Science.gov

Sample records for albumin bsa solutions

  1. On the mechanical properties of bovine serum albumin (BSA) adhesives.

    PubMed

    Berchane, N S; Andrews, M J; Kerr, S; Slater, N K H; Jebrail, F F

    2008-04-01

    Biological adhesives, natural and synthetic, are of current active interest. These adhesives offer significant advantages over traditional sealant techniques, in particular, they are easier to use, and can play an integral part in the healing mechanism of tissue. Thus, biological adhesives can play a major role in medical applications if they possess adequate mechanical behavior and stability over time. In this work, we report on the method of preparation of bovine serum albumin (BSA) into a biological adhesive. We present quantitative measurements that show the effect of BSA concentration and cross-linker content on the bonding strength of BSA adhesive to wood. A comparison is then made with synthetic poly(glycidyl methacrylate) (PGMA) adhesive, and a commercial cyanoacrylate glue, which was used as a control adhesive. In addition, BSA samples were prepared and characterized for their water content, tensile strength, and elasticity. We show that on dry surface, BSA adhesive exhibits a high bonding strength that is comparable with non-biological commercial cyanoacrylate glues, and synthetic PGMA adhesive. Tensile testing on wet wood showed a slight increase in the bonding strength of BSA adhesive, a considerable decrease in the bonding strength of cyanoacrylate glue, and negligible adhesion of PGMA. Tests performed on BSA samples demonstrate that initial BSA concentration and final water content have a significant effect on the stress-strain behavior of the samples. PMID:18197367

  2. Spectrometry researches on interaction and sonodynamic damage of riboflavin (RF) to bovine serum albumin (BSA)

    NASA Astrophysics Data System (ADS)

    Wang, Zhiqiu; Li, Jushi; Wang, Jun; Zou, Mingming; Wang, Siyu; Li, Ying; Kong, Yumei; Xia, Lixin

    2012-02-01

    In this paper, the riboflavin (RF) was used to study the interaction and sonodynamic damage to bovine serum albumin (BSA) by fluorescence and UV-vis spectroscopy. The results showed that the RF could efficiently bind to BSA in aqueous solution. Under ultrasonic irradiation, the RF could obviously damage the BSA. In addition, synchronous fluorescence spectroscopy revealed that the RF showed more accessible to tryptophan (Trp) residues than to tyrosine (Tyr) residues. Also, it damaged Trp residues more seriously than Tyr residues under ultrasonic irradiation. At last, the generation of reactive oxygen species (ROS) in sonodynamic process was estimated by the method of Oxidation-Extraction Spectrometry (OES). And then, several radical scavengers were used to determine the kind of ROS. It was found that at least the singlet oxygen ( 1O 2) and hydroxyl radicals ( rad OH) were generated.

  3. Interaction Studies of Greenly Synthesized Gold Nanoparticles with Bovine Serum Albumin (BSA) Using Fluorescence Spectroscopy.

    PubMed

    Ravikumar, Sambandam; Sreekanth, T V M; Eom, In-Yong

    2015-12-01

    In the present study, gold nanoparticles (AuNPs) with an average particle size of -41.23 nm were synthesized using eco-friendly reducing material (i.e., aqueous Nelumbo nucifera root extract). Rapid reduction results in the formation of polydispersed nanoparticles. The formation of AuNPs was characterized by surface plasmon resonance (SPR) which was determined by UV-Vis spectra (band at 544 nm), FTIR, SEM-EDX, TEM, HR-TEM, and XRD. This study aims to investigate the interaction between AuNPs and Bovine Serum Albumin (BSA) using fluorescence spectroscopy. The analysis of fluorescence spectra and intensity at physiological pH in an aqueous solution indicates that AuNPs have a potent ability to quench the BSA fluorescence by both quenching mechanisms. Resonance light scattering spectra indicated the formation of BSA-AuNPs complex. The number of binding sites and binding constants were determined based on fluorescence quenching at different temperatures. The thermodynamic parameters were also calculated at various temperatures that indicate that hydrophobic forces are abundant in the AuNPs-BSA complex. Negative ΔG degrees values suggest that the binding process is spontaneous. Synchronous fluorescence spectra showed a blue shift and CD spectra showed an increase in a-helicity content which is an indication of increasing hydrophobicity. PMID:26682387

  4. Comprehensive spectroscopic probing the interaction and conformation impairment of bovine serum albumin (BSA) by herbicide butachlor.

    PubMed

    Liu, Xiaoyi; Ling, Zhaoxing; Zhou, Xing; Ahmad, Farooq; Zhou, Ying

    2016-09-01

    Butachlor is an effective herbicide to deal with undesired weeds selectively and is used at high levels in Asian countries. However, its interaction and impairment effect on BSA was still not clear. In this study, we investigated the interaction between butachlor and bovine serum albumin (BSA) by multi-spectroscopic methods including UV absorption, circular dichroism (CD) spectra, Fourier transform infrared (FTIR) spectra and fluorescence spectra under physiological conditions (pH=7.4). The results revealed that there was a static quenching of BSA induced by butachlor stemmed from the formation of complex. Based on thermodynamic data, the interaction of butachlor with BSA was due to happen, and van der Waals force as well as hydrogen bond were the major forces contributed to the interaction. The binding constant Kb and number of binding site of butachlor with BSA were 5.158×10(5) and 1.372 at 303K, respectively. The distance r between donor (BSA) and acceptor (butachlor) was 0.113nm, obtained according to the Förster theory. The results revealed that butachlor induced conformational changes in BSA but the secondary structure of BSA was still retained. In addition, the microenvironment around chromophore residues of BSA, for example, tryptophan, changed as well, resulting from the formation of more hydrogen bonds. PMID:27419617

  5. Residual bovine serum albumin (BSA) quantitation in vaccines using automated Capillary Western technology.

    PubMed

    Loughney, John W; Lancaster, Catherine; Ha, Sha; Rustandi, Richard R

    2014-09-15

    Bovine serum albumin (BSA) is a major component of fetal bovine serum (FBS), which is commonly used as a culture medium during vaccine production. Because BSA can cause allergic reactions in humans the World Health Organization (WHO) has set a guidance of 50 ng or less residual BSA per vaccine dose. Vaccine manufacturers are expected to develop sensitive assays to detect residual BSA. Generally, sandwich enzyme-linked immunosorbent assays (ELISA) are used in the industry to detect these low levels of BSA. We report the development of a new improved method for residual BSA detection using the SimpleWestern technology to analyze residual BSA in an attenuated virus vaccine. The method is based on automated Capillary Western and has linearity of two logs, >80% spike recovery (accuracy), intermediate precision of CV <15%, and LOQ of 5.2 ng/ml. The final method was applied to analyze BSA in four lots of bulk vaccine products and was used to monitor BSA clearance during vaccine process purification. PMID:24841366

  6. Glycation does not modify bovine serum albumin (BSA)-induced reduction of rat aortic relaxation: The response to glycated and nonglycated BSA is lost in metabolic syndrome

    PubMed Central

    Rubio-Ruiz, Maria Esther; Díaz-Díaz, Eulises; Cárdenas-León, Mario; Argüelles-Medina, Rabindranath; Sánchez-Canales, Patricia; Larrea-Gallo, Fernando; Soria-Castro, Elizabeth; Guarner-Lans, Verónica

    2008-01-01

    The effects of nonglycated bovine serum albumin (BSA) and advanced glycosylation end products of BSA (AGE-BSA) on vascular responses of control and metabolic syndrome (MS) rats characterized by hypertriglyceridemia, hypertension, hyperinsulinemia, and insulin resistance were studied. Albumin and in vitro prepared AGE-BSA have vascular effects; however, recent studies indicate that some effects of in vitro prepared AGEs are due to the conditions in which they were generated. We produced AGEs by incubating glucose with BSA for 60 days under sterile conditions in darkness and at 37°C. To develop MS rats, male Wistar animals were given 30% sucrose in drinking water since weanling. Six month old animals were used. Blood pressure, insulin, triglycerides, and serum albumin were increased in MS rats. Contraction of aortic rings elicited with norepinephrine was stronger. There were no effects of nonglycated BSA or AGE-BSA on contractions in control or MS rats; however, both groups responded to L-NAME, an inhibitor of nitric oxide synthesis. Arterial relaxation induced using acetylcholine was smaller in MS rats. Nonglycated BSA and AGE-BSA significantly diminished relaxation in a 35% in the control group but the decrease was similar when using nonglycated BSA and AGE-BSA. This decrease was not present in the MS rats and was not due to increased RAGEs or altered biochemical characteristics of BSA. In conclusion, both BSA and AGE-BSA inhibit vascular relaxation in control artic rings. In MS rats the effect is lost possibly due to alterations in endothelial cells that are a consequence of the illness. PMID:18458031

  7. Adsorption of bovine serum albumin (BSA) onto lecithin studied by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy.

    PubMed

    Tantipolphan, R; Rades, T; McQuillan, A J; Medlicott, N J

    2007-06-01

    The adsorption of bovine serum albumin (BSA) to lecithin was investigated by ATR-FTIR spectroscopy. Lecithin films were prepared by casting aliquots of 3.2 microg lecithin in methanol onto ZnSe ATR prisms. Surface morphology and the thickness of the films were investigated by laser scanning confocal electron microscopy and scanning electron microscopy and the thickness of the films used for adsorption studies was estimated to be 40 A. The dependency of the CO peak area on the lecithin mass in the calibration curve confirms that the thickness of the film is below the penetration depth of the infrared evanescent wave. Size exclusion HPLC and fluorescence spectroscopy show that BSA conformation in up to 1M NaCl and CaCl(2) solutions is similar to that in water with no aggregation or changes in protein conformation seen over 4h. The kinetics of BSA adsorption on the lecithin film from water, NaCl and CaCl(2) solutions demonstrates that ions promote the protein adsorption. BSA bound more in the presence of NaCl compared to CaCl(2) at equivalent concentrations. The adsorption appeared greatest at a 0.1M concentration for both NaCl and CaCl(2). The results are explained in terms of absorptive reactivity of BSA and lecithin surfaces upon salt addition. PMID:17240095

  8. Studies on interaction of colloidal Ag nanoparticles with Bovine Serum Albumin (BSA).

    PubMed

    Ravindran, Aswathy; Singh, Anupam; Raichur, Ashok M; Chandrasekaran, N; Mukherjee, Amitava

    2010-03-01

    Biofunctionalization of noble metal nanoparticles like Ag, Au is essential to obtain biocompatibility for specific biomedical applications. Silver nanoparticles are being increasingly used in bio-sensing applications owing to excellent optoelectronic properties. Among the serum albumins, the most abundant proteins in plasma, a wide range of physiological functions of Bovine Serum Albumin (BSA) has made it a model system for biofunctionalization. In absence of adequate prior reports, this study aims to investigate the interaction between silver nanoparticles and BSA. The interaction of BSA [0.05-0.85% concentrations] with Ag nanoparticles [50ppm concentration] in aqueous dispersion was studied through UV-vis spectral changes, morphological and surface structural changes. At pH 7, which is more than the isoelectric point of BSA, a decrease in absorbance at plasmon peak of uninteracted nanoparticles (425nm) was noted till 0.45% BSA, beyond that a blue shift towards 410nm was observed. The blue shift may be attributed to enhanced electron density on the particle surfaces. Increasing pH to 12 enhanced the blue shift further to 400nm. The conformational changes in BSA at alkaline pH ranges and consequent hydrophobic interactions also played an important role. The equilibrium adsorption data fitted better to Freundlich isotherm compared to Langmuir curve. The X-ray diffraction study revealed complete coverage of Ag nanoparticles by BSA. The scanning electron microscopic study of the interacted nanoparticles was also carried out to decipher morphological changes. This study established that tailoring the concentration of BSA and pH of the interaction it was possible to reduce aggregation of nanoparticles. Biofunctionalized Ag nanoparticles with reduced aggregation will be more amenable towards bio-sensing applications. PMID:19896812

  9. Ascorbic Acid and BSA Protein in Solution and Films: Interaction and Surface Morphological Structure

    PubMed Central

    Maciel, Rafael R. G.; de Almeida, Adriele A.; Godinho, Odin G. C.; Gorza, Filipe D. S.; Pedro, Graciela C.; Trescher, Tarquin F.; Silva, Josmary R.; de Souza, Nara C.

    2013-01-01

    This paper reports on the study of the interactions between ascorbic acid (AA) and bovine serum albumin (BSA) in aqueous solution as well as in films (BSA/AA films) prepared by the layer-by-layer technique. Regarding to solution studies, a hyperchromism (in the range of ultraviolet) was found as a function of AA concentration, which suggested the formation of aggregates from AA and BSA. Binding constant, K, determined for aggregates from BSA and AA was found to be about 102 M−1, which indicated low affinity of AA with BSA. For the BSA/AA films, it was also noted that the AA adsorption process and surface morphological structures depended on AA concentration. By changing the contact time between the AA and BSA, a hypochromism was revealed, which was associated to decrease of accessibility of solvent to tryptophan due to formation of aggregates. Furthermore, different morphological structures of aggregates were observed, which were attributed to the diffusion-limited aggregation. Since most of studies of interactions of drugs and proteins are performed in solution, the analysis of these processes by using films can be very valuable because this kind of system is able to employ several techniques of investigation in solid state. PMID:23984366

  10. Ascorbic acid and BSA protein in solution and films: interaction and surface morphological structure.

    PubMed

    Maciel, Rafael R G; de Almeida, Adriele A; Godinho, Odin G C; Gorza, Filipe D S; Pedro, Graciela C; Trescher, Tarquin F; Silva, Josmary R; de Souza, Nara C

    2013-01-01

    This paper reports on the study of the interactions between ascorbic acid (AA) and bovine serum albumin (BSA) in aqueous solution as well as in films (BSA/AA films) prepared by the layer-by-layer technique. Regarding to solution studies, a hyperchromism (in the range of ultraviolet) was found as a function of AA concentration, which suggested the formation of aggregates from AA and BSA. Binding constant, K, determined for aggregates from BSA and AA was found to be about 10(2) M(-1), which indicated low affinity of AA with BSA. For the BSA/AA films, it was also noted that the AA adsorption process and surface morphological structures depended on AA concentration. By changing the contact time between the AA and BSA, a hypochromism was revealed, which was associated to decrease of accessibility of solvent to tryptophan due to formation of aggregates. Furthermore, different morphological structures of aggregates were observed, which were attributed to the diffusion-limited aggregation. Since most of studies of interactions of drugs and proteins are performed in solution, the analysis of these processes by using films can be very valuable because this kind of system is able to employ several techniques of investigation in solid state. PMID:23984366

  11. Hepatoma-Targeted Radionuclide Immune Albumin Nanospheres: 131I-antiAFPMcAb-GCV-BSA-NPs

    PubMed Central

    Lin, Mei; Huang, Junxing; Zhang, Dongsheng; Jiang, Xingmao; Zhang, Jia; Yu, Hong; Xiao, Yanhong; Shi, Yujuan; Guo, Ting

    2016-01-01

    An effective strategy has been developed for synthesis of radionuclide immune albumin nanospheres (131I-antiAFPMcAb-GCV-BSA-NPs). In vitro as well as in vivo targeting of 131I-antiAFPMcAb-GCV-BSA-NPs to AFP-positive hepatoma was examined. In cultured HepG2 cells, the uptake and retention rates of 131I-antiAFPMcAb-GCV-BSA-NPs were remarkably higher than those of 131I alone. As well, the uptake rate and retention ratios of 131I-antiAFPMcAb-GCV-BSA-NPs in AFP-positive HepG2 cells were also significantly higher than those in AFP-negative HEK293 cells. Compared to 131I alone, 131I-antiAFPMcAb-GCV-BSA-NPs were much more easily taken in and retained by hepatoma tissue, with a much higher T/NT. Due to good drug-loading, high encapsulation ratio, and highly selective affinity for AFP-positive tumors, the 131I-antiAFPMcAb-GCV-BSA-NPs are promising for further effective radiation-gene therapy of hepatoma. PMID:26981334

  12. Albumin (BSA) Adsorption over Graphene in Aqueous Environment: Influence of Orientation, Adsorption Protocol, and Solvent Treatment.

    PubMed

    Vilhena, J G; Rubio-Pereda, Pamela; Vellosillo, Perceval; Serena, P A; Pérez, Rubén

    2016-02-23

    We report 150 ns explicit solvent MD simulations of the adsorption on graphene of albumin (BSA) in two orientations and using two different adsorption protocols, i.e., free and forced adsorption. Our results show that free adsorption occurs with little structural rearrangements. Even taking adsorption to an extreme, by forcing it with a 5 nN downward force applied during the initial 20 ns, we show that along a particular orientation BSA is able to preserve the structural properties of the majority of its binding sites. Furthermore, in all the cases considered in this work, the ibuprofen binding site has shown a strong resilience to structural changes. Finally, we compare these results with implicit solvent simulations and find that the latter predicts an extreme protein unfolding upon adsorption. The origin of this discrepancy is attributed to a poor description of the water entropic forces at interfaces in the implicit solvent methods. PMID:26799950

  13. Textures on the surface of BSA films with different concentrations of sodium halides and water state in solution

    NASA Astrophysics Data System (ADS)

    Glibitskiy, Gennadiy; Glibitskiy, Dmitriy; Gorobchenko, Olga; Nikolov, Oleg; Roshal, Alexander; Semenov, Mikhail; Gasan, Anatoliy

    2015-03-01

    The formation of the textures on the surface of the films from the solutions of bovine serum albumin (BSA) with sodium halides (NaF, NaCl, and NaBr) of various concentrations was studied. The formation of symmetric zigzag textures on the surface of BSA films (Cryst Eng 3:173-194, 2000) in the presence of sodium halides depends on the conformational state of the protein globule. Thermal denaturation of BSA also did not allow to form zigzag textures on the surface of the films.

  14. Spectroscopic and molecular docking studies of binding interaction of gefitinib, lapatinib and sunitinib with bovine serum albumin (BSA).

    PubMed

    Shen, Guo-Feng; Liu, Ting-Ting; Wang, Qi; Jiang, Min; Shi, Jie-Hua

    2015-12-01

    The binding interactions of three kinds of tyrosine kinase inhibitors (TKIs), such as gefitinib, lapatinib and sunitinib, with bovine serum albumin (BSA) were studied using ultraviolet spectrophotometry, fluorescence spectroscopy, circular dichroism (CD), Fourier transform infrared spectroscopy (FT-IR) and molecular docking methods. The experimental results showed that the intrinsic fluorescence quenching of BSA induced by the three TKIs resulted from the formation of stable TKIs-BSA complexes through the binding interaction of TKIs with BSA. The stoichiometry of three stable TKIs-BSA complexes was 1:1 and the binding constants (Kb) of the three TKIs-BSA complexes were in the order of 10(4)M(-1) at 310 K, indicating that there was a strong binding interaction of the three TKIs with BSA. Based on the analysis of the signs and magnitudes of the free energy change (ΔG(0)), enthalpic change (ΔH(0)) and entropic change (ΔS(0)) in the binding process, it can be deduced that the binding process of the three TKIs with BSA was spontaneous and enthalpy-driven process, and the main interaction forces between the three TKIs and BSA were van der Waals force and hydrogen bonding interaction. Moreover, from the results of CD, FT-IR and molecular docking, it can be concluded that there was a significant difference between the three TKIs in the binding site on BSA, lapatinib was located on site II (m) of BSA while gefitinib and sunitinib were bound on site I of BSA, and there were some changes in the BSA conformation when binding three TKIs to BSA but BSA still retains its secondary structure α-helicity. PMID:26555641

  15. Investigation on interaction and sonodynamic damage of fluorescein derivants to bovine serum albumin (BSA) under ultrasonic irradiation

    NASA Astrophysics Data System (ADS)

    Zou, Mingming; Zhang, Lei; Wang, Jun; Wang, Qi; Gao, Jingqun; Fan, Ping

    2013-06-01

    The fluorescein derivants (Fluorescein: (2-(6-Hydroxy-3-oxo-(3H)-xanthen-9-yl) benzoic acid), Fluorescein-DA: (Bis [N,N-bis (carboxymethyl) aminomethyl] fluorescein) and Fluorescein-DAsbnd Fe(III): (Bis [N,N-bis (carboxymethyl) aminomethyl] fluoresceinsbnd Ferrous(III)) with a tricyclic plane structure were used to study the interaction and sonodynamic damage to bovine serum albumin (BSA) under ultrasonic irradiation through fluorospectrometry and UV-vis spectrophotometry. Besides, because of the existence of Fe(III) ion in Fluorescein-DAsbnd Fe(III), under ultrasonic irradiation the sonocatalytic activity in the damage of BSA molecules was also found. Three-dimensional fluorescence spectra and three-dimensional fluorescence contour profile spectra were mentioned to determine the fluorescence quenching and the conformation change of BSA in the absence and presence of these fluorescein derivants. As judged from the experimental results, the fluorescence quenching of BSA in aqueous solution caused by these fluorescein derivants were all attributed to static quenching process. The damage degree and mode were related to some factors such as ultrasonic irradiation time, fluorescein derivant concentration and ionic strength. Finally, several quenchers were used to determine the amount and kind of generated reactive oxygen species (ROS) during sonodynamic and sonocatalytic reaction processes. It suggests that these fluorescein derivants induce protein damage via various ROS, at least, including singlet oxygen (1O2) and hydroxyl radicals (rad OH). Perhaps, this paper may offer some important subjects for broadening the application of these fluorescein derivants in sonodynamic therapy (SDT) and sonocatalytic therapy (SCT) technologies for tumor treatment.

  16. Characterizing the binding interaction between antimalarial artemether (AMT) and bovine serum albumin (BSA): Spectroscopic and molecular docking methods.

    PubMed

    Shi, Jie-Hua; Pan, Dong-Qi; Wang, Xiou-Xiou; Liu, Ting-Ting; Jiang, Min; Wang, Qi

    2016-09-01

    Artemether (AMT), a peroxide sesquiterpenoides, has been widely used as an antimalarial for the treatment of multiple drug-resistant strains of plasmodium falciparum malaria. In this work, the binding interaction of AMT with bovine serum albumin (BSA) under the imitated physiological conditions (pH7.4) was investigated by UV spectroscopy, fluorescence emission spectroscopy, synchronous fluorescence spectroscopy, Fourier transform infrared spectroscopy (FT-IR), circular dichroism (CD), three-dimensional fluorescence spectroscopy and molecular docking methods. The experimental results indicated that there was a change in UV absorption of BSA along with a slight red shift of absorption wavelength, indicating that the interaction of AMT with BSA occurred. The intrinsic fluorescence of BSA was quenched by AMT due to the formation of AMT-BSA complex. The number of binding sites (n) and binding constant of AMT-BSA complex were about 1 and 2.63×10(3)M(-1) at 298K, respectively, suggesting that there was stronger binding interaction of AMT with BSA. Based on the analysis of the signs and magnitudes of the free energy change (ΔG(0)), enthalpic change (ΔH(0)) and entropic change (ΔS(0)) in the binding process, it can be concluded that the binding of AMT with BSA was enthalpy-driven process due to |ΔH°|>|TΔS°|. The results of experiment and molecular docking confirmed the main interaction forces between AMT and BSA were van der Waals force. And, there was a slight change in the BSA conformation after binding AMT but BSA still retains its secondary structure α-helicity. However, it had been confirmed that AMT binds on the interface between sub-domain IIA and IIB of BSA. PMID:27327124

  17. Evaluating interaction forces between BSA and rabbit anti-BSA in sulphathiazole sodium, tylosin and levofloxacin solution by AFM

    NASA Astrophysics Data System (ADS)

    Wang, Congzhou; Wang, Jianhua; Deng, Linhong

    2011-11-01

    Protein-protein interactions play crucial roles in numerous biological processes. However, it is still challenging to evaluate the protein-protein interactions, such as antigen and antibody, in the presence of drug molecules in physiological liquid. In this study, the interaction between bovine serum albumin (BSA) and rabbit anti-BSA was investigated using atomic force microscopy (AFM) in the presence of various antimicrobial drugs (sulphathiazole sodium, tylosin and levofloxacin) under physiological condition. The results show that increasing the concentration of tylosin decreased the single-molecule-specific force between BSA and rabbit anti-BSA. As for sulphathiazole sodium, it dramatically decreased the specific force at a certain critical concentration, but increased the nonspecific force as its concentration increasing. In addition, the presence of levofloxacin did not greatly influence either the specific or nonspecific force. Collectively, these results suggest that these three drugs may adopt different mechanisms to affect the interaction force between BSA and rabbit anti-BSA. These findings may enhance our understanding of antigen/antibody binding processes in the presence of drug molecules, and hence indicate that AFM could be helpful in the design and screening of drugs-modulating protein-protein interaction processes.

  18. Adsorption of Bovine Serum Albumin (BSA) at the Oil/Water Interface: A Neutron Reflection Study.

    PubMed

    Campana, M; Hosking, S L; Petkov, J T; Tucker, I M; Webster, J R P; Zarbakhsh, A; Lu, J R

    2015-05-26

    The structure of the adsorbed protein layer at the oil/water interface is essential to the understanding of the role of proteins in emulsion stabilization, and it is important to glean the mechanistic events of protein adsorption at such buried interfaces. This article reports on a novel experimental methodology for probing protein adsorption at the buried oil/water interface. Neutron reflectivity was used with a carefully selected set of isotopic contrasts to study the adsorption of bovine serum albumin (BSA) at the hexadecane/water interface, and the results were compared to those for the air/water interface. The adsorption isotherm was determined at the isoelectric point, and the results showed that a higher degree of adsorption could be achieved at the more hydrophobic interface. The adsorbed BSA molecules formed a monolayer on the aqueous side of the interface. The molecules in this layer were partially denatured by the presence of oil, and once released from the spatial constraint by the globular framework they were free to establish more favorable interactions with the hydrophobic medium. Thus, a loose layer extending toward the oil phase was clearly observed, resulting in an overall broader interface. By analogy to the air/water interface, as the concentration of BSA increased to 1.0 mg mL(-1) a secondary layer extending toward the aqueous phase was observed, possibly resulting from the steric repulsion upon the saturation of the primary monolayer. Results clearly indicate a more compact arrangement of molecules at the oil/water interface: this must be caused by the loss of the globular structure as a consequence of the denaturing action of the hexadecane. PMID:25875917

  19. Spectroscopic analyses on sonocatalytic damage to bovine serum albumin (BSA) induced by ZnO/hydroxylapatite (ZnO/HA) composite under ultrasonic irradiation.

    PubMed

    Wang, Zhiqiu; Li, Ying; Wang, Jun; Zou, Mingming; Gao, Jingqun; Kong, Yumei; Li, Kai; Han, Guangxi

    2012-08-01

    ZnO/hydroxylapatite (ZnO/HA) composite with HA molar content of 6.0% was prepared by the method of precipitation and heat-treated at 500°C for 40min and was characterized by powder X-ray diffraction (XRD). The sonocatalytic activities of ZnO/HA composite was carried out through the damage of bovine serum albumin (BSA) in aqueous solution. Furthermore, the effects of several factors on the damage of BSA molecules were evaluated by means of UV-vis and fluorescence spectra. Experimental results indicated that the damage degree of BSA aggravated with the increase of ultrasonic irradiation time, irradiation power and ZnO/HA addition amount, but weakened with the increase of solution acidity and ionic strength. In addition, the damage site to BSA was also studied by synchronous fluorescence technology and the damage site was mainly at tryptophan (Trp) residue. This paper provides a valuable reference for driving sonocatalytic method to treat tumor in clinic application. PMID:22522300

  20. Binding of an Oligomeric Ellagitannin Series to Bovine Serum Albumin (BSA): Analysis by Isothermal Titration Calorimetry (ITC).

    PubMed

    Karonen, Maarit; Oraviita, Marianne; Mueller-Harvey, Irene; Salminen, Juha-Pekka; Green, Rebecca J

    2015-12-16

    A unique series of oligomeric ellagitannins was used to study their interactions with bovine serum albumin (BSA) by isothermal titration calorimetry. Oligomeric ellagitannins, ranging from monomer to heptamer and a mixture of octamer-undecamers, were isolated as individual pure compounds. This series allowed studying the effects of oligomer size and other structural features. The monomeric to trimeric ellagitannins deviated most from the overall trends. The interactions of ellagitannin oligomers from tetramers to octa-undecamers with BSA revealed strong similarities. In contrast to the equilibrium binding constant, enthalpy showed an increasing trend from the dimer to larger oligomers. It is likely that first the macrocyclic part of the ellagitannin binds to the defined binding sites on the protein surface and then the "flexible tail" of the ellagitannin coats the protein surface. The results highlight the importance of molecular flexibility to maximize binding between the ellagitannin and protein surfaces. PMID:26608224

  1. Spectroscopic analyses on interaction of Amantadine-Salicylaldehyde, Amantadine-5-Chloro-Salicylaldehyde and Amantadine-o-Vanillin Schiff-Bases with bovine serum albumin (BSA)

    NASA Astrophysics Data System (ADS)

    Wang, Zhiqiu; Gao, Jingqun; Wang, Jun; Jin, Xudong; Zou, Mingming; Li, Kai; Kang, Pingli

    2011-12-01

    In this work, three Tricyclo [3.3.1.1(3,7)] decane-1-amine (Amantadine) Schiff-Bases, Amantadine-Salicylaldehyde (AS), Amantadine-5-Chloro-Salicylaldehyde (AS-5-C) and Amantadine-o-Vanillin (AS-o-V), were synthesized by direct heating reflux method in ethanol solution and characterized by infrared spectrum and elementary analysis. Fluorescence quenching was used to study the interaction of these Amantadine Schiff-Bases (AS, AS-5-C and AS-o-V) with bovine serum albumin (BSA). According to fluorescence quenching calculations the bimolecular quenching constant ( Kq), apparent quenching constant ( KSV), effective binding constant ( KA) and corresponding dissociation constant ( KD), binding site number ( n) and binding distance ( r) were obtained. The results show that these Amantadine Schiff-Bases can obviously bind to BSA molecules and the binding strength order is AS < AS-5-C = AS-o-V. Synchronous fluorescence spectroscopy reveals that these Amantadine Schiff-Bases adopt different way to bind with BSA molecules. That is, the AS and AS-5-C are accessibility to tryptophan (Trp) residues more than the tyrosine (Tyr) residues, while the AS-o-V is equally close to the Tyr and Trp residues.

  2. Spectroscopic analyses on interaction of o-Vanillin- D-Phenylalanine, o-Vanillin- L-Tyrosine and o-Vanillin- L-Levodopa Schiff Bases with bovine serum albumin (BSA)

    NASA Astrophysics Data System (ADS)

    Gao, Jingqun; Guo, Yuwei; Wang, Jun; Wang, Zhiqiu; Jin, Xudong; Cheng, Chunping; Li, Ying; Li, Kai

    2011-04-01

    In this work, three o-Vanillin Schiff Bases (o-VSB: o-Vanillin- D-Phenylalanine (o-VDP), o-Vanillin- L-Tyrosine (o-VLT) and o-Vanillin- L-Levodopa (o-VLL)) with alanine constituent were synthesized by direct reflux method in ethanol solution, and then were used to study the interaction to bovine serum albumin (BSA) molecules by fluorescence spectroscopy. Based on the fluorescence quenching calculation, the bimolecular quenching constant ( Kq), apparent quenching constant ( Ksv), effective binding constant ( KA) and corresponding dissociation constant ( KD) as well as binding site number ( n) were obtained. In addition, the binding distance ( r) was also calculated according to Foster's non-radioactive energy transfer theory. The results show that these three o-VSB can efficiently bind to BSA molecules, but the binding array order is o-VDP-BSA > o-VLT-BSA > o-VLL-BSA. Synchronous fluorescence spectroscopy indicates that the o-VDP is more accessibility to tryptophan (Trp) residues of BSA molecules than to tyrosine (Tyr) residues. Nevertheless, the o-VLT and o-VLL are more accessibility to Tyr residues than to Trp residues.

  3. DNP-Enhanced MAS NMR of Bovine Serum Albumin Sediments and Solutions

    PubMed Central

    2015-01-01

    Protein sedimentation sans cryoprotection is a new approach to magic angle spinning (MAS) and dynamic nuclear polarization (DNP) nuclear magnetic resonance (NMR) spectroscopy of proteins. It increases the sensitivity of the experiments by a factor of ∼4.5 in comparison to the conventional DNP sample preparation and circumvents intense background signals from the cryoprotectant. In this paper, we investigate sedimented samples and concentrated frozen solutions of natural abundance bovine serum albumin (BSA) in the absence of a glycerol-based cryoprotectant. We observe DNP signal enhancements of ε ∼ 66 at 140 GHz in a BSA pellet sedimented from an aqueous solution containing the biradical polarizing agent TOTAPOL and compare this with samples prepared using the conventional protocol (i.e., dissolution of BSA in a glycerol/water cryoprotecting mixture). The dependence of DNP parameters on the radical concentration points to the presence of an interaction between TOTAPOL and BSA, so much so that a frozen solution sans cryoprotectant still gives ε ∼ 50. We have studied the interaction of BSA with another biradical, SPIROPOL, that is more rigid than TOTAPOL and has been reported to give higher enhancements. SPIROPOL was also found to interact with BSA, and to give ε ∼ 26 close to its maximum achievable concentration. Under the same conditions, TOTAPOL gives ε ∼ 31, suggesting a lesser affinity of BSA for SPIROPOL with respect to TOTAPOL. Altogether, these results demonstrate that DNP is feasible in self-cryoprotecting samples. PMID:24460530

  4. Glass transitions in aqueous solutions of protein (bovine serum albumin).

    PubMed

    Shinyashiki, Naoki; Yamamoto, Wataru; Yokoyama, Ayame; Yoshinari, Takeo; Yagihara, Shin; Kita, Rio; Ngai, K L; Capaccioli, Simone

    2009-10-29

    Measurements by adiabatic calorimetry of heat capacities and enthalpy relaxation rates of a 20% (w/w) aqueous solution of bovine serum albumin (BSA) by Kawai, Suzuki, and Oguni [Biophys. J. 2006, 90, 3732] have found several enthalpy relaxations at long times indicating different processes undergoing glass transitions. In a quenched sample, one enthalpy relaxation at around 110 K and another over a wide temperature range (120-190 K) were observed. In a sample annealed at 200-240 K after quenching, three separated enthalpy relaxations at 110, 135, and above 180 K were observed. Dynamics of processes probed by adiabatic calorimetric data are limited to long times on the order of 10(3) s. A fuller understanding of the processes can be gained by probing the dynamics over a wider time/frequency range. Toward this goal, we performed broadband dielectric measurements of BSA-water mixtures at various BSA concentrations over a wide frequency range of thirteen decades from 2 mHz to 1.8 GHz at temperatures from 80 to 270 K. Three relevant relaxation processes were detected. For relaxation times equal to 100 s, the three processes are centered approximately at 110, 135, and 200 K, in good agreement with those observed by adiabatic calorimetry. We have made the following interpretation of the molecular origins of the three processes. The fastest relaxation process having relaxation time of 100 or 1000 s at ca. 110 K is due to the secondary relaxation of uncrystallized water (UCW) in the hydration shell. The intermediate relaxation process with 100 s relaxation time at ca. 135 K is due to ice. The slowest relaxation process having relaxation time of 100 s at ca. 200 K is interpreted to originate from local chain conformation fluctuations of protein slaved by water. Experimental evidence supporting these interpretations include the change of temperature dependence of the relaxation time of the UCW at approximately T(gBSA) approximately = 200 K, the glass transition temperature of

  5. Highly sensitive chemiluminescent analysis of residual bovine serum albumin (BSA) based on a pair of specific monoclonal antibodies and peroxyoxalate-glyoxaline-PHPPA dimer chemiluminescent system in vaccines.

    PubMed

    Xue, Pan; Zhang, Kui; Zhang, Zhujun; Li, Yun; Liu, Feng; Sun, Yuanjie; Zhang, Xiaoming; Song, Chaojun; Fu, Aihua; Jin, Boquan; Yang, Kun

    2012-03-01

    Enzyme-linked immunosorbent assay (ELISA), horseradish peroxidase (HRP)-catalyzed fluorescent reaction, and oxalate chemiluminescence analysis have been combined to develop a highly sensitive, simple, and rapid method for analysis of bovine serum albumin (BSA) based on a pair of specific monoclonal antibodies in vaccines. A typical "sandwich type" immunoassay was used. Reaction of 3-(4-hydroxyphenyl propionate) (PHPPA) with hydrogen peroxide-urea, catalyzed by HRP, produced fluorescence of 3-(4-hydroxyphenyl propionate) dimer, which was detected by chemiluminescence analysis with the bis(2,4,6-trichlorophenyl)oxalate (TCPO)-H(2)O(2)-glyoxaline-PHPPA dimer chemiluminescent system. This method exhibited high performance with a linear correlation between response and amount of bovine serum albumin (BSA) in the range 0.1 to 100.0 ng mL(-1) (r = 0.9988), and the detection limit was 0.03 ng mL(-1) (S/N = 3). Intra- and interassay coefficient variations were all lower than 9.0% at three concentrations (1.0, 20.0, and 80.0 ng mL(-1)). The proposed method has been used for successful analysis of the amount of residual BSA in vaccines. The results obtained compared well with those obtained by conventional colorimetric ELISA and luminol chemiluminescent ELISA. PMID:22328250

  6. Savinase action on bovine serum albumin (BSA) monolayers demonstrated with measurements at the air-water interface and liquid Atomic Force Microscopy (AFM) imaging.

    PubMed

    Balashev, Konstantin; Callisen, Thomas H; Svendsen, Allan; Bjørnholm, Thomas

    2011-12-01

    We studied the enzymatic action of Savinase on bovine serum albumin (BSA) organized in a monolayer spread at the air/water interface or adsorbed at the mica surface. We carried out two types of experiments. In the first one we followed the degradation of the protein monolayer by measuring the surface pressure and surface area decrease versus time. In the second approach we applied AFM imaging of the supported BSA monolayers adsorbed on mica solid supports and extracted information for the enzyme action by analyzing the obtained images of the surface topography in the course of enzyme action. In both cases we obtained an estimate for the turnover number (TON) of the enzyme reaction. PMID:21868205

  7. Rapid detection of Cu(2+) by a paper-based microfluidic device coated with bovine serum albumin (BSA)-Au nanoclusters.

    PubMed

    Fang, Xueen; Zhao, Qianqian; Cao, Hongmei; Liu, Juan; Guan, Ming; Kong, Jilie

    2015-11-21

    In this work, bovine serum albumin (BSA)-Au nanoclusters were used to coat a paper-based microfluidic device. This device acted as a Cu(2+) biosensor that showed fluorescence quenching on detection of copper ions. The detection limit of this sensor could be adjusted by altering the water absorbing capacity of the device. Qualitative and semi-quantitative results could be obtained visually without the aid of any advanced instruments. This sensor could test Cu(2+) rapidly with high specificity and sensitivity, which would be useful for point-of-care testing (POCT). PMID:26462444

  8. Fabrication of coated bovine serum albumin (BSA)-epigallocatechin gallate (EGCG) nanoparticles and their transport across monolayers of human intestinal epithelial Caco-2 cells.

    PubMed

    Li, Zheng; Ha, Jungheun; Zou, Tao; Gu, Liwei

    2014-06-01

    The bovine serum albumin (BSA)-epigallocatechin gallate (EGCG) nanoparticles were fabricated using a desolvation method, and coated with poly-ε-lysine or chitosan. BSA-EGCG nanoparticles (BEN), poly-ε-lysine coated BSA-EGCG nanoparticles (PBEN), and chitosan coated BSA-EGCG nanoparticles (CBEN) had a spherical morphology and a size of 186, 259, and 300 nm, respectively. The loading efficiency of EGCG in these nanoparticles was 32.3%, 35.4%, and 32.7%, whereas the loading capacity was 18.9%, 17.0%, and 16.0% (w/w), respectively. Poly-ε-lysine or chitosan coating prevented the aggregation of nanoparticles at pH 4.5-5.0. However, they caused particle aggregation at pH 6.5-7.0. BEN had negative zeta-potentials between pH 4.5 and 6.0. Poly-ε-lysine or chitosan coating changed the zeta-potentials to positive. The release study of EGCG from the nanoparticles in the simulated gastric or intestinal fluid with or without digestive enzymes showed that poly-ε-lysine and chitosan coatings delayed EGCG release from the nanoparticles. Poly-ε-lysine or chitosan coating improved the stability of EGCG during storage at 60 °C compared with EGCG in the uncoated particles. EGCG in BEN, PBEN, and CBEN had a decreasing apparent permeability coefficient (Papp) on Caco-2 monolayers, whereas pure EGCG showed relatively stable Papp during the incubation over time. EGCG in CBEN showed significantly higher Papp, suggesting that chitosan coated BSA-EGCG nanoparticles may improve the absorption of EGCG. PMID:24741679

  9. [Pulsed radiolysis of aqueous solutions of serum albumin containing naphthoquinones].

    PubMed

    Pribush, A G; Savich, A V

    1987-01-01

    As was shown by the pulse radiolysis method the simultaneous presence of naphthoquinone and human serum albumin molecules in an aqueous solution leads to the adsorption of the former on the surface of the latter. It is suggested that in these conditions the protein tertiary structure changes. New conformation reduces the reactivity of albumin toward the hydrated electron. PMID:3628723

  10. Concurrent zero-dimensional and one-dimensional biomineralization of gold from a solution of Au3+ and bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Hartings, Matthew R.; Benjamin, Noah; Briere, Floriene; Briscione, Maria; Choudary, Omar; Fisher, Tamra L.; Flynn, Laura; Ghias, Elizabeth; Harper, Michaela; Khamis, Nader; Koenigsknecht, Catherine; Lazor, Klare; Moss, Steven; Robbins, Elaine; Schultz, Susan; Yaman, Samiye; Haverhals, Luke M.; Trulove, Paul C.; De Long, Hugh C.; Miller, Abigail E.; Fox, Douglas M.

    2013-12-01

    A technique was developed for preparing a novel material that consists of gold nanoparticles trapped within a fiber of unfolded proteins. These fibers are made in an aqueous solution that contains HAuCl4 and the protein, bovine serum albumin (BSA). By changing the ratio of gold to BSA in solution, two different types of outcomes are observed. At lower gold to BSA ratios (30-120), a purple solution results after heating the mixture at 80 °C for 4 h. At higher gold to BSA ratios (130-170), a clear solution containing purple fibers results after heating the mixture at 80 °C for 4 h. UV-Vis spectroscopy and light scattering techniques show growth in nanocolloid size as gold to BSA ratio rises above 100. Data indicate that, for the higher gold to BSA ratios, the gold is sequestered within the solid material. The material mass, visible by eye, appears to be an aggregation of smaller individual fibers. Scanning electron microscopy and transmission electron microscopy indicate that these fibers are primarily one-dimensional aggregates, which can display some branching, and can be as narrow as 400 nm in size. The likely mechanism for the synthesis of the novel material is discussed.

  11. Morphological Analysis and Interaction of Chlorophyll and BSA

    PubMed Central

    Gorza, Filipe D. S.; Pedro, Graciela C.; Trescher, Tarquin F.; da Silva, Romário J.; Silva, Josmary R.; de Souza, Nara C.

    2014-01-01

    Interactions between proteins and drugs, which can lead to formation of stable drug-protein complexes, have important implications on several processes related to human health. These interactions can affect, for instance, free concentration, biological activity, and metabolism of the drugs in the blood stream. Here, we report on the UV-Visible spectroscopic investigation on the interaction of bovine serum albumin (BSA) with chlorophyll (Chl) in aqueous solution under physiological conditions. Binding constants at different temperatures—obtained by using the Benesi-Hildebrand equation—were found to be of the same order of magnitude (~104 M−1) indicating low affinity of Chl with BSA. We have found a hyperchromism, which suggested an interaction between BSA and Chl occurring through conformational changes of BSA caused by exposition of tryptophan to solvent. Films from BSA and Chl obtained at different Chl concentrations showed fractal structures, which were characterized by fractal dimension calculated from microscopic image analysis. PMID:24963490

  12. Interaction between the Natural Components in Danhong Injection (DHI) with Serum Albumin (SA) and the Influence of the Coexisting Multi-Components on the SaB-BSA Binding System: Fluorescence and Molecular Docking Studies

    PubMed Central

    Hao, Jia; Zhang, Yingyue; Wang, Xingrui; Yan, Huo; Liu, Erwei; Gao, Xiumei

    2015-01-01

    Danhong injection (DHI) is a widely used Chinese Materia Medica standardized product for the clinical treatment of ischemic encephalopathy and coronary heart disease. The bindings of eight natural components in DHI between bovine serum albumin (BSA) were studied by fluorescence spectroscopy technology and molecular docking. According to the results, the quenching process of salvianolic acid B and hydroxysafflor yellow A was a static quenching procedure through the analysis of quenching data by the Stern-Volmer equation, the modified Stern-Volmer equation, and the modified Scatchard equation. Meanwhile, syringin (Syr) enhanced the fluorescence of BSA, and the data were analyzed using the Lineweaver-Burk equation. Molecular docking suggested that all of these natural components bind to serum albumin at the site I location. Further competitive experiments of SaB confirmed the result of molecular docking studies duo to the displacement of warfarin by SaB. Base on these studies, we selected SaB as a research target because it presented the strongest binding ability to BSA and investigated the influence of the multi-components coexisting in DHI on the interaction between the components of the SaB-BSA binding system. The participation of these natural components in DHI affected the interaction between the components of the SaB-BSA system. Therefore, when DHI is used in mammals, SaB is released from serum albumin more quickly than it is used alone. This work would provide a new experiment basis for revealing the scientific principle of compatibility for Traditional Chinese Medicine. PMID:26035712

  13. Encapsulation of catechin and epicatechin on BSA NPS improved their stability and antioxidant potential.

    PubMed

    Yadav, Ramdhan; Kumar, Dharmesh; Kumari, Avnesh; Yadav, Sudesh Kumar

    2014-01-01

    Nanoencapsulation of antioxidant molecules on protein nanoparticles (NPs) could be an advanced approach for providing stable, better food nutraceuticals and anticancer drugs. The bioavailability and stability of catechin (CAT) and epicatechin (ECAT) were very poor. In the present study, the CAT and ECAT were loaded on bovine serum albumin (BSA) NPs following desolvation method. The transmission electron microscope (TEM) and atomic force microscope (AFM) recorded size of CAT-BSA NPs and ECAT-BSA NPs were 45 ± 5 nm and 48 ± 5 nm respectively. The encapsulation efficiency of CAT and ECAT on BSA NPs was found to be 60.5 and 54.5 % respectively. CAT-BSA NPs and ECAT-BSA NPs show slow and sustained in vitro release. The CAT-BSA NPs and ECAT-BSA NPs were stable in solution at various temperatures 37 °C, 47 °C and 57 °C. DPPH assay revealed that CAT and ECAT maintained their functional activity even after encapsulation on BSA NPs. Furthermore, the efficacy of CAT-BSA NPs and ECAT-BSA NPs determined against A549 cell lines was found to be improved. CAT and ECAT aptly encapsulated in BSA NPs, showed satisfactory sustained release, maintained antioxidant potential and found improved efficacy. This has thus suggested their more effective use in food and nutraceuticals as well as in medical field. PMID:26417264

  14. Encapsulation of catechin and epicatechin on BSA NPS improved their stability and antioxidant potential

    PubMed Central

    Yadav, Ramdhan; Kumar, Dharmesh; Kumari, Avnesh; Yadav, Sudesh Kumar

    2014-01-01

    Nanoencapsulation of antioxidant molecules on protein nanoparticles (NPs) could be an advanced approach for providing stable, better food nutraceuticals and anticancer drugs. The bioavailability and stability of catechin (CAT) and epicatechin (ECAT) were very poor. In the present study, the CAT and ECAT were loaded on bovine serum albumin (BSA) NPs following desolvation method. The transmission electron microscope (TEM) and atomic force microscope (AFM) recorded size of CAT-BSA NPs and ECAT-BSA NPs were 45 ± 5 nm and 48 ± 5 nm respectively. The encapsulation efficiency of CAT and ECAT on BSA NPs was found to be 60.5 and 54.5 % respectively. CAT-BSA NPs and ECAT-BSA NPs show slow and sustained in vitro release. The CAT-BSA NPs and ECAT-BSA NPs were stable in solution at various temperatures 37 °C, 47 °C and 57 °C. DPPH assay revealed that CAT and ECAT maintained their functional activity even after encapsulation on BSA NPs. Furthermore, the efficacy of CAT-BSA NPs and ECAT-BSA NPs determined against A549 cell lines was found to be improved. CAT and ECAT aptly encapsulated in BSA NPs, showed satisfactory sustained release, maintained antioxidant potential and found improved efficacy. This has thus suggested their more effective use in food and nutraceuticals as well as in medical field. PMID:26417264

  15. Fluorescence enhancement of europium(III) perchlorate by benzoic acid on bis(benzylsulfinyl)methane complex and its binding characteristics with the bovine serum albumin (BSA)

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Li, Wen-Xian; Ao, Bo-Yang; Feng, Shu-Yan; Xin, Xiao-Dong

    2014-01-01

    A novel ligand with double sulfinyl groups, bis(benzylsulfinyl)methane L, was synthesized by a new method. Its novel ternary complex, EuL2.5ṡL‧·(ClO4)2ṡ5H2O, has been synthesized [using L as the first ligand, and benzoic acid L‧ as the second ligand], and characterized by elemental analysis, molar conductivity, coordination titration analysis, FTIR, TG-DSC, 1H NMR and UV-vis. In order to study the effect of the second ligand on the fluorescence properties of rare-earth sulfoxide complex, a novel binary complex EuL2.5·(ClO4)3·3H2O has been synthesized. Photoluminescent measurement showed that the first ligand L could efficiently transfer the energy to Eu3+ ions in the complex. Furthermore, the detailed luminescence analyses on the rare earth complexes indicated that the ternary Eu (III) complex manifested stronger fluorescence intensities, longer lifetimes, and higher fluorescence quantum efficiencies than the binary Eu (III) materials. After introducing the second ligand L‧, the fluorescence emission intensities and fluorescence lifetimes of the ternary complex enhanced more obviously than the binary complex. This illustrated that the presence of both the first ligand L and the second ligand L‧ could sensitize fluorescence intensities of Eu (III) ions. The fluorescence spectra, fluorescence lifetime and phosphorescence spectra were also discussed. To explore the potential biological value of Eu (III) complexes, the binding interaction among Eu (III) complexes and bovine serum albumin (BSA) was studied by fluorescence spectrum. The result indicated that the reaction between Eu (III) complexes and BSA was a static quenching procedure. The binding site number, n, of 0.60 and 0.78, and binding constant, Ka, of 0.499 and 4.46 were calculated according to the double logarithm regression equation, respectively for EuL2.5ṡL‧ṡ(ClO4)2ṡ5H2O and EuL2.5ṡ(ClO4)3ṡ3H2O systems.

  16. SANS study of interaction of silica nanoparticles with BSA protein and their resultant structure

    SciTech Connect

    Yadav, Indresh Aswal, V. K.; Kohlbrecher, J.

    2014-04-24

    Small angle neutron scattering (SANS) has been carried out to study the interaction of anionic silica nanoparticles (88 Å) with globular protein Bovine Serum Albumin (BSA) (M.W. 66.4 kD) in aqueous solution. The measurements have been carried out on fixed concentration (1 wt %) of Ludox silica nanoparticles with varying concentration of BSA (0–5 wt %) at pH7. Results show that silica nanoparticles and BSA coexist as individual entities at low concentration of BSA where electrostatic repulsive interactions between them prevent their aggregation. However, as the concentration of BSA increases (≥ 0.5 wt %), it induces the attractive depletion interaction among nanoparticles leading to finally their aggregation at higher BSA concentration (2 wt %). The aggregates are found to be governed by the diffusion limited aggregation (DLA) morphology of fractal nature having fractal dimension about 2.4.

  17. SANS study of interaction of silica nanoparticles with BSA protein and their resultant structure

    NASA Astrophysics Data System (ADS)

    Yadav, Indresh; Aswal, V. K.; Kohlbrecher, J.

    2014-04-01

    Small angle neutron scattering (SANS) has been carried out to study the interaction of anionic silica nanoparticles (88 Å) with globular protein Bovine Serum Albumin (BSA) (M.W. 66.4 kD) in aqueous solution. The measurements have been carried out on fixed concentration (1 wt %) of Ludox silica nanoparticles with varying concentration of BSA (0-5 wt %) at pH7. Results show that silica nanoparticles and BSA coexist as individual entities at low concentration of BSA where electrostatic repulsive interactions between them prevent their aggregation. However, as the concentration of BSA increases (≥ 0.5 wt %), it induces the attractive depletion interaction among nanoparticles leading to finally their aggregation at higher BSA concentration (2 wt %). The aggregates are found to be governed by the diffusion limited aggregation (DLA) morphology of fractal nature having fractal dimension about 2.4.

  18. Modifications in interaction and structure of silica nanoparticle-BSA protein system in aqueous electrolyte solution

    NASA Astrophysics Data System (ADS)

    Yadav, Indresh; Aswal, V. K.; Kohlbrecher, J.

    2015-06-01

    SANS measurements have been carried out to examine the modifications in interaction and structure of anionic silica nanoparticle with anionic BSA protein in presence of an electrolyte. The phase behaviour of anionic silica nanoparticle and anionic BSA protein is governed by the protein induced depletion interaction between nanoparticles. Both nanoparticle and protein coexist individually at low protein concentrations as electrostatic repulsion dominates over the depletion interaction. However, depletion induced fractal aggregates of nanoparticles are formed at higher protein concentrations. These aggregates can be formed at much smaller protein concentration in presence of an electrolyte. We show that both the electrostatic (decrease) and depletion interaction (increase) are modified with an electrolyte. The range of the depletion interaction is found to be significantly larger than the electrostatic interaction.

  19. Complexation of serum albumins and triton X-100: Quenching of tryptophan fluorescence and analysis of the rotational diffusion of complexes

    NASA Astrophysics Data System (ADS)

    Vlasova, I. M.; Vlasov, A. A.; Saletskii, A. M.

    2016-07-01

    The polarized and nonpolarized fluorescence of bovine serum albumin and human serum albumin in Triton X-100 solutions is studied at different pH values. Analysis of the constants of fluorescence quenching for BSA and HSA after adding Triton X-100 and the hydrodynamic radii of BSA/HSA-detergent complexes show that the most effective complexation between both serum albumins and Triton X-100 occurs at pH 5.0, which lies near the isoelectric points of the proteins. Complexation between albumin and Triton X-100 affects the fluorescence of the Trp-214 residing in the hydrophobic pockets of both BSA and HSA.

  20. Investigation of Bovine Serum Albumin (BSA) Attachment onto Self-Assembled Monolayers (SAMs) Using Combinatorial Quartz Crystal Microbalance with Dissipation (QCM-D) and Spectroscopic Ellipsometry (SE)

    PubMed Central

    Phan, Hanh T. M.; Bartelt-Hunt, Shannon; Rodenhausen, Keith B.; Schubert, Mathias; Bartz, Jason C.

    2015-01-01

    Understanding protein adsorption kinetics to surfaces is of importance for various environmental and biomedical applications. Adsorption of bovine serum albumin to various self-assembled monolayer surfaces including neutral and charged hydrophilic and hydrophobic surfaces was investigated using in-situ combinatorial quartz crystal microbalance with dissipation and spectroscopic ellipsometry. Adsorption of bovine serum albumin varied as a function of surface properties, bovine serum albumin concentration and pH value. Charged surfaces exhibited a greater quantity of bovine serum albumin adsorption, a larger bovine serum albumin layer thickness, and increased density of bovine serum albumin protein compared to neutral surfaces at neutral pH value. The quantity of adsorbed bovine serum albumin protein increased with increasing bovine serum albumin concentration. After equilibrium sorption was reached at pH 7.0, desorption of bovine serum albumin occurred when pH was lowered to 2.0, which is below the isoelectric point of bovine serum albumin. Our data provide further evidence that combinatorial quartz crystal microbalance with dissipation and spectroscopic ellipsometry is a sensitive analytical tool to evaluate attachment and detachment of adsorbed proteins in systems with environmental implications. PMID:26505481

  1. Solution structure of monomeric BsaL, the type III secretion needle protein of Burkholderia pseudomallei.

    PubMed

    Zhang, Lingling; Wang, Yu; Picking, Wendy L; Picking, William D; De Guzman, Roberto N

    2006-06-01

    Many gram-negative bacteria that are important human pathogens possess type III secretion systems as part of their required virulence factor repertoire. During the establishment of infection, these pathogens coordinately assemble greater than 20 different proteins into a macromolecular structure that spans the bacterial inner and outer membranes and, in many respects, resembles and functions like a syringe. This type III secretion apparatus (TTSA) is used to inject proteins into a host cell's membrane and cytoplasm to subvert normal cellular processes. The external portion of the TTSA is a needle that is composed of a single type of protein that is polymerized in a helical fashion to form an elongated tube with a central channel of 2-3 nm in diameter. TTSA needle proteins from a variety of bacterial pathogens share sequence conservation; however, no atomic structure for any TTSA needle protein is yet available. Here, we report the structure of a TTSA needle protein called BsaL from Burkholderia pseudomallei determined by nuclear magnetic resonance (NMR) spectroscopy. The central part of the protein assumes a helix-turn-helix core domain with two well-defined alpha-helices that are joined by an ordered, four-residue linker. This forms a two-helix bundle that is stabilized by interhelix hydrophobic contacts. Residues that flank this presumably exposed core region are not completely disordered, but adopt a partial helical conformation. The atomic structure of BsaL and its sequence homology with other TTSA needle proteins suggest potentially unique structural dynamics that could be linked with a universal mechanism for control of type III secretion in diverse gram-negative bacterial pathogens. PMID:16631790

  2. Molecular interactions between some non-steroidal anti-inflammatory drugs (NSAID's) and bovine (BSA) or human (HSA) serum albumin estimated by means of isothermal titration calorimetry (ITC) and frontal analysis capillary electrophoresis (FA/CE).

    PubMed

    Ràfols, Clara; Zarza, Sílvia; Bosch, Elisabeth

    2014-12-01

    The interactions between some non-steroidal anti-inflammatory drugs, NSAIDs, (naproxen, ibuprofen and flurbiprofen) and bovine (BSA) or human (HSA) serum albumin have been examined by means of two complementary techniques, isothermal titration calorimetry (ITC) and frontal analysis/capillary electrophoresis (FA/CE). It can be concluded that ITC is able to measure with high precision the strongest drug-albumin interactions but the higher order interactions can be better determined by means of FA/CE. Then, the combination of both techniques leads to a complete evaluation of the binding profiles between the selected NSAIDs and both kind of albumin proteins. When BSA is the binding protein, the NSAIDs show a strong primary interaction (binding constants: 1.5 × 10(7), 8 × 10(5) and 2 × 10(6) M(-1) for naproxen, ibuprofen and flurbiprofen, respectively), and also lower affinity interactions of the same order for the three anti-inflammatories (about 1.7 × 10(4) M(-1)). By contrast, when HSA is the binding protein two consecutive interactions can be observed by ITC for naproxen (9 × 10(5) and 7 × 10(4) M(-1)) and flurbiprofen (5 × 10(6) and 6 × 10(4) M(-1)) whereas only one is shown for ibuprofen (9 × 10(5) M(-1)). Measurements by FA/CE show a single interaction for each drug being the ones of naproxen and flurbiprofen the same that those evaluated by ITC as the second interaction events. Then, the ability of both techniques as suitable complementary tools to establish the whole interaction NSAIDs-albumin profile is experimentally demonstrated and allows foreseeing suitable strategies to establish the complete drug-protein binding profile. In addition, for the interactions analyzed by means of ITC, the thermodynamic signature is established and the relative contributions of the enthalpic and entropic terms discussed. PMID:25159405

  3. Binding of Sulpiride to Seric Albumins

    PubMed Central

    da Silva Fragoso, Viviane Muniz; de Morais Coura, Carla Patrícia; Hoppe, Luanda Yanaan; Soares, Marília Amável Gomes; Silva, Dilson; Cortez, Celia Martins

    2016-01-01

    The aim of this work was to study the interaction of sulpiride with human serum albumin (HSA) and bovine serum albumin (BSA) through the fluorescence quenching technique. As sulpiride molecules emit fluorescence, we have developed a simple mathematical model to discriminate the quencher fluorescence from the albumin fluorescence in the solution where they interact. Sulpiride is an antipsychotic used in the treatment of several psychiatric disorders. We selectively excited the fluorescence of tryptophan residues with 290 nm wavelength and observed the quenching by titrating HSA and BSA solutions with sulpiride. Stern-Volmer graphs were plotted and quenching constants were estimated. Results showed that sulpiride form complexes with both albumins. Estimated association constants for the interaction sulpiride–HSA were 2.20 (±0.08) × 104 M−1, at 37 °C, and 5.46 (±0.20) × 104 M−1, at 25 °C. Those for the interaction sulpiride-BSA are 0.44 (±0.01) × 104 M−1, at 37 °C and 2.17 (±0.04) × 104 M−1, at 25 °C. The quenching intensity of BSA, which contains two tryptophan residues in the peptide chain, was found to be higher than that of HSA, what suggests that the primary binding site for sulpiride in albumin should be located next to the sub domain IB of the protein structure. PMID:26742031

  4. Binding of Sulpiride to Seric Albumins.

    PubMed

    da Silva Fragoso, Viviane Muniz; de Morais Coura, Carla Patrícia; Hoppe, Luanda Yanaan; Soares, Marília Amável Gomes; Silva, Dilson; Cortez, Celia Martins

    2016-01-01

    The aim of this work was to study the interaction of sulpiride with human serum albumin (HSA) and bovine serum albumin (BSA) through the fluorescence quenching technique. As sulpiride molecules emit fluorescence, we have developed a simple mathematical model to discriminate the quencher fluorescence from the albumin fluorescence in the solution where they interact. Sulpiride is an antipsychotic used in the treatment of several psychiatric disorders. We selectively excited the fluorescence of tryptophan residues with 290 nm wavelength and observed the quenching by titrating HSA and BSA solutions with sulpiride. Stern-Volmer graphs were plotted and quenching constants were estimated. Results showed that sulpiride form complexes with both albumins. Estimated association constants for the interaction sulpiride-HSA were 2.20 (±0.08) × 10⁴ M(-1), at 37 °C, and 5.46 (±0.20) × 10⁴ M(-1), at 25 °C. Those for the interaction sulpiride-BSA are 0.44 (±0.01) × 10⁴ M(-1), at 37 °C and 2.17 (±0.04) × 10⁴ M(-1), at 25 °C. The quenching intensity of BSA, which contains two tryptophan residues in the peptide chain, was found to be higher than that of HSA, what suggests that the primary binding site for sulpiride in albumin should be located next to the sub domain IB of the protein structure. PMID:26742031

  5. Corrosion behavior and surface characterization of titanium in solution containing fluoride and albumin.

    PubMed

    Takemoto, Shinji; Hattori, Masayuki; Yoshinari, Masao; Kawada, Eiji; Oda, Yutaka

    2005-03-01

    The objective of this study was to demonstrate the role of albumin on the corrosion behavior of titanium in a solution containing 2.0 g/l fluoride and either 0.1 or 1.0 g/l albumin. The corrosion behavior and surface characterization of passive films on titanium immersed in such a solution were examined. In addition, the change in pH and the concentration of dissolved titanium in the solution were examined. The results showed that the corrosion of titanium in a solution containing fluoride was distinct, and that adding albumin to the solution containing fluoride suppressed corrosion. Fluorine was detected on the titanium surface immersed in the solution containing fluoride, and dissolution of the titanium was confirmed. The titanium immersed in a solution containing both fluoride and albumin had an albumin film regardless of the albumin concentration. In addition, the amount of dissolved titanium from the titanium immersed in the solution was less than when the solution contained no albumin. It was suggested that the formation of adsorbed albumin films on or in the passive film acted to not only protect the titanium from attack by the fluoride but also suppressed dissolution of the titanium-fluoride compounds. PMID:15353194

  6. Denaturation of bovine serum albumin under the action of cetyltrimethylammonium bromide, according to data from fluorescence analysis

    NASA Astrophysics Data System (ADS)

    Vlasova, I. M.; Zhuravleva, V. V.; Saletskii, A. M.

    2013-06-01

    The tryptophan fluorescence of bovine serum albumin (BSA) in solutions with different concentrations of cationic detergent cetyltrimethylammonium bromide (CTAB) at different pH is investigated, providing information on BSA denaturation under the action of CTAB. It is found that BSA denaturation under the action of CTAB at all of the investigated pH values (3.5-8.0) is a single-stage process, as determined by BSA tryptophan fluorescence quenching, by an increased degree of the BSA tryptophan fluorescence polarization, and by the values of the parameters for the rotational diffusion of BSA molecules in CTAB solutions. It is shown that the cationic detergent CTAB is more efficient for BSA denaturation at pH values higher than the BSA isoelectric point (4.9).

  7. The influence of albumin on corrosion resistance of titanium in fluoride solution.

    PubMed

    Ide, Katsuhisa; Hattori, Masayuki; Yoshinari, Masao; Kawada, Eiji; Oda, Yutaka

    2003-09-01

    Proteins can interact with corrosion reactions in several ways. In this study, we investigated the effect of albumin on the corrosion resistance of titanium in the presence of fluoride. The effects of the NaF concentration, albumin concentration, and pH on the corrosion characteristics of commercially pure titanium (CP-Ti) were examined by means of electrochemical techniques. The corrosion resistance of titanium decreased as the NaF concentration increased and as pH decreased. The corrosion resistance of titanium in NaF solutions was improved in the presence of albumin. The natural electrode potential was elevated, and the passive current density was reduced by albumin at a concentration of 0.01%. The polarization resistance rose with increased concentrations of albumin in fluoride solution. These results showed that the albumin in saliva and dental plaque affected the corrosion resistance of CP-Ti in fluoride solution. PMID:14621001

  8. Influence of Millimeter Electromagnetic Waves on Fluorescence of Water-Saline Solutions of Human Serum Albumin

    NASA Astrophysics Data System (ADS)

    Vardevanyan, P. O.; Antonyan, A. P.; Shahinyan, M. A.; Mikaelyan, M. S.

    2016-07-01

    The effect of electromagnetic waves of the millimeter region on the conformation and fluorescence characteristics of human serum albumin was studied. It is shown that the irradiation of the albumin solution leads to an increase of the fluorescence intensity depending on the duration of irradiation. At an irradiation frequency of 48 GHz the fluorescence intensity of albumin hardly changes at all, while at 41.8 and 51.8 GHz it increases. It is also shown that when the irradiation frequency is 51.8 GHz, the intensity of the albumin solution fluorescence increases with increase of the irradiation time.

  9. Investigation of Cu(II) Binding to Bovine Serum Albumin by Potentiometry with an Ion Selective Electrode

    ERIC Educational Resources Information Center

    Jie Liu

    2004-01-01

    A laboratory project that investigates Cu(II) bind to bovine serum albumin (BSA) in an aqueous solution is developed to assist undergraduate students in gaining better understanding of the interaction of ligands with biological macromolecule. Thus, students are introduced to investigation of Cu(II) binding to BSA by potentiometry with the Cu(II)…

  10. Photophysical investigations of squaraine and cyanine dyes and their interaction with bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Saikiran, M.; Sato, D.; Pandey, S. S.; Kato, T.

    2016-04-01

    A model far-red sensitive symmetrical squaraine dye (SQ-3) and unsymmetrical near infra-red sensitive cyanine dye (UCD-1) bearing direct–COOH functionalized indole ring were synthesized, characterized and subjected to photophysical investigations including their interaction with bovine serum albumin (BSA) as a model protein in phosphate buffer solution (PBS). Both of the dyes exhibit strong interaction with BSA in phosphate buffer with high apparent binding constant. A judicious tuning of hydrophobic main backbone with reactive functionality for associative interaction with active site of BSA has been found to be necessary for BSA detection in PBS.

  11. Rotational diffusion of bovine serum albumin denaturated by sodium dodecylsulfate, According to data from tryptophan fluorescence

    NASA Astrophysics Data System (ADS)

    Vlasova, I. M.; Zhuravleva, V. V.; Saletskii, A. M.

    2014-03-01

    The rotational diffusion of bovine serum albumin (BSA) molecules in solutions with different concentrations of the anionic detergent sodium dodecylsulfate (SDS) at different pH values is investigated, yielding information on the denaturation of BSA under the action of SDS. It is found from the increased degree of polarization in the tryptophan fluorescence of BSA and the registered parameters for the rotational diffusion of BSA molecules that the denaturation of BSA under the action of SDS at pH values less than the isoelectric point (pI) of BSA (4-9) is a two-stage process. It is shown that the first stage of BSA denaturation common for all pH values is the decondensation of BSA globules, while the second stage of BSA denaturation at pH greater than the pI of BSA is the unfolding of the protein's amino acid chain. It is concluded that the denaturation of BSA under the action of SDS proceeds more deeply at pH values greater than the pI of BSA.

  12. Experimental evidence on interaction between xenon and bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Wołoszyn, Łukasz; Ilczyszyn, Marek; Ilczyszyn, Maria M.

    Xenon gas interacts with bovine serum albumin (BSA) dissolved in a physiological buffer solution. The fluorescence quenching related to the Trp emission is reversible and depends linearly on the time of saturation by Xe. The most probable site of this interaction is Trp212. The common emission of all BSA fluorophores is also influenced by Xe but this quenching is more complex and suggests: (i) at least two sites occupied by Xe and related to the Tyr and Trp residues; (ii) structural variations of BSA induced by the Xe guest atoms.

  13. Study of influence of millimeter range electromagnetic waves on water-saline solutions of albumin

    NASA Astrophysics Data System (ADS)

    Shahinyan, Mariam A.; Antonyan, Ara P.; Mikaelyan, Marieta S.; Vardevanyan, Poghos O.

    2015-01-01

    In this work, the effect of electromagnetic waves of millimeter diapason (EMW MM) on both melting parameters of serum albumin from human blood and its solution density has been studied. It was shown that the irradiation of albumin solution results in protein denaturation at higher temperatures than in the case of nonirradiated samples, which indicates the increase of albumin packing degree. It was also shown that the enhancement of albumin solution density takes place which indicates the protein packing degree change as well. The obtained data show that the effect of EMW MM does not depend on frequency of these waves, because alterations are revealed at all studied frequencies — 41.8, 48 and 51.8GHz.

  14. Theoretical and experimental studies on freezing point depression and vapor pressure deficit as methods to measure osmotic pressure of aqueous polyethylene glycol and bovine serum albumin solutions.

    PubMed

    Kiyosawa, Keitaro

    2003-05-01

    For survival in adverse environments where there is drought, high salt concentration or low temperature, some plants seem to be able to synthesize biochemical compounds, including proteins, in response to changes in water activity or osmotic pressure. Measurement of the water activity or osmotic pressure of simple aqueous solutions has been based on freezing point depression or vapor pressure deficit. Measurement of the osmotic pressure of plants under water stress has been mainly based on vapor pressure deficit. However, differences have been noted for osmotic pressure values of aqueous polyethylene glycol (PEG) solutions measured by freezing point depression and vapor pressure deficit. For this paper, the physicochemical basis of freezing point depression and vapor pressure deficit were first examined theoretically and then, the osmotic pressure of aqueous ethylene glycol and of PEG solutions were measured by both freezing point depression and vapor pressure deficit in comparison with other aqueous solutions such as NaCl, KCl, CaCl(2), glucose, sucrose, raffinose, and bovine serum albumin (BSA) solutions. The results showed that: (1) freezing point depression and vapor pressure deficit share theoretically the same physicochemical basis; (2) theoretically, they are proportional to the molal concentration of the aqueous solutions to be measured; (3) in practice, the osmotic pressure levels of aqueous NaCl, KCl, CaCl(2), glucose, sucrose, and raffinose solutions increase in proportion to their molal concentrations and there is little inconsistency between those measured by freezing point depression and vapor pressure deficit; (4) the osmotic pressure levels of aqueous ethylene glycol and PEG solutions measured by freezing point depression differed from the values measured by vapor pressure deficit; (5) the osmotic pressure of aqueous BSA solution measured by freezing point depression differed slightly from that measured by vapor pressure deficit. PMID:12834836

  15. High-field NMR T 2 relaxation mechanism in D2O solutions of albumin

    NASA Astrophysics Data System (ADS)

    Yilmaz, A.; Zengin, B.

    2013-07-01

    400 MHz NMR T 2 in D2O solutions of albumin and pure D2O were measured at different temperatures. A relation, based on the chemical exchange between bound HDO and non-exchangeable protein protons, was derived theoretically for the contributions of bound HDO [ P b(1/ T 2b)]. A second relation was also derived theoretically by considering spin-rotation interactions between bound HDO and surrounding protein protons. The P b(1/ T 2b) values in albumin solutions were then determined by replacing experimental data into the first relation. The values of the 1/ T 2 and P b(1/ T 2b) in albumin solutions increase linearly with temperature( T), whereas the 1/ T 2 in D2O decreases with T. In addition, the spin-rotation correlation times were calculated from the second relation. The dipolar correlation time of albumin was then reproduced from the spin-rotation correlation times for confirmative purposes. In conclusion, the 1/ T 2 in albumin solutions with D2O is caused by spin-rotation interactions.

  16. Light Scattering Analysis of Mono- and Multi-PEGylated Bovine Serum Albumin in Solution: Role of Composition on Structure and Interactions.

    PubMed

    Ferebee, Rachel; Hakem, Ilhem F; Koch, Amelie; Chen, Maggie; Wu, Yi; Loh, Derek; Wilson, David C; Poole, Jennifer L; Walker, Jeremy P; Fytas, George; Bockstaller, Michael R

    2016-05-26

    The effect of polymer conjugation on the interactions between proteins in solution is evaluated by systematic analysis of the second virial coefficient (A2) for the particular example of single- and double-PEGylated bovine serum albumin (PEG-BSA) in dilute PBS solution. The effect of PEGylation on A2 is found to sensitively depend on both the composition and the distribution of PEG segments within the conjugate. Most importantly, at a given PEG volume fraction, A2 significantly increases with the degree of polymerization of tethered chains. Hence, a lesser number of long chains is more effective in solubilizing BSA than a correspondingly larger number of short chains. Analysis of the hydrodynamic radii of protein-PEG conjugates suggests that the increased solubility is concurrent with a structural transition in the case of high molecular PEG grafts that results in compact core-shell-type structures. The results reveal a link between the composition, structure, and solubility of polymer conjugates that might benefit the understanding of their biochemical characteristics and their design for functional material applications. PMID:27149093

  17. Albumin-based nanoparticle trehalose lyophilisation stress-down to preserve structure/function and enhanced binding.

    PubMed

    Siri, Macarena; Grasselli, Mariano; Alonso, Silvia Del V

    2016-07-15

    The aim of this study was to preserve albumin nanoparticle structure/function during the lyophilisation process. Bovine serum albumin nanoparticles were obtained by γ-irradiation. Nanoparticles were lyophilised in buffer, miliQ water or in trehalose/miliQ solution. The size and charge of the nanoparticles were tested after lyophilisation by light scattering and Z potential. The most relevant results in size of BSA nanoparticle were those lyophilised in PBS between 20 and 350nm, assembled in different aggregates, and negative Z potential obtained was 37±8mV in all, and those nanoparticles lyophilised with trehalose had a size range of 70±2nm and a negative Z potential of 20±5mV. Structure determination of surface aminoacids SH groups in the BSA NP lyophilised in PBS showed an increase in the free SH groups. Different aggregates had different amount of SH groups exposure from 55 to 938 (from smaller to bigger aggregates), whereas BSA NP lyophilised with trehalose showed no significant difference if compared with BSA NP. The binding properties of the BSA nanoparticle with a theragnostic probe (merocyanine 540) were studied after lyophilisation. Results showed more affinity between the BSA NP lyophilised with trehalose than that observed with non lyophilised BSA NP. As a result, the lyophilisation condition in trehalose 100μM solution is the best one to preserve the BSA NP structure/function and the one with the enhance binding affinity of the BSA NP. PMID:27174378

  18. Esterase activity of BSA-ZnO nanoparticle complex

    NASA Astrophysics Data System (ADS)

    Bhogale, A.; Nair, A.; Patel, N.; Miotello, A.; Kothari, D. C.

    2014-04-01

    The effect of Zinc Oxide Nanoparticles (ZnO NPs) on functional properties of Bovine Serum Albumin (BSA) protein was studied. ZnO NPs were synthesized with average size of ˜7.5 nm as obtained from TEM analysis. The catalytic conversion of p-nitrophenylacetate (PNPA) to p-nitrophenol in the presence of BSA attached with ZnO NPs was examined by UV-Vis spectroscopy at room temperature. The result suggests that esterase activity of BSA is significantly enhanced (6 times) due to the ground state BSA-ZnO complex formation.

  19. Interaction of silicon nanoparticles with the molecules of bovine serum albumin in aqueous solutions

    SciTech Connect

    Anenkova, K A; Sergeeva, I A; Petrova, G P; Fedorova, K V; Osminkina, L A; Timoshenko, Viktor Yu

    2011-05-31

    Using the method of photon-correlation spectroscopy, the coefficient of translational diffusion D{sub t} and the hydrodynamic radius R of the particles in aqueous solutions of the bovine serum albumin, containing silicon nanoparticles, are determined. The character of the dependence of these parameters on the concentration of the protein indicates the absence of interaction between the studied particles in the chosen range of albumin concentrations 0.2 - 1.0 mg mL{sup -1}. (optical technologies in biophysics and medicine)

  20. Interaction of some cardiovascular drugs with bovine serum albumin at physiological conditions using glassy carbon electrode: A new approach.

    PubMed

    Afsharan, Hadi; Hasanzadeh, Mohammad; Shadjou, Nasrin; Jouyban, Abolghasem

    2016-08-01

    In this report, for the first time, the non-modified glassy carbon electrode was used for detection of cardiovascular drug interaction with bovine serum albumin (BSA). These interactions were tested at physiological conditions (T=37°C and pH=7.4 phosphate buffer solution) in different incubation times (0-4h) by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and square wave voltammetry (SWV). The applications of DPV for quantitative investigation of some cardiovascular drug interaction with BSA (as a model of serum albumin proteins) were discussed. The herein described approach is expected to promote the exploitation of electrochemically-based methods for the study of drug-serum albumin protein interaction which is necessary in biochemical and biosensing studies. This report may open a new window to application of electrochemical sensors towards interactions of cardiovascular drugs with BSA and human serum albumin (HAS) in the near future. PMID:27157732

  1. Spectroscopy and Fluorescence Lifetime Imaging Microscopy To Probe the Interaction of Bovine Serum Albumin with Graphene Oxide.

    PubMed

    Kuchlyan, Jagannath; Kundu, Niloy; Banik, Debasis; Roy, Arpita; Sarkar, Nilmoni

    2015-12-29

    The interaction of graphene oxide (GO) with bovine serum albumin (BSA) in aqueous buffer solution has been investigated with various spectroscopic and imaging techniques. At single molecular resolution this interaction has been performed using fluorescence correlation spectroscopy (FCS) and fluorescence lifetime imaging microscopy (FLIM) techniques. The conformational dynamics of BSA on GO's influence have been explored by FCS and circular dichroism (CD) spectroscopy. For the FCS studies BSA was labeled covalently by a fluorophore, Alexa Fluor 488. On the addition of GO in phosphate buffer of 10 mM at pH 7.4 the diffusion time (τD) and the hydrodynamic radius (Rh) of BSA increase due to adsorption of BSA. Conformational relaxation time components of native BSA drastically vary with the addition of GO, signifying the change of conformational dynamics of BSA after addition of GO. The adsorption isotherm also indicates significant adsorption of BSA on the GO surface. Adsorption of BSA on the GO surface has shown in direct images of atomic force microscopy (AFM) and FLIM. Fluorescence quenching study of BSA with addition of GO also indicates that there is strong interaction between BSA and GO. PMID:26646418

  2. Electrochemical deposition of mineralized BSA/collagen coating.

    PubMed

    Zhuang, Junjun; Lin, Jun; Li, Juan; Wang, Huiming; Cheng, Kui; Weng, Wenjian

    2016-09-01

    In this work, mineralized collagen coatings with different loading quantity of bovine serum albumin (BSA) were prepared via in situ electrochemical deposition on titanium substrate. The microstructure and BSA loading quantity of the coatings could be controlled by the electrochemical deposition parameters, such as deposition potential, BSA concentration and its adding sequence in the electrolyte. The BSA loading quantity in the coatings was obtained in the range of 0.0170-0.173mg/cm(2), enhancing the cell adhesion and proliferation of the coatings with the simultaneous release. The distinct release behaviors of BSA were attributed to their gradient distribution with different mineralization degrees, which could be adjusted by the deposition process. These results suggest that in situ electrochemical deposition is a promising way to incorporate functional molecules into the mineralized collagen coatings and the mineralized BSA/collagen coatings are highly promising for improving the rhBMP-2 loading capability (1.8-fold). PMID:27207039

  3. Joint aqueous solutions of dextran and bovine serum albumin: coexistence of three liquid phases.

    PubMed

    Antonov, Yurij; Wolf, Bernhard A

    2014-06-10

    The phase diagram of the system water/dextran (DEX)/BSA was measured as well as modeled. On the experimental side, cloud points were determined and the coexisting phases were analyzed. The theoretical calculations use an approach capable of describing solutions of chain polymers and of globular proteins with the same formalism. The required thermodynamic input comes from experiments concerning the binary subsystems, except for the polymer blend for which one interaction parameter had to be adjusted. Both sources of information yield the same essential features: the existence of a large composition area of immiscibility, starting from the subsystem DEX/BSA and extending well into the region of dilute polymer solutions. This range is subdivided into three sections: one two-phase area at high polymer content, a two-phase area at low polymer content, and a three-phase region located in between. Measured and calculated phase diagrams match qualitatively; the reasons for the quantitative discrepancies are being discussed. PMID:24832129

  4. Laser-induced preparation of volume nanocompositions in aqueous albumin solutions

    SciTech Connect

    Podgaetskii, V M; Simunin, M M; Savranskii, V V; Kononov, M A

    2007-09-30

    Ordered volume nanocompositions are obtained by exposing a colloidal aqueous solution of albumin with carbon nanotubes to cw IR laser radiation. Nanocompositions contain spherical and toroidal globules of size 100-500 nm with electric properties inherent in conglomerates of coiled nanotubes. The hardness of the material obtained depends on the irradiation intensity and time, and its consistence can be varied from pasty to glassy. (letters)

  5. Evidence that homogenization of BSA-stabilized hexadecane-in-water emulsions induces structure modification of the nonadsorbed protein.

    PubMed

    Rampon, V; Riaublanc, A; Anton, M; Genot, C; McClements, D J

    2003-09-24

    The structural modification of globular proteins (bovine serum albumin, BSA) in the aqueous phase of emulsions produced by homogenization was studied using front-face fluorescence spectroscopy (FFFS). A series of hydrocarbon oil-in-water emulsions (30 wt % n-hexadecane, 0.35 wt % BSA, pH 7.0) were homogenized to differing degrees with a high-speed blender and a high-pressure valve homogenizer. The wavelength of the maximum in the tryptophan emission spectrum (lambda(max)) of serum phases collected from the emulsions by centrifugation was measured and compared to lambda(max) values of BSA solutions subjected to the same homogenization conditions. There was no significant (p < 0.05) change in lambda(max) with homogenization conditions for BSA solutions. In contrast, lambda(max) of serum phases from emulsions blended for 2 min in a high-speed blender was significantly smaller (p < 0.05) than nontreated BSA solutions (Deltalambda(max) = 2 nm). In addition, there was a further significant decrease in lambda(max) of the serum phases with an increasing number of passes of the emulsion through the high-pressure valve homogenizer (e.g., Deltalambda(max) = 4 nm for 12 passes). This study shows that globular proteins present in the aqueous phase of a hexadecane-in-water emulsion after homogenization could be altered, which is probably caused by surface modification of the protein structure during temporary adsorption to emulsion droplet surfaces during homogenization. PMID:13129292

  6. Solution structure of RicC3, a 2S albumin storage protein from Ricinus communis.

    PubMed

    Pantoja-Uceda, David; Bruix, Marta; Giménez-Gallego, Guillermo; Rico, Manuel; Santoro, Jorge

    2003-12-01

    The three-dimensional structure in aqueous solution of recombinant (15)N labeled RicC3, a 2S albumin protein from the seeds of castor bean (Ricinus communis), has been determined by NMR methods. The computed structures were based on 1564 upper limit distance constraints derived from NOE cross-correlation intensities measured in the 2D-NOESY and 3D-HSQC-NOESY experiments, 70 phi torsion angle constraints obtained from (3)J(HNH)(alpha) couplings measured in the HNHA experiment, and 30 psi torsion angle constraints derived from (3)J(H)(alpha)(Ni+1) couplings measured in the HNHB experiment. The computed structures showed a RMSD radius of 0.64 A for the structural core. The resulting structure consists of five amphipatic helices arranged in a right-handed super helix, a folding motif first observed in nonspecific lipid transfer proteins. Different than the latter, RicC3 does have not an internal cavity, a fact that can be related to the exchange in the pairing of disulfide bridges in the segment.CXC. Previous attempts to determine high resolution structures of a 2S albumin protein by either X-ray crystallography or NMR methods failed because of the heterogeneity of the protein prepared from natural sources. Both 2S albumins and nonspecific lipid transfer proteins belong to the prolamine superfamily, some of whose members are food allergens. The solution structure for recombinant RicC3 determined here is a suitable representative structure for the broad family of seed 2S albumin proteins, which may help to establish meaningful relationships between structure and allergenicity. RicC3 is also the peptidic component of the immunomodulator Inmunoferon, a widely used pharmaceutical product, and its structure is expected to help understand its pharmaceutical activity. PMID:14636051

  7. Serum albumin binding of structurally diverse neutral organic compounds: data and models.

    PubMed

    Endo, Satoshi; Goss, Kai-Uwe

    2011-12-19

    Binding to serum albumin has a strong influence on freely dissolved, unbound concentrations of chemicals in vivo and in vitro. For neutral organic solutes, previous studies have suggested a log-log correlation between the albumin-water partition coefficient and the octanol-water partition coefficient (K(ow)) and postulated highly nonspecific binding that is mechanistically analogous to dissolution into solvents. These relationships and concepts were further explored in this study. Bovine serum albumin (BSA)-water partition coefficients (K(BSA/w)) were measured for 83 structurally diverse neutral organic chemicals in consistent experimental conditions. The correlation between log K(BSA/w) and log K(ow) was moderate, with R(2) = 0.76 and SD = 0.43. The log K(BSA/w) of low-polarity compounds including a series of chlorobenzenes and polycyclic aromatic hydrocarbons increased with log K(ow) linearly up to log K(ow) = 4-5, but then the linear relationship apparently broke off, and the increase became gradual. The fitting of polyparameter linear free energy relationship models with five solute descriptors was just comparable to that of the log K(ow) model (R(2) = 0.78-0.79, SD = 0.41-0.42); the relatively high SD obtained suggests that solvent dissolution models are not capable of modeling albumin binding accurately. A size limitation of the binding site(s) of albumin is suggested as a possible reason for the high SD. An equilibrium distribution model indicates that serum albumin generally has high contributions to the binding in the serum of polar compounds and relatively small low-polarity compounds, whereas albumin binding for large low-polarity compounds is outcompeted by the strong partitioning into lipids due to low relative affinity of albumin for these compounds. PMID:22070391

  8. Silver nanoclusters emitting weak NIR fluorescence biomineralized by BSA

    NASA Astrophysics Data System (ADS)

    Li, Baoshun; Li, Jianjun; Zhao, Junwu

    2015-01-01

    Noble metal (e.g., gold and silver) nanomaterials possess unique physical and chemical properties. In present work, silver nanoclusters (also known as silver quantum clusters or silver quantum dots) were synthesized by bovine serum albumin (BSA) biomineralization. The synthesized silver nanoclusters were characterized by UV-VIS absorption spectroscopy, fluorescence spectroscopy, upconversion emission spectroscopy, TEM, HRTEM and FTIR spectroscopy. TEM results showed that the average size of the silver nanoclusters was 2.23 nm. Fluorescence results showed that these silver nanoclusters could emit weak near-infrared (NIR) fluorescence (the central emission wavelength being about 765 nm). And the central excitation wavelength was about 395 nm, in the UV spectral region. These silver nanoclusters showed an extraordinarily large gap (about 370 nm) between the central excitation wavelength and central emission wavelength. In addition, it was found that these silver nanoclusters possess upconversion emission property. Upconversion emission results showed that the upconversion emission spectrum of the silver nanoclusters agreed well with their normal fluorescence emission spectrum. The synthesized silver nanoclusters showed high stability in aqueous solution and it was considered that they might be confined in BSA molecules. It was found that silver nanoclusters might enhance and broaden the absorption of proteins, and the protein absorption peak showed an obvious red shift (being 7 nm) after the formation of silver nanoclusters.

  9. Luminescent spectral characteristics of eosin in solutions of human serum albumin when denatured by treatment with sodium dodecyl sulfate

    NASA Astrophysics Data System (ADS)

    Vlasova, I. M.; Zemlyanskii, A. Yu.; Saletskii, A. M.

    2006-09-01

    From analysis of the fluorescence spectra of eosin molecules in a solution with human serum albumin (HSA), we have obtained information about the dynamics of protein conformational rearrangements during denaturing of the protein when treated with sodium dodecyl sulfate (SDS) for different pH values of the solution. We hypothesize that HSA denaturing in the presence of SDS occurs in two stages: the first stage is loosening of the protein globules, and the second stage is complete unfolding of the protein molecules. We have shown that denaturating of the protein in the presence of SDS passes through both stages for a solution pH below the isoelectric point of the albumin, while the denaturing stops in the first stage for a solution pH above the isoelectric point of the albumin.

  10. Chlorpromazine interactions to sera albumins. A study by the quenching of fluorescence

    NASA Astrophysics Data System (ADS)

    Silva, Dilson; Cortez, Célia M.; Louro, Sônia R. W.

    2004-04-01

    Binding of chlorpromazine (CPZ) and hemin (Hmn) to human (HSA) and bovine (BSA) serum albumin was studied by fluorescence quenching technique. Intrinsic fluorescences of BSA and HSA were measured by selectively exciting their tryptophan residues. Gradual quenching was observed by titration of both proteins with CPZ and Hmn. CPZ is a widely used anti-psychosis drug that causes severe side effects and strongly interacts with biomembranes, both in its lipidic and proteic regions. CPZ also interacts with blood components, influences bioavailability, and affects the function of several biomolecules. Albumin plays an important role in the transport and storage of hormones, ions, fatty acids and others substances, including CPZ, affecting the regulation of their plasmatic concentration. Hmn is an important ferric residue of hemoglobin that binds within the hydrophobic region of albumin with great specificity. Hmn added to HSA and BSA solutions at a molar ratio of 1:1 quenched about half of their fluorescence. Stern-Volmer plots obtained from experiments carried out at 25 and 35 °C showed the quenching of fluorescence of HSA and BSA by CPZ to be a collisional phenomenon. Hmn quenches fluorescence by a static process, which specifically indicates the formation of a complex. Our results suggest the prime binding site for CPZ and Hmn on both HSA and BSA to be near tryptophan residues.

  11. Comparison of Albumin, Hydroxyethyl Starch and Ringer Lactate Solution as Priming Fluid for Cardiopulmonary Bypass in Paediatric Cardiac Surgery

    PubMed Central

    Prajapati, Mrugesh; Solanki, Atul; Pandya, Himani

    2016-01-01

    Introduction In paediatric cardiac surgery, there is still not any information with regard to the best choice of priming fluids for Cardiopulmonary Bypass (CPB). Albumin, Hydroxyethyl Starch (HES) & ringer lactate are equally used, but each has its advantages & disadvantages. Albumin & HES had better fluid balance which affect outcome in paediatric cardiac surgery significantly. Aim To compare priming solution containing albumin, hydroxyethyl starch and ringer lactate during elective open-heart surgery in paediatrics aged up to 3 years. Materials and Methods All patients were managed by standardized institution protocol and were randomly distributed into three groups based on the priming solution which is used in the CPB Circuit and having 35 patients in each group. Group A: Receive albumin 10 ml/kg in priming solution, Group B: Receive Hydroxyethyl starch (HES130/0.4) 6% 20ml/kg in priming solution, Group C: Receive ringer lactate priming solution. Primary outcome variable included perioperative haemoglobin, total protein, colloid osmotic pressure, platelets, fluid balance, urine output, post-operative blood loss, blood products usage, renal & liver function, extubation time, ICU stay & outcome. Results Patients receiving albumin had higher perioperative platelet count, total protein level & colloid osmotic pressure, lesser post-operative blood loss & blood products requirement. Patients receiving HES had lower level of platelets postoperatively than ringer lactate group but not associated with increase blood loss. HES did not affect renal function & haemostasis in this dose. Patients receiving ringer lactate had positive fluid balance intraoperatively. All three groups have similar effect on renal & liver function, urine output, time to extubation, ICU stay & outcome. Conclusion We conclude that albumin is expensive but better prime as maintain haemostasis, colloid oncotic pressure & reduced blood product requirement. HES will not hamper haemostasis & renal

  12. Effect of temperature on the methotrexate BSA interaction: Spectroscopic study

    NASA Astrophysics Data System (ADS)

    Sułkowska, A.; Maciążek, M.; Równicka, J.; Bojko, B.; Pentak, D.; Sułkowski, W. W.

    2007-05-01

    Rheumatoid arthritis (RA) is an autoimmune and chronic inflammatory illness which affects about one percent of the world's population. Methotrexate (4-amino-10-methylfolic acid) (MTX) also known as amethopterin is commonly used to treat rheumatoid arthritis (RA). It is transported in the circulary system as a complex with serum albumin. The aim of this study was to investigate the interactions of MTX with transporting protein with the use of spectroscopic methods. The binding of MTX to bovine serum albumin (BSA) was studied by monitoring the changes in the emission fluorescence spectra of protein in the presence of MTX at excitation wavelength of 280 nm and 295 nm. The quenching of protein fluorescence at temperature range from 298 K to 316 K was observed. Energy transfer between methotrexate and fluorophores contained in the serum albumin structure was found at the molar ratio MTX:BSA 7.5:1. The relative fluorescence intensity of BSA decreases with increase of temperature. Similar results were observed for BSA excited with 280 nm and 295 nm at the same temperature range. The presence of MTX seems to prevent these changes. Temperature dependence of the binding constant has been presented. The binding and quenching constants for equilibrium complex were calculated using Scatchard and Stern-Volmer method, respectively. The results show that MTX forms π-π complex with aromatic amino acid residues of BSA. The binding site for MTX on BSA was found to be situated in the hydrophobic IIA or IB subdomain where the Trps were located. The spontaneity of MTX-BSA complex formation in the temperature range 298-316 K was ascertained.

  13. Release of FITC-BSA from poly(l-lactic acid) microspheres analysis using flow cytometry.

    PubMed

    Kuo, Chih-Feng; Tsao, Nina; Chou, Hsin-Hao; Liu, Yi-Ling; Hsieh, Wen-Chuan

    2012-01-01

    In this investigation, biodegradable polymer poly(L-lactic acid) (PLA) microspheres were prepared by the W(1)/O/W(2) solvent evaporation method. The inner phase was aqueous solution (W(1)) that contained bovine serum albumin that was labeled with fluorescein isothiocyanate (FITC-BSA). PLA was dissolved in chloroform with emulsifier sorbitan monooleate (span 80) as the dispersed phase (O). These two solutions (W(1)/O) were emulsified by a homogenizer to form a primary emulsion. Polyvinyl alcohol (PVA) used as surfactant, was applied in the formation of microspheres (W(2)). 0.5% (w/v) PLA was stirred at 3000 rpm using a homogenizer. Microspheres with sizes of up to around 10 μm were produced. These microspheres were separated by the glycerol gradient method, and take microspheres at part of 25% glycerol gradient concentration was analyzed by flow cytometry, indicating a more homogeneous particle size distribution than that not separated. The microspheres were degraded using several enzymes, and around 40% was degraded by 72 h. This result reveals the effectiveness of drug delivery by PLA microspheres, which was evaluated by performing a drug release test and flow cytometric analysis. The FITC-BSA concentration in the supernatant increased with the experimental time. At the phagocytosis experiments, encapsulated with FITC-BSA drug of microspheres can be used by the cell, as particle size approximately 1 μm. PMID:21992796

  14. Binding of manganese and iron tetraphenylporphine sulfonates to albumin is relevant to their contrast properties.

    PubMed

    Yushmanov, V E; Tominaga, T T; Borissevitch, I E; Imasato, H; Tabak, M

    1996-01-01

    The interaction of Fe(III) and Mn(III) complexes of TPPS4 with bovine serum albumin (BSA) was studied by T1 relaxation measurements of water protons and high resolution 1H NMR of the porphyrin moieties. At excess of BSA, both metalloporphyrins bind to BSA as the high spin monomers. The relaxivity of bound MnTPPS4 is significantly higher as compared to the free form in solution. When metalloporphyrins are in excess, they aggregate at the BSA surface, up to two MnTPPS4, and up to 10-15 FeTPPS4 units per BSA globule. Bound aggregates are unable to enhance magnetic relaxation of water protons due to the antiferromagnetic coupling between metal ions in the aggregates. Therefore, the dose-effect dependences for metalloporphyrins in the range of metalloporphyrin/BSA ratio of 0 to 25 at the constant BSA concentration at pH 7.4 are characterized by a local maximum at about 2 for MnTPPS4, and a global maximum at about 3 for FeTPPS4, MnTPPS4 complex is more effective than FeTPPS4 in the whole concentration range. It is suggested that the difference in binding and aggregation properties of metalloporphyrins may be relevant to their relaxation efficiency in vivo, blood transport, and biodistribution. PMID:8725191

  15. Role of single-walled carbon nanotubes on ester hydrolysis and topography of electrospun bovine serum albumin/poly(vinyl alcohol) membranes.

    PubMed

    Ford, Ericka N J; Suthiwangcharoen, Nisaraporn; D'Angelo, Paola A; Nagarajan, Ramanathan

    2014-07-23

    Electrospun membranes were studied for the chemical deactivation of threat agents by means of enzymatic proteins. Protein loading and the surface chemistry of hybrid nanofibers influenced the efficacy by which embedded enzymes could digest the substrate of interest. Bovine serum albumin (BSA), selected as a model protein, was electrospun into biologically active fibers of poly(vinyl alcohol), PVA. Single-walled carbon nanotubes (SWNTs) were blended within these mixtures to promote protein assembly during the process of electrospinning and subsequently the ester hydrolysis of the substrates. The SWNT incorporation was shown to influence the topography of PVA/BSA nanofibers and enzymatic activity against paraoxon, a simulant for organophosphate agents and a phosphorus analogue of p-nitrophenyl acetate (PNA). The esterase activity of BSA against PNA was uncompromised upon its inclusion within nanofibrous membranes because similar amounts of PNA were hydrolyzed by BSA in solution and the electrospun BSA. However, the availability of BSA along the fiber surface was shown to affect the ester hydrolysis of paraoxon. Atomic force microscopy images of nanofibers implicated the surface migration of BSA during the electrospinning of SWNT filled dispersions, especially as greater weight fractions of protein were added to the spinning mixtures. In turn, the PVA/SWNT/BSA nanofibers outperformed the nanotube free PVA/BSA membranes in terms of paraoxon digestion. The results support the development of electrospun polymer nanofiber platforms, modulated by SWNTs for enzyme catalytic applications relevant to soldier protective ensembles. PMID:25007411

  16. Cationic spin probe reporting on thermal denaturation and complexation-decomplexation of BSA with SDS. Potential applications in protein purification processes.

    PubMed

    Matei, Iulia; Ariciu, Ana Maria; Neacsu, Maria Victoria; Collauto, Alberto; Salifoglou, Athanasios; Ionita, Gabriela

    2014-09-25

    In this work, we present evidence on the suitability of spin probes to report on the thermal treatment of bovine serum albumin (BSA), in the temperature range 293-343 K, and indirectly monitor the release of sodium dodecyl sulfate (SDS) from its complex with BSA using a covalent gel with β-cyclodextrin (β-CD) in the network. The spin probes used, 5- and 7-doxyl-stearic acids (5-DSA, 7-DSA) or 4-(N,N'-dimethyl-N-hexadecyl)ammonium-2,2',6,6'-tetramethylpiperidine-1-oxyl iodide (CAT16), present similar, fatty acid-like structural features. Their continuous wave electron paramagnetic resonance (CW-EPR) spectra, however, reflect different dynamics when complexed with BSA: a restricted motion for 5-DSA, almost nonsensitive to the heating/cooling cycle, and a faster temperature-dependent dynamic motion for CAT16. Molecular docking allows us to rationalize these results by revealing the different binding modes of 5-DSA and CAT16. The EPR data on the temperature effect on BSA are supported by circular dichroism results projecting recovery, upon cooling, of the initial binding ability of BSA for samples heated to 323 K. The interactions occurring in BSA/SDS/β-CD systems are investigated by CW-EPR and FT-ESEEM spectroscopies. It is found that the covalent gel containing β-CD can efficiently remove SDS from the BSA/SDS complex. The gel is not permeable to BSA but it can encapsulate SDS, thus yielding the free protein in solution and allowing recovery of the native protein conformation. Collectively, the accrued knowledge supports potential applications in protein purification biotechnological processes. PMID:25185116

  17. Study on the interaction between isoniazid and bovine serum albumin by fluorescence spectroscopy: the effect of dimethylsulfoxide.

    PubMed

    Markarian, Shiraz A; Aznauryan, Mikayel G

    2012-07-01

    The investigation of the binding between isoniazid (or isonicotinic acid hydrazide, INH) and serum albumin is of crucial importance to reveal the reason of resistant Mycobacterium tuberculosis strains towards INH and to increase the anti-tuberculous activity of INH. The interaction between INH and bovine serum albumin (BSA) was studied by fluorescence, UV and FT-IR spectroscopy methods. The analysis of the emission quenching at different temperatures revealed that the quenching mechanism corresponds to a static process and, as consequence; a complex INH-BSA is formed. The modified Stern-Volmer quenching constant K (a) and the corresponding thermodynamic parameters ΔH, ΔG and ΔS were calculated. The distance, r, between donor (BSA) and acceptor (INH) was calculated to be 2.14 nm based on Förster's non-radiative energy transfer theory (FRET). The results obtained on the basis of fluorescence study of BSA solutions at the presence of dimethylsulfoxide (DMSO) were discussed in terms of the hydration properties and competitive intermolecular interactions between BSA and solvent components. The dependence of binding constant on the concentration of added DMSO as a solvent component showed non monotonous behavior. The conformational changes of BSA and its secondary structure alterations at the presence of INH were revealed. PMID:22327779

  18. Physicochemical studies on the interaction of serum albumin with pulmonary surfactant extract in films and bulk bilayer phase.

    PubMed

    Nag, Kaushik; Vidyashankar, Sangeetha; Devraj, Ravi; Fritzen Garcia, Mauricia; Panda, Amiya K

    2010-12-15

    Functionality, structure and composition of the adsorbed films of bovine lipid extract surfactant (BLES), in the absence and presence of bovine serum albumin (BSA), at the air-buffer interface was characterized through surface tension, atomic force microscopy and time of flight secondary ion mass spectrometric methods. Gel and fluid domains of BLES films were found to be altered significantly in the presence of BSA. Differential scanning calorimetric studies on BLES dispersions in presence of BSA revealed that the perturbations of the lipid bilayer structures were significant only at higher amount of BSA. FTIR studies on the BLES dispersions in buffer solution revealed that BSA could affect the lipid head-group hydrations in bilayer as well as the methylene and methyl vibration modes of fatty acyl chains of the phospholipids present in BLES. Serum albumin could perturb the film structure at pathophysiological concentration while higher amount of BSA was required in perturbing the bilayer structures. The studies suggest a connected perturbed bilayer to monolayer transition model for surfactant inactivation at the alveolar-air interface in dysfunctional surfactants. PMID:20850129

  19. Impact of surface modification in BSA nanoparticles for uptake in cancer cells.

    PubMed

    Choi, Jin-Seok; Meghani, Nilesh

    2016-09-01

    Recent studies have shown that cellular uptake of nanoparticles are strongly affected by the presence and physicochemical characteristics of protein on the surface of these nanoparticles. Hence, We developed surface-modified bovine serum albumin (BSA) nanoparticles (NPs) and evaluated the effect of surface modification on cellular uptake in two types of cancer cells, MCF-7 and A549. BSA NPs were prepared by desolvation method and their surface was modified with apo-transferrin, hyaluronic acid, and Poly(allylamine hydrochloride) (PAH). Morphology of surface-modified BSA NPs was characterized by field emission scanning electron microscopy and differential scanning calorimetry. In vitro-fluorescence release study was performed in phosphate buffered saline with trypsin (100μL/mL (v/v)) for 24h. Confocal microscopy was performed to evaluate cellular uptake followed by fluorescence analysis to evaluate the quantitative uptake of nanoparticles at 0.5, 1, and 2h. Different types of BSA NPs with a mean size of ∼100nm were successfully prepared. In vitro-fluorescent release showed sustained release pattern in surface-modified BSA NPs compared to unmodified BSA NPs. Surface-modified BSA NPs showed more cellular internalization than unmodified BSA NPs. The uptake of PAH-BSA NPs was about 2 times higher than that of unmodified BSA NPs in both cell types. In conclusion, surface-modified BSA NPs showed enhanced cellular uptake, and PAH-BSA NPs are more effective compared to ligand-specific surface-modified BSA NPs (HA-BSA NPs and Tf-BSA NPs). PMID:27289306

  20. Magnetic hydrogel beads based on PVA/sodium alginate/laponite RD and studying their BSA adsorption.

    PubMed

    Mahdavinia, Gholam Reza; Mousanezhad, Sedigheh; Hosseinzadeh, Hamed; Darvishi, Farshad; Sabzi, Mohammad

    2016-08-20

    In this study double physically crosslinked magnetic hydrogel beads were developed by a simple method including solution mixing of sodium alginate and poly(vinyl alcohol) (PVA) containing magnetic laponite RD (Rapid Dispersion). Sodium alginate and PVA were physically crosslinked by Ca(2+) and freezing-thawing cycles, respectively. Magnetic laponite RD nanoparticles were incorporated into the system to create magnetic response and strengthen the hydrogels. All hybrids double physically crosslinked hydrogel beads were stable under different pH values without any disintegration. Furthermore, adsorption of bovine serum albumin (BSA) on the hydrogel beads was investigated on the subject of pH, ion strength, initial BSA concentration, and temperature. Nanocomposite beads exhibited maximum adsorption capacity for BSA at pH=4.5. The experimental adsorption isotherm data were well followed Langmuir model and based on this model the maximum adsorption capacity was obtained 127.3mgg(-1) at 308K. Thermodynamic parameters revealed spontaneous and monolayer adsorption of BSA on magnetic nanocomposites beads. PMID:27178944

  1. Bovine serum albumin-sodium alkyl sulfates bioconjugates as drug delivery systems.

    PubMed

    Benkő, M; Varga, N; Sebők, D; Bohus, G; Juhász, Á; Dékány, I

    2015-06-01

    Precipitation of bovine serum albumin (BSA) by anionic surfactants with alkyl chains of increasing lengths (octyl, decyl, dodecyl sulfates) was studied at room temperature, at pH 3.0, in isotonic sodium chloride solution. The particle size of albumin, the zeta potential, the surface charge and fluorescent properties of BSA-surfactant composites were investigated concerning addition of increasing amount of surfactant. The thermal stability of the systems was monitored by calorimetric analysis (DSC). The formation of the well-ordered structure in the self-assembly process in liquid phase was studied by XRD measurement. The structure of the precipitated BSA-surfactant nanocomposites was characterized by small-angle X-ray scattering (SAXS). Finally, ibuprofen (IBU) molecules were enclosed in BSA-surfactant bioconjugate systems and the release properties of the drug were investigated. It has been found out that, as a consequence to the increasing number of carbon atoms in the alkyl chains of the surfactant, the structure and the fluorescent properties of the aggregates formed can be controlled due to the increase in the hydrophobicity of BSA-surfactant composites. The bioconjugates are well applicable as carrier to realize controlled release of drug molecules. PMID:25935562

  2. Study of the interaction of C60 fullerene with human serum albumin in aqueous solution

    SciTech Connect

    Li, Song; Zhao, Xiongce; Mo, Yiming; Cummings, Peter T; Heller, William T

    2013-01-01

    Concern about the toxicity of engineered nanoparticles, such as the prototypical nanomaterial C60 fullerene, continues to grow. While evidence continues to mount that C60 and its derivatives may pose health hazards, the specific molecular interactions of these particles with biological macromolecules require further investigation. To better understand the interaction of C60 with proteins, the protein human serum albumin (HSA) was studied in solution with C60 at C60:HSA molar ratios ranging from 1:2 to 4:1. HSA is the major protein component of blood plasma and plays a role in a variety of functions, such as the maintenance of blood pH and pressure. The C60-HSA interaction was probed by a combination of circular dichroism (CD) spectroscopy, small-angle neutron scattering (SANS) and atomistic molecular dynamics (MD) simulations to understand C60-driven changes in the structure of HSA in solution. The CD spectroscopy demonstrates that the secondary structure of the protein decreases in -helical content in response to the presence of C60. Similarly, C60 produces subtle changes in the solution conformation of HSA, as evidenced by the SANS data and MD. The data do not indicate that C60 is causing a change in the oligomerization state of the protein. Taken together results demonstrate that C60 interacts with HSA, but it does not strongly perturb the structure of the protein by unfolding it or inducing aggregation, suggesting a mechanism for transporting C60 throughout the body to accumulate in various tissues.

  3. Controlled delivery of bovine serum albumin from carboxymethyl xanthan microparticles.

    PubMed

    Maiti, Sabyasachi; Ray, Somasree; Sa, Biswanath

    2009-01-01

    Bovine serum albumin (BSA)-loaded carboxymethyl xanthan (CMX) microparticles were prepared following gelation of sodium carboxymethyl xanthan (SCMX) gum with different concentrations (1-5%) of aluminium chloride (AlCl3). The microparticles prepared using 1% AlCl3 were subsequently coated with 0.5% aqueous solution of either SCMX gum or sodium alginate. Both uncoated and coated microparticles were characterized for entrapment efficiency, surface morphology, particle size, in vitro release and protein stability. The uncoated microparticles became non-spherical and the mean diameter was found to increase with increasing AlCl3 concentration. Higher concentration of AlCl3 decreased BSA entrapment efficiency of the uncoated microparticles from 86-61%. Furthermore, BSA entrapment in coated microparticles was found lower (78-79%) than uncoated microparticles prepared using 1% AlCl3. Although, the uncoated microparticles released almost half of its content in NaCl-HCl buffer solution (pH 1.2) in 2 h, the alginate and xanthan coated microparticles did not liberate a substantial amount of entrapped protein within the same period and prolonged the release in PBS solution (pH 7.4) up to 10 and 12 h, respectively. The microparticles released the protein via diffusion and swelling of the polymer matrix. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that BSA integrity was well retained in the CMX microparticles. PMID:19562833

  4. Production of BSA-loaded alginate microcapsules: influence of spray dryer parameters on the microcapsule characteristics and BSA release.

    PubMed

    Benchabane, Samir; Subirade, Muriel; Vandenberg, Grant W

    2007-09-01

    The aim of this study was to optimize the production of BSA-loaded alginate microcapsules by spray drying and to study the release of bovine serum albumin fraction V (BSA) under gastric simulated conditions. Microcapsule yield, BSA release, microcapsule size and size distribution were characterized following the application of different production parameters including inlet air temperature, inlet air pressure and liquid feed rate. The microcapsules were incubated in 0.1 N HCl and BSA release was quantified over time. The yields were higher with the pressure of 3 bar compared to 4 bar and with a feed rate of 0.45 vs. 0.2 ml s(-1). A high feed rate (0.45 vs. 0.2 ml s(-1)) allows one to obtain microcapsules with a low BSA release (p = 0.0327). The increase of the atomizer inlet temperature leads to microcapsules with a higher BSA release (p = 0.0230). A higher air pressure of 4 bar compared to 3 bar resulted in a lower microcapsule size (2.55 vs. 2.80 microm) and led to a narrower size distribution (0.92 vs. 1.07). In conclusion, the spray dryer parameters influenced the alginate microcapsule characteristics as well as subsequent protein release into a simulated gastric medium. PMID:17654176

  5. Protections of bovine serum albumin protein from damage on functionalized graphene-based electrodes by flavonoids.

    PubMed

    Sun, Bolu; Gou, Yuqiang; Xue, Zhiyuan; Zheng, Xiaoping; Ma, Yuling; Hu, Fangdi; Zhao, Wanghong

    2016-05-01

    A sensitive electrochemical sensor based on bovine serum albumin (BSA)/poly (diallyldimethylammonium chloride) (PDDA) functionalized graphene nanosheets (PDDA-G) composite film modified glassy carbon electrode (BSA/PDDA-G/GCE) had been developed to investigate the oxidative protein damage and protections of protein from damage by flavonoids. The performance of this sensor was remarkably improved due to excellent electrical conductivity, strong adsorptive ability, and large effective surface area of PDDA-G. The BSA/PDDA-G/GCE displayed the greatest degree of BSA oxidation damage at 40min incubation time and in the pH5.0 Fenton reagent system (12.5mM FeSO4, 50mM H2O2). The antioxidant activities of four flavonoids had been compared by fabricated sensor based on the relative peak current ratio of SWV, because flavonoids prevented BSA damage caused by Fenton reagent and affected the BSA signal in a solution containing Co(bpy)3(3+). The sensor was characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM). UV-vis spectrophotometry and FTIR were also used to investigate the generation of hydroxyl radical and BSA damage, respectively. On the basis of results from electrochemical methods, the order of the antioxidant activities of flavonoids is as follows: (+)-catechin>kaempferol>apigenin>naringenin. A novel, direct SWV analytical method for detection of BSA damage and assessment of the antioxidant activities of four flavonoids was developed and this electrochemical method provided a simple, inexpensive and rapid detection of BSA damage and evaluation of the antioxidant activities of samples. PMID:26952415

  6. Highly sensitive detection of bovine serum albumin based on the aggregation of triangular silver nanoplates

    NASA Astrophysics Data System (ADS)

    Zhang, Ling Ling; Ma, Fang Fang; Kuang, Yang Fang; Cheng, Shu; Long, Yun Fei; Xiao, Qiu Guo

    2016-02-01

    A simple, fast and highly sensitive spectrophotometric method for the determination of bovine serum albumin (BSA) has been developed based on the interactions between triangular silver nanoplates (TAgNPs) and BSA in the presence of Britton-Robison buffer solution (BR). Particularly, the wavelength of absorption maximum (λmax) of TAgNPs is red shifted in the presence of BSA together with Britton-Robinson buffer solution (BR, pH = 2.56), and the color of the solution changed from blue to light blue. This may be due to the interactions between BSA molecules on the surface of TAgNPs through electrostatic forces, hydrogen bonds, hydrophobic effects and van der Waals forces at pH 2.56, which leads to the aggregation of TAgNPs. The determination of BSA was achieved by measuring the change of λmax corresponding to localized surface plasmon resonance (LSPR) from UV-visible spectrophotometry. It was found that the shift value in the wavelength of absorption maximum (Δλ, the difference in absorption maxima of the TAgNPs/BSA/BR mixture and the TAgNPs/BR mixture) was proportionate to the concentration of BSA in the range of 1.0 ng mL- 1 to 100.0 ng mL- 1 with the correlation coefficient of r = 0.9969. The detection limit (3 σ/k) for BSA was found to be as low as 0.5 ng mL- 1.

  7. Enhanced tumor delivery and antitumor response of doxorubicin-loaded albumin nanoparticles formulated based on a Schiff base.

    PubMed

    Li, Fang; Zheng, Chunli; Xin, Junbo; Chen, Fangcheng; Ling, Hua; Sun, Linlin; Webster, Thomas J; Ming, Xin; Liu, Jianping

    2016-01-01

    A novel method was developed here to prepare albumin-based nanoparticles (NPs) for improving the therapeutic and safety profiles of chemotherapeutic agents. This approach involved crosslinking bovine serum albumin (BSA) using a Schiff base-containing vanillin, into NPs and loading doxorubicin (DOX) into the NPs by incubation. The resultant NPs (DOX-BSA-V-NPs) displayed a particle size of 100.5±1.3 nm with a zeta potential of -23.05±1.45 mV and also showed high drug-loading efficiency and excellent stability with respect to storage and temperature. The encapsulation of DOX into the BSA-V-NPs was confirmed by dynamic scanning calorimetry and Raman spectroscopy. DOX-BSA-V-NPs exhibited a significantly faster DOX release at pH 6.5 than pH 7.4, as well as in a solution with a higher glutathione concentration. In vitro studies showed that the cellular uptake of DOX-BSA-V-NPs was time-dependent, concentration-dependent, and faster than free DOX, while the cytotoxicity of DOX-BSA-V-NPs (IC50 value of 3.693 μg/mL) was superior to free DOX (IC50 value of 4.007 μg/mL). More importantly, DOX-BSA-V-NPs showed a longer mean survival time of 24.83 days, a higher tumor inhibition rate of 56.66%, and a decreased distribution in the heart than other DOX formulations in animal studies using a tumor xenograft model. Thus, the vanillin-based albumin NPs were shown here to be a promising carrier for tumor-targeted delivery of chemotherapeutic agents and, thus, should be further studied. PMID:27574421

  8. Enhanced tumor delivery and antitumor response of doxorubicin-loaded albumin nanoparticles formulated based on a Schiff base

    PubMed Central

    Li, Fang; Zheng, Chunli; Xin, Junbo; Chen, Fangcheng; Ling, Hua; Sun, Linlin; Webster, Thomas J; Ming, Xin; Liu, Jianping

    2016-01-01

    A novel method was developed here to prepare albumin-based nanoparticles (NPs) for improving the therapeutic and safety profiles of chemotherapeutic agents. This approach involved crosslinking bovine serum albumin (BSA) using a Schiff base-containing vanillin, into NPs and loading doxorubicin (DOX) into the NPs by incubation. The resultant NPs (DOX-BSA-V-NPs) displayed a particle size of 100.5±1.3 nm with a zeta potential of −23.05±1.45 mV and also showed high drug-loading efficiency and excellent stability with respect to storage and temperature. The encapsulation of DOX into the BSA-V-NPs was confirmed by dynamic scanning calorimetry and Raman spectroscopy. DOX-BSA-V-NPs exhibited a significantly faster DOX release at pH 6.5 than pH 7.4, as well as in a solution with a higher glutathione concentration. In vitro studies showed that the cellular uptake of DOX-BSA-V-NPs was time-dependent, concentration-dependent, and faster than free DOX, while the cytotoxicity of DOX-BSA-V-NPs (IC50 value of 3.693 μg/mL) was superior to free DOX (IC50 value of 4.007 μg/mL). More importantly, DOX-BSA-V-NPs showed a longer mean survival time of 24.83 days, a higher tumor inhibition rate of 56.66%, and a decreased distribution in the heart than other DOX formulations in animal studies using a tumor xenograft model. Thus, the vanillin-based albumin NPs were shown here to be a promising carrier for tumor-targeted delivery of chemotherapeutic agents and, thus, should be further studied. PMID:27574421

  9. Comparison of low molecular weight hydroxyethyl starch and human albumin as priming solutions in children undergoing cardiac surgery.

    PubMed

    Miao, Na; Yang, Jing; Du, Zhongtao; Liu, Wei; Ni, Hong; Xing, Jialin; Yang, Xiaofang; Xu, Bo; Hou, Xiaotong

    2014-09-01

    Human albumin is the conventional cardiopulmonary bypass circuit primer. However, it has high manufacturing costs. Crystalloid and colloid solutions have been developed as alternatives, including a new generation of non-ionic hydroxyethyl starch (HES). The efficacy of hydroxyethyl starch with a 130 molecular weight and substitution degree of 0.4 (hydroxyethyl starch 130/0.4) was compared with human albumin for use in cardiopulmonary bypass surgery in American Society of Anesthesiologists' grade I-II pediatric congenital heart disease patients. Efficacy was evaluated by comparing perioperative hemodynamic parameters, including plasma colloid osmotic pressure, renal function, blood loss, allogeneic blood volumes and plasma volume substitution. The hydroxyethyl starch group exhibited significantly higher preoperative colloid osmotic pressure (p<0.01) and significantly lower operative renal function and postoperative allogeneic blood volumes than the human albumin group. No significant differences were observed in serum creatinine, glucose, hematocrit or lactic acid levels (p>0.05). Our results indicate that hydroxyethyl starch may be a viable alternative to human albumin in pediatric patients undergoing relatively simple cardiopulmonary bypass surgeries. PMID:24658707

  10. [Intermolecular Interactions between Cytisine and Bovine Serum Albumin A Synchronous Fluorescence Spectroscopic Analysis and Molecular Docking Research].

    PubMed

    Wu, Yu-hang; Han, Zhong-bao; Ma, Jia-ze; He, Yan; Liu, Li-yan; Xin, Shi-gang; Yu, Zhan

    2016-03-01

    Cytisine (Cy) is one of the alkaloids that exist naturally in the plant genera Laburnum of the family Fabaceae. With strong bioactivities, Cy is commercialized for smoking cessation for years. In this work, the study of intermolecular interactions between Cy and bovine serum albumin (BSA) was performed by applying fluorescence spectroscopic methods under simulated physiological conditions. The mechanism of fluorescence quenching of BSA by Cy was also studied. Parameters such as bathing temperature, time and solution pH were investigated to optimize the fluorescence quenching. The binding type, binding ratio and binding constant between BSA and Cy were calculated by using the Stem-Volmer equation. Experimental results indicated that Cy can quench the fluorescent emission of BSA statically by forming a 1 : 1 type non-covalent complex and the binding constant is 5.6 x 10(3) L x mol(-1). Synchronous fluorescence spectral research shows Cy may affect the fluorescence emission of Trp residues of BSA. Furthermore, molecular docking is utilized to model the complex and probe the plausible quenching mechanism. It can be noted that the hydrogen bindings and hydrophobic interactions between Cy and BSA change the micro-environment of Trp213, which leads to the fluorescence quenching of BSA. PMID:27400521

  11. Albumin microspheres for oral delivery of iron.

    PubMed

    Shivakumar, H N; Vaka, Siva Ram Kiran; Murthy, S Narasimha

    2010-01-01

    Bovine serum albumin (BSA) microspheres of ferric pyrophosphate (FPP) intended for passive targeting to the Peyer's patches has been proposed for oral iron supplementation. Microspheres prepared by emulsification chemical cross linking method were characterized for surface topography, entrapment efficiency, particle size, particle charge and in vitro drug release. Microspheres of batch C with FPP to BSA ratio of 1:5 were found to be most suitable for targeting as they exhibited high entrapment (83.88 +/- 4.31), high monodispersity (span = 1.24 +/- 0.01), and least particle size (d(vm) = 4.40 +/- 0.01). In addition the amount of iron retained in these microspheres despite exposure to simulated gastrointestinal conditions for 5 h was found to be 83.72 +/- 4.22%, the highest in the three batches. The in vivo serum iron profiles in normal rats following oral administration displayed a reduced T(max) (2 h), elevated C(max) (106.06 +/- 12.18 mug/dL) and increased AUC (0-16 h) (647.44 +/- 52.33 mug.h/dL) for these microspheres which significantly differed (P <0.05) from FPP solution indicating a higher iron repletion potential of the BSA microspheres. PMID:19635031

  12. A novel method for determination of aflatoxin B1 mediated by FCLA + BSA

    NASA Astrophysics Data System (ADS)

    Chen, WenLi; Xing, Da

    2005-02-01

    As a chemiluminescence (CL) probe, 3,7-dihydro-6-{4-{2-(N"-(5-fluoresceinyl) thioureido)ethoxy}phenyl}-2-met -hylimi-dazo{1,2-a}pyrazin-3-one dosium salt (FCLA) can sensitively and specifically react with singlet oxygen (1O2 ) and superoxide(O2""). BSA (Bovine Serum Albumin) can enlarge the CL intensity of FCLA to 860%. This report presents a novel method for determination of Aflatoxin B1 (AfB1) mediated by FCLA+BSA. The concentration of AFB1 showed an obvious positive correlation with the CL intensity mediated by FCLA+BSA. This method could measure accurately ng/ml of AfB1 concentration. At the same time, the fluorescence spectrum of FCLA+BSA and FCLA+BSA+AfB1 were measured respectively, which showed that the fluorescence intensity of FCLA+BSA+AfB1 was higher than FCLA+BSA. Comparing the peak value of FCLA, FCLA+BSA and FCLA+BSA+AfB1 had a 6nm Einstein shift (red shift). The study suggested that CL method mediated by FCLA+BSA might be applicable to the determination of AfB1 concentration.

  13. Decoration of heparin and bovine serum albumin on polysulfone membrane assisted via polydopamine strategy for hemodialysis.

    PubMed

    Xie, Bingwu; Zhang, Ranran; Zhang, Huan; Xu, Anxiu; Deng, Yi; Lv, Yalin; Deng, Feng; Wei, Shicheng

    2016-06-01

    Renal failure brings about abnormality of waste and toxins and deposition in the body. In clinic, the waste and toxins in vitro are eliminated by hemodialysis device with polysulfone (PSF) porous membranes. In the work, decoration of heparin (Hep) and bovine serum albumin (BSA) on PSF membranes would be beneficial to improve the hemocompatibility and reduce the anaphylatoxin formation during hemodialysis. The PSF porous membranes are surface-modified by simply dipping them into dopamine aqueous solution for 8 h. Then, Hep and BSA are immobilized covalently onto the resultant membrane. Attenuated total reflectance Fourier transform infrared spectra (ATR-FTIR) confirms that Hep and BSA are successfully introduced onto the surface of PSF membranes. Scanning electronic microscopy (SEM) and atomic force microscopy (AFM) display the changes of surface morphologies after modification. The result of water contact angle measurement shows that the hydrophilicity of PSF membranes is remarkably improved after coating polydopamine (pDA) and binding Hep and BSA. The experiments of hemocompatibility indicate that Hep and BSA grafted onto membranes suppress the adhesion of platelet and enhance the anticoagulation ability of PSF membranes. Furthermore, the protein adsorption tests reveal that Hep and BSA immobilized onto membranes depress the protein absorption and develop antifouling-protein ability of pristine membrane. This study proves a convenient and simple approach to graft two functional organic polymers which, respectively, play a vital role and then improve the hemocompatibility and biocompatibility of PSF membranes for their biomedical and blood-contacting applications. PMID:27018964

  14. The interaction between 4-aminoantipyrine and bovine serum albumin: multiple spectroscopic and molecular docking investigations.

    PubMed

    Teng, Yue; Liu, Rutao; Li, Chao; Xia, Qing; Zhang, Pengjun

    2011-06-15

    4-Aminoantipyrine (AAP) is widely used in the pharmaceutical industry, in biochemical experiments and in environmental monitoring. AAP as an aromatic pollutant in the environment poses a great threat to human health. To evaluate the toxicity of AAP at the protein level, the effects of AAP on bovine serum albumin (BSA) were investigated by multiple spectroscopic techniques and molecular modeling. After the inner filter effect was eliminated, the experimental results showed that AAP effectively quenched the intrinsic fluorescence of BSA via static quenching. The number of binding sites, the binding constant, the thermodynamic parameters and binding subdomain were measured, and indicated that AAP could spontaneously bind with BSA on subdomain IIIA through electrostatic forces. Molecular docking results revealed that AAP interacted with the Glu 488 and Glu 502 residues of BSA. Furthermore, the conformation of BSA was demonstrably changed in the presence of AAP. The skeletal structure of BSA loosened, exposing internal hydrophobic aromatic ring amino acids and peptide strands to the solution. PMID:21497437

  15. The transport of albumin across the ferret in vitro whole trachea.

    PubMed Central

    Webber, S E; Widdicombe, J G

    1989-01-01

    1. The whole trachea of the ferret has been isolated in vitro in an organ bath and used to study the transport of bovine serum albumin (BSA) and two dextrans (70,000 and 9000 Da) from external buffer solution to air-filled lumen, assessed by fluorescent-labelled tracers. 2. In control conditions, when mucus secretion was not stimulated by drugs, the concentration of albumin in the lumen was over half that in the buffer, and about six times greater than those of the two dextrans. 3. Methacholine and phenylephrine caused large increases in mucus secretion and albumin output and decreases in albumin concentration. The responses were proportional to drug concentration. We concluded that albumin output is increased but diluted with submucosal gland secretion. 4. Salbutamol caused a small increase in mucus secretion and large increases in output and concentration of albumin. The concentration of albumin became greater than that in the external buffer medium. The responses were proportional to concentration of salbutamol. 5. Histamine increased mucus secretion and albumin output and concentration. 6. None of the four drugs increased the output of dextran-70,000. Methacholine and phenylephrine increased the output of dextran-9000, but to a far less extent than for albumin. 7. Cooling the trachea and buffer to 4 degrees C almost abolished the stimulation of mucus and albumin outputs due to methacholine. 8. Increasing the concentration of albumin external to the trachea did not proportionally increase albumin secretion, the logarithmic relationship suggesting saturation of an active transport system. 9. We conclude that albumin is secreted by active transport into the tracheal lumen, and that the rate of transport can be augmented by salbutamol to build up a higher concentration in the lumen than in the external buffer. Images Fig. 7 PMID:2476558

  16. Effect of zeta potentials on bovine serum albumin adsorption to hydroxyapatite surfaces.

    PubMed

    Miyake, Nahoko; Sato, Toru; Maki, Yoshinobu

    2013-01-01

    The aim of the present study was to examine the adsorption of bovine serum albumin (BSA) to hydroxyapatite surfaces by means of zeta potential. The electrophoretic mobility of both hydroxyapatite and BSA were negative, with BSA itself less negative than hydroxyapatite. The zeta potential of the surface of BSA-adsorbed hydroxyapatite was significantly more negative than that of hydroxyapatite alone (p<0.0001). The BSA histogram indicated two negative peaks, and the zeta potential of BSA-adsorbed hydroxyapatite also showed two similar negative peaks. These results suggest that BSA adsorption to hydroxyapatite surfaces is related to electrostatic interaction. PMID:23903580

  17. Highly sensitive bovine serum albumin biosensor based on liquid crystal

    NASA Astrophysics Data System (ADS)

    Sharma, Vikash; Kumar, Ajay; Ganguly, Prasun; Biradar, A. M.

    2014-01-01

    A highly sensitive liquid crystal (LC) based bovine serum albumin (BSA) protein biosensor is designed. A uniform homeotropic alignment of nematic LC was observed in BSA free substrate which changed into homogeneous in presence of BSA. The change in the LC orientation is found to depend strongly on BSA concentration. This change in the LC alignment is attributed to the modification in the surface conditions which is verified by contact angle measurements. We have detected an ultra low concentration (0.5 μg/ml) of BSA. The present study demonstrates the utilization of LC in the realization of high sensitivity biosensors.

  18. The role of colloid particles in the albumin-lanthanides interaction: The study of aggregation mechanisms.

    PubMed

    Tikhonova, Tatiana N; Shirshin, Evgeny A; Romanchuk, Anna Yu; Fadeev, Victor V

    2016-10-01

    We studied the interaction between bovine serum albumin (BSA) and lanthanide ions in aqueous solution in the 4.0÷9.5pH range. A strong increase of the solution turbidity was observed at pH values exceeding 6, which corresponds to the formation of Ln(OH)3 nanoparticles, while no changes were observed near the isoelectric point of BSA (pH 4.7). The results of the dynamic light scattering and protein adsorption measurements clearly demonstrated that the observed turbidity enhancement was caused by albumin sorption on the surface of Ln(OH)3 and colloid particles bridging via adsorbed protein molecules. Upon pH increase from 4.5 to 6.5, albumin adsorption on lanthanide colloids was observed, while the following increase of pH from 6.5 to 9.5 led to protein desorption. The predominant role of the electrostatic interactions in the adsorption and desorption processes were revealed in the zeta-potential measurements. No reversibility was observed upon decreasing pH from 9.5 to 4.5 that was suggested to be due to the other interaction mechanisms present in the system. It was shown that while for all lanthanide ions the interaction mechanism with BSA was similar, its manifestation in the optical properties of the system was significantly different. This was interpreted as a consequence of the differences in lanthanides hydrolysis constants. PMID:27419645

  19. Resonance energy transfer between fluorescent BSA protected Au nanoclusters and organic fluorophores

    NASA Astrophysics Data System (ADS)

    Raut, Sangram; Rich, Ryan; Fudala, Rafal; Butler, Susan; Kokate, Rutika; Gryczynski, Zygmunt; Luchowski, Rafal; Gryczynski, Ignacy

    2013-12-01

    Bovine serum albumin (BSA) protected nanoclusters (Au and Ag) represent a group of nanomaterials that holds great promise in biophysical applications due to their unique fluorescence properties and lack of toxicity. These metal nanoclusters have utility in a variety of disciplines including catalysis, biosensing, photonics, imaging and molecular electronics. However, they suffer from several disadvantages such as low fluorescence quantum efficiency (typically near 6%) and broad emission spectrum (540 nm to 800 nm). We describe an approach to enhance the apparent brightness of BSA Au clusters by linking them with a high extinction donor organic dye pacific blue (PB). In this conjugate PB acts as a donor to BSA Au clusters and enhances its brightness by resonance energy transfer (RET). We found that the emission of BSA Au clusters can be enhanced by a magnitude of two-fold by resonance energy transfer (RET) from the high extinction donor PB, and BSA Au clusters can act as an acceptor to nanosecond lifetime organic dyes. By pumping the BSA Au clusters using a high extinction donor, one can increase the effective brightness of less bright fluorophores like BSA Au clusters. Moreover, we prepared another conjugate of BSA Au clusters with the near infrared (NIR) dye Dylight 750 (Dy750), where BSA Au clusters act as a donor to Dy750. We observed that BSA Au clusters can function as a donor, showing 46% transfer efficiency to the NIR dye Dy750 with a long lifetime component in the acceptor decay through RET. Such RET-based probes can be used to prevent the problems of a broad emission spectrum associated with the BSA Au clusters. Moreover, transferring energy from BSA Au clusters to Dy750 will result in a RET probe with a narrow emission spectrum and long lifetime component which can be utilized in imaging applications.Bovine serum albumin (BSA) protected nanoclusters (Au and Ag) represent a group of nanomaterials that holds great promise in biophysical applications due to

  20. Human albumin solution for patients with cirrhosis and acute on chronic liver failure: Beyond simple volume expansion.

    PubMed

    Valerio, Christopher; Theocharidou, Eleni; Davenport, Andrew; Agarwal, Banwari

    2016-03-01

    To provide an overview of the properties of human serum albumin (HSA), and to review the evidence for the use of human albumin solution (HAS) in critical illness, sepsis and cirrhosis. A MEDLINE search was performed using the terms "human albumin", "critical illness", "sepsis" and "cirrhosis". The references of retrieved articles were reviewed manually. Studies published between 1980 and 2014 were selected based on quality criteria. Data extraction was performed by all authors. HSA is the main plasma protein contributing greatly to its oncotic pressure. HSA demonstrates important binding properties for endogenous and exogenous toxins, drugs and drug metabolites that account for its anti-oxidant and anti-inflammatory properties. In disease states, hypoalbuminaemia is secondary to decreased HSA production, increased loss or transcapillary leakage into the interstitial space. HSA function can be also altered in disease with reduced albumin binding capacity and increased production of modified isoforms. HAS has been used as volume expander in critical illness, but received criticism due to cost and concerns regarding safety. More recent studies confirmed the safety of HAS, but failed to show any survival benefit compared to the cheaper crystalloid fluids, therefore limiting its use. On the contrary, in cirrhosis there is robust data to support the efficacy of HAS for the prevention of circulatory dysfunction post-large volume paracentesis and in the context of spontaneous bacterial peritonitis, and for the treatment of hepato-renal syndrome and hypervolaemic hyponatraemia. It is likely that not only the oncotic properties of HAS are beneficial in cirrhosis, but also its functional properties, as HAS replaces the dysfunctional HSA. The role of HAS as the resuscitation fluid of choice in critically ill patients with cirrhosis, beyond the established indications for HAS use, should be addressed in future studies. PMID:26981172

  1. Choline-induced selective fluorescence quenching of acetylcholinesterase conjugated Au@BSA clusters.

    PubMed

    Mathew, Meegle S; Baksi, Ananya; Pradeep, T; Joseph, Kuruvilla

    2016-07-15

    We have developed a highly selective sensitive fluorescent detection of acetylcholine (ACh) using bovine serum albumin (BSA) protected atomically precise clusters of gold. The gold quantum clusters (AuQC@BSA) synthesized using bovine serum albumin and conjugated with acetylcholinesterase (AChE), an enzyme specific for acetylcholine, resulting in AuQC@BSA-AChE. The enzyme, AChE hydrolyzes acetylcholine (ACh) to choline (Ch) which in turn interacts with AuQC@BSA-AChE and quenches its fluorescence, enabling sensing. We have carried out the real time monitoring of the hydrolysis of ACh using electrospray ionization mass spectrometry (ESI MS) to find out the mechanism of fluorescent quenching. The validity of present method for determination of concentration of acetylcholine in real system such as blood was demonstrated. Further, the sensor, AuQC@BSA-AChE can be easily coated on paper and an efficient and cheap sensor can be developed and detection limit for ACh is found to be 10nM. The fluorescent intensity of AuQC@BSA-AChE is sensitive towards acetylcholine in range of 10nM to 6.4µM. This suggests that AuQC@BSA-AChE has an excellent potential to be used for diagnosis of various neuropsychological and neuropsychiatric disorders. PMID:26921554

  2. A selective, long-lived deep-red emissive ruthenium(II) polypyridine complexes for the detection of BSA

    NASA Astrophysics Data System (ADS)

    Babu, Eththilu; Muthu Mareeswaran, Paulpandian; Singaravadivel, Subramanian; Bhuvaneswari, Jayaraman; Rajagopal, Seenivasan

    2014-09-01

    A selective, label free luminescence sensor for bovine serum albumin (BSA) is investigated using ruthenium(II) complexes over the other proteins. Interaction between BSA and ruthenium(II) complexes has been studied using absorption, emission, excited state lifetime and circular dichroism (CD) spectral techniques. The luminescence intensity of ruthenium(II) complexes (I and II), has enhanced at 602 and 613 nm with a large hypsochromic shift of 18 and 5 nm respectively upon addition of BSA. The mode of binding of ruthenium(II) complexes with BSA has analyzed using computational docking studies.

  3. Synthesis and Characterization of BSA Conjugated Silver Nanoparticles (Ag/BSA Nanoparticles) and Evaluation of Biological Properties of Ag/BSA Nanoparticles and Ag/BSA Nanoparticles Loaded Poly(hydroxy butyrate valerate) PHBV Films

    NASA Astrophysics Data System (ADS)

    Ambaye, Almaz

    Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa are the etiological agents of several infectious diseases. Antibiotic resistance by these three microbes has emerged as a prevalent problem due in part to the misuse of existing antibiotics and the lack of novel antibiotics. Nanoparticles have emerged as an alternative antibacterial agents to conventional antibiotics owing to their high surface area to volume ratio and their unique chemical and physical properties. Among the nanoparticles, silver nanoparticles have gained increasing attention because silver nanoparticles exhibit antibacterial activity against a range of gram positive and gram negative bacteria. Nanoparticles of well-defined chemistry and morphology can be used in broad biomedical applications, especially in bone tissue engineering applications, where bone infection by bacteria can be acute and lethal. It is commonly noted in the literature that the activity of nanoparticles against microorganisms is dependent upon the size and concentration of the nanoparticles as well as the chemistry of stabilizing agent. To the best of our knowledge, a comprehensive study that evaluates the antibacterial activity of well characterized silver nanoparticles in particular Bovine Serum Albumin (BSA) stabilized against S. aureus and E. coli and cytotoxicity level of BSA stabilized silver nanoparticles towards osteoblast cells (MC3T3-E1) is currently lacking. Therefore, the primary objective of this study was to characterize protein conjugated silver nanoparticles prepared by chemical reduction of AgNO3 and BSA mixture. The formation of Ag/BSA nanoparticles was studied by UV-Vis spectroscopy. The molar ratio of silver to BSA in the Ag/BSA nanoparticles was established to be 27+/- 3: 1, based on Thermogravimetric Analysis and Atomic Absorption Spectroscopy. Based on atomic force microscopy, dynamic light scattering,and transmission electron microscopy(TEM) measurements, the particle size (diameter) of

  4. Study of the dielectric function of aqueous solutions of glucose and albumin by THz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Nazarov, M. M.; Cherkasova, O. P.; Shkurinov, A. P.

    2016-06-01

    We report a study of aqueous solutions of glucose and bovine serum albumin using THz time-domain spectroscopy. To describe the permittivity of the solutions of these substances, we use a simplified model being applicable in the frequency range of 0.05 – 2.7 THz. On the assumption that most of the water molecules become bound at high concentrations of glucose and protein in the solution, the changes in water characteristics are investigated. To improve the reliability of the results, the measurements are performed by two independent methods: the method of attenuated total internal reflection and the transmission method. Combination of the results obtained by these two methods allows expanding the spectral range towards lower frequencies.

  5. Binding of several benzodiazepines to bovine serum albumin: Fluorescence study

    NASA Astrophysics Data System (ADS)

    Machicote, Roberta G.; Pacheco, María E.; Bruzzone, Liliana

    2010-10-01

    The interactions of lorazepam, oxazepam and bromazepam with bovine serum albumin (BSA) were studied by fluorescence spectrometry. The Stern-Volmer quenching constants and corresponding thermodynamic parameters Δ H, Δ G and Δ S were calculated. The binding constants and the number of binding sites were also investigated. The distances between the donor (BSA) and the acceptors (benzodiazepines) were obtained according to fluorescence resonance energy transfer and conformational changes of BSA were observed from synchronous fluorescence spectra.

  6. Solution structure of a methionine-rich 2S albumin from sunflower seeds: relationship to its allergenic and emulsifying properties.

    PubMed

    Pantoja-Uceda, David; Shewry, Peter R; Bruix, Marta; Tatham, Arthur S; Santoro, Jorge; Rico, Manuel

    2004-06-01

    The three-dimensional structure in aqueous solution of SFA-8, a 2S albumin 103-residue protein from seeds of sunflower (Helianthus anuus L.), has been determined by NMR methods. An almost complete (1)H resonance assignment was accomplished from analysis of two-dimensional (2D) COSY and 2D TOCSY spectra, and the structure was computed by using restrained molecular dynamics on the basis of 1393 upper limit distance constraints derived from NOE cross-correlation intensities measured in 2D NOESY spectra. In contrast with most other 2S albumins, SFA-8 consists of a single polypeptide chain without any cleavage in the segment of residues 30-46. The computed structures exhibited an rmsd radius of 0.52 A for the backbone structural core (residues 11-30 and 46-101) and 1.01 A for the side chain heavy atoms. The resulting structure consists of five amphipathic helices arranged in a right-handed superhelix, a folding motif first observed in nonspecific lipid transfer (nsLTP) proteins, and common to other 2S albumins. In contrast to nsLTP proteins, neither SFA-8 nor RicC3 (a 2S albumin from castor bean) has an internal cavity that is able to host a lipid molecule, which results from an exchange in the pairing of disulfide bridges in the CXC segment. Both 2S albumins and nonspecific lipid transfer proteins belong to the prolamin superfamily, which includes a number of important food allergens. Differences in the extension and solvent exposition of the so-called "hypervariable loop" (which connects helices III and IV) in SFA-8 and RicC3 may be responsible for the different allergenic properties of the two proteins. SFA-8 has been shown to form highly stable emulsions with oil/water mixtures. We propose that these properties may be determined partly by a hydrophobic patch at the surface of the protein which consists of five methionines that partially hide the Trp76 residue. The flexibility of the loop which contains Trp76 and the hydrophobicity of the whole environment may favor

  7. A Novel Conductive Poly(3,4-ethylenedioxythiophene)-BSA Film for the Construction of a Durable HRP Biosensor Modified with NanoAu Particles

    PubMed Central

    Xu, Fangcheng; Ren, Shuaibin; Gu, Yesong

    2016-01-01

    In this study, we have investigated the contribution of bovine serum albumin (BSA) to the durability of the electrochemically synthesized poly(3,4-ethylenedioxythiophene) (PEDOT) film on a platinum (Pt) electrode. The electrode was capable to effectively adsorb the nano Au particles (AuNPs) to form a uniform layout, which was then able to immobilize the horseradish peroxidase (HRP) to construct a functional HRP/AuNPs/PEDOT(BSA)/Pt biosensor. Cyclic voltammetry was employed to evaluate the performance of the biosensor through the measurement of hydrogen peroxide. Our results revealed a satisfied linear correlation between the cathodic current and the concentration of H2O2. Furthermore, the addition of oxidized form of nicotinamide adenine dinucleotide, or NAD+, as the electron transfer mediator in the detection solution could dramatically enhance the sensitivity of detection by about 35.5%. The main advantages of the current biosensor are its durability, sensitivity, reliability, and biocompatibility. PMID:26999133

  8. The combination of mannitol and albumin in the priming solution reduces positive intraoperative fluid balance during cardiopulmonary bypass.

    PubMed

    Jenkins, I R; Curtis, A P

    1995-09-01

    During cardiopulmonary bypass (CPB) an adequate reservoir volume is maintained by the addition of crystalloid, colloid or packed cells to the reservoir. This volume contributes to the overall perioperative positive fluid balance. We studied the effect of the preoperative addition of either 75 g albumin, or 50 g mannitol followed by 50 g at commencement of rewarming or both of the above to a bypass circuit prime of lactated Ringer's solution (LR) on intraoperative fluid balance, postoperative indices of oxygenation and time to extubation. The study was a prospective, randomized, single-blinded controlled trial of 103 patients undergoing cardiac surgery requiring CPB. There was a large and highly significant reduction in volume of fluid added to the reservoir during CPB (2137 +/- 1499 ml versus 144 +/- 230 ml), the fluid balance during bypass, including prime volume (3236 +/- 650 ml versus 5876 +/- 1465 ml), and perioperative fluid balance (4470 +/- 936 ml versus 7023 +/- 1760 ml) in the group receiving both mannitol and albumin in the pump prime compared with the group receiving only lactated Ringer's solution. There were no differences between the groups with respect to both measured indices of oxygenation measured on return to ICU (alveolar-arterial oxygen tension difference (DA-aO2) or arterial oxygen tension to inspired oxygen fraction ratio (PaO2/FiO2), or time from ICU admission to extubation. PMID:8601041

  9. [Cooperative interaction of serum albumin with quaternized poly-4-vinyl pyridine and structure of the complexes].

    PubMed

    Kabanov, V A; Evdakov, V P; Mustafaev, M I; Antipina, A D

    1977-01-01

    Interaction of bovine serum albumin (BSA) with quaternized poly-4-vinyl pyridine (PE) in aqueous solutions at pH 7 was studied. It was shown that in a wide range of the ratios of the components (nBSA/nPE) soluble stable cooperative complexes were formed. At the same time a certain critical content of the protein exists at which the system loses its homogeneity. Complex formation is not accompanied by protein denaturation. At smaller nBSA/nPE ratios non-homogeneous distribution of protein globulas among polyelectrolite macromolecules was found; this corresponded to the "all or none" principle. Using ultracentrifugation technique viscosimetric measurements and electron microscopy it was shown that the soluble complexes exist in the form of rode-like particles consisting of protein globules stabilized by polycation chains. Such particle can be considered as a model of nucleoprotein complex. At certain crytical nBSA/nPE rations the rod-like particles aggregate with additional number of BSA-molecules and form more complicate soluble and insoluble cooperative complexes. Possible structural models of the complexes described were suggested and the thermodinamic and kinetic cryteria of their self-assembly were discussed. PMID:37435

  10. A comparative study of the interaction of Tamiflu and Oseltamivir carboxylate with bovine serum albumin.

    PubMed

    Vishkaee, Tahereh Sadigh; Mohajerani, Niloufar; Nafisi, Shohreh

    2013-02-01

    Oseltamivir phosphate (Tamiflu) is a pro-drug that is metabolized to its active form (Oseltamivir carboxylate), after oral administration. OC inhibits influenza A and B neuraminidases in vitro and OP inhibits influenza virus infection and replication in vitro. Serum albumin is the most abundant of the proteins in the circulatory system of a wide variety of organisms and plays an important role in the transport and deposition of many drugs. The aim of this study was to examine the interaction of BSA with Tamiflu and Oseltamivir carboxylate in aqueous solution at physiological conditions, using a constant protein concentration and various drug contents. FTIR, UV-Vis spectroscopic methods were used to determine the drugs binding mode, the binding constant and the effects of drug complexation on protein secondary structure. Structural analysis showed that OP and OC bind BSA with overall binding constants of K(OP-BSA)=1.88 (±0.16)×10(4)M(-1) and K(OC-BSA)=5.7 (±0.09)×10(2)M(-1). Drug complexation alters protein conformation by major reduction of α-helix and random coil and increase of β-sheet and turn structures that indicate a partial protein destabilization. The results suggest that BSA might act as carrier proteins for OP in delivering it to target molecules. PMID:23353784

  11. Competitive interactions between glucose and lactose with BSA: which sugar is better for children?

    PubMed

    Zhang, Qiulan; Ni, Yongnian; Kokot, Serge

    2016-04-01

    The interactions of the sugars glucose and lactose with the transport protein bovine serum albumin (BSA) were investigated using fluorescence, FT-IR and circular dichroism (CD) techniques. The results indicated that glucose could be bonded and transported by BSA, mainly involving hydrogen bonds and van der Waals interactions (ΔH = -86.13 kJ mol(-1)). The obtained fluorescence data from the binding of sugar and BSA were processed by the multivariate curve resolution-alternating least squares (MCR-ALS) method, and the extracted concentration profiles showed that the equilibrium constant, rglucose:BSA, was about 7. However, the binding of lactose to BSA did not quench the fluorescence significantly, and this indicated that lactose could not be directly transported by BSA. The binding experiments were further performed using the fluorescence titration method in the presence of calcium and BSA. Calcium was added so that the calcium/BSA reactions could be studied in the presence or absence of glucose, lactose or hydrolysis products. The results showed that hydrolyzed lactose seemed to enhance calcium absorption in bovine animals. It would also appear that for children, lactose provides better nutrition; however, glucose is better for adults. PMID:26906109

  12. Spectroscopic studies on the interaction between phycocyanin and bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Kathiravan, A.; Chandramohan, M.; Renganathan, R.; Sekar, S.

    2009-02-01

    Bluish phycocyanin was obtained from the cyanobacteria namely Spirulina sp. (marine form). The interaction between phycocyanin and bovine serum albumin (BSA) was studied by using absorption, FT-IR, steady-state, time resolved and synchronous fluorescence spectroscopy. Phycocyanin effectively quenched the intrinsic fluorescence of BSA. The number of binding sites ( n) and binding constant ( K) was measured by fluorescence quenching method. The interaction between phycocyanin and BSA occurs through static quenching and conformational changes of BSA were observed.

  13. Human albumin solution for patients with cirrhosis and acute on chronic liver failure: Beyond simple volume expansion

    PubMed Central

    Valerio, Christopher; Theocharidou, Eleni; Davenport, Andrew; Agarwal, Banwari

    2016-01-01

    To provide an overview of the properties of human serum albumin (HSA), and to review the evidence for the use of human albumin solution (HAS) in critical illness, sepsis and cirrhosis. A MEDLINE search was performed using the terms “human albumin”, “critical illness”, “sepsis” and “cirrhosis”. The references of retrieved articles were reviewed manually. Studies published between 1980 and 2014 were selected based on quality criteria. Data extraction was performed by all authors. HSA is the main plasma protein contributing greatly to its oncotic pressure. HSA demonstrates important binding properties for endogenous and exogenous toxins, drugs and drug metabolites that account for its anti-oxidant and anti-inflammatory properties. In disease states, hypoalbuminaemia is secondary to decreased HSA production, increased loss or transcapillary leakage into the interstitial space. HSA function can be also altered in disease with reduced albumin binding capacity and increased production of modified isoforms. HAS has been used as volume expander in critical illness, but received criticism due to cost and concerns regarding safety. More recent studies confirmed the safety of HAS, but failed to show any survival benefit compared to the cheaper crystalloid fluids, therefore limiting its use. On the contrary, in cirrhosis there is robust data to support the efficacy of HAS for the prevention of circulatory dysfunction post-large volume paracentesis and in the context of spontaneous bacterial peritonitis, and for the treatment of hepato-renal syndrome and hypervolaemic hyponatraemia. It is likely that not only the oncotic properties of HAS are beneficial in cirrhosis, but also its functional properties, as HAS replaces the dysfunctional HSA. The role of HAS as the resuscitation fluid of choice in critically ill patients with cirrhosis, beyond the established indications for HAS use, should be addressed in future studies. PMID:26981172

  14. Small-angle neutron scattering studies of mineralization on BSA coated citrate capped gold nanoparticles used as a model surface for membrane scaling in RO wastewater desalination.

    PubMed

    Dahdal, Y N; Pipich, V; Rapaport, H; Oren, Y; Kasher, R; Schwahn, D

    2014-12-23

    Bovine serum albumin (BSA) coated on citrate capped gold nanoparticles (BSA-GNPs) was exposed to a simulated wastewater effluent (SSE) in order to study the mineralization and thereby mimic scaling at biofouled membranes of reverse osmosis (RO) wastewater desalination plants. RO is a leading technology of achieving freshwater quality as it has the capability of removing both dissolved inorganic salts and organic contaminants from tertiary wastewater effluents. The aim was to better understand one of the major problems facing this technology which is fouling of the membranes, mainly biofouling and scaling by calcium phosphate. The experiments were performed using the small-angle neutron scattering (SANS) technique. The nanoparticles, GNPs, stabilized by the citrate groups showed 30 Å large particles having a homogeneous distribution of gold and citrate with a gold volume fraction of the order of 1%. On the average two BSA monomers are grafted at 2.4 GNPs. The exposed BSA-GNPs to SSE solution led to immediate mineralization of stable composite particles of the order of 0.2 μm diameter and a mineral volume fraction between 50% and 80%. The volume fraction of the mineral was of the order of 10(-5), which is roughly 3 times larger but an order of magnitude smaller than the maximum possible contents of respectively calcium phosphate and calcium carbonate in the SSE solution. Considering the extreme low solubility product of calcium phosphate, we suggest total calcium phosphate and partially (5-10%) calcium carbonate formation in the presence of BSA-GNPs. PMID:25458085

  15. Conformational stability of a model protein (bovine serum albumin) during primary emulsification process of PLGA microspheres synthesis.

    PubMed

    Kang, Feirong; Singh, Jagdish

    2003-07-01

    The goal of this study was to investigate the conformational stability of a model protein, bovine serum albumin (BSA), during the primary emulsification process of poly(D,L-lactide-co-glycolide) (PLGA) microspheres preparation. Differential scanning calorimeter (DSC) was utilized to assess the conformational structure of BSA during primary emulsification in the presence and absence of PLGA. Three excipients [i.e. mannitol, hydroxypropyl-beta-cyclodextrin (HP-beta-CD) and sodium dodecyl sulfate (SDS)] were investigated for their stabilizing effect on BSA during emulsification process. The DSC profile of intact BSA was best fitted by a non-2-state model with two peaks, which have midpoint temperatures (T(m1), 60.9 +/- 0.4 degrees C and T(m2), 66.4 +/- 1.0 degrees C), respectively, and a total calorimetric enthalpy Delta H(tot) of 599 +/- 42 kJ/mol. After emulsifying BSA aqueous solution with methylene chloride, an additional apparent peak at a higher temperature was observed. The T(m) of this peak was 77.4 +/- 0.8 degrees C. HP-beta-CD was able to suppress the occurrence of an additional peak, whereas mannitol failed. SDS increased the thermal stability of BSA dramatically. Furthermore, HP-beta-CD increased BSA recovery from 72 +/- 8% to 89 +/- 7% after extraction from w/o in the presence of PLGA. These results provided evidence that HP-beta-CD could be a promising excipient for conformational stability of BSA during synthesis of PLGA microspheres. PMID:12818819

  16. Production of BSA-poly(ethyl cyanoacrylate) nanoparticles as a coating material that improves wetting property

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alkyl cyanoacrylates have long been used for the synthesis of colloidal nanoparticles. In the involved polymerization reaction, OH- ions derived from dissociation of water have been used as an initiator. In the current research, an animal protein, bovine serum albumin (BSA) molecules were utilized a...

  17. Probing the interaction of trans-resveratrol with bovine serum albumin: a fluorescence quenching study with Tachiya model.

    PubMed

    Xiao, J B; Chen, X Q; Jiang, X Y; Hilczer, M; Tachiya, M

    2008-01-01

    The interaction of trans-resveratrol (TRES) and bovine serum albumin (BSA) was investigated using fluorescence spectroscopy (FS) with Tachiya model. The binding number maximum of TRES was determined to be 8.86 at 293.15 K, 23.42 at 303.15 K and 33.94 at 313.15 K and the binding mechanism analyzed in detail. The apparent binding constants (K (a)) between TRES and BSA were 5.02 x 10(4) (293.15 K), 8.89 x 10(4) (303.15 K) and 1.60 x 10(5) L mol(-1) (313.15 K), and the binding distances (r) between TRES and BSA were 2.44, 3.01, and 3.38 nm at 293.15, 303.15, and 313.15 K, respectively. The addition of TRES to BSA solution leads to the enhancement in RLS intensity, exhibiting the formation of the aggregate in solution. The negative entropy change and enthalpy change indicated that the interaction of TRES and BSA was driven mainly by van der Waals interactions and hydrogen bonds. The process of binding was a spontaneous process in which Gibbs free energy change was negative. PMID:18351302

  18. Bovine serum albumin-meloxicam nanoaggregates laden contact lenses for ophthalmic drug delivery in treatment of postcataract endophthalmitis.

    PubMed

    Zhang, Wenji; Zu, Dongni; Chen, Jianting; Peng, Junjie; Liu, Yun; Zhang, Hefeng; Li, Sanming; Pan, Weisan

    2014-11-20

    Postcataract endophthalmitis treatment through eye drops is of low corneal bioavailability and short residence time. The dominant NSAIDs therapy also suffers from severe ocular irritancy and low patients compliance. This study dispersed bovine serum albumin (BSA) coated meloxicam (MX) nanocrystals encapsulating nanoaggregates (BSA-MX-NA) in contact lenses to reduce drug ocular irritancy and increased drug release duration. The BSA-MX-NA (∼100 nm) were prepared using acid-base neutralization in aqueous solutions and were dispersed in poly(hydroxylethyl methacrylate) gels, which are common contact lens materials. Drug release studies showed that the gels released the drug for about 5 days. The proposed drug transport mechanism is a diffusion process which can be described by the Ritger-Peppas model with the diffusional exponent n of 0.4768. The drug release can be affected by the gel thickness and the cross-linking degree. A 400 micro thick gels with 100 μL cross-linker TEGDMA leads to an adequate meloxicam release for therapeutic application. The ocular irritation studies showed that BSA-MX-NA loaded p-HEMA gels are significantly less irritating to the ocular tissues as compared to marketed MX solutions. The developed contact lenses loaded with BSA-MX-NA could be very useful for extended delivery in postcataract endophthalmitis treatment. PMID:25158220

  19. Conformational changes of bovine plasma albumin prior to the salting-out of protein in concentrated salt solution.

    PubMed

    Sogami, M; Inouye, H; Nagaoka, S; Era, S

    1982-09-01

    By working at very low protein concentration (ca. 0.003%), it is possible to measure tryptophyl fluorescence intensity at 350 nm (F350) of bovine plasma albumin (BPA) as a function of pH under precipitating conditions (acidic concentrated salt solutions). Under such conditions, distinct changes in F350 were seen before the starting of precipitation of BPA and no further changes in F350 over the precipitating pH range. Comparison of pH-profiles monitored by F350 with those by solubility in the presence of various salts at various concentrations indicated that the change of solubility is observed after definite changes in conformation of the protein. PMID:7129758

  20. BSA binding and antimicrobial studies of branched polyethyleneimine-copper(II)bipyridine/phenanthroline complexes

    NASA Astrophysics Data System (ADS)

    Vignesh, Gopalaswamy; Arunachalam, Sankaralingam; Vignesh, Sivanandham; James, Rathinam Arthur

    2012-10-01

    The interaction of two water soluble branched polyethyleneimine-copper(II) complexes containing bipyridine/phenanthroline with bovine serum albumin (BSA) was studied by, UV-Visible absorption, fluorescence, lifetime measurements and circular dichroism spectroscopic techniques. The polymer-copper(II) complexes strongly quench the intrinsic fluorescence of BSA is the static quenching mechanism through hydrogen bonds and van der Waal's attraction. The distance r, between the BSA and the complexes seems to be less than 2 nm indicating that the energy transfer between the donor and acceptor occurs with high probability. Synchronous fluorescence studies indicate the binding of polymer-copper(II) complexes with BSA mostly changes the polarity around tryptophan residues rather than tyrosine residues. The circular dichroism studies indicate that the binding has induced considerable amount of conformational changes in the protein. The complexes also show some antibacterial and antifungal properties.

  1. Sucrose dependence of solute retention on human serum albumin stationary phase: hydrophobic effect and surface tension considerations.

    PubMed

    Peyrin, E; Guillaume, Y C; Morin, N; Guinchard, C

    1998-07-15

    In a chromatographic system using human serum albumin (HSA) as a stationary phase, D,L dansyl amino acids as solutes, and sucrose as a mobile-phase modifier, a study on the surface tension effect of sugar on compound retention was carried out by varying the salting-out agent concentration c and the column temperature T. The thermodynamic parameters for solute transfer from the mobile to the stationary phase were determined from linear van't Hoff plots. An enthalpy-entropy compensation study revealed that the type of interaction between solute and HSA was independent of the molecular structure of the dansyl amino acids and the mobile-phase composition. An analysis of the experimental variations in the retention factor and the enantioselectivity values with c was performed using a theoretical model. It was shown that the decrease in solute retention accompanying the sucrose concentration increase was principally governed by a structural rearrangement of the binding cavity due to the increased surface tension effects. The cavity apolar residues were assumed to fold out of contact with the medium in order to reduce the surface area accessible to sucrose molecules, thus implying a restriction of the curvature radius of the cavity. Such behavior caused a decrease in the hydrophobic interaction for ligand binding on HSA explaining the observed thermodynamic parameter trends over the sucrose concentration range. PMID:9684542

  2. Interactions of two food colourants with BSA: Analysis by Debye-Hückel theory.

    PubMed

    Li, Tian; Cheng, Zhengjun; Cao, Lijun; Jiang, Xiaohui; Fan, Lei

    2016-11-15

    We have focused on exploring pH- and ionic strength-modulated binding of acid red 1 (AR1) and acid green 50 (AG50) with bovine serum albumin (BSA) by fluorescence, UV-vis absorption and FTIR spectra. The results implied that the quenching mechanism of BSA-AR1/AG50 system was a static quenching, electrostatic force dominated the formation of BSA-AR1/AG50 complex, and the binding affinity of AR1 was greater than that of AG50 on the subdomain IIA of BSA. Moreover, their true thermodynamic binding constant (Keq), true free energy change (ΔG(0)I→0), and effective charge (ZP) in the anion receptor pocket of BSA were calculated using Debye-Hückel limiting law. The local charge bound by AR1/AG50 rather than the overall or surface charge of BSA played a key role in determining their interaction strength. Besides, the thermal and structural stabilization of BSA was discussed by analyzing the changes of Tm and Hurea without/with the addition of AR1/AG50, respectively. PMID:27283623

  3. Bovine serum albumin with glycated carboxyl groups shows membrane-perturbing activities.

    PubMed

    Yang, Shin-Yi; Chen, Ying-Jung; Kao, Pei-Hsiu; Chang, Long-Sen

    2014-12-15

    The aim of the present study aimed to investigate whether glycated bovine serum albumin (BSA) showed novel activities on the lipid-water interface. Mannosylated BSA (Man-BSA) was prepared by modification of the carboxyl groups with p-aminophenyl α-d-mannopyranoside. In contrast to BSA, Man-BSA notably induced membrane permeability of egg yolk phosphatidylcholine (EYPC)/egg yolk sphingomyelin (EYSM)/cholesterol (Chol) and EYPC/EYSM vesicles. Noticeably, Man-BSA induced the fusion of EYPC/EYSM/Chol vesicles, but not of EYPC/EYSM vesicles. Although BSA and Man-BSA showed similar binding affinity for lipid vesicles, the lipid-bound conformation of Man-BSA was distinct from that of BSA. Moreover, Man-BSA adopted distinct structure upon binding with the EYPC/EYSM/Chol and EYPC/EYSM vesicles. Man-BSA could induce the fusion of EYPC/EYSM/Chol vesicles with K562 and MCF-7 cells, while Man-BSA greatly induced the leakage of Chol-depleted K562 and MCF-7 cells. The modified BSA prepared by conjugating carboxyl groups with p-aminophenyl α-d-glucopyranoside also showed membrane-perturbing activities. Collectively, our data indicate that conjugation of carboxyl groups with monosaccharide generates functional BSA with membrane-perturbing activities on the lipid-water interface. PMID:25449061

  4. Detecting trypsin at liquid crystal/aqueous interface by using surface-immobilized bovine serum albumin.

    PubMed

    Chuang, Cheng-Hao; Lin, Yi-Cheng; Chen, Wei-Long; Chen, Yu-Hsuan; Chen, Yu-Xun; Chen, Chieh-Ming; Shiu, Hung Wei; Chang, Lo-Yueh; Chen, Chia-Hao; Chen, Chih-Hsin

    2016-04-15

    We report a new mechanism for liquid crystal (LC)-based sensor system for trypsin detection. In this system, bovine serum albumin (BSA) was immobilized on gold grids as the enzymatic substrate. When the BSA-modified grid was filled with LC and immersed in the solution containing trypsin, the peptide bonds of BSA were hydrolyzed and peptide fragments were desorbed from the surface of gold grid, which disrupted the orientation of LC at the vicinity and resulted in a dark-to-bright transition of optical image of LCs. By using this mechanism, the limit of detection (LOD) of trypsin is 10 ng/mL, and it does not respond to thrombin and pepsin. Besides, the cleavage behavior on gold surfaces was directly visualized by the scanning photoelectron microscopy (SPEM), in particular for the chemical composition identification and element-resolved image. The loss of BSA fragments and the enhancement of Au photoelectron signal after trypsin cleavage were corresponding to the proposed mechanism of the LC-based sensor system. Because the signals reported by LC can be simply interpreted through the human naked-eye, it provides a simple method for fast-screening trypsin activity in aqueous solution. PMID:26613511

  5. Structure and interaction among protein and nanoparticle mixture in solution: Effect of temperature

    NASA Astrophysics Data System (ADS)

    Kundu, Sarathi; Das, Kaushik; Mehan, S.; Aswal, V. K.; Kohlbrecher, Joachim

    2015-11-01

    Structure and interaction among globular protein bovine serum albumin (BSA) and silica nanoparticle mixtures in solutions have been studied using small angle neutron scattering technique by varying the solution temperature. Our study shows that in absence of nanoparticles and up to 70 °C, an intermediate range repulsive and one long range attractive interaction potential between the proteins exist. Above that temperature, fractal structure forms. In presence of nanoparticles, fractal structures form even at room temperature by both the protein and nanoparticles. Fractal dimension increases with the increase of BSA concentration and solution temperature, and this temperature induced structural transition is irreversible.

  6. Spectroscopic studies on interaction of BSA and Eu(III) complexes with H5ph-dtpa and H5dtpa ligands

    NASA Astrophysics Data System (ADS)

    Kong, Deyong; Qin, Cui; Fan, Ping; Li, Bing; Wang, Jun

    2015-04-01

    An novel aromatic aminopolycarboxylic acid ligand, N-(2-N,N-Dicarboxymethylaminophenyl) ethylenediamine-N,N‧,N‧-triacetic acid (H5ph-dtpa), was synthesized by improving experimental method and its corresponding Eu(III) complex, Na2[EuIII(ph-dtpa)(H2O)]·6H2O, was successfully prepared through heat-refluxing method. As a comparison, the Eu(III) complex with diethylenetriamine-N,N,N‧,N‧,N″-pentaacetic acid (H5dtpa) ligand, Na2[EuIII(dtpa)(H2O)]·6H2O, was also prepared by the same method. And then, the interaction between prepared Eu(III) complexes ([EuIII(dtpa)(H2O)]2- and [EuIII(ph-dtpa)(H2O)]2-) and bovine serum albumin (BSA) in aqueous solution were studied by the combination of ultraviolet-visible (UV-vis), fluorescence and circular dichroism (CD) spectroscopies. In addition, the binding sites of Eu(III) complexes ([EuIII(dtpa)(H2O)]2- and [EuIII(ph-dtpa)(H2O)]2-) to BSA molecules were also estimated by synchronous fluorescence. Moreover, the theoretical and experimental results show that the Van der Waals, hydrogen bond and π-π stacking interactions are the mainly impulse to the reaction. The binding distances (r) between Eu(III) complexes ([EuIII(dtpa)(H2O)]2- and [EuIII(ph-dtpa)(H2O)]2-) and BSA were obtained according to Förster's non-radiative energy transfer theory. Also, the determined UV-vis absorption spectroscopy, synchronous fluorescence and circular dichroism (CD) spectra showed that the conformation of BSA could be changed in the presence of Eu(III) complexes. The obtained results can help understand the action mode between rare earth metal complexes of aminopolycarboxylic acid ligands with BSA and they are also expected to provide important information of designs of new inspired drugs.

  7. Comprehensive study on the structure of the BSA from extended-to aged form in wide (2-12) pH range.

    PubMed

    Varga, N; Hornok, V; Sebők, D; Dékány, I

    2016-07-01

    In this work we studied the structure of the bovine serum albumin (BSA) and the protein-ligand interactions since researchers prefer to use them as carriers in drug delivery systems. Systematic study (between pH 2-12, in double distilled water and physiological salt solution) was carried out to determine the changes in the secondary and the tertiary structures of the BSA, the apparent molecular weight (Mw), the size (dLS) and the electrokinetic potential (ζ). At pH 7, the BSA has higher stability in the absence (ζ=-69mV, dLS=2.2nm, A2=1.4×10(-3)mlmol/g(2)) than in the presence of salt solution (ζ=-2.4mV, dLS=5.3nm, A2=-3.2×10(-4)mlmol/g(2)). The Mw strongly depends on the pH and the ionic strength (at pH 3 in the absence of salt, the Mw is 54.6kDa while in the presence of salt is 114kDa) which determines the geometry of the protein. The protein-ligand interactions were characterized by fluorescence (FL) and isothermal microcalorimetry (ITC) methods; these independent techniques provided similar thermodynamic parameters such as the binding constant (K) and the Gibbs free energy (ΔG). PMID:26995614

  8. Good use of fruit wastes: eco-friendly synthesis of silver nanoparticles, characterization, BSA protein binding studies.

    PubMed

    Sreekanth, T V M; Ravikumar, Sambandam; Lee, Yong Rok

    2016-06-01

    A simple and eco-friendly methodology for the green synthesis of silver nanoparticles (AgNPs) using a mango seed extract was evaluated. The AgNPs were characterized by ultraviolet-visible spectrophotometry, Fourier transform infrared spectroscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. The interaction between the green synthesized AgNPs and bovine serum albumin (BSA) in an aqueous solution at physiological pH was examined by fluorescence spectroscopy. The results confirmed that the AgNPs quenched the fluorophore of BSA by forming a ground state complex in aqueous solution. This fluorescence quenching data were also used to determine the binding sites and binding constants at different temperatures. The calculated thermodynamic parameters (ΔG°, ΔH° and ΔS°) suggest that the binding process occurs spontaneously through the involvement of electrostatic interactions. The synchronous fluorescence spectra showed a blue shift, indicating increasing hydrophobicity. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26644144

  9. Interaction between fasudil hydrochloride and bovine serum albumin: spectroscopic study.

    PubMed

    Yu, Xianyong; Jiang, Bingfei; Xun, Caifang; Yao, Qing

    2016-06-01

    The interaction between fasudil hydrochloride (FSD) and bovine serum albumin (BSA) was investigated using fluorescence and ultraviolet spectroscopy under imitated physiological conditions. The Stern-Volmer quenching model has been successfully applied and the results revealed that FSD could quench the intrinsic fluorescence of BSA effectively via static quenching. The binding constants and binding sites for the BSA-FSD system were evaluated. The corresponding thermodynamic parameters obtained at different temperatures indicated that hydrophobic force played a major role in the interaction of FSD and BSA. The distance between the donor (BSA) and the acceptor (FSD) was obtained according to fluorescence resonance energy transfer (FRET). Synchronous fluorescence spectroscopy and FT-IR spectra showed that the conformation of BSA was changed in the presence of FSD. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26554343

  10. Ultrastable BSA-capped gold nanoclusters with a polymer-like shielding layer against reactive oxygen species in living cells.

    PubMed

    Zhou, Wenjuan; Cao, Yuqing; Sui, Dandan; Guan, Weijiang; Lu, Chao; Xie, Jianping

    2016-05-01

    The prevalence of reactive oxygen species (ROS) production and the enzyme-containing intracellular environment could lead to the fluorescence quenching of bovine serum albumin (BSA)-capped gold nanoclusters (AuNCs). Here we report an efficient strategy to address this issue, where a polymer-like shielding layer is designed to wrap around the Au core to significantly improve the stability of AuNCs against ROS and protease degradation. The key of our design is to covalently incorporate a thiolated AuNC into the BSA-AuNC via carbodiimide-activated coupling, leading to the formation of a AuNC pair inside the cross-linked BSA molecule. The as-designed paired AuNCs in BSA (or BSA-p-AuNCs for short) show improved performances in living cells. PMID:27102116

  11. Adsorption of bovine serum albumin on silver surfaces enhances the release of silver at pH neutral conditions.

    PubMed

    Wang, X; Herting, G; Wallinder, I Odnevall; Blomberg, E

    2015-07-28

    Metallic biomaterials are widely used to replace and/or restore the function of damaged bodily parts. The use of silver as antibacterial coatings onto implants has recently gained large interest in medical applications. The extent of silver that can be released into different biological fluids from such coatings is, except for the surface characteristics of the coating, governed by parameters such as protein characteristics, adsorbed layer properties, formation of silver-protein complexes as well as concentrations of proteins in the solution. This study aims to relate the structure of adsorbed net negatively charged bovine serum albumin (BSA), which is the most abundant protein in serum, to the release of silver from metallic silver surfaces in order to elucidate if the net charge of the protein has any effect of the silver release. Simultaneous adsorption measurements were performed in real time on the very same surface using combined ellipsometry and quartz crystal microbalance with dissipation monitoring (QCM-D) measurements to provide a more comprehensive understanding on adsorption kinetics and layer structures. The amount of released silver into solution was measured by means of graphite furnace atomic absorption spectroscopy (GF-AAS). The structure of the adsorbed BSA layer largely influenced the amount of released silver, an enhancement that increased with BSA concentration. These observations are in complete contrast to the effect of net positively charged lysozyme (LSZ) adsorbed on silver, previously studied by the authors, for which a complete surface coverage suppressed the possibility for silver release. The underlying mechanisms behind the enhanced release of silver in the presence of BSA were mainly attributed to surface complexation between BSA and silver followed by an enhanced exchange rate of these surface complexes with BSA molecules in the solution, which in turn increase the amount of released silver in solution. PMID:26111372

  12. Metformin-loaded BSA nanoparticles in cancer therapy: a new perspective for an old antidiabetic drug.

    PubMed

    Jose, Pinkybel; Sundar, K; Anjali, C H; Ravindran, Aswathy

    2015-03-01

    Clinical and experimental data suggest that there is a strong association between type II diabetic mellitus and pancreatic cancer. The present study focuses on exploring the anticancer and antidiabetic properties of metformin-loaded bovine serum albumin nanoparticles (BSA NPs) on (MiaPaCa-2) pancreatic carcinoma cell lines. Albumin nanoparticles were synthesized using coacervation method and the average size of the particles was found to be 97 nm. The particles were stable and showed a spherical morphology with narrow size distribution. We investigated the impact of two stages characterized in type II diabetes mellitus (hyperglycemia and hyperinsulinemia) on the proliferation of MiaPaCa-2 cells and compared the inhibitory effects of bare metformin to that of MET-BSA NPs. Further, different concentrations of insulin and glucose were added along with bare metformin, bare BSA, and metformin encapsulated BSA carrier on MiaPaCa-2 cells to check the strong association between type II diabetes and pancreatic cancer. The results revealed that MET-BSA NPs showed more toxicity when compared with drug and carrier individually. PMID:25209744

  13. BSA/HSA ratio modulates the properties of Ca(2+)-induced cold gelation scaffolds.

    PubMed

    Ribeiro, Artur; Volkov, Vadim; Oliveira, Mariana B; Padrão, Jorge; Mano, João F; Gomes, Andreia C; Cavaco-Paulo, Artur

    2016-08-01

    An effective tissue engineering approach requires adjustment according to the target tissue to be engineered. The possibility of obtaining a protein-based formulation for the development of multivalent tunable scaffolds that can be adapted for several types of cells and tissues is explored in this work. The incremental substitution of bovine serum albumin (BSA) by human serum albumin (HSA), changing the scaffolds' hydrophilic/hydrophobic ratio, on a previously optimized scaffold formulation resulted in a set of uniform porous scaffolds with different physical properties and associated cell proliferation profile along time. There was a general trend towards an increase in hydrophilicity, swelling degree and in vitro degradation of the scaffolds with increasing replacement of BSA by HAS. The set of BSA/HSA scaffolds presented distinct values for the storage (elastic) modulus and loss factor which were similar to those described for different native tissues such as bone, cartilage, muscle, skin and neural tissue. The preferential adhesion and proliferation of skin fibroblasts on the BSA25%HSA75% and HSA100% scaffolds, as predicted by their viscoelastic properties, demonstrate that the BSA/HSA scaffold formulation is promising for the development of scaffolds that can be tuned according to the tissue to be repaired and restored. PMID:27156695

  14. Ultrastable BSA-capped gold nanoclusters with a polymer-like shielding layer against reactive oxygen species in living cells

    NASA Astrophysics Data System (ADS)

    Zhou, Wenjuan; Cao, Yuqing; Sui, Dandan; Guan, Weijiang; Lu, Chao; Xie, Jianping

    2016-05-01

    The prevalence of reactive oxygen species (ROS) production and the enzyme-containing intracellular environment could lead to the fluorescence quenching of bovine serum albumin (BSA)-capped gold nanoclusters (AuNCs). Here we report an efficient strategy to address this issue, where a polymer-like shielding layer is designed to wrap around the Au core to significantly improve the stability of AuNCs against ROS and protease degradation. The key of our design is to covalently incorporate a thiolated AuNC into the BSA-AuNC via carbodiimide-activated coupling, leading to the formation of a AuNC pair inside the cross-linked BSA molecule. The as-designed paired AuNCs in BSA (or BSA-p-AuNCs for short) show improved performances in living cells.The prevalence of reactive oxygen species (ROS) production and the enzyme-containing intracellular environment could lead to the fluorescence quenching of bovine serum albumin (BSA)-capped gold nanoclusters (AuNCs). Here we report an efficient strategy to address this issue, where a polymer-like shielding layer is designed to wrap around the Au core to significantly improve the stability of AuNCs against ROS and protease degradation. The key of our design is to covalently incorporate a thiolated AuNC into the BSA-AuNC via carbodiimide-activated coupling, leading to the formation of a AuNC pair inside the cross-linked BSA molecule. The as-designed paired AuNCs in BSA (or BSA-p-AuNCs for short) show improved performances in living cells. Electronic supplementary information (ESI) available: Detailed experimental materials, apparatus, experimental procedures and characterization data. See DOI: 10.1039/c6nr02178f

  15. Enhanced extraction of bovine serum albumin with aqueous biphasic systems of phosphonium- and ammonium-based ionic liquids.

    PubMed

    Pereira, Matheus M; Pedro, Sónia N; Quental, Maria V; Lima, Álvaro S; Coutinho, João A P; Freire, Mara G

    2015-07-20

    Novel aqueous biphasic systems (ABS) composed of phosphonium- or ammonium-based ionic liquids (ILs), combined with a buffered aqueous solution of potassium citrate/citric acid (pH=7.0), were investigated for the extraction of proteins. For that purpose, the phase diagrams, tie-lines and tie-line lengths were determined at 25 °C, and the performance of these ABS for the extraction of bovine serum albumin (BSA) was then evaluated. The obtained results reveal that, with the exception of the more hydrophobic ILs, most of the systems investigated allow the complete extraction of BSA for the IL-rich phase in a single-step. These remarkable extraction efficiencies are far superior to those afforded by more conventional extraction systems previously reported. The composition of the biphasic systems, i.e., the amount of phase-forming components, was also investigated aiming at reducing the overall costs of the process without losing efficiency on the protein extraction. It is shown that the extraction efficiencies of BSA are maintained at 100% up to high protein concentrations (at least up to 10 g L(-1)). The recovery of the BSA from the IL-rich phase by dialysis is also shown in addition to the demonstration of the IL recyclability and reusability, at least for 3 times. In the sequential three-step extractions (BSA recovery/IL reusability), the extraction efficiencies of BSA for the IL-rich phase were maintained at 100%. For the improved ABS, the preservation of the protein native conformation was confirmed by Size Exclusion High-Performance Liquid Chromatography (used also as the quantification method) and by Fourier Transform Infra-Red spectroscopy. According to the results herein reported, ABS composed of phosphonium- or ammonium-based ILs and a biodegradable organic salt represent an alternative and remarkable platform for the extraction of BSA and may be extended to other proteins of interest. PMID:25865275

  16. Studying the denaturation of bovine serum albumin by a novel approach of difference-UV analysis.

    PubMed

    Nikolaidis, Athanasios; Moschakis, Thomas

    2017-01-15

    A novel approach in the analysis of difference-UV spectrophotometric data for determining the heat denaturation degree of bovine serum albumin (BSA) was assessed. Five different parameters of difference-UV spectra were obtained by subtracting spectra of unheated and denatured protein solutions at different temperature-time combinations. BSA was found to exhibit a maximum degree of heat denaturation of about 17% compared to the complete unfolding caused by 6M guanidine hydrochloride. This low degree of heat denaturation is probably caused by the aggregation of the initially unfolded protein molecules. The kinetic analysis exhibited discontinuities in the Arrhenius plots, distinguishing the unfolding and aggregation phases of the denaturation process, whereas such a discrimination could not be obtained by differential scanning calorimetry analyses. The proposed method is accurate, fast, simple and sensitive enough to detect changes in the protein heat denaturation even at short temperature-time intervals. PMID:27542472

  17. Serum albumin: touchstone or totem?

    PubMed

    Margarson, M P; Soni, N

    1998-08-01

    A decrease in serum albumin concentrations is an almost inevitable finding in disease states, and is primarily mediated in the acute phase by alterations in vascular permeability and redistribution. This change is not disease specific but marked changes that persist are generally associated with a poorer prognosis. Critical appraisal of long-standing practices and the availability of alternative colloid solutions have led to a reduction in albumin replacement therapy, and a widespread tolerance of lower albumin concentrations in patients. The factors determining serum albumin concentrations, their measurement and the implications of hypoalbuminaemia are reviewed. The clinical value of serum albumin measurement is discussed. PMID:9797524

  18. AGE-modified albumin containing infusion solutions boosts septicaemia and inflammation in experimental peritonitis.

    PubMed

    Humpert, Per M; Lukic, Ivan K; Thorpe, Suzanne R; Hofer, Stefan; Awad, Ezzat M; Andrassy, Martin; Deemer, Elizabeth K; Kasper, Michael; Schleicher, Erwin; Schwaninger, Markus; Weigand, Markus A; Nawroth, Peter P; Bierhaus, Angelika

    2009-09-01

    HSA preparations for i.v. use are administered in critically ill patients. Although increasing intravascular osmotic pressure seems to be a pathophysiologically orientated treatment, clinical trials do not indicate a benefit for mortality in HSA-treated patients. Instead, there is evidence for inflammatory reactions upon infusion of different HSA batches. A neglected issue concerning the safety and quality of these therapeutics is processing-related post-transcriptional protein modifications, such as AGEs. We therefore tested the hypothesis that commercially available infusion solutions contain AGEs and studied whether these protein modifications influence outcome and inflammation in a murine model of sepsis induced by CLP. Screening of different HSA and Ig preparations in this study revealed an up to approximate tenfold difference in the amount of AGE modifications. Application of clinically relevant concentrations of CML-modified HSA in CLP led to increased inflammation and enhanced mortality in wild-type mice but not in mice lacking the RAGE. Lethality was paralleled by increased activation of the proinflammatory transcription factor NF-kappaB, NF-kappaB-dependent gene expression, and infiltration of inflammatory cells in the peritoneal cavity. This study implies that infusion solutions containing a high load of the AGE-modified protein have the potential to activate RAGE/NF-kappaB-mediated inflammatory reactions, causing increased mortality in experimental peritonitis. PMID:19401390

  19. Preventing Aggregation of Recombinant Interferon beta-1b in Solution by Additives: Approach to an Albumin-Free Formulation

    PubMed Central

    Mahjoubi, Najmeh; Fazeli, Mohammad Reza; Dinarvand, Rassoul; Khoshayand, Mohammad Reza; Fazeli, Ahmad; Taghavian, Mohammad; Rastegar, Hossein

    2015-01-01

    Purpose: Aggregation suppressing additives have been used to stabilize proteins during manufacturing and storage. Interferonβ-1b is prone to aggregation because of being non-glycosylated. Aggregation behavior of albumin-free formulations of recombinant IFNβ-1b was explored using additives such as n-dodecyl-β-D-maltoside, Tween 20, arginine, glycine, trehalose and sucrose at different pH. Methods: Fractional factorial design was applied to select major factors affecting aggregation in solutions. Box-Behnken technique was used to optimize the best concentration of additives and protein. Results: Quadratic model was the best fitted model for particle size, OD350 and OD280/OD260. The optimal conditions of 0.2% n-Dodecyl-β-D-maltoside, 70 mM arginine, 189 mM trehalose and protein concentration of 0.50 mg/ml at pH 4 were achieved. A potency value of 91% ± 5% was obtained for the optimized formulation. Conclusion: This study shows that the combination of n-Dodecyl-β-D-maltoside, arginine and trehalose would demonstrate a significant stabilizing and anti-aggregating effect on the liquid formulation of interferonβ-1b. It can not only reduce the manufacturing costs but will also ease patient compliance. PMID:26819922

  20. Effects of Gold Salt Speciation and Structure of Human and Bovine Serum Albumin on the Synthesis and Stability of Gold Nanostructures

    NASA Astrophysics Data System (ADS)

    Miranda, Érica; Tofanello, Aryane; Brito, Adrianne; Lopes, David; Giacomelli, Fernando; Albuquerque, Lindomar; Costa, Fanny; Ferreira, Fabio; Araujo-Chaves, Juliana; de Castro, Carlos; Nantes, Iseli

    2016-03-01

    The present study aimed to investigate the influence of albumin structure and gold speciation on the synthesis of gold nanoparticles (GNPs). The strategy of synthesis was the addition of HAuCl4 solutions at different pH values (3-12) to solutions of human and bovine serum albumins (HSA and BSA) at the same corresponding pH values. Different pH values influence the GNP synthesis due to gold speciation. Besides the inherent effect of pH on the native structure of albumins, the use N-ethylmaleimide (NEM)-treated and heat-denaturated forms of HSA and BSA provided additional insights about the influence of protein structure, net charge, and thiol group approachability on the GNP synthesis. NEM treatment, heating, and the extreme values of pH promoted loss of the native albumin structure. The formation of GNPs indicated by the appearance of surface plasmon resonance (SPR) bands became detectable from fifteen days of the synthesis processes that were carried out with native, NEM-treated and heat-denaturated forms of HSA and BSA, exclusively at pH 6 and 7. After two months of incubation, SPR band was also detected for all synthesis carried out at pH 8.0. The mean values of the hydrodynamic radius (RH) were 24 and 34 nm for GNPs synthesized with native HSA and BSA, respectively. X-ray diffraction (XRD) revealed crystallites of 13 nm. RH, XRD, and zeta potential values were consistent with GNP capping by the albumins. However, the GNPs produced with NEM-treated and heat-denaturated albumins exhibited loss of protein capping by lowering the ionic strength. This result suggests a significant contribution of non-electrostatic interactions of albumins with the GNP surface, in these conditions. The denaturation of proteins exposes hydrophobic groups to the solvent, and these groups could interact with the gold surface. In these conditions, the thiol blockage or oxidation, the latter probably favored upon heating, impaired the formation of a stable capping by thiol coordination

  1. Interaction of ergosterol with bovine serum albumin and human serum albumin by spectroscopic analysis.

    PubMed

    Cheng, Zhengjun

    2012-10-01

    This study was designed to examine the interactions of ergosterol with bovine serum albumin (BSA) and human serum albumin (HSA) under physiological conditions with the drug concentrations in the range of 2.99-105.88 μM and the concentration of proteins was fixed at 5.0 μM. The analysis of emission spectra quenching at different temperatures revealed that the quenching mechanism of HSA/BSA by ergosterol was the static quenching. The number of binding sites n and the binding constants K were obtained at various temperatures. The distance r between ergosterol and HSA/BSA was evaluated according to Föster non-radioactive energy transfer theory. The results of synchronous fluorescence, 3D fluorescence, FT-IR, CD and UV-Vis absorption spectra showed that the conformations of HSA/BSA altered in the presence of ergosterol. The thermodynamic parameters, free energy change (ΔG), enthalpy change (ΔH) and entropy change (ΔS) for BSA-ergosterol and HSA-ergosterol systems were calculated by the van't Hoff equation and discussed. Besides, with the aid of three site markers (for example, phenylbutazone, ibuprofen and digitoxin), we have reported that ergosterol primarily binds to the tryptophan residues of BSA/HSA within site I (subdomain II A). PMID:22733490

  2. BSA-stabilized Pt nanozyme for peroxidase mimetics and its application on colorimetric detection of mercury(II) ions.

    PubMed

    Li, Wei; Chen, Bin; Zhang, Haixiang; Sun, Yanhua; Wang, Jun; Zhang, Jinli; Fu, Yan

    2015-04-15

    Bovine serum albumin (BSA) is chosen as the nucleation templates to synthesize Pt-based peroxidase nanomimetics with the average diameter of 2.0nm. The efficient Pt nanozymes consist of 57% Pt(0) and 43% Pt(2+), which possess highly peroxidase-like activity with the Km values of 0.119mM and 41.8mM toward 3,3',5,5'-tetramethylbenzidine (TMB) and hydrogen peroxide (H2O2), respectively. Interestingly, Hg(2+) is able to down-regulate the enzymatic activity of Pt nanoparticles, mainly through the interactions between Hg(2+) and Pt(0). It is the first report to explore a colorimetric Hg(2+) sensing system on the basis of peroxidase mimicking activities of Pt nanoparticles. One of our most intriguing results is that BSA-stabilized Pt nanozymes demonstrate the ability to sense Hg(2+) ions in aqueous solution without significant interference from other metal ions. The Hg(2+) detection limit of 7.2nM is achieved with a linear response range of 0-120nM, and the developed sensing system is potentially applicable for quantitative determination of Hg(2+) in drinking water. PMID:25437360

  3. Peroxidase mediated conjugation of corn fibeer gum and bovine serum albumin to improve emulsifying properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The emulsifying properties of corn fiber gum (CFG), a naturally-occurring polysaccharide protein complex, were improved by kinetically controlled formation of hetero-covalent linkages with bovine serum albumin (BSA), using horseradish peroxidase. The formation of hetero-crosslinked CFG-BSA conjugate...

  4. Interaction of Di-2-pyridylketone 2-pyridine Carboxylic Acid Hydrazone and Its Copper Complex with BSA: Effect on Antitumor Activity as Revealed by Spectroscopic Studies.

    PubMed

    Li, Cuiping; Huang, Tengfei; Fu, Yun; Liu, Youxun; Zhou, Sufeng; Qi, Zhangyang; Li, Changzheng

    2016-01-01

    The drug, di-2-pyridylketone-2-pyridine carboxylic acid hydrazone (DPPCAH) and its copper complex (DPPCAH-Cu) exhibit significant antitumor activity. However, the mechanism of their pharmacological interaction with the biological molecule bovine serum albumin (BSA) remains poorly understood. The present study elucidates the interactions between the drug and BSA through MTT assays, spectroscopic methods and molecular docking analysis. Our results indicate that BSA could attenuate effect on the cytotoxicity of DPPCAH, but not DPPCAH-Cu. Data from fluorescence quenching measurements demonstrated that both DPPCAH and DPPCAH-Cu could bind to BSA, with a reversed effect on the environment of tryptophan residues in polarity. CD spectra revealed that the DPPCAH-Cu exerted a slightly stronger effect on the secondary structure of BSA than DPPCAH. The association constant of DPPCAH with BSA was greater than that of DPPCAH-Cu. Docking studies indicated that the binding of DPPCAH to BSA involved a greater number of hydrogen bonds compared to DPPCAH-Cu. The calculated distances between bound ligands and tryptophans in BSA were in agreement with fluorescence resonance energy transfer results. Thus, the binding affinity of the drug (DPPCAH or DPPCAH-Cu) with BSA partially contributes to its antitumor activity; the greater the drug affinity is to BSA, the less is its antitumor activity. PMID:27136517

  5. Stereoselective interaction of cinchona alkaloid isomers with bovine serum albumin.

    PubMed

    Liu, Yan; Chen, Mingmao; Jiang, Longguang; Song, Ling

    2015-08-15

    The dependence of the interaction between bovine serum albumin (BSA) and two cinchona alkaloids, quinine (QN) and quinidine (QD), on the absolute configuration of these stereoisomers has been comprehensively studied. The FTIR spectra showed that QN and QD interacted with both CO and C-N groups of BSA, resulting in changes to the secondary structure of the protein. Fluorescence quenching of BSA by the stereoisomers revealed lower efficiency for QD in quenching the Trp emission of BSA when compared to QN. Further analysis accurately described the different binding behaviors and recognition discrepancies of QN and QD towards BSA, which was reflected through binding affinities, driving forces, energy changes and conformational changes during the ligand-protein interactions. Synchronous fluorescence further proved that QD was farther from Trp and Tyr than that of QN. This work could provide basic data for clarifying the binding interaction, metabolism and distribution of cinchona alkaloid stereoisomers in vivo. PMID:25794736

  6. Spectroscopic investigation of the interaction between riboflavin and bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Guo, Xing-Jia; Sun, Xiu-Dan; Xu, Shu-Kun

    2009-08-01

    The mutual interaction of riboflavin (RF) with bovine serum albumin (BSA) was investigated using fluorescence spectroscopy under simulative physiological conditions. The fluorescence quenching mechanism of BSA by RF should belong to dynamic quenching according to the Stern-Volmer equation, but also the effect of ground complex formation and energy transfer could not be completely precluded in BSA-RF system. The binding constants and the corresponding thermodynamic parameters at different temperatures were calculated, which indicated the presence of hydrophobic forces between RF and BSA. The averaged binding distance between riboflavin and BSA was also obtained based on the theory of FÖrster's non-radiation energy transfer. Moreover, the effect of riboflavin on the conformation of BSA was analyzed using synchronous fluorescence. The effects of some common ions Cu 2+, Zn 2+, Ca 2+, and Mg 2+ on the binding constant between riboflavin and BSA were also examined.

  7. The impact of skin viability on drug metabolism and permeation -- BSA toxicity on primary keratinocytes.

    PubMed

    Haberland, A; Schreiber, S; Maia, C Santos; Rübbelke, M K; Schaller, M; Korting, H C; Kleuser, B; Schimke, I; Schäfer-Korting, M

    2006-04-01

    For testing cutaneous absorption of drugs, ingredients of cosmetics and also for risk assessment of industrial compounds predictable in vitro test protocols are under investigation using excised skin or reconstructed human epidermis. Since the metabolizing enzymes expressed by viable skin can influence the absorption behaviour of substances by changing their structure and thereby their physicochemical characteristics, the metabolic capacity should be considered in the design of the test protocols of compounds susceptible to metabolism. Then data, generated using viable reconstructed epidermis may reflect the in vivo situation. Interestingly, bovine serum albumin (BSA) commonly used in receptor media in permeation studies to facilitate solubility of highly lipophilic substances strongly inhibited the metabolism of topically applied prednicarbate in reconstructed epidermis. Here, we show that 5% BSA is toxic to reconstructed epidermis and keratinocytes which was consistent with the earlier findings. While media toxicity (deficiency media) was at least partly the cause of both apoptotic and necrotic processes in keratinocytes, BSA only slightly increased the rate of necrotic cells. Moreover, caspase inhibitors did not reduce BSA toxicity. Yet, the results show that BSA toxicity on keratinocytes has to be carefully considered if this protein is used in permeation studies with reconstructed epidermis. PMID:16182510

  8. [Modification on the interaction of glipizide with bovine serum albumin by molecular spectroscopy].

    PubMed

    Liu, Bao-Sheng; Cao, Shi-Na; Li, Zhi-Yun; Chong, Bao-Hong

    2014-03-01

    In the Tris-HCl buffer solution with pH was 7.40, the interaction between glipizide (Gli) and bovine serum albumin (BSA) was investigated by classical fluorescence spectroscopy with the change of protein as investigation object and elastic scattering fluorescence spectrometry with the change of drugs as investigation object at 293 K and 303 K, the conclusions of the two methods were consistent. Results showed that Gli could quench the intrinsic fluorescence of BSA, and the quenching mechanism was a dynamic quenching process. The hydrophobic force played an important role in the conjugation reaction between BSA and Gli, the binding site mainly located in BSA hydrophobic region and the number of binding site (n) in the binary system was approximately to 1. The values of Hill's coefficients were less than 1, which indicated the weak negative cooperativity in BSA-Gli system. The binding constant (Ka) obtained by elastic scattering fluorescence spectrometric was much larger than the one obtained by classical fluorescence spectroscopy, indiciating that it was more accurate and reasonable when using the change of drug's fluorescence as the research object. At last, the scientificalness of the new method based on elastic scattering fluorescence spectrometric was verified by ultraviolet spectroscopy. The research results showed that there existed insufficiency in analysis of the interaction of drug with protein by classical fluorescence spectroscopy with the change of protein as investigation object, and the fluorescence spectrogram only reflected partial information of the interaction between drug and protein, while the interaction between drug and protein could be better expressed by elastic scattering fluorescence spectrometry with the change of drugs as investigation object. PMID:25208408

  9. Albumin Test

    MedlinePlus

    ... to a variety of conditions in addition to malnutrition , a decrease in albumin needs to be evaluated ... can also be seen in inflammation , shock, and malnutrition . They may be seen with conditions in which ...

  10. Structural influence of graft and block polycations on the adsorption of BSA.

    PubMed

    Zhang, Li; Jin, Fengmin; Zhang, Tingbin; Zhang, Ling; Xing, Jinfeng

    2016-04-01

    Protein adsorption is considered as an important factor for the low transfection efficiency of polycations in vivo. In this study, two typical polycations of equal molecular weight with different structures were chosen to investigate their adsorption on bovine serum albumin (BSA), including the block copolymer named poly (N-vinylpyrrolidone)-b-poly (2-dimethylaminoethyl methacrylate) (PVP-b-PDMAEMA, i.e. PbP) and graft copolymer named PVP-g-PDMAEMA (PgP), respectively. Fluorescence spectroscopy was used to confirm the binding constants and binding sites between polycations and BSA in static state. The binding constants were 4.1×10(4)M(-1) vs 8.3×10(4)M(-1) and binding sites were 0.3 vs 1.1 for PbP and PgP, respectively, indicating PgP had stronger binding affinity with BSA. Surface plasmon resonance (SPR) was used to study the dynamical non-specific interaction between BSA and polycations as well as the polyplexes. The numbers of both PbP and PgP adsorbed on BSA increased with concentration of polycations increasing, and the number of PgP adsorbed on BSA is higher compared with PbP when their concentration is low. When their concentration is high, the number of PbP adsorbed on BSA is more than that of PgP. However, PgP/DNA polyplexes showed higher adsorption amount compared with PbP/DNA polyplexes at different N/P ratios. PMID:26763174

  11. Suppressing the cytotoxicity of CuO nanoparticles by uptake of curcumin/BSA particles.

    PubMed

    Zhang, Wenjing; Jiang, Pengfei; Chen, Ying; Luo, Peihua; Li, Guanqun; Zheng, Botuo; Chen, Wei; Mao, Zhengwei; Gao, Changyou

    2016-05-01

    The adverse effects of metal-based nanoparticles on human beings and the environment have received extensive attention recently. It is urgently required to develop a simple and effective method to suppress the toxicity of metal-based nanomaterials. In this study, a hydrophobic antioxidant and a chelation agent curcumin (CUR) were encapsulated into bovine serum albumin (BSA) particles by a simple co-precipitation method, and followed by glutaraldehyde cross-linking. The CUR/BSA particles had an average size of 300 nm in diameter with a negatively charged surface and sustained curcumin release properties. The cellular uptake and cytotoxicity of CUR/BSA particles were followed on A549 cells, HepG2 cells and RAW264.7 cells. The CUR/BSA particles had higher intracellular accumulation and lower cytotoxicity compared with the free curcumin at the same drug concentration. The CUR/BSA particles could suppress the cytotoxicity generated by CuO nanoparticles as a result of decrease of both the intracellular reactive oxygen species (ROS) level and Cu(2+) concentration, while the free curcumin did not show any obvious detoxicating effect. The detoxicating effects of CUR/BSA particles were further studied in an intratracheal instillation model in vivo, demonstrating significant reduction of toxicity and inflammatory response in rat lungs induced by CuO nanoparticles. The concept-proving study demonstrates the potential of the CUR/BSA particles in suppressing cytotoxicity of metal-based nanomaterials, which is a paramount requirement for the safe application of nanotechnology. PMID:27098928

  12. Suppressing the cytotoxicity of CuO nanoparticles by uptake of curcumin/BSA particles

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjing; Jiang, Pengfei; Chen, Ying; Luo, Peihua; Li, Guanqun; Zheng, Botuo; Chen, Wei; Mao, Zhengwei; Gao, Changyou

    2016-05-01

    The adverse effects of metal-based nanoparticles on human beings and the environment have received extensive attention recently. It is urgently required to develop a simple and effective method to suppress the toxicity of metal-based nanomaterials. In this study, a hydrophobic antioxidant and a chelation agent curcumin (CUR) were encapsulated into bovine serum albumin (BSA) particles by a simple co-precipitation method, and followed by glutaraldehyde cross-linking. The CUR/BSA particles had an average size of 300 nm in diameter with a negatively charged surface and sustained curcumin release properties. The cellular uptake and cytotoxicity of CUR/BSA particles were followed on A549 cells, HepG2 cells and RAW264.7 cells. The CUR/BSA particles had higher intracellular accumulation and lower cytotoxicity compared with the free curcumin at the same drug concentration. The CUR/BSA particles could suppress the cytotoxicity generated by CuO nanoparticles as a result of decrease of both the intracellular reactive oxygen species (ROS) level and Cu2+ concentration, while the free curcumin did not show any obvious detoxicating effect. The detoxicating effects of CUR/BSA particles were further studied in an intratracheal instillation model in vivo, demonstrating significant reduction of toxicity and inflammatory response in rat lungs induced by CuO nanoparticles. The concept-proving study demonstrates the potential of the CUR/BSA particles in suppressing cytotoxicity of metal-based nanomaterials, which is a paramount requirement for the safe application of nanotechnology.

  13. A simple improved desolvation method for the rapid preparation of albumin nanoparticles.

    PubMed

    Jahanban-Esfahlan, Ali; Dastmalchi, Siavoush; Davaran, Soodabeh

    2016-10-01

    The current study tried to establish a simple and fast method for the preparation of BSA and HSA nanoparticles, based on an improved desolvation procedure under the aspect of a controllable particle size around 100nm for drug delivery applications. The Procedure used for the nanoparticles preparation was simplified by using a designed apparatus for controlling the addition of ethanol and it was used instead of conventional tubing pump which enabled the preparation of nanoparticles under defined conditions. By using EDC as cross-linker instead of glutharaldehyde, the time of nanoparticles preparation procedure was reduced to 3h. Several factors of the preparation process, such as the volume of the albumin solution, desolvating agent volume, the amount of cross-linker, the presence of salts and protein concentration were evaluated. Nanoparticles with smaller size were obtained under experimental conditions without the presence of salts or the use of buffers, 250mg of protein/4ml water, 5mg cross-linker, the addition of 4 and 8ml ethanol by using the designed apparatus to the HSA and BSA solution, respectively. By using this improved method, BSA and HSA nanoparticles of the size around 100nm and polydispersity below 0.2 were obtained. PMID:27177461

  14. Preparation and properties of BSA-loaded microspheres based on multi-(amino acid) copolymer for protein delivery

    PubMed Central

    Chen, Xingtao; Lv, Guoyu; Zhang, Jue; Tang, Songchao; Yan, Yonggang; Wu, Zhaoying; Su, Jiacan; Wei, Jie

    2014-01-01

    A multi-(amino acid) copolymer (MAC) based on ω-aminocaproic acid, γ-aminobutyric acid, L-alanine, L-lysine, L-glutamate, and hydroxyproline was synthetized, and MAC microspheres encapsulating bovine serum albumin (BSA) were prepared by a double-emulsion solvent extraction method. The experimental results show that various preparation parameters including surfactant ratio of Tween 80 to Span 80, surfactant concentration, benzyl alcohol in the external water phase, and polymer concentration had obvious effects on the particle size, morphology, and encapsulation efficiency of the BSA-loaded microspheres. The sizes of BSA-loaded microspheres ranged from 60.2 μm to 79.7 μm, showing different degrees of porous structure. The encapsulation efficiency of BSA-loaded microspheres also ranged from 38.8% to 50.8%. BSA release from microspheres showed the classic biphasic profile, which was governed by diffusion and polymer erosion. The initial burst release of BSA from microspheres at the first week followed by constant slow release for the next 7 weeks were observed. BSA-loaded microspheres could degrade gradually in phosphate buffered saline buffer with pH value maintained at around 7.1 during 8 weeks incubation, suggesting that microsphere degradation did not cause a dramatic pH drop in phosphate buffered saline buffer because no acidic degradation products were released from the microspheres. Therefore, the MAC microspheres might have great potential as carriers for protein delivery. PMID:24855351

  15. Interaction of water-soluble amino acid Schiff base complexes with bovine serum albumin: fluorescence and circular dichroism studies.

    PubMed

    Gharagozlou, Mehrnaz; Boghaei, Davar M

    2008-12-15

    Fluorescence spectroscopy in combination with circular dichroism (CD) spectroscopy were used to investigate the interaction of water-soluble amino acid Schiff base complexes, [Zn(L1,2)(phen)] where phen is 1,10-phenanthroline and H2L1,2 is amino acid Schiff base ligands, with bovine serum albumin (BSA) under the physiological conditions in phosphate buffer solution adjusted to pH 7.0. The quenching mechanism of fluorescence was suggested as static quenching according to the Stern-Volmer equation. Quenching constants were determined using the Stern-Volmer equation to provide a measure of the binding affinity between amino acid Schiff base complexes and BSA. The thermodynamic parameters DeltaG, DeltaH and DeltaS at different temperatures (298, 310 and 318K) were calculated. The results indicate that the hydrophobic and hydrogen bonding interactions play a major role in [Zn(L1)(phen)]-BSA association, whereas hydrophobic and electrostatic interactions participate a main role in [Zn(L2)(phen)]-BSA binding process. Binding studies concerning the number of binding sites and apparent binding constant Kb were performed by fluorescence quenching method. The distance R between the donor (BSA) and acceptor (amino acid Schiff base complexes) has been obtained utilizing fluorescence resonant energy transfer (FRET). Furthermore, CD spectra were used to investigate the structural changes of the BSA molecule with the addition of amino acid Schiff base complexes. The results indicate that the interaction of amino acid Schiff base complexes with BSA leads to changes in the secondary structure of the protein. Fractional contents of the secondary structure of BSA (f(alpha), f(beta), f(turn) and f(random)) were calculated with and without amino acid Schiff base complexes utilizing circular dichroism spectroscopy. Our results clarified that amino acid Schiff base complexes could bind to BSA and be effectively transported and eliminated in the body, which could be a useful guideline for

  16. Holograms of fluorescent albumin

    NASA Astrophysics Data System (ADS)

    Ordóñez-Padilla, M. J.; Olivares-Pérez, A.; Berriel-Valdos, L. R.; Mejias-Brizuela, N. Y.; Fuentes-Tapia, I.

    2011-09-01

    We report the characterization and analysis of photochromic films gallus gallus albumin as a matrix modified for holographic recording. Photo-oxidation of homogeneous mixtures prepared with albumin-propylene glycol, to combine chemically with aqueous solution of ammonium dichromate at certain concentrations. We analyzed the diffraction gratings, through the diffraction efficiency of the proposed material. Also, eosin was used as a fluorescent agent, so it is found that produces an inhibitory effect, thus decreasing the diffraction efficiency of the matrices prepared in near-identical circumstances. The work was to achieve stability of albumin films, were prepared with propylene glycol. Finally, experimental studies were performed with films when subjected to aqueous solution of eosin (fluorescent agent) to verify the ability to increase or decrease in diffraction efficiency.

  17. Influence of surface charge on the rate, extent, and structure of adsorbed Bovine Serum Albumin to gold electrodes.

    PubMed

    Beykal, Burcu; Herzberg, Moshe; Oren, Yoram; Mauter, Meagan S

    2015-12-15

    The objective of this work is to investigate the rate, extent, and structure of amphoteric proteins with charged solid surfaces over a range of applied potentials and surface charges. We use Electrochemical Quartz Crystal Microbalance with Dissipation Monitoring (E-QCM-D) to investigate the adsorption of amphoteric Bovine Serum Albumin (BSA) to a gold electrode while systematically varying the surface charge on the adsorbate and adsorbent by manipulating pH and applied potential, respectively. We also perform cyclic voltammetry-E-QCM-D on an adsorbed layer of BSA to elucidate conformational changes in response to varied applied potentials. We confirm previous results demonstrating that increasing magnitude of applied potential on the gold electrode is positively correlated with increasing mass adsorption when the protein and the surface are oppositely charged. On the other hand, we find that the rate of BSA adsorption is not governed by simple electrostatics, but instead depends on solution pH, an observation not well documented in the literature. Cyclic voltammetry with simultaneous E-QCM-D measurements suggest that BSA protein undergoes a conformational change as the surface potential varies. PMID:26348658

  18. Lipid-rich bovine serum albumin improves the viability and hatching ability of porcine blastocysts produced in vitro

    PubMed Central

    SUZUKI, Chie; SAKAGUCHI, Yosuke; HOSHI, Hiroyoshi; YOSHIOKA, Koji

    2015-01-01

    The effects of lipid-rich bovine serum albumin (LR-BSA) on the development of porcine blastocysts produced in vitro were examined. Addition of 0.5 to 5 mg/ml LR-BSA to porcine blastocyst medium (PBM) from Day 5 (Day 0 = in vitro fertilization) significantly increased the hatching rates of blastocysts on Day 7 and the total cell numbers in Day-7 blastocysts. When Day-5 blastocysts were cultured with PBM alone, PBM containing LR-BSA, recombinant human serum albumin or fatty acid-free BSA, addition of LR-BSA significantly enhanced hatching rates and the cell number in blastocysts that survived compared with other treatments. The diameter, ATP content and numbers of both inner cell mass and total cells in Day-6 and Day-7 blastocysts cultured with PBM containing LR-BSA were significantly higher than in blastocysts cultured with PBM alone, whereas LR-BSA had no effect on mitochondrial membrane potential. The mRNA levels of enzymes involved in fatty acid metabolism and β-oxidation (ACSL1, ACSL3, CPT1, CPT2 and KAT) in Day-7 blastocysts were significantly upregulated by the addition of LR-BSA. The results indicated that LR-BSA enhanced hatching ability and quality of porcine blastocysts produced in vitro, as determined by ATP content, blastocyst diameter and expression levels of the specific genes, suggesting that the stimulatory effects of LR-BSA arise from lipids bound to albumin. PMID:26582048

  19. Studies of interaction between colchicine and bovine serum albumin by fluorescence quenching method

    NASA Astrophysics Data System (ADS)

    Hu, Yan-Jun; Liu, Yi; Zhang, Li-Xia; Zhao, Ru-Ming; Qu, Song-Sheng

    2005-08-01

    We investigated the interaction between colchicine and bovine serum albumin (BSA) by fluorescence and UV-Vis absorption spectroscopy. In the mechanism discussion, it was proved that the fluorescence quenching of BSA by colchicine is a result of the formation of colchicine-BSA complex; van der Waals interactions and hydrogen bonds play a major role in stabilizing the complex. The modified Stern-Volmer quenching constant Ka and corresponding thermodynamic parameters ΔH, ΔG, ΔS at different temperatures were calculated. The distance r between donor (BSA) and acceptor (colchicine) was obtained according to fluorescence resonance energy transfer (FRET).

  20. Spectroscopic studies of the interaction between tetra-substituted aluminum phthalocyanines and bovine serum albumin

    NASA Astrophysics Data System (ADS)

    He, Yipeng; Zheng, Liqin; Huang, Yide; Lin, Pingping; Yang, Hongqin; Peng, Yiru

    2014-11-01

    Serum albumin, the most abundant plasma protein in mammalian blood, shows significant effects on delivery and therapeutic efficacy of drugs, therefore, the investigation of binding interaction between serum albumin and drugs is vital and necessary. In the present study, the binding interaction of two aluminum (III) phthalocyanine (AlPc) derivatives, tetrasulfonate- and tetra-(p-sulfoazophenyl-4-aminosulfonyl)-substituted AlPc (complexes 1 and 2), with bovine serum albumin (BSA) was investigated by UV-Vis and fluorescence spectroscopy. Adding BSA to the Pc complexes in water caused remarkable changes in the Q-band of the Pc complexes, indicating an altered aggregation behavior. When titrating these AlPcs with BSA in PBS, the intrinsic fluorescence of BSA was significantly quenched through a static quenching process. The binding of Pc complexes to BSA might change its conformation, evidenced by the red shift of maximum emission wavelength. Furthermore, binding constants and binding sites were obtained and binding ability between the Pc complexes and BSA was assessed. Our results suggest that complexes 1 and 2 readily interact with BSA whereas the latter shows more affinity (with higher binding constant value) to BSA, implying the stretched amphiphilic substituents of complex 2 may contribute to their transportation in the blood.

  1. Complexes of dendrimers with bovine serum albumin.

    PubMed

    Mandeville, J S; Tajmir-Riahi, H A

    2010-02-01

    We report the complexation of bovine serum albumin (BSA) with several dendrimers of different compositions mPEG-PAMAM (G3), mPEG-PAMAM (G4), and PAMAM (G4) at physiological conditions using constant protein concentration and various dendrimer contents. FTIR, CD, and fluorescence spectroscopic methods were used to analyze polymer binding mode, the binding constant, and the effects of dendrimer complexation on BSA stability and conformation. Structural analysis showed that dendrimers bind BSA via hydrophilic and hydrophobic interactions with a number of bound polymers (n): 1.30 for mPEG-PAMAM-G3, 1.30 for mPEG-PAMAM-G4, and 1.0 for PAMAM-G4. The polymer-BSA binding constants were K(mPEG-G3) = 5.0 (+/-0.8) x 10(3) M(-1), K(mPEG-G4) = 1.0 (+/-0.3) x 10(4) M(-1), and K(PAMAM-G4) = 1.1 (+/-0.4) x 10(4) M(-1). Dendrimer binding altered BSA conformation with a major reduction of alpha-helix and an increase in random coil and turn structures, indicating a partial protein unfolding. PMID:20085247

  2. Effect of aqueous solution and load on the formation of DLC transfer layer against Co-Cr-Mo for joint prosthesis.

    PubMed

    Guo, Feifei; Zhou, Zhifeng; Hua, Meng; Dong, Guangneng

    2015-09-01

    Diamond-like carbon (DLC) coating exhibits excellent mechanical properties such as high hardness, low friction and wear, which offer a promising solution for the metal-on-metal hip joint implants. In the study, the hydrogen-free DLC coating with the element Cr as the interlay addition was deposited on the surface of the Co-Cr-Mo alloy by a unbalanced magnetron sputtering method. The coating thickness was controlled as 2 µm. Nano-indentation test indicated the hardness was about 13 GPa. DLC coated Co-Cr-Mo alloy disc against un-coated Co-Cr-Mo alloy pin (spherical end SR9.5) comprised the friction pairs in the pin-on-disc tribotest under bovine serum albumin solution (BSA) and physiological saline(PS).The tribological behavior under different BSA concetrations(2-20 mg/ml), and applied load (2-15N) was investigated.DLC transfer layer did not form under BSA solution, even though different BSA concetration and applied load changed. The coefficient of friction(COF) under 6 mg/ml BSA at 10 N was the lowest as 0.10. A higher COF of 0.13 was obtained under 20 mg/ml BSA. The boundary absorption layer of protein is the main factor for the counterparts. However, the continous DLC transfer layer was observed under PS solution, which make a lower COF of 0.08. PMID:25967039

  3. Fluorescence modulation and associative behavior of lumazine in hydrophobic domain of micelles and bovine serum albumin.

    PubMed

    Moyon, N Shaemningwar; Islam, Mullah Muhaiminul; Phukan, Smritakshi; Mitra, Sivaprasad

    2013-04-01

    The photophysical behavior of the deprotonated form of lumazine (Lum-anion) was studied in biologically relevant surfactant systems like sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide (CTAB) and TritonX-100 (TX-100) and also model water soluble protein, bovine serum albumin (BSA), using steady-state and time-resolved fluorescence spectroscopy in buffer solution of pH 12.0. The association constant values were calculated from modulated fluorescence intensity of Lum-anion in different medium. The interaction of non-ionic surfactant TX-100 was found to be about 10 times greater than SDS and CTAB. However, while the driving force of binding in SDS and/or TX-100 is mainly hydrophobic in nature, electrostatic interaction with the oppositely charged micellar head group is the predominant factor in CTAB. The thermodynamic parameters like enthalpy (ΔH) and entropy (ΔS) change, etc., corresponding to the binding of Lum-anion with BSA were estimated by performing the fluorescence titration experiment at different temperatures. Thermodynamically favorable and strong binding of Lum-anion (K~10(4) M(-1)) into BSA is due to hydrophobic interaction in the ligand binding domain II. However, the binding mechanism is entirely different in presence of protein denaturing agent like urea and electrostatic interaction plays a major role under this condition. PMID:23501728

  4. nanoparticles via a facile one-step solvothermal process for adsorption of bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Shen, Mao; Yu, Yujing; Fan, Guodong; Chen, Guang; Jin, Ying min; Tang, Wenyuan; Jia, Wenping

    2014-06-01

    Preparation of magnetic nanoparticles coated with chitosan (CS-coated Fe3O4 NPs) in one step by the solvothermal method in the presence of different amounts of added chitosan is reported here. The magnetic property of the obtained magnetic composite nanoparticles was confirmed by X-ray diffraction (XRD) and magnetic measurements (VSM). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) allowed the identification of spherical nanoparticles with about 150 nm in average diameter. Characterization of the products by Fourier transform infrared spectroscopy (FTIR) demonstrated that CS-coated Fe3O4 NPs were obtained. Chitosan content in the obtained nanocomposites was estimated by thermogravimetric analysis (TGA). The adsorption properties of the CS-coated Fe3O4 NPs for bovine serum albumin (BSA) were investigated under different concentrations of BSA. Compared with naked Fe3O4 nanoparticles, the CS-coated Fe3O4 NPs showed a higher BSA adsorption capacity (96.5 mg/g) and a fast adsorption rate (45 min) in aqueous solutions. This work demonstrates that the prepared magnetic nanoparticles have promising applications in enzyme and protein immobilization.

  5. Unaffected features of BSA stabilized Ag nanoparticles after storage and reconstitution in biological relevant media.

    PubMed

    Valenti, Laura E; Giacomelli, Carla E

    2015-08-01

    Silver-coated orthopedic implants and silver composite materials have been proposed to produce local biocidal activity at low dose to reduce post-surgery infection that remains one of the major contributions to the patient morbidity. This work presents the synthesis combined with the characterization, colloidal stability in biological relevant media, antimicrobial activity and handling properties of silver nanoparticles (Ag-NP) before and after freeze dry and storage. The nanomaterial was synthesized in aqueous solution with simple, reproducible and low-cost strategies using bovine serum albumin (BSA) as the stabilizing agent. Ag-NP were characterized by means of the size distribution and morphology (UV-vis spectra, dynamic light scattering measurements and TEM images), charge as a function of the pH (zeta potential measurements) and colloidal stability in biological relevant media (UV-vis spectra and dynamic light scattering measurements). Further, the interactions between the protein and Ag-NP were evaluated by surface enhanced Raman spectroscopy (SERS) and the antimicrobial activity was tested with two bacteria strains (namely Staphylococcus aureus and Staphylococcus epidermidis) mainly present in the infections caused by implants and prosthesis in orthopedic surgery. Finally, the Ag-NP dispersed in aqueous solution were dried and stored as long-lasting powders that were easily reconstituted without losing their stability and antimicrobial properties. The proposed methods to stabilize Ag-NP not only produce stable dispersions in media of biological relevance but also long-lasting powders with optimal antimicrobial activity in the nanomolar range. This level is much lower than the cytotoxicity determined in vitro on osteoblasts, osteoclasts and osteoarthritic chondrocytes. The synthesized Ag-NP can be incorporated as additive of biomaterials or pharmaceutical products to confer antimicrobial activity in a powdered form in different formulations, dispersed in

  6. Mechanistic Study on the Reduction of SWCNT-induced Cytotoxicity by Albumin Coating

    PubMed Central

    Liu, Yang; Ren, Lei; Yan, Dong

    2014-01-01

    Single walled carbon nanotubes (SWCNTs) are utilized in many areas, accompanied with the ever rising safety concerns. Coating the SWCNTs by serum albumin has shown promises in reduction of their cytotoxicity. The cause of toxicity reduction could be due to the blockage of cellular protein adsorption by bovine serum albumin (BSA). Here, our study explored the mechanism of toxicity reduction from the point of view of protein adsorption. Different loadings of BSA led to varied surface coverage of the SWCNTs, which was positively related to the level of cytotoxicity. In addition, the BSA-coated SWCNTs were tested for their surface morphology change, cellular uptake, and adsorption of cellular proteins. BSA could be competed off the SWCNT surface by the cytosol proteins, and thus a higher BSA loading was needed to provide better protection to the cells. Cellular uptake was also reduced with a higher BSA loading. Moreover, the BSA coating changed the surface property of SWCNTs, and as a consequence, altered the types of proteins adsorbed by the SWCNTs. Our results support that adsorption of BSA reduces cellular uptake of SWCNTs as well as adsorption of cellular proteins on SWCNTs, both contributing to the much lower cytotoxicity observed for the BSA-coated SWCNTs. PMID:25580058

  7. Influence of hydroxylation and glycosylation in ring A of soybean isoflavones on interaction with BSA

    NASA Astrophysics Data System (ADS)

    Zhao, Jinyao; Ren, Fenglian

    2009-04-01

    In this paper, the influence of hydroxylation and glycosylation of soybean isoflavones in ring A on the interaction with BSA was investigated. Two soybean isoflavone aglycones (daidzein and genistein) and their glycosides (daidzin and genistin) were used to study their ability to bind BSA by quenching the BSA intrinsic fluorescence in solution. The hydroxylation and glycosylation of soybean isoflavones in ring A significantly affected the binding/quenching process; in general, the hydroxylation increases the binding affinity and the glycosylation decreased the binding affinity. For daidzein and daidzin, the binding constants for BSA were 5.2 × 10 4 and 5.58 × 10 3 L mol -1, respectively. For genistein and genistin, the binding constants were 8.40 × 10 5 and 1.44 × 10 5 L mol -1, respectively.

  8. Interaction of BODIPY dyes with bovine serum albumin: a case study on the aggregation of a click-BODIPY dye.

    PubMed

    Jameson, Laramie P; Smith, Nicholas W; Annunziata, Onofrio; Dzyuba, Sergei V

    2016-06-01

    The fluorescence of BODIPY and click-BODIPY dyes was found to substantially increase in the presence of bovine serum albumin (BSA). BSA acted as a solubilizer for dye aggregates, in addition to being a conventional binding scaffold for the click-BODIPY dyes, indicating that disaggregation of fluorophores should be considered when evaluating dye-protein interactions. PMID:27173791

  9. Competitive binding of phenylbutazone and colchicine to serum albumin in multidrug therapy: A spectroscopic study

    NASA Astrophysics Data System (ADS)

    Sułkowska, A.; Maciążek-Jurczyk, M.; Bojko, B.; Równicka, J.; Zubik-Skupień, I.; Temba, E.; Pentak, D.; Sułkowski, W. W.

    2008-06-01

    The binding sites for phenylbutazone and colchicine were identified in tertiary structure of bovine and human serum albumin with the use of spectrofluorescence analysis. It was found that phenylbutazone has two binding sites in both sera albumins (HSA and BSA), while colchicine has one binding site in BSA as well as in HSA. The comparison of the quenching effect of BSA and HSA fluorescence by phenylbutazone and colchicine allows us to identify subdomain IIA in protein as the binding site for these two drugs. In this subdomain tryptophan 214 is located. The participation of tyrosyl and tryptophanyl residues of protein was also estimated in the drug-albumin complex. The comparison of quenching of fluorescence of HSA and BSA excited at 280 nm with that at 295 nm allowed us to state that the participation of tyrosyl residues of albumin in the phenylbutazone-serum albumin interaction is significant. The analysis of quenching of fluorescence of BSA in the binary and ternary systems showed that phenylbutazone does not affect the complex formed between colchicine and BSA. Similarly, colchicine has no effect on the Phe-BSA complex. However marked differences were observed for the complex with HSA. On the basis of Ka and KQ values it was concluded that colchicine may probably cause displacement of phenylbutazone from its complex with serum albumin (SA). Static and dynamic quenching for the binary and ternary systems is also discussed. The competition of phenylbutazone and colchicine in binding to serum albumin should be taken into account in the multi-drug therapy.

  10. Polyelectrolyte capsules packaging BSA gels for pH-controlled drug loading and release and their antitumor activity.

    PubMed

    Shen, H-J; Shi, H; Ma, K; Xie, M; Tang, L-L; Shen, S; Li, B; Wang, X-S; Jin, Y

    2013-04-01

    Polyelectrolyte multilayer capsules, promising candidates for multifunctional drug delivery systems, have recently received increased interest. However, the low encapsulation efficiency of drugs and the lack of reports about animal experiments have greatly slowed down their development for drug delivery. Here, a polyelectrolyte multilayer capsule filled with bovine serum albumin gel (BSA-gel-capsule) was constructed by a layer-by-layer assembly technique and thermally induced gelation of BSA. Owing to the charge variability of BSA with change in pH, BSA-gel-capsules not only showed a pronounced accumulation effect of drugs into capsules, but also displayed excellent pH-controlled loading and release properties. Moreover, a remarkable targeting action to the lung was discovered after intravenous injection of fluorescein isothiocyanate (FITC)-labeled BSA-gel-capsules into mice. After treatment with doxorubicin-loaded BSA-gel-capsules, effective cytotoxicity against B16-F10 cells and inhibition of the pulmonary melanoma growth were revealed. This paper introduces a new type of smart microstructure with notable pH-responsive ability. This material renders feasible the intravenous administration of polyelectrolyte microcapsules, which will be a big step towards their application as drug delivery vehicles. PMID:23271041

  11. BSA-directed synthesis of CuS nanoparticles as a biocompatible photothermal agent for tumor ablation in vivo.

    PubMed

    Zhang, Cai; Fu, Yan-Yan; Zhang, Xuejun; Yu, Chunshui; Zhao, Yan; Sun, Shao-Kai

    2015-08-01

    Photothermal therapy as a physical therapeutic approach has greatly attracted research interest due to its negligible systemic effects. Among the various photothermal agents, CuS nanoparticles have been widely used due to their easy preparation, low cost, high stability and strong absorption in the NIR region. However, the ambiguous biotoxicity of CuS nanoparticles limited their bio-application. So it is highly desirable to develop biocompatible CuS photothermal agents with the potential of clinical translation. Herein, we report a novel method to synthesize biocompatible CuS nanoparticles for photothermal therapy using bovine serum albumin (BSA) as a template via mimicking biomaterialization processes. Owing to the inherent biocompatibility of BSA, the toxicity assays in vitro and in vivo showed that BSA-CuS nanoparticles possessed good biocompatibility. In vitro and in vivo photothermal therapies were performed and good results were obtained. The bulk of the HeLa cells treated with BSA-CuS nanoparticles under laser irradiation (808 nm) were killed, and the tumor tissues of mice were also successfully eliminated without causing any obvious systemic damage. In summary, a novel strategy for the synthesis of CuS nanoparticles was developed using BSA as the template, and the excellent biocompatibility and efficient photothermal therapy effects of BSA-CuS nanoparticles show great potential as an ideal photothermal agent for cancer treatment. PMID:26106950

  12. Paeoniflorin protects HUVECs from AGE-BSA-induced injury via an autophagic pathway by acting on the RAGE.

    PubMed

    Chen, Yufang; Du, Xing; Zhou, Yande; Zhang, Yanlin; Yang, Yaping; Liu, Zhihua; Liu, Chunfeng; Xie, Ying

    2015-01-01

    The aim of our study was to investigate the protective effects of Paeoniflorin (PF) against injury induced by AGE-modified bovine serum albumin (AGE-BSA) in human umbilical vein endothelial cells (HUVECs), and to examine the underlying mechanisms of these effects. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was used to determine cell viability. Protein expression levels were determined by western blotting. For function-blocking experiments, we used small interfering RNA molecules (siRNA) for function-blocking experiments. At 6 h, we found that 100 μg/mL AGE-BSA reduced the viability of HUVECs. However, pretreatment with PF restored cell viability in a dose-dependent manner. AGE-BSA increased the levels of microtubule-associated protein light chain 3-II (LC3-II) and the receptor for advanced glycation end products (RAGE). Expression of p62 protein was also increased, but not at a statistically significant level. Pretreatment with PF further increased levels of LC3-II and RAGE, but reduced the expression of p62. In cells transfected with Atg5 and RAGE siRNA, cell viability and expression of LC3-II decreased in both the AGE-BSA and PF + AGE-BSA treatments. PF can protect HUVECs from AGE-BSA-induced injury by upregulating autophagy and promoting the completion of autophagy flux. RAGE plays an important role in this autophagic protection effect. PMID:25755692

  13. Study on the interaction between novel spiro pyrrolidine and bovine serum albumin by spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Yu, Xianyong; Yang, Ying; Zou, Xin; Tao, Hongwen; Ling, Yulin; Yao, Qing; Zhou, Hu; Yi, Pinggui

    Spiro pyrrolidines, which were proved with diverse and potent biological activities and they were discovered widespread in nature. In this paper, using fluorescence and ultraviolet spectroscopy, we investigated the interactions between novel spiro pyrrolidine (NSP) and bovine serum albumin (BSA) under the imitated physiological condition. The results show that the NSP binds to BSA molecules. Static quenching and non-radiation energy transfer are the main reasons for fluorescence quenching. We calculated the binding constant (Ka) and binding sites (n) at different temperatures and obtained the binding distance between the tryptophan residue in BSA and the NSP based on the Förster theory of non-radiation energy transfer. In addition, using synchronous fluorescence spectra, we demonstrated conformation changes of BSA caused by NSP. The comparison of binding potency of NSP and BSA suggests that the substituent on the benzene ring influences the binding ability of NSP and BSA.

  14. Spectrometric studies on the interaction of fluoroquinolones and bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Ni, Yongnian; Su, Shaojing; Kokot, Serge

    2010-02-01

    The interaction between fluoroquinolones (FQs), ofloxacin and enrofloxacin, and bovine serum albumin (BSA) was investigated by fluorescence and UV-vis spectroscopy. It was demonstrated that the fluorescence quenching of BSA by FQ is a result of the formation of the FQ-BSA complex stabilized, in the main, by hydrogen bonds and van der Waals forces. The Stern-Volmer quenching constant, KSV, and the corresponding thermodynamic parameters, Δ H, Δ S and Δ G, were estimated. The distance, r, between the donor, BSA, and the acceptor, FQ, was estimated from fluorescence resonance energy transfer (FRET). The effect of FQ on the conformation of BSA was analyzed with the aid of UV-vis absorbance spectra and synchronous fluorescence spectroscopy. Spectral analysis showed that the two FQs affected the conformation of the BSA but in a different manner. Thus, with ofloxacin, the polarity around the tryptophan residues decreased and the hydrophobicity increased, while for enrofloxacin, the opposite effect was observed.

  15. BSA Nanoparticle Loaded Atorvastatin Calcium - A New Facet for an Old Drug

    PubMed Central

    S, Sripriyalakshmi.; C. H, Anjali.; C, George Priya Doss.; B, Rajith; Ravindran, Aswathy

    2014-01-01

    Background Currently, the discovery of effective chemotherapeutic agents poses a major challenge to the field of cancer biology. The present study focuses on enhancing the therapeutic and anti cancer properties of atorvastatin calcium loaded BSA (ATV-BSA) nanoparticles in vitro. Methodology/Results BSA-ATV nanoparticles were prepared using desolvation technique. The process parameters were optimized based on the amount of desolvating agent, stabilization conditions as well as the concentration of the cross linker. The anti cancer properties of the protein coated ATV nanoparticles were tested on MiaPaCa-2 cell lines. In vitro release behavior of the drug from the carrier suggests that about 85% of the drug gets released after 72 hrs. Our studies show that ATV-BSA nanoparticles showed specific targeting and enhanced cytotoxicity to MiaPaCa-2 cells when compared to the bare ATV. Conclusion We hereby propose that the possible mechanism of cellular uptake of albumin bound ATV could be through caveolin mediated endocytosis. Hence our studies open up new facet for an existing cholesterol drug as a potent anti-cancer agent. PMID:24498272

  16. Interactions and effects of BSA-functionalized single-walled carbon nanotubes on different cell lines

    NASA Astrophysics Data System (ADS)

    Muzi, Laura; Tardani, Franco; La Mesa, Camillo; Bonincontro, Adalberto; Bianco, Alberto; Risuleo, Gianfranco

    2016-04-01

    Functionalized carbon nanotubes (CNTs) have shown great promise in several biomedical contexts, spanning from drug delivery to tissue regeneration. Thanks to their unique size-related properties, single-walled CNTs (SWCNTs) are particularly interesting in these fields. However, their use in nanomedicine requires a clear demonstration of their safety in terms of tissue damage, toxicity and pro-inflammatory response. Thus, a better understanding of the cytotoxicity mechanisms, the cellular interactions and the effects that these materials have on cell survival and on biological membranes is an important first step for an appropriate assessment of their biocompatibility. In this study we show how bovine serum albumin (BSA) is able to generate homogeneous and stable dispersions of SWCNTs (BSA-CNTs), suggesting their possible use in the biomedical field. On the other hand, this study wishes to shed more light on the impact and the interactions of protein-stabilized SWCNTs with two different cell types exploiting multidisciplinary techniques. We show that BSA-CNTs are efficiently taken up by cells. We also attempt to describe the effect that the interaction with cells has on the dielectric characteristics of the plasma membrane and ion flux using electrorotation. We then focus on the BSA-CNTs’ acute toxicity using different cellular models. The novel aspect of this work is the evaluation of the membrane alterations that have been poorly investigated to date.

  17. Interactions and effects of BSA-functionalized single-walled carbon nanotubes on different cell lines.

    PubMed

    Muzi, Laura; Tardani, Franco; La Mesa, Camillo; Bonincontro, Adalberto; Bianco, Alberto; Risuleo, Gianfranco

    2016-04-15

    Functionalized carbon nanotubes (CNTs) have shown great promise in several biomedical contexts, spanning from drug delivery to tissue regeneration. Thanks to their unique size-related properties, single-walled CNTs (SWCNTs) are particularly interesting in these fields. However, their use in nanomedicine requires a clear demonstration of their safety in terms of tissue damage, toxicity and pro-inflammatory response. Thus, a better understanding of the cytotoxicity mechanisms, the cellular interactions and the effects that these materials have on cell survival and on biological membranes is an important first step for an appropriate assessment of their biocompatibility. In this study we show how bovine serum albumin (BSA) is able to generate homogeneous and stable dispersions of SWCNTs (BSA-CNTs), suggesting their possible use in the biomedical field. On the other hand, this study wishes to shed more light on the impact and the interactions of protein-stabilized SWCNTs with two different cell types exploiting multidisciplinary techniques. We show that BSA-CNTs are efficiently taken up by cells. We also attempt to describe the effect that the interaction with cells has on the dielectric characteristics of the plasma membrane and ion flux using electrorotation. We then focus on the BSA-CNTs' acute toxicity using different cellular models. The novel aspect of this work is the evaluation of the membrane alterations that have been poorly investigated to date. PMID:26926913

  18. Tracing the conformational changes in BSA using FRET with environmentally-sensitive squaraine probes

    NASA Astrophysics Data System (ADS)

    Govor, Iryna V.; Tatarets, Anatoliy L.; Obukhova, Olena M.; Terpetschnig, Ewald A.; Gellerman, Gary; Patsenker, Leonid D.

    2016-06-01

    A new potential method of detecting the conformational changes in hydrophobic proteins such as bovine serum albumin (BSA) is introduced. The method is based on the change in the Förster resonance energy transfer (FRET) efficiency between protein-sensitive fluorescent probes. As compared to conventional FRET based methods, in this new approach the donor and acceptor dyes are not covalently linked to protein molecules. Performance of the new method is demonstrated using the protein-sensitive squaraine probes Square-634 (donor) and Square-685 (acceptor) to detect the urea-induced conformational changes of BSA. The FRET efficiency between these probes can be considered a more sensitive parameter to trace protein unfolding as compared to the changes in fluorescence intensity of each of these probes. Addition of urea followed by BSA unfolding causes a noticeable decrease in the emission intensities of these probes (factor of 5.6 for Square-634 and 3.0 for Square-685), and the FRET efficiency changes by a factor of up to 17. Compared to the conventional method the new approach therefore demonstrates to be a more sensitive way to detect the conformational changes in BSA.

  19. Upregulation of oxidative stress markers in human microvascular endothelial cells by complexes of serum albumin and digestion products of glycated casein.

    PubMed

    Deo, Permal; Glenn, Josephine V; Powell, Lesley A; Stitt, Alan W; Ames, Jennifer M

    2009-01-01

    The extent of absorption of dietary advanced glycation end products (AGEs) is not fully known. The possible physiological impact of these absorbed components on inflammatory processes has been studied little and was the aim of this investigation. Aqueous solutions of bovine casein and glucose were heated at 95 degrees C for 5 h to give AGE-casein (AGE-Cas). Simulated stomach and small intestine digestion of AGE-Cas and dialysis (molecular mass cutoff of membrane = 1 kDa) resulted in a low molecular mass (LMM) fraction of digestion products, which was used to prepare bovine serum albumin (BSA)-LMM-AGE-Cas complexes. Stimulation of human microvascular endothelial cells with BSA-LMM-AGE-Cas complexes significantly increased mRNA expression of the receptor of AGE (RAGE), galectin-3 (AGE-R3), tumor necrosis factor alpha, and a marker of the mitogen-activated protein kinase pathway (MAPK-1), as well as p65NF-kappaB activation. Cells treated with LMM digestion products of AGE-Cas significantly increased AGE-R3 mRNA expression. Intracellular reactive oxygen species production increased significantly in cells challenged with BSA-LMM-AGE-Cas and LMM-AGE-Cas. In conclusion, in an in vitro cell system, digested dietary AGEs complexed with serum albumin play a role in the regulation of RAGE and downstream inflammatory pathways. AGE-R3 may protect against these effects. PMID:19827132

  20. A novel affinity disks for bovine serum albumin purification.

    PubMed

    Tuzmen, Nalan; Kalburcu, Tülden; Uygun, Deniz Aktaş; Akgol, Sinan; Denizli, Adil

    2015-01-01

    The adsorption characteristics of bovine serum albumin (BSA) onto the supermacroporous poly(hydroxyethylmethacrylate)-Reactive Green 19 [p(HEMA)-RG] cryogel disks have been investigated in this paper. p(HEMA) cryogel disks were prepared by radical polymerization initiated by N,N,N',N'-tetramethylene diamine (TEMED) and ammonium persulfate (APS) pair in an ice bath. Reactive Green (RG) 19 was covalently attached to the p(HEMA) cryogel disks. These disks were used in BSA adsorption studies to interrogate the effects of pH, initial protein concentration, ionic strength, and temperature. BSA adsorption capacity of the p(HEMA)-RG cryogel disk was significantly improved after the incorporation of RG. Adsorption capacity reached a plateau value at about 0.8 mg/mL at pH 4.0. The amount of adsorbed BSA decreased from 37.7 to 13.9 mg/g with increasing NaCl concentration. The enthalpy of BSA adsorption onto the p(HEMA)-RG cryogel disk was calculated as -58.4 kJ/mol. The adsorption equilibrium isotherm was fitted well by the Freundlich model. BSA was desorbed from cryogel disks (over 90 %) using 0.5 M NaSCN, and the purity of desorbed BSA was confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The experimental results showed that the p(HEMA)-RG cryogel disks have potential for the quick protein separation and purification process. PMID:25308615

  1. Determination of bovine serum albumin using resonance light scattering technique with sodium dodecylbenzene sulphonate-cetyltrimethylammonium bromide probe

    NASA Astrophysics Data System (ADS)

    Gao, Dejiang; He, Na; Tian, Yuan; Chen, Yanhua; Zhang, Hanqi; Yu, Aimin

    2007-11-01

    In this paper, the anionic surfactant sodium dodecylbenzene sulphonate (SDBS) and cationic surfactant cetyltrimethylammonium bromide (CTMAB) were used as resonance light scattering (RLS) probe to determine bovine serum albumin (BSA). Based on the weak RLS intensity of SDBS-CTMAB probe and the enhancement of RLS intensity of BSA in the presence of the probe, a simple assay for BSA was developed. The experimental results showed that the formation of three component complex BSA-SDBS-CTMAB is the main reason for the enhancement of RLS intensity of BSA, in which SDBS as a bridge can interact with both BSA and CTMAB. The effects of pH value, incubation time, concentrations of SDBS and CTMAB on the enhanced RLS intensity of BSA were investigated. Under the optimum conditions, the enhanced RLS intensity is proportional to the concentration of BSA in the range from 2.5 × 10 -8 to 2.0 × 10 -6 mol L -1. The detection limit is 9.7 × 10 -9 mol L -1 for BSA. The study of foreign substance effect on the determination of BSA indicated that most of metal ions have little effect on the determination of BSA. The results of assay for BSA in synthetic samples were satisfactory.

  2. Photophysical, photochemical and BSA binding/BQ quenching properties of quaternizable coumarin containing water soluble zinc phthalocyanine complexes.

    PubMed

    Esenpınar, Aliye Aslı; Durmuş, Mahmut; Bulut, Mustafa

    2011-08-01

    The non-peripherally (np-QZnPc) and peripherally (p-QZnPc) tetrakis-[7-oxo-(3-[(2-diethylaminomethyliodide)ethyl)]-4-methylcoumarin]-phthalocyaninatozinc complexes have been prepared by quaternization of non-peripherally and peripherally tetrakis[7-oxo-(3-[(2-diethylamino)ethyl)]-methylcoumarin] phthalocyaninato zinc complexes with methyliodide in dimethylsulfoxide (DMSO). The new quaternized zinc phthalocyanine complex (np-QZnPc) has been characterized by elemental analysis, MALDI-TOF, IR and UV-vis spectral data. The photophysical and photochemical properties of the peripherally and non-peripherally quaternized tetrakis-3-[(2-diethylamino)ethyl]-7-oxo-4-methylcoumarin substituted zinc phthalocyanines are reported. The effects of the position of the substituents and the aggregation of the phthalocyanine molecules on the photophysical and photochemical properties are also investigated. General trends are described for photodegradation, singlet oxygen and fluorescence quantum yields, and fluorescence lifetimes for complexes np-ZnPc/p-ZnPc in DMSO and for complexes np-QZnPc/p-QZnPc in DMSO, phosphate buffered solution (PBS) and PBS+Triton-X 100 solutions. The fluorescence of the tetra-substituted quaternized zinc phthalocyanine complexes (np-QZnPc/p-QZnPc) are effectively quenched addition of 1,4-benzoquinone (BQ) and this study also presented the ionic zinc phthalocyanine complexes strongly bind to bovine serum albumin (BSA). PMID:21536490

  3. Prussian blue/serum albumin/indocyanine green as a multifunctional nanotheranostic agent for bimodal imaging guided laser mediated combinatorial phototherapy.

    PubMed

    Sahu, Abhishek; Lee, Jong Hyun; Lee, Hye Gyeong; Jeong, Yong Yeon; Tae, Giyoong

    2016-08-28

    Developing novel nanotheranostic agent using only clinically approved materials is highly desirable and challenging. In this study, we combined three clinically approved materials, Prussian blue (PB), serum albumin (BSA), and indocyanine green (ICG), by a simple and biocompatible method to prepare a multifunctional theranostic PB-BSA-ICG nanoparticle. The multifunctional nanoparticle system could provide dual mode magnetic resonance (MR) and near infrared (NIR) fluorescence imaging as well as combined photothermal and photodynamic (PTT-PDT) therapy in response to a single NIR laser. This nanoparticle showed an excellent stability in physiological solutions and could suppress the photo-instability of ICG. In the absence of light, the nanoparticles showed no cytotoxicity, but significant cell death was induced through combined PTT-PDT effect after irradiation with NIR laser light. A high tumor accumulation and minimal nonspecific uptake by other major organs of PB-BSA-ICG nanoparticle were observed in vivo, analyzed by T1-weighted MR and NIR fluorescence bimodal imaging in tumor xenograft mice after intravenous injection. The nanoparticles efficiently suppressed the tumor growth through combinatorial phototherapy with no tumor recurrence upon a single NIR laser irradiation. These results demonstrated that PB-BSA-ICG is potentially an interesting nanotheranostic agent for imaging guided cancer therapy by overcoming the limitations of each technology and enhancing the therapeutic efficiency as well as reducing side effects. PMID:27349352

  4. Molecularly imprinted electrochemical sensing interface based on in-situ-polymerization of amino-functionalized ionic liquid for specific recognition of bovine serum albumin.

    PubMed

    Wang, Yanying; Han, Miao; Liu, Guishen; Hou, Xiaodong; Huang, Yina; Wu, Kangbing; Li, Chunya

    2015-12-15

    A molecularly imprinted polymer film was in situ polymerized on a carboxyl functionalized multi-walled carbon nanotubes modified glassy carbon electrode surface under room temperature. This technique provides a promising imprinting approach for protein in an aqueous solution using 3-(3-aminopropyl)-1-vinylimidazolium tetrafluoroborate ionic liquid as functional monomer, N, N'-methylenebisacrylamide as crossing linker, ammonium persulfate and N,N,N',N'-tetramethylethylenediamine as initiator, and bovine serum albumin (BSA) as template. The molecularly imprinted polymerized ionic liquid film shows enhanced accessibility, high specificity and sensitivity towards BSA. Electrochemical sensing performance of the imprinted sensor was thoroughly investigated using K3Fe[CN]6/K4Fe[CN]6 as electroactive probes. Under optimal conditions, the current difference before and after specific recognition of BSA was found linearly related to its concentration in the range from 1.50×10(-9) to 1.50×10(-6) mol L(-1). The detection limit was calculated to be 3.91×10(-10) mol L(-1) (S/N=3). The practical application of the imprinted sensor was demonstrated by determining BSA in liquid milk samples. PMID:26232004

  5. Drug release mechanisms of chemically cross-linked albumin microparticles: effect of the matrix erosion.

    PubMed

    Sitta, Danielly L A; Guilherme, Marcos R; da Silva, Elisangela P; Valente, Artur J M; Muniz, Edvani C; Rubira, Adley F

    2014-10-01

    Albumin (BSA) microparticles were developed as a biotechnological alternative for drug delivery. Vitamin B12 (Vit-B12) was used as a model drug. The microparticles were obtained from maleic anhydride-functionalized BSA and N',N'-dimethylacrylamide (DMAAm) in a W/O emulsion without and with PVA. The microparticles produced at 15min of stirring without PVA showed the best results in terms of size, homogeneity, and sphericity. In such a case, BSA played a role as a surface active agent, replacing PVA. For longer stirring times, BSA was unable to act as an emulsifier. These microparticles showed an uncommon release profile, consisting of a two-step release mechanism, at the pH range studied. Considering that a two-step release mechanism is occurring, the experimental data were adjusted by applying modified power law and Weibull equations in order to describe release mechanism n and release rate constant k, respectively. Each one of the release stages was related to a specific value of n and k. The second stage was driven by a super case II transport mechanism, as a result of diffusion, macromolecular relaxation, and erosion. A third model, described by Hixson-Crowell, confirmed the erosion mechanism. Vit-B12 diffusion kinetics in aqueous solutions (i.e., without the microparticles) follows a one-step process, being k dependent on the pH, confirming that the two-step release mechanism is a characteristic profile of the developed microparticles. The microparticles released only 2.70% of their initial drug load at pH 2, and 58.53% at pH 10. PMID:25087021

  6. Resonant soft X-ray scattering on protein solutions

    NASA Astrophysics Data System (ADS)

    Ye, Dan; Le, Thinh; Wang, Cheng; Zwart, Peter; Gomez, Esther; Gomez, Enrique

    Protein structure is crucial for biological function, such that characterizing protein folding and packing is important for the design of therapeutics and enzymes. We propose resonant soft X-ray scattering (RSOXS) as an approach to study proteins and other biological assemblies in solution. Calculations of the scattering contrast suggest that soft X-ray scattering is more sensitive than hard X-ray scattering, because of contrast generated at the absorption edges of constituent elements such as carbon, nitrogen and oxygen. We have examined the structure of bovine serum albumin (BSA) in solution by RSOXS. We find that by varying incident X-ray energies, we are able to achieve higher scattering contrast near the absorption edge. From our RSOXS scattering result we are able to reconstruct the structure of BSA in 3D. These RSOXS results also agree with hard X-ray experiments, including crystallographic data. Our study demonstrates the potential of RSOXS for studying protein structure in solution.

  7. Effect of Solution Conditions on the Nanoscale Intermolecular Interactions Between Human Serum Albumin and Low Grafting Density Surfaces of Poly(ethylene oxide)

    NASA Astrophysics Data System (ADS)

    Rixman, Monica; Macias, Celia; Dean, Delphine; Ortiz, Christine

    2003-03-01

    The first step in the biological rejection response to an implanted blood-contacting biomaterial is the non-covalent adsorption of proteins onto the surface, which triggers a cascade reaction ultimately resulting in thrombus formation. Using the technique of high resolution force spectroscopy, we have quantified the nonspecific intermolecular forces between fatty acid-complexed human serum albumin (HSA) covalently attached to a cantilever probe tip and individual end-grafted poly(ethylene oxide) mushrooms. In order to help elucidate the molecular origins of the constituent forces (e.g. steric, electrostatic, van der Waals), experiments were performed varying both the solution environmental conditions (e.g. ionic strength, removal of the bound fatty acids, and the addition of the antihydrophobic agent isopropanol), and the probe deflection rate.

  8. Interaction of sulpiride and serum albumin: Modeling from spectrofluorimetric data

    NASA Astrophysics Data System (ADS)

    Fragoso, Viviane Muniz da Silva; Silva, Dilson

    2015-12-01

    We have applied the fluorescence quenching modeling to study the process of interaction of sulpiride with human serum albumin (HSA) and bovine (BSA). Albumin is more abundant protein in blood and it emits fluorescence when excited by 260-295 nm. Sulpiride is an atypical antipsychotic used in the treatment of many psychiatric disorders. As sulpiride is fluorescent, we developed a mathematical model to analyzing the interaction of two fluorescent substances. This model was able to separate the albumin fluorescence from the quencher fluorescence. Results have shown that sulpiride quenches the fluorescence of both albumins by a static process, due to the complex formation drugalbumin. The association constants calculated for sulpiride-HSA was 2.20 (± 0.08) × 104 M-1 at 37° C, and 5.46 (± 0.20) × 104 M-1, 25 ° C, and the primary binding site to sulpiride in the albumin is located closer to the subdomain IB.

  9. Interaction of coffee compounds with serum albumins. Part II: Diterpenes.

    PubMed

    Guercia, Elena; Forzato, Cristina; Navarini, Luciano; Berti, Federico

    2016-05-15

    Cafestol and 16-O-methylcafestol are diterpenes present in coffee, but whilst cafestol is found in both Coffea canephora and Coffea arabica, 16-O-methylcafestol (16-OMC) was reported to be specific of only C. canephora. The interactions of such compounds, with serum albumins, have been studied. Three albumins have been considered, namely human serum albumin (HSA), fatty acid free HSA (ffHSA) and bovine serum albumin (BSA). The proteins interact with the diterpenes at the interface between Sudlow site I and the fatty acid binding site 6 in a very peculiar way, leading to a significant change in the secondary structure. The diterpenes do not displace reference binding drugs of site 2, but rather they enhance the affinity of the site for the drugs. They, therefore, may alter the pharmacokinetic profile of albumin - bound drugs. PMID:26776001

  10. A novel dual-impedance-analysis EQCM system--investigation of bovine serum albumin adsorption on gold and platinum electrode surfaces.

    PubMed

    Xie, Qingji; Xiang, Canhui; Yuan, Yu; Zhang, Youyu; Nie, Lihua; Yao, Shouzhuo

    2003-06-01

    Both quartz crystal micro-balance (QCM) impedance and electrochemical impedance spectroscopy (EIS) methods are widely used in interface studies. This paper presents details about a new strategy for simultaneous, mutual-interference-free and accurate measurements of QCM impedance and EI, through connecting a suitable capacitance in series with the piezoelectric quartz crystal (PQC) between QCM impedance and EIS measurement instruments. Combined and individual measurements of QCM impedance and EIS during silver deposition gave results comparable with each other, demonstrating the reliability of the proposed method. Bovine serum albumin (BSA) adsorption on gold and platinum electrodes in Britton-Robinson (B-R) buffers was investigated, and the Fe(CN)6(3-)/Fe(CN)6(4-) couple was used as an electrochemical probe to characterize BSA adsorption. While the reversibility of Fe(CN)6(3-)/Fe(CN)6(4-) couple on bare Au and Pt electrodes changed very slightly with decreasing solution pH from pH approximately 7 to pH approximately 2, the standard rate constant (ks) of this couple increased abruptly with solution pH below pH approximately 4.5 at a BSA-modified Au electrode, but decreased with solution pH at a BSA-modified Pt electrode. By analyzing the QCM impedance data with a modified BVD equivalent circuit and the EI data with a modified Randle's equivalent circuit, inflexion changes at pH approximately 4.5 were all found at pH-dependent responses of the resonant frequency, the double-layer capacitance, the capacitance of the adsorbed BSA layer, the peak-absorbance values of BSA solutions at 277.5 and 224.5 nm, and so on. It was also found that a BSA adsorption layer can effectively inhibit gold corrosion during ferrocyanide oxidation in a ferrocyanide-containing BR solution. Some preliminary explanations of these findings have been given. The proposed method is highly recommended for wider applications in surface science. PMID:16256587

  11. Global kinetic analysis of seeded BSA aggregation.

    PubMed

    Sahin, Ziya; Demir, Yusuf Kemal; Kayser, Veysel

    2016-04-30

    Accelerated aggregation studies were conducted around the melting temperature (Tm) to elucidate the kinetics of seeded BSA aggregation. Aggregation was tracked by SEC-HPLC and intrinsic fluorescence spectroscopy. Time evolution of monomer, dimer and soluble aggregate concentrations were globally analysed to reliably deduce mechanistic details pertinent to the process. Results showed that BSA aggregated irreversibly through both sequential monomer addition and aggregate-aggregate interactions. Sequential monomer addition proceeded only via non-native monomers, starting to occur only by 1-2°C below the Tm. Aggregate-aggregate interactions were the dominant mechanism below the Tm due to an initial presence of small aggregates that acted as seeds. Aggregate-aggregate interactions were significant also above the Tm, particularly at later stages of aggregation when sequential monomer addition seemed to cease, leading in some cases to insoluble aggregate formation. The adherence (or non-thereof) of the mechanisms to Arrhenius kinetics were discussed alongside possible implications of seeding for biopharmaceutical shelf-life and spectroscopic data interpretation, the latter of which was found to often be overlooked in BSA aggregation studies. PMID:26970282

  12. Albumin extravasation rates in tissues of anesthetized and unanesthetized rats

    SciTech Connect

    Renkin, E.M.; Joyner, W.L.; Gustafson-Sgro, M.; Plopper, G.; Sibley, L.

    1989-05-01

    Bovine serum albumin (BSA) labeled with /sup 131/I was injected intravenously in chronically prepared, unanesthetized rats and into pentobarbital-anesthetized rats that had received 2 ml 5% BSA to help sustain plasma volume. Initial uptake rates (clearances) in skin, skeletal muscles, diaphragm, and heart (left ventricle) were measured over 1 h. BSA labeled with /sup 125/I was injected terminally to correct for intravascular /sup 131/I-BSA. Observed clearances were in the following order in both groups of animals: heart much greater than diaphragm approximately equal to skin greater than resting skeletal muscles. Differences between unanesthetized and anesthetized animals were small and inconsistently directed. Our results suggest that the lower albumin clearances reported in the literature for anesthetized rats are not the result of their immobility or any direct effect of anesthesia on albumin transport in these tissues. The lower transport rates appear to result indirectly from changes produced by anesthesia and/or surgery in controllable parameters such as plasma volume and intravascular protein mass.

  13. Effects of Gold Salt Speciation and Structure of Human and Bovine Serum Albumins on the Synthesis and Stability of Gold Nanostructures

    PubMed Central

    Miranda, Érica G. A.; Tofanello, Aryane; Brito, Adrianne M. M.; Lopes, David M.; Albuquerque, Lindomar J. C.; de Castro, Carlos E.; Costa, Fanny N.; Giacomelli, Fernando C.; Ferreira, Fabio F.; Araújo-Chaves, Juliana C.; Nantes, Iseli L.

    2016-01-01

    The present study aimed to investigate the influence of albumin structure and gold speciation on the synthesis of gold nanoparticles (GNPs). The strategy of synthesis was the addition of HAuCl4 solutions at different pH values (3–12) to solutions of human and bovine serum albumins (HSA and BSA) at the same corresponding pH values. Different pH values influence the GNP synthesis due to gold speciation. Besides the inherent effect of pH on the native structure of albumins, the use N-ethylmaleimide (NEM)-treated and heat-denaturated forms of HSA and BSA provided additional insights about the influence of protein structure, net charge, and thiol group approachability on the GNP synthesis. NEM treatment, heating, and the extreme values of pH promoted loss of the native albumin structure. The formation of GNPs indicated by the appearance of surface plasmon resonance (SPR) bands became detectable from 15 days of the synthesis processes that were carried out with native, NEM-treated and heat-denaturated forms of HSA and BSA, exclusively at pH 6 and 7. After 2 months of incubation, SPR band was also detected for all synthesis carried out at pH 8.0. The mean values of the hydrodynamic radius (RH) were 24 and 34 nm for GNPs synthesized with native HSA and BSA, respectively. X-ray diffraction (XRD) revealed crystallites of 13 nm. RH, XRD, and zeta potential values were consistent with GNP capping by the albumins. However, the GNPs produced with NEM-treated and heat-denaturated albumins exhibited loss of protein capping by lowering the ionic strength. This result suggests a significant contribution of non-electrostatic interactions of albumins with the GNP surface, in these conditions. The denaturation of proteins exposes hydrophobic groups to the solvent, and these groups could interact with the gold surface. In these conditions, the thiol blockage or oxidation, the latter probably favored upon heating, impaired the formation of a stable capping by thiol coordination with

  14. Effects of Gold Salt Speciation and Structure of Human and Bovine Serum Albumins on the Synthesis and Stability of Gold Nanostructures.

    PubMed

    Miranda, Érica G A; Tofanello, Aryane; Brito, Adrianne M M; Lopes, David M; Albuquerque, Lindomar J C; de Castro, Carlos E; Costa, Fanny N; Giacomelli, Fernando C; Ferreira, Fabio F; Araújo-Chaves, Juliana C; Nantes, Iseli L

    2016-01-01

    The present study aimed to investigate the influence of albumin structure and gold speciation on the synthesis of gold nanoparticles (GNPs). The strategy of synthesis was the addition of HAuCl4 solutions at different pH values (3-12) to solutions of human and bovine serum albumins (HSA and BSA) at the same corresponding pH values. Different pH values influence the GNP synthesis due to gold speciation. Besides the inherent effect of pH on the native structure of albumins, the use N-ethylmaleimide (NEM)-treated and heat-denaturated forms of HSA and BSA provided additional insights about the influence of protein structure, net charge, and thiol group approachability on the GNP synthesis. NEM treatment, heating, and the extreme values of pH promoted loss of the native albumin structure. The formation of GNPs indicated by the appearance of surface plasmon resonance (SPR) bands became detectable from 15 days of the synthesis processes that were carried out with native, NEM-treated and heat-denaturated forms of HSA and BSA, exclusively at pH 6 and 7. After 2 months of incubation, SPR band was also detected for all synthesis carried out at pH 8.0. The mean values of the hydrodynamic radius (RH) were 24 and 34 nm for GNPs synthesized with native HSA and BSA, respectively. X-ray diffraction (XRD) revealed crystallites of 13 nm. RH, XRD, and zeta potential values were consistent with GNP capping by the albumins. However, the GNPs produced with NEM-treated and heat-denaturated albumins exhibited loss of protein capping by lowering the ionic strength. This result suggests a significant contribution of non-electrostatic interactions of albumins with the GNP surface, in these conditions. The denaturation of proteins exposes hydrophobic groups to the solvent, and these groups could interact with the gold surface. In these conditions, the thiol blockage or oxidation, the latter probably favored upon heating, impaired the formation of a stable capping by thiol coordination with the

  15. The effects of chondroitin sulfate and serum albumin on the fibrillation of human islet amyloid polypeptide at phospholipid membranes.

    PubMed

    Li, Yang; Wang, Li; Lu, Tong; Wei, Ying; Li, Fei

    2016-04-28

    Glycosaminoglycans and serum albumin are important cellular components that regulate the fibril formation of proteins. Whereas the effects of cellular components on the fibrillation of amyloid proteins in bulk solution are widely studied, less attention has been paid to the effects of cellular components on amyloidogenesis occurring at cellular membranes. In this study, we focus on the impacts of chondroitin sulfate A (CSA) and bovine serum albumin (BSA) on the amyloidogenic behaviors of human islet amyloid polypeptide (hIAPP) at phospholipid membranes consisting of neutral POPC and anionic POPG. Using the thioflavin T fluorescence assay, atomic force microscopy, circular dichroism and nuclear magnetic resonance measurements, we demonstrate that CSA has an intensive promotion effect on the fibrillation of hIAPP at the POPC membrane, which is larger than the total effect of CSA alone and POPC alone. The further enhanced promotion of the fibrillation of hIAPP by CSA at the neutral membrane is associated with a specific interaction of CSA with POPC. In contrast, the activity of BSA as an inhibitor of hIAPP fibrillation observed in bulk solution decreases dramatically in the presence of POPG vesicles. The dramatic loss of the inhibition efficiency of BSA arises essentially from a specific interaction with the POPG component, but not simply from suppression by an opposite effect of the anionic membrane. The findings in this study suggest that the interactions between membranes and cellular components may have a significant effect on the activity of the cellular components in regulating the fibrillation of hIAPP. PMID:27067251

  16. CHARACTERIZATION OF INTERACTION KINETICS BETWEEN CHIRAL SOLUTES AND HUMAN SERUM ALBUMIN BY USING HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY AND PEAK PROFILING

    PubMed Central

    Tong, Zenghan; Hage, David S.

    2011-01-01

    Peak profiling and high-performance columns containing immobilized human serum albumin (HSA) were used to study the interaction kinetics of chiral solutes with this protein. This approach was tested using the phenytoin metabolites 5-(3-hydroxyphenyl)-5-phenylhydantoin (m-HPPH) and 5-(4-hydroxyphenyl)-5-phenylhydantoin (p-HPPH) as model analytes. HSA columns provided some resolution of the enantiomers for each phenytoin metabolite, which made it possible to simultaneously conduct kinetic studies on each chiral form. The dissociation rate constants for these interactions were determined by using both the single flow rate and multiple flow rate peak profiling methods. Corrections for non-specific interactions with the support were also considered. The final estimates obtained at pH 7.4 and 37°C for the dissociation rate constants of these interactions were 8.2–9.6 s−1 for the two enantiomers of m-HPPH and 3.2–4.1 s−1 for the enantiomers of p-HPPH. These rate constants agreed with previous values that have been reported for other drugs and solutes that have similar affinities and binding regions on HSA. The approach used in this report was not limited to phenytoin metabolites or HSA but could be applied to a variety of other chiral solutes and proteins. This method could also be adopted for use in the rapid screening of drug-protein interactions. PMID:21872871

  17. Synthesis of nano-bioactive glass-ceramic powders and its in vitro bioactivity study in bovine serum albumin protein

    NASA Astrophysics Data System (ADS)

    Nabian, Nima; Jahanshahi, Mohsen; Rabiee, Sayed Mahmood

    2011-07-01

    Bioactive glasses and ceramics have proved to be able to chemically bond to living bone due to the formation of an apatite-like layer on its surface. The aim of this work was preparation and characterization of bioactive glass-ceramic by sol-gel method. Nano-bioglass-ceramic material was crushed into powder and its bioactivity was examined in vitro with respect to the ability of hydroxyapatite layer to form on the surface as a result of contact with bovine serum albumin (BSA) protein. The obtained nano-bioactive glass-ceramic was analyzed before and after contact with BSA solution. This study used scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray powder diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis to examine its morphology, crystallinity and composition. The TEM images showed that the NBG particles size were 10-40 nm. Bioactivity of nanopowder was confirmed by SEM and XRD due to the presence of a rich bone-like apatite layer. Therefore, this nano-BSA-bioglass-ceramic composite material is promising for medical applications such as bone substitutes and drug carriers.

  18. Facile synthesis of hairy core-shell structured magnetic polymer submicrospheres and their adsorption of bovine serum albumin.

    PubMed

    Yan, Xianming; Kong, Juan; Yang, Chongchong; Fu, Guoqi

    2015-05-01

    Highly magnetic polymer submicrospheres with a hairy core-shell structure were facilely synthesized by combining distillation-precipitation polymerization (DPP) with subsequent surface-initiated atom transfer radical polymerization (SI-ATRP), and then investigated for protein adsorption. A robust polymer shell consisting of poly(divinylbenzene-co-chloromethylstyrene) (P(DVB-co-CMS)) was coated on superparamagnetic submicrometer-sized magnetite colloid nanocrystal clusters (MCNCs) via DPP. With the benzyl chloride groups on the shell as initiator, poly(2-(dimethylamino) ethyl methacrylate) (PDMAEMA) hairs were grafted by SI-ATRP approach. The resulting hairy core-shell structured Fe3O4@ P(DVB-co-CMS)-PDMAEMA microspheres showed pH- and temperature-sensitivity, and high-magnetization. The composite microspheres were further investigated for adsorption of a typical acidic protein, i.e. bovine serum albumin (BSA). They exhibited a high binding capacity up to over 660 mg/g (corresponding to 158 DMAEMA monomer units cooperating for binding one BSA molecule) and could rapidly reach binding equilibrium within 5 min. Moreover, the adsorption of BSA was found to be remarkably dependent on the pH and salt concentration of the protein solutions, and the bound protein could be quantitatively desorbed by washing with a medium with lowered pH or raised salt concentration. PMID:25594881

  19. Long-Term Toxicity of 213Bi-Labelled BSA in Mice

    PubMed Central

    Dorso, Laëtitia; Bigot-Corbel, Edith; Abadie, Jérôme; Diab, Maya; Gouard, Sébastien; Bruchertseifer, Frank; Morgenstern, Alfred; Maurel, Catherine; Chérel, Michel; Davodeau, François

    2016-01-01

    Background Short-term toxicological evaluations of alpha-radioimmunotherapy have been reported in preclinical assays, particularly using bismuth-213 (213Bi). Toxicity is greatly influenced not only by the pharmacokinetics and binding specificity of the vector but also by non-specific irradiation due to the circulating radiopharmaceutical in the blood. To assess this, an acute and chronic toxicity study was carried out in mice injected with 213Bi-labelled Bovine Serum Albumin (213Bi-BSA) as an example of a long-term circulating vector. Method Biodistribution of 213Bi-BSA and 125I-BSA were compared in order to evaluate 213Bi uptake by healthy organs. The doses to organs for injected 213Bi-BSA were calculated. Groups of nude mice were injected with 3.7, 7.4 and 11.1 MBq of 213Bi-BSA and monitored for 385 days. Plasma parameters, including alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN) and creatinine, were measured and blood cell counts (white blood cells, platelets and red blood cells) were performed. Mouse organs were examined histologically at different time points. Results Haematological toxicity was transient and non-limiting for all evaluated injected activities. At the highest injected activity (11.1 MBq), mice died from liver and kidney failure (median survival of 189 days). This liver toxicity was identified by an increase in both ALT and AST and by histological examination. Mice injected with 7.4 MBq of 213Bi-BSA (median survival of 324 days) had an increase in plasma BUN and creatinine due to impaired kidney function, confirmed by histological examination. Injection of 3.7 MBq of 213Bi-BSA was safe, with no plasma enzyme modifications or histological abnormalities. Conclusion Haematological toxicity was not limiting in this study. Liver failure was observed at the highest injected activity (11.1 MBq), consistent with liver damage observed in human clinical trials. Intermediate injected activity (7.4 MBq) should be

  20. Albumin Supplement Affects the Metabolism and Metabolism-Related Drug-Drug Interaction of Fenoprofen Enantiomers.

    PubMed

    Wang, Nan; Wang, Feng; Meng, Yu; Yang, Guo-Hui; Chen, Ju-Wu; Wang, Jia-Xiang

    2015-07-01

    The influence of albumin towards the metabolism behavior of fenoprofen enantiomers and relevant drug-drug interaction was investigated in the present study. The metabolic behavior of fenoprofen enantiomers was compared in a phase II metabolic incubation system with and without bovine serum albumin (BSA). BSA supplement increased the binding affinity parameter (Km) of (R)-fenoprofen towards human liver microsomes (HLMs) from 148.3 to 214.4 μM. In contrast, BSA supplement decreased the Km of (S)-fenoprofen towards HLMs from 218.2 to 123.5 μM. For maximum reaction velocity (Vmax), the addition of BSA increased the Vmax of (R)-fenoprofen from 1.3 to 1.6 nmol/min/mg protein. In the contrast, BSA supplement decreased the Vmax value from 3.3 to 1.5 nmol/min/mg protein. Andrographolide-fenoprofen interaction was used as an example to investigate the influence of BSA supplement towards fenoprofen-relevant drug-drug interaction. The addition of 0.2% BSA in the incubation system significantly decreased the inhibition potential of andrographolide towards (R)-fenoprofen metabolism (P < 0.001). Different from (R)-fenoprofen, the addition of BSA significantly increased the inhibition potential of andrographolide towards the metabolism of (S)-fenoprofen. BSA supplement also changed the inhibition kinetic type and parameter of andrographolide towards the metabolism of (S)-fenoprofen. In conclusion, albumin supplement changes the metabolic behavior of fenoprofen enantiomers and the fenoprofen-andrographolide interaction. PMID:26037509

  1. Interaction of glutathione with bovine serum albumin: Spectroscopy and molecular docking.

    PubMed

    Jahanban-Esfahlan, Ali; Panahi-Azar, Vahid

    2016-07-01

    This study aims to investigate the interaction between glutathione and bovine serum albumin (BSA) using ultraviolet-visible (UV-vis) absorption, fluorescence spectroscopies under simulated physiological conditions (pH 7.4) and molecular docking methods. The results of fluorescence spectroscopy indicated that the fluorescence intensity of BSA was decreased considerably upon the addition of glutathione through a static quenching mechanism. The fluorescence quenching obtained was related to the formation of BSA-glutathione complex. The values of KSV, Ka and Kb for the glutathione and BSA interaction were in the order of 10(5). The thermodynamic parameters including enthalpy change (ΔH), entropy change (ΔS) and also Gibb's free energy (ΔG) were determined using Van't Hoff equation. These values showed that hydrogen bonding and van der Waals forces were the main interactions in the binding of glutathione to BSA and the stabilization of the complex. Also, the interaction of glutathione and BSA was spontaneous. The effects of glutathione on the BSA conformation were determined using UV-vis spectroscopy. Moreover, glutathione was docked in BSA using ArgusLab as a molecular docking program. It was recognized that glutathione binds within the sub-domain IIA pocket in domain II of BSA. PMID:26920314

  2. Peroxidase-mediated conjugation of corn fiber gum and bovine serum albumin to improve emulsifying properties.

    PubMed

    Liu, Yan; Qiu, Shuang; Li, Jinlong; Chen, Hao; Tatsumi, Eizo; Yadav, Madhav; Yin, Lijun

    2015-03-15

    The emulsifying properties of corn fiber gum (CFG), a naturally occurring polysaccharide-protein complex, was improved by kinetically controlled formation of hetero-covalent linkages with bovine serum albumin (BSA), using horseradish peroxidase (HRP). The formation of hetero-crosslinked CFG-BSA conjugates was confirmed using ultraviolet-visible and Fourier-transform infrared analyses. The optimum CFG-BSA conjugates were prepared at a CFG:BSA weight ratio of 10:1, and peroxidase:BSA weight ratio of 1:4000. Selected CFG-BSA conjugates were used to prepare oil-in-water emulsions; the emulsifying properties were better than those of emulsions stabilized with only CFG or BSA. Measurements of mean droplet sizes and zeta potentials showed that CFG-BSA-conjugate-stabilized emulsions were less susceptible to environmental stresses, such as pH changes, high K ionic strengths, and freeze-thaw treatments than CFG- or BSA-stabilized emulsions. These conjugates have potential applications as novel emulsifiers in food industry. PMID:25542109

  3. Functional improvements in bovine serum albumin-fucoidan conjugate through the Maillard reaction.

    PubMed

    Kim, Do-Yeong; Shin, Weon-Sun

    2016-01-01

    The solubility, thermal stability, surface activity and emulsifying properties of native bovine serum albumin (BSA), heat-treated BSA, a BSA-fucoidan mixture, and a BSA-fucoidan conjugate were assessed. Covalent linkage of BSA with fucoidan resulted in significantly (p < 0.05) high solubility after heating at 90 °C for 15 min, particularly at pH 5. The BSA-fucoidan conjugate had a high melting temperature (97.09 ± 1.45 °C), as found by differential scanning calorimetry, indicating strong heat stability and high resistance to denaturation. Although the attachment of fucoidan, a non-surface-active hydrophilic polysaccharide, gave no change in the surface activity, the emulsifying activity and the emulsion stability of the conjugate at pH 5 were superior to those of native BSA, heat-treated BSA, and the BSA-fucoidan mixture. Conclusively, fucoidan attachment enhanced the solubility, thermal stability and emulsifying properties of the protein molecules with negative charge distribution and steric stabilization. PMID:26213064

  4. Nucleolin is a receptor for maleylated-bovine serum albumin on macrophages.

    PubMed

    Miki, Yuichi; Koyama, Keisuke; Kurusu, Haruna; Hirano, Kazuya; Beppu, Masatoshi; Fujiwara, Yasuyuki

    2015-01-01

    Scavenger receptors have a broad range of functions that include pathogen clearance, and identification of the scavenger receptor family has been of great benefit to the field of physiology. The shuttling-protein nucleolin has recently been shown to possess scavenger receptor-like activity. We therefore investigated whether or not nucleolin is a receptor for maleylated-bovine serum albumin (maleylated-BSA), which is a common ligand for scavenger receptors. Binding and phagocytosis of native control-BSA by thioglycollate-elicited mouse peritoneal macrophages was weak, but that of maleylated-BSA was strong. Surface plasmon-resonance analysis revealed that nucleolin strongly associated with maleylated-BSA but not control-BSA or maleic anhydride. Further, co-treatment of macrophages with anti-nucleolin antibody, but not control-immunoglobulin G, inhibited binding of maleylated-BSA. In addition, antineoplastic guanine rich oligonucleotide (AGRO), a nucleolin-specific oligonucleotide aptamer, inhibited binding of maleylated-BSA. Further, binding of maleylated-BSA to nucleolin-transfected HEK293 cells was higher than that by control HEK cells. These results indicate that nucleolin is a receptor that enables macrophages to recognize maleylated-BSA. PMID:25744467

  5. Adsorption of bovine serum albumin on nanosized magnetic particles.

    PubMed

    Peng, Z G; Hidajat, K; Uddin, M S

    2004-03-15

    Adsorption of bovine serum albumin (BSA) on nanosized magnetic particles (Fe(3)O(4)) was carried out in the presence of carbodiimide. The equilibrium and kinetics of the adsorption process were studied. Nanosized magnetic particles (Fe(3)O(4)) were prepared by the chemical precipitation method using Fe2+, Fe3+ salts, and ammonium hydroxide under a nitrogen atmosphere. Characterizations of magnetic particles were carried out using transmission electron microscopy (TEM) and a vibrating sample magnetometer (VSM). Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) were used to confirm the attachment of BSA on magnetic particles. Effects of pH and salt concentrations were investigated on the adsorption process. The experimental results show that the adsorption of BSA on magnetic particles was affected greatly by the pH, while the effect of salt concentrations was insignificant at a low concentration range. The adsorption equilibrium isotherm was fitted well by the Langmuir model. The maximum adsorption of BSA on magnetic particles occurred at the isoelectric point of BSA. Adsorption kinetics was analyzed by a linear driving force mass-transfer model. BSA was desorbed from magnetic particles under alkaline conditions, which was confirmed by SDS-PAGE electrophoresis and FTIR results. PMID:14972603

  6. Potentiometric responses of ion-selective microelectrode with bovine serum albumin adsorption.

    PubMed

    Goda, Tatsuro; Yamada, Eriko; Katayama, Yurika; Tabata, Miyuki; Matsumoto, Akira; Miyahara, Yuji

    2016-03-15

    There is a growing demand for an in situ measurement of local pH and ion concentrations in biological milieu to monitor ongoing process of bioreaction and bioresponse in real time. An ion-selective microelectrode can meet the requirements. However, the contact of the electrode with biological fluids induces biofouling by protein adsorption to result in a noise signal. Therefore, we investigated the relationship between the amount of nonspecific protein adsorption and the electrical signals in potentiometry by using ion-selective microelectrodes, namely silver/silver chloride (Ag/AgCl), iridium/iridium oxides (Ir/IrOx), and platinum/iridium oxides (Pt/IrOx). The microelectrodes reduced a potential change following the adsorption of bovine serum albumin (BSA) by comparison with the original metal microelectrodes without oxide layers. Suppression in the noise signal was attributed to the increased capacitance at the electrode/solution interface due to the formation of granulated metal oxide layer rather than a decrease in the amount of protein adsorbed. Ion sensitivity was maintained for Ir/IrOx against proton, but it was not for Ag/AgCl against chloride ion (Cl(-)), because of the interference of the equilibrium reaction by adsorbed BSA molecules on the electrode surface at<10(-2)M [Cl(-)] in the solution. The results open up the application of the Ir/IrOx microelectrode for measuring local pH in realistic dirty samples with a limited influence of electrode pollution by protein adsorption. PMID:26409020

  7. Impact of condensed tannin size as individual and mixed polymers on bovine serum albumin precipitation.

    PubMed

    Harbertson, James F; Kilmister, Rachel L; Kelm, Mark A; Downey, Mark O

    2014-10-01

    Condensed tannins composed of epicatechin from monomer to octamer were isolated from cacao (Theobroma cacao, L.) seeds and added to bovine serum albumin (BSA) individually and combined as mixtures. When added to excess BSA the amount of tannin precipitated increased with tannin size. The amount of tannin required to precipitate BSA varied among the polymers with the trimer requiring the most to precipitate BSA (1000 μg) and octamer the least (50 μg). The efficacy of condensed tannins for protein precipitation increased with increased degree of polymerisation (or size) from trimers to octamers (monomers and dimers did not precipitate BSA), while mixtures of two sizes primarily had an additive effect. This study demonstrates that astringent perception is likely to increase with increasing polymer size. Further research to expand our understanding of astringent perception and its correlation with protein precipitation would benefit from sensory analysis of condensed tannins across a range of polymer sizes. PMID:24799203

  8. Fluorescence spectrometric study on the interaction of tamibarotene with bovine serum albumin.

    PubMed

    Ye, Huazhen; Qiu, Bin; Lin, Zhenyu; Chen, Guonan

    2011-01-01

    The interaction between tamibarotene and bovine serum albumin (BSA) was studied using fluorescence quenching technique and ultraviolet-visible spectrophotometry. The results of experiments showed that tamibarotene could strongly quench the intrinsic fluorescence of BSA by a dynamic quenching mechanism. The apparent binding constant, number of binding site and corresponding thermodynamic parameters at different temperatures were calculated respectively, and the main interaction force between tamibarotene and BSA was proved to be hydrophobic force. Synchronous fluorescence spectra showed that tamibarotene changed the molecular conformation of BSA. When BSA concentration was 1.00 × 10⁻⁶mol L⁻¹, the quenched fluorescence ΔF had a good linear relationship with the concentration of tamibarotene in the range 1.00 × 10⁻⁶ to 12.00 × 10⁻⁶ mol L⁻¹ with the detection limit of 6.52 × 10⁻⁷  mol L⁻¹. PMID:22021245

  9. Study on the interaction between bovine serum albumin and starch nanoparticles prepared by isoamylolysis and recrystallization.

    PubMed

    Ji, Na; Qiu, Chao; Li, Xiaojing; Xiong, Liu; Sun, Qingjie

    2015-04-01

    The current study primarily investigated the interaction of bovine serum albumin (BSA) with starch nanoparticles (SNPs) prepared by isoamylolysis and recrystallization using UV-vis, fluorescence, transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and circular dichroism (CD). The enhanced absorbance observed by UV-vis spectroscopy and decreased intensity of fluorescence spectroscopy suggested that BSA could bind to SNPs and form a BSA-SNP complex. The synchronous fluorescence spectra revealed that the emission maximum of Tyr residue (at Δλ=15nm) was red-shifted at the investigated concentrations range, indicating that the conformation of BSA was changed. Quenching parameters showed that the quenching effect of SNPs was static quenching. TEM images showed that the SNPs were surrounded by protein coronae, indicating that nanoparticle-protein complexes had formed. The FTIR and CD characterization indicated that the SNPs induced structural changes in the secondary structure of BSA. PMID:25805153

  10. Interaction of bovine serum albumin protein with self assembled monolayer of mercaptoundecanoic acid

    NASA Astrophysics Data System (ADS)

    Poonia, Monika; Agarwal, Hitesh; Manjuladevi, V.; Gupta, R. K.

    2016-05-01

    Detection of proteins and other biomolecules in liquid phase is the essence for the design of a biosensor. The sensitivity of a sensor can be enhanced by the appropriate functionalization of the sensing area so as to establish the molecular specific interaction. In the present work, we have studied the interaction of bovine serum albumin (BSA) protein with a chemically functionalized surface using a quartz crystal microbalance (QCM). The gold-coated quartz crystals (AT-cut/5 MHz) were functionalized by forming self-assembled monolayer (SAM) of 11-Mercaptoundecanoic acid (MUA). The adsorption characteristics of BSA onto SAM of MUA on quartz crystal are reported. BSA showed the highest affinity for SAM of MUA as compared to pure gold surface. The SAM of MUA provides carboxylated surface which enhances not only the adsorption of the BSA protein but also a very stable BSA-MUA complex in the liquid phase.

  11. A colorimetric and ratiometric fluorescent probe for quantification of bovine serum albumin.

    PubMed

    Zeng, Xiaodan; Zhang, Xiaoling; Zhu, Baocun; Jia, Hongying; Li, Yamin; Xue, Juan

    2011-10-01

    A 4-aminonaphthalimide-based ratiometric fluorescent probe 1 employing the internal charge transfer (ICT) mechanism was designed and synthesized to detect bovine serum albumin (BSA). The interaction of 1 and BSA was investigated by fluorescence and UV-vis absorption spectroscopy. Upon treatment with BSA, the probe successfully exhibited a ratiometric fluorescent response at 540 nm and 480 nm. The fluorescent intensity ratio at 540 nm and 480 nm (F(540)/F(480)) increases linearly with BSA concentration in the range of 0-75.0 μg mL(-1) and the detection limit was about 2.4 ng mL(-1). Our strategy is expected to provide a methodology to quantify BSA either by a normal or by a ratiometric and colorimetric way with high sensitivity. PMID:21858298

  12. [Study on the interaction between ICT fluorescence probe and bovine serum albumins].

    PubMed

    Liu, Yu-Fang; Li, Jian-Qing; Xu, Zhi-Cheng; Wei, Yan-Li; Shuang, Shao-Min; Dong, Chuan

    2008-04-01

    The present article studied the interaction between intramolecular charge transfer fluorescence probe-1-keto-2-(p-dimethylaminobenzal)-tetrohydronaphthalene (KDTN) and bovine serum albumins (BSA). With the concentration of KDTN increasing, the fluorescence of BSA rapidly quenched and the fluorescence peak gradually blue-shifted. The result indicated that they were bound mainly by hydrophobic interaction. The binding sites is 0.94 (3 degrees C) and the equilibrium constant K is 3.27 x 10(4) L x mol(-1). Temperature increment is advantageous to the combination. It is a single static quenching process that the fluorescence of BSA quenches, which is induced by the combination of KDTN and BSA. Further study showed that different substances had different effects on the combination of KDTN and BSA. PMID:18619322

  13. Investigation on the interaction of pyrene with bovine serum albumin using spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Xu, Chengbin; Gu, Jiali; Ma, Xiping; Dong, Tian; Meng, Xuelian

    This paper was designed to investigate the interaction of pyrene with bovine serum albumin (BSA) under physiological condition by spectroscopic methods. Spectroscopic analysis of the emission quenching revealed that the quenching mechanism of BSA by pyrene was static. The binding sites and constants of pyrene-BSA complex were observed to be 1.20 and 2.63 × 106 L mol-1 at 298 K, respectively. The enthalpy change (ΔH) and entropy change (ΔS) revealed that van der Waals forces and hydrogen bonds stabilized the pyrene-BSA complex. Energy transfer from tryptophan to pyrene occurred by a FRET (fluorescence resonance energy transfer) mechanism, and the distance (r = 2.72 nm) had been determined. The results of synchronous, three-dimensional fluorescence, and circular dichroism spectra showed that the pyrene induced conformational changes of BSA.

  14. Spectroscopic analyses on interaction of bovine serum albumin with novel spiro[cyclopropane-pyrrolizin

    NASA Astrophysics Data System (ADS)

    Yu, Xianyong; Liao, Zhixi; Jiang, Bingfei; Hu, Xiaolian; Li, Xiaofang

    2015-02-01

    The interaction between novel spiro[cyclopropane-pyrrolizin] (NSCP) and bovine serum albumin (BSA) was analyzed by fluorescence and ultraviolet-visible (UV-Vis) spectroscopy at 298 K, 304 K and 310 K under simulative physiological conditions. The results showed that NSCP can effectively quench the intrinsic fluorescence of BSA via static quenching. The binding constants, binding sites of NSCP with BSA were calculated. Hydrogen binds and van der Waals force played a major role in stabilizing the complex and the binding reaction were spontaneous. According to the Förster non-radiation energy transfer theory, the average binding distances between NSCP and BSA were obtained. What is more, the synchronous fluorescence spectra indicated that the conformation of BSA has been changed.

  15. Development of morin-conjugated Au nanoparticles: Exploring the interaction efficiency with BSA using spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Yue, Hua-Li; Hu, Yan-Jun; Huang, Hong-Gui; Jiang, Shan; Tu, Bao

    2014-09-01

    In order to enhance its interaction efficiency with biomacromolecules for the usage as a therapeutic agent, we have conjugated morin, an antioxidant activity and anti-tumor drug, with citrate-coated Au nanoparticles (M-C-AuNPs). M-C-AuNPs were prepared by reducing chloroauric acid using trisodium citrate in the boiling condition, and the resulted M-C-AuNPs were characterized by UV-vis absorption spectroscopy, Transmission Electron Microscopy (TEM), X-ray diffraction (XRD) and FTIR analysis. In this article, UV-vis absorption spectroscopy in combination with fluorescence spectroscopy, and circular dichroism (CD) spectroscopy were employed to investigate the interactions between M-C-AuNPs and bovine serum albumin (BSA), C-AuNPs and BSA in a phosphate buffer at pH 7.4. By comparing the quenching constant KSV, effective quenching constant Ka, binding constant Kb and the number of binding sites n, it is clearly suggested that M-C-AuNPs could enhance the binding force of morin with BSA, which would pave the way for the design of nanotherapeutic agents with improved functionality.

  16. Determination of protein-ligand binding affinity by NMR: observations from serum albumin model systems.

    PubMed

    Fielding, Lee; Rutherford, Samantha; Fletcher, Dan

    2005-06-01

    The usefulness of bovine serum albumin (BSA) as a model protein for testing NMR methods for the study of protein-ligand interactions is discussed. Isothermal titration calorimetry established the binding affinity and stoichiometry of the specific binding site for L-tryptophan, D-tryptophan, naproxen, ibuprofen, salicylic acid and warfarin. The binding affinities of the same ligands determined by NMR methods are universally weaker (larger KD). This is because the NMR methods are susceptible to interference from additional non-specific binding. The L-tryptophan-BSA and naproxen-BSA systems were the best behaved model systems. PMID:15816062

  17. Functional significance of protein assemblies predicted by the crystal structure of the restriction endonuclease BsaWI

    PubMed Central

    Tamulaitis, Gintautas; Rutkauskas, Marius; Zaremba, Mindaugas; Grazulis, Saulius; Tamulaitiene, Giedre; Siksnys, Virginijus

    2015-01-01

    Type II restriction endonuclease BsaWI recognizes a degenerated sequence 5′-W/CCGGW-3′ (W stands for A or T, ‘/’ denotes the cleavage site). It belongs to a large family of restriction enzymes that contain a conserved CCGG tetranucleotide in their target sites. These enzymes are arranged as dimers or tetramers, and require binding of one, two or three DNA targets for their optimal catalytic activity. Here, we present a crystal structure and biochemical characterization of the restriction endonuclease BsaWI. BsaWI is arranged as an ‘open’ configuration dimer and binds a single DNA copy through a minor groove contacts. In the crystal primary BsaWI dimers form an indefinite linear chain via the C-terminal domain contacts implying possible higher order aggregates. We show that in solution BsaWI protein exists in a dimer-tetramer-oligomer equilibrium, but in the presence of specific DNA forms a tetramer bound to two target sites. Site-directed mutagenesis and kinetic experiments show that BsaWI is active as a tetramer and requires two target sites for optimal activity. We propose BsaWI mechanism that shares common features both with dimeric Ecl18kI/SgrAI and bona fide tetrameric NgoMIV/SfiI enzymes. PMID:26240380

  18. Functional significance of protein assemblies predicted by the crystal structure of the restriction endonuclease BsaWI.

    PubMed

    Tamulaitis, Gintautas; Rutkauskas, Marius; Zaremba, Mindaugas; Grazulis, Saulius; Tamulaitiene, Giedre; Siksnys, Virginijus

    2015-09-18

    Type II restriction endonuclease BsaWI recognizes a degenerated sequence 5'-W/CCGGW-3' (W stands for A or T, '/' denotes the cleavage site). It belongs to a large family of restriction enzymes that contain a conserved CCGG tetranucleotide in their target sites. These enzymes are arranged as dimers or tetramers, and require binding of one, two or three DNA targets for their optimal catalytic activity. Here, we present a crystal structure and biochemical characterization of the restriction endonuclease BsaWI. BsaWI is arranged as an 'open' configuration dimer and binds a single DNA copy through a minor groove contacts. In the crystal primary BsaWI dimers form an indefinite linear chain via the C-terminal domain contacts implying possible higher order aggregates. We show that in solution BsaWI protein exists in a dimer-tetramer-oligomer equilibrium, but in the presence of specific DNA forms a tetramer bound to two target sites. Site-directed mutagenesis and kinetic experiments show that BsaWI is active as a tetramer and requires two target sites for optimal activity. We propose BsaWI mechanism that shares common features both with dimeric Ecl18kI/SgrAI and bona fide tetrameric NgoMIV/SfiI enzymes. PMID:26240380

  19. Comparison of photoluminescence properties of HSA-protected and BSA-protected Au25 nanoclusters

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Masato; Kawasaki, Hideya; Saitoh, Tadashi; Inada, Mitsuru; Kansai Univ. Collaboration

    Gold nanoclusters (NCs) have attracted great interest for a wide range of applications. In particular, red light-emitting Au25 NCs have been prepared with various biological ligands. It has been shown that Au25 NCs have Au13-core/6Au2(SR)3-semiring structure. The red luminescence thought to be originated from both core (670 nm) and semiring (625 nm). It is important to reveal a structure of Au25 NCs to facilitate the progress of applications. However, the precise structure of Au25 NCs has not been clarified. There is a possibility of obtaining structural information about Au25 NCs to compare optical properties of the NCs that protected by slightly different molecules. Bovine and human serum albumin (BSA, HSA) are suitable one for this purpose. It has been suggested that rich tyrosine and cysteine residues in these molecules are important to produce the thiolate-protected Au NCs. If Au25 NCs have core/shell structure, only the luminescence of the semiring will be affected by the difference of the albumin molecules. We carefully compared PL characteristics of BSA- and HSA- protected Au25 NCs. As a result, there was no difference in the PL at 670 nm (core), while differences were observed in the PL at 625 nm (semiring). The results support that Au25 NCs have core/semiring structure.

  20. Effects of perfluorooctane sulfonate on the conformation and activity of bovine serum albumin.

    PubMed

    Wang, Yanqing; Zhang, Hongmei; Kang, Yijun; Cao, Jian

    2016-06-01

    Perfluorooctane sulfonate (PFOS) is among the most prominent contaminates in human serum and has been reported to possess potential toxicity to the human body. In this study, the effects of PFOS on the conformation and activity of bovine serum albumin (BSA) were investigated in vitro. The results indicated that the binding interaction of PFOS with BSA destroyed the tertiary and secondary structures of protein with the loss of α-helix structure and the increasing of hydrophobic microenvironment of the Trp or Tyr residues. During the thermal denaturation protein, PFOS increases the protein stability of BSA. The proportion of α-helix decreased on increasing the PFOS concentration and the microenvironment of the Trp or Tyr residues becomes more hydrophobic. The results from molecular modeling indicated that BSA had not only one possible binding site to bind with PFOS by the polar interaction, hydrogen bonds and hydrophobic forces. In addition, the BSA relative activities were decreased with the increase of PFOS concentration. Such loss of BSA activity in the presence of PFOS indicated that one of the binding sites in BSA is located in subdomain IIIA, which is in good agreement with the fluorescence spectroscopic experiments and molecular modeling results. This study offers a comprehensive picture of the interactions of PFOS with serum albumin and provides insights into the toxicological effect of perfluoroalkylated substances. PMID:27031195

  1. Fluorescence dilution technique for measurement of albumin reflection coefficient in isolated glomeruli.

    PubMed

    Fan, Fan; Chen, Chun Cheng Andy; Zhang, Jin; Schreck, Carlos M N; Roman, Eric A; Williams, Jan M; Hirata, Takashi; Sharma, Mukut; Beard, Daniel A; Savin, Virginia J; Roman, Richard J

    2015-12-15

    This study describes a high-throughput fluorescence dilution technique to measure the albumin reflection coefficient (σAlb) of isolated glomeruli. Rats were injected with FITC-dextran 250 (75 mg/kg), and the glomeruli were isolated in a 6% BSA solution. Changes in the fluorescence of the glomerulus due to water influx in response to an imposed oncotic gradient was used to determine σAlb. Adjustment of the albumin concentration of the bath from 6 to 5, 4, 3, and 2% produced a 10, 25, 35, and 50% decrease in the fluorescence of the glomeruli. Pretreatment of glomeruli with protamine sulfate (2 mg/ml) or TGF-β1 (10 ng/ml) decreased σAlb from 1 to 0.54 and 0.48, respectively. Water and solute movement were modeled using Kedem-Katchalsky equations, and the measured responses closely fit the predicted behavior, indicating that loss of albumin by solvent drag or diffusion is negligible compared with the movement of water. We also found that σAlb was reduced by 17% in fawn hooded hypertensive rats, 33% in hypertensive Dahl salt-sensitive (SS) rats, 26% in streptozotocin-treated diabetic Dahl SS rats, and 21% in 6-mo old type II diabetic nephropathy rats relative to control Sprague-Dawley rats. The changes in glomerular permeability to albumin were correlated with the degree of proteinuria in these strains. These findings indicate that the fluorescence dilution technique can be used to measure σAlb in populations of isolated glomeruli and provides a means to assess the development of glomerular injury in hypertensive and diabetic models. PMID:26447220

  2. Optimization of bovine serum albumin sorption and recovery by hydrogels.

    PubMed

    Gündüz, Ufuk; Tolga, Asli

    2004-07-25

    Aqueous two-phase systems are composed of aqueous solutions of either two water-soluble polymers, usually polyethylene glycol (PEG) and dextran (Dx), or a polymer and a salt, usually PEG and phosphate or sulfate. Partitioning of proteins in such systems provides a powerful method for separating and purifying mixtures of biomolecules by extraction. If one of the phase forming polymers is a crosslinked gel, then the solution-controlled gel sorption may be considered as a modification of aqueous two-phase extraction. Since PEG/dextran systems are widely used in aqueous two-phase extraction and dextran gels (Sephadex) are common chromatographic media, we choose a PEG/dextran gel system as a model system in this study. The partitioning behavior of pure bovine serum albumin (BSA) in PEG/dextran gel systems is investigated to see the effects of variations in PEG and NaCl concentrations on the partition coefficient K. By making use of the Box-Wilson experimental design, K is shown to be maximized at 9.8 (%, w/w) PEG and 0.2 M NaCl concentrations, respectively, as 182. PMID:15177154

  3. 21 CFR 640.80 - Albumin (Human).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... a sterile solution of the albumin derived from human plasma. (b) Source material. The source material of Albumin (Human) shall be plasma recovered from Whole Blood prepared as prescribed in §§ 640.1 through 640.5, or Source Plasma prepared as prescribed in §§ 640.60 through 640.76. (c) Additives...

  4. 21 CFR 640.80 - Albumin (Human).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... a sterile solution of the albumin derived from human plasma. (b) Source material. The source material of Albumin (Human) shall be plasma recovered from Whole Blood prepared as prescribed in §§ 640.1 through 640.5, or Source Plasma prepared as prescribed in §§ 640.60 through 640.76. (c) Additives...

  5. 21 CFR 640.80 - Albumin (Human).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... a sterile solution of the albumin derived from human plasma. (b) Source material. The source material of Albumin (Human) shall be plasma recovered from Whole Blood prepared as prescribed in §§ 640.1 through 640.5, or Source Plasma prepared as prescribed in §§ 640.60 through 640.76. (c) Additives...

  6. 21 CFR 640.80 - Albumin (Human).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... a sterile solution of the albumin derived from human plasma. (b) Source material. The source material of Albumin (Human) shall be plasma recovered from Whole Blood prepared as prescribed in §§ 640.1 through 640.5, or Source Plasma prepared as prescribed in §§ 640.60 through 640.76. (c) Additives...

  7. 21 CFR 640.80 - Albumin (Human).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... a sterile solution of the albumin derived from human plasma. (b) Source material. The source material of Albumin (Human) shall be plasma recovered from Whole Blood prepared as prescribed in §§ 640.1 through 640.5, or Source Plasma prepared as prescribed in §§ 640.60 through 640.76. (c) Additives...

  8. PEGylated Albumin-Based Polyion Complex Micelles for Protein Delivery.

    PubMed

    Jiang, Yanyan; Lu, Hongxu; Chen, Fan; Callari, Manuela; Pourgholami, Mohammad; Morris, David L; Stenzel, Martina H

    2016-03-14

    An increasing amount of therapeutic agents are based on proteins. However, proteins as drug have intrinsic problems such as their low hydrolytic stability. Delivery of proteins using nanoparticles has increasingly been the focus of interest with polyion complex micelles, prepared from charged block copolymer and the oppositely charged protein, as an example of an attractive carrier for proteins. Inspired by this approach, a more biocompatible pathway has been developed here, which replaces the charged synthetic polymer with an abundant protein, such as albumin. Although bovine serum albumin (BSA) was observed to form complexes with positively charged proteins directly, the resulting protein nanoparticle were not stable and aggregated to large precipitates over the course of a day. Therefore, maleimide functionalized poly(oligo (ethylene glycol) methyl ether methacrylate) (MI-POEGMEMA) (Mn = 26000 g/mol) was synthesized to generate a polymer-albumin conjugate, which was able to condense positively charged proteins, here lysozyme (Lyz) as a model. The PEGylated albumin polyion complex micelle with lysozyme led to nanoparticles between 15 and 25 nm in size depending on the BSA to Lyz ratio. The activity of the encapsulated protein was tested using Sprouty 1 (C-12; Spry1) proteins, which can act as an endogenous angiogenesis inhibitor. Condensation of Spry1 with the PEGylated albumin could improve the anticancer efficacy of Spry1 against the breast cancer cells lowering the IC50 value of the protein. Furthermore, the high anticancer efficacy of the POEGMEMA-BSA/Spry1 complex micelle was verified by effectively inhibiting the growth of three-dimensional MCF-7 multicellular tumor spheroids. The PEGylated albumin complex micelle has great potential as a drug delivery vehicle for a new generation of cancer pharmaceuticals. PMID:26809948

  9. Characterization and optimization of heroin hapten-BSA conjugates: method development for the synthesis of reproducible hapten-based vaccines.

    PubMed

    Torres, Oscar B; Jalah, Rashmi; Rice, Kenner C; Li, Fuying; Antoline, Joshua F G; Iyer, Malliga R; Jacobson, Arthur E; Boutaghou, Mohamed Nazim; Alving, Carl R; Matyas, Gary R

    2014-09-01

    A potential new treatment for drug addiction is immunization with vaccines that induce antibodies that can abrogate the addictive effects of the drug of abuse. One of the challenges in the development of a vaccine against drugs of abuse is the availability of an optimum procedure that gives reproducible and high yielding hapten-protein conjugates. In this study, a heroin/morphine surrogate hapten (MorHap) was coupled to bovine serum albumin (BSA) using maleimide-thiol chemistry. MorHap-BSA conjugates with 3, 5, 10, 15, 22, 28, and 34 haptens were obtained using different linker and hapten ratios. Using this optimized procedure, MorHap-BSA conjugates were synthesized with highly reproducible results and in high yields. The number of haptens attached to BSA was compared by 2,4,6-trinitrobenzenesulfonic acid (TNBS) assay, modified Ellman's test and matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Among the three methods, MALDI-TOF MS discriminated subtle differences in hapten density. The effect of hapten density on enzyme-linked immunosorbent assay (ELISA) performance was evaluated with seven MorHap-BSA conjugates of varying hapten densities, which were used as coating antigens. The highest antibody binding was obtained with MorHap-BSA conjugates containing 3-5 haptens. This is the first report that rigorously analyzes, optimizes and characterizes the conjugation of haptens to proteins that can be used for vaccines against drugs of abuse. The effect of hapten density on the ELISA detection of antibodies against haptens demonstrates the importance of careful characterization of the hapten density by the analytical techniques described. PMID:25084736

  10. Trehalose limits BSA aggregation in spray-dried formulations at high temperatures: implications in preparing polymer implants for long-term protein delivery.

    PubMed

    Rajagopal, Karthikan; Wood, Joseph; Tran, Benjamin; Patapoff, Thomas W; Nivaggioli, Thierry

    2013-08-01

    Polymer implants are promising systems for sustained release applications but their utility for protein delivery has been hindered because of concerns over drug stability at elevated temperatures required for processing. Using bovine serum albumin (BSA) as a model, we have assessed whether proteins can be formulated for processing at elevated temperatures. Specifically, the effect of trehalose and histidine-HCl buffer on BSA stability in a spray-dried formulation has been investigated at temperatures ranging from 80°C to 110°C. When both the sugar and buffer are present, aggregation is suppressed even when exposed to 100°C, the extrusion temperature of poly(lactide-co-glycolide) (PLGA), a bioresorbable polymer. Estimation of aggregation rate constants (k) indicate that though both trehalose and histidine-HCl buffer contribute to BSA stability, the effect because of trehalose alone is more pronounced. BSA-loaded PLGA implants were prepared using hot-melt extrusion process and in vitro release was conducted in phosphate buffered saline at 37°C. Comparison of drug released from implants prepared using four different formulations confirmed that maximal release was achieved from the formulation in which BSA was least aggregated. These studies demonstrate that when trehalose and histidine-HCl buffer are included in spray-dried formulations, BSA stability is maintained both during processing at 100°C and long-term residence within implants. PMID:23754501

  11. Binding of bisphenol A and acrylamide to BSA and DNA: insights into the comparative interactions of harmful chemicals with functional biomacromolecules.

    PubMed

    Zhang, Ya-Lei; Zhang, Xian; Fei, Xun-Chang; Wang, Shi-Long; Gao, Hong-Wen

    2010-10-15

    The interactions between bisphenol A (BPA)/acrylamide (AA) and bovine serum albumin (BSA)/deoxyribonucleic acid (DNA) was investigated by the equilibrium dialysis, fluorophotometry, isothermal titration calorimetry (ITC) and circular dichroism (CD). The bindings of BPA and AA to BSA and DNA responded to the partition law and Langmuir isothermal model, respectively. The saturation mole number of AA was calculated to be 24 per mol BSA and 0.26 per mol DNA-P. All the reactions were spontaneous driven by entropy change. BPA stacked into the aromatic hydrocarbon groups of BSA and between adjacent basepairs of DNA via the hydrophobic effect. The interactions of AA with BSA and DNA induced the formation of hydrogen bond and caused changes of their secondary structures. At normal physiological condition, 0.100 mmol/l BPA reduced the binding of vitamin B(2) to BSA by more than 70%, and 2.8 mmol/l AA by almost one half. This work provides an insight into non-covalent intermolecular interaction between organic contaminant and biomolecule, helping to elucidate the toxic mechanism of harmful chemicals. PMID:20673609

  12. Spectroscopic investigation of the interaction of water-soluble azocalix[4]arenes with bovine serum albumin.

    PubMed

    Fan, Ping; Wan, Lu; Shang, Yunshan; Wang, Jun; Liu, Yulong; Sun, Xiaoyu; Chen, Chen

    2015-02-01

    In this work, three hydrosoluble azocalix[4]arene derivatives, 5-(o-methylphenylazo)-25,26,27-tris(carboxymethoxy)-28-hydroxycalix[4]arene (o-MAC-Calix), 5-(m-methylphenylazo)-25,26,27-tris(carboxymethoxy)-28-hydroxycalix[4]arene (m-MAC-Calix) and 5-(p-methylphenylazo)-25,26,27-tris(carboxymethoxy)-28-hydroxycalix[4]arene (p-MAC-Calix) were synthesized. Their structures were characterized by infrared spectrum (IR), nuclear magnetic resonance spectrum (1H NMR and 13C NMR) and mass spectrum (MS). The interactions between these compounds and bovine serum albumin (BSA) were studied by fluorescence spectroscopy, UV-vis spectrophotometry and circular dichroic spectroscopy. According to experimental results, three azocalix[4]arene derivatives can efficiently bind to BSA molecules and the o-MAC-Calix displays more efficient interactions with BSA molecules than m-MAC-Calix and p-MAC-Calix. Molecular docking showed that the o-MAC-Calix was embedded in the hydrophobic cavity of helical structure of BSA molecular and the tryptophan (Trp) residue of BSA molecular had strong interaction with o-MAC-Calix. The fluorescence quenching of BSA caused by azocalix[4]arene derivatives is attributed to the static quenching process. In addition, the synchronous fluorescence spectroscopy indicates that these azocalix[4]arene derivatives are more accessible to Trp residues of BSA molecules than the tyrosine (Tyr) residues. The circular dichroic spectroscopy further verified the binding of azocalix[4]arene derivatives and BSA. PMID:25549320

  13. Adsorption of bovine serum albumin on nano and bulk oxide particles in deionized water.

    PubMed

    Song, Lei; Yang, Kun; Jiang, Wei; Du, Peng; Xing, Baoshan

    2012-06-01

    In this work, the influence of particle size and surface functional groups on the adsorption behavior of bovine serum albumin (BSA) by three types of oxide nanoparticles (NPs), TiO(2) (50±5 nm), SiO(2) (30±5 nm), and Al(2)O(3) (150±5 nm for α type and 60±5 nm for γ type) was investigated in deionized water, in order to explore their interaction mechanisms without competitive influence of other ions. Bulkparticles (BPs) were also used for comparison with NPs. BSA adsorption maxima on oxide particles were controlled by the surface area and hydrogen content, while adsorption process was primarily induced by electrostatic interaction, hydrophobic interaction and ligand exchange between BSA and oxide surfaces. With the increase of hydrogen content, the BSA adsorption mechanism switched from mainly hydrophobic interaction to hydrogen bonding and ligand exchange. Calculations, based on surface area and BSA size, suggested that a multilayer of BSA covered on α-Al(2)O(3), and single layer on the other oxide particle surfaces. BPs led to greater conformational change of BSA molecules after the adsorption on the surfaces of oxide particles though NPs adsorbed more BSA than BPs. PMID:22405471

  14. Albumin and multiple sclerosis.

    PubMed

    LeVine, Steven M

    2016-01-01

    Leakage of the blood-brain barrier (BBB) is a common pathological feature in multiple sclerosis (MS). Following a breach of the BBB, albumin, the most abundant protein in plasma, gains access to CNS tissue where it is exposed to an inflammatory milieu and tissue damage, e.g., demyelination. Once in the CNS, albumin can participate in protective mechanisms. For example, due to its high concentration and molecular properties, albumin becomes a target for oxidation and nitration reactions. Furthermore, albumin binds metals and heme thereby limiting their ability to produce reactive oxygen and reactive nitrogen species. Albumin also has the potential to worsen disease. Similar to pathogenic processes that occur during epilepsy, extravasated albumin could induce the expression of proinflammatory cytokines and affect the ability of astrocytes to maintain potassium homeostasis thereby possibly making neurons more vulnerable to glutamate exicitotoxicity, which is thought to be a pathogenic mechanism in MS. The albumin quotient, albumin in cerebrospinal fluid (CSF)/albumin in serum, is used as a measure of blood-CSF barrier dysfunction in MS, but it may be inaccurate since albumin levels in the CSF can be influenced by multiple factors including: 1) albumin becomes proteolytically cleaved during disease, 2) extravasated albumin is taken up by macrophages, microglia, and astrocytes, and 3) the location of BBB damage affects the entry of extravasated albumin into ventricular CSF. A discussion of the roles that albumin performs during MS is put forth. PMID:27067000

  15. Spectroscopic investigation on sonodynamic and sonocatalytic damage of BSA molecules by Thymol Blue (TB) derivants under ultrasonic irradiation

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Wu, Qiong; Wang, Jun; Chen, Dandan; Li, Ying; Gao, Jingqun; Wang, Baoxin

    2014-07-01

    In this paper, the Thymol Blue derivants including Thymol Blue (thymolsulfonphthalein), Thymol Blue-DA (3,3‧-Bis [N,N-bis (carboxymethyl) aminomethyl] thymolsulfonphthalein) and Thymol Blue-DA-Fe(III) (3,3‧-Bis [N,N-bis (carboxymethyl) aminomethyl] thymolsulfonphthalein-Ferrous(III)) were adopted as sonosensitizers to study the sonodynamic and sonocatalytic activities under ultrasonic irradiation. At first, the interaction of Thymol Blue derivants with bovine serum albumin (BSA) was studied by fluorescence spectroscopy. On that basis, the sonodynamic and sonocatalytic damages of Thymol Blue derivants to BSA under ultrasonic irradiation were investigated by the combination of UV-vis, circular dichroism (CD) and fluorescence spectroscopy. Meanwhile, some influenced factors (ultrasonic irradiation time, Thymol Blue derivants concentration and ionic strength) on the damaging degree of BSA molecules were also reviewed. In addition, synchronous fluorescence spectra were used to estimate the binding and damage sites of Thymol Blue derivants to BSA. Finally, the generation of ROS during sonodynamic and sonocatalytic processes was confirmed by the method of Oxidation-Extraction Spectrometry (OEP). Perhaps, this paper may offer some important subjects for the study of Thymol Blue derivants in sonodynamic therapy (SDT) and sonocatalytic therapy (SCT) technologies for tumor treatment and the effect of the amino acid and central metal.

  16. Spectroscopic characterization of effective components anthraquinones in Chinese medicinal herbs binding with serum albumins

    NASA Astrophysics Data System (ADS)

    Bi, Shuyun; Song, Daqian; Kan, Yuhe; Xu, Dong; Tian, Yuan; Zhou, Xin; Zhang, Hanqi

    2005-11-01

    The interactions of serum albumins such as human serum albumin (HSA) and bovine serum albumin (BSA) with emodin, rhein, aloe-emodin and aloin were assessed employing fluorescence quenching and absorption spectroscopic techniques. The results obtained revealed that there are relatively strong binding affinity for the four anthraquinones with HSA and BSA and the binding constants for the interactions of anthraquinones with HSA or BSA at 20 °C were obtained. Anthraquinone-albumin interactions were studied at different temperatures and in the presence of some metal ions. And the competition binding of anthraquinones with serum albumins was also discussed. The Stern-Volmer curves suggested that the quenching occurring in the reactions was the static quenching process. The binding distances and transfer efficiencies for each binding reactions were calculated according to the Föster theory of non-radiation energy transfer. Using thermodynamic equations, the main action forces of these reactions were also obtained. The reasons of the different binding affinities for different anthraquinone-albumin reactions were probed from the point of view of molecular structures.

  17. Recombinant albumin monolayers on latex particles.

    PubMed

    Sofińska, Kamila; Adamczyk, Zbigniew; Kujda, Marta; Nattich-Rak, Małgorzata

    2014-01-14

    The adsorption of recombinant human serum albumin (rHSA) on negatively charged polystyrene latex micro-particles was studied at pH 3.5 and the NaCl concentration range of 10(-3) to 0.15 M. The electrophoretic mobility of latex monotonically increased with the albumin concentration in the suspension. The coverage of adsorbed albumin was quantitatively determined using the depletion method, where the residual protein concentration was determined by electrokinetic measurements and AFM imaging. It was shown that albumin adsorption was irreversible. Its maximum coverage on latex varied between 0.7 mg m(-2) for 10(-3) M NaCl to 1.3 mg m(-2) for 0.15 M NaCl. The latter value matches the maximum coverage previously determined for human serum albumin on mica using the streaming potential method. The increase in the maximum coverage was interpreted in terms of reduced electrostatic repulsion among adsorbed molecules. These facts confirm that albumin adsorption at pH 3.5 is governed by electrostatic interactions and proceeds analogously to colloid particle deposition. The stability of albumin monolayers was measured in additional experiments where changes in the latex electrophoretic mobility and the concentration of free albumin in solutions were monitored over prolonged time periods. Based on these experimental data, a robust procedure of preparing albumin monolayers on latex particles of well-controlled coverage and molecule distribution was proposed. PMID:24354916

  18. Human podocytes perform polarized, caveolae-dependent albumin endocytosis

    PubMed Central

    Dobrinskikh, Evgenia; Okamura, Kayo; Kopp, Jeffrey B.; Doctor, R. Brian

    2014-01-01

    The renal glomerulus forms a selective filtration barrier that allows the passage of water, ions, and small solutes into the urinary space while restricting the passage of cells and macromolecules. The three layers of the glomerular filtration barrier include the vascular endothelium, glomerular basement membrane (GBM), and podocyte epithelium. Podocytes are capable of internalizing albumin and are hypothesized to clear proteins that traverse the GBM. The present study followed the fate of FITC-labeled albumin to establish the mechanisms of albumin endocytosis and processing by podocytes. Confocal imaging and total internal reflection fluorescence microscopy of immortalized human podocytes showed FITC-albumin endocytosis occurred preferentially across the basal membrane. Inhibition of clathrin-mediated endocytosis and caveolae-mediated endocytosis demonstrated that the majority of FITC-albumin entered podocytes through caveolae. Once internalized, FITC-albumin colocalized with EEA1 and LAMP1, endocytic markers, and with the neonatal Fc receptor, a marker for transcytosis. After preloading podocytes with FITC-albumin, the majority of loaded FITC-albumin was lost over the subsequent 60 min of incubation. A portion of the loss of albumin occurred via lysosomal degradation as pretreatment with leupeptin, a lysosomal protease inhibitor, partially inhibited the loss of FITC-albumin. Consistent with transcytosis of albumin, preloaded podocytes also progressively released FITC-albumin into the extracellular media. These studies confirm the ability of podocytes to endocytose albumin and provide mechanistic insight into cellular mechanisms and fates of albumin handling in podocytes. PMID:24573386

  19. [Study on the interaction between fangchinoline and bovine serum albumin].

    PubMed

    Wu, Qiu-hua; Wang, Chun; Wang, Zhi; Ma, Jing-jun; Zang, Xiao-huan; Qin, Na-xin

    2007-12-01

    The binding reaction of fangchinoline with bovine serum albumin was studied at different temperatures by fluorescence quenching spectra, synchronous fluorescence spectra and ultra-violet spectra. It was shown that fangchinoline has a strong ability of quenching the fluorescence of BSA. The Stern-Volmer curve of the fluorescence quenching of BSA by fangchinoline indicated that the quenching mechanism of fangchinoline to BSA was a static quenching. According to the Förster theory of non-radiation energy transfer, the binding distances (r) at different temperature were 2.51 nm (27 degrees C), 2.72 nm (37 degrees C) and 2.89 nm (47 degrees C), respectively, while the binding constants (KA) were 1.05 x 10(5) L x mol(-1) (27 degrees C), 3.31x 10(5) L x mol(-1) (37 degrees C), and 7.24 x 10(5) L x mol(-1) (47 degrees C), respectively. The thermodynamic parameters showed that the interaction of fangchinoline and BSA was mainly driven by hydrophobic force. Synchronous spectrum was used to investigate the conformational changes of BSA. PMID:18330294

  20. The synthesis and characterization of monodispersed chitosan-coated Fe3O4 nanoparticles via a facile one-step solvothermal process for adsorption of bovine serum albumin.

    PubMed

    Shen, Mao; Yu, Yujing; Fan, Guodong; Chen, Guang; Jin, Ying Min; Tang, Wenyuan; Jia, Wenping

    2014-01-01

    Preparation of magnetic nanoparticles coated with chitosan (CS-coated Fe3O4 NPs) in one step by the solvothermal method in the presence of different amounts of added chitosan is reported here. The magnetic property of the obtained magnetic composite nanoparticles was confirmed by X-ray diffraction (XRD) and magnetic measurements (VSM). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) allowed the identification of spherical nanoparticles with about 150 nm in average diameter. Characterization of the products by Fourier transform infrared spectroscopy (FTIR) demonstrated that CS-coated Fe3O4 NPs were obtained. Chitosan content in the obtained nanocomposites was estimated by thermogravimetric analysis (TGA). The adsorption properties of the CS-coated Fe3O4 NPs for bovine serum albumin (BSA) were investigated under different concentrations of BSA. Compared with naked Fe3O4 nanoparticles, the CS-coated Fe3O4 NPs showed a higher BSA adsorption capacity (96.5 mg/g) and a fast adsorption rate (45 min) in aqueous solutions. This work demonstrates that the prepared magnetic nanoparticles have promising applications in enzyme and protein immobilization. PMID:24994954

  1. The interaction between cepharanthine and two serum albumins: multiple spectroscopic and chemometric investigations.

    PubMed

    Cheng, Zhengjun; Liu, Rong; Jiang, Xiaohui; Xu, Qianyong

    2014-08-01

    The binding modes of cepharanthine (CEPT) with bovine serum albumin (BSA) and human serum albumin (HSA) have been established by reproducing physiological conditions, which is very important to understand the pharmacokinetics and toxicity of CEPT. These spectral data were further analyzed by the multivariate curve resolution-alternating least squares method. Moreover, the concentration profiles and pure spectra of three species (BSA/HSA, CEPT and CEPT-BSA/HSA) and the apparent equilibrium constants K(app) were evaluated. The experimental results showed that CEPT could quench the fluorescence intensity of BSA/HSA by a combined quenching (static and dynamic) procedure. The binding constant (K), the thermodynamic parameters (ΔG, ΔH and ΔS) and binding subdomain were measured, and indicated that CEPT could spontaneously bind to BSA/HSA on subdomain IIA through the hydrophobic interactions. The effect of CEPT on the secondary structure of proteins has been analyzed by circular dichroism, 3D fluorescence and Fourier transform infrared spectra. The binding distance between CEPT and tryptophan of BSA/HSA was 2.305/1.749 nm, which is based on the Förster resonance energy transfer theory. PMID:24123839

  2. Spectroscopic studies on the interaction between tetrandrine and two serum albumins by chemometrics methods

    NASA Astrophysics Data System (ADS)

    Cheng, Zhengjun; Liu, Rong; jiang, Xiaohui

    2013-11-01

    The binding interactions of tetrandrine (TETD) with bovine serum albumin (BSA) and human serum albumin (HSA) have been investigated by spectroscopic methods. These experimental data were further analyzed using multivariate curve resolution-alternating least squares (MCR-ALS) method, and the concentration profiles and pure spectra for three species (BSA/HSA, TETD and TETD-BSA/HSA) existed in the interaction procedure, as well as, the apparent equilibrium constants Kapp were evaluated. The binding sites number n and the binding constants K were obtained at various temperatures. The binding distance between TETD and BSA/HSA was 1.455/1.451 nm. The site markers competitive experiments indicated that TETD primarily bound to the tryptophan residue of BSA/HSA within site I. The thermodynamic parameters (ΔG, ΔH and ΔS) calculated on the basis of different temperatures revealed that the binding of TETD-BSA was mainly depended on the hydrophobic interaction strongly and electrostatic interaction, and yet the binding of TETD-HSA was strongly relied on the hydrophobic interaction. The results of synchronous fluorescence, 3D fluorescence and FT-IR spectra show that the conformation of proteins has altered in the presence of TETD. In addition, the effect of some common ions on the binding constants between TETD and proteins were also discussed.

  3. Spectroscopic and molecular modelling studies of binding mechanism of metformin with bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Sharma, Deepti; Ojha, Himanshu; Pathak, Mallika; Singh, Bhawna; Sharma, Navneet; Singh, Anju; Kakkar, Rita; Sharma, Rakesh K.

    2016-08-01

    Metformin is a biguanide class of drug used for the treatment of diabetes mellitus. It is well known that serum protein-ligand binding interaction significantly influence the biodistribution of a drug. Current study was performed to characterize the binding mechanism of metformin with serum albumin. The binding interaction of the metformin with bovine serum albumin (BSA) was examined using UV-Vis absorption spectroscopy, fluorescence, circular dichroism, density functional theory and molecular docking studies. Absorption spectra and fluorescence emission spectra pointed out the weak binding of metformin with BSA as was apparent from the slight change in absorbance and fluorescence intensity of BSA in presence of metformin. Circular dichroism study implied the significant change in the conformation of BSA upon binding with metformin. Density functional theory calculations showed that metformin has non-planar geometry and has two energy states. The docking studies evidently signified that metformin could bind significantly to the three binding sites in BSA via hydrophobic, hydrogen bonding and electrostatic interactions. The data suggested the existence of non-covalent specific binding interaction in the complexation of metformin with BSA. The present study will certainly contribute to the development of metformin as a therapeutic molecule.

  4. EPR studies of intermolecular interactions and competitive binding of drugs in a drug-BSA binding model.

    PubMed

    Akdogan, Y; Emrullahoglu, M; Tatlidil, D; Ucuncu, M; Cakan-Akdogan, G

    2016-08-10

    Understanding intermolecular interactions between drugs and proteins is very important in drug delivery studies. Here, we studied different binding interactions between salicylic acid and bovine serum albumin (BSA) using electron paramagnetic resonance (EPR) spectroscopy. Salicylic acid was labeled with a stable radical (spin label) in order to monitor its mobilized (free) or immobilized (bound to BSA) states. In addition to spin labeled salicylic acid (SL-salicylic acid), its derivatives including SL-benzoic acid, SL-phenol, SL-benzene, SL-cyclohexane and SL-hexane were synthesized to reveal the effects of various drug binding interactions. EPR results of these SL-molecules showed that hydrophobic interaction is the main driving force. Whereas each of the two functional groups (-COOH and -OH) on the benzene ring has a minute but detectable effect on the drug-protein complex formation. In order to investigate the effect of electrostatic interaction on drug binding, cationic BSA (cBSA) was synthesized, altering the negative net charge of BSA to positive. The salicylic acid loading capacity of cBSA is significantly higher compared to that of BSA, indicating the importance of electrostatic interaction in drug binding. Moreover, the competitive binding properties of salicylic acid, ibuprofen and aspirin to BSA were studied. The combined EPR results of SL-salicylic acid/ibuprofen and SL-ibuprofen/salicylic acid showed that ibuprofen is able to replace up to ∼83% of bound SL-salicylic acid, and salicylic acid can replace only ∼14% of the bound SL-ibuprofen. This indicates that ∼97% of all salicylic acid and ibuprofen binding sites are shared. On the other hand, aspirin replaces only ∼23% of bound SL-salicylic acid, and salicylic acid replaces ∼50% of bound SL-aspirin, indicating that ∼73% of all salicylic acid and aspirin binding sites are shared. These results show that EPR spectroscopy in combination with the spin labeling technique is a very powerful

  5. Interaction of triprolidine hydrochloride with serum albumins: thermodynamic and binding characteristics, and influence of site probes.

    PubMed

    Sandhya, B; Hegde, Ashwini H; Kalanur, Shankara S; Katrahalli, Umesha; Seetharamappa, J

    2011-04-01

    The interaction between triprolidine hydrochloride (TRP) to serum albumins viz. bovine serum albumin (BSA) and human serum albumin (HSA) has been studied by spectroscopic methods. The experimental results revealed the static quenching mechanism in the interaction of TRP with protein. The number of binding sites close to unity for both TRP-BSA and TRP-HSA indicated the presence of single class of binding site for the drug in protein. The binding constant values of TRP-BSA and TRP-HSA were observed to be 4.75 ± 0.018 × 10(3) and 2.42 ± 0.024 × 10(4)M(-1) at 294 K, respectively. Thermodynamic parameters indicated that the hydrogen bond and van der Waals forces played the major role in the binding of TRP to proteins. The distance of separation between the serum albumin and TRP was obtained from the Förster's theory of non-radioactive energy transfer. The metal ions viz., K(+), Ca(2+), Co(2+), Cu(2+), Ni(2+), Mn(2+) and Zn(2+) were found to influence the binding of the drug to protein. Displacement experiments indicated the binding of TRP to Sudlow's site I on both BSA and HSA. The CD, 3D fluorescence spectra and FT-IR spectral results revealed the changes in the secondary structure of protein upon interaction with TRP. PMID:21215548

  6. Combined spectroscopies and molecular docking approach to characterizing the binding interaction between lisinopril and bovine serum albumin.

    PubMed

    Jiang, Min; Huang, Chuan-Ren; Wang, Qi; Zhu, Ying-Yao; Wang, Jing; Chen, Jun; Shi, Jie-Hua

    2016-03-01

    To further understand the mode of action and pharmacokinetics of lisinopril, the binding interaction of lisinopril with bovine serum albumin (BSA) under imitated physiological conditions (pH 7.4) was investigated using fluorescence emission spectroscopy, synchronous fluorescence spectroscopy, Fourier transform infrared spectroscopy (FTIR), circular dichroism (CD) and molecular docking methods. The results showed that the fluorescence quenching of BSA near 338 nm resulted from the formation of a lisinopril-BSA complex. The number of binding sites (n) for lisinopril binding on subdomain IIIA (site II) of BSA and the binding constant were ~ 1 and 2.04 × 10(4)  M(-1) , respectively, at 310 K. The binding of lisinopril to BSA induced a slight change in the conformation of BSA, which retained its α-helical structure. However, the binding of lisinopril with BSA was spontaneous and the main interaction forces involved were van der Waal's force and hydrogen bonding interaction as shown by the negative values of ΔG(0) , ΔH(0) and ΔS(0) for the binding of lisinopril with BSA. It was concluded from the molecular docking results that the flexibility of lisinopril also played an important role in increasing the stability of the lisinopril-BSA complex. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26300521

  7. 3,6-diHydroxyflavone/bovine serum albumin interaction in cyclodextrin medium: Absorption and emission monitoring

    NASA Astrophysics Data System (ADS)

    Voicescu, Mariana; Bandula, Rodica

    2015-03-01

    Photophysical properties of a bioactive flavonol which can be used as a model for polyhydroxylated natural flavonols, 3,6-diHydroxyflavone (3,6-diHF) in cyclodextrins (CDs)/bovine serum albumin (BSA) systems have been studied by absorption and fluorescence spectroscopy. The influence of CDs nature and of the different molar ratios BSA/CDs on the fluorescent characteristics of 3,6-diHF, and on the excited - state intramolecular proton transfer (ESIPT) process were studied. Quantitative information on the interaction between 3,6-diHF and BSA in CDs medium, were estimated. The influence of temperature (25-60 °C range) on the intrinsic fluorescence of BSA in 3,6-diHF/BSA/CDs systems, was investigated. The results are discussed with relevance to 3,6-diHF as a potential sensitive fluorescence probe in the systems of biological interest.

  8. Comparative studies on the interaction of caffeic acid, chlorogenic acid and ferulic acid with bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Li, Shuang; Huang, Kelong; Zhong, Ming; Guo, Jun; Wang, Wei-zheng; Zhu, Ronghua

    2010-10-01

    The substitution of the hydrogen on aromatic and esterification of carboxyl group of the phenol compounds plays an important role in their bio-activities. In this paper, caffeic acid (CaA), chlorogenic acid (ChA) and ferulic acid (FA) were selected to investigate the binding to bovine serum albumin (BSA) using UV absorption spectroscopy, fluorescence spectroscopy and synchronous fluorescence spectroscopy. It was found that the methoxyl group substituting for the 3-hydroxyl group of CaA decreased the affinity for BSA and the esterification of carboxyl group of CaA with quinic acid increased the affinities. The affinities of ChA and FA with BSA were more sensitive to the temperature than that of CaA with BSA. Synchronous fluorescence spectroscopy and time-resolved fluorescence indicated that the Stern-Volmer plots largely deviated from linearity at high concentrations and were caused by complete quenching of the tyrosine fluorescence of BSA.

  9. Study on the interaction between carbonyl-fused N-confused porphyrin and bovine serum albumin by spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Yu, Xianyong; Liao, Zhixi; Jiang, Bingfei; Zheng, Lingyi; Li, Xiaofang

    2014-12-01

    The interaction between carbonyl-fused N-confused porphyrin (CF-NCP) and bovine serum albumin (BSA) was investigated by fluorescence and ultraviolet-visible (UV-Vis) spectroscopy. The results indicated that CF-NCP has strong ability to quench the intrinsic fluorescence of BSA by forming complexes. The binding constants (Ka), binding sites (n) were obtained. The corresponding thermodynamic parameters (ΔH, ΔS and ΔG) of the interaction system were calculated at three different temperatures. The results revealed that the binding process is spontaneous, and the acting force between CF-NCP and BSA were mainly electrostatic forces. According to Förster non-radiation energy transfer theory, the binding distance between CF-NCP and BSA was calculated to be 4.37 nm. What is more, the conformation of BSA was observed from synchronous fluorescence spectroscopy.

  10. Elucidating the molecular interaction of sinigrin, a potent anticancer glucosinolate from cruciferous vegetables with bovine serum albumin: effect of methylglyoxal modification.

    PubMed

    Awasthi, Saurabh; Saraswathi, N T

    2016-10-01

    The present study employed the spectroscopic techniques, i.e. fluorescence, and circular dichroism (CD) and the molecular docking approach to investigate the mechanism of interaction of a potent anticancer glucosinolate, sinigrin (SIN), with bovine serum albumin (BSA). SIN binding to BSA resulted in the quenching of intrinsic fluorescence, and the analysis of results revealed the presence of static quenching mechanism. Based on the results, it was evident that the interaction of SIN with BSA was mainly stabilized by hydrogen bonding. Results from CD analysis revealed that the binding of SIN does not induce significant conformational changes in BSA. Molecular docking studies showed that four hydrogen bonds stabilize the binding of SIN in the site I of BSA with a binding energy of -6.2 kcal mol(-1). These findings will not only provide insights about the mechanism of interaction of sinigrin but also showed the effect of methylglyoxal-mediated glycation on ligand binding with BSA. PMID:26488200

  11. Synthesis, purification and mass spectrometric characterisation of a fluorescent Au9@BSA nanocluster and its enzymatic digestion by trypsin

    NASA Astrophysics Data System (ADS)

    Fernández-Iglesias, Nerea; Bettmer, Jörg

    2013-12-01

    Nanoclusters of noble metals like Ag and Au have attracted great attention as they form a missing link between isolated metal atoms and nanoparticles. Their particular properties like luminescence in the visible range and nontoxicity make them attractive for bioimaging and biolabelling purposes, especially with use of proteins as stabilising agents. In this context, this study intends the synthesis of a specific Au nanocluster covered by bovine serum albumin (BSA). It is shown that size-exclusion chromatography is feasible for the purification and isolation of the nanocluster. A mass spectrometric characterisation, preferably by ESI-MS, indicates the presence of an Au9@BSA nanocluster. Enzymatic digestion of the nanocluster with trypsin results in a significant increase of the fluorescence intensity at 650 and 710 nm, whereas complementary MALDI-MS studies are presented for the identification of generated peptides and show a distinctive pattern in comparison to the pure protein. It can be concluded that Au9@BSA might be, in future, an interesting candidate for in vitro studies of protease activities.Nanoclusters of noble metals like Ag and Au have attracted great attention as they form a missing link between isolated metal atoms and nanoparticles. Their particular properties like luminescence in the visible range and nontoxicity make them attractive for bioimaging and biolabelling purposes, especially with use of proteins as stabilising agents. In this context, this study intends the synthesis of a specific Au nanocluster covered by bovine serum albumin (BSA). It is shown that size-exclusion chromatography is feasible for the purification and isolation of the nanocluster. A mass spectrometric characterisation, preferably by ESI-MS, indicates the presence of an Au9@BSA nanocluster. Enzymatic digestion of the nanocluster with trypsin results in a significant increase of the fluorescence intensity at 650 and 710 nm, whereas complementary MALDI-MS studies are presented

  12. Comparison of interactions between three food colorants and BSA.

    PubMed

    Li, Tian; Cheng, Zhengjun; Cao, Lijun; Jiang, Xiaohui

    2016-03-01

    Fast Green FCF (FCF), Patent Blue V (PBV) and Acid Blue 1 (AB1) are used as food colorants. Multiple spectroscopic techniques were employed to probe in depth the affinity of FCF/PBV/AB1 with BSA in different pH and/or salt concentrations. The results showed that FCF/PBV/AB1 quenched the intrinsic fluorescence of BSA by a static process, and electrostatic force dominated the formation of BSA-FCF/PBV/AB1 complex which was confirmed by the effects of salt on their interactions. Subdomain IIA was the primary binding site for FCF/PBV/AB1 on BSA in the pH range of 5.5-7.4, while both Trp 212 and Trp 134 residues of BSA might be bound by FCF/PBV/AB1 at pH 4.8. The K values suggested that the binding ability of three food colorants with BSA was FCF>PBV>AB1. The results of UV-vis absorption, synchronous fluorescence, 3D fluorescence and FT-IR spectra proved that the structure of BSA altered by FCF/PBV/AB1. PMID:26471614

  13. Capsaicin-Coated Silver Nanoparticles Inhibit Amyloid Fibril Formation of Serum Albumin.

    PubMed

    Anand, Bibin G; Dubey, Kriti; Shekhawat, Dolat Singh; Kar, Karunakar

    2016-06-21

    We have synthesized capsaicin-coated silver nanoparticles (AgNPs(Cap)) and have tested their anti-amyloid activity, considering serum albumin (BSA) as a model protein. We found that amyloid formation of BSA was strongly suppressed in the presence of AgNPs(Cap). However, isolated capsaicin and uncapped control nanoparticles did not show such an inhibition effect. Bioinformatics analysis reveals CH-π and H-bonding interactions between capsaicin and BSA in the formation of the protein-ligand complex. These results suggest the significance of surface functionalization of nanoparticles with capsaicin, which probably allows capsaicin to effectively interact with the key residues of the amyloidogenic core of BSA. PMID:27243335

  14. Characterization of the binding of 2-mercaptobenzimidazole to bovine serum albumin.

    PubMed

    Teng, Yue; Zou, Luyi; Huang, Ming; Zong, Wansong

    2015-04-01

    2-Mercaptobenzimidazole (MBI) is widely utilized as a corrosion inhibitor, copper-plating brightener and rubber accelerator. The residue of MBI in the environment is potentially harmful to human health. In this article, the interaction of MBI with bovine serum albumin (BSA) was explored using spectroscopic and molecular docking methods under physiological conditions. The positively charged MBI can spontaneously bind with the negatively charged BSA through electrostatic forces with one binding site. The site marker competition experiments and the molecular docking study revealed that MBI bound into site II (subdomain IIIA) of BSA, which further led to some secondary structure and microenvironmental changes of BSA. This work provides useful information on understanding the toxicological actions of MBI at the molecular level. PMID:25683240

  15. Synthesis of Three Rimantadine Schiff Bases and Their Biological Effects on Serum Albumin

    PubMed Central

    Liu, Bing-Mi; Ma, Ping; Wang, Xin; Kong, Yu-Mei; Zhang, Li-Ping; Liu, Bin

    2014-01-01

    Three new rimantadine Schiff bases (RSBs) were prepared, and then the interaction of RSBs with bovine serum albumin (BSA) was investigated using fluorescence, synchronous fluorescence, UV-vis absorption spectroscopy under physiological conditions. The results showed that the three RSBs effectively quenched the intrinsic fluorescence of BSA via static quenching. Binding constant (Ka), number of binding sites (n), and the binding distance (r) between three RSBs and BSA were calculated by Stern-Volmer equation and Förster’s theory in this study. According to the results of displacement experiments of site probes, it was considered that the binding sites were located in hydrophobic cavities in sub-domains IIA of BSA. What is more, synchronous fluorescence studies indicated that the hydrophobicity around tryptophan residues was increased with the addition of rimantadine-o-vanillin (ROV) and rimantadine-4-methoxy-salicylaldehyde (RMS), while there was no apparent change with the addition of rimantadine-salicylaldehyde (RS). PMID:25587306

  16. The investigation of the interaction between NCP-EDA and bovine serum albumin by spectroscopic approaches.

    PubMed

    Yu, Xianyong; Lu, Shiyu; Yang, Ying; Li, Xiaofang; Yi, Pinggui

    2011-12-01

    The fluorescence and ultraviolet spectroscopies were explored to study the interaction between N-confused porphyrins-edaravone diad (NCP-EDA) and bovine serum albumin (BSA) under simulative physiological condition at different temperatures. The experimental results show that the fluorescence quenching mechanism between NCP-EDA and BSA is a combined quenching (dynamic and static quenching). The binding constants, binding sites and the corresponding thermodynamic parameters (ΔG, ΔH, and ΔS) of the interaction system were calculated at different temperatures. According to Förster non-radiation energy transfer theory, the binding distance between NCP-EDA and BSA was calculated to be 3.63 nm. In addition, the effect of NCP-EDA on the conformation of BSA was analyzed using synchronous fluorescence spectroscopy. PMID:21963191

  17. The investigation of the interaction between NCP-EDA and bovine serum albumin by spectroscopic approaches

    NASA Astrophysics Data System (ADS)

    Yu, Xianyong; Lu, Shiyu; Yang, Ying; Li, Xiaofang; Yi, Pinggui

    2011-12-01

    The fluorescence and ultraviolet spectroscopies were explored to study the interaction between N-confused porphyrins-edaravone diad (NCP-EDA) and bovine serum albumin (BSA) under simulative physiological condition at different temperatures. The experimental results show that the fluorescence quenching mechanism between NCP-EDA and BSA is a combined quenching (dynamic and static quenching). The binding constants, binding sites and the corresponding thermodynamic parameters (Δ G, Δ H, and Δ S) of the interaction system were calculated at different temperatures. According to Förster non-radiation energy transfer theory, the binding distance between NCP-EDA and BSA was calculated to be 3.63 nm. In addition, the effect of NCP-EDA on the conformation of BSA was analyzed using synchronous fluorescence spectroscopy.

  18. Glycation of bovine serum albumin by ascorbate in vitro: Possible contribution of the ascorbyl radical?

    PubMed Central

    Sadowska-Bartosz, Izabela; Stefaniuk, Ireneusz; Galiniak, Sabina; Bartosz, Grzegorz

    2015-01-01

    Ascorbic acid (AA) has been reported to be both pro-and antiglycating agent. In vitro, mainly proglycating effects of AA have been observed. We studied the glycation of bovine serum albumin (BSA) induced by AA in vitro. BSA glycation was accompanied by oxidative modifications, in agreement with the idea of glycoxidation. Glycation was inhibited by antioxidants including polyphenols and accelerated by 2,​2′-​azobis-​2-​methyl-​propanimidamide and superoxide dismutase. Nitroxides, known to oxidize AA, did not inhibit BSA glycation. A good correlation was observed between the steady-state level of the ascorbyl radical in BSA samples incubated with AA and additives and the extent of glycation. On this basis we propose that ascorbyl radical, in addition to further products of AA oxidation, may initiate protein glycation. PMID:26202868

  19. Glycation of bovine serum albumin by ascorbate in vitro: Possible contribution of the ascorbyl radical?

    PubMed

    Sadowska-Bartosz, Izabela; Stefaniuk, Ireneusz; Galiniak, Sabina; Bartosz, Grzegorz

    2015-12-01

    Ascorbic acid (AA) has been reported to be both pro-and antiglycating agent. In vitro, mainly proglycating effects of AA have been observed. We studied the glycation of bovine serum albumin (BSA) induced by AA in vitro. BSA glycation was accompanied by oxidative modifications, in agreement with the idea of glycoxidation. Glycation was inhibited by antioxidants including polyphenols and accelerated by 2,​2'-​azobis-​2-​methyl-​propanimidamide and superoxide dismutase. Nitroxides, known to oxidize AA, did not inhibit BSA glycation. A good correlation was observed between the steady-state level of the ascorbyl radical in BSA samples incubated with AA and additives and the extent of glycation. On this basis we propose that ascorbyl radical, in addition to further products of AA oxidation, may initiate protein glycation. PMID:26202868

  20. Synthesis of three rimantadine schiff bases and their biological effects on serum albumin.

    PubMed

    Liu, Bing-Mi; Ma, Ping; Wang, Xin; Kong, Yu-Mei; Zhang, Li-Ping; Liu, Bin

    2014-01-01

    Three new rimantadine Schiff bases (RSBs) were prepared, and then the interaction of RSBs with bovine serum albumin (BSA) was investigated using fluorescence, synchronous fluorescence, UV-vis absorption spectroscopy under physiological conditions. The results showed that the three RSBs effectively quenched the intrinsic fluorescence of BSA via static quenching. Binding constant (K a), number of binding sites (n), and the binding distance (r) between three RSBs and BSA were calculated by Stern-Volmer equation and Förster's theory in this study. According to the results of displacement experiments of site probes, it was considered that the binding sites were located in hydrophobic cavities in sub-domains IIA of BSA. What is more, synchronous fluorescence studies indicated that the hydrophobicity around tryptophan residues was increased with the addition of rimantadine-o-vanillin (ROV) and rimantadine-4-methoxy-salicylaldehyde (RMS), while there was no apparent change with the addition of rimantadine-salicylaldehyde (RS). PMID:25587306

  1. Deciphering the binding patterns and conformation changes upon the bovine serum albumin-rosmarinic acid complex.

    PubMed

    Peng, Xin; Wang, Xiangchao; Qi, Wei; Huang, Renliang; Su, Rongxin; He, Zhimin

    2015-08-01

    Rosmarinic acid (RA) is an importantly and naturally occurring polyphenol from plants of the mint family with potent biological activities. Here, the in vitro interaction of RA with bovine serum albumin (BSA) has been investigated using various biophysical approaches as well as molecular modeling methods, to ascertain its binding mechanism and conformational changes. The fluorescence results demonstrated that the fluorescence quenching of BSA by RA was mainly the result of the formation of a ground state BSA-RA complex, and BSA had one high affinity RA binding site with a binding constant of 4.18 × 10(4) mol L(-1) at 298 K. Analysis of thermodynamic parameters revealed that hydrophobic and hydrogen bond interactions were the dominant intermolecular force in the complex formation. The primary binding site of RA in BSA (site I) had been identified by site marker competitive experiments. The distance between RA and the tryptophan residue of BSA was evaluated at 3.12 nm based on Förster's theory of non-radiation energy transfer. The UV-vis absorption, synchronous fluorescence, three-dimensional fluorescence, 8-anilino-1-naphthalenesulfonic acid (ANS) fluorescence, circular dichroism (CD), and Fourier transform infrared (FT-IR) spectra confirmed that the conformation and structure of BSA were altered in the presence of RA. Moreover, the nuclear magnetic spectroscopy showed that the aromatic groups of RA took part in the binding reaction during the BSA-RA complexation. In addition, the molecular picture of the interaction mechanism between BSA and RA at the atomic level was well examined by molecular docking and dynamics studies. In brief, RA can bind to BSA with noncovalent bonds in a relatively stable way, and these findings will be beneficial to the functional food research of RA. PMID:26146359

  2. Kinetics and efficiency of a methyl-carboxylated 5-Fluorouracil-bovine serum albumin adduct for targeted delivery.

    PubMed

    Koziol, Michael J; Sievers, Torsten K; Smuda, Kathrin; Xiong, Yu; Müller, Angelika; Wojcik, Felix; Steffen, Axel; Dathe, Margitta; Georgieva, Radostina; Bäumler, Hans

    2014-03-01

    5-Fluorouracil (5-FU) is a clinically well-established anti-cancer drug effectively applied in chemotherapy, mainly for the treatment of breast and colorectal cancer. Substantial disadvantages are adverse effects, arising from serious damage of healthy tissues, and shortcoming pharmacokinetics due to its low molecular weight. A promising approach for improvement of such drugs is their coupling to suitable carriers. Here, a 5-FU adduct, 5-fluorouracil acetate (FUAc) is synthesized and covalently coupled to bovine serum albumin (BSA) as model carrier molecule. On average, 12 molecules FUAc are bound to one BSA. Circular dichriosm (CD)-spectra of BSA and FUAc-BSA are identical, suggesting no significant conformational differences. FUAc-BSA is tested on T-47D and MDA-MB-231 breast cancer cells. Proliferation inhibition of membrane albumin-binding protein (mABP)-expressing T-47D cells by FUAc-BSA is similar to that of 5-FU and only moderate for MDA-MB-231 cells that lack such expression. Therefore, a crucial role of mABP expression in effective cell growth inhibition by FUAc-BSA is assumed. PMID:24821671

  3. Study of interaction of proton transfer probe 1-hydroxy-2-naphthaldehyde with serum albumins: a spectroscopic study.

    PubMed

    Balia Singh, Rupashree; Mahanta, Subrata; Guchhait, Nikhil

    2008-04-25

    In the present work, we have studied the interaction of proton transfer probe 1-hydroxy-2-naphthaldehyde (HN12) with Human Serum Albumin (HSA) and Bovine Serum Albumin (BSA) by steady state absorption and emission spectroscopy combined with time resolved fluorescence measurements. The measured binding constant (K) and free energy change (DeltaG) indicate a stronger affinity of HN12 molecule for HSA than BSA. Steady state anisotropy, excitation anisotropy and fluorescence resonance energy transfer (FRET) studies indicate that the probe molecule resides at the hydrophobic site of the protein environment. PMID:18296059

  4. Elucidating the Influence of Gold Nanoparticles on the Binding of Salvianolic Acid B and Rosmarinic Acid to Bovine Serum Albumin

    PubMed Central

    Peng, Xin; Qi, Wei; Huang, Renliang; Su, Rongxin; He, Zhimin

    2015-01-01

    Salvianolic acid B and rosmarinic acid are two main water-soluble active ingredients from Salvia miltiorrhiza with important pharmacological activities and clinical applications. The interactions between salvianolic acid B (or rosmarinic acid) and bovine serum albumin (BSA) in the presence and absence of gold nanoparticles (Au NPs) with three different sizes were investigated by using biophysical methods for the first time. Experimental results proved that two components quenched the fluorescence of BSA mainly through a static mechanism irrespective of the absence or presence of Au NPs. The presence of Au NPs decreased the binding constants of salvianolic acid B with BSA from 27.82% to 10.08%, while Au NPs increased the affinities of rosmarinic acid for BSA from 0.4% to 14.32%. The conformational change of BSA in the presence of Au NPs (caused by a noncompetitive binding between Au NPs and drugs at different albumin sites) induced changeable affinity and binding distance between drugs and BSA compared with no Au NPs. The competitive experiments revealed that the site I (subdomain IIA) of BSA was the primary binding site for salvianolic acid B and rosmarinic acid. Additionally, two compounds may induce conformational and micro-environmental changes of BSA. The results would provide valuable binding information between salvianolic acid B (or rosmarinic acid) and BSA, and also indicated that the Au NPs could alter the interaction mechanism and binding capability of drugs to BSA, which might be beneficial to understanding the pharmacokinetics and biological activities of the two drugs. PMID:25861047

  5. Effect of osmotic pressure in the solvent extraction phase on BSA release profile from PLGA microspheres.

    PubMed

    Jiang, Ge; Thanoo, B C; DeLuca, Patrick P

    2002-11-01

    This study investigated the influence of osmotic pressure in the organic solvent extraction phase on release profile of bovine serum albumin (BSA) from poly(lactide-co-glycolide) (PLGA) microspheres. BSA-loaded PLGA microspheres with a target load of 10% were prepared by a double emulsion phase separation method. All the microsphere batches were fabricated in the same conditions except that in the organic solvent (CH2Cl2) evaporation step. Different concentrations of NaCl (0, 1.8, and 3.6%) or sucrose (20%) were used to generate a range of osmotic pressures in the extraction aqueous phase. These microspheres were characterized for incorporation efficiency, surface and internal morphology, particle size, protein stability, and in vitro release. The microspheres were spherical with particle size ranging from 16.8 to 27.8 microns. Higher osmotic pressure resulted in a denser internal structure although similar nonporous surface morphology was observed with all batches. No significant difference in encapsulation efficiency existed from batch to batch (87-94%). Sodium dodecyl sulfate-polyamide gel electrophoresis showed that BSA integrity was well retained. The release profile of the batch prepared with only water as the continuous (solvent extraction) phase exhibited a 79% burst release in the first 24 hr followed by a plateau and then a little release after 21 days. In the presence of NaCl or sucrose, the burst effect significantly decreased with increase in osmotic pressure in the extraction aqueous phase, which was then followed by sustained release for 35 days. A mass balance was made when the release terminated. Therefore, in the organic solvent extraction and evaporation step, increasing the osmotic pressure in the aqueous phase both reduced the burst release from the microspheres and improved the subsequent sustained release profile. PMID:12503521

  6. BSA modification to reduce CTAB induced nonspecificity and cytotoxicity of aptamer-conjugated gold nanorods

    NASA Astrophysics Data System (ADS)

    Yasun, Emir; Li, Chunmei; Barut, Inci; Janvier, Denisse; Qiu, Liping; Cui, Cheng; Tan, Weihong

    2015-05-01

    Aptamer-conjugated gold nanorods (AuNRs) are excellent candidates for targeted hyperthermia therapy of cancer cells. However, in high concentrations of AuNRs, aptamer conjugation alone fails to result in highly cell-specific AuNRs due to the presence of positively charged cetyltrimethylammonium bromide (CTAB) as a templating surfactant. Besides causing nonspecific electrostatic interactions with the cell surfaces, CTAB can also be cytotoxic, leading to uncontrolled cell death. To avoid the nonspecific interactions and cytotoxicity triggered by CTAB, we report the further biologically inspired modification of aptamer-conjugated AuNRs with bovine serum albumin (BSA) protein. Following this modification, interaction between CTAB and the cell surface was efficiently blocked, thereby dramatically reducing the side effects of CTAB. This approach may provide a general and simple method to avoid one of the most serious issues in biomedical applications of nanomaterials: nonspecific binding of the nanomaterials with biological cells.Aptamer-conjugated gold nanorods (AuNRs) are excellent candidates for targeted hyperthermia therapy of cancer cells. However, in high concentrations of AuNRs, aptamer conjugation alone fails to result in highly cell-specific AuNRs due to the presence of positively charged cetyltrimethylammonium bromide (CTAB) as a templating surfactant. Besides causing nonspecific electrostatic interactions with the cell surfaces, CTAB can also be cytotoxic, leading to uncontrolled cell death. To avoid the nonspecific interactions and cytotoxicity triggered by CTAB, we report the further biologically inspired modification of aptamer-conjugated AuNRs with bovine serum albumin (BSA) protein. Following this modification, interaction between CTAB and the cell surface was efficiently blocked, thereby dramatically reducing the side effects of CTAB. This approach may provide a general and simple method to avoid one of the most serious issues in biomedical applications

  7. Endocytosis of albumin and thyroglobulin at the basolateral membrane of thyrocytes organized in follicles.

    PubMed

    Gire, V; Kostrouch, Z; Bernier-Valentin, F; Rabilloud, R; Munari-Silem, Y; Rousset, B

    1996-02-01

    Serum proteins such as albumin are present inside thyroid follicles in both normal and pathological situations. To analyze the mechanism of entry of these proteins, we investigated the ability of polarized thyrocytes to internalize soluble molecules at their basolateral pole. Experiments were conducted on in vitro reconstituted thyroid follicles using BSA and pig thyroglobulin (Tg) coupled to gold particles for electron microscopy, conjugated to fluorescein for conventional and confocal fluorescence microscopy, or radioiodinated for biochemical measurements. Incubations were carried out at 37 C. BSA and Tg coupled to gold particles were rapidly internalized from the culture medium and sequentially found in small vesicles and early endosomes and in late endosomes and lysosomes. Fluorescence microscope analyses revealed that the majority of cells forming reconstituted thyroid follicles are capable of internalizing BSA and Tg, but that Tg was more efficiently endocytosed than BSA. Using radioiodinated ligands, it was observed that the endocytosis of Tg was 10 times higher than that of BSA. The internalization of [125I]Tg was inhibited by increasing concentrations of unlabeled Tg. In contrast, endocytosis of 125I-labeled BSA was independent of the unlabeled BSA concentration. Experiments performed at 4 C indicated the presence of a basolateral membrane binding activity for [125I]Tg; the Tg concentration that reduced the binding of labeled Tg by 50% ranged from 4-6 microM. These data are evidence of a process of internalization of soluble molecules at the basolateral pole of thyrocytes, with BSA being internalized by fluid phase endocytosis and Tg by selective endocytosis. Our findings explain how serum albumin can enter thyroid follicles and disclose a new cellular handling and transport pathway of Tg. We propose that selective uptake of Tg operating on molecules secreted at the basolateral surface of thyrocytes could control the amount of Tg released in the

  8. Spectroscopy characterization of the interaction between brevifolin carboxylic acid and bovine serum albumin.

    PubMed

    Tian, Jianniao; Xie, Yuhuan; Zhao, Yanchun; Li, Caifeng; Zhao, Shulin

    2011-01-01

    Themechanism of binding of the antivirus drug, brevifolin carboxylic acid (BCA) with bovine serum albumin (BSA) was investigated by steady-state and time-resolved fluorescence, circular dichroism (CD), Fourier transform infrared (FT-IR) and Raman spectroscopy under pseudo-physiological conditions for the first time. A strong fluorescence quenching was observed and the quenching mechanism was considered as static quenching. Various binding parameters were evaluated. The quantitative analysis of CD spectral data revealed that the a-helical content of BSA increased from 48.91% (in free BSA) to 52.46% (in bound form) in the presence of BCA. Based on the Förster's theory of non-radiation energy transfer, the relation of the binding average distance r between the donor (BSA) and acceptor (BCA) and acceptor concentration was determined. The changes in association constants of BCA-BSA in the presence of the common ions are also discussed. From the CD, FT-IR, time-resolved fluorescence and Raman spectroscopic results, it is apparent that the interaction of BCA with BSA causes a conformational change in the protein, and the Trp and Tyr residues are buried in more hydrophobic surroundings. BCA mainly binds to residue Trp 212 located in domain II of BSA by hydrophobic interaction and hydrogen bond. PMID:20737652

  9. Spectroscopic studies on the interaction of fluorine containing triazole with bovine serum albumin.

    PubMed

    Liu, Yang; Mei, Ping; Zhang, Ye-Zhong; Sun, Xiao-Hong; Liu, Yi

    2010-12-01

    The binding of one fluorine including triazole (C(10)H(9)FN(4)S, FTZ) to bovine serum albumin (BSA) was studied by spectroscopic techniques including fluorescence spectroscopy, UV-Vis absorption, and circular dichroism (CD) spectroscopy under simulative physiological conditions. Fluorescence data revealed that the fluorescence quenching of BSA by FTZ was the result of forming a complex of BSA-FTZ, and the binding constants (K (a)) at three different temperatures (298, 304, and 310 K) were 1.516 × 10(4), 1.627 × 10(4), and 1.711 × 10(4) mol L(-1), respectively, according to the modified Stern-Volmer equation. The thermodynamic parameters ΔH and ΔS were estimated to be 7.752 kJ mol(-1) and 125.217 J mol(-1) K(-1), respectively, indicating that hydrophobic interaction played a major role in stabilizing the BSA-FTZ complex. It was observed that site I was the main binding site for FTZ to BSA from the competitive experiments. The distance r between donor (BSA) and acceptor (FTZ) was calculated to be 7.42 nm based on the Förster theory of non-radioactive energy transfer. Furthermore, the analysis of fluorescence data and CD data revealed that the conformation of BSA changed upon the interaction with FTZ. PMID:20195922

  10. Human islet purification: a prospective comparison of Euro-Ficoll and bovine serum albumin density gradients.

    PubMed

    Chadwick, D R; Robertson, G S; Contractor, H; Swift, S; Rose, S; Thirdborough, S T; Chamberlain, R; James, R F; Bell, P R; London, N J

    1993-01-01

    Euro-Ficoll (EF) and bovine serum albumin (BSA) are the two most commonly used media for the density gradient purification of human pancreatic islets. The aim of this study was to compare these two media with respect to the efficiency of human islet isolation. Ten human pancreata were collagenase-digested, and samples of digest were separated on either a continuous linear density gradient of BSA or a discontinuous gradient of EF (1.108/1.096/1.037/Euro-Collins). Efficiency of islet purification was assessed by insulin and amylase assay of aliquots aspirated from the BSA gradients, and from the interfaces of the EF gradients. Islets were obtained from two interfaces in the EF gradients. Islet yield from the upper interface was generally poor (median 28% of total insulin; range 2-71%), but purity was better than for an equivalent yield using BSA [1% (0-3%) amylase contamination for EF versus 6% (0-37%) for BSA; P = 0.013]. Pooling both EF interfaces increased yield to 66% (17-81%) but markedly reduced purity [46% (0-50%) amylase for EF versus 31% (0-52%) for BSA]. In conclusion, the efficiency of human islet purification is similar, though disappointingly low, with BSA and with EF. Considerable scope exists, therefore, for improvement in the density gradient purification of human islets. PMID:8329732

  11. Urea-induced binding between diclofenac sodium and bovine serum albumin: a spectroscopic insight.

    PubMed

    Dohare, Neeraj; Khan, Abbul Bashar; Athar, Fareeda; Thakur, Sonu Chand; Patel, Rajan

    2016-06-01

    We investigated the interaction of diclofenac sodium (Dic.Na) with bovine serum albumin (BSA) in the absence and presence of urea using different spectroscopic techniques. A fluorescence quenching study revealed that the Stern-Volmer quenching constant decreases in the presence of urea, decreasing further at higher urea concentrations. The binding constant and number of binding sites were also evaluated for the BSA-Dic.Na interaction system in the absence and presence of urea using a modified Stern-Volmer equation. The binding constant is greater at high urea concentrations, as shown by the fluorescence results. In addition, for the BSA-Dic.Na interaction system, a static quenching mechanism was observed, which was further confirmed using time-resolved fluorescence spectroscopy. UV-vis spectroscopy provided information about the formation of a complex between BSA and Dic.Na. Circular dichroism was carried out to explain the conformational changes in BSA induced by Dic.Na in the absence and presence of urea. The presence of urea reduced the α-helical content of BSA as the Dic.Na concentration varied. The distance r between the donor (BSA) and acceptor (Dic.Na) was also obtained in the absence and presence of urea, using fluorescence resonance energy transfer. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26564279

  12. Interaction of carboxylated single-walled carbon nanotubes with bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Li, Lili; Lin, Rui; He, Hua; Jiang, Li; Gao, Mengmeng

    2013-03-01

    Carboxylated single-walled carbon nanotubes (c-SWNTs) were synthesized prosperously in order to improve dispersion of raw carbon nanotubes. Then, bovine serum albumin (BSA) was used as the template protein to study the biocompatibility of c-SWNTs by UV-Vis, fluorescence and circular dichroism (CD) spectroscopic methods at the molecular level. Results from fluorescence spectrum showed obvious decreases in fluorescence intensity of BSA induced by c-SWNTs, indicating the occurrence of interaction between BSA and c-SWNTs. Static quenching effect of c-SWNTs was verified by linear Stern-Volmer plots and KSV values. Thermodynamic parameters at different temperatures demonstrated that the interaction between c-SWNTs and BSA was mainly favored by hydrophobic force. In addition, Na+ interfered with the quenching effect of c-SWNTs, which revealed that electrostatic force played a role in binding roles of BSA to c-SWNTs simultaneously. The results of UV and synchronous fluorescence spectrum validated that hydrophobicity of amino acid residues expressly increased with the addition of c-SWNTs. The content of α-helix structure in BSA decreased by 14.06% with c-SWNTs viewed from CD spectrum. Effect of SWNTs on the conformation of BSA could be controlled by the surface chemistry of SWNTs.

  13. Intermolecular interaction of prednisolone with bovine serum albumin: Spectroscopic and molecular docking methods

    NASA Astrophysics Data System (ADS)

    Shi, Jie-hua; Zhu, Ying-Yao; Wang, Jing; Chen, Jun; Shen, Ya-Jing

    2013-02-01

    The intermolecular interaction of prednisolone with bovine serum albumin (BSA) was studied using fluorescence, circular dichroism (CD) and molecular docking methods. The experimental results showed that the fluorescence quenching of the BSA at 338 nm by prednisolone resulted from the formation of prednisolone-BSA complex. The number of binding sites (n) for prednisolone binding on BSA was approximately equal to 1. Base on the sign and magnitude of the enthalpy and entropy changes (ΔH0 = -149.6 kJ mol-1 and ΔS0 = -370.7 J mol-1 K-1) and the results of molecular docking, it could be suggested that the interaction forces were mainly Van der Waals and hydrogen bonding interactions. Moreover, in the binding process of BSA with prednisolone, prednisolone molecule can be inserted into the hydrophobic cavity of subdomain IIIA (site II) of BSA. The distance between prednisolone and Trp residue of BSA was calculated as 2.264 nm according to Forster's non-radiative energy transfer theory.

  14. Binding interaction of atorvastatin with bovine serum albumin: Spectroscopic methods and molecular docking.

    PubMed

    Wang, Qi; Huang, Chuan-ren; Jiang, Min; Zhu, Ying-yao; Wang, Jing; Chen, Jun; Shi, Jie-hua

    2016-03-01

    The interaction of atorvastatin with bovine serum albumin (BSA) was investigated using multi-spectroscopic methods and molecular docking technique for providing important insight into further elucidating the store and transport process of atorvastatin in the body and the mechanism of action and pharmacokinetics. The experimental results revealed that the fluorescence quenching mechanism of BSA induced atorvastatin was a combined dynamic and static quenching. The binding constant and number of binding site of atorvastatin with BSA under simulated physiological conditions (pH=7.4) were 1.41 × 10(5) M(-1) and about 1 at 310K, respectively. The values of the enthalpic change (ΔH(0)), entropic change (ΔS(0)) and Gibbs free energy (ΔG(0)) in the binding process of atorvastatin with BSA at 310K were negative, suggesting that the binding process of atorvastatin and BSA was spontaneous and the main interaction forces were van der Waals force and hydrogen bonding interaction. Moreover, atorvastatin was bound into the subdomain IIA (site I) of BSA, resulting in a slight change of the conformation of BSA. PMID:26688207

  15. Binding interactions of water-soluble camptothecin derivatives with bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Li, Qingyong; Zhu, Qiaochu; Deng, Xiaoqiu; He, Wuna; Zhao, Tengfei; Zhang, Baoyou

    2012-02-01

    In this study, the binding interactions of the water-soluble camptothecin derivatives hydroxycamptothecin (10-HCPT), topotecan (TPT), and camptothecin quaternary salt (CPT8), to bovine serum albumin (BSA) were determined using fluorescence spectra and UV-vis spectra. The results revealed that the fluorescence of BSA was strongly quenched by the binding of camptothecin derivatives to BSA. The quenching mechanism of the camptothecin derivatives was found to be static according to the Stern-Volmer equation. The binding constant and binding sites were confirmed by fluorescence quenching spectra. The thermodynamic parameters Gibbs free energy change (Δ G < 0), enthalpy change (Δ H > 0), and entropy change (Δ S > 0) implied that the interaction process was spontaneous and endothermic, and the interaction forces between camptothecin compounds and BSA were found to be hydrophobic. According to Föster non-radioactive energy transfer, the binding distances between 10-HCPT, TPT, and CPT8, and BSA were determined to be 1.73 nm, 1.63 nm, and 1.61 nm, respectively. The synchronous fluorescence spectra confirmed that the camptothecin compounds cannot cause conformational changes in BSA. A rapid and sensitive method for determining the binding interaction between water-soluble camptothecin derivatives and BSA was established based on these principles of fluorescence quenching.

  16. The competition of drugs to serum albumin in combination chemotherapy: NMR study

    NASA Astrophysics Data System (ADS)

    Sułkowska, A.; Bojko, B.; Równicka, J.; Rezner, P.; Sułkowski, W. W.

    2005-06-01

    Combination chemotherapy with cyclophosphamide (CM), metotrexate and 5-fluorouracil (FU) is used in treatment of patients with breast carcinoma. Although clinical toxicity of CM combinated with FU is greater than that of CM, the levels were clinically acceptable. The mechanism of competition of CM and FU to bovine serum albumin (BSA) was examined with the use of 1H and 13C NMR spectroscopy. The chemical shifts and the linewidth of individual proton and carbon resonances of each drug were measured as a function of the drug/BSA molar ratio in order to analyse the drug-protein interaction and the molecular motion of the drug. The effect of the second drug used in the combination chemotherapy on the analysed NMR parameters is discussed. It was found that FU and CM bind to BSA at molar ratio drug/BSA 160 and 330, respectively. The formation of lev-BSA complex was not confirmed. Whereas it was proved that in the presence of both lev and CM the number of FU molecules bound with BSA increases. It was also observed that FU induces the rising of the affinity between lev and BSA.

  17. Binding interaction of atorvastatin with bovine serum albumin: Spectroscopic methods and molecular docking

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Huang, Chuan-ren; Jiang, Min; Zhu, Ying-yao; Wang, Jing; Chen, Jun; Shi, Jie-hua

    2016-03-01

    The interaction of atorvastatin with bovine serum albumin (BSA) was investigated using multi-spectroscopic methods and molecular docking technique for providing important insight into further elucidating the store and transport process of atorvastatin in the body and the mechanism of action and pharmacokinetics. The experimental results revealed that the fluorescence quenching mechanism of BSA induced atorvastatin was a combined dynamic and static quenching. The binding constant and number of binding site of atorvastatin with BSA under simulated physiological conditions (pH = 7.4) were 1.41 × 105 M- 1 and about 1 at 310 K, respectively. The values of the enthalpic change (ΔH0), entropic change (ΔS0) and Gibbs free energy (ΔG0) in the binding process of atorvastatin with BSA at 310 K were negative, suggesting that the binding process of atorvastatin and BSA was spontaneous and the main interaction forces were van der Waals force and hydrogen bonding interaction. Moreover, atorvastatin was bound into the subdomain IIA (site I) of BSA, resulting in a slight change of the conformation of BSA.

  18. Comparative solution equilibrium studies on pentamethylcyclopentadienyl rhodium complexes of 2,2'-bipyridine and ethylenediamine and their interaction with human serum albumin.

    PubMed

    Enyedy, Éva A; Mészáros, János P; Dömötör, Orsolya; Hackl, Carmen M; Roller, Alexander; Keppler, Bernhard K; Kandioller, Wolfgang

    2015-11-01

    Complex formation equilibrium processes of the (N,N) donor containing 2,2'-bipyridine (bpy) and ethylenediamine (en) with (η(5)-pentamethylcyclopentadienyl)rhodium(III) were investigated in aqueous solution via pH-potentiometry, (1)H NMR spectroscopy, and UV-vis spectrophotometry in the absence and presence of chloride ions. The structure of [RhCp*(en)Cl]ClO4 (Cp*, pentamethylcyclopentadienyl) was also studied by single-crystal X-ray diffraction. pKa values of 8.56 and 9.58 were determined for [RhCp*(bpy)(H2O)](2+) and [RhCp*(en)(H2O)](2+), respectively resulting in the formation of negligible amount of mixed hydroxido complexes at pH 7.4. Stability and the H2O/Cl(-) co-ligand exchange constants of bpy and en complexes considerably exceed those of the bidentate O-donor deferiprone. The strong affinity of the bpy and en complexes to chloride ions most probably contributes to their low antiproliferative effect. Interactions between human serum albumin (HSA) and [RhCp*(H2O)3](2+), its complexes formed with deferiprone, bpy and en were also monitored by (1)H NMR spectroscopy, ultrafiltration/UV-vis and spectrofluorometry. Numerous binding sites (≥ 8) are available for [RhCp*(H2O)3](2+); and the interaction takes place most probably via covalent bonds through the imidazole nitrogen of His. According to the various fluorescence studies [RhCp*(H2O)3](2+) binds on sites I and II, and coordination of surface side chain donor atoms of the protein is also feasible. The binding of the bpy and en complex is weaker and slower compared to that of [RhCp*(H2O)3](2+), and formation of ternary HSA-RhCp*-ligand adducts was proved. In the case of the deferiprone complex, the RhCp* fragment is cleaved off when HSA is loaded with low equivalents of the compound. PMID:26364131

  19. Fluorescence lifetime measurements of native and glycated human serum albumin and bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Joshi, Narahari V.; Joshi, Virgina O. d.; Contreras, Silvia; Gil, Herminia; Medina, Honorio; Siemiarczuk, Aleksander

    1999-05-01

    Nonenzymatic glycation, also known as Maillard reaction, plays an important role in the secondary complications of the diabetic pathology and aging, therefore, human serum albumin (HSA) and bovine serum albumin (BSA) were glycated by a conventional method in our laboratory using glucose as the glycating agent. Fluorescence lifetime measurements were carried out with a laser strobe fluorometer equipped with a nitrogen/dye laser and a frequency doubler as a pulsed excitation source. The samples were excited at 295 nm and the emission spectra were recorded at 345 nm. The obtained decay curves were tried for double and triple exponential functions. It has been found that the shorter lifetime increases for glycated proteins as compared with that of the native ones. For example, in the case of glycated BSA the lifetime increased from 1.36 ns to 2.30 ns. Similarly, for HSA, the lifetime increases from 1.58 ns to 2.26 ns. Meanwhile, the longer lifetime changed very slightly for both proteins (from 6.52 ns to 6.72 ns). The increase in the lifetime can be associated with the environmental effect; originated from the attachment of glucose to some lysine residues. A good example is Trp 214 which is in the cage of Lys 225, Lys 212, Lys 233, Lys 205, Lys 500, Lys 199 and Lys 195. If fluorescence lifetime technique is calibrated and properly used it could be employed for assessing glycation of proteins.

  20. Red-blood-cell-like BSA/Zn3(PO4)2 hybrid particles: Preparation and application to adsorption of heavy metal ions

    NASA Astrophysics Data System (ADS)

    Zhang, Baoliang; Li, Peitao; Zhang, Hepeng; Li, Xiangjie; Tian, Lei; Wang, Hai; Chen, Xin; Ali, Nisar; Ali, Zafar; Zhang, Qiuyu

    2016-03-01

    A novel kind of red-blood-cell-like bovine serum albumin (BSA)/Zn3(PO4)2 hybrid particle is prepared at room temperature by a facile and rapid one-step method based on coordination between BSA and zinc ion. The morphology of the monodisperse hybrid particle shows oblate spheroidal type with a one sided single hole on the surface. The hybrid particle is constructed with BSA/Zn3(PO4)2 nanoplates of 35 nm thick. The average particle size of hybrid particle is 2.3 μm, and its BET specific surface area is 146.64 cm2/g. To clarify the evolution of BSA/Zn3(PO4)2 hybrid particle, SEM and elemental analysis as a function of particle growth time are investigated. The formation mechanism of BSA/Zn3(PO4)2 hybrid particle, which can be described as crystallization, coordination and self-assembly process, is illustrated in detail. The as-prepared BSA/Zn3(PO4)2 hybrid particle is used for adsorption of Cu2+. The hybrid particle displayed excellent adsorption properties on Cu2+. The adsorption efficiency of BSA/Zn3(PO4)2 hybrid particles at 5 min and 30 min are 86.33% and 98.9%, respectively. The maximum adsorption capacity is 6.85 mg/g. Thus, this kind of novel adsorbent shows potential application value in ultra-fast and highly efficient removal of Cu2+.

  1. Recognition and binding of β-lactam antibiotics to bovine serum albumin by frontal affinity chromatography in combination with spectroscopy and molecular docking.

    PubMed

    Li, Qian; Zhang, Tianlong; Bian, Liujiao

    2016-03-01

    Serum albumins are the most abundant carrier proteins in blood plasma and participate in the binding and transportation of various exogenous and endogenous compounds in the body. This work was designed to investigate the recognition and binding of three typical β-lactam antibiotics including penicillin G (Pen G), penicillin V (Pen V) and cefalexin (Cef) with bovine serum albumin (BSA) by frontal affinity chromatography in combination with UV-vis absorption spectra, fluorescence emission spectra, binding site marker competitive experiment and molecular docking under simulated physiological conditions. The results showed that a BSA only bound with one antibiotic molecule in the binding process, and the binding constants for Pen G-BSA, Pen V-BSA and Cef-BSA complexes were 4.22×10(1), 4.86×10(2) and 3.32×10(3) (L/mol), respectively. All the three β-lactam antibiotics were mainly inserted into the subdomain IIA (binding site 1) of BSA by hydrogen bonds and Van der Waals forces. The binding capacity between the antibiotics and BSA was closely related to the functional groups and flexibility of side chains in antibiotics. This study provided an important insight into the molecular recognition and binding interaction of BSA with β-lactam antibiotics, which may be a useful guideline for the innovative clinical medications and new antibiotic designs with effective pharmacological properties. PMID:26882128

  2. Preferential interactions between protein and arginine: effects of arginine on tertiary conformational and colloidal stability of protein solution.

    PubMed

    Wen, Lili; Chen, Yan; Liao, Jie; Zheng, Xianxian; Yin, Zongning

    2015-01-30

    The purpose of this study was to better understand the preferential binding behavior of arginine to protein as well as the impact of arginine on the conformational and colloidal stability of protein solution. Physical stabilities of model proteins, bovine serum albumin (BSA) and ovalbumin (OVA), were investigated by fluorescence-based and dynamic light scattering techniques in the absence and presence of arginine. We investigated the interactions between arginine and tryptophan or tyrosine residues by conducting solubility and fluorescence studies of two amino acid derivatives, N-acetyl-l-tryptophanamide (NATA) and N-acetyl-l-tyrosinamide (NAYA), in arginine solutions. The result showed that arginine preferentially bond to the aromatic amino acids of proteins mainly through hydrogen bonds and Van der Waals' forces, while the binding constant K of arginine with BSA and OVA at 298K was 41.92 and 5.77L/mol, respectively. The fluorescence quenching, the decreased fluorescence lifetime and the red-shifted ANS peak position revealed that arginine perturbed the local environment of tryptophan and tyrosine residues. We also found the attenuated electrostatic repulsion among BSA and OVA molecules after adding arginine. These findings provided strong evidence that arginine possessed negative effects on tertiary conformational and colloidal stability of BSA and OVA during the preferential binding process. PMID:25529432

  3. Triazolopyridyl ketones as a novel class of antileishmanial agents. DNA binding and BSA interaction.

    PubMed

    Adam, Rosa; Bilbao-Ramos, Pablo; López-Molina, Sonia; Abarca, Belén; Ballesteros, Rafael; González-Rosende, M Eugenia; Dea-Ayuela, M Auxiliadora; Alzuet-Piña, Gloria

    2014-08-01

    A new series of triazolopyridyl pyridyl ketones has been synthetized by regioselective lithiation of the corresponding [1,2,3]triazolo[1,5-a]pyridine at 7 position followed by reaction with different electrophiles. The in vitro antileishmanial activity of these compounds was evaluated against Leishmaniainfantum, Leishmaniabraziliensis, Leishmaniaguyanensis and Leishmaniaamazonensis. Compounds 6 and 7 were found to be the most active leishmanicidal agents. Both of them showed activities at micromolar concentration against cultured promastigotes of Leishmania spp. (IC₅₀=99.8-26.8 μM), without cytotoxicity on J774 macrophage cells. These two compounds were also tested in vivo in a murine model of acute infection by L. infantum. The triazolopyridine derivative 6 was effective against both spleen and liver parasites forms, while 7 was inactive against liver parasites. Mechanistic aspects of the antileishmanial activity were investigated by means of DNA binding studies (UV-titration and viscosimetry). Results have revealed that these active ligands are able to interact strongly with DNA [Kb=1.14 × 10(5)M(-1) (6) and 3.26 × 10(5)M(-1) (7)]. Moreover, a DNA groove binding has been proposed for both 6 and 7. To provide more insight on the mode of action of compounds 6 and 7 under biological conditions, their interaction with bovine serum albumin (BSA) was monitored by fluorescence titrations and UV-visible spectroscopy. The quenching constants and binding parameters were determined. Triazolopyridine ketones 6 and 7 have exhibited significant affinity towards BSA [Kb=2.5 × 10(4)M(-1) (6) and 1.9 × 10(4)M(-1) (7)]. Finally, to identify the binding location of compounds 6 and 7 on the BSA, competitive binding experiments were carried out, using warfarin, a characteristic marker for site I, and ibuprofen as one for site II. Results derived from these studies have indicated that both compounds interact at BSA site I and, to a lesser extent, at site II. PMID:24953952

  4. A dual-responsive fluorescence method for the detection of clenbuterol based on BSA-protected gold nanoclusters.

    PubMed

    Cao, Xueling; Li, Hongwei; Lian, Lili; Xu, Na; Lou, Dawei; Wu, Yuqing

    2015-04-29

    The illegal feeding of clenbuterol (CLB) to domestic animals and the potential harm of it to human health lead an urgent requirement for the efficient detection of CLB, especially in the edible meat. In this paper we reported a new fluorescence method for the detection of trace amount of CLB by using the BSA-protected gold nanoclusters (AuNCs@BSA). Under the excitation of either 280 or 500 nm the emission of AuNCs@BSA was quenched obviously by diazotized CLB, supplying a dual-responsive fluorescence method to detect CLB in aqueous solution. In addition, the linear response of the fluorescence intensity of AuNCs@BSA to diazotized CLB allowed the quantitative detection of CLB in a range of 4.0 nM-300 μM upon excitation at two wavelength, and the limit of detection for CLB was 3.0 nM upon 280 nm excitation and 1.6 nM upon 500 nm excitation, respectively. In addition, the dual-responsive mechanism of AuNCs@BSA to CLB was investigated in detail by using several CLB analogues and reference compounds. Particularly, the proposed method was successfully applied to detect CLB in pork mince and the results were validated well by HPLC, illustrating it could be used as a reliable, rapid, and cost-effective technique for the determination of CLB residues in real samples. PMID:25847160

  5. GC-MS and /sup 17/O NMR tracer studies of Et/sub 3/PO formation from auranofin and H/sub 2//sup 17/O in the presence of bovine serum albumin: an in vitro model for auranofin metabolism

    SciTech Connect

    Isab, A.A.; Shaw, C.F. III; Locke, J.

    1988-09-21

    /sup 17/O NMR spectroscopy and gas chromatographic-mass spectral analysis have been used to monitor the source of oxygen in the triethylphosphine oxide formed by the reaction of the antiarthritic drug auranofin ((2,3,4,6-tetra-O-acetyl-..beta..-D-1-glucopyranosato)(triethylphosphine)gold(I)) and bovine serum albumin (BSA) in the presence of reduced glutathione (GtSH). A procedure to extract Et/sub 3/PO from aqueous solutions and concentrate it for subsequent analyses was developed. When the in vitro reaction is carried out aerobically in /sup 17/O-enriched water, Et/sub 3/P/sup 17/O is generated. The chemical ionization (CH/sub 4/) mass measurement, (m + 1)/z = 135, and the /sup 17/O NMR parameters (delta/sub O/ = 40.6 and /sup 1/J/sub PO/ = 156 /plus minus/ 5 Hz) unambiguously establish its identity. The SH titer of the albumin (mole ratio of protein SH groups to BSA) increases during the reaction, confirming that albumin disulfide bonds are reduced in the reaction. Under aerobic conditions, the enriched Et/sub 3/PO accounts for at least 60% of the Et/sub 3/PO formed. The significance of these results for the in vivo formation of Et/sub 3/PO, an auranofin metabolite, is discussed. 25 references, 2 figures.

  6. Albumin adsorption on CoCrMo alloy surfaces

    PubMed Central

    Yan, Yu; Yang, Hongjuan; Su, Yanjing; Qiao, Lijie

    2015-01-01

    Proteins can adsorb on the surface of artificial joints immediately after being implanted. Although research studying protein adsorption on medical material surfaces has been carried out, the mechanism of the proteins’ adsorption which affects the corrosion behaviour of such materials still lacks in situ observation at the micro level. The adsorption of bovine serum albumin (BSA) on CoCrMo alloy surfaces was studied in situ by AFM and SKPFM as a function of pH and the charge of CoCrMo alloy surfaces. Results showed that when the specimens were uncharged, hydrophobic interaction could govern the process of the adsorption rather than electrostatic interaction, and BSA molecules tended to adsorb on the surfaces forming a monolayer in the side-on model. Results also showed that adsorbed BSA molecules could promote the corrosion process for CoCrMo alloys. When the surface was positively charged, the electrostatic interaction played a leading role in the adsorption process. The maximum adsorption occurred at the isoelectric point (pH 4.7) of BSA. PMID:26673525

  7. Albumin adsorption on CoCrMo alloy surfaces

    NASA Astrophysics Data System (ADS)

    Yan, Yu; Yang, Hongjuan; Su, Yanjing; Qiao, Lijie

    2015-12-01

    Proteins can adsorb on the surface of artificial joints immediately after being implanted. Although research studying protein adsorption on medical material surfaces has been carried out, the mechanism of the proteins’ adsorption which affects the corrosion behaviour of such materials still lacks in situ observation at the micro level. The adsorption of bovine serum albumin (BSA) on CoCrMo alloy surfaces was studied in situ by AFM and SKPFM as a function of pH and the charge of CoCrMo alloy surfaces. Results showed that when the specimens were uncharged, hydrophobic interaction could govern the process of the adsorption rather than electrostatic interaction, and BSA molecules tended to adsorb on the surfaces forming a monolayer in the side-on model. Results also showed that adsorbed BSA molecules could promote the corrosion process for CoCrMo alloys. When the surface was positively charged, the electrostatic interaction played a leading role in the adsorption process. The maximum adsorption occurred at the isoelectric point (pH 4.7) of BSA.

  8. Curcumin delivered through bovine serum albumin/polysaccharides multilayered microcapsules.

    PubMed

    Paşcalău, V; Soritau, O; Popa, F; Pavel, C; Coman, V; Perhaita, I; Borodi, G; Dirzu, N; Tabaran, F; Popa, C

    2016-01-01

    The aim of the paper is to obtain and characterize k-carrageenan-chitosan dual hydrogel multilayers shell BSA gel microcapsules, as a carrier for curcumin, and as a possible antitumoral agent in biological studies. We used the CaCO3 template to synthesize non-toxic CaCO3/BSA particles as microtemplates by coprecipitating a CaCl2 solution that contains dissolved BSA, with an equimolar Na2CO3 solution. The microcapsules shell is assembled through a layer-by-layer deposition technique of calcium cross-linked k-carrageenan hydrogel alternating with polyelectrolite complex hydrogel formed via electrostatic interactions between k-carrageenan and chitosan. After the removal of CaCO3 through Ca(2+) complexation with EDTA, and by a slightly treatment with HCl diluted solution, the BSA core is turned into a BSA gel through a thermal treatment. The BSA gel microcapsules were then loaded with curcumin, through a diffusion process from curcumin ethanolic solution. All the synthesized particles and microcapsules were stucturally characterized by: Fourier Transform Infrared Spectroscopy, UV-Vis Spectrometry, X-ray diffraction, thermal analysis, fluorescence spectroscopy, fluorescence optical microscopy, confocal laser scanning microscopy and scanning electron microscopy. The behavior of curcumin loaded microcapsules in media of different pH (SGF, SIF and PBS) was studied in order to reveal the kinetics and the release profile of curcumin. The in vitro evaluation of the antitumoral activity of encapsulated curcumin microcapsules on HeLa cell line and the primary culture of mesenchymal stem cells is the main reason of the microcapsules synthesis as BSA-based vehicle meant to enhance the biodisponibility of curcumin, whose anti-tumor, anti-oxidant and anti-inflammatory properties are well known. PMID:26350520

  9. Spectroscopic study on the interaction of bovine serum albumin with zinc(II) phthalocyanine.

    PubMed

    Li, Yejing; Wang, Yi; Wang, Ao; Lu, Shan; Zhou, Lin; Zhou, Jiahong; Lin, Yun; Wei, Shaohua

    2015-12-01

    The interaction between the photosensitive antitumour drug, 2(3),9(10),16(17),23(24)-tetra-(((2-aminoethylamino)methyl)phenoxy)phthalocyaninato-zinc(II) (ZnPc) and bovine serum albumin (BSA) has been investigated using various spectroscopic methods. This work may provide some useful information for understanding the interaction mechanism of anticancer drug-albumin binding and gain insight into the biological activity and metabolism of the drug in blood. Based on analysis of the fluorescence spectra, ZnPc could quench the intrinsic fluorescence of BSA and the quenching mechanism was static by forming a ground state complex. Meanwhile, the Stern-Volmer quenching constant (KSV), binding constant (Kb), number of binding sites (n) and thermodynamic parameters were obtained. Results showed that the interaction of ZnPc with BSA occurred spontaneously via hydrogen bond and van der Waal's force. According to Foster's non-radioactive energy transfer theory, the energy transfer from BSA to ZnPc occurred with high possibility. Synchronous fluorescence and circular dichroism (CD) spectra also demonstrated that ZnPc induced the secondary structure of and conformation changes in BSA, especially α helix. PMID:25829360

  10. Kinetic studies of bovine serum albumin interaction with PG and TBHQ using surface plasmon resonance.

    PubMed

    Fathi, Farzaneh; Ezzati Nazhad Dolatanbadi, Jafar; Rashidi, Mohammad-Reza; Omidi, Yadollah

    2016-10-01

    Propyl gallate (PG) and tert-butylhydroquinone (TBHQ) are examples of phenolic antioxidant agents, which have widespread uses in food industry. In this study, for the first time, we report on the interaction of PG and TBHQ with bovine serum albumin (BSA) using surface plasmon resonance (SPR). In order to modify Au slide with carboxyl functional group, 11-mercaptoundecanoic acid (MUA) was used. After activation of carboxylic groups, BSA was immobilized onto the MUA through both covalent amide bond and electrostatic binding formation. The SPR analysis showed dose-response sensograms of BSA upon increasing concentration of PG and TBHQ. At pH 4.5, the equilibrium dissociation constant or affinity unit (KD) for PG and TBHQ were 1.89e(-10) and 1.49e(-10) and at pH 7.5 were 4.74e(-10) and 1.83e(-9), respectively. The smaller amount of KD demonstrated high food additive molecules affinity to BSA. Based on these findings, it can be concluded that PG and TBHQ molecules can interact with BSA and effectively distributed within the body. Besides, SPR can be considered as useful automatic tool for quantification of PG and TBHQ interaction with serum albumin and it can deliver precise real-time kinetic data. PMID:27327906

  11. Conjugation of ampicillin and enrofloxacin residues with bovine serum albumin and raising of polyclonal antibodies against them

    PubMed Central

    Kumar, B. Sampath; Ashok, Vasili; Kalyani, P.; Nair, G. Remya

    2016-01-01

    Aim: The aim of this study is to test the potency of bovine serum albumin (BSA) conjugated ampicillin (AMP) and enrofloxacin (ENR) antigens in eliciting an immune response in rats using indirect competitive enzyme-linked immunosorbent assay (icELISA). Materials and Methods: AMP and ENR antibiotics were conjugated with BSA by carbodiimide reaction using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) as a cross-linker. The successful conjugation was confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Sprague-Dawley rats were immunized with the conjugates and blood samples were collected serially at 15 days time interval after first immunization plus first booster, second booster, third booster, and the fourth sampling was done 1½ month after the third booster. The antibody titres in the antisera of each antibiotic in all the four immunization cycles (ICs) were determined by an icELISA at various serum dilutions ranging from 1/100 to 1/6400. Results: Analysis of antibiotic-BSA conjugates by sodium dodecyl sulfate polyacrylamide gel electrophoresis and coomassie blue staining revealed high molecular weight bands of 85 kDa and 74 kDa for AMP-BSA and ENR-BSA respectively when compared to 68 kDa band of BSA. Both the antibiotic conjugates elicited a good immune response in rats but comparatively the response was more with AMP-BSA conjugate than ENR-BSA conjugate. Maximum optical density 450 value of 2.577 was recorded for AMP-BSA antisera, and 1.723 was recorded for ENR-BSA antisera at 1/100th antiserum dilution in third IC. Conclusion: AMP and ENR antibiotics proved to be good immunogens when conjugated to BSA by carbodiimide reaction with EDC as crosslinker. The polyclonal antibodies produced can be employed for detecting AMP and ENR residues in milk and urine samples. PMID:27182138

  12. Optimization and evaluation of a thermoresponsive ophthalmic in situ gel containing curcumin-loaded albumin nanoparticles

    PubMed Central

    Lou, Jie; Hu, Wenjing; Tian, Rui; Zhang, Hua; Jia, Yuntao; Zhang, Jingqing; Zhang, Liangke

    2014-01-01

    This study aimed to optimize and evaluate a thermoresponsive ophthalmic in situ gel containing curcumin-loaded albumin nanoparticles (Cur-BSA-NPs-Gel). Albumin nanoparticles were prepared via a desolvation method, and the gels were prepared via a cold method. The central composite design and response surface method was used to evaluate the effects of varying Pluronic® F127 and Pluronic® F68 concentrations on the sol–gel transition temperature, which is an indicator of optimum formulations. The optimized formulation was a free-flowing liquid below 30.9°C that transformed into a semi-solid gel above 34.2°C after dilution with simulated tear fluid. Results of the in vitro release and erosion behavior study indicated that Cur-BSA-NPs-Gel achieved superior sustained-release effects and that incorporation of albumin nanoparticles exerted minimal effects on the gel structure. In addition, in vivo ophthalmic experiments employing Cur-BSA-NPs-Gel were subsequently performed in rabbits. In vivo eye irritation results showed that Cur-BSA-NPs-Gel might be considered safe for ophthalmic drug delivery. The in vivo study also revealed that the formulation could significantly increase curcumin bioavailability in the aqueous humor. In conclusion, the optimized in situ gel formulation developed in this work has significant potential for ocular application. PMID:24904211

  13. Characterisation of the de-agglomeration effects of bovine serum albumin on nanoparticles in aqueous suspension.

    PubMed

    Tantra, Ratna; Tompkins, Jordan; Quincey, Paul

    2010-01-01

    This paper describes the use of nanoparticle characterisation tools to evaluate the interaction between bovine serum albumin (BSA) and dispersed nanoparticles in aqueous media. Dynamic light scattering, zeta-potential measurements and scanning electron microscopy were used to probe the state of zinc oxide (ZnO) and titanium dioxide (TiO(2)) nanoparticles in the presence of various concentrations of BSA, throughout a three-day period. BSA was shown to adhere to ZnO but not to TiO(2). The adsorption of BSA led to subsequent de-agglomeration of the sub-micron ZnO clusters into smaller fragments, even breaking them up into individual isolated nanoparticles. We propose that certain factors, such as adsorption kinetics of BSA on to the surface of ZnO, as well as the initial agglomerated state of the ZnO, prior to BSA addition, are responsible for promoting the de-agglomeration process. Hence, in the case of TiO(2) we see no de-agglomeration because: (a) the nanoparticles are more highly agglomerated to begin with and (b) BSA does not adsorb effectively on the surface of the nanoparticles. The zeta-potential results show that, for either ZnO or TiO(2), the presence of BSA resulted in enhanced stability. In the case of ZnO, the enhanced stability is limited to BSA concentrations below 0.5 wt.%. Steric and electrostatic repulsion are thought to be responsible for improved stability of the dispersion. PMID:19775871

  14. Binding interactions between lysozyme and injectable hydrogels derived from albumin-pH/thermo responsive poly(amino urethane) conjugates in aqueous solution.

    PubMed

    Rapeekan, Jirathititiporn; Songtipya, Ponusa; Lee, Doo Sung; Manokruang, Kiattikhun

    2016-10-01

    Injectable hydrogels are alternative materials for drug and protein delivery in biomedical applications, which can potentially eliminate the need of surgical implantation in the treatment procedures. Prior to administration, such hydrogels, in a liquid state, must demonstrate good interactions with the incorporated molecules to maintain the sustain release of active agents and to avoid unappreciative burst release. The injectable hydrogels derived from BSA-pH/temperature responsive poly(amino urethane) conjugates have been reported to demonstrated good sustainability for delivery of lysozyme, both in vitro and in vivo. However, the interactions between such conjugates and the loading lysozyme were not fully understood. In this present work, we reported the binding interactions between the studied complex systems, BSA-pH/temperature responsive poly(amino urethane) conjugates (CONJ1 and CONJ2) and lysozyme. Fluorescence spectroscopy in a combination with thermodynamic analysis exhibited that the binding between the conjugates and lysozyme occurred through static quenching and the binding interactions in the complexes were mainly van der Waals forces and hydrogen bonds. The binding constants (KA) determined at 300, 308 and 318K of CONJ1 to lysozyme were 7.96×10(4), 6.45×10(4) and 3.20×10(4)M(-1), respectively and those of CONJ2 to lysozyme were 2.63×10(4), 2.53×10(4) and 1.19×10(4)M(-1), respectively. FTIR analysis showed that the complexes between the conjugates and lysozyme demonstrated sufficiently small deviation in the conformational structures from the native lysozyme. In addition, the morphology revealed by TEM and AFM imaging portrayed the behavior of complex formation in such a way that the conjugates, before complex formation, displayed the core-shell structures. After the complex formation, a number of lysozyme particles were noticeably entrapped as if they penetrated into the preformed core-shell conjugates. PMID:27423103

  15. Interaction of singlet oxygen with bovine serum albumin and the role of the protein nano-compartmentalization.

    PubMed

    Giménez, Rodrigo E; Vargová, Veronika; Rey, Valentina; Turbay, M Beatriz Espeche; Abatedaga, Inés; Morán Vieyra, Faustino E; Paz Zanini, Verónica I; Mecchia Ortiz, Juan H; Katz, Néstor E; Ostatná, Veronika; Borsarelli, Claudio D

    2016-05-01

    Singlet molecular oxygen ((1)O2) contributes to protein damage triggering biophysical and biochemical changes that can be related with aging and oxidative stress. Serum albumins, such as bovine serum albumin (BSA), are abundant proteins in blood plasma with different biological functions. This paper presents a kinetic and spectroscopic study of the (1)O2-mediated oxidation of BSA using the tris(2,2'-bipyridine)ruthenium(II) cation [Ru(bpy)3](2+) as sensitizer. BSA quenches efficiently (1)O2 with a total (chemical+physical interaction) rate constant kt(BSA)=7.3(±0.4)×10(8)M(-1)s(-1), where the chemical pathway represented 37% of the interaction. This efficient quenching by BSA indicates the participation of several reactive residues. MALDI-TOF MS analysis of intact BSA confirmed that after oxidation by (1)O2, the mass protein increased the equivalent of 13 oxygen atoms. Time-resolved emission spectra analysis of BSA established that Trp residues were oxidized to N'-formylkynurenine, being the solvent-accessible W134 preferentially oxidized by (1)O2 as compared with the buried W213. MS confirmed oxidation of at least two Tyr residues to form dihydroxyphenylalanine, with a global reactivity towards (1)O2 six-times lower than for Trp residues. Despite the lack of MS evidences, kinetic and chemical analysis also suggested that residues other than Trp and Tyr, e.g. Met, must react with (1)O2. Modeling of the 3D-structure of BSA indicated that the oxidation pattern involves a random distribution of (1)O2 into BSA; allowing also the interaction of (1)O2 with buried residues by its diffusion from the bulk solvent through interconnected internal hydrophilic and hydrophobic grooves. PMID:26898504

  16. Advanced Glycation End Products Modulate Structure and Drug Binding Properties of Albumin.

    PubMed

    Awasthi, Saurabh; Murugan, N Arul; Saraswathi, N T

    2015-09-01

    The extraordinary ligand binding properties of albumin makes it a key player in the pharmacokinetics and pharmacodynamics of many vital drugs. Albumin is highly susceptible for nonenzymatic glycation mediated structural modifications, and there is a need to determine structural and functional impact of specific AGEs modifications. The present study was aimed toward determining the AGE mediated structure and function changes, primarily looking into the effect on binding affinity of drugs in the two major drug binding sites of albumin. The impact of the two most predominant AGEs modifications, i.e., carboxyethyllysine (CEL) and argpyrimidine (Arg-P), was studied on the basis of the combination of in vitro and in silico experiments. In vitro studies were carried out by AGEs modification of bovine serum albumin (BSA) for the formation of Arg-P and CEL followed by drug interaction studies. In silico studies involved molecular dynamics (MD) simulations and docking studies for native and AGEs modified BSAs. In particular the side chain modification was specifically carried out for the residues in the drug binding sites, i.e., Arg-194, Arg-196, Arg-198, and Arg-217, and Lys-204 (site I) and Arg-409 and Lys-413 (site II). The equilibrated structures of native BSA (n-BSA) and glycated BSA (G-BSA) as obtained from MD were used for drug binding studies using molecular docking approach. It was evident from the results of both in vitro and in silico drug interaction studies that AGEs modification results in the reduced drug binding affinity for tolbutamide (TLB) and ibuprofen (IBP) in sites I and II. Moreover, the AGEs modification mediated conformational changes resulted in the shallow binding pockets with reduced accessibility for drugs. PMID:26281017

  17. Fluorescence quenching of bovine serum albumin by NNMB

    NASA Astrophysics Data System (ADS)

    Jayabharathi, J.; Jayamoorthy, K.; Thanikachalam, V.; Sathishkumar, R.

    2013-05-01

    A new type of fluorophore 2-(naphthalen-1-yl)-1-((naphthalen-1-yl)methyl)-1H-benzimidazole (NNMB) has been prepared and characterized by 1H NMR, 13C NMR, mass and IR spectral analysis. Absorption, fluorescence and synchronous fluorescence spectral studies have been made for the mutual interaction of NNMB with bovine serum albumin (BSA). Absorption spectroscopy proved the formation of a ground state BSA…NNMB complex. Fluorescence spectrum of BSA in the presence of NNMB clearly shows that NNMB acts as a quencher. Based on the theory of Forester's non-radiation energy transfer (FRET) binding distance has been deduced. The Stern-Volmer quenching constant (KSV), binding site number (n), apparent binding constant (KA) and corresponding thermodynamic parameters (ΔG, ΔH and ΔS) were determined.

  18. Is Iron Chelation Important in Preventing Glycation of Bovine Serum Albumin in Vitro?

    PubMed

    Galiniak, Sabina; Bartosz, Grzegorz; Sadowska-Bartosz, Izabela

    2015-12-01

    The role of metal (especially) iron ions has been postulated to play a prominent role in protein glycation, suggesting antiglycating effectiveness of metal chelators. However, this rule may not apply to all model glycation systems. We found that metal chelators are not effective in prevention of glycation of bovine serum albumin (BSA) in vitro, and there is no correlation between the antiglycating effects of 32 compounds and their iron chelation activity as measured with the ferrozine test. These data indicate that the glycation of BSA in vitro is iron-independent and is not a proper system to study the role of metals in protein glycation. PMID:26146126

  19. Bull serum albumin coated Au@Agnanorods as SERS probes for ultrasensitive osteosarcoma cell detection.

    PubMed

    Yue, Ji; Liu, Zhen; Cai, Xingyu; Ding, Xianting; Chen, Shouhui; Tao, Ke; Zhao, Tingbao

    2016-04-01

    Surface-Enhanced Raman scattering (SERS) has been widely used for imaging and sensing. However, limited reports are currently available on SERS-based cancer cell targeting strategy due to the challenge of synthesizing highly sensitive, reproducible and biocompatible SERS probe. Herein, we developed novel SERS probes, based on BSA (Bull Serum Albumin) coated gold-silver core-shell nanorods modified with Raman reporter 5,5-dithiobis 2-nitrobenzoic acid (DTNB) (Au@AgNRs@BSA@Anti-MICA), for in vitro cancer cell detection. Our results demonstrate that the SERS probe is very robust for cancer cell ultrasensitive detection with good biocompatibility and strong SERS signal. PMID:26838436

  20. Perturbed angular correlation experiments on the pressure-induced structural modification of bovine serum albumin.

    PubMed

    Ceolín, M

    2000-09-11

    The hydrodynamic behaviour of the bovine serum albumin (BSA) was studied by means of the Perturbed Angular Correlation (PAC) technique as a function of the hydrostatic pressure (up to 4.1 kbar) applied to the sample. The results have clearly shown that at moderated pressures (around 1.5 kbar) the BSA molecule suffers structural modifications which produces an increase of the molecular volume and the rotational correlation time of the molecule. About the reversibility of the process, our results indicate that the changes are fully irreversible. Our experiments are the first devoted to the study of the high-pressure behaviour of biological molecules using the PAC technique. PMID:10989128

  1. Protein Crystal Serum Albumin

    NASA Technical Reports Server (NTRS)

    1998-01-01

    As the most abundant protein in the circulatory system albumin contributes 80% to colloid osmotic blood pressure. Albumin is also chiefly responsible for the maintenance of blood pH. It is located in every tissue and bodily secretion, with extracellular protein comprising 60% of total albumin. Perhaps the most outstanding property of albumin is its ability to bind reversibly to an incredible variety of ligands. It is widely accepted in the pharmaceutical industry that the overall distribution, metabolism, and efficiency of many drugs are rendered ineffective because of their unusually high affinity for this abundant protein. An understanding of the chemistry of the various classes of pharmaceutical interactions with albumin can suggest new approaches to drug therapy and design. Principal Investigator: Dan Carter/New Century Pharmaceuticals

  2. Exploring the binding mechanism of ondansetron hydrochloride to serum albumins: Spectroscopic approach

    NASA Astrophysics Data System (ADS)

    Sandhya, B.; Hegde, Ashwini H.; K. C., Ramesh; Seetharamappa, J.

    2012-02-01

    The mechanism of interaction of ondansetron hydrochloride (OND) to serum albumins [bovine serum albumin (BSA) and human serum albumin (HSA)] was studied for the first time employing fluorimetric, circular dichroism, FTIR and UV-vis absorption techniques under the simulated physiological conditions. Fluorimetric results were utilized to investigate the binding and conformational characteristics of protein upon interaction with varying concentrations of the drug. Higher binding constant values revealed the strong interaction between the drug and protein while the number of binding sites close to unity indicated single class of binding site for OND in protein. Thermodynamic results revealed that both hydrogen bond and hydrophobic interactions played a major role in stabilizing drug-protein complex. Site marker competitive experiments indicated that the OND bound to albumins at subdomin II A (Sudlow's site I). Further, the binding distance between OND and serum albumin was calculated based on the Förster's theory of non-radioactive energy transfer and found to be 2.30 and 3.41 nm, respectively for OND-BSA and OND-HSA. The circular dichroism data revealed that the presence of OND decreased the α-helix content of serum albumins. 3D-fluorescence results also indicated the conformational changes in protein upon interaction with OND. Further, the effects of some cations have been investigated in the interaction of drug to protein.

  3. Exploring the binding mechanism of ondansetron hydrochloride to serum albumins: spectroscopic approach.

    PubMed

    B, Sandhya; Hegde, Ashwini H; K C, Ramesh; J, Seetharamappa

    2012-02-01

    The mechanism of interaction of ondansetron hydrochloride (OND) to serum albumins [bovine serum albumin (BSA) and human serum albumin (HSA)] was studied for the first time employing fluorimetric, circular dichroism, FTIR and UV-vis absorption techniques under the simulated physiological conditions. Fluorimetric results were utilized to investigate the binding and conformational characteristics of protein upon interaction with varying concentrations of the drug. Higher binding constant values revealed the strong interaction between the drug and protein while the number of binding sites close to unity indicated single class of binding site for OND in protein. Thermodynamic results revealed that both hydrogen bond and hydrophobic interactions played a major role in stabilizing drug-protein complex. Site marker competitive experiments indicated that the OND bound to albumins at subdomin II A (Sudlow's site I). Further, the binding distance between OND and serum albumin was calculated based on the Förster's theory of non-radioactive energy transfer and found to be 2.30 and 3.41 nm, respectively for OND-BSA and OND-HSA. The circular dichroism data revealed that the presence of OND decreased the α-helix content of serum albumins. 3D-fluorescence results also indicated the conformational changes in protein upon interaction with OND. Further, the effects of some cations have been investigated in the interaction of drug to protein. PMID:22112579

  4. Ice Recrystallization in a Solution of a Cryoprotector and Its Inhibition by a Protein: Synchrotron X-Ray Diffraction Study.

    PubMed

    Zakharov, Boris; Fisyuk, Alexander; Fitch, Andy; Watier, Yves; Kostyuchenko, Anastasia; Varshney, Dushyant; Sztucki, Michael; Boldyreva, Elena; Shalaev, Evgenyi

    2016-07-01

    Ice formation and recrystallization is a key phenomenon in freezing and freeze-drying of pharmaceuticals and biopharmaceuticals. In this investigation, high-resolution synchrotron X-ray diffraction is used to quantify the extent of disorder of ice crystals in binary aqueous solutions of a cryoprotectant (sorbitol) and a protein, bovine serum albumin. Ice crystals in more dilute (10 wt%) solutions have lower level of microstrain and larger crystal domain size than these in more concentrated (40 wt%) solutions. Warming the sorbitol-water mixtures from 100 to 228 K resulted in partial ice melting, with simultaneous reduction in the microstrain and increase in crystallite size, that is, recrystallization. In contrast to sorbitol solutions, ice crystals in the BSA solutions preserved both the microstrain and smaller crystallite size on partial melting, demonstrating that BSA inhibits ice recrystallization. The results are consistent with BSA partitioning into quasi-liquid layer on ice crystals but not with a direct protein-ice interaction and protein sorption on ice surface. The study shows for the first time that a common (i.e., not-antifreeze) protein can have a major impact on ice recrystallization and also presents synchrotron X-ray diffraction as a unique tool for quantification of crystallinity and disorder in frozen aqueous systems. PMID:27287516

  5. Cotton Study: Albumin Binding and its Effect on Elastase Activity in the Chronic Non-healing Wound

    SciTech Connect

    Castro, Nathan J.; Goheen, Steven C.

    2005-12-01

    A comparative examination of two methods, the classical- and chromatographic, commonly used to study adsorption isotherms is presented. Both methods were used to study the solid/liquid interface of two different derivatives of cotton fiber and bovine serum albumin (BSA).

  6. Synthesis of tumor-targeted folate conjugated fluorescent magnetic albumin nanoparticles for enhanced intracellular dual-modal imaging into human brain tumor cells.

    PubMed

    Wang, Xueqin; Tu, Miaomiao; Tian, Baoming; Yi, Yanjie; Wei, ZhenZhen; Wei, Fang

    2016-11-01

    Superparamagnetic iron oxide nanoparticles (SPIO NPs), utilized as carriers are attractive materials widely applied in biomedical fields, but target-specific SPIO NPs with lower toxicity and excellent biocompatibility are still lacking for intracellular visualization in human brain tumor diagnosis and therapy. Herein, bovine serum albumin (BSA) coated superparamagnetic iron oxide, i.e. γ-Fe2O3 nanoparticles (BSA-SPIO NPs), are synthesized. Tumor-specific ligand folic acid (FA) is then conjugated onto BSA-SPIO NPs to fabricate tumor-targeted NPs, FA-BSA-SPIO NPs as a contrast agent for MRI imaging. The FA-BSA-SPIO NPs are also labeled with fluorescein isothiocyanate (FITC) for intracellular visualization after cellular uptake and internalization by glioma U251 cells. The biological effects of the FA-BSA-SPIO NPs are investigated in human brain tumor U251 cells in detail. These results show that the prepared FA-BSA-SPIO NPs display undetectable cytotoxicity, excellent biocompatibility, and potent cellular uptake. Moreover, the study shows that the made FA-BSA-SPIO NPs are effectively internalized for MRI imaging and intracellular visualization after FITC labeling in the targeted U251 cells. Therefore, the present study demonstrates that the fabricated FITC-FA-BSA-SPIO NPs hold promising perspectives by providing a dual-modal imaging as non-toxic and target-specific vehicles in human brain tumor treatment in future. PMID:27523645

  7. Study on the binding of colloidal zinc oxide nanoparticles with bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Kathiravan, A.; Paramaguru, G.; Renganathan, R.

    2009-09-01

    The interaction between colloidal zinc oxide (ZnO) nanoparticles and bovine serum albumin (BSA) was studied by using absorption, fluorescence, Fourier transform infrared, synchronous and time resolved fluorescence spectroscopic measurements. The apparent association constant has been deduced ( Kapp = 1.1 × 10 4 M -1) from the absorption spectral changes of BSA-colloidal ZnO nanoparticles using Benesi-Hildebrand equation. Addition of colloidal ZnO nanoparticles effectively quenched the intrinsic fluorescence of BSA. The number of binding sites ( n = 1.06) and apparent binding constant ( K = 2.5 × 10 4 M -1) were calculated by relevant fluorescence data. Based on Forster's non-radiation energy transfer theory, distance between the donor (BSA) and acceptor (ZnO) ( r0 = 2.88 nm) as well as the critical energy transfer distance ( R0 = 2.49 nm) has also been calculated. The interaction between colloidal ZnO and BSA occurs through static quenching mechanism. The effect of colloidal ZnO nanoparticles on the conformation of BSA has been analyzed by means of UV-visible absorption spectra and synchronous fluorescence spectra.

  8. Effects of titania nanotubes with or without bovine serum albumin loaded on human gingival fibroblasts

    PubMed Central

    Liu, Xiangning; Zhou, Xiaosong; Li, Shaobing; Lai, Renfa; Zhou, Zhiying; Zhang, Ye; Zhou, Lei

    2014-01-01

    Modifying the surface of the transmucosal area is a key research area because this process positively affects the three functions of implants: attachment to soft tissue, inhibiting bacterial biofilm adhesion, and the preservation of the crestal bone. To exploit the potential of titania nanotube arrays (TNTs) with or without using bovine serum albumin (BSA) to modify the surface of a dental implant in contact with the transmucosal area, BSA was loaded into TNTs that were fabricated by anodizing Ti sheets; the physical characteristics of these arrays, including their morphology, chemical composition, surface roughness, contact angle, and surface free energy (SFE), were assessed. The effect of Ti surfaces with TNTs or TNTs-BSA on human gingival fibroblasts (HGFs) was determined by analyzing cell morphology, early adhesion, proliferation, type I collagen (COL-1) gene expression, and the extracellular secretion of COL-1. The results indicate that early HGF adhesion and spreading behavior is positively correlated with surface characteristics, including hydrophilicity, SFE, and surface roughness. Additionally, TNT surfaces not only promoted early HGF adhesion, but also promoted COL-1 secretion. BSA-loaded TNT surfaces promoted early HGF adhesion, while suppressing late proliferation and COL-1 secretion. Therefore, TNT-modified smooth surfaces are expected to be applicable for uses involving the transmucosal area. Further study is required to determine whether BSA-loaded TNT surfaces actually affect closed loop formation of connective tissue because BSA coating actions in vivo are very rapid. PMID:24623977

  9. Spectroscopic Investigation on the Interaction of Titanate Nanotubes with Bovine Serum Albumin

    NASA Astrophysics Data System (ADS)

    Zhao, L. Z.; Zhao, Y. S.; Teng, H. H.; Shi, S. Y.; Ren, B. X.

    2014-09-01

    In order to understand the transport mechanism and evaluate the biological safety of titanate nanotubes, the interactions of titanate nanotubes (TNTs) with bovine serum albumin (BSA) were investigated by applying spectroscopic methods under simulated physiological conditions. After taking into account the inner filter effect, the fluorescence intensity of BSA was found to be significantly enhanced by the presence of TNTs, indicating that the microenvironment of tryptophan and tyrosine residues in BSA became more hydrophobic. In addition, the absorption spectra of BSA showed a hyperchromic effect around 280 nm as the concentration of TNTs increased, suggesting that TNTs changed the microenvironment of the tryptophan and tyrosine residues. This is consistent with the results from fl uorescence spectroscopy studies. However, circular dichroism spectroscopy revealed that no signifi cant conformational change in BSA occurred during the interaction. We believe that Trp-213 was buried more compactly in the internal hydrophobic region, and hydrophobicity increased around Trp-134 with increasing TNTs concentration. From a spectroscopic point of view, this work elucidates the interaction mechanism of titanate nanotubes with BSA, and the methods used in this paper can also be applied to explore the molecular mechanism underlying toxicity of other nanomaterials.

  10. Characterization of erythrosine B binding to bovine serum albumin and bilirubin displacement.

    PubMed

    Mathavan, Vinodaran M K; Boh, Boon Kim; Tayyab, Saad

    2009-08-01

    The interaction of crythrosine B (ErB), a commonly used dye for coloring foods and drinks, with bovine scrum albumin (BSA) was investigated both in the absence and presence of bilirubin (BR) using absorption and absorption difference spectroscopy. ErB binding to BSA was reflected from a significant red shift of 11 nm in the absorption maximum of ErB (527 nm) with the change in absorbance at lamdamax. Analysis of absorption difference spectroscopic titration results of BSA with increasing concentrations of ErB3 using Benesi-Hildebrand equation gave the association constant, K as 6.9 x 10(4) M(-1). BR displacing action of ErB was revealed by a significant blue shift in the absorption maximum, accompanied by a decrease in absorbance difference at lamdamax in the difference spectrum of BR-BSA complex upon addition of increasing concentrations of ErB. This was further substantiated by fluorescence spectroscopy, as addition of increasing concentrations of ErB to BR-BSA complex caused a significant decrease in fluoresccnce at 510 nm. The results suggest that ErB binds to a site in the vicinity of BR binding site on BSA. Therefore, intake of ErB may increase the risk of hyperbilirubinemia in the healthy subjects. PMID:19788065

  11. Forced Desorption of Bovine Serum Albumin and Lysozyme from Graphite: Insights from Molecular Dynamics Simulation.

    PubMed

    Mücksch, Christian; Urbassek, Herbert M

    2016-08-18

    We use molecular dynamics (MD) simulation to study the adsorption and desorption of two widely different proteins, bovine serum albumin (BSA) and lysozyme, on a graphite surface. The adsorption is modeled using accelerated MD to allow the proteins to find optimum conformations on the surface. Our results demonstrate that the "hard protein" lysozyme retains much of its secondary structure during adsorption, whereas BSA loses it almost completely. BSA has a considerably larger adsorption energy compared to that of lysozyme, which does not scale with chain length. Desorption simulations are carried out using classical steered MD. The BSA molecule becomes fully unzipped during pull-off, whereas several helices survive this process in lysozyme. The unzipping process shows up in the force-distance curve of BSA as a series of peaks, whereas only a single or few, depending on protein orientation, force peaks occur for lysozyme. The maximum desorption force is larger for BSA than for lysozyme, but only by a factor of about 2.3. PMID:27421144

  12. Experimental investigation of the serum albumin fascia microstructure

    NASA Astrophysics Data System (ADS)

    Buzoverya, M. E.; Shcherbak, Yu. P.; Shishpor, I. V.

    2012-09-01

    The results of theoretical and experimental investigation of biological liquids are reported. Structural effects observed in fascias are considered with account of the molecular features of albumin and the concept of supramolecular organization of polymers. It is revealed that the morphology of human serum albumin fascias depends on the concentration and quality of the solvent. It is shown that the water-salt fascias of albumin are more structured than water solutions with the same concentration.

  13. Spectroscopic analyses and studies on respective interaction of cyanuric acid and uric acid with bovine serum albumin and melamine

    NASA Astrophysics Data System (ADS)

    Chen, Dandan; Wu, Qiong; Wang, Jun; Wang, Qi; Qiao, Heng

    2015-01-01

    In this work, the fluorescence quenching was used to study the interaction of cyanuric acid (CYA) and uric acid (UA) with bovine serum albumin (BSA) at two different temperatures (283 K and 310 K). The bimolecular quenching constant (Kq), apparent quenching constant (Ksv), effective binding constant (KA) and corresponding dissociation constant (KD), binding site number (n) and binding distance (r) were calculated by adopting Stern-Volmer, Lineweaver-Burk, Double logarithm and overlap integral equations. The results show that CYA and UA are both able to obviously bind to BSA, but the binding strength order is BSA + CYA < BSA + UA. And then, the interactions of CYA and UA with melamine (MEL) under the same conditions were also studied by using similar methods. The results indicates that both CYA and UA can bind together closely with melamine (MEL). It is wished that these research results would facilitate the understanding the formation of kidney stones and gout in the body after ingesting excess MEL.

  14. Structure of Serum Albumin

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.; Ho, Joseph X.

    1994-01-01

    Because of its availability, low cost, stability, and unusual ligand-binding properties, serum albumin has been one of the mst extensively studied and applied proteins in biochemistry. However, as a protein, albumin is far from typical, and the widespread interest in and application of albumin have not been balanced by an understanding of its molecular structure. Indeed, for more than 30 years structural information was surmised based solely on techniques such as hydrodynamics, low-angle X-ray scattering, and predictive methods.

  15. Interactions of aptamers with sera albumins

    NASA Astrophysics Data System (ADS)

    Cortez, Célia Martins; Silva, Dilson; Silva, Camila M. C.; Missailidis, Sotiris

    2012-09-01

    The interactions of two short aptamers to human and bovine serum albumins were studied by fluorescence spectroscopic techniques. Intrinsic fluorescence of BSA and HSA were measured by selectively exciting their tryptophan residues. Gradual quenching was observed by titration of both proteins with aptamers. Aptamers are oligonucleic acid or peptide molecules that bind a specific target and can be used for both biotechnological and clinical purposes, since they present molecular recognition properties like that commonly found in antibodies. Two aptamers previously selected against the MUC1 tumour marker were used in this study, one selected for the protein core and one for the glycosylated MUC1. Stern-Volmer graphs were plotted and quenching constants were estimated. Plots obtained from experiments carried out at 25 °C and 37 °C showed the quenching of fluorescence of by aptamers to be a collisional phenomenon. Stern-Volmer constants estimated for HSA quenched by aptamer A were 1.68 × 105 (±5 × 103) M-1 at 37 °C, and 1.37 × 105 (±103) M-1 at 25 °C; and quenched by aptamer B were 1.67 × 105 (±5 × 103) M-1 at 37 °C, and 1.32 × 105 (±103) M-1 at 25 °C. Results suggest that the primary binding site for aptamers on albumin is close to tryptophan residues in sub domain IIA.

  16. Glutaraldehyde mediated conjugation of amino-coated magnetic nanoparticles with albumin protein for nanothermotherapy.

    PubMed

    Zhao, Lingyun; Yang, Bing; Dai, Xiaochen; Wang, Xiaowen; Gao, Fuping; Zhang, Xiaodong; Tang, Jintian

    2010-11-01

    A novel bioconjugation of amino saline capped Fe3O4 magnetic nanoparticles (MNPs) with bovine serum albumin (BSA) was developed by applying glutaraldehyde as activator. Briefly, Fe3O4 MNs were synthesized by the chemical co-precipitation method. Surface modification of the prepared MNPs was performed by employing amino saline as the coating agent. Glutaraldehyde was further applied as an activation agent through which BSA was conjugated to the amino-coated MNPs. The structure of the BSA-MNs was confirmed by FTIR analysis. Physico-chemical characterizations of the BSA-MNPs, such as surface morphology, surface charge and magnetic properties were investigated by Transmission Electron Microscopy (TEM), zeta-Potential and Vibrating Sample Magnetometer (VSM), etc. Magnetic inductive heating characteristics of the BSA-MNPs were analyzed by exposing the MNPs suspension (magnetic fluid) under alternative magnetic field (AMF). The results demonstrate that BSA was successfully conjugated with amino-coated MNs mediated through glutaraldehyde activation. The nanoparticles were spherical shaped with approximately 10 nm diameter. Possessing ideal magnetic inductive heating characteristics, which can generate very rapid and efficient heating while upon AMF exposure, BSA-MNPs can be applied as a novel candidature for magnetic nanothermotherapy for cancer treatment. In vitro cytotoxicity study on the human hepatocellular liver carcinoma cells (HepG-2) indicates that BSA-MNP is an efficient agent for cancer nanothermotherapy with satisfied biocompatibility, as rare cytotoxicity was observed in the absence of AMF. Moreover, our investigation provides a methodology for fabrication protein conjugated MNPs, for instance monoclonal antibody conjugated MNPs for targeting cancer nanothermotherapy. PMID:21137877

  17. Bovine Serum Albumin Adsorption in Mesoporous Titanium Dioxide: Pore Size and Pore Chemistry Effect.

    PubMed

    Liu, Chang; Guo, Yanhua; Hong, Qiliang; Rao, Chao; Zhang, Haijuan; Dong, Yihui; Huang, Liangliang; Lu, Xiaohua; Bao, Ningzhong

    2016-04-26

    Understanding the mechanism of protein adsorption and designing materials with high sensitivity, high specificity and fast response are critical to develop the next-generation biosensing and diagnostic platforms. Mesoporous materials with high surface area, tunable pores, and good thermal/hydrostatic stabilities are promising candidates in this field. Because of the excellent biocompatibility, titanium dioxide has received an increasing interest in the past decade for biomedical applications. In this work, we synthesized mesoporous titanium dioxide with controlled pore sizes (7.2-28.0 nm) and explored their application for bovine serum albumin (BSA) adsorption. Scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and nitrogen adsorption/desorption experiments were performed to characterize the mesoporous TiO2 samples before and after BSA adsorption. Isothermal microcalorimetry was applied to measure both the adsorption heat and conformation rearrangement heat of BSA in those mesopores. We also carried out thermogravimetry measurements to qualitatively estimate the concentration of hydroxyl groups, which plays an important role in stabilizing BSA in-pore adsorption. The adsorption stability was also examined by leaching experiments. The results showed that TiO2 mesopores can host BSA adsorption when their diameters are larger than the hydrodynamic size of BSA (∼9.5 nm). In larger mesopores studied, two BSA molecules were adsorbed in the same pores. In contrast to the general understanding that large mesopores demonstrate poor stabilities for protein adsorptions, the synthesized mesoporous TiO2 samples demonstrated good leaching stabilities for BSA adsorption. This is probably due to the combination of the mesoporous confinement and the in-pore hydroxyl groups. PMID:27048991

  18. Blood serum and BSA, but neither red blood cells nor hemoglobin can support vitellogenesis and egg production in the dengue vector Aedes aegypti

    PubMed Central

    Gonzales, Kristina K.; Tsujimoto, Hitoshi

    2015-01-01

    Aedes aegypti is the major vector of dengue, yellow fever and chikungunya viruses that put millions of people in endemic countries at risk. Mass rearing of this mosquito is crucial for strategies that use modified insects to reduce vector populations and transmission of pathogens, such as sterile insect technique or population replacement. A major problem for vector mosquito mass rearing is the requirement of vertebrate blood for egg production since it poses significant costs as well as potential health hazards. Also, regulations for human and animal use as blood source can pose a significant obstacle. A completely artificial diet that supports egg production in vector mosquitoes can solve this problem. In this study, we compared different blood fractions, serum and red blood cells, as dietary protein sources for mosquito egg production. We also tested artificial diets made from commercially available blood proteins (bovine serum albumin (BSA) and hemoglobin). We found that Ae. aegypti performed vitellogenesis and produced eggs when given whole bovine blood, serum, or an artificial diet containing BSA. Conversely, egg production was impaired after feeding of the red blood cell fraction or an artificial diet containing only hemoglobin. We also found that egg viability of serum-fed mosquitoes were comparable to that of whole blood and an iron supplemented BSA meal produced more viable eggs than a meal containing BSA alone. Our results indicate that serum proteins, not hemoglobin, may replace vertebrate blood in artificial diets for mass mosquito rearing. PMID:26020000

  19. Blood serum and BSA, but neither red blood cells nor hemoglobin can support vitellogenesis and egg production in the dengue vector Aedes aegypti.

    PubMed

    Gonzales, Kristina K; Tsujimoto, Hitoshi; Hansen, Immo A

    2015-01-01

    Aedes aegypti is the major vector of dengue, yellow fever and chikungunya viruses that put millions of people in endemic countries at risk. Mass rearing of this mosquito is crucial for strategies that use modified insects to reduce vector populations and transmission of pathogens, such as sterile insect technique or population replacement. A major problem for vector mosquito mass rearing is the requirement of vertebrate blood for egg production since it poses significant costs as well as potential health hazards. Also, regulations for human and animal use as blood source can pose a significant obstacle. A completely artificial diet that supports egg production in vector mosquitoes can solve this problem. In this study, we compared different blood fractions, serum and red blood cells, as dietary protein sources for mosquito egg production. We also tested artificial diets made from commercially available blood proteins (bovine serum albumin (BSA) and hemoglobin). We found that Ae. aegypti performed vitellogenesis and produced eggs when given whole bovine blood, serum, or an artificial diet containing BSA. Conversely, egg production was impaired after feeding of the red blood cell fraction or an artificial diet containing only hemoglobin. We also found that egg viability of serum-fed mosquitoes were comparable to that of whole blood and an iron supplemented BSA meal produced more viable eggs than a meal containing BSA alone. Our results indicate that serum proteins, not hemoglobin, may replace vertebrate blood in artificial diets for mass mosquito rearing. PMID:26020000

  20. Nanogels fabricated from bovine serum albumin and chitosan via self-assembly for delivery of anticancer drug.

    PubMed

    Wang, Yuntao; Xu, Shasha; Xiong, Wenfei; Pei, Yaqiong; Li, Bin; Chen, Yijie

    2016-10-01

    In this study, bovine serum albumin (BSA) and chitosan (CS) were used to prepare BSA-CS nanogels by a simple green self-assembly technique. Then the nanogels were successfully used to entrap doxorubicin hydrochloride (DOX) with an entrapment ratio of 46.3%, aiming to realize the slow-release effect and lower the cytotoxicity of DOX. The IC50 values of DOX-loaded BSA-CS (DOX-BSA-CS) and free DOX obtained by MTT assay in SGC7901 cells were 0.22 and 0.05μg/mL, respectively. The cytotoxicity of DOX significantly decreased within 24h after encapsulation by the nanogels, indicating that the loaded drug could slowly release within 24h and the BSA-CS was a good slow release system. The cellular uptake experiments indicated DOX-BSA-CS diffused faster into the cancer cell than the bare drug. The flow cytometry and TUNEL assay proved DOX-BSA-CS could induce a larger apoptosis proportion of gastric cancer cells 7901 than the bare drug and it is promising to be used for curing gastric cancer. PMID:27262260

  1. Modulation of the antioxidant activity of HO* scavengers by albumin binding: a 19F-NMR study.

    PubMed

    Aime, Silvio; Digilio, Giuseppe; Bruno, Erik; Mainero, Valentina; Baroni, Simona; Fasano, Mauro

    2003-08-01

    The interaction between different HO(z.rad;) radical scavengers in a three-component antioxidant system has been investigated by means of 19F-NMR spectroscopy. This system is composed of bovine serum albumin (BSA), trolox, and N-(4-hydroxyphenyl)-trifluoroacetamide (CF(3)PAF). The antioxidant capacity of BSA and trolox has been assessed by measuring the amount of trifluoroacetamide (TFAM) arising from the radical mediated decomposition of CF(3)PAF. When assayed separately, both trolox and BSA behaved as antioxidants, as they were effective to protect CF(3)PAF from HO* radical-mediated decomposition. By contrast, trolox enhanced the production of TFAM in the presence of BSA, thus behaving as a pro-oxidant. Urate, carnosine, glucose, and propylgallate showed antioxidant properties both with or without BSA. CF(3)PAF and trolox were found to bind to BSA with association constants in the order of 5 x 10(3)M(-1) and to compete for the same binding sites. These results have been discussed in terms of BSA-catalysed cross-reactions between trolox-derived secondary radicals and CF(3)PAF. PMID:12878205

  2. Serum albumin forms a lactoferrin-like soluble iron-binding complex in presence of hydrogen carbonate ions.

    PubMed

    Ueno, Hiroshi M; Urazono, Hiroshi; Kobayashi, Toshiya

    2014-02-15

    The iron-lactoferrin complex is a common food ingredient because of its iron-solubilizing capability in the presence of hydrogen carbonate ions. However, it is unclear whether the formation of a stable iron-binding complex is limited to lactoferrin. In this study, we investigated the effects of bovine serum albumin (BSA) on iron solubility and iron-catalyzed lipid oxidation in the presence of hydrogen carbonate ions. BSA could solubilize >100-fold molar equivalents of iron at neutral pH, exceeding the specific metal-binding property of BSA. This iron-solubilizing capability of BSA was impaired by thermally denaturing BSA at ≥ 70 °C for 10 min at pH 8.5. The resulting iron-BSA complex inhibited iron-catalyzed oxidation of soybean oil in a water-in-oil emulsion measured using the Rancimat test. Our study is the first to show that BSA, like lactoferrin, forms a soluble iron-binding complex in the presence of hydrogen carbonate ions. PMID:24128453

  3. Smartphone based point-of-care detector of urine albumin

    NASA Astrophysics Data System (ADS)

    Cmiel, Vratislav; Svoboda, Ondrej; Koscova, Pavlina; Provaznik, Ivo

    2016-03-01

    Albumin plays an important role in human body. Its changed level in urine may indicate serious kidney disorders. We present a new point-of-care solution for sensitive detection of urine albumin - the miniature optical adapter for iPhone with in-built optical filters and a sample slot. The adapter exploits smart-phone flash to generate excitation light and camera to measure the level of emitted light. Albumin Blue 580 is used as albumin reagent. The proposed light-weight adapter can be produced at low cost using a 3D printer. Thus, the miniaturized detector is easy to use out of lab.

  4. Polarization properties of fluorescent BSA protected Au25 nanoclusters

    NASA Astrophysics Data System (ADS)

    Raut, Sangram; Chib, Rahul; Rich, Ryan; Shumilov, Dmytro; Gryczynski, Zygmunt; Gryczynski, Ignacy

    2013-03-01

    BSA protected gold nanoclusters (Au25) are attracting a great deal of attention due to their unique spectroscopic properties and possible use in biophysical applications. Although there are reports on synthetic strategies, spectroscopy and applications, little is known about their polarization behavior. In this study, we synthesized the BSA protected Au25 nanoclusters and studied their steady state and time resolved fluorescence properties including polarization behavior in different solvents: glycerol, propylene glycol and water. We demonstrated that the nanocluster absorption spectrum can be separated from the extinction spectrum by subtraction of Rayleigh scattering. The nanocluster absorption spectrum is well approximated by three Gaussian components. By a comparison of the emissions from BSA Au25 clusters and rhodamine B in water, we estimated the quantum yield of nanoclusters to be higher than 0.06. The fluorescence lifetime of BSA Au25 clusters is long and heterogeneous with an average value of 1.84 μs. In glycerol at -20 °C the anisotropy is high, reaching a value of 0.35. However, the excitation anisotropy strongly depends on the excitation wavelengths indicating a significant overlap of the different transition moments. The anisotropy decay in water reveals a correlation time below 0.2 μs. In propylene glycol the measured correlation time is longer and the initial anisotropy depends on the excitation wavelength. BSA Au25 clusters, due to long lifetime and high polarization, can potentially be used in studying large macromolecules such as protein complexes with large molecular weight.BSA protected gold nanoclusters (Au25) are attracting a great deal of attention due to their unique spectroscopic properties and possible use in biophysical applications. Although there are reports on synthetic strategies, spectroscopy and applications, little is known about their polarization behavior. In this study, we synthesized the BSA protected Au25 nanoclusters and

  5. Controlled ultraviolet resonance energy transfer between bovine serum albumin donors and cadmium sulfide quantum dots acceptors

    NASA Astrophysics Data System (ADS)

    Ghali, Mohsen; El-Kemary, Maged; Ramadan, Mahmoud

    2015-08-01

    We report on Förester resonance nergy transfer (FRET) within a bioconjugated system composed of cadmium sulfide (CdS) quantum dots (QDs) and transport protein bovine serum albumin (BSA). The optical properties of these two elements of the bioconjugate were exploited to produce FRET in the ultraviolet (UV) region with a maximum efficiency of 22% from BSA donors to QD acceptors. In contrast to previous studies, which were limited to FRET in the visible light, we used 2.6 nm CdS QDs because they emit light with a shorter wavelength (∼370 nm) that facilitates the UV-FRET process. UV-FRET was controlled by tuning the spectral overlap between BSA and CdS QDs.

  6. Prevention of Serum Albumin Glycation/Fibrillation by β-Cyclodextrin Functionalized Magnetic Nanoparticles.

    PubMed

    Ansari, Mojtaba; Habibi-Rezaei, Mehran; Salahshour-Kordestani, Soheila; Movahedi, Ali A Moosavi; Poursasan, Najmeh

    2015-01-01

    Nowadays, glycation induced protein aggregation and related opposing strategies have received much attention. We present the effect of functionalized magnetic core-shell nanoparticles of Fe3O4 (MNPs) with β-cyclodextrin (β-CD) on the aggregation/fibrillation of bovine serum albumin (BSA) under diabetic condition known as amyloidogenesis. To confirm the β-CD conjugation on MNP, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM) methods were applied. Moreover, spectrofluorimetry and spectropolarimetry were utilized to analyze the effect of β-CD/Fe3O4 MNPs on the aggregation and amyloidogenesis of BSA through glycation. The BSA amyloidogenesis was significantly inhibited by interfering β-CD-MNPs that may present the possible diagnostic and preventive applications against the degenerative effects of protein glycation/fibrillation under diabetes. PMID:26100685

  7. Electrochemical albumin sensing based on silicon nanowires modified by gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Kwon, Dae Hoon; An, Hyeun Hwan; Kim, Hee-Soo; Lee, Jong Ho; Suh, Sang Hee; Kim, Young Ho; Yoon, Chong Seung

    2011-03-01

    Si nanowires (SiNWs) were modified by Au nanoparticles (AuNPs) using a self-assembled monolayer of aminopropyltriethoxysilane (APTES) and used for direct sensing of the bovine serum albumin (BSA). It was shown that repeated thermal treatment of the sensor greatly enhanced the reliability of the SiNW sensor by increasing the electrical conductivity largely from carbonization of the APTES molecules and from bringing the AuNPs in intimate contact with the SiNW surface. The AuNP-modified SiNW array sensor was able to detect 1-7 μM of BSA. The sensor exhibited a good sensitivity over the tested concentration range and linear behavior. It is expected that the proposed label-free biosensor can be further developed to selectively detect and quantify biomolecules other than BSA.

  8. Quenching of tryptophan fluorescence of bovine serum albumin under the effect of ions of heavy metals

    NASA Astrophysics Data System (ADS)

    Plotnikova, O. A.; Mel'nikov, A. G.; Mel'nikov, G. V.; Gubina, T. I.

    2016-01-01

    The interaction of heavy metals with bovine serum albumin (BSA) has been studied using data of quenching of intrinsic fluorescence of the protein by the ions of the heavy metals. Under the assumption of static quenching with formation of nonfluorescent complexes of fluorophores of BSA with heavy metals, conclusions have been drawn on the peculiarities of binding of the heavy metals to the protein. The values of the Stern-Volmer constants of association and those of the constants of BSA binding to the heavy metals decrease in the order Cu(II) > Pb(II) > Cd(II). It has been experimentally found that the copper ions have greater capacity to bind to the protein with the formation of the nonfluorescent complexes, which results in a significant decrease in the fluorescence intensity of the protein.

  9. Reactions of trimethylphosphine analogues of auranofin with bovine serum albumin

    SciTech Connect

    Isab, A.A.; Shaw, C.F. III; Hoeschele, J.D.; Locke, J.

    1988-10-05

    The reactions of bovine serum albumin (BSA) with (trimethylphosphine)(2,3,4,6-tetra-O-acetyl-1-thio-..beta..-D-glucopyranosato-S)gold(I), Me/sub 3/PAuSAtg, and its chloro analogue, Me/sub 3/PAuCl, were studied to develop insights into the role of the phosphine ligand in the serum chemistry of the related antiarthritic drug auranofin (triethylphosphine)(2,3,4,6-tetra-O-acetyl-1-thio-..beta..-D-glucopyranosato-S)gold(I). /sup 31/P NMR spectroscopy, protein modification, and gel-exclusion chromatography methods were employed. Comparison of the reactions of the methyl derivatives to the previously reported reactions of auranofin and Et/sub 3/PAuCl with BSA demonstrated that similar chemical species are formed but revealed three major differences. Despite these differences, the results for the methyl analogues provide important confirmation for previously developed chemical models of auranofin reactions in serum. Me/sub 3/PO was not observed in reaction mixtures lacking tetraacetylthioglucose (AtgSH); this result affirms the role of AtgSH, displaced by the reaction of Me/sub 3/PAuSAtg at Cys-34, in the generation of the phosphine oxide (an important metabolite in vivo). The weak binding sites on albumin react with Me/sub 3/PAuCl, but not Me/sub 3/PAuSAtg, demonstrating the importance of the strength and reactivity of the anionic ligand-gold bond on the reactions of auranofin analogues. The gold binding capacity of albumin is enhanced after Me/sub 3/PO is formed, consistent with reductive cleavage of albumin disulfide bonds by trimethylphosphine. 24 references, 2 figures, 3 tables.

  10. Label-Free Determination of Protein Binding in Aqueous Solution using Overlayer Enhanced Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (OE-ATR-FTIR)

    NASA Astrophysics Data System (ADS)

    Ruthenburg, Travis; Aweda, Tolulope; Park, Simon; Meares, Claude; Land, Donald

    2009-03-01

    Protein binding/affinity studies are often performed using Surface Plasmon Resonance techniques that don't produce much spectral information. Measurement of protein binding affinity using FTIR is traditionally performed using high protein concentration or deuterated solvent. By immobilizing a protein near the surface of a gold-coated germanium internal reflection element interactions can be measured between an immobilized protein and free proteins or small molecules in aqueous solution. By monitoring the on and off rates of these interactions, the dissociation constant for the system can be determined. The dissociation constant for the molecule Yttrium-DOTA binding to the antibody 2D12.5 system was determined to be 100nM. Results will also be presented from our measurements of Bovine Serum Albumin (BSA) binding to anti-BSA.

  11. Probing the binding sites and the effect of berbamine on the structure of bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Cheng, Xiao-Xia; Lui, Yi; Zhou, Bo; Xiao, Xiao-He; Liu, Yi

    2009-06-01

    Berbamine, a naturally occurring isoquinoline alkaloid extracted from Berberis sp., is the active constituent of some Chinese herbal medicines and exhibits a variety of pharmacological activities. The effects of berbamine on the structure of bovine serum albumin (BSA) were investigated by circular dichroism, fluorescence and absorption spectroscopy under physiological conditions. Berbamine caused a static quenching of the intrinsic fluorescence of BSA, and the quenching data were analyzed by application of the Stern-Volmer equation. There was a single primary berbamine-binding site on BSA with a binding constant of 2.577 × 10 4 L mol -1 at 298 K. The thermodynamic parameters, enthalpy change (Δ H0) and entropy change (Δ S0) for the reaction were -76.5 kJ mol -1 and -173.4 J mol -1 K -1 according to the van't Hoff equation. The results showed that the hydrogen bond and van der Waals interaction were the predominant forces in the binding process. Competitive experiments revealed a displacement of warfarin by berbamine, indicating that the binding site was located at Drug sites I. The distance r between the donor (BSA) and the acceptor (berbamine) was obtained according to the Förster non-radiation energy transfer theory. The results of three-dimensional fluorescence spectra, UV-vis absorption difference spectra and circular dichroism of BSA in the presence of berbamine showed that the conformation of BSA was changed. The results provide a quantitative understanding of the effect of berbamine on the structure of bovine serum albumin, providing a useful guideline for further drug design.

  12. The Limitations of an Exclusively Colloidal View of Protein Solution Hydrodynamics and Rheology

    PubMed Central

    Sarangapani, Prasad S.; Hudson, Steven D.; Migler, Kalman B.; Pathak, Jai A.

    2013-01-01

    Proteins are complex macromolecules with dynamic conformations. They are charged like colloids, but unlike colloids, charge is heterogeneously distributed on their surfaces. Here we overturn entrenched doctrine that uncritically treats bovine serum albumin (BSA) as a colloidal hard sphere by elucidating the complex pH and surface hydration-dependence of solution viscosity. We measure the infinite shear viscosity of buffered BSA solutions in a parameter space chosen to tune competing long-range repulsions and short-range attractions (2 mg/mL ≤ [BSA] ≤ 500 mg/mL and 3.0 ≤ pH ≤ 7.4). We account for surface hydration through partial specific volume to define volume fraction and determine that the pH-dependent BSA intrinsic viscosity never equals the classical hard sphere result (2.5). We attempt to fit our data to the colloidal rheology models of Russel, Saville, and Schowalter (RSS) and Krieger-Dougherty (KD), which are each routinely and successfully applied to uniformly charged suspensions and to hard-sphere suspensions, respectively. We discover that the RSS model accurately describes our data at pH 3.0, 4.0, and 5.0, but fails at pH 6.0 and 7.4, due to steeply rising solution viscosity at high concentration. When we implement the KD model with the maximum packing volume fraction as the sole floating parameter while holding the intrinsic viscosity constant, we conclude that the model only succeeds at pH 6.0 and 7.4. These findings lead us to define a minimal framework for models of crowded protein solution viscosity wherein critical protein-specific attributes (namely, conformation, surface hydration, and surface charge distribution) are addressed. PMID:24268154

  13. The limitations of an exclusively colloidal view of protein solution hydrodynamics and rheology.

    PubMed

    Sarangapani, Prasad S; Hudson, Steven D; Migler, Kalman B; Pathak, Jai A

    2013-11-19

    Proteins are complex macromolecules with dynamic conformations. They are charged like colloids, but unlike colloids, charge is heterogeneously distributed on their surfaces. Here we overturn entrenched doctrine that uncritically treats bovine serum albumin (BSA) as a colloidal hard sphere by elucidating the complex pH and surface hydration-dependence of solution viscosity. We measure the infinite shear viscosity of buffered BSA solutions in a parameter space chosen to tune competing long-range repulsions and short-range attractions (2 mg/mL ≤ [BSA] ≤ 500 mg/mL and 3.0 ≤ pH ≤ 7.4). We account for surface hydration through partial specific volume to define volume fraction and determine that the pH-dependent BSA intrinsic viscosity never equals the classical hard sphere result (2.5). We attempt to fit our data to the colloidal rheology models of Russel, Saville, and Schowalter (RSS) and Krieger-Dougherty (KD), which are each routinely and successfully applied to uniformly charged suspensions and to hard-sphere suspensions, respectively. We discover that the RSS model accurately describes our data at pH 3.0, 4.0, and 5.0, but fails at pH 6.0 and 7.4, due to steeply rising solution viscosity at high concentration. When we implement the KD model with the maximum packing volume fraction as the sole floating parameter while holding the intrinsic viscosity constant, we conclude that the model only succeeds at pH 6.0 and 7.4. These findings lead us to define a minimal framework for models of crowded protein solution viscosity wherein critical protein-specific attributes (namely, conformation, surface hydration, and surface charge distribution) are addressed. PMID:24268154

  14. Effect of calcium, bicarbonate, and albumin on capacitation-related events in equine sperm.

    PubMed

    Macías-García, B; González-Fernández, L; Loux, S C; Rocha, A M; Guimarães, T; Peña, F J; Varner, D D; Hinrichs, K

    2015-01-01

    Repeatable methods for IVF have not been established in the horse, reflecting the failure of standard capacitating media to induce changes required for fertilization capacity in equine sperm. One important step in capacitation is membrane cholesterol efflux, which in other species is triggered by cholesterol oxidation and is typically enhanced using albumin as a sterol acceptor. We incubated equine sperm in the presence of calcium, BSA, and bicarbonate, alone or in combination. Bicarbonate induced an increase in reactive oxygen species (ROS) that was abolished by the addition of calcium or BSA. Bicarbonate induced protein tyrosine phosphorylation (PY), even in the presence of calcium or BSA. Incubation at high pH enhanced PY but did not increase ROS production. Notably, no combination of these factors was associated with significant cholesterol efflux, as assessed by fluorescent quantitative cholesterol assay and confirmed by filipin staining. By contrast, sperm treated with methyl-β-cyclodextrin showed a significant reduction in cholesterol levels, but no significant increase in PY or ROS. Presence of BSA increased sperm binding to bovine zonae pellucidae in all three stallions. These results show that presence of serum albumin is not associated with a reduction in membrane cholesterol levels in equine sperm, highlighting the failure of equine sperm to exhibit core capacitation-related changes in a standard capacitating medium. These data indicate an atypical relationship among cholesterol efflux, ROS production, and PY in equine sperm. Our findings may help to elucidate factors affecting failure of equine IVF under standard conditions. PMID:25349439

  15. A Fluorescence Quenching Study of the Interaction of Nebivolol Hydrochloride with Bovine and Human Serum Albumin

    NASA Astrophysics Data System (ADS)

    Abdel-Aziz, L.; Abdel-Fattah, L.; El-Kosasy, A.; Gaied, M.

    2015-09-01

    The interaction of nebivolol hydrochloride (NH), a β1-blocker, with bovine serum albumin (BSA) has been investigated at different pH values using the fluorescence quenching technique. The effect of different temperatures was studied at physiological pH 7.4. The binding constants of NH with BSA at 288, 298, and 309 K were found to be 2.691 × 1011, 1.38 × 1010, and 6.27 × 108 M-1, respectively. From the Arrhenius plot, the thermodynamic parameters, ΔH0 and ΔS0, were estimated to be -204.48 kJ/mol and -491.42 J/mol × K, respectively. This indicates that Van der Waals interactions and hydrogen bonds play a major role in the reaction. The effect of some inorganic divalent cations (Cu2+, Ni2+, and Zn2+) on binding of NH to BSA was also studied at physiological pH 7.4. Conformational investigation of BSA was done using synchronous fluorescence, showing the change in the microenvironment of the tryptophan residues. Fluorescence quenching reactions of NH to human serum albumin (HSA) and to γ-globulins were investigated and the binding parameters were obtained.

  16. Investigation of the Interaction of Naringin Palmitate with Bovine Serum Albumin: Spectroscopic Analysis and Molecular Docking

    PubMed Central

    Zhang, Xia; Li, Lin; Xu, Zhenbo; Liang, Zhili; Su, Jianyu; Huang, Jianrong; Li, Bing

    2013-01-01

    Background Bovine serum albumin (BSA) contains high affinity binding sites for several endogenous and exogenous compounds and has been used to replace human serum albumin (HSA), as these two compounds share a similar structure. Naringin palmitate is a modified product of naringin that is produced by an acylation reaction with palmitic acid, which is considered to be an effective substance for enhancing naringin lipophilicity. In this study, the interaction of naringin palmitate with BSA was characterised by spectroscopic and molecular docking techniques. Methodology/Principal Findings The goal of this study was to investigate the interactions between naringin palmitate and BSA under physiological conditions, and differences in naringin and naringin palmitate affinities for BSA were further compared and analysed. The formation of naringin palmitate-BSA was revealed by fluorescence quenching, and the Stern-Volmer quenching constant (KSV) was found to decrease with increasing temperature, suggesting that a static quenching mechanism was involved. The changes in enthalpy (ΔH) and entropy (ΔS) for the interaction were detected at −4.11±0.18 kJ·mol−1 and −76.59±0.32 J·mol−1·K−1, respectively, which indicated that the naringin palmitate-BSA interaction occurred mainly through van der Waals forces and hydrogen bond formation. The negative free energy change (ΔG) values of naringin palmitate at different temperatures suggested a spontaneous interaction. Circular dichroism studies revealed that the α-helical content of BSA decreased after interacting with naringin palmitate. Displacement studies suggested that naringin palmitate was partially bound to site I (subdomain IIA) of the BSA, which was also substantiated by the molecular docking studies. Conclusions/Significance In conclusion, naringin palmitate was transported by BSA and was easily removed afterwards. As a consequence, an extension of naringin applications for use in food, cosmetic and medicinal

  17. Protective effect of gemini surfactant on secondary structural change of bovine serum albumin in thermal denaturation up to 130 degrees C.

    PubMed

    Moriyama, Yoshiko; Tanizaki, Yuu; Takeda, Kunio

    2009-01-01

    The effect of gemini surfactant, sodium dilauramidoglutamide lysine (DLGL), on the secondary structure of bovine serum albumin (BSA) was examined at 25 degrees C and at high temperatures up to 130 degrees C. The helicity (66%) of the protein decreased to 53% in the DLGL solution at 25 degrees C and it also decreased to 16% with rise of temperature. Although approximately half of the original helical structures were destroyed upon heating up to 75 degrees C, most of the structures were maximally protected in the coexistence of 0.30 mM DLGL at 75 degrees C (the protein concentration was 0.010 mM). At temperatures below 75 degrees C, the protected helicity became maximal at such low DLGL concentrations. In the thermal denaturations above 80 degrees C, the protective effect did not appear at low DLGL concentrations, but monotonously enlarged with the surfactant concentration. On the other hand, upon cooling to 25 degrees C after the thermal denaturations below 75 degrees C, the helicity was maximally recovered to about 60% in the presence of DLGL below 0.30 mM. Upon cooling to 25 degrees C from high temperatures above 85 degrees C, the recovered helicity gradually increased with the surfactant concentration. The present novel effect, especially observed at low DLGL concentrations, might be fulfilled by the monomer ions of the gemini surfactant, since actual binding numbers of DLGL onto BSA are necessarily smaller than the mixing ratios around 30 mol/mol. PMID:19844072

  18. Spectrometric and voltammetric studies of the interaction between quercetin and bovine serum albumin using warfarin as site marker with the aid of chemometrics

    NASA Astrophysics Data System (ADS)

    Ni, Yongnian; Zhang, Xia; Kokot, Serge

    2009-01-01

    The interaction of quercetin, which is a bioflavonoid, with bovine serum albumin (BSA) was investigated under pseudo-physiological conditions by the application of UV-vis spectrometry, spectrofluorimetry and cyclic voltammetry (CV). These studies indicated a cooperative interaction between the quercetin-BSA complex and warfarin, which produced a ternary complex, quercetin-BSA-warfarin. It was found that both quercetin and warfarin were located in site I. However, the spectra of these three components overlapped and the chemometrics method - multivariate curve resolution-alternating least squares (MCR-ALS) was applied to resolve the spectra. The resolved spectra of quercetin-BSA and warfarin agreed well with their measured spectra, and importantly, the spectrum of the quercetin-BSA-warfarin complex was extracted. These results allowed the rationalization of the behaviour of the overlapping spectra. At lower concentrations ([warfarin] < 1 × 10 -5 mol L -1), most of the site marker reacted with the quercetin-BSA, but free warfarin was present at higher concentrations. Interestingly, the ratio between quercetin-BSA and warfarin was found to be 1:2, suggesting a quercetin-BSA-(warfarin) 2 complex, and the estimated equilibrium constant was 1.4 × 10 11 M -2. The results suggest that at low concentrations, warfarin binds at the high-affinity sites (HAS), while low-affinity binding sites (LAS) are occupied at higher concentrations.

  19. Bovine serum albumin adsorption on functionalized porous silicon surfaces

    NASA Astrophysics Data System (ADS)

    Tay, Li-Lin; Rowell, Nelson L.; Lockwood, David J.; Boukherroub, Rabah

    2004-10-01

    The large surface area within porous Si (pSi) and its strong room temperature photoluminescence (PL) make it an ideal host for biological sensors. In particular, the development of pSi-based optical sensors for DNA, enzyme and other biochemical molecules have become of great interest. Here, we demonstrate that the in-situ monitoring of the pSi PL behaviour can be used as a positive identification of bovine serum albumin (BSA) protein adsorption inside the porous matrix. Electrochemically prepared pSi films were first functionalized with undecylenic acid to produce an organic monolayer covalently attached to the porous silicon surfaces. The acid terminal group also provided favourable BSA binding sites on the pSi matrix sidewalls. In-situ PL spectra showed a gradual red shift (up to 12 meV) in the PL peak energy due to the protein incorporation into the porous matrix. The PL then exhibited a continuous blue shift after saturation of the protein molecules in the pores. This blue shift of the PL peak frequency and a steady increase in the PL intensity is evidence of surface oxidation. Comparing the specular reflectance obtained by Fourier transform infrared spectroscopy (FTIR) before and after BSA incubation confirmed the adsorption of protein in the pSi matrix.

  20. Dynamic and static fluorescence quenching of bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Friday, Jacob; Babcock, Jeremiah; Brancaleon, Lorenzo

    2010-10-01

    Protein folding dynamics studies can benefit from the knowledge of specific binding-site availabilities, which aid the detection of protein structural changes and, possibly, protein structure. Fluorescence quenching (FQ) spectroscopy can be used to detect binding site variations arising from evolving protein conformational changes over time. Use of the Stern-Volmer and modified Stern-Volmer equations shows the divergence of the bimolecular quenching constant from the diffusion-limited constant, which can be indicative of bimolecular binding. The study is part of a larger effort to understand early structural events that lead to the aggregation of partly unfolded proteins. In this study, bovine serum albumin (BSA), a globular alpha-helix plasma transport protein, was complexed with the fluorescent ligand fluorescein in phosphate buffer at pH 7.4 and subjected to FQ spectroscopy. Stern-Volmer plots demonstrated an upward quadratic relationship, indicating the presence of dynamic and static quenching factors. Data-fitting showed that multiple binding sites were available. With these results, further studies will be undertaken, where BSA will be subjected to varied denaturing conditions, including pH changes and urea solvent addition. The change of available binding sites could reveal BSA structural patterns.

  1. Quercetin Influence on Thermal Denaturation of Bovine Serum Albumin.

    PubMed

    Precupas, Aurica; Sandu, Romica; Popa, Vlad T

    2016-09-01

    The effect of quercetin (QUER) binding on bovine serum albumin (BSA) thermal denaturation was systematically investigated by means of differential scanning calorimetry (DSC). Additional information concerning thermodynamic and structural binding parameters was provided by isothermal titration calorimetry (ITC) and molecular docking. The most relevant effect of QUER is manifested in the modification of the two-step thermal fingerprint of protein denaturation. Higher QUER concentrations result in a single-step denaturation thermogram, ascribed to the interplay between specific and nonspecific binding and enhancement of the solvent unfolding action. Analysis of ITC data indicate sequential binding of two molecules of QUER occurring spontaneously at different binding sites of BSA involving hydrophobic, electrostatic and hydrogen binding forces. Identification of QUER binding sites was possible through corroboration of DSC runs in the presence of site markers and molecular docking. Modeling of ligand-protein interaction confirmed the experimental data. On one hand, a neutral form of QUER binds in a nonplanar conformation to Sudlow's site I, a large hydrophobic cavity of subdomain IIA of BSA and decreases its thermal stability. On the other hand, a second molecule of QUER, the anionic form, is bound in planar conformation to Sudlow's site II, situated in the subdomain IIIA of the folded protein, and increases the thermal stability of the corresponding structural domain of the protein. PMID:27505141

  2. Oxidative stresses induced by glycoxidized human or bovine serum albumin on human monocytes.

    PubMed

    Rondeau, Philippe; Singh, Nihar Ranjan; Caillens, Henri; Tallet, Frank; Bourdon, Emmanuel

    2008-09-15

    Oxidative stress and protein modifications are frequently observed in numerous disease states. Albumin, the major circulating protein in blood, can undergo increased glycoxidation in diabetes. Protein glycoxidation can lead to the formation of advanced glycoxidation end products, which induce various deleterious effects on cells. Herein, we report the effect of glucose or methylglyoxal-induced oxidative modifications on BSA or HSA protein structures and on THP1 monocyte physiology. The occurrence of oxidative modifications was found to be enhanced in glycoxidized BSA and HSA, after determination of their free thiol group content, relative electrophoretic migration, carbonyl content, and antioxidant activities. Cells treated with glycoxidized albumin exhibited an overgeneration of intracellular reactive oxygen species, impairments in proteasomal activities, enhancements in RAGE expression, and an accumulation of carbonylated proteins. These novel observations made in the presence of a range of modified BSA and HSA facilitate the comparison of the glycoxidation extent of albumin with the oxidative stress induced in cultured monocytes. Finally, this study reconfirms the influence of experimental conditions in which AGEs are generated and the concentration levels in experiments designed to mimic pathological conditions. PMID:18616999

  3. Caprylate as the albumin-selective modifier to improve IgG purification with hydrophobic charge-induction chromatography.

    PubMed

    Tong, Hong-Fei; Lin, Dong-Qiang; Gao, Dong; Yuan, Xiao-Ming; Yao, Shan-Jing

    2013-04-12

    Hydrophobic charge-induction chromatography (HCIC) is a novel downstream bioprocessing technology for antibody purification and it has several advantages over traditional purification processes. However, its separation selectivity still needs to be improved. In this work, sodium caprylate (NaCA) was used as the selective modifier to improve IgG purification from serum albumin containing feedstock with a typical HCIC resin, MEP HyperCel. The effects of NaCA on the adsorption equilibrium of bovine serum immunoglobulin G (IgG) and bovine serum albumin (BSA), as well as the dynamic binding and displacement behaviors were investigated. The binding and elution behaviors of these two proteins in the column were studied. It was found that adding 50-75 mM NaCA in the liquid phase could effectively reduce the adsorption of BSA on the MEP resin, but the same treatment has little influence on the adsorption of IgG. Moreover, the mechanism of the competitive binding between caprylate and MEP ligands on the surface of BSA is discussed. It was found that by controlling NaCA addition in the loading or washing buffer, the process efficiency of IgG purification from BSA containing feedstock can be improved, and the purity of IgG could reach to over 98%. The results indicated that caprylate could be a promising albumin-selective modifier to improve the separation efficiency of antibodies with the HCIC process. PMID:23473512

  4. Interaction of bovine serum albumin and lysozyme with stainless steel studied by time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy.

    PubMed

    Hedberg, Yolanda S; Killian, Manuela S; Blomberg, Eva; Virtanen, Sannakaisa; Schmuki, Patrik; Odnevall Wallinder, Inger

    2012-11-27

    An in-depth mechanistic understanding of the interaction between stainless steel surfaces and proteins is essential from a corrosion and protein-induced metal release perspective when stainless steel is used in surgical implants and in food applications. The interaction between lysozyme (LSZ) from chicken egg white and bovine serum albumin (BSA) and AISI 316L stainless steel surfaces was studied ex situ by means of X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) after different adsorption time periods (0.5, 24, and 168 h). The effect of XPS measurements, storage (aging), sodium dodecyl sulfate (SDS), and elevated temperature (up to 200 °C) on the protein layers, as well as changes in surface oxide composition, were investigated. Both BSA and LSZ adsorption induced an enrichment of chromium in the oxide layer. BSA induced significant changes to the entire oxide, while LSZ only induced a depletion of iron at the utmost layer. SDS was not able to remove preadsorbed proteins completely, despite its high concentration and relatively long treatment time (up to 36.5 h), but induced partial denaturation of the protein coatings. High-temperature treatment (200 °C) and XPS exposure (X-ray irradiation and/or photoelectron emission) induced significant denaturation of both proteins. The heating treatment up to 200 °C removed some proteins, far from all. Amino acid fragment intensities determined from ToF-SIMS are discussed in terms of significant differences with adsorption time, between the proteins, and between freshly adsorbed and aged samples. Stainless steel-protein interactions were shown to be strong and protein-dependent. The findings assist in the understanding of previous studies of metal release and surface changes upon exposure to similar protein solutions. PMID:23116183

  5. Adhesion of Staphylococcus epidermidis to biomaterials is inhibited by fibronectin and albumin

    PubMed Central

    Linnes, J.C.; Mikhova, K.; Bryers, J.D.

    2012-01-01

    Decades of contradictory results have obscured the exact role of adsorbed fibronectin in the adhesion of the bacterium, Staphylococcus epidermidis (S. epidermidis), to biomaterials. Here, the ability of adsorbed fibronectin (FN) or bovine serum albumin (BSA) to modulate S. epidermidis adhesion to various biomaterials is reported. FN or BSA were adsorbed in increasing surface densities up to saturated monolayer coverage onto various common biomaterials, including poly(ethylene terephthalate) (PET), fluorinated ethylene propylene (FEP), poly(ether urethane) (PEU), silicone, and borosilicate glass. Despite the wide range of surface characteristics represented, adsorption isotherms varied only subtly between materials for the two proteins considered. S. epidermidis adhesion to the various protein-coated biomaterials was quantified in a static-fluid batch adhesion assay. While slight differences in overall adherent cell numbers were observed between the various protein-coated substrata, all materials exhibited significant dose-dependent decreases in S. epidermidis adhesion with increasing adsorption of either protein (FN, BSA) to all surfaces. Results here indicate that S. epidermidis adhesion to FN-coated surfaces is not a specific adhesion (i.e., receptor:ligand) mediated process, as no significant difference in adhesion was found between FN- and BSA-coated materials. Rather, results indicate that increasing surface density of either FN or BSA actually inhibited S. epidermidis adhesion to all biomaterials examined. PMID:22566405

  6. Binding of ascorbic acid and α-tocopherol to bovine serum albumin: a comparative study.

    PubMed

    Li, Xiangrong; Wang, Gongke; Chen, Dejun; Lu, Yan

    2014-02-01

    Binding of ascorbic acid (water-soluble antioxidant) and α-tocopherol (lipid-soluble antioxidant) to bovine serum albumin (BSA) has been studied using isothermal titration calorimetry (ITC), in combination with fluorescence spectroscopy, UV-vis absorption spectroscopy and Fourier transform infrared (FT-IR) spectroscopy. Thermodynamic investigations reveal that ascorbic acid/α-tocopherol binding to BSA is driven by favorable enthalpy and unfavorable entropy, and the major driving forces are hydrogen bonding and van der Waals forces. For ascorbic acid, the interaction is characterized by a high number of binding sites, which suggests that binding occurs by a surface adsorption mechanism that leads to coating of the protein surface. For α-tocopherol, one molecule of α-tocopherol combines with one molecule of BSA and no more α-tocopherol binding to BSA occurs at concentration ranges used in this study. Fluorescence experiments suggest that ascorbic acid has predominantly a "sphere of action" quenching mechanism, whereas, for α-tocopherol, the quenching mechanism is "static quenching" and due to the formation of a ground state complex. Additionally, as shown by the UV-vis absorption, synchronous fluorescence spectroscopy, and FT-IR, ascorbic acid and α-tocopherol may induce conformational and microenvironmental changes of BSA. PMID:24310979

  7. Spectroscopic studies of interaction between CuO nanoparticles and bovine serum albumin.

    PubMed

    Esfandfar, Paniz; Falahati, Mojtaba; Saboury, AliAkbar

    2016-09-01

    Recently, the great interests in manufacturing and application of metal oxide nanoparticles in commercial and industrial products have led to focus on the potential impact of these particles on biomacromolecules. In the present study, the interaction of copper oxide (CuO) nanoparticles with bovine serum albumin (BSA) was studied by spectroscopic techniques. The zeta potential value for BSA and CuO nanoparticles with average diameter of around 50 nm at concentration of 10 μM in the deionized (DI) water were -5.8 and -22.5 mV, respectively. Circular dichroism studies did not show any changes in the content of secondary structure of the protein after CuO nanoparticles interaction. Fluorescence data revealed that the fluorescence quenching of BSA by CuO nanoparticles was the result of the formed complex of CuO nanoparticles - BSA. Binding constants and other thermodynamic parameters were determined at three different temperatures. The hydrogen bond interactions are the predominant intermolecular forces to stabilize the CuO nanoparticle - BSA complex. This study provides important insight into the interaction of CuO nanoparticles with proteins, which may be of importance for further application of these nanoparticles in biomedical applications. PMID:26555383

  8. Binding interaction of quinclorac with bovine serum albumin: A biophysical study

    NASA Astrophysics Data System (ADS)

    Han, Xiao-Le; Mei, Ping; Liu, Yi; Xiao, Qi; Jiang, Feng-Lei; Li, Ran

    2009-10-01

    Quinclorac (QUC) is a new class of highly selective auxin herbicides. The interaction between QUC and bovine serum albumin (BSA) was investigated by fluorescence spectroscopy, synchronous fluorescence, three-dimensional fluorescence, CD spectroscopy and UV-vis absorption spectroscopy under simulative physiological condition. It was proved that the probable quenching mechanism of BSA by quinclorac was dynamic quenching. The Stern-Volmer quenching model has been successfully applied and the activation energy of the interaction as much as 8.03 kJ mol -1, corresponding thermodynamic parameters Δ Hθ, Δ Sθ and Δ Gθ were calculated. The results indicated that the acting forces between QUC and BSA were mainly hydrogen bonding and van der Waals forces. According to the Förster non-radiation energy transfer theory, the average binding distance between donor (BSA) and acceptor (QUC) was obtained ( r = 3.12 nm). The alterations of protein secondary structure in the presence of QUC were confirmed by the evidences from three-dimensional fluorescence, synchronous fluorescence and CD spectroscopy. Furthermore, the site marker competitive experiments indicated that the binding of QUC to BSA primarily took place in Sudlow site I.

  9. The investigation of the interaction between Tropicamide and bovine serum albumin by spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Yu, Xianyong; Liao, Zhixi; Yao, Qing; Liu, Heting; Li, Xiaofang; Yi, Pinggui

    2014-01-01

    The fluorescence and ultraviolet-visible (UV-Vis) spectroscopy were explored to study the interaction between Tropicamide (TA) and bovine serum albumin (BSA) at three different temperatures (292, 301 and 310 K) under imitated physiological conditions. The experimental results showed that the fluorescence quenching mechanism between TA and BSA was static quenching procedure. The binding constant (Ka), binding sites (n) were obtained. The corresponding thermodynamic parameters (ΔH, ΔS and ΔG) of the interaction system were calculated at different temperatures. The results revealed that the binding process is spontaneous, hydrogen binds and vander Waals were the main force to stabilize the complex. According to Förster non-radiation energy transfer theory, the binding distance between TA and BSA was calculated to be 4.90 nm. Synchronous fluorescence spectroscopy indicated the conformation of BSA changed in the presence of TA. Furthermore, the effect of some common metal ions (Mg2+, Ca2+, Cu2+, and Ni2+) on the binding constants between TA and BSA were examined.

  10. Locating the Binding Sites of Pb(II) Ion with Human and Bovine Serum Albumins

    PubMed Central

    Belatik, Ahmed; Hotchandani, Surat; Carpentier, Robert; Tajmir-Riahi, Heidar-Ali

    2012-01-01

    Lead is a potent environmental toxin that has accumulated above its natural level as a result of human activity. Pb cation shows major affinity towards protein complexation and it has been used as modulator of protein-membrane interactions. We located the binding sites of Pb(II) with human serum (HSA) and bovine serum albumins (BSA) at physiological conditions, using constant protein concentration and various Pb contents. FTIR, UV-visible, CD, fluorescence and X-ray photoelectron spectroscopic (XPS) methods were used to analyse Pb binding sites, the binding constant and the effect of metal ion complexation on HSA and BSA stability and conformations. Structural analysis showed that Pb binds strongly to HSA and BSA via hydrophilic contacts with overall binding constants of KPb-HSA = 8.2 (±0.8)×104 M−1 and KPb-BSA = 7.5 (±0.7)×104 M−1. The number of bound Pb cation per protein is 0.7 per HSA and BSA complexes. XPS located the binding sites of Pb cation with protein N and O atoms. Pb complexation alters protein conformation by a major reduction of α-helix from 57% (free HSA) to 48% (metal-complex) and 63% (free BSA) to 52% (metal-complex) inducing a partial protein destabilization. PMID:22574219

  11. DNA binding, BSA interaction and SOD activity of two new nickel(II) complexes with glutamine Schiff base ligands.

    PubMed

    Wei, Qiang; Dong, Jianfang; Zhao, Peiran; Li, Manman; Cheng, Fengling; Kong, Jinming; Li, Lianzhi

    2016-08-01

    Two hexacoordinated octahedral nickel(II) complexes, [Ni(o-van-gln)(phen)(H2O)](1) and [Ni(sal-gln)(phen)(H2O)](2) [o-van-gln=a Schiff base derived from o-vanillin and glutamine, sal-gln=a Schiff base derived from salicylaldehyde and glutamine, phen=1,10-phenanthroline], have been synthesized and characterized by elemental analysis, IR spectra and single crystal X-ray diffraction. X-ray studies showed that nickel atoms of both 1 and 2 exhibit distorted NiN3O3 octahedral geometry. In each crystal, intermolecular hydrogen bonds form a two-dimensional network structure. DNA-binding properties of these two nickel(II) complexes were investigated by using UV-Vis absorption, fluorescence, circular dichroism (CD) spectroscopies and viscosity measurements. Results indicated that the two complexes can bind to calf thymus DNA (CT-DNA) via an intercalative mode, and complex 1 exhibits higher interaction with CT-DNA than complex 2. Furthermore, the interactions between the nickel(II) complexes with bovine serum albumin (BSA) have been studied by spectroscopies. The results indicated that both complexes could quench the intrinsic fluorescence of BSA in a static quenching process. The binding constants (Kb) and the numbers of binding sites (n) obtained are 1.10×10(5)M(-1) and 1.05 for complex 1 and 5.05×10(4)M(-1) and 0.997 for complex 2, respectively. Site-selective competitive binding investigation indicated that the binding sites of both the complexes are located in site I of sub-domains IIA of BSA. Assay of superoxide dismutase (SOD) activity of the nickel(II) complexes revealed that they exhibit significant superoxide scavenging activity with IC50=3.4×10(-5)M for complex 1 and 4.3×10(-5)M for complex 2, respectively. PMID:27295415

  12. Effect of linoleic acid albumin in a dilution solution and long-term equilibration for freezing of bovine spermatozoa with poor freezability.

    PubMed

    Takahashi, T; Itoh, R; Nishinomiya, H; Katoh, M; Manabe, N

    2012-02-01

    Despite normal eucrasia, mating desire and semen quality, sire bulls sometimes have spermatozoa with poor freezing tolerance. This study assessed effects of the addition of linoleic acid albumin (LAA) and long-term (LT) equilibrium to frozen semen on their sperm freezing tolerance. Immediately after collection using an artificial vagina and a breeding mount, semen was diluted with yolk citrate buffer; then, it was cooled slowly to 4°C during more than 5 h. Equilibrium treatment at 4°C was applied using the same extender supplemented with glycerol. Semen of bull A, with low sperm freezing tolerance, was treated with 1 mg/ml of LAA added to the first extender. The equilibrium treatment at 4°C was prolonged to 30 h. Significantly higher motility rates were obtained for the LT + LAA-treated sperm before and after freezing-thawing. However, for semen of bulls B and C with normal sperm freezing tolerance, the LT + LAA treatment barely exhibited a small effect on the motility rate. Almost no difference was found among bulls A, B and C in the motility rates of LT + LAA-treated sperm after freezing-thawing. No difference of fertility was apparent on LT + LAA-treated frozen sperm in comparison with normal sperm in embryonic collection and in vitro fertilization. It was not an aberration of fertility in vivo or in vitro. In addition, the conception rate of artificial insemination did not have a difference, and a normal calf was obtained. Results show that addition of LAA to an extender for frozen bovine spermatozoa and 30 h of low-temperature equilibrium might improve the motility of freezing-thawing spermatozoa with poor freezability. Sperm exhibited normal fertilization capability and ontogenic capability. PMID:21635578

  13. Biomolecular interaction study of hydralazine with bovine serum albumin and effect of β-cyclodextrin on binding by fluorescence, 3D, synchronous, CD, and Raman spectroscopic methods.

    PubMed

    Bolattin, Mallavva B; Nandibewoor, Sharanappa T; Chimatadar, Shivamurti A

    2016-07-01

    Spectrofluoremetric technique was employed to study the binding behavior of hydralazine with bovine serum albumin (BSA) at different temperatures. Binding study of bovine serum albumin with hydralazine has been studied by ultraviolet-visible spectroscopy, fluorescence spectroscopy and confirmed by three-dimensional, synchronous, circular dichroism, and Raman spectroscopic methods. Effect of β-cyclodextrin on binding was studied. The experimental results showed a static quenching mechanism in the interaction of hydralazine with bovine serum albumin. The binding constant and the number of binding sites are calculated according to Stern-Volmer equation. The thermodynamic parameters ∆H(o) , ∆G(o) , ∆S(o) at different temperatures were calculated. These indicated that the hydrogen bonding and weak van der Waals forces played an important role in the interaction. Based on the Förster's theory of non-radiation energy transfer, the binding average distance, r, between the donor (BSA) and acceptor (hydralazine) was evaluated and found to be 3.95 nm. Spectral results showed that the binding of hydralazine to BSA induced conformational changes in BSA. The effect of common ions on the binding of hydralazine to BSA was also examined. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26785703

  14. Binding of Fatty Acid Amide Amphiphiles to Bovine Serum Albumin: Role of Amide Hydrogen Bonding.

    PubMed

    Ghosh, Subhajit; Dey, Joykrishna

    2015-06-25

    The study of protein-surfactant interactions is important because of the widespread use of surfactants in industry, medicine, and pharmaceutical fields. Sodium N-lauroylsarcosinate (SL-Sar) is a widely used surfactant in cosmetics, shampoos. In this paper, we studied the interactions of bovine serum albumin (BSA) with SL-Sar and sodium N-lauroylglycinate (SL-Gly) by use of a number of techniques, including fluorescence and circular dichroism spectroscopy and isothermal titration calorimetry. The binding strength of SL-Sar is stronger than that of structurally similar SL-Gly, which differs only by the absence of a methyl group in the amide nitrogen atom. Also, these two surfactants exhibit different binding patterns with the BSA protein. The role of the amide bond and hence the surfactant headgroup in the binding mechanism is discussed in this paper. It was observed that while SL-Sar destabilized, SL-Gly stabilized the protein structure, even at concentrations less than the critical micelle concentration (cmc) value. The thermodynamics of surfactant binding to BSA was studied by use of ITC. From the ITC results, it is concluded that three molecules of SL-Sar in contrast to only one molecule of SL-Gly bind to BSA in one set of binding sites at room temperature. However, on increasing temperature four molecules of SL-Gly bind to the BSA through H-bonding and van der Waals interactions, due to loosening of the BSA structure. In contrast, with SL-Sar the binding process is enthalpy driven, and very little structural change of BSA was observed at higher temperature. PMID:26023820

  15. Pancreatic islet purification using bovine serum albumin: the importance of density gradient temperature and osmolality.

    PubMed

    Chadwick, D R; Robertson, G S; Toomey, P; Contractor, H; Rose, S; James, R F; Bell, P R; London, N J

    1993-01-01

    Euro-Ficoll and bovine serum albumin (BSA) are two of the most commonly used density gradient media for the purification of pancreatic islets. Euro-Ficoll is based upon Euro-Collins, a cold storage medium, and must, therefore, be used at 4 degrees C. The ionic composition of BSA, however, is likely to contribute to hypothermic cellular swelling, and this may influence the efficiency of islet purification using this medium at 4 degrees C. Experience in this laboratory also suggested that batch-to-batch variation in islet purity using BSA was related to differences in BSA osmolality. The aim of this study was to assess the effect of gradient medium temperature and osmolality on the purification of human and porcine islets using BSA. Pancreata were collagenase-digested, and islets were purified on continuous linear density gradients of BSA. The distribution of insulin and amylase in each gradient was assayed, and used to calculate the median density of islets and exocrine tissue, and the efficiency of islet purification (% amylase contamination at a fixed insulin yield), using: 1) gradient osmolalities of 300, 400, and 500 mOsm/kg H2O (seven porcine pancreata), and 2) gradients at 4 degrees C and at 22 degrees C (eight human and seven porcine pancreata). Increase in density gradient osmolality produced increases in porcine exocrine tissue density which exceeded changes in islet density, resulting in improved islet purity, maximal at a BSA osmolality of 400 mOsm/kg H2O. For human pancreata there was no significant change in pancreatic tissue densities nor islet purity with temperature.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:7512874

  16. Effect of bovine serum albumin on the structure and properties of Langmuir Blodgett films based phosphocholine and cholesterol

    NASA Astrophysics Data System (ADS)

    Dubatovka, K. I.; Zhavnerko, G. K.; Agabekov, V. E.

    2014-02-01

    Mono- and bilayer Langmuir-Blodgett films based on phosphocholine and cholesterol and prepared by horizontal and vertical deposition are investigated by atomic force microscopy. It was found that bovine serum albumin (BSA) included at the stage of film formation. At the same time, isolation has a considerable effect on their structure. It was shown that the globular formation of nanostructures with heights of 4-7 nm occurs as a result of transferring lipids to a hydrophobic surface from a subphase containing BSA, indicating the reorganization of monolayers during protein isolation and inclusion in its composition.

  17. Fluorescence resonance energy transfer between ZnSe ZnS quantum dots and bovine serum albumin in bioaffinity assays of anticancer drugs

    NASA Astrophysics Data System (ADS)

    Shu, Chang; Ding, Li; Zhong, Wenying

    2014-10-01

    In the current work, using ZnSe ZnS quantum dots (QDs) as representative nanoparticles, the affinities of seven anticancer drugs for bovine serum albumin (BSA) were studied using fluorescence resonance energy transfer (FRET). The FRET efficiency of BSA-QD conjugates can reach as high as 24.87% by electrostatic interaction. The higher binding constant (3.63 × 107 L mol-1) and number of binding sites (1.75) between ZnSe ZnS QDs and BSA demonstrated that the QDs could easily associate to plasma proteins and enhance the transport efficacy of drugs. The magnitude of binding constants (103-106 L mol-1), in the presence of QDs, was between drugs-BSA and drugs-QDs in agreement with common affinities of drugs for serum albumins (104-106 L mol-1) in vivo. ZnSe ZnS QDs significantly increased the affinities for BSA of Vorinostat (SAHA), Docetaxel (DOC), Carmustine (BCNU), Doxorubicin (Dox) and 10-Hydroxycamptothecin (HCPT). However, they slightly reduced the affinities of Vincristine (VCR) and Methotrexate (MTX) for BSA. The recent work will not only provide useful information for appropriately understanding the binding affinity and binding mechanism at the molecular level, but also illustrate the ZnSe ZnS QDs are perfect candidates for nanoscal drug delivery system (DDS).

  18. Fluorescence resonance energy transfer between ZnSe ZnS quantum dots and bovine serum albumin in bioaffinity assays of anticancer drugs.

    PubMed

    Shu, Chang; Ding, Li; Zhong, Wenying

    2014-10-15

    In the current work, using ZnSe ZnS quantum dots (QDs) as representative nanoparticles, the affinities of seven anticancer drugs for bovine serum albumin (BSA) were studied using fluorescence resonance energy transfer (FRET). The FRET efficiency of BSA-QD conjugates can reach as high as 24.87% by electrostatic interaction. The higher binding constant (3.63×10(7)Lmol(-1)) and number of binding sites (1.75) between ZnSe ZnS QDs and BSA demonstrated that the QDs could easily associate to plasma proteins and enhance the transport efficacy of drugs. The magnitude of binding constants (10(3)-10(6)Lmol(-1)), in the presence of QDs, was between drugs-BSA and drugs-QDs in agreement with common affinities of drugs for serum albumins (10(4)-10(6)Lmol(-1)) in vivo. ZnSe ZnS QDs significantly increased the affinities for BSA of Vorinostat (SAHA), Docetaxel (DOC), Carmustine (BCNU), Doxorubicin (Dox) and 10-Hydroxycamptothecin (HCPT). However, they slightly reduced the affinities of Vincristine (VCR) and Methotrexate (MTX) for BSA. The recent work will not only provide useful information for appropriately understanding the binding affinity and binding mechanism at the molecular level, but also illustrate the ZnSe ZnS QDs are perfect candidates for nanoscal drug delivery system (DDS). PMID:24835726

  19. Graphene oxide as a nanocarrier for loading and delivery of medicinal drugs and as a biosensor for detection of serum albumin.

    PubMed

    Ni, Yongnian; Zhang, Fangyuan; Kokot, Serge

    2013-03-26

    The interaction of graphene oxide (GO), a medicinal drug (10-hydroxy camptothecin (HCPT)), and bovine serum albumin (BSA) was investigated with the aim of developing a method for the analysis of serum albumin proteins. It was demonstrated that HCPT could be readily loaded onto GO via the π-π stacking interaction, and the delivery of HCPT to BSA was improved in the presence of GO; this, in turn, facilitated the binding interaction of HCPT and BSA. Chemometrics methods, multivariate curve resolution-alternating least squares (MCR-ALS) and parallel factor analysis (PARAFAC), were applied to resolve spectral data, and this assisted in the elucidation of the above interaction. GO was found to enhance the fluorescence response of HCPT to BSA, and thus, a low cost fluorescence bio-sensing platform was developed for fluorescence-enhanced detection of BSA based on GO. The satisfactory analytical performance of this biosensor for BSA was attributed to the structure and electronic properties of GO. PMID:23498119

  20. A Comprehensive Spectroscopic and Computational Investigation to Probe the Interaction of Antineoplastic Drug Nordihydroguaiaretic Acid with Serum Albumins

    PubMed Central

    Nusrat, Saima; Siddiqi, Mohammad Khursheed; Zaman, Masihuz; Zaidi, Nida; Ajmal, Mohammad Rehan; Alam, Parvez; Qadeer, Atiyatul; Abdelhameed, Ali Saber

    2016-01-01

    Exogenous drugs that are used as antidote against chemotheray, inflammation or viral infection, gets absorbed and interacts reversibly to the major serum transport protein i.e. albumins, upon entering the circulatory system. To have a structural guideline in the rational drug designing and in the synthesis of drugs with greater efficacy, the binding mechanism of an antineoplastic and anti-inflammatory drug Nordihydroguaiaretic acid (NDGA) with human and bovine serum albumins (HSA & BSA) were examined by spectroscopic and computational methods. NDGA binds to site II of HSA with binding constant (Kb) ~105 M-1 and free energy (ΔG) ~ -7.5 kcal.mol-1. It also binds at site II of BSA but with lesser binding affinity (Kb) ~105 M-1 and ΔG ~ -6.5 kcal.mol-1. The negative value of ΔG, ΔH and ΔS for both the albumins at three different temperatures confirmed that the complex formation process between albumins and NDGA is spontaneous and exothermic. Furthermore, hydrogen bonds and hydrophobic interactions are the main forces involved in complex formation of NDGA with both the albumins as evaluated from fluorescence and molecular docking results. Binding of NDGA to both the albumins alter the conformation and causes minor change in the secondary structure of proteins as indicated by the CD spectra. PMID:27391941

  1. A Comprehensive Spectroscopic and Computational Investigation to Probe the Interaction of Antineoplastic Drug Nordihydroguaiaretic Acid with Serum Albumins.

    PubMed

    Nusrat, Saima; Siddiqi, Mohammad Khursheed; Zaman, Masihuz; Zaidi, Nida; Ajmal, Mohammad Rehan; Alam, Parvez; Qadeer, Atiyatul; Abdelhameed, Ali Saber; Khan, Rizwan Hasan

    2016-01-01

    Exogenous drugs that are used as antidote against chemotheray, inflammation or viral infection, gets absorbed and interacts reversibly to the major serum transport protein i.e. albumins, upon entering the circulatory system. To have a structural guideline in the rational drug designing and in the synthesis of drugs with greater efficacy, the binding mechanism of an antineoplastic and anti-inflammatory drug Nordihydroguaiaretic acid (NDGA) with human and bovine serum albumins (HSA & BSA) were examined by spectroscopic and computational methods. NDGA binds to site II of HSA with binding constant (Kb) ~105 M-1 and free energy (ΔG) ~ -7.5 kcal.mol-1. It also binds at site II of BSA but with lesser binding affinity (Kb) ~105 M-1 and ΔG ~ -6.5 kcal.mol-1. The negative value of ΔG, ΔH and ΔS for both the albumins at three different temperatures confirmed that the complex formation process between albumins and NDGA is spontaneous and exothermic. Furthermore, hydrogen bonds and hydrophobic interactions are the main forces involved in complex formation of NDGA with both the albumins as evaluated from fluorescence and molecular docking results. Binding of NDGA to both the albumins alter the conformation and causes minor change in the secondary structure of proteins as indicated by the CD spectra. PMID:27391941

  2. Single Particle Dynamic Imaging and Fe3+ Sensing with Bright Carbon Dots Derived from Bovine Serum Albumin Proteins

    NASA Astrophysics Data System (ADS)

    Yang, Qingxiu; Wei, Lin; Zheng, Xuanfang; Xiao, Lehui

    2015-12-01

    In this work, we demonstrated a convenient and green strategy for the synthesis of highly luminescent and water-soluble carbon dots (Cdots) by carbonizing carbon precursors, i.e., Bovine serum albumin (BSA) nanoparticles, in water solution. Without post surface modification, the as-synthesized Cdots exhibit fluorescence quantum yield (Q.Y.) as high as 34.8% and display superior colloidal stability not only in concentrated salt solutions (e.g. 2 M KCl) but also in a wide range of pH solutions. According to the FT-IR measurements, the Cdots contain many carboxyl groups, providing a versatile route for further chemical and biological functionalization. Through conjugation of Cdots with the transacting activator of transcription (TAT) peptide (a kind of cell penetration peptide (CPP)) derived from human immunodeficiency virus (HIV), it is possible to directly monitor the dynamic interactions of CPP with living cell membrane at single particle level. Furthermore, these Cdots also exhibit a dosage-dependent selectivity toward Fe3+ among other metal ions, including K+, Na+, Mg2+, Hg2+, Co2+, Cu2+, Pb2+ and Al3+. We believed that the Cdots prepared by this strategy would display promising applications in various areas, including analytical chemistry, nanomedicine, biochemistry and so on.

  3. Single Particle Dynamic Imaging and Fe3+ Sensing with Bright Carbon Dots Derived from Bovine Serum Albumin Proteins

    PubMed Central

    Yang, Qingxiu; Wei, Lin; Zheng, Xuanfang; Xiao, Lehui

    2015-01-01

    In this work, we demonstrated a convenient and green strategy for the synthesis of highly luminescent and water-soluble carbon dots (Cdots) by carbonizing carbon precursors, i.e., Bovine serum albumin (BSA) nanoparticles, in water solution. Without post surface modification, the as-synthesized Cdots exhibit fluorescence quantum yield (Q.Y.) as high as 34.8% and display superior colloidal stability not only in concentrated salt solutions (e.g. 2 M KCl) but also in a wide range of pH solutions. According to the FT-IR measurements, the Cdots contain many carboxyl groups, providing a versatile route for further chemical and biological functionalization. Through conjugation of Cdots with the transacting activator of transcription (TAT) peptide (a kind of cell penetration peptide (CPP)) derived from human immunodeficiency virus (HIV), it is possible to directly monitor the dynamic interactions of CPP with living cell membrane at single particle level. Furthermore, these Cdots also exhibit a dosage-dependent selectivity toward Fe3+ among other metal ions, including K+, Na+, Mg2+, Hg2+, Co2+, Cu2+, Pb2+ and Al3+. We believed that the Cdots prepared by this strategy would display promising applications in various areas, including analytical chemistry, nanomedicine, biochemistry and so on. PMID:26634992

  4. Tangential Flow Ultrafiltration Allows Purification and Concentration of Lauric Acid-/Albumin-Coated Particles for Improved Magnetic Treatment

    PubMed Central

    Zaloga, Jan; Stapf, Marcus; Nowak, Johannes; Pöttler, Marina; Friedrich, Ralf P.; Tietze, Rainer; Lyer, Stefan; Lee, Geoffrey; Odenbach, Stefan; Hilger, Ingrid; Alexiou, Christoph

    2015-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are frequently used for drug targeting, hyperthermia and other biomedical purposes. Recently, we have reported the synthesis of lauric acid-/albumin-coated iron oxide nanoparticles SEONLA-BSA, which were synthesized using excess albumin. For optimization of magnetic treatment applications, SPION suspensions need to be purified of excess surfactant and concentrated. Conventional methods for the purification and concentration of such ferrofluids often involve high shear stress and low purification rates for macromolecules, like albumin. In this work, removal of albumin by low shear stress tangential ultrafiltration and its influence on SEONLA-BSA particles was studied. Hydrodynamic size, surface properties and, consequently, colloidal stability of the nanoparticles remained unchanged by filtration or concentration up to four-fold (v/v). Thereby, the saturation magnetization of the suspension can be increased from 446.5 A/m up to 1667.9 A/m. In vitro analysis revealed that cellular uptake of SEONLA-BSA changed only marginally. The specific absorption rate (SAR) was not greatly affected by concentration. In contrast, the maximum temperature Tmax in magnetic hyperthermia is greatly enhanced from 44.4 °C up to 64.9 °C by the concentration of the particles up to 16.9 mg/mL total iron. Taken together, tangential ultrafiltration is feasible for purifying and concentrating complex hybrid coated SPION suspensions without negatively influencing specific particle characteristics. This enhances their potential for magnetic treatment. PMID:26287178

  5. Tangential Flow Ultrafiltration Allows Purification and Concentration of Lauric Acid-/Albumin-Coated Particles for Improved Magnetic Treatment.

    PubMed

    Zaloga, Jan; Stapf, Marcus; Nowak, Johannes; Pöttler, Marina; Friedrich, Ralf P; Tietze, Rainer; Lyer, Stefan; Lee, Geoffrey; Odenbach, Stefan; Hilger, Ingrid; Alexiou, Christoph

    2015-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are frequently used for drug targeting, hyperthermia and other biomedical purposes. Recently, we have reported the synthesis of lauric acid-/albumin-coated iron oxide nanoparticles SEON(LA-BSA), which were synthesized using excess albumin. For optimization of magnetic treatment applications, SPION suspensions need to be purified of excess surfactant and concentrated. Conventional methods for the purification and concentration of such ferrofluids often involve high shear stress and low purification rates for macromolecules, like albumin. In this work, removal of albumin by low shear stress tangential ultrafiltration and its influence on SEON(LA-BSA) particles was studied. Hydrodynamic size, surface properties and, consequently, colloidal stability of the nanoparticles remained unchanged by filtration or concentration up to four-fold (v/v). Thereby, the saturation magnetization of the suspension can be increased from 446.5 A/m up to 1667.9 A/m. In vitro analysis revealed that cellular uptake of SEON(LA-BSA) changed only marginally. The specific absorption rate (SAR) was not greatly affected by concentration. In contrast, the maximum temperature Tmax in magnetic hyperthermia is greatly enhanced from 44.4 °C up to 64.9 °C by the concentration of the particles up to 16.9 mg/mL total iron. Taken together, tangential ultrafiltration is feasible for purifying and concentrating complex hybrid coated SPION suspensions without negatively influencing specific particle characteristics. This enhances their potential for magnetic treatment. PMID:26287178

  6. Synthesis and characterization of drug loaded albumin mesospheres for intratumoral chemotherapy

    NASA Astrophysics Data System (ADS)

    Freeman, Shema Taian

    concentration, GEN/BSA ratio, stabilization stirring rate and crosslinking time) were defined to produce both GEN and GTA crosslinked cisplatin and cyclophosphamide BSA mesospheres. In vitro analysis confirmed the utility of mesosphere bound drug. In several related studies, (1) IT delivered dispersions of mitoxantrone loaded albumin microspheres were shown to afford an effective treatment, with significantly prolonging animal survival and (2) genipin and gadolinium crosslinked MS were prepared from HA and BSA/HA.

  7. Design of an anti-aggregated SERS sensing platform for metal ion detection based on bovine serum albumin-mediated metal nanoparticles.

    PubMed

    Ji, Wei; Chen, Lei; Xue, Xiangxin; Guo, Zhinan; Yu, Zhi; Zhao, Bing; Ozaki, Yukihiro

    2013-08-25

    Based on bovine serum albumin (BSA)-modified Au NPs, a simple and cost-effective approach was proposed to fabricate an anti-aggregated Au NP sensing platform for the detection of metal ions. It exhibits excellent stability even under highly ionic conditions due to its electrostatic stabilization, as well as the steric stabilization. PMID:23851712

  8. Preparation of biocompatible heat-labile enterotoxin subunit B-bovine serum albumin nanoparticles for improving tumor-targeted drug delivery via heat-labile enterotoxin subunit B mediation

    PubMed Central

    Zhao, Liang; Su, Rongjian; Cui, Wenyu; Shi, Yijie; Liu, Liwei; Su, Chang

    2014-01-01

    Heat-labile enterotoxin subunit B (LTB) is a non-catalytic protein from a pentameric subunit of Escherichia coli. Based on its function of binding specifically to ganglioside GM1 on the surface of cells, a novel nanoparticle (NP) composed of a mixture of bovine serum albumin (BSA) and LTB was designed for targeted delivery of 5-fluorouracil to tumor cells. BSA-LTB NPs were characterized by determination of their particle size, polydispersity, morphology, drug encapsulation efficiency, and drug release behavior in vitro. The internalization of fluorescein isothiocyanate-labeled BSA-LTB NPs into cells was observed using fluorescent imaging. Results showed that BSA-LTB NPs presented a narrow size distribution with an average hydrodynamic diameter of approximately 254±19 nm and a mean zeta potential of approximately −19.95±0.94 mV. In addition, approximately 80.1% of drug was encapsulated in NPs and released in the biphasic pattern. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that BSA-LTB NPs exhibited higher cytotoxic activity than non-targeted NPs (BSA NPs) in SMMC-7721 cells. Fluorescent imaging results proved that, compared with BSA NPs, BSA-LTB NPs could greatly enhance cellular uptake. Hence, the results indicate that BSA-LTB NPs could be a potential nanocarrier to improve targeted delivery of 5-fluorouracil to tumor cells via mediation of LTB. PMID:24851048

  9. Metal release and speciation of released chromium from a biomedical CoCrMo alloy into simulated physiologically relevant solutions.

    PubMed

    Hedberg, Yolanda; Odnevall Wallinder, Inger

    2014-05-01

    The objective of this study was to investigate the extent of released Co, Cr(III), Cr(VI), and Mo from a biomedical high-carbon CoCrMo alloy exposed in phosphate-buffered saline (PBS), without and with the addition of 10 µM H2 O2 (PBS + H2 O2 ), and 10 g L(-1) bovine serum albumin (PBS + BSA) for time periods up to 28 days. Comparative studies were made on AISI 316L for the longest time period. No Cr(VI) release was observed for any of the alloys in either PBS or PBS + H2 O2 at open-circuit potential (no applied potential). However, at applied potentials (0.7 V vs. Ag/AgCl), Cr was primarily released as Cr(VI). Co was preferentially released from the CoCrMo alloy at no applied potential. As a consequence, Cr was enriched in the utmost surface oxide reducing the extent of metal release over time. This passivation effect was accelerated in PBS + H2 O2 . As previously reported for 316L, BSA may also enhance metal release from CoCrMo. However, this was not possible to verify due to the precipitation of metal-protein complexes with reduced metal concentrations in solution as a consequence. This was particularly important for Co-BSA complexes after sufficient time and resulted in an underestimation of metals in solution. PMID:24155151

  10. Nitrile group as infrared probe for the characterization of the conformation of bovine serum albumin solubilized in reverse micelles

    NASA Astrophysics Data System (ADS)

    Xue, Luyan; Zou, Feixue; Zhao, Yin; Huang, Xirong; Qu, Yinbo

    2012-11-01

    Infrared spectroscopy is a powerful technique for structure characterization. For a protein hosted in a reversed micellar medium, the spectral features of the protein are always interfered by the IR absorption bands of the medium in addition to the congestion in their IR spectra. Fortunately, there is a transparent window in the 2500-2200 cm-1 region. Incorporation of a vibrational probe with IR absorption frequencies in this region into proteins represents a promising strategy for the study of the conformation of a protein in a reverse micelle. In the present work, we incorporated 4-cyanobenzyl group (CN) into bovine serum albumin (BSA) via cysteine alkylation reactions under mild conditions. Circular dichroism spectroscopy showed that the Ctbnd N modified BSA (CNBSA) could retain its conformation. When CNBSA was hosted in AOT reverse micelle, it was found that the nitrile group on BSA was sensitive to the conformational change of BSA induced by urea as an additive in the reverse micelle. The peak splitting of nitrile group was also observed when the size of AOT reverse micelle and the concentration of an electrolyte were varied. Obviously, the shift of the IR absorption peak and/or peak splitting of nitrile group on BSA are correlated with the change of BSA conformation in AOT reverse micelle. So we conclude that the nitrile infrared probe can be used to study protein conformation in a reverse micelle.

  11. Nitrile group as infrared probe for the characterization of the conformation of bovine serum albumin solubilized in reverse micelles.

    PubMed

    Xue, Luyan; Zou, Feixue; Zhao, Yin; Huang, Xirong; Qu, Yinbo

    2012-11-01

    Infrared spectroscopy is a powerful technique for structure characterization. For a protein hosted in a reversed micellar medium, the spectral features of the protein are always interfered by the IR absorption bands of the medium in addition to the congestion in their IR spectra. Fortunately, there is a transparent window in the 2500-2200 cm(-1) region. Incorporation of a vibrational probe with IR absorption frequencies in this region into proteins represents a promising strategy for the study of the conformation of a protein in a reverse micelle. In the present work, we incorporated 4-cyanobenzyl group (CN) into bovine serum albumin (BSA) via cysteine alkylation reactions under mild conditions. Circular dichroism spectroscopy showed that the CN modified BSA (CNBSA) could retain its conformation. When CNBSA was hosted in AOT reverse micelle, it was found that the nitrile group on BSA was sensitive to the conformational change of BSA induced by urea as an additive in the reverse micelle. The peak splitting of nitrile group was also observed when the size of AOT reverse micelle and the concentration of an electrolyte were varied. Obviously, the shift of the IR absorption peak and/or peak splitting of nitrile group on BSA are correlated with the change of BSA conformation in AOT reverse micelle. So we conclude that the nitrile infrared probe can be used to study protein conformation in a reverse micelle. PMID:22902928

  12. Albumin-coated SPIONs: an experimental and theoretical evaluation of protein conformation, binding affinity and competition with serum proteins.

    PubMed

    Yu, Siming; Perálvarez-Marín, Alex; Minelli, Caterina; Faraudo, Jordi; Roig, Anna; Laromaine, Anna

    2016-08-14

    The variety of nanoparticles (NPs) used in biological applications is increasing and the study of their interaction with biological media is becoming more important. Proteins are commonly the first biomolecules that NPs encounter when they interact with biological systems either in vitro or in vivo. Among NPs, super-paramagnetic iron oxide nanoparticles (SPIONs) show great promise for medicine. In this work, we study in detail the formation, composition, and structure of a monolayer of bovine serum albumin (BSA) on SPIONs. We determine, both by molecular simulations and experimentally, that ten molecules of BSA form a monolayer around the outside of the SPIONs and their binding strength to the SPIONs is about 3.5 × 10(-4) M, ten times higher than the adsorption of fetal bovine serum (FBS) on the same SPIONs. We elucidate a strong electrostatic interaction between BSA and the SPIONs, although the secondary structure of the protein is not affected. We present data that supports the strong binding of the BSA monolayer on SPIONs and the properties of the BSA layer as a protein-resistant coating. We believe that a complete understanding of the behavior and morphology of BSA-SPIONs and how the protein interacts with SPIONs is crucial for improving NP surface design and expanding the potential applications of SPIONs in nanomedicine. PMID:27241081

  13. Probing the interaction of a new synthesized CdTe quantum dots with human serum albumin and bovine serum albumin by spectroscopic methods.

    PubMed

    Bardajee, Ghasem Rezanejade; Hooshyar, Zari

    2016-05-01

    A novel CdTe quantum dots (QDs) were prepared in aqueous phase via a facile method. At first, poly (acrylic amide) grafted onto sodium alginate (PAAm-g-SA) were successfully synthesized and then TGA capped CdTe QDs (CdTe-TGA QDs) were embed into it. The prepared CdTe-PAAm-g-SA QDs were optimized and characterized by transmission electron microscopy (TEM), thermo-gravimetric (TG) analysis, Fourier transform infrared (FT-IR), UV-vis and fluorescence spectroscopy. The characterization results indicated that CdTe-TGA QDs, with particles size of 2.90 nm, were uniformly dispersed on the chains of PAAm-g-SA biopolymer. CdTe-PAAm-g-SA QDs also exhibited excellent UV-vis absorption and high fluorescence intensity. To explore biological behavior of CdTe-PAAm-g-SA QDs, the interactions between CdTe-PAAm-g-SA QDs and human serum albumin (HSA) (or bovine serum albumin (BSA)) were investigated by cyclic voltammetry, FT-IR, UV-vis, and fluorescence spectroscopic. The results confirmed the formation of CdTe-PAAm-g-SA QDs-HSA (or BSA) complex with high binding affinities. The thermodynamic parameters (ΔG<0, ΔH<0 and ΔS<0) were indicated that binding reaction was spontaneous and van der Waals interactions and hydrogen-bond interactions played a major role in stabilizing the CdTe-PAAm-g-SA QDs-HSA (or BSA) complexes. The binding distance between CdTe-PAAm-g-SA QDs and HSA (or BSA)) was calculated about 1.37 nm and 1.27 nm, respectively, according to Forster non-radiative energy transfer theory (FRET). Analyzing FT-IR spectra showed that the formation of QDs-HSA and QDs-BSA complexes led to conformational changes of the HSA and BSA proteins. All these experimental results clarified the effective transportation and elimination of CdTe-PAAm-g-SA QDs in the body by binding to HSA and BSA, which could be a useful guideline for the estimation of QDs as a drug carrier. PMID:26952487

  14. Immobilization of bovine serum albumin on TiO 2 film via chemisorption of H 3PO 4 interface and effects on platelets adhesion

    NASA Astrophysics Data System (ADS)

    Weng, Y. J.; Hou, R. X.; Li, G. C.; Wang, J.; Huang, N.; Liu, H. Q.

    2008-02-01

    In the present study, bovine serum albumin (BSA) was successfully covalently immobilized on the surface of anatase TiO 2 film by a three-step method, i.e. application of H 3PO 4 chemisorption to increase surface -OH, which increases the amount of coupling 3-aminopropyl-triethoxylsilane (APTES), thus linking with BSA by imide bond using EDC/NHS/MES. There is no significant -OH group increase on rutile film when using the same method of phosphoric acid treatment, which suggest it is difficult for further chemical modification of the rutile film. After covalent immobilization of BSA on anatase film, an improved hemocompatibility of anti-platelet adhesion and aggregation in vitro could be recognized by LDH and SEM analysis. This study suggests BSA-immobilized anatase surface can serve as hemocompatibility material in vivo.

  15. Bovine serum albumin further enhances the effects of organic solvents on increased yield of polymerase chain reaction of GC-rich templates

    PubMed Central

    2012-01-01

    Background While being a standard powerful molecular biology technique, applications of the PCR to the amplification of high GC-rich DNA samples still present challenges which include limited yield and poor specificity of the reaction. Organic solvents, including DMSO and formamide, have been often employed as additives to increase the efficiency of amplification of high GC content (GC > 60%) DNA sequences. Bovine serum albumin (BSA) has been used as an additive in several applications, including restriction enzyme digestions as well as in PCR amplification of templates from environmental samples that contain potential inhibitors such as phenolic compounds. Findings Significant increase in PCR amplification yields of GC-rich DNA targets ranging in sizes from 0.4 kb to 7.1 kb were achieved by using BSA as a co-additive along with DMSO and formamide. Notably, enhancing effects of BSA occurs in the initial PCR cycles with BSA additions having no detrimental impact on PCR yield or specificity. When a PCR was set up such that the cycling parameters paused after every ten cycles to allow for supplementation of BSA, combining BSA and organic solvent produced significantly higher yields relative to conditions using the solvent alone. The co-enhancing effects of BSA in presence of organic solvents were also obtained in other PCR applications, including site-directed mutagenesis and overlap extension PCR. Conclusions BSA significantly enhances PCR amplification yield when used in combination with organic solvents, DMSO or formamide. BSA enhancing effects were obtained in several PCR applications, with DNA templates of high GC content and spanning a broad size range. When added to the reaction buffer, promoting effects of BSA were seen in the first cycles of the PCR, regardless of the size of the DNA to amplify. The strategy outlined here provides a cost-effective alternative for increasing the efficiency of PCR amplification of GC-rich DNA targets over a broad size

  16. Facile cell patterning on an albumin-coated surface.

    PubMed

    Yamazoe, Hironori; Uemura, Toshimasa; Tanabe, Toshizumi

    2008-08-19

    Fabrication of micropatterned surfaces to organize and control cell adhesion and proliferation is an indispensable technique for cell-based technologies. Although several successful strategies for creating cellular micropatterns on substrates have been demonstrated, a complex multistep process and requirements for special and expensive equipment or materials limit their prevalence as a general experimental tool. To circumvent these problems, we describe here a novel facile fabrication method for a micropatterned surface for cell patterning by utilizing the UV-induced conversion of the cell adhesive property of albumin, which is the most abundant protein in blood plasma. An albumin-coated surface was prepared by cross-linking albumin with ethylene glycol diglycidyl ether and subsequent casting of the cross-linked albumin solution on the cell culture dish. While cells did not attach to the albumin surface prepared in this way, UV exposure renders the surface cell-adhesive. Thus, surface micropatterning was achieved simply by exposing the albumin-coated surface to UV light through a mask with the desired pattern. Mouse fibroblast L929 cells were inoculated on the patterned albumin substrates, and cells attached and spread in a highly selective manner according to the UV-irradiated pattern. Although detailed investigation of the molecular-level mechanism concerning the change in cell adhesiveness of the albumin-coated surface is required, the present results would give a novel facile method for the fabrication of cell micropatterned surfaces. PMID:18627191

  17. The Spectroscopy Study of the Binding of an Active Ingredient of Dioscorea Species with Bovine Serum Albumin with or without Co2+ or Zn2+

    PubMed Central

    Bian, He-Dong; Huang, Fu-Ping; Yao, Di; Yu, Qing; Liang, Hong

    2014-01-01

    Diosgenin (DIO) is the active ingredient of Dioscorea species. The interaction of DIO with bovine serum albumin (BSA) was investigated through spectroscopic methods under simulated physiological conditions. The fluorescence quenching data revealed that the binding of DIO to BSA without or with Co2+ or Zn2+ was a static quenching process. The presence of Co2+ or Zn2+ both increased the static quenching constants KSV and the binding affinity for the BSA-DIO system. In the sight of the competitive experiment and the negative values of ΔH0 and ΔS0, DIO bound to site I of BSA mainly through the hydrogen bond and Van der Waals' force. In addition, the conformational changes of BSA were studied by Raman spectra, which revealed that the secondary structure of BSA and microenvironment of the aromatic residues were changed by DIO. The Raman spectra analysis indicated that the changes of conformations, disulfide bridges, and the microenvironment of Tyr, Trp residues of BSA induced by DIO with Co2+ or Zn2+ were different from that without Co2+ or Zn2+. PMID:24991225

  18. Antioxidative effects of magnetized extender containing bovine serum albumin on sperm oxidative stress during long-term liquid preservation of boar semen.

    PubMed

    Lee, Sang-Hee; Park, Choon-Keun

    2015-08-21

    Magnetized water is defined as water that has passed through a magnet and shows increased permeability into cells and electron-donating characteristics. These attributes can protect against membrane damage and remove reactive oxygen species (ROS) in mammalian cells. We explored the effects of improved magnetized semen extenders containing bovine serum albumin (BSA) as antioxidants on apoptosis in boar sperm. Ejaculated semen was diluted in magnetized extender (0G and 6000G) with or without BSA (0G + BSA and 6000G + BSA), and sperm were analyzed based on viability, acrosome reaction, and H2O2 level of live sperm using flow cytometry. Sperm were then preserved for 11 days at 18 °C. We found that viability was significantly higher in 6000G + BSA than under the other treatments (P < 0.05). The acrosome reaction was significantly lower in the 6000G + BSA group compared with the other treatments (P < 0.05). Live sperm with high intracellular H2O2 level were significantly lower in the 6000G + BSA group than under other treatments (P < 0.05). Based on our results, magnetized extenders have antioxidative effects on the liquid preservation of boar sperm. PMID:26143531

  19. Penetrable silica microspheres for immobilization of bovine serum albumin and their application to the study of the interaction between imatinib mesylate and protein by frontal affinity chromatography.

    PubMed

    Ma, Liyun; Li, Jing; Zhao, Juan; Liao, Han; Xu, Li; Shi, Zhi-guo

    2016-01-01

    In the current study, novel featured silica, named penetrable silica, simultaneously containing macropores and mesopores, was immobilized with bovine serum albumin (BSA) via Schiff base method. The obtained BSA-SiO2 was employed as the high-performance liquid chromatographic (HPLC) stationary phase. Firstly, D- and L-tryptophan were used as probes to investigate the chiral separation ability of the BSA-SiO2 stationary phase. An excellent enantioseparation factor was obtained up to 4.3 with acceptable stability within at least 1 month. Next, the BSA-SiO2 stationary phase was applied to study the interaction between imatinib mesylate (IM) and BSA by frontal affinity chromatography. A single type of binding site was found for IM with the immobilized BSA, and the hydrogen-bonding and van der Waals interactions were expected to be contributing interactions based on the thermodynamic studies, and this was a spontaneous process. Compared to the traditional silica for HPLC stationary phase, the proposed penetrable silica microsphere possessed a larger capacity to bond more BSA, minimizing column overloading effects and enhancing enantioseparation ability. In addition, the lower running column back pressure and fast mass transfer were meaningful for the column stability and lifetime. It was a good substrate to immobilize biomolecules for fast chiral resolution and screening drug-protein interactions. PMID:26573171

  20. The bilateral action between EQ14-2-14 gemini surfactant and bovine serum albumin by DPI and 1H NMR

    NASA Astrophysics Data System (ADS)

    Wu, Gang; Jiang, Xiaohui; Zhou, Limei; Yang, Lijun; Wang, Ya; Xia, Guangqiang; Chen, Zhengjun; Duan, Ming

    2013-08-01

    Gemini surfactant diglycol bis-N-tetradecyl nicotinate dibromide (designed as EQ14-2-14) has been synthesized. The interaction between EQ14-2-14 and bovine serum albumin (BSA) was studied by dual polarization interferometry (DPI), proton nuclear magnetic resonance spectroscopy (1H NMR), Fourier transform infrared spectroscopy (FTIR) and molecular docking. Owing to the binding of EQ14-2-14, the thickness and mass of BSA increased; refractive index (RI) and density firstly raised and then tended to a plateau. In addition, a decrease of α-helix was observed from 54.01% to 31.56% with an increase in random structure from 7.86% to 21.76%. Due to BSA intertwining, the proton resonance signals of EQ14-2-14 shifted up-field and relaxation time decreased with increasing concentration of BSA. The study of molecular docking indicated that EQ14-2-14 embedded into subdomain II of BSA by π-π stacking between the electron-deficit pyridinium rings in EQ14-2-14 and the electron-abundant pyrrole ring in Trp residues of BSA, by hydrogen bonding and by hydrophobic interaction. Therefore the present work offers a whole view of the interaction of BSA with a new gemini surfactant.

  1. Bovine serum albumin-cobalt(ii) Schiff base complex hybrid: an efficient artificial metalloenzyme for enantioselective sulfoxidation using hydrogen peroxide.

    PubMed

    Tang, Jie; Huang, Fuping; Wei, Yi; Bian, Hedong; Zhang, Wei; Liang, Hong

    2016-05-10

    An artificial metalloenzyme (BSA-CoL) based on the incorporation of a cobalt(ii) Schiff base complex {CoL, H2L = 2,2'-[(1,2-ethanediyl)bis(nitrilopropylidyne)]bisphenol} with bovine serum albumin (BSA) has been synthesized and characterized. Attention is focused on the catalytic activity of this artificial metalloenzyme for enantioselective oxidation of a variety of sulfides with H2O2. The influences of parameters such as pH, temperature, and the concentration of catalyst and oxidant on thioanisole as a model are investigated. Under optimum conditions, BSA-CoL as a hybrid biocatalyst is efficient for the enantioselective oxidation of a series of sulfides, producing the corresponding sulfoxides with excellent conversion (up to 100%), chemoselectivity (up to 100%) and good enantiomeric purity (up to 87% ee) in certain cases. PMID:27075699

  2. Investigations into the bovine serum albumin binding and fluorescence properties of Tb (III) complex of a novel 8-hydroxyquinoline ligand

    NASA Astrophysics Data System (ADS)

    Zhao, Mingming; Tang, Ruiren; Xu, Shuai

    2015-01-01

    A novel ligand, 2-methyl-6-(8-quinolinyl)-dicarboxylate pyridine (L), and its corresponding Tb (III) complex, Na4Tb(L)2Cl4·3H2O, were successfully prepared and characterized. The luminescence spectra showed that the ligand L was an efficient sensitizer for Tb (III) luminescence. The interaction of the complex with bovine serum albumin (BSA) was investigated through fluorescence spectroscopy under physiological conditions. The Stern-Volmer analysis indicated that the fluorescence quenching was resulted from static mechanism. The binding sites (n) approximated 1.0 and this meant that interaction of Na4Tb(L)2Cl4·3H2O with BSA had single binding site. The results showed van der Waals interactions and hydrogen bonds played major roles in the binding reaction. Furthermore, circular dichroism (CD) spectra indicated that the conformation of BSA was changed.

  3. Giant unilamellar vesicles containing Rhodamine 6G as a marker for immunoassay of bovine serum albumin and lipocalin-2.

    PubMed

    Sakamoto, Misato; Shoji, Atsushi; Sugawara, Masao

    2016-07-15

    Functionalized giant unilamellar vesicles (GUVs) containing a fluorescence dye Rhodamine 6G is proposed as a marker in sandwich-type immunoassay for bovine serum albumin (BSA) and lipocalin-2 (LCN2). The GUVs were prepared by the electroformation method and functionalized with anti-BSA antibody and anti-LCN2 antibody, respectively. The purification of antibody-modified GUVs was achieved by conventional centrifugation and a washing step in a flow system. To antigen on an antibody slip, antibody-modified GUVs were added as a marker and incubated. After wash-out of excess reagents and lysis of the bound GUVs with Triton X-100, the fluorescence image was captured. The fluorometric immunoassays for BSA and LCN2 exhibited lower detection limits of 4 and 80 fg ml(-)(1), respectively. PMID:27117116

  4. Viscous cosolvent effect on the ultrasonic absorption of bovine serum albumin.

    PubMed

    Almagor, A; Yedgar, S; Gavish, B

    1992-02-01

    Protein-ligand binding and enzyme activity have been shown to be regulated by solvent viscosity, induced by the addition of viscous cosolvents. This was indirectly interpreted as an effect on protein dynamics. However, viscous cosolvents might affect dynamic, e.g., viscosity, as well as thermodynamic properties of the solution, e.g., activity of solution components. This work was undertaken to examine the effect of viscous cosolvent on the structural dynamics of proteins and its correlation with dynamic and thermodynamic solution properties. For this purpose we studied the effect of viscous cosolvent on the specific ultrasonic absorption, delta mu, of bovine serum albumin, at pH = 7.0 and at 21 degrees C, and frequency range of 3-4 MHz. Ultrasonic absorption (UA) directly probes protein dynamics related to energy dissipation processes. It was found that the addition of sucrose, glycerol, or ethylene glycol increased the BSA delta mu. This increase correlates well with the solvent viscosity, but not with the cosolvent mass concentration, activity of the solvent components, dielectric constant, or the hydration of charged groups. On the grounds of these results and previously reported findings, as well as theoretical considerations, we propose the following mechanism for the solvent viscosity effect on the protein structural fluctuations, reflected in the UA: increased solvent viscosity alters the frequency spectrum of the polypeptide chain movements; attenuating the fast (small amplitude) movements, and enhancing the slow (large amplitude) ones. This modulates the interaction strength between the polypeptide and water species that "lubricates" the chain's movements, leading to larger protein-volume fluctuation and higher ultrasonic absorption. This study demonstrates that solvent viscosity is a regulator of protein structural fluctuations. PMID:1547333

  5. Albumin inhibits platelet-activating factor (PAF)-induced responses in platelets and macrophages: implications for the biologically active form of PAF.

    PubMed Central

    Grigoriadis, G.; Stewart, A. G.

    1992-01-01

    1. Platelet-activating factor (PAF) binds with high affinity to albumin leading Clay et al. (1990) to suggest that the active form of PAF is the albumin-PAF complex. 2. In the present study the proposal that albumin-bound, rather than monomeric PAF, is the active form of PAF at PAF receptors was critically evaluated by examining the effect of albumin on the potency of PAF in isolated platelets and macrophages. 3. Bovine serum albumin inhibited concentration-dependently PAF-induced responses in platelets and macrophages. The most probable explanation of this finding is that BSA reduced the concentration of free PAF. 4. Thus, we conclude that free PAF, rather than the albumin-PAF complex is the active form. Consequently, local concentrations of albumin will influence profoundly the potency of endogenously released PAF. Moreover, estimates of the affinity of PAF for PAF receptors made in buffers containing BSA, underestimate the true affinity of PAF for its receptors by approximately 3 orders of magnitude. PMID:1330167

  6. 25-Hydroxyvitamin D isomerizes to pre-25-hydroxyvitamin D in solution: considerations for calibration in clinical measurements.

    PubMed

    Bedner, Mary; Lippa, Katrice A

    2015-10-01

    Reference standards for the vitamin D metabolites 25-hydroxyvitamin D3, 25-hydroxyvitamin D2, and 3-epi-25-hydroxyvitamin D3 were evaluated using liquid chromatography (LC) with ultraviolet (UV) absorbance and mass spectrometric (MS) detection to assess purity. The chromatograms for solutions of all three 25(OH)D compounds, obtained using a pentafluorophenyl (PFP) stationary phase, revealed peaks that increased in area over time and had MS spectra that were nearly identical to the parent compound, indicating isomers had formed in solution that were unrelated to the reference standard purity. However, when the purity evaluations were completed with a cyanopropyl stationary phase, the isomeric products coeluted with the parent compounds and were not observable. The rates of formation of the isomeric products were found to increase when heated and were confirmed to be pre-25-hydroxyvitamin D compounds using spectral information from both MS detection and nuclear magnetic resonance (NMR) spectroscopy. The rates of conversion of 25(OH)D3 to pre-25(OH)D3 was studied in solutions of ethanol and bovine serum albumin (BSA) in phosphate-buffered saline (PBS). The solutions prepared with BSA/PBS were found to form twice as much pre-25(OH)D3 as the solutions in ethanol. The isomerization of 25(OH)D in solution has implications for calibration of 25(OH)D in clinical measurements, which are discussed. PMID:26359234

  7. Binding affinities of Schiff base Fe(II) complex with BSA and calf-thymus DNA: Spectroscopic investigations and molecular docking analysis.

    PubMed

    Rudra, Suparna; Dasmandal, Somnath; Patra, Chiranjit; Kundu, Arjama; Mahapatra, Ambikesh

    2016-09-01

    The binding interaction of a synthesized Schiff base Fe(II) complex with biological macromolecules viz., bovine serum albumin (BSA) and calf thymus(ct)-DNA have been investigated using different spectroscopic techniques coupled with viscosity measurements at physiological pH and 298K. Regular amendments in emission intensities of BSA upon the action of the complex indicate significant interaction between them, and the binding interaction have been characterized by Stern Volmer plots and thermodynamic binding parameters. On the basis of this quenching technique one binding site with binding constant (Kb=(7.6±0.21)×10(5)) between complex and protein have been obtained at 298K. Time-resolved fluorescence studies have also been encountered to understand the mechanism of quenching induced by the complex. Binding affinities of the complex to the fluorophores of BSA namely tryptophan (Trp) and tyrosine (Tyr) have been judged by synchronous fluorescence studies. Secondary structural changes of BSA rooted by the complex has been revealed by CD spectra. On the other hand, hypochromicity of absorption spectra of the complex with the addition of ct-DNA and the gradual reduction in emission intensities of ethidium bromide bound ct-DNA in presence of the complex indicate noticeable interaction between ct-DNA and the complex with the binding constant (4.2±0.11)×10(6)M(-1). Life-time measurements have been studied to determine the relative amplitude of binding of the complex to ct-DNA base pairs. Mode of binding interaction of the complex with ct-DNA has been deciphered by viscosity measurements. CD spectra have also been used to understand the changes in ct-DNA structure upon binding with the metal complex. Density functional theory (DFT) and molecular docking analysis have been employed in highlighting the interactive phenomenon and binding location of the complex with the macromolecules. PMID:27214273

  8. Binding affinities of Schiff base Fe(II) complex with BSA and calf-thymus DNA: Spectroscopic investigations and molecular docking analysis

    NASA Astrophysics Data System (ADS)

    Rudra, Suparna; Dasmandal, Somnath; Patra, Chiranjit; Kundu, Arjama; Mahapatra, Ambikesh

    2016-09-01

    The binding interaction of a synthesized Schiff base Fe(II) complex with biological macromolecules viz., bovine serum albumin (BSA) and calf thymus(ct)-DNA have been investigated using different spectroscopic techniques coupled with viscosity measurements at physiological pH and 298 K. Regular amendments in emission intensities of BSA upon the action of the complex indicate significant interaction between them, and the binding interaction have been characterized by Stern Volmer plots and thermodynamic binding parameters. On the basis of this quenching technique one binding site with binding constant (Kb = (7.6 ± 0.21) × 105) between complex and protein have been obtained at 298 K. Time-resolved fluorescence studies have also been encountered to understand the mechanism of quenching induced by the complex. Binding affinities of the complex to the fluorophores of BSA namely tryptophan (Trp) and tyrosine (Tyr) have been judged by synchronous fluorescence studies. Secondary structural changes of BSA rooted by the complex has been revealed by CD spectra. On the other hand, hypochromicity of absorption spectra of the complex with the addition of ct-DNA and the gradual reduction in emission intensities of ethidium bromide bound ct-DNA in presence of the complex indicate noticeable interaction between ct-DNA and the complex with the binding constant (4.2 ± 0.11) × 106 M- 1. Life-time measurements have been studied to determine the relative amplitude of binding of the complex to ct-DNA base pairs. Mode of binding interaction of the complex with ct-DNA has been deciphered by viscosity measurements. CD spectra have also been used to understand the changes in ct-DNA structure upon binding with the metal complex. Density functional theory (DFT) and molecular docking analysis have been employed in highlighting the interactive phenomenon and binding location of the complex with the macromolecules.

  9. ELP-OPH/BSA/TiO2 nanofibers/c-MWCNTs based biosensor for sensitive and selective determination of p-nitrophenyl substituted organophosphate pesticides in aqueous system.

    PubMed

    Bao, Jing; Hou, Changjun; Dong, Qiuchen; Ma, Xiaoyu; Chen, Jun; Huo, Danqun; Yang, Mei; Galil, Khaled Hussein Abd El; Chen, Wilfred; Lei, Yu

    2016-11-15

    A novel biosensor for rapid, sensitive and selective monitoring of p-nitrophenyl substituted organophosphate pesticides (OPs) in aqueous system was developed using a functional nanocomposite which consists of elastin-like-polypeptide-organophosphate hydrolase (ELP-OPH), bovine serum albumin (BSA), titanium dioxide nanofibers (TiO2NFs) and carboxylic acid functionalized multi-walled carbon nanotubes (c-MWCNTs). ELP-OPH was simply purified from genetically engineered Escherichia coli based on the unique phase transition of ELP and thus served as biocatalyst for OPs, while BSA was used to stabilize OPH activity in the nanocomposite. TiO2NFs was employed to enrich organophosphates in the nanocomposite due to its strong affinity with phosphoric group in OPs, while c-MWCNTs was used to enhance the electron transfer in the amperometric detection as well as for covalent immobilization of ELP-OPH. ELP-OPH/BSA/TiO2NFs/c-MWCNTs nanocomposite were systematically characterized using field emission scanning electron microscopy (SEM), Raman spectra, Fourier Transform infrared spectroscopy (FTIR) and X-ray Diffraction (XRD). Under the optimized operating conditions, the ELP-OPH/BSA/TiO2NFs/c-MWCNTs based biosensor for OPs shows a wide linear range, a fast response (less than 5s) and limits of detection (S/N=3) as low as 12nM and 10nM for methyl parathion and parathion, respectively. Such excellent sensing performance can be attributed to the synergistic effects of the individual components in the nanocomposite. Its further application for selectively monitoring OPs compounds spiked in lake water samples was also demonstrated with good accuracy. These features indicate that the developed nanocomposite offers an excellent biosensing platform for rapid, sensitive and selective detection of organophosphates compounds. PMID:27315519

  10. Green synthesis of anticancerous honeycomb PtNPs clusters: Their alteration effect on BSA and HsDNA using fluorescence probe.

    PubMed

    Pansare, Amol V; Kulal, Dnyaneshwar K; Shedge, Amol A; Patil, Vishwanath R

    2016-09-01

    The screening and characterization of cancer cells has been challenging due to sample insufficiency and extravagant. In this article, we highlighted easy green synthesis of Platinum nanoparticles (PtNPs) in the honeycomb like clusters, and their optical properties (by HRTEM, XRD, DLS, Zeta potential, EDAX, and UV-Visible techniques). PtNPs were responsive of binding mechanisms with the bovine serum albumin (BSA), herring sperm deoxyribonucleic acid (HsDNA) and cytotoxicity of human carcinomas cell. We are able to elucidate the responses of various concentrations of PtNPs for the control of MDA-MB-468 cell and binding conformation of BSA and HsDNA by using multi-spectroscopic techniques under the physiological conditions. The extent of quenching was in agreement of PtNPs-BSA binding reaction was mainly a static. The Ksv, K, the number of binding sites at different temperatures and the thermodynamic parameters between BSA and PtNPs were calculated. The positive ΔS(0) and negative ΔH(0), ΔG(0) values indicated that the binding pattern was determined by spontaneous hydrogen bond electrostatic interaction of BSA with esterage like activity. The binding properties of the PtNPs with HsDNA have been investigated by thermal denaturation, competitive DNA-binding studies with ethidium bromide (EB), Hochest-33258 and relative viscosity. The negative ΔH(0), ΔS(0) and ΔG(0) values indicated that the hydrophilic interaction were main force in spontaneity in binding mechanism of PtNPs to HsDNA. GI50 value of PtNPs demonstrated that these nanoparticles showed cytotoxicity against MDA-MB-468 human breast cancer cell line. Our results also clarified that PtNPs bind to BSA and can be effectively transported in the body and eliminated. PtNPs showed minor groove binding with HsDNA, which could be a useful guideline for further versatile approach to develop biomedical coatings with different functions of drug design. PMID:27450301

  11. Depolymerization of insulin amyloid fibrils by albumin-modified magnetic fluid

    NASA Astrophysics Data System (ADS)

    Siposova, Katarina; Kubovcikova, Martina; Bednarikova, Zuzana; Koneracka, Martina; Zavisova, Vlasta; Antosova, Andrea; Kopcansky, Peter; Daxnerova, Zuzana; Gazova, Zuzana

    2012-02-01

    Pathogenesis of amyloid-related diseases is associated with the presence of protein amyloid deposits. Insulin amyloids have been reported in a patient with diabetes undergoing treatment by injection of insulin and causes problems in the production and storage of this drug and in application of insulin pumps. We have studied the interference of insulin amyloid fibrils with a series of 18 albumin magnetic fluids (MFBSAs) consisting of magnetite nanoparticles modified by different amounts of bovine serum albumin (w/w BSA/Fe3O4 from 0.005 up to 15). We have found that MFBSAs are able to destroy amyloid fibrils in vitro. The extent of fibril depolymerization was affected by nanoparticle physical-chemical properties (hydrodynamic diameter, zeta potential and isoelectric point) determined by the BSA amount present in MFBSAs. The most effective were MFBSAs with lower BSA/Fe3O4 ratios (from 0.005 to 0.1) characteristic of about 90% depolymerizing activity. For the most active magnetic fluids (ratios 0.01 and 0.02) the DC50 values were determined in the range of low concentrations, indicating their ability to interfere with insulin fibrils at stoichiometric concentrations. We assume that the present findings represent a starting point for the application of the active MFBSAs as therapeutic agents targeting insulin amyloidosis.

  12. Evaluation of mixed-mode chromatographic resins for separating IgG from serum albumin containing feedstock.

    PubMed

    Wang, Rong-Zhu; Lin, Dong-Qiang; Tong, Hong-Fei; Lu, Hui-Li; Yao, Shan-Jing

    2013-10-01

    Mixed-mode chromatography has been focused as a cost-effective new technique for antibody purification. In this study, four mixed-mode resins with N-benzyl-N-methyl ethanol amine, 2-benzamido-4-mercaptobutanoic acide, 4-mercapto-ethyl-pyridine and phenylpropylamine as the ligands were tested and the multi-functional interactions between ligand and protein were discussed. Immunoglobulin G (IgG), bovine serum albumin (BSA) and the binary mixture of BSA and IgG were used as the model feedstock to compare the separation behaviors by pH gradient elution. The comparison analysis showed mixed-mode resin with N-benzyl-N-methyl ethanol amine as the ligand had the best ability to separate IgG and BSA. The results indicated that for four resins tested ionic interaction might play the dominant role in the separation of IgG and BSA while the hydrophobic interactions and hydrogen bonding have some subsidiary effects. The pH stepwise elution and sample loading were optimized to improve the IgG purification from serum albumin containing feedstock. High purity (92.3%) and high recovery (95.6%) of IgG were obtained. The results indicated that mixed-mode chromatography would be a potential option for antibody purification with the control of loading and elution conditions. PMID:23973532

  13. Serum albumin attenuates the open-channel blocking effects of propofol on the human Kv1.5 channel.

    PubMed

    Kojima, Akiko; Bai, Jia-Yu; Ito, Yuki; Ding, Wei-Guang; Kitagawa, Hirotoshi; Matsuura, Hiroshi

    2016-07-15

    The intravenous anesthetic propofol modulates various ion channel functions. It is generally accepted that approximately 98% of propofol binds to blood constituents and that the free (unbound) drug preferentially affects target proteins including ion channels. However, modulatory effects of propofol on ion channels have not been previously explored in the presence of serum albumin. This study was designed to investigate the effects of serum albumin on the blocking action of propofol on the human Kv1.5 (hKv1.5) current. Whole-cell patch-clamp method was used to record the hKv1.5 channel current, heterologously expressed in Chinese hamster ovary cells, in the absence and presence of bovine serum albumin (BSA). Propofol induced a time-dependent decline of the hKv1.5 current during depolarizing steps and slowed the time course of tail current decay upon repolarization, supporting that propofol acts as an open-channel blocker. This blocking effect was reversible and concentration-dependent with an IC50 of 62.9±3.1μM (n = 6). Bath application of 1% BSA markedly reduced the blocking potency of propofol on hKv1.5 current (IC50 of 1116.0±491.4μM; n = 6). However, in the presence of BSA, the propofol-induced inhibition of hKv1.5 current was also accompanied by a gradual decline of activated current during depolarization and deceleration of deactivating tail current upon repolarization. The presence of BSA greatly attenuated the blocking potency of propofol on hKv1.5 channel without affecting the mode of action of propofol on the channel. Serum albumin thus appears to bind to propofol and thereby reducing effective concentrations of the drug for inhibition of hKv1.5 channel. PMID:27164421

  14. Sonoluminescence characterization of inertial cavitation inside a BSA phantom treated by pulsed HIFU.

    PubMed

    Yin, Hui; Chang, Nan; Xu, Shanshan; Wan, Mingxi

    2016-09-01

    The aim of this study was to investigate the inertial cavitation inside a phantom treated by pulsed HIFU (pHIFU). Basic bovine serum albumin (BSA) phantoms without any inherent ultrasound contrast agents (UCAs) or phase-shift nano-emulsions (PSNEs) were used. During the treatment, sonoluminescence (SL) recordings were performed to characterize the spatial distribution of inertial cavitation adjacent to the focal region. High-speed photographs and thermal coagulations, comparing with the SL results, were also recorded and presented. A series of pulse parameters (pulse duration (PD) was between 1 and 23 cycles and pulse repetition frequency (PRF) was between 0.5kHz and 100kHz) were performed to make a systematic investigation under certain acoustic power (APW). Continuous HIFU (cHIFU) investigation was also performed to serve as control group. It was found that, when APW was 19.5W, pHIFU with short PD was much easier to form SL adjacent to the focal region inside the phantom, while it was difficult for cHIFU to generate cavitation bubbles. With appropriate PD and PRF, the residual bubbles of the previous pulses could be stimulated by the incident pulses to oscillate in a higher level and even violently collapse, resulting to enhanced physical thermogenesis. The experimental results showed that the most violent inertial cavitation occurs when PD was set to 6 cycles (5μs) and PRF to 10kHz, while the highest level of thermal coagulation was observed when PD was set to 10 cycles. The cavitational and thermal characteristics were in good correspondence, exhibiting significant potentiality regarding to inject-free cavitation bubble enhanced thermal ablation under lower APW, compared to the conventional thermotherapy. PMID:27150756

  15. Bovine serum albumin interacts with silver nanoparticles with a "side-on" or "end on" conformation.

    PubMed

    Dasgupta, Nandita; Ranjan, Shivendu; Patra, Dhabaleswar; Srivastava, Priyanka; Kumar, Ashutosh; Ramalingam, Chidambaram

    2016-06-25

    As the nanoparticles (NPs) enter into the biological interface, they have to encounter immediate and first exposure to many proteins of different concentrations. The physicochemical interaction of NPs and proteins is greatly influenced not only by the number and type of proteins; but also the surface chemistry of NPs. To analyze the effects of NPs on proteins, the interaction between bovine serum albumin (BSA) and silver nanoparticles (AgNPs) at different concentrations were investigated. The interaction, BSA conformations, kinetics and adsorption were analyzed by UV-Visible spectrophotometer, dynamic light scattering (DLS), FT-IR spectroscopy and fluorescence quenching. DLS, FTIR and UV-visible spectrophotometric analysis confirms the interaction with minor alterations in size of the protein. Fluorescence quenching analysis confirms the side-on or end-on interaction of 1.5 molecules of BSA to AgNP. Further, pseudo-second order kinetics was determined with equilibrium contact-time of 30 min. The data of the present study determines the detailed evaluation of BSA adsorption on AgNP along with mechanism, kinetics and isotherm of the adsorption. PMID:27180205

  16. Interaction of the Anticancer Plant Alkaloid Sanguinarine with Bovine Serum Albumin

    PubMed Central

    Suresh Kumar, Gopinatha

    2011-01-01

    Background Interaction of the iminium and alkanolamine forms of sanguinarine with bovine serum albumin (BSA) was characterized by spectroscopic and calorimetric techniques. Methodology/Principal Findings Formation of strong complexes of BSA with both iminium and alkanolamine forms was revealed from fluorescence quenching of sanguinarine. Binding parameters calculated from Stern-Volmer quenching method revealed that the neutral alkanolamine had higher affinity to BSA compared to the charged iminium form. Specific binding distances of 3.37 and 2.38 nm between Trp 212 (donor) and iminium and alkanolamine forms (acceptor), respectively, were obtained from Forster resonance energy transfer studies. Competitive binding using the site markers warfarin and ibuprofen, having definite binding sites, demonstrated that both forms of sanguinarine bind to site I (subdomain IIA) on BSA. Sanguinarine binding alters protein conformation by reducing the α-helical organization and increasing the coiled structure, indicating a small but definitive partial unfolding of the protein. Thermodynamic parameters evaluated from isothermal titration calorimetry suggested that the binding was enthalpy driven for the iminium form but favoured by negative enthalpy and strong favourable entropy contributions for the alkanolamine form, revealing the involvement of different molecular forces in the complexation. Conclusions/Significance The results suggest that the neutral alkanolamine form binds to the protein more favourably compared to the charged iminium, in stark contrast to the reported DNA binding preference of sanguinarine. PMID:21494677

  17. Biomimetic synthesis of hybrid hydroxyapatite nanoparticles using nanogel template for controlled release of bovine serum albumin.

    PubMed

    Qin, Jinli; Zhong, Zhenyu; Ma, Jun

    2016-05-01

    A biomimetic method was used to prepare hybrid hydroxyapatite (HAP) nanoparticles with chitosan/polyacrylic acid (CS-PAA) nanogel. The morphology, structure, crystallinity, thermal properties and biocompatibility of the obtained hybrid nanogel-HAP nanoparticles have been characterized. In addition, bovine serum albumin (BSA) was used as a model protein to study the loading and release behaviors of the hybrid nanogel-HAP nanoparticles. The results indicated that the obtained HAP nanoparticles were agglomerated and the nanogel could regulate the formation of HAP. When the nanogel concentration decreased, different HAP crystal shapes and agglomerate structures were obtained. The loading amount of BSA reached 67.6 mg/g for the hybrid nanoparticles when the mineral content was 90.4%, which decreased when the nanogel concentration increased. The release profile of BSA was sustained in neutral buffer. Meanwhile, an initial burst release was found at pH 4.5 due to the desorption of BSA from the surface, followed by a slow release. The hemolysis percentage of the hybrid nanoparticles was close to the negative control, and these particles were non-toxic to bone marrow stromal stem cells. The results suggest that these hybrid nanogel-HAP nanoparticles are promising candidate materials for biocompatible drug delivery systems. PMID:26952436

  18. Controlling the taste receptor accessible structure of rebaudioside A via binding to bovine serum albumin.

    PubMed

    Mudgal, Samriddh; Keresztes, Ivan; Feigenson, Gerald W; Rizvi, S S H

    2016-04-15

    We illustrate a method that uses bovine serum albumin (BSA) to control the receptor-accessible part of rebaudioside A (Reb A). The critical micelle concentration (CMC) of Reb A was found to be 4.5 mM and 5 mM at pH 3 and 6.7 respectively. NMR studies show that below its CMC, Reb A binds weakly to BSA to generate a Reb A-protein complex ("RPC"), which is only modestly stable under varying conditions of pH (3.0-6.7) and temperature (4-40°C) with its binding affinities determined to be in the range of 5-280 mM. Furthermore, saturation transfer difference (STD) NMR experiments confirm that the RPC has fast exchange of the bitterness-instigating diterpene of Reb A into the binding sites of BSA. Our method can be used to alter the strength of Reb A-receptor interaction, as a result of binding of Reb A to BSA, which may ultimately lead to moderation of its taste. PMID:26616927

  19. Elucidating the interaction of limonene with bovine serum albumin: a multi-technique approach.

    PubMed

    Chaturvedi, Sumit Kumar; Ahmad, Ejaz; Khan, Javed Masood; Alam, Parvez; Ishtikhar, Mohd; Khan, Rizwan Hasan

    2015-01-01

    The interaction of Bovine Serum Albumin (BSA) with limonene has been studied by UV-visible spectroscopy, fluorescence spectroscopy and molecular docking, and its effects on protein conformation, topology and stability were determined by Circular Dichroism (CD), Dynamic Light Scattering (DLS) and Differential Scanning Calorimetry (DSC). A gradual decrease in Stern-Volmer quenching constants with the increase in temperature showed the static mode of fluorescence quenching. The obtained binding constant (Kb) was ∼10(4) M(-1). The temperature dependent Kb, Gibbs free energy (ΔG), enthalpy (ΔH) and entropy (ΔS) changes were calculated, which revealed that the reaction is spontaneous and exothermic. The UV-visible spectra showed a change in the peaks within the aromatic region indicating hydrophobic interactions with Trp, Tyr and Phe in the protein. Moreover, limonene induced an increase in α-helical contents probably on the cost of random coils or/and β-sheets of BSA, as observed from the far-UV CD spectra. The topology of BSA in the presence of limonene was slightly altered, as obtained from DLS results. The stability was also enhanced as revealed through thermal denaturation study by DSC and CD. Molecular docking study depicted that limonene fits into the hydrophobic pocket close to Sudlow site I in domain IIA of BSA. The present study will be helpful in understanding the binding mechanism of limonene and associated stability and conformational changes. PMID:25382435

  20. Fabrication and characterization of SPR chips with the modified bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Chen, Xing; Zhang, Lu-lu; Cui, Da-fu

    2016-03-01

    A facile surface plasmon resonance (SPR) chip is developed for small molecule determination and analysis. The SPR chip was prepared based on a self assembling principle, in which the modified bovine serum albumin (BSA) was directly self-assembled onto the bare gold surface. The surface morphology of the chip with the modified BSA was investigated by atomic force microscopy (AFM) and its optical properties were characterized. The surface binding capacity of the bare facile SPR chip with a uniform morphology is 8 times of that of the bare control SPR chip. Based on the experiments of immune reaction between cortisol antibody and cortisol derivative, the sensitivity of the facile SPR chip with the modified BSA is much higher than that of the control SPR chip with the un-modified BSA. The facile SPR chip has been successfully used to detect small molecules. The lowest detection limit is 5 ng/mL with a linear range of 5—100 ng/mL for cortisol analysis. The novel facile SPR chip can also be applied to detect other small molecules.

  1. Binding of dihydromyricetin and its metal ion complexes with bovine serum albumin

    PubMed Central

    Guo, Qingquan; Yuan, Juan; Zeng, Jinhua

    2014-01-01

    The binding mechanisms of the interaction of three dihydromyricetin (DMY)–metal complexes (DMY–Cu (II) complex, DMY–Mn (II) complex, DMY–Zn (II) complex) and DMY with bovine serum albumin (BSA) were investigated using fluorescence and ultraviolet spectroscopy at different temperatures. The results indicated some differences in the binding process between different DMY–metal complexes and BSA compared with that of free DMY. All of the complexes and DMY quenched the fluorescence of BSA based on static mode combined with radiationless energy transfer, yet having different binding distance based on the Förster theory. Different DMY–metal complexes can change the binding constants. The binding constants increase for DMY–Cu (II) and DMY–Mn (II) complexes, whereas the opposite is true for the DMY–Zn (II) complex compared to the one with free DMY. The DMY–metal complexes can also affect the types of the interaction. The van der Waals forces and hydrogen bonding may play a major role in the interaction of free DMY with BSA, while for the three complexes, the nature of the binding forces lies in hydrophobic forces and hydrogen bonding based on the thermodynamic parameters. PMID:26019518

  2. Spectral characterization of the binding and conformational changes of serum albumins upon interaction with an anticancer drug, anastrozole

    NASA Astrophysics Data System (ADS)

    Punith, Reeta; Seetharamappa, J.

    2012-06-01

    The present study employed different optical spectroscopic techniques viz., fluorescence, FTIR, circular dichroism (CD) and UV-vis absorption spectroscopy to investigate the mechanism of interaction of an anticancer drug, anastrozole (AZ) with transport proteins viz., bovine serum albumin (BSA) and human serum albumin (HSA). The drug, AZ quenched the intrinsic fluorescence of protein and the analysis of results revealed the presence of dynamic quenching mechanism. The binding characteristics of drug-protein were computed. The thermodynamic parameters, enthalpy change (ΔH°) and entropy change (ΔS°) were calculated to be +92.99 kJ/mol and +159.18 J/mol/K for AZ-BSA and, +99.43 kJ/mol and +159.19 J/mol/K for AZ-HSA, respectively. These results indicated that the hydrophobic forces stabilized the interaction between the drug and protein. CD, FTIR, absorption, synchronous and 3D fluorescence results indicated that the binding of AZ to protein induced structural perturbation in both serum albumins. The distance, r between the drug and protein was calculated based on the theory of Förster's resonance energy transfer and found to be 5.9 and 6.24 nm, respectively for AZ-BSA and AZ-HSA.

  3. Fenofibrate, a PPARα agonist, protect proximal tubular cells from albumin-bound fatty acids induced apoptosis via the activation of NF-kB

    PubMed Central

    Zuo, Nan; Zheng, Xiaoyu; Liu, Hanzhe; Ma, Xiaoli

    2015-01-01

    Albumin-bound fatty acids is the main cause of renal damage, PPARα is responsible in the metabolism of fatty acids. Previous study found that PPARα played a protective role in fatty acids overload associated tubular injury. The aim of the present study is to investigate whether fenofibrate, a PPARα ligands, could contribute to the renoprotective action in fatty acids overload proximal tubule epithelial cells. We observed in HK-2 cells that fenofibrate significantly inhibited fatty acids bound albumin (FA-BSA) induced up-regulation of MCP-1 and IL-8. Treatment with fenofibrate attenuated renal oxidative stress induced by FA-BSA as evidenced by decreased MDA level, increased SOD activity and catalase, GPx-1 expression. FA-BSA induced apoptosis of HK-2 cells were also obviously prevented by fenofibrate. Furthermore, fenofibrate significantly increased the expression of PPARα mRNA and protein in FA-BSA treated cells. Finally, the activation of NF-kB induced by FA-BSA was markedly suppressed by fenofibrate. Taken together, our study describes a renoprotective role of fenofibrate in fatty acids associated tubular toxicity, and the transcriptional activation of PPARα and suppression of NF-kB were at least partially involved. PMID:26617775

  4. Fenofibrate, a PPARα agonist, protect proximal tubular cells from albumin-bound fatty acids induced apoptosis via the activation of NF-kB.

    PubMed

    Zuo, Nan; Zheng, Xiaoyu; Liu, Hanzhe; Ma, Xiaoli

    2015-01-01

    Albumin-bound fatty acids is the main cause of renal damage, PPARα is responsible in the metabolism of fatty acids. Previous study found that PPARα played a protective role in fatty acids overload associated tubular injury. The aim of the present study is to investigate whether fenofibrate, a PPARα ligands, could contribute to the renoprotective action in fatty acids overload proximal tubule epithelial cells. We observed in HK-2 cells that fenofibrate significantly inhibited fatty acids bound albumin (FA-BSA) induced up-regulation of MCP-1 and IL-8. Treatment with fenofibrate attenuated renal oxidative stress induced by FA-BSA as evidenced by decreased MDA level, increased SOD activity and catalase, GPx-1 expression. FA-BSA induced apoptosis of HK-2 cells were also obviously prevented by fenofibrate. Furthermore, fenofibrate significantly increased the expression of PPARα mRNA and protein in FA-BSA treated cells. Finally, the activation of NF-kB induced by FA-BSA was markedly suppressed by fenofibrate. Taken together, our study describes a renoprotective role of fenofibrate in fatty acids associated tubular toxicity, and the transcriptional activation of PPARα and suppression of NF-kB were at least partially involved. PMID:26617775

  5. Exploring the binding mechanism of 5-hydroxy-3‧,4‧,7-trimethoxyflavone with bovine serum albumin: Spectroscopic and computational approach

    NASA Astrophysics Data System (ADS)

    Sudha, A.; Srinivasan, P.; Thamilarasan, V.; Sengottuvelan, N.

    2016-03-01

    The current study was carried out to investigate the binding mechanism of a potential flavonoid compound 5-hydroxy-3‧,4‧,7-trimethoxyflavone (HTMF) with bovine serum albumin (BSA) using ultraviolet-visible, fluorescence, circular dichroism (CD) spectral measurements along with molecular docking and molecular dynamics (MD) simulation. It was confirmed from fluorescence spectra that the intrinsic fluorescence of BSA was robustly quenched by HTMF through a static quenching mechanism. The number of binding sites (n) for HTMF binding on BSA was found to be about one. The thermodynamic parameters estimated from the van't Hoff plot specified that hydrophobic force was the predominant force in the HTMF-BSA complex and there also exist hydrogen bonds and electrostatic interactions. The effect of HTMF on the BSA conformation examined using CD studies revealed that there is a decrease in the helical content of BSA upon HTMF interaction. The results of molecular docking study shed light on the binding mode which exposed that HTMF bind within the hydrophobic pocket of the subdomain IIIA of BSA. The stability of HTMF-BSA complex with respect to free protein was analyzed from the molecular dynamic studies. The electronic structure analysis of HTMF was achieved by using density functional theory (DFT) calculations at B3LYP/6-31G** level to support its antioxidant role. The results of computational analysis are in good consistence with the experimental data and the present findings suggested that HTMF exhibits a good binding propensity to BSA protein which will be helpful for the drug design.

  6. Structural studies on serum albumins under green light irradiation.

    PubMed

    Comorosan, Sorin; Polosan, Silviu; Popescu, Irinel; Ionescu, Elena; Mitrica, Radu; Cristache, Ligia; State, Alina Elena

    2010-10-01

    This paper presents two new experimental results: the protective effect of green light (GL) on ultraviolet (UV) denaturation of proteins, and the effect of GL on protein macromolecular structures. The protective effect of GL was revealed on two serum albumins, bovine (BSA) and human (HSA), and recorded by electrophoresis, absorption, and circular dichroism spectra. The effect of GL irradiation on protein structure was recorded by using fluorescence spectroscopy and electrophoresis. These new effects were modeled by quantum-chemistry computation using Gaussian 03 W, leading to good fit between theoretical and experimental absorption and circular dichroism spectra. A mechanism for these phenomena is suggested, based on a double-photon absorption process. This nonlinear effect may lead to generation of long-lived Rydberg macromolecular systems, capable of long-range interactions. These newly suggested systems, with macroscopic quantum coherence behaviors, may block the UV denaturation processes. PMID:20473754

  7. The effects of radioiodination and fluorescent labelling on albumin

    SciTech Connect

    Crandall, R.E.; Janatova, J.; Andrade, J.D.

    1981-01-01

    The preparation and characterization of fluorescamine -, fluorescein isothiocyanate (FITC) -, and radioiodine-labelled bovine serum albumin is critically evaluated. Electrophoretic mobility and ion-exchange chromatography, together with measures of degree of conjugation and sulfhydryl content, are used to assess the changes due to conjugation. Fluorescamine labelling results in drastic changes in chromatographic behavior and electrophoretic mobility. FITC labelling also results in significant changes in chromatographic and electrophoretic properties. Radioiodination leads to minor changes in chromatographic properties and oxydation of sulfhydryl groups, with little or no change in electrophoretic properties. All three labels have some degree of lability and show increased levels of free label with time, even after extensive initial purification. It is concluded that the two fluorescent labels and possibly the radioiodine labelling method used here are unsuitable for certain studies of BSA, such as its adsorption at solid-liquid interfaces.

  8. Microvascular fluid exchange following thermal skin injury in the rat: changes in extravascular colloid osmotic pressure, albumin mass, and water content.

    PubMed

    Lund, T; Reed, R K

    1986-01-01

    Microvascular fluid exchange was studied in rats subjected to 0, 10, and 40% body surface area (BSA) full-thickness cutaneous burns without providing fluid substitution. The total amounts of water and of albumin entering the entire burned skin area following 10% BSA burns were similar to that in 40% BSA burns. Colloid osmotic pressure in interstitial fluid (COPi) was around 10 mmHg and did not change in the control group or in burned skin from the 40% BSA burn group. COPi after 10% burns increased to 15 mmHg in injured skin, while plasma COP fell from 16 to 12.5 mmHg. Preburn, the interstitial albumin mass (Qalb) was 14.9 mg/g dry tissue weight (DW) and increased to 42 and 20 mg/g DW in injured skin after 10 and 40% burns, respectively. Extravasation of radiolabeled albumin (Ealb) estimated as plasma equivalents per 30 min increased from 6.0 to 321 microliters/g DW at 30-60 min postburn (PB) in injured skin following 10% BSA burns. At 90-120 and 150-180 min PB Ealb in this group was reduced to approximately 120 microliters/g DW. These levels of Ealb were roughly 6 times higher than those after 40% BSA burns. Total tissue water (TTW) was 1.78 ml/g DW preburn and increased to 3.0 and 2.0 ml X g-1 DW PB in the 10 and 40% burn groups, respectively. TTW and Qalb did not change beyond 60 min PB. PMID:3779907

  9. Kinetics of Thermal Denaturation and Aggregation of Bovine Serum Albumin

    PubMed Central

    Borzova, Vera A.; Markossian, Kira A.; Chebotareva, Natalia A.; Kleymenov, Sergey Yu.; Poliansky, Nikolay B.; Muranov, Konstantin O.; Stein-Margolina, Vita A.; Shubin, Vladimir V.; Markov, Denis I.; Kurganov, Boris I.

    2016-01-01

    Thermal aggregation of bovine serum albumin (BSA) has been studied using dynamic light scattering, asymmetric flow field-flow fractionation and analytical ultracentrifugation. The studies were carried out at fixed temperatures (60°C, 65°C, 70°C and 80°C) in 0.1 M phosphate buffer, pH 7.0, at BSA concentration of 1 mg/ml. Thermal denaturation of the protein was studied by differential scanning calorimetry. Analysis of the experimental data shows that at 65°C the stage of protein unfolding and individual stages of protein aggregation are markedly separated in time. This circumstance allowed us to propose the following mechanism of thermal aggregation of BSA. Protein unfolding results in the formation of two forms of the non-native protein with different propensity to aggregation. One of the forms (highly reactive unfolded form, Uhr) is characterized by a high rate of aggregation. Aggregation of Uhr leads to the formation of primary aggregates with the hydrodynamic radius (Rh,1) of 10.3 nm. The second form (low reactive unfolded form, Ulr) participates in the aggregation process by its attachment to the primary aggregates produced by the Uhr form and possesses ability for self-aggregation with formation of stable small-sized aggregates (Ast). At complete exhaustion of Ulr, secondary aggregates with the hydrodynamic radius (Rh,2) of 12.8 nm are formed. At 60°C the rates of unfolding and aggregation are commensurate, at 70°C the rates of formation of the primary and secondary aggregates are commensurate, at 80°C the registration of the initial stages of aggregation is complicated by formation of large-sized aggregates. PMID:27101281

  10. CdSe/ZnS quantum dots based electrochemical immunoassay for the detection of phosphorylated bovine serum albumin

    SciTech Connect

    Pinwattana, Kulwadee; Wang, Jun; Lin, Chiann Tso; Wu, Hong; Du, Dan; Lin, Yuehe; Chailapakul, Orawon

    2010-11-15

    A CdSe/ZnS quantum dot (QD) based electrochemical immunoassay of phosphorylated bovine serum albumin as a protein biomarker is presented. The QDs were used as labels and were conjugated with the secondary anti-phosphoserine antibody in a heterogeneous sandwich immunoassay. First, the primary BSA antibody was immobilized on polystyrene microwells, followed by the addition of BSA-OP. After that, the QD-labeled anti-phosphoserine antibody was added into microwells for immunorecognition. Finally, the bound QD was dissolved in an acid-dissolution step and was detected by electrochemical stripping analysis. The measured current responses were proportional to the concentration of BSA-OP. Under optimal conditions, the voltammetric response was linear over the range of 0.5 - 500 ng mL-1 of BSA-OP, with a detection limit of 0.5 ng mL-1 at a deposition potential of -1.2 V for 120 s. It also shows good reproducibility with a relative standard deviation of 8.6% of six times determination of 25 ng mL-1 of BSA-OP. This QD-based electrochemical immunoassay offers great promise for simple and cost-effective analysis of protein biomarkers.

  11. The influence of common metal ions on the interactions of the isoflavone genistein with bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Singha Roy, Atanu; Tripathy, Debi Ranjan; Chatterjee, Angshuman; Dasgupta, Swagata

    2013-02-01

    The interaction of genistein with bovine serum albumin (BSA) has been characterized via UV-vis, fluorescence spectroscopy and Circular Dichroism (CD) measurements under physiological conditions. In this study, we have investigated the effect of some common metal ions on the binding of genistein with BSA using fluorescence studies. The fluorescence data reveal that the binding affinity of genistein to BSA increases in presence of certain metal ions. The possibility of non-radiative energy transition from the donor tryptophan to the acceptor genistein has been observed in absence and presence of metal ions. The observed similarities in the values of efficiency of energy transfer (E) and the separation between the donor and acceptor (r) in both the cases may be correlated with the complexation between the genistein and metal ions, which is also observed from the UV-vis studies. The changes in enthalpy (ΔH°) and entropy (ΔS°) of the interaction were found to be -14.64 kJ mol-1 and +42.75 J mol-1 K-1 respectively. These values indicate the involvement of electrostatic interactions along with a hydrophobic association that results in a positive entropy change. CD analysis shows that there is a slight increase in the% α-helical content of BSA on binding with genistein at lower molar ratios. Warfarin and ibuprofen displacement studies in accordance with the molecular docking show that genistein binds to site I (subdomain IIA) of BSA.

  12. Combined multispectroscopic and molecular docking investigation on the interaction between delphinidin-3-O-glucoside and bovine serum albumin.

    PubMed

    Zuo, Huijun; Tang, Lin; Li, Shu; Huang, Junwei

    2015-02-01

    Anthocyanin is one of the flavonoid phytopigments with specific health benefits. The interaction between delphinidin-3-O-glucoside (D3G) and bovine serum albumin (BSA) was investigated by fluorescence spectroscopy, synchronous fluorescence spectroscopy, three-dimensional fluorescence spectroscopy, ultraviolet-visible absorption spectroscopy, circular dichroism spectroscopy and molecular modeling. D3G effectively quenched the intrinsic fluorescence of BSA via static quenching. The number of binding sites and binding constant Ka were determined, and the hydrogen bonds and van der Waals forces played major roles in stabilizing the D3G-BSA complex. The distance r between donor and acceptor was obtained as 2.81 nm according to Förster's theory. In addition, the effects of pH and metal ions on the binding constants were discussed. The results studied by synchronous fluorescence, three-dimensional fluorescence and circular dichroism experiments indicated that the secondary structures of the protein has been changed by the addition of D3G and the α-helix content of BSA decreased (from 56.1% to 52.4%). Furthermore, the study of site marker competitive experiments and molecular modeling indicated that D3G could bind to site I of BSA, which was in the large hydrophobic cavity of subdomain IIA. PMID:24891226

  13. Bovine Serum Albumin Nanoparticles Containing Quercetin: Characterization and Antioxidant Activity.

    PubMed

    Antônio, Emilli; Khalil, Najeh Maissar; Mainardes, Rubiana Mara

    2016-02-01

    Quercetin is a flavonoid reported as anti-allergic, anti-inflammatory, antiplatelet, anti-microbial, antioxidant, antineurodegenerative and antitumoral. However, due to its low water solubility, its efficacy is restricted. Nanotechnology can be an importante tool to improve the quercetin properties and increase its bioavailability. In this study, bovine serum albumin (BSA) nanoparticles containing quercetin were developed by desolvation technique, characterized the mean particle size, polydispersity, zeta potential, encapsulation efficiency, physical state of drug in nanoparticles and drug release profile as well as their antioxidant activity was evaluated. The influence of glutaraldehyde percentage in nanoparticles properties was evaluated and did not influence the nanoparticles parameters. Nanoparticles presented a mean size around 130 nm and encapsulation efficiency around 85%. Results from X-ray diffractometry showed that the crystal of the drug was converted to an amorphous state in polymeric matrix. Quercetin release profile demonstrated a biphasic pattern and after 96 h approximately 18% of drug was released. Kinetic models demonstrated that the quercetin release followed a second-order model and the release was governed by Fickian diffusion. After 96 h, quercetin-loaded nanoparticles were more effective than free quercetin for scanvenger of radical ABTS + and hypochlorous acid. BSA nanoparticles represents potential carriers for improve quercetin properties. PMID:27433585

  14. In vitro antiproliferative effects of albumin-doxorubicin conjugates against Ewing's sarcoma and peripheral neuroectodermal tumor cells.

    PubMed

    Gabor, F; Wollmann, K; Theyer, G; Haberl, I; Hamilton, G

    1994-01-01

    The 3-5 year survival rates of patients with disseminated Ewing's sarcoma (ES) or the closely related peripheral primitive neuroectodermal tumors (PNET) remain low, even under aggressive treatment involving highly toxic multidrug chemotherapeutic regimens. ES and PNET are sensitive to doxorubicin, but may escape treatment by expression of the multidrug-resistant phenotype and/or other mechanisms. In this study, we have identified albumin as growth supporting factor for ES and PNET cells in IGF-I-supplemented serum-free tissue culture medium. To investigate the specificity and toxicity of albumin-based drug conjugates, doxorubicin was coupled to bovine serum albumin (BSA) by either a two step glutaraldehyde or carbodiimide-C4-spacer technique, yielding monomeric DOX-albumin conjugates with conjugation numbers ranging from 3-20 moles DOX/mole BSA. Cellular uptake of fluorescein-isothiocyanate-(FITC)-labeled albumin and DOX-albumin conjugates could be demonstrated by flow cytometric measurements of cell-associated fluorescence and confocal microscopy. The cytostatic activity of these conjugates against ES/PNET cell lines, a neuroblastoma (LAN-1) and prostate cancer carcinoma cell line (PC-3) and normal lymphoblasts was tested in short-term proliferation assays (48 h). The results show a high selectivity of the DOX-albumin conjugates for ES/PNET cell lines, with highest growth inhibition by conjugates with low DOX conjugation numbers (n = 3) in serum-supplemented medium (17-32 fold loss of activity compared to free DOX), followed by 20-DOX-C4-albumin in serum-free medium and low activity of the other conjugates. In conclusion, DOX-albumin conjugates inhibit the growth of ES/PNET cell lines selectively, showing low activity against the unrelated carcinoma line PC-3 and sparing normal lymphoblasts. The inverse correlation of activity and conjugation number demonstrates a low cytotoxic activity of DOX in acid-stable binding to monomeric albumin, pointing to a selective

  15. Experimental immune complex glomerulonephritis and the nephrotic syndrome in cats immunised with cationised bovine serum albumin.

    PubMed

    Nash, A S; Mohammed, N A; Wright, N G

    1990-11-01

    Membranous nephropathy was induced in four cats by repeated intravenous injections of 120 mg cationic bovine serum albumin (BSA, pI 9.5). All four cats developed diffuse granular deposits of IgG and C3 along the glomerular capillary walls as early as five weeks which persisted until the end of the experiment at 17 weeks. Ultrastructural studies revealed many subepithelial electron dense deposits. Two cats developed severe proteinuria and the nephrotic syndrome characterised by hypoalbuminaemia and oedema. An additional four cats received repeated injections of unmodified native BSA (pI 4.5) and remained basically normal. This is the first report of membranous nephropathy and the nephrotic syndrome in an experimental animal model which, unlike other animal models, is subject to the spontaneously occurring disease. PMID:2148430

  16. Investigation of thermal denaturation of solid bovine serum albumin by terahertz dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Xiangjun; Fu, Xiuhua; Liu, Jianjun; Du, Yong; Hong, Zhi

    2013-10-01

    We investigate the thermal denaturation of solid bovine serum albumin (BSA) using terahertz time domain spectroscopy (THz-TDS). When the protein is heated up from 25 °C to 107 °C and cooled down to 25 °C again, an irreversible decrease in its THz absorption coefficient and refractive index is observed. The corresponding frequency-dependent permittivity during heating is fitted by the Debye model with single relaxation time. The relaxation times during temperature rising agree very well with Arrhenius equation with the activation energy of 6.52 kJ/(K·mol), which can be an indicator for the stability of BSA during thermal denaturation process.

  17. The complexity of condensed tannin binding to bovine serum albumin--An isothermal titration calorimetry study.

    PubMed

    Kilmister, Rachel L; Faulkner, Peta; Downey, Mark O; Darby, Samuel J; Falconer, Robert J

    2016-01-01

    Isothermal titration calorimetry was applied to study the binding of purified proanthocyanidin oligomers to bovine serum albumin (BSA). The molecular weight of the proanthocyanidin oligomer had a major impact on its binding to BSA. The calculated change in enthalpy (ΔH) and association constant (Ka) became greater as the oligomer size increased then plateaued at the heptameric oligomer. These results support a model for precipitation of proteins by proanthocyanidin where increased oligomer size enhanced the opportunity for cross linkages between proteins ultimately forming sediment-able complexes. The authors suggest tannin binding to proteins is opportunistic and involves multiple sites, each with a different Ka and ΔH of binding. The ΔH of binding comprises both an endothermic hydrophobic interaction and exothermic hydrogen bond component. This suggests the calculated entropy value (ΔS) for tannin-protein interactions is subject to a systematic error and should be interpreted with caution. PMID:26212957

  18. Albumin-Mediated Biomineralization of Paramagnetic NIR Ag2S QDs for Tiny Tumor Bimodal Targeted Imaging in Vivo.

    PubMed

    Zhang, Jing; Hao, Guangyu; Yao, Chenfei; Yu, Jiani; Wang, Jun; Yang, Weitao; Hu, Chunhong; Zhang, Bingbo

    2016-07-01

    Bimodal imaging has captured increasing interests due to its complementary characteristics of two kinds of imaging modalities. Among the various dual-modal imaging techniques, MR/fluorescence imaging has been widely studied owing to its high 3D resolution and sensitivity. There is, however, still a strong demand to construct biocompatible MR/fluorescence contrast agents with near-infrared (NIR) fluorescent emissions and high relaxivities. In this study, BSA-DTPA(Gd) derived from bovine serum albumin (BSA) as a novel kind of biotemplate is employed for biomineralization of paramagnetic NIR Ag2S quantum dots (denoted as Ag2S@BSA-DTPA(Gd) pQDs). This synthetic strategy is found to be bioinspired, environmentally benign, and straightforward. The obtained Ag2S@BSA-DTPA(Gd) pQDs have fine sizes (ca. 6 nm) and good colloidal stability. They exhibit unabated NIR fluorescent emission (ca. 790 nm) as well as high longitudinal relaxivity (r1 = 12.6 mM(-1) s(-1)) compared to that of commercial Magnevist (r1 = 3.13 mM(-1) s(-1)). In vivo tumor-bearing MR and fluorescence imaging both demonstrate that Ag2S@BSA-DTPA(Gd) pQDs have pronounced tiny tumor targeting capability. In vitro and in vivo toxicity study show Ag2S@BSA-DTPA(Gd) pQDs are biocompatible. Also, biodistribution analysis indicates they can be cleared from body mainly via liver metabolism. This protein-mediated biomineralized Ag2S@BSA-DTPA(Gd) pQDs presents great potential as a novel bimodal imaging contrast agent for tiny tumor diagnosis. PMID:27300300

  19. Effects of bovine serum albumin on boar sperm quality during liquid storage at 17°C.

    PubMed

    Zhang, X-G; Yan, G-J; Hong, J-Y; Su, Z-Z; Yang, G-S; Li, Q-W; Hu, J-H

    2015-04-01

    This study aimed to investigate the effects of bovine serum albumin (BSA) on boar sperm quality during liquid storage at 17°C. Boar semen samples were collected and diluted with Modena containing different concentrations (0, 1, 2, 3, 4, 5 and 6 g/l) of BSA, and sperm motility, plasma membrane integrity, acrosome integrity, total antioxidative capacity (T-AOC) activity and malondialdehyde (MDA) content were measured and analysed. The results showed that Modena supplemented with 3, 4 and 5 g/l BSA could improve boar sperm motility, effective survival time and plasma membrane integrity (p < 0.05), decrease MDA content (p < 0.05), while no statistical difference was observed for sperm acrosome integrity and T-AOC activity among these three groups (p > 0.05). The semen sample diluted with Modena containing 4 g/l BSA could achieve optimum effect, and sperm survival time was 7.5 days. After 7 days preservation, sperm motility, plasma membrane integrity and acrosome integrity were 54%, 49% and 78%, respectively. T-AOC activity and MDA content were 1.03 U/ml and 17.5 nmol/ml, respectively. In conclusion, Modena supplemented with BSA reduced the oxidative stress and improved the sperm quality of boar semen during liquid storage at 17°C, and 4 g/l BSA was the optimum concentration. Further studies are required to obtain more concrete results on the determination of antioxidant capacities of BSA in liquid preserved boar semen. PMID:25622981

  20. Protein adsorption and cell adhesion on nanoscale bioactive coatings formed from poly(ethylene glycol) and albumin microgels

    PubMed Central

    Scott, Evan A.; Nichols, Michael D.; Cordova, Lee H.; George, Brandon J.; Jun, Young-Shin; Elbert, Donald L.

    2008-01-01

    Late-term thrombosis on drug-eluting stents is an emerging problem that might be addressed using extremely thin, biologically-active hydrogel coatings. We report a dip-coating strategy to covalently link poly(ethylene glycol) (PEG) to substrates, producing coatings with <≈100 nm thickness. Gelation of PEG-octavinylsulfone with amines in either bovine serum albumin (BSA) or PEG-octaamine was monitored by dynamic light scattering (DLS), revealing the presence of microgels before macrogelation. NMR also revealed extremely high end group conversions prior to macrogelation, consistent with the formation of highly crosslinked microgels and deviation from Flory-Stockmayer theory. Before macrogelation, the reacting solutions were diluted and incubated with nucleophile-functionalized surfaces. Using optical waveguide lightmode spectroscopy (OWLS) and quartz crystal microbalance with dissipation (QCM-D), we identified a highly hydrated, protein-resistant layer with a thickness of approximately 75 nm. Atomic force microscopy in buffered water revealed the presence of coalesced spheres of various sizes but with diameters less than about 100 nm. Microgel-coated glass or poly(ethylene terephthalate) exhibited reduced protein adsorption and cell adhesion. Cellular interactions with the surface could be controlled by using different proteins to cap unreacted vinylsulfone groups within the coating. PMID:18771802

  1. Caveolae-mediated albumin transcytosis is enhanced in dengue-infected human endothelial cells: A model of vascular leakage in dengue hemorrhagic fever

    PubMed Central

    Chanthick, Chanettee; Kanlaya, Rattiyaporn; Kiatbumrung, Rattanaporn; Pattanakitsakul, Sa-nga; Thongboonkerd, Visith

    2016-01-01

    Vascular leakage is a life-threatening complication of dengue virus (DENV) infection. Previously, association between “paracellular” endothelial hyperpermeability and plasma leakage had been extensively investigated. However, whether “transcellular” endothelial leakage is involved in dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) remained unknown. We thus investigated effects of DENV (serotype 2) infection on transcellular transport of albumin, the main oncotic plasma protein, through human endothelial cell monolayer by Western blotting, immunofluorescence staining, fluorescence imaging, and fluorometry. The data showed that Alexa488-conjugated bovine serum albumin (Alexa488-BSA) was detectable inside DENV2-infected cells and its level was progressively increased during 48-h post-infection. While paracellular transport could be excluded using FITC-conjugated dextran, Alexa488-BSA was progressively increased and decreased in lower and upper chambers of Transwell, respectively. Pretreatment with nystatin, an inhibitor of caveolae-dependent endocytic pathway, significantly decreased albumin internalization into the DENV2-infected cells, whereas inhibitors of other endocytic pathways showed no significant effects. Co-localization of the internalized Alexa488-BSA and caveolin-1 was also observed. Our findings indicate that DENV infection enhances caveolae-mediated albumin transcytosis through human endothelial cells that may ultimately induce plasma leakage from intravascular compartment. Further elucidation of this model in vivo may lead to effective prevention and better therapeutic outcome of DHF/DSS. PMID:27546060

  2. A spectroscopic study on interaction between bovine serum albumin and titanium dioxide nanoparticle synthesized from microwave-assisted hybrid chemical approach.

    PubMed

    Ranjan, Shivendu; Dasgupta, Nandita; Srivastava, Priyanka; Ramalingam, Chidambaram

    2016-08-01

    The use of nanoparticles in food or pharma requires a molecular-level perceptive of how NPs interact with protein corona once exposed to a physiological environment. In this study, the conformational changes of bovine serum albumin (BSA) were investigated in detail when exposed to different concentration of titanium dioxide nanoparticle by various techniques. To analyze the effects of NPs on proteins, the interaction between bovine serum albumin and titanium dioxide nanoparticles at different concentrations were investigated. The interaction, BSA conformations, kinetics, and adsorption were analyzed by dynamic light scattering, Fourier transform infrared spectroscopy and fluorescence quenching. Dynamic light scattering analysis confirms the interaction with major changes in the size of the protein. Fluorescence quenching analysis confirms the side-on or end-on interaction of 1.1 molecules of serum albumin to titanium dioxide nanoparticles. Further, pseudo-second order kinetics was determined with equilibrium contact time of 20min. The spectroscopic analysis suggests that there is a conformational change both at secondary and tertiary structure levels. A distortion in both α-helix and β-sheets was observed by Fourier transform infrared (FTIR) spectroscopy. Fluorescence quenching analysis confirms the interaction of a molecule of bovine serum albumin to the single TiO2 nanoparticle. Further, pseudo-second order kinetics was determined with equilibrium contact time of 20min. The data of the present study determines the detailed evaluation of BSA adsorption on TiO2 nanoparticle along with mechanism and adsorption kinetics. PMID:27318604

  3. Caveolae-mediated albumin transcytosis is enhanced in dengue-infected human endothelial cells: A model of vascular leakage in dengue hemorrhagic fever.

    PubMed

    Chanthick, Chanettee; Kanlaya, Rattiyaporn; Kiatbumrung, Rattanaporn; Pattanakitsakul, Sa-Nga; Thongboonkerd, Visith

    2016-01-01

    Vascular leakage is a life-threatening complication of dengue virus (DENV) infection. Previously, association between "paracellular" endothelial hyperpermeability and plasma leakage had been extensively investigated. However, whether "transcellular" endothelial leakage is involved in dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) remained unknown. We thus investigated effects of DENV (serotype 2) infection on transcellular transport of albumin, the main oncotic plasma protein, through human endothelial cell monolayer by Western blotting, immunofluorescence staining, fluorescence imaging, and fluorometry. The data showed that Alexa488-conjugated bovine serum albumin (Alexa488-BSA) was detectable inside DENV2-infected cells and its level was progressively increased during 48-h post-infection. While paracellular transport could be excluded using FITC-conjugated dextran, Alexa488-BSA was progressively increased and decreased in lower and upper chambers of Transwell, respectively. Pretreatment with nystatin, an inhibitor of caveolae-dependent endocytic pathway, significantly decreased albumin internalization into the DENV2-infected cells, whereas inhibitors of other endocytic pathways showed no significant effects. Co-localization of the internalized Alexa488-BSA and caveolin-1 was also observed. Our findings indicate that DENV infection enhances caveolae-mediated albumin transcytosis through human endothelial cells that may ultimately induce plasma leakage from intravascular compartment. Further elucidation of this model in vivo may lead to effective prevention and better therapeutic outcome of DHF/DSS. PMID:27546060

  4. A Spectroscopic Approach to Investigate the Molecular Interactions between the Newly Approved Irreversible ErbB blocker "Afatinib" and Bovine Serum Albumin

    PubMed Central

    2016-01-01

    The interaction of afatinib (AFB) with bovine serum albumin (BSA) was examined via fluorescence and UV-Vis spectroscopy. Spectrofluorimetric measurements revealed that AFB can strongly quench the BSA intrinsic fluorescence through producing a non-fluorescent complex. This quenching mechanism was thoroughly investigated with regard to the type of quenching, binding constant, number of binding locations and the fundamental thermodynamic parameters. Subsequently, the association constant of AFB with BSA was computed at three different temperatures and was found to range from 7.34 to 13.19 x105 L mol-1. Thermodynamic parameters calculations demonstrated a positive ΔSƟvalue with both negative ΔHϴand ΔGϴvalues for AFB–BSA complex, which in turn infers thata spontaneous binding is taking place with both electrostatic bonding and hydrophobic interactions participating in the binding of AFB and BSA. Similarly, the UV absorption spectra of AFB-BSA system were studied and confirmed the interaction. Conformational alteration of the protein upon binding to AFB was elaborated with the aid of three dimensional fluorescence measurements as well as synchronous fluorescence spectra. PMID:26751077

  5. Transmission electron microscopy and time resolved optical spectroscopy study of the electronic and structural interactions of ZnO nanorods with bovine serum albumin.

    PubMed

    Klaumünzer, M; Weichsel, U; Mačković, M; Spiecker, E; Peukert, W; Kryschi, C

    2013-08-22

    The adsorption behavior and electronic interactions of bovine serum albumin (BSA) with ZnO nanorod surfaces were investigated using high-resolution transmission electron microscopy as well as stationary and time-resolved optical spectroscopy techniques. Transmission electron microscopy shows that ZnO nanorod surfaces are surrounded by a homogeneous amorphous BSA film with thicknesses between ~2.5 and 5.0 nm. The electronic structure and adsorption geometry of BSA were examined using high-angle annular dark field scanning transmission electron microscopy combined with electron energy loss spectroscopy. The adsorption process was observed to result into an unfolded conformation of BSA becoming predominantly bound in the side-on orientation at the ZnO surface. This adsorption mode of the BSA molecules allows for a strong interaction with surface states of the ZnO nanorods. This is obvious from its efficient quenching of the defect-center photoluminescence of ZnO. Complementary information of electronic interactions across the ZnO nanorod interface was obtained from femtosecond transient absorption spectroscopy experiments. The rise dynamics of the measured transients revealed altered hole trapping dynamics and, thus, indicated to heterogeneous charge transfer as emerging from adsorbed BSA molecules to defect centers of the ZnO interface. PMID:23889004

  6. Unraveling the binding mechanism of polyoxyethylene sorbitan esters with bovine serum albumin: a novel theoretical model based on molecular dynamic simulations.

    PubMed

    Delgado-Magnero, Karelia H; Valiente, Pedro A; Ruiz-Peña, Miriam; Pérez-Gramatges, Aurora; Pons, Tirso

    2014-04-01

    To gain a better understanding of the interactions governing the binding mechanism of proteins with non-ionic surfactants, the association processes of Tween 20 and Tween 80 with the bovine serum albumin (BSA) protein were investigated using molecular dynamics (MD) simulations. Protein:surfactant molar ratios were chosen according to the critical micelle concentration (CMC) of each surfactant in the presence of BSA. It was found that both the hydrophilic and the hydrophobic groups of the BSA equally contribute to the surface area of interaction with the non-ionic surfactants. A novel theoretical model for the interactions between BSA and these surfactants at the atomic level is proposed, where both surfactants bind to non-specific domains of the BSA three-dimensional structure mainly through their polyoxyethylene groups, by hydrogen bonds and van der Waals interactions. This is well supported by the strong electrostatic and van der Waals interaction energies obtained in the calculations involving surfactant polyoxyethylene groups and different protein regions. The results obtained from the MD simulations suggest that the formation of surfactant clusters over the BSA structure, due to further cooperative self-assembly of Tween molecules, could increase the protein conformational stability. These results extend the current knowledge on molecular interactions between globular proteins and non-ionic surfactants, and contribute to the fine-tuning design of protein formulations using polysorbates as excipients for minimizing the undesirable effects of protein adsorption and aggregation. PMID:24309134

  7. Graphene oxide-incorporated pH-responsive folate-albumin-photosensitizer nanocomplex as image-guided dual therapeutics.

    PubMed

    Battogtokh, Gantumur; Ko, Young Tag

    2016-07-28

    The objective of this study was to develop an active-targeted, pH-responsive albumin-photosensitizer-incorporated graphene oxide nanocomplex as an image-guided theranostic agent for dual therapies. Herein, bovine serum albumin (BSA)-cis-aconityl pheophorbide-a (c-PheoA) conjugate was complexed with graphene oxide (GO) at ratios of 1:1, 1:0.5, and 1:0.1 with the mean hydrodynamic diameter of the resulting complex being 100-200nm. Further, with the 1:0.5 ratio, we developed a folate-BSA-c-PheoA conjugate:GO complex incorporated free PheoA (PheoA+GO:FA-BSA-c-PheoA NC) with a mean hydrodynamic diameter of 182.0±33.2nm. The release study showed that the photosensitizer from the nanocomplex was released rapidly at pH5.5 compared to that at pH7.4 when incubated for 24h. Cellular uptake results showed that the PheoA+GO:FA-BSA-c-PheoA NCs was readily taken up by B16F10 and MCF7 cancer cells. In vitro phototoxicity results showed that PheoA+GO:FA-BSA-c-PheoA NC has a higher efficacy against cancer cells than free PheoA, thereby demonstrating the synergistic effect of PS and GO in response to a single laser of 670nm. In vivo and ex vivo bioimaging results showed that fluorescence signals of higher intensity were observed in the tumor area of mice treated with PheoA+GO:FA-BSA-c-PheoA NC than those in the tumor of mice treated with free PheoA, thereby suggesting that the targeted nanocomplex selectively accumulated in the tumor area compared to free PheoA. Through antitumor study, PheoA+GO:FA-BSA-c-PheoA NC showed a synergistic effect in tumor-bearing mice by a single 671nm laser treatment. These results demonstrate that our prepared PheoA+GO:FA-BSA-c-PheoA NC can be used as a theranostic agent in phototherapies and for the photodiagnosis of cancer. PMID:27164545

  8. Quantitative Proteomic Analysis of Burkholderia pseudomallei Bsa Type III Secretion System Effectors Using Hypersecreting Mutants

    PubMed Central

    Vander Broek, Charles W.; Chalmers, Kevin J.; Stevens, Mark P.; Stevens, Joanne M.

    2015-01-01

    Burkholderia pseudomallei is an intracellular pathogen and the causative agent of melioidosis, a severe disease of humans and animals. One of the virulence factors critical for early stages of infection is the Burkholderia secretion apparatus (Bsa) Type 3 Secretion System (T3SS), a molecular syringe that injects bacterial proteins, called effectors, into eukaryotic cells where they subvert cellular functions to the benefit of the bacteria. Although the Bsa T3SS itself is known to be important for invasion, intracellular replication, and virulence, only a few genuine effector proteins have been identified and the complete repertoire of proteins secreted by the system has not yet been fully characterized. We constructed a mutant lacking bsaP, a homolog of the T3SS “gatekeeper” family of proteins that exert control over the timing and magnitude of effector protein secretion. Mutants lacking BsaP, or the T3SS translocon protein BipD, were observed to hypersecrete the known Bsa effector protein BopE, providing evidence of their role in post-translational control of the Bsa T3SS and representing key reagents for the identification of its secreted substrates. Isobaric Tags for Relative and Absolute Quantification (iTRAQ), a gel-free quantitative proteomics technique, was used to compare the secreted protein profiles of the Bsa T3SS hypersecreting mutants of B. pseudomallei with the isogenic parent strain and a bsaZ mutant incapable of effector protein secretion. Our study provides one of the most comprehensive core secretomes of B. pseudomallei described to date and identified 26 putative Bsa-dependent secreted proteins that may be considered candidate effectors. Two of these proteins, BprD and BapA, were validated as novel effector proteins secreted by the Bsa T3SS of B. pseudomallei. PMID:25635268

  9. A novel albumin nanocomplex containing both small interfering RNA and gold nanorods for synergetic anticancer therapy

    NASA Astrophysics Data System (ADS)

    Choi, Jin-Ha; Hwang, Hai-Jin; Shin, Seung Won; Choi, Jeong-Woo; Um, Soong Ho; Oh, Byung-Keun

    2015-05-01

    Therapeutic nanocomplexes have been extensively developed for the effective treatment of aggressive cancers because of their outstanding versatility, easy manipulation, and low cytotoxicity. In this study, we describe the synthesis of a novel bovine serum albumin (BSA)-based nanocomplex harboring both Bcl-2-specific small interfering RNA (siRNA) and gold (Au) nanorods (siRNA and rods encapsulated in BSA; SREB) with the aim of developing a targeted breast cancer therapeutic. The SREB complexes contained 2 × 105 siRNA molecules and eight Au nanorods per BSA complex and were successively functionalized with polyethylene glycol (PEG) and anti-ErbB-2 antibodies to facilitate active targeting. The synergetic therapeutic activity originating from the two components effectively induced cell death (~80% reduction in viability compared with control cells) in target breast cancer cells after a single dose of laser irradiation. Intracellular SREB nanocomplex decomposition by proteolytic enzymes resulted in simultaneous RNA interference and thermal ablation, thus leading to apoptosis in the targeted cancer cells. Moreover, these therapeutic effects were sustained for approximately 72 hours. The intrinsic biocompatibility, multifunctionality, and potent in vitro anticancer properties of these SREB nanocomplexes indicate that they have great therapeutic potential for in vivo targeted cancer therapy, in addition to other areas of nanomedicine.Therapeutic nanocomplexes have been extensively developed for the effective treatment of aggressive cancers because of their outstanding versatility, easy manipulation, and low cytotoxicity. In this study, we describe the synthesis of a novel bovine serum albumin (BSA)-based nanocomplex harboring both Bcl-2-specific small interfering RNA (siRNA) and gold (Au) nanorods (siRNA and rods encapsulated in BSA; SREB) with the aim of developing a targeted breast cancer therapeutic. The SREB complexes contained 2 × 105 siRNA molecules and eight Au

  10. Preparation of 10-hydroxycamptothecin-loaded glycyrrhizic acid-conjugated bovine serum albumin nanoparticles for hepatocellular carcinoma-targeted drug delivery

    PubMed Central

    Zu, Yuangang; Meng, Li; Zhao, Xiuhua; Ge, Yunlong; Yu, Xinyang; Zhang, Yin; Deng, Yiping

    2013-01-01

    Introduction The livertaxis of glycyrrhizic acid-conjugated bovine serum albumin (GL-BSA) has been reported in the literature. Now, in this paper, we describe a novel type of drug-targeted delivery system containing 10-hydroxycamptothecin (HCPT) with liver tumor targeting. Methods First, GL was coupled to BSA then HCPT was encapsulated in GL-BSA by high-pressure homogenization emulsification. In the experimental design, the influencing variables on particle size and drug loading efficiency were determined to be BSA concentration, volume ratio of water to organic phase, and speed and speed duration of homogenization as well as homogenization pressure and the number of times homogenized at certain pressures. Particle size plays an important role in screening optimal conditions of nanoparticles preparation. Characteristics of 10-hydroxycamptothecin-loaded glycyrrhizic acid-conjugated bovine serum albumin nanoparticles (GL-BSA-HCPT-NPs), such as the drug encapsulation efficiency, drug loading efficiency, and GL-BSA content were studied. In addition, the morphology of the nanoparticles (NPs) and weight loss rate were determined and Fourier transform infrared spectroscopy, X-ray diffraction spectroscopy, and thermal analysis performed. Results The average particle size of the sample NPs prepared under optimal conditions was 157.5 nm and the zeta potential was −22.51 ± 0.78 mV; the drug encapsulation efficiency and drug loading efficiency were 93.7% and 10.9%, respectively. The amount of GL coupling to BSA was 98.26 μg/mg. Through physical property study of the samples, we determined that the HCPT had been successfully wrapped in GL-BSA. In vitro drug-release study showed that the nanoparticles could release the drug slowly and continuously. Hemolysis testing showed the safety of GL-BSA as a novel drug delivery system. The targeting properties of GL-BSA-HCPT-NPs were studied in an in vitro cell uptake study and cell proliferation assay. Cells incubated with GL-BSA

  11. Development of novel encapsulated formulations using albumin-chitosan as a polymer matrix for ocular drug delivery

    NASA Astrophysics Data System (ADS)

    Addo, Richard Tettey

    Designing formulations for ophthalmic drug delivery is one of the most challenging endeavors facing the pharmaceutical scientist due to the unique anatomy, physiology, and biochemistry of the eye. Current treatment protocols for administration of drugs in eye diseases are primarily solution formulations, gels or ointments. However, these modes of delivery have several drawbacks such as short duration of exposure, need for repeated administrations and non-specific toxicity. We hypothesize that development of ocular drugs in microparticles will overcome the deficiencies of the current modalities of treatment. We based the hypothesis on the preliminary studies conducted with encapsulated tetracaine, an anesthetic used for surgical purposes and atropine, a medication used for several ophthalmic indications including mydriatic and cycloplegic effects. However, atropine is well absorbed into the systemic circulation and has been reported to exert severe systemic side effects after ocular administration (Hoefnagel D. 1961, Morton H. G. 1939 and Lang J. C. 1995) and may lead to serious side effects including death in extreme cases with pediatric use. Based on these observations, the focus of this dissertation is to formulate microparticulate drug carrier for treatment of various conditions of the eye. Purpose: To prepare, characterize, study the in vitro and in vivo interaction of albumin-chitosan microparticles (BSA-CSN MS), a novel particulate drug carrier for ocular drug delivery. Method: Microparticle formulations were prepared by method of spray drying. The percentage drug loading and efficiency were assessed using USP (I) dissolution apparatus. Using Malvern Zeta-Sizer, we determined size and surface charge of the fabrication. Surface morphology of the microparticles was examined using Scanning Electron Microscopy. Microparticles were characterized in terms of thermal properties using Differential Scanning Calorimetry. Human corneal epithelial cells (HCET-1) were

  12. Disulfide-bond scrambling promotes amorphous aggregates in lysozyme and bovine serum albumin.

    PubMed

    Yang, Mu; Dutta, Colina; Tiwari, Ashutosh

    2015-03-12

    Disulfide bonds are naturally formed in more than 50% of amyloidogenic proteins, but the exact role of disulfide bonds in protein aggregation is still not well-understood. The intracellular reducing agents and/or improper use of antioxidants in extracellular environment can break proteins disulfide bonds, making them unstable and prone to misfolding and aggregation. In this study, we report the effect of disulfide-reducing agent dithiothreitol (DTT) on hen egg white lysozyme (lysozyme) and bovine serum albumin (BSA) aggregation at pH 7.2 and 37 °C. BSA and lysozyme proteins treated with disulfide-reducing agents form very distinct amorphous aggregates as observed by scanning electron microscope. However, proteins with intact disulfide bonds were stable and did not aggregate over time. BSA and lysozyme aggregates show unique but measurable differences in 8-anilino-1-naphthalenesulfonic acid (ANS) and 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (bis-ANS) fluorescence, suggesting a loose and flexible aggregate structure for lysozyme but a more compact aggregate structure for BSA. Scrambled disulfide-bonded protein aggregates were observed by nonreducing sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) for both proteins. Similar amorphous aggregates were also generated using a nonthiol-based reducing agent, tris(2-carboxyethyl)phosphine (TCEP), at pH 7.2 and 37 °C. In summary, formation of distinct amorphous aggregates by disulfide-reduced BSA and lysozyme suggests an alternate pathway for protein aggregation that may be relevant to several proteins. PMID:25689578

  13. Characterization of bovine serum albumin partitioning behaviors in polymer-salt aqueous two-phase systems.

    PubMed

    Chow, Yin Hui; Yap, Yee Jiun; Tan, Chin Ping; Anuar, Mohd Shamsul; Tejo, Bimo Ario; Show, Pau Loke; Ariff, Arbakariya Bin; Ng, Eng-Poh; Ling, Tau Chuan

    2015-07-01

    In this paper, a linear relationship is proposed relating the natural logarithm of partition coefficient, ln K for protein partitioning in poly (ethylene glycol) (PEG)-phosphate aqueous two-phase system (ATPS) to the square of tie-line length (TLL(2)). This relationship provides good fits (r(2) > 0.98) to the partition of bovine serum albumin (BSA) in PEG (1450 g/mol, 2000 g/mol, 3350 g/mol, and 4000 g/mol)-phosphate ATPS with TLL of 25.0-50.0% (w/w) at pH 7.0. Results also showed that the plot of ln K against pH for BSA partitioning in the ATPS containing 33.0% (w/w) PEG1450 and 8.0% (w/w) phosphate with varied working pH between 6.0 and 9.0 exhibited a linear relationship which is in good agreement (r(2) = 0.94) with the proposed relationship, ln K = α' pH + β'. These results suggested that both the relationships proposed could be applied to correlate and elucidate the partition behavior of biomolecules in the polymer-salt ATPS. The influence of other system parameters on the partition behavior of BSA was also investigated. An optimum BSA yield of 90.80% in the top phase and K of 2.40 was achieved in an ATPS constituted with 33.0% (w/w) PEG 1450 and 8.0% (w/w) phosphate in the presence of 8.5% (w/w) sodium chloride (NaCl) at pH 9.0 for 0.3% (w/w) BSA load. PMID:25553974

  14. Seeded growth of hydroxyapatite in the presence of dissolved albumin.

    PubMed

    Gilman, H; Hukins, D W

    1994-07-01

    Hydroxyapatite (HAP) crystals were grown from a supersaturated solution by the addition of a suspension of seed crystals at a controlled pH value of 7.4 and a temperature of 37 degrees C. The degree of supersaturation was comparable to that in biological fluids and was such that all HAP precipitated would be expected to deposit on the seeds. Albumin was added to some of the solutions to give a concentration in the range 75-250 micrograms cm-3. Samples of solution were removed at known times after the addition of seed crystals and their calcium ion concentrations were determined by atomic absorption spectroscopy. The decrease in the dissolved calcium concentration was taken to be a measure of crystal growth. In the absence of seeds, no decrease in calcium concentration occurred. The initial rate of HAP growth decreased linearly with albumin concentration, i.e., albumin was found to inhibit crystal growth. Inhibition kinetics were consistent with a Langmuir model in which a single albumin molecule was capable of binding to more than one growth site on the crystal surface. Comparison with published results indicated that albumin was a less potent inhibitor of HAP growth than phosphoproteins but was a more potent inhibitor than magnesium or citrate ions. PMID:8046435

  15. Interaction mechanisms between organic UV filters and bovine serum albumin as determined by comprehensive spectroscopy exploration and molecular docking.

    PubMed

    Ao, Junjie; Gao, Li; Yuan, Tao; Jiang, Gaofeng

    2015-01-01

    Organic UV filters are a group of emerging PPCP (pharmaceuticals and personal care products) contaminants. Current information is insufficient to understand the in vivo processes and health risks of organic UV filters in humans. The interaction mechanism of UV filters with serum albumin provides critical information for the health risk assessment of these active ingredients in sunscreen products. This study investigates the interaction mechanisms of five commonly used UV filters (2-hydroxy-4-methoxybenzophenone, BP-3; 2-ethylhexyl 4-methoxycinnamate, EHMC; 4-methylbenzylidene camphor, 4-MBC; methoxydibenzoylmethane, BDM; homosalate, HMS) with bovine serum albumin (BSA) by spectroscopic measurements of fluorescence, circular dichroism (CD), competitive binding experiments and molecular docking. Our results indicated that the fluorescence of BSA was quenched by these UV filters through a static quenching mechanism. The values of the binding constant (Ka) ranged from (0.78±0.02)×10(3) to (1.29±0.01)×10(5) L mol(-1). Further exploration by synchronous fluorescence and CD showed that the conformation of BSA was demonstrably changed in the presence of these organic UV filters. It was confirmed that the UV filters can disrupt the α-helical stability of BSA. Moreover, the results of molecular docking revealed that the UV filter molecule is located in site II (sub-domain IIIA) of BSA, which was further confirmed by the results of competitive binding experiments. In addition, binding occurred mainly through hydrogen bonding and hydrophobic interaction. This study raises critical concerns regarding the transportation, distribution and toxicity effects of organic UV filters in human body. PMID:25128891

  16. Albumin impregnated vascular grafts: albumin resorption and tissue reactions.

    PubMed

    Cziperle, D J; Joyce, K A; Tattersall, C W; Henderson, S C; Cabusao, E B; Garfield, J D; Kim, D U; Duhamel, R C; Greisler, H P

    1992-01-01

    This study aimed to determine the kinetics of albumin resorption from and the healing of two types of albumin impregnated Vasculour II (Bard Cardiovascular) Dacron grafts (ACG-A and ACG-B) using whole blood preclotted Vasculour II Dacron grafts (without albumin) as controls (PCC). Prostheses measuring 4 mm ID x 50 mm length were implanted in the aortoiliac position in 24 dogs (ACG-A n = 12, ACG-B n = 24, PCC n = 12) and explanted after 1, 2 4, and 6 months. Platelet count, platelet aggregometry to 10(-5) M ADP, prothrombin time (PT), and partial thromboplastin time (PTT) were determined preoperatively and at explantation. Sections of the explanted grafts were assayed for human albumin by immunohistochemical techniques utilizing a rabbit polyclonal mono-specific antibody for human albumin followed by the addition of a biotinylated goat anti-rabbit IgG. Immunoperoxidase staining was then performed using Avidin D horse-radish peroxidase. Histology of the grafts (light microscopy, scanning electron microscopy, and transmission electron microscopy) as well as percent thrombus free surface area (TFSA) by computerized planimetry were also determined. Seven of 48 grafts were occluded (85.4% patency) with no difference among the three groups. Platelet aggregometry was not predictive of graft patency. No change in PT or PTT occurred nor was there any difference among the three groups. Retained albumin was detected in every one-month explant but not beyond that time, with the sensitivity for detecting human albumin in this assay being 20 mg albumin per gram of Dacron. All ACG explants at one month revealed inner capsular fibrin coagula not present in PCC specimens.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1388174

  17. A spectroscopic study of phenylbutazone and aspirin bound to serum albumin in rheumatoid diseases.

    PubMed

    Maciążek-Jurczyk, M; Sułkowska, A; Bojko, B; Równicka-Zubik, J; Sułkowski, W W

    2011-11-01

    Interaction of phenylbutazone (PBZ) and aspirin (ASA), two drugs recommended in rheumatoid diseases (RDs), when binding to human (HSA) and bovine (BSA) serum albumins, has been studied by quenching of fluorescence and proton nuclear magnetic resonance ((1)HNMR) techniques. On the basis of spectrofluorescence measurements high affinity binding sites of PBZ and ASA on albumin as well as their interaction within the binding sites were described. A low affinity binding site has been studied by proton nuclear magnetic resonance spectroscopy. Using fluorescence spectroscopy the location of binding site in serum albumin (SA) for PBZ and ASA was found. Association constants K(a) were determined for binary (i.e. PBZ-SA and ASA-SA) and ternary complexes (i.e. PBZ-[ASA]-SA and ASA-[PBZ]-SA). PBZ and ASA change the affinity of each other to the binding site in serum albumin (SA). The presence of ASA causes the increase of association constants K(aI) of PBZ-SA complex. Similarly, PBZ influences K(aI) of ASA-SA complex. This phenomenon shows that the strength of binding and the stability of the complexes increase in the presence of the second drug. The decrease of K(aII) values suggests that the competition between PBZ and ASA in binding to serum albumin in the second class of binding sites occurs. The analysis of (1)HNMR spectral parameters i.e. changes of chemical shifts and relaxation times of the drug indicate that the presence of ASA weakens the interaction of PBZ with albumin. Similarly PBZ weakens the interaction of ASA with albumin. This conclusion points to the necessity of using a monitoring therapy owning to the possible increase of uncontrolled toxic effects. PMID:21856214

  18. A spectroscopic study of phenylbutazone and aspirin bound to serum albumin in rheumatoid diseases

    NASA Astrophysics Data System (ADS)

    Maciążek-Jurczyk, M.; Sułkowska, A.; Bojko, B.; Równicka-Zubik, J.; Sułkowski, W. W.

    2011-11-01

    Interaction of phenylbutazone (PBZ) and aspirin (ASA), two drugs recommended in rheumatoid diseases (RDs), when binding to human (HSA) and bovine (BSA) serum albumins, has been studied by quenching of fluorescence and proton nuclear magnetic resonance ( 1HNMR) techniques. On the basis of spectrofluorescence measurements high affinity binding sites of PBZ and ASA on albumin as well as their interaction within the binding sites were described. A low affinity binding site has been studied by proton nuclear magnetic resonance spectroscopy. Using fluorescence spectroscopy the location of binding site in serum albumin (SA) for PBZ and ASA was found. Association constants Ka were determined for binary (i.e. PBZ-SA and ASA-SA) and ternary complexes (i.e. PBZ-[ASA]-SA and ASA-[PBZ]-SA). PBZ and ASA change the affinity of each other to the binding site in serum albumin (SA). The presence of ASA causes the increase of association constants KaI of PBZ-SA complex. Similarly, PBZ influences KaI of ASA-SA complex. This phenomenon shows that the strength of binding and the stability of the complexes increase in the presence of the second drug. The decrease of KaII values suggests that the competition between PBZ and ASA in binding to serum albumin in the second class of binding sites occurs. The analysis of 1HNMR spectral parameters i.e. changes of chemical shifts and relaxation times of the drug indicate that the presence of ASA weakens the interaction of PBZ with albumin. Similarly PBZ weakens the interaction of ASA with albumin. This conclusion points to the necessity of using a monitoring therapy owning to the possible increase of uncontrolled toxic effects.

  19. Evidence of energy transfer from tryptophan to BSA/HSA protected gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Raut, Sangram; Chib, Rahul; Butler, Susan; Borejdo, Julian; Gryczynski, Zygmunt; Gryczynski, Ignacy

    2014-09-01

    This work reports on the chromophores interactions within protein-protected gold nanoclusters. We conducted spectroscopic studies of fluorescence emissions originated from gold nanoclusters and intrinsic tryptophan (Trp) in BSA or HSA proteins. Both steady state fluorescence and lifetime measurements showed a significant Forster Resonance Energy Transfer (FRET) from Trp to the gold nanocluster. Tryptophan lifetimes in the case of protein-protected gold nanoclusters are 2.6 ns and 2.3 ns for BSA and HSA Au clusters while 5.8 ns for native BSA and 5.6 for native HSA. The apparent distances from Trp to gold nanocluster emission center, we estimated as 24.75 Å for BSA and 23.80 Å for HSA. We also studied a potassium iodide (KI) quenching of protein-protected gold nanoclusters and compared with the quenching of BSA and HSA alone. The rates of Trp quenching were smaller in BSA-Au and HSA-Au nanoclusters than in the case of free proteins, which is consistent with shorter lifetime of quenched Trp(s) and lower accessibility for KI. While Trp residues were quenched by KI, the emissions originated from nanoclusters were practically unquenched. In summary, for BSA and HSA Au clusters, we found 55% and 59% energy transfer efficiency respectively from tryoptophan to gold clusters. We believe this interaction can be used to our advantage in terms of developing resonance energy transfer based sensing applications.

  20. Solution-based functionalization of gallium nitride nanowires for protein sensor development

    NASA Astrophysics Data System (ADS)

    Williams, Elissa H.; Davydov, Albert V.; Oleshko, Vladimir P.; Steffens, Kristen L.; Levin, Igor; Lin, Nancy J.; Bertness, Kris A.; Manocchi, Amy K.; Schreifels, John A.; Rao, Mulpuri V.

    2014-09-01

    A solution-based functionalization method for the specific and selective attachment of the streptavidin (SA) protein to gallium nitride (GaN) nanowires (NWs) is presented. By exploiting streptavidin's strong affinity for its ligand biotin, SA immobilization on GaN NWs was achieved by exposing the GaN NW surface to a 3-aminopropyltriethoxysilane (APTES) solution followed by reaction with biotin. Functionalization of the NWs with APTES was facilitated by the presence of an ≈ 1 nm thick surface oxide layer, which formed on the NWs after exposure to air and oxygen plasma. Biotinylation was accomplished by reacting the APTES-functionalized NWs with sulfo-N-hydroxysuccinimide-biotin at slightly alkaline pH. It was determined that the biotinylated GaN NW surface was specific towards the binding of SA and demonstrated no affinity towards a control protein, bovine serum albumin (BSA). There was however, evidence of non-specific, electrostatic binding of both the SA protein and the BSA protein to the APTES-coated NWs, revealing the importance of the biotinylation step. Successful SA immobilization on the biotinylated GaN NW surface was verified using fluorescence microscopy, field-emission scanning electron microscopy, high-resolution transmission electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. The functionalized GaN NWs demonstrate potential as biosensing platforms for the selective detection of proteins.

  1. Near IR: new sources, new detectors, and new solutions to old problems

    NASA Astrophysics Data System (ADS)

    Obremski, Robert J.; Silzel, John W.

    1993-06-01

    Use of the short-wave near infrared (NIR) region for fluorescence spectroscopy is shown to afford enhanced freedom, relative to the visible spectrum, from background signals and noise resulting from scattering and endogenous fluorescence from the sample matrix itself. The detection of 0.1 attomole (10-13 mole liter-1) of two cyanine dyes in methanol solution is demonstrated using diode laser excitation at 780 nm and CCD spectrometric detection. The fluorophores exhibit excellent photostability in this solvent even under prolonged laser illumination. Limitation of sensitivity in this system is imposed by shot noise associated with the solvent Raman signals. When the same dyes are placed in aqueous solutions containing bovine serum albumin (BSA), endogenous fluorescence from the BSA and photobleaching or photolysis of the cyanine raise the practical detection limits to 10-9 moles liter-1. Despite these difficulties, the NIR region affords signal to background ratios which are superior to those observed in similar experiments performed in the visible region.

  2. Albumin administration in the acutely ill: what is new and where next?

    PubMed Central

    2014-01-01

    Albumin solutions have been used worldwide for the treatment of critically ill patients since they became commercially available in the 1940s. However, their use has become the subject of criticism and debate in more recent years. Importantly, all fluid solutions have potential benefits and drawbacks. Large multicenter randomized studies have provided valuable data regarding the safety of albumin solutions, and have begun to clarify which groups of patients are most likely to benefit from their use. However, many questions remain related to where exactly albumin fits within our fluid choices. Here, we briefly summarize some of the physiology and history of albumin use in intensive care before offering some evidence-based guidance for albumin use in critically ill patients. PMID:25042164

  3. Bovine serum albumin nanoparticles as controlled release carrier for local drug delivery to the inner ear

    PubMed Central

    2014-01-01

    Nanoparticles have attracted increasing attention for local drug delivery to the inner ear recently. Bovine serum albumin (BSA) nanoparticles were prepared by desolvation method followed by glutaraldehyde fixation or heat denaturation. The nanoparticles were spherical in shape with an average diameter of 492 nm. The heat-denatured nanoparticles had good cytocompatibility. The nanoparticles could adhere on and penetrate through the round window membrane of guinea pigs. The nanoparticles were analyzed as drug carriers to investigate the loading capacity and release behaviors. Rhodamine B was used as a model drug in this paper. Rhodamine B-loaded nanoparticles showed a controlled release profile and could be deposited on the osseous spiral lamina. We considered that the bovine serum albumin nanoparticles may have potential applications in the field of local drug delivery in the treatment of inner ear disorders. PMID:25114637

  4. Comparative studies of the effects of copper sulfate and zinc sulfate on serum albumins

    NASA Astrophysics Data System (ADS)

    Plotnikova, O. A.; Melnikov, G. V.; Melnikov, A. G.; Kovalenko, A. V.

    2016-04-01

    The work is devoted to the study of the interaction of heavy metals with bovine serum albumin (BSA) and human serum albumin (HSA), by quenching of the intrinsic fluorescence of proteins and fluorescent probe pyrene by heavy metal ions. Sulfates of copper and zinc (CuSO4, ZnSO4) were taken as the metal salts. The value of the Stern-Volmer constants of quenching of intrinsic fluorescence of proteins and fluorescence probe pyrene reduced from Cu (II) to the Zn (II). It was experimentally found that the copper ions have a greater ability to fluorescence quenching, which is probably associated with the greater availability of protein chromophore groups to copper ions and with adsorbed fluorescent probe pyrene in the protein globule.

  5. Bovine serum albumin nanoparticles as controlled release carrier for local drug delivery to the inner ear

    NASA Astrophysics Data System (ADS)

    Yu, Zhan; Yu, Min; Zhang, Zhibao; Hong, Ge; Xiong, Qingqing

    2014-07-01

    Nanoparticles have attracted increasing attention for local drug delivery to the inner ear recently. Bovine serum albumin (BSA) nanoparticles were prepared by desolvation method followed by glutaraldehyde fixation or heat denaturation. The nanoparticles were spherical in shape with an average diameter of 492 nm. The heat-denatured nanoparticles had good cytocompatibility. The nanoparticles could adhere on and penetrate through the round window membrane of guinea pigs. The nanoparticles were analyzed as drug carriers to investigate the loading capacity and release behaviors. Rhodamine B was used as a model drug in this paper. Rhodamine B-loaded nanoparticles showed a controlled release profile and could be deposited on the osseous spiral lamina. We considered that the bovine serum albumin nanoparticles may have potential applications in the field of local drug delivery in the treatment of inner ear disorders.

  6. Synthesis of chitosan networks: Swelling, drug release, and magnetically assisted BSA separation using Fe3O4 nanoparticles.

    PubMed

    Ghaemy, Mousa; Naseri, Motahare

    2012-10-15

    Chitosan (CS) nanohydrogel networks were prepared by reaction with glyceroldiglycidylether (GDE) and poly(dimethylsiloxane) (PDMS), as crosslinking agents in an emulsion system. The nanogel content increased with increasing the amount of crosslinkers and reached to a maximum of 90% with GDE. The nanogels structure was characterized by FT-IR, AFM, DSC, and TGA. The average size for CS-GDE and CS-PDMS particles were 59nm and 180nm, respectively. The swelling behavior of nanohydrogels was observed to be dependent on pH, temperature, degree of crosslinking, and on the chemical structure of crosslinker. The equilibrium water content of CS-GDE nanohydrogels reached to a maximum of 600% at neutral pH, and decreased at high and low pH and low temperature. These nanohydrogels were tested for sodium diclofenac (SDF) loading and releasing efficiency. The covalent conjugation of bovine serum albumin (BSA) and magnetic Fe(3)O(4) nanoparticles on the hydrogels were found to hold a potential application in magnetically assisted bioseparation. PMID:22939340

  7. In vitro DNA and BSA-binding, cell imaging and anticancer activity against human carcinoma cell lines of mixed ligand copper(II) complexes.

    PubMed

    Anjomshoa, Marzieh; Torkzadeh-Mahani, Masoud

    2015-11-01

    Binding studies of two water soluble copper(II) complexes of the type [Cu(phen-dion)(diimine)Cl]Cl, where phen-dione is 1,10-phenanthroline-5,6-dione and diimine is 1,10-phenanthroline (1) and 2,2'-bipyridine (2), with fish sperm DNA (FS-DNA) and bovine serum albumin (BSA) have been examined under physiological conditions by a series of experimental methods (UV-Vis absorption, fluorescence, viscosity, cyclic voltammetry (CV) and circular dichroism (CD) spectroscopic techniques). The experimental results indicate that the complexes interact with FS-DNA by electrostatic and partial insertion of pyridyl rings between the base stacks of double-stranded DNA. The complexes could quench the intrinsic fluorescence of BSA with the binding constants (Kbin) of 32×10(5) M(-1) (1) and 1.7×10(5) M(-1) (2) at 290 K. The quenching mechanism, thermodynamic parameters, the number of binding sites and the effect of the Cu(II) complexes on the secondary structure of BSA have been explored. The in vitro anticancer chemotherapeutic potential of two copper(II) complexes against the three human carcinoma cell lines (MCF-7, A-549, and HT-29) and one normal cell line (DPSC) were evaluated by MTT assay. The results of in vitro cytotoxicity indicate that the complex (1) has greater cytotoxicity activity against all of the cell lines, especially HT-29 with IC50 values of 1.8 μM. Based on the IC50 values, these complexes did not display an apparent cyto-selective profile, because it would appear that two complexes are toxic to all four model cell lines. The microscopic analyses of the cancer cells confirm results of cytotoxicity. PMID:26057093

  8. Evaluation by fluorescence, STD-NMR, docking and semi-empirical calculations of the o-NBA photo-acid interaction with BSA.

    PubMed

    Chaves, Otávio A; Jesus, Catarina S H; Cruz, Pedro F; Sant'Anna, Carlos M R; Brito, Rui M M; Serpa, Carlos

    2016-12-01

    Serum albumins present reversible pH dependent conformational transitions. A sudden laser induced pH-jump is a methodology that can provide new insights on localized protein (un)folding processes that occur within the nanosecond to microsecond time scale. To generate the fast pH jump needed to fast-trigger a protein conformational event, a photo-triggered acid generator as o-nitrobenzaldehyde (o-NBA) can be conveniently used. In order to detect potential specific or nonspecific interactions between o-NBA and BSA, we have performed ligand-binding studies using fluorescence spectroscopy, saturation transfer difference (STD) NMR, molecular docking and semi-empirical calculations. Fluorescence quenching indicates the formation of a non-fluorescent complex in the ground-state between the fluorophore and the quencher, but o-NBA does not bind much effectively to the protein (Ka~4.34×10(3)M(-1)) and thus can be considered a relatively weak binder. The corresponding thermodynamic parameters: ΔG°, ΔS° and ΔH° showed that the binding process is spontaneous and entropy driven. Results of (1)H STD-NMR confirm that the photo-acid and BSA interact, and the relative intensities of the signals in the STD spectra show that all o-NBA protons are equally involved in the binding process, which should correspond to a nonspecific interaction. Molecular docking and semi-empirical calculations suggest that the o-NBA binds preferentially to the Trp-212-containing site of BSA (FA7), interacting via hydrogen bonds with Arg-217 and Tyr-149 residues. PMID:27376757

  9. Albumin-coated SPIONs: an experimental and theoretical evaluation of protein conformation, binding affinity and competition with serum proteins

    NASA Astrophysics Data System (ADS)

    Yu, Siming; Perálvarez-Marín, Alex; Minelli, Caterina; Faraudo, Jordi; Roig, Anna; Laromaine, Anna

    2016-07-01

    The variety of nanoparticles (NPs) used in biological applications is increasing and the study of their interaction with biological media is becoming more important. Proteins are commonly the first biomolecules that NPs encounter when they interact with biological systems either in vitro or in vivo. Among NPs, super-paramagnetic iron oxide nanoparticles (SPIONs) show great promise for medicine. In this work, we study in detail the formation, composition, and structure of a monolayer of bovine serum albumin (BSA) on SPIONs. We determine, both by molecular simulations and experimentally, that ten molecules of BSA form a monolayer around the outside of the SPIONs and their binding strength to the SPIONs is about 3.5 × 10-4 M, ten times higher than the adsorption of fetal bovine serum (FBS) on the same SPIONs. We elucidate a strong electrostatic interaction between BSA and the SPIONs, although the secondary structure of the protein is not affected. We present data that supports the strong binding of the BSA monolayer on SPIONs and the properties of the BSA layer as a protein-resistant coating. We believe that a complete understanding of the behavior and morphology of BSA-SPIONs and how the protein interacts with SPIONs is crucial for improving NP surface design and expanding the potential applications of SPIONs in nanomedicine.The variety of nanoparticles (NPs) used in biological applications is increasing and the study of their interaction with biological media is becoming more important. Proteins are commonly the first biomolecules that NPs encounter when they interact with biological systems either in vitro or in vivo. Among NPs, super-paramagnetic iron oxide nanoparticles (SPIONs) show great promise for medicine. In this work, we study in detail the formation, composition, and structure of a monolayer of bovine serum albumin (BSA) on SPIONs. We determine, both by molecular simulations and experimentally, that ten molecules of BSA form a monolayer around the

  10. Formation and reshuffling of disulfide bonds in bovine serum albumin demonstrated using tandem mass spectrometry with collision-induced and electron-transfer dissociation.

    PubMed

    Rombouts, Ine; Lagrain, Bert; Scherf, Katharina A; Lambrecht, Marlies A; Koehler, Peter; Delcour, Jan A

    2015-01-01

    Thermolysin hydrolyzates of freshly isolated, extensively stored (6 years, 6 °C, dry) and heated (60 min, 90 °C, in excess water) bovine serum albumin (BSA) samples were analyzed with liquid chromatography (LC) electrospray ionization (ESI) tandem mass spectrometry (MS/MS) using alternating electron-transfer dissociation (ETD) and collision-induced dissociation (CID). The positions of disulfide bonds and free thiol groups in the different samples were compared to those deduced from the crystal structure of native BSA. Results revealed non-enzymatic posttranslational modifications of cysteine during isolation, extensive dry storage, and heating. Heat-induced extractability loss of BSA was linked to the impact of protein unfolding on the involvement of specific cysteine residues in intermolecular and intramolecular thiol-disulfide interchange and thiol oxidation reactions. The here developed approach holds promise for exploring disulfide bond formation and reshuffling in various proteins under conditions relevant for chemical, biochemical, pharmaceutical and food processing. PMID:26193081

  11. Synthesis, crystal structure and interaction of L-valine Schiff base divanadium(V) complex containing a V2O3 core with DNA and BSA

    NASA Astrophysics Data System (ADS)

    Guo, Qiong; Li, Lianzhi; Dong, Jianfang; Liu, Hongyan; Xu, Tao; Li, Jinghong

    2013-04-01

    A divanadium(V) complex, [V2O3(o-van-val)2] (o-van-val = Schiff base derived from o-vanillin and L-valine), has been synthesized and structurally characterized. The crystal structure shows that both of the vanadium centers in the complex have a distorted octahedral coordination environment composed of tridentate Schiff base ligand. A V2O3 core in molecular structure adopts intermediate between cis and trans configuration with the O1dbnd V1⋯V1Adbnd O1A torsion angle 115.22 (28)° and the V1⋯V1A distance 3.455 Å. The binding properties of the complex with calf thymus DNA (CT-DNA) have been investigated by UV-vis absorption, fluorescence, CD spectra and viscosity measurement. The results indicate that the complex binds to CT-DNA in non-classical intercalative mode. Meanwhile, the interaction of the complex with bovine serum albumin (BSA) has been studied by UV-vis absorption, fluorescence and CD spectra. Results indicated that the complex can markedly quench the intrinsic fluorescence of BSA via a static quenching process, and cause its conformational change. The calculated apparent binding constant Kb was 1.05 × 106 M-1 and the binding site number n was 1.18.

  12. Synthesis and Structure of a New Copper(II) Coordination Polymer Alternately Bridged by Oxamido and Carboxylate Groups: Evaluation of DNA/BSA Binding and Cytotoxic Activities.

    PubMed

    Jin, Xiao-Ting; Zheng, Kang; Li, Yan-Tuan; Wu, Zhi-Yong; Yan, Cui-Wei

    2015-08-01

    A new one-dimensional (1D) copper(II) coordination polymer {[Cu2 (dmaepox)(dabt)](NO3) · 0.5 H2 O}n , where H3 dmaepox and dabt denote N-benzoato-N'-(3-methylaminopropyl)oxamide and 2,2'-diamino-4,4'-bithiazole, respectively, was synthesized and characterized by single-crystal X-ray diffraction and other methods. The crystal structure analysis revealed that the two copper(II) ions are bridged alternately by cis-oxamido and carboxylato groups to form a 1-D coordination polymer with the corresponding Cu · · · Cu separations of 5.1946(19) and 5.038(2) Å. There is a three-dimensional supramolecular structure constructed by hydrogen bonding and π-π stacking interactions in the crystal. The reactivity towards herring sperm DNA (HS-DNA) and bovine serum albumin (BSA) indicated that the copper(II) polymer can interact with the DNA in the mode of intercalation, and bind to BSA responsible for quenching of tryptophan fluorescence by the static quenching mechanism. The in vitro cytotoxicity suggested that the copper(II) polymer exhibits cytotoxic effects against the selected tumor cell lines. PMID:25940657

  13. Synthesis, structure, DNA/BSA interaction and in vitro cytotoxic activity of nickel(II) complexes derived from S-allyldithiocarbazate.

    PubMed

    Nanjundan, Nanjan; Selvakumar, Ponnusamy; Narayanasamy, Ramaswamy; Haque, Rosenani A; Velmurugan, Krishnaswamy; Nandhakumar, Raju; Silambarasan, Tamilselvan; Dhandapani, Ramamurthy

    2014-12-01

    Two nickel(II) complexes with formula NiL1 and NiL2 (HL1 = S-allyl-4-methoxybenzylidene hydrazinecarbodithioate, HL2 = S-allyl-1-napthylidenehydrazinecarbodithioate) have been synthesized and characterized by elemental analysis, FT-IR, NMR, UV-vis spectroscopy and ESI mass spectrometry. The crystal structure of complex 1 has been determined by single crystal X-ray diffractometry. Both HL1 and HL2 ligands are coordinated to the metal in thiolate form. In complexes, squareplanar geometry of the nickel is coordinated with two bidentate ligand units acting through azomethine nitrogen and thiolato sulfur atoms. To explore the potential medicinal value of the complexes with calf thymus DNA and bovine serum albumin (BSA) were studied at normal physiological conditions using fluorescence spectral techniques. The DNA binding constant values of the complexes were found in the range from 5.02 × 10(4), 3.54 × 10(4), and the binding affinities are in the following order 1 > 2. In addition, nickel complexes 1 and 2 shows better binding propensity to the bovine serum albumin (BSA) protein, giving a Ksv value 5.8 × 10(4), 4.47 × 10(4) respectively. From the oxidative cleavage of the complexes with pBR322 DNA, it is inferred that the effects of cleavage are dose-dependent. In addition, in vitro cytotoxicity of the complexes assayed against Vero and HeLa cell lines have shown higher cytotoxic activity with the lower IC50 values indicating their efficiency in killing cancer cells even at various concentrations. PMID:25463665

  14. Interactions of a very long chain fatty acid with model membranes and serum albumin. Implications for the pathogenesis of adrenoleukodystrophy.

    PubMed Central

    Ho, J K; Moser, H; Kishimoto, Y; Hamilton, J A

    1995-01-01

    Adrenoleukodystrophy (ALD) is an inherited disorder of fatty acid metabolism marked by accumulation of very long chain saturated fatty acids (VLCFA), especially the 26-carbon acid, hexacosanoic acid (HA), in membranes and tissues. We have studied interactions of 13C-enriched HA with model membranes (phospholipid bilayer vesicles) and bovine serum albumin (BSA) by 13C NMR spectroscopy to compare properties of HA with those of typical dietary fatty acids. In phospholipid bilayers the carboxyl group of HA is localized in the aqueous interface, with an apparent pKa (7.4) similar to other fatty acids; the acyl chain must then penetrate very deeply into the membrane. Desorption of HA from vesicles (t1+2 = 3 h) is orders of magnitude slower than shorter chain fatty acids. In mixtures of vesicles and BSA, HA partitions much more favorably to phospholipid bilayers than typical fatty acids. BSA binds a maximum of only 1 mole of HA at one binding site. Calorimetric experiments show strong perturbations of acyl chains of phospholipids by HA. We predict that disruptive effects of VLCFA on cell membrane structure and function may explain the neurological manifestations of ALD patients. These effects will be further amplified by slow desorption of VLCFA from membranes and by the ineffective binding to serum albumin. PMID:7657817

  15. Effect of emulsion polymerization and magnetic field on the adsorption of albumin on poly(methyl methacrylate)-based biomaterial surfaces.

    PubMed

    Nita, Loredana E; Chiriac, Aurica P

    2010-08-01

    The adsorption of bovine serum albumin (BSA) onto the surfaces of poly(methyl methacrylate) (PMMA) and of methyl methacrylate copolymer with 2,3-epoxypropyl methacrylate, it was investigated. The polymeric matrices were obtained through radical emulsion polymerization with and without the presence of a continuous external magnetic field (MF) of 1,500 Gs intensity. Two types of surfactant agents were used for polymers' synthesis: a classic one sodium lauryl sulphate (SLS) and beta-cyclodextrin (CD). The protein adsorption was conducted in the presence as well as in the absence of MF, by varying the coupling conditions, respectively, the temperature, pH and albumin/polymer ratio. The study underlines the assistance of MF during the adsorption process, materialized into growth of the BSA adsorbed quantity. Thus, MF presence during adsorption determines the doubling of the BSA adsorbed quantity onto the surface of polymers prepared in the MF. The adsorption process was also related to the tensioactive used for the synthesis of polymeric matrices. The higher content of the adsorbed BSA corresponds to the polymers with CD instead of SLS. The fact was attributed to the catalytic activity of the MF, which determines the molecules distortions, the growth of distance interactions and the modifications of the angles between bonds, with benefit effect upon adsorption. PMID:20502947

  16. A simple technique of preparing stable CLEAs of phenylalanine ammonia lyase using co-aggregation with starch and bovine serum albumin.

    PubMed

    Cui, Jian Dong; Sun, Li Mei; Li, Lian Lian

    2013-08-01

    Cross-linked enzyme aggregates (CLEAs) have been recently proposed as an alternative to conventional immobilization methods on solid carriers. However, the low cross-linking efficiency causes the major activity loss and instability in the conventional protocol for CLEA preparation. Herein, the effects of bovine serum albumin and starch addition on the cross-linking efficiency of CLEAs of phenylalanine ammonia lyase (PAL) from Rhodotorula glutinis were evaluated. A co-aggregation strategy was developed to improve cross-linking efficiency by adding starch and bovine serum albumin (BSA). CLEAs of PAL prepared in the presence of BSA and starch (PSB-CLEAs) retained 36 % activity, whereas CLEAs prepared without BSA and starch (PAL-CLEAs) retained only 8 % activity of the starting enzyme preparation. Compared with PAL-CLEAs, the thermal stability of PSB-CLEAs has improved considerably, maintaining 30 % residual activity after 4 h of incubation at 70 °C, whereas the PAL-CLEAs have only 13 % residual activity. PSB-CLEAs also exhibited the expected increased stability of PAL against hydrophilic organic solvents, superior operability, and higher storage stability. The proposed technique of preparing CLEAs using co-aggregation with starch and BSA would rank among the potential strategies for efficiently preparing robust and highly stable enzyme aggregates. PMID:23754561

  17. A novel electrochemiluminescence ethanol biosensor based on tris(2,2'-bipyridine) ruthenium (II) and alcohol dehydrogenase immobilized in graphene/bovine serum albumin composite film.

    PubMed

    Gao, Wenhua; Chen, Yunsheng; Xi, Jing; Lin, Shaoyu; Chen, Yaowen; Lin, Yuejuan; Chen, Zhanguang

    2013-03-15

    We developed a novel electrochemiluminescence (ECL) ethanol biosensor based on Ru(bpy)(3)(2+) and alcohol dehydrogenase (ADH) immobilized by graphene/bovine serum albumin composite film. The graphene film was directly formed on a glassy carbon electrode surface via an in situ reduction of graphene oxide (GO) and Ru(bpy)(3)(2+) was immobilized during its formation. The graphene film acted as both a decorating agent for immobilization of Ru(bpy)(3)(2+) and a matrix to immobilize bovine serum albumin (BSA), meanwhile BSA not only acted as a reductant to reduce GO, but also provided a friendly environment for ADH immobilization. Furthermore, ADH was separated from Ru(bpy)(3)(2+) by the electron-conductive graphene/BSA composite film to retain its enzymatic activity. The experimental results indicated that the biosensor had excellent electrochemical activity, ECL response to ethanol and stability. Such a design of Ru(bpy)(3)(2+)-graphene/BSA film to modify electrode holds a great promise as a new biocompatible platform for the development of enzyme-based ECL biosensors. PMID:23122751

  18. Which model based on fluorescence quenching is suitable to study the interaction between trans-resveratrol and BSA?

    NASA Astrophysics Data System (ADS)

    Wei, Xin Lin; Xiao, Jian Bo; Wang, Yuanfeng; Bai, Yalong

    2010-01-01

    There are several models by means of quenching fluorescence of BSA to determine the binding parameters. The binding parameters obtained from different models are quite different from each other. Which model is suitable to study the interaction between trans-resveratrol and BSA? Herein, twelve models based fluorescence quenching of BSA were compared. The number of binding sites increasing with increased binding constant for similar compounds binding to BSA maybe one approach to resolve this question. For example, here eleven flavonoids were tested to illustrate that the double logarithm regression curve is suitable to study binding polyphenols to BSA.

  19. DNA- and BSA-binding studies and anticancer activity against human breast cancer cells (MCF-7) of the zinc(II) complex coordinated by 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine

    NASA Astrophysics Data System (ADS)

    Anjomshoa, Marzieh; Fatemi, Seyed Jamilaldin; Torkzadeh-Mahani, Masoud; Hadadzadeh, Hassan

    2014-06-01

    Binding studies of a mononuclear zinc(II) complex, [Zn(dppt)2Cl2] (dppt is 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine), with DNA and bovine serum albumin (BSA) have been investigated under physiological conditions. The binding properties of the complex with fish sperm DNA (FS-DNA) have been investigated by UV-Vis absorption, thermal denaturation, competitive DNA-binding studies with ethidium bromide (EB) by fluorescence, and gel electrophoresis techniques. The competitive study with (EB) shows that the complex can displace EB from the DNA-EB system and compete for the DNA-binding sites with EB, which is usually characteristic of the intercalative interaction of compounds with DNA. The value of the fluorescence quenching constant (Ksv) was obtained as 3.1 × 104 M-1, indicating that this complex shows a high quenching efficiency and a significant degree of binding to DNA. Moreover, the intercalative binding mode has also been verified by the results of UV-Vis absorption, thermal denaturation and gel electrophoresis. The value of Kb at room temperature was calculated to be 1.97 × 105 M-1, indicating that the complex possesses strong tendency to bind with DNA. This value is very greater than to the values obtained for other zinc(II) complexes. The interaction of the complex with BSA has been studied by UV-Vis absorption, fluorescence and circular dichroism (CD) spectroscopic techniques. The results indicate that the complex has a quite strong ability to quench the fluorescence of BSA and the binding reaction is mainly a static quenching process. The quenching constants (KSV), the binding constants (Kb), the number of binding sites at different temperatures, the binding distance between BSA and the complex (r), and the thermodynamic parameters (ΔHo, ΔSo and ΔGo) between BSA and the complex were calculated. The complex exhibits good binding propensity to BSA showing relatively high binding constant values. The positive ΔHo and ΔSo values indicate that the

  20. Formation of bovine serum albumin associates with zinc tetra(4,4'-carboxy)phenylamino- and tetra-(4,4'-carboxy)phenoxy phthalocyanines in aqueous-organic solutions at 298 K

    NASA Astrophysics Data System (ADS)

    Lebedeva, N. Sh.; Popova, T. E.; Mal'kova, E. A.; Gubarev, Yu. A.

    2013-12-01

    The states of water-soluble complexes of zinc phthalocyanine containing -O-C6H4-COONa and -NH-C6H4-COONa substituents in aqueous and organic media are studied. The type of dimerization is determined for each phthalocyanine. Phthalocyanine interaction with bovine serum albumin is studied with respect to the association equilibria. It is shown that phthalocyanines are localized in protein subdomains IB and IIA, and the interaction between protein and phthalocyanines is of a multicenter character.

  1. The BsaHI restriction-modification system: Cloning, sequencing and analysis of conserved motifs

    PubMed Central

    Neely, Robert K; Roberts, Richard J

    2008-01-01

    Background Restriction and modification enzymes typically recognise short DNA sequences of between two and eight bases in length. Understanding the mechanism of this recognition represents a significant challenge that we begin to address for the BsaHI restriction-modification system, which recognises the six base sequence GRCGYC. Results The DNA sequences of the genes for the BsaHI methyltransferase, bsaHIM, and restriction endonuclease, bsaHIR, have been determined (GenBank accession #EU386360), cloned and expressed in E. coli. Both the restriction endonuclease and methyltransferase enzymes share significant similarity with a group of 6 other enzymes comprising the restriction-modification systems HgiDI and HgiGI and the putative HindVP, NlaCORFDP, NpuORFC228P and SplZORFNP restriction-modification systems. A sequence alignment of these homologues shows that their amino acid sequences are largely conserved and highlights several motifs of interest. We target one such conserved motif, reading SPERRFD, at the C-terminal end of the bsaHIR gene. A mutational analysis of these amino acids indicates that the motif is crucial for enzymatic activity. Sequence alignment of the methyltransferase gene reveals a short motif within the target recognition domain that is conserved among enzymes recognising the same sequences. Thus, this motif may be used as a diagnostic tool to define the recognition sequences of the cytosine C5 methyltransferases. Conclusion We have cloned and sequenced the BsaHI restriction and modification enzymes. We have identified a region of the R. BsaHI enzyme that is crucial for its activity. Analysis of the amino acid sequence of the BsaHI methyltransferase enzyme led us to propose two new motifs that can be used in the diagnosis of the recognition sequence of the cytosine C5-methyltransferases. PMID:18479503

  2. Dynamics of gold nanoparticles in synthetic and biopolymer solutions

    NASA Astrophysics Data System (ADS)

    Kohli, Indermeet

    Soft matter systems of colloidal particles, polymers, amphiphiles and liquid crystals are ubiquitous in our everyday life. Food, plastics, soap and even human body is comprised of soft materials. Research conducted to understand the behavior of these soft matter systems at molecular level is essential for many interdisciplinary fields of study as well as important for many technological applications. We used gold nanoparticles (Au NPs) to investigate the length-scale dependent dynamics in semidilute poly(ethylene glycol) (PEG)-water, bovine serum albumin (BSA)-phosphate buffer, dextran and particulate solutions. In case of PEG-water solutions, fluctuation correlation spectroscopy was used to measure the diffusion coefficients (D) of the NPs as a function of their radius, Ro (2.5-10 nm), PEG volume fraction, φ (0-0.37) and molecular weight, Mw (5 kg/mol and 35 kg/mol). Our results indicate that the radius of gyration, Rg of the polymer chain is the crossover length scale for the NPs experiencing nanoviscosity or macroviscosity. In BSA-phosphate buffer solutions, we observed a monolayer formation at the NP surface with a thickness of 3.8 nm. The thickness of the adsorbed layer was independent of NP size. Best fit was obtained by the anticooperative binding model with the Hill coefficient of n = 0.63. Dissociation constant (KD) increased with particle size indicating stronger interaction of BSA with smaller sized NPs. We also contrasted the diffusion of gold nanoparticles (AuNPs) in crowded solutions of randomly branched polymer (dextran) and rigid, spherical particles (silica) to understand the roles played by the probe size and structure of the crowding agent in determining the probe diffusion. AuNPs of two different sizes (2.5 nm & 10 nm), dextran of molecular weight 70 kDa and silica particles of radius 10 nm were used. Our results indicated that the AuNP diffusion can be described using the bulk viscosity of the matrix and hydrodynamically dextran behaved

  3. Adsorption of bovine serum albumin onto synthetic Fe-doped geomimetic chrysotile

    PubMed Central

    Adamiano, Alessio; Lesci, Isidoro Giorgio; Fabbri, Daniele; Roveri, Norberto

    2015-01-01

    Synthetic stoichiometric and Fe-doped geomimetic chrysotile nanocrystals represent a reference standard to investigate the health hazard associated with mineral asbestos fibres. Experimental evidence suggests that the generation of reactive oxygen species and other radicals, catalysed by iron ions at the fibre surface, plays an important role in asbestos-induced cytotoxicity and genotoxicity. In this study, structural modification of bovine serum albumin (BSA) adsorbed onto synthetic chrysotile doped with different amounts of Fe has been investigated by Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analysis (TGA) and analytical pyrolysis coupled with gas chromatography–mass spectrometry. FT-IR data evidenced a marked increase in disordered structures like random coil and β-turn of BSA–nanocrystal adduct with 0.52 wt% of Fe doped. The TGA profile of the BSA revealed that its interaction with the synthetic chrysotile surface was strongly affected by the substitution of Fe into the chrysotile structure. The 2,5-diketopiperazine yields, formed upon thermal degradation of the polypeptide chain (pyrolysis–gas chromatography), changed when the BSA was adsorbed on the nanofibres. In general, results suggested that minute amount (less than 1 wt%) of Fe doping in chrysotile affected the protein–nanofibre interactions, supporting the role that this element may play in asbestos toxicity. The catalytic role of iron and the consequent unfolding of protein due to the structural surface modification of nanofibres were also evaluated. PMID:26018963

  4. Potential-Assisted Adsorption of Bovine Serum Albumin onto Optically-Transparent Carbon Electrodes

    PubMed Central

    Benavidez, Tomás E.; Garcia, Carlos D.

    2013-01-01

    This manuscript describes the effect of the applied potential on the adsorption of bovine serum albumin (BSA) to optically transparent carbon electrodes (OTCE). To decouple the effect of the applied potential from the high affinity of the protein for the bare surface, the surface of the OTCE was initially saturated with a layer of BSA. Experiments described in the manuscript show that potential values higher than +500 mV induced a secondary adsorption process (not observed at open-circuit potentials), yielding significant changes in the thickness (and adsorbed amount) of the BSA layer obtained. Although the process showed a significant dependence on the experimental conditions selected, the application of higher potentials, selection of pH values around the isoelectric point (IEP) of the protein, high concentrations of protein, and low ionic strengths yielded faster kinetics and the accumulation of larger amounts of protein on the substrate. These experiments, obtained around the IEP of the protein, contrast with the traditional hypothesis that enhanced electrostatic interactions between the polarized substrate and the (oppositely charged) protein are solely responsible for the enhanced adsorption. These results suggest that the potential applied to the electrode is able to polarize the adsorbed layer and induce dipole-dipole interactions between the adsorbed and the incoming protein. This mechanism could be responsible for the potential-dependent oversaturation of the surface and could bolster to the development of surfaces with enhanced catalytic activity and implants with improved biocompatibility. PMID:24156567

  5. Green synthesis and physical characterization of Au nanoparticles and their interaction with bovine serum albumin.

    PubMed

    Yue, Hua-Li; Hu, Yan-Jun; Chen, Jun; Bai, Ai-Min; Ouyang, Yu

    2014-10-01

    In this study, we used morin as a reducing agent for the synthesis of stable and nearly spherical Au nanoparticles (M-AuNPs), which were characterized by UV-vis, transmission electron microscopy (TEM) and X-ray diffraction (XRD). The binding characteristics and molecular mechanism of the interaction between the M-AuNPs and bovine serum albumin (BSA) were explored by UV-vis absorbance, fluorescence spectroscopy, and circular dichroism spectra (CD). The results showed that the quenching mechanisms were based on static quenching. The thermodynamic parameters ΔG, ΔH and ΔS, suggested that the reaction was spontaneous, and mainly driven by electrostatic interactions. Site marker competitive displacement experiments indicated that MAuNPs bound with high affinity to site I (subdomain IIA) of BSA. Synchronous fluorescence and CD spectra demonstrated that BSA conformation was slightly altered in the presence of M-AuNPs. In addition, the effect of pH, temperature, morin quantity, and reaction time were investigated. PMID:25033430

  6. Kinetic regime of dithiothreitol-induced aggregation of bovine serum albumin.

    PubMed

    Borzova, Vera A; Markossian, Kira A; Kara, Dmitriy A; Kurganov, Boris

    2015-09-01

    A search for agents, which are capable of effectively suppressing protein aggregation, and elaboration of the appropriate test systems, are among important problems of modern biochemistry and biotechnology. One such test system is based on dithiothreitol (DTT)-induced aggregation of bovine serum albumin (BSA). Study of the kinetics of DTT-induced aggregation of BSA by asymmetric flow field flow fractionation showed that a decrease in the portion of the non-aggregated protein in time followed the exponential law, the rate constant of the first order remaining unchanged at varying protein concentration (0.1M Na-phosphate buffer, pH 7.0; 45 °C). The obtained results indicate that the rate-limiting stage of the general aggregation process is that of unfolding of the protein molecule. When studying the kinetics of DTT-induced aggregation of BSA by dynamic light scattering, we proposed to use parameter K(LS) as a measure of the initial rate of aggregation. Parameter K(LS) corresponds to the initial slope of the dependence of (I-I0)(0.5) on time (I0 and I are the initial and current values of the light scattering intensity, respectively). The K(LS) value has been applied to estimate anti-aggregation activity of chemical chaperones (arginine, its derivatives and proline). PMID:26116389

  7. A spectroscopic investigations of anticancer drugs binding to bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Bakkialakshmi, S.; Chandrakala, D.

    2012-03-01

    The binding of anticancer drugs (i) Uracil (U), (ii) 5-Fluorouracil (5FU) and (iii) 5-Chlorouracil (5ClU), to bovine serum albumin (BSA) at two levels of temperature was studied by the fluorescence of quenching method. UV/Vis, time-resolved fluorescence, Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (1H NMR) and scanning electron microscope (SEM) analyses were also made. Binding constants (Ka) and binding sites (n) at various levels of temperature were calculated. The obtained binding sites were found to be equal to one for all the three quenchers (U, 5FU and 5ClU) at two different temperature levels. Thermodynamic parameters ΔH, ΔG and ΔS have been calculated and were presented in tables. Change in FTIR absorption intensity shows strong binding of anticancer drugs to BSA. Changes in chemical shifts of NMR and fluorescence lifetimes of the drugs indicate the presence of interaction and binding of BSA to anticancer drugs. 1H NMR spectra and SEM photographs also conform this binding.

  8. Covalent albumin microparticles as an adjuvant for production of mucosal vaccines against hepatitis B.

    PubMed

    Sitta, Danielly L A; Guilherme, Marcos R; Garcia, Francielle P; Cellet, Thelma S P; Nakamura, Celso V; Muniz, Edvani C; Rubira, Adley F

    2013-09-01

    Covalently modified albumin (BSA) microparticles were developed for potential use as an adjuvant in mucosal vaccines against hepatitis B. To synthesize consistent protein particles, a covalent approach was proposed to modify BSA. Our strategy was to bond maleic anhydride (MA) molecules to BSA structure by nucleophilic reaction for further radical cross-linking/polymerization reaction with N',N'-dimethylacrylamide (DMAAm). The presence of poly(N',N'-dimethylacrylamide) in the protein network enables the microparticles to show well-defined, homogeneous forms. Cytotoxicity tests showed that the cytotoxic concentration for 50% of VERO cells (CC50) was 216.25 ± 5.30 μg mL(-1) in 72 h of incubation. The obtained CC50 value is relatively low for an incubation time of 72 h, suggesting an acceptable biocompatibility. Assay of total protein showed that the encapsulation efficiency of the microparticles with hepatitis B surface antigen (HBsAg) was 77.7 ± 0.2%. For the reference sample, which was incubated without HBsAg, the quantity of protein was below the limit of detection. PMID:23863080

  9. Deciphering the role of pH in the binding of ciprofloxacin hydrochloride to bovine serum albumin.

    PubMed

    Anand, Uttam; Kurup, Lisha; Mukherjee, Saptarshi

    2012-03-28

    The effect of the added fluoroquinolone, Ciprofloxacin Hydrochloride (CpH), on structural properties of Bovine Serum Albumin (BSA) was investigated by Circular Dichroism (CD), steady-state, time-resolved and Dynamic Light Scattering (DLS) spectroscopic approaches. The intrinsic fluorescence of the Tryptophan (Trp) amino acid residue in the globular protein BSA was made use of and the effect of pH at two different temperatures was thoroughly investigated. CD results indicate that CpH induces some structural changes in BSA and this has been well-supported by steady-state, lifetime and DLS data. The fluorescence intensity of Trp gradually decreases with the rise in concentration of CpH and we have conclusively proved that at pH 7.4 and 9.2, the mechanism of fluorescence quenching is mostly dynamic in nature, whereas at pH 4.5 mainly static quenching is operational. Thermodynamic parameters have been studied to rationalize the nature of binding of CpH to BSA, and we have concluded that hydrophobic and van der Waals forces play an important role in the process of drug-protein interaction at three different pH values. The lifetime of Trp was found to decrease with the rise in CpH concentration and the percentage reduction in lifetime was found to be a function of the pH of the medium under investigation. PMID:22354288

  10. A Simple and Sensitive Method for Auramine O Detection Based on the Binding Interaction with Bovin Serum Albumin.

    PubMed

    Yan, Jingjing; Huang, Xin; Liu, Shaopu; Yang, Jidong; Yuan, Yusheng; Duan, Ruilin; Zhang, Hui; Hu, Xiaoli

    2016-01-01

    A simple, rapid and effective method for auramine O (AO) detection was proposed by fluorescence and UV-Vis absorption spectroscopy. In the BR buffer system (pH 7.0), AO had a strong quenching ability to the fluorescence of bovin serum albumin (BSA) by dynamic quenching. In terms of the thermodynamic parameters calculated as ΔH > 0 and ΔS > 0, the resulting binding of BSA and AO was mainly attributed to the hydrophobic interaction forces. The linearity of this method was in the concentration range from 0.16 to 50 μmol L(-1) with a detection limit of 0.05 μmol L(-1). Based on fluorescence resonance energy transfer (FRET), the distance r (1.36 nm) between donor (BSA) and acceptor (AO) was obtained. Furthermore, the effects of foreign substances and ionic strength were evaluated under the optimum reaction conditions. BSA as a selective probe could be applied to the analysis of AO in medicines with satisfactory results. PMID:27506706

  11. Preparation of carbon quantum dots with a high quantum yield and the application in labeling bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Liu, Pengpeng; Zhang, Changchang; Liu, Xiang; Cui, Ping

    2016-04-01

    An economic and green approach of manufacturing carbon quantum dots (CQDs) with a high quantum yield (denoted with HQY-CQDs) and the application in labeling bovine serum albumin (BSA) were described in detail in this work. Firstly, the cheap resources of citric acid and glycine were pyrolysed in drying oven for preparing the CQDs. Then the product was immersed in tetrahydrofuran for 8 h. HQY-CQDs were obtained by removing tetrahydrofuran from the supernate and were evaluated that they possessed a much higher quantum yield compared with that without dealing with tetrahydrofuran and a wonderful photo-bleaching resistance. Such HQY-CQDs could be functionalized by N-hydroxysuccinimide and successively combined with BSA covalently. Thus fluorescent labeling on BSA was realized. The HQY-CQDs were demonstrated with transmission electron microscopy and the chemical modification with N-hydroxysuccinimide was proved by infrared and X-ray photoelectron spectra. Labeling BSA with the HQY-CQDs was confirmed by gel electrophoresis and fluorescence imaging.

  12. Molecular modeling and spectroscopic studies on the interaction of the chiral drug venlafaxine hydrochloride with bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Shahabadi, Nahid; Hadidi, Saba

    2014-03-01

    This study was designed to examine the interaction of racemic antidepressant drug "S,R-venlafaxine hydrochloride (VEN)" with bovine serum albumin (BSA) under physiological conditions. The mechanism of interaction was studied by spectroscopic techniques combination with molecular modeling. Stern-Volmer analysis of fluorescence quenching data shows the presence of the static quenching mechanism. The thermodynamic parameters indicated that the hydrogen bonding and weak van der Waals interactions are the predominant intermolecular forces stabilizing the complex. The number of binding sites (n) was calculated. Through the site marker competitive experiment, VEN was confirmed to be located in subdomain IIIA of BSA. The binding distance (r = 4.93 nm) between the donor BSA and acceptor VEN was obtained according to Förster's non-radiative energy transfer theory. According to UV-vis spectra and CD data binding of VEN leaded to conformational changes of BSA. Molecular docking simulations of S and R-VEN revealed that both isomers have similar interaction and the same binding sites, from this point of view S and R isomers are equal.

  13. Self-Assembled Fluorescent Bovine Serum Albumin Nanoprobes for Ratiometric pH Measurement inside Living Cells.

    PubMed

    Yang, Qiaoyu; Ye, Zhongju; Zhong, Meile; Chen, Bo; Chen, Jian; Zeng, Rongjin; Wei, Lin; Li, Hung-Wing; Xiao, Lehui

    2016-04-20

    In this work, we demonstrated a new ratiometric method for the quantitative analysis of pH inside living cells. The structure of the nanosensor comprises a biofriendly fluorescent bovine serum albumin (BSA) matrix, acting as a pH probe, and pH-insensitive reference dye Alexa 594 enabling ratiometric quantitative pH measurement. The fluorescent BSA matrix was synthesized by cross-linking of the denatured BSA proteins in ethanol with glutaraldehyde. The size of the as-synthesized BSA nanoparticles can be readily manipulated from 30 to 90 nm, which exhibit decent fluorescence at the peak wavelength of 535 nm with a pH response range of 6-8. The potential of this pH sensor for intracellular pH monitoring was demonstrated inside living HeLa cells, whereby a significant change in fluorescence ratio was observed when the pH of the cell was switched from normal to acidic with anticancer drug treatment. The fast response of the nanosensor makes it a very powerful tool in monitoring the processes occurring within the cytosol. PMID:27015598

  14. Microglial cell death induced by glycated bovine serum albumin: nitric oxide involvement.

    PubMed

    Khazaei, Mohammad R; Habibi-Rezaei, Mehran; Karimzadeh, Fereshteh; Moosavi-Movahedi, Ali Akbar; Sarrafnejhad, Abdo Alfattah; Sabouni, Farzaneh; Bakhti, Mostafa

    2008-08-01

    Nonenzymatic glycation results in the formation of advanced glycation end products (AGEs) through a nonenzymatic multistep reaction of reducing sugars with proteins. AGEs have been suspected to be involved in the pathogenesis of several chronic clinical neurodegenerative complications including Alzheimer's disease, which is characterized with the activation of microglial cells in neuritic plaques. To find out the consequence of this activation on microglial cells, we treated the cultured microglial cells with different glycation levels of Bovine Serum Albumin (BSA) which were prepared in vitro. Extent of glycation of protein has been characterized during 16 weeks of incubation with glucose. Treatment of microglial cells with various levels of glycated albumin induced nitric oxide (NO) production and consequently cell death. We also tried to find out the mode of death in AGE-activated microglial cells. Altogether, our results suggest that AGE treatment causes microglia to undergo NO-mediated apoptotic and necrotic cell death in short term and long term, respectively. NO production is a consequence of iNOS expression in a JNK dependent RAGE signalling after activation of RAGE by AGE-BSA. PMID:18463114

  15. BSA-conjugated zinc oxide nanoparticles as luminescent probes for the determination of histidine.

    PubMed

    Wu, Dudu; Liang, Qiaowen; Chen, Zhi

    2016-06-01

    Zinc oxide nanoparticles doped with bovine serum albumin were used to determine histidine in aqueous solutions using a fluorescence spectroscopic technique. The results showed that histidine effectively quenched the fluorescence of the modified ZnO nanoparticles, whereas other amino acids did not significantly affect the light emission, thereby allowing selective and sensitive histidine detection in amino acid mixtures. Under optimal conditions (pH 7.0, 25 °C, 10 min preincubation), the detection limit for histidine was ~ 9.87 × 10(-7) mol/L. The high value of the determined quenching rate constant Kq (3.30 × 10(13)  L/mol/s) was consistent with a static quenching mechanism. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26577609

  16. Albumin Stimulates the Activity of the Human UDP-Glucuronosyltransferases 1A7, 1A8, 1A10, 2A1 and 2B15, but the Effects Are Enzyme and Substrate Dependent

    PubMed Central

    Svaluto-Moreolo, Paolo; Dziedzic, Klaudyna; Yli-Kauhaluoma, Jari; Finel, Moshe

    2013-01-01

    Human UDP-glucuronosyltransferases (UGTs) are important enzymes in metabolic elimination of endo- and xenobiotics. It was recently shown that addition of fatty acid free bovine serum albumin (BSA) significantly enhances in vitro activities of UGTs, a limiting factor in in vitro–in vivo extrapolation. Nevertheless, since only few human UGT enzymes were tested for this phenomenon, we have now performed detailed enzyme kinetic analysis on the BSA effects in six previously untested UGTs, using 2–4 suitable substrates for each enzyme. We also examined some of the previously tested UGTs, but using additional substrates and a lower BSA concentration, only 0.1%. The latter concentration allows the use of important but more lipophilic substrates, such as estradiol and 17-epiestradiol. In five newly tested UGTs, 1A7, 1A8, 1A10, 2A1, and 2B15, the addition of BSA enhanced, to a different degree, the in vitro activity by either decreasing reaction’s Km, increasing its Vmax, or both. In contrast, the activities of UGT2B17, another previously untested enzyme, were almost unaffected. The results of the assays with the previously tested UGTs, 1A1, 1A6, 2B4, and 2B7, were similar to the published BSA only as far as the BSA effects on the reactions’ Km are concerned. In the cases of Vmax values, however, our results differ significantly from the previously published ones, at least with some of the substrates. Hence, the magnitude of the BSA effects appears to be substrate dependent, especially with respect to Vmax increases. Additionally, the BSA effects may be UGT subfamily dependent since Km decreases were observed in members of subfamilies 1A, 2A and 2B, whereas large Vmax increases were only found in several UGT1A members. The results shed new light on the complexity of the BSA effects on the activity and enzyme kinetics of the human UGTs. PMID:23372764

  17. Spectroscopic and molecular docking studies on the charge transfer complex of bovine serum albumin with quinone in aqueous medium and its influence on the ligand binding property of the protein

    NASA Astrophysics Data System (ADS)

    Satheshkumar, Angupillai; Elango, Kuppanagounder P.

    2014-09-01

    The spectral techniques such as UV-Vis, 1H NMR and fluorescence and electrochemical experiments have been employed to investigate the interaction between 2-methoxy-3,5,6-trichloro-1,4-benzoquinone (MQ; a water soluble quinone) and bovine serum albumin (BSA) in aqueous medium. The fluorescence of BSA was quenched by MQ via formation of a 1:1 BSA-MQ charge transfer adduct with a formation constant of 3.3 × 108 L mol-1. Based on the Forster’s theory the binding distance between them is calculated as 2.65 nm indicating high probability of binding. For the first time, influence of quinone on the binding property of various types of ligands such as aspirin, ascorbic acid, nicotinimide and sodium stearate has also been investigated. The results indicated that the strong and spontaneous binding existing between BSA and MQ, decreased the intensity of binding of these ligands with BSA. Since Tryptophan (Trp) is the basic residue present in BSA, a comparison between binding property of Trp-MQ adduct with that of BSA-MQ with these ligands has also been attempted. 1H NMR titration study indicated that the Trp forms a charge transfer complex with MQ, which reduces the interaction of Trp with the ligands. Molecular docking study supported the fact that the quinone interacts with the Trp212 unit of the BSA and the free energy change of binding (ΔG) for the BSA-MQ complex was found to be -46 kJ mol-1, which is comparable to our experimental free energy of binding (-49 kJ mol-1) obtained from fluorescence study.

  18. Industrial stabilizers caprylate and N-acetyltryptophanate reduce the efficacy of albumin in liver patients.

    PubMed

    Stange, Jan; Stiffel, Melanie; Goetze, Anne; Strube, Sabrina; Gruenert, Juliane; Klammt, Sebastian; Mitzner, Steffen; Koball, Sebastian; Liebe, Stefan; Reisinger, Emil

    2011-06-01

    Liver failure is associated with an accumulation of toxic molecules that exert an affinity to albumin