salt interactions in the aqueous saline solution: a new square-well potential.

    PubMed

    Chang, Bong Ho; Bae, Young Chan

    2003-01-01

    We investigate lysozyme-lysozyme and lysozyme-salt interactions in electrolyte solutions using a molecular-thermodynamic model. An equation of state based on the statistical mechanical perturbation theory is applied to describe the interactions. The perturbation term includes a new square-well potential of mean force, which implies the information about the lysozyme surface and salt type. The attractive energy of the potential of mean force is correlated with experimental cloud-point temperatures of lysozyme in various solution conditions. The same attractive energy is used to predict osmotic pressure of a given system with no additional parameters. The new potential shows a satisfactory improvement in understanding the interactions between lysozymes in aqueous salt solutions.

  4. Scientist prepare Lysozyme Protein Crystal

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Dan Carter and Charles Sisk center a Lysozyme Protein crystal grown aboard the USML-2 shuttle mission. Protein isolated from hen egg-white and functions as a bacteriostatic enzyme by degrading bacterial cell walls. First enzyme ever characterized by protein crystallography. It is used as an excellent model system for better understanding parameters involved in microgravity crystal growth experiments. The goal is to compare kinetic data from microgravity experiments with data from laboratory experiments to study the equilibrium.

  5. Adsorption of albumin on prosthetic materials: implication for tribological behavior.

    PubMed

    Serro, A P; Gispert, M P; Martins, M C L; Brogueira, P; Colaço, R; Saramago, B

    2006-09-01

    The orthopedic prosthesis used to substitute damaged natural joints are lubricated by a pseudosynovial fluid that contains biological macromolecules with potential boundary lubrication properties. Proteins are some of those macromolecules whose role in the lubrication process is not yet completely understood. In a previous work, we investigated the influence of the presence of albumin, the major synovial protein, upon the tribological behavior of three of the most used pairs of artificial joint materials: ultra high molecular weight polyethylene (UHMWPE) against counterfaces of alumina, CoCrMo alloy, and 316L stainless steel. Albumin was found to cause a significant decrease in the friction coefficient when the counterfaces were metallic because transfer of UHMWPE was avoided, but this effect was much weaker in the case of alumina. The objective of the present work was to look for an explanation for these differences in tribological behavior in terms of albumin adsorption. With this goal, studies on adsorption of bovine serum albumin (BSA) on the counterface materials, from a biological model fluid (Hanks' balanced salt solution), were carried out using radiolabeled albumin ((125)I-BSA), X-ray photoelectron spectroscopy, and atomic force microscopy. The conclusion from all techniques is that the driving force for albumin adsorption is higher on the metals than on alumina. These results confirm that the greater the amount of protein adsorbed on the counterface, the more efficient is the protection against the transfer of polymeric film to the counterface.

  6. Estimating the relative position of risperidone primary binding site in Sera Albumins. Modeling from spectrofluorimetric data

    NASA Astrophysics Data System (ADS)

    Cortez, Celia Martins; Fragoso, Viviane Muniz S.; Silva, Dilson

    2014-10-01

    In this work, we used a mathematical model to study the interaction of risperidone with human and bovine serum albumins estimating the relative position of the primary binding site, based on the fluorescence quenching theory. Results have shown that the model was able to demonstrate that primary binding site for risperidone in HSA and BSA is very close to the position where is tryptophan 134 of BSA, possibly in domain 1B.

  7. Lysozyme separation by hollow-fibre ultrafiltration.

    PubMed

    Ghosh; Silva1; Cui

    2000-08-01

    This paper discusses the purification of lysozyme from chicken egg white using hollow-fibre ultrafiltration (30kDa MWCO, polysulphone membrane). Lysozyme is preferentially transmitted through the membrane while the membrane largely retains other egg white proteins. Improvement in system hydrodynamics resulted in an increase in permeate flux while lysozyme transmission remained unaffected, leading to higher productivity. The percentage purity of lysozyme obtained was generally insensitive to system hydrodynamics. The permeate flux and productivity increased with increase in transmembrane pressure (TMP) before levelling off around 0.7bar. However, the TMP did not have any pronounced effect on the transmission and the purity of lysozyme. Experiments carried out in the diafiltration mode showed that moderately pure lysozyme (80-90%) could be obtained in an extended operation.

  8. [Effect of tobacco combustion on the immunochemical properties of albumin].

    PubMed

    Martínez, R D; Chávez, R

    1997-01-01

    During tobacco burning smoker to run up substances to contain smoke as far as pulmonary tissue that is damage. In cigarette 600 degrees C are in ignition extreme, but in the other side, in contact with edge of the mouth smoker, the temperature is lower. Smoke could be delivery tobacco products until respiratory tract when temperature gradients occur in cigarette burn. For demonstration of the immunoreactive substances in tobacco smoke condense (TSC) we used a model with two cigarette arrangements: several concentrations of bovine seric albumin (BSA) applied to experimental group of cigarettes and phosphate-saline solution (PBS), 0.15 M pH 7.5 without protein to control cigarettes. Both series, experimental and control, remained at 20 degrees C during 48 h, soon afterward TSC was obtained. Higher protein concentration was observe in the experimental TSC of cigarettes expose to more elevated quantities of BSA, this was identify with polyclonal antibodies toward BSA employing counter-immunoelectrophoresis, immunoelectrophoresis, radial immunodiffusion and hemagglutination inhibition test. In summary: TSC of treat cigarettes had a little quantity of protein (BSA), but immunochemical properties of BSA in TSC were preserve because polyclonal antibodies against BSA bind to this protein. In habitual smoker some compounds present in cigarette smoke could be induce an immune response due to immunogen in tobacco substances.

  9. Peroxidase-mediated conjugation of corn fiber gum and bovine serum albumin to improve emulsifying properties.

    PubMed

    Liu, Yan; Qiu, Shuang; Li, Jinlong; Chen, Hao; Tatsumi, Eizo; Yadav, Madhav; Yin, Lijun

    2015-03-15

    The emulsifying properties of corn fiber gum (CFG), a naturally occurring polysaccharide-protein complex, was improved by kinetically controlled formation of hetero-covalent linkages with bovine serum albumin (BSA), using horseradish peroxidase (HRP). The formation of hetero-crosslinked CFG-BSA conjugates was confirmed using ultraviolet-visible and Fourier-transform infrared analyses. The optimum CFG-BSA conjugates were prepared at a CFG:BSA weight ratio of 10:1, and peroxidase:BSA weight ratio of 1:4000. Selected CFG-BSA conjugates were used to prepare oil-in-water emulsions; the emulsifying properties were better than those of emulsions stabilized with only CFG or BSA. Measurements of mean droplet sizes and zeta potentials showed that CFG-BSA-conjugate-stabilized emulsions were less susceptible to environmental stresses, such as pH changes, high K ionic strengths, and freeze-thaw treatments than CFG- or BSA-stabilized emulsions. These conjugates have potential applications as novel emulsifiers in food industry.

  10. Interaction of glutathione with bovine serum albumin: Spectroscopy and molecular docking.

    PubMed

    Jahanban-Esfahlan, Ali; Panahi-Azar, Vahid

    2016-07-01

    This study aims to investigate the interaction between glutathione and bovine serum albumin (BSA) using ultraviolet-visible (UV-vis) absorption, fluorescence spectroscopies under simulated physiological conditions (pH 7.4) and molecular docking methods. The results of fluorescence spectroscopy indicated that the fluorescence intensity of BSA was decreased considerably upon the addition of glutathione through a static quenching mechanism. The fluorescence quenching obtained was related to the formation of BSA-glutathione complex. The values of KSV, Ka and Kb for the glutathione and BSA interaction were in the order of 10(5). The thermodynamic parameters including enthalpy change (ΔH), entropy change (ΔS) and also Gibb's free energy (ΔG) were determined using Van't Hoff equation. These values showed that hydrogen bonding and van der Waals forces were the main interactions in the binding of glutathione to BSA and the stabilization of the complex. Also, the interaction of glutathione and BSA was spontaneous. The effects of glutathione on the BSA conformation were determined using UV-vis spectroscopy. Moreover, glutathione was docked in BSA using ArgusLab as a molecular docking program. It was recognized that glutathione binds within the sub-domain IIA pocket in domain II of BSA.

  11. Effect of phosphorylated organic compound on the adsorption of bovine serum albumin by hydroxyapatite.

    PubMed

    Shimabayashi, S; Tanizawa, Y; Ishida, K

    1991-09-01

    The amount of adsorption of bovine serum albumin (BSA) by hydroxyapatite (HAP) increased with a concentration of CaCl2 due to the bridging effect of Ca2+ between adsorbate BSA and adsorbent HAP. On the other hand, it decreased remarkably with a concentration of K2HPO4. This was explained in terms of the effects of ionic strength and competitive adsorption between inorganic phosphate anion (Pi) and BSA, because BSA is in negatively charged over the examined pHs. A similar effect was observed in the presence of phosphorylated compounds such as phosphoserine, phytate, and phosphorylated polyvinylalcohol. The inhibiting effect of these compounds was stronger than that of their mother compounds (serine, inositol, and polyvinylalcohol). This result shows that phosphate groups bound to the mother compounds interfere with the adsorption of BSA by HAP in the same manner that Pi does. Although the adsorption of BSA was almost irreversible with respect to dilution with water, desorption was performed when these organic phosphorylated compounds were added after the accomplishment of the adsorption of BSA. However, the effective concentration of the phosphorylated compounds for the desorption of BSA was fairly higher than that for the competitive inhibition against the BSA adsorption.

  12. Functional improvements in bovine serum albumin-fucoidan conjugate through the Maillard reaction.

    PubMed

    Kim, Do-Yeong; Shin, Weon-Sun

    2016-01-01

    The solubility, thermal stability, surface activity and emulsifying properties of native bovine serum albumin (BSA), heat-treated BSA, a BSA-fucoidan mixture, and a BSA-fucoidan conjugate were assessed. Covalent linkage of BSA with fucoidan resulted in significantly (p < 0.05) high solubility after heating at 90 °C for 15 min, particularly at pH 5. The BSA-fucoidan conjugate had a high melting temperature (97.09 ± 1.45 °C), as found by differential scanning calorimetry, indicating strong heat stability and high resistance to denaturation. Although the attachment of fucoidan, a non-surface-active hydrophilic polysaccharide, gave no change in the surface activity, the emulsifying activity and the emulsion stability of the conjugate at pH 5 were superior to those of native BSA, heat-treated BSA, and the BSA-fucoidan mixture. Conclusively, fucoidan attachment enhanced the solubility, thermal stability and emulsifying properties of the protein molecules with negative charge distribution and steric stabilization.

  13. Chemical Composition Study of Vanadium Pentoxide Xerogels Doped by Bovine Albumin

    NASA Astrophysics Data System (ADS)

    Sereika, R.; Kaciulis, S.; Mezzi, A.; Brucale, M.

    2016-06-01

    Metal-bioorganic compounds of vanadium pentoxide and bovine serum albumin (BSA) (Fraction V) were obtained by using sol-gel method. Series of the samples (BSA)xV2O5ṡnH2O, where x=0, 0.01 and 0.001, were originally produced by the synthesis of vanadium pentoxide xerogels and subsequent blending with water-dissolved BSA in appropriate molar ratios. It was evident that the gelation process does not occur for x>0.01. For the X-ray photoelectron spectroscopy (XPS) studies, the thin layers of these materials were prepared by drying the gel onto the glass and mica substrates. The surface morphology of the samples was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. It follows from the analysis of experimental XPS spectra of (BSA)xV2O5ṡnH2O that the nitrogen ions in pure albumin and in (BSA)0.01V2O5ṡnH2O are present in imine, amine and protonated amine groups. The additional protonated amine arises when the concentration of albumin in (BSA)xV2O5ṡnH2O is low (x=0.001). Increasing the amount of albumin results in decrease of the number of oxygen ions bonded to vanadium. At the same time (with increase of albumin), the component of oxygen bounded to carbon and nitrogen is increasing. In the samples with greater amount of albumin, the reduction of vanadium ions occurs. This means that the trivalent and tetravalent vanadium ions are present together with pentavalent ones.

  14. Optical, structural and thermodynamic properties of the interaction between tradimefon and serum albumin

    NASA Astrophysics Data System (ADS)

    Zhang, Hua-xin; Mei, Ping; Yang, Xi-xiong

    2009-04-01

    The biological toxicity of a chloric pesticide, tradimefon to bovine serum albumin (BSA) were studied by fluorescence and absorption spectroscopy. The fluorescence quenching mechanism analysis indicates the quenching of BSA by TDF was caused by BSA-TDF complex formation and electrostatic interaction played major role in the reaction. The number of binding sites n and observed binding constant Kb was measured by fluorescence quenching method. The thermodynamic parameters Δ Hθ, Δ Gθ, Δ Sθ at different temperatures were calculated, and the distance r between donor (BSA) and acceptor (TDF) was obtained according to Förster theory of non-radiation energy transfer. Three-dimensional fluorescence spectra, circular dichroism (CD) spectra and synchronous fluorescence spectra were used to investigate the structural change of BSA molecules with addition of TDF and the mechanism of binding reaction was analyzed at molecular level.

  15. Bovine serum albumin-directed synthesis of biocompatible CdSe quantum dots and bacteria labeling.

    PubMed

    Wang, Qisui; Ye, Fangyun; Fang, Tingting; Niu, Wenhan; Liu, Peng; Min, Xinmin; Li, Xi

    2011-03-01

    A simple method was developed for preparing CdSe quantum dots (QDs) using a common protein (bovine serum albumin (BSA)) to sequester QD precursors (Cd(2+)) in situ. Fluorescence (FL) and absorption spectra showed that the chelating time between BSA and Cd(2+), the molar ratio of BSA/Cd(2+), temperature, and pH are the crucial factors for the quality of QDs. The average QD particle size was estimated to be about 5 nm, determined by high-resolution transmission electron microscopy. With FL spectra, Fourier transform infrared spectra, and thermogravimetric analysis, an interesting mechanism was discussed for the formation of the BSA-CdSe QDs. The results indicate that there might be conjugated bonds between CdSe QDs and -OH, -NH, and -SH groups in BSA. In addition, fluorescence imaging suggests that the QDs we designed can successfully label Escherichia coli cells, which gives us a great opportunity to develop biocompatible tools to label bacteria cells.

  16. Impact of condensed tannin size as individual and mixed polymers on bovine serum albumin precipitation.

    PubMed

    Harbertson, James F; Kilmister, Rachel L; Kelm, Mark A; Downey, Mark O

    2014-10-01

    Condensed tannins composed of epicatechin from monomer to octamer were isolated from cacao (Theobroma cacao, L.) seeds and added to bovine serum albumin (BSA) individually and combined as mixtures. When added to excess BSA the amount of tannin precipitated increased with tannin size. The amount of tannin required to precipitate BSA varied among the polymers with the trimer requiring the most to precipitate BSA (1000 μg) and octamer the least (50 μg). The efficacy of condensed tannins for protein precipitation increased with increased degree of polymerisation (or size) from trimers to octamers (monomers and dimers did not precipitate BSA), while mixtures of two sizes primarily had an additive effect. This study demonstrates that astringent perception is likely to increase with increasing polymer size. Further research to expand our understanding of astringent perception and its correlation with protein precipitation would benefit from sensory analysis of condensed tannins across a range of polymer sizes.

  17. New insight into the binding interaction of hydroxylated carbon nanotubes with bovine serum albumin.

    PubMed

    Guan, Yonghui; Zhang, Hongmei; Wang, Yanqing

    2014-04-24

    In order to understand the effects of carbon nanotubes on the structural stability of proteins, the ligand-binding ability, fibrillation, and chemical denaturation of bovine serum albumin in the presence of a multi-walled hydroxylated carbon nanotubes (HO-MWCNTs) was characterized by UV-vis, circular dichroism, fluorescence spectroscopy and molecule modeling methods at the molecular level. The experiment results indicated that the fluorescence intensity of BSA was decreased obviously in presence of HO-MWCNTs. The binding interaction of HO-MWCNTs with BSA led to the secondary structure changes of BSA. This interaction could not only affect the ligand-binding ability of BSA, but also change the rate of fibrillation and denaturation of BSA. This work gave us some important information about the structures and properties of protein induced by carbon nanotubes.

  18. Spectroscopic analyses on interaction of bovine serum albumin with novel spiro[cyclopropane-pyrrolizin].

    PubMed

    Yu, Xianyong; Liao, Zhixi; Jiang, Bingfei; Hu, Xiaolian; Li, Xiaofang

    2015-02-25

    The interaction between novel spiro[cyclopropane-pyrrolizin] (NSCP) and bovine serum albumin (BSA) was analyzed by fluorescence and ultraviolet-visible (UV-Vis) spectroscopy at 298 K, 304 K and 310 K under simulative physiological conditions. The results showed that NSCP can effectively quench the intrinsic fluorescence of BSA via static quenching. The binding constants, binding sites of NSCP with BSA were calculated. Hydrogen binds and van der Waals force played a major role in stabilizing the complex and the binding reaction were spontaneous. According to the Förster non-radiation energy transfer theory, the average binding distances between NSCP and BSA were obtained. What is more, the synchronous fluorescence spectra indicated that the conformation of BSA has been changed.

  19. Study on the interaction between Besifloxacin and bovine serum albumin by spectroscopic techniques.

    PubMed

    Yu, Xianyong; Jiang, Bingfei; Liao, Zhixi; Jiao, Yue; Yi, Pinggui

    2015-01-01

    The interaction between Besifloxacin (BFLX) and bovine serum albumin (BSA) was investigated by spectroscopic (fluorescence, UV-Vis absorption and circular dichroism) techniques under imitated physiological conditions. The experiments were conducted at different temperatures (298, 304 and 310 K) and the results showed that the BFLX caused the fluorescence quenching of BSA through a static quenching procedure. The binding constant (Ka), binding sites (n) were obtained. The corresponding thermodynamic parameters (ΔH, ΔS and ΔG) of the interaction system were calculated at different temperatures. The results revealed that the binding process was spontaneous and the acting force between BFLX and BSA were mainly electrostatic forces. According to Förster non-radiation energy transfer theory, the binding distance between BFLX and BSA was calculated to be 4.96 nm. What is more, both synchronous fluorescence and circular dichroism spectra confirmed conformational changes of BSA.

  20. Interaction between melamine and bovine serum albumin: Spectroscopic approach and density functional theory

    NASA Astrophysics Data System (ADS)

    Yan, Hua; Wu, Junyong; Dai, Guoliang; Zhong, Aiguo; Yang, Jianguo; Liang, Huading; Pan, Fuyou

    2010-04-01

    Spectroscopic approach and density functional theory (DFT) have been employed to investigate the interaction between melamine (MA) and bovine serum albumin (BSA). The UV absorption difference spectra show the MA-BSA complexes can form under physiological conditions. Furthermore, the B3LYP/6-311++G(d,p) calculations indicate that the protonated melamine (MAH +) bond to Asp, Glu, Asn, Gln, Ser, Thr amino acid residues or peptide groups via N sbnd H(MAH +)…O dbnd C(BSA) or N sbnd H(MAH +)…O sbnd C(BSA) hydrogen bonds, in agreement with the results of UV absorption difference spectra, and the interaction energies of them decrease in the order Asp, Glu > Pep > Asn, Gln > Ser, Thr. The fluorescence spectra, synchronous fluorescence spectra and FT-IR spectra demonstrate that this interaction has no obvious effect on the secondary structure of BSA.

  1. Behaviour of liposomes loaded with bovine serum albumin during in vitro digestion.

    PubMed

    Liu, Weilin; Ye, Aiqian; Liu, Wei; Liu, Chengmei; Han, Jianzhong; Singh, Harjinder

    2015-05-15

    This study examined the stability of liposomes loaded with negatively charged protein (bovine serum albumin, BSA) during in vitro digestion. Zeta-potential and morphology measurements confirmed that BSA-loaded liposomes were successfully prepared, with an encapsulation efficiency of around 34%. The encapsulated BSA and the integrity of the liposomes remained unchanged with time when the liposomes were digested in a simulated gastric environment, suggesting that the liposomal membrane protected the entrapped BSA from pepsin hydrolysis. BSA-loaded liposomes exhibited lower stability in simulated intestinal fluid, as shown by damaged membranes and the release of free fatty acids. Also, lipolysis kinetics revealed that bile salts and ionic strength could facilitate a high level of free fatty acid release. This work further supplemented our knowledge about the effects of gastrointestinal digestion conditions on liposomal properties and provided valuable information for the design of liposome formulations for the food and health care industries.

  2. Investigation on the interaction of pyrene with bovine serum albumin using spectroscopic methods.

    PubMed

    Xu, Chengbin; Gu, Jiali; Ma, Xiping; Dong, Tian; Meng, Xuelian

    2014-05-05

    This paper was designed to investigate the interaction of pyrene with bovine serum albumin (BSA) under physiological condition by spectroscopic methods. Spectroscopic analysis of the emission quenching revealed that the quenching mechanism of BSA by pyrene was static. The binding sites and constants of pyrene-BSA complex were observed to be 1.20 and 2.63×10(6) L mol(-1) at 298 K, respectively. The enthalpy change (ΔH) and entropy change (ΔS) revealed that van der Waals forces and hydrogen bonds stabilized the pyrene-BSA complex. Energy transfer from tryptophan to pyrene occurred by a FRET (fluorescence resonance energy transfer) mechanism, and the distance (r=2.72 nm) had been determined. The results of synchronous, three-dimensional fluorescence, and circular dichroism spectra showed that the pyrene induced conformational changes of BSA.

  3. Interaction of bovine serum albumin protein with self assembled monolayer of mercaptoundecanoic acid

    NASA Astrophysics Data System (ADS)

    Poonia, Monika; Agarwal, Hitesh; Manjuladevi, V.; Gupta, R. K.

    2016-05-01

    Detection of proteins and other biomolecules in liquid phase is the essence for the design of a biosensor. The sensitivity of a sensor can be enhanced by the appropriate functionalization of the sensing area so as to establish the molecular specific interaction. In the present work, we have studied the interaction of bovine serum albumin (BSA) protein with a chemically functionalized surface using a quartz crystal microbalance (QCM). The gold-coated quartz crystals (AT-cut/5 MHz) were functionalized by forming self-assembled monolayer (SAM) of 11-Mercaptoundecanoic acid (MUA). The adsorption characteristics of BSA onto SAM of MUA on quartz crystal are reported. BSA showed the highest affinity for SAM of MUA as compared to pure gold surface. The SAM of MUA provides carboxylated surface which enhances not only the adsorption of the BSA protein but also a very stable BSA-MUA complex in the liquid phase.

  4. Characterization of the Interaction between Eupatorin and Bovine Serum Albumin by Spectroscopic and Molecular Modeling Methods

    PubMed Central

    Xu, Hongliang; Yao, Nannan; Xu, Haoran; Wang, Tianshi; Li, Guiying; Li, Zhengqiang

    2013-01-01

    This study investigated the interaction between eupatorin and bovine serum albumin (BSA) using ultraviolet-visible (UV-vis) absorption, fluorescence, synchronous fluorescence, circular dichroism (CD) spectroscopies, and molecular modeling at pH 7.4. Results of UV-vis and fluorescence spectroscopies illustrated that BSA fluorescence was quenched by eupatorin via a static quenching mechanism. Thermodynamic parameters revealed that hydrophobic and electrostatic interactions played major roles in the interaction. Moreover, the efficiency of energy transfer, and the distance between BSA and acceptor eupatorin, were calculated. The effects of eupatorin on the BSA conformation were analyzed using UV-vis, CD, and synchronous fluorescence. Finally, the binding of eupatorin to BSA was modeled using the molecular docking method. PMID:23839090

  5. Probing the binding of (+)-catechin to bovine serum albumin by isothermal titration calorimetry and spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Li, Xiangrong; Hao, Yongbing

    2015-07-01

    In this study, the interaction between (+)-catechin and bovine serum albumin (BSA) was investigated using isothermal titration calorimetry (ITC), in combination with fluorescence spectroscopy, UV-vis absorption spectroscopy, and Fourier transform infrared (FT-IR) spectroscopy. Thermodynamic investigations reveal that the electrostatic interaction and hydrophobic interaction are the major binding forces in the binding of (+)-catechin to BSA. The binding of (+)-catechin to BSA is synergistically driven by enthalpy and entropy. Fluorescence experiments suggest that (+)-catechin can quench the fluorescence of BSA through a static quenching mechanism. The obtained binding constants and the equilibrium fraction of unbound (+)-catechin show that (+)-catechin can be stored and transported from the circulatory system to reach its target organ. Binding site I is found to be the primary binding site for (+)-catechin. Additionally, as shown by the UV-vis absorption, synchronous fluorescence spectroscopy and FT-IR, (+)-catechin may induce conformational and microenvironmental changes of BSA.

  6. Effects of oxidation on changes of compressibility of bovine serum albumin.

    PubMed

    Hianik, T; Rybár, P; Benediktyová, Z; Svobodová, L; Hermetter, A

    2003-12-01

    The methods of ultrasound velocity and density measurements were used to study the adiabatic compressibility of bovine serum albumin (BSA) during its oxidation by the prooxidants Cu2+ and 2,2'-azobis(2-amidinopropane) hydrochloride (AAPH). We did not find changes of compressibility of BSA in the presence of copper ions at rather high molar ratio Cu2+/BSA = 0.66 mol/mol. This can be explained by binding of the Cu2+ to the binding site of BSA and thus protecting the prooxidant action of the copper. However, AAPH-mediated oxidation of BSA resulted in an increase of its apparent specific compressibility (psik/beta0). These changes could be caused by the fragmentation of the protein.

  7. Study on the interaction of silver(I) complex with bovine serum albumin by spectroscopic techniques.

    PubMed

    Shahabadi, Nahid; Maghsudi, Maryam; Ahmadipour, Zeinab

    2012-06-15

    The interaction of silver(I) complex, [Ag (2,9-dimethyl-1,10-phenanthroline)(2)](NO(3))·H(2)O, and bovine serum albumin (BSA) was investigated by spectrophotometry, spectrofluorimetry and circular dichroism (CD) techniques. The experimental results indicated that the quenching mechanism of BSA by the complex was a static procedure. Various binding parameters were evaluated. The negative value of ΔH, negative value of ΔS and the negative value of ΔG indicated that van der Waals force and hydrogen bonding play major roles in the binding of the complex and BSA. Based on Forster's theory of non-radiation energy transfer, the binding distance, r, between the donor (BSA) and acceptor (Ag(I) complex) was evaluated. The results of CD and UV-vis spectroscopy showed that the binding of this complex could bind to BSA and be effectively transported and eliminated in the body.

  8. Study on the interaction between bovine serum albumin and starch nanoparticles prepared by isoamylolysis and recrystallization.

    PubMed

    Ji, Na; Qiu, Chao; Li, Xiaojing; Xiong, Liu; Sun, Qingjie

    2015-04-01

    The current study primarily investigated the interaction of bovine serum albumin (BSA) with starch nanoparticles (SNPs) prepared by isoamylolysis and recrystallization using UV-vis, fluorescence, transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and circular dichroism (CD). The enhanced absorbance observed by UV-vis spectroscopy and decreased intensity of fluorescence spectroscopy suggested that BSA could bind to SNPs and form a BSA-SNP complex. The synchronous fluorescence spectra revealed that the emission maximum of Tyr residue (at Δλ=15nm) was red-shifted at the investigated concentrations range, indicating that the conformation of BSA was changed. Quenching parameters showed that the quenching effect of SNPs was static quenching. TEM images showed that the SNPs were surrounded by protein coronae, indicating that nanoparticle-protein complexes had formed. The FTIR and CD characterization indicated that the SNPs induced structural changes in the secondary structure of BSA.

  9. Binding of Catalpol to Bovine Serum albumin in vitro Examined by Spectroscopy and Molecular Modeling

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Chen, L.; Hu, W.; Li, J.; Liu, X.

    2016-11-01

    This paper explores the interaction mechanisms between catalpol and bovine serum albumin (BSA) in vitro using the methods of fluorescence quenching, UV-vis absorption, synchronous fluorescence spectroscopy, and molecular modeling. The fluorescence quenching mechanism of BSA by catalpol was confirmed to be a dynamic process. In addition, the UV-vis absorption spectra of BSA in the absence and presence of catalpol provided further evidence for the quenching. Synchronous fluorescence spectra showed that the addition of catalpol did not obviously affect the microenvironment in BSA. This could be explained by the distance between catalpol and Trp residues in protein, which was deduced from the subsequent molecular docking. The theoretical results were further verified by molecular docking analysis. It showed that not only the hydrophobic force but also hydrogen bonds played a role in the interaction of catalpol with BSA.

  10. Preparation and in vitro photodynamic activity of novel silicon(IV) phthalocyanines conjugated to serum albumins.

    PubMed

    Huang, Jian-Dong; Lo, Pui-Chi; Chen, Yan-Mei; Lai, Janice C; Fong, Wing-Ping; Ng, Dennis K P

    2006-05-01

    The interactions of four novel silicon(IV) phthalocyanines (SiPc), namely SiPc[OC(3)H(5)(NMe(2))(2)](2) (1), SiPc[OC(3)H(5)(NMe(2))(2)](OMe) (2), {SiPc[OC(3)H(5)(NMe(3))(2)](2)}I(4) (3), and {SiPc[OC(3)H(5)(NMe(3))(2)](OMe)}I(2) (4) with human serum albumin (HSA), bovine serum albumin (BSA), and maleylated bovine serum albumin (mBSA) were studied by fluorescence spectroscopy. The fluorescence emission of the serum albumins was effectively quenched by these phthalocyanines mainly through a static quenching mechanism. The higher Stern-Volmer quenching constants for the unsymmetrically substituted phthalocyanines 2 and 4 suggested that they have a stronger interaction with these proteins than the symmetrically substituted analogues 1 and 3. A series of non-covalent BSA or mBSA conjugates of these phthalocyanines were also prepared and evaluated for their in vitro photodynamic activity against HepG2 human hepatocarcinoma cells. The bioconjugation could enhance the photocytotoxicity of 1 and 4 by up to eight folds, but the effects on 2 and 3 were negligible. The results could be partly explained by two counter-balancing effects, namely the enhanced uptake and increased aggregation tendency of phthalocyanine due to BSA conjugation. As shown by absorption spectroscopy, the tetracationic phthalocyanine 3 was significantly aggregated in the protein cavity and its photocytotoxicity remained the lowest among the four photosensitizers.

  11. Investigations on the binding of mercury ions to albumins employing differential pulse voltammetry.

    PubMed

    Castro, Clarissa Silva Pires de; SouzaDe, Jurandir Rodrigues; Bloch, Carlos

    2003-04-01

    Binding of mercury to BSA and Ovalbumin was investigated by Differential Pulse Voltammetry. The method relies on the direct monitoring of peak current variation due to mercury oxidation in the presence of these two albumins. Linear calibration graphs were obtained for both BSA and Ovalbumin in concentrations ranging from 2.49 x 10(-9) to 19.6 x 10(-9) mol L(-1). The acquired data was used to quantify these two proteins independently and to calculate the dissociation constants of Hg-BSA and Hg-Ovalbumin complexes.

  12. Fluorescent analysis of interaction of flavonols with hemoglobin and bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Sentchouk, V. V.; Bondaryuk, E. V.

    2007-09-01

    We have studied the fluorescent properties of flavonols (quercetin, fisetin, morin, rutin) with the aim of studying possible interaction with hemoglobin and bovine serum albumin (BSA). We observed an increase in the intensity of intrinsic fluorescence for all the flavonols except rutin in the presence of BSA. From the changes in the fluorescence spectra, we concluded that tautomeric forms are formed on interaction with hemoglobin. We determined the interconnection between the structure of related flavonols and their fluorescent properties on interaction with proteins, and we determined the binding constants for binding with BSA and hemoglobin.

  13. EPR study of the effect of terahertz radiation on the albumin conformation dynamics

    NASA Astrophysics Data System (ADS)

    Nemova, Eugenia F.; Cherkasova, Olga P.; Fedorov, Vyacheslav I.

    2010-09-01

    Effect of the preliminary irradiation of bovine serum albumin (BSA) in the terahertz spectral range on the conformation changes revealed with the help of EPR spectroscopy was investigated using the spin probing technique. The formation of the spin probe occurs directly in the aqueous solution of BSA from a nitrone compound (dihydropyrazine dioxide). It was shown that irradiation causes changes in the parameters of the EPR spectrum of the spin probe. An approach to linking the observed changes with the structural characteristics of reaction centres - the functional groups of amino acids comprising BSA - was outlined.

  14. Detailed Study of BSA Adsorption on Micro- and Nanocrystalline Diamond/β-SiC Composite Gradient Films by Time-Resolved Fluorescence Microscopy.

    PubMed

    Handschuh-Wang, Stephan; Wang, Tao; Druzhinin, Sergey I; Wesner, Daniel; Jiang, Xin; Schönherr, Holger

    2017-01-24

    The adsorption of bovine serum albumin (BSA) on micro- and nanocrystalline diamond/β-SiC composite films synthesized using the hot filament chemical vapor deposition (HFCVD) technique has been investigated by confocal fluorescence lifetime imaging microscopy. BSA labeled with fluorescein isothiocyanate (FITC) was employed as a probe. The BSA(FITC) conjugate was found to preferentially adsorb on both O-/OH-terminated microcrystalline and nanocrystalline diamond compared to the OH-terminated β-SiC, resulting in an increasing amount of BSA adsorbed to the gradient surfaces with an increasing diamond/β-SiC ratio. The different strength of adsorption (>30 times for diamond with a grain size of 570 nm) coincides with different surface energy parameters and differing conformational changes upon adsorption. Fluorescence data of the adsorbed BSA(FITC) on the gradient film with different diamond coverage show a four-exponential decay with decay times of 3.71, 2.54, 0.66, and 0.13 ns for a grain size of 570 nm. The different decay times are attributed to the fluorescence of thiourea fluorescein residuals of linked FITC distributed in BSA with different dye-dye and dye-surface distances. The longest decay time was found to correlate linearly with the diamond grain size. The fluorescence of BSA(FITC) undergoes external dynamic fluorescence quenching on the diamond surface by H- and/or sp(2)-defects and/or by amorphous carbon or graphite phases. An acceleration of the internal fluorescence concentration quenching in BSA(FITC) because of structural changes of albumin due to adsorption, is concluded to be a secondary contributor. These results suggest that the micro- and nanocrystalline diamond/β-SiC composite gradient films can be utilized to spatially control protein adsorption and diamond crystallite size, which facilitates systematic studies at these interesting (bio)interfaces.

  15. Effect of the sugar and polyol additives on the aggregation kinetics of BSA in the presence of N-cetyl-N,N,N-trimethyl ammonium bromide.

    PubMed

    Sharma, Anurag; Pasha, Javeed M; Deep, Shashank

    2010-10-01

    The kinetics of the aggregation of bovine serum albumin (BSA) in the presence of N-cetyl-N,N,N-trimethyl ammonium bromide (CTAB) was studied by monitoring turbidity as a function of time. BSA-CTAB aggregation exhibits an exponential growth, with a pronounced lag phase and a subsequent rapid growth of the aggregates. On the addition of sugars and polyols to BSA-CTAB solution, there is an increase in the lag time and decrease in the rate constant of growth phase indicating that the inhibitors affect both the pre- and post-nucleation processes. The concentration dependence studies of lag time of BSA-CTAB aggregation in the presence of additives points towards the involvement of more number of monomers in the nucleus/start aggregate. The increase in the stability of BSA in the presence of these additives indicates probable role of activation energy in the aggregation. However, the temperature dependence of lag time of BSA-CTAB aggregation shows that the hindrance to molecular collisions, as indicated by decrease in the pre-exponential factor, due to increased viscosity in the presence of additives is the main factor responsible for their inhibitory action. Similarly, higher viscosity of sucrose makes it a much better inhibitor of the heat and surfactant induced aggregation of BSA-CTAB than mannitol.

  16. Interaction of tetramethylpyrazine with two serum albumins by a hybrid spectroscopic method

    NASA Astrophysics Data System (ADS)

    Cheng, Zhengjun

    The interactions of tetramethylpyrazine (TMPZ) with bovine serum albumin (BSA) and human serum albumin (HSA) have been investigated by various spectroscopic techniques. Fluorescence tests showed that TMPZ could bind to BSA/HSA to form complexes. The binding constants of TMPZ-BSA and TMPZ-HSA complexes were observed to be 1.442 × 104 and 3.302 × 104 M-1 at 298 K, respectively. The thermodynamic parameters (ΔG, ΔH and ΔS) calculated on the basis of different temperatures revealed that the binding of TMPZ-HSA was mainly depended on hydrophobic interaction, and yet the binding of TMPZ-BSA might involve hydrophobic interaction strongly and electrostatic interaction. The results of synchronous fluorescence, three-dimensional fluorescence, UV-vis absorption, FT-IR and CD spectra showed that the conformations of both BSA and HSA altered with the addition of TMPZ. The binding average distance between TMPZ and BSA/HSA was evaluated according to Föster non-radioactive energy transfer theory. In addition, with the aid of site markers (such as, phenylbutazone, ibuprofen and digitoxin), TMPZ primarily bound to tryptophan residues of BSA/HSA within site I (sub-domain II A).

  17. Effects of perfluorooctane sulfonate on the conformation and activity of bovine serum albumin.

    PubMed

    Wang, Yanqing; Zhang, Hongmei; Kang, Yijun; Cao, Jian

    2016-06-01

    Perfluorooctane sulfonate (PFOS) is among the most prominent contaminates in human serum and has been reported to possess potential toxicity to the human body. In this study, the effects of PFOS on the conformation and activity of bovine serum albumin (BSA) were investigated in vitro. The results indicated that the binding interaction of PFOS with BSA destroyed the tertiary and secondary structures of protein with the loss of α-helix structure and the increasing of hydrophobic microenvironment of the Trp or Tyr residues. During the thermal denaturation protein, PFOS increases the protein stability of BSA. The proportion of α-helix decreased on increasing the PFOS concentration and the microenvironment of the Trp or Tyr residues becomes more hydrophobic. The results from molecular modeling indicated that BSA had not only one possible binding site to bind with PFOS by the polar interaction, hydrogen bonds and hydrophobic forces. In addition, the BSA relative activities were decreased with the increase of PFOS concentration. Such loss of BSA activity in the presence of PFOS indicated that one of the binding sites in BSA is located in subdomain IIIA, which is in good agreement with the fluorescence spectroscopic experiments and molecular modeling results. This study offers a comprehensive picture of the interactions of PFOS with serum albumin and provides insights into the toxicological effect of perfluoroalkylated substances.

  18. Long-Term Toxicity of 213Bi-Labelled BSA in Mice

    PubMed Central

    Dorso, Laëtitia; Bigot-Corbel, Edith; Abadie, Jérôme; Diab, Maya; Gouard, Sébastien; Bruchertseifer, Frank; Morgenstern, Alfred; Maurel, Catherine; Chérel, Michel; Davodeau, François

    2016-01-01

    Background Short-term toxicological evaluations of alpha-radioimmunotherapy have been reported in preclinical assays, particularly using bismuth-213 (213Bi). Toxicity is greatly influenced not only by the pharmacokinetics and binding specificity of the vector but also by non-specific irradiation due to the circulating radiopharmaceutical in the blood. To assess this, an acute and chronic toxicity study was carried out in mice injected with 213Bi-labelled Bovine Serum Albumin (213Bi-BSA) as an example of a long-term circulating vector. Method Biodistribution of 213Bi-BSA and 125I-BSA were compared in order to evaluate 213Bi uptake by healthy organs. The doses to organs for injected 213Bi-BSA were calculated. Groups of nude mice were injected with 3.7, 7.4 and 11.1 MBq of 213Bi-BSA and monitored for 385 days. Plasma parameters, including alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN) and creatinine, were measured and blood cell counts (white blood cells, platelets and red blood cells) were performed. Mouse organs were examined histologically at different time points. Results Haematological toxicity was transient and non-limiting for all evaluated injected activities. At the highest injected activity (11.1 MBq), mice died from liver and kidney failure (median survival of 189 days). This liver toxicity was identified by an increase in both ALT and AST and by histological examination. Mice injected with 7.4 MBq of 213Bi-BSA (median survival of 324 days) had an increase in plasma BUN and creatinine due to impaired kidney function, confirmed by histological examination. Injection of 3.7 MBq of 213Bi-BSA was safe, with no plasma enzyme modifications or histological abnormalities. Conclusion Haematological toxicity was not limiting in this study. Liver failure was observed at the highest injected activity (11.1 MBq), consistent with liver damage observed in human clinical trials. Intermediate injected activity (7.4 MBq) should be

  19. Species-dependent stereoselective drug binding to albumin: a circular dichroism study.

    PubMed

    Pistolozzi, Marco; Bertucci, Carlo

    2008-03-01

    Drug binding to albumins from different mammalian species was investigated to disclose evidence of species-dependent stereoselectivity in drug-binding processes and affinities. This aspect is important for evaluating the reliability of extrapolating distribution data among species. The circular dichroism (CD) signal induced by drug binding to the albumins [human serum albumin (HSA), bovine serum albumin (BSA), rat serum albumin (RSA), and dog serum albumin (DSA)] were measured and analyzed. The binding of selected drugs and metabolites to HSA significantly differed from the binding to the other albumins in terms of affinity and conformation of the bound ligands. In particular, phenylbutazone, a marker of site one on HSA, showed a higher affinity for binding to BSA with respect to RSA, HSA, and DSA, respectively. In the case of diazepam, a marker of site two on HSA, the affinity decreased in order from HSA to DSA, RSA, and BSA. The induced CD spectra were similar in terms of energy and band signs, suggesting almost the same conformation for the bound drug to the different albumins. Stereoselectivity was high for the binding of ketoprofen to HSA and RSA. A different sign was observed for the CD spectra induced by the drug to the two albumins because of the prevalence of a different conformation of the bound drug. Interestingly, the same induced CD spectra were obtained using either the racemic form or the (S)-enantiomer. Finally, significant differences were observed in the affinity of bilirubin, being highest for BSA, then decreasing for RSA, HSA, and DSA. A more complex conformational equilibrium was observed for bound bilirubin.

  20. Caveolae may enable albumin to enter human renal glomerular endothelial cells.

    PubMed

    Moriyama, Takahito; Takei, Takashi; Itabashi, Mitsuyo; Uchida, Keiko; Tsuchiya, Ken; Nitta, Kosaku

    2015-06-01

    Caveolae on human renal glomerular endothelial cells (HRGECs) are increased in glomerular disease and correlate with the degree of albuminuria. To assess the mechanism by which caveolae contribute to albuminuria, we investigated whether albumin enters into HRGECs through caveolae. HRGECs were incubated with Alexa Fluor 488 labeled BSA or transferrin, followed by immunofluorescence localization with antibody to caveolin-1 (Cav-1), the main structural protein of caveolae, or clathrin, the major structural protein of clathrin coated pits, to assess whether BSA colocalized with Cav-1. HRGECs were also incubated with albumin and caveolae disrupting agents, including methyl beta cyclodextrin (MBCD) and nystatin, to determine whether disrupting caveolae interfered with albumin endocytosis into HRGECs. HRGECs were also incubated with albumin after transfection with Cav-1 small interfering RNAs (siRNAs). Labeled BSA colocalized with Cav-1, but not with clathrin. In contrast, labeled transferrin colocalized with clathrin, but not with Cav-1. Incubation of HRGECs with MBCD or nystatin, or transfection with Cav-1 siRNA, significantly reduced the intracellular amounts of albumin and Cav-1, relative to normal HRGECs, as shown by western blotting and immunofluorescence. These findings indicate that albumin enters HRGECs through the caveolae, suggesting that caveolae play an important role in the pathogenesis of albuminuria by providing a pathway through which albumin can enter glomerular endothelial cells.

  1. [Spectroscopic study on interaction of rodenticide brodifacoum with bovine serum albumin].

    PubMed

    Duan, Yun-Qing; Lei, Huan-Gui; Min, Shun-Geng; Duan, Zhi-Qing

    2009-11-01

    The mutual interaction of bovine serum albumin (BSA) with brodifacoum (3-[3-(4'-bromophenyl-4) 1,2,3,4-tetralin-10]-4-hydroxyl-coumarin), an anticoagulant rodenticide, was investigated by ultra-violet spectroscopy, flurorescence spectroscopy and synchronous fluorescence spectroscopy under physiological conditions. It was proved that the intrinsic fluorescence quenching of BSA by brodifacoum was the result of the formation of brodifacoum-BSA complex. And this quenching is mainly due to static fluorescence quenching. The quenching rate constant (K(sv)), binding site number (n) and binding constant (KA) at different temperatures were calculated from the double reciprocal Lineweaver-Burk plots and the quenching function of lg[(F0 - F)/F] - lg[Q] plots. The thermodynamic parameters indicated that the process of binding was a spontaneous molecular interaction and the hydrophobic force played a major role in stabilizing the brodifacoum BSA complex. The binding distance r between brodifacoum and BSA was 2.84 and 2.87 nm at 20 and 30 degrees C, respectively, which was obtained based on Forster theory of non-radiation energy transfer. The synchronous spectroscopy of BSA and brodifacoum-BSA revealed that the BSA conformation had changed in the presence of brodifacoum. The binding mode and interaction mechanism were suggested as follows: brodifacoum molecules are closed with amino acid residues with electric charge on the hydrophobic cavities of BSA by electrostatic interaction, and binded to the Trp212 residues inside of BSA hydrophobic cavities by hydrophobic interaction force, thereby changed the microenvironment around the Trp residues. The interaction prevented the energy transfer between Tyr and Trp residues, moreover, caused to a non-radiation energy transfer from Trp residues in BSA to brodifacoum, and finally leaded of the quenching the intrinsic fluorescence of BSA.

  2. Albumin's Influence on Carprofen Enantiomers-Hymecromone Interaction.

    PubMed

    Tang, Mingjie; Guo, Yanjie; Gao, Youshui; Tang, Chao; Dang, Xiaoqian; Zhou, Zubin; Sun, Yuqiang; Wang, Kunzheng

    2016-03-01

    Hymecromone is an important coumarin drug, and carprofen is one of the most important nonsteroidal antiinflammatory drugs (NSAIDs). The present study aims to determine the influence of bovine serum albumin (BSA) on the carprofen-hymecromone interaction. The inhibition of carprofen enantiomers on the UDP-glucuronosyltransferase (UGT) 2B7-catalyzed glucuronidation of hymecromone was investigated in the UGTs incubation system with and without BSA. The inhibition capability of increased by 20% (P < 0.001) of (R)-carprofen after the addition of 0.5% BSA in the incubation mixture. In contrast, no significant difference was observed for the inhibition of (S)-carprofen on UGT2B7 activity in the absence or presence of 0.5% BSA in the incubation system. The Lineweaver-Burk plot showed that the intersection point was located in the vertical axis, indicating the competitive inhibition of (R)-carprofen on UGT2B7 in the incubation system with BSA, which is consistent with the inhibition kinetic type of (R)-carprofen on UGT2B7 in the incubation system without BSA. Furthermore, the second plot using the slopes from the Lineweaver-Burk versus the concentrations of (R)-carprofen showed that the fitting equation was y=39.997x+50. Using this equation, the inhibition kinetic parameter was calculated to be 1.3 μM. For (S)-carprofen, the intersection point was located in the horizontal axis in the Lineweaver-Burk plot for the incubation system with BSA, indicating the noncompetitive inhibition of (S)-carprofen on the activity of UGT2B7. The fitting plot of the second plot was y=24.6x+180, and the inhibition kinetic parameter was 7.3 μM. In conclusion, the present study gives a short summary of BSA's influence on the carprofen enantiomers-hymecromone interaction, which will guide the clinical application of carprofen and hymecromone.

  3. Increased atherosclerosis and glomerulonephritis in cynomolgus monkeys (Macaca fascicularis) given injections of BSA over an extended period of time.

    PubMed Central

    Stills, H. F.; Bullock, B. C.; Clarkson, T. B.

    1983-01-01

    A study was conducted to compare the effects of experimental immune complex disease on the development of glomerulonephritis and aortic and coronary artery atherosclerosis. Fourteen adult male macaques (Macaca fascicularis) were fed a mildly atherogenic diet. Ten of these animals were given repeated intravenous injections of bovine serum albumin (BSA), and the remaining 4 were given similar injections of saline. Three of the monkeys given BSA responded with a high antibody titer, 4 with a moderate titer, and 3 with a low level titer to BSA. In all 4 monkeys with the moderate antibody response glomerulonephritis developed, characterized by increased glomerular cellularity, electron-dense deposits in the glomerular capillary basal lamina, and deposits of IgG, IgM, C3, C4, and BSA. Glomerulonephritis was not seen in the other 6 monkeys given BSA or the 4 control monkeys. Aortic lesions seen at necropsy consisted of a few fatty intimal streaks with no differences between test monkeys (given BSA) and control monkeys (given saline). There was no correlation between total serum cholesterol concentration, high-density lipoprotein cholesterol concentration, or BSA antibody levels and the degree of aortic atherosclerosis. Immunochemical stains for immunoglobulins and complement components revealed increased intimal staining when intimal thickness increased. Medial staining for immunoglobulin and complement components appeared to be slightly increased in monkeys with moderately high-level titers of BSA. The extent of atherosclerosis in the coronary arteries of monkeys given BSA was greater than in the control animals. Differences in the extent and severity of the atherosclerotic lesions were most pronounced in the proximal portions of the main coronary arteries, suggesting an increased susceptibility of this site to immune-complex-exacerbated atherosclerosis. In addition to the increased lesion severity in monkeys given BSA, there were numerous granulocytes seen within

  4. Fluorescence Studies of Lysozyme Nucleation

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Smith, Lori

    1998-01-01

    Fluorescence is one of the most powerful tools available for the study of macromolecules. For example, fluorescence can be used to study self association through methods such as anisotropy (the rotational rate of the molecule in solution), quenching (the accessibility of a bound probe to the bulk solution), and resonance energy transfer (measurement of the distance between two species). Fluorescence can also be used to study the local environment of the probe molecules, and the changes in that environment which accompany crystal nucleation and growth. However fluorescent techniques have been very much underutilized in macromolecular growth studies. One major advantage is that the fluorescent species generally must be at low concentration, typically ca 10-5 to 10-6 M. Thus one can study a very wide range of solution conditions, ranging from very high to very low protein concentration, he latter of which are not readily accessible to scattering techniques. We have prepared a number of fluorescent derivatives of chicken egg white lysozyme (CEWL). Fluorescent probes have been attached to two different sites, ASP 101 and the N-terrninal amine, with a sought for use in different lines of study. Preliminary resonance energy transfer studies have been -carried out using pyrene acetic acid (Ex 340 mn, Em 376 nm) lysozyme as a donor and cascade blue (Ex 377 run, Em 423 nm) labeled lysozyme as an acceptor. The emission of both the pyrene and cascade blue probes was followed as a function of the salt protein concentrations. The data show an increase in cascade blue and a concomitant decrease in the pyrene fluorescence as either the salt or protein concentrations are increased, suggesting that the two species are approaching each other close enough for resonance energy transfer to occur. This data can be analyzed to measure the distance between the probe molecules and, knowing their locations on the protein molecule their distances from and orientations with respect to each

  5. Location and binding mechanism of an ESIPT probe 3-hydroxy-2-naphthoic acid in unsaturated fatty acid bound serum albumins.

    PubMed

    Ghorai, Shyamal Kr; Tripathy, Debi Ranjan; Dasgupta, Swagata; Ghosh, Sanjib

    2014-02-05

    The binding site and the binding mechanism of 3-hydroxy-2-naphthoic acid (3HNA) in oleic acid (OA) bound serum albumins (bovine serum albumin (BSA) and human serum albumin (HSA)) have been determined using steady state and time resolved emission of tryptophan residues (Trp) in proteins and the ESIPT emission of 3HNA. Time resolved anisotropy of the probe 3HNA and low temperature phosphorescence of Trp residues of BSA in OA bound BSA at 77K reveals a drastic change of the binding site of 3HNA in the ternary system compared to that in the free protein. 3HNA binds near Trp213 in the ternary system whereas 3HNA binds near Trp134 in the free protein. The structure of OA bound BSA generated using docking methodology exhibits U-bend configuration of all bound OA. The docked pose of 3HNA in the free protein and in OA bound albumins (ternary systems) and the concomitant perturbation of the structure of proteins around the binding region of 3HNA corroborate the enhanced ESIPT emission of 3HNA and the energy transfer efficiency from the donor Trp213 of BSA to 3HNA acceptor in 3HNA-OA-BSA system.

  6. Quantitative and qualitative evaluation of adsorption/desorption of bovine serum albumin on hydrophilic and hydrophobic surfaces.

    PubMed

    Jeyachandran, Y L; Mielczarski, E; Rai, B; Mielczarski, J A

    2009-10-06

    We studied the adsorption of bovine serum albumin (BSA) from phosphate-buffered saline (pH 7.4) to hydrophilic and hydrophobic surfaces. Attenuated total reflection Fourier transform infrared spectroscopy, supported by spectral simulation, allowed us to determine with high precision the amount of BSA adsorbed (surface coverage) and its structural composition. The adsorbed BSA molecules had an alpha-helical structure on both hydrophobic and hydrophilic surfaces but had different molecular conformations and adsorption strengths on the two types of surface. Adsorption of BSA was saturated at around 50% surface coverage on the hydrophobic surface, whereas on the hydrophilic surface the adsorption reached 95%. The BSA molecules adsorbed to the hydrophilic surface with a higher interaction strength than to the hydrophobic surface. Very little adsorbed BSA could be desorbed from the hydrophilic surface, even using 0.1 M sodium dodecyl sulfate, a strong detergent solution. The formation of BSA-phosphate surface complexes was observed under different BSA adsorption conditions on hydrophobic and hydrophilic surfaces. The formation of these complexes correlated with the more efficient blocking of nonspecific interactions by the adsorbed BSA layer. Results from the molecular modeling of BSA interactions with hydrophobic and hydrophilic surfaces support the spectroscopic findings.

  7. Characterization of intermolecular interaction between cyanidin-3-glucoside and bovine serum albumin: spectroscopic and molecular docking methods.

    PubMed

    Shi, Jie-hua; Wang, Jing; Zhu, Ying-yao; Chen, Jun

    2014-08-01

    The intermolecular interaction between cyanidin-3-glucoside (Cy-3-G) and bovine serum albumin (BSA) was investigated using fluorescence, circular dichroism and molecular docking methods. The experimental results revealed that the fluorescence quenching of BSA at 338 nm by Cy-3-G resulted from the formation of Cy-3-G-BSA complex. The number of binding sites (n) for Cy-3-G binding on BSA was approximately equal to 1. The experimental and molecular docking results revealed that after binding Cy-3-G to BSA, Cy-3-G is closer to the Tyr residue than the Trp residue, the secondary structure of BSA almost not change, the binding process of Cy-3-G with BSA is spontaneous, and Cy-3-G can be inserted into the hydrophobic cavity of BSA (site II') in the binding process of Cy-3-G with BSA. Moreover, based on the sign and magnitude of the enthalpy and entropy changes (ΔH(0)  = - 29.64 kcal/mol and ΔS(0)  = - 69.51 cal/mol K) and the molecular docking results, it can be suggested that the main interaction forces of Cy-3-G with BSA are Van der Waals and hydrogen bonding interactions.

  8. Development of morin-conjugated Au nanoparticles: Exploring the interaction efficiency with BSA using spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Yue, Hua-Li; Hu, Yan-Jun; Huang, Hong-Gui; Jiang, Shan; Tu, Bao

    2014-09-01

    In order to enhance its interaction efficiency with biomacromolecules for the usage as a therapeutic agent, we have conjugated morin, an antioxidant activity and anti-tumor drug, with citrate-coated Au nanoparticles (M-C-AuNPs). M-C-AuNPs were prepared by reducing chloroauric acid using trisodium citrate in the boiling condition, and the resulted M-C-AuNPs were characterized by UV-vis absorption spectroscopy, Transmission Electron Microscopy (TEM), X-ray diffraction (XRD) and FTIR analysis. In this article, UV-vis absorption spectroscopy in combination with fluorescence spectroscopy, and circular dichroism (CD) spectroscopy were employed to investigate the interactions between M-C-AuNPs and bovine serum albumin (BSA), C-AuNPs and BSA in a phosphate buffer at pH 7.4. By comparing the quenching constant KSV, effective quenching constant Ka, binding constant Kb and the number of binding sites n, it is clearly suggested that M-C-AuNPs could enhance the binding force of morin with BSA, which would pave the way for the design of nanotherapeutic agents with improved functionality.

  9. Modeling the accessibility of the interaction of clonazepan to albumins

    NASA Astrophysics Data System (ADS)

    Valdez, Ethel Celene Narvaez; Paulino, Erica Tex; de Morais e Coura, Carla Patrícia; Cortez, Celia Martins; da Silva Fragoso, Viviane Muniz

    2016-12-01

    This paper shows results obtained from the clonazepam (CNZP) interaction with human and bovine serum albumin study, seeking data on the pharmacokinetics and the binding site for the anxiolytic by comparing the responses of these two proteins to this drug. The quenching response of this experiment show a huge interaction between CNZP and the albumins, that confirm the literature information relative to the high affinity of CNZP with the plasma protein, a long plasma half-life and that the single binding site for this drug can be found in or close to subdomain IB of HSA and BSA.

  10. Tyrosine fluorescence probing of conformational changes in tryptophan-lacking domain of albumins.

    PubMed

    Zhdanova, N G; Maksimov, E G; Arutyunyan, A M; Fadeev, V V; Shirshin, E A

    2017-03-05

    We addressed the possibility of using tyrosine (Tyr) fluorescence for monitoring conformational changes of proteins which are undetectable via tryptophan (Trp) fluorescence. The model objects, human (HSA) and bovine (BSA) serum albumins, contain one and two Trp residues, respectively, while Tyr is more uniformly distributed over their structure. The results of the investigation of albumins interaction with ethanol using intrinsic Trp and Tyr steady-state and time-resolved picosecond fluorescence indicated the presence of an intermediate at 10% (v/v) of ethanol in solution, that was supported by the results of extrinsic fluorescence measurements with the Nile Red dye. Based on the comparison of HSA and BSA Trp and Tyr fluorescence, it was suggested that conformational changes at low ethanol concentration are located in the domain III of albumins, which lacks tryptophan residues. The sensitivity of Tyr fluorescence to domain III alterations was further verified by studying albumins interaction with GdnHCl.

  11. Spectroscopic analysis of the riboflavin—serum albumins interaction on silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Voicescu, Mariana; Angelescu, Daniel G.; Ionescu, Sorana; Teodorescu, Valentin S.

    2013-04-01

    Spectrophotometric behavior of riboflavin (RF) adsorbed on silver nanoparticles as well as its interaction with two serum albumins, BSA and HSA, respectively, has been evidenced. The time evolution of the plasmonic features of the complexes formed by RF/BSA/HSA and Ag(0) nanoparticles having an average diameter of 10.0 ± 2.0 nm have been investigated by UV-Vis absorption spectroscopy. Using steady-state and time-resolved fluorescence spectroscopy, the structure, stability, and dynamics of the serum albumins have been studied. The efficiency of energy transfer process between RF and serum albumins on silver nanoparticles has been estimated. A reaction mechanism of RF with silver nanoparticles is also proposed and the results are discussed with relevance to the involvement of the silver nanoparticles to the redox process of RF and to the RF-serum albumins interaction into a silver nanoparticles complex.

  12. Tyrosine fluorescence probing of conformational changes in tryptophan-lacking domain of albumins

    NASA Astrophysics Data System (ADS)

    Zhdanova, N. G.; Maksimov, E. G.; Arutyunyan, A. M.; Fadeev, V. V.; Shirshin, E. A.

    2017-03-01

    We addressed the possibility of using tyrosine (Tyr) fluorescence for monitoring conformational changes of proteins which are undetectable via tryptophan (Trp) fluorescence. The model objects, human (HSA) and bovine (BSA) serum albumins, contain one and two Trp residues, respectively, while Tyr is more uniformly distributed over their structure. The results of the investigation of albumins interaction with ethanol using intrinsic Trp and Tyr steady-state and time-resolved picosecond fluorescence indicated the presence of an intermediate at 10% (v/v) of ethanol in solution, that was supported by the results of extrinsic fluorescence measurements with the Nile Red dye. Based on the comparison of HSA and BSA Trp and Tyr fluorescence, it was suggested that conformational changes at low ethanol concentration are located in the domain III of albumins, which lacks tryptophan residues. The sensitivity of Tyr fluorescence to domain III alterations was further verified by studying albumins interaction with GdnHCl.

  13. Comparison of photoluminescence properties of HSA-protected and BSA-protected Au25 nanoclusters

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Masato; Kawasaki, Hideya; Saitoh, Tadashi; Inada, Mitsuru; Kansai Univ. Collaboration

    Gold nanoclusters (NCs) have attracted great interest for a wide range of applications. In particular, red light-emitting Au25 NCs have been prepared with various biological ligands. It has been shown that Au25 NCs have Au13-core/6Au2(SR)3-semiring structure. The red luminescence thought to be originated from both core (670 nm) and semiring (625 nm). It is important to reveal a structure of Au25 NCs to facilitate the progress of applications. However, the precise structure of Au25 NCs has not been clarified. There is a possibility of obtaining structural information about Au25 NCs to compare optical properties of the NCs that protected by slightly different molecules. Bovine and human serum albumin (BSA, HSA) are suitable one for this purpose. It has been suggested that rich tyrosine and cysteine residues in these molecules are important to produce the thiolate-protected Au NCs. If Au25 NCs have core/shell structure, only the luminescence of the semiring will be affected by the difference of the albumin molecules. We carefully compared PL characteristics of BSA- and HSA- protected Au25 NCs. As a result, there was no difference in the PL at 670 nm (core), while differences were observed in the PL at 625 nm (semiring). The results support that Au25 NCs have core/semiring structure.

  14. Albumin and multiple sclerosis.

    PubMed

    LeVine, Steven M

    2016-04-12

    Leakage of the blood-brain barrier (BBB) is a common pathological feature in multiple sclerosis (MS). Following a breach of the BBB, albumin, the most abundant protein in plasma, gains access to CNS tissue where it is exposed to an inflammatory milieu and tissue damage, e.g., demyelination. Once in the CNS, albumin can participate in protective mechanisms. For example, due to its high concentration and molecular properties, albumin becomes a target for oxidation and nitration reactions. Furthermore, albumin binds metals and heme thereby limiting their ability to produce reactive oxygen and reactive nitrogen species. Albumin also has the potential to worsen disease. Similar to pathogenic processes that occur during epilepsy, extravasated albumin could induce the expression of proinflammatory cytokines and affect the ability of astrocytes to maintain potassium homeostasis thereby possibly making neurons more vulnerable to glutamate exicitotoxicity, which is thought to be a pathogenic mechanism in MS. The albumin quotient, albumin in cerebrospinal fluid (CSF)/albumin in serum, is used as a measure of blood-CSF barrier dysfunction in MS, but it may be inaccurate since albumin levels in the CSF can be influenced by multiple factors including: 1) albumin becomes proteolytically cleaved during disease, 2) extravasated albumin is taken up by macrophages, microglia, and astrocytes, and 3) the location of BBB damage affects the entry of extravasated albumin into ventricular CSF. A discussion of the roles that albumin performs during MS is put forth.

  15. The albumin controversy.

    PubMed

    Uhing, Michael R

    2004-09-01

    There are relatively few studies of albumin use in neonates and children, with most showing no consistent benefit compared with the use of crystalloid solutions. Certainly, albumin treatment is not indicated for treatment of hypoalbuminemia alone. Studies also show that albumin is not indicated in neonates for the initial treatment of hypotension, respiratory distress, or partial exchange transfusions. In adults, albumin is not considered to be the initial therapy for hypovolemia, burn injury, or nutritional supplementation. Based on the evidence, albumin should be used rarely in the neonatal ICU. Albumin may be indicated in the treatment of hypovolemia only after crystalloid infusion has failed. In patients with acute hemorrhagic shock, albumin may be used with crystalloids when blood products are not available immediately. Inpatients with acute or continuing losses of albumin and normal capillary permeability and lymphatic function, such as during persistent thoracostomy tube or surgical site drainage, albumin supplementation will prevent the development of hypoalbuminemia, and possibly edema formation. This has not been studied systematically, however. In patients with hypoalbuminemia and increased capillary permeability, albumin supplementation often leads to greater albumin leakage across the capillary membrane, contributing to edema formation without improvement in outcome. As the disease process improves and capillary permeability normalizes, albumin supplementation may accelerate recovery, but long-term benefits of albumin treatment usually cannot be demonstrated. These patients will recover whether or not albumin is administered.

  16. Numb Protects Human Renal Tubular Epithelial Cells From Bovine Serum Albumin-Induced Apoptosis Through Antagonizing CHOP/PERK Pathway.

    PubMed

    Ding, Xuebing; Ma, Mingming; Teng, Junfang; Shao, Fengmin; Wu, Erxi; Wang, Xuejing

    2016-01-01

    In recent studies, we found that Numb is involved in oxidative stress-induced apoptosis of renal proximal tubular cells; however, its function on ER stress-induced apoptosis in proteinuric kidney disease remains unknown. The objective of the present study is to explore the role of Numb in urinary albumin-induced apoptosis of human renal tubular epithelial cells (HKCs). In this study, we demonstrate that incubation of HKCs with bovine serum albumin (BSA) resulted in caspase three-dependent cell death. Numb expression was down-regulated by BSA in a time- and dose-dependent manner. Knockdown of Numb by siRNA sensitized HKCs to BSA-induced apoptosis, whereas overexpression of Numb protected HKCs from BSA-induced apoptosis. Moreover, BSA activated CHOP/PERK signaling pathway in a time- and dose-dependent manner as indicated by increased expression of CHOP, PERK, and P-PERK. Furthermore, knockdown of CHOP or PERK significantly attenuated the promoting effect of Numb on BSA-induced apoptosis, while overexpression of CHOP impaired the protective effect of Numb on BSA-induced apoptosis. Taken together, our findings demonstrate that Numb plays a protective role on BSA-induced apoptosis through inhibiting CHOP/PERK signaling pathway in human renal tubular epithelial cells. Therefore, the results from this study provides evidence that Numb is a new target of ER-associated apoptotic signaling networks and Numb may serve as a promising therapeutic target for proteinuric diseases.

  17. Characterization of the interaction between cationic Erbium (III)-porphyrin complex with bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Lu, Xi-Liang; Fan, Jian-Jun; Liu, Yi; Hou, An-Xin

    2009-09-01

    The interaction of cationic Erbium (III)-porphyrin complex (Er-Porp) with bovine serum albumin (BSA) has been investigated by fluorescence quenching spectra, UV-vis absorbance, circular dichroism (CD) and three-dimensional (3D) fluorescence spectra. It is proved that the fluorescence quenching of BSA by Er-Porp was mainly for the formation of Er-Porp-BSA complex. The Stern-Volmer quenching constants KSV and corresponding thermodynamic parameters ΔH, ΔG and ΔS were estimated by fluorescence quenching method. The results indicated that the electrostatic and hydrophobic interactions were the predominant intermolecular forces in stabilizing the complex. The binding distance was obtained according to Förster's non-radiative energy transfer theory. Displacement experiment and the number of binding sites calculation show that the cationic Er-Porp ring can inset in site-I (in subdomain IIA) of BSA. The effect of Er-Porp on the conformation of BSA was observed using CD, UV and 3D fluorescence spectra methods. The results show that the conformation of BSA was changed dramatically in the presence of Er-Porp by binding to the Trp residues of BSA. The interaction between BSA and Er-Porp can be used as a model for drug design and pharmaceutical research.

  18. Binding of anti-inflammatory drug cromolyn sodium to bovine serum albumin.

    PubMed

    Hu, Yan-Jun; Liu, Yi; Sun, Ting-Quan; Bai, Ai-Min; Lü, Jian-Quan; Pi, Zhen-Bang

    2006-11-15

    Fluorescence spectroscopy in combination with circular dichroism (CD) and UV-vis absorption spectroscopy were employed to investigate the binding of anti-inflammatory drug cromolyn sodium (Intal) to bovine serum albumin (BSA) under the physiological conditions with Intal concentrations of 0-6.4 x 10(-5)mol L(-1). In the mechanism discussion, it was proved that the fluorescence quenching of BSA by Intal is a result of the formation of Intal-BSA complex. Quenching constants were determined using the Stern-Volmer equation to provide a measure of the binding affinity between Intal and BSA. The thermodynamic parameters Delta G, Delta H, Delta S at different temperatures (298, 304, and 310 K) were calculated and the results indicate the electrostatic interactions play a major role in Intal-BSA association. Binding studies concerning the number of binding sites (n=1) and apparent binding constant K(b) were performed by fluorescence quenching method. Utilizing fluorescence resonant energy transfer (FRET) the distance R between the donor (BSA) and acceptor (Intal) has been obtained. Furthermore, CD and synchronous fluorescence spectrum were used to investigate the structural change of BSA molecules with addition of Intal, the results indicate that the secondary structure of BSA molecules was changed in the presence of Intal.

  19. Study on the interaction characteristics of cefamandole with bovine serum albumin by spectroscopic technique.

    PubMed

    Wang, Qian; Liu, Xuyang; Su, Ming; Shi, Zhihong; Sun, Hanwen

    2015-02-05

    The interaction of cefamandole with bovine serum albumin (BSA) was studied by fluorescence quenching in combination with UV-Vis spectroscopic method under near physiological conditions. The fluorescence quenching rate constants and binding constants for BSA-cefamandole system were determined at different temperatures. The fluorescence quenching of BSA by cefamandole is due to static quenching and energy transfer. The results of thermodynamic parameters, ΔH (-268.0 kJ mol(-1)), ΔS (-810.0 J mol(-1) K(-1)) and ΔG (-26.62 to -8.52 kJ mol(-1)), indicated that van der Waals interaction and hydrogen bonding played a major role for cefamandole-BSA association. The competitive experiments demonstrated that the primary binding site of cefamandole on BSA was located at site III in sub-domain IIIA of BSA. The distance between cefamandole and a tryptophane unit was estimated to be 1.18 nm based on the Förster resonance energy transfer theory. The binding constant (KA) of BSA-cefamandole at 298 K was 2.239×10(4) L mol(-1). Circular dichroism spectra, synchronous fluorescence and three-dimensional fluorescence studies showed that the presence of cefamandole could change the conformation of BSA during the binding process.

  20. Comparative studies on the interactions of dihydroartemisinin and artemisinin with bovine serum albumin using spectroscopic methods.

    PubMed

    Liu, Rong; Cheng, Zhengjun; Jiang, Xiaohui

    2014-12-01

    The interactions of dihydroartemisinin (DHA) and artemisinin (ART) with bovine serum albumin (BSA) have been investigated using fluorescence, UV/vis absorption and Fourier transform infrared (FTIR) spectra under simulated physiological conditions. The binding characteristics of DHA/ART and BSA were determined by fluorescence emission and resonance light scattering (RLS) spectra. The quenching mechanism between BSA and DHA/ART is static. The binding constants and binding sites of DHA/ART-BSA systems were calculated at different temperatures (293, 298, 304 and 310 K). According to Förster non-radiative energy transfer theory, the binding distance of BSA to DHA/ART was calculated to be 1.54/1.65 nm. The effect of DHA/ART on the secondary structure of BSA was analyzed using UV/vis absorption, FTIR, synchronous fluorescence and 3D fluorescence spectra. In addition, the effects of common ions on the binding constants of BSA-DHA and BSA-ART systems were also discussed.

  1. Acetylated lysozyme as impurity in lysozyme crystals: constant distribution coefficient

    NASA Astrophysics Data System (ADS)

    Thomas, B. R.; Chernov, A. A.

    2001-11-01

    Hen egg white lysozyme (HEWL) was acetylated to modify molecular charge keeping the molecular size and weight nearly constant. Two derivatives, A and B, more and less acetylated, respectively, were obtained, separated, purified and added to the solution from which crystals of tetragonal HEWL crystals were grown. Amounts of the A and B impurities added were 0.76, 0.38 and 0.1 mg/ml and 0.43, 0.22, 0.1 mg/ml, respectively. The HEWL concentration were 20, 30 and 40 mg/ml. The crystals grown in 18 experiments for each impurity concentration and supersaturation were dissolved and quantities of A or B additives in these crystals were analyzed by cation exchange high performance liquid chromatography. All the data for each set of 18 samples with the different impurity and regular HEWL concentrations is well described by one distribution coefficient K=2.15±0.13 for A and K=3.42±0.25 for B. According to definition of K by Eq. (1) in the text, the condition K=const is equivalent to a decrease of impurity amount in the crystal as the supersaturation increases. The observed independence of the distribution coefficient on both the impurity concentration and supersaturation is explained by the dilution model described in this paper. It shows that the impurity adsorption and incorporation rates are proportional to the impurity concentration and that the growth rate is proportional to the concentration of crystallizing protein in solution. The frequency at which an impurity molecules irreversibly join the crystal was estimated to be 3 s -1, much higher than such frequency for regular crystal molecules 5×10 -2 s -1 at 30 mg/ml lysozyme concentration. Reasons for this inequality are discussed.

  2. Multilayer Capsules of Bovine Serum Albumin and Tannic Acid for Controlled Release by Enzymatic Degradation.

    PubMed

    Lomova, Maria V; Brichkina, Anna I; Kiryukhin, Maxim V; Vasina, Elena N; Pavlov, Anton M; Gorin, Dmitry A; Sukhorukov, Gleb B; Antipina, Maria N

    2015-06-10

    With the purpose to replace expensive and significantly cytotoxic positively charged polypeptides in biodegradable capsules formed via Layer-by-Layer (LbL) assembly, multilayers of bovine serum albumin (BSA) and tannic acid (TA) are obtained and employed for encapsulation and release of model drugs with different solubility in water: hydrophilic-tetramethylrhodamine-isothiocyanate-labeled BSA (TRITC-BSA) and hydrophobic 3,4,9,10-tetra-(hectoxy-carbonyl)-perylene (THCP). Hydrogen bonding is proposed to be predominant within thus formed BSA/TA films. The TRITC-BSA-loaded capsules comprising 6 bilayers of the protein and polyphenol are benchmarked against the shells composed of dextran sulfate (DS) and poly-l-arginine (PARG) on degradability by two proteolytic enzymes with different cleavage site specificity (i.e., α-chymotrypsin and trypsin) and toxicity for murine RAW264.7 macrophage cells. Capsules of both types possess low cytotoxicity taken at concentrations equal or below 50 capsules per cell, and evident susceptibility to α-chymotrypsin resulted in release of TRITC-BSA. While the BSA/TA-based capsules clearly display resistance to treatment with trypsin, the assemblies of DS/PARG extensively degrade. Successful encapsulation of THCP in the TRITC-BSA/TA/BSA multilayer is confirmed, and the release of the model drug is observed in response to treatment with α-chymotrypsin. The thickness, surface morphology, and enzyme-catalyzed degradation process of the BSA/TA-based films are investigated on a planar multilayer comprising 40 bilayers of the protein and polyphenol deposited on a silicon wafer. The developed BSA/TA-based capsules with a protease-specific degradation mechanism are proposed to find applications in personal care, pharmacology, and the development of drug delivery systems including those intravenous injectable and having site-specific release capability.

  3. Nitrite ion-induced fluorescence quenching of luminescent BSA-Au(25) nanoclusters: mechanism and application.

    PubMed

    Unnikrishnan, Binesh; Wei, Shih-Chun; Chiu, Wei-Jane; Cang, Jinshun; Hsu, Pang-Hung; Huang, Chih-Ching

    2014-05-07

    Fluorescence quenching is an interesting phenomenon which is highly useful in developing fluorescence based sensors. A thorough understanding of the fluorescence quenching mechanism is essential to develop efficient sensors. In this work, we investigate different aspects governing the nitrite ion-induced fluorescence quenching of luminescent bovine serum albumin stabilized gold nanoclusters (BSA-Au NCs) and their application for detection of nitrite in urine. The probable events leading to photoluminescence (PL) quenching by nitrite ions were discussed on the basis of the results obtained from ultraviolet-visible (UV-Vis) absorption spectroscopy, X-ray photoelectron spectroscopy (XPS), fluorescence measurements, circular dichroism (CD) spectroscopy, zeta potential and dynamic light scattering (DLS) studies. These studies suggested that PL quenching mainly occurred through the oxidation of Au(0) atoms to Au(i) atoms in the core of BSA-Au NCs mediated by nitrite ions. The interference caused by certain species such as Hg(2+), Cu(2+), CN(-), S(2-), glutathione, cysteine, etc. during the nitrite determination by fluorescence quenching was eliminated by using masking agents and optimising the conditions. Based on these findings we proposed a BSA-Au NC-modified membrane based sensor which would be more convenient for the real life applications such as nitrite detection in urine samples. The BSA-Au NC-modified nitrocellulose membrane (NCM) enabled the detection of nitrite at a level as low as 100 nM in aqueous solutions. This Au NC-based paper probe was validated to exhibit good performance for nitrite analysis in environmental water and urine samples, which makes it useful in practical applications.

  4. Removal of bovine serum albumin using solid-phase extraction with in-situ polymerized stationary phase in a microfluidic device.

    PubMed

    Lee, Eun Zoo; Huh, Yun Suk; Jun, Young-Si; Won, Hyo Jin; Hong, Yeon Ki; Park, Tae Jung; Lee, Sang Yup; Hong, Won Hi

    2008-04-11

    Serum albumin, one of the most abundant serum proteins, blocks the expression of other important biomarkers. The objective of this study is to remove serum albumin effectively by using solid-phase extraction (SPE) in microfluidic devices. Photo-polymerized adsorbent as a stationary phase of SPE was used to remove bovine serum albumin (BSA). The adsorption capacity was examined with the effect of pH and concentration in BSA solution, and adjustment of monomer concentration such as hydrophilic 2-acrylamido-2-methyl-1-propanesulfonic acid and acrylamide in the adsorbent. The effect of hydrophobic butyl methacylate on BSA adsorption was also studied. Selective removal in a bicomponent with BSA and bovine gamma-globulin was performed by adjusting the pH as required.

  5. Interactions of cephalexin with bovine serum albumin: displacement reaction and molecular docking

    PubMed Central

    Hamishehkar, Hamed; Hosseini, Soheila; Naseri, Abdolhossein; Safarnejad, Azam; Rasoulzadeh, Farzaneh

    2016-01-01

    Introduction: The drug-plasma protein interaction is a fundamental issue in guessing and checking the serious drug side effects related with other drugs. The purpose of this research was to study the interaction of cephalexin with bovine serum albumin (BSA) and displacement reaction using site probes. Methods: The interaction mechanism concerning cephalexin (CPL) with BSA was investigated using various spectroscopic methods and molecular modeling method. The binding sites number, n, apparent binding constant, K, and thermodynamic parameters, ΔG0, ΔH0, and ΔS0 were considered at different temperatures. To evaluate the experimental results, molecular docking modeling was calculated. Results: The distance, r=1.156 nm between BSA and CPL were found in accordance with the Forster theory of non-radiation energy transfer (FRET) indicating energy transfer occurs between BSA and CPL. According to the binding parameters and ΔG0= negative values and ΔS0= 28.275 j mol-1K-1, a static quenching process is effective in the CPL-BSA interaction spontaneously. ΔG0 for the CPL-BSA complex obtained from the docking simulation is -28.99 kj mol-1, which is close to experimental ΔG of binding, -21.349 kj mol-1 that indicates a good agreement between the results of docking methods and experimental data. Conclusion: The outcomes of spectroscopic methods revealed that the conformation of BSA changed during drug-BSA interaction. The results of FRET propose that CPL quenches the fluorescence of BSA by static quenching and FRET. The displacement study showed that phenylbutazon and ketoprofen displaced CPL, indicating that its binding site on albumin is site I and Gentamicin cannot be displaced from the binding site of CPL. All results of molecular docking method agreed with the results of experimental data. PMID:27853676

  6. Spectroscopic characterization of effective components anthraquinones in Chinese medicinal herbs binding with serum albumins

    NASA Astrophysics Data System (ADS)

    Bi, Shuyun; Song, Daqian; Kan, Yuhe; Xu, Dong; Tian, Yuan; Zhou, Xin; Zhang, Hanqi

    2005-11-01

    The interactions of serum albumins such as human serum albumin (HSA) and bovine serum albumin (BSA) with emodin, rhein, aloe-emodin and aloin were assessed employing fluorescence quenching and absorption spectroscopic techniques. The results obtained revealed that there are relatively strong binding affinity for the four anthraquinones with HSA and BSA and the binding constants for the interactions of anthraquinones with HSA or BSA at 20 °C were obtained. Anthraquinone-albumin interactions were studied at different temperatures and in the presence of some metal ions. And the competition binding of anthraquinones with serum albumins was also discussed. The Stern-Volmer curves suggested that the quenching occurring in the reactions was the static quenching process. The binding distances and transfer efficiencies for each binding reactions were calculated according to the Föster theory of non-radiation energy transfer. Using thermodynamic equations, the main action forces of these reactions were also obtained. The reasons of the different binding affinities for different anthraquinone-albumin reactions were probed from the point of view of molecular structures.

  7. Probing the binding sites of antibiotic drugs doxorubicin and N-(trifluoroacetyl) doxorubicin with human and bovine serum albumins.

    PubMed

    Agudelo, Daniel; Bourassa, Philippe; Bruneau, Julie; Bérubé, Gervais; Asselin, Eric; Tajmir-Riahi, Heidar-Ali

    2012-01-01

    We located the binding sites of doxorubicin (DOX) and N-(trifluoroacetyl) doxorubicin (FDOX) with bovine serum albumin (BSA) and human serum albumins (HSA) at physiological conditions, using constant protein concentration and various drug contents. FTIR, CD and fluorescence spectroscopic methods as well as molecular modeling were used to analyse drug binding sites, the binding constant and the effect of drug complexation on BSA and HSA stability and conformations. Structural analysis showed that doxorubicin and N-(trifluoroacetyl) doxorubicin bind strongly to BSA and HSA via hydrophilic and hydrophobic contacts with overall binding constants of K(DOX-BSA) = 7.8 (± 0.7) × 10(3) M(-1), K(FDOX-BSA) = 4.8 (± 0.5)× 10(3) M(-1) and K(DOX-HSA) = 1.1 (± 0.3)× 10(4) M(-1), K(FDOX-HSA) = 8.3 (± 0.6)× 10(3) M(-1). The number of bound drug molecules per protein is 1.5 (DOX-BSA), 1.3 (FDOX-BSA) 1.5 (DOX-HSA), 0.9 (FDOX-HSA) in these drug-protein complexes. Docking studies showed the participation of several amino acids in drug-protein complexation, which stabilized by H-bonding systems. The order of drug-protein binding is DOX-HSA > FDOX-HSA > DOX-BSA > FDOX>BSA. Drug complexation alters protein conformation by a major reduction of α-helix from 63% (free BSA) to 47-44% (drug-complex) and 57% (free HSA) to 51-40% (drug-complex) inducing a partial protein destabilization. Doxorubicin and its derivative can be transported by BSA and HSA in vitro.

  8. Macroporous chitin affinity membranes for lysozyme separation.

    PubMed

    Ruckenstein, E; Zeng, X

    1997-12-20

    Macroporous chitin membranes with high, controlled porosity and good mechanical properties have been prepared using a technique developed in this laboratory based on silica particles as porogen. They were employed for the affinity separation of lysozyme. Chitin membranes (1 mm thickness) can be operated at high fluxes (>/=1.1 mL/min/cm(2)) corresponding to pressure drops >/=2 psi. Their adsorption capacity for lysozyme ( approximately 50 mg/mL membrane) is by an order of magnitude higher than that of the chitin beads employed in column separation. In a binary mixture of lysozyme and ovalbumin, the membranes showed very high selectivity towards lysozyme. The effect of some important operation parameters, such as the flow rates during loading and elution were investigated. Lysozyme of very high purity (>98%) was obtained from a mixture of lysozyme and ovalbumin, and from egg white. The results indicate that the macroporous chitin membranes can be used for the separation, purification, and recovery of lysozyme at large scale. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 610-617, 1997.

  9. Urine Albumin and Albumin/ Creatinine Ratio

    MedlinePlus

    ... that is present in high concentrations in the blood. Virtually no albumin is present in the urine when the kidneys ... on trying to determine if increased levels of albumin in the urine are also indicative of CVD risk in those who do not have diabetes or high blood pressure. ^ Back to ... Proudly sponsored by ... Learn ...

  10. Study of the interaction of kaempferol with bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Tian, Jianniao; Liu, Jiaqin; Tian, Xuan; Hu, Zhide; Chen, Xingguo

    2004-03-01

    The binding of kaempferol with bovine serum albumin (BSA) was investigated at three temperatures, 296, 310 and 318 K, by the fluorescence, circular dichroism (CD) and Fourier transform infrared spectroscopy (FT-IR) at pH 7.40. The CD and FT-IR studies indicate that kaempferol binds strongly to BSA. The association constant K was determined by Stern-Volmer equation based on the quenching of the fluorescence BSA in the presence of kaempferol. The thermodynamic parameters were calculated according to the dependence of enthalpy change on the temperature as follows: Δ H0 and Δ S0 possess small negative (-1.694 kJ/mol) and positive values (88.814 J/mol K), respectively. According to the displacement experimental and the thermodynamic results, it is considered that kaempferol binding site II (subdomain III) mainly by hydrophobic interaction. The results studied by FT-IR and CD experiments indicate that the secondary structures of the protein have been changed by the interaction of kaempferol with BSA. The distance between the tryptophan residues in BSA and kaempferol bound to site II was estimated to be 2.78 nm using Foster's equation on the basis of fluorescence energy transfer.

  11. Size exclusion chromatographic analysis of polyphenol-serum albumin complexes.

    PubMed

    Hatano, Tsutomu; Hori, Mami; Hemingway, Richard W; Yoshida, Takashi

    2003-08-01

    Formation of water-soluble polyphenol-protein complexes was investigated by size-exclusion chromatography (SEC). The combination of (-)-epigallocatechin gallate (EGCG) and bovine serum albumin (BSA), which did not form a precipitate after the solutions were mixed, showed an SEC peak due to complex formation 2-24 h after mixing. Peak size of the complex varied with time, suggesting slow change of the conformation of the protein accompanied by complexation. Formation of the complex was substantiated by ultrafiltration of the mixture; the complex did not pass through a membrane with a 100,000 nominal molecular weight limit (NMWL). The SEC profile varied with the combination of compounds. The peaks due to the complexes showed that the apparent value of the number average molecular weight (M(n)) of the EGCG-BSA complex was 2.8x10(5), while that of a pentagalloylglucose (PGG)-BSA complex was 9.5x10(5) under the conditions used. Dimeric hydrolyzable tannins, oenothein B and cornusiin A, also caused changes in the SEC profile of BSA, although the combinations did not show peaks attributable to formation of such large complexes observed for EGCG and PGG. Procyanidin B3 and (+)-catechin did not cause changes in the SEC profile of BSA. With cytochrome c, EGCG did not show any chromatographic changes.

  12. Intermolecular interaction of nickel (ii) phthalocyanine tetrasulfonic acid tetrasodium salt with bovine serum albumin: A multi-technique study.

    PubMed

    Dezhampanah, Hamid; Firouzi, Roghaye; Hasani, Leila

    2017-02-01

    The interaction of nickel (II) phthalocyanine tetrasulfonic acid tetrasodium salt with bovine serum albumin (BSA) has been investigated by combination of fluorescence, UV-vis absorption, Fourier transform infrared (FT-IR), and circular dichorism (CD) spectroscopies as well as through molecular docking. Fluorescence quenching and absorption spectra were investigated as a mean for estimating the binding parameters. Analysis of fluorescence quenching data at different temperatures was performed in order to specify the thermodynamics parameters for interactions of phthalocyanine complex with BSA. According to experimental data it was suggested that phthalocyanine had a significant binding affinity to BSA and the process was entropy driven. Based on the results of molecular docking it was indicated that the main active binding site for this phthalocyanine complex is site I in subdomain IIA of BSA. The results provide useful information for understanding the binding mechanism of anticancer drug-albumin and gives insight into the biological activity and metabolism of the drug in blood.

  13. Albumin - blood (serum) test

    MedlinePlus

    ... protein in the clear liquid portion of the blood. Albumin can also be measured in the urine . How ... Results Mean A lower-than-normal level of blood albumin may be a sign of: Kidney diseases Liver ...

  14. Characterization and optimization of heroin hapten-BSA conjugates: method development for the synthesis of reproducible hapten-based vaccines.

    PubMed

    Torres, Oscar B; Jalah, Rashmi; Rice, Kenner C; Li, Fuying; Antoline, Joshua F G; Iyer, Malliga R; Jacobson, Arthur E; Boutaghou, Mohamed Nazim; Alving, Carl R; Matyas, Gary R

    2014-09-01

    A potential new treatment for drug addiction is immunization with vaccines that induce antibodies that can abrogate the addictive effects of the drug of abuse. One of the challenges in the development of a vaccine against drugs of abuse is the availability of an optimum procedure that gives reproducible and high yielding hapten-protein conjugates. In this study, a heroin/morphine surrogate hapten (MorHap) was coupled to bovine serum albumin (BSA) using maleimide-thiol chemistry. MorHap-BSA conjugates with 3, 5, 10, 15, 22, 28, and 34 haptens were obtained using different linker and hapten ratios. Using this optimized procedure, MorHap-BSA conjugates were synthesized with highly reproducible results and in high yields. The number of haptens attached to BSA was compared by 2,4,6-trinitrobenzenesulfonic acid (TNBS) assay, modified Ellman's test and matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Among the three methods, MALDI-TOF MS discriminated subtle differences in hapten density. The effect of hapten density on enzyme-linked immunosorbent assay (ELISA) performance was evaluated with seven MorHap-BSA conjugates of varying hapten densities, which were used as coating antigens. The highest antibody binding was obtained with MorHap-BSA conjugates containing 3-5 haptens. This is the first report that rigorously analyzes, optimizes and characterizes the conjugation of haptens to proteins that can be used for vaccines against drugs of abuse. The effect of hapten density on the ELISA detection of antibodies against haptens demonstrates the importance of careful characterization of the hapten density by the analytical techniques described.

  15. Biophysical influence of isocarbophos on bovine serum albumin: Spectroscopic probing

    NASA Astrophysics Data System (ADS)

    Zhang, Hua-xin; Zhou, Ying; Liu, E.

    Isocarbophos (ICP) is a phosphorous pesticide with high toxicity. It has been detected in several kinds of food and therefore can enter human body. In this paper, spectroscopic approaches including three-dimensional fluorescence (3D-FL) spectroscopy, UV-visible absorption spectroscopy and circular dichroism (CD) spectroscopy were employed to explore the binding of ICP to bovine serum albumin (BSA) at simulated physiological conditions. It was found that the fluorescence quenching of BSA was caused by the formation of ICP-BSA complex at ground state and belonged to static quenching mechanism. The binding constants, the number of binding sites, enthalpy change (ΔHθ), Gibbs free energy change (ΔGθ) and entropy change (ΔSθ) were calculated at four different temperatures according to Scatchard model and thermodynamic equations. To identify the binding location, fluorescence probe techniques were used. The results showed that warfarin, an acknowledged site marker for BSA, could be partially replaced by ICP when ICP was added to warfarin-BSA systems, which demonstrated that ICP primarily bound on Sudlow's site I in domain IIA of BSA molecule. The distance r (3.06 nm) between donor (Trp-212) and acceptor (ICP) was obtained based on Förster's non-radiation fluorescence resonance energy transfer (FRET) theory. Furthermore, the CD spectral results indicated that the secondary structure of BSA was changed in presence of ICP. The study is helpful to evaluating the toxicology of ICP and understanding its effects on the function of protein during the blood transportation process.

  16. Environment sensitive fluorescent analogue of biologically active oxazoles differentially recognizes human serum albumin and bovine serum albumin: Photophysical and molecular modeling studies.

    PubMed

    Maiti, Jyotirmay; Biswas, Suman; Chaudhuri, Ankur; Chakraborty, Sandipan; Chakraborty, Sibani; Das, Ranjan

    2017-03-15

    An environment sensitive fluorophore, 4-(5-(4-(dimethylamino)phenyl)oxazol-2-yl)benzoic acid (DMOBA), that closely mimics biologically active 2,5-disubstituited oxazoles has been designed to probe two homologous serum proteins, human serum albumin (HSA) and bovine serum albumin (BSA) by means of photophysical and molecular modeling studies. This fluorescent analogue exhibits solvent polarity sensitive fluorescence due to an intramolecular charge transfer in the excited state. In comparison to water, the steady state emission spectra of DMOBA in BSA is characterized by a greater blue shift (~10nm) and smaller Stokes' shift (~5980cm(-1)) in BSA than HSA (Stokes'shift~6600cm(-1)), indicating less polar and more hydrophobic environment of the dye in the former than the latter. The dye-protein binding interactions are remarkably stronger for BSA than HSA which is evident from higher value of the association constant for the DMOBA-BSA complex (Ka~5.2×10(6)M(-1)) than the DMOBA-HSA complex (Ka~1.0×10(6)M(-1)). Fӧrster resonance energy transfer studies revealed remarkably less efficient energy transfer (8%) between the donor tryptophans in BSA and the acceptor DMOBA dye than that (30%) between the single tryptophan moiety in HSA and the dye, which is consistent with a much larger distance between the donor (tryptophan)-acceptor (dye) pair in BSA (34.5Å) than HSA (25.4Å). Site specific competitive binding assays have confirmed on the location of the dye in Sudlow's site II of BSA and in Sudlow's site I of HSA, respectively. Molecular modeling studies have shown that the fluorescent analogue is tightly packed in the binding site of BSA due to strong steric complementarity, where, binding of DMOBA to BSA is primarily dictated by the van der Waals and hydrogen bonding interactions. In contrast, in HSA the steric complementarity is less significant and binding is primarily guided by polar interactions and van der Waals interactions appear to be less significant in the

  17. Environment sensitive fluorescent analogue of biologically active oxazoles differentially recognizes human serum albumin and bovine serum albumin: Photophysical and molecular modeling studies

    NASA Astrophysics Data System (ADS)

    Maiti, Jyotirmay; Biswas, Suman; Chaudhuri, Ankur; Chakraborty, Sandipan; Chakraborty, Sibani; Das, Ranjan

    2017-03-01

    An environment sensitive fluorophore, 4-(5-(4-(dimethylamino)phenyl)oxazol-2-yl)benzoic acid (DMOBA), that closely mimics biologically active 2,5-disubstituited oxazoles has been designed to probe two homologous serum proteins, human serum albumin (HSA) and bovine serum albumin (BSA) by means of photophysical and molecular modeling studies. This fluorescent analogue exhibits solvent polarity sensitive fluorescence due to an intramolecular charge transfer in the excited state. In comparison to water, the steady state emission spectra of DMOBA in BSA is characterized by a greater blue shift ( 10 nm) and smaller Stokes' shift ( 5980 cm- 1) in BSA than HSA (Stokes'shift 6600 cm- 1), indicating less polar and more hydrophobic environment of the dye in the former than the latter. The dye-protein binding interactions are remarkably stronger for BSA than HSA which is evident from higher value of the association constant for the DMOBA-BSA complex (Ka 5.2 × 106 M- 1) than the DMOBA-HSA complex (Ka 1.0 × 106 M- 1). Fӧrster resonance energy transfer studies revealed remarkably less efficient energy transfer (8%) between the donor tryptophans in BSA and the acceptor DMOBA dye than that (30%) between the single tryptophan moiety in HSA and the dye, which is consistent with a much larger distance between the donor (tryptophan)-acceptor (dye) pair in BSA (34.5 Å) than HSA (25.4 Å). Site specific competitive binding assays have confirmed on the location of the dye in Sudlow's site II of BSA and in Sudlow's site I of HSA, respectively. Molecular modeling studies have shown that the fluorescent analogue is tightly packed in the binding site of BSA due to strong steric complementarity, where, binding of DMOBA to BSA is primarily dictated by the van der Waals and hydrogen bonding interactions. In contrast, in HSA the steric complementarity is less significant and binding is primarily guided by polar interactions and van der Waals interactions appear to be less significant in the

  18. Chlorpromazine interactions to sera albumins. A study by the quenching of fluorescence

    NASA Astrophysics Data System (ADS)

    Silva, Dilson; Cortez, Célia M.; Louro, Sônia R. W.

    2004-04-01

    Binding of chlorpromazine (CPZ) and hemin (Hmn) to human (HSA) and bovine (BSA) serum albumin was studied by fluorescence quenching technique. Intrinsic fluorescences of BSA and HSA were measured by selectively exciting their tryptophan residues. Gradual quenching was observed by titration of both proteins with CPZ and Hmn. CPZ is a widely used anti-psychosis drug that causes severe side effects and strongly interacts with biomembranes, both in its lipidic and proteic regions. CPZ also interacts with blood components, influences bioavailability, and affects the function of several biomolecules. Albumin plays an important role in the transport and storage of hormones, ions, fatty acids and others substances, including CPZ, affecting the regulation of their plasmatic concentration. Hmn is an important ferric residue of hemoglobin that binds within the hydrophobic region of albumin with great specificity. Hmn added to HSA and BSA solutions at a molar ratio of 1:1 quenched about half of their fluorescence. Stern-Volmer plots obtained from experiments carried out at 25 and 35 °C showed the quenching of fluorescence of HSA and BSA by CPZ to be a collisional phenomenon. Hmn quenches fluorescence by a static process, which specifically indicates the formation of a complex. Our results suggest the prime binding site for CPZ and Hmn on both HSA and BSA to be near tryptophan residues.

  19. Fatty Acid Saturation of Albumin Used in Resuscitation Fluids Modulates Cell Damage in Shock: In Vitro Results Using a Novel Technique to Measure Fatty Acid Binding Capacity.

    PubMed

    Penn, Alexander H; Dubick, Michael A; Torres Filho, Ivo P

    2017-03-21

    The use of albumin for resuscitation has not proven as beneficial in human trials as expected from numerous animal studies. One explanation could be the practice of adding fatty acid (FA) during manufacture of pharmaceutical albumin. During ischemia, unbound free FAs (FFA) in the circulation could potentially induce cellular damage. We hypothesized that albumins with higher available binding capacities (ABC) for FFAs may prevent that damage. Therefore, we developed a technique to measure ABC, determined if pharmaceutical human serum albumin (HSA) has decreased ABC compared to FA-free bovine serum albumin (BSA), and if binding capacity would affect hemolysis when blood is mixed with exogenous FFA at levels similar to those observed in shock. The new assay used exogenous oleic acid (OA), glass fiber filtration, and a FFA assay kit. RBC hemolysis was determined by mixing 0-5 mM OA with PBS, HSA, FA-free BSA, or FA-saturated BSA and measuring plasma hemoglobin after incubation with human blood. 5% HSA contained 4.7±0.2 mM FFA, leaving an ABC of 5.0 ± 0.6 mM, compared to FA-free BSA's ABC of 7.0 ± 1.3 mM (P < 0.024). Hemolysis after OA was reduced with FA-free BSA but increased with FA-saturated BSA. HSA provided intermediate results. 25% solutions of FA-free BSA and HSA were more protective, while 25% FA-saturated BSA was more damaging than 5% solutions. These findings suggest that increased FA saturation may reverse albumin's potential benefit to lessen cellular damage and may explain, at least in part, its failure in human trauma studies.

  20. The effect of Cu2+ on interaction between flavonoids with different C-ring substituents and bovine serum albumin: structure-affinity relationship aspect.

    PubMed

    Zhang, Yuping; Shi, Shuyun; Sun, Xiaorui; Xiong, Xiang; Peng, Mijun

    2011-12-01

    Four flavonoids quercetin (QU), luteolin (LU), taxifolin (TA) and (+)-catechin (CA) with the same A- and B-rings but different C-ring substituents have been investigated for their binding to bovine serum albumin (BSA) in the absence and presence of Cu(2+) by means of various spectroscopic methods such as fluorescence, UV-visible and circular dichroism (CD). The results indicated that hydroxyl group at 3-position increased the binding affinities between flavonoids and BSA. The values of the binding affinities were in the order: QU>CA>TA>LU. The presence of Cu(2+) affected the interactions of flavonoids with BSA significantly. The binding affinities of QU and TA for BSA were decreased about 6.7% and 13.2%. However, the binding affinities of LU and CA for BSA were increased about 43.0% and 20.7%. The formation of Cu(2+)-flavonoid complex and steric hindrance together influenced the binding affinities of QU, LU and TA for BSA, while the conformational change of BSA may be the main reason for the increased binding affinity of CA for BSA. However, the quenching mechanism for QU, LU, TA and CA to BSA was based on static quenching combined with non-radiative energy transfer irrespective of the absence or presence of Cu(2+). The UV-visible results showed the change in BSA conformation and the formation of flavonoid-Cu(2+) complex. The CD results also explained the conformational changes of BSA on binding with flavonoids.

  1. Structural studies of bovine, equine, and leporine serum albumin complexes with naproxen.

    PubMed

    Bujacz, Anna; Zielinski, Kamil; Sekula, Bartosz

    2014-09-01

    Serum albumin, a protein naturally abundant in blood plasma, shows remarkable ligand binding properties of numerous endogenous and exogenous compounds. Most of serum albumin binding sites are able to interact with more than one class of ligands. Determining the protein-ligand interactions among mammalian serum albumins is essential for understanding the complexity of this transporter. We present three crystal structures of serum albumins in complexes with naproxen (NPS): bovine (BSA-NPS), equine (ESA-NPS), and leporine (LSA-NPS) determined to 2.58 Å (C2), 2.42 Å (P61), and 2.73 Å (P2₁2₁2₁) resolutions, respectively. A comparison of the structurally investigated complexes with the analogous complex of human serum albumin (HSA-NPS) revealed surprising differences in the number and distribution of naproxen binding sites. Bovine and leporine serum albumins possess three NPS binding sites, but ESA has only two. All three complexes of albumins studied here have two common naproxen locations, but BSA and LSA differ in the third NPS binding site. None of these binding sites coincides with the naproxen location in the HSA-NPS complex, which was obtained in the presence of other ligands besides naproxen. Even small differences in sequences of serum albumins from various species, especially in the area of the binding pockets, influence the affinity and the binding mode of naproxen to this transport protein.

  2. Prevention of hemodynamic and vascular albumin filtration changes in diabetic rats by aldose reductase inhibitors

    SciTech Connect

    Tilton, R.G.; Chang, K.; Pugliese, G.; Eades, D.M.; Province, M.A.; Sherman, W.R.; Kilo, C.; Williamson, J.R. )

    1989-10-01

    This study investigated hemodynamic changes in diabetic rats and their relationship to changes in vascular albumin permeation and increased metabolism of glucose to sorbitol. The effects of 6 wk of streptozocin-induced diabetes and three structurally different inhibitors of aldose reductase were examined on (1) regional blood flow (assessed with 15-microns 85Sr-labeled microspheres) and vascular permeation by 125I-labeled bovine serum albumin (BSA) and (2) glomerular filtration rate (assessed by plasma clearance of 57Co-labeled EDTA) and urinary albumin excretion (determined by radial immunodiffusion assay). In diabetic rats, blood flow was significantly increased in ocular tissues (anterior uvea, posterior uvea, retina, and optic nerve), sciatic nerve, kidney, new granulation tissue, cecum, and brain. 125I-BSA permeation was increased in all of these tissues except brain. Glomerular filtration rate and 24-h urinary albumin excretion were increased 2- and 29-fold, respectively, in diabetic rats. All three aldose reductase inhibitors completely prevented or markedly reduced these hemodynamic and vascular filtration changes and increases in tissue sorbitol levels in the anterior uvea, posterior uvea, retina, sciatic nerve, and granulation tissue. These observations indicate that early diabetes-induced hemodynamic changes and increased vascular albumin permeation and urinary albumin excretion are aldose reductase-linked phenomena. Discordant effects of aldose reductase inhibitors on blood flow and vascular albumin permeation in some tissues suggest that increased vascular albumin permeation is not entirely attributable to hemodynamic change.

  3. Spectroscopic studies on the interaction between tetrandrine and two serum albumins by chemometrics methods

    NASA Astrophysics Data System (ADS)

    Cheng, Zhengjun; Liu, Rong; jiang, Xiaohui

    2013-11-01

    The binding interactions of tetrandrine (TETD) with bovine serum albumin (BSA) and human serum albumin (HSA) have been investigated by spectroscopic methods. These experimental data were further analyzed using multivariate curve resolution-alternating least squares (MCR-ALS) method, and the concentration profiles and pure spectra for three species (BSA/HSA, TETD and TETD-BSA/HSA) existed in the interaction procedure, as well as, the apparent equilibrium constants Kapp were evaluated. The binding sites number n and the binding constants K were obtained at various temperatures. The binding distance between TETD and BSA/HSA was 1.455/1.451 nm. The site markers competitive experiments indicated that TETD primarily bound to the tryptophan residue of BSA/HSA within site I. The thermodynamic parameters (ΔG, ΔH and ΔS) calculated on the basis of different temperatures revealed that the binding of TETD-BSA was mainly depended on the hydrophobic interaction strongly and electrostatic interaction, and yet the binding of TETD-HSA was strongly relied on the hydrophobic interaction. The results of synchronous fluorescence, 3D fluorescence and FT-IR spectra show that the conformation of proteins has altered in the presence of TETD. In addition, the effect of some common ions on the binding constants between TETD and proteins were also discussed.

  4. Spectroscopic studies on the interaction between tetrandrine and two serum albumins by chemometrics methods.

    PubMed

    Cheng, Zhengjun; Liu, Rong; Jiang, Xiaohui

    2013-11-01

    The binding interactions of tetrandrine (TETD) with bovine serum albumin (BSA) and human serum albumin (HSA) have been investigated by spectroscopic methods. These experimental data were further analyzed using multivariate curve resolution-alternating least squares (MCR-ALS) method, and the concentration profiles and pure spectra for three species (BSA/HSA, TETD and TETD-BSA/HSA) existed in the interaction procedure, as well as, the apparent equilibrium constants Kapp were evaluated. The binding sites number n and the binding constants K were obtained at various temperatures. The binding distance between TETD and BSA/HSA was 1.455/1.451nm. The site markers competitive experiments indicated that TETD primarily bound to the tryptophan residue of BSA/HSA within site I. The thermodynamic parameters (ΔG, ΔH and ΔS) calculated on the basis of different temperatures revealed that the binding of TETD-BSA was mainly depended on the hydrophobic interaction strongly and electrostatic interaction, and yet the binding of TETD-HSA was strongly relied on the hydrophobic interaction. The results of synchronous fluorescence, 3D fluorescence and FT-IR spectra show that the conformation of proteins has altered in the presence of TETD. In addition, the effect of some common ions on the binding constants between TETD and proteins were also discussed.

  5. Toxic effects of different charged metal ions on the target—Bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Liu, Rutao; Chi, Zhenxing; Gao, Canzhu

    2011-01-01

    In this work, the toxic influence of metallic ions (Na +, Cu 2+, Al 3+) on the serum albumin were studied by fluorescence, resonance light scattering (RLS), synchronous fluorescence, UV-vis absorption and circular dichroism (CD) spectroscopy. The experimental results indicated that ion electric charge is not the main factor affecting the structure of bovine serum albumin (BSA). Na + made the structure of BSA tighter and hydrophobicity enhanced, which improved fluorescence intensity, while Cu 2+ could react with some functional groups of BSA, making the structure of BSA looser, so that the internal hydrophobic groups such as tryptophan (Trp) and other aromatic residues were gradually exposed. When we observed them with fluorescence spectra, we found fluorescence quenching with increasing Cu 2+ dose. Al 3+ is shown as little significant influence on the BSA, but BSA was found to aggregate with the dose of Al 3+ by means of RLS because of the hydrolysis and ion strength effect of Al 3+. The results also proved normal saline could keep lives healthy and good-working as a biological humour, however, heavy metals made harmful effects to the body when they exceeded the minimal effect level (MEL), such as Cu 2+ chosen in our work.

  6. The interaction between cepharanthine and two serum albumins: multiple spectroscopic and chemometric investigations.

    PubMed

    Cheng, Zhengjun; Liu, Rong; Jiang, Xiaohui; Xu, Qianyong

    2014-08-01

    The binding modes of cepharanthine (CEPT) with bovine serum albumin (BSA) and human serum albumin (HSA) have been established by reproducing physiological conditions, which is very important to understand the pharmacokinetics and toxicity of CEPT. These spectral data were further analyzed by the multivariate curve resolution-alternating least squares method. Moreover, the concentration profiles and pure spectra of three species (BSA/HSA, CEPT and CEPT-BSA/HSA) and the apparent equilibrium constants K(app) were evaluated. The experimental results showed that CEPT could quench the fluorescence intensity of BSA/HSA by a combined quenching (static and dynamic) procedure. The binding constant (K), the thermodynamic parameters (ΔG, ΔH and ΔS) and binding subdomain were measured, and indicated that CEPT could spontaneously bind to BSA/HSA on subdomain IIA through the hydrophobic interactions. The effect of CEPT on the secondary structure of proteins has been analyzed by circular dichroism, 3D fluorescence and Fourier transform infrared spectra. The binding distance between CEPT and tryptophan of BSA/HSA was 2.305/1.749 nm, which is based on the Förster resonance energy transfer theory.

  7. In situ measurement of bovine serum albumin interaction with gold nanospheres

    PubMed Central

    Dominguez-Medina, Sergio; McDonough, Steven; Swanglap, Pattanawit; Landes, Christy F.; Link, Stephan

    2012-01-01

    Here we present in situ observations of adsorption of bovine serum albumin (BSA) on citrate-stabilized gold nanospheres. We implemented scattering correlation spectroscopy as a tool to quantify changes in the nanoparticle Brownian motion resulting from BSA adsorption onto the nanoparticle surface. Protein binding was observed as an increase in the nanoparticle hydrodynamic radius. Our results indicate the formation of a protein monolayer at similar albumin concentrations as those found in human blood. Additionally, by monitoring the frequency and intensity of individual scattering events caused by single gold nanoparticles passing the observation volume, we found that BSA did not induce colloidal aggregation, a relevant result from the toxicological viewpoint. Moreover, to elucidate the thermodynamics of the gold nanoparticle-BSA association, we measured an adsorption isotherm which was best described by an anti-cooperative binding model. The number of binding sites based on this model was consistent with a BSA monolayer in its native state. In contrast, experiments using poly-ethylene glycol capped gold nanoparticles revealed no evidence for adsorption of BSA. PMID:22515552

  8. Spectroscopic and molecular modelling studies of binding mechanism of metformin with bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Sharma, Deepti; Ojha, Himanshu; Pathak, Mallika; Singh, Bhawna; Sharma, Navneet; Singh, Anju; Kakkar, Rita; Sharma, Rakesh K.

    2016-08-01

    Metformin is a biguanide class of drug used for the treatment of diabetes mellitus. It is well known that serum protein-ligand binding interaction significantly influence the biodistribution of a drug. Current study was performed to characterize the binding mechanism of metformin with serum albumin. The binding interaction of the metformin with bovine serum albumin (BSA) was examined using UV-Vis absorption spectroscopy, fluorescence, circular dichroism, density functional theory and molecular docking studies. Absorption spectra and fluorescence emission spectra pointed out the weak binding of metformin with BSA as was apparent from the slight change in absorbance and fluorescence intensity of BSA in presence of metformin. Circular dichroism study implied the significant change in the conformation of BSA upon binding with metformin. Density functional theory calculations showed that metformin has non-planar geometry and has two energy states. The docking studies evidently signified that metformin could bind significantly to the three binding sites in BSA via hydrophobic, hydrogen bonding and electrostatic interactions. The data suggested the existence of non-covalent specific binding interaction in the complexation of metformin with BSA. The present study will certainly contribute to the development of metformin as a therapeutic molecule.

  9. Interaction of triprolidine hydrochloride with serum albumins: thermodynamic and binding characteristics, and influence of site probes.

    PubMed

    Sandhya, B; Hegde, Ashwini H; Kalanur, Shankara S; Katrahalli, Umesha; Seetharamappa, J

    2011-04-05

    The interaction between triprolidine hydrochloride (TRP) to serum albumins viz. bovine serum albumin (BSA) and human serum albumin (HSA) has been studied by spectroscopic methods. The experimental results revealed the static quenching mechanism in the interaction of TRP with protein. The number of binding sites close to unity for both TRP-BSA and TRP-HSA indicated the presence of single class of binding site for the drug in protein. The binding constant values of TRP-BSA and TRP-HSA were observed to be 4.75 ± 0.018 × 10(3) and 2.42 ± 0.024 × 10(4)M(-1) at 294 K, respectively. Thermodynamic parameters indicated that the hydrogen bond and van der Waals forces played the major role in the binding of TRP to proteins. The distance of separation between the serum albumin and TRP was obtained from the Förster's theory of non-radioactive energy transfer. The metal ions viz., K(+), Ca(2+), Co(2+), Cu(2+), Ni(2+), Mn(2+) and Zn(2+) were found to influence the binding of the drug to protein. Displacement experiments indicated the binding of TRP to Sudlow's site I on both BSA and HSA. The CD, 3D fluorescence spectra and FT-IR spectral results revealed the changes in the secondary structure of protein upon interaction with TRP.

  10. The effect of structural alterations of three mammalian serum albumins on their binding properties

    NASA Astrophysics Data System (ADS)

    Równicka-Zubik, J.; Sułkowski, L.; Maciążek-Jurczyk, M.; Sułkowska, A.

    2013-07-01

    The binding of piroxicam (PIR) to human (HSA), bovine (BSA) and sheep (SSA) serum albumin in native and destabilized/denaturated state was studied by the fluorescence quenching technique. Quenching of the intrinsic fluorescence of three analyzed serum albumins was observed due to selective exciting of tryptophanyl and tyrosil residues at 295 nm and 280 nm. Based on fluorescence emission spectra the quenching (KQ) and binding constants (Ka) were determined. The results showed that PIR is bound mainly in IIA subdomain of HSA and is additionally able to interact with tyrosil groups located in subdomains IB, IIB or IIIA. PIR interacts only with tryptophanyl residues of BSA and SSA [Trp-214, Trp-237 (IIA) and Trp-135, Trp-158 (IB)]. The presence of denaturating factors modified the mechanism of fluorescence quenching of SSA by PIR. Linear Scatchard plots suggest that HSA, BSA and SSA bind PIR in one class of binding sites.

  11. Interaction and oxidative damage of DVDMS to BSA: a study on the mechanism of photodynamic therapy-induced cell death.

    PubMed

    Li, Li; Wang, Huiyu; Wang, Haiping; Li, Lijun; Wang, Pan; Wang, Xiaobing; Liu, Quanhong

    2017-03-02

    Photodynamic therapy (PDT) is a promising method for neoplastic and nonneoplastic diseases. In this study, we utilized sinoporphyrin sodium (DVDMS) as a sensitizer combined with light to investigate its cytotoxic effect on different cell lines. For this purpose, we chose bovine serum albumin (BSA) as a model to explore the mechanism of PDT-induced cell death at a molecular level. Our findings indicated that the combined treatment significantly suppressed cell survival. Fluorescence spectroscopy revealed a strong interaction between DVDMS and BSA molecules in aqueous solution, affecting DVDMS' targeting distribution and metabolism. Spectroscopic analysis and carbonyl content detection indicated that DVDMS-PDT significantly enhanced the damage of BSA at a higher extent than Photofrin II-PDT under similar experimental conditions. Our observations were consistent with the cytotoxicity results. Excessive reactive oxygen species (ROS) were induced by the synergy effect of the sensitizer and light, which played an important role in damaging BSA and tumor cells. These results suggested that the interaction and oxidative damage of protein molecules by DVDMS were the main reasons to cell death and constitute a valuable reference for future DVDMS-PDT investigations.

  12. Fe3O4/BSA particles induce osteogenic differentiation of mesenchymal stem cells under static magnetic field.

    PubMed

    Jiang, Pengfei; Zhang, Yixian; Zhu, Chaonan; Zhang, Wenjing; Mao, Zhengwei; Gao, Changyou

    2016-12-01

    Differentiation of stem cells is influenced by many factors, yet uptake of the magnetic particles with or without magnetic field is rarely tackled. In this study, iron oxide nanoparticles-loaded bovine serum albumin (BSA) (Fe3O4/BSA) particles were prepared, which showed a spherical morphology with a diameter below 200 nm, negatively charged surface, and tunable magnetic property. The particles could be internalized into bone marrow mesenchymal stem cells (MSCs), and their release from the cells was significantly retarded under external magnetic field, resulting in almost twice intracellular amount of the particles within 21 d compared to that of the magnetic field free control. Uptake of the Fe3O4/BSA particles enhanced significantly the osteogenic differentiation of MSCs under a static magnetic field, as evidenced by elevated alkaline phosphatase (ALP) activity, calcium deposition, and expressions of collagen type I and osteocalcin at both mRNA and protein levels. Therefore, uptake of the Fe3O4/BSA particles brings significant influence on the differentiation of MSCs under magnetic field, and thereby should be paid great attention for practical applications.

  13. Interaction and oxidative damage of DVDMS to BSA: a study on the mechanism of photodynamic therapy-induced cell death

    PubMed Central

    Li, Li; Wang, Huiyu; Wang, Haiping; Li, Lijun; Wang, Pan; Wang, Xiaobing; Liu, Quanhong

    2017-01-01

    Photodynamic therapy (PDT) is a promising method for neoplastic and nonneoplastic diseases. In this study, we utilized sinoporphyrin sodium (DVDMS) as a sensitizer combined with light to investigate its cytotoxic effect on different cell lines. For this purpose, we chose bovine serum albumin (BSA) as a model to explore the mechanism of PDT-induced cell death at a molecular level. Our findings indicated that the combined treatment significantly suppressed cell survival. Fluorescence spectroscopy revealed a strong interaction between DVDMS and BSA molecules in aqueous solution, affecting DVDMS’ targeting distribution and metabolism. Spectroscopic analysis and carbonyl content detection indicated that DVDMS-PDT significantly enhanced the damage of BSA at a higher extent than Photofrin II-PDT under similar experimental conditions. Our observations were consistent with the cytotoxicity results. Excessive reactive oxygen species (ROS) were induced by the synergy effect of the sensitizer and light, which played an important role in damaging BSA and tumor cells. These results suggested that the interaction and oxidative damage of protein molecules by DVDMS were the main reasons to cell death and constitute a valuable reference for future DVDMS-PDT investigations. PMID:28252029

  14. Investigation of adsorption behavior of (-)-epigallocatechin gallate on bovine serum albumin surface using quartz crystal microbalance with dissipation monitoring.

    PubMed

    Wang, Xiaoyong; Ho, Chi-Tang; Huang, Qingrong

    2007-06-27

    Quartz crystal microbalance with dissipation monitoring (QCM-D) has been employed to study the interactions between (-)-epigallocatechin gallate (EGCG) and bovine serum albumin (BSA) surface. The adsorbed mass, thickness, and viscoelastic properties of EGCG adlayer on BSA surface at various EGCG concentrations, temperatures, sodium chloride concentrations, and pH values have been determined by QCM-D in combination with the Voigt model. The adsorption isotherm of EGCG on BSA surfaces can be better described by the Freundlich model than the Langmuir model, indicating that EGCG adsorption on BSA surfaces is dominated by nonspecific hydrophobic interactions, as supported by stronger EGCG adsorption at higher temperature. Shifts in the Fourier transform infrared spectra of the BSA surface with and without EGCG adsorption disclose that hydrogen bonding might also be involved in EGCG adsorption on BSA surfaces. The addition of salt and change of pH can also influence the EGCG adsorption on BSA surfaces. Usually, higher EGCG adsorption leads to higher values of viscosity and shear elastic modulus of EGCG adlayer, which can be explained by the aggregation of BSA through EGCG bridges. Compared with EGCG, nongalloylated (+)-catechin shows much lower adsorption capacity on BSA surfaces, suggesting the importance of the galloyl group in polyphenol/protein interactions.

  15. Combined spectroscopies and molecular docking approach to characterizing the binding interaction between lisinopril and bovine serum albumin.

    PubMed

    Jiang, Min; Huang, Chuan-ren; Wang, Qi; Zhu, Ying-yao; Wang, Jing; Chen, Jun; Shi, Jie-hua

    2016-03-01

    To further understand the mode of action and pharmacokinetics of lisinopril, the binding interaction of lisinopril with bovine serum albumin (BSA) under imitated physiological conditions (pH 7.4) was investigated using fluorescence emission spectroscopy, synchronous fluorescence spectroscopy, Fourier transform infrared spectroscopy (FTIR), circular dichroism (CD) and molecular docking methods. The results showed that the fluorescence quenching of BSA near 338 nm resulted from the formation of a lisinopril-BSA complex. The number of binding sites (n) for lisinopril binding on subdomain IIIA (site II) of BSA and the binding constant were ~ 1 and 2.04 × 10(4) M(-1), respectively, at 310 K. The binding of lisinopril to BSA induced a slight change in the conformation of BSA, which retained its α-helical structure. However, the binding of lisinopril with BSA was spontaneous and the main interaction forces involved were van der Waal's force and hydrogen bonding interaction as shown by the negative values of ΔG(0), ΔH(0) and ΔS(0) for the binding of lisinopril with BSA. It was concluded from the molecular docking results that the flexibility of lisinopril also played an important role in increasing the stability of the lisinopril-BSA complex.

  16. Folic acid-grafted bovine serum albumin decorated graphene oxide: An efficient drug carrier for targeted cancer therapy.

    PubMed

    Ma, Naxin; Liu, Jing; He, Wenxiu; Li, Zhonghao; Luan, Yuxia; Song, Yunmei; Garg, Sanjay

    2017-03-15

    Targeting drug carrier systems based on graphene oxide (GO) are of great interest, since it can selectively deliver anticancer drugs to tumor cells, and enhance therapeutic activities with minimized side effects. However, direct grafting target molecules on GO usually results in aggregation of physiological fluid, limiting its biomedical applications. Here, we propose a new strategy to construct targeting GO drug carrier using folic acid grafted bovine serum albumin (FA-BSA) as both the stabilizer and targeting agent. FA-BSA decorated graphene oxide-based nanocomposite (FA-BSA/GO) was fabricated by the physical adsorption of FA-BSA on GO, which was developed as a targeting drug delivery carrier. FA-BSA/GO as the drug carrier was associated with anticancer drug doxorubicin (DOX) through π-π and hydrogen-bond interactions, resulting in high drug loading (up to 437.43μgDOX/mgFA-BSA/GO). FA-BSA/GO/DOX systems demonstrated pH responsive and sustained drug release. The hemolysis ratio of FA-BSA/GO was less than 5%, demonstrating its safety as drug carrier for intravenous injection. Moreover, in vitro cell cytotoxicity and cellular uptake analysis suggested that the constructed FA-BSA/GO/DOX nanohybrids could significantly enhance the anticancer activity. The present work has confirmed the potential for fabrication of highly stable and dispersible GO-based targeting delivery systems for efficient cancer therapy.

  17. Systematic mutation of bacteriophage T4 lysozyme.

    PubMed

    Rennell, D; Bouvier, S E; Hardy, L W; Poteete, A R

    1991-11-05

    Amber mutations were introduced into every codon (except the initiating AUG) of the bacteriophage T4 lysozyme gene. The amber alleles were introduced into a bacteriophage P22 hybrid, called P22 e416, in which the normal P22 lysozyme gene is replaced by its T4 homologue, and which consequently depends upon T4 lysozyme for its ability to form a plaque. The resulting amber mutants were tested for plaque formation on amber suppressor strains of Salmonella typhimurium. Experiments with other hybrid phages engineered to produce different amounts of wild-type T4 lysozyme have shown that, to score as deleterious, a mutation must reduce lysozyme activity to less than 3% of that produced by wild-type P22 e416. Plating the collection of amber mutants covering 163 of the 164 codons of T4 lysozyme, on 13 suppressor strains that each insert a different amino acid substitutions at every position in the protein (except the first). Of the resulting 2015 single amino acid substitutions in T4 lysozyme, 328 were found to be sufficiently deleterious to inhibit plaque formation. More than half (55%) of the positions in the protein tolerated all substitutions examined. Among (N-terminal) amber fragments, only those of 161 or more residues are active. The effects of many of the deleterious substitutions are interpretable in light of the known structure of T4 lysozyme. Residues in the molecule that are refractory to replacements generally have solvent-inaccessible side-chains; the catalytic Glu11 and Asp20 residues are notable exceptions. Especially sensitive sites include residues involved in buried salt bridges near the catalytic site (Asp10, Arg145 and Arg148) and a few others that may have critical structural roles (Gly30, Trp138 and Tyr161).

  18. Study on the interaction between carbonyl-fused N-confused porphyrin and bovine serum albumin by spectroscopic techniques.

    PubMed

    Yu, Xianyong; Liao, Zhixi; Jiang, Bingfei; Zheng, Lingyi; Li, Xiaofang

    2014-12-10

    The interaction between carbonyl-fused N-confused porphyrin (CF-NCP) and bovine serum albumin (BSA) was investigated by fluorescence and ultraviolet-visible (UV-Vis) spectroscopy. The results indicated that CF-NCP has strong ability to quench the intrinsic fluorescence of BSA by forming complexes. The binding constants (Ka), binding sites (n) were obtained. The corresponding thermodynamic parameters (ΔH, ΔS and ΔG) of the interaction system were calculated at three different temperatures. The results revealed that the binding process is spontaneous, and the acting force between CF-NCP and BSA were mainly electrostatic forces. According to Förster non-radiation energy transfer theory, the binding distance between CF-NCP and BSA was calculated to be 4.37nm. What is more, the conformation of BSA was observed from synchronous fluorescence spectroscopy.

  19. Study on the interaction between 21-(Ph-NN)-NCTPP and bovine serum albumin by spectroscopic techniques.

    PubMed

    Yu, Xianyong; Jiang, Bingfei; Liao, Zhixi; Li, Xiaofang

    2015-05-05

    The interaction between 21-(Ph-NN)-NCTPP and bovine serum albumin (BSA) was investigated by fluorescence and ultraviolet-visible (UV-Vis) spectroscopy under imitated physiological conditions. The results showed that the intrinsic fluorescence of BSA was quenched strongly by 21-(Ph-NN)-NCTPP. The binding constants (Ka) and the binding sites (n) were obtained at three different temperatures (298, 304, and 310K). The thermodynamic parameters (ΔH, ΔS and ΔG) of the interaction system were calculated, the results indicated that the binding process was spontaneous and the hydrophobic interaction played a major role in [21-(Ph-NN)-NCTPP]-BSA binding process. Based on the Förster non-radiation energy transfer theory, the binding distance from 21-(Ph-NN)-NCTPP to BSA was estimated to be about 3.51nm. What's more, the synchronous fluorescence spectra indicated that the conformation of BSA has not been changed.

  20. Comparative studies on the interaction of caffeic acid, chlorogenic acid and ferulic acid with bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Li, Shuang; Huang, Kelong; Zhong, Ming; Guo, Jun; Wang, Wei-zheng; Zhu, Ronghua

    2010-10-01

    The substitution of the hydrogen on aromatic and esterification of carboxyl group of the phenol compounds plays an important role in their bio-activities. In this paper, caffeic acid (CaA), chlorogenic acid (ChA) and ferulic acid (FA) were selected to investigate the binding to bovine serum albumin (BSA) using UV absorption spectroscopy, fluorescence spectroscopy and synchronous fluorescence spectroscopy. It was found that the methoxyl group substituting for the 3-hydroxyl group of CaA decreased the affinity for BSA and the esterification of carboxyl group of CaA with quinic acid increased the affinities. The affinities of ChA and FA with BSA were more sensitive to the temperature than that of CaA with BSA. Synchronous fluorescence spectroscopy and time-resolved fluorescence indicated that the Stern-Volmer plots largely deviated from linearity at high concentrations and were caused by complete quenching of the tyrosine fluorescence of BSA.

  1. 3,6-diHydroxyflavone/bovine serum albumin interaction in cyclodextrin medium: Absorption and emission monitoring

    NASA Astrophysics Data System (ADS)

    Voicescu, Mariana; Bandula, Rodica

    2015-03-01

    Photophysical properties of a bioactive flavonol which can be used as a model for polyhydroxylated natural flavonols, 3,6-diHydroxyflavone (3,6-diHF) in cyclodextrins (CDs)/bovine serum albumin (BSA) systems have been studied by absorption and fluorescence spectroscopy. The influence of CDs nature and of the different molar ratios BSA/CDs on the fluorescent characteristics of 3,6-diHF, and on the excited - state intramolecular proton transfer (ESIPT) process were studied. Quantitative information on the interaction between 3,6-diHF and BSA in CDs medium, were estimated. The influence of temperature (25-60 °C range) on the intrinsic fluorescence of BSA in 3,6-diHF/BSA/CDs systems, was investigated. The results are discussed with relevance to 3,6-diHF as a potential sensitive fluorescence probe in the systems of biological interest.

  2. Osmotically unresponsive water fraction on proteins: non-ideal osmotic pressure of bovine serum albumin as a function of pH and salt concentration.

    PubMed

    Fullerton, Gary D; Kanal, Kalpana M; Cameron, Ivan L

    2006-01-01

    How much does protein-associated water differ in colligative properties (freezing point, boiling point, vapor pressure and osmotic behavior) from pure bulk water? This question was approached by studying the globular protein bovine serum albumin (BSA), using changes in pH and salt concentration to alter its native structural conformation and state of aggregation. BSA osmotic pressure was investigated experimentally and analyzed using the molecular model of Fullerton et al. [Biochem Cell Biol 1992;70(12):1325]. Analysis yielded both the extent of osmotically unresponsive water (OUW) and the effective molecular weight values of the membrane-impermeable BSA solute. Manipulation of BSA conformation and aggregation by membrane-penetrating cosolutes show that alterations in pH and salt concentration change the amount of bulk water that escapes into BSA from a minimum of 1.4 to a maximum of 11.7 g water per g dry mass BSA.

  3. Effects of pH and metal ions on the conformation of bovine serum albumin in aqueous solution An attenuated total reflection (ATR) FTIR spectroscopic study

    NASA Astrophysics Data System (ADS)

    Qing, Huai; Yanlin, He; Fenlin, Sheng; Zuyi, Tao

    1996-11-01

    The Hummel-Dreyer gel permeation technique has been applied to investigate the binding of bovine serum albumin (BSA) with Zn 2+ and Cd 2+, and has provided evidence for the existence of two different types of binding sites in the BSA molecule. The effects of pH and the presence of metal ions Zn 2- and Cd 2+ on the conformation of BSA were investigated using ATR FTIR Spectroscopy. The results demonstrated that there were different conformational states in BSA at pH 5.0 and 9.0. Furthermore, we observed the spectral changes of BSA in the amide I region and major metal ion (Zn 2+ and Cd 2+) binding sites which were CO and CN groups of BSA.

  4. Catalytic damage of bovine serum albumin by metronidazole under ultrasonic irradiation in the presence of nano-sized TiO2 powder

    NASA Astrophysics Data System (ADS)

    Wang, J.; Wang, Z. G.; Jin, X. D.; Guo, Y. W.; Gao, J. Q.; Li, K.; Wang, B. X.; Li, Y.

    2012-05-01

    In previous work, it was found that the bovine serum albumin (BSA) could obviously be damaged by nano-sized TiO2 powder as a sonocatalyst under ultrasonic irradiation. In this work, metronidazole (MTZ) was adopted as a sensitizer to intensify the damage of BSA molecules. It was found that the damage degree of BSA molecules in the presence of MTZ was more serious than in the absence of MTZ. That is, under ultrasonic irradiation combined with nano-sized TiO2 powder, the addition of MTZ could remarkably aggravate the damage to BSA molecules. Meanwhile, the damage degree was also affected by some influence factors, such as ultrasonic irradiation time, ultrasonic irradiation power, MTZ concentration, solution acidity, ionic strength and solution temperature. In addition, the damage site of BSA molecules was also estimated by synchronous fluorescence spectra. It was found that the damage site of BSA molecules was mainly at tyrosine (Tyr) residue.

  5. Synthesis and biological evaluation of novel benzimidazole derivatives and their binding behavior with bovine serum albumin.

    PubMed

    Zhang, Shao-Lin; Damu, Guri L V; Zhang, Ling; Geng, Rong-Xia; Zhou, Cheng-He

    2012-09-01

    A series of novel benzimidazole derivatives were synthesized and characterized by (1)H NMR, (13)C NMR, MS, IR and HRMS spectra. All the new compounds were screened for their antimicrobial activities in vitro by two-fold serial dilution technique. Bioactive assay manifested that the bis-benzimidazole derivative 11d and its hydrochloride 13b exhibited remarkable antimicrobial activities, which were comparable or even better than the reference drugs Norfloxacin, Chloromycin and Fluconazole. The interaction evaluation of compound 11d with bovine serum albumin (BSA) by Fluorescence and UV-vis absorption spectroscopic method showed that BSA could generate fluorescent quenching under approximately human physiological conditions by the prepared benzimidazole compound 11d as result of the formation of ground-state compound 11d-BSA complex. The thermodynamic parameters indicated that the hydrogen bonds and van der Waals forces played major roles in the strong association of benzimidazole 11d and BSA.

  6. Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein

    SciTech Connect

    Kreader, C.A.

    1996-03-01

    The benefits of adding bovine serum albumin (BSA) or T4 gene 32 proteins (gp32) to PCR were evaluated with reaction mixtures containing substances that inhibit amplification. Whereas 10- to 1,000-fold more FeCl{sub 3}, hemin, fulvic acids, humic acids, tannic acids, or extracts from feces, freshwater, or marine water were accommodated in PCR when either 400 ng of BSA per {mu}l was included in the reactions, neither BSA nor gp32 relieved interference significantly when minimum inhibitory levels of bile salts, bilirubin, EDTA, NaCl, sodium dodecyl sulfate, or Triton X-100 were present. Use of BSA and gp32 together offered no more relief of inhibition than either alone at its optimal level, and neither protein had any noticeable effect on amplification in the absence of inhibitors. 21 refs., 3 figs.

  7. Glycation of bovine serum albumin by ascorbate in vitro: Possible contribution of the ascorbyl radical?

    PubMed Central

    Sadowska-Bartosz, Izabela; Stefaniuk, Ireneusz; Galiniak, Sabina; Bartosz, Grzegorz

    2015-01-01

    Ascorbic acid (AA) has been reported to be both pro-and antiglycating agent. In vitro, mainly proglycating effects of AA have been observed. We studied the glycation of bovine serum albumin (BSA) induced by AA in vitro. BSA glycation was accompanied by oxidative modifications, in agreement with the idea of glycoxidation. Glycation was inhibited by antioxidants including polyphenols and accelerated by 2,​2′-​azobis-​2-​methyl-​propanimidamide and superoxide dismutase. Nitroxides, known to oxidize AA, did not inhibit BSA glycation. A good correlation was observed between the steady-state level of the ascorbyl radical in BSA samples incubated with AA and additives and the extent of glycation. On this basis we propose that ascorbyl radical, in addition to further products of AA oxidation, may initiate protein glycation. PMID:26202868

  8. Glycation of bovine serum albumin by ascorbate in vitro: Possible contribution of the ascorbyl radical?

    PubMed

    Sadowska-Bartosz, Izabela; Stefaniuk, Ireneusz; Galiniak, Sabina; Bartosz, Grzegorz

    2015-12-01

    Ascorbic acid (AA) has been reported to be both pro-and antiglycating agent. In vitro, mainly proglycating effects of AA have been observed. We studied the glycation of bovine serum albumin (BSA) induced by AA in vitro. BSA glycation was accompanied by oxidative modifications, in agreement with the idea of glycoxidation. Glycation was inhibited by antioxidants including polyphenols and accelerated by 2,​2'-​azobis-​2-​methyl-​propanimidamide and superoxide dismutase. Nitroxides, known to oxidize AA, did not inhibit BSA glycation. A good correlation was observed between the steady-state level of the ascorbyl radical in BSA samples incubated with AA and additives and the extent of glycation. On this basis we propose that ascorbyl radical, in addition to further products of AA oxidation, may initiate protein glycation.

  9. Assessment of the europium(III) binding sites on albumin using fluorescence spectroscopy.

    PubMed

    Tikhonova, Tatiana N; Shirshin, Evgeny A; Budylin, Gleb S; Fadeev, Victor V; Petrova, Galina P

    2014-06-19

    Intrinsic fluorescence quenching of bovine serum albumin (BSA) and europium(III) luminescence in BSA complexes were investigated. The number of BSA binding sites (n) and equilibrium constant (Keq) values were determined from both measurements provided qualitatively different results. While the modified Stern-Volmer relation for BSA fluorescence quenching gave n = 1 at pH 4.5 and pH 6, two sets of binding sites were determined from Eu(3+) luminescence with n1 = 2, n2 = 4 at pH 6 and n1 = 1, n2 = 2 at pH 4.5. The model explaining the discrepancy between the results obtained by these fluorescent approaches was suggested, and the limitations in application of the "log-log" Stern-Volmer plots in analysis of binding processes were discussed.

  10. Spectroscopic study of the competitive interaction between streptomycin and Evans blue to bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Huang, Jü-qin; Lv, Qing-luan; Wang, Huai You

    2011-12-01

    The mechanism of the competitive interaction of streptomycin and Evans blue (EB) to bovine serum albumin (BSA) has been studied by using both fluorimetry and spectrophtometry. Effects of pH, streptomycin and concentration of EB on the competitive interaction of streptomycin and EB were examined. A static fluorescence quenching process was confirmed in the light of Stern-Volmer plot. The test result showed that there were strong and weak binding sites on BSA molecule and the binding constant of EB-BSA complex and the number of binding site n were obtained. These facts revealed that the competitive interaction was occurred between EB and streptomycin, which can possibly provide useful message in investigation of the interaction of antibiotic with BSA.

  11. Characterization of the binding of 2-mercaptobenzimidazole to bovine serum albumin.

    PubMed

    Teng, Yue; Zou, Luyi; Huang, Ming; Zong, Wansong

    2015-04-01

    2-Mercaptobenzimidazole (MBI) is widely utilized as a corrosion inhibitor, copper-plating brightener and rubber accelerator. The residue of MBI in the environment is potentially harmful to human health. In this article, the interaction of MBI with bovine serum albumin (BSA) was explored using spectroscopic and molecular docking methods under physiological conditions. The positively charged MBI can spontaneously bind with the negatively charged BSA through electrostatic forces with one binding site. The site marker competition experiments and the molecular docking study revealed that MBI bound into site II (subdomain IIIA) of BSA, which further led to some secondary structure and microenvironmental changes of BSA. This work provides useful information on understanding the toxicological actions of MBI at the molecular level.

  12. Copper Selenide Nanosnakes: Bovine Serum Albumin-Assisted Room Temperature Controllable Synthesis and Characterization

    NASA Astrophysics Data System (ADS)

    Huang, Peng; Kong, Yifei; Li, Zhiming; Gao, Feng; Cui, Daxiang

    2010-06-01

    Herein we firstly reported a simple, environment-friendly, controllable synthetic method of CuSe nanosnakes at room temperature using copper salts and sodium selenosulfate as the reactants, and bovine serum albumin (BSA) as foaming agent. As the amounts of selenide ions (Se2-) released from Na2SeSO3 in the solution increased, the cubic and snake-like CuSe nanostructures were formed gradually, the cubic nanostructures were captured by the CuSe nanosnakes, the CuSe nanosnakes grew wider and longer as the reaction time increased. Finally, the cubic CuSe nanostructures were completely replaced by BSA-CuSe nanosnakes. The prepared BSA-CuSe nanosnakes exhibited enhanced biocompatibility than the CuSe nanocrystals, which highly suggest that as-prepared BSA-CuSe nanosnakes have great potentials in applications such as biomedical engineering.

  13. Copper selenide nanosnakes: bovine serum albumin-assisted room temperature controllable synthesis and characterization.

    PubMed

    Huang, Peng; Kong, Yifei; Li, Zhiming; Gao, Feng; Cui, Daxiang

    2010-04-03

    Herein we firstly reported a simple, environment-friendly, controllable synthetic method of CuSe nanosnakes at room temperature using copper salts and sodium selenosulfate as the reactants, and bovine serum albumin (BSA) as foaming agent. As the amounts of selenide ions (Se2-) released from Na2SeSO3 in the solution increased, the cubic and snake-like CuSe nanostructures were formed gradually, the cubic nanostructures were captured by the CuSe nanosnakes, the CuSe nanosnakes grew wider and longer as the reaction time increased. Finally, the cubic CuSe nanostructures were completely replaced by BSA-CuSe nanosnakes. The prepared BSA-CuSe nanosnakes exhibited enhanced biocompatibility than the CuSe nanocrystals, which highly suggest that as-prepared BSA-CuSe nanosnakes have great potentials in applications such as biomedical engineering.

  14. Self-assembling of poly(aspartic acid) with bovine serum albumin in aqueous solutions.

    PubMed

    Nita, L E; Chiriac, A P; Bercea, M; Asandulesa, M; Wolf, Bernhard A

    2017-02-01

    Macromolecular co-assemblies built up in aqueous solutions, by using a linear polypeptide, poly(aspartic acid) (PAS), and a globular protein, bovine serum albumin (BSA), have been studied. The main interest was to identify the optimum conditions for an interpenetrated complex formation in order to design materials suitable for biomedical applications, such as drug delivery systems. BSA surface possesses several amino- and carboxylic groups available for covalent modification, and/or bioactive substances attachment. In the present study, mixtures between PAS and BSA were investigated at 37°C in dilute aqueous solution by viscometry, dynamic light scattering and zeta potential determination, as well as in solid state by AFM microscopy and dielectric spectroscopy. The experimental data have shown that the interpolymer complex formation occurs for a PAS/BSA molar ratio around 0.541.

  15. Spectroscopic and coarse-grained simulation studies of the BSA and HSA protein adsorption on silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Voicescu, Mariana; Ionescu, Sorana; Angelescu, Daniel G.

    2012-10-01

    The photophysical properties of the bovine serum albumin (BSA) and human serum albumin (HSA) adsorbed on (non) functionalized Ag(0) nanoparticles have been studied by spectroscopic techniques. The surface plasmon resonance kinetic of the BSA/HSA-Ag(0) nanoparticle complexes has been assessed by UV-Vis absorption spectroscopy. Transmission electron microscopy analysis showed that the average size of the particles is 9 nm and the core-shell structure of the protein-Ag(0) nanoparticle complexes has been supported by UV-Vis spectra. The structure, stability, dynamics, and conformation of the proteins have been investigated by steady-state, time-resolved fluorescence, and circular dichroism spectroscopy. Insights of the HSA conformation at the nanoparticle surface were obtained by the Monte Carlo simulations carried out using an appropriate coarse-grained model. The HSA conformation upon adsorption on the nanoparticle surface is distorted so that the Trp fluorescence is quenched and the α-helix content diminished. The adsorbed protein exhibited an extended conformation with Trp residue depleted from the nanoparticle surface and rather located toward the protein boundary. Experimental and simulated experiments were in good agreements and the results are discussed in terms of functional properties of the serum albumins in protein-Ag(0) nanoparticle complex.

  16. Selective inhibition of aggregation/fibrillation of bovine serum albumin by osmolytes: Mechanistic and energetics insights

    PubMed Central

    Dasgupta, Moumita

    2017-01-01

    Bovine serum albumin (BSA) is an important transport protein of the blood and its aggregation/fibrillation would adversely affect its transport ability leading to metabolic disorder. Therefore, understanding the mechanism of fibrillation/aggregation of BSA and design of suitable inhibitor molecules for stabilizing its native conformation, are of utmost importance. The qualitative and quantitative aspects of the effect of osmolytes (proline, hydroxyproline, glycine betaine, sarcosine and sorbitol) on heat induced aggregation/fibrillation of BSA at physiological pH (pH 7.4) have been studied employing a combination of fluorescence spectroscopy, Rayleigh scattering, isothermal titration calorimetry (ITC), dynamic light scattering (DLS) and transmission electron microscopy (TEM). Formation of fibrils by BSA under the given conditions was confirmed from increase in fluorescence emission intensities of Thioflavin T over a time period of 600 minutes and TEM images. Absence of change in fluorescence emission intensities of 8-Anilinonaphthalene-1-sulfonic acid (ANS) in presence of native and aggregated BSA signify the absence of any amorphous aggregates. ITC results have provided important insights on the energetics of interaction of these osmolytes with different stages of the fibrillar aggregates of BSA, thereby suggesting the possible modes/mechanism of inhibition of BSA fibrillation by these osmolytes. The heats of interaction of the osmolytes with different stages of fibrillation of BSA do not follow a trend, suggesting that the interactions of stages of BSA aggregates are osmolyte specific. Among the osmolytes used here, we found glycine betaine to be supporting and promoting the aggregation process while hydroxyproline to be maximally efficient in suppressing the fibrillation process of BSA, followed by sorbitol, sarcosine and proline in the following order of their decreasing potency: Hydroxyproline> Sorbitol> Sarcosine> Proline> Glycine betaine. PMID:28207877

  17. Kinetics and efficiency of a methyl-carboxylated 5-Fluorouracil-bovine serum albumin adduct for targeted delivery.

    PubMed

    Koziol, Michael J; Sievers, Torsten K; Smuda, Kathrin; Xiong, Yu; Müller, Angelika; Wojcik, Felix; Steffen, Axel; Dathe, Margitta; Georgieva, Radostina; Bäumler, Hans

    2014-03-01

    5-Fluorouracil (5-FU) is a clinically well-established anti-cancer drug effectively applied in chemotherapy, mainly for the treatment of breast and colorectal cancer. Substantial disadvantages are adverse effects, arising from serious damage of healthy tissues, and shortcoming pharmacokinetics due to its low molecular weight. A promising approach for improvement of such drugs is their coupling to suitable carriers. Here, a 5-FU adduct, 5-fluorouracil acetate (FUAc) is synthesized and covalently coupled to bovine serum albumin (BSA) as model carrier molecule. On average, 12 molecules FUAc are bound to one BSA. Circular dichriosm (CD)-spectra of BSA and FUAc-BSA are identical, suggesting no significant conformational differences. FUAc-BSA is tested on T-47D and MDA-MB-231 breast cancer cells. Proliferation inhibition of membrane albumin-binding protein (mABP)-expressing T-47D cells by FUAc-BSA is similar to that of 5-FU and only moderate for MDA-MB-231 cells that lack such expression. Therefore, a crucial role of mABP expression in effective cell growth inhibition by FUAc-BSA is assumed.

  18. Porphyrin conjugated with serum albumins and monoclonal antibodies boosts efficiency in targeted destruction of human bladder cancer cells.

    PubMed

    Pereira, Patrícia M R; Carvalho, José J; Silva, Sandrina; Cavaleiro, José A S; Schneider, Rudolf J; Fernandes, Rosa; Tomé, João P C

    2014-03-21

    The synthesis of a novel PS conjugated with bovine and human serum albumin (BSA and HSA) and a monoclonal antibody anti-CD104 is reported, as well as their biological potential against the human bladder cancer cell line UM-UC-3. No photodynamic effect was detected when the non-conjugated porphyrin was used. Yet, when it was coupled covalently with the mAb anti-CD104, BSA and HSA, the resulting photosensitizer conjugates demonstrated high efficacy in destroying the cancer cells, the mAb anti-CD104 efficacy overruling the albumins.

  19. Elucidating the Influence of Gold Nanoparticles on the Binding of Salvianolic Acid B and Rosmarinic Acid to Bovine Serum Albumin

    PubMed Central

    Peng, Xin; Qi, Wei; Huang, Renliang; Su, Rongxin; He, Zhimin

    2015-01-01

    Salvianolic acid B and rosmarinic acid are two main water-soluble active ingredients from Salvia miltiorrhiza with important pharmacological activities and clinical applications. The interactions between salvianolic acid B (or rosmarinic acid) and bovine serum albumin (BSA) in the presence and absence of gold nanoparticles (Au NPs) with three different sizes were investigated by using biophysical methods for the first time. Experimental results proved that two components quenched the fluorescence of BSA mainly through a static mechanism irrespective of the absence or presence of Au NPs. The presence of Au NPs decreased the binding constants of salvianolic acid B with BSA from 27.82% to 10.08%, while Au NPs increased the affinities of rosmarinic acid for BSA from 0.4% to 14.32%. The conformational change of BSA in the presence of Au NPs (caused by a noncompetitive binding between Au NPs and drugs at different albumin sites) induced changeable affinity and binding distance between drugs and BSA compared with no Au NPs. The competitive experiments revealed that the site I (subdomain IIA) of BSA was the primary binding site for salvianolic acid B and rosmarinic acid. Additionally, two compounds may induce conformational and micro-environmental changes of BSA. The results would provide valuable binding information between salvianolic acid B (or rosmarinic acid) and BSA, and also indicated that the Au NPs could alter the interaction mechanism and binding capability of drugs to BSA, which might be beneficial to understanding the pharmacokinetics and biological activities of the two drugs. PMID:25861047

  20. A combined spectroscopic and molecular docking approach to characterize binding interaction of megestrol acetate with bovine serum albumin.

    PubMed

    Shi, Jie-hua; Zhu, Ying-yao; Wang, Jing; Chen, Jun

    2015-02-01

    The binding interactions between megestrol acetate (MA) and bovine serum albumin (BSA) under simulated physiological conditions (pH 7.4) were investigated by fluorescence spectroscopy, circular dichroism and molecular modeling. The results revealed that the intrinsic fluorescence of BSA was quenched by MA due to formation of the MA-BSA complex, which was rationalized in terms of a static quenching procedure. The binding constant (Kb ) and number of binding sites (n) for MA binding to BSA were 2.8 × 10(5)  L/mol at 310 K and about 1 respectively. However, the binding of MA with BSA was a spontaneous process due to the negative ∆G(0) in the binding process. The enthalpy change (∆H(0) ) and entropy change (∆S(0) ) were - 124.0 kJ/mol and -295.6 J/mol per K, respectively, indicating that the major interaction forces in the binding process of MA with BSA were van der Waals forces and hydrogen bonding. Based on the results of spectroscopic and molecular docking experiments, it can be deduced that MA inserts into the hydrophobic pocket located in subdomain IIIA (site II) of BSA. The binding of MA to BSA leads to a slight change in conformation of BSA but the BSA retained its secondary structure, while conformation of the MA has significant change after forming MA-BSA complex, suggesting that flexibility of the MA molecule supports the binding interaction of BSA with MA.

  1. Mechanism and conformational studies of farrerol binding to bovine serum albumin by spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Zhang, Guowen; Wang, Lin; Fu, Peng; Hu, Mingming

    2011-11-01

    The mechanism and conformational changes of farrerol binding to bovine serum albumin (BSA) were studied by spectroscopic methods including fluorescence quenching technique, UV-vis absorption, circular dichroism (CD) spectroscopy and Fourier transform infrared (FT-IR) spectroscopy under simulative physiological conditions. The results of fluorescence titration revealed that farrerol could strongly quench the intrinsic fluorescence of BSA through a static quenching procedure. The thermodynamic parameters enthalpy change and entropy change for the binding were calculated to be -29.92 kJ mol -1 and 5.06 J mol -1 K -1 according to the van't Hoff equation, which suggested that the both hydrophobic interactions and hydrogen bonds play major role in the binding of farrerol to BSA. The binding distance r deduced from the efficiency of energy transfer was 3.11 nm for farrerol-BSA system. The displacement experiments of site markers and the results of fluorescence anisotropy showed that warfarin and farrerol shared a common binding site I corresponding to the subdomain IIA of BSA. Furthermore, the studies of synchronous fluorescence, CD and FT-IR spectroscopy showed that the binding of farrerol to BSA induced conformational changes in BSA.

  2. Influence of bovine serum albumin and alginate on silver nanoparticle dissolution and toxicity to Nitrosomonas europaea.

    PubMed

    Ostermeyer, Ann-Kathrin; Kostigen Mumuper, Cameron; Semprini, Lewis; Radniecki, Tyler

    2013-12-17

    Bovine serum albumin (BSA), a model protein, reduced the toxicity of 20 nm citrate silver nanoparticles (AgNP) toward Nitrosomonas europaea, a model ammonia oxidizing bacteria, through a dual-mode protection mechanism. BSA reduced AgNP toxicity by chelating the silver ions (Ag(+)) released from the AgNPs. BSA further reduced AgNP toxicity by binding to the AgNP surface thus preventing NH3-dependent dissolution from occurring. Due to BSA's affinity toward Ag(+) chemisorbed on the AgNP surface, increased concentrations of BSA lead to increased AgNP dissolution rates. This, however, did not increase AgNP toxicity as the dissolved Ag(+) were adsorbed onto the BSA molecules. Alginate, a model extracellular polysaccharide (EPS), lacks strong Ag(+) ligands and was unable to protect N. europaea from Ag(+) toxicity. However, at high concentrations, alginate reduced AgNP toxicity by binding to the AgNP surface and reducing AgNP dissolution rates. Unlike BSA, alginate only weakly interacted with the AgNP surface and was unable to completely prevent NH3-dependent AgNP dissolution from occurring. Based on these results, AgNP toxicity in high protein environments (e.g., wastewater) is expected to be muted while the EPS layers of wastewater biofilms may provide additional protection from AgNPs, but not from Ag(+) that have already been released.

  3. Effects of gene carrier polyethyleneimines on the structure and binding capability of bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Guo, Zhiyong; Kong, Zhijie; Wei, Yanshan; Li, Hua; Wang, Yajing; Huang, Aimin; Ma, Lin

    2017-02-01

    Polyethyleneimine (PEI), one of the most effective non-viral gene carriers, is also cytotoxic, however the molecular basis is poorly understood. Little is known about the effects of PEI on the structure and functions of the biomacromolecules. In this work, fluorescence, UV-vis absorption, circular dichroism (CD) spectroscopy and zeta-potential measurement were conducted to reveal the interaction between PEIs (average molecular weight 25, 10 and 1.8 kDa) and bovine serum albumin (BSA), and to evaluate the effects on the conformation of BSA as long as its binding capability to the model compounds, 8-anilino-1-naphthalenesulfonic acid (ANS) and quercetin. PEIs were found to complex with BSA and induced a conformational change of the protein by a major reduction of α-helix at PEI concentration < 0.2 mg·mL- 1 and an increase at higher PEI concentration. The binding efficacy of ANS and quercetin to BSA was greatly reduced by the competitive binding by PEI and influenced by the conformational change of BSA, which was found to display a similar trend to the change of the α-helix content of the protein. The polymer size played an important role in PEI-BSA interaction. PEI of higher molecular weight was more favorable to interact with BSA and more efficient to perturb the conformation and binding capability of the protein.

  4. Spectroscopic and docking studies on the interaction between pyrrolidinium based ionic liquid and bovine serum albumin.

    PubMed

    Kumari, Meena; Maurya, Jitendra Kumar; Singh, Upendra Kumar; Khan, Abbul Bashar; Ali, Maroof; Singh, Prashant; Patel, Rajan

    2014-04-24

    The interaction of synthesized ionic liquid, 1-butyl-1-methyl-2-oxopyrrolidinium bromide (BMOP) and bovine serum albumin (BSA) was investigated using UV-Vis, FT-IR, steady state and time resolved fluorescence measurements and docking studies. Steady state spectra revealed that BMOP strongly quenched the intrinsic fluorescence of BSA through dynamic quenching mechanism. The corresponding thermodynamic parameters; Gibbs free energy change (ΔG), entropy change (ΔS) and enthalpy change (ΔH) showed that the binding process was spontaneous and entropy driven. It is also indicated that hydrophobic forces play a key role in the binding of BMOP to BSA. The synchronous fluorescence spectroscopy reveals that the conformation of BSA changed in the presence of BMOP. The shift in amide I band of FT-IR spectrum of BSA suggested unfolding of the protein secondary structure upon the addition of BMOP. In addition, the molecular modeling study of BSA-BMOP system shows that BMOP binds with BSA at the interface between two sub domains IIA and IIIA, which is located just above the entrance of the binding pocket of IIA through hydrophobic and hydrogen bond interactions in which hydrophobic interaction are dominated.

  5. Bovine serum albumin nanoparticles for delivery of tacrolimus to reduce its kidney uptake and functional nephrotoxicity.

    PubMed

    Zhao, Lei; Zhou, Yanxia; Gao, Yajie; Ma, Shujin; Zhang, Chao; Li, Jinwen; Wang, Dishi; Li, Xueping; Li, Chengwei; Liu, Yan; Li, Xinru

    2015-04-10

    The purpose of the present study was to develop a new nanoparticulate formulation for delivery of tacrolimus to reduce its kidney distribution and functional nephrotoxicity. Tacrolimus (TAC)-loaded bovine serum albumin (BSA) nanoparticles (TAC-BSA-NPs) were prepared by emulsification-dispersion technique. The obtained TAC-BSA-NPs, with 189.50±7.15 nm of diameter and -20.86±0.45 mV of Zeta potential determined by DLS, were spherical in shape observed by TEM. The drug loading content and encapsulation efficiency were (1.7±0.13)% and (85±3.0)%, respectively. The in vitro release of TAC-BSA-NPs exhibited biphasic drug release pattern with an initial burst release and subsequently sustained release. Pharmacokinetic analysis displayed that TAC-BSA-NPs could enhance the drug blood level and prolong the circulation time in comparison to Prograf(®). Meanwhile, compared with Prograf(®), TAC-BSA-NPs could deliver less TAC to kidney and simultaneously reduce the functional nephrotoxicity of TAC to kidney. In conclusion, BSA nanoparticles might be a more safe carrier for delivery of hydrophobic drug TAC.

  6. The competition of drugs to serum albumin in combination chemotherapy: NMR study

    NASA Astrophysics Data System (ADS)

    Sułkowska, A.; Bojko, B.; Równicka, J.; Rezner, P.; Sułkowski, W. W.

    2005-06-01

    Combination chemotherapy with cyclophosphamide (CM), metotrexate and 5-fluorouracil (FU) is used in treatment of patients with breast carcinoma. Although clinical toxicity of CM combinated with FU is greater than that of CM, the levels were clinically acceptable. The mechanism of competition of CM and FU to bovine serum albumin (BSA) was examined with the use of 1H and 13C NMR spectroscopy. The chemical shifts and the linewidth of individual proton and carbon resonances of each drug were measured as a function of the drug/BSA molar ratio in order to analyse the drug-protein interaction and the molecular motion of the drug. The effect of the second drug used in the combination chemotherapy on the analysed NMR parameters is discussed. It was found that FU and CM bind to BSA at molar ratio drug/BSA 160 and 330, respectively. The formation of lev-BSA complex was not confirmed. Whereas it was proved that in the presence of both lev and CM the number of FU molecules bound with BSA increases. It was also observed that FU induces the rising of the affinity between lev and BSA.

  7. Binding interaction of atorvastatin with bovine serum albumin: Spectroscopic methods and molecular docking.

    PubMed

    Wang, Qi; Huang, Chuan-ren; Jiang, Min; Zhu, Ying-yao; Wang, Jing; Chen, Jun; Shi, Jie-hua

    2016-03-05

    The interaction of atorvastatin with bovine serum albumin (BSA) was investigated using multi-spectroscopic methods and molecular docking technique for providing important insight into further elucidating the store and transport process of atorvastatin in the body and the mechanism of action and pharmacokinetics. The experimental results revealed that the fluorescence quenching mechanism of BSA induced atorvastatin was a combined dynamic and static quenching. The binding constant and number of binding site of atorvastatin with BSA under simulated physiological conditions (pH=7.4) were 1.41 × 10(5) M(-1) and about 1 at 310K, respectively. The values of the enthalpic change (ΔH(0)), entropic change (ΔS(0)) and Gibbs free energy (ΔG(0)) in the binding process of atorvastatin with BSA at 310K were negative, suggesting that the binding process of atorvastatin and BSA was spontaneous and the main interaction forces were van der Waals force and hydrogen bonding interaction. Moreover, atorvastatin was bound into the subdomain IIA (site I) of BSA, resulting in a slight change of the conformation of BSA.

  8. Binding interaction of atorvastatin with bovine serum albumin: Spectroscopic methods and molecular docking

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Huang, Chuan-ren; Jiang, Min; Zhu, Ying-yao; Wang, Jing; Chen, Jun; Shi, Jie-hua

    2016-03-01

    The interaction of atorvastatin with bovine serum albumin (BSA) was investigated using multi-spectroscopic methods and molecular docking technique for providing important insight into further elucidating the store and transport process of atorvastatin in the body and the mechanism of action and pharmacokinetics. The experimental results revealed that the fluorescence quenching mechanism of BSA induced atorvastatin was a combined dynamic and static quenching. The binding constant and number of binding site of atorvastatin with BSA under simulated physiological conditions (pH = 7.4) were 1.41 × 105 M- 1 and about 1 at 310 K, respectively. The values of the enthalpic change (ΔH0), entropic change (ΔS0) and Gibbs free energy (ΔG0) in the binding process of atorvastatin with BSA at 310 K were negative, suggesting that the binding process of atorvastatin and BSA was spontaneous and the main interaction forces were van der Waals force and hydrogen bonding interaction. Moreover, atorvastatin was bound into the subdomain IIA (site I) of BSA, resulting in a slight change of the conformation of BSA.

  9. Urea-induced binding between diclofenac sodium and bovine serum albumin: a spectroscopic insight.

    PubMed

    Dohare, Neeraj; Khan, Abbul Bashar; Athar, Fareeda; Thakur, Sonu Chand; Patel, Rajan

    2016-06-01

    We investigated the interaction of diclofenac sodium (Dic.Na) with bovine serum albumin (BSA) in the absence and presence of urea using different spectroscopic techniques. A fluorescence quenching study revealed that the Stern-Volmer quenching constant decreases in the presence of urea, decreasing further at higher urea concentrations. The binding constant and number of binding sites were also evaluated for the BSA-Dic.Na interaction system in the absence and presence of urea using a modified Stern-Volmer equation. The binding constant is greater at high urea concentrations, as shown by the fluorescence results. In addition, for the BSA-Dic.Na interaction system, a static quenching mechanism was observed, which was further confirmed using time-resolved fluorescence spectroscopy. UV-vis spectroscopy provided information about the formation of a complex between BSA and Dic.Na. Circular dichroism was carried out to explain the conformational changes in BSA induced by Dic.Na in the absence and presence of urea. The presence of urea reduced the α-helical content of BSA as the Dic.Na concentration varied. The distance r between the donor (BSA) and acceptor (Dic.Na) was also obtained in the absence and presence of urea, using fluorescence resonance energy transfer. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Effects of serum albumin on the degradation and cytotoxicity of single-walled carbon nanotubes.

    PubMed

    Ding, Yun; Tian, Rong; Yang, Zhen; Chen, Jianfa; Lu, Naihao

    2017-03-01

    Neutrophil myeloperoxidase (MPO) and peroxynitrite (ONOO(-)) can oxidatively biodegrade carboxylated single-walled carbon nanotubes (SWCNTs). The protein-SWCNTs interactions will play an important role in the degradation and cytotoxicity of nanotubes. Here, we investigated the binding of bovine serum albumin (BSA, a common and well-characterized model blood serum protein) to SWCNTs, and found that the hydrophobic and electrostatic interactions might be crucial factors in stabilizing the binding of SWCNTs with BSA. The binding of BSA could impair SWCNTs biodegradation in vitro through the competitive adsorption to nanotube. Both SWCNTs and BSA-SWCNTs were significantly degraded in zymosan-stimulated macrophages, and the degradation degree was more for BSA-SWCNTs. The mechanism for SWCNTs degradation in activated macrophages was further investigated to demonstrate the dominant participation of MPO and ONOO(-)-driven pathways. Moreover, binding of BSA to SWCNTs reduced cytotoxicity and degraded nanotubes induced less cytotoxicity than non-degraded nanotubes. The binding of BSA may be an important determinant for the biodegradation and cytotoxicity of SWCNTs in inflammatory cells, and therefore, provide a new route to mitigate the potential toxicity of nanotubes in future biomedical applications.

  11. Effects of gene carrier polyethyleneimines on the structure and binding capability of bovine serum albumin.

    PubMed

    Guo, Zhiyong; Kong, Zhijie; Wei, Yanshan; Li, Hua; Wang, Yajing; Huang, Aimin; Ma, Lin

    2017-02-15

    Polyethyleneimine (PEI), one of the most effective non-viral gene carriers, is also cytotoxic, however the molecular basis is poorly understood. Little is known about the effects of PEI on the structure and functions of the biomacromolecules. In this work, fluorescence, UV-vis absorption, circular dichroism (CD) spectroscopy and zeta-potential measurement were conducted to reveal the interaction between PEIs (average molecular weight 25, 10 and 1.8kDa) and bovine serum albumin (BSA), and to evaluate the effects on the conformation of BSA as long as its binding capability to the model compounds, 8-anilino-1-naphthalenesulfonic acid (ANS) and quercetin. PEIs were found to complex with BSA and induced a conformational change of the protein by a major reduction of α-helix at PEI concentration <0.2mg·mL(-1) and an increase at higher PEI concentration. The binding efficacy of ANS and quercetin to BSA was greatly reduced by the competitive binding by PEI and influenced by the conformational change of BSA, which was found to display a similar trend to the change of the α-helix content of the protein. The polymer size played an important role in PEI-BSA interaction. PEI of higher molecular weight was more favorable to interact with BSA and more efficient to perturb the conformation and binding capability of the protein.

  12. Comparison of human serum and bovine serum albumins on oxidation dynamics induced by talaporfin sodium photosensitization reaction with albumin rich conditions: solution experiments

    NASA Astrophysics Data System (ADS)

    Kurotsu, Mariko; Nakamura, Tetsuya; Takahashi, Mei; Ogawa, Emiyu; Arai, Tsunenori

    2014-02-01

    In order to understand extracellular-photosensitization reaction (PR) using talaporfin sodium, we studied comparison of oxidation dynamics of albumin and talaporfin sodium in solution system by visible and ultraviolet absorption spectrum measurements. Almost all talaporfin sodium particles may be bound to albumin in interstitial fluid, and this binding would affect the oxidation dynamics during this PR. Bovine serum albumin (BSA) is commonly used in vitro study but its binding characteristics with talaporfin sodium are different from human serum albumin (HSA). PR was operated in a solution composed of 20 μg/ml talaporfin sodium and 1.3 mg/ml HSA or BSA to simulate myocardial extracellular PR condition. Laser radiation of 662 nm was irradiated to this solution with irradiance of 0.29 W/cm2. Absorption spectra of these solutions were measured during the PR. We estimated oxidized ratio by absorption difference around 240 nm before and after the PR. Talaporfin sodium was oxidized 100% with HSA and BSA by the PR of 100 J/cm2 in radiant exposure. On the other hand, HSA and BSA were oxidized 60% and 94%, respectively in this radiant exposure. Q-band absorption peak of talaporfin sodium with HSA was shifted to 1 nm longer wavelength increasing radiant exposure up to 100 J/cm2. This longer wavelength shift would mean binding ratio of non-oxidized talaporfin sodium to non-oxidized HSA was increased with increasing radiant exposure. Therefore it would be possible that PR with talaporfin sodium bound to HSA might present efficient PDT than PR bound to BSA.

  13. Determination of association constants between steroid compounds and albumins by partial-filling ACE.

    PubMed

    Amundsen, Lotta K; Sirén, Heli

    2007-10-01

    ACE is a popular technique for evaluating association constants between drugs and proteins. However, ACE has not previously been applied to study the association between electrically neutral biomolecules and plasma proteins. We studied the affinity between human and bovine serum albumins (HSA and BSA, respectively) and three neutral endogenous steroid hormones (testosterone, epitestosterone and androstenedione) and two synthetic analogues (methyltestosterone and fluoxymesterone) by applying the partial-filling technique in ACE (PF-ACE). From the endocrinological point of view, the distribution of endogenous steroids among plasma components is of great interest. Strong interactions with albumins suppress the biological activity of steroids. Notable differences in the association constants were observed. In the case of the endogenous steroids, the interactions between testosterone and the albumins were strongest, and those between androstenedione and the albumins were substantially weaker. The association constants, K(b), for testosterone, epitestosterone and androstenedione and HSA at 37 degrees C were 32 100 +/- 3600, 21 600 +/- 1500 and 13 300 +/- 1300 M(-1), respectively, while the corresponding values for the steroids and BSA were 18 800 +/- 1500, 14 000 +/- 400 and 7800 +/- 900 M(-1). Methyltestosterone was bound even more strongly than testosterone, while fluoxymesterone was only weakly bound by the albumins. Finally, the steroids were separated by PF-ACE with HSA and BSA used as resolving components.

  14. Buffers more than buffering agent: introducing a new class of stabilizers for the protein BSA.

    PubMed

    Gupta, Bhupender S; Taha, Mohamed; Lee, Ming-Jer

    2015-01-14

    In this study, we have analyzed the influence of four biological buffers on the thermal stability of bovine serum albumin (BSA) using dynamic light scattering (DLS). The investigated buffers include 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES), 4-(2-hydroxyethyl)-1-piperazine-propanesulfonic acid (EPPS), 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid sodium salt (HEPES-Na), and 4-morpholinepropanesulfonic acid sodium salt (MOPS-Na). These buffers behave as a potential stabilizer for the native structure of BSA against thermal denaturation. The stabilization tendency follows the order of MOPS-Na > HEPES-Na > HEPES ≫ EPPS. To obtain an insight into the role of hydration layers and peptide backbone in the stabilization of BSA by these buffers, we have also explored the phase transition of a thermoresponsive polymer, poly(N-isopropylacrylamide (PNIPAM)), a model compound for protein, in aqueous solutions of HEPES, EPPS, HEPES-Na, and MOPS-Na buffers at different concentrations. It was found that the lower critical solution temperatures (LCST) of PNIPAM in the aqueous buffer solutions substantially decrease with increase in buffer concentration. The mechanism of interactions between these buffers and protein BSA was probed by various techniques, including UV-visible, fluorescence, and FTIR. The results of this series of studies reveal that the interactions are mainly governed by the influence of the buffers on the hydration layers surrounding the protein. We have also explored the possible binding sites of BSA with these buffers using a molecular docking technique. Moreover, the activities of an industrially important enzyme α-chymotrypsin (α-CT) in 0.05 M, 0.5 M, and 1.0 M of HEPES, EPPS, HEPES-Na, and MOPS-Na buffer solutions were analyzed at pH = 8.0 and T = 25 °C. Interestingly, the activities of α-CT were found to be enhanced in the aqueous solutions of these investigated buffers. Based upon the Jones-Dole viscosity parameters, the

  15. Fluorescence lifetime measurements of native and glycated human serum albumin and bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Joshi, Narahari V.; Joshi, Virgina O. d.; Contreras, Silvia; Gil, Herminia; Medina, Honorio; Siemiarczuk, Aleksander

    1999-05-01

    Nonenzymatic glycation, also known as Maillard reaction, plays an important role in the secondary complications of the diabetic pathology and aging, therefore, human serum albumin (HSA) and bovine serum albumin (BSA) were glycated by a conventional method in our laboratory using glucose as the glycating agent. Fluorescence lifetime measurements were carried out with a laser strobe fluorometer equipped with a nitrogen/dye laser and a frequency doubler as a pulsed excitation source. The samples were excited at 295 nm and the emission spectra were recorded at 345 nm. The obtained decay curves were tried for double and triple exponential functions. It has been found that the shorter lifetime increases for glycated proteins as compared with that of the native ones. For example, in the case of glycated BSA the lifetime increased from 1.36 ns to 2.30 ns. Similarly, for HSA, the lifetime increases from 1.58 ns to 2.26 ns. Meanwhile, the longer lifetime changed very slightly for both proteins (from 6.52 ns to 6.72 ns). The increase in the lifetime can be associated with the environmental effect; originated from the attachment of glucose to some lysine residues. A good example is Trp 214 which is in the cage of Lys 225, Lys 212, Lys 233, Lys 205, Lys 500, Lys 199 and Lys 195. If fluorescence lifetime technique is calibrated and properly used it could be employed for assessing glycation of proteins.

  16. Optical spectroscopic exploration of binding of Cochineal Red A with two homologous serum albumins.

    PubMed

    Bolel, Priyanka; Mahapatra, Niharendu; Halder, Mintu

    2012-04-11

    Cochineal Red A is a negatively charged synthetic azo food colorant and a potential carcinogen. We present here the study of binding of Cochineal Red A with two homologous serum albumins, human (HSA) and bovine (BSA), in aqueous pH 7.4 buffer by optical spectroscopic techniques. Protein intrinsic fluorescence quenching by Cochineal Red A occurs through ground-state static interaction and its binding with BSA is stronger than with HSA. The magnitudes of thermodynamic parameters suggest that dye binding occurs principally via electrostatic complexation. Site-marker competitive binding shows that Cochineal Red A binds primarily to site I of serum albumins. Circular dichroic spectra indicate that dye binding results in some conformational modification of serum albumins. Increased ionic strength of the medium results in lowering of binding. This study provides an important insight into possible means of removal of dye toxicity.

  17. Synthesis, purification and mass spectrometric characterisation of a fluorescent Au9@BSA nanocluster and its enzymatic digestion by trypsin

    NASA Astrophysics Data System (ADS)

    Fernández-Iglesias, Nerea; Bettmer, Jörg

    2013-12-01

    Nanoclusters of noble metals like Ag and Au have attracted great attention as they form a missing link between isolated metal atoms and nanoparticles. Their particular properties like luminescence in the visible range and nontoxicity make them attractive for bioimaging and biolabelling purposes, especially with use of proteins as stabilising agents. In this context, this study intends the synthesis of a specific Au nanocluster covered by bovine serum albumin (BSA). It is shown that size-exclusion chromatography is feasible for the purification and isolation of the nanocluster. A mass spectrometric characterisation, preferably by ESI-MS, indicates the presence of an Au9@BSA nanocluster. Enzymatic digestion of the nanocluster with trypsin results in a significant increase of the fluorescence intensity at 650 and 710 nm, whereas complementary MALDI-MS studies are presented for the identification of generated peptides and show a distinctive pattern in comparison to the pure protein. It can be concluded that Au9@BSA might be, in future, an interesting candidate for in vitro studies of protease activities.Nanoclusters of noble metals like Ag and Au have attracted great attention as they form a missing link between isolated metal atoms and nanoparticles. Their particular properties like luminescence in the visible range and nontoxicity make them attractive for bioimaging and biolabelling purposes, especially with use of proteins as stabilising agents. In this context, this study intends the synthesis of a specific Au nanocluster covered by bovine serum albumin (BSA). It is shown that size-exclusion chromatography is feasible for the purification and isolation of the nanocluster. A mass spectrometric characterisation, preferably by ESI-MS, indicates the presence of an Au9@BSA nanocluster. Enzymatic digestion of the nanocluster with trypsin results in a significant increase of the fluorescence intensity at 650 and 710 nm, whereas complementary MALDI-MS studies are presented

  18. Analysis of albumin hologram

    NASA Astrophysics Data System (ADS)

    Ordóñez-Padilla, M. J.; Olivares-Pérez, A.; Berriel-Valdos, L. R.; Ortiz-Gutiérrez, M.; Villa-Manríquez, J. F.

    2012-03-01

    We present the characterizations of the photosensitive film made with albumins gallus gallus and callipepla cali, with the purpose to make holographic recording. Albumin was combined with propylene glycol, to build colloidal systems by adding the ammonium dichromate solution as photosensitive salt at certain concentrations. Hence, we conducted the photo-oxidation process with laser, λ=442nm. Obtaining holograms that allowed the analysis of the diffraction efficiency parameter. One of the objectives of this work was to obtain some mechanical and chemical stability of films made with albumin when prepared with propylene glycol. At once, experimental studies were performed to compare the results of the holographic recording films between chicken albumin and quail albumin film to prove the recording capabilities and to quantify the diffraction efficiency in holographic grating made with each kind of albumin.

  19. Formulation and Characterization of Bovine Serum Albumin-Loaded Niosome.

    PubMed

    Moghassemi, Saeid; Hadjizadeh, Afra; Omidfar, Kobra

    2017-01-01

    Niosomal vesicle, as a unique novel drug delivery system, is synthesized by non-ionic surfactants. Both hydrophilic and lipophilic drugs and also biomacromolecular agents, such as peptides and proteins can be encapsulated in this vesicular particle. Regarding polypeptide-based component loading, and delivery potential of the niosome, some valuable studies have been conducted in recent years. However, exploring the full potential of this approach requires fine tuned optimization and characterization approaches. Therefore, this study was conducted to achieve the following two goals. First, formulation and optimization of bovine serum albumin (BSA) load and release behavior as a function of cholesterol (CH) to sorbitan monostearate (Span 60) molar ratio. Second, investigating a cost- and time-effective polypeptide detecting method via methyl orange (MO) dye. To this aim, BSA-loaded niosomes were prepared by reversed-phase evaporation technique. The effect of CH to Sorbitan monostearate (Span 60) molar ratio on noisome entrapment efficiency (EE%) and release profile of BSA was studied using a ultraviolet (UV) spectrophotometer technique (NanoDrop 2000/2000c).Niosome with a 60% CH content showed the highest BSA EE% and release behavior. Then, BSA was dyed using MO in an acidic solution and used in BSA-niosome formulation. The MO-colored protein, loaded into the vesicles, was successfully assessed by an inverted light microscope, in order to observe the protein location in the vesicle. The results obtained in this study can be useful for various applications in different fields, including pharmaceutical, cosmetics, and drug delivery in biomedical and tissue engineering.

  20. Structure-affinity relationship of flavones on binding to serum albumins: effect of hydroxyl groups on ring A.

    PubMed

    Xiao, Jianbo; Cao, Hui; Wang, Yuanfeng; Yamamoto, Koichiro; Wei, Xinlin

    2010-07-01

    Four flavones (flavone, 7-hydroxyflavone, chrysin, and baicalein) sharing the same B- and C-ring structure but a different numbers of hydroxyl groups on the A-ring were studied for their affinities for BSA and HSA. The hydroxylation on ring A of flavones increased the binding constants (K(a)) and the number of binding sites (n) between flavones and serum albumins. The affinities of 7-hydroxyflavone for BSA and HSA were about 800 times and 40 times higher than that of flavone, respectively. It appears that the optimal number of hydroxyl groups introduced to the ring A of flavones is one. As more hydroxyl groups were introduced to positions at C-5, C-6, and/or C-7 of flavones, the affinities for serum albumins decrease. The critical energy transfer distances (R(0)) between the hydroxylated flavones (1-3 OH on the ring A) and serum albumins decreased with the increasing affinities for serum albumins.

  1. Evaluation of DNA, BSA binding, and antimicrobial activity of new synthesized neodymium complex containing 29-dimethyl 110-phenanthroline.

    PubMed

    Moradi, Zohreh; Khorasani-Motlagh, Mozhgan; Rezvani, Ali Reza; Noroozifar, Meissam

    2017-02-21

    In order to evaluate biological potential of a novel synthesized complex [Nd(dmp)2Cl3.OH2] where dmp is 29-dimethyl 110-phenanthroline, the DNA-binding, cleavage, BSA binding, and antimicrobial activity properties of the complex are investigated by multispectroscopic techniques study in physiological buffer (pH 7.2).The intrinsic binding constant (Kb) for interaction of Nd(III) complex and FS-DNA is calculated by UV-Vis (Kb = 2.7 ± 0.07 × 10(5)) and fluorescence spectroscopy (Kb = 1.13 ± 0.03 × 10(5)). The Stern-Volmer constant (KSV), thermodynamic parameters including free energy change (ΔG°), enthalpy change (∆H°), and entropy change (∆S°), are calculated by fluorescent data and Vant' Hoff equation. The experimental results show that the complex can bind to FS-DNA and the major binding mode is groove binding. Meanwhile, the interaction of Nd(III) complex with protein, bovine serum albumin (BSA), has also been studied by using absorption and emission spectroscopic tools. The experimental results show that the complex exhibits good binding propensity to BSA. The positive ΔH° and ∆S° values indicate that the hydrophobic interaction is main force in the binding of the Nd(III) complex to BSA, and the complex can quench the intrinsic fluorescence of BSA remarkably through a static quenching process. Also, DNA cleavage was investigated by agarose gel electrophoresis that according to the results cleavage of DNA increased with increasing of concentration of the complex. Antimicrobial screening test gives good results in the presence of Nd(III) complex system.

  2. Stability of protein-encapsulating DRV liposomes after freeze-drying: A study with BSA and t-PA.

    PubMed

    Ntimenou, Vassiliki; Mourtas, Spyridon; Christodoulakis, Emmanouil V; Tsilimbaris, Miltiadis; Antimisiaris, Sophia G

    2006-01-01

    Stability of protein-encapsulating DRV (dried-rehydrated vesicle) liposomes is evaluated after freeze-drying vesicles in presence (or not) of trehalose. Two proteins, bovine serum albumin (BSA) and tissue-type plasminogen activator (t-PA), are used, and protein-encapsulating liposomes with different lipid compositions are prepared by DRV technique. Encapsulation efficiencies are calculated, after measuring BSA with a fluorescence technique and t-PA's amidolytic activity toward a chromogenic substrate. Experimental results show that encapsulation of BSA in vesicles ranges between 35 and 53% of the protein and is only slightly affected by lipid composition. For t-PA, entrapment efficiencies are lower, ranging between 2 and 16%, while lipid composition has substantial effect on entrapment (cholesterol inclusion is very important). After freeze-drying, some lipid compositions remain stable, retaining most of initially entrapped proteins, while others do not, but they may be stabilized by trehalose. In the case of BSA, liposome behavior cannot be explained based on lipid membrane rigidity (more rigid = more stable). This may be connected with previously demonstrated interactions of BSA with membranes. Oppositely, t-PA behavior is more predictable, meaning that the lipid composition selected for the specific therapeutic application determines the need for cryoprotectant addition before freeze-drying t-PA containing DRV liposomes, perhaps due to the fact that under conditions applying minimum or no interactions between t-PA and lipid membranes occur.Thereby, interactions between proteins and membranes determine not only the encapsulation efficiency but also the need for cryopreservation of liposomal protein formulations.

  3. [Spectrophotometric determination of albumin with acid brown SR].

    PubMed

    Zhao, Chang-Rong; Liu, Bao-Sheng; Zhang, Hong-Yi

    2005-01-01

    A new method for the determination of albumin in human serum and mouse serum has been developed by spectrophotometry coupled with acid brown SR(ASR) as probe molecule. The maximum absorption wavelength of ASR was at 445 nm, while the maximum absorption wavelength of their product was at 610 nm. However, the reaction of ASR with albumin such as BSA or HSA was so strong that parts of their product were undissoluble in water. The addition of gum water into the system effectively eliminated the deposition. Under optimum reaction conditions, the ranges of working lines for BSA and HSA were 0-91.0 mg x L(-1) and 0-95.2 mg x L(-1), respectively. The detection limits were 5.72 mg x L(-1) for BSA and 5.15 mg x L(-1) for HSA. The relative standard derivation and the recovery of the method for the determination of total proteins in 6 human serum samples were 1.8%-4.4% and 93.6% - 109.1%, respectively. The proposed method has been employed in the assay of protein of human serum and mouse serum. The results of this work were in agreement with those obtained by Biuret method.

  4. Albumin/asparaginase capsules prepared by ultrasound to retain ammonia.

    PubMed

    Tinoco, Ana; Ribeiro, Artur; Oliveira, César; Parpot, Pier; Gomes, Andreia; Cavaco-Paulo, Artur

    2016-11-01

    Asparaginase reduces the levels of asparagine in blood, which is an essential amino acid for the proliferation of lymphoblastic malign cells. Asparaginase converts asparagine into aspartic acid and ammonia. The accumulation of ammonia in the bloodstream leads to hyperammonemia, described as one of the most significant side effects of asparaginase therapy. Therefore, there is a need for asparaginase formulations with the potential to reduce hyperammonemia. We incorporated 2 % of therapeutic enzyme in albumin-based capsules. The presence of asparaginase in the interface of bovine serum albumin (BSA) capsules showed the ability to hydrolyze the asparagine and retain the forming ammonia at the surface of the capsules. The incorporation of Poloxamer 407 in the capsule formulation further increased the ratio aspartic acid/ammonia from 1.92 to 2.46 (and 1.10 from the free enzyme), decreasing the levels of free ammonia. This capacity to retain ammonia can be due to electrostatic interactions and retention of ammonia at the surface of the capsules. The developed BSA/asparaginase capsules did not cause significant cytotoxic effect on mouse leukemic macrophage cell line RAW 264.7. The new BSA/asparaginase capsules could potentially be used in the treatment of acute lymphoblastic leukemia preventing hyperammonemia associated with acute lymphoblastic leukemia (ALL) treatment with asparaginase.

  5. Reductive unfolding of serum albumins uncovered by Raman spectroscopy.

    PubMed

    David, Catalina; Foley, Sarah; Mavon, Christophe; Enescu, Mironel

    2008-07-01

    The reductive unfolding of bovine serum albumin (BSA) and human serum albumin (HSA) induced by dithiothreitol (DTT) is investigated using Raman spectroscopy. The resolution of the S-S Raman band into both protein and oxidized DTT contributions provides a reliable basis for directly monitoring the S-S bridge exchange reaction. The related changes in the protein secondary structure are identified by analyzing the protein amide I Raman band. For the reduction of one S-S bridge of BSA, a mean Gibbs free energy of -7 kJ mol(-1) is derived by studying the reaction equilibrium. The corresponding value for the HSA S-S bridge reduction is -2 kJ mol(-1). The reaction kinetics observed via the S-S or amide I Raman bands are identical giving a reaction rate constant of (1.02 +/- 0.11) M(-1) s(-1) for BSA. The contribution of the conformational Gibbs free energy to the overall Gibbs free energy of reaction is further estimated by combining experimental data with ab initio calculations.

  6. Stimuli-Responsive Cucurbit[7]uril-Mediated BSA Nanoassembly for Uptake and Release of Doxorubicin.

    PubMed

    Barooah, Nilotpal; Kunwar, Amit; Khurana, Raman; Bhasikuttan, Achikanath C; Mohanty, Jyotirmayee

    2017-01-03

    We report the construction of a non-toxic nanoassembly of bovine serum albumin (BSA) protein and the cucurbit[7]uril macrocycle as well as its stimuli-responsive breakage with adamantylamine or pH, which restores the protein structure and recognition properties. The assembly showed efficient loading and controlled release of a standard drug, doxorubicin (DOX), and the same was validated in live cells. The cell viability studies documented that the DOX-loaded assembly mask the cytotoxicity of DOX and the toxicity can be revived at the target on demand, triggering its therapeutic activation. This is found to be more effective in the cancer cells. In addition, such host-assisted protein assemblies are also highly promising for stabilizing/protecting the native protein structure, a viable approach to prevent/inhibit protein misfolding and aggregation.

  7. Epitope imprinted polymer coating CdTe quantum dots for specific recognition and direct fluorescent quantification of the target protein bovine serum albumin.

    PubMed

    Yang, Ya-Qiong; He, Xi-Wen; Wang, Yi-Zhi; Li, Wen-You; Zhang, Yu-Kui

    2014-04-15

    A novel epitope molecularly imprinted polymer (EMIP) for specific recognition and direct fluorescent quantification of the target protein bovine serum albumin (BSA) was demonstrated where polymerization was performed on the surface of silica nanospheres embedded CdTe quantum dots (QDs). The synthetic peptide derived from the surface-exposed C-terminus of bovine serum albumin (BSA, residues 599-607) was selected as the template molecule. The resulting EMIP film was able to selectively capture the template peptide and the corresponding target protein BSA via the recognition cavities. Based on the fluorescence quenching, the EMIP-coated QDs (molecular imprinted polymer coating CdTe QDs using epitope as the template) nanospheres were successfully applied to the direct fluorescence quantification of BSA. Compared with BMIP-coated QDs (molecular imprinted polymer coating CdTe QDs using BSA as the template), the imprinting factor and adsorption capacity of EMIP-coated QDs were greatly increased. The prepared EMIP-coated QDs can also discriminate even one mismatched sequences from the original sequences of the epitope of the BSA. The practical analytical performance of the EMIP-coated QDs was examined by evaluating the detection of BSA in the bovine calf serum sample with satisfactory results. In addition, the resulting EMIP-coated QDs nanospheres were also successfully applied to separating BSA from the bovine blood sample.

  8. Recognition and binding of β-lactam antibiotics to bovine serum albumin by frontal affinity chromatography in combination with spectroscopy and molecular docking.

    PubMed

    Li, Qian; Zhang, Tianlong; Bian, Liujiao

    2016-03-01

    Serum albumins are the most abundant carrier proteins in blood plasma and participate in the binding and transportation of various exogenous and endogenous compounds in the body. This work was designed to investigate the recognition and binding of three typical β-lactam antibiotics including penicillin G (Pen G), penicillin V (Pen V) and cefalexin (Cef) with bovine serum albumin (BSA) by frontal affinity chromatography in combination with UV-vis absorption spectra, fluorescence emission spectra, binding site marker competitive experiment and molecular docking under simulated physiological conditions. The results showed that a BSA only bound with one antibiotic molecule in the binding process, and the binding constants for Pen G-BSA, Pen V-BSA and Cef-BSA complexes were 4.22×10(1), 4.86×10(2) and 3.32×10(3) (L/mol), respectively. All the three β-lactam antibiotics were mainly inserted into the subdomain IIA (binding site 1) of BSA by hydrogen bonds and Van der Waals forces. The binding capacity between the antibiotics and BSA was closely related to the functional groups and flexibility of side chains in antibiotics. This study provided an important insight into the molecular recognition and binding interaction of BSA with β-lactam antibiotics, which may be a useful guideline for the innovative clinical medications and new antibiotic designs with effective pharmacological properties.

  9. Comparison of interactions between three food colorants and BSA.

    PubMed

    Li, Tian; Cheng, Zhengjun; Cao, Lijun; Jiang, Xiaohui

    2016-03-01

    Fast Green FCF (FCF), Patent Blue V (PBV) and Acid Blue 1 (AB1) are used as food colorants. Multiple spectroscopic techniques were employed to probe in depth the affinity of FCF/PBV/AB1 with BSA in different pH and/or salt concentrations. The results showed that FCF/PBV/AB1 quenched the intrinsic fluorescence of BSA by a static process, and electrostatic force dominated the formation of BSA-FCF/PBV/AB1 complex which was confirmed by the effects of salt on their interactions. Subdomain IIA was the primary binding site for FCF/PBV/AB1 on BSA in the pH range of 5.5-7.4, while both Trp 212 and Trp 134 residues of BSA might be bound by FCF/PBV/AB1 at pH 4.8. The K values suggested that the binding ability of three food colorants with BSA was FCF>PBV>AB1. The results of UV-vis absorption, synchronous fluorescence, 3D fluorescence and FT-IR spectra proved that the structure of BSA altered by FCF/PBV/AB1.

  10. Modulation of arachidonic acid release and membrane fluidity by albumin in vascular smooth muscle and endothelial cells.

    PubMed

    Beck, R; Bertolino, S; Abbot, S E; Aaronson, P I; Smirnov, S V

    1998-11-02

    Albumin is the major plasma protein circulating in blood. Albumin potently decreases capillary permeability, although the mechanisms are not understood completely. Albumin also effectively binds arachidonic acid (AA), which increases capillary permeability. To investigate the interactions of BSA and AA with the cell membrane, the effect of these substances on [3H]AA release and membrane fluidity was studied in vascular myocytes and endothelial cells. BSA (0.2 and 1 mg . mL-1) stimulated a significant release of [3H]AA from both intact rat aorta and cultured smooth muscle cells. This effect was not mimicked by gamma-globulin or myoglobin (both 1 mg . mL-1) in intact tissue. BSA, but not gamma-globulin and myoglobin, decreased the membrane fluidity (assessed as changes in the steady-state fluorescence anisotropy of 1,6-diphenyl-1,3, 5-hexatriene) in a concentration-dependent manner with a half-maximum concentration between 0.007 and 0.4 mg . mL-1 in both freshly isolated and cultured rat aortic myocytes and human umbilical vein endothelial cells. AA (1 to 200 micromol/L) caused the opposite effect, increasing membrane fluidity and antagonizing the effect of BSA. BSA modified at its arginine residues, which are thought to be important in AA binding, did not stimulate [3H]AA release and was significantly less potent than native BSA in altering the membrane fluidity. The effect of BSA can be explained by a high-affinity binding of AA to the protein and extraction of AA from the cell membrane. The interaction between BSA and AA could play a role in the regulation of vascular permeability.

  11. Treatment with GAD65 or BSA does not protect against diabetes in BB rats.

    PubMed

    Petersen, J S; Mackay, P; Plesner, A; Karlsen, A; Gotfredsen, C; Verland, S; Michelsen, B; Dyrberg, T

    1997-01-01

    The M(r) 65,000 isoform of glutamic acid decarboxylase (GAD65) has been implicated as the initiating islet cell antigen in the pathogenesis of diabetes, primarily based on studies in non-obese diabetic (NOD) mice. To test the role of this islet cell autoantigen in the pathogenesis of spontaneously occurring diabetes in another animal model, purified recombinant human islet GAD65 was injected i.v. at 200 micrograms/animal into 18-day-old diabetes-prone BB rats. For controls, bovine serum albumin (BSA), which has also been implicated in the pathogenesis of diabetes, or buffer alone was injected into age matched BB rats. At 210 days of age there were no differences in diabetes incidence in the 3 groups, i.e. 73% (11 of 15) in the GAD65-treated, 81% (13 of 16) in the BSA-treated and 65% (11 of 17) in the buffer-treated animals, or in the median age at onset of disease, i.e. 79 days (range 65-111), 87 days (range 60-107) and 86 days (range 74-109), respectively. The lack of protection against diabetes following GAD65 treatment could hypothetically be explained by no or by an aberrant expression of GAD in BB-rat islet cells. However, immunohistochemistry of pancreata and immunoblotting analysis of isolated islets showed that the expression of GAD65 and GAD67 was similar in BB and Lewis rats. In conclusion, these data indicate that neither GAD65 nor BSA autoimmunity is important for the development of diabetes in BB rats, in contrast to the situation in NOD mice, and further emphasizes that extrapolation from only one animal model to autoimmune diabetes in general may not be appropriate.

  12. Seeking to shed some light on the binding of fluoroquinolones to albumins.

    PubMed

    Bosca, Francisco

    2012-03-22

    Interactions between serum albumins (HSA, human, and BSA, bovine) and fluoroquinolones (FQs), such as enoxacin, norfloxacin, ciprofloxacin, and ofloxacin, have been studied using the laser flash photolysis technique. Lifetimes and quantum yields of FQs triplet excited states ((3)FQs) are not affected by the presence of albumins, however, the quenching of (3)FQs by tryptophan and tyrosine and the subsequent generation of FQs radical anions and tyrosyl or tryptophanyl radicals were detected. These results, besides agreeing with association constants (K(a)) for FQs binding to albumins lower than 6 × 10(2) M(-1), are highly relevant to understanding the process of photohapten formation, the first event in the onset of photoallergy. The emission of tryptophan within albumin is not affected by the presence of FQs when the inner filter effects (IFE) of these drugs are taken into account, which explains the discrepancies reported in the literature about K(a) of FQs with albumins.

  13. Effect of pH on protein distribution in electrospun PVA/BSA composite nanofibers.

    PubMed

    Tang, Christina; Ozcam, A Evren; Stout, Brendon; Khan, Saad A

    2012-05-14

    We examine the protein distribution within an electrospun polymer nanofiber using polyvinyl alcohol and bovine serum albumin as a model system. We hypothesize that the location of the protein within the nanofiber can be controlled by carefully selecting the pH and the applied polarity of the electric field as the pH affects the net charge on the proteins. Using fluorescently labeled BSA and surface analysis, we observe that the distribution of BSA is affected by the pH of the electrospinning solution. Therefore, we further probe the relevant forces on the protein in solution during electrospinning. The role of hydrodynamic friction was assessed using glutaraldehyde and HCl as a tool to modify the viscosity of the solution during electrospinning. By varying the pH and the polarity of the applied electric field, we evaluated the effects of electrostatic forces and dielectrophoresis on the protein during fiber formation. We surmise that electrostatic forces and hydrodynamic friction are insignificant relative to dielectrophoretic forces; therefore, it is possible to separate species in a blend using polarizability contrast. A coaxial distribution of protein in the core can be obtained by electrospinning at the isoelectric point of the protein, whereas surface enrichment can be obtained when the protein carries a net charge.

  14. Photoinduced electron transfer in a protein-surfactant complex: probing the interaction of SDS with BSA.

    PubMed

    Chakraborty, Anjan; Seth, Debabrata; Setua, Palash; Sarkar, Nilmoni

    2006-08-24

    Photoinduced fluorescence quenching electron transfer from N,N-dimethyl aniline to different 7-amino coumarin dyes has been investigated in sodium dodecyl sulfate (SDS) micelles and in bovine serum albumin (BSA)-SDS protein-surfactant complexes using steady state and picosecond time resolved fluorescence spectroscopy. The electron transfer rate has been found to be slower in BSA-SDS protein-surfactant complexes compared to that in SDS micelles. This observation has been explained with the help of the "necklace-and-bead" structure formed by the protein-surfactant complex due to coiling of protein molecules around the micelles. In the correlation of free energy change to the fluorescence quenching electron transfer rate, we have observed that coumarin 151 deviates from the normal Marcus region, showing retardation in the electron transfer rate at higher negative free energy region. We endeavored to establish that the retardation in the fluorescence quenching electron transfer rate for coumarin 151 at higher free energy region is a result of slower rotational relaxation and slower translational diffusion of coumarin 151 (C-151) compared to its analogues coumarin 152 and coumarin 481 in micelles and in protein-surfactant complexes. The slower rotational relaxation and translational diffusion of C-151 are supposed to be arising from the different location of coumarin 151 compared to coumarin 152 and coumarin 481.

  15. Dynamics in BSA solutions at low ionic strengths as observed by holographic relaxation spectroscopy

    NASA Astrophysics Data System (ADS)

    Barish, Amy O.; Gabriel, Don A.; Johnson, Charles S., Jr.

    1987-09-01

    Holographic relaxation techniques (HRS) were used to study dynamics in solutions of bovine serum albumin (BSA) labeled with azobenzene-p-isothiocyanate (ABITC). The ionic strengths ranged from 0.5 to 100 mM and the protein concentrations were 3 to 50 g/L. A single diffusive component was observed above 25 mM salt, but at lower ionic strengths two components were resolved. Also, electrophoresis combined with holographic relaxation spectroscopy (EHRS) showed two components. A photoionization model, in which the net charge of the BSA-ABITC molecule is altered by the writing laser pulse, is proposed to explain the results. The coupled diffusion problem for the bleached and unbleached macroions and the counter and coions is solved to obtain the concentration and ionic strength dependences of the diffusion coefficients. Also, effective diffusion coefficients for the components in EHRS are obtained. Overall, there is good agreement between this simple model and experiment; however, the macroion charges required in the theory are roughly a factor of two lower than those found by titration and electrolysis.

  16. Albumin adsorption on CoCrMo alloy surfaces

    NASA Astrophysics Data System (ADS)

    Yan, Yu; Yang, Hongjuan; Su, Yanjing; Qiao, Lijie

    2015-12-01

    Proteins can adsorb on the surface of artificial joints immediately after being implanted. Although research studying protein adsorption on medical material surfaces has been carried out, the mechanism of the proteins’ adsorption which affects the corrosion behaviour of such materials still lacks in situ observation at the micro level. The adsorption of bovine serum albumin (BSA) on CoCrMo alloy surfaces was studied in situ by AFM and SKPFM as a function of pH and the charge of CoCrMo alloy surfaces. Results showed that when the specimens were uncharged, hydrophobic interaction could govern the process of the adsorption rather than electrostatic interaction, and BSA molecules tended to adsorb on the surfaces forming a monolayer in the side-on model. Results also showed that adsorbed BSA molecules could promote the corrosion process for CoCrMo alloys. When the surface was positively charged, the electrostatic interaction played a leading role in the adsorption process. The maximum adsorption occurred at the isoelectric point (pH 4.7) of BSA.

  17. Albumin adsorption on CoCrMo alloy surfaces

    PubMed Central

    Yan, Yu; Yang, Hongjuan; Su, Yanjing; Qiao, Lijie

    2015-01-01

    Proteins can adsorb on the surface of artificial joints immediately after being implanted. Although research studying protein adsorption on medical material surfaces has been carried out, the mechanism of the proteins’ adsorption which affects the corrosion behaviour of such materials still lacks in situ observation at the micro level. The adsorption of bovine serum albumin (BSA) on CoCrMo alloy surfaces was studied in situ by AFM and SKPFM as a function of pH and the charge of CoCrMo alloy surfaces. Results showed that when the specimens were uncharged, hydrophobic interaction could govern the process of the adsorption rather than electrostatic interaction, and BSA molecules tended to adsorb on the surfaces forming a monolayer in the side-on model. Results also showed that adsorbed BSA molecules could promote the corrosion process for CoCrMo alloys. When the surface was positively charged, the electrostatic interaction played a leading role in the adsorption process. The maximum adsorption occurred at the isoelectric point (pH 4.7) of BSA. PMID:26673525

  18. Determination of drugs in plasma samples by disposable pipette extraction with C18-BSA phase and liquid chromatography-tandem mass spectrometry.

    PubMed

    Pinto, Mônia Ap Lemos; de Souza, Israel D; Queiroz, Maria Eugênia C

    2017-05-30

    This work describes restricted access material (RAM) constituted of porous octadecylsilane particles with the outer surface covered with bovine serum albumin (C18-BSA) as a stationary phase to extract drugs from plasma samples by disposable pipette extraction (DPX) for further analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The C18-BSA phase simultaneously excluded macromolecules by chemical diffusion barrier (BSA network) and enrichment of the interior phase (C18) with drug traces by sorption. The hydrophilic barrier of the C18-BSA allows small molecules (drugs) to permeate through the hydrophobic part (C18), while at the same time it excludes the macromolecules by chemical diffusion barrier (BSA network). Optimization of the DPX variables (sorption equilibration time, exclusion of endogenous compounds, and elution step) improved the sensitivity and selectivity of the method, which presented a linear range from the lower limit of quantification (0.5-20.0ngmL(-1)) to the upper limit of quantification (32.5-10,500ngmL(-1)), inter- and intra-assay precision with coefficients of variation (CV) lower than 15%, and relative standard error (RSE) of the accuracy ranging from -12% to 11%. The developed method was successfully used to determine five antipsychotics (olanzapine, quetiapine, clozapine, haloperidol, and chlorpromazine) in combination with seven antidepressants (mirtazapine, paroxetine, citalopram, sertraline, imipramine, clomipramine, and fluoxetine), two anticonvulsants (carbamazepine and lamotrigine), and two anxiolytics (diazepam and clonazepam) in plasma samples from schizophrenic patients for therapeutic drug monitoring.

  19. Bovine serum albumin: survival and osmolarity effect in bovine spermatozoa stored above freezing point.

    PubMed

    Nang, C F; Osman, K; Budin, S B; Ismail, M I; Jaffar, F H F; Mohamad, S F S; Ibrahim, S F

    2012-05-01

    Liquid nitrogen preservation in remote farms is a limitation. The goal of this study was to determine optimum temperature above freezing point for bovine spermatozoa preservation using bovine serum albumin (BSA) as a supplementation. Pooled semen sample from three ejaculates was subjected to various BSA concentration (1, 4, 8 and 12 mg ml(-1)), before incubation in different above freezing point temperatures (4, 25 and 37 °C). Viability assessment was carried out against time from day 0 (fresh sample) until all spermatozoa become nonviable. Optimal condition for bovine spermatozoa storage was at 4 °C with 1 mg ml(-1) BSA for almost 7 days. BSA improved bovine spermatozoa viability declining rate to 44.28% at day 4 and 57.59% at day 7 compared to control, with 80.54% and 98.57% at day 4 and 7 respectively. Increase in BSA concentration did not improve sperm viability. Our results also confirmed that there was a strong negative correlation between media osmolarity and bovine spermatozoa survival rate with r = 0.885, P < 0.0001. Bovine serum albumin helps to improve survival rate of bovine spermatozoa stored above freezing point.

  20. Bovine serum albumin-sodium alkyl sulfates bioconjugates as drug delivery systems.

    PubMed

    Benkő, M; Varga, N; Sebők, D; Bohus, G; Juhász, Á; Dékány, I

    2015-06-01

    Precipitation of bovine serum albumin (BSA) by anionic surfactants with alkyl chains of increasing lengths (octyl, decyl, dodecyl sulfates) was studied at room temperature, at pH 3.0, in isotonic sodium chloride solution. The particle size of albumin, the zeta potential, the surface charge and fluorescent properties of BSA-surfactant composites were investigated concerning addition of increasing amount of surfactant. The thermal stability of the systems was monitored by calorimetric analysis (DSC). The formation of the well-ordered structure in the self-assembly process in liquid phase was studied by XRD measurement. The structure of the precipitated BSA-surfactant nanocomposites was characterized by small-angle X-ray scattering (SAXS). Finally, ibuprofen (IBU) molecules were enclosed in BSA-surfactant bioconjugate systems and the release properties of the drug were investigated. It has been found out that, as a consequence to the increasing number of carbon atoms in the alkyl chains of the surfactant, the structure and the fluorescent properties of the aggregates formed can be controlled due to the increase in the hydrophobicity of BSA-surfactant composites. The bioconjugates are well applicable as carrier to realize controlled release of drug molecules.

  1. Spectroscopic study on the interaction of bovine serum albumin with zinc(II) phthalocyanine.

    PubMed

    Li, Yejing; Wang, Yi; Wang, Ao; Lu, Shan; Zhou, Lin; Zhou, Jiahong; Lin, Yun; Wei, Shaohua

    2015-12-01

    The interaction between the photosensitive antitumour drug, 2(3),9(10),16(17),23(24)-tetra-(((2-aminoethylamino)methyl)phenoxy)phthalocyaninato-zinc(II) (ZnPc) and bovine serum albumin (BSA) has been investigated using various spectroscopic methods. This work may provide some useful information for understanding the interaction mechanism of anticancer drug-albumin binding and gain insight into the biological activity and metabolism of the drug in blood. Based on analysis of the fluorescence spectra, ZnPc could quench the intrinsic fluorescence of BSA and the quenching mechanism was static by forming a ground state complex. Meanwhile, the Stern-Volmer quenching constant (KSV), binding constant (Kb), number of binding sites (n) and thermodynamic parameters were obtained. Results showed that the interaction of ZnPc with BSA occurred spontaneously via hydrogen bond and van der Waal's force. According to Foster's non-radioactive energy transfer theory, the energy transfer from BSA to ZnPc occurred with high possibility. Synchronous fluorescence and circular dichroism (CD) spectra also demonstrated that ZnPc induced the secondary structure of and conformation changes in BSA, especially α helix.

  2. Interaction of bovine serum albumin with starch nanoparticles prepared by TEMPO-mediated oxidation.

    PubMed

    Fan, Haoran; Ji, Na; Zhao, Mei; Xiong, Liu; Sun, Qingjie

    2015-01-01

    The objective of this study was to elucidate the interaction of starch nanoparticles prepared through TEMPO oxidation (TEMPO-SNPs) with protein (bovine serum albumin) by various spectroscopic techniques and transmission electron microscopy (TEM). The enhanced absorbance observed by UV spectra and the decrease in fluorescence spectroscopy of bovine serum albumin (BSA) induced by TEMPO-SNPs demonstrated the occurrence of an interaction between BSA and TEMPO-SNPs. The quenching constant was inversely correlated with temperature, showing that the quenching effect of TEMPO-SNPs was static quenching. Electrostatic force had a leading contribution to the binding roles of BSA on TEMPO-SNPs, which was confirmed by negative enthalpy change and positive entropy change. When interacting with TEMPO-SNPs at different concentrations, the content of the α-helix structure in BSA decreased and β-sheet and random coil structures increased, indicating that TEMPO-SNPs had an effect on the secondary conformation of BSA. Furthermore, TEM images suggested that nanoparticle-protein complexes were formed.

  3. The effect of methylamine on the solution structures of human and bovine serum albumins

    NASA Astrophysics Data System (ADS)

    Hamdani, S.; Joly, D.; Carpentier, R.; Tajmir-Riahi, H. A.

    2009-11-01

    Serum albumins are the major soluble protein constituents of the circulatory system and have many physiological functions including transporting a variety of compounds. Methylamine, a monoamine with one positive charge complexes with protein and alters protein secondary structure. The aim of this study was to examine the interactions of human serum albumin (HSA) and bovine serum albumin (BSA) with methylamine at physiological conditions, using constant protein concentration and various monoamine concentrations. FTIR, UV-vis, CD and fluorescence spectroscopic methods were used to analyse methylamine binding mode, the binding constant and the effects of monoamine on HSA and BSA stability and conformations. Structural analysis showed that methylamine binds HSA and BSA via hydrophilic (polypeptide and amine polar groups) and hydrophobic interactions with overall binding constants of Kmet-HSA = 2.42 (±0.5) × 10 2 M -1 and Kmet-BSA = 1.34 (±0.3) × 10 3 M -1 with the number of bound methylamine around one molecule per protein. Methylamine complexation alters protein conformation by major reduction of α-helix and increase in random coil and turn structures indicating a partial protein unfolding.

  4. Optimization and evaluation of a thermoresponsive ophthalmic in situ gel containing curcumin-loaded albumin nanoparticles

    PubMed Central

    Lou, Jie; Hu, Wenjing; Tian, Rui; Zhang, Hua; Jia, Yuntao; Zhang, Jingqing; Zhang, Liangke

    2014-01-01

    This study aimed to optimize and evaluate a thermoresponsive ophthalmic in situ gel containing curcumin-loaded albumin nanoparticles (Cur-BSA-NPs-Gel). Albumin nanoparticles were prepared via a desolvation method, and the gels were prepared via a cold method. The central composite design and response surface method was used to evaluate the effects of varying Pluronic® F127 and Pluronic® F68 concentrations on the sol–gel transition temperature, which is an indicator of optimum formulations. The optimized formulation was a free-flowing liquid below 30.9°C that transformed into a semi-solid gel above 34.2°C after dilution with simulated tear fluid. Results of the in vitro release and erosion behavior study indicated that Cur-BSA-NPs-Gel achieved superior sustained-release effects and that incorporation of albumin nanoparticles exerted minimal effects on the gel structure. In addition, in vivo ophthalmic experiments employing Cur-BSA-NPs-Gel were subsequently performed in rabbits. In vivo eye irritation results showed that Cur-BSA-NPs-Gel might be considered safe for ophthalmic drug delivery. The in vivo study also revealed that the formulation could significantly increase curcumin bioavailability in the aqueous humor. In conclusion, the optimized in situ gel formulation developed in this work has significant potential for ocular application. PMID:24904211

  5. Concentration-dependent reversible self-oligomerization of serum albumins through intermolecular β-sheet formation.

    PubMed

    Bhattacharya, Arpan; Prajapati, Roopali; Chatterjee, Surajit; Mukherjee, Tushar Kanti

    2014-12-16

    Proteins inside a cell remain in highly crowded environments, and this often affects their structure and activity. However, most of the earlier studies involving serum albumins were performed under dilute conditions, which lack biological relevance. The effect of protein-protein interactions on the structure and properties of serum albumins at physiological conditions have not yet been explored. Here, we report for the first time the effect of protein-protein and protein-crowder interactions on the structure and stability of two homologous serum albumins, namely, human serum albumin (HSA) and bovine serum albumin (BSA), at physiological conditions by using spectroscopic techniques and scanning electron microscopy (SEM). Concentration-dependent self-oligomerization and subsequent structural alteration of serum albumins have been explored by means of fluorescence and circular dichroism spectroscopy at pH 7.4. The excitation wavelength (λex) dependence of the intrinsic fluorescence and the corresponding excitation spectra at each emission wavelength indicate the presence of various ground state oligomers of serum albumins in the concentration range 10-150 μM. Circular dichroism and thioflavin T binding assay revealed formation of intermolecular β-sheet rich interfaces at high protein concentration. Excellent correlations have been observed between β-sheet content of both the albumins and fluorescence enhancement of ThT with protein concentrations. SEM images at a concentration of 150 μM revealed large dispersed self-oligomeric states with sizes vary from 330 to 924 nm and 260 to 520 nm for BSA and HSA, respectively. The self-oligomerization of serum albumins is found to be a reversible process; upon dilution, these oligomers dissociate into a native monomeric state. It has also been observed that synthetic macromolecular crowder polyethylene glycol (PEG 200) stabilizes the self-associated state of both the albumins which is contrary to expectations that the

  6. Protections of bovine serum albumin protein from damage on functionalized graphene-based electrodes by flavonoids.

    PubMed

    Sun, Bolu; Gou, Yuqiang; Xue, Zhiyuan; Zheng, Xiaoping; Ma, Yuling; Hu, Fangdi; Zhao, Wanghong

    2016-05-01

    A sensitive electrochemical sensor based on bovine serum albumin (BSA)/poly (diallyldimethylammonium chloride) (PDDA) functionalized graphene nanosheets (PDDA-G) composite film modified glassy carbon electrode (BSA/PDDA-G/GCE) had been developed to investigate the oxidative protein damage and protections of protein from damage by flavonoids. The performance of this sensor was remarkably improved due to excellent electrical conductivity, strong adsorptive ability, and large effective surface area of PDDA-G. The BSA/PDDA-G/GCE displayed the greatest degree of BSA oxidation damage at 40 min incubation time and in the pH 5.0 Fenton reagent system (12.5 mM FeSO4, 50 mM H2O2). The antioxidant activities of four flavonoids had been compared by fabricated sensor based on the relative peak current ratio of SWV, because flavonoids prevented BSA damage caused by Fenton reagent and affected the BSA signal in a solution containing Co(bpy)3(3+). The sensor was characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM). UV-vis spectrophotometry and FTIR were also used to investigate the generation of hydroxyl radical and BSA damage, respectively. On the basis of results from electrochemical methods, the order of the antioxidant activities of flavonoids is as follows: (+)-catechin>kaempferol>apigenin>naringenin. A novel, direct SWV analytical method for detection of BSA damage and assessment of the antioxidant activities of four flavonoids was developed and this electrochemical method provided a simple, inexpensive and rapid detection of BSA damage and evaluation of the antioxidant activities of samples.

  7. Interaction between bovine serum albumin and equimolarly mixed cationic-anionic surfactants decyltriethylammonium bromide-sodium decyl sulfonate.

    PubMed

    Lu, Run-Chao; Cao, Ao-Neng; Lai, Lu-Hua; Zhu, Bu-Yao; Zhao, Guo-Xi; Xiao, Jin-Xin

    2005-03-25

    The interactions of bovine serum albumin (BSA) with the anionic surfactant sodium decylsulfonate (C10SO3), the cationic surfactant decyltriethylammonium bromide (C10NE) and equimolarly mixed cationic-anionic surfactants C10NE-C10SO3 were investigated by surface tension, viscosity, dynamic light scattering (DLS) and circular dichroism (CD). It was shown that the single ionic surfactant C10SO3 or C10NE has obvious interaction with BSA. The presence of C10SO3 or C10NE modified BSA structure. However, the equimolarly mixed cationic-anionic surfactants C10NE-C10SO3 showed very weak interactions with BSA. The surface tension-log concentration (gamma-logC) plot for the aqueous solutions of C10NE-C10SO3/BSA mixtures coincided with that of C10NE-C10SO3 solutions. Viscometry showed that there is no significant change in the rheological properties for the C10NE-C10SO3/BSA mixed solutions. DLS showed that BSA monomers and mixed aggregates of C10NE-C10SO3 existed in the C10NE-C10SO3/BSA mixed solutions. From CD spectra no obvious modification of BSA structure in the presence of C10NE-C10SO3 mixtures was observed. The weak interactions between BSA and C10NE-C10SO3 might be explained in terms of the very low critical micelle concentration (cmc) of C10NE-C10SO3 mixtures that made the concentration of ionic surfactant monomers much lower than that needed for inducing the modification of BSA structure. In other words, the very strong synergism between oppositely charged cationic and anionic surfactants makes the formation of cationic-anionic surfactant mixed aggregates in the bulk solution a more favorable process than binding to proteins.

  8. Conjugation of ampicillin and enrofloxacin residues with bovine serum albumin and raising of polyclonal antibodies against them

    PubMed Central

    Kumar, B. Sampath; Ashok, Vasili; Kalyani, P.; Nair, G. Remya

    2016-01-01

    Aim: The aim of this study is to test the potency of bovine serum albumin (BSA) conjugated ampicillin (AMP) and enrofloxacin (ENR) antigens in eliciting an immune response in rats using indirect competitive enzyme-linked immunosorbent assay (icELISA). Materials and Methods: AMP and ENR antibiotics were conjugated with BSA by carbodiimide reaction using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) as a cross-linker. The successful conjugation was confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Sprague-Dawley rats were immunized with the conjugates and blood samples were collected serially at 15 days time interval after first immunization plus first booster, second booster, third booster, and the fourth sampling was done 1½ month after the third booster. The antibody titres in the antisera of each antibiotic in all the four immunization cycles (ICs) were determined by an icELISA at various serum dilutions ranging from 1/100 to 1/6400. Results: Analysis of antibiotic-BSA conjugates by sodium dodecyl sulfate polyacrylamide gel electrophoresis and coomassie blue staining revealed high molecular weight bands of 85 kDa and 74 kDa for AMP-BSA and ENR-BSA respectively when compared to 68 kDa band of BSA. Both the antibiotic conjugates elicited a good immune response in rats but comparatively the response was more with AMP-BSA conjugate than ENR-BSA conjugate. Maximum optical density 450 value of 2.577 was recorded for AMP-BSA antisera, and 1.723 was recorded for ENR-BSA antisera at 1/100th antiserum dilution in third IC. Conclusion: AMP and ENR antibiotics proved to be good immunogens when conjugated to BSA by carbodiimide reaction with EDC as crosslinker. The polyclonal antibodies produced can be employed for detecting AMP and ENR residues in milk and urine samples. PMID:27182138

  9. Red-blood-cell-like BSA/Zn3(PO4)2 hybrid particles: Preparation and application to adsorption of heavy metal ions

    NASA Astrophysics Data System (ADS)

    Zhang, Baoliang; Li, Peitao; Zhang, Hepeng; Li, Xiangjie; Tian, Lei; Wang, Hai; Chen, Xin; Ali, Nisar; Ali, Zafar; Zhang, Qiuyu

    2016-03-01

    A novel kind of red-blood-cell-like bovine serum albumin (BSA)/Zn3(PO4)2 hybrid particle is prepared at room temperature by a facile and rapid one-step method based on coordination between BSA and zinc ion. The morphology of the monodisperse hybrid particle shows oblate spheroidal type with a one sided single hole on the surface. The hybrid particle is constructed with BSA/Zn3(PO4)2 nanoplates of 35 nm thick. The average particle size of hybrid particle is 2.3 μm, and its BET specific surface area is 146.64 cm2/g. To clarify the evolution of BSA/Zn3(PO4)2 hybrid particle, SEM and elemental analysis as a function of particle growth time are investigated. The formation mechanism of BSA/Zn3(PO4)2 hybrid particle, which can be described as crystallization, coordination and self-assembly process, is illustrated in detail. The as-prepared BSA/Zn3(PO4)2 hybrid particle is used for adsorption of Cu2+. The hybrid particle displayed excellent adsorption properties on Cu2+. The adsorption efficiency of BSA/Zn3(PO4)2 hybrid particles at 5 min and 30 min are 86.33% and 98.9%, respectively. The maximum adsorption capacity is 6.85 mg/g. Thus, this kind of novel adsorbent shows potential application value in ultra-fast and highly efficient removal of Cu2+.

  10. Quarter variation and correlations of colostrum albumin, immunoglobulin G1 and G2 in dairy cows.

    PubMed

    Samarütel, Jaak; Baumrucker, Craig R; Gross, Josef J; Dechow, Chad D; Bruckmaier, Rupert M

    2016-05-01

    A high variation in immunoglobulin G1 (IgG1) concentration in first milked quarter colostrum has been reported, but BSA quarter colostrum variation is not known. The occurrence of serum albumin in milk has been attributed to increased blood-milk barrier penetration. Reports of serum albumin binding to the Fc Receptor of the neonate, the receptor thought to be responsible for IgG1 transcytosis, suggested that a correlation with the appearance of IgG1 in colostrum of dairy cows was likely. The objective of the study was to establish the quarter colostrum concentration and mass of immunoglobulins and serum albumin. First colostrum was quarter collected within 4 h of parturition from healthy udders of 31 multiparous dairy cows. Individual quarter colostrum weight was determined and a sample of each was frozen for subsequent analysis. Concentrations of immunoglobulin G1, G2, and BSA were measured by ELISA and total mass of components was calculated. In addition, colostrum was also analysed for L-lactate dehydrogenase activity. Analysis of concentration and mass of BSA, immunoglobulin G1, G2 established that the quarter variations were different by cow, quarter and quarter within cow. Partial correlations corrected for colostrum weight indicated that BSA and IgG2 concentration and mass are closely correlated while that of BSA and IgG1 concentration and mass exhibited no correlation suggesting that BSA and IgG1 may have different transport mechanisms. Interestingly, immunoglobulin G1 and G2 concentration and mass exhibited strong correlations suggesting that also some unknown mechanism of immunoglobulin G2 appearance in colostrum is occurring. Finally, no measured protein exhibited any correlation with the activity of lactate dehydrogenase in colostrum.

  11. Carbon nanotubes induce secondary structure changes of bovine albumin in aqueous phase.

    PubMed

    Yang, Man; Meng, Jie; Mao, Xiaobo; Yang, Yang; Cheng, Xuelian; Yuan, Hui; Wang, Chen; Xu, Haiyan

    2010-11-01

    Interaction of nanomaterials to protein molecules is one of the most important issues to deeply understand the influences of the nanomaterials upon physiological processes and protein functions. So far most of investigations focused on the protein molecules adsorbed on the nanomaterials surface, less is known about those in the aqueous phase (not absorbed). In this work, luminescent spectroscopy analysis, circular dichroism measurement, atomic force microscopy, matrix-assisted laser desorption/ionization time of flight mass spectrometry, isoelectric focusing and sulfate polyacrylamide gel electrophoresis were used to investigate the influence of oxidized water-soluble multiwalled carbon nanotubes (CNT) dispersing in aqueous solution upon the structures of bovine serum albumin (BSA) through co-incubation. We focused on BSA molecules that stayed in the aqueous phase instead of those adsorbed by CNT. Experimental results show that the fractions of beta-sheet decreased from 33.3% to 29.8% and beta-turn increased from 2% to 5% in reference with native BSA. There was a slight increase of alpha-helix and a slight reduction of random coil. BSA molecules that had been encountered with CNT and were left in the solution formed a loose and flatten morphology on graphite substrates instead of their native tight and round morphology observed by AFM. The value of isoelectric point for BSA after exposed to CNT moved towards to a higher pH position compared with native BSA. All together, it was concluded that the oxidized water-soluble multiwalled carbon nanotubes not only adsorb bovine serum albumin molecules to their surface, but also induces albumin molecules in the aqueous solution undergo secondary structure changes, which lead to a conformation change.

  12. Thermophysical properties of lysozyme (protein) solutions

    NASA Technical Reports Server (NTRS)

    Liu, Jiaching; Yang, Wen-Jei

    1992-01-01

    Thermophysical properties of protein solutions composed of the lysozyme crystals with a 0.1 M sodium acetate and 5 percent NaCl solution as the buffer (pH = 4.0) are determined. The properties being measured include specific heat, thermal conductivity, dynamic viscosity, and surface tension. The protein concentrations are varied. Thermal diffusivity is calculated using the measured results. The purpose of the research is to measure thermophysical properties of lysozyme solutions which would serve as the data bank for controlling and modeling the crystal growth process on earth as well as in space.

  13. Protein Crystal Serum Albumin

    NASA Technical Reports Server (NTRS)

    1998-01-01

    As the most abundant protein in the circulatory system albumin contributes 80% to colloid osmotic blood pressure. Albumin is also chiefly responsible for the maintenance of blood pH. It is located in every tissue and bodily secretion, with extracellular protein comprising 60% of total albumin. Perhaps the most outstanding property of albumin is its ability to bind reversibly to an incredible variety of ligands. It is widely accepted in the pharmaceutical industry that the overall distribution, metabolism, and efficiency of many drugs are rendered ineffective because of their unusually high affinity for this abundant protein. An understanding of the chemistry of the various classes of pharmaceutical interactions with albumin can suggest new approaches to drug therapy and design. Principal Investigator: Dan Carter/New Century Pharmaceuticals

  14. Advanced Glycation End Products Modulate Structure and Drug Binding Properties of Albumin.

    PubMed

    Awasthi, Saurabh; Murugan, N Arul; Saraswathi, N T

    2015-09-08

    The extraordinary ligand binding properties of albumin makes it a key player in the pharmacokinetics and pharmacodynamics of many vital drugs. Albumin is highly susceptible for nonenzymatic glycation mediated structural modifications, and there is a need to determine structural and functional impact of specific AGEs modifications. The present study was aimed toward determining the AGE mediated structure and function changes, primarily looking into the effect on binding affinity of drugs in the two major drug binding sites of albumin. The impact of the two most predominant AGEs modifications, i.e., carboxyethyllysine (CEL) and argpyrimidine (Arg-P), was studied on the basis of the combination of in vitro and in silico experiments. In vitro studies were carried out by AGEs modification of bovine serum albumin (BSA) for the formation of Arg-P and CEL followed by drug interaction studies. In silico studies involved molecular dynamics (MD) simulations and docking studies for native and AGEs modified BSAs. In particular the side chain modification was specifically carried out for the residues in the drug binding sites, i.e., Arg-194, Arg-196, Arg-198, and Arg-217, and Lys-204 (site I) and Arg-409 and Lys-413 (site II). The equilibrated structures of native BSA (n-BSA) and glycated BSA (G-BSA) as obtained from MD were used for drug binding studies using molecular docking approach. It was evident from the results of both in vitro and in silico drug interaction studies that AGEs modification results in the reduced drug binding affinity for tolbutamide (TLB) and ibuprofen (IBP) in sites I and II. Moreover, the AGEs modification mediated conformational changes resulted in the shallow binding pockets with reduced accessibility for drugs.

  15. Enantiomeric separations using bovine serum albumin immobilized on ion-exchange stationary phases

    SciTech Connect

    Jacobson, S.C.; Guiochon, G. |

    1992-07-01

    Bovine serum albumin (BSA) can be readily immobilized on ion-exchange stationary phases by frontal analysis of a proper solution. This provides a simple means of adjusting the amount of BSA contained in the column and of measuring it accurately. Although the immobilization is ionic and not covalent, the columns are stable for extensive periods of time. If needed, they can be easily regenerated by the same frontal analysis procedure. Results for the separation of various organic compounds on these columns are reported. 11 refs., 3 figs., 2 tabs.

  16. Bovine serum albumin detection and quantitation based on capacitance measurements of liquid crystals

    NASA Astrophysics Data System (ADS)

    Lin, Chi-Hao; Lee, Mon-Juan; Lee, Wei

    2016-08-01

    Liquid crystal (LC)-based biosensing is generally limited by the lack of accurate quantitative strategies. This study exploits the unique electric capacitance properties of LCs to establish quantitative assay methods for bovine serum albumin (BSA) biomolecules. By measuring the voltage-dependent electric capacitance of LCs under an alternating-current field with increasing amplitude, positive correlations were derived between the BSA concentration and the electric capacitance parameters of LCs. This study demonstrates that quantitative analysis can be achieved in LC-based biosensing through electric capacitance measurements extensively employed in LCD research and development.

  17. Exploring the binding mechanism of ondansetron hydrochloride to serum albumins: spectroscopic approach.

    PubMed

    B, Sandhya; Hegde, Ashwini H; K C, Ramesh; J, Seetharamappa

    2012-02-01

    The mechanism of interaction of ondansetron hydrochloride (OND) to serum albumins [bovine serum albumin (BSA) and human serum albumin (HSA)] was studied for the first time employing fluorimetric, circular dichroism, FTIR and UV-vis absorption techniques under the simulated physiological conditions. Fluorimetric results were utilized to investigate the binding and conformational characteristics of protein upon interaction with varying concentrations of the drug. Higher binding constant values revealed the strong interaction between the drug and protein while the number of binding sites close to unity indicated single class of binding site for OND in protein. Thermodynamic results revealed that both hydrogen bond and hydrophobic interactions played a major role in stabilizing drug-protein complex. Site marker competitive experiments indicated that the OND bound to albumins at subdomin II A (Sudlow's site I). Further, the binding distance between OND and serum albumin was calculated based on the Förster's theory of non-radioactive energy transfer and found to be 2.30 and 3.41 nm, respectively for OND-BSA and OND-HSA. The circular dichroism data revealed that the presence of OND decreased the α-helix content of serum albumins. 3D-fluorescence results also indicated the conformational changes in protein upon interaction with OND. Further, the effects of some cations have been investigated in the interaction of drug to protein.

  18. Exploring the binding mechanism of ondansetron hydrochloride to serum albumins: Spectroscopic approach

    NASA Astrophysics Data System (ADS)

    Sandhya, B.; Hegde, Ashwini H.; K. C., Ramesh; Seetharamappa, J.

    2012-02-01

    The mechanism of interaction of ondansetron hydrochloride (OND) to serum albumins [bovine serum albumin (BSA) and human serum albumin (HSA)] was studied for the first time employing fluorimetric, circular dichroism, FTIR and UV-vis absorption techniques under the simulated physiological conditions. Fluorimetric results were utilized to investigate the binding and conformational characteristics of protein upon interaction with varying concentrations of the drug. Higher binding constant values revealed the strong interaction between the drug and protein while the number of binding sites close to unity indicated single class of binding site for OND in protein. Thermodynamic results revealed that both hydrogen bond and hydrophobic interactions played a major role in stabilizing drug-protein complex. Site marker competitive experiments indicated that the OND bound to albumins at subdomin II A (Sudlow's site I). Further, the binding distance between OND and serum albumin was calculated based on the Förster's theory of non-radioactive energy transfer and found to be 2.30 and 3.41 nm, respectively for OND-BSA and OND-HSA. The circular dichroism data revealed that the presence of OND decreased the α-helix content of serum albumins. 3D-fluorescence results also indicated the conformational changes in protein upon interaction with OND. Further, the effects of some cations have been investigated in the interaction of drug to protein.

  19. Recombinant goose-type lysozyme in channel catfish: Lysozyme activity and efficacy as plasmid DNA immunostimulant against Aeromonas hydrophila infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objectives of this study were: 1) to investigate whether recombinant channel catfish lysozyme g (CC-Lys-g) produced in E. coli expression system possesses any lysozyme activity; and 2) to evaluate whether channel catfish lysozyme g plasmid DNA could be used as an immunostimulant to protect chann...

  20. Recombinant goose-type lysozyme in channel catfish: lysozyme activity and efficacy as plasmid DNA immunostimulant against Aeromonas hydrophila infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objectives of this study were: 1) to investigate whether recombinant channel catfish lysozyme g (CC-Lys-g) produced in E. coli expression system possesses any lysozyme activity; and 2) to evaluate whether channel catfish lysozyme g plasmid DNA could be used as an immunostimulant to protect chann...

  1. Epicutaneous immunization with DNP-BSA induces CD4+ CD25+ Treg cells that inhibit Tc1-mediated CS.

    PubMed

    Majewska-Szczepanik, Monika; Zemelka-Wiącek, Magdalena; Ptak, Włodzimierz; Wen, Li; Szczepanik, Marian

    2012-09-01

    As we have shown previously that protein antigen applied epicutaneously (EC) in mice inhibits TNP-specific Th1-mediated contact sensitivity (CS), we postulated that the maneuver of EC immunization might also suppress Tc1-dependent CS response. Here we showed that EC immunization of normal mice with 2,4-dinitrophenylated bovine serum albumin (DNP-BSA) applied on the skin in the form of a patch induces a state of subsequent unresponsiveness due to regulatory T cells (Treg) that inhibited sensitization and elicitation of effector T-cell responses. Suppression is transferable in vivo by TCRαβ(+) CD4(+) CD25(+) lymphocytes harvested from lymph nodes (LNs) of skin-patched animals. Flow cytometry revealed that EC immunization with DNP-BSA increased TCRαβ(+) CD4(+) CD25(+) FoxP3(+) lymphocytes in subcutaneous LNs, suggesting that observed suppression was mediated by Treg cells. Further, in vitro experiments showed that EC immunization with DNP-BSA prior to 1-fluoro-2,4-dinitrobenzen sensitization suppressed LN cell proliferation and inhibited production of TNF-α, IL-12 and IFN-γ. Using a transwell system or anti-CTLA-4 mAb, we found that EC induced suppression required direct Treg-effector cell contact and is CTLA-4-dependent.

  2. Nickel(II)-Schiff base complex recognizing domain II of bovine and human serum albumin: Spectroscopic and docking studies

    NASA Astrophysics Data System (ADS)

    Ray, Aurkie; Koley Seth, Banabithi; Pal, Uttam; Basu, Samita

    It has been spectroscopically monitored that a mononuclear nickel(II)-Schiff base complex {[NiL]·CH3OH = NSC} exhibits greater binding affinity for bovine serum albumin (BSA) than that of its human counterpart (HSA). Moreover the modes of binding of NSC with the two serum albumins also differ significantly. Docking studies predict a relatively rare type of 'superficial binding' of NSC at domain IIB of HSA with certain mobility whereas for BSA such phenomena has not been detected. The mobile nature of NSC at domain IIB of HSA has been well correlated with the spectroscopic results. It is to be noted that thermodynamic parameters for the NSC interaction also differ for the two serum albumins. Occurrence of energy transfer between the donor (Trp of BSA and HSA) and acceptor (NSC) has been obtained by means of Förster resonance energy transfer (FRET). The protein stability on NSC binding has also been experimented by the GuHCl-induced protein unfolding studies. Interestingly it has been found that NSC-HSA interaction enhances the protein stability whereas NSC-BSA binding has no such impact. Such observations are indicative of the fact that the conformation of NSC is responsible in recognizing the two serum albumins and selectively enhancing protein stability.

  3. Nickel(II)-Schiff base complex recognizing domain II of bovine and human serum albumin: spectroscopic and docking studies.

    PubMed

    Ray, Aurkie; Seth, Banabithi Koley; Pal, Uttam; Basu, Samita

    2012-06-15

    It has been spectroscopically monitored that a mononuclear nickel(II)-Schiff base complex {[NiL]·CH(3)OH=NSC} exhibits greater binding affinity for bovine serum albumin (BSA) than that of its human counterpart (HSA). Moreover the modes of binding of NSC with the two serum albumins also differ significantly. Docking studies predict a relatively rare type of 'superficial binding' of NSC at domain IIB of HSA with certain mobility whereas for BSA such phenomena has not been detected. The mobile nature of NSC at domain IIB of HSA has been well correlated with the spectroscopic results. It is to be noted that thermodynamic parameters for the NSC interaction also differ for the two serum albumins. Occurrence of energy transfer between the donor (Trp of BSA and HSA) and acceptor (NSC) has been obtained by means of Förster resonance energy transfer (FRET). The protein stability on NSC binding has also been experimented by the GuHCl-induced protein unfolding studies. Interestingly it has been found that NSC-HSA interaction enhances the protein stability whereas NSC-BSA binding has no such impact. Such observations are indicative of the fact that the conformation of NSC is responsible in recognizing the two serum albumins and selectively enhancing protein stability.

  4. Cotton Study: Albumin Binding and its Effect on Elastase Activity in the Chronic Non-healing Wound

    SciTech Connect

    Castro, Nathan J.; Goheen, Steven C.

    2005-12-01

    A comparative examination of two methods, the classical- and chromatographic, commonly used to study adsorption isotherms is presented. Both methods were used to study the solid/liquid interface of two different derivatives of cotton fiber and bovine serum albumin (BSA).

  5. Immunochemistry of bovine serum albumin.

    PubMed

    Habeeb, A F

    1978-01-01

    Two fragments were isolated from BSA one was derived from the first terminal third of the molecule and the second from the last third of the molecule. Each fragment inhibited the reaction of BSA-anti BSA by 90% or better. An immunoabsorbent of each bound 90% of anti BSA. Each fragment bound two antibody molecules per mole of fragment. These results are explained by the concept that BSA contains repeating identical or similar antigenic determinants. Conformational non identity of various batches of BSA was revealed by reactivity of the disulfide bonds at the neutral transition. Trypsin was found to cleave GSA, PSA, and HSA to yield an immunochemically reactive fragment. At least in the case of HSA, the fragment exhibited all the immunochemical reactivity of the native protein.

  6. Monolithic molecularly imprinted cryogel for lysozyme recognition.

    PubMed

    Rabieizadeh, Mohammadmahdi; Kashefimofrad, Seyed Mohammadreza; Naeimpoor, Fereshteh

    2014-10-01

    The application of molecularly imprinted polymers in the selective adsorption of macromolecules such as proteins by monolithic protein-imprinted columns requires a macroporous structure, which can be provided by cryogelation at low temperature in which the formation of ice crystals gives a porous structure to the molecularly imprinted polymer. In this study, we applied this technique to synthesize lysozyme-imprinted polyacrylamide cryogels containing 8% w/v of total monomers and 0.3% w/v of lysozyme. The synthesized cryogel was sponge-like and elastic with very fast swelling and reshaping properties, showing a swelling ratio of 24.5 ± 3 and gel fraction yield of about 72%. It showed an imprinting effect of 1.58 and a separation factor of 1.37 for cytochrome c as the competing protein. Adsorption studies on the cryogel revealed that it follows the Langmuir isotherm, with a maximum theoretical adsorption capacity of 36.3 mg lysozyme per gram of cryogel. Additionally, it was shown that a salt-free rebinding solution at low flow rate and pH = 7.0 is favorable for lysozyme rebinding. This kind of monolithic column promises a wide range of application in separation of various biomolecules due to its preparation simplicity, good rebinding characteristics, and macroporosity.

  7. Spectroscopic studies on the interaction of bovine serum albumin with surfactants and apigenin

    NASA Astrophysics Data System (ADS)

    Zhao, Xu-Na; Liu, Yi; Niu, Li-Yuan; Zhao, Chen-Ping

    The binding of apigenin (Ap) to bovine serum albumin (BSA) has been studied using the methods of fluorescence spectroscopy and UV-vis absorption spectroscopy. The spectroscopic analysis of the quenching mechanism indicates that the quenching constants are inversely correlated with the temperatures and the quenching process could result from a static interaction. The type of interaction force was discussed and the binding site of Ap was in site I (subdomain IIA) of BSA. The thermodynamic parameters ΔH and ΔS are -42.02 kJ mol-1 and -48.31 J mol-1 K-1, respectively and the negative ΔG implying that the binding interaction was spontaneous. The distance r between BSA and Ap was calculated according to Förster's theory and the value is 3.44 nm. The synchronous and three-dimensional fluorescence spectra show that the binding of Ap to BSA could lead to the changes in the conformation and microenvironment of BSA. At the same time, the effects of ionic surfactants on the interaction of Ap and BSA have also been investigated.

  8. Study on the interaction between antibacterial drug and bovine serum albumin: A spectroscopic approach

    NASA Astrophysics Data System (ADS)

    Naik, P. N.; Chimatadar, S. A.; Nandibewoor, S. T.

    2009-09-01

    The binding of sulfamethoxazole (SMZ) to bovine serum albumin (BSA) was investigated by spectroscopic methods viz., fluorescence, FT-IR and UV-vis absorption techniques. The binding parameters have been evaluated by fluorescence quenching method. The thermodynamic parameters, Δ H°, Δ S°and Δ G° were observed to be -58.0 kJ mol -1, -111 J K -1 mol -1 and -24 kJ mol -1, respectively. These indicated that the hydrogen bonding and weak van der Waals forces played a major role in the interaction. Based on the Forster's theory of non-radiation energy transfer, the binding average distance, r, between the donor (BSA) and acceptor (SMZ) was evaluated and found to be 4.12 nm. Spectral results showed the binding of SMZ to BSA induced conformational changes in BSA. The effect of common ions and some of the polymers used in drug delivery for control release was also tested on the binding of SMZ to BSA. The effect of common ions revealed that there is adverse effect on the binding of SMZ to BSA.

  9. Analysis of the hydration water around bovine serum albumin using terahertz coherent synchrotron radiation.

    PubMed

    Bye, Jordan W; Meliga, Stefano; Ferachou, Denis; Cinque, Gianfelice; Zeitler, J Axel; Falconer, Robert J

    2014-01-09

    Terahertz spectroscopy was used to study the absorption of bovine serum albumin (BSA) in water. The Diamond Light Source operating in a low alpha mode generated coherent synchrotron radiation that covered a useable spectral bandwidth of 0.3-3.3 THz (10-110 cm(-1)). As the BSA concentration was raised, there was a nonlinear change in absorption inconsistent with Beer's law. At low BSA concentrations (0-1 mM), the absorption remained constant or rose slightly. Above a concentration of 1 mM BSA, a steady decrease in absorption was observed, which was followed by a plateau that started at 2.5 mM. Using a overlapping hydration layer model, the hydration layer was estimated to extend 15 Å from the protein. Calculation of the corrected absorption coefficient (αcorr) for the water around BSA by subtracting the excluded volume of the protein provides an alternative approach to studying the hydration layer that provides evidence for complexity in the population of water around BSA.

  10. Effects of titania nanotubes with or without bovine serum albumin loaded on human gingival fibroblasts.

    PubMed

    Liu, Xiangning; Zhou, Xiaosong; Li, Shaobing; Lai, Renfa; Zhou, Zhiying; Zhang, Ye; Zhou, Lei

    2014-01-01

    Modifying the surface of the transmucosal area is a key research area because this process positively affects the three functions of implants: attachment to soft tissue, inhibiting bacterial biofilm adhesion, and the preservation of the crestal bone. To exploit the potential of titania nanotube arrays (TNTs) with or without using bovine serum albumin (BSA) to modify the surface of a dental implant in contact with the transmucosal area, BSA was loaded into TNTs that were fabricated by anodizing Ti sheets; the physical characteristics of these arrays, including their morphology, chemical composition, surface roughness, contact angle, and surface free energy (SFE), were assessed. The effect of Ti surfaces with TNTs or TNTs-BSA on human gingival fibroblasts (HGFs) was determined by analyzing cell morphology, early adhesion, proliferation, type I collagen (COL-1) gene expression, and the extracellular secretion of COL-1. The results indicate that early HGF adhesion and spreading behavior is positively correlated with surface characteristics, including hydrophilicity, SFE, and surface roughness. Additionally, TNT surfaces not only promoted early HGF adhesion, but also promoted COL-1 secretion. BSA-loaded TNT surfaces promoted early HGF adhesion, while suppressing late proliferation and COL-1 secretion. Therefore, TNT-modified smooth surfaces are expected to be applicable for uses involving the transmucosal area. Further study is required to determine whether BSA-loaded TNT surfaces actually affect closed loop formation of connective tissue because BSA coating actions in vivo are very rapid.

  11. Locating the binding sites of Pb(II) ion with human and bovine serum albumins.

    PubMed

    Belatik, Ahmed; Hotchandani, Surat; Carpentier, Robert; Tajmir-Riahi, Heidar-Ali

    2012-01-01

    Lead is a potent environmental toxin that has accumulated above its natural level as a result of human activity. Pb cation shows major affinity towards protein complexation and it has been used as modulator of protein-membrane interactions. We located the binding sites of Pb(II) with human serum (HSA) and bovine serum albumins (BSA) at physiological conditions, using constant protein concentration and various Pb contents. FTIR, UV-visible, CD, fluorescence and X-ray photoelectron spectroscopic (XPS) methods were used to analyse Pb binding sites, the binding constant and the effect of metal ion complexation on HSA and BSA stability and conformations. Structural analysis showed that Pb binds strongly to HSA and BSA via hydrophilic contacts with overall binding constants of K(Pb-HSA) = 8.2 (±0.8)×10(4) M(-1) and K(Pb-BSA) = 7.5 (±0.7)×10(4) M(-1). The number of bound Pb cation per protein is 0.7 per HSA and BSA complexes. XPS located the binding sites of Pb cation with protein N and O atoms. Pb complexation alters protein conformation by a major reduction of α-helix from 57% (free HSA) to 48% (metal-complex) and 63% (free BSA) to 52% (metal-complex) inducing a partial protein destabilization.

  12. Binding thermodynamics of synthetic dye Allura Red with bovine serum albumin.

    PubMed

    Lelis, Carini Aparecida; Hudson, Eliara Acipreste; Ferreira, Guilherme Max Dias; Ferreira, Gabriel Max Dias; da Silva, Luis Henrique Mendes; da Silva, Maria do Carmo Hespanhol; Pinto, Maximiliano Soares; Pires, Ana Clarissa Dos Santos

    2017-02-15

    The interaction between Allura Red and bovine serum albumin (BSA) was studied in vitro at pH 7.4. The fluorescence quenching was classified as static quenching due to the formation of AR-BSA complex, with binding constant (K) ranging from 3.26±0.09 to 8.08±0.0610(4)L.mol(-1), at the warfarin binding site of BSA. This complex formation was driven by increasing entropy. Isothermal titration calorimetric measurements also showed an enthalpic contribution. The Allura Red diffusion coefficient determined by the Taylor-Aris technique corroborated these results because it reduced with increasing BSA concentration. Interfacial tension measurements showed that the AR-BSA complex presented surface activity, since interfacial tension of the water-air interface decreased as the colorant concentration increased. This technique also provided a complexation stoichiometry similar to those obtained by fluorimetric experiments. This work contributes to the knowledge of interactions between BSA and azo colorants under physiological conditions.

  13. Characterization of the binding of nevadensin to bovine serum albumin by optical spectroscopic technique

    NASA Astrophysics Data System (ADS)

    Yu, Zhaolian; Li, Daojin; Ji, Baoming; Chen, Jianjun

    2008-10-01

    Binding of nevadensin to bovine serum albumin (BSA) has been studied in detail at 298 and 310 K using spectrophotometric technique. The intrinsic fluorescence of BSA was strongly quenched by the addition of nevadensin and spectroscopic observations are mainly rationalized in terms of a static quenching process at lower concentration of nevadensin ( Cdrug/ CBSA < 1) and a combined quenching process at higher concentration of nevadensin ( Cdrug/ CBSA > 1). The binding parameters for the reaction at a pH above (7.40) or below (3.40) the isoelectric point have been calculated according to the double logarithm regression curve. The thermodynamic parameters Δ H0, Δ G0, Δ S0 at different temperatures and binding mechanism of nevadensin to BSA at pH 7.40 and 3.40 were evaluated. The binding ability of nevadensin to BSA at pH 7.40 was stronger than that at pH 3.40. Steady fluorescence, synchronous fluorescence and circular dichroism (CD) were applied to investigate protein conformation. A value of 2.15 nm for the average distance r between nevadensin (acceptor) and tryptophan residues (Trp) of BSA (donor) was derived from the fluorescence resonance energy transfer. Moreover, influence of pH on the interaction nevadensin with BSA was investigated.

  14. Functionalized polypropylene non-woven fabric membrane with bovine serum albumin and its hemocompatibility enhancement.

    PubMed

    Zhang, Chang; Jin, Jing; Zhao, Jie; Jiang, Wei; Yin, Jinghua

    2013-02-01

    Bovine serum albumin (BSA) was successfully immobilized onto polypropylene non-woven fabric (PP(NWF)) membranes using poly(acrylic acid) (PAA) as a spacer. Firstly, O(2) plasma treatment and UV-irradiated technique were combined to graft PAA onto the membranes. BSA was then immobilized onto the PAA grafted surface through the coupling of amino groups of BSA to the carboxyl groups of PAA. The immobilization of PAA and BSA onto the membrane was confirmed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and water contact angle measurement. The water contact angle measurement results revealed that the membrane hydrophilicity improved after modification with PAA and BSA. After BSA immobilization, the amount of protein adsorption and the number of platelet adhesion on the modified membrane significantly decreased, which indicated that hemocompatibility had been considerably improved compared with neat and PAA grafted PP(NWF). The whole blood clotting time measurement showed that the anticoagulant property of the modified membrane was also significantly enhanced.

  15. Fluorescent bovine serum albumin interacting with the antitussive quencher dextromethorphan: a spectroscopic insight.

    PubMed

    Durgannavar, Amar K; Patgar, Manjanath B; Nandibewoor, Sharanappa T; Chimatadar, Shivamurti A

    2016-05-01

    The interaction of dextromethorphan hydrobromide (DXM) with bovine serum albumin (BSA) is studied by using fluorescence spectra, UV-vis absorption, synchronous fluorescence spectra (SFS), 3D fluorescence spectra, Fourier transform infrared (FTIR) spectroscopy and circular dichroism under simulated physiological conditions. DXM effectively quenched the intrinsic fluorescence of BSA. Values of the binding constant, K(A), are 7.159 × 10(3), 9.398 × 10(3) and 16.101 × 10(3)  L/mol; the number of binding sites, n, and the corresponding thermodynamic parameters ΔG°, ΔH° and ΔS° between DXM and BSA were calculated at different temperatures. The interaction between DXM and BSA occurs through dynamic quenching and the effect of DXM on the conformation of BSA was analyzed using SFS. The average binding distance, r, between the donor (BSA) and acceptor (DXM) was determined based on Förster's theory. The results of fluorescence spectra, UV-vis absorption spectra and SFS show that the secondary structure of the protein has been changed in the presence of DXM.

  16. Swelling and mechanical properties of biopolymer hydrogels containing chitosan and bovine serum albumin.

    PubMed

    Butler, Michael F; Clark, Allan H; Adams, Sarah

    2006-11-01

    Experimental and theoretical investigations of the swelling and mechanical properties of hydrogels formed from chitosan, bovine serum albumin (BSA), and chitosan/BSA mixtures cross-linked with genipin were performed. The properties of cross-linked chitosan hydrogels were explained in terms of its polyelectrolyte behavior, which led to a gradual increase in swelling ratio below the pK value, but whereby its swelling ability was eliminated by the presence of salt that screened the charges. Comparison of theoretical and experimental calculations of the swelling ratio, however, indicated that complications arising from wastage of cross-links, and formation of polymerized genipin cross-links must be considered before quantitative prediction can be achieved. Cross-linked BSA hydrogels swelled even in the presence of salt, and a marked increase in swelling was observed below pH = 3 that was explained as the result of an acid induced denaturation of the protein that led to unfolding of the molecule. Swollen BSA hydrogels were mechanically weak, however. Composite gels made from a cross-linked mixture of chitosan and BSA exhibited the swelling behavior of BSA combined with the mechanical properties of chitosan and were therefore considered most suitable for use in a gastric environment.

  17. Characterization of erythrosine B binding to bovine serum albumin and bilirubin displacement.

    PubMed

    Mathavan, Vinodaran M K; Boh, Boon Kim; Tayyab, Saad

    2009-08-01

    The interaction of crythrosine B (ErB), a commonly used dye for coloring foods and drinks, with bovine scrum albumin (BSA) was investigated both in the absence and presence of bilirubin (BR) using absorption and absorption difference spectroscopy. ErB binding to BSA was reflected from a significant red shift of 11 nm in the absorption maximum of ErB (527 nm) with the change in absorbance at lamdamax. Analysis of absorption difference spectroscopic titration results of BSA with increasing concentrations of ErB3 using Benesi-Hildebrand equation gave the association constant, K as 6.9 x 10(4) M(-1). BR displacing action of ErB was revealed by a significant blue shift in the absorption maximum, accompanied by a decrease in absorbance difference at lamdamax in the difference spectrum of BR-BSA complex upon addition of increasing concentrations of ErB. This was further substantiated by fluorescence spectroscopy, as addition of increasing concentrations of ErB to BR-BSA complex caused a significant decrease in fluoresccnce at 510 nm. The results suggest that ErB binds to a site in the vicinity of BR binding site on BSA. Therefore, intake of ErB may increase the risk of hyperbilirubinemia in the healthy subjects.

  18. Effects of titania nanotubes with or without bovine serum albumin loaded on human gingival fibroblasts

    PubMed Central

    Liu, Xiangning; Zhou, Xiaosong; Li, Shaobing; Lai, Renfa; Zhou, Zhiying; Zhang, Ye; Zhou, Lei

    2014-01-01

    Modifying the surface of the transmucosal area is a key research area because this process positively affects the three functions of implants: attachment to soft tissue, inhibiting bacterial biofilm adhesion, and the preservation of the crestal bone. To exploit the potential of titania nanotube arrays (TNTs) with or without using bovine serum albumin (BSA) to modify the surface of a dental implant in contact with the transmucosal area, BSA was loaded into TNTs that were fabricated by anodizing Ti sheets; the physical characteristics of these arrays, including their morphology, chemical composition, surface roughness, contact angle, and surface free energy (SFE), were assessed. The effect of Ti surfaces with TNTs or TNTs-BSA on human gingival fibroblasts (HGFs) was determined by analyzing cell morphology, early adhesion, proliferation, type I collagen (COL-1) gene expression, and the extracellular secretion of COL-1. The results indicate that early HGF adhesion and spreading behavior is positively correlated with surface characteristics, including hydrophilicity, SFE, and surface roughness. Additionally, TNT surfaces not only promoted early HGF adhesion, but also promoted COL-1 secretion. BSA-loaded TNT surfaces promoted early HGF adhesion, while suppressing late proliferation and COL-1 secretion. Therefore, TNT-modified smooth surfaces are expected to be applicable for uses involving the transmucosal area. Further study is required to determine whether BSA-loaded TNT surfaces actually affect closed loop formation of connective tissue because BSA coating actions in vivo are very rapid. PMID:24623977

  19. Characterisation of bovine serum albumin-fucoidan conjugates prepared via the Maillard reaction.

    PubMed

    Kim, Do-Yeong; Shin, Weon-Sun

    2015-04-15

    Bovine serum albumin (BSA)-fucoidan conjugates were prepared by the Maillard reaction (60 °C and 79% relative humidity for 96 h), and were then identified by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and size-exclusion chromatography (SEC). Molecular characteristics of the BSA-fucoidan conjugates were investigated, using atomic force microscopy (AFM), dynamic light scattering (DLS), fluorescence spectroscopy, and circular dichroism spectroscopy. SDS-PAGE patterns provided evidence for the covalent bonding between BSA and fucoidan. SEC profiles showed that about 1.5-2.0 mol of fucoidan were covalently linked to 1 mol of BSA, resulting in high-molecular-weight compositions (conjugates). AFM images and DLS results indicated that most particles in the conjugates were nano-structured and more spherical than those of a regular BSA-fucoidan mixture. The fluorescence intensity and maximum emission wavelength of the conjugates together revealed that the BSA molecules had converted from an ordered conformation into a partially folded molten globule state.

  20. Investigating the influence of effective parameters on molecular characteristics of bovine serum albumin nanoparticles

    NASA Astrophysics Data System (ADS)

    Rohiwal, S. S.; Satvekar, R. K.; Tiwari, A. P.; Raut, A. V.; Kumbhar, S. G.; Pawar, S. H.

    2015-04-01

    The protein nanoparticles formulation is a challenging task as they are prone to undergo conformational transitions while processing which may affect bioavailability for bioactive compounds. Herein, a modified desolvation method is employed to prepare Bovine Serum Albumin nanoparticles, with controllable particle size ranging from 100 to 300 nm and low polydispersity index. The factors influencing the size and structure of BSA NPs viz. protein concentration, pH and the conditions for purification are well investigated. The structure of BSA NPs is altered due to processing, and may affect the effective binding ability with drugs and bioactive compounds. With that aims, investigations of molecular characteristics of BSA NPs are carried out in detail by using spectroscopic techniques. UV-visible absorption and Fourier Transform Infrared demonstrate the alteration in protein structure of BSA NPs whereas the FT-Raman spectroscopy investigates changes in the secondary and tertiary structures of the protein. The conformational changes of BSA NPs are observed by change in fluorescence intensity and emission maximum wavelength of tryptophan residue by fluorescence spectroscopy. The field emission scanning electron and atomic force microscopy micrographs confirm the size and semi-spherical morphology of the BSA NPs. The effect of concentration and pH on particle size distribution is studied by particle size analyzer.

  1. Pulse radiolytic study of the oxidation reactions of uric acid in presence of bovine serum albumin. Evidence of possible complex formation in the transient state

    NASA Astrophysics Data System (ADS)

    Adhikari, S.; Joshi, R.; Gopinathan, C.

    1997-01-01

    The pulse radiolytic and spectrophotometric study of uric acid in presence of bovine serum albumin (BSA) has been carried out. In the spectrophotometric study there is no evidence for ground state interaction between BSA and uric acid. The oxidation reactions of uric acid in presence and absence of BSA employing CCl 3OO and Br radicals have been carried out. In a composition of equal concentration of uric acid and BSA, the CCl 3OO and Br radicals produce a transient absorption spectrum which show two peaks at 330 and 360 nm. The peak at 360 nm is ascribed due to weak complex formation between semioxidised BSA and uric acid radicals. The rate constant of CCl 3OO . radical with uric acid increases with the increase in BSA concentration which is explained as protection of BSA by uric acid from radical attack. The Br radical attacks uric acid and BSA in a manner similar to CCl 3OO radical. The bimolecular rate constants for the reaction of Br radical with BSA and uric acid have been found as 2.9 × 10 10 dm 3 mol -1 s -1 and 6.33 × 10 9 dm 3 mol -1 s -, respectively.

  2. Production and Ultrastructure of Lysozyme and Ethylenediaminetetraacetate-Lysozyme Spheroplasts of Escherichia coli1

    PubMed Central

    Birdsell, D. C.; Cota-Robles, E. H.

    1967-01-01

    Spheroplast production by lysozyme and ethylenediaminetetraacetate (EDTA) was examined as a means of obtaining osmotically sensitive cells for studies of enzyme localization. Physiologically young cells plasmolyzed with 0.5 m sucrose in 0.01 m tris(hydroxymethyl)aminomethane (Tris) buffer (pH 7, 8, or 9) were quantitatively converted to plasmolyzed osmotically sensitive rods after lysozyme treatment. Although such cells were osmotically sensitive, a 1:1 dilution in Tris buffer was necessary for conversion of rods into spheroplasts. Addition of EDTA resulted in a rapid conversion of the plasmolyzed spheroplasts into spherical structures devoid of a plasmolysis vacuole. These structures, which we call EDTA-lysozyme spheroplasts, contained a number of attached membranes. We believe that this conversion results from a weakening of the outer trilaminar component of the cell wall by EDTA, resulting in the collapse of the plasmolysis vacuole. Dilution of sucrose below 0.15 m also resulted in the collapse of the plasmolysis vacuole. Both the lysozyme spheroplasts and the EDTA-lysozyme spheroplasts were osmotically sensitive. Thin sections of the EDTA-lysozyme spheroplasts demonstrated that the outer trilaminar component of the cell wall was broken, exposing large areas of the cytoplasmic membrane to the environment. Images PMID:4960155

  3. Structure of Serum Albumin

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.; Ho, Joseph X.

    1994-01-01

    Because of its availability, low cost, stability, and unusual ligand-binding properties, serum albumin has been one of the mst extensively studied and applied proteins in biochemistry. However, as a protein, albumin is far from typical, and the widespread interest in and application of albumin have not been balanced by an understanding of its molecular structure. Indeed, for more than 30 years structural information was surmised based solely on techniques such as hydrodynamics, low-angle X-ray scattering, and predictive methods.

  4. Recent advances for the production and recovery methods of lysozyme.

    PubMed

    Ercan, Duygu; Demirci, Ali

    2016-12-01

    Lysozyme is an antimicrobial peptide with a high enzymatic activity and positive charges. Therefore, it has applications in food and pharmaceutical industries as an antimicrobial agent. Lysozyme is ubiquitous in both animal and plant kingdoms. Currently, egg-white lysozyme is the most commercially available form of lysozyme. The main concerns of egg-white lysozyme are high recovery cost, low activity and most importantly the immunological problems to some people. Therefore, human lysozyme production has gained importance in recent years. Scientists have developed transgenic plants, animals and microorganisms that can produce human lysozyme. Out of these, microbial production has advantages for commercial productions, because high production levels are achievable in a relatively short time. It has been reported that fermentation parameters, such as pH, temperature, aeration, are key factors to increase the effectiveness of the human lysozyme production. Moreover, purification of the lysozyme from the fermentation broth needs to be optimized for the economical production. In conclusion, this review paper covers the mechanism of lysozyme, its sources, production methods and recovery of lysozyme.

  5. Synthesis of a silica-bonded bovine serum albumin s-triazine chiral stationary phase for high-performance liquid chromatographic resolution of enantiomers.

    PubMed

    Zhang, Q; Zou, H; Wang, H; Ni, J

    2000-01-14

    A novel method of synthesizing protein chiral stationary phase (protein-CSP) is proposed with 2,4,6-trichloro-1,3,5-triazine as the activator. The bovine serum albumin (BSA) based chiral columns (150 x 4.6 mm I.D.) were prepared successfully within 8 h. With tryptophan as the probe solute, it was observed that the BSA immobilized by this method had a better ability to distinguish enantiomers than that activated by glutaric dialdehyde. This may be due to the well-maintained BSA conformation and the larger amount of BSA immobilized on the silica gel. The BSA-CSP prepared by this method was relatively stable under experimental conditions, and the resolution of 13 chiral compounds was achieved. The coupling reaction in this method is mild, reliable and reproducible; it is also suitable for the immobilization of various biopolymers in the preparation of bioreactor, biosensor and affinity chromatography columns.

  6. Photodynamic performance of zinc phthalocyanine in HeLa cells: A comparison between DPCC liposomes and BSA as delivery systems.

    PubMed

    M Garcia, Angélica; de Alwis Weerasekera, Hasitha; Pitre, Spencer P; McNeill, Brian; Lissi, Eduardo; Edwards, Ana M; Alarcon, Emilio I

    2016-10-01

    Comparable intracellular concentrations (≈30pmol/10(6) cells) of bovine serum albumin-ZnPc (BSA) adduct outperformed dipalmitoyl-phosphatidyl-choline (DPPC) liposomes containing ZnPc at photodynamic-killing of human cervical cancer cells (HeLa) after only 15min of irradiation using red light (λ>620nm, 30W/cm(2)). This result could not be simply explained in terms of dye aggregation within the carrier, since in the liposomes the dye was considerably less aggregated than in bovine serum albumin, formulation that was capable to induce cell apoptosis upon red light exposure. Thus, using specific organelle staining, our cumulative data points towards intrinsic differences in intra-cellular localization depending on the cargo vehicle used, being ZnPc:BSA preferentially located in the near vicinity of the nucleus and in the Golgi structures, while the liposomal formulation ZnPc:DPPC was preferentially located in cellular membrane and cytoplasm. In addition to those differences, using real-time advanced fluorescence lifetime imaging of HeLa cells loaded with the photosensitizer contained in the different vehicles, we have found that only for the ZnPc:BSA formulation, there was no significant changes in the fluorescence lifetime of the photosensitizer inside the cells. This contrasts with the in situ≈two-fold reduction of the fluorescence lifetime measured for the liposomal ZnPc formulation. Those observations point towards the superiority of the protein to preserve dye aggregation, and its photochemical activity, post-cell uptake, demonstrating the pivotal role of the delivery vehicle at determining the ultimate fate of a photosensitizer.

  7. Enhanced tumor delivery and antitumor response of doxorubicin-loaded albumin nanoparticles formulated based on a Schiff base.

    PubMed

    Li, Fang; Zheng, Chunli; Xin, Junbo; Chen, Fangcheng; Ling, Hua; Sun, Linlin; Webster, Thomas J; Ming, Xin; Liu, Jianping

    2016-01-01

    A novel method was developed here to prepare albumin-based nanoparticles (NPs) for improving the therapeutic and safety profiles of chemotherapeutic agents. This approach involved crosslinking bovine serum albumin (BSA) using a Schiff base-containing vanillin, into NPs and loading doxorubicin (DOX) into the NPs by incubation. The resultant NPs (DOX-BSA-V-NPs) displayed a particle size of 100.5±1.3 nm with a zeta potential of -23.05±1.45 mV and also showed high drug-loading efficiency and excellent stability with respect to storage and temperature. The encapsulation of DOX into the BSA-V-NPs was confirmed by dynamic scanning calorimetry and Raman spectroscopy. DOX-BSA-V-NPs exhibited a significantly faster DOX release at pH 6.5 than pH 7.4, as well as in a solution with a higher glutathione concentration. In vitro studies showed that the cellular uptake of DOX-BSA-V-NPs was time-dependent, concentration-dependent, and faster than free DOX, while the cytotoxicity of DOX-BSA-V-NPs (IC50 value of 3.693 μg/mL) was superior to free DOX (IC50 value of 4.007 μg/mL). More importantly, DOX-BSA-V-NPs showed a longer mean survival time of 24.83 days, a higher tumor inhibition rate of 56.66%, and a decreased distribution in the heart than other DOX formulations in animal studies using a tumor xenograft model. Thus, the vanillin-based albumin NPs were shown here to be a promising carrier for tumor-targeted delivery of chemotherapeutic agents and, thus, should be further studied.

  8. Enhanced tumor delivery and antitumor response of doxorubicin-loaded albumin nanoparticles formulated based on a Schiff base

    PubMed Central

    Li, Fang; Zheng, Chunli; Xin, Junbo; Chen, Fangcheng; Ling, Hua; Sun, Linlin; Webster, Thomas J; Ming, Xin; Liu, Jianping

    2016-01-01

    A novel method was developed here to prepare albumin-based nanoparticles (NPs) for improving the therapeutic and safety profiles of chemotherapeutic agents. This approach involved crosslinking bovine serum albumin (BSA) using a Schiff base-containing vanillin, into NPs and loading doxorubicin (DOX) into the NPs by incubation. The resultant NPs (DOX-BSA-V-NPs) displayed a particle size of 100.5±1.3 nm with a zeta potential of −23.05±1.45 mV and also showed high drug-loading efficiency and excellent stability with respect to storage and temperature. The encapsulation of DOX into the BSA-V-NPs was confirmed by dynamic scanning calorimetry and Raman spectroscopy. DOX-BSA-V-NPs exhibited a significantly faster DOX release at pH 6.5 than pH 7.4, as well as in a solution with a higher glutathione concentration. In vitro studies showed that the cellular uptake of DOX-BSA-V-NPs was time-dependent, concentration-dependent, and faster than free DOX, while the cytotoxicity of DOX-BSA-V-NPs (IC50 value of 3.693 μg/mL) was superior to free DOX (IC50 value of 4.007 μg/mL). More importantly, DOX-BSA-V-NPs showed a longer mean survival time of 24.83 days, a higher tumor inhibition rate of 56.66%, and a decreased distribution in the heart than other DOX formulations in animal studies using a tumor xenograft model. Thus, the vanillin-based albumin NPs were shown here to be a promising carrier for tumor-targeted delivery of chemotherapeutic agents and, thus, should be further studied. PMID:27574421

  9. Interactions of aptamers with sera albumins

    NASA Astrophysics Data System (ADS)

    Cortez, Célia Martins; Silva, Dilson; Silva, Camila M. C.; Missailidis, Sotiris

    2012-09-01

    The interactions of two short aptamers to human and bovine serum albumins were studied by fluorescence spectroscopic techniques. Intrinsic fluorescence of BSA and HSA were measured by selectively exciting their tryptophan residues. Gradual quenching was observed by titration of both proteins with aptamers. Aptamers are oligonucleic acid or peptide molecules that bind a specific target and can be used for both biotechnological and clinical purposes, since they present molecular recognition properties like that commonly found in antibodies. Two aptamers previously selected against the MUC1 tumour marker were used in this study, one selected for the protein core and one for the glycosylated MUC1. Stern-Volmer graphs were plotted and quenching constants were estimated. Plots obtained from experiments carried out at 25 °C and 37 °C showed the quenching of fluorescence of by aptamers to be a collisional phenomenon. Stern-Volmer constants estimated for HSA quenched by aptamer A were 1.68 × 105 (±5 × 103) M-1 at 37 °C, and 1.37 × 105 (±103) M-1 at 25 °C; and quenched by aptamer B were 1.67 × 105 (±5 × 103) M-1 at 37 °C, and 1.32 × 105 (±103) M-1 at 25 °C. Results suggest that the primary binding site for aptamers on albumin is close to tryptophan residues in sub domain IIA.

  10. Conformation of adsorbed bovine serum albumin governing its desorption behavior at alumina-water interfaces.

    PubMed

    Urano, H; Fukuzaki, S

    2000-01-01

    The mode of initial adsorption of bovine serum albumin (BSA) onto positively charged Al2O3 particles was studied as a function of surface coverage (theta). The adsorption isotherm of BSA exhibited saturation (theta = 1) and the existence of an inflection point at theta of 0.82. The relative numbers of ionic groups on a BSA molecule interacting with the Al2O3 surface at various theta were monitored by measuring the relative adsorption density of H+ and OH-, ([gamma(H+) - gamma(OH-)]), for BSA-adsorbed Al2O3 using potentiometric titration. The [gamma(H+) - gamma(OH-)] curves for Al2O3, BSA, and BSA-adsorbed Al2O3 at various KNO3 concentrations showed a common intersection point (cip) which was the pH giving the acid-base equivalence point, respectively. Compared with the cip's of Al2O3 (5.6) and BSA (5.2), the cip's of BSA-adsorbed Al2O3 were situated at points corresponding to more alkaline pH values over the theta range of 0.13 to 1.0. These results suggested that negatively charged groups, mainly carboxyl groups, on the BSA molecule electrostatically interacted with the Al2O3 surface. The degree of shift in the cip increased gradually with increasing theta from 0.13 to 0.70, while it decreased markedly over the theta range of 0.82 to 1.0. The variation in the cip reflected the change in the total number of ion pairs formed between BSA molecules and Al2O3. The initial rates of BSA desorption during alkali cleaning were low and almost constant over the theta range of 0.13 to 0.70, but increased markedly at theta higher than 0.82. It is suggested that the conformational changes of BSA adsorbed on Al2O3, involving changes in the relative magnitude of electrostatic interaction forces, occur discretely at theta of approximately 0.8.

  11. Effect of ionic micellar medium on kinetics and mechanism of oxidation of bovine serum albumin: A pulse radiolysis study

    NASA Astrophysics Data System (ADS)

    Joshi, Ravi; Mukherjee, Tulsi

    2010-09-01

    Effect of protein-micelle interaction on bovine serum albumin (BSA) oxidation by trichloromethyl peroxyl radical (CCl 3O 2·) in anionic sodium dodecyl sulfate (SDS) and cationic cetyltrimethyl ammonium bromide (CTAB) micellar media has been studied using nanosecond pulse radiolysis technique. Viscosity measurement and light scattering studies have suggested that SDS and CTAB micelles produce BSA-micelle aggregates of different sizes and polydispersity. Oxidation kinetics and transients have been affected both by anionic SDS and cationic CTAB micelles but in a different manner. Tryptophanyl-CCl 3O 2· adduct radical to tyrosyl radical transformation in BSA has been observed in anionic SDS micelles but not in cationic CTAB micelles. Similar studies have also been done with tryptophan and tyrosine amino acids, which undergo oxidation in BSA. The study suggests that Coulombic and hydrophobic interactions between micelles and protein affect the structure of the protein to shield its functional amino acids, like tryptophan and tyrosine, to neutral oxidizing radical.

  12. Comprehensive studies on the nature of interaction between carboxylated multi-walled carbon nanotubes and bovine serum albumin.

    PubMed

    Lou, Kai; Zhu, Zhaohua; Zhang, Hongmei; Wang, Yanqing; Wang, Xiaojiong; Cao, Jian

    2016-01-05

    Herein, the interaction between carboxylated multi-walled carbon nanotubes (MWCNTs-COOH) and bovine serum albumin has been investigated by using circular dichroism, UV-vis, and fluorescence spectroscopic methods and molecular modeling in order to better understand the basic behavior of carbon nanotubes in biological systems. The spectral results showed that MWCNTs-COOH bound to BSA and induced the relatively large changes in secondary structure of protein by mainly hydrophobic forces and π-π stacking interactions. Thermal denaturation of BSA in the presence of MWCNTs-COOH indicated that carbon nanotubes acted as a structure destabilizer for BSA. In addition, the putative binding site of MWCNTs-COOH on BSA was near to domain II. With regard to human health, the present study could provide a better understanding of the biological properties, cytotocicity of surface modified carbon nanotubes.

  13. Biomimetic synthesis of hollow calcium carbonate with the existence of the agar matrix and bovine serum albumin.

    PubMed

    Feng, Jianhua; Wu, Gang; Qing, Chengsong

    2016-01-01

    Proteins play important roles in the process of biomineralization. Vaterite and calcite have been synthesized by the reaction of Na2CO3 and CaCl2 in the bovine serum albumin (BSA) and agar system. The samples have been characterized by Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The shape of CaCO3 crystal has been analyzed by scanning electronic microscopy (SEM). The results show that calcite is a single product in the absence of BSA, but the product is a mixture of calcite and vaterite in the presence of BSA. The spheral shell of CaCO3 crystal was obtained when the concentration of BSA increased to 9.0mg/mL.

  14. Spectroscopic analyses and studies on respective interaction of cyanuric acid and uric acid with bovine serum albumin and melamine

    NASA Astrophysics Data System (ADS)

    Chen, Dandan; Wu, Qiong; Wang, Jun; Wang, Qi; Qiao, Heng

    2015-01-01

    In this work, the fluorescence quenching was used to study the interaction of cyanuric acid (CYA) and uric acid (UA) with bovine serum albumin (BSA) at two different temperatures (283 K and 310 K). The bimolecular quenching constant (Kq), apparent quenching constant (Ksv), effective binding constant (KA) and corresponding dissociation constant (KD), binding site number (n) and binding distance (r) were calculated by adopting Stern-Volmer, Lineweaver-Burk, Double logarithm and overlap integral equations. The results show that CYA and UA are both able to obviously bind to BSA, but the binding strength order is BSA + CYA < BSA + UA. And then, the interactions of CYA and UA with melamine (MEL) under the same conditions were also studied by using similar methods. The results indicates that both CYA and UA can bind together closely with melamine (MEL). It is wished that these research results would facilitate the understanding the formation of kidney stones and gout in the body after ingesting excess MEL.

  15. Analysis of binding interaction between pegylated puerarin and bovine serum albumin by spectroscopic methods and dynamic light scattering

    NASA Astrophysics Data System (ADS)

    Yu, Meirong; Ding, Zhishan; Jiang, Fusheng; Ding, Xinghong; Sun, Jinyue; Chen, Suhong; Lv, Guiyuan

    2011-12-01

    The interaction between bovine serum albumin (BSA) and pegylated puerarin (Pur) in aqueous solution was investigated by UV-Vis spectroscopy, fluorescence spectroscopy and circular dichroism spectra (CD), as well as dynamic light scattering (DLS). The fluorescence of BSA was strongly quenched by the binding of pegylated Pur to BSA. The binding constants and the number of binding sites of mPEG 5000-Pur with BSA were 2.67 ± 0.12 and 1.37 ± 0.05 folds larger after pegylating, which were calculated from the data obtained from fluorescence quenching experiments. The enthalpy change (Δ H) and entropy change (Δ S) were calculated to be 4.09 kJ mol -1 and 20.01 J mol -1 K -1, respectively, according to Van't Hoff equation, indicating that the hydrophobic force plays a main role in the binding interaction between pegylated Pur and BSA. In addition, the negative sign for Gibbs free energy change (Δ G) implies that the interaction process is spontaneous. Moreover, the results of synchronous fluorescence and CD spectra demonstrated that the microenvironment and the secondary conformation of BSA were changed. Comparing with Pur, all our data collected indicated that pegylated Pur interacted with BSA in the same way as that of Pur, but docked into the hydrophobic pocket of BSA with more accessibility and stronger binding force. DLS measurements showed monomethoxy polyethylene glycol (mPEG) have an effect on BSA conformation, and revealed that changes in BSA size might be due to increases in binding constant and the absolute values of Δ G after Pur pegylation.

  16. Investigation of the association behaviors between bovine serum albumin and 2-(4-methylphenyl)-3-(N-acetyl)-5-(2,4-dichlorophenoxymethyl)-1,3,4-oxodiazoline.

    PubMed

    Huang, Zhenzhong; Wang, Ruiling; Han, Erwei; Xu, Lifan; Song, Yonghai

    2013-07-01

    The study was designed to examine the interaction between 2-(4-methylphenyl)-3-(N-acetyl)-5-(2,4-dichlorophenoxymethyl)-1,3,4-oxodiazoline (MPNDO) and bovine serum albumin (BSA) under physiological conditions by using fluorescence spectroscopy, ultraviolet absorption spectroscopy, FT-IR spectroscopy and circular dichroism spectroscopy and atomic force microscope. Spectroscopic analysis of the fluorescence emission quenching and ultraviolet absorption revealed that the quenching mechanism of bovine serum albumin by MPNDO was static quenching procedure. The binding constant and binding sites number at different temperatures were measured. The average binding distances between donor (BSA) and acceptor (MPNDO) was estimated to be 1.46 nm (301 K), based on the Föster non-radioactive energy transfer theory. An average size of 3.1 nm had a high proportion and these dots might be ascribed to BSA, some other dots with an average size of 6.6 nm might result from BSA-MPNDO bioconjugates while the average diameter of MPNDO was 1.6 nm, which was reasonable to conclude that one BSA-MPNDO bioconjugates consisted of one BSA and one MPNDO. The thermodynamic parameters, enthalpy change (ΔH), entropy change (ΔS) and free energy change (ΔG) were calculated, which indicated that the action force was mainly van der Waals forces. The data collected through synchronous fluorescence, FT-IR spectroscopy and circular dichroism spectroscopy demonstrated that the conformation of BSA was not affected obviously in the presence of MPNDO.

  17. Preparation and sonodynamic activities of water-soluble tetra-α-(3-carboxyphenoxyl) zinc(II) phthalocyanine and its bovine serum albumin conjugate.

    PubMed

    Xu, He-Nan; Chen, Hai-Jun; Zheng, Bi-Yuan; Zheng, Yun-Quan; Ke, Mei-Rong; Huang, Jian-Dong

    2015-01-01

    Sonodynamic therapy (SDT) is a new approach for cancer treatment, involving the synergistic effect of ultrasound and certain chemical compounds termed as sonosensitizers. A water-soluble phthalocyanine, namely tetra-α-(3-carboxyphenoxyl) zinc(II) phthalocyanine (ZnPcC4), has been prepared and characterized. The interactions between ZnPcC4 and bovine serum albumin (BSA) were also investigated by absorption and fluorescence spectroscopy. It was found that there were strong interactions between ZnPcC4 and BSA with a binding constant of 6.83×10(7)M(-1). A non-covalent BSA conjugate of ZnPcC4 (ZnPcC4-BSA) was prepared. Both ZnPcC4 and ZnPcC4-BSA exhibited efficient sonodynamic activities against HepG2 human hepatocarcinoma cells. Compared with ZnPcC4, conjugate ZnPcC4-BSA showed a higher sonodynamic activity with an IC50 value of 7.5μM. Upon illumination with ultrasound, ZnPcC4-BSA can induce an increase of intracellular reactive oxygen species (ROS) level, resulting in cellular apoptosis. The results suggest that the albumin conjugates of zinc(II) phthalocyanines functionalized with carboxyls can serve as promising sonosensitizers for sonodynamic therapy.

  18. [Structure of fish serum albumins].

    PubMed

    Andreeva, A M

    2010-01-01

    Data are presented about the presence of serum albumins in fishes of different classes and orders inhabiting different ecological conditions, about structure of typical albumins and albumin-like proteins, and about the degree of homology of these proteins to mammalian albumins. There is shown a wide spectrum of structural diversity of albumins in Pisces due to their participation in osmotic, plastic, and transport functions under conditions of environment and of the organism internal media. Detection of similar motifs in the piscine and mammalian albumin genes allows uniting these genes into one superfamily and considering vertebrate albumins the homologous proteins.

  19. Highly sensitive detection of bovine serum albumin based on the aggregation of triangular silver nanoplates.

    PubMed

    Zhang, Ling Ling; Ma, Fang Fang; Kuang, Yang Fang; Cheng, Shu; Long, Yun Fei; Xiao, Qiu Guo

    2016-02-05

    A simple, fast and highly sensitive spectrophotometric method for the determination of bovine serum albumin (BSA) has been developed based on the interactions between triangular silver nanoplates (TAgNPs) and BSA in the presence of Britton-Robison buffer solution (BR). Particularly, the wavelength of absorption maximum (λ(max)) of TAgNPs is red shifted in the presence of BSA together with Britton-Robinson buffer solution (BR, pH=2.56), and the color of the solution changed from blue to light blue. This may be due to the interactions between BSA molecules on the surface of TAgNPs through electrostatic forces, hydrogen bonds, hydrophobic effects and van der Waals forces at pH2.56, which leads to the aggregation of TAgNPs. The determination of BSA was achieved by measuring the change of λ(max) corresponding to localized surface plasmon resonance (LSPR) from UV-visible spectrophotometry. It was found that the shift value in the wavelength of absorption maximum (Δλ, the difference in absorption maxima of the TAgNPs/BSA/BR mixture and the TAgNPs/BR mixture) was proportionate to the concentration of BSA in the range of 1.0 ng mL(-1) to 100.0 ng mL(-1) with the correlation coefficient of r=0.9969. The detection limit (3 σ/k) for BSA was found to be as low as 0.5 ng mL(-1).

  20. Highly sensitive detection of bovine serum albumin based on the aggregation of triangular silver nanoplates

    NASA Astrophysics Data System (ADS)

    Zhang, Ling Ling; Ma, Fang Fang; Kuang, Yang Fang; Cheng, Shu; Long, Yun Fei; Xiao, Qiu Guo

    2016-02-01

    A simple, fast and highly sensitive spectrophotometric method for the determination of bovine serum albumin (BSA) has been developed based on the interactions between triangular silver nanoplates (TAgNPs) and BSA in the presence of Britton-Robison buffer solution (BR). Particularly, the wavelength of absorption maximum (λmax) of TAgNPs is red shifted in the presence of BSA together with Britton-Robinson buffer solution (BR, pH = 2.56), and the color of the solution changed from blue to light blue. This may be due to the interactions between BSA molecules on the surface of TAgNPs through electrostatic forces, hydrogen bonds, hydrophobic effects and van der Waals forces at pH 2.56, which leads to the aggregation of TAgNPs. The determination of BSA was achieved by measuring the change of λmax corresponding to localized surface plasmon resonance (LSPR) from UV-visible spectrophotometry. It was found that the shift value in the wavelength of absorption maximum (Δλ, the difference in absorption maxima of the TAgNPs/BSA/BR mixture and the TAgNPs/BR mixture) was proportionate to the concentration of BSA in the range of 1.0 ng mL- 1 to 100.0 ng mL- 1 with the correlation coefficient of r = 0.9969. The detection limit (3 σ/k) for BSA was found to be as low as 0.5 ng mL- 1.

  1. Expulsion of bovine serum albumin from the air/water interface by a sparingly soluble lecithin lipid.

    PubMed

    Phang, Tze-Lee; Franses, Elias I

    2004-07-15

    Dynamic surface tensiometry, ellipsometry, and infrared reflection-absorption spectroscopy (IRRAS) were used to study the dynamic adsorption and surface tensions of dilauroylphosphatidylcholine (DLPC) in the presence of bovine serum albumin (BSA). Results show that the equilibrium adsorbed layers consist mostly of DLPC, which can produce dynamic surface tensions (1 mN/m) as low as the more successful lung surfactant replacement formulations. When the aqueous surface expands and contracts sinusoidally, BSA can coadsorb and lead to slightly higher dynamic surface tensions than when DLPC is alone. Similar results were obtained with BSA and sodium myristate [McClellan and Franses, Colloids Surf. B 30 (2003) 1]. Expulsion of the BSA in the layer by DLPC can take from 5 to 15 min, depending on relative concentrations and history of solute addition. This is shown by tensiometry measurements on mixtures, and also by injecting aqueous DLPC underneath adsorbed BSA layers and probing the surface layer with ellipsometry and IRRAS. Albumin layers from buffer solutions aged up to 30 h can be expelled by DLPC. In pure water, there is an initial enhancement in protein adsorption after the DLPC is injected. This can be explained by the hypothesis that DLPC molecules bind with BSA molecules to form a hydrophobic lipoprotein complex, which is more hydrophobic than the protein itself. Since DLPC produces lower surface energy than BSA and--being slightly soluble--adsorbs to the surface by a molecular mechanism, it fulfills the thermodynamic and dynamic requirements for expelling the BSA from the surface. The results have implications for minimizing lung surfactant inhibition by serum proteins, as it occurs in the cases of adult or acute respiratory distress syndrome.

  2. Lysozyme Photochemistry as a Function of Temperature. The Protective Effect of Nanoparticles on Lysozyme Photostability.

    PubMed

    Oliveira Silva, Catarina; Petersen, Steffen B; Pinto Reis, Catarina; Rijo, Patrícia; Molpeceres, Jesús; Vorum, Henrik; Neves-Petersen, Maria Teresa

    2015-01-01

    The presence of aromatic residues and their close spatial proximity to disulphide bridges makes hen egg white lysozyme labile to UV excitation. UVB induced photo-oxidation of tryptophan and tyrosine residues leads to photochemical products, such as, kynurenine, N-formylkynurenine and dityrosine and to the disruption of disulphide bridges in proteins. We here report that lysozyme UV induced photochemistry is modulated by temperature, excitation power, illumination time, excitation wavelength and by the presence of plasmonic quencher surfaces, such as gold, and by the presence of natural fluorescence quenchers, such as hyaluronic acid and oleic acid. We show evidence that the photo-oxidation effects triggered by 295 nm at 20°C are reversible and non-reversible at 10°C, 25°C and 30°C. This paper provides evidence that the 295 nm damage threshold of lysozyme lies between 0.1 μW and 0.3 μW. Protein conformational changes induced by temperature and UV light have been detected upon monitoring changes in the fluorescence emission spectra of lysozyme tryptophan residues and SYPRO® Orange. Lysozyme has been conjugated onto gold nanoparticles, coated with hyaluronic acid and oleic acid (HAOA). Steady state and time resolved fluorescence studies of free and conjugated lysozyme onto HAOA gold nanoparticles reveals that the presence of the polymer decreased the rate of the observed photochemical reactions and induced a preference for short fluorescence decay lifetimes. Size and surface charge of the HAOA gold nanoparticles have been determined by dynamic light scattering and zeta potential measurements. TEM analysis of the particles confirms the presence of a gold core surrounded by a HAOA matrix. We conclude that HAOA gold nanoparticles may efficiently protect lysozyme from the photochemical effects of UVB light and this nanocarrier could be potentially applied to other proteins with clinical relevance. In addition, this study confirms that the temperature plays a

  3. Spectroscopic insight into the interaction of bovine serum albumin with imidazolium-based ionic liquids in aqueous solution.

    PubMed

    Satish, Lakkoji; Millan, Sabera; Sahoo, Harekrushna

    2016-11-03

    The study of protein-ionic liquid interactions is very important because of the widespread use of ionic liquids as protein stabilizer in the recent years. In this work, the interaction of bovine serum albumin (BSA) with different imidazolium-based ionic liquids (ILs) such as [1-ethyl-3-methyl-imidazolium ethyl sulfate (EmimESO4 ), 1-ethyl-3-methyl-imidazolium chloride (EmimCl) and 1-butyl-3-methyl-imidazolium chloride (BmimCl)] has been investigated using different spectroscopic techniques. The intrinsic fluorescence of BSA is quenched by ILs by the dynamic mechanism. The thermodynamic analysis demonstrates that very weak interactions exist between BSA and ILs. 8-Anilino-1-naphthalenesulfonic acid (ANS) fluorescence and lifetime measurements reveal the formation of the compact structure of BSA in IL medium. The conformational changes of BSA were monitored by CD analysis. Temperature-dependent ultraviolet (UV) measurements were done to study the thermal stability of BSA. The thermal stability of BSA in the presence of ILs follows the trend EmimESO4  > EmimCl > BmimCl and in the presence of more hydrophobic IL, destabilization increases rapidly as a function of concentration.

  4. Nanogels fabricated from bovine serum albumin and chitosan via self-assembly for delivery of anticancer drug.

    PubMed

    Wang, Yuntao; Xu, Shasha; Xiong, Wenfei; Pei, Yaqiong; Li, Bin; Chen, Yijie

    2016-10-01

    In this study, bovine serum albumin (BSA) and chitosan (CS) were used to prepare BSA-CS nanogels by a simple green self-assembly technique. Then the nanogels were successfully used to entrap doxorubicin hydrochloride (DOX) with an entrapment ratio of 46.3%, aiming to realize the slow-release effect and lower the cytotoxicity of DOX. The IC50 values of DOX-loaded BSA-CS (DOX-BSA-CS) and free DOX obtained by MTT assay in SGC7901 cells were 0.22 and 0.05μg/mL, respectively. The cytotoxicity of DOX significantly decreased within 24h after encapsulation by the nanogels, indicating that the loaded drug could slowly release within 24h and the BSA-CS was a good slow release system. The cellular uptake experiments indicated DOX-BSA-CS diffused faster into the cancer cell than the bare drug. The flow cytometry and TUNEL assay proved DOX-BSA-CS could induce a larger apoptosis proportion of gastric cancer cells 7901 than the bare drug and it is promising to be used for curing gastric cancer.

  5. Bovine serum albumin bioconjugated graphene oxide: Red blood cell adhesion and hemolysis studied by QCM-D

    NASA Astrophysics Data System (ADS)

    Cai, Bing; Hu, Kebang; Li, Chunming; Jin, Jing; Hu, Yuexin

    2015-11-01

    Graphene oxide (GO) had great potential in various applications especial biomedical materials. In this study, we improved the hemocompatibility especial hemolysis properties of GO nanosheets by grafting bovine serum albumin (BSA). The hemocompatibility of GO-g-BSA was improved. The hemolysis ratio of GO-g-BSA was lower than 0.2% and no visible hemoglobin release was observed. In a flowed condition, the interaction between GO and RBC was monitored real time by quartz crystal microbalance with dissipation (QCM-D) and the hemolysis rates of eluted RBC solution was determined. The balance between the adsorption and degradation of RBC on the surface of GO was a linear process. The GO-g-BSA surface decreased the adhesion of RBC in a flowed condition, maintained the morphology of RBC and reduced the hemolysis rate in the most effective manner. The inert of BSA resisted GO interacting with the lipid bilayers of RBC and the negative charge on the surface of BSA repelled the approach of negative charged RBC. The excellent hemocompatibility of the BSA modified GO might confer its great potentials for various biomedical applications.

  6. The interaction of the phosphorothioate insecticides chlorpyrifos and parathion and their oxygen analogues with bovine serum albumin.

    PubMed

    Sultatos, L G; Basker, K M; Shao, M; Murphy, S D

    1984-07-01

    The distribution and subsequent toxicity of hazardous chemicals can be influenced by their interactions with plasma proteins. In the present study reversible binding of the phosphorothioate insecticides chlorpyrifos and parathion to fatty acid-free bovine serum albumin (BSA) was examined using the technique of equilibrium dialysis. Computer analyses of the binding data revealed that chlorpyrifos and parathion each bound reversibly to a single class of binding sites on BSA, with apparent KD values of 3.4 +/- 0.1 and 11.1 +/- 0.3 microM, respectively. Additionally, the maximal number of binding sites for each insecticide per molecule of BSA was one. Displacement studies using both chlorpyrifos and parathion indicated that each was a competitive inhibitor of the other's binding, suggesting that they were bound to the same site. Incubation of chlorpyrifos oxon or paraoxon with a 1% solution of BSA resulted in limited, EDTA-insensitive formation of 3,5,6-trichloro-2-pyridinol or p-nitrophenol, respectively. Pretreatment of BSA with 5 mM paraoxon, chlorpyrifos oxon, or 1 mM diisopropylfluorophosphate did not alter this activity, suggesting that these reactions resulted from an esterase-like capacity of BSA, and not from phosphorylation of BSA by these oxons.

  7. Effects of bovine serum albumin on boar sperm quality during liquid storage at 17°C.

    PubMed

    Zhang, X-G; Yan, G-J; Hong, J-Y; Su, Z-Z; Yang, G-S; Li, Q-W; Hu, J-H

    2015-04-01

    This study aimed to investigate the effects of bovine serum albumin (BSA) on boar sperm quality during liquid storage at 17°C. Boar semen samples were collected and diluted with Modena containing different concentrations (0, 1, 2, 3, 4, 5 and 6 g/l) of BSA, and sperm motility, plasma membrane integrity, acrosome integrity, total antioxidative capacity (T-AOC) activity and malondialdehyde (MDA) content were measured and analysed. The results showed that Modena supplemented with 3, 4 and 5 g/l BSA could improve boar sperm motility, effective survival time and plasma membrane integrity (p < 0.05), decrease MDA content (p < 0.05), while no statistical difference was observed for sperm acrosome integrity and T-AOC activity among these three groups (p > 0.05). The semen sample diluted with Modena containing 4 g/l BSA could achieve optimum effect, and sperm survival time was 7.5 days. After 7 days preservation, sperm motility, plasma membrane integrity and acrosome integrity were 54%, 49% and 78%, respectively. T-AOC activity and MDA content were 1.03 U/ml and 17.5 nmol/ml, respectively. In conclusion, Modena supplemented with BSA reduced the oxidative stress and improved the sperm quality of boar semen during liquid storage at 17°C, and 4 g/l BSA was the optimum concentration. Further studies are required to obtain more concrete results on the determination of antioxidant capacities of BSA in liquid preserved boar semen.

  8. Chemical treatment and chitosan coating of yeast cells to improve the encapsulation and controlled release of bovine serum albumin.

    PubMed

    Shi, Guorong; Liu, Yating; He, Zijun; Zhou, Jihen

    2016-08-10

    We investigate the encapsulation of bovine serum albumin (BSA) in chemical-treated and chitosan-coated yeast cells, Saccharomyces cerevisiae (S. cerevisiae), for the controlled release of BSA. The chemical treatment can sufficiently enlarge the small-sized cell-wall cavities and/or break the integrity for the entrance of BSA to the interior of yeast cells, and the additional chitosan coating can well prevent the rapid release of encapsulated BSA from the yeast-derived microcapsules. The sodium hydroxide pretreated S. cerevisiae gives a maximum encapsulation yield of (10.1 ± 0.2)% for BSA. An additional coating of S. cerevisiae with chitosan can reduce the initial burst release of BSA and extend the release period from 24 h in the chitosan-free case to 48 h in phosphate buffer at pH 7.4. The prepared microcapsules can well keep the shapes and sizes of yeast cells and thus show uniform sizes of 3.85 ± 0.81 μm. The encapsulated BSA well retains its pristine ultraviolet spectroscopic and chromatographic behaviors. The present microencapsulation protocol has the advantages of convenient and mild operation, high encapsulation efficiency, and organic solvent-free nature, which is of reference value for establishing high-performance controllable biomacromolecule-delivery systems.

  9. In vitro inhibition of human neutrophil elastase by oleic acid albumin formulations from derivatized cotton wound dressings.

    PubMed

    Edwards, J Vincent; Howley, Phyllis; Cohen, I Kelman

    2004-10-13

    Human neutrophil elastase (HNE) is elevated in chronic wounds. Oleic acid albumin formulations that inhibit HNE may be applicable to treatment modalities for chronic wounds. Oleic acid/albumin formulations with mole ratios of 100:1, 50:1, and 25:1 (oleic acid to albumin) were prepared and found to have dose response inhibition properties against HNE. The IC50 values for inhibition of HNE with oleic acid/albumin formulations were 0.029-0.049 microM. Oleic acid/albumin (BSA) formulations were bound to positively and negatively charged cotton wound dressings and assessed for elastase inhibition using a fiber bound formulation in an assay designed to mimic HNE inhibition in the wound. Cotton derivatized with both carboxylate and amine functional groups were combined with oleic acid/albumin formulations at a maximum loading of 0.030 mg oleic acid + 0.14 mg BSA/mg fiber. The IC50 values for inhibition of HNE with oleic acid/albumin formulations bound to derivatized cotton were 0.26-0.42 microM. Release of the oleic acid/albumin formulation from the fiber was measured by measuring oleic acid levels with quantitative GC analysis. Approximately, 35-50% of the fiber bound formulation was released into solution within the first 15 min of incubation. Albumin was found to enhance the rate of elastase hydrolysis of the substrate within a concentration range of 0.3-50 g/L. The acceleration of HNE substrate hydrolysis by albumin required increased concentration of inhibitor in the formulation to obtain complete inhibition of HNE. Oleic acid formulations prepared with albumin enable transport, solubility and promote dose response inhibition of HNE from derivatized cotton fibers under aqueous conditions mimicking the chronic wound.

  10. Synthesis and characterization of folate decorated albumin bio-conjugate nanoparticles loaded with a synthetic curcumin difluorinated analogue.

    PubMed

    Gawde, Kaustubh A; Kesharwani, Prashant; Sau, Samaresh; Sarkar, Fazlul H; Padhye, Subhash; Kashaw, Sushil K; Iyer, Arun K

    2017-02-14

    Albumin-bound paclitaxel colloidal nanoparticle (Abraxane®) is an FDA approved anticancer formulation available in the market. It is a suspension which is currently used therapeutically for treating cancers of the breast, lung, and pancreas among others. CDF is a novel new and potent synthetic curcumin analogue that is widely used for breast and ovarian cancer. The aim of this study was to use biocompatible albumin as well as folate decorated albumin to formulate colloidal nanoparticles encapsulating curcumin difluorinated (CDF). CDF has demonstrated a 16-fold improvement in stability and remarkable anticancer potency compared to its natural derivative, curcumin. CDF showed marked inhibition of cancer cell growth through down-regulation of multiple miRNAs, up-regulation of phosphatase and tensin homolog (PTEN), and attenuation of histone methyl transferase EZH2. However, CDF is highly hydrophobic and photodegradable with sparing aqueous solubility. In this study, we have formulated albumin nanoparticle using a modified desolvation method, which yielded high CDF loading in a nanoformulation. The physicochemical properties of CDF loaded albumin and folate-decorated albumin nanosuspensions were assessed for particle size, morphology, zeta potential, drug encapsulation efficiency/loading, solubility and drug release. Importantly, the folate ligand decorated albumin nanoparticles were formulated in principle to passively and actively target folate-overexpressing-cancers. In this study, the synthesis and optimization of BSA and folate decorated BSA conjugated CDF nanoparticles are assessed in detail that will be useful for its future clinical translation.

  11. Biophysical influence of coumarin 35 on bovine serum albumin: Spectroscopic study

    NASA Astrophysics Data System (ADS)

    Bayraktutan, Tuğba; Onganer, Yavuz

    2017-01-01

    The binding mechanism and protein-fluorescence probe interactions between bovine serum albumin (BSA) and coumarin 35 (C35) was investigated by using UV-Vis absorption and fluorescence spectroscopies since they remain major research topics in biophysics. The spectroscopic data indicated that a fluorescence quenching process for BSA-C35 system was occurred. The fluorescence quenching processes were analyzed using Stern-Volmer method. In this regard, Stern-Volmer quenching constants (KSV) and binding constants were calculated at different temperatures. The distance r between BSA (donor) and C35 (acceptor) was determined by exploiting fluorescence resonance energy transfer (FRET) method. Synchronous fluorescence spectra were also studied to observe information about conformational changes. Moreover, thermodynamics parameters were calculated for better understanding of interactions and conformational changes of the system.

  12. Quenching of tryptophan fluorescence of bovine serum albumin under the effect of ions of heavy metals

    NASA Astrophysics Data System (ADS)

    Plotnikova, O. A.; Mel'nikov, A. G.; Mel'nikov, G. V.; Gubina, T. I.

    2016-01-01

    The interaction of heavy metals with bovine serum albumin (BSA) has been studied using data of quenching of intrinsic fluorescence of the protein by the ions of the heavy metals. Under the assumption of static quenching with formation of nonfluorescent complexes of fluorophores of BSA with heavy metals, conclusions have been drawn on the peculiarities of binding of the heavy metals to the protein. The values of the Stern-Volmer constants of association and those of the constants of BSA binding to the heavy metals decrease in the order Cu(II) > Pb(II) > Cd(II). It has been experimentally found that the copper ions have greater capacity to bind to the protein with the formation of the nonfluorescent complexes, which results in a significant decrease in the fluorescence intensity of the protein.

  13. Reactions of trimethylphosphine analogues of auranofin with bovine serum albumin

    SciTech Connect

    Isab, A.A.; Shaw, C.F. III; Hoeschele, J.D.; Locke, J.

    1988-10-05

    The reactions of bovine serum albumin (BSA) with (trimethylphosphine)(2,3,4,6-tetra-O-acetyl-1-thio-..beta..-D-glucopyranosato-S)gold(I), Me/sub 3/PAuSAtg, and its chloro analogue, Me/sub 3/PAuCl, were studied to develop insights into the role of the phosphine ligand in the serum chemistry of the related antiarthritic drug auranofin (triethylphosphine)(2,3,4,6-tetra-O-acetyl-1-thio-..beta..-D-glucopyranosato-S)gold(I). /sup 31/P NMR spectroscopy, protein modification, and gel-exclusion chromatography methods were employed. Comparison of the reactions of the methyl derivatives to the previously reported reactions of auranofin and Et/sub 3/PAuCl with BSA demonstrated that similar chemical species are formed but revealed three major differences. Despite these differences, the results for the methyl analogues provide important confirmation for previously developed chemical models of auranofin reactions in serum. Me/sub 3/PO was not observed in reaction mixtures lacking tetraacetylthioglucose (AtgSH); this result affirms the role of AtgSH, displaced by the reaction of Me/sub 3/PAuSAtg at Cys-34, in the generation of the phosphine oxide (an important metabolite in vivo). The weak binding sites on albumin react with Me/sub 3/PAuCl, but not Me/sub 3/PAuSAtg, demonstrating the importance of the strength and reactivity of the anionic ligand-gold bond on the reactions of auranofin analogues. The gold binding capacity of albumin is enhanced after Me/sub 3/PO is formed, consistent with reductive cleavage of albumin disulfide bonds by trimethylphosphine. 24 references, 2 figures, 3 tables.

  14. The role of nanoparticles in the albumin-cytarabine and albumin-methotrexate interactions.

    PubMed

    Pentak, Danuta; Maciążek-Jurczyk, Małgorzata; Zawada, Zygmunt H

    2017-04-01

    Understanding the interactions which occur between nanomaterials and biomolecules is one of the most important issues in nanotechnology. Determining the properties of nanoparticles obtained through the use of novel methods and defining the scope of their application as drug carriers has important practical significance. Nanoparticles containing methotrexate and cytarabine obtained by a modified reverse-phase evaporation method (mREV) were characterized through the use of the UV/Vis and NMR methods. Obtained results confirmed high degree of analysed drugs encapsulation. The encapsulation efficiencies of cytarabine (AraC) and methotrexate (MTX) in LDPPC/AraC/MTX were found to be 86.30% (AraC) and 86.00% (MTX). The increased permeability of the phospholipid membranes, resulting from physico-chemical properties and the location of the drug, as well as from the physico-chemical properties of the phospholipids themselves, has been confirmed by increase in the length of the T1 relaxation time of protons in the N(+)(CH3)3 group. The study of analysed drugs release process from the liposomes has been made for bovine serum albumin, both in the absence (dBSA) and in the presence of fatty acid (BSA). Moreover two types of kinetic models (Bhaskar equation and Rigter-Peppas equation) have been used. Based on the study it has been concluded that mathematical modelling of drug release can be very helpful in speeding up product development and in better understanding the mechanisms controlling drug release from advanced delivery systems.

  15. Preparation of lysozyme molecularly imprinted polymers and purification of lysozyme from egg white.

    PubMed

    Wang, Xuejiao; Dong, Shaohua; Bai, Quan

    2014-06-01

    Molecular imprinting as a promising and facile separation technique has received much attention because of its high selectivity for target molecules. In this study, lysozyme molecularly imprinted polymers (Lys-MIPs) were successfully prepared by the entrapment method with lysozyme as the template molecule, acrylamide as the functional monomer and N,N-methylenebisacrylamide as the cross-linker. The removal of the template lysozyme from the molecularly imprinted polymers was investigated in detail by two methods. The synthesized Lys-MIPs were characterized by scanning electron microscopy and Fourier transform-infrared, and the adsorption capacity, selectivity and reproducibility of the Lys-MIPs were also evaluated. The maximum adsorption capacity reached 94.8 mg/g, which is twice that of nonmolecularly imprinted polymers, and satisfactory selectivity and reproducibility were achieved. Using the Lys-MIP column, lysozyme could be separated completely from egg white, with purity close to 100% and mass recovery of 98.2%. This illustrated that the synthesized Lys-MIPs had high specific recognition and selectivity to the template lysozyme when they were applied to a mixture of protein standards and a real sample.

  16. Elasticity and Strength of Biomacromolecular Crystals: Lysozyme

    NASA Technical Reports Server (NTRS)

    Holmes, A. M.; Witherow, W. K.; Chen, L. Q.; Chernov, A. A.

    2003-01-01

    The static Young modulus, E = 0.1 to 0.5 GPa, the crystal critical strength (sigma(sub c)) and its ratio to E,sigma(sub c)/E is approximately 10(exp 3), were measured for the first time for non cross-linked lysozyme crystals in solution. By using a triple point bending apparatus, we also demonstrated that the crystals were purely elastic. Softness of protein crystals built of hard macromolecules (26 GPa for lysozyme) is explained by the large size of the macromolecules as compared to the range of intermolecular forces and by the weakness of intermolecular bonds as compared to the peptide bond strength. The relatively large reported dynamic elastic moduli (approximately 8 GPa) from resonance light scattering should come from averaging over the moduli of intracrystalline water and intra- and intermolecular bonding.

  17. Dynamics of Lysozyme in Trehalose solutions

    NASA Astrophysics Data System (ADS)

    Ghatty, Pavan; Uberbacher, Edward C.

    2008-03-01

    Anhydrobiosis in Tardigrades and Nematodes has been a topic of constant interest and intrigue in the scientific community. An increase in the concentration of Trehalose has been attributed to the ability of some organisms to survive extreme conditions of temperature, pressure and pH. Although there exist many experimental studies attributing this effect to Trehalose, the molecular details governing the interaction between Trehalose and proteins remains unclear. We have conducted a 20ns study of Lysozyme in varying concentrations of Trehalose in water. Strong and weak hydrogen bonds and hydrophobic interactions between water, Trehalose and protein seem to dictate the interactions in the system. We have observed a hydrogen bonded network of Trehalose around the protein entrapping a layer of water between itself and protein. Lysozyme remains in a near-native conformation throughout the simulation giving hints on the ability of Trehalose in preserving the structure of protiens.

  18. Membrane effects of lysozyme amyloid fibrils.

    PubMed

    Kastorna, Anna; Trusova, Valeriya; Gorbenko, Galyna; Kinnunen, Paavo

    2012-04-01

    The influence of mature lysozyme fibrils on the structural and physical properties of model membranes composed of phosphatidylcholine (PC) and its mixtures with cardiolipin (CL) (10 mol%) and cholesterol (Chol) (30 mol%) was studied using fluorescent probes DPH, pyrene, Laurdan and MBA. Analysis of pyrene fluorescence spectra along with the measurements of DPH fluorescence anisotropy revealed that the structure of hydrocarbon chains region of lipid bilayer is not affected by the fibrillar aggregates of lysozyme. In contrast, probing the membrane effects by Laurdan and MBA showed the rise of both the generalized polarization of Laurdan and the MBA fluorescence anisotropy, suggesting that amyloid protein induces reduction of bilayer hydration and increase of lipid packing in the interfacial region of model membranes.

  19. Structural and immunologic characterization of bovine, horse, and rabbit serum albumins.

    PubMed

    Majorek, Karolina A; Porebski, Przemyslaw J; Dayal, Arjun; Zimmerman, Matthew D; Jablonska, Kamila; Stewart, Alan J; Chruszcz, Maksymilian; Minor, Wladek

    2012-10-01

    Serum albumin (SA) is the most abundant plasma protein in mammals. SA is a multifunctional protein with extraordinary ligand binding capacity, making it a transporter molecule for a diverse range of metabolites, drugs, nutrients, metals and other molecules. Due to its ligand binding properties, albumins have wide clinical, pharmaceutical, and biochemical applications. Albumins are also allergenic, and exhibit a high degree of cross-reactivity due to significant sequence and structure similarity of SAs from different organisms. Here we present crystal structures of albumins from cattle (BSA), horse (ESA) and rabbit (RSA) sera. The structural data are correlated with the results of immunological studies of SAs. We also analyze the conservation or divergence of structures and sequences of SAs in the context of their potential allergenicity and cross-reactivity. In addition, we identified a previously uncharacterized ligand binding site in the structure of RSA, and calcium binding sites in the structure of BSA, which is the first serum albumin structure to contain metal ions.

  20. Structural and immunologic characterization of bovine, horse, and rabbit serum albumins

    PubMed Central

    Majorek, Karolina A.; Porebski, Przemyslaw J.; Dayal, Arjun; Zimmerman, Matthew D.; Jablonska, Kamila; Stewart, Alan J.; Chruszcz, Maksymilian; Minor, Wladek

    2012-01-01

    Serum albumin (SA) is the most abundant plasma protein in mammals. SA is a multifunctional protein with extraordinary ligand binding capacity, making it a transporter molecule for a diverse range of metabolites, drugs, nutrients, metals and other molecules. Due to its ligand binding properties, albumins have wide clinical, pharmaceutical, and biochemical applications. Albumins are also allergenic, and exhibit a high degree of cross-reactivity due to significant sequence and structure similarity of SAs from different organisms. Here we present crystal structures of albumins from cattle (BSA), horse (ESA) and rabbit (RSA) serums. The structural data are correlated with the results of immunological studies of SAs. We also analyze the conservation or divergence of structures and sequences of SAs in the context of their potential allergenicity and cross-reactivity. In addition, we identified a previously uncharacterized ligand binding site in the structure of RSA, and calcium binding sites in the structure of BSA, which is the first serum albumin structure to contain metal ions. PMID:22677715

  1. Coupling of albumin flux to volume flow in skin and muscles of anesthetized rats

    SciTech Connect

    Renkin, E.M.; Gustafson-Sgro, M.; Sibley, L.

    1988-09-01

    Bovine serum albumin (BSA) labeled with /sup 131/I or /sup 125/I was injected intravenously in pentobarbital sodium-anesthetized rats, and tracer clearances into leg skin and muscles were measured over 30, 60, and 120 min. BSA labeled with the alternate tracer was used as vascular volume reference. Two minutes before injection of the tracer, a ligature was tied around one femoral vein to occlude outflow partially and raise capillary pressure in that leg. The unoccluded leg served as control. Skin and muscles of the occluded leg had variably and substantially higher water contents (delta W) than paired control tissues and slightly but consistently increased albumin clearances (CA). The delta CA/delta W, equivalent to the albumin concentration of capillary filtrate relative to plasma determined by linear regression, were as follows: leg skin 0.004 (95% confidence limits -0.001 to +0.009), muscle biceps femoris 0.005 (0.001-0.010), muscle gastrocnemius 0.011 (0.004-0.019), muscle tibialis anterior 0.016 (0.012-0.021). All these values are significantly less than 0.10, which corresponds to a reflection coefficient for serum albumin (sigma A) of 0.90. Convective coupling of albumin flux to volume flux in skin and muscles of intact, anesthetized rats is low, with sigma AS in the range 0.98 to greater than 0.99.

  2. Probing the binding sites and the effect of berbamine on the structure of bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Cheng, Xiao-Xia; Lui, Yi; Zhou, Bo; Xiao, Xiao-He; Liu, Yi

    2009-06-01

    Berbamine, a naturally occurring isoquinoline alkaloid extracted from Berberis sp., is the active constituent of some Chinese herbal medicines and exhibits a variety of pharmacological activities. The effects of berbamine on the structure of bovine serum albumin (BSA) were investigated by circular dichroism, fluorescence and absorption spectroscopy under physiological conditions. Berbamine caused a static quenching of the intrinsic fluorescence of BSA, and the quenching data were analyzed by application of the Stern-Volmer equation. There was a single primary berbamine-binding site on BSA with a binding constant of 2.577 × 10 4 L mol -1 at 298 K. The thermodynamic parameters, enthalpy change (Δ H0) and entropy change (Δ S0) for the reaction were -76.5 kJ mol -1 and -173.4 J mol -1 K -1 according to the van't Hoff equation. The results showed that the hydrogen bond and van der Waals interaction were the predominant forces in the binding process. Competitive experiments revealed a displacement of warfarin by berbamine, indicating that the binding site was located at Drug sites I. The distance r between the donor (BSA) and the acceptor (berbamine) was obtained according to the Förster non-radiation energy transfer theory. The results of three-dimensional fluorescence spectra, UV-vis absorption difference spectra and circular dichroism of BSA in the presence of berbamine showed that the conformation of BSA was changed. The results provide a quantitative understanding of the effect of berbamine on the structure of bovine serum albumin, providing a useful guideline for further drug design.

  3. Sulfadiazine binds and unfolds bovine serum albumin: an in vitro study.

    PubMed

    Al-Lohedan, Hamad A; Sajih Ali, Mohd

    2013-11-01

    Sulfonamide derivatives, such as sulfadiazine (SD) are used as antibiotics and, very recently, anti-amyloid properties of these have been reported. We have evaluated binding of SD with bovine serum albumin (BSA) followed by unfolding of protein. Studies were accomplished at physiological conditions of temperature (37 °C) and pH (7.4), employing UV, fluorescence, circular dichroism (CD) and Fourier transform infra-red (FTIR) spectroscopies. In presence of drug, UV spectrum of BSA was altered from the spectrum of native BSA due to the interaction between albumin and drug. Excitation of protein at 295 nm showed that fluorescence quenching of BSA by SD is a result of the formation of SD–BSA complex. The data were analyzed using Stern–Volmer and Lineweaver–Burk methods. From both methods it was evaluated that the quenching involved in BSA–SD binding was static. BSA had only one binding site for SD. Synchronous fluorescence spectra have shown a red shift and advocated that hydrophobicity around both Trp and Tyr residues was decreased. CD results revealed that the conformation of macromolecule remain undisturbed at low concentrations (up to 20 μM of the SD) and there was small perturbation in the secondary structure from 20 to 50 μM of SD followed by a large change and consequent unfolding on further increase in the drug concentration. Both synchronous and CD measurements were consistent to each other. FTIR spectra revealed the shifting of amide I band which is also an indication of conformational change of the protein.

  4. Resonance light scattering spectral method for the determination of serum albumin with the interaction of neutral red-sodium dodecyl sulfonate.

    PubMed

    Zhan, Guoqing; Zhang, Lixia; Li, Chunya

    2009-06-01

    Based on the enhancement of resonance light scattering (RLS) of serum albumin interaction with neutral red (NR) and sodium dodecyl sulfonate (SDS), a novel sensitive assay of serum albumins has been developed. Experimental conditions such as mixing sequence of reagents, pH, NR and SDS concentrations have been optimized. Linear relationships between the enhanced RLS intensity and the protein concentration were observed for bovine serum albumin (BSA) within the range of 0.01-5.0 microg mL(-1) and human serum albumin (HAS) of 0.01-7.0 microg mL(-1). The detection limits (S/N=3) are 6.0 ng mL(-1) for BSA and 5.0 ng mL(-1) for HAS, respectively. The method was successfully applied to the determination of HSA in human blood plasma samples with recovery from 97.3 to 104.3%.

  5. Growth and dissolution kinetics of tetragonal lysozyme

    NASA Technical Reports Server (NTRS)

    Monaco, L. A.; Rosenberger, F.

    1993-01-01

    The growth and dissolution kinetics of lysozyme in a 25 ml solution bridge inside a closed growth cell was investigated. It was found that, under all growth conditions, the growth habit forming (110) and (101) faces grew through layer spreading with different growth rate dependence on supersaturation/temperature. On the other hand, (100) faces which formed only at low temperatures underwent a thermal roughening transition around 12 C.

  6. Blood serum and BSA, but neither red blood cells nor hemoglobin can support vitellogenesis and egg production in the dengue vector Aedes aegypti

    PubMed Central

    Gonzales, Kristina K.; Tsujimoto, Hitoshi

    2015-01-01

    Aedes aegypti is the major vector of dengue, yellow fever and chikungunya viruses that put millions of people in endemic countries at risk. Mass rearing of this mosquito is crucial for strategies that use modified insects to reduce vector populations and transmission of pathogens, such as sterile insect technique or population replacement. A major problem for vector mosquito mass rearing is the requirement of vertebrate blood for egg production since it poses significant costs as well as potential health hazards. Also, regulations for human and animal use as blood source can pose a significant obstacle. A completely artificial diet that supports egg production in vector mosquitoes can solve this problem. In this study, we compared different blood fractions, serum and red blood cells, as dietary protein sources for mosquito egg production. We also tested artificial diets made from commercially available blood proteins (bovine serum albumin (BSA) and hemoglobin). We found that Ae. aegypti performed vitellogenesis and produced eggs when given whole bovine blood, serum, or an artificial diet containing BSA. Conversely, egg production was impaired after feeding of the red blood cell fraction or an artificial diet containing only hemoglobin. We also found that egg viability of serum-fed mosquitoes were comparable to that of whole blood and an iron supplemented BSA meal produced more viable eggs than a meal containing BSA alone. Our results indicate that serum proteins, not hemoglobin, may replace vertebrate blood in artificial diets for mass mosquito rearing. PMID:26020000

  7. THz characterization of lysozyme at different conformations

    NASA Astrophysics Data System (ADS)

    Globus, Tatiana; Khromova, Tatyana; Lobo, Rebecca; Woolard, Dwight; Swami, Nathan; Fernandez, Erik

    2005-05-01

    This work demonstrates application of Fourier Transform Infrared Spectroscopy (FTIR) technique in the low terahertz frequency range of 10-25 cm-1 to discriminate between different protein conformations and evaluate possible application of THz spectroscopy for monitoring of protein folding-unfolding process. A specific procedure developed earlier for unfolding lysozyme by salt (KSCN) precipitation and refolding the lysozyme molecules by removing of KSCN and dissolving in sodium acetate was used to prepare three different forms of lysozyme. In addition, two standard procedures were used to prepare samples in unfolded conformation: denaturation at high temperature ~95° C followed by fast freezing, and dissolution in 6 M guanidine. Thin, air dried protein films were characterized as well as material in the form of gel. Spectra reveal resonance features in transmission which represent vibrational modes in the protein samples. A great variability of spectral features for the different conformational states showed the sensitivity of vibrational frequencies to the three dimensional structure of proteins. The results obtained on liquid (gel) samples indicate that THz transmission spectroscopy can be used for monitoring folding-unfolding process in a realistic, aqueous environment.

  8. Lysozyme binds onto functionalized carbon nanotubes.

    PubMed

    Bomboi, Francesca; Tardani, Franco; Gazzoli, Delia; Bonincontro, Adalberto; La Mesa, Camillo

    2013-08-01

    Single walled carbon nanotubes have singular physicochemical properties making them attractive in a wide range of applications. Studies on carbon nanotubes and biological macromolecules exist in literature. However, ad hoc investigations are helpful to better understand the interaction mechanisms. We report on a system consisting of single walled carbon nanotubes and lysozyme. The phenomenology of nanotube-protein interactions and its effects on protein conformation were determined. We investigated the formation of oxidized nanotube-lysozyme conjugates, by studying the effect of both protein concentration and pH. Electrophoretic mobility, dielectric spectroscopy and dynamic light scattering were used to determine the interaction pathways, monitoring the surface charge density and the size of the complexes. The results allowed identifying the conditions of surface saturation at different pH values. The secondary structure of nanotube-adsorbed protein was controlled by circular dichroism; it was observed that it substantially retains its native conformation. Interestingly, we found that the interactions among oxidized nanotubes and lysozyme molecules are mainly of electrostatic nature and easily tunable by varying the pH of the solutions.

  9. Lysozyme binding onto cat-anionic vesicles.

    PubMed

    Bonincontro, A; Spigone, E; Ruiz Peña, M; Letizia, C; La Mesa, C

    2006-12-15

    Mixing aqueous sodium dodecylsulfate with cetyltrimethylammonium bromide solutions in mole ratios close to (1.7/1.0) allows the formation of cat-anionic vesicles with an excess of negative charges on the outer surface. The vesicular dispersions are mixed with lysozyme, and interact electrostatically with the positive charges on the protein, forming lipo-plexes. Dielectric relaxation, zeta-potential, and light scattering indicate the occurrence of interactions between vesicles and the protein. According to CD, the vesicle-adsorbed protein retains its native conformation. Binding and surface saturation, inferred by dielectric relaxation and zeta-potential, fulfil a charge neutralisation stoichiometry. Adsorbed lysozyme promotes the vesicle clustering and is concomitant with the lipo-plexes flocculation. Above the charge neutralisation threshold, lysozyme in excess remains dispersed in molecular form. Attempts were made to determine in what conditions protein release from the vesicles occurs. Accordingly, the full neutralisation of sodium dodecylsulfate in excess by cetyltrimethylammonium bromide ensures the lipo-plexes break-up, the precipitation of the mixed surfactants and the protein release in native form.

  10. Immunoprecipitation of Serum Albumin with Protein A-Sepharose: A Biochemistry Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Bohinski, Robert C.

    2000-11-01

    An exercise has been designed and optimized to acquaint students with the simple yet powerful technique of immunoprecipitation. Protein A-Sepharose (PA-S) is used as a solid-phase precipitant to recover bovine serum albumin (BSA, the antigen) recognized by anti-BSA antibody (Ab). The high degree of binding specificity between antigen and antibody is illustrated by recovery of BSA from a complex mixture of proteins obtained from wheat germ and chicken breast. Various controls are included for a thorough data analysis. The solid phase of Ag/Ab/PA-S is recovered by centrifugation, thoroughly washed, and treated to dissociate the BSA antigen. Samples are examined by discontinuous denaturing gel electrophoresis (SDS-PAGE) with Coomassie blue staining. The supernatants, containing proteins that are not precipitated, are also analyzed. Antigenic cross-reactivity, ranging from strong to none, is demonstrated in a second part by using serum albumins from seven different sources. Systems can be set up, shaken, and prepared for electrophoresis in a single lab period with time for laboratory lecture and discussion about antibody structure and function, antibody-based methods in general, and immunoprecipitation in particular.

  11. Apatite deposition on titanium surfaces--the role of albumin adsorption.

    PubMed

    Serro, A P; Fernandes, A C; Saramago, B; Lima, J; Barbosa, M A

    1997-07-01

    Titanium implant surfaces are known to spontaneously nucleate apatite layers when in contact with simulated body fluids. However, adsorption of proteins may influence the process of apatite layer formation. In this study the role of bovine serum albumin (BSA) adsorption in the process of apatite deposition on titanium substrates is investigated. Deposition of calcium phosphate was induced by immersing titanium substrates in a Hank's balanced salt solution (HBSS) for times ranging from 1 to 23 days. The resulting substrates were studied by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), wettability measurements and electrochemical impedance determinations. All these methods indicate the presence of a calcium phosphate layer. The same procedure was repeated substituting HBSS with a solution of BSA in HBSS. Although SEM, EDS and electrochemical impedance spectra do not reveal the presence of an apatite layer, XPS analysis strongly indicates that the inhibition of apatite formation by BSA is only partial. The competition between BSA adsorption and apatite deposition seems to lead to a mixed film where the protein co-exists with calcium phosphate. Wettability studies suggest that this surface film is heterogeneous and porous, similar to the thicker films formed in albumin-free HBSS.

  12. Effect of calcium, bicarbonate, and albumin on capacitation-related events in equine sperm.

    PubMed

    Macías-García, B; González-Fernández, L; Loux, S C; Rocha, A M; Guimarães, T; Peña, F J; Varner, D D; Hinrichs, K

    2015-01-01

    Repeatable methods for IVF have not been established in the horse, reflecting the failure of standard capacitating media to induce changes required for fertilization capacity in equine sperm. One important step in capacitation is membrane cholesterol efflux, which in other species is triggered by cholesterol oxidation and is typically enhanced using albumin as a sterol acceptor. We incubated equine sperm in the presence of calcium, BSA, and bicarbonate, alone or in combination. Bicarbonate induced an increase in reactive oxygen species (ROS) that was abolished by the addition of calcium or BSA. Bicarbonate induced protein tyrosine phosphorylation (PY), even in the presence of calcium or BSA. Incubation at high pH enhanced PY but did not increase ROS production. Notably, no combination of these factors was associated with significant cholesterol efflux, as assessed by fluorescent quantitative cholesterol assay and confirmed by filipin staining. By contrast, sperm treated with methyl-β-cyclodextrin showed a significant reduction in cholesterol levels, but no significant increase in PY or ROS. Presence of BSA increased sperm binding to bovine zonae pellucidae in all three stallions. These results show that presence of serum albumin is not associated with a reduction in membrane cholesterol levels in equine sperm, highlighting the failure of equine sperm to exhibit core capacitation-related changes in a standard capacitating medium. These data indicate an atypical relationship among cholesterol efflux, ROS production, and PY in equine sperm. Our findings may help to elucidate factors affecting failure of equine IVF under standard conditions.

  13. A Fluorescence Quenching Study of the Interaction of Nebivolol Hydrochloride with Bovine and Human Serum Albumin

    NASA Astrophysics Data System (ADS)

    Abdel-Aziz, L.; Abdel-Fattah, L.; El-Kosasy, A.; Gaied, M.

    2015-09-01

    The interaction of nebivolol hydrochloride (NH), a β1-blocker, with bovine serum albumin (BSA) has been investigated at different pH values using the fluorescence quenching technique. The effect of different temperatures was studied at physiological pH 7.4. The binding constants of NH with BSA at 288, 298, and 309 K were found to be 2.691 × 1011, 1.38 × 1010, and 6.27 × 108 M-1, respectively. From the Arrhenius plot, the thermodynamic parameters, ΔH0 and ΔS0, were estimated to be -204.48 kJ/mol and -491.42 J/mol × K, respectively. This indicates that Van der Waals interactions and hydrogen bonds play a major role in the reaction. The effect of some inorganic divalent cations (Cu2+, Ni2+, and Zn2+) on binding of NH to BSA was also studied at physiological pH 7.4. Conformational investigation of BSA was done using synchronous fluorescence, showing the change in the microenvironment of the tryptophan residues. Fluorescence quenching reactions of NH to human serum albumin (HSA) and to γ-globulins were investigated and the binding parameters were obtained.

  14. Serum albumins - unusual allergens

    PubMed Central

    Chruszcz, Maksymilian; Mikolajczak, Katarzyna; Mank, Nicholas; Majorek, Karolina A.; Porebski, Przemyslaw J.; Minor, Wladek

    2015-01-01

    Background Albumins are multifunctional proteins present in the blood serum of animals. They can bind and transport a wide variety of ligands which they accommodate due to their conformational flexibility. Serum albumins are highly conserved both in amino acid sequence and three-dimensional structure. Several mammalian and avian serum albumins (SAs) are also allergens. Sensitization to one of the SAs coupled with the high degree of conservation between SAs may result in cross-reactive antibodies in allergic individuals. Sensitivity to SA generally begins with exposure to an aeroallergen, which can then lead to cross-sensitization to serum albumins present in food. Scope of Review This review focuses on the allergenicity of SAs presented in a structural context. Major Conclusions SA allergenicity is unusual taking into account the high sequence identity and similarity between SA from different species and human serum albumin. Cross-reactivity of human antibodies towards different SAs is one of the most important characteristics of these allergens. General Significance Establishing a relationship between sequence and structure of different SAs and their interactions with antibodies is crucial for understanding the mechanisms of cross-sensitization of atopic individuals. Structural information can also lead to better design and production of recombinant SAs to replace natural proteins in allergy testing and desensitization. Therefore, structural analyses are important for diagnostic and treatment purposes. PMID:23811341

  15. Experimental, computational and chemometrics studies of BSA-vitamin B6 interaction by UV-Vis, FT-IR, fluorescence spectroscopy, molecular dynamics simulation and hard-soft modeling methods.

    PubMed

    Manouchehri, Firouzeh; Izadmanesh, Yahya; Aghaee, Elham; Ghasemi, Jahan B

    2016-10-01

    The interaction of pyridoxine (Vitamin B6) with bovine serum albumin (BSA) is investigated under pseudo-physiological conditions by UV-Vis, fluorescence and FTIR spectroscopy. The intrinsic fluorescence of BSA was quenched by VB6, which was rationalized in terms of the static quenching mechanism. According to fluorescence quenching calculations, the bimolecular quenching constant (kq), dynamic quenching (KSV) and static quenching (KLB) at 310K were obtained. The efficiency of energy transfer and the distance between the donor (BSA) and the acceptor (VB6) were calculated by Foster's non-radiative energy transfer theory and were equal to 41.1% and 2.11nm. The collected UV-Vis and fluorescence spectra were combined into a row-and column-wise augmented matrix and resolved by multivariate curve resolution-alternating least squares (MCR-ALS). MCR-ALS helped to estimate the stoichiometry of interactions, concentration profiles and pure spectra for three species (BSA, VB6 and VB6-BSA complex) existed in the interaction procedure. Based on the MCR-ALS results, using mass balance equations, a model was developed and binding constant of complex was calculated using non-linear least squares curve fitting. FT-IR spectra showed that the conformation of proteins was altered in presence of VB6. Finally, the combined docking and molecular dynamics (MD) simulations were used to estimate the binding affinity of VB6 to BSA. Five-nanosecond MD simulations were performed on bovine serum albumin (BSA) to study the conformational features of its ligand binding site. From MD results, eleven BSA snapshots were extracted, at every 0.5ns, to explore the binding affinity (GOLD score) of VB6 using a docking procedure. MD simulations indicated that there is a considerable flexibility in the structure of protein that affected ligand recognition. Structural analyses and docking simulations indicated that VB6 binds to site I and GOLD score values depend on the conformations of both BSA and ligand

  16. Low-frequency spectroscopic analysis of monomeric and fibrillar lysozyme.

    PubMed

    Zakaria, Hidayatul A; Fischer, Bernd M; Bradley, Andrew P; Jones, Inke; Abbott, Derek; Middelberg, Anton P J; Falconer, Robert J

    2011-03-01

    Terahertz time-domain spectroscopy (THz-TDS) and Fourier transform infrared (FT-IR) spectroscopy were used to generate far-infrared and low-frequency spectral measurements of monomeric lysozyme and lysozyme fibrils. The formation of lysozyme fibrils was verified by the Thioflavin T assay and transmission electron microscopy (TEM). It was evident in the FT-IR spectra that between 150 and 350 cm(-1) the two spectra diverge, with the lysozyme fibrils showing higher absorbance intensity than the monomeric form. The broad absorption phenomenon is likely due to light scattered from the fibrillar architecture of lysozyme fibrils as supported by simulation of Rayleigh light scattering. The lack of discrete phonon-like peaks suggest that far-infrared spectroscopy cannot detect vibrational modes between the highly ordered hydrogen-bonded beta-pleated sheets of the lysozyme subunit.

  17. Investigation of the Interaction of Naringin Palmitate with Bovine Serum Albumin: Spectroscopic Analysis and Molecular Docking

    PubMed Central

    Zhang, Xia; Li, Lin; Xu, Zhenbo; Liang, Zhili; Su, Jianyu; Huang, Jianrong; Li, Bing

    2013-01-01

    Background Bovine serum albumin (BSA) contains high affinity binding sites for several endogenous and exogenous compounds and has been used to replace human serum albumin (HSA), as these two compounds share a similar structure. Naringin palmitate is a modified product of naringin that is produced by an acylation reaction with palmitic acid, which is considered to be an effective substance for enhancing naringin lipophilicity. In this study, the interaction of naringin palmitate with BSA was characterised by spectroscopic and molecular docking techniques. Methodology/Principal Findings The goal of this study was to investigate the interactions between naringin palmitate and BSA under physiological conditions, and differences in naringin and naringin palmitate affinities for BSA were further compared and analysed. The formation of naringin palmitate-BSA was revealed by fluorescence quenching, and the Stern-Volmer quenching constant (KSV) was found to decrease with increasing temperature, suggesting that a static quenching mechanism was involved. The changes in enthalpy (ΔH) and entropy (ΔS) for the interaction were detected at −4.11±0.18 kJ·mol−1 and −76.59±0.32 J·mol−1·K−1, respectively, which indicated that the naringin palmitate-BSA interaction occurred mainly through van der Waals forces and hydrogen bond formation. The negative free energy change (ΔG) values of naringin palmitate at different temperatures suggested a spontaneous interaction. Circular dichroism studies revealed that the α-helical content of BSA decreased after interacting with naringin palmitate. Displacement studies suggested that naringin palmitate was partially bound to site I (subdomain IIA) of the BSA, which was also substantiated by the molecular docking studies. Conclusions/Significance In conclusion, naringin palmitate was transported by BSA and was easily removed afterwards. As a consequence, an extension of naringin applications for use in food, cosmetic and medicinal

  18. Dose-dependent effect of lysozyme upon Candida albicans biofilm

    PubMed Central

    Sebaa, Sarra; Hizette, Nicolas; Boucherit-Otmani, Zahia; Courtois, Philippe

    2017-01-01

    The present study investigated the in vitro effect of lysozyme (0–1,000 µg/ml) on Candida albicans (C. albicans) biofilm development. Investigations were conducted on C. albicans ATCC 10231 and on 10 clinical isolates from dentures. Strains were cultured aerobically at 37°C in Sabouraud broth. Yeast growth was evaluated by turbidimetry. Biofilm biomass was quantified on a polystyrene support by crystal violet staining and on acrylic surfaces by counts of colony forming units. Lysozyme affected biofilm formation to a greater extent than it affected growth. For the ATCC 10231 reference strain, lysozyme acted as a biofilm promotor on polystyrene at the highest concentration tested (1,000 µg/ml, non-physiological). When the reference strain was investigated on acrylic resin support, lysozyme acted as a significant biofilm promotor on rough resin, but less on smooth resin. The attached biomass in the presence of physiological concentrations of lysozyme (10–30 µg/ml) was significantly decreased compared with the hypothetical value of 100% using a one-sample t-test, but a comparison between the different lysozyme conditions using analysis of variance and post hoc tests did not reveal significant differences. In 10 wild strains, different patterns of biofilm formation on polystyrene were observed in the presence of lysozyme. Some strains, characterized by large amounts of biofilm formation in the presence of 1,000 µg/ml lysozyme, were poor biofilm producers at low concentrations of lysozyme. In contrast, some strains that were poor biofilm producers with a high lysozyme concentration were more inhibited by low concentrations of lysozyme. The present study emphasizes the need to develop strategies for biofilm control based on in vitro experiments, and to implement these in clinical trials prior to approval of hygiene products enriched with exocrine proteins, such as lysozyme. Further studies will extend these investigations to other Candida species, and to fungi

  19. Holograms of fluorescent albumin

    NASA Astrophysics Data System (ADS)

    Ordóñez-Padilla, M. J.; Olivares-Pérez, A.; Berriel-Valdos, L. R.; Mejias-Brizuela, N. Y.; Fuentes-Tapia, I.

    2011-09-01

    We report the characterization and analysis of photochromic films gallus gallus albumin as a matrix modified for holographic recording. Photo-oxidation of homogeneous mixtures prepared with albumin-propylene glycol, to combine chemically with aqueous solution of ammonium dichromate at certain concentrations. We analyzed the diffraction gratings, through the diffraction efficiency of the proposed material. Also, eosin was used as a fluorescent agent, so it is found that produces an inhibitory effect, thus decreasing the diffraction efficiency of the matrices prepared in near-identical circumstances. The work was to achieve stability of albumin films, were prepared with propylene glycol. Finally, experimental studies were performed with films when subjected to aqueous solution of eosin (fluorescent agent) to verify the ability to increase or decrease in diffraction efficiency.

  20. Lysozyme pattern formation in evaporating droplets

    NASA Astrophysics Data System (ADS)

    Gorr, Heather Meloy

    Liquid droplets containing suspended particles deposited on a solid, flat surface generally form ring-like structures due to the redistribution of solute during evaporation (the "coffee ring effect"). The forms of the deposited patterns depend on complex interactions between solute(s), solvent, and substrate in a rapidly changing, far from equilibrium system. Solute self-organization during evaporation of colloidal sessile droplets has attracted the attention of researchers over the past few decades due to a variety of technological applications. Recently, pattern formation during evaporation of various biofluids has been studied due to potential applications in medical screening and diagnosis. Due to the complexity of 'real' biological fluids and other multicomponent systems, a comprehensive understanding of pattern formation during droplet evaporation of these fluids is lacking. In this PhD dissertation, the morphology of the patterns remaining after evaporation of droplets of a simplified model biological fluid (aqueous lysozyme solutions + NaCl) are examined by atomic force microscopy (AFM) and optical microscopy. Lysozyme is a globular protein found in high concentration, for example, in human tears and saliva. The drop diameters, D, studied range from the micro- to the macro- scale (1 microm -- 2 mm). In this work, the effect of evaporation conditions, solution chemistry, and heat transfer within the droplet on pattern formation is examined. In micro-scale deposits of aqueous lysozyme solutions (1 microm < D < 50 microm), the protein motion and the resulting dried residue morphology are highly influenced by the decreased evaporation time of the drop. The effect of electrolytes on pattern formation is also investigated by adding varying concentrations NaCl to the lysozyme solutions. Finally, a novel pattern recognition program is described and implemented which classifies deposit images by their solution chemistries. The results presented in this Ph

  1. Binding investigation on the interaction between Methylene Blue (MB)/TiO2 nanocomposites and bovine serum albumin by resonance light-scattering (RLS) technique and fluorescence spectroscopy.

    PubMed

    Li, Yuesheng; Zhang, Yue; Sun, Shaofa; Zhang, Aiqing; Liu, Yi

    2013-11-05

    The interaction between Methylene Blue (MB)/TiO2 nanocomposites and bovine serum albumin (BSA) was investigated by resonance light scattering (RLS), fluorescence, three-dimension spectra and UV-vis absorbance spectroscopy. Several factors which may influence the RLS intensity were also investigated before characterizing MB/TiO2-BSA complex. It was proved that the mechanism of MB/TiO2 nanocomposites binding to BSA was mainly a result of the formation of MB/TiO2-BSA complex. The binding constant of MB/TiO2-BSA is 0.762 × 10(-5) L mol(-1) at 298K. By calculating the binding constant at different temperature, the thermodynamic parameters ΔH, ΔG, and ΔS can be observed and deduced that the hydrophobic interactions played an important role to stabilize the complex. The distance r (3.73 nm) between donor (BSA) and acceptor (MB/TiO2) was obtained according to fluorescence resonance energy transfer (FRET). The binding site for MB/TiO2 on BSA was mainly located in sub-domain IIA. The UV-vis absorbance, circular dichroism and three dimension fluorescence have also been used to investigate the effect of MB/TiO2 on the conformation of BSA.

  2. Interaction of copper(II) complex of compartmental Schiff base ligand N,N'-bis(3-hydroxysalicylidene)ethylenediamine with bovine serum albumin.

    PubMed

    Boghaei, Davar M; Farvid, Shokouh S; Gharagozlou, Mehrnaz

    2007-03-01

    Circular dichroism (CD) spectroscopy, cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to investigate the interaction between copper(II) complex of compartmental Schiff base ligand (L), N,N'-bis(3-hydroxysalicylidene)ethylenediamine, and bovine serum albumin (BSA) in 0.1 mol dm(-3) phosphate buffer solution adjusted to physiological pH 7.0 containing 20% (w/w) dimethylsulfoxide at room temperature. CD spectra show that the interaction of the copper(II) complex with BSA leads to changes in the alpha-helical content of BSA and therefore changes in secondary structure of the protein with the slight red shift (2 nm) in CD spectra. From the voltammetric data, i.e. changes in limiting current with addition of BSA, the binding constant (K) of the interaction of copper(II) complex with BSA was found to be 1.96 x 10(4)dm(3)mol(-1). From the shifts in potential with the addition of BSA, the equilibrium constant ratio (K(2)/K(1)) for the binding of the oxidized Cu(II)L (K(1)) and reduced Cu(I)L (K(2)) species to BSA was found to be 3.77, which shows that the reduced form Cu(I)L is bound more strongly to BSA than the oxidized form Cu(II)L.

  3. Influence of Cd 2+, Hg 2+ and Pb 2+ on (+)-catechin binding to bovine serum albumin studied by fluorescence spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Peng, Mijun; Shi, Shuyun; Zhang, Yuping

    2012-01-01

    The effect of heavy metal ions, Cd 2+, Hg 2+ and Pb 2+ on (+)-catechin binding to bovine serum albumin (BSA) has been investigated by spectroscopic methods. The results indicated that the presence of heavy metal ions significantly affected the binding modes and binding affinities of (+)-catechin to BSA, and the effects depend on the types of heavy metal ion. One binding mode was found for (+)-catechin with and without Cd 2+, while two binding modes - a weaker one at low concentration and a stronger one at high concentration were found for (+)-catechin in the presence of Hg 2+ and Pb 2+. The presence of Cd 2+ decreased the binding affinities of (+)-catechin for BSA by 20.5%. The presence of Hg 2+ and Pb 2+ decreased the binding affinity of (+)-catechin for BSA by 8.9% and 26.7% in lower concentration, respectively, and increased the binding affinity of (+)-catechin for BSA by 5.2% and 9.2% in higher concentration, respectively. The changed binding affinity and binding distance of (+)-catechin for BSA in the presence of Cd 2+, Hg 2+ and Pb 2+ were mainly because of the conformational change of BSA induced by heavy metal ions. However, the quenching mechanism for (+)-catechin to BSA was based on static quenching combined with non-radiative energy transfer irrespective of the absence or presence of heavy metal ions.

  4. Spectrometric and voltammetric studies of the interaction between quercetin and bovine serum albumin using warfarin as site marker with the aid of chemometrics

    NASA Astrophysics Data System (ADS)

    Ni, Yongnian; Zhang, Xia; Kokot, Serge

    2009-01-01

    The interaction of quercetin, which is a bioflavonoid, with bovine serum albumin (BSA) was investigated under pseudo-physiological conditions by the application of UV-vis spectrometry, spectrofluorimetry and cyclic voltammetry (CV). These studies indicated a cooperative interaction between the quercetin-BSA complex and warfarin, which produced a ternary complex, quercetin-BSA-warfarin. It was found that both quercetin and warfarin were located in site I. However, the spectra of these three components overlapped and the chemometrics method - multivariate curve resolution-alternating least squares (MCR-ALS) was applied to resolve the spectra. The resolved spectra of quercetin-BSA and warfarin agreed well with their measured spectra, and importantly, the spectrum of the quercetin-BSA-warfarin complex was extracted. These results allowed the rationalization of the behaviour of the overlapping spectra. At lower concentrations ([warfarin] < 1 × 10 -5 mol L -1), most of the site marker reacted with the quercetin-BSA, but free warfarin was present at higher concentrations. Interestingly, the ratio between quercetin-BSA and warfarin was found to be 1:2, suggesting a quercetin-BSA-(warfarin) 2 complex, and the estimated equilibrium constant was 1.4 × 10 11 M -2. The results suggest that at low concentrations, warfarin binds at the high-affinity sites (HAS), while low-affinity binding sites (LAS) are occupied at higher concentrations.

  5. Binding of plant alkaloids berberine and palmatine to serum albumins: a thermodynamic investigation.

    PubMed

    Khan, Asma Yasmeen; Hossain, Maidul; Kumar, Gopinatha Suresh

    2013-01-01

    The thermodynamics of the interaction of two pharmaceutically important isoquinoline alkaloids berberine and palmatine with bovine and human serum albumin was investigated using calorimetric techniques, and the data was supplemented with fluorescence and circular dichroism studies. Thermodynamic results revealed that there was only one class of binding sites for both alkaloids on BSA and HSA. The equilibrium constant was of the order of 10(4) M(-1) for both the alkaloids to serum albumins but the magnitude was slightly higher with HSA. Berberine showed higher affinity over palmatine to both proteins. The binding was enthalpy dominated and entropy favoured for both the alkaloids to BSA and HSA. Salt dependent studies suggested that electrostatic interaction had a significant role in the binding process, the binding affinity reduced as the salt concentration increased. Temperature dependent calorimetric data yielded heat capacity values that suggested the involvement of different molecular forces in the complexation of the two alkaloids with BSA and HSA. 3D fluorescence, synchronous fluorescence and circular dichroism data suggested that the binding of the alkaloids changed the conformation of proteins by reducing their helicity. Destabilization of the protein conformation was also revealed from differential scanning calorimetry studies. Overall, the alkaloids bound strongly to serum albumins, but berberine was a better binder to both serum proteins compared to palmatine.

  6. Fluorescence quenching of serum albumin by rifamycin antibiotics and their analytical application.

    PubMed

    Yang, Ji-Dong; Deng, Shi-Xing; Liu, Zhong-Fang; Kong, Ling; Liu, Shao-Pu

    2007-01-01

    In neutral medium, rifamycin antibiotics such as rifapentin (RFPT), rifampicin (RFP), rifandin (RFD) and rifamycin SV (RFSV) can bind with human serum albumin (HSA) and bovine serum albumin (BSA) to form complexes, resulting in the quenching of the intrinsic fluorescence (lambda(ex)/lambda(em) = 285/355 nm) of the BSA and HSA. The quenching intensity (DeltaF) is directly proportional to the concentration of the rifamycin antibiotics. Therefore, a new analytical method was established to determine trace rifamycin antibiotics. The method had fairly high sensitivity and the detecting limits (3sigma) for RFPT, RFP, RFD and RFSV were 0.85, 0.98, 1.83, 1.89 ng/mL, respectively, for the HSA system and 0.76, 0.89, 1.55, 1.77 ng/mL, respectively, for the BSA system. All relative standard deviations (RSDs) were <3.8%. In this work, the characteristics of the fluorescence spectra were studied and the optimum reaction conditions and influencing factors were investigated. The influence of coexisting substances was tested and the results showed that the method had good selectivity and could be applied to determine trace rifamycin antibiotics in medicine capsules and urine samples. Taking the RFSV-serum albumin system as an example, the reaction mechanisms, such as binding constants, binding sites, binding distance and the type of fluorescence quenching, were investigated.

  7. Galleria mellonella lysozyme induces apoptotic changes in Candida albicans cells.

    PubMed

    Sowa-Jasiłek, Aneta; Zdybicka-Barabas, Agnieszka; Stączek, Sylwia; Wydrych, Jerzy; Skrzypiec, Krzysztof; Mak, Paweł; Deryło, Kamil; Tchórzewski, Marek; Cytryńska, Małgorzata

    2016-12-01

    The greater wax moth Galleria mellonella has been increasingly used as a model host to determine Candida albicans virulence and efficacy of antifungal treatment. The G. mellonella lysozyme, similarly to its human counterpart, is a member of the c-type family of lysozymes that exhibits antibacterial and antifungal activity. However, in contrast to the relatively well explained bactericidal action, the mechanism of fungistatic and/or fungicidal activity of lysozymes is still not clear. In the present study we provide the direct evidences that the G. mellonella lysozyme binds to the protoplasts as well as to the intact C. albicans cells and decreases the survival rate of both these forms in a time-dependent manner. No enzymatic activity of the lysozyme towards typical chitinase and β-glucanase substrates was detected, indicating that hydrolysis of main fungal cell wall components is not responsible for anti-Candida activity of the lysozyme. On the other hand, pre-treatment of cells with tetraethylammonium, a potassium channel blocker, prevented them from the lysozyme action, suggesting that lysozyme acts by induction of programmed cell death. In fact, the C. albicans cells treated with the lysozyme exhibited typical apoptotic features, i.e. loss of mitochondrial membrane potential, phosphatidylserine exposure in the outer leaflet of the cell membrane, as well as chromatin condensation and DNA fragmentation.

  8. Combined computational and experimental studies of molecular interactions of albuterol sulfate with bovine serum albumin for pulmonary drug nanoparticles

    PubMed Central

    Lin, Shao-Hui; Cui, Wei; Wang, Gui-Ling; Meng, Shuai; Liu, Ying-Chun; Jin, Hong-Wei; Zhang, Liang-Ren; Xie, Ying

    2016-01-01

    Albumin-based nanoparticles (NPs) are a promising technology for developing drug-carrier systems, with improved deposition and retention profiles in lungs. Improved understanding of these drug–carrier interactions could lead to better drug-delivery systems. The present study combines computational and experimental methods to gain insights into the mechanism of binding of albuterol sulfate (AS) to bovine serum albumin (BSA) on the molecular level. Molecular dynamics simulation and surface plasmon resonance spectroscopy were used to determine that there are two binding sites on BSA for AS: the first of which is a high-affinity site corresponding to AS1 and the second of which appears to represent the integrated functions of several low-affinity sites corresponding to AS2, AS3, and AS8. AS1 was the strongest binding site, established via electrostatic interaction with Glu243 and Asp255 residues in a hydrophobic pocket. Hydrogen bonds and salt bridges played a main role in the critical binding of AS1 to BSA, and water bridges served a supporting role. Based upon the interaction mechanism, BSA NPs loaded with AS were prepared, and their drug-loading efficiency, morphology, and -release profiles were evaluated. Successful clinical development of AS-BSA-NPs may improve therapy and prevention of bronchospasm in patients with reversible obstructive airway disease, and thus provide a solid basis for expanding the role of NPs in the design of new drug-delivery systems. PMID:27695294

  9. Long-circulating iodinated albumin-gadolinium nanoparticles as enhanced magnetic resonance and computed tomography imaging probes for osteosarcoma visualization.

    PubMed

    Wang, Qianliang; Lv, Ling; Ling, Zhuoyan; Wang, Yangyun; Liu, Yujing; Li, Liubing; Liu, Guodong; Shen, Liqin; Yan, Jun; Wang, Yong

    2015-04-21

    Multimodal imaging probes represent an extraordinary tool for accurate diagnosis of diseases due to the complementary advantages of multiple imaging modalities. The purpose of the work was to fabricate a simple dual-modality MR/CT probe for osteosarcoma visualization in vivo. Protein-directed synthesis methods offer a suitable alternative to MR/CT probe produced by synthetic chemistry. Bovine serum albumin (BSA) bound to gadolinium nanoparticles (GdNPs) was first prepared via a biomimetic synthesis method and was subsequently iodinated by chloramine-T method. The final iodinated BSA-GdNPs (I-BSA-GdNPs) showed excellent chemical stability and biocompatibility, intense X-ray attenuation coefficient, and good MR imaging ability. However, an iodinated protein nanoparticles synthesis for MR/CT imaging, as well as its useful application, has not been reported yet. Intravenous injection of I-BSA-GdNPs into orthotopic osteosarcoma-bearing rats led to its accumulation and retention by the tumor, allowing for a noninvasive tumor dual-modality imaging through the intact thigh. The long-circulating dual-model I-BSA-GdNPs probes possess potential application for image-guided drug delivery and image-guided surgery. Our study is therefore highlighting the properties of albumin in this field combined with its useful use in dual-model MR/CT osteosarcoma visualization, underlining its potential use as a drug carrier for a future therapy on cancer.

  10. Albumin-based nanoparticles as methylprednisolone carriers for targeted delivery towards the neonatal Fc receptor in glomerular podocytes

    PubMed Central

    Wu, Lin; Chen, Mingyu; Mao, Huijuan; Wang, Ningning; Zhang, Bo; Zhao, Xiufen; Qian, Jun; Xing, Changying

    2017-01-01

    Glucocorticoids (GCs) are commonly used in the treatment of nephrotic syndrome. However, high doses and long periods of GC therapy can result in severe side effects. The present study aimed to selectively deliver albumin-methylprednisolone (MP) nanoparticles towards glomerular podocytes, which highly express the specific neonatal Fc receptor (FcRn) of albumin. Bovine serum albumin (BSA) was labeled with a fluorescent dye and linked with modified MP via an amide bond. The outcome nanoparticle named BSA633-MP showed a uniform size with a diameter of approximately 10 nm and contained 12 drug molecules on average. The nanoconjugates were found to be stable at pH 7.4 and acid-sensitive at pH 4.0, with approximately 72% release of the MP drug after 48 h of incubation. The nanoparticle demonstrated a 36-fold uptake in receptor-specific cellular delivery in the FcRn-expressing human podocytes compared to the uptake in the non-FcRn-expressing control cells. Co-localization further confirmed that uptake of the nanoconjugates involved receptor-mediated endocytosis followed by lysosome associated transportation. In vitro cellular experiments indicated that the BSA633-MP ameliorated puromycin aminonucleoside-induced podocyte apoptosis. Moreover, in vivo fluorescence molecular imaging showed that BSA633-MP was mainly accumulated in the liver and kidney after intravenous dosing for 24 h. Collectively, this study may provide an approach for the effective and safe therapy of nephrotic syndrome. PMID:28259932

  11. A Novel Conductive Poly(3,4-ethylenedioxythiophene)-BSA Film for the Construction of a Durable HRP Biosensor Modified with NanoAu Particles.

    PubMed

    Xu, Fangcheng; Ren, Shuaibin; Gu, Yesong

    2016-03-15

    In this study, we have investigated the contribution of bovine serum albumin (BSA) to the durability of the electrochemically synthesized poly(3,4-ethylenedioxythiophene) (PEDOT) film on a platinum (Pt) electrode. The electrode was capable to effectively adsorb the nano Au particles (AuNPs) to form a uniform layout, which was then able to immobilize the horseradish peroxidase (HRP) to construct a functional HRP/AuNPs/PEDOT(BSA)/Pt biosensor. Cyclic voltammetry was employed to evaluate the performance of the biosensor through the measurement of hydrogen peroxide. Our results revealed a satisfied linear correlation between the cathodic current and the concentration of H2O2. Furthermore, the addition of oxidized form of nicotinamide adenine dinucleotide, or NAD⁺, as the electron transfer mediator in the detection solution could dramatically enhance the sensitivity of detection by about 35.5%. The main advantages of the current biosensor are its durability, sensitivity, reliability, and biocompatibility.

  12. A Novel Conductive Poly(3,4-ethylenedioxythiophene)-BSA Film for the Construction of a Durable HRP Biosensor Modified with NanoAu Particles

    PubMed Central

    Xu, Fangcheng; Ren, Shuaibin; Gu, Yesong

    2016-01-01

    In this study, we have investigated the contribution of bovine serum albumin (BSA) to the durability of the electrochemically synthesized poly(3,4-ethylenedioxythiophene) (PEDOT) film on a platinum (Pt) electrode. The electrode was capable to effectively adsorb the nano Au particles (AuNPs) to form a uniform layout, which was then able to immobilize the horseradish peroxidase (HRP) to construct a functional HRP/AuNPs/PEDOT(BSA)/Pt biosensor. Cyclic voltammetry was employed to evaluate the performance of the biosensor through the measurement of hydrogen peroxide. Our results revealed a satisfied linear correlation between the cathodic current and the concentration of H2O2. Furthermore, the addition of oxidized form of nicotinamide adenine dinucleotide, or NAD+, as the electron transfer mediator in the detection solution could dramatically enhance the sensitivity of detection by about 35.5%. The main advantages of the current biosensor are its durability, sensitivity, reliability, and biocompatibility. PMID:26999133

  13. Exploring the binding mechanism of 5-hydroxy-3',4',7-trimethoxyflavone with bovine serum albumin: Spectroscopic and computational approach.

    PubMed

    Sudha, A; Srinivasan, P; Thamilarasan, V; Sengottuvelan, N

    2016-03-15

    The current study was carried out to investigate the binding mechanism of a potential flavonoid compound 5-hydroxy-3',4',7-trimethoxyflavone (HTMF) with bovine serum albumin (BSA) using ultraviolet-visible, fluorescence, circular dichroism (CD) spectral measurements along with molecular docking and molecular dynamics (MD) simulation. It was confirmed from fluorescence spectra that the intrinsic fluorescence of BSA was robustly quenched by HTMF through a static quenching mechanism. The number of binding sites (n) for HTMF binding on BSA was found to be about one. The thermodynamic parameters estimated from the van't Hoff plot specified that hydrophobic force was the predominant force in the HTMF-BSA complex and there also exist hydrogen bonds and electrostatic interactions. The effect of HTMF on the BSA conformation examined using CD studies revealed that there is a decrease in the helical content of BSA upon HTMF interaction. The results of molecular docking study shed light on the binding mode which exposed that HTMF bind within the hydrophobic pocket of the subdomain IIIA of BSA. The stability of HTMF-BSA complex with respect to free protein was analyzed from the molecular dynamic studies. The electronic structure analysis of HTMF was achieved by using density functional theory (DFT) calculations at B3LYP/6-31G** level to support its antioxidant role. The results of computational analysis are in good consistence with the experimental data and the present findings suggested that HTMF exhibits a good binding propensity to BSA protein which will be helpful for the drug design.

  14. Release and pharmacokinetics of near-infrared labeled albumin from monodisperse poly(d,l-lactic-co-hydroxymethyl glycolic acid) microspheres after subcapsular renal injection.

    PubMed

    Kazazi-Hyseni, F; van Vuuren, S H; van der Giezen, D M; Pieters, E H; Ramazani, F; Rodriguez, S; Veldhuis, G J; Goldschmeding, R; van Nostrum, C F; Hennink, W E; Kok, R J

    2015-08-01

    Subcapsular renal injection is a novel administration method for local delivery of therapeutics for the treatment of kidney related diseases. The aim of this study was to investigate the feasibility of polymeric microspheres for sustained release of protein therapeutics in the kidney and study the subsequent redistribution of the released protein. For this purpose, monodisperse poly(d,l-lactic-co-hydroxymethyl glycolic acid) (PLHMGA) microspheres (40 μm in diameter) loaded with near-infrared dye-labeled bovine serum albumin (NIR-BSA) were prepared by a membrane emulsification method. Rats were injected with either free NIR-BSA or with NIR-BSA loaded microspheres (NIR-BSA-ms) and the pharmacokinetics of the released NIR-BSA was studied for 3 weeks by ex vivo imaging of organs and blood. Quantitative release data were obtained from kidney homogenates and possible metabolism of the protein was investigated by SDS-PAGE analysis of the samples. The ex vivo images showed a rapid decrease of the NIR signal within 24h in kidneys injected with free NIR-BSA, while, importantly, the signal of the labeled protein was still visible at day 21 in kidneys injected with NIR-BSA-ms. SDS-PAGE analysis of the kidney homogenates showed that intact NIR-BSA was released from the microspheres. The locally released NIR-BSA drained to the systemic circulation and subsequently accumulated in the liver, where it was degraded and excreted renally. The in vivo release of NIR-BSA was calculated after extracting the protein from the remaining microspheres in kidney homogenates. The in vivo release rate was faster (89 ± 4% of the loading in 2 weeks) compared to the in vitro release of NIR-BSA (38 ± 1% in 2 weeks). In conclusion, PLHMGA microspheres injected under the kidney capsule provide a local depot from which a formulated protein is released over a prolonged time-period.

  15. Biogenic and synthetic polyamines bind bovine serum albumin.

    PubMed

    Dubeau, S; Bourassa, P; Thomas, T J; Tajmir-Riahi, H A

    2010-06-14

    Biogenic polyamines are found to modulate protein synthesis at different levels, while polyamine analogues have shown major antitumor activity in multiple experimental models, including breast cancer. The aim of this study was to examine the interaction of bovine serum albumin (BSA) with biogenic polyamines, spermine and spermidine, and polyamine analogues 3,7,11,15-tetrazaheptadecane x 4 HCl (BE-333) and 3,7,11,15,19-pentazahenicosane x 5 HCl (BE-3333) in aqueous solution at physiological conditions. FTIR, UV-visible, CD, and fluorescence spectroscopic methods were used to determine the polyamine binding mode and the effects of polyamine complexation on protein stability and secondary structure. Structural analysis showed that polyamines bind BSA via both hydrophilic and hydrophobic interactions. Stronger polyamine-protein complexes formed with biogenic than synthetic polyamines with overall binding constants of K(spm) = 3.56 (+/-0.5) x 10(5) M(-1), K(spmd) = 1.77 (+/-0.4) x 10(5) M(-1), K(BE-333) = 1.11 (+/-0.3) x 10(4) M(-1) and K(BE-3333) = 3.90 (+/-0.7) x 10(4) M(-1) that correlate with their positively charged amino group contents. Major alterations of protein conformation were observed with reduction of alpha-helix from 63% (free protein) to 55-33% and increase of turn 12% (free protein) to 28-16% and random coil from 6% (free protein) to 24-17% in the polyamine-BSA complexes, indicating a partial protein unfolding. These data suggest that serum albumins might act as polyamine carrier proteins in delivering polyamine analogues to target tissues.

  16. Polarization properties of fluorescent BSA protected Au25 nanoclusters

    NASA Astrophysics Data System (ADS)

    Raut, Sangram; Chib, Rahul; Rich, Ryan; Shumilov, Dmytro; Gryczynski, Zygmunt; Gryczynski, Ignacy

    2013-03-01

    BSA protected gold nanoclusters (Au25) are attracting a great deal of attention due to their unique spectroscopic properties and possible use in biophysical applications. Although there are reports on synthetic strategies, spectroscopy and applications, little is known about their polarization behavior. In this study, we synthesized the BSA protected Au25 nanoclusters and studied their steady state and time resolved fluorescence properties including polarization behavior in different solvents: glycerol, propylene glycol and water. We demonstrated that the nanocluster absorption spectrum can be separated from the extinction spectrum by subtraction of Rayleigh scattering. The nanocluster absorption spectrum is well approximated by three Gaussian components. By a comparison of the emissions from BSA Au25 clusters and rhodamine B in water, we estimated the quantum yield of nanoclusters to be higher than 0.06. The fluorescence lifetime of BSA Au25 clusters is long and heterogeneous with an average value of 1.84 μs. In glycerol at -20 °C the anisotropy is high, reaching a value of 0.35. However, the excitation anisotropy strongly depends on the excitation wavelengths indicating a significant overlap of the different transition moments. The anisotropy decay in water reveals a correlation time below 0.2 μs. In propylene glycol the measured correlation time is longer and the initial anisotropy depends on the excitation wavelength. BSA Au25 clusters, due to long lifetime and high polarization, can potentially be used in studying large macromolecules such as protein complexes with large molecular weight.BSA protected gold nanoclusters (Au25) are attracting a great deal of attention due to their unique spectroscopic properties and possible use in biophysical applications. Although there are reports on synthetic strategies, spectroscopy and applications, little is known about their polarization behavior. In this study, we synthesized the BSA protected Au25 nanoclusters and

  17. Study on the chemiluminescence behavior of bovine serum albumin with luminol and its analytical application.

    PubMed

    Tan, Xijuan; Song, Zhenghua; Chen, Donghua; Wang, Zhuming

    2011-06-01

    In this paper, the luminescence behavior of bovine serum albumin (BSA) and luminol was first studied by flow injection chemiluminescence (CL). It was found that the hyperchromic effect of luminol in the presence of BSA led to the acceleration of the electrons transferring rate of excited 3-aminophthalate, which greatly enhanced the CL intensity of luminol/dissolved oxygen reaction. The increments of CL intensity were proportional to the concentrations of BSA with a linear range from 0.01 to 7 nmol L(-1). It was also found that azithromycin could inhibit the CL intensity of luminol/BSA reaction. The decrements of CL intensity were logarithm over the concentrations of azithromycin ranging from 0.1 to 700 ng mL(-1). At a flow rate of 2.0 mL min(-1), a complete analytical process, which included sampling and washing, could be performed within 30s with relative standard deviations of less than 3.1%. This proposed method was successfully applied in assaying azithromycin in pharmaceutical and human serum samples with recoveries from 91.0 to 104.3%. The possible luminescence mechanism of luminol/BSA/azithromycin reaction was discussed in detail by CL, UV and fluorescence methods.

  18. Study on the chemiluminescence behavior of bovine serum albumin with luminol and its analytical application

    NASA Astrophysics Data System (ADS)

    Tan, Xijuan; Song, Zhenghua; Chen, Donghua; Wang, Zhuming

    2011-06-01

    In this paper, the luminescence behavior of bovine serum albumin (BSA) and luminol was first studied by flow injection chemiluminescence (CL). It was found that the hyperchromic effect of luminol in the presence of BSA led to the acceleration of the electrons transferring rate of excited 3-aminophthalate, which greatly enhanced the CL intensity of luminol/dissolved oxygen reaction. The increments of CL intensity were proportional to the concentrations of BSA with a linear range from 0.01 to 7 nmol L -1. It was also found that azithromycin could inhibit the CL intensity of luminol/BSA reaction. The decrements of CL intensity were logarithm over the concentrations of azithromycin ranging from 0.1 to 700 ng mL -1. At a flow rate of 2.0 mL min -1, a complete analytical process, which included sampling and washing, could be performed within 30 s with relative standard deviations of less than 3.1%. This proposed method was successfully applied in assaying azithromycin in pharmaceutical and human serum samples with recoveries from 91.0 to 104.3%. The possible luminescence mechanism of luminol/BSA/azithromycin reaction was discussed in detail by CL, UV and fluorescence methods.

  19. Galactosylated bovine serum albumin nanoparticles for parenteral delivery of oridonin: tissue distribution and pharmacokinetic studies.

    PubMed

    Li, Caiyun; Zhang, Dianrui; Guo, Yuanyuan; Guo, Hejian; Li, Tingting; Hao, Leilei; Zheng, Dandan; Liu, Guangpu; Zhang, Qiang

    2014-01-01

    Bovine serum albumin (BSA) nanoparticle is a promising drug carrier system. Oridonin (ORI)-loaded galactosylated BSA nanoparticle (ORI-GB-NP) was prepared for liver targeting delivery of ORI. This work was designed to investigate the in vitro release, in vivo pharmacokinetics and tissue distribution of ORI-GB-NP. ORI-GB-NP was prepared by the desolvation method. The particle size of ORI-GB-NP was 172.0 ± 8.3 nm with narrow size distribution. The in vitro release of ORI-GB-NP exhibited biphasic drug release pattern with an initial burst release and consequently sustained release. Pharmacokinetic analysis displayed that ORI-GB-NP and ORI-loaded BSA nanoparticle (ORI-BSA-NP) could enhance the drug plasma level and prolong the circulation time in contrast with ORI solution. Meanwhile, compared with ORI-BSA-NP, ORI-GB-NP could deliver more ORI to liver and simultaneously reduce the toxicity of ORI to heart, lung and kidney. In conclusion, ORI-GB-NP could be a promising drug delivery system for liver cancer therapy.

  20. Spectroscopic study on binding of gentisic acid to bovine serum albumin.

    PubMed

    Garzón, Andrés; Bravo, Iván; Carrión-Jiménez, M Rosario; Rubio-Moraga, Ángela; Albaladejo, José

    2015-01-01

    The interaction of (gentisic acid) GA with (bovine serum albumin) BSA has been studied by different spectroscopic techniques. GA is a monoanionic specie at the working pH of 7.4, it was determined by combining UV-Vis absorption spectroscopy and theoretical calculations. A set of fluorescence quenching experiments at different temperatures was carried out employing the native fluorescence of BSA. A Stern-Volmer constant (KSV) of (2.07±0.12)×10(4) mol(-1) L and a binding constant (Ka) of (8.47±4.39)×10(3) were determined at 310 K. The static quenching caused by the BSA-GA complex formation seems to play a significant role in the overall quenching process. A single binding site on BSA for GA was observed. ΔH=-55.6±0.2 kJ mol(-1) and ΔS=-104.3±0.6 J mol(-1) K(-1) were determined in a set of experiments on the dependence of Ka with the temperature. The binding process is, therefore, spontaneous and enthalpy-driven. Van der Waals forces and hydrogen bonds could also play the major role in the binding mode. The secondary structure changes of BSA in the absence and presence of GA were studied by FTIR and UV-Vis absorption spectroscopy.

  1. The investigation of the interaction between Tropicamide and bovine serum albumin by spectroscopic methods.

    PubMed

    Yu, Xianyong; Liao, Zhixi; Yao, Qing; Liu, Heting; Li, Xiaofang; Yi, Pinggui

    2014-01-24

    The fluorescence and ultraviolet-visible (UV-Vis) spectroscopy were explored to study the interaction between Tropicamide (TA) and bovine serum albumin (BSA) at three different temperatures (292, 301 and 310K) under imitated physiological conditions. The experimental results showed that the fluorescence quenching mechanism between TA and BSA was static quenching procedure. The binding constant (Ka), binding sites (n) were obtained. The corresponding thermodynamic parameters (ΔH, ΔS and ΔG) of the interaction system were calculated at different temperatures. The results revealed that the binding process is spontaneous, hydrogen binds and vander Waals were the main force to stabilize the complex. According to Förster non-radiation energy transfer theory, the binding distance between TA and BSA was calculated to be 4.90 nm. Synchronous fluorescence spectroscopy indicated the conformation of BSA changed in the presence of TA. Furthermore, the effect of some common metal ions (Mg(2+), Ca(2+), Cu(2+), and Ni(2+)) on the binding constants between TA and BSA were examined.

  2. The investigation of the interaction between piracetam and bovine serum albumin by spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Guo, Xingjia; Han, Xiaowei; Tong, Jian; Guo, Chuang; Yang, Wenfeng; Zhu, Jifen; Fu, Bing

    2010-03-01

    The interaction between piracetam (OPA) with bovine serum albumin (BSA) has been thoroughly studied by fluorescence quenching technique in combination with UV-vis absorption, Fourier transform infrared (FT-IR), and circular dichroism (CD) spectroscopies under the simulative physiological conditions. The quenching of BSA fluorescence by OPA was found to be a static quenching process. The binding constants ( K a) are 3.014, 2.926, and 2.503 × 10 3 M -1 at 292, 298, and 309 K, respectively. According to the van't Hoff equation, the thermodynamic functions standard enthalpy (Δ H) and standard entropy (Δ S) for the reaction were calculated to be -74.560 kJ mol -1 and -159.380 J mol -1 K -1, which indicated that OPA binds to BSA mainly by hydrogen bonds and van der Waals interactions. The binding distance between BSA and OPA was calculated to be 4.10 nm according to the theory of FÖrster's non-radiation energy transfer. The displacement experiments confirmed that OPA could bind to the site I of BSA. Furthermore, the effects of pH and some common ions on the binding constant were also examined. And the alterations of protein secondary structure in the presence of OPA were observed by the CD and FT-IR spectra.

  3. Interactions of acyl-coenzyme A with phosphatidylcholine bilayers and serum albumin

    SciTech Connect

    Boylan, J.G.; Hamilton, J.A. )

    1992-01-21

    Interactions of oleoyl- and octanoyl-coenzyme A (CoA) with phosphatidylcholine (PC) vesicles and bovine serum albumin (BSA) were investigated by NMR spectroscopy. Binding of acyl-CoA to small unilamellar PC vesicles and to BSA was detected by changes in {sup 13}C and {sup 31}P chemical shifts relative to the chemical shifts for aqueous acyl-CoA. PC vesicles remained intact with {le} 15 mol % oleoyl-CoA, while higher oleoyl-CoA proportions produced mixed micelles. In contrast, {sup 13}C spectra revealed rapid exchange (ms) of octanoyl-CoA between the aqueous phase and PC vesicles and a low affinity for the bilayer. Thus, the binding affinity of acyl-CoA for PC bilayers is dependent on the acyl chain length. Addition of ({sup 13}C)carboxyl-enriched oleic acid to oleoyl-CoA/BSA mixtures revealed simultaneous binding of oleic acid and oleoyl-CoA to BSA, with some perturbation of binding interactions. Thus, BSA contains multiple binding sites for oleoyl-CoA and can bind fatty acid and acyl-CoA simultaneously.

  4. The wettability of a cellulose acetate membrane in the presence of bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Białopiotrowicz, Tomasz; Jańczuk, Bronisław

    2002-11-01

    The measurements of the contact angle for water (W), glycerol (G), formamide (F), ethylene glycol (E) and diiodomethane (D) on a bare cellulose acetate membrane and covered by adsorptive bovine serum albumin (BSA) films were made. The adsorption was performed from solutions in concentration range 0-100 mg/ml. An influence of the membrane porosity on an apparent contact angle was discussed and Cassie and Baxter equation was used for that purpose. It was suggested that some liquids could penetrate in to membrane pores reducing its apparent porosity. To explain such behaviour, the spreading coefficient and the work of adhesion was calculated for the studied liquids. Components and parameters of the surface free energy of a bare cellulose acetate membrane and covered by an adsorptive BSA film were determined for W-G-D, W-F-D and G-F-D three-liquid systems and they were similar for these systems. However, for the hydrated BSA layer those components and parameters for the systems W-G-D, W-F-D were different than those for the system G-F-D. It was stated that after BSA adsorption on that membrane percentage of empty pores decreased, reducing their number almost to 0, at the highest BSA concentrations.

  5. Enantioselective binding interaction of the metolachlor pesticide enatiomers with bovine serum albumin - A spectroscopic analysis study

    NASA Astrophysics Data System (ADS)

    Ni, Yongnian; Zhang, Fangyuan; Kokot, Serge

    2012-11-01

    Enantioselective binding interaction of the pesticides, metolachlor (RAC-metolachlor) and its S-enantiomer (S-metolachlor), with bovine serum albumin (BSA) was investigated by fluorescence and UV-vis absorption spectroscopy. Both RAC- and S-metolachlors quenched the intrinsic fluorescence of BSA via a static mechanism, and various binding parameters indicated that electrostatic forces were involved in the binding of both of these compounds. Site marker competitive experiments demonstrated that S-metolachlor bound to site I of BSA, while R-metolachlor bound to site II, indicating the importance of enantiomeric factors for binding site selection. Further experiments showed that S-metolachlor had a higher binding affinity to BSA than R-metolachlor. The obtained spectral data were resolved with use of the multivariate curve resolution-alternating least squares method (MCR-ALS), and the extracted concentration profiles of the reacting species in the interaction were obtained. These profiles indicated that S-metolachlor was the main active constituent of RAC-metolachlor for binding with BSA, and these findings have significant implications in providing an explanation why S-metolachlor is the preferred herbicide in practice than RAC-metolachlor.

  6. Quantitative study of molecular transport due to electroporation: uptake of bovine serum albumin by erythrocyte ghosts.

    PubMed Central

    Prausnitz, M R; Milano, C D; Gimm, J A; Langer, R; Weaver, J C

    1994-01-01

    Electroporation is believed to involve the creation of aqueous pathways in lipid bilayer membranes by transient elevation of the transmembrane voltage to approximately 1 V. Here, results are presented for a quantitative study of the number of bovine serum albumin (BSA) molecules transported into erythrocyte ghosts caused by electroportion. 1) Uptake of BSA was found to plateau at high field strength. However, this was not necessarily an absolute maximum in transport. Instead, it represented the maximum effect of increasing field strength for a particular pulse protocol. 2) Maximum uptake under any conditions used in this study corresponded to approximately one-fourth of apparent equilibrium with the external solution. 3) Multiple and longer pulses each increased uptake of BSA, where the total time integral of field strength correlated with uptake, independent of inter-pulse spacing. 4) Pre-pulse adsorption of BSA to ghost membranes appears to have increased transport. 5) Most transport of BSA probably occurred by electrically driven transport during pulses; post-pulse uptake occurred, but to a much lesser extent. Finally, approaches to increasing transport are discussed. Images FIGURE 1 FIGURE 2 PMID:8061201

  7. Binding interaction of quinclorac with bovine serum albumin: A biophysical study

    NASA Astrophysics Data System (ADS)

    Han, Xiao-Le; Mei, Ping; Liu, Yi; Xiao, Qi; Jiang, Feng-Lei; Li, Ran

    2009-10-01

    Quinclorac (QUC) is a new class of highly selective auxin herbicides. The interaction between QUC and bovine serum albumin (BSA) was investigated by fluorescence spectroscopy, synchronous fluorescence, three-dimensional fluorescence, CD spectroscopy and UV-vis absorption spectroscopy under simulative physiological condition. It was proved that the probable quenching mechanism of BSA by quinclorac was dynamic quenching. The Stern-Volmer quenching model has been successfully applied and the activation energy of the interaction as much as 8.03 kJ mol -1, corresponding thermodynamic parameters Δ Hθ, Δ Sθ and Δ Gθ were calculated. The results indicated that the acting forces between QUC and BSA were mainly hydrogen bonding and van der Waals forces. According to the Förster non-radiation energy transfer theory, the average binding distance between donor (BSA) and acceptor (QUC) was obtained ( r = 3.12 nm). The alterations of protein secondary structure in the presence of QUC were confirmed by the evidences from three-dimensional fluorescence, synchronous fluorescence and CD spectroscopy. Furthermore, the site marker competitive experiments indicated that the binding of QUC to BSA primarily took place in Sudlow site I.

  8. Multiple specialised goose-type lysozymes potentially compensate for an exceptional lack of chicken-type lysozymes in Atlantic cod.

    PubMed

    Seppola, Marit; Bakkemo, Kathrine Ryvold; Mikkelsen, Helene; Myrnes, Bjørnar; Helland, Ronny; Irwin, David M; Nilsen, Inge W

    2016-06-21

    Previous analyses of the Atlantic cod genome showed unique combinations of lacking and expanded number of genes for the immune system. The present study examined lysozyme activity, lysozyme gene distribution and expression in cod. Enzymatic assays employing specific bacterial lysozyme inhibitors provided evidence for presence of g-type, but unexpectedly not for c-type lysozyme activity. Database homology searches failed to identify any c-type lysozyme gene in the cod genome or in expressed sequence tags from cod. In contrast, we identified four g-type lysozyme genes (LygF1a-d) constitutively expressed, although differentially, in all cod organs examined. The active site glutamate residue is replaced by alanine in LygF1a, thus making it enzymatic inactive, while LygF1d was found in two active site variants carrying alanine or glutamate, respectively. In vitro and in vivo infection by the intracellular bacterium Francisella noatunensis gave a significantly reduced LygF1a and b expression but increased expression of the LygF1c and d genes as did also the interferon gamma (IFNγ) cytokine. These results demonstrate a lack of c-type lysozyme that is unprecedented among vertebrates. Our results further indicate that serial gene duplications have produced multiple differentially regulated cod g-type lysozymes with specialised functions potentially compensating for the lack of c-type lysozymes.

  9. Surface characterization of titanium and adsorption of bovine serum albumin

    SciTech Connect

    Feng, B.; Weng, J.; Yang, B.C.; Chen, J.Y.; Zhao, J.Z.; He, L.; Qi, S.K.; Zhang, X.D

    2002-09-15

    The surface oxide films on titanium were characterized and the relationship between the characterization and the adsorption of bovine serum albumin (BSA) on titanium was studied. The surface oxide films on titanium were obtained by heat-treatment in different oxidizing atmospheres, such as air and water vapor. The surface roughness, energy, morphology, chemical composition and crystal structure were used to characterize the titanium surfaces. The characterization was performed using a profilometer, scanning electronic microscopy (SEM), a sessile drop method, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Percentages of surface hydroxyl groups were determined by XPS analysis for the titanium plates and the densities were measured by a chemical method for titanium powders. After heat-treatment, the titanium surfaces were uniformly roughened and the surface titanium oxide was predominantly rutile TiO{sub 2}. The crystal planes in the rutile films were preferentially orientated in the (110) plane with the highest density of titanium ions. Heat-treatment increased the surface energy and the amount of surface hydroxyl groups on the titanium. The different oxidizing atmospheres resulted in different percentages of oxygen species in the TiO{sub 2}, in the physisorbed water and acidic hydroxyl groups and in the basic hydroxyl groups on the titanium surfaces. The analysis for the adsorption of BSA on titanium confirmed that the surface characterization of titanium has a strong effect on the bioactivity of titanium. The BSA chemically adsorbed onto the titanium surfaces. The adsorption of BSA on the titanium surfaces was positively related with the amounts of their surface hydroxyl groups, including basic hydroxyl groups and acidic hydroxyl groups, and the values of the polar component of the total surface energy.

  10. Evaluation of non-covalent interactions between serum albumin and green tea catechins by affinity capillary electrophoresis.

    PubMed

    Zinellu, Angelo; Sotgia, Salvatore; Scanu, Bastianina; Pisanu, Elisabetta; Giordo, Roberta; Cossu, Annalisa; Posadino, Anna Maria; Carru, Ciriaco; Pintus, Gianfranco

    2014-11-07

    The natural antioxidant-associated biological responses appear contradictory since biologically active dosages registered in vitro experiments are considerably higher if compared to concentrations found in vivo. The recent research indicates that natural antioxidants, including the major catechins of green tea epicatechin (EC), epigallocatechin (EGC), epicatechingallate (ECG) and epigallocatechingallate (EGCG) form non-covalent complexes with albumin, a crucial aspect that may modulate their plasma concentration, tissue delivery and biological activity. Affinity capillary electrophoresis (ACE) was used to characterize the binding of the four catechins to human serum albumin (HSA) and bovine serum albumin (BSA) at near-physiological conditions: 10 mmol/L phosphate buffer, HEPES 50 mmol/L (pH 7.5), temperature 37°C. The studied flavonoids displayed affinities toward the albumin with binding constants in the range 10(3)-10(5)M(-1), with a greater affinity of catechins toward HSA than BSA (between 3 and 3.5 fold higher). We also confirmed that catechins having a galloyl moiety (ECG and EGCG) have a higher binding affinity toward albumin than the catechins lacking the galloyl moiety (EC and EGC), and that for both albumins the order of affinity is EC

  11. A Comprehensive Spectroscopic and Computational Investigation to Probe the Interaction of Antineoplastic Drug Nordihydroguaiaretic Acid with Serum Albumins.

    PubMed

    Nusrat, Saima; Siddiqi, Mohammad Khursheed; Zaman, Masihuz; Zaidi, Nida; Ajmal, Mohammad Rehan; Alam, Parvez; Qadeer, Atiyatul; Abdelhameed, Ali Saber; Khan, Rizwan Hasan

    2016-01-01

    Exogenous drugs that are used as antidote against chemotheray, inflammation or viral infection, gets absorbed and interacts reversibly to the major serum transport protein i.e. albumins, upon entering the circulatory system. To have a structural guideline in the rational drug designing and in the synthesis of drugs with greater efficacy, the binding mechanism of an antineoplastic and anti-inflammatory drug Nordihydroguaiaretic acid (NDGA) with human and bovine serum albumins (HSA & BSA) were examined by spectroscopic and computational methods. NDGA binds to site II of HSA with binding constant (Kb) ~105 M-1 and free energy (ΔG) ~ -7.5 kcal.mol-1. It also binds at site II of BSA but with lesser binding affinity (Kb) ~105 M-1 and ΔG ~ -6.5 kcal.mol-1. The negative value of ΔG, ΔH and ΔS for both the albumins at three different temperatures confirmed that the complex formation process between albumins and NDGA is spontaneous and exothermic. Furthermore, hydrogen bonds and hydrophobic interactions are the main forces involved in complex formation of NDGA with both the albumins as evaluated from fluorescence and molecular docking results. Binding of NDGA to both the albumins alter the conformation and causes minor change in the secondary structure of proteins as indicated by the CD spectra.

  12. A Comprehensive Spectroscopic and Computational Investigation to Probe the Interaction of Antineoplastic Drug Nordihydroguaiaretic Acid with Serum Albumins

    PubMed Central

    Nusrat, Saima; Siddiqi, Mohammad Khursheed; Zaman, Masihuz; Zaidi, Nida; Ajmal, Mohammad Rehan; Alam, Parvez; Qadeer, Atiyatul; Abdelhameed, Ali Saber

    2016-01-01

    Exogenous drugs that are used as antidote against chemotheray, inflammation or viral infection, gets absorbed and interacts reversibly to the major serum transport protein i.e. albumins, upon entering the circulatory system. To have a structural guideline in the rational drug designing and in the synthesis of drugs with greater efficacy, the binding mechanism of an antineoplastic and anti-inflammatory drug Nordihydroguaiaretic acid (NDGA) with human and bovine serum albumins (HSA & BSA) were examined by spectroscopic and computational methods. NDGA binds to site II of HSA with binding constant (Kb) ~105 M-1 and free energy (ΔG) ~ -7.5 kcal.mol-1. It also binds at site II of BSA but with lesser binding affinity (Kb) ~105 M-1 and ΔG ~ -6.5 kcal.mol-1. The negative value of ΔG, ΔH and ΔS for both the albumins at three different temperatures confirmed that the complex formation process between albumins and NDGA is spontaneous and exothermic. Furthermore, hydrogen bonds and hydrophobic interactions are the main forces involved in complex formation of NDGA with both the albumins as evaluated from fluorescence and molecular docking results. Binding of NDGA to both the albumins alter the conformation and causes minor change in the secondary structure of proteins as indicated by the CD spectra. PMID:27391941

  13. Fluorescence resonance energy transfer between ZnSe ZnS quantum dots and bovine serum albumin in bioaffinity assays of anticancer drugs

    NASA Astrophysics Data System (ADS)

    Shu, Chang; Ding, Li; Zhong, Wenying

    2014-10-01

    In the current work, using ZnSe ZnS quantum dots (QDs) as representative nanoparticles, the affinities of seven anticancer drugs for bovine serum albumin (BSA) were studied using fluorescence resonance energy transfer (FRET). The FRET efficiency of BSA-QD conjugates can reach as high as 24.87% by electrostatic interaction. The higher binding constant (3.63 × 107 L mol-1) and number of binding sites (1.75) between ZnSe ZnS QDs and BSA demonstrated that the QDs could easily associate to plasma proteins and enhance the transport efficacy of drugs. The magnitude of binding constants (103-106 L mol-1), in the presence of QDs, was between drugs-BSA and drugs-QDs in agreement with common affinities of drugs for serum albumins (104-106 L mol-1) in vivo. ZnSe ZnS QDs significantly increased the affinities for BSA of Vorinostat (SAHA), Docetaxel (DOC), Carmustine (BCNU), Doxorubicin (Dox) and 10-Hydroxycamptothecin (HCPT). However, they slightly reduced the affinities of Vincristine (VCR) and Methotrexate (MTX) for BSA. The recent work will not only provide useful information for appropriately understanding the binding affinity and binding mechanism at the molecular level, but also illustrate the ZnSe ZnS QDs are perfect candidates for nanoscal drug delivery system (DDS).

  14. Fluorescence reso