Science.gov

Sample records for albumin human serum

  1. Polymerized soluble venom--human serum albumin

    SciTech Connect

    Patterson, R.; Suszko, I.M.; Grammer, L.C.

    1985-03-01

    Extensive previous studies have demonstrated that attempts to produce polymers of Hymenoptera venoms for human immunotherapy resulted in insoluble precipitates that could be injected with safety but with very limited immunogenicity in allergic patients. We now report soluble polymers prepared by conjugating bee venom with human serum albumin with glutaraldehyde. The bee venom-albumin polymer (BVAP) preparation was fractionated on Sephacryl S-300 to have a molecular weight range higher than catalase. /sup 125/I-labeled bee venom phospholipase A was almost completely incorporated into BVAP. Rabbit antibody responses to bee venom and bee venom phospholipase A were induced by BVAP. Human antisera against bee venom were absorbed by BVAP. No new antigenic determinants on BVAP were present as evidenced by absorption of antisera against BVAP by bee venom and albumin. BVAP has potential immunotherapeutic value in patients with anaphylactic sensitivity to bee venom.

  2. Interaction of Citrinin with Human Serum Albumin

    PubMed Central

    Poór, Miklós; Lemli, Beáta; Bálint, Mónika; Hetényi, Csaba; Sali, Nikolett; Kőszegi, Tamás; Kunsági-Máté, Sándor

    2015-01-01

    Citrinin (CIT) is a mycotoxin produced by several Aspergillus, Penicillium, and Monascus species. CIT occurs worldwide in different foods and drinks and causes health problems for humans and animals. Human serum albumin (HSA) is the most abundant plasma protein in human circulation. Albumin forms stable complexes with many drugs and xenobiotics; therefore, HSA commonly plays important role in the pharmacokinetics or toxicokinetics of numerous compounds. However, the interaction of CIT with HSA is poorly characterized yet. In this study, the complex formation of CIT with HSA was investigated using fluorescence spectroscopy and ultrafiltration techniques. For the deeper understanding of the interaction, thermodynamic, and molecular modeling studies were performed as well. Our results suggest that CIT forms stable complex with HSA (logK ~ 5.3) and its primary binding site is located in subdomain IIA (Sudlow’s Site I). In vitro cell experiments also recommend that CIT-HSA interaction may have biological relevance. Finally, the complex formations of CIT with bovine, porcine, and rat serum albumin were investigated, in order to test the potential species differences of CIT-albumin interactions. PMID:26633504

  3. (PCG) Protein Crystal Growth Human Serum Albumin

    NASA Technical Reports Server (NTRS)

    1989-01-01

    (PCG) Protein Crystal Growth Human Serum Albumin. Contributes to many transport and regulatory processes and has multifunctional binding properties which range from various metals, to fatty acids, hormones, and a wide spectrum of therapeutic drugs. The most abundant protein of the circulatory system. It binds and transports an incredible variety of biological and pharmaceutical ligands throughout the blood stream. Principal Investigator on STS-26 was Larry DeLucas.

  4. Atomic structure and chemistry of human serum albumin

    NASA Technical Reports Server (NTRS)

    He, Xiao M.; Carter, Daniel C.

    1992-01-01

    The three-dimensional structure of human serum albumin has been determined crystallographically to a resolution of 2.8 A. It comprises three homologous domains that assemble to form a heart-shaped molecule. Each domain is a product of two subdomains that possess common structural motifs. The principal regions of ligand binding to human serum albumin are located in hydrophobic cavities in subdomains IIA and ILIA, which exhibit similar chemistry. The structure explains numerous physical phenomena and should provide insight into future pharmacokinetic and genetically engineered therapeutic applications of serum albumin.

  5. 99M-technetium labeled macroaggregated human serum albumin pharmaceutical

    DOEpatents

    Winchell, Harry S.; Barak, Morton; Van Fleet, III, Parmer

    1977-05-17

    A reagent comprising macroaggregated human serum albumin having dispersed therein particles of stannous tin and a method for instantly making a labeled pharmaceutical therefrom, are disclosed. The labeled pharmaceutical is utilized in organ imaging.

  6. A high-capacity hydrophobic adsorbent for human serum albumin.

    PubMed

    Belew, M; Peterson, E A; Porath, J

    1985-12-01

    A simple method, based on salting out hydrophobic interaction chromatography, for the efficient removal of trace amounts of serum albumin from partially purified protein preparations is described. The method is also successfully applied for the purification of albumin from Cohn fraction IV, a by-product obtained from the commercial fractionation of human serum proteins by the ethanol precipitation procedure. About 70% of the adsorbed albumin can be eluted by buffer of low ionic strength and can thus be lyophilized directly, if required. The adsorbent can be used for several cycles of adsorption and desorption without affecting its selectivity or capacity. Its adsorption properties and capacity for serum albumin are compared with those of the commercially available adsorbent Blue Sepharose CL-6B. PMID:3879424

  7. Human serum albumin and its relation with oxidative stress.

    PubMed

    Sitar, Mustafa Erinç; Aydin, Seval; Cakatay, Ufuk

    2013-01-01

    Human serum albumin, a negative acute phase reactant and marker of nutritive status, presents at high concentrations in plasma. Albumin has always been used in many clinical states especially to improve circulatory failure. It has been showed that albumin is involved in many bioactive functions such as regulation of plasma osmotic pressure, binding and transport of various endogenous or exogenous compounds, and finally extracellular antioxidant defenses. Molecules like transferrin, caeruloplasmin, haptoglobin, uric acid, bilirubin, alpha-tocopherol, glucose, and albumin constitute extracellular antioxidant defenses in blood plasma but albumin is the most potent one. Most of the antioxidant properties of albumin can be attributed to its unique biochemical structure. The protein possesses antioxidant properties such as binding copper tightly and iron weakly, scavenging free radicals, e.g., hypochlorous acid (HOCl) and Peroxynitrite (ONOOH) and providing thiol group (-SH). Whether it is chronic or acute, during many pathological conditions, biomarkers of oxidative protein damage increase and this observation continues with considerable oxidation of human serum albumin. There is an important necessity to specify its interactions with Reactive Oxygen Species. Generally, it may lower the availability of pro-oxidants and be preferentially oxidized to protect other macromolecules but all these findings make it necessary that researchers give a more detailed explanation of albumin and its relations with oxidative stress. PMID:24273915

  8. Binding of dapsone and its analogues to human serum albumin.

    PubMed

    Karp, W B; Subramanyam, S B; Robertson, A F

    1985-06-01

    The binding of dapsone, 4,4'-sulfonylbis(aniline)(1), and its diacetylated derivative, 4,4"'-sulfonylbis(acetanilide)(2), to human serum albumin is reported. To assess the ability of these compounds to displace 4'-[(4-aminophenyl)sulfonyl]acetanilide (3) from albumin, a dialysis rate technique was used. Competition for the bilirubin binding site on albumin was measured with the peroxidase assay. Compounds 1 and 2 strongly displaced both 3 and bilirubin from human serum albumin. The association constants for 1 and 2 with respect to bilirubin binding were 1.29 X 10(3) and 1.15 X 10(4) M-1, respectively. These results suggest that the binding site for 3 and the bilirubin binding site are similar with respect to 1 and 2 and that the binding of dapsone and its derivatives probably does not involve the amino function. PMID:4020658

  9. Effects of glycation on meloxicam binding to human serum albumin

    NASA Astrophysics Data System (ADS)

    Trynda-Lemiesz, Lilianna; Wiglusz, Katarzyna

    2011-05-01

    The current study reports a binding of meloxicam a pharmacologically important new generation, non-steroidal anti-inflammatory drug to glycated form of the human serum albumin (HSA). The interaction of the meloxicam with nonglycated and glycated albumin has been studied at pH 7.4 in 0.05 M sodium phosphate buffer with 0.1 M NaCl, using fluorescence quenching technique and circular dichroism spectroscopy. Results of the present study have shown that the meloxicam could bind both forms of albumin glycated and nonglycated at a site, which was close to the tryptophan residues. Similarly, how for native albumin glycated form has had one high affinity site for the drug with association constants of the order of 10 5 M -1. The glycation process of the HSA significantly has affected the impact of the meloxicam on the binding of other ligands such as warfarin and bilirubin. The affinity of the glycated albumin for bilirubin as for native albumin has been reduced by meloxicam but observed effect was weaker by half (about 20%) compared with nonglycated albumin. In contrast to the native albumin meloxicam binding to glycated form of the protein only slightly affected the binding of warfarin. It seemed possible that the effects on warfarin binding might be entirely attributable to the Lys 199 modification which was in site I.

  10. Fluorescence lifetime measurements of native and glycated human serum albumin and bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Joshi, Narahari V.; Joshi, Virgina O. d.; Contreras, Silvia; Gil, Herminia; Medina, Honorio; Siemiarczuk, Aleksander

    1999-05-01

    Nonenzymatic glycation, also known as Maillard reaction, plays an important role in the secondary complications of the diabetic pathology and aging, therefore, human serum albumin (HSA) and bovine serum albumin (BSA) were glycated by a conventional method in our laboratory using glucose as the glycating agent. Fluorescence lifetime measurements were carried out with a laser strobe fluorometer equipped with a nitrogen/dye laser and a frequency doubler as a pulsed excitation source. The samples were excited at 295 nm and the emission spectra were recorded at 345 nm. The obtained decay curves were tried for double and triple exponential functions. It has been found that the shorter lifetime increases for glycated proteins as compared with that of the native ones. For example, in the case of glycated BSA the lifetime increased from 1.36 ns to 2.30 ns. Similarly, for HSA, the lifetime increases from 1.58 ns to 2.26 ns. Meanwhile, the longer lifetime changed very slightly for both proteins (from 6.52 ns to 6.72 ns). The increase in the lifetime can be associated with the environmental effect; originated from the attachment of glucose to some lysine residues. A good example is Trp 214 which is in the cage of Lys 225, Lys 212, Lys 233, Lys 205, Lys 500, Lys 199 and Lys 195. If fluorescence lifetime technique is calibrated and properly used it could be employed for assessing glycation of proteins.

  11. Interaction of ergosterol with bovine serum albumin and human serum albumin by spectroscopic analysis.

    PubMed

    Cheng, Zhengjun

    2012-10-01

    This study was designed to examine the interactions of ergosterol with bovine serum albumin (BSA) and human serum albumin (HSA) under physiological conditions with the drug concentrations in the range of 2.99-105.88 μM and the concentration of proteins was fixed at 5.0 μM. The analysis of emission spectra quenching at different temperatures revealed that the quenching mechanism of HSA/BSA by ergosterol was the static quenching. The number of binding sites n and the binding constants K were obtained at various temperatures. The distance r between ergosterol and HSA/BSA was evaluated according to Föster non-radioactive energy transfer theory. The results of synchronous fluorescence, 3D fluorescence, FT-IR, CD and UV-Vis absorption spectra showed that the conformations of HSA/BSA altered in the presence of ergosterol. The thermodynamic parameters, free energy change (ΔG), enthalpy change (ΔH) and entropy change (ΔS) for BSA-ergosterol and HSA-ergosterol systems were calculated by the van't Hoff equation and discussed. Besides, with the aid of three site markers (for example, phenylbutazone, ibuprofen and digitoxin), we have reported that ergosterol primarily binds to the tryptophan residues of BSA/HSA within site I (subdomain II A). PMID:22733490

  12. A Homogeneous Fluorescent Sensor for Human Serum Albumin

    PubMed Central

    Wang, Rongsheng E.; Tian, Ling; Chang, Yie-Hwa

    2012-01-01

    Human serum albumin is the most abundant protein in the body and is an important biomarker used for disease-related diagnosis. Although the traditional enzyme-linked immunosorbent assay (ELISA) approach can precisely measure the concentration of human serum albumin, the multi-step procedure and time-consuming preparations of ELISA limit its diagnostic applications, preventing accurate point-of-care testing, for example. Herein, we report the recent development of an antibody-based albumin sensor that allows for a homogeneous measurement of albumin concentrations in saliva, urine and serum, in which this type of sensor is validated for the first time. The assay only requires simple mixing, and relies on time-resolved (TR) fluorescence resonance energy transfer (FRET) to produce robust, sensitive signals. The whole process, from sample preparation to final read-out, is expected to take less than one hour and requires only a standard plate-reader, thus making the sensor a convenient and cost-effective tool for albumin analysis. PMID:22326845

  13. Sequences Of Amino Acids For Human Serum Albumin

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.

    1992-01-01

    Sequences of amino acids defined for use in making polypeptides one-third to one-sixth as large as parent human serum albumin molecule. Smaller, chemically stable peptides have diverse applications including service as artificial human serum and as active components of biosensors and chromatographic matrices. In applications involving production of artificial sera from new sequences, little or no concern about viral contaminants. Smaller genetically engineered polypeptides more easily expressed and produced in large quantities, making commercial isolation and production more feasible and profitable.

  14. Fructosylation generates neo-epitopes on human serum albumin.

    PubMed

    Allarakha, Shaziya; Ahmad, Parvez; Ishtikhar, Mohd; Zaheer, Mohammad Shoaib; Siddiqi, Sheelu Shafiq; Moinuddin; Ali, Asif

    2015-05-01

    Hyperglycemia is the defining feature of diabetes mellitus. The persistently high levels of reducing sugars like glucose and fructose cause glycation of various macromolecules in the body. Human serum albumin (HSA), the most abundant serum protein with a myriad of functions, is prone to glycation and consequent alteration in its structural and biological properties. This study aimed to assess the role of fructose-modified human serum albumin as a marker of diabetic pathophysiology. We carried out modification of HSA with fructose and the changes induced were studied by various physicochemical studies. Fructose modified-HSA showed hyperchromicity in UV spectrum and increased AGE-specific fluorescence as well as quenching of tryptophan fluorescence. In SDS-PAGE protein aggregation was seen. Amadori products were detected by NBT. The fructose modified HSA had higher content of carbonyls along with perturbations in secondary structure as revealed by CD and FT-IR. A greater hydrodynamic radius of fructose-modified HSA was evident by DLS measurement. The fructose-modified HSA induced high titre antibodies in experimental animals exhibiting high specificity towards the immunogen. PMID:25914162

  15. Review: modifications of human serum albumin and their binding effect.

    PubMed

    Lee, Philbert; Wu, Xiaoyang

    2015-01-01

    Human serum albumin (HSA) regulates the transport and availability of numerous chemical compounds and molecules in the blood vascular system. While previous HSA research has found that HSA interacts with specific varieties of ligands, new research efforts aim to expand HSA's ability to interact with more different drugs in order to improve the delivery of various pharmacological drugs. This review will cover fatty acid chain and posttranslational modifications of HSA that potentially modulate how HSA interacts with various pharmacological drugs, including glycation, cysteinylation, S-nitrosylation, S-transnitrosation and S-guanylation. PMID:25732553

  16. Review: Modifications of Human Serum Albumin and Their Binding Effect

    PubMed Central

    Lee, Philbert; Wu, Xiaoyang

    2015-01-01

    Human serum albumin (HSA) regulates the transport and availability of numerous chemical compounds and molecules in the blood vascular system. While previous HSA research has found that HSA interacts with specific varieties of ligands, new research efforts aim to expand HSA’s ability to interact with more different drugs in order to improve the delivery of various pharmacological drugs. This review will cover fatty acid chain and post-translational modifications of HSA that potentially modulate how HSA interacts with various pharmacological drugs, including glycation, cysteinylation, S-nitrosylation, S-transnitrosation and S-guanylation. PMID:25732553

  17. Three-dimensional structure of human serum albumin

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.; He, Xiao-Min; Munson, Sibyl H.; Twigg, Pamela D.; Gernert, Kim M.; Broom, M. Beth; Miller, Teresa Y.

    1989-01-01

    The three-dimensional structure of human serum albumin has been solved at 6.0 A resolution by the method of multiple isomorphous replacement. Crystals were grown from solutions of polyethylene glycol in the infrequently observed space group P42(1)2 and diffracted X-rays to lattice d-spacings of less than 2.9 A. The electron density maps are of high quality and revealed the structure as a predominantly alpha-helical globin protein in which the course of the polypeptide can be traced. The binding loci of several organic compounds have been determined.

  18. Hydrophobic conjugated microporous polymers for sorption of human serum albumin

    NASA Astrophysics Data System (ADS)

    Zheng, Chunli; Du, Miaomiao; Feng, Shanshan; Sun, Hanxue; Li, An; He, Chi; Zhang, TianCheng; Wang, Qiaorui; Wei, Wei

    2016-02-01

    This paper investigated the sorption of human serum albumin (HSA) from water by three kinds of conjugated microporous polymers (CMPs) with surface hydrophobicity and intrinsic porosity. It was found that the three CMPs captured HSA with fast sorption kinetics and good working capacity. Equilibrium was obtained at 80 min for all the tests, and the maximum sorption quantity (qm) ranged from 0.07 to 0.14 mg/mg. With the increase in the particle external surface area of the CMPs, a greater extent of HSA sorption was achieved. Moreover, promoting the dispersion of CMPs in HSA aqueous solution was also beneficial to the extraction. Attenuated Total Reflection Fourier Transform Infrared spectroscopy verified the interactions between the CMPs and the Nsbnd H, Cdbnd O, and Csbnd N groups of HSA. This paper might provide fundamental guidance for the practical application of CMPs to proteins separation and recovery.

  19. Human serum albumin crystals and method of preparation

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor)

    1989-01-01

    Human serum albumin (HSA) crystals are provided in the form of tetragonal plates having the space groups P42(sub 1)2, the crystals being grown to sizes in excess of 0.5 mm in two dimensions and a thickness of 0.1 mm. Growth of the crystals is carried out by a hanging drop method wherein a precipitant solution containing polyethylene glycol (PEG) and a phosphate buffer is mixed with an HSA solution, and a droplet of mixed solution is suspended over a well of precipitant solution. Crystals grow to the desired size in 3 to 7 days. Concentration of reagents, pH and other parameters are controlled within prescribed limits. The resulting crystals exhibit a size and quality such as to allow performance of x ray diffraction studies and enable the conduct of drug binding studies as well as genetic engineering studies.

  20. Heme-based catalytic properties of human serum albumin

    PubMed Central

    Ascenzi, P; di Masi, A; Fanali, G; Fasano, M

    2015-01-01

    Human serum albumin (HSA): (i) controls the plasma oncotic pressure, (ii) modulates fluid distribution between the body compartments, (iii) represents the depot and carrier of endogenous and exogenous compounds, (iv) increases the apparent solubility and lifetime of hydrophobic compounds, (v) affects pharmacokinetics of many drugs, (vi) inactivates toxic compounds, (vii) induces chemical modifications of some ligands, (viii) displays antioxidant properties, and (ix) shows enzymatic properties. Under physiological and pathological conditions, HSA has a pivotal role in heme scavenging transferring the metal-macrocycle from high- and low-density lipoproteins to hemopexin, thus acquiring globin-like reactivity. Here, the heme-based catalytic properties of HSA are reviewed and the structural bases of drug-dependent allosteric regulation are highlighted.

  1. Three-dimensional structure of human serum albumin

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.; He, Xiao-Min; Twigg, Pamela D.; Casale, Elena

    1991-01-01

    The binding locations to human serum albumin (HSA) of several drug molecules were determined at low resolution using crystallographic methods. The principal binding sites are located within subdomains IIA and IIIA. Preliminary studies suggest that an approach to increasing the in vivo efficacy of drugs which are rendered less effective or ineffective by virtue of their interaction with HSA, would be the use of competitive displacement in drug therapies and/or the development of a general inhibitor to the site within subdomain IIIA. These findings also suggest that the facilitated transfer of various ligands across organ/circulatory interfaces such as liver, kidney, and brain may be associated with binding to the IIIA subdomain.

  2. Binding and hydrolysis of soman by human serum albumin.

    PubMed

    Li, Bin; Nachon, Florian; Froment, Marie-Thérèse; Verdier, Laurent; Debouzy, Jean-Claude; Brasme, Bernardo; Gillon, Emilie; Schopfer, Lawrence M; Lockridge, Oksana; Masson, Patrick

    2008-02-01

    Human plasma and fatty acid free human albumin were incubated with soman at pH 8.0 and 25 degrees C. Four methods were used to monitor the reaction of albumin with soman: progressive inhibition of the aryl acylamidase activity of albumin, the release of fluoride ion from soman, 31P NMR, and mass spectrometry. Inhibition (phosphonylation) was slow with a bimolecular rate constant of 15 +/- 3 M(-1) min (-1). MALDI-TOF and tandem mass spectrometry of the soman-albumin adduct showed that albumin was phosphonylated on tyrosine 411. No secondary dealkylation of the adduct (aging) occurred. Covalent docking simulations and 31P NMR experiments showed that albumin has no enantiomeric preference for the four stereoisomers of soman. Spontaneous reactivation at pH 8.0 and 25 degrees C, measured as regaining of aryl acylamidase activity and decrease of covalent adduct (pinacolyl methylphosphonylated albumin) by NMR, occurred at a rate of 0.0044 h (-1), indicating that the adduct is quite stable ( t1/2 = 6.5 days). At pH 7.4 and 22 degrees C, the covalent soman-albumin adduct, measured by MALDI-TOF mass spectrometry, was more stable ( t1/2 = 20 days). Though the concentration of albumin in plasma is very high (about 0.6 mM), its reactivity with soman (phosphonylation and phosphotriesterase activity) is too slow to play a major role in detoxification of the highly toxic organophosphorus compound soman. Increasing the bimolecular rate constant of albumin for organophosphates is a protein engineering challenge that could lead to a new class of bioscavengers to be used against poisoning by nerve agents. Soman-albumin adducts detected by mass spectrometry could be useful for the diagnosis of soman exposure. PMID:18163544

  3. Human serum albumin-polyethylenimine nanoparticles for gene delivery.

    PubMed

    Rhaese, Stephanie; von Briesen, Hagen; Rübsamen-Waigmann, Helga; Kreuter, Jörg; Langer, Klaus

    2003-09-19

    Nanoparticles consisting of DNA, human serum albumin (HSA) and polyethylenimine (PEI) were formed and tested for transfection efficiency in vitro with the aim of generating a nonviral gene delivery vehicle. HSA-PEI-DNA nanoparticles containing the pGL3 vector coding for luciferase as reporter gene were formed by charge neutralization. The particles were characterized by gel retardation assay, dynamic light scattering (size) and electrophoretic mobility measurements (charge). Stability was determined by spectrophotometric analysis and transfection efficiency was evaluated in cell culture using human embryonic epithelial kidney 293 cells. HSA-PEI-DNA nanoparticles were prepared by co-encapsulation of PEI as a lysosomotropic agent at varying nitrogen to phosphate (N/P) ratios. An optimum transfection efficiency was achieved when the particles were prepared at N/P ratios between 4.8 and 8.4. Furthermore, they displayed a low cytotoxicity when tested in cell culture. Our results show that HSA-PEI-DNA nanoparticles are a versatile carrier for DNA that may be suitable for i.v. administration. PMID:14499197

  4. Human Serum Albumin Complexed with Myristate and AZT

    SciTech Connect

    Zhu, Lili; Yang, Feng; Chen, Liqing; Meehan, Edward J.; Huang, Mingdong

    2008-06-16

    3'-Azido-3'-deoxythymidine (AZT) is the first clinically effective drug for the treatment of human immunodeficiency virus infection. The drug interaction with human serum albumin (HSA) has been an important component in understanding its mechanism of action, especially in drug distribution and in drug-drug interaction on HSA in the case of multi-drug therapy. We present here crystal structures of a ternary HSA-Myr-AZT complex and a quaternary HSA-Myr-AZT-SAL complex (Myr, myristate; SAL, salicylic acid). From this study, a new drug binding subsite on HSA Sudlow site 1 was identified. The presence of fatty acid is needed for the creation of this subsite due to fatty acid induced conformational changes of HSA. Thus, the Sudlow site 1 of HSA can be divided into three non-overlapped subsites: a SAL subsite, an indomethacin subsite and an AZT subsite. Binding of a drug to HSA often influences simultaneous binding of other drugs. From the HSA-Myr-AZT-SAL complex structure, we observed the coexistence of two drugs (AZT and SAL) in Sudlow site 1 and the competition between these two drugs in subdomain IB. These results provide new structural information on HSA-drug interaction and drug-drug interaction on HSA.

  5. Serum Albumin Domain Structures in Human Blood Serum by Mass Spectrometry and Computational Biology*

    PubMed Central

    Belsom, Adam; Schneider, Michael; Fischer, Lutz; Brock, Oliver; Rappsilber, Juri

    2016-01-01

    Chemical cross-linking combined with mass spectrometry has proven useful for studying protein-protein interactions and protein structure, however the low density of cross-link data has so far precluded its use in determining structures de novo. Cross-linking density has been typically limited by the chemical selectivity of the standard cross-linking reagents that are commonly used for protein cross-linking. We have implemented the use of a heterobifunctional cross-linking reagent, sulfosuccinimidyl 4,4′-azipentanoate (sulfo-SDA), combining a traditional sulfo-N-hydroxysuccinimide (sulfo-NHS) ester and a UV photoactivatable diazirine group. This diazirine yields a highly reactive and promiscuous carbene species, the net result being a greatly increased number of cross-links compared with homobifunctional, NHS-based cross-linkers. We present a novel methodology that combines the use of this high density photo-cross-linking data with conformational space search to investigate the structure of human serum albumin domains, from purified samples, and in its native environment, human blood serum. Our approach is able to determine human serum albumin domain structures with good accuracy: root-mean-square deviation to crystal structure are 2.8/5.6/2.9 Å (purified samples) and 4.5/5.9/4.8Å (serum samples) for domains A/B/C for the first selected structure; 2.5/4.9/2.9 Å (purified samples) and 3.5/5.2/3.8 Å (serum samples) for the best out of top five selected structures. Our proof-of-concept study on human serum albumin demonstrates initial potential of our approach for determining the structures of more proteins in the complex biological contexts in which they function and which they may require for correct folding. Data are available via ProteomeXchange with identifier PXD001692. PMID:26385339

  6. Novel Transgenic Mouse Model for Studying Human Serum Albumin as a Biomarker of Carcinogenic Exposure.

    PubMed

    Sheng, Jonathan; Wang, Yi; Turesky, Robert J; Kluetzman, Kerri; Zhang, Qing-Yu; Ding, Xinxin

    2016-05-16

    Albumin is a commonly used serum protein for studying human exposure to xenobiotic compounds, including therapeutics and environmental pollutants. Often, the reactivity of albumin with xenobiotic compounds is studied ex vivo with human albumin or plasma/serum samples. Some studies have characterized the reactivity of albumin with chemicals in rodent models; however, differences between the orthologous peptide sequences of human and rodent albumins can result in the formation of different types of chemical-protein adducts with different interaction sites or peptide sequences. Our goal is to generate a human albumin transgenic mouse model that can be used to establish human protein biomarkers of exposure to hazardous xenobiotics for human risk assessment via animal studies. We have developed a human albumin transgenic mouse model and characterized the genotype and phenotype of the transgenic mice. The presence of the human albumin gene in the genome of the model mouse was confirmed by genomic PCR analysis, whereas liver-specific expression of the transgenic human albumin mRNA was validated by RT-PCR analysis. Further immunoblot and mass spectrometry analyses indicated that the transgenic human albumin protein is a full-length, mature protein, which is less abundant than the endogenous mouse albumin that coexists in the serum of the transgenic mouse. The transgenic protein was able to form ex vivo adducts with a genotoxic metabolite of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, a procarcinogenic heterocyclic aromatic amine formed in cooked meat. This novel human albumin transgenic mouse model will facilitate the development and validation of albumin-carcinogen adducts as biomarkers of xenobiotic exposure and/or toxicity in humans. PMID:27028147

  7. Binding of amifostine to human serum albumin: a biophysical study.

    PubMed

    Sun, Yifu; Wu, Han; Zhao, Guoqing; Shi, Ying

    2015-02-01

    The aim of this present work is to investigate the interaction between amifostine and human serum albumin (HSA) in simulated physiological conditions by spectroscopic methods to reveal potential toxic effects of the drug. The results reflected that amifostine caused fluorescence quenching of HSA through a static quenching process, which was further confirmed by the electrochemical experiments. The binding constants at 290, 297 and 304 K were obtained as 2.53 × 10(5) /M, 8.13 × 10(4) /M and 3.59 × 10(4) /M, respectively. There may be one binding site of amifostine on HSA. The thermodynamic parameters indicated that the interaction between amifostine and HSA was driven mainly by hydrogen bonding and electrostatic forces. Synchronous fluorescence spectra, circular dichroism and Fourier transform infrared spectroscopy results showed amifostine binding slightly changed the conformation of HSA with secondary structural content changes. Förster resonance energy transfer study revealed high possibility of energy transfer with amifostine-Trp-214 distance of 3.48 nm. The results of the present study may provide valuable information for studying the distribution, toxicological and pharmacological mechanisms of amifostine in vivo. PMID:24962599

  8. Superhydrophobic Effect on the Adsorption of Human Serum Albumin

    PubMed Central

    Leibner, Evan S.; Barnthip, Naris; Chen, Weinan; Baumrucker, Craig R.; Badding, John V.; Pishko, Michael; Vogler, Erwin A.

    2009-01-01

    Analytical protocol greatly influences measurement of human-serum albumin (HSA) adsorption to commercial expanded polytetrafluororethylene (ePTFE) exhibiting superhydrophobic wetting properties. Degassing of buffer solutions and evacuation of ePTFE adsorbent to remove trapped air immediately prior to contact with protein solutions are shown to be essential. Results obtained with ePTFE as a prototypical superhydrophobic test material suggest that vacuum degassing should be applied in the measurement of protein adsorption to any surface exhibiting superhydrophobicity. Solution depletion quantified using radiometry (I-125 labeled HSA) or electrophoresis yield different measures of adsorption, with nearly four-fold higher surface concentrations of unlabeled HSA measured by the electrophoresis method. This outcome is attributed to the influence of the radiolabel on HSA hydrophilicity which decreases radiolabeled-HSA affinity for a hydrophobic adsorbent in comparison to unlabeled HSA. These results indicate that radiometry underestimates the actual amount of protein adsorbed to a particular material. Removal of radiolabeled HSA adsorbed to ePTFE by 3X serial buffer rinses also shows that the remaining “bound fraction” was about 35% lower than the amount measured by radiometric depletion. This observation implies that measurement of protein bound after surface rinsing significantly underestimates the actual amount of protein concentrated by adsorption into the surface region of a protein-contacting material. PMID:19135420

  9. Interaction of Human Serum Albumin with Metal Protoporphyrins

    NASA Astrophysics Data System (ADS)

    Hu, Jie; Brancaleon, Lorenzo

    2015-03-01

    Fluorescence spectroscopy is widely used in biotechnology, nanotechnology, and molecular biophysics, since it can provide information on a wide range of molecular processes, e.g. the interactions of solvent molecules with fluorophores, conformational changes, and binding interactions etc. In this study, we present the photophysical properties of the interaction of human serum albumin (HSA) with a series of metal compound of Protoporphyrin IX (PPIX), including ZnPPIX, FePPIX, MgPPIX, MnPPIX and SnPPIX respectively, as well as the free base PPIX. Binding constants were retrieved independently using the Benesi-Hildebrand analysis of the porphyrin emission or absorption spectra and the fluorescence quenching (i.e. Stern-Volmer analysis) and reveal that the two methods yield a difference of approximately one order or magnitude between the two. Fluorescence lifetimes was used to probe whether binding of the porphyrin changes the conformation of the protein or if the interaction places the porphyrin at a location that can prompt resonance energy transfer with the lone Tryptophan residue. In recent years it has been discovered that HSA provides a specific binding site for metal-chelated protoporphyrins in subdomain IA. This has opened a novel field of study over the importance of this site for biomedical applications but it has also created the potential for a series of biotechnological applications of the HSA/protoporphyrin complexes. Our study provides a preliminary investigation of the interaction with metal-chelated protoporphyrins that had not been previously investigated.

  10. Spectroscopic study on binding of rutin to human serum albumin

    NASA Astrophysics Data System (ADS)

    Pastukhov, Alexander V.; Levchenko, Lidiya A.; Sadkov, Anatoli P.

    2007-10-01

    Steady-state and time-resolved fluorescence spectroscopy techniques were used to study the interaction of the flavonoid rutin with human serum albumin (HSA) as well as spectral properties of the protein-bound flavonoid. Both quenching of the intrinsic fluorescence of the protein (Trp214) and the ligand fluorescence, appearing upon complexation with HSA, were used to determine binding parameters. The binding constant determined from the quenching of the Trp214 fluorescence by rutin is equal to 6.87 ± 0.22 × 10 4 M -1 and that obtained from the fluorescence of HSA-bound rutin is 3.8 ± 0.4 × 10 4 M -1. Based on the Job plot analysis, the 1:1 binding stoichiometry for the HSA-rutin complex was determined. The efficient quenching of the Trp214 fluorescence by rutin, fluorescence resonance energy transfer from excited Trp214 to rutin, and competitive binding of warfarin indicate that the binding site for the flavonoid is situated within subdomain IIA of HSA. The presence of the sugar moiety in the flavonoid molecule reduces affinity of rutin for binding to HSA but does not affect the binding stoichiometry and location of the binding site compared with aglycone analogues.

  11. Cooperative binding of drugs on human serum albumin

    NASA Astrophysics Data System (ADS)

    Varela, L. M.; Pérez-Rodríguez, M.; García, M.

    In order to explain the adsorption isotherms of the amphiphilic penicillins nafcillin and cloxacillin onto human serum albumin (HSA), a cooperative multilayer adsorption model is introduced, combining the Brunauer-Emmet-Teller (BET) adsorption isotherm with an amphiphilic ionic adsorbate, whose chemical potential is derived from Guggenheim's theory. The non-cooperative model has been previously proved to qualitatively predict the measured adsorption maxima of these drugs [Varela, L. M., García, M., Pérez-Rodríguez, M., Taboada, P., Ruso, J. M., and Mosquera, V., 2001, J. chem. Phys., 114, 7682]. The surface interactions among adsorbed drug molecules are modelled in a mean-field fashion, so the chemical potential of the adsorbate is assumed to include a term proportional to the surface coverage, the constant of proportionality being the lateral interaction energy between bound molecules. The interaction energies obtained from the empirical binding isotherms are of the order of tenths of the thermal energy, therefore suggesting the principal role of van der Waals forces in the binding process.

  12. Thermodynamic analysis of hydration in human serum heme-albumin

    SciTech Connect

    Baroni, Simona; Pariani, Giorgio; Fanali, Gabriella; Longo, Dario; Ascenzi, Paolo; Aime, Silvio; Fasano, Mauro

    2009-07-31

    Ferric human serum heme-albumin (heme-HSA) shows a peculiar nuclear magnetic relaxation dispersion (NMRD) behavior that allows to investigate structural and functional properties. Here, we report a thermodynamic analysis of NMRD profiles of heme-HSA between 20 and 60 {sup o}C to characterize its hydration. NMRD profiles, all showing two Lorentzian dispersions at 0.3 and 60 MHz, were analyzed in terms of modulation of the zero field splitting tensor for the S = {sup 5}/{sub 2} manifold. Values of correlation times for tensor fluctuation ({tau}{sub v}) and chemical exchange of water molecules ({tau}{sub M}) show the expected temperature dependence, with activation enthalpies of -1.94 and -2.46 {+-} 0.2 kJ mol{sup -1}, respectively. The cluster of water molecules located in the close proximity of the heme is progressively reduced in size by increasing the temperature, with {Delta}H = 68 {+-} 28 kJ mol{sup -1} and {Delta}S = 200 {+-} 80 J mol{sup -1} K{sup -1}. These results highlight the role of the water solvent in heme-HSA structure-function relationships.

  13. Investigation of the interaction between naringin and human serum albumin

    NASA Astrophysics Data System (ADS)

    Zhang, Yaheng; Li, Ying; Dong, Lijun; Li, Jiazhong; He, Wenying; Chen, Xingguo; Hu, Zhide

    2008-03-01

    The interaction between naringin and human serum albumin (HSA) has been thoroughly studied by fluorescence quenching technique in combination with UV absorption spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, circular dichroism (CD) spectroscopy and molecular modeling method. Under the simulative physiological conditions, fluorescence data revealed the presence of the binding site on HSA and its binding constants ( K) are 1.62 × 10 4, 1.68 × 10 4, 1.72 × 10 4, and 1.79 × 10 4 M -1 at 289, 296, 303, and 310 K, respectively. The alterations of protein secondary structure in the presence of naringin aqueous solution were qualitative and quantitative calculated by the evidence from CD and FT-IR spectroscopes. In addition, according to the Van't Hoff equation, the thermodynamic functions standard enthalpy (Δ H0) and standard entropy (Δ S0) for the reaction were calculated to be 3.45 kJ mol -1 and 92.52 J mol -1 K -1. These results indicated that naringin binds to HSA mainly by a hydrophobic interaction. Furthermore, the displacement experiments confirmed that naringin could bind to the site I of HSA, which was also in agreement with the result of the molecular modeling study.

  14. Iron absorption in humans: bovine serum albumin compared with beef muscle and egg white

    SciTech Connect

    Hurrell, R.F.; Lynch, S.R.; Trinidad, T.P.; Dassenko, S.A.; Cook, J.D.

    1988-01-01

    We studied the influence of bovine serum albumin and beef meat on nonheme iron absorption in humans and on dialyzable iron in vitro. The addition of serum albumin to a maize gruel had no significant effect on nonheme Fe absorption whereas the addition of beef meat caused a threefold increase. When added to a bread meal, serum albumin caused a modest 60% increase in nonheme Fe absorption and beef meat had no effect. When added to a protein-free meal, serum albumin reduced Fe absorption by 47% compared with a 72% reduction on addition of egg white. The bioavailability of nonheme Fe from meals containing serum albumin was consistently overestimated by the in vitro technique. We conclude that the facilitation of nonheme Fe absorption by meat is not a general property of all animal protein but is better explained by the action of one or more specific animal tissues.

  15. Optimization of a colorimetric assay for glycosylated human serum albumin

    SciTech Connect

    Bohney, J.P.; Feldhoff, R.C.

    1986-05-01

    The thiobarbituric acid (TBA) assay has been used for several years to quantitate the amount of glucose which has been non-enzymatically linked to hemoglobin and other proteins. The ketoamine-protein adduct is converted to 5-hydroxymethylfurfural (HMF) by mild hydrolysis with oxalic acid. Reaction of HMF with TBA yields a colored product which has an absorbance maximum at 443 nm. Several modifications of the original procedure has been published, but none permit the unambiguous quantitation of glycosylated human serum albumin (glc-HSA). Problems relate to reagent preparation and stability, the time and temperature of hydrolysis, the choice of standards, and background color corrections. The authors have found that maximum color yield occurs after hydrolysis in an autoclave for 2 h. This increases the sensitivity 3-fold and cuts the assay time in half relative to hydrolysis for 4.5 h at 100/sup 0/C. A NaBH/sub 4/ reduction of a parallel protein sample must be performed to correct for variable background color associated with different sample sources and amounts. HMF can be used as a standard, however, corrections must be made for HMF degradation. Fructose is a better standard, but HMF formation from fructose is faster than formation from glc-HSA. This may result in an underestimate of percent glycosylation. The best standard appears to be glc-HSA prepared with (/sup 3/H)glucose. It appears that with proper controls and standards the TBA assay can be used to determine actual rather than relative percent glycosylation.

  16. Structural basis of transport of lysophospholipids by human serum albumin

    SciTech Connect

    Guo, Shihui; Shi, Xiaoli; Yang, Feng; Chen, Liqing; Meehan, Edward J.; Bian, Chuanbing; Huang, Mingdong

    2010-10-08

    Lysophospholipids play important roles in cellular signal transduction and are implicated in many biological processes, including tumorigenesis, angiogenesis, immunity, atherosclerosis, arteriosclerosis, cancer and neuronal survival. The intracellular transport of lysophospholipids is through FA (fatty acid)-binding protein. Lysophospholipids are also found in the extracellular space. However, the transport mechanism of lysophospholipids in the extracellular space is unknown. HSA (human serum albumin) is the most abundant carrier protein in blood plasma and plays an important role in determining the absorption, distribution, metabolism and excretion of drugs. In the present study, LPE (lysophosphatidylethanolamine) was used as the ligand to analyse the interaction of lysophospholipids with HSA by fluorescence quenching and crystallography. Fluorescence measurement showed that LPE binds to HSA with a K{sub d} (dissociation constant) of 5.6 {micro}M. The presence of FA (myristate) decreases this binding affinity (K{sub d} of 12.9 {micro}M). Moreover, we determined the crystal structure of HSA in complex with both myristate and LPE and showed that LPE binds at Sudlow site I located in subdomain IIA. LPE occupies two of the three subsites in Sudlow site I, with the LPE acyl chain occupying the hydrophobic bottom of Sudlow site I and the polar head group located at Sudlow site I entrance region pointing to the solvent. This orientation of LPE in HSA suggests that HSA is capable of accommodating other lysophospholipids and phospholipids. The study provides structural information on HSA-lysophospholipid interaction and may facilitate our understanding of the transport and distribution of lysophospholipids.

  17. Effect of processing methods on colouration of human serum albumin preparations.

    PubMed

    McCann, Karl B; Vucica, Yvonne; Famulari, Sandy; Bertolini, Joseph

    2009-01-01

    Human serum albumin is a well tolerated therapeutic for the treatment of hypovolemia. Despite all commercial human albumin preparations being derived from plasma, these products can have a highly variable colour. Albumin samples derived from ethanol precipitation and chromatographic fractionation procedures were evaluated for bilirubin and biliverdin levels and by spectrophotometry. It was shown that albumin derived from a chromatographic process, which had a bilirubin:albumin ratio similar to that observed in plasma, had a vibrant yellow appearance. The albumin derived from ethanol precipitation had undetectable levels of bilirubin, and the amber colour of this product was attributed mainly to residual haem. The presence of bilirubin during pasteurisation led to oxidation to biliverdin, with a resultant colour change from yellow to yellow/green. Given that the antioxidant properties of bilirubin are well established, it is possible that bilirubin helps protect albumin from oxidation during the pasteurisation step. PMID:18948018

  18. The influence of fatty acids on theophylline binding to human serum albumin. Comparative fluorescence study

    NASA Astrophysics Data System (ADS)

    Maciążek-Jurczyk, M.; Sułkowska, A.; Bojko, B.; Równicka-Zubik, J.; Szkudlarek-Haśnik, A.; Zubik-Skupień, I.; Góra, A.; Dubas, M.; Korzonek-Szlacheta, I.; Wielkoszyński, T.; Żurawiński, W.; Sosada, K.

    2012-04-01

    Theophylline, popular diuretic, is used to treat asthma and bronchospasm. In blood it forms complexes with albumin, which is also the main transporter of fatty acids. The aim of the present study was to describe the influence of fatty acids (FA) on binding of theophylline (Th) to human serum albumin (HSA) in the high affinity binding sites. Binding parameters have been obtained on the basis of the fluorescence analysis. The data obtained for the complex of Th and natural human serum albumin (nHSA) obtained from blood of obese patients qualified for surgical removal of stomach was compared with our previous studies on the influence of FA on the complex of Th and commercially available defatted human serum albumin (dHSA).

  19. Influence of Millimeter Electromagnetic Waves on Fluorescence of Water-Saline Solutions of Human Serum Albumin

    NASA Astrophysics Data System (ADS)

    Vardevanyan, P. O.; Antonyan, A. P.; Shahinyan, M. A.; Mikaelyan, M. S.

    2016-07-01

    The effect of electromagnetic waves of the millimeter region on the conformation and fluorescence characteristics of human serum albumin was studied. It is shown that the irradiation of the albumin solution leads to an increase of the fluorescence intensity depending on the duration of irradiation. At an irradiation frequency of 48 GHz the fluorescence intensity of albumin hardly changes at all, while at 41.8 and 51.8 GHz it increases. It is also shown that when the irradiation frequency is 51.8 GHz, the intensity of the albumin solution fluorescence increases with increase of the irradiation time.

  20. A retrospective analysis of 25% human serum albumin supplementation in hypoalbuminemic dogs with septic peritonitis

    PubMed Central

    Horowitz, Farrah B.; Read, Robyn L.; Powell, Lisa L.

    2015-01-01

    This study describes the influence of 25% human serum albumin (HSA) supplementation on serum albumin level, total protein (TP), colloid osmotic pressure (COP), hospital stay, and survival in dogs with septic peritonitis. Records of 39 dogs with septic peritonitis were evaluated. In the HSA group, initial and post-transfusion TP, albumin, COP, and HSA dose were recorded. In the non-supplemented group, repeated values of TP, albumin, and COP were recorded over their hospitalization. Eighteen dogs survived (53.8% mortality). Repeat albumin values were higher in survivors (mean 23.9 g/L) and elevated repeat albumin values were associated with HSA supplementation. Repeat albumin and TP were higher in the HSA supplemented group (mean 24 g/L and 51.9 g/L, respectively) and their COP increased by 5.8 mmHg. Length of hospitalization was not affected. Twenty-five percent HSA increases albumin, TP, and COP in canine patients with septic peritonitis. Higher postoperative albumin levels are associated with survival. PMID:26028681

  1. Experimental and theoretical investigation on the interaction between cyclovirobuxine D and human serum albumin

    NASA Astrophysics Data System (ADS)

    Yue, Yuanyuan; Liu, Ren; Liu, Jianming; Dong, Qiao; Fan, Jing

    2014-07-01

    Cyclovirobuxine D is an active compound extracted from the plant Buxux microphylla, and widely available as medications; however, its abuse may casts potential detrimental effects on human health. By using multispectroscopic techniques and molecular modeling, the interaction of cyclovirobuxine D with human serum albumin was investigated. The fluorescence results manifested that static type was the operative mechanism for the interaction with human serum albumin. The structural investigation of the complexed HSA through CD, three-dimensional, FT-IR and synchronous fluorescence shown the polypeptide chain of HSA partially destabilizing. Docking studies revealed the molecule to be bound in the subdomain IIA. Finally, we investigated the distance between the bound ligand and Trp-214 of human serum albumin.

  2. Human serum albumin homeostasis: a new look at the roles of synthesis, catabolism, renal and gastrointestinal excretion, and the clinical value of serum albumin measurements.

    PubMed

    Levitt, David G; Levitt, Michael D

    2016-01-01

    Serum albumin concentration (CP) is a remarkably strong prognostic indicator of morbidity and mortality in both sick and seemingly healthy subjects. Surprisingly, the specifics of the pathophysiology underlying the relationship between CP and ill-health are poorly understood. This review provides a summary that is not previously available in the literature, concerning how synthesis, catabolism, and renal and gastrointestinal clearance of albumin interact to bring about albumin homeostasis, with a focus on the clinical factors that influence this homeostasis. In normal humans, the albumin turnover time of about 25 days reflects a liver albumin synthesis rate of about 10.5 g/day balanced by renal (≈6%), gastrointestinal (≈10%), and catabolic (≈84%) clearances. The acute development of hypoalbuminemia with sepsis or trauma results from increased albumin capillary permeability leading to redistribution of albumin from the vascular to interstitial space. The best understood mechanism of chronic hypoalbuminemia is the decreased albumin synthesis observed in liver disease. Decreased albumin production also accounts for hypoalbuminemia observed with a low-protein and normal caloric diet. However, a calorie- and protein-deficient diet does not reduce albumin synthesis and is not associated with hypoalbuminemia, and CP is not a useful marker of malnutrition. In most disease states other than liver disease, albumin synthesis is normal or increased, and hypoalbuminemia reflects an enhanced rate of albumin turnover resulting either from an increased rate of catabolism (a poorly understood phenomenon) or enhanced loss of albumin into the urine (nephrosis) or intestine (protein-losing enteropathy). The latter may occur with subtle intestinal pathology and hence may be more prevalent than commonly appreciated. Clinically, reduced CP appears to be a result rather than a cause of ill-health, and therapy designed to increase CP has limited benefit. The ubiquitous occurrence of

  3. Human serum albumin homeostasis: a new look at the roles of synthesis, catabolism, renal and gastrointestinal excretion, and the clinical value of serum albumin measurements

    PubMed Central

    Levitt, David G; Levitt, Michael D

    2016-01-01

    Serum albumin concentration (CP) is a remarkably strong prognostic indicator of morbidity and mortality in both sick and seemingly healthy subjects. Surprisingly, the specifics of the pathophysiology underlying the relationship between CP and ill-health are poorly understood. This review provides a summary that is not previously available in the literature, concerning how synthesis, catabolism, and renal and gastrointestinal clearance of albumin interact to bring about albumin homeostasis, with a focus on the clinical factors that influence this homeostasis. In normal humans, the albumin turnover time of about 25 days reflects a liver albumin synthesis rate of about 10.5 g/day balanced by renal (≈6%), gastrointestinal (≈10%), and catabolic (≈84%) clearances. The acute development of hypoalbuminemia with sepsis or trauma results from increased albumin capillary permeability leading to redistribution of albumin from the vascular to interstitial space. The best understood mechanism of chronic hypoalbuminemia is the decreased albumin synthesis observed in liver disease. Decreased albumin production also accounts for hypoalbuminemia observed with a low-protein and normal caloric diet. However, a calorie- and protein-deficient diet does not reduce albumin synthesis and is not associated with hypoalbuminemia, and CP is not a useful marker of malnutrition. In most disease states other than liver disease, albumin synthesis is normal or increased, and hypoalbuminemia reflects an enhanced rate of albumin turnover resulting either from an increased rate of catabolism (a poorly understood phenomenon) or enhanced loss of albumin into the urine (nephrosis) or intestine (protein-losing enteropathy). The latter may occur with subtle intestinal pathology and hence may be more prevalent than commonly appreciated. Clinically, reduced CP appears to be a result rather than a cause of ill-health, and therapy designed to increase CP has limited benefit. The ubiquitous occurrence of

  4. Induced Long-Range Attractive Potentials of Human Serum Albumin by Ligand Binding

    SciTech Connect

    Sato, Takaaki; Komatsu, Teruyuki; Nakagawa, Akito; Tsuchida, Eishun

    2007-05-18

    Small-angle x-ray scattering and dielectric spectroscopy investigation on the solutions of recombinant human serum albumin and its heme hybrid revealed that heme incorporation induces a specific long-range attractive potential between protein molecules. This is evidenced by the enhanced forward intensity upon heme binding, despite no hindrance to rotatory Brownian motion, unbiased colloid osmotic pressure, and discontiguous nearest-neighbor distance, confirming monodispersity of the proteins. The heme-induced potential may play a trigger role in recognition of the ligand-filled human serum albumins in the circulatory system.

  5. Alteration of human serum albumin tertiary structure induced by glycation. Spectroscopic study.

    PubMed

    Szkudlarek, A; Maciążek-Jurczyk, M; Chudzik, M; Równicka-Zubik, J; Sułkowska, A

    2016-01-15

    The modification of human serum albumin (HSA) structure by non-enzymatic glycation is one of the underlying factors that contribute to the development of complications of diabetes and neurodegenerative diseases. The aim of the present work was to estimate how glycation of HSA altered its tertiary structure. Changes of albumin conformation were investigated by comparison of glycated (gHSA) and non-glycated human serum albumin (HSA) absorption spectra, red edge excitation shift (REES) and synchronous spectra. Effect of glycation on human serum albumin tertiary structure was also investigated by (1)H NMR spectroscopy. Formation of gHSA Advanced Glycation End-products (AGEs) caused absorption of UV-VIS light between 310 nm and 400 nm while for non-glycated HSA in this region no absorbance has been registered. Analysis of red edge excitation shift effect allowed for observation of structural changes of gHSA in the hydrophobic pocket containing the tryptophanyl residue. Moreover changes in the microenvironment of tryptophanyl and tyrosyl residues brought about AGEs on the basis of synchronous fluorescence spectroscopy have been confirmed. The influence of glycation process on serum albumin binding to 5-dimethylaminonaphthalene-1-sulfonamide (DNSA), 2-(p-toluidino) naphthalene-6-sulfonic acid (TNS), has been studied. Fluorescence analysis showed that environment of both binding site I and II is modified by galactose glycation. PMID:26433342

  6. Alteration of human serum albumin tertiary structure induced by glycation. Spectroscopic study

    NASA Astrophysics Data System (ADS)

    Szkudlarek, A.; Maciążek-Jurczyk, M.; Chudzik, M.; Równicka-Zubik, J.; Sułkowska, A.

    2016-01-01

    The modification of human serum albumin (HSA) structure by non-enzymatic glycation is one of the underlying factors that contribute to the development of complications of diabetes and neurodegenerative diseases. The aim of the present work was to estimate how glycation of HSA altered its tertiary structure. Changes of albumin conformation were investigated by comparison of glycated (gHSA) and non-glycated human serum albumin (HSA) absorption spectra, red edge excitation shift (REES) and synchronous spectra. Effect of glycation on human serum albumin tertiary structure was also investigated by 1H NMR spectroscopy. Formation of gHSA Advanced Glycation End-products (AGEs) caused absorption of UV-VIS light between 310 nm and 400 nm while for non-glycated HSA in this region no absorbance has been registered. Analysis of red edge excitation shift effect allowed for observation of structural changes of gHSA in the hydrophobic pocket containing the tryptophanyl residue. Moreover changes in the microenvironment of tryptophanyl and tyrosyl residues brought about AGEs on the basis of synchronous fluorescence spectroscopy have been confirmed. The influence of glycation process on serum albumin binding to 5-dimethylaminonaphthalene-1-sulfonamide (DNSA), 2-(p-toluidino) naphthalene-6-sulfonic acid (TNS), has been studied. Fluorescence analysis showed that environment of both binding site I and II is modified by galactose glycation.

  7. Effects of non-enzymatic glycation in human serum albumin. Spectroscopic analysis.

    PubMed

    Szkudlarek, A; Sułkowska, A; Maciążek-Jurczyk, M; Chudzik, M; Równicka-Zubik, J

    2016-01-01

    Human serum albumin (HSA), transporting protein, is exposed during its life to numerous factors that cause its functions become impaired. One of the basic factors --glycation of HSA--occurs in diabetes and may affect HSA-drug binding. Accumulation of advanced glycation end-products (AGEs) leads to diseases e.g. diabetic and non-diabetic cardiovascular diseases, Alzheimer disease, renal disfunction and in normal aging. The aim of the present work was to estimate how non-enzymatic glycation of human serum albumin altered its tertiary structure using fluorescence technique. We compared glycated human serum albumin by glucose (gHSA(GLC)) with HSA glycated by fructose (gHSA(FRC)). We focused on presenting the differences between gHSA(FRC) and nonglycated (HSA) albumin used acrylamide (Ac), potassium iodide (KI) and 2-(p-toluidino)naphthalene-6-sulfonic acid (TNS). Changes of the microenvironment around the tryptophan residue (Trp-214) of non-glycated and glycated proteins was investigated by the red-edge excitation shift method. Effect of glycation on ligand binding was examined by the binding of phenylbutazone (PHB) and ketoprofen (KP), which a primary high affinity binding site in serum albumin is subdomain IIA and IIIA, respectively. At an excitation and an emission wavelength of λex 335nm and λem 420nm, respectively the increase of fluorescence intensity and the blue-shift of maximum fluorescence was observed. It indicates that the glycation products decreases the polarity microenvironment around the fluorophores. Analysis of red-edge excitation shift method showed that the red-shift for gHSA(FRC) is higher than for HSA. Non-enzymatic glycation also caused, that the Trp residue of gHSA(FRC) becomes less accessible for the negatively charged quencher (I(-)), KSV value is smaller for gHSA(FRC) than for HSA. TNS fluorescent measurement demonstrated the decrease of hydrophobicity in the glycated albumin. KSV constants for gHSA-PHB systems are higher than for the

  8. Effects of non-enzymatic glycation in human serum albumin. Spectroscopic analysis

    NASA Astrophysics Data System (ADS)

    Szkudlarek, A.; Sułkowska, A.; Maciążek-Jurczyk, M.; Chudzik, M.; Równicka-Zubik, J.

    2016-01-01

    Human serum albumin (HSA), transporting protein, is exposed during its life to numerous factors that cause its functions become impaired. One of the basic factors - glycation of HSA - occurs in diabetes and may affect HSA-drug binding. Accumulation of advanced glycation end-products (AGEs) leads to diseases e.g. diabetic and non-diabetic cardiovascular diseases, Alzheimer disease, renal disfunction and in normal aging. The aim of the present work was to estimate how non-enzymatic glycation of human serum albumin altered its tertiary structure using fluorescence technique. We compared glycated human serum albumin by glucose (gHSAGLC) with HSA glycated by fructose (gHSAFRC). We focused on presenting the differences between gHSAFRC and nonglycated (HSA) albumin used acrylamide (Ac), potassium iodide (KI) and 2-(p-toluidino)naphthalene-6-sulfonic acid (TNS). Changes of the microenvironment around the tryptophan residue (Trp-214) of non-glycated and glycated proteins was investigated by the red-edge excitation shift method. Effect of glycation on ligand binding was examined by the binding of phenylbutazone (PHB) and ketoprofen (KP), which a primary high affinity binding site in serum albumin is subdomain IIA and IIIA, respectively. At an excitation and an emission wavelength of λex 335 nm and λem 420 nm, respectively the increase of fluorescence intensity and the blue-shift of maximum fluorescence was observed. It indicates that the glycation products decreases the polarity microenvironment around the fluorophores. Analysis of red-edge excitation shift method showed that the red-shift for gHSAFRC is higher than for HSA. Non-enzymatic glycation also caused, that the Trp residue of gHSAFRC becomes less accessible for the negatively charged quencher (I-), KSV value is smaller for gHSAFRC than for HSA. TNS fluorescent measurement demonstrated the decrease of hydrophobicity in the glycated albumin. KSV constants for gHSA-PHB systems are higher than for the unmodified serum

  9. Structure of Serum Albumin

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.; Ho, Joseph X.

    1994-01-01

    Because of its availability, low cost, stability, and unusual ligand-binding properties, serum albumin has been one of the mst extensively studied and applied proteins in biochemistry. However, as a protein, albumin is far from typical, and the widespread interest in and application of albumin have not been balanced by an understanding of its molecular structure. Indeed, for more than 30 years structural information was surmised based solely on techniques such as hydrodynamics, low-angle X-ray scattering, and predictive methods.

  10. Binding study of tetracyclines to human serum albumin using difference spectrophotometry.

    PubMed

    Zia, H; Price, J C

    1976-02-01

    The binding of several tetracyclines to human serum albumin was studied using difference spectrophotometry and a spectrophotometric probe, 2-(4'-hydroxybenzeneazo)benzoic acid. Difference spectra observed for the interaction between the probe and human serum albumin were similar to probe-bovine serum albumin spectra but were less intense for a given concentration of probe and did not reach saturation as quickly. Difference spectra for the tetracyclines were dependent on the characteristics of the ring substituents. More hydrophobic substituents on the D and C rings tended to give more intense difference spectra, but charge-transfer complexing may also have been involved since methacycline with a methylene group in the 6-position showed the most intense spectra of the compounds studied. Solvent perturbation, pH, and urea studies tended to confirm that something other than hydrophobic binding of the tetracyclines was involved. Drug-probe displacement studies showed that methacycline gave the greatest probe displacement followed by doxycycline, chlortetracycline, oxytetracycline, and tetracycline. This order of displacement of the anionic probe indicates that both hydrophobic and charge-transfer binding are involved. Experiments with calcium ion and ethylenediaminetetraacetic acid showed that the difference spectra obtained with the tetracyclines and human serum albumin were not the result of metallic bridge-chelate formation. PMID:3641

  11. Nanoencapsulation of ultra-small superparamagnetic particles of iron oxide into human serum albumin nanoparticles

    PubMed Central

    Altinok, Mahmut; Urfels, Stephan; Bauer, Johann

    2014-01-01

    Summary Human serum albumin nanoparticles have been utilized as drug delivery systems for a variety of medical applications. Since ultra-small superparamagnetic particles of iron oxide (USPIO) are used as contrast agents in magnetic resonance imaging, their encapsulation into the protein matrix enables the synthesis of diagnostic and theranostic agents by surface modification and co-encapsulation of active pharmaceutical ingredients. The present investigation deals with the surface modification and nanoencapsulation of USPIO into an albumin matrix by using ethanolic desolvation. Particles of narrow size distribution and with a defined particle structure have been achieved. PMID:25551054

  12. Determination of the binding properties of the uremic toxin phenylacetic acid to human serum albumin.

    PubMed

    Saldanha, Juliana F; Yi, Dan; Stockler-Pinto, Milena B; Soula, Hédi A; Chambert, Stéphane; Fouque, Denis; Mafra, Denise; Soulage, Christophe O

    2016-06-01

    Uremic toxins are compounds normally excreted in urine that accumulate in patients with chronic kidney disease as a result of decreased renal clearance. Phenylacetic acid (PAA) has been identified as a new protein bound uremic toxin. The purpose of this study was to investigate in vitro the interaction between PAA and human serum albumin (HSA) at physiological and pathological concentrations. We used ultrafiltration to show that there is a single high-affinity binding site for PAA on HSA, with a binding constant on the order of 3.4 × 10(4) M(-1) and a maximal stoichiometry of 1.61 mol per mole. The PAA, at the concentration reported in end-stage renal patients, was 26% bound to albumin. Fluorescent probe competition experiments demonstrated that PAA did not bind to Sudlow's site I (in subdomain IIA) and only weakly bind to Sudlow's site II (in subdomain IIIA). The PAA showed no competition with other protein-bound uremic toxins such as p-cresyl-sulfate or indoxyl sulfate for binding to serum albumin. Our results provide evidence that human serum albumin can act as carrier protein for phenylacetic acid. PMID:26945842

  13. Interactions Between Sirolimus and Anti-Inflammatory Drugs: Competitive Binding for Human Serum Albumin

    PubMed Central

    Khodaei, Arash; Bolandnazar, Soheila; Valizadeh, Hadi; Hasani, Leila; Zakeri-Milani, Parvin

    2016-01-01

    Purpose: The aim of the present study was investigating the effects of three anti-inflammatory drugs, on Sirolimus protein biding. The binding site of Sirolimus on human serum albumin (HSA) was also determined. Methods: Six different concentrations of Sirolimus were separately exposed to HSA at pH 7.4 and 37°C. Ultrafiltration method was used for separating free drug; then free drug concentrations were measured by HPLC. Finally, Sirolimus protein binding parameters was calculated using Scatchard plots. The same processes were conducted in the presence of NSAIDs at lower concentration of albumin and different pH conditions. To characterize the binding site of Sirolimus on albumin, the free concentration of warfarin sodium and Diazepam, site I and II specific probes, bound to albumin were measured upon the addition of increasing Sirolimus concentrations. Results: Based on the obtained results presence of Diclofenac, Piroxicam and Naproxen, could significantly decrease the percentage of Sirolimus protein binding. The Binding reduction was the most in the presence of Piroxicam. Sirolimus-NSAIDs interactions were increased in higher pH values and also in lower albumin concentrations. Probe displacement study showed that Sirolimus may mainly bind to site I on albumin molecule. Conclusion: More considerations in co-administration of NSAIDs and Sirolimus is recommended. PMID:27478785

  14. Spectral Fluorescence Properties of an Anionic Oxacarbocyanine Dye in Complexes with Human Serum Albumin

    NASA Astrophysics Data System (ADS)

    Pronkin, P. G.; Tatikolov, A. S.

    2015-07-01

    The spectral fluorescence properties of the anionic oxacarbocyanine dye 3,3'-di-(γ-sulfopropyl)-5,5'-diphenyl-9-ethyloxacarbocyanine betaine (OCC) were studied in solutions and in complexes with human serum albumin (HSA). Interaction with HSA leads to a significant increase in the fluorescence of the dye. We studied quenching of the fluorescence of OCC in a complex with HSA by ibuprofen and warfarin. Data on quenching of fluorescence by ibuprofen indicate binding of the dye to binding site II of subdomain IIIA in the HSA molecule. Synchronous fluorescence spectra of human serum albumin in the presence of OCC showed that complexation with OCC does not lead to appreciable rearrangement of the protein molecule at the binding site.

  15. Cigarette smoke induces alterations in the drug-binding properties of human serum albumin.

    PubMed

    Clerici, Marco; Colombo, Graziano; Secundo, Francesco; Gagliano, Nicoletta; Colombo, Roberto; Portinaro, Nicola; Giustarini, Daniela; Milzani, Aldo; Rossi, Ranieri; Dalle-Donne, Isabella

    2014-04-01

    Albumin is the most abundant plasma protein and serves as a transport and depot protein for numerous endogenous and exogenous compounds. Earlier we had shown that cigarette smoke induces carbonylation of human serum albumin (HSA) and alters its redox state. Here, the effect of whole-phase cigarette smoke on HSA ligand-binding properties was evaluated by equilibrium dialysis and size-exclusion HPLC or tryptophan fluorescence. The binding of salicylic acid and naproxen to cigarette smoke-oxidized HSA resulted to be impaired, unlike that of curcumin and genistein, chosen as representative ligands. Binding of the hydrophobic fluorescent probe 4,4'-bis(1-anilino-8-naphtalenesulfonic acid) (bis-ANS), intrinsic tryptophan fluorescence, and susceptibility to enzymatic proteolysis revealed slight changes in albumin conformation. These findings suggest that cigarette smoke-induced modifications of HSA may affect the binding, transport and bioavailability of specific ligands in smokers. PMID:24388826

  16. Doxorubicin-loaded glycyrrhetinic acid modified recombinant human serum albumin nanoparticles for targeting liver tumor chemotherapy.

    PubMed

    Qi, Wen-Wen; Yu, Hai-Yan; Guo, Hui; Lou, Jun; Wang, Zhi-Ming; Liu, Peng; Sapin-Minet, Anne; Maincent, Philippe; Hong, Xue-Chuan; Hu, Xian-Ming; Xiao, Yu-Ling

    2015-03-01

    Due to overexpression of glycyrrhetinic acid (GA) receptor in liver cancer cells, glycyrrhetinic acid modified recombinant human serum albumin (rHSA) nanoparticles for targeting liver tumor cells may result in increased therapeutic efficacy and decreased adverse effects of cancer therapy. In this study, doxorubicin (DOX) loaded and glycyrrhetinic acid modified recombinant human serum albumin nanoparticles (DOX/GA-rHSA NPs) were prepared for targeting therapy for liver cancer. GA was covalently coupled to recombinant human serum albumin nanoparticles, which could efficiently deliver DOX into liver cancer cells. The resultant GA-rHSA NPs exhibited uniform spherical shape and high stability in plasma with fixed negative charge (∼-25 mV) and a size about 170 nm. DOX was loaded into GA-rHSA NPs with a maximal encapsulation efficiency of 75.8%. Moreover, the targeted NPs (DOX/GA-rHSA NPs) showed increased cytotoxic activity in liver tumor cells compared to the nontargeted NPs (DOX/rHSA NPs, DOX loaded recombinant human serum albumin nanoparticles without GA conjugating). The targeted NPs exhibited higher cellular uptake in a GA receptor-positive liver cancer cell line than nontargeted NPs as measured by both flow cytometry and confocal laser scanning microscopy. Biodistribution experiments showed that DOX/GA-rHSA NPs exhibited a much higher level of tumor accumulation than nontargeted NPs at 1 h after injection in hepatoma-bearing Balb/c mice. Therefore, the DOX/GA-rHSA NPs could be considered as an efficient nanoplatform for targeting drug delivery system for liver cancer. PMID:25584860

  17. Forster resonance energy transfer in the system of human serum albumin-xanthene dyes

    NASA Astrophysics Data System (ADS)

    Kochubey, V. I.; Pravdin, A. B.; Melnikov, A. G.; Konstantinova, I.; Alonova, I. V.

    2016-04-01

    The processes of interaction of fluorescent probes: eosin and erythrosine with human serum albumin (HSA) were studied by the methods of absorption and fluorescence spectroscopy. Extinction coefficients of probes were determined. Critical transfer radius and the energy transfer efficiency were defined by fluorescence quenching of HSA. Analysis of the excitation spectra of HSA revealed that the energy transfer process is carried out mainly between tryptophanyl and probes.

  18. Water-soluble noncovalent adducts of the heterometallic copper subgroup complexes and human serum albumin with remarkable luminescent properties.

    PubMed

    Chelushkin, P S; Krupenya, D V; Tseng, Yu-Jui; Kuo, Ting-Yi; Chou, Pi-Tai; Koshevoy, I O; Burov, S V; Tunik, S P

    2014-01-25

    Novel water-soluble noncovalent adducts of the heterometallic copper subgroup complexes and human serum albumin (HSA) display strong phosphorescence, internalize into HeLa cells and can be used in time-resolved fluorescent imaging. PMID:24296768

  19. Surface-enhanced Raman spectroscopy study of the interaction of antitumoral drug Paclitaxel with human serum albumin

    NASA Astrophysics Data System (ADS)

    Yan, Tianxiu; Gu, Huaimin; Yuan, Xiaojuan; Wu, Jiwei; Wei, Huajiang

    2008-12-01

    SERS spectroscopy was employed to study the interaction of the antitumoral drug paclitaxel with human serum albumin. The normal Raman spectrum of the paclitaxel was shown in this study for the first time. There were some differences existing in the surface-enhanced Raman scattering (SERS) spectrum of paclitaxel and its human serum albumin (HSA), which demonstrated that there was high bioaffinity of paclitaxel to human serum albumin. And it was also found that there existed some differences in the SERS of the paclitaxel/HSA complexes at different pH values, which may indicated some significant information on the binding site, by which paclitaxel binds to human serum albumin. It can provide significant instruction in the synthesis of the drug and in improving the therapeutic efficacy of this drug.

  20. Dependence of the solubility of natural flavonoids in water on the concentration of miramistin, polyvinylpyrrolidone, and human serum albumin

    NASA Astrophysics Data System (ADS)

    Lipkovska, N. A.; Barvinchenko, V. N.; Fedyanina, T. V.

    2014-05-01

    In organized media of the cationic surfactant miramistin and the polymers polyvinylpyrrolidone and human serum albumin, the solubility of natural flavonoids quercetin and rutin increased by one or two orders of magnitude. The increase was more significant for hydrophobic quercetin than for hydrophilic rutin. The solubility also depended on the structure and self-organization of molecules in organized media and the site of flavonoids in them. The calculated binding constants increased in the series polyvinylpyrrolidone < miramistin < human serum albumin.

  1. Serum albumin: touchstone or totem?

    PubMed

    Margarson, M P; Soni, N

    1998-08-01

    A decrease in serum albumin concentrations is an almost inevitable finding in disease states, and is primarily mediated in the acute phase by alterations in vascular permeability and redistribution. This change is not disease specific but marked changes that persist are generally associated with a poorer prognosis. Critical appraisal of long-standing practices and the availability of alternative colloid solutions have led to a reduction in albumin replacement therapy, and a widespread tolerance of lower albumin concentrations in patients. The factors determining serum albumin concentrations, their measurement and the implications of hypoalbuminaemia are reviewed. The clinical value of serum albumin measurement is discussed. PMID:9797524

  2. Human Serum Versus Human Serum Albumin Supplementation in Human Islet Pretransplantation Culture: In Vitro and In Vivo Assessment.

    PubMed

    Nacher, Montserrat; Estil Les, Elisabet; Garcia, Ainhoa; Nadal, Belen; Pairó, Mar; Garcia, Cristofer; Secanella, Lluís; Novials, Anna; Montanya, Eduard

    2016-01-01

    There is conflicting evidence favoring both the use of human serum (HS) and of human serum albumin (HSA) in human islet culture. We evaluated the effects of HS versus HSA supplementation on 1) in vitro β-cell viability and function and 2) in vivo islet graft revascularization, islet viability, β-cell death, and metabolic outcome after transplantation. Islets isolated from 14 cadaveric organ donors were cultured for 3 days in CMRL 1066 medium supplemented with HS or HSA. After 3 days in culture, β-cell apoptosis was lower in HS group (1.41 ± 0.27 vs. 2.38 ± 0.39%, p = 0.029), and the recovery of islets was 77 ± 11% and 54 ± 1% in HS- and HSA-cultured groups, respectively. Glucose-stimulated insulin secretion (GSIS) was higher in HS group (29.4, range 10.4-99.9, vs. 22.3, range 8.7-70.6, p = 0.031). In vivo viability and revascularization was determined in HS- and HSA-cultured islets transplanted into the anterior chamber of the eye of Balb/c mice (n = 14), and β-cell apoptosis in paraffin-embedded mouse eyes. Islet viability and β-cell apoptosis were similar in both groups. Revascularization was observed in one graft (HS group) on day 10 after transplantation. Islet function was determined in streptozotocin (STZ)-diabetic nude mice (n = 33) transplanted with 2,000 IEQs cultured with HS or HSA that showed similar blood glucose levels and percentage of normoglycemic animals over time. In conclusion, human islets cultured in medium supplemented with HS showed higher survival in vitro, as well as islet viability and function. The higher in vitro survival increased the number of islets available for transplantation. However, the beneficial effect on viability and function did not translate into an improved metabolic evolution when a similar number of HSA- and HS-cultured islets was transplanted. PMID:25955150

  3. Alteration of methotrexate binding to human serum albumin induced by oxidative stress. Spectroscopic comparative study

    NASA Astrophysics Data System (ADS)

    Maciążek-Jurczyk, M.; Sułkowska, A.; Równicka-Zubik, J.

    2016-01-01

    Changes of oxidative modified albumin conformation by comparison of non-modified (HSA) and modified (oHSA) human serum albumin absorption spectra, Red Edge Excitation Shift (REES) effect and fluorescence synchronous spectra were investigated. Studies of absorption spectra indicated that changes in the value of absorbance associated with spectral changes in the region from 200 to 250 nm involve structural alterations related to variations in peptide backbone conformation. Analysis of the REES effect allowed for the observation of changes caused by oxidation in the region of the hydrophobic pocket containing the tryptophanyl residue. Synchronous fluorescence spectroscopy confirmed changes of the position of the tryptophanyl and tyrosil residues fluorescent band. Effect of oxidative stress on binding of methotrexate (MTX) was investigated by spectrofluorescence, UV-VIS and 1HNMR spectroscopy. MTX caused the fluorescence quenching of non-modified (HSA) and modified (oHSA) human serum albumin molecule. The values of binding constants, Hill's coefficients and a number of binding sites in the protein molecule in the high affinity binding site were calculated for the binary MTX-HSA and MTX-oHSA systems. For these systems, qualitative analysis in the low affinity binding sites was performed with the use of the 1HNMR technique.

  4. Allosteric Sensing of Fatty Acid Binding by NMR: Application to Human Serum Albumin.

    PubMed

    Jafari, Naeimeh; Ahmed, Rashik; Gloyd, Melanie; Bloomfield, Jonathon; Britz-McKibbin, Philip; Melacini, Giuseppe

    2016-08-25

    Human serum albumin (HSA) serves not only as a physiological oncotic pressure regulator and a ligand carrier but also as a biomarker for pathologies ranging from ischemia to diabetes. Moreover, HSA is a biopharmaceutical with a growing repertoire of putative clinical applications from hypovolemia to Alzheimer's disease. A key determinant of the physiological, diagnostic, and therapeutic functions of HSA is the amount of long chain fatty acids (LCFAs) bound to HSA. Here, we propose to utilize (13)C-oleic acid for the NMR-based assessment of albumin-bound LCFA concentration (CONFA). (13)C-Oleic acid primes HSA for a LCFA-dependent allosteric transition that modulates the frequency separation between the two main (13)C NMR peaks of HSA-bound oleic acid (ΔνAB). On the basis of ΔνAB, the overall [(12)C-LCFA]Tot/[HSA]Tot ratio is reproducibly estimated in a manner that is only minimally sensitive to glycation, albumin concentration, or redox potential, unlike other methods to quantify HSA-bound LCFAs such as the albumin-cobalt binding assay. PMID:27429126

  5. Characterizing Active Pharmaceutical Ingredient Binding to Human Serum Albumin by Spin-Labeling and EPR Spectroscopy.

    PubMed

    Hauenschild, Till; Reichenwallner, Jörg; Enkelmann, Volker; Hinderberger, Dariush

    2016-08-26

    Drug binding to human serum albumin (HSA) has been characterized by a spin-labeling and continuous-wave (CW) EPR spectroscopic approach. Specifically, the contribution of functional groups (FGs) in a compound on its albumin-binding capabilities is quantitatively described. Molecules from different drug classes are labeled with EPR-active nitroxide radicals (spin-labeled pharmaceuticals (SLPs)) and in a screening approach CW-EPR spectroscopy is used to investigate HSA binding under physiological conditions and at varying ratios of SLP to protein. Spectral simulations of the CW-EPR spectra allow extraction of association constants (KA ) and the maximum number (n) of binding sites per protein. By comparison of data from 23 SLPs, the mechanisms of drug-protein association and the impact of chemical modifications at individual positions on drug uptake can be rationalized. Furthermore, new drug modifications with predictable protein binding tendency may be envisaged. PMID:27460503

  6. Imatinib binding to human serum albumin modulates heme association and reactivity.

    PubMed

    Di Muzio, Elena; Polticelli, Fabio; Trezza, Viviana; Fanali, Gabriella; Fasano, Mauro; Ascenzi, Paolo

    2014-10-15

    Imatinib, an inhibitor of the Bcr-Abl tyrosine kinase, is approximately 95% bound to plasma proteins, α1-acid glycoprotein (AGP) being the primary carrier. However, human serum albumin (HSA) may represent the secondary carrier of imatinib in pathological states characterized by low AGP levels, such as pancreatic cancer, hepatic cirrhosis, hepatitis, hyperthyroidism, nephrotic syndrome, malnutrition, and cachexia. Here, thermodynamics of imatinib binding to full-length HSA and its recombinant Asp1-Glu382 truncated form (containing only the FA1, FA2, FA6, and FA7 binding sites; trHSA), in the absence and presence of ferric heme (heme-Fe(III)), and the thermodynamics of heme-Fe(III) binding to HSA and trHSA, in the absence and presence of imatinib, has been investigated. Moreover, the effect of imatinib on kinetics of peroxynitrite detoxification by ferric human serum heme-albumin (HSA-heme-Fe(III)) and ferric truncated human serum heme-albumin (trHSA-heme-Fe(III)) has been explored. All data were obtained at pH 7.0, and 20.0 °C and 37.0 °C. Imatinib binding to the FA7 site of HSA and trHSA inhibits allosterically heme-Fe(III) association to the FA1 site and vice versa, according to linked functions. Moreover, imatinib binding to the secondary FA2 site of HSA-heme-Fe(III) inhibits allosterically peroxynitrite detoxification. Docking simulations and local structural comparison with other imatinib-binding proteins support functional data indicating the preferential binding of imatinib to the FA1 and FA7 sites of HSA, and to the FA2 and FA7 sites of HSA-heme-Fe(III). Present results highlight the allosteric coupling of the FA1, FA2, and FA7 sites of HSA, and may be relevant in modulating ligand binding and reactivity properties of HSA in vivo. PMID:25057771

  7. Direct interactions in the recognition between the environmental estrogen bisphenol AF and human serum albumin.

    PubMed

    Yang, Lijun; Lv, Junna; Wang, Xin; Zhang, Jing; Li, Qi; Zhang, Tingting; Zhang, Zhenzhen; Zhang, Lei

    2015-08-01

    Bisphenol AF (BPAF) was used as a model compound to investigate the binding mechanism between the endocrine disrupting compound and human serum albumin (HSA) using multispectroscopic techniques and molecular modeling method at the protein level. The results indicated that BPAF was indeed bound to HSA and located in the hydrophobic pocket of HSA on subdomain IIA through hydrogen bond and van der Waals interactions. The fluorescence quenching data showed that the binding of BPAF and HSA quenched the intrinsic fluorescence of HSA, and the static quenching constants were acquired. PMID:25694370

  8. Preliminary crystallographic studies of four crystal forms of serum albumin

    NASA Technical Reports Server (NTRS)

    Carter, D. C.; Chang, B.; Ho, J. X.; Keeling, K.; Krishnasami, Z.

    1994-01-01

    Several crystal forms of serum albumin suitable for three-dimensional structure determination have been grown. These forms include crystals of recombinant and wild-type human serum albumin, baboon serum albumin, and canine serum albumin. The intrinsic limits of X-ray diffraction for these crystals are in the range 0.28-0.22 nm. Two of the crystal forms produced from human and canine albumin include incorporated long-chain fatty acids. Molecular replacement experiments have been successfully conducted on each crystal form using the previously determined atomic coordinates of human serum albumin illustrating the conserved tertiary structure.

  9. Preliminary crystallographic studies of four crystal forms of serum albumin.

    PubMed

    Carter, D C; Chang, B; Ho, J X; Keeling, K; Krishnasami, Z

    1994-12-15

    Several crystal forms of serum albumin suitable for three-dimensional structure determination have been grown. These forms include crystals of recombinant and wild-type human serum albumin, baboon serum albumin, and canine serum albumin. The intrinsic limits of X-ray diffraction for these crystals are in the range 0.28-0.22 nm. Two of the crystal forms produced from human and canine albumin include incorporated long-chain fatty acids. Molecular replacement experiments have been successfully conducted on each crystal form using the previously determined atomic coordinates of human serum albumin illustrating the conserved tertiary structure. PMID:7813459

  10. Assessment of Binding Affinity between Drugs and Human Serum Albumin Using Nanoporous Anodic Alumina Photonic Crystals.

    PubMed

    Nemati, Mahdieh; Santos, Abel; Law, Cheryl Suwen; Losic, Dusan

    2016-06-01

    In this study, we report an innovative approach aiming to assess the binding affinity between drug molecules and human serum albumin by combining nanoporous anodic alumina rugate filters (NAA-RFs) modified with human serum albumin (HSA) and reflectometric interference spectroscopy (RIfS). NAA-RFs are photonic crystal structures produced by sinusoidal pulse anodization of aluminum that present two characteristic optical parameters, the characteristic reflection peak (λPeak), and the effective optical thickness of the film (OTeff), which can be readily used as sensing parameters. A design of experiments strategy and an ANOVA analysis are used to establish the effect of the anodization parameters (i.e., anodization period and anodization offset) on the sensitivity of HSA-modified NAA-RFs toward indomethacin, a model drug. To this end, two sensing parameters are used, that is, shifts in the characteristic reflection peak (ΔλPeak) and changes in the effective optical thickness of the film (ΔOTeff). Subsequently, optimized NAA-RFs are used as sensing platforms to determine the binding affinity between a set of drugs (i.e., indomethacin, coumarin, sulfadymethoxine, warfarin, and salicylic acid) and HSA molecules. Our results verify that the combination of HSA-modified NAA-RFs with RIfS can be used as a portable, low-cost, and simple system for establishing the binding affinity between drugs and plasma proteins, which is a critical factor to develop efficient medicines for treating a broad range of diseases and medical conditions. PMID:27128744

  11. A study on human serum albumin influence on glycation of fibrinogen

    SciTech Connect

    Kielmas, Martyna; Szewczuk, Zbigniew; Stefanowicz, Piotr

    2013-09-13

    Highlights: •The glycation of fibrinogen was investigated by isotopic labeling method. •The potential glycation sites in fibrinogen were identified. •Human serum albumin (HSA) inhibits the glycation of fibrinogen. •The effect of HSA on fibrinogen glycation is sequence-dependent. -- Abstract: Although in vivo glycation proceeds in complex mixture of proteins, previous studies did not take in consideration the influence of protein–protein interaction on Maillard reaction. The aim of our study was to test the influence of human serum albumin (HSA) on glycation of fibrinogen. The isotopic labeling using [{sup 13}C{sub 6}] glucose combined with LC-MS were applied as tool for identification possible glycation sites in fibrinogen and for evaluation the effect of HSA on the glycation level of selected amino acids in fibrinogen. The obtained data indicate that the addition of HSA protects the fibrinogen from glycation. The level of glycation in presence of HSA is reduced by 30–60% and depends on the location of glycated residue in sequence of protein.

  12. Renal targeted delivery of triptolide by conjugation to the fragment peptide of human serum albumin.

    PubMed

    Yuan, Zhi-xiang; Wu, Xiao-juan; Mo, Jingxin; Wang, Yan-li; Xu, Chao-qun; Lim, Lee Yong

    2015-08-01

    We have previously demonstrated that peptide fragments (PFs) of the human serum albumin could be developed as potential renal targeting carriers, in particular, the peptide fragment, PF-A299-585 (A299-585 representing the amino acid sequence of the human serum albumin). In this paper, we conjugated triptolide (TP), the anti-inflammatory Chinese traditional medicine, to PF-A299-585 via a succinic acid spacer to give TPS-PF-A299-585 (TP loading 2.2% w/w). Compared with the free TP, TPS-PF-A299-585 exhibited comparable anti-inflammatory activity in the lipopolysaccharide stimulated MDCK cells, but was significantly less cytotoxic than the free drug. Accumulation of TPS-PF-A299-585 in the MDCK cells in vitro and in rodent kidneys in vivo was demonstrated using FITC-labeled TPS-PF-A299-585. Renal targeting was confirmed in vivo in a membranous nephropathic (MN) rodent model, where optical imaging and analyses of biochemical markers were combined to show that TPS-PF-A299-585 was capable of alleviating the characteristic symptoms of MN. The collective data affirm PF-A299-585 to be a useful carrier for targeting TP to the kidney. PMID:26117184

  13. Neo-epitopes on methylglyoxal modified human serum albumin lead to aggressive autoimmune response in diabetes.

    PubMed

    Jyoti; Mir, Abdul Rouf; Habib, Safia; Siddiqui, Sheelu Shafiq; Ali, Asif; Moinuddin

    2016-05-01

    Glyco-oxidation of proteins has implications in the progression of diabetes type 2. Human serum albumin is prone to glyco-oxidative attack by sugars and methylglyoxal being a strong glycating agent may have severe impact on its structure and consequent role in diabetes. This study has probed the methylglyoxal mediated modifications of HSA, the alterations in its immunological characteristics and possible role in autoantibody induction. We observed an exposure of chromophoric groups, loss in the fluorescence intensity, generation of AGEs, formation of cross-linked products, decrease in α-helical content, increase in hydrophobic clusters, FTIR band shift, attachment of methylglyoxal to HSA and the formation of N(ε)-(carboxyethyl) lysine in the modified HSA, when compared to the native albumin. MG-HSA was found to be highly immunogenic with additional immunogenicity invoking a highly specific immune response than its native counterpart. The binding characteristics of circulating autoantibodies in type 2 diabetes mellitus (DM) patients showed the generation of anti-MG-HSA auto-antibodies in the these patients, that are preferentially recognized by the modified albumin. We propose that MG induced structural perturbations in HSA, result in the generation of neo-epitopes leading to an aggressive auto-immune response and may contribute to the immunopathogenesis of diabetes type 2 associated complications. PMID:26861824

  14. Data set for mass spectrometric analysis of recombinant human serum albumin from various expression systems.

    PubMed

    Smith, Daryl G S; Frahm, Grant E; Kane, Anita; Lorbetskie, Barry; Girard, Michel; Johnston, Michael J W; Cyr, Terry D

    2015-09-01

    Human serum albumin (HSA) is a versatile and important protein for the pharmaceutical industry (Fanali et al., Mol. Aspects Med. 33(3) (2012) 209-290). Due to the potential transmission of pathogens from plasma sourced albumin, numerous expression systems have been developed to produce recombinant HSA (rHSA) (Chen et al., Biochim. Biophys. Acta (BBA)-Gen. Subj. 1830(12) (2013) 5515-5525; Kobayashi, Biologicals 34(1) (2006) 55-59). Based on our previous study showing increased glycation of rHSA expressed in Asian rice (Frahm et al., J. Phys. Chem. B 116(15) (2012) 4661-4670), both supplier-to-supplier and lot-to-lot variability of rHSAs from a number of expression systems were evaluated using reversed phase liquid chromatography linked with MS and MS/MS analyses. The data are associated with the research article 'Determination of Supplier-to-Supplier and Lot-to-Lot Variability in Glycation of Recombinant Human Serum Albumin Expressed in Oryza sativa' where further analysis of rHSA samples with additional biophysical methods can be found (Frahm et al., PLoS ONE 10(9) (2014) e109893). We determined that all rHSA samples expressed in rice showed elevated levels of arginine and lysine hexose glycation compared to rHSA expressed in yeast, suggesting that the extensive glycation of the recombinant proteins is a by-product of either the expression system or purification process and not a random occurrence. PMID:26322323

  15. Surface modification of PLGA nanoparticles via human serum albumin conjugation for controlled delivery of docetaxel

    PubMed Central

    2013-01-01

    Background Poly lactic-co-glycolic acid (PLGA) based nanoparticles are considered to be a promising drug carrier in tumor targeting but suffer from the high level of opsonization by reticuloendothelial system due to their hydrophobic structure. As a result surface modification of these nanoparticles has been widely studied as an essential step in their development. Among various surface modifications, human serum albumin (HSA) possesses advantages including small size, hydrophilic surface and accumulation in leaky vasculature of tumors through passive targeting and a probable active transport into tumor tissues. Methods PLGA nanoparticles of docetaxel were prepared by emulsification evaporation method and were surface conjugated with human serum albumin. Fourier transform infrared spectrum was used to confirm the conjugation reaction where nuclear magnetic resonance was utilized for conjugation ratio determination. In addition, transmission electron microscopy showed two different contrast media in conjugated nanoparticles. Furthermore, cytotoxicity of free docetaxel, unconjugated and conjugated PLGA nanoparticles was studied in HepG2 cells. Results Size, zeta potential and drug loading of PLGA nanoparticles were about 199 nm, −11.07 mV, and 4%, respectively where size, zeta potential and drug loading of conjugated nanoparticles were found to be 204 nm, −5.6 mV and 3.6% respectively. Conjugated nanoparticles represented a three-phasic release pattern with a 20% burst effect for docetaxel on the first day. Cytotoxicity experiment showed that the IC50 of HSA conjugated PLGA nanoparticles (5.4 μg) was significantly lower than both free docetaxel (20.2 μg) and unconjugated PLGA nanoparticles (6.2 μg). Conclusion In conclusion surface modification of PLGA nanoparticles through HSA conjugation results in more cytotoxicity against tumor cell lines compared with free docetaxel and unconjugated PLGA nanoparticles. Albumin conjugated PLGA nanoparticles may

  16. A Fluorescence Quenching Study of the Interaction of Nebivolol Hydrochloride with Bovine and Human Serum Albumin

    NASA Astrophysics Data System (ADS)

    Abdel-Aziz, L.; Abdel-Fattah, L.; El-Kosasy, A.; Gaied, M.

    2015-09-01

    The interaction of nebivolol hydrochloride (NH), a β1-blocker, with bovine serum albumin (BSA) has been investigated at different pH values using the fluorescence quenching technique. The effect of different temperatures was studied at physiological pH 7.4. The binding constants of NH with BSA at 288, 298, and 309 K were found to be 2.691 × 1011, 1.38 × 1010, and 6.27 × 108 M-1, respectively. From the Arrhenius plot, the thermodynamic parameters, ΔH0 and ΔS0, were estimated to be -204.48 kJ/mol and -491.42 J/mol × K, respectively. This indicates that Van der Waals interactions and hydrogen bonds play a major role in the reaction. The effect of some inorganic divalent cations (Cu2+, Ni2+, and Zn2+) on binding of NH to BSA was also studied at physiological pH 7.4. Conformational investigation of BSA was done using synchronous fluorescence, showing the change in the microenvironment of the tryptophan residues. Fluorescence quenching reactions of NH to human serum albumin (HSA) and to γ-globulins were investigated and the binding parameters were obtained.

  17. Research of the interaction between kangai injection and human serum albumin by fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Ye, Changbin; Lin, Xiaogang; Zhu, Hao; Li, Wenchao; Wu, Jie

    2015-10-01

    The interaction between drugs and serum albumin is the theoretical basis of pharmacology research. Kangai injection with invigorating Qi, enhancing the immune function, is widely used for a variety of malignant tumor treatment. Fluorescence spectroscopy was adopted due to its high sensitivity and other advantages. The interaction between kangai injection and human serum albumin (HSA) in physiological buffer (pH 7.4) was investigated by fluorescence spectroscopy and UV-Vis absorption spectroscopy. The results of fluorescence spectrum at three temperature (296K, 303K and 310K) showed the degree of binding at 310K is the highest. Also, the maximum emission peak has a slight blue shift, which indicates that the interaction between kangai injection and HSA has an effect on the conformation of HSA. That is, the microenvironment of tryptophan increase hydrophobic due to the increase of the concentration of kangai injection. Results obtained from analysis of fluorescence spectrum and fluorescence intensity indicated that kangai injection has a strong ability to quench the intrinsic fluorescence of HSA. And according to the Stern-Volume equation, the quenching mechanism is static quenching, which is further proved by the UV-Vis absorption spectroscopy.

  18. Interaction of chlorogenic acids and quinides from coffee with human serum albumin.

    PubMed

    Sinisi, Valentina; Forzato, Cristina; Cefarin, Nicola; Navarini, Luciano; Berti, Federico

    2015-02-01

    Chlorogenic acids and their derivatives are abundant in coffee and their composition changes between coffee species. Human serum albumin (HSA) interacts with this family of compounds with high affinity. We have studied by fluorescence spectroscopy the specific binding of HSA with eight compounds that belong to the coffee polyphenols family, four acids (caffeic acid, ferulic acid, 5-O-caffeoyl quinic acid, and 3,4-dimethoxycinnamic acid) and four lactones (3,4-O-dicaffeoyl-1,5-γ-quinide, 3-O-[3,4-(dimethoxy)cinnamoyl]-1,5-γ-quinide, 3,4-O-bis[3,4-(dimethoxy)cinnamoyl]-1,5-γ-quinide, and 1,3,4-O-tris[3,4-(dimethoxy)cinnamoyl]-1,5-γ-quinide), finding dissociation constants of the albumin-chlorogenic acids and albumin-quinides complexes in the micromolar range, between 2 and 30μM. Such values are comparable with those of the most powerful binders of albumin, and more favourable than the values obtained for the majority of drugs. Interestingly in the case of 3,4-O-dicaffeoyl-1,5-γ-quinide, we have observed the entrance of two ligand molecules in the same binding site, leading up to a first dissociation constant even in the hundred nanomolar range, which is to our knowledge the highest affinity ever observed for HSA and its ligands. The displacement of warfarin, a reference drug binding to HSA, by the quinide has also been demonstrated. PMID:25172718

  19. O{sub 2}-mediated oxidation of ferrous nitrosylated human serum heme-albumin is limited by nitrogen monoxide dissociation

    SciTech Connect

    Ascenzi, Paolo; Gullotta, Francesca; Gioia, Magda; Coletta, Massimo; Fasano, Mauro

    2011-03-04

    Research highlights: {yields} Human serum heme-albumin displays globin-like properties. {yields} O{sub 2}-mediated oxidation of ferrous nitrosylated human serum heme-albumin. {yields} Allosteric modulation of human serum heme-albumin reactivity. {yields} Rifampicin is an allosteric effector of human serum heme-albumin. {yields} Human serum heme-albumin is a ROS and NOS scavenger. -- Abstract: Human serum heme-albumin (HSA-heme-Fe) displays globin-like properties. Here, kinetics of O{sub 2}-mediated oxidation of ferrous nitrosylated HSA-heme-Fe (HSA-heme-Fe(II)-NO) is reported. Values of the first-order rate constants for O{sub 2}-mediated oxidation of HSA-heme-Fe(II)-NO (i.e., for ferric HSA-heme-Fe formation) and for NO dissociation from HSA-heme-Fe(II)-NO (i.e., for NO replacement by CO) are k = 9.8 x 10{sup -5} and 8.3 x 10{sup -4} s{sup -1}, and h = 1.3 x 10{sup -4} and 8.5 x 10{sup -4} s{sup -1}, in the absence and presence of rifampicin, respectively, at pH = 7.0 and T = 20.0 {sup o}C. The coincidence of values of k and h indicates that NO dissociation represents the rate limiting step of O{sub 2}-mediated oxidation of HSA-heme-Fe(II)-NO. Mixing HSA-heme-Fe(II)-NO with O{sub 2} does not lead to the formation of the transient adduct(s), but leads to the final ferric HSA-heme-Fe derivative. These results reflect the fast O{sub 2}-mediated oxidation of ferrous HSA-heme-Fe and highlight the role of drugs in modulating allosterically the heme-Fe-atom reactivity.

  20. Binding of Citreoviridin to Human Serum Albumin: Multispectroscopic and Molecular Docking

    PubMed Central

    Hou, Haifeng; Qu, Xiaolan; Li, Yuqin; Kong, Yueyue; Jia, Baoxiu; Yao, Xiaojun; Jiang, Baofa

    2015-01-01

    Citreoviridin (CIT), a mycotoxin produced by Penicillium citreonigrum, is a common contaminant of wide range of agriproducts and detrimental to human and animal health. In this study, the interaction of CIT with human serum albumin (HSA) is researched by steady-state fluorescence, ultraviolet-visible (UV-Vis) absorption, circular dichroism (CD) methods, and molecular modeling. The association constants, binding site numbers, and corresponding thermodynamic parameters are used to investigate the quenching mechanism. The alternations of HSA secondary structure in the presence of CIT are demonstrated with UV-Vis, synchronous fluorescence, and CD spectra. The molecular modeling results reveal that CIT can bind with hydrophobic pocket of HSA with hydrophobic and hydrogen bond force. Moreover, an apparent distance of 3.25 nm between Trp214 and CIT is obtained via fluorescence resonance energy transfer method. PMID:25977915

  1. Reciprocal Allosteric Modulation of Carbon Monoxide and Warfarin Binding to Ferrous Human Serum Heme-Albumin

    PubMed Central

    Bocedi, Alessio; De Sanctis, Giampiero; Ciaccio, Chiara; Tundo, Grazia R.; Di Masi, Alessandra; Fanali, Gabriella; Nicoletti, Francesco P.; Fasano, Mauro; Smulevich, Giulietta; Ascenzi, Paolo; Coletta, Massimo

    2013-01-01

    Human serum albumin (HSA), the most abundant protein in human plasma, could be considered as a prototypic monomeric allosteric protein, since the ligand-dependent conformational adaptability of HSA spreads beyond the immediate proximity of the binding site(s). As a matter of fact, HSA is a major transport protein in the bloodstream and the regulation of the functional allosteric interrelationships between the different binding sites represents a fundamental information for the knowledge of its transport function. Here, kinetics and thermodynamics of the allosteric modulation: (i) of carbon monoxide (CO) binding to ferrous human serum heme-albumin (HSA-heme-Fe(II)) by warfarin (WF), and (ii) of WF binding to HSA-heme-Fe(II) by CO are reported. All data were obtained at pH 7.0 and 25°C. Kinetics of CO and WF binding to the FA1 and FA7 sites of HSA-heme-Fe(II), respectively, follows a multi-exponential behavior (with the same relative percentage for the two ligands). This can be accounted for by the existence of multiple conformations and/or heme-protein axial coordination forms of HSA-heme-Fe(II). The HSA-heme-Fe(II) populations have been characterized by resonance Raman spectroscopy, indicating the coexistence of different species characterized by four-, five- and six-coordination of the heme-Fe atom. As a whole, these results suggest that: (i) upon CO binding a conformational change of HSA-heme-Fe(II) takes place (likely reflecting the displacement of an endogenous ligand by CO), and (ii) CO and/or WF binding brings about a ligand-dependent variation of the HSA-heme-Fe(II) population distribution of the various coordinating species. The detailed thermodynamic and kinetic analysis here reported allows a quantitative description of the mutual allosteric effect of CO and WF binding to HSA-heme-Fe(II). PMID:23555601

  2. Interaction of human serum albumin with novel imidazole derivatives studied by spectroscopy and molecular docking.

    PubMed

    Yue, Yuanyuan; Sun, Yangyang; Dong, Qiao; Liu, Ren; Yan, Xuyang; Zhang, Yajie; Liu, Jianming

    2016-05-01

    This study was a detailed characterization of the interaction of a series of imidazole derivatives with a model transport protein, human serum albumin (HSA). Fluorescence and time-resolved fluorescence results showed the existence of a static quenching mode for the HSA-imidazole derivative interaction. The binding constant at 296 K was in the order of 10(4) M(-1) , showing high affinity between the imidazole derivatives and HSA. A site marker competition study combined with molecular docking revealed that the imidazole derivatives bound to subdomain IIA of HSA (Sudlow's site I). Furthermore, the results of synchronous, 3D, Fourier transform infrared, circular dichroism and UV-vis spectroscopy demonstrated that the secondary structure of HSA was altered in the presence of the imidazole derivatives. The specific binding distance, r, between the donor and acceptor was obtained according to fluorescence resonance energy transfer. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26364804

  3. Enantioselective separation of chiral arylcarboxylic acids on an immobilized human serum albumin chiral stationary phase.

    PubMed

    Andrisano, V; Booth, T D; Cavrini, V; Wainer, I W

    1997-01-01

    A series of 12 chiral arylcarboxylic acids were chromatographed on an immobilized human serum albumin chiral stationary phase (HSA-CSP). The effects of solute structure on chromatographic retentions and enantioselective separations were examined by linear regression analysis and the construction of quantitative structure-enantioselective retention relationships. Competitive displacement studies were also conducted using R-ibuprofen as the displacing agent. The results indicate that the enantioselective retention of the solutes takes place at the indole-benzodiazepine site (site II) on the HSA molecule and that chiral recognition is affected by the hydrophobicity and steric volume of the solutes. The displacement studies also identified a cooperative allosteric interaction induced by the binding of R-ibuprofen to site II. PMID:9134695

  4. Fluorescence study on the interaction of human serum albumin with Butein in liposomes

    NASA Astrophysics Data System (ADS)

    Toprak, Mahmut

    2016-02-01

    The interaction of Butein with human serum albumin in L-egg lecithin phosphatidycholine (PC) liposome has been investigated by fluorescence and absorption spectroscopy. The results of the fluorescence measurement indicated that Butein effectively quenched the intrinsic fluorescence of HSA via static quenching. The Stern-Volmer plots in all the liposome solutions showed a positive deviation from the linearity. According to the thermodynamic parameters, the hydrophobic interactions appeared be the major interaction forces between Butein and HSA. The effect of Butein on the conformation of HSA was also investigated by the synchronous fluorescence under the same experimental conditions. In addition, the partition coefficient of the Butein in the PC liposomes was also determined by using the fluorescence quenching process. The obtained results can be of biological significance in pharmacology and clinical medicine.

  5. New insights into in vitro amyloidogenic properties of human serum albumin suggest considerations for therapeutic precautions.

    PubMed

    Sharma, Neetu; Sivalingam, Vishwanath; Maurya, Sonalika; Prasad, Archana; Khandelwal, Puneet; Yadav, Subhash Chandra; Patel, Basant K

    2015-12-21

    Amyloid aggregates display striking features of detergent stability and self-seeding. Human serum albumin (HSA), a preferred drug-carrier molecule, can also aggregate in vitro. So far, key amyloid properties of stability against ionic detergents and self-seeding, are unclear for HSA aggregates. Precautions against amyloid contamination would be required if HSA aggregates were self-seeding. Here, we show that HSA aggregates display detergent sarkosyl stability and have self-seeding potential. HSA dimer is preferable for clinical applications due to its longer retention in circulation and lesser oedema owing to its larger molecular size. Here, HSA was homodimerized via free cysteine-34, without any potentially immunogenic cross-linkers that are usually pre-requisite for homodimerization. Alike the monomer, HSA dimers also aggregated as amyloid, necessitating precautions while using for therapeutics. PMID:26554815

  6. A calorimetric study on interactions of colchicine with human serum albumin

    NASA Astrophysics Data System (ADS)

    Zhao, Qiang; Xu, Xiang-Yu; Sun, Xiang-Jun; Liu, Min; Sun, De-Zhi; Li, Lin-Wei

    2009-08-01

    Interaction of colchicine (COL) with human serum albumin (HSA) in buffer solutions (pH 7.2) has been investigated by isothermal titration calorimetry (ITC) combined with circular dichroism (CD) and UV-vis spectra. Heats of the interactions have been determined at 298.15 K. Based on the calorimetric data and reasonable suppositions for the bio-macromolecule - ligand binding process, the equilibrium constants, standard changes of enthalpy, entropy and Gibbs free energy of the processes are obtained. The results show that there are two classes of ligand binding sites. The first-class binding is mainly driven by entropy, while the second-class binding is synergistically driven by entropy and enthalpy. Circular dichroism (CD) and UV-vis spectra show that COL can change the secondary structure of HSA molecule.

  7. Affinity of rosmarinic acid to human serum albumin and its effect on protein conformation stability.

    PubMed

    Peng, Xin; Wang, Xiangchao; Qi, Wei; Su, Rongxin; He, Zhimin

    2016-02-01

    Rosmarinic acid (RA) is a natural polyphenol contained in many aromatic plants with promising biological activities. The interaction between RA and human serum albumin (HSA) was investigated by multi-spectroscopic, electrochemistry, molecular docking and molecular dynamics simulation methods. The fluorescence emission of HSA was quenched by RA through a combined static and dynamic quenching mechanism, but the static quenching was the major constituent. Fluorescence experiments suggested that RA was bound to HSA with moderately strong binding affinity through hydrophobic interaction. The probable binding location of RA was located near site I of HSA. Additionally, as shown by the Fourier transform infrared (FT-IR) and circular dichroism (CD) spectra, RA can result in conformational and structural alterations of HSA. Furthermore, the molecular dynamics studies were used to investigate the stability of the HSA and HSA-RA system. Altogether, the results can provide an important insight for the applications of RA in the food industry. PMID:26304336

  8. Binding properties of drospirenone with human serum albumin and lysozyme in vitro

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Ma, Xiangling; He, Jiawei; Sun, Qiaomei; Li, Yuanzhi; Li, Hui

    2016-01-01

    The interaction of drospirenone (DP) with human serum albumin (HSA)/lysozyme (LYZ) was investigated using different optical techniques and molecular models. Results from the emission and time resolved fluorescence studies revealed that HSA/LYZ emission quenching with DP was initiated by static quenching mechanism. The LYZ-DP system was more easily influenced by temperature than the HSA-DP system. Displacement experiments demonstrated that the DP binding site was mainly located in site 1 of HSA. Based on the docking methods, DP was mainly bound in the active site hinge region where Trp-62 and Trp-63 are located. Conformation study showed that DP had different effects on the local conformation of HSA and LYZ molecules.

  9. Evaluation of the enantioselective binding of imazalil to human serum albumin by capillary electrophoresis.

    PubMed

    Asensi-Bernardi, Lucía; Martín-Biosca, Yolanda; Escuder-Gilabert, Laura; Sagrado, Salvador; Medina-Hernández, María José

    2015-11-01

    In this work, a methodology for the evaluation of enantioselective binding of imazalil (IMA) enantiomers to human serum albumin (HSA) that does not require the separation of free and bound to HSA fractions is developed. This methodology comprises the incubation of IMA-HSA designed mixtures for 30 min directly in the capillary electrophoresis system and the subsequent direct injection and chiral separation of IMA employing highly sulfated β-cyclodextrin as chiral selector and the complete filling technique. Two mathematical approaches were used to estimate apparent affinity constants (K1), protein binding and enantioselectivity (ES) for both enantiomers of IMA. Moderate enantioselective binding of IMA enantiomers to HSA (ES = 2.0) was shown by the 1:1 stoichiometry and log K1 values of 3.4 ± 0.4 and 3.1 ± 0.3 for the first and second eluted enantiomers, respectively. PMID:25857268

  10. Interaction of diuron to human serum albumin: Insights from spectroscopic and molecular docking studies.

    PubMed

    Chen, Huilun; Rao, Honghao; Yang, Jian; Qiao, Yongxiang; Wang, Fei; Yao, Jun

    2016-01-01

    This investigation was undertaken to determine the interaction of diuron with human serum albumin (HSA) was studied by monitoring the spectral behavior of diuron-HSA system. The fluorescence of HSA at 340 nm excited at 230 nm was obviously quenched by diuron due to dynamic collision and the quenching constant was of the order of 10(4) L mol(-1) at 310 K. However, no fluorescence quenching was observed when excited at 280 nm. Thermodynamic investigations revealed that the combination between diuron and HSA was entropy driven by predominantly hydrophobic interactions. The binding of diuron induced the drastic reduction in α-helix conformation and the significant enhancement in β-turn conformation of HSA. In addition, both sites marker competition study and molecular modeling simulation evidenced the binding of diuron to HSA primarily took place in subdomain IIIA (Sudlow's site II). PMID:26671830

  11. Kinetic Analyses of Data from a Human Serum Albumin Assay Using the liSPR System

    PubMed Central

    Henseleit, Anja; Pohl, Carolin; Kaltenbach, Hans-Michael; Hettwer, Karina; Simon, Kirsten; Uhlig, Steffen; Haustein, Natalie; Bley, Thomas; Boschke, Elke

    2015-01-01

    We used the interaction between human serum albumin (HSA) and a high-affinity antibody to evaluate binding affinity measurements by the bench-top liSPR system (capitalis technology GmbH). HSA was immobilized directly onto a carboxylated sensor layer, and the mechanism of interaction between the antibody and HSA was investigated. The bivalence and heterogeneity of the antibody caused a complex binding mechanism. Three different interaction models (1:1 binding, heterogeneous analyte, bivalent analyte) were compared, and the bivalent analyte model best fit the curves obtained from the assay. This model describes the interaction of a bivalent analyte with one or two ligands (A + L ↔ LA + L ↔ LLA). The apparent binding affinity for this model measured 37 pM for the first reaction step, and 20 pM for the second step. PMID:25607476

  12. Investigation of the interaction between amodiaquine and human serum albumin by fluorescence spectroscopy and molecular modeling.

    PubMed

    Samari, Fayezeh; Shamsipur, Mojtaba; Hemmateenejad, Bahram; Khayamian, Taghi; Gharaghani, Sajjad

    2012-08-01

    The interaction of amodiaquine (AQ) with human serum albumin (HSA) has been studied by fluorescence spectroscopy. Based on the sign and magnitude of the enthalpy and entropy changes (ΔH(0) = -43.27 kJ mol(-1) and ΔS(0) = -50.03 J mol(-1) K(-1)), hydrogen bond and van der Waals forces were suggested as the main interacting forces. Moreover, the efficiency of energy transfer and distance between HSA and acceptor AQ was calculated. Finally, the binding of AQ to HSA was modeled by molecular docking and molecular dynamic simulation methods. Excellent agreement was found between the experimental and theoretical results. Both experimental results and modeling methods suggested that AQ binds mainly to the sub-domain IIA of HSA. PMID:22658498

  13. Binding of caffeine, theophylline, and theobromine with human serum albumin: A spectroscopic study

    NASA Astrophysics Data System (ADS)

    Zhang, Hong-Mei; Chen, Ting-Ting; Zhou, Qiu-Hua; Wang, Yan-Qing

    2009-12-01

    The interaction between three purine alkaloids (caffeine, theophylline, and theobromine) and human serum albumin (HSA) was investigated using UV/vis absorption, circular dichroism (CD), fluorescence, synchronous fluorescence, and three-dimensional fluorescence spectra techniques. The results revealed that three alkaloids caused the fluorescence quenching of HSA by the formation of alkaloid-HSA complex. The binding site number n and apparent binding constant KA, corresponding thermodynamic parameters the free energy change (Δ G), enthalpy change (Δ H), and entropy change (Δ S) at different temperatures were calculated. The hydrophobic interaction plays a major role in stabilizing the complex. The distance r between donor (HSA) and acceptor (alkaloids) was obtained according to fluorescence resonance energy transfer. The effect of alkaloids on the conformation of HSA was analyzed using circular dichroism (CD), UV/vis absorption, synchronous fluorescence and three-dimensional fluorescence spectra techniques.

  14. [Interaction between ambroxol hydrochloride and human serum albumin studied by spectroscopic and molecular modeling methods].

    PubMed

    Liang, Jing; Feng, Su-Ling

    2011-04-01

    In the present paper, the interaction between ambroxol hydrochloride (ABX) and human serum albumin (HSA) was studied under simulative physiological condition by spectroscopy and molecular modeling method. Stern-Volmer curvers at different temperatures and UV-Vis absorption spectroscopy showed that ABX quenched the fluorescence of HSA mainly through dynamic quenching mode. On the basis of the thermodynamic data, the main binding force between them is hydrophobic interaction. According to the theory of Forster non-radiation energy transfer, the binding distance between the donor and the acceptor was 3.01 nm. The effect of ABX on the conformation of HSA was analyzed by the synchronous and three-dimensional fluorescence spectroscopy. Furthermore, using the molecular modeling method, the interaction between them was predicted from molecular angle: ABX might locate in the subdomain III A of HSA. PMID:21714251

  15. Sentinel lymph nodes fluorescence detection and imaging using Patent Blue V bound to human serum albumin

    PubMed Central

    Tellier, Franklin; Steibel, Jérôme; Chabrier, Renée; Blé, François Xavier; Tubaldo, Hervé; Rasata, Ravelo; Chambron, Jacques; Duportail, Guy; Simon, Hervé; Rodier, Jean-François; Poulet, Patrick

    2012-01-01

    Patent Blue V (PBV), a dye used clinically for sentinel lymph node detection, was mixed with human serum albumin (HSA). After binding to HSA, the fluorescence quantum yield increased from 5 × 10−4 to 1.7 × 10−2, which was enough to allow fluorescence detection and imaging of its distribution. A detection threshold, evaluated in scattering test objects, lower than 2.5 nmol × L−1 was obtained, using a single-probe setup with a 5-mW incident light power. The detection sensitivity using a fluorescence imaging device was in the µmol × L−1 range, with a noncooled CCD camera. Preclinical evaluation was performed on a rat model and permitted to observe inflamed nodes on all animals. PMID:23024922

  16. Synthesis of imidazole derivatives and the spectral characterization of the binding properties towards human serum albumin

    NASA Astrophysics Data System (ADS)

    Yue, Yuanyuan; Dong, Qiao; Zhang, Yajie; Li, Xiaoge; Yan, Xuyang; Sun, Yahui; Liu, Jianming

    2016-01-01

    Small molecular drugs that can combine with target proteins specifically, and then block relative signal pathway, finally obtain the purpose of treatment. For this reason, the synthesis of novel imidazole derivatives was described and this study explored the details of imidazole derivatives binding to human serum albumin (HSA). The data of steady-state and time-resolved fluorescence showed that the conjugation of imidazole derivatives with HSA yielded quenching by a static mechanism. Meanwhile, the number of binding sites, the binding constants, and the thermodynamic parameters were also measured; the raw data indicated that imidazole derivatives could spontaneously bind with HSA through hydrophobic interactions and hydrogen bonds which agreed well with the results from the molecular modeling study. Competitive binding experiments confirmed the location of binding. Furthermore, alteration of the secondary structure of HSA in the presence of the imidazole derivatives was tested.

  17. Protein Crystal Serum Albumin

    NASA Technical Reports Server (NTRS)

    1998-01-01

    As the most abundant protein in the circulatory system albumin contributes 80% to colloid osmotic blood pressure. Albumin is also chiefly responsible for the maintenance of blood pH. It is located in every tissue and bodily secretion, with extracellular protein comprising 60% of total albumin. Perhaps the most outstanding property of albumin is its ability to bind reversibly to an incredible variety of ligands. It is widely accepted in the pharmaceutical industry that the overall distribution, metabolism, and efficiency of many drugs are rendered ineffective because of their unusually high affinity for this abundant protein. An understanding of the chemistry of the various classes of pharmaceutical interactions with albumin can suggest new approaches to drug therapy and design. Principal Investigator: Dan Carter/New Century Pharmaceuticals

  18. Enhanced Gene Silencing through Human Serum Albumin-Mediated Delivery of Polyethylenimine-siRNA Polyplexes

    PubMed Central

    Nicolì, Elena; Syga, Marie Isabel; Bosetti, Michela; Shastri, V. Prasad

    2015-01-01

    Small interfering RNA (siRNA) targeted therapeutics (STT) offers a compelling alternative to tradition medications for treatment of genetic diseases by providing a means to silence the expression of specific aberrant proteins, through interference at the expression level. The perceived advantage of siRNA therapy is its ability to target, through synthetic antisense oligonucleotides, any part of the genome. Although STT provides a high level of specificity, it is also hindered by poor intracellular uptake, limited blood stability, high degradability and non-specific immune stimulation. Since serum proteins has been considered as useful vehicles for targeting tumors, in this study we investigated the effect of incorporation of human serum albumin (HSA) in branched polyethylenimine (bPEI)-siRNA polyplexes in their internalization in epithelial and endothelial cells. We observed that introduction of HSA preserves the capacity of bPEI to complex with siRNA and protect it against extracellular endonucleases, while affording significantly improved internalization and silencing efficiency, compared to bPEI-siRNA polyplexes in endothelial and metastatic breast cancer epithelial cells. Furthermore, the uptake of the HSA-bPEI-siRNA ternary polyplexes occurred primarily through a caveolae-mediated endocytosis, thus providing evidence for a clear role for HSA in polyplex internalization. These results provide further impetus to explore the role of serum proteins in delivery of siRNA. PMID:25856158

  19. Crystals of Human Serum Albumin for Use in Genetic Engineering and Rational Drug Design

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor)

    1994-01-01

    This invention pertains to crystals of serum albumin and processes for growing them. The purpose of the invention is to provide crystals of serum albumin which can be studied to determine binding sites for drugs. Form 2 crystals grow in the monoclinic space P2(sub 1), and possesses the following unit cell constraints: a = 58.9 +/- 7, b = 88.3 +/- 7, c = 60.7 +/- 7, Beta = 101.0 +/- 2 degrees. One advantage of the invention is that it will allow rational drug design

  20. epi-Fluorescence imaging at the air-water interface of fibrillization of bovine serum albumin and human insulin.

    PubMed

    Sessions, Kristen; Sacks, Stuart; Li, Shanghao; Leblanc, Roger M

    2014-08-18

    Protein fibrillization is associated with many devastating neurodegenerative diseases. This process has been studied using spectroscopic and microscopic methods. In this study, epi-fluorescence at the air-water interface was developed as an innovative technique for observing fibrillization of bovine serum albumin and human insulin. PMID:24976597

  1. Locating the Binding Sites of Pb(II) Ion with Human and Bovine Serum Albumins

    PubMed Central

    Belatik, Ahmed; Hotchandani, Surat; Carpentier, Robert; Tajmir-Riahi, Heidar-Ali

    2012-01-01

    Lead is a potent environmental toxin that has accumulated above its natural level as a result of human activity. Pb cation shows major affinity towards protein complexation and it has been used as modulator of protein-membrane interactions. We located the binding sites of Pb(II) with human serum (HSA) and bovine serum albumins (BSA) at physiological conditions, using constant protein concentration and various Pb contents. FTIR, UV-visible, CD, fluorescence and X-ray photoelectron spectroscopic (XPS) methods were used to analyse Pb binding sites, the binding constant and the effect of metal ion complexation on HSA and BSA stability and conformations. Structural analysis showed that Pb binds strongly to HSA and BSA via hydrophilic contacts with overall binding constants of KPb-HSA = 8.2 (±0.8)×104 M−1 and KPb-BSA = 7.5 (±0.7)×104 M−1. The number of bound Pb cation per protein is 0.7 per HSA and BSA complexes. XPS located the binding sites of Pb cation with protein N and O atoms. Pb complexation alters protein conformation by a major reduction of α-helix from 57% (free HSA) to 48% (metal-complex) and 63% (free BSA) to 52% (metal-complex) inducing a partial protein destabilization. PMID:22574219

  2. Human serum albumin-TRAIL conjugate for the treatment of rheumatoid arthritis.

    PubMed

    Byeon, Hyeong Jun; Min, Sun Young; Kim, Insoo; Lee, Eun Seong; Oh, Kyung Taek; Shin, Beom Soo; Lee, Kang Choon; Youn, Yu Seok

    2014-12-17

    Albumin conjugation is viewed as an effective means of protracting short in vivo lifespans of proteins and targeting rheumatoid arthritis (RA). In this study, we present a human serum albumin (HSA) conjugate linked with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) via a bifunctional PEG derivative (HSA-TRAIL). Prepared HSA-TRAIL was found to have a larger molecular size (∼240 kDa, 15.4 nm) than TRAIL (∼66 kDa, 6.2 nm), and its bioactivity (apoptosis, cytotoxicity, and antiproliferation) was well preserved in Mia Paca-2 cells and mouse splenocytes. The enhanced therapeutic efficacy of HSA-TRAIL was demonstrated in collagen-induced arthritis (CIA) mice. The incidence and clinical scores, expressed as degree of erythema and swelling in HSA-TRAIL-treated mice, were remarkably lower than those of TRAIL-treated mice. The serum levels of pro-inflammatory cytokines IFN-γ, TNF-α, IL-1β, and IL-2 in HSA-TRAIL-treated mice were significantly lower than those of TRAIL-treated mice. Furthermore, HSA-TRAIL accumulated in the hind paws of CIA mice, not in naïve TRAIL mice. Pharmacokinetic profiles of HSA-TRAIL were greatly improved in comparison to those of TRAIL (AUCinf: 844.1 ± 130.0 vs 36.0 ± 1.2 ng·h/mL; t1/2: 6.20 ± 0.72 vs 0.23 ± 0.01 h, respectively). The HSA-TRAIL conjugate, which presents clear advantages of targeting RA and long systemic circulation by HSA and unique anti-inflammatory efficacy by TRAIL, has potential as a novel treatment for rheumatoid arthritis. PMID:25387356

  3. Human islet purification: a prospective comparison of Euro-Ficoll and bovine serum albumin density gradients.

    PubMed

    Chadwick, D R; Robertson, G S; Contractor, H; Swift, S; Rose, S; Thirdborough, S T; Chamberlain, R; James, R F; Bell, P R; London, N J

    1993-01-01

    Euro-Ficoll (EF) and bovine serum albumin (BSA) are the two most commonly used media for the density gradient purification of human pancreatic islets. The aim of this study was to compare these two media with respect to the efficiency of human islet isolation. Ten human pancreata were collagenase-digested, and samples of digest were separated on either a continuous linear density gradient of BSA or a discontinuous gradient of EF (1.108/1.096/1.037/Euro-Collins). Efficiency of islet purification was assessed by insulin and amylase assay of aliquots aspirated from the BSA gradients, and from the interfaces of the EF gradients. Islets were obtained from two interfaces in the EF gradients. Islet yield from the upper interface was generally poor (median 28% of total insulin; range 2-71%), but purity was better than for an equivalent yield using BSA [1% (0-3%) amylase contamination for EF versus 6% (0-37%) for BSA; P = 0.013]. Pooling both EF interfaces increased yield to 66% (17-81%) but markedly reduced purity [46% (0-50%) amylase for EF versus 31% (0-52%) for BSA]. In conclusion, the efficiency of human islet purification is similar, though disappointingly low, with BSA and with EF. Considerable scope exists, therefore, for improvement in the density gradient purification of human islets. PMID:8329732

  4. Effects of Fatty Acids and Glycation on Drug Interactions with Human Serum Albumin.

    PubMed

    Anguizola, Jeanethe A; Basiaga, Sara B G; Hage, David S

    2013-09-01

    The presence of elevated glucose concentrations in diabetes is a metabolic change that leads to an increase in the amount of non-enzymatic glycation that occurs for serum proteins. One protein that is affected by this process is the main serum protein, human serum albumin (HSA), which is also an important carrier agent for many drugs and fatty acids in the circulatory system. Sulfonylureas drugs, used to treat type 2 diabetes, are known to have significant binding to HSA. This study employed ultrafiltration and high-performance affinity chromatography to examine the effects of HSA glycation on the interactions of several sulfonylurea drugs (i.e., acetohexamide, tolbutamide and gliclazide) with fatty acids, whose concentrations in serum are also affected by diabetes. Similar overall changes in binding were noted for these drugs with normal HSA or glycated HSA and in the presence of the fatty acids. For most of the tested drugs, the addition of physiological levels of the fatty acids to normal HSA and glycated HSA produced weaker binding. At low fatty acid concentrations, many of these systems followed a direct competition model while others involved a mixed-mode interaction. In some cases, there was a change in the interaction mechanism between normal HSA and glycated HSA, as seen with linoleic acid. Systems with only direct competition also gave notable changes in the affinities of fatty acids at their sites of drug competition when comparing normal HSA and glycated HSA. This research demonstrated the importance of considering how changes in the concentrations and types of metabolites (e.g., in this case, glucose and fatty acids) can alter the function of a protein such as HSA and its ability to interact with drugs or other agents. PMID:24349966

  5. Effects of Fatty Acids and Glycation on Drug Interactions with Human Serum Albumin

    PubMed Central

    Anguizola, Jeanethe A.; Basiaga, Sara B. G.; Hage, David S.

    2013-01-01

    The presence of elevated glucose concentrations in diabetes is a metabolic change that leads to an increase in the amount of non-enzymatic glycation that occurs for serum proteins. One protein that is affected by this process is the main serum protein, human serum albumin (HSA), which is also an important carrier agent for many drugs and fatty acids in the circulatory system. Sulfonylureas drugs, used to treat type 2 diabetes, are known to have significant binding to HSA. This study employed ultrafiltration and high-performance affinity chromatography to examine the effects of HSA glycation on the interactions of several sulfonylurea drugs (i.e., acetohexamide, tolbutamide and gliclazide) with fatty acids, whose concentrations in serum are also affected by diabetes. Similar overall changes in binding were noted for these drugs with normal HSA or glycated HSA and in the presence of the fatty acids. For most of the tested drugs, the addition of physiological levels of the fatty acids to normal HSA and glycated HSA produced weaker binding. At low fatty acid concentrations, many of these systems followed a direct competition model while others involved a mixed-mode interaction. In some cases, there was a change in the interaction mechanism between normal HSA and glycated HSA, as seen with linoleic acid. Systems with only direct competition also gave notable changes in the affinities of fatty acids at their sites of drug competition when comparing normal HSA and glycated HSA. This research demonstrated the importance of considering how changes in the concentrations and types of metabolites (e.g., in this case, glucose and fatty acids) can alter the function of a protein such as HSA and its ability to interact with drugs or other agents. PMID:24349966

  6. Human serum albumin reduces the potency of acetylcholinesterase inhibitor based drugs for Alzheimer's disease.

    PubMed

    Islam, Mullah Muhaiminul; Gurung, Arun Bahadur; Bhattacharjee, Atanu; Aguan, Kripamoy; Mitra, Sivaprasad

    2016-04-01

    Human serum albumin (HSA) induced modulation of acetylcholinesterase (AChE) inhibition activity of four well-known cholinergic inhibitors like tacrine hydrochloride (TAC), donepezil hydrochloride monohydrate (DON), (-) Huperzine A (HuPA), eserine (ESE) was monitored quantitatively by Ellman's method. Kinetic analysis of enzyme hydrolysis reaction revealed that while the mechanism of inhibition does not change significantly, the inhibition efficiency changes drastically in presence of HSA, particularly for DON and TAC. However, interestingly, no notable difference was observed in the cases of HuPA and/or ESE. For example, the IC50 value of AChE inhibition increases by almost 135% in presence of ∼250 μM HSA (IC50 = 159 ± 8 nM) while comparing with aqueous buffer solution of pH 8.0 (IC50 = 68 ± 4 nM) in DON. On the other hand, the change is almost insignificant (<10%) in case of HuPA under the similar condition. The experimentally observed difference in the extent of modulatory effect was correlated with the sequestration ability of HSA towards different drugs predicted from molecular docking calculations. The result in this study demonstrates the importance to consider the plasma protein binding tendency of a newly synthesized AD drug before claiming its potency over the existing one. Further, development of new and intelligent delivery medium that shields the administered drugs from serum adsorption may reduce the optimal drug dose requirement. PMID:26902639

  7. Cabazitaxel-loaded human serum albumin nanoparticles as a therapeutic agent against prostate cancer

    PubMed Central

    Qu, Na; Lee, Robert J; Sun, Yating; Cai, Guangsheng; Wang, Junyang; Wang, Mengqiao; Lu, Jiahui; Meng, Qingfan; Teng, Lirong; Wang, Di; Teng, Lesheng

    2016-01-01

    Cabazitaxel-loaded human serum albumin nanoparticles (Cbz-NPs) were synthesized to overcome vehicle-related toxicity of current clinical formulation of the drug based on Tween-80 (Cbz-Tween). A salting-out method was used for NP synthesis that avoids the use of chlorinated organic solvent and is simpler compared to the methods based on emulsion-solvent evaporation. Cbz-NPs had a narrow particle size distribution, suitable drug loading content (4.9%), and superior blood biocompatibility based on in vitro hemolysis assay. Blood circulation, tumor uptake, and antitumor activity of Cbz-NPs were assessed in prostatic cancer xenograft-bearing nude mice. Cbz-NPs exhibited prolonged blood circulation and greater accumulation of Cbz in tumors along with reduced toxicity compared to Cbz-Tween. Moreover, hematoxylin and eosin histopathological staining of organs revealed consistent results. The levels of blood urea nitrogen and serum creatinine in drug-treated mice showed that Cbz-NPs were less toxic than Cbz-Tween to the kidneys. In conclusion, Cbz-NPs provide a promising therapeutic for prostate cancer. PMID:27555767

  8. Quantification of total content of non-esterified fatty acids bound to human serum albumin.

    PubMed

    Pavićević, Ivan D; Jovanović, Vesna B; Takić, Marija M; Aćimović, Jelena M; Penezić, Ana Z; Mandić, Ljuba M

    2016-09-10

    Non-esterified fatty acids bound to the human serum albumin (HSA) contribute to several HSAs properties of special concern in pathologies, for instance to the reactivity of the free HSA-Cys34 thiol group (important antioxidative thiol pool in plasma), and to the affinity for binding of molecules and ions (for example cobalt as a prominent biomarker in heart ischemia). Therefore, the method for determination of FAs bound to HSA was developed. FAs were released from HSA (previously isolated from serum by ammonium sulfate precipitation) using acidic copper(II) sulfate in phosphoric acid, extracted by n-heptane-chloroform (4:1, v/v) mixture, spotted on TL silica-gel and then developed with n-heptane-chloroform-acetic acid (5:3:0.3, v/v/v). Common office flatbed scanner and software solution for densitometric image analysis, developed in R, were used. The linearity of calibration curve in concentration range from 0.1 to 5.0mmol/L stearic acid was achieved. The method was proved to be precise (with RSD of 1.4-4.7%) and accurate. Accuracy was examined by standard addition method (recoveries 97.2-102.5%) and by comparison to results of GC. The method is sample saving, technically less demanding, and cheap, and therefore suitable for determination of FAs/HSA ratio when elevated concentrations of free FAs are reliable diagnostic/risk parameter of pathological states. PMID:27394177

  9. Cabazitaxel-loaded human serum albumin nanoparticles as a therapeutic agent against prostate cancer.

    PubMed

    Qu, Na; Lee, Robert J; Sun, Yating; Cai, Guangsheng; Wang, Junyang; Wang, Mengqiao; Lu, Jiahui; Meng, Qingfan; Teng, Lirong; Wang, Di; Teng, Lesheng

    2016-01-01

    Cabazitaxel-loaded human serum albumin nanoparticles (Cbz-NPs) were synthesized to overcome vehicle-related toxicity of current clinical formulation of the drug based on Tween-80 (Cbz-Tween). A salting-out method was used for NP synthesis that avoids the use of chlorinated organic solvent and is simpler compared to the methods based on emulsion-solvent evaporation. Cbz-NPs had a narrow particle size distribution, suitable drug loading content (4.9%), and superior blood biocompatibility based on in vitro hemolysis assay. Blood circulation, tumor uptake, and antitumor activity of Cbz-NPs were assessed in prostatic cancer xenograft-bearing nude mice. Cbz-NPs exhibited prolonged blood circulation and greater accumulation of Cbz in tumors along with reduced toxicity compared to Cbz-Tween. Moreover, hematoxylin and eosin histopathological staining of organs revealed consistent results. The levels of blood urea nitrogen and serum creatinine in drug-treated mice showed that Cbz-NPs were less toxic than Cbz-Tween to the kidneys. In conclusion, Cbz-NPs provide a promising therapeutic for prostate cancer. PMID:27555767

  10. Probing the interaction of a new synthesized CdTe quantum dots with human serum albumin and bovine serum albumin by spectroscopic methods.

    PubMed

    Bardajee, Ghasem Rezanejade; Hooshyar, Zari

    2016-05-01

    A novel CdTe quantum dots (QDs) were prepared in aqueous phase via a facile method. At first, poly (acrylic amide) grafted onto sodium alginate (PAAm-g-SA) were successfully synthesized and then TGA capped CdTe QDs (CdTe-TGA QDs) were embed into it. The prepared CdTe-PAAm-g-SA QDs were optimized and characterized by transmission electron microscopy (TEM), thermo-gravimetric (TG) analysis, Fourier transform infrared (FT-IR), UV-vis and fluorescence spectroscopy. The characterization results indicated that CdTe-TGA QDs, with particles size of 2.90 nm, were uniformly dispersed on the chains of PAAm-g-SA biopolymer. CdTe-PAAm-g-SA QDs also exhibited excellent UV-vis absorption and high fluorescence intensity. To explore biological behavior of CdTe-PAAm-g-SA QDs, the interactions between CdTe-PAAm-g-SA QDs and human serum albumin (HSA) (or bovine serum albumin (BSA)) were investigated by cyclic voltammetry, FT-IR, UV-vis, and fluorescence spectroscopic. The results confirmed the formation of CdTe-PAAm-g-SA QDs-HSA (or BSA) complex with high binding affinities. The thermodynamic parameters (ΔG<0, ΔH<0 and ΔS<0) were indicated that binding reaction was spontaneous and van der Waals interactions and hydrogen-bond interactions played a major role in stabilizing the CdTe-PAAm-g-SA QDs-HSA (or BSA) complexes. The binding distance between CdTe-PAAm-g-SA QDs and HSA (or BSA)) was calculated about 1.37 nm and 1.27 nm, respectively, according to Forster non-radiative energy transfer theory (FRET). Analyzing FT-IR spectra showed that the formation of QDs-HSA and QDs-BSA complexes led to conformational changes of the HSA and BSA proteins. All these experimental results clarified the effective transportation and elimination of CdTe-PAAm-g-SA QDs in the body by binding to HSA and BSA, which could be a useful guideline for the estimation of QDs as a drug carrier. PMID:26952487

  11. PEGylated human serum albumin (HSA) nanoparticles: preparation, characterization and quantification of the PEGylation extent

    NASA Astrophysics Data System (ADS)

    Fahrländer, E.; Schelhaas, S.; Jacobs, A. H.; Langer, K.

    2015-04-01

    Modification with poly(ethylene glycol) (PEG) is a widely used method for the prolongation of plasma half-life of colloidal carrier systems such as nanoparticles prepared from human serum albumin (HSA). However, the quantification of the PEGylation extent is still challenging. Moreover, the influence of different PEG derivatives, which are commonly used for nanoparticle conjugation, has not been investigated so far. The objective of the present study is to develop a method for the quantification of PEG and to monitor the influence of diverse PEG reagents on the amount of PEG linked to the surface of HSA nanoparticles. A size exclusion chromatography method with refractive index detection was established which enabled the quantification of unreacted PEG in the supernatant. The achieved results were confirmed using a fluorescent PEG derivative, which was detected by photometry and fluorimetry. Additionally, PEGylated HSA nanoparticles were enzymatically digested and the linked amount of fluorescently active PEG was directly determined. All the analytical methods confirmed that under optimized PEGylation conditions a PEGylation efficiency of up to 0.5 mg PEG per mg nanoparticle could be achieved. Model calculations made a ‘brush’ conformation of the PEG chains on the particle surface very likely. By incubating the nanoparticles with fetal bovine serum the reduced adsorption of serum proteins on PEGylated HSA nanoparticles compared to non-PEGylated HSA nanoparticles was demonstrated using sodium dodecylsulfate polyacrylamide gel electrophoresis. Finally, the positive effect of PEGylation on plasma half-life was demonstrated in an in vivo study in mice. Compared to unmodified nanoparticles the PEGylation led to a four times larger plasma half-life.

  12. PEGylated human serum albumin (HSA) nanoparticles: preparation, characterization and quantification of the PEGylation extent.

    PubMed

    Fahrländer, E; Schelhaas, S; Jacobs, A H; Langer, K

    2015-04-10

    Modification with poly(ethylene glycol) (PEG) is a widely used method for the prolongation of plasma half-life of colloidal carrier systems such as nanoparticles prepared from human serum albumin (HSA). However, the quantification of the PEGylation extent is still challenging. Moreover, the influence of different PEG derivatives, which are commonly used for nanoparticle conjugation, has not been investigated so far. The objective of the present study is to develop a method for the quantification of PEG and to monitor the influence of diverse PEG reagents on the amount of PEG linked to the surface of HSA nanoparticles. A size exclusion chromatography method with refractive index detection was established which enabled the quantification of unreacted PEG in the supernatant. The achieved results were confirmed using a fluorescent PEG derivative, which was detected by photometry and fluorimetry. Additionally, PEGylated HSA nanoparticles were enzymatically digested and the linked amount of fluorescently active PEG was directly determined. All the analytical methods confirmed that under optimized PEGylation conditions a PEGylation efficiency of up to 0.5 mg PEG per mg nanoparticle could be achieved. Model calculations made a 'brush' conformation of the PEG chains on the particle surface very likely. By incubating the nanoparticles with fetal bovine serum the reduced adsorption of serum proteins on PEGylated HSA nanoparticles compared to non-PEGylated HSA nanoparticles was demonstrated using sodium dodecylsulfate polyacrylamide gel electrophoresis. Finally, the positive effect of PEGylation on plasma half-life was demonstrated in an in vivo study in mice. Compared to unmodified nanoparticles the PEGylation led to a four times larger plasma half-life. PMID:25789544

  13. Characterization of methylene diphenyl diisocyanate haptenated human serum albumin and hemoglobin

    PubMed Central

    Mhike, Morgen; Chipinda, Itai; Hettick, Justin M.; Simoyi, Reuben H.; Lemons, Angela; Green, Brett J.; Siegel, Paul D.

    2013-01-01

    Protein haptenation by polyurethane industrial intermediate methylene diphenyl diisocyanate (MDI) is thought to be an important step in the development of diisocyanate (dNCO)-specific allergic sensitization; however, MDI haptenated albumins used to screen specific antibody are often poorly characterized. Recently, the need to develop standardized immunoassays using a consistent, well characterized dNCO-haptenated protein to screen for the presence of MDI-specific IgE and IgG from workers’ sera has been emphasized and recognized. This has been challenging to achieve due to the bivalent, electrophilic nature of dNCO leading to the capability to produce multiple cross-linked protein species and polymeric additions to proteins. In the present study, MDI was reacted with human serum albumin (HSA) and hemoglobin (Hb) at molar ratios ranging from 1:1 to 40:1 MDI: protein. Adducts were characterized by (1) loss of available trinitrobenzene sulfonic acid (TNBS) binding to primary amines, (2) electrophoretic migration in polyacrylamide gels, (3) quantification of methylene diphenyl diamine following acid hydrolysis and (4) immunoassay. Concentration dependent changes in all the above noted parameters were observed demonstrating increase in both number and complexity of conjugates formed with increasing MDI concentration. In conclusion, a series of bio-analytical assays should be performed to standardize MDI-antigen preparations across lots and laboratories for measurement of specific antibody in exposed workers which in total indicate degree of intra- and inter-molecular cross-linking, number of dNCO bound, number of different specific binding sites on the protein and degree of immuno-reactivity. PMID:23743149

  14. Fluorescence and Docking Studies of the Interaction between Human Serum Albumin and Pheophytin.

    PubMed

    Chaves, Otávio Augusto; Amorim, Ana Paula de O; Castro, Larissa H E; Sant'Anna, Carlos Mauricio R; de Oliveira, Márcia C C; Cesarin-Sobrinho, Dari; Netto-Ferreira, José Carlos; Ferreira, Aurélio B B

    2015-01-01

    In the North of Brazil (Pará and Amazonas states) the leaves of the plant Talinum triangulare (popular: cariru) replace spinach as food. From a phytochemical point of view, they are rich in compounds of the group of pheophytins. These substances, related to chlorophyll, have photophysical properties that give them potential application in photodynamic therapy. Human serum albumin (HSA) is one of the main endogenous vehicles for biodistribution of molecules by blood plasma. Association constants and thermodynamic parameters for the interaction of HSA with pheophytin from Talinum triangulare were studied by UV-Vis absorption, fluorescence techniques, and molecular modeling (docking). Fluorescence quenching of the HSA's internal fluorophore (tryptophan) at temperatures 296 K, 303 K, and 310 K, resulted in values for the association constants of the order of 10⁴ L∙mol(-1), indicating a moderate interaction between the compound and the albumin. The negative values of ΔG° indicate a spontaneous process; ΔH° = 15.5 kJ∙mol(-1) indicates an endothermic process of association and ΔS° = 0.145 kJ∙mol(-1)∙K(-1) shows that the interaction between HSA and pheophytin occurs mainly by hydrophobic factors. The observed Trp fluorescence quenching is static: there is initial non-fluorescent association, in the ground state, HSA:Pheophytin. Possible solution obtained by a molecular docking study suggests that pheophytin is able to interact with HSA by means of hydrogen bonds with three lysine and one arginine residues, whereas the phytyl group is inserted in a hydrophobic pocket, close to Trp-214. PMID:26516829

  15. Ibuprofen Impairs Allosterically Peroxynitrite Isomerization by Ferric Human Serum Heme-Albumin*

    PubMed Central

    Ascenzi, Paolo; di Masi, Alessandra; Coletta, Massimo; Ciaccio, Chiara; Fanali, Gabriella; Nicoletti, Francesco P.; Smulevich, Giulietta; Fasano, Mauro

    2009-01-01

    Human serum albumin (HSA) participates in heme scavenging; in turn, heme endows HSA with myoglobin-like reactivity and spectroscopic properties. Here, the allosteric effect of ibuprofen on peroxynitrite isomerization to NO3− catalyzed by ferric human serum heme-albumin (HSA-heme-Fe(III)) is reported. Data were obtained at 22.0 °C. HSA-heme-Fe(III) catalyzes peroxynitrite isomerization in the absence and presence of CO2; the values of the second order catalytic rate constant (kon) are 4.1 × 105 and 4.5 × 105 m−1 s−1, respectively. Moreover, HSA-heme-Fe(III) prevents peroxynitrite-mediated nitration of free added l-tyrosine. The pH dependence of kon (pKa = 6.9) suggests that peroxynitrous acid reacts preferentially with the heme-Fe(III) atom, in the absence and presence of CO2. The HSA-heme-Fe(III)-catalyzed isomerization of peroxynitrite has been ascribed to the reactive pentacoordinated heme-Fe(III) atom. In the absence and presence of CO2, ibuprofen impairs dose-dependently peroxynitrite isomerization by HSA-heme-Fe(III) and facilitates the nitration of free added l-tyrosine; the value of the dissociation equilibrium constant for ibuprofen binding to HSA-heme-Fe(III) (L) ranges between 7.7 × 10−4 and 9.7 × 10−4 m. Under conditions where [ibuprofen] is ≫L, the kinetics of HSA-heme-Fe(III)-catalyzed isomerization of peroxynitrite is superimposable to that obtained in the absence of HSA-heme-Fe(III) or in the presence of non-catalytic HSA-heme-Fe(III)-cyanide complex and HSA. Ibuprofen binding impairs allosterically peroxynitrite isomerization by HSA-heme-Fe(III), inducing the hexacoordination of the heme-Fe(III) atom. These results represent the first evidence for peroxynitrite isomerization by HSA-heme-Fe(III), highlighting the allosteric modulation of HSA-heme-Fe(III) reactivity by heterotropic interaction(s), and outlining the role of drugs in modulating HSA functions. The present results could be relevant for the drug-dependent protective role

  16. Interaction of oridonin with human serum albumin by isothermal titration calorimetry and spectroscopic techniques.

    PubMed

    Li, Xiangrong; Yang, Zhenhua

    2015-05-01

    Oridonin has been traditionally and widely used for treatment of various human diseases due to its uniquely biological, pharmacological and physiological functions. In this study, the interaction between oridonin and human serum albumin (HSA) was investigated using isothermal titration calorimetry (ITC), in combination with fluorescence spectroscopy and UV-vis absorption spectroscopy. We found that the hydrogen bond and van der Waals force are the major binding forces in the binding of oridonin to HSA. The binding of oridonin to HSA is driven by favorable enthalpy and unfavorable entropy. Oridonin can quench the fluorescence of HSA through a static quenching mechanism. The binding constant between oridonin and HSA is moderate and the equilibrium fraction of unbound oridonin f(u) > 60%. Binding site I is found to be the primary binding site for oridonin. Additionally, oridonin may induce conformational changes of HSA and affect its biological function as the carrier protein. The results of the current study suggest that oridonin can be stored and transported from the circulatory system to reach its target organ to provide its therapeutic effects. But its side-effect in the clinics cannot be overlook. The study provides an accurate and full basic data for clarifying the binding mechanism of oridonin with HSA and is helpful for understanding its effect on protein function during the blood transportation process and its biological activity in vivo. PMID:25816984

  17. HPLC separation of human serum albumin isoforms based on their isoelectric points.

    PubMed

    Turell, Lucía; Botti, Horacio; Bonilla, Lucía; Torres, María José; Schopfer, Francisco; Freeman, Bruce A; Armas, Larissa; Ricciardi, Alejandro; Alvarez, Beatriz; Radi, Rafael

    2014-01-01

    Human serum albumin (HSA) is the most abundant protein in plasma. Cys34, the only free Cys residue, is the predominant plasma thiol and a relevant sacrificial antioxidant. Both in vivo circulating HSA and pharmaceutical preparations are heterogeneous with respect to the oxidation state of Cys34. In this work, we developed an external pH gradient chromatofocusing procedure that allows the analysis of the oxidation status of HSA in human plasma and biopharmaceutical products based on the different apparent isoelectric points and chemical properties of the redox isoforms. Specifically, reduced-mercury blocked HSA (HSA-SHg(+)), HSA with Cys34 oxidized to sulfenic acid (HSA-SOH) and HSA oxidized to sulfinate anion (HSA-SO2(-)) can be separated with resolutions of 1.4 and 3.1 (first and last pair) and hence quantified and purified. In addition, an N-terminally degraded isoform (HSA3-585) in different redox states can be resolved as well. Confirmation of the identity of the chromatofocusing isolated isoforms was achieved by high resolution whole protein MS. It is proposed that the chromatofocusing procedure can be used to produce more exact and complete descriptions of the redox status of HSA in vivo and in vitro. Finally, the scalability capabilities of the chromatofocusing procedure allow for the preparation of highly pure standards of several redox isoforms of HSA. PMID:24316526

  18. Interaction between Z-ligustilide from Radix Angelica sinensis and human serum albumin.

    PubMed

    Chen, Tingting; Zhu, Xiting; Chen, Qi; Ge, Ming; Jia, Xueping; Wang, Xiang; Ge, Cunwang

    2015-11-01

    Z-ligustilide (LIG), an essential oil extract from Radix Angelica sinensis, has broad pharmaceutical applications in treating cardiovascular and cerebrovascular diseases. Interaction of LIG with the major transport protein of human blood circulation, human serum albumin (HSA) has been investigated by steady-state, UV-vis and circular dichroism (CD) spectroscopic methods, as well as the effect of metal ions (e.g. Zn(2+), Cu(2+), Fe(3+), Co(2+), Ni(2+)) on the LIG-HSA system. Fluorescence results revealed that a moderate binding affinity (1.59 × 10(4) M(-1) at 298 K) between LIG and HSA with a 1:1 stoichiometry. Thermodynamic analysis of the binding data (ΔS = +12.96 J mol(-1) K(-1) and ΔH =- 20.11 kJ mol(-1)) suggested the involvement of hydrophobic and van der Waals forces, as well as hydrogen bonding in the complex formation. The specific binding distance r (3.75 nm) between donor (Trp-214) and acceptor (LIG) was obtained according to fluorescence resonance energy transfer. CD results showed that slight conformational changes occurred in the protein upon complexation with LIG. PMID:25976824

  19. Studies on the interaction between vincamine and human serum albumin: a spectroscopic approach.

    PubMed

    Pu, Hanlin; Jiang, Hua; Chen, Rongrong; Wang, Hongcui

    2014-08-01

    The interaction between vincamine (VCM) and human serum albumin (HSA) has been studied using a fluorescence quenching technique in combination with UV/vis absorption spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, circular dichroism (CD) spectroscopy and molecular modeling under conditions similar to human physiological conditions. VCM effectively quenched the intrinsic fluorescence of HSA via static quenching. The binding constants were calculated from the fluorescence data. Thermodynamic analysis by Van't Hoff equation revealed enthalpy change (ΔH) and entropy change (ΔS) were -4.57 kJ/mol and 76.26 J/mol/K, respectively, which indicated that the binding process was spontaneous and the hydrophobic interaction was the predominant force. The distance r between the donor (HSA) and acceptor (VCM) was obtained according to the Förster's theory of non-radiative energy transfer and found to be 4.41 nm. Metal ions, viz., Na(+), K(+), Li(+), Ni(2+), Ca(2+), Zn(2+) and Al(3+) were found to influence binding of the drug to protein. The 3D fluorescence, FT-IR and CD spectral results revealed changes in the secondary structure of the protein upon interaction with VCM. Furthermore, molecular modeling indicated that VCM could bind to the subdomain IIA (site I) of HSA. PMID:24039032

  20. Synthetic cationic antimicrobial peptides bind with their hydrophobic parts to drug site II of human serum albumin

    PubMed Central

    2014-01-01

    Background Many biologically active compounds bind to plasma transport proteins, and this binding can be either advantageous or disadvantageous from a drug design perspective. Human serum albumin (HSA) is one of the most important transport proteins in the cardiovascular system due to its great binding capacity and high physiological concentration. HSA has a preference for accommodating neutral lipophilic and acidic drug-like ligands, but is also surprisingly able to bind positively charged peptides. Understanding of how short cationic antimicrobial peptides interact with human serum albumin is of importance for developing such compounds into the clinics. Results The binding of a selection of short synthetic cationic antimicrobial peptides (CAPs) to human albumin with binding affinities in the μM range is described. Competitive isothermal titration calorimetry (ITC) and NMR WaterLOGSY experiments mapped the binding site of the CAPs to the well-known drug site II within subdomain IIIA of HSA. Thermodynamic and structural analysis revealed that the binding is exclusively driven by interactions with the hydrophobic moieties of the peptides, and is independent of the cationic residues that are vital for antimicrobial activity. Both of the hydrophobic moieties comprising the peptides were detected to interact with drug site II by NMR saturation transfer difference (STD) group epitope mapping (GEM) and INPHARMA experiments. Molecular models of the complexes between the peptides and albumin were constructed using docking experiments, and support the binding hypothesis and confirm the overall binding affinities of the CAPs. Conclusions The biophysical and structural characterizations of albumin-peptide complexes reported here provide detailed insight into how albumin can bind short cationic peptides. The hydrophobic elements of the peptides studied here are responsible for the main interaction with HSA. We suggest that albumin binding should be taken into careful

  1. Extending the Serum Half-Life of G-CSF via Fusion with the Domain III of Human Serum Albumin

    PubMed Central

    Zhao, Shuqiang; Zhang, Yu; Tian, Hong; Chen, Xiaofei; Cai, Di; Yao, Wenbing; Gao, Xiangdong

    2013-01-01

    Protein fusion technology is one of the most commonly used methods to extend the half-life of therapeutic proteins. In this study, in order to prolong the half-life of Granulocyte colony stimulating factor (G-CSF), the domain III of human serum albumin (3DHSA) was genetically fused to the N-terminal of G-CSF. The 3DHSA-G-CSF fusion gene was cloned into pPICZαA along with the open reading frame of the α-factor signal under the control of the AOX1 promoter. The recombinant expression vector was transformed into Pichia pastoris GS115, and the recombinant strains were screened by SDS-PAGE. As expected, the 3DHSA-G-CSF showed high binding affinity with HSA antibody and G-CSF antibody, and the natural N-terminal of 3DHSA was detected by N-terminal sequencing. The bioactivity and pharmacokinetic studies of 3DHSA-G-CSF were respectively determined using neutropenia model mice and human G-CSF ELISA kit. The results demonstrated that 3DHSA-G-CSF has the ability to increase the peripheral white blood cell (WBC) counts of neutropenia model mice, and the half-life of 3DHSA-G-CSF is longer than that of native G-CSF. In conclusion, 3DHSA can be used to extend the half-life of G-CSF. PMID:24151579

  2. Study of interaction between human serum albumin and three phenanthridine derivatives: Fluorescence spectroscopy and computational approach

    NASA Astrophysics Data System (ADS)

    Liu, Jianming; Yue, Yuanyuan; Wang, Jing; Yan, Xuyang; Liu, Ren; Sun, Yangyang; Li, Xiaoge

    2015-06-01

    Over the past decades, phenanthridine derivatives have captured the imagination of many chemists due to their wide applications. In the present work, the interaction between phenanthridine derivatives benzo [4,5]imidazo[1,2-a]thieno[2,3-c]quinoline (BTQ), benzo[4,5]imidazo[1,2-a]furo[2,3-c]quinoline (BFQ), 5,6-dimethylbenzo[4,5]imidazo[1,2-a]furo[2,3-c]quinoline (DFQ) and human serum albumin (HSA) were investigated by molecular modeling techniques and spectroscopic methods. The results of molecular modeling simulations revealed that the phenanthridine derivatives could bind on both site I in HSA. Fluorescence data revealed that the fluorescence quenching of HSA by phenanthridine derivatives were the result of the formation of phenanthridine derivatives-HSA complex, and the binding intensity between three phenanthridine derivatives and HSA was BTQ > BFQ > DFQ. Thermodynamics confirmed that the interaction were entropy driven with predominantly hydrophobic forces. The effects of some biological metal ions and toxic ions on the binding affinity between phenanthridine derivatives and HSA were further examined.

  3. Comparison of interactions between human serum albumin and silver nanoparticles of different sizes using spectroscopic methods.

    PubMed

    Zhang, Wanju; Zhang, Qingbo; Wang, Fang; Yuan, Lian; Xu, Ziqiang; Jiang, Fenglei; Liu, Yi

    2015-06-01

    Three different sizes (15.9 ± 2.1 nm, 26.4 ± 3.2 nm and 39.8 ± 4.0 nm, respectively) of citrate-coated silver nanoparticles (SNPs) have been synthesized and characterized. The interactions of the synthesized SNPs with human serum albumin (HSA) at physiological pH have been systematically studied by UV-vis absorption spectroscopy, fluorescence spectroscopy, synchronous fluorescence spectroscopy, three-dimensional fluorescence spectroscopy and circular dichroism (CD) spectroscopy. The results indicate that the SNPs can bind to HSA with high affinity and quench the intrinsic fluorescence of HSA. The binding constants and quenching rate constants were calculated. The apparent association constants (Kapp ) values are 2.14 × 10(4) M(-1) for 15.9 nm SNP, 1.65 × 10(4) M(-1) for 26.4 nm SNP and 1.37 × 10(4) M(-1) for 39.8 nm SNP, respectively. The values of binding constant obtained from the fluorescence quenching data match well with that determined from the absorption spectral changes. These results suggest that the smaller SNPs have stronger interactions to HSA than the larger ones at the same concentrations. Synchronous fluorescence, three-dimensional fluorescence and CD spectroscopy studies show that the synthesized SNPs can induce slight conformational changes in HSA. PMID:25103628

  4. Oxidation Enhances Human Serum Albumin Thermal Stability and Changes the Routes of Amyloid Fibril Formation

    PubMed Central

    Sancataldo, Giuseppe; Vetri, Valeria; Foderà, Vito; Di Cara, Gianluca; Militello, Valeria; Leone, Maurizio

    2014-01-01

    Oxidative damages are linked to several aging-related diseases and are among the chemical pathways determining protein degradation. Specifically, interplay of oxidative stress and protein aggregation is recognized to have a link to the loss of cellular function in pathologies like Alzheimer's and Parkinson's diseases. Interaction between protein and reactive oxygen species may indeed induce small changes in protein structure and lead to the inhibition/modification of protein aggregation process, potentially determining the formation of species with different inherent toxicity. Understanding the temperate relationship between these events can be of utmost importance in unraveling the molecular basis of neurodegeneration. In this work, we investigated the effect of hydrogen peroxide oxidation on Human Serum Albumin (HSA) structure, thermal stability and aggregation properties. In the selected conditions, HSA forms fibrillar aggregates, while the oxidized protein undergoes aggregation via new routes involving, in different extents, specific domains of the molecule. Minute variations due to oxidation of single residues affect HSA tertiary structure leading to protein compaction, increased thermal stability, and reduced association propensity. PMID:24416244

  5. Binding of the bioactive component Aloe dihydroisocoumarin with human serum albumin

    NASA Astrophysics Data System (ADS)

    Zhang, Xiu-Feng; Xie, Ling; Liu, Yang; Xiang, Jun-Feng; Tang, Ya-Lin

    2008-11-01

    Aloe dihydroisocoumarin, one of new components isolated from Aloe vera, can scavenge reactive oxygen species. In order to explore the mechanism of drug action at a molecular level, the binding of Aloe dihydroisocoumarin with human serum albumin (HSA) has been investigated by using fluorescence, ultraviolet (UV), circular dichroism (CD) and Fourier transform infrared (FT-IR) spectroscopy, fluorescence dynamics, and molecular dynamic docking for the first time. We observed a quenching of fluorescence of HSA in the presence of Aloe dihydroisocoumarin and also analyzed the quenching results using the Stern-Volmer equation and obtained high affinity binding to HSA. An isoemissive point at 414 nm is seen, indicating that the quenching of HSA fluorescence depends on the formation of Aloe dihydroisocoumarin-HSA complex, which is further confirmed by fluorescence dynamic result. From the CD and FT-IR results, it is apparent that the interaction of Aloe dihydroisocoumarin with HSA causes a conformational change of the protein, with the gain of α-helix, β-sheet and random coil stability and the loss of β-turn content. Data obtained by fluorescence spectroscopy, fluorescence dynamics, CD, and FTIR experiments along with the docking studies suggest that Aloe dihydroisocoumarin binds to residues located in subdomain IIA of HSA.

  6. Cys34-PEGylated Human Serum Albumin for Drug Binding and Delivery

    PubMed Central

    Mehtala, Jonathan G.; Kulczar, Chris; Lavan, Monika; Knipp, Gregory; Wei, Alexander

    2015-01-01

    Polyethylene glycol (PEG) derivatives were conjugated onto the Cys-34 residue of human serum albumin (HSA) to determine their effects on the solubilization, permeation, and cytotoxic activity of hydrophobic drugs such as paclitaxel (PTX). PEG(C34)HSA conjugates were prepared on a multigram scale by treating native HSA (n-HSA) with 5- or 20-kDa mPEG-maleimide, resulting in up to 77% conversion of the mono-PEGylated adduct. Nanoparticle tracking analysis of PEG(C34)HSA formulations in phosphate buffer revealed an increase in nanosized aggregates relative to n-HSA, both in the absence and presence of PTX. Cell viability studies conducted with MCF-7 breast cancer cells indicated that PTX cytotoxicity was enhanced by PEG(C34)HSA when mixed at 10:1 mole ratios, up to a two-fold increase in potency relative to n-HSA. The PEG(C34)HSA conjugates were also evaluated as PTX carriers across monolayers of HUVEC and hCMEC/D3 cells, and found to have nearly identical permeation profiles as n-HSA. PMID:25918947

  7. Molecular interaction and energy transfer between human serum albumin and bioactive component Aloe dihydrocoumarin

    NASA Astrophysics Data System (ADS)

    Zhang, Xiu-Feng; Xie, Ling; Liu, Yang; Xiang, Jun-Feng; Li, Lin; Tang, Ya-Lin

    2008-10-01

    Aloe dihydrocoumarin is an antioxidant and a candidate of immunomodulatory drug on the immune system and can balance physiological reactive oxygen species (ROS) levels which may be useful to maintain homeostasis. In order to explore the mechanism of drug action at a molecular level, the binding of Aloe dihydrocoumarin with human serum albumin (HSA) has been investigated by fluorescence, ultraviolet (UV), circular dichroism (CD) and Fourier transform infrared (FT-IR) spectroscopy, fluorescence dynamics, and molecular dynamic docking for the first time. We observed a quenching of fluorescence of HSA in the presence of Aloe dihydrocoumarin and also analyzed the quenching results using the Stern-Volmer equation and obtained high affinity binding to HSA. A Förster type fluorescence resonance energy transfer mechanism is involved in this quenching of Trp fluorescence by Aloe dihydrocoumarin. From the CD and FT-IR results, it is apparent that the interaction of Aloe dihydrocoumarin with HSA causes a conformational change of the protein, with the loss of α-helix stability and the gain of β-sheet and β-turn content. Data obtained by fluorescence spectroscopy, fluorescence dynamics, CD, and FT-IR experiments along with the docking studies suggest that Aloe dihydrocoumarin binds to residues located in subdomain IIA of HSA.

  8. Spectroscopic studies on the interaction of cinnamic acid and its hydroxyl derivatives with human serum albumin

    NASA Astrophysics Data System (ADS)

    Min, Jiang; Meng-Xia, Xie; Dong, Zheng; Yuan, Liu; Xiao-Yu, Li; Xing, Chen

    2004-04-01

    Cinnamic acid and its derivatives possess various biological effects in remedy of many diseases. Interaction of cinnamic acid and its hydroxyl derivatives, p-coumaric acid and caffeic acid, with human serum albumin (HSA), and concomitant changes in its conformation were studied using fluorescence and Fourier transform infrared spectroscopic methods. Fluorescence data revealed the presence of one binding site on HSA for cinnamic acid and its hydroxyl derivatives, and their binding constants ( KA) are caffeic acid> p-coumaric acid> cinnamic acid when Cdrug/ CHSA ranging from 1 to 10. The changes of the secondary structure of HSA after interacting with the three drugs are estimated, respectively by combining the curve-fitting results of amid I and amid III bands. The α-helix structure has a decrease of ≈9, 5 and 3% after HSA interacted with caffeic acid, p-coumaric acid and cinnamic acid, respectively. It was found that the hydroxyls substituted on aromatic ring of the drugs play an important role in the changes of protein's secondary structure. Combining the result of fluorescence quenching and the changes of secondary structure of HSA after interaction with the three drugs, the drug-HSA interaction mode was discussed.

  9. Influence of post-emulsification drying processes on the microencapsulation of human serum albumin.

    PubMed

    Lane, Majella E; Brennan, Fiona S; Corrigan, Owen I

    2006-01-01

    In the present work, methods used to microencapsulate Human Serum Albumin (HSA) in a biodegradable polymer were compared for their effects on the physicochemical characteristics of HSA-loaded microparticles and on the release and integrity of encapsulated HSA. The polymer used was poly(D,L-lactide-co-glycolide) (75:25) (PLGA) (Boehringer Ingelheim, Resomer RG 752, MW 20,900). Microparticles were formulated by (i) w/o/w emulsification and freeze-drying (EFD) or (ii) w/o/w emulsification and spray-drying (ESD). Particle morphology and size were evaluated by scanning electron microscopy and by laser diffraction analysis. Loading, encapsulation efficiency and protein release were determined using a commercial protein assay kit. Protein integrity was evaluated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis. Particles produced by emulsification/spray-drying exhibited greater diversity in shape than those produced by emulsification/freeze-drying. Additionally, protein loading values were significantly higher for particles produced by emulsification/spray-drying rather than particles produced by emulsification/freeze-drying. The structural integrity of encapsulated protein was confirmed for particles produced by both processes. The fraction of HSA released was similar for both formulations. The emulsification/spray-drying technique described appears to be a rapid and efficient method for the preparation of PLGA microparticles loaded with a model protein. PMID:16274944

  10. Effect of (-)-epigallocatechin-3-gallate on glucose-induced human serum albumin glycation.

    PubMed

    Li, M; Hagerman, A E

    2015-01-01

    (-)-Epigallocatechin-3-gallate (EGCg) is a naturally occurring polyphenol found in plant-based foods and beverages such as green tea. Although EGCg can eliminate carbonyl species produced by glucose autoxidation and thus can inhibit protein glycation, it is also reported to be a pro-oxidant that stimulates protein glycation in vitro. To better understand the balance between antioxidant and pro-oxidant features of EGCg, we evaluated EGCg-mediated bioactivities in a human serum albumin (HSA)/glucose model by varying three different parameters (glucose level, EGCg concentration, and time of exposure to EGCg). Measurements of glycation-induced fluorescence, protein carbonyls, and electrophoretic mobility showed that the level of HSA glycation was positively related to the glucose level over the range 10-100 mM during a 21-day incubation at 37°C and pH: 7.4. Under mild glycemic pressure (10 mM), long exposure to EGCg enhanced HSA glycation, while brief exposure to low concentrations of EGCg did not. Under high glycemic pressure (100 mM glucose), long exposure to EGCg inhibited glycation. For the first time we showed that brief exposure to EGCg reversed glycation-induced fluorescence, indicating a restorative effect. In conclusion, our research identified glucose level, EGCg concentration, and time of exposure as critical factors dictating EGCg bioactivities in HSA glycation. EGCg did not affect HSA glycation under normal physiological conditions but had a potential therapeutic effect on HSA severely damaged by glycation. PMID:25794449

  11. Glycation of human serum albumin in diabetes: impacts on the structure and function.

    PubMed

    Cao, Hui; Chen, Tingting; Shi, Yujun

    2015-01-01

    Diabetes mellitus is one of the most serious diseases in the world. The levels of glycated proteins in the blood of diabetics are higher than that of non-diabetic subjects. The glycation of proteins is believed to link to the occurrence of diabetic complications and related diseases. This review focuses on the influence of glycation of human serum albumin (HSA) on its structure and function. The glycation leads to change the HSA conformation, which will further influence its ligand binding properties. The levels of glycated HSA in hyperglycemic conditions showed a significant relationship to the germination of serious complications for diabetics, especially by affecting various cells functions. The conclusion from individual report is contradictory to each other; therefore, it is very difficult to give an univocal comment on the impact of glycation on the binding behaviors of HSA for small molecules. The influence of glycation of HSA on the binding affinities for small molecules is decided by the assay, the structures of small molecules, as well as the degree of glycation. However, the glycation of HSA is believed to reduce the binding affinities for acidic drugs such as polyphenols and phenolic acids. PMID:25245514

  12. (99m)Tc-human serum albumin nanocolloids: particle sizing and radioactivity distribution.

    PubMed

    Persico, Marco G; Lodola, Lorenzo; Buroni, Federica E; Morandotti, Marco; Pallavicini, Piersandro; Aprile, Carlo

    2015-07-01

    Several parameters affect the biodistribution of administered nanocolloids (NC) for Sentinel Lymph Node (SLN) detection: particle size distribution, number of Tc atoms per particle and specific activity (SA). Relatively few data are available with frequently conflicting results. (99m)Tc-NC-human serum albumin (HSA) Nanocoll®, Nanoalbumon® and Nanotop® were analysed for particles' dimensional and radioactivity distribution, and a mathematical model was elaborated to estimate the number of particles involved. Commercially available kits were reconstituted at maximal SA of 11 MBq/µg HSA. Particles size distribution was evaluated by Dynamic Light Scattering. These data were related to the radioactivity distribution analysis passing labelled NC through three polycarbonate filters (15-30-50-nm pore size) under vacuum. Highest radioactivity was carried by 30-50 nm particles. The smallest ones, even though most numerous, carried only the 10% of (99m)Tc atoms. Nanocoll and Nanotop are not significantly different, while Nanoalbumon is characterized by largest particles (>30 nm) that carried the most of radioactivity (80%). Smallest particles could saturate the clearing capacity of macrophages; therefore, if the tracer is used for SLN detection, more node tiers could be visualized, reducing accuracy of SLN mapping. Manufacturers could implement technical leaflets with particle size distribution and could improve the labelling protocol to provide clinicians useful information. PMID:26198778

  13. Insights into the binding of thiosemicarbazone derivatives with human serum albumin: spectroscopy and molecular modelling studies.

    PubMed

    Karthikeyan, Subramani; Bharanidharan, Ganesan; Kesherwani, Manish; Mani, Karthik Ananth; Srinivasan, Narasimhan; Velmurugan, Devadasan; Aruna, Prakasarao; Ganesan, Singaravelu

    2016-06-01

    4-[(1Z)-1-(2-carbamothioylhydrazinylidene)ethyl]phenyl acetate [Ace semi],4-[(1Z)-1-(2-carbamothioylhydrazinylidene)ethyl]phenyl propanoate [Pro semi] from the family of thiosemicarbazones derivative has been newly synthesized. It has good anticancer activity as well as antibacterial and it is also less toxic in nature, its binding characteristics are therefore of huge interest for understanding pharmacokinetic mechanism of the drug. The binding of thiosemicarbazone derivative to human serum albumin (HSA) has been investigated by studying its quenching mechanism, binding kinetics and the molecular distance (r) between donor (HSA) and acceptor (thiosemicarbazone derivative) was estimated according to Forster's theory of non-radiative energy transfer using fluorescence spectroscopy. The binding dynamics has been elaborated using synchronous fluorescence spectroscopy, and the feature of thiosemicarbazone derivative induced structural changes of HSA has been studied by circular dichorism, Fourier transform infrared spectroscopy. Molecular modelling simulations explore the hydrophobic interaction and hydrogen bonding which stabilizes the interaction. PMID:26368536

  14. Binding and relaxometric properties of heme complexes with cyanogen bromide fragments of human serum albumin.

    PubMed Central

    Monzani, Enrico; Curto, Maria; Galliano, Monica; Minchiotti, Lorenzo; Aime, Silvio; Baroni, Simona; Fasano, Mauro; Amoresano, Angela; Salzano, Anna Maria; Pucci, Piero; Casella, Luigi

    2002-01-01

    The spectroscopic and reactivity properties of hemin complexes formed with cyanogen bromide fragments B (residues 1-123), C (124-298), A (299-585), and D (1-298) of human serum albumin (HSA) have been investigated. The complex hemin-D exhibits binding, spectral, circular dichroism, and reactivity characteristics very similar to those of hemin-HSA, indicating that fragment D contains the entire HSA domain involved in heme binding. The characteristics of the other hemin complexes are different, and a detailed investigation of the properties of hemin-C has been carried out because this fragment contains the HSA binding region of several important drugs. Hemin-C contains a low-spin Fe(III) center, with two imidazole ligands, but the complex undergoes a reversible structural transition at basic pH leading to a high-spin, five-coordinated Fe(III) species. This change determines a marked increase in the relaxation rate of water protons. Limited proteolysis experiments and mass spectral analysis carried out on fragment C and hemin-C show that the region encompassing residues Glu-208 to Trp-214 is protected from activity of proteases in the complex and, therefore, is involved in the interaction with hemin. A structural model of fragment C enables us to propose that His-242 and His-288 are the axial ligands for the Fe(III) center. PMID:12324442

  15. Mechanistic investigation of domain specific unfolding of human serum albumin and the effect of sucrose

    PubMed Central

    Yadav, Rajeev; Sen, Pratik

    2013-01-01

    This study is devoted to understand the unfolding mechanism of a multidomain protein, human serum albumin (HSA), in absence and presence of the sucrose by steady-state and time-resolved fluorescence spectroscopy with domain specific marker molecules and is further being substantiated by molecular dynamics (MD) simulation. In water, the domain III of HSA found to unfold first followed by domains I and II as the concentration of GnHCl is increased in the medium. The sequential unfolding behavior of different domains of HSA remains same in presence of sucrose; however, a higher GnHCl concentration is required for unfolding, suggesting stabilizing effect of sucrose on HSA. Domain I is found to be most stabilized by sucrose. The stabilization of domain II is somewhat similar to domain I, but the effect of sucrose on domain III is found to be very small. MD simulation also predicted a similar behavior of sucrose on HSA. The stabilizing effect of sucrose is explained in terms of the entrapment of water molecules in between HSA surface and sucrose layer as well as direct interaction between HSA and sucrose. PMID:24038622

  16. Temperature induced morphological transitions from native to unfolded aggregated States of human serum albumin.

    PubMed

    Das, Nirmal Kumar; Ghosh, Narayani; Kale, Ajit Prabhakar; Mondal, Ramakanta; Anand, Uttam; Ghosh, Subhadip; Tiwari, Virendra Kumar; Kapur, Manmohan; Mukherjee, Saptarshi

    2014-07-01

    The circulatory protein, human serum albumin (HSA), is known to have two melting point temperatures, 56 and 62 °C. In this present manuscript, we investigate the interaction of HSA with a synthesized bioactive molecule 3-pyrazolyl 2-pyrazoline (PZ). The sole tryptophan amino acid residue (Trp214) of HSA and PZ forms an excellent FRET pair and has been used to monitor the conformational dynamics in HSA as a function of temperature. Molecular docking studies reveal that the PZ binds to a site which is in the immediate vicinity of Trp214, and such data are also supported by time-resolved FRET studies. Steady-state and time-resolved anisotropy of PZ conclusively proved that the structural and morphological changes in HSA mainly occur beyond its first melting temperature. Although the protein undergoes thermal denaturation at elevated temperatures, the Trp214 gets buried inside the protein scaffolds; this fact has been substantiated by acrylamide quenching studies. Finally, we have used atomic force microscopy to establish that at around 70 °C, HSA undergoes self-assembly to form fibrillar structures. Such an observation may be attributed to the loss of α-helical content of the protein and a subsequent rise in β-sheet structure. PMID:24915234

  17. Caffeine and sulfadiazine interact differently with human serum albumin: A combined fluorescence and molecular docking study.

    PubMed

    Islam, Mullah Muhaiminul; Sonu, Vikash K; Gashnga, Pynsakhiat Miki; Moyon, N Shaemningwar; Mitra, Sivaprasad

    2016-01-01

    The interaction and binding behavior of the well-known drug sulfadiazine (SDZ) and psychoactive stimulant caffeine (CAF) with human serum albumin (HSA) was monitored by in vitro fluorescence titration and molecular docking calculations under physiological condition. The quenching of protein fluorescence on addition of CAF is due to the formation of protein-drug complex in the ground state; whereas in case of SDZ, the experimental results were explained on the basis of sphere of action model. Although both these compounds bind preferentially in Sudlow's site 1 of the protein, the association constant is approximately two fold higher in case of SDZ (∼4.0×10(4)M(-1)) in comparison with CAF (∼9.3×10(2)M(-1)) and correlates well with physico-chemical properties like pKa and lipophilicity of the drugs. Temperature dependent fluorescence study reveals that both SDZ and CAF bind spontaneously with HSA. However, the binding of SDZ with the protein is mainly governed by the hydrophobic forces in contrast with that of CAF; where, the interaction is best explained in terms of electrostatic mechanism. Molecular docking calculation predicts the binding of these drugs in different location of sub-domain IIA in the protein structure. PMID:26186394

  18. A Comprehensive Computational Study of the Interaction between Human Serum Albumin and Fullerenes.

    PubMed

    Leonis, Georgios; Avramopoulos, Aggelos; Papavasileiou, Konstantinos D; Reis, Heribert; Steinbrecher, Thomas; Papadopoulos, Manthos G

    2015-12-01

    Human serum albumin (HSA) is the most abundant blood plasma protein, which transports fatty acids, hormones, and drugs. We consider nanoparticle-HSA interactions by investigating the binding of HSA with three fullerene analogs. Long MD simulations, quantum mechanical (fragment molecular orbital, energy decomposition analysis, atoms-in-molecules), and free energy methods elucidated the binding mechanism in these complexes. Such a systematic study is valuable due to the lack of comprehensive theoretical approaches to date. The main elements of the mechanism include the following: binding to IIA site results in allosteric modulation of the IIIA and heme binding sites with an increase in α-helical structure of IIIA. Fullerenes displayed high binding affinities for HSA; therefore, HSA can be used as a fullerene carrier, facilitating any toxic function the fullerene may exert. Complex formation is driven by hydrogen bonding, van der Waals, nonpolar, charge transfer, and dispersion energy contributions. Proper functionalization of C60 has enhanced its binding to HSA by more than an order of magnitude. This feature may be important for biological applications (e.g., photodynamic therapy of cancer). Satisfactory agreement with relevant experimental and theoretical data has been obtained. PMID:26523956

  19. Structural aspects of a protein-surfactant assembly: native and reduced States of human serum albumin.

    PubMed

    Anand, Uttam; Ray, Sutapa; Ghosh, Subhadip; Banerjee, Rajat; Mukherjee, Saptarshi

    2015-04-01

    The inherently present seventeen disulfide bonds of the circulatory protein, human serum albumin (HSA) provide the necessary structural stability. Various spectroscopic approaches were used to investigate the effect of reduction of these disulfide bonds and its binding with the anionic surfactant, sodium dodecyl sulfate (SDS). Based on several spectroscopic analyses, our investigations highlight the following interesting aspects: (1) HSA on reduction loses not only its tertiary structure but also a significant amount of secondary structure as well. However, the reduced state of the protein is not like the molten-globule, (2) this structural loss of the protein due to reduction is more prominent than that caused by higher SDS concentrations alone and can certainly be attributed to the role of disulfide bonds, (3) lower surfactant concentrations provide marginal structural rigidity to the native state of the protein, whereas, higher concentrations of SDS induces secondary structure to the reduced state of HSA, (4) the binding of SDS with both the native and reduced states of HSA, occurred in three distinct stages which was followed by a saturation stage. However, the nature of such binding is different for both the states as investigated by using the Stern-Volmer equations and estimating the thermodynamic parameters. Besides, in contrast to the native state, the reduced state of HSA shows that the lone tryptophan residue gets more buried. However, there occurs a sudden decrement in the lifetime of the tryptophan and the hydrodynamic diameter increases by twofold. PMID:25821118

  20. Comparative binding character of two general anaesthetics for sites on human serum albumin.

    PubMed Central

    Liu, Renyu; Meng, Qingcheng; Xi, Jin; Yang, Jinsheng; Ha, Chung-Eun; Bhagavan, Nadhipuram V; Eckenhoff, Roderic G

    2004-01-01

    Propofol and halothane are clinically used general anaesthetics, which are transported primarily by HSA (human serum albumin) in the blood. Binding characteristics are therefore of interest for both the pharmacokinetics and pharmacodynamics of these drugs. We characterized anaesthetic-HSA interactions in solution using elution chromatography, ITC (isothermal titration calorimetry), hydrogen-exchange experiments and geometric analyses of high-resolution structures. Binding affinity of propofol to HSA was determined to have a K(d) of 65 microM and a stoichiometry of approx. 2, whereas the binding of halothane to HSA showed a K(d) of 1.6 mM and a stoichiometry of approx. 7. Anaesthetic-HSA interactions are exothermic, with propofol having a larger negative enthalpy change relative to halothane. Hydrogen-exchange studies in isolated recombinant domains of HSA showed that propofol-binding sites are primarily found in domain III, whereas halothane sites are more widely distributed. Both location and stoichiometry from these solution studies agree with data derived from X-ray crystal-structure studies, and further analyses of the architecture of sites from these structures suggested that greater hydrophobic contacts, van der Waals interactions and hydrogen-bond formation account for the stronger binding of propofol as compared with the less potent anaesthetic, halothane. PMID:14759223

  1. Conformational stability and warfarin-binding properties of human serum albumin studied by recombinant mutants.

    PubMed Central

    Watanabe, H; Kragh-Hansen, U; Tanase, S; Nakajou, K; Mitarai, M; Iwao, Y; Maruyama, T; Otagiri, M

    2001-01-01

    Correctly folded recombinant wild-type human serum albumin and the single-residue mutants K199A, W214A, R218H and H242Q were produced with the use of a yeast expression system. The changes in R218H resulted in a pronounced decrease in intrinsic fluorescence. Thermodynamic parameters for thermal denaturation of the present mutants and of five additional mutants have been determined, showing small increases in stability for two mutants (R218H and H242Q) and a larger decrease in stability for one (W214A). In the last of these, denaturation was a heterogeneous process starting at physiological temperature. The high-affinity binding constant for warfarin at pH 7.4 was determined by fluorescence spectroscopy: there was a significant increase in affinity for binding of warfarin to H242Q and K199A and a smaller decrease in affinity for W214A and R218H. The findings show that Trp-214 is not as essential for the high-affinity binding of warfarin as has previously been thought. PMID:11415459

  2. Replica exchange Monte Carlo simulation of human serum albumin-catechin complexes.

    PubMed

    Li, Yunqi; An, Lijia; Huang, Qingrong

    2014-09-01

    Replica exchange Monte Carlo simulation equipped with an orientation-enhanced hydrophobic interaction was utilized to study the impacts of molar ratio and ionic strength on the complex formation of human serum albumin (HSA) and catechin. Only a small amount of catechins was found to act as bridges in the formation of HSA-catechin complexes. Selective binding behavior was observed at low catechin to HSA molar ratio (R). Increase of catechin amount can suppress HSA self-aggregation and diminish the selectivity of protein binding sites. Strong saturation binding with short-range interactions was found to level off at around 4.6 catechins per HSA on average, while this number slowly increased with R when long-range interactions were taken into account. Meanwhile, among the three rings of catechin, the 3,4-dihydroxyphenyl (B-ring) shows the strongest preference to bind HSA. Neither the aggregation nor the binding sites of the HSA-catechin complex was sensitive to ionic strength, suggesting that the electrostatic interaction is not a dominant force in such complexes. These results provide a further molecular level understanding of protein-polyphenol binding, and the strategy employed in this work shows a way to bridge phase behaviors at macroscale and the distribution of binding sites at residue level. PMID:25111890

  3. Probing the binding of procyanidin B3 to human serum albumin by isothermal titration calorimetry

    NASA Astrophysics Data System (ADS)

    Li, Xiangrong; Yan, Yunhui

    2015-02-01

    Proanthocyanidins are a mixture of monomers, oligomers, and polymers of flavan-3-ols that are widely distributed in the plant kingdom. One of the most widely studied proanthocyanidins is procyanidin B3. In this study, the interaction between procyanidin B3 and human serum albumin (HSA) was investigated using isothermal titration calorimetry (ITC). Thermodynamic investigations reveal that the hydrogen bond and van der Waals force are the major binding forces in the binding of procyanidin B3 to HSA. The binding of procyanidin B3 to HSA is driven by favorable enthalpy and unfavorable entropy. The obtained binding constant for procyanidin B3 with HSA is in the intermediate range and the equilibrium fraction of unbound procyanidin B3 fu > 90% at the physiological concentration of HSA shows that procyanidin B3 can be stored and transported from the circulatory system to reach its target site. The stoichiometric binding number n approximately equals to 1, suggesting that one molecule of procyanidin B3 combines with one molecule of HSA and no more procyanidin B3 binding to HSA occurs at the concentration used in this study.

  4. Effects of titania nanotubes with or without bovine serum albumin loaded on human gingival fibroblasts

    PubMed Central

    Liu, Xiangning; Zhou, Xiaosong; Li, Shaobing; Lai, Renfa; Zhou, Zhiying; Zhang, Ye; Zhou, Lei

    2014-01-01

    Modifying the surface of the transmucosal area is a key research area because this process positively affects the three functions of implants: attachment to soft tissue, inhibiting bacterial biofilm adhesion, and the preservation of the crestal bone. To exploit the potential of titania nanotube arrays (TNTs) with or without using bovine serum albumin (BSA) to modify the surface of a dental implant in contact with the transmucosal area, BSA was loaded into TNTs that were fabricated by anodizing Ti sheets; the physical characteristics of these arrays, including their morphology, chemical composition, surface roughness, contact angle, and surface free energy (SFE), were assessed. The effect of Ti surfaces with TNTs or TNTs-BSA on human gingival fibroblasts (HGFs) was determined by analyzing cell morphology, early adhesion, proliferation, type I collagen (COL-1) gene expression, and the extracellular secretion of COL-1. The results indicate that early HGF adhesion and spreading behavior is positively correlated with surface characteristics, including hydrophilicity, SFE, and surface roughness. Additionally, TNT surfaces not only promoted early HGF adhesion, but also promoted COL-1 secretion. BSA-loaded TNT surfaces promoted early HGF adhesion, while suppressing late proliferation and COL-1 secretion. Therefore, TNT-modified smooth surfaces are expected to be applicable for uses involving the transmucosal area. Further study is required to determine whether BSA-loaded TNT surfaces actually affect closed loop formation of connective tissue because BSA coating actions in vivo are very rapid. PMID:24623977

  5. Exploring binding properties of sertraline with human serum albumin: Combination of spectroscopic and molecular modeling studies.

    PubMed

    Shahlaei, Mohsen; Rahimi, Behnoosh; Nowroozi, Amin; Ashrafi-Kooshk, Mohammad Reza; Sadrjavadi, Komail; Khodarahmi, Reza

    2015-12-01

    Human serum albumin (HSA)-drug binding is an important factor to determine half life and bioavailability of drugs. In the present research, the interaction of sertraline (SER) to HSA was investigated using combination of spectroscopic and molecular modeling techniques. Changes in the UV-Vis, CD and FT-IR spectra as well as a significant degree of tryptophan fluorescence quenching were observed upon SER-HSA interaction. Data obtained by spectroscopic methods along with the computational studies suggest that SER binds to residues located in subdomain IIA of HSA. Analysis of spectroscopic data represented the formation of 1:1 complex, significant binding affinity, negative values of entropy and enthalpy changes and the essential role of hydrophobic interactions in binding of SER to HSA. The binding models were demonstrated in the aspects of SER's conformation, active site interactions, important amino acids and hydrogen bonding. Computational mapping of the possible binding site of SER confirmed that the ligand to be bound in a large hydrophobic cavity of HSA. In accordance with experimental data, computational analyses indicated that SER binding does not alter the secondary structure of the protein. The results not only lead to a better understanding of interaction between SER and HSA but also provide useful data about the influence of SER on the protein conformation. PMID:26471709

  6. Spread Films of Human Serum Albumin at the Air-Water Interface: Optimization, Morphology, and Durability.

    PubMed

    Campbell, Richard A; Ang, Joo Chuan; Sebastiani, Federica; Tummino, Andrea; White, John W

    2015-12-22

    It has been known for almost one hundred years that a lower surface tension can be achieved at the air-water interface by spreading protein from a concentrated solution than by adsorption from an equivalent total bulk concentration. Nevertheless, the factors that control this nonequilibrium process have not been fully understood. In the present work, we apply ellipsometry, neutron reflectometry, X-ray reflectometry, and Brewster angle microscopy to elaborate the surface loading of human serum albumin in terms of both the macroscopic film morphology and the spreading dynamics. We show that the dominant contribution to the surface loading mechanism is the Marangoni spreading of protein from the bulk of the droplets rather than the direct transfer of their surface films. The films can be spread on a dilute subphase if the concentration of the spreading solution is sufficient; if not, dissolution of the protein occurs, and only a textured adsorbed layer slowly forms. The morphology of the spread protein films comprises an extended network with regions of less textured material or gaps. Further, mechanical cycling of the surface area of the spread films anneals the network into a membrane that approach constant compressibility and has increased durability. Our work provides a new perspective on an old problem in colloid and interface science. The scope for optimization of the surface loading mechanism in a range of systems leading to its exploitation in deposition-based technologies in the future is discussed. PMID:26607026

  7. Caffeine and sulfadiazine interact differently with human serum albumin: A combined fluorescence and molecular docking study

    NASA Astrophysics Data System (ADS)

    Islam, Mullah Muhaiminul; Sonu, Vikash K.; Gashnga, Pynsakhiat Miki; Moyon, N. Shaemningwar; Mitra, Sivaprasad

    2016-01-01

    The interaction and binding behavior of the well-known drug sulfadiazine (SDZ) and psychoactive stimulant caffeine (CAF) with human serum albumin (HSA) was monitored by in vitro fluorescence titration and molecular docking calculations under physiological condition. The quenching of protein fluorescence on addition of CAF is due to the formation of protein-drug complex in the ground state; whereas in case of SDZ, the experimental results were explained on the basis of sphere of action model. Although both these compounds bind preferentially in Sudlow's site 1 of the protein, the association constant is approximately two fold higher in case of SDZ (∼4.0 × 104 M-1) in comparison with CAF (∼9.3 × 102 M-1) and correlates well with physico-chemical properties like pKa and lipophilicity of the drugs. Temperature dependent fluorescence study reveals that both SDZ and CAF bind spontaneously with HSA. However, the binding of SDZ with the protein is mainly governed by the hydrophobic forces in contrast with that of CAF; where, the interaction is best explained in terms of electrostatic mechanism. Molecular docking calculation predicts the binding of these drugs in different location of sub-domain IIA in the protein structure.

  8. Spectroscopy and Molecular Modeling Study on Binding of Nickel Phthalocyanine to Human Serum Albumin.

    PubMed

    Dezhampanah, Hamid; Firouzi, Roghaye; Hasani, Leila

    2016-01-01

    The interaction of nickel tetra sulfunated phthalocyanine( NiTSPc) with human serum albumin (HSA), in 20 mM phosphate buffer pH 7.4 was investigated using advanced techniques including fluorescence, synchronous fluorescence, Fourier transform infrared (FT-IR), circular dichroism (CD) spectroscopy and molecular docking. The fluorescence quenching measurements showed a single binding site on HSA for NiTSPc with the binding constant (Kb) value equals to 1.26×106 at 25°C. The results showed that quenching mechanism of HSA by NiTSPc was of dynamic type. The results from FTIR and CD spectroscopies demonstrated that NiTSPc binds to amino acid residues of the main polypeptide chain in protein destroying the hydrogen bonding network. The corresponding thermodynamic parameters were then calculated by analysis of fluorescence data using van't Hoff plot. These data indicated that driving force for interaction was mainly hydrophobic in nature and the process was entropy driven. The information obtained from CD, FT-IR and synchronous fluorescence spectroscopies revealed that both microenvironment and conformation of HSA was changed. Molecular docking study confirmed the binding mode obtained by experimental data. PMID:27449940

  9. The effect of Berberine on the secondary structure of human serum albumin

    NASA Astrophysics Data System (ADS)

    Li, Ying; He, WenYing; Tian, Jianniao; Tang, Jianghong; Hu, Zhide; Chen, Xingguo

    2005-05-01

    The presence of several high affinity binding sites on human serum albumin (HSA) makes it a possible target for many drugs. This study is designed to examine the effect of Berberine (an ancient Chinese drug used for antimicrobial, antiplasmodial, antidiarrheal and cardiovascular) on the solution structure of HSA using fluorescence, Fourier transform infrared (FT-IR), circular dichroism (CD) spectroscopic methods. The fluorescence spectroscopic results show that the fluorescence intensity of HSA was significantly decreased in the presence of Berberine. The Scatchard's plots indicated that the binding of Berberine to HSA at 296, 303, 318 K is characterized by one binding site with the binding constant is 4.071(±0.128)×10 4, 3.741(±0.089)×10 4, 3.454(±0.110)×10 4 M -1, respectively. The protein conformation is altered (FT-IR and CD data) with reductions of α-helices from 54 to 47% for free HSA to 45-32% and with increases of turn structure5% for free HSA to 18% in the presence of Berberine. The binding process was exothermic, enthalpy driven and spontaneous, as indicated by the thermodynamic analyses, Berberine bound to HSA was mainly based on hydrophobic interaction and electrostatic interaction cannot be excluded from the binding. Furthermore, the displace experiments indicate that Berberine can bind to the subdomain IIA, that is, high affinity site (site II).

  10. Investigation of interaction of nuclear fast red with human serum albumin by experimental and computational approaches.

    PubMed

    Gholivand, Mohammad-Bagher; Jalalvand, Ali R; Goicoechea, Hector C; Omidi, Mehdi

    2013-11-01

    For the first time, interaction of nuclear fast red (NFR) with human serum albumin (HSA) was studied by experimental and computational approaches. Firstly, experimental measurements including fluorescence spectroscopy (F), UVvis spectrophotometry (UVvis), cyclic voltammetry (CV), differential pulse voltammetry (DPV) and linear sweep voltammetry (LSV) were separately used to investigate the interaction of NFR with HSA and interesting thermodynamics information was obtained from these studies. Secondly, new information including electrochemical behavior of NFR-HSA complex species, relative concentrations of the various reacting species and effects of NFR on the sub-structure of HSA was obtained by applying multivariate curve resolution-alternating least squares (MCR-ALS). In this case, a row- and column-wise augmented matrix was built with DPV, LSV, F and UVvis sub-matrices and resolved by MCR-ALS. Surprisingly, by this method two NFR-HSA complex species with different stoichiometries and different electrochemical behaviors were found. Furthermore, by the use of the recorded voltammetric and spectroscopic data the binding constants of complex species were computed by EQUISPEC (a hard-modeling algorithm). Finally, the binding of NFR to HSA was modeled by molecular modeling and molecular dynamics (MD) simulations methods. Excellent agreement was found between experimental and computational results. Both experimental and computational results suggested that the NFR binds mainly to the sub-domain IIA of HSA. PMID:23871980

  11. The Reactivity of Human Serum Albumin towards trans-4-Hydroxy-2-nonenal

    PubMed Central

    Liu, Qingyuan; Simpson, David C.; Gronert, Scott

    2012-01-01

    Mass spectrometry was used to probe the preferred locations of trans-4-hydroxy-2-nonenal (HNE) addition to the cysteine, histidine, and lysine residues of human serum albumin (HSA). Considering only those modified peptides supported by high mass accuracy Orbitrap precursor ion measurements (high confidence hits), with HNE:HSA ratios of 1:1 and 10:1, 3 and 15 addition sites, respectively, were identified. Using less stringent criteria, a total of 34 modifications were identified at the higher concentration. To gain quantitative data, iTRAQ labeling studies were completed. Previous work had identified Cys34, the only free cysteine, as the most reactive residue in HSA and we have found that Lys199, His242/7, and His288 are the next most reactive residues. Although the kinetic data indicate the lysines and histidines can react at relatively similar rates, the results show that lysine addition is much less favorable thermodynamically; under our reaction conditions, lysine addition generally does not go to completion. This suggests that under physiological conditions, HNE addition to lysine is only relevant in situations where unusually high HNE concentrations or access to irreversible secondary reactions are found. PMID:22689617

  12. Differences in Esterase Activity to Aspirin and p-Nitrophenyl Acetate among Human Serum Albumin Preparations.

    PubMed

    Tatsumi, Akitoshi; Okada, Masaya; Inagaki, Yoshihiro; Inoue, Sachiyo; Hamaguchi, Tsuneo; Iwakawa, Seigo

    2016-01-01

    Human serum albumin (HSA) has two major ligand-binding sites, sites I and II, and also hydrolyzes some compounds at both sites. In the present study, we investigated differences in esterase activity among HSA preparations, and also the effects of warfarin, indomethacin, and naproxen on the hydrolytic activities of HSA to aspirin and p-nitrophenyl acetate. The esterase activities of HSA to aspirin or p-nitrophenyl acetate were measured from the pseudo-first-order formation rate constant (kobs) of salicylic acid or p-nitrophenol by HSA. Inter-lot variations were observed in the esterase activities of HSA to aspirin and p-nitrophenyl acetate; however, the esterase activity of HSA to aspirin did not correlate with that to p-nitrophenyl acetate. The inhibitory effects of warfarin and indomethacin on the esterase activity of HSA to aspirin were stronger than that of naproxen. In contrast, the inhibitory effect of naproxen on the esterase activity of HSA to p-nitrophenyl acetate was stronger than those of warfarin and indomethacin. These results suggest that the administration of different commercial HSA preparations and the co-administration with site I or II high-affinity binding drugs may change the pharmacokinetic profiles of drugs that are hydrolyzed by HSA. PMID:27476944

  13. Probing the Sudlow binding site with warfarin: how does gold nanocluster growth alter human serum albumin?

    PubMed

    Russell, B A; Mulheran, P A; Birch, D J S; Chen, Y

    2016-08-17

    The search for new fluorescent molecules is vital to the advancement of molecular imaging and sensing for the benefit of medical and biological studies. One such class of new fluorescent molecule is fluorescent gold nanoclusters encapsulated in Human Serum Albumin (HSA-AuNC). In order to use this new fluorescent molecule as a sensor or fluorescent marker in biological imaging both in vitro and in vivo it is important to understand whether/how the proteins function is changed by the synthesis and presence of the gold nanoclusters inside the protein. Natural HSA acts as the main drug carrier in the blood stream, carrying a multitude of molecules in two major binding sites (Sudlow I and II). To test the effects of gold on the ability of HSA to act as a drug carrier we employed warfarin, an anticoagulant drug, as a fluorescent probe to detect changes between natural HSA and HSA-AuNCs. AuNCs are found to inhibit the take up of warfarin by HSA. Evidence for this is found from fluorescence spectral and lifetime measurements. Interestingly, the presence of warfarin bound to HSA also inhibits the formation of gold nanoclusters within protein. This research provides valuable insight into how protein function can change upon synthesis of AuNCs and how that will affect their use as a fluorescent probe. PMID:27480626

  14. Enhancement of recombinant human serum albumin in transgenic rice cell culture system by cultivation strategy.

    PubMed

    Liu, Yu-Kuo; Li, Yu-Teng; Lu, Ching-Fan; Huang, Li-Fen

    2015-05-25

    Fusion of the sugar-starvation-induced αAmy3 promoter with its signal peptide has enabled secretion of recombinant human serum albumin (rHSA) into the culture medium. To simplify the production process and increase the rHSA yield in rice suspension cells, a one-step strategem without medium change was adopted. The yield of rHSA was increased sixfold by this one-step approach compared with the two-step recombinant protein process, in which a change of the culture medium to sugar-free medium is required. The one-step strategem was applied to check repeated cycle of rHSA production, and the production of rHSA was also higher in each cycle in the one-step, as opposed to the two-step, production process. The use of the one-step process resulted in fewer damaged cells during the cell sugar starvation phase for recombinant protein production. Furthermore, we scaled up the rHSA production in a 2-L airlift and a 2-L stirred tank bioreactor by the one-step approach, and concluded that rHSA can be enriched to 45 mg L(-1) in plant culture commonly used MS medium by the airlift-type bioreactor. Our results suggest that rHSA production can be enriched by this optimized cultivation strategem. PMID:25765580

  15. ANALYSIS OF DRUG-PROTEIN BINDING BY ULTRAFAST AFFINITY CHROMATOGRAPHY USING IMMOBILIZED HUMAN SERUM ALBUMIN

    PubMed Central

    Mallik, Rangan; Yoo, Michelle J.; Briscoe, Chad J.; Hage, David S.

    2010-01-01

    Human serum albumin (HSA) was explored for use as a stationary phase and ligand in affinity microcolumns for the ultrafast extraction of free drug fractions and the use of this information for the analysis of drug-protein binding. Warfarin, imipramine, and ibuprofen were used as model analytes in this study. It was found that greater than 95% extraction of all these drugs could be achieved in as little as 250 ms on HSA microcolumns. The retained drug fraction was then eluted from the same column under isocratic conditions, giving elution in less than 40 s when working at 4.5 mL/min. The chromatographic behavior of this system gave a good fit with that predicted by computer simulations based on a reversible, saturable model for the binding of an injected drug with immobilized HSA. The free fractions measured by this method were found to be comparable to those determined by ultrafiltration, and equilibrium constants estimated by this approach gave good agreement with literature values. Advantages of this method include its speed and the relatively low cost of microcolumns that contain HSA. The ability of HSA to bind many types of drugs also creates the possibility of using the same affinity microcolumn to study and measure the free fractions for a variety of pharmaceutical agents. These properties make this technique appealing for use in drug binding studies and in the high-throughput screening of new drug candidates. PMID:20227701

  16. Studies of drug interactions with glycated human serum albumin by high-performance affinity chromatography

    PubMed Central

    Matsuda, Ryan; Kye, So-Hwang; Anguizola, Jeanethe; Hage, David S.

    2015-01-01

    Diabetes is a health condition associated with elevated levels of glucose in the bloodstream and affects 366 million people worldwide. Type II diabetes is often treated with sulfonylurea drugs, which are known to bind tightly in blood to the transport protein human serum albumin (HSA). One consequence of the elevated levels of glucose in diabetes is the non-enzymatic glycation of proteins such as HSA. Several areas of HSA are now known to be affected by glycation-related modifications, which may in turn affect the binding of sulfonylurea drugs and other solutes to this protein. This review discusses some recent studies that have examined these changes in drug-protein binding by employing high-performance affinity chromatography (HPAC). A description of the theoretical and experimental techniques that were used in these studies is given. The information on drug interactions with glycated HSA, as obtained through this method, is also summarized. In addition, the potential advantages of this approach in the areas of biointeraction analysis and personalized medicine are considered. PMID:26526139

  17. Studies of drug interactions with glycated human serum albumin by high-performance affinity chromatography.

    PubMed

    Matsuda, Ryan; Kye, So-Hwang; Anguizola, Jeanethe; Hage, David S

    2014-08-01

    Diabetes is a health condition associated with elevated levels of glucose in the bloodstream and affects 366 million people worldwide. Type II diabetes is often treated with sulfonylurea drugs, which are known to bind tightly in blood to the transport protein human serum albumin (HSA). One consequence of the elevated levels of glucose in diabetes is the non-enzymatic glycation of proteins such as HSA. Several areas of HSA are now known to be affected by glycation-related modifications, which may in turn affect the binding of sulfonylurea drugs and other solutes to this protein. This review discusses some recent studies that have examined these changes in drug-protein binding by employing high-performance affinity chromatography (HPAC). A description of the theoretical and experimental techniques that were used in these studies is given. The information on drug interactions with glycated HSA, as obtained through this method, is also summarized. In addition, the potential advantages of this approach in the areas of biointeraction analysis and personalized medicine are considered. PMID:26526139

  18. Diosmin binding to human serum albumin and its preventive action against degradation due to oxidative injuries.

    PubMed

    Barreca, Davide; Laganà, Giuseppina; Bruno, Giuseppe; Magazù, Salvatore; Bellocco, Ersilia

    2013-11-01

    Diosmin is a glycosylated polyphenolic compound, commonly found in fruits and vegetables, which is utilized for the pharmacological formulation of some drugs. The interactions of diosmin to human serum albumin have been investigated by fluorescence, UV-visible, FTIR spectroscopy, native electrophoresis and protein-ligand docking studies. The fluorescence studies indicate that the binding site of the additive involves modifications of environment around Trp214 at the level of subdomain IIA. Combining the curve-fitting results of infrared Amide I' band, the modifications of protein secondary structure have been estimated, indicating a decrease in α-helix structure following flavonoid binding. Data obtained by fluorescence and UV-visible spectroscopy, FTIR experiments and molecular modeling afforded a clear picture of the association mode of diosmin to HSA, suggesting that the primary binding site of diosmin is located in Sudlow's site I. Computational mapping confirms this observation suggesting that the possible binding site of diosmin is located in the hydrophobic cavity of subdomain IIA, whose microenvironment is able to help and stabilize the binding of the ligand in non-planar conformation. Moreover the binding of diosmin to HSA significantly contributes to protect the protein against degradation due to HCLO and Fenton reaction. PMID:23886889

  19. Revealing deposition mechanism of colloid particles on human serum albumin monolayers.

    PubMed

    Nattich-Rak, Małgorzata; Adamczyk, Zbigniew; Kujda, Marta

    2016-01-01

    Colloid particle deposition was applied in order to characterize human serum albumin (HSA) monolayers on mica adsorbed under diffusion transport at pH 3.5. The surface concentration of HSA was determined by a direct AFM imaging of single molecules. The electrokinetic characteristics of the monolayers for various ionic strength were done by in situ streaming potential measurements. In this way the mean-field zeta potential of monolayers was determined. It was shown that the initially negative potential changed its sign for HSA surface concentrations above 2800μm(-2) that was interpreted as overcharging effect. The monolayers were also characterized by the colloid deposition method where negatively charged polystyrene particles, 810nm in diameter were used. The kinetics of particle deposition and their maximum coverage were determined as a function of the HSA monolayer surface concentration. An anomalous deposition of particles on substrates exhibiting a negative zeta potential was observed, which contradicts the mean-field theoretical predictions. This effect was quantitatively interpreted in terms of the random site sequential adsorption model. It was shown that efficient immobilization of particles only occurs at adsorption sites formed by three and more closely adsorbed HSA molecules. These results can be exploited as useful reference data for the analysis of deposition phenomena of bioparticles at protein monolayers that has practical significance for the regulation of the bioadhesive properties of surfaces. PMID:26272241

  20. Interactions of acidic pharmaceuticals with human serum albumin: insights into the molecular toxicity of emerging pollutants.

    PubMed

    Chen, Jiabin; Zhou, Xuefei; Zhang, Yalei; Qian, Yajie; Gao, Haiping

    2012-10-01

    Acidic pharmaceuticals such as diclofenac (DCF), clofibric acid (CA) and ketoprofen (KTP) have been detected frequently in environmental media. In order to reveal the toxicity of such emerging pollutants, their interactions with human serum albumin (HSA) were investigated by capillary electrophoresis, molecular spectrometry, and equilibrium dialysis. The binding constants and sites of these acidic pharmaceuticals with HSA were obtained. The thermodynamic parameters, e.g. enthalpy change and entropy change of these interactions were calculated to characterize that all the reactions resulted from hydrophobic and electrostatic interactions. The static quenching of the fluorescence of HSA was observed when interacted with acidic pharmaceuticals, indicating acidic pharmaceuticals bound to Tryptophan residue of HSA. The 3D fluorescence and circular dichroism confirmed that the secondary conformation of HSA changed after the interactions with the pharmaceuticals. At physiological condition, only 0.12 mM acidic pharmaceuticals reduced the binding of vitamin B(2) to HSA by 37, 30 and 21% for DCF, KTP and CA, respectively. This work provides an insight into non-covalent interactions between emerging contaminants and biomolecule, and is helpful for clarifying the toxic mechanism of such emerging contaminants. PMID:22307229

  1. Effect of (−)-Epigallocatechin-3-Gallate on Glucose-Induced Human Serum Albumin Glycation

    PubMed Central

    Li, Min; Hagerman, Ann E.

    2016-01-01

    (−)-Epigallocatechin-3-gallate (EGCg) is a naturally occurring polyphenol found in plant-based foods and beverages such as green tea. Although EGCg can eliminate carbonyl species produced by glucose autoxidation and thus can inhibit protein glycation, it is also reported to be a pro-oxidant that stimulates protein glycation in vitro. To better understand the balance between antioxidant and pro-oxidant features of EGCg, we evaluated EGCg-mediated bioactivities in a human serum albumin (HSA)/glucose model by varying three different parameters (glucose level, EGCg concentration, and time of exposure to EGCg). Measurements of glycation-induced fluorescence, protein carbonyls, and electrophoretic mobility showed that the level of HSA glycation was positively related to the glucose level over the range 10 to 100 mM during a 21-day incubation at 37 °C and pH 7.4. Under mild glycemic pressure (10 mM), long exposure to EGCg enhanced HSA glycation, while brief exposure to low concentrations of EGCg did not. Under high glycemic pressure (100 mM glucose), long exposure to EGCg inhibited glycation. For the first time we showed that brief exposure to EGCg reversed glycation-induced fluorescence, indicating a restorative effect. In conclusion, our research identified glucose level, EGCg concentration, and time of exposure as critical factors dictating EGCg bioactivities in HSA glycation. EGCg did not affect HSA glycation under normal physiological conditions but had a potential therapeutic effect on HSA severely damaged by glycation. PMID:25794449

  2. Selective electrochemical sensing of human serum albumin by semi-covalent molecular imprinting.

    PubMed

    Cieplak, Maciej; Szwabinska, Katarzyna; Sosnowska, Marta; Chandra, Bikram K C; Borowicz, Pawel; Noworyta, Krzysztof; D'Souza, Francis; Kutner, Wlodzimierz

    2015-12-15

    We devised and prepared a conducting molecularly imprinted polymer (MIP) for human serum albumin (HSA) determination using semi-covalent imprinting. The bis(2,2'-bithien-5-yl)methane units constituted the MIP backbone. This MIP was deposited as a thin film on an Au electrode by oxidative potentiodynamic electropolymerization to fabricate an electrochemical chemosensor. The HSA template imprinting, and then its releasing from the MIP was confirmed by the differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS), XPS, and PM-IRRAS measurements as well as by AFM imaging. Semi-covalent imprinting provided a very well defined locations of recognition sites in the MIP molecular cavities. These sites populated the imprinted cavities or the MIP surface only. The DPV and EIS response of the MIP film coated electrode to the HSA analyte was linear in the range of 0.8 to 20 and 4 to 80 µg/mL HSA, respectively, with the limit of detection of 16.6 and 800 ng/mL, respectively. The impressively high imprinting factor reached, exceeding 20, strongly confirmed that semi-covalent imprinting resulted in formation of a large number of very well defined molecular cavities with high affinity to the HSA molecules. The MIP selectivity against low-(molecular weight) interferences, common for physiological fluids, such as blood and urea, was very high. There was no response to the presence of these interferences at concentrations encountered in the samples analyzed. Moreover, the chemosensor selectivity to the myoglobin and cytochrome c interferences was excellent while that to lysozyme was slightly lower but still high. The chemosensor was useful for determination of abnormal HSA concentration in a control blood serum. PMID:26258876

  3. Luminescent spectral characteristics of eosin in solutions of human serum albumin when denatured by treatment with sodium dodecyl sulfate

    NASA Astrophysics Data System (ADS)

    Vlasova, I. M.; Zemlyanskii, A. Yu.; Saletskii, A. M.

    2006-09-01

    From analysis of the fluorescence spectra of eosin molecules in a solution with human serum albumin (HSA), we have obtained information about the dynamics of protein conformational rearrangements during denaturing of the protein when treated with sodium dodecyl sulfate (SDS) for different pH values of the solution. We hypothesize that HSA denaturing in the presence of SDS occurs in two stages: the first stage is loosening of the protein globules, and the second stage is complete unfolding of the protein molecules. We have shown that denaturating of the protein in the presence of SDS passes through both stages for a solution pH below the isoelectric point of the albumin, while the denaturing stops in the first stage for a solution pH above the isoelectric point of the albumin.

  4. Interaction of cucurbitacins with human serum albumin: Thermodynamic characteristics and influence on the binding of site specific ligands.

    PubMed

    Abou-Khalil, Rony; Jraij, Alia; Magdalou, Jacques; Ouaini, Naïm; Tome, Daniel; Greige-Gerges, Hélène

    2009-06-01

    Cucurbitacins (Cuc) are cytotoxic oxygenated triterpenes. Their binding to albumin may control their diffusion and consequently their biological effects. The specific binding site of Cuc to albumin is important to be defined as it could determine some of the drug interactions of the compounds. This paper deals with the interaction between human serum albumin and a series of four cucurbitacins (B, D, E and I) measured by fluorescence and circular dichroism spectroscopies. Cuc B and E at C25, are the acetylated forms of Cuc D and I. The binding parameters (K(a) and n) of Cuc B, D and E to albumin were determined at 288, 293, 298 and 303K. Cuc B possesses the higher binding constant (K(a)) values followed by Cuc E and D. The thermodynamic parameters DeltaH, DeltaG and DeltaS were calculated. They indicated hydrophobic and electrostatic interactions for Cuc B, hydrophobic interaction for Cuc E, hydrophobic and hydrogen bond interactions for Cuc D. In addition to bilirubin, Cuc B, D, and E increased the binding constant values for warfarin to albumin, whereas they did not affect the binding of other ligands of site I such as chloroform and salicylate. The increase of the K(a) values of warfarin and bilirubin was associated with an increase of the binding constant value of cucurbitacin to albumin. Cuc I did not bind to albumin and could be considered less capable to affect the interaction of ligands to albumin than Cuc B, D and E. CD spectra indicated that Cuc binding to HSA was not associated with substantial structural changes of the protein. PMID:19380237

  5. Spectroscopic characterization of the binding mechanism of fluorescein and carboxyfluorescein in human serum albumin

    NASA Astrophysics Data System (ADS)

    Sulaiman, Saba A. J.; Kulathunga, H. Udani; Abou-Zied, Osama K.

    2015-03-01

    Fluorescein (FL) and some of its precursors have proven to be effective fluorescent tracers in pharmaceutical and medical applications owing to their high quantum yield of fluorescence in physiological conditions and their high membrane permeability. In order to protect FL from metabolic effects during the process of its delivery, human serum albumin (HSA) has been used as a carrier because of its compatibility with the human body. In the present work, we used spectroscopic methods to characterize the binding mechanisms of FL and one of its derivatives, 5(6)- carboxyfluorescein (CFL), in the HSA protein. The absorbance change of the two ligands (FL and CFL) was quantified as a function of the HSA concentration and the results indicate a moderate binding strength for the two ligands inside HSA (1.00 +/- 0.12 x 104 M-1). The quenching effect of FL(CFL) on the fluorescence intensity of W214 (the sole tryptophan in HSA) indicates that FL and CFL occupy Site I in the protein which is known to bind several hydrophobic drugs. By performing site-competitive experiments, the location of the ligands is determined to be similar to that of the anticoagulant drug warfarin. At higher ratios of [ligand]/[HSA], we observed an upward curvature in the Stern-Volmer plots which indicates that the ligands occupy more pockets in Site I, close to W214. Our results indicate that both ligands bind in HSA with a moderate strength that should not affect their release when used as fluorescent reporters. The chemical and physical identities of the two ligands are also preserved inside the HSA binding sites.

  6. Characterization of the binding of an anticancer drug, lapatinib to human serum albumin.

    PubMed

    Kabir, Md Zahirul; Mukarram, Abdul Kadir; Mohamad, Saharuddin B; Alias, Zazali; Tayyab, Saad

    2016-07-01

    Interaction of a promising anticancer drug, lapatinib (LAP) with the major transport protein in human blood circulation, human serum albumin (HSA) was investigated using fluorescence and circular dichroism (CD) spectroscopy as well as molecular docking analysis. LAP-HSA complex formation was evident from the involvement of static quenching mechanism, as revealed by the fluorescence quenching data analysis. The binding constant, Ka value in the range of 1.49-1.01×10(5)M(-1), obtained at three different temperatures was suggestive of the intermediate binding affinity between LAP and HSA. Thermodynamic analysis of the binding data (∆H=-9.75kJmol(-1) and ∆S=+65.21Jmol(-1)K(-1)) suggested involvement of both hydrophobic interactions and hydrogen bonding in LAP-HSA interaction, which were in line with the molecular docking results. LAP binding to HSA led to the secondary and the tertiary structural alterations in the protein as evident from the far-UV and the near-UV CD spectral analysis, respectively. Microenvironmental perturbation around Trp and Tyr residues in HSA upon LAP binding was confirmed from the three-dimensional fluorescence spectral results. LAP binding to HSA improved the thermal stability of the protein. LAP was found to bind preferentially to the site III in subdomain IB on HSA, as probed by the competitive drug displacement results and supported by the molecular docking results. The effect of metal ions on the binding constant between LAP and HSA was also investigated and the results showed a decrease in the binding constant in the presence of these metal ions. PMID:27128364

  7. Binding of an anticancer drug, axitinib to human serum albumin: Fluorescence quenching and molecular docking study.

    PubMed

    Tayyab, Saad; Izzudin, Mohamad Mirza; Kabir, Md Zahirul; Feroz, Shevin R; Tee, Wei-Ven; Mohamad, Saharuddin B; Alias, Zazali

    2016-09-01

    Binding characteristics of a promising anticancer drug, axitinib (AXT) to human serum albumin (HSA), the major transport protein in human blood circulation, were studied using fluorescence, UV-vis absorption and circular dichroism (CD) spectroscopy as well as molecular docking analysis. A gradual decrease in the Stern-Volmer quenching constant with increasing temperature revealed the static mode of the protein fluorescence quenching upon AXT addition, thus confirmed AXT-HSA complex formation. This was also confirmed from alteration in the UV-vis spectrum of HSA upon AXT addition. Fluorescence quenching titration results demonstrated moderately strong binding affinity between AXT and HSA based on the binding constant value (1.08±0.06×10(5)M(-1)), obtained in 10mM sodium phosphate buffer, pH7.4 at 25°C. The sign and magnitude of the enthalpy change (∆H=-8.38kJmol(-1)) as well as the entropy change (∆S=+68.21Jmol(-1)K(-1)) clearly suggested involvement of both hydrophobic interactions and hydrogen bonding in AXT-HSA complex formation. These results were well supported by molecular docking results. Three-dimensional fluorescence spectral results indicated significant microenvironmental changes around Trp and Tyr residues of HSA upon complexation with AXT. AXT binding to the protein produced significant alterations in both secondary and tertiary structures of HSA, as revealed from the far-UV and the near-UV CD spectral results. Competitive drug displacement results obtained with phenylbutazone (site I marker), ketoprofen (site II marker) and hemin (site III marker) along with molecular docking results suggested Sudlow's site I, located in subdomain IIA of HSA, as the preferred binding site of AXT. PMID:27424099

  8. Physiologically relevant plasma d,l-homocysteine concentrations mobilize Cd from human serum albumin.

    PubMed

    Sagmeister, Peter; Gibson, Matthew A; McDade, Kyle H; Gailer, Jürgen

    2016-08-01

    Although low-level chronic exposure of humans to cadmium (Cd(2+)) can result in a variety of adverse health effects, little is known about the role that its interactions with plasma proteins and small molecular weight (SMW) ligands in the bloodstream may play in delivering this metal to its target organs. To gain insight, a Cd-human serum albumin (HSA) 1:1 (molar ratio) complex was analyzed by size exclusion chromatography (SEC) coupled on-line to a flame atomic absorption spectrometer (FAAS). Using a phosphate buffered saline (PBS)-buffer mobile phase, the stability of the Cd-HSA complex was investigated in the presence of 2.0mM of SMW ligands, including taurine, acetaminophen, l-methionine, l-cysteine (Cys), d,l-homocysteine (hCys) or l-cysteine methyl-ester (Cys-Me). While taurine, acetaminophen and l-methionine did not affect its integrity, Cys, hCys and Cys-Me completely abstracted Cd from HSA. Subsequent investigations into the effect of 1.5, 1.0 and 0.5mM Cys and hCys on the integrity of the Cd-HSA complex revealed clear differences with regard to the nature of the eluting SMW-Cd species between these structurally related endogenous thiols. Interestingly, the Cd-specific chromatograms that were obtained for 0.5mM hCys revealed the elution of an apparent mixture of the parent Cd-HSA complex with a significant contribution of a structurally uncharacterized CdxhCysy species. Since this hCys concentration is encountered in blood plasma of hyperhomocysteinemia patients and since previous studies by others have revealed that a SH-containing carrier mediates the uptake of Cd into hepatocytes, our results suggest that plasma hCys may play a role in the toxicologically relevant translocation of Cd from the bloodstream to mammalian target organs. PMID:27294530

  9. Novel curcumin-loaded human serum albumin nanoparticles surface functionalized with folate: characterization and in vitro/vivo evaluation.

    PubMed

    Song, Zhiwang; Lu, Yonglin; Zhang, Xia; Wang, Haiping; Han, Junyi; Dong, Chunyan

    2016-01-01

    Folate-conjugated, curcumin-loaded human serum albumin nanoparticles (F-CM-HSANPs) were obtained by the chemical conjugation of folate to the surface of the curcumin (CM)-loaded human serum albumin nanoparticles (NPs). The NPs were characterized by various parameters, including size, polydispersity, zeta potential, morphology, encapsulation efficiency, and drug release profile. The mean particle size of F-CM-HSANPs was 165.6±15.7 nm (polydispersity index <0.28), and the average encapsulation efficiency percentage and drug loading percentage of the F-CM-HSANPs were 88.7%±4.8% and 7.9%±0.4%, respectively. Applied in vitro, the CM NPs, after conjugation with folate, maintained sustained release, and a faster release of CM was more visibly observed than the unconjugated NPs. F-CM-HSANPs can prolong the retention time of CM significantly in vivo. However, after intravenous injection of F-CM-HSANPs, the pharmacokinetic parameters of CM were not significantly different from those of CM-loaded human serum albumin NPs. The improved antitumor activity of F-CM-HSANPs may be attributable to the protection of drug from enzymatic deactivation followed by the selective localization at the desired site. These results suggest that the intravenous injection of F-CM-HSANPs is likely to have an advantage in the current clinical CM formulation, because it does not require the use of a solubilization agent and it is better able to target the tumor tissue. PMID:27574403

  10. Novel curcumin-loaded human serum albumin nanoparticles surface functionalized with folate: characterization and in vitro/vivo evaluation

    PubMed Central

    Song, Zhiwang; Lu, Yonglin; Zhang, Xia; Wang, Haiping; Han, Junyi; Dong, Chunyan

    2016-01-01

    Folate-conjugated, curcumin-loaded human serum albumin nanoparticles (F-CM-HSANPs) were obtained by the chemical conjugation of folate to the surface of the curcumin (CM)-loaded human serum albumin nanoparticles (NPs). The NPs were characterized by various parameters, including size, polydispersity, zeta potential, morphology, encapsulation efficiency, and drug release profile. The mean particle size of F-CM-HSANPs was 165.6±15.7 nm (polydispersity index <0.28), and the average encapsulation efficiency percentage and drug loading percentage of the F-CM-HSANPs were 88.7%±4.8% and 7.9%±0.4%, respectively. Applied in vitro, the CM NPs, after conjugation with folate, maintained sustained release, and a faster release of CM was more visibly observed than the unconjugated NPs. F-CM-HSANPs can prolong the retention time of CM significantly in vivo. However, after intravenous injection of F-CM-HSANPs, the pharmacokinetic parameters of CM were not significantly different from those of CM-loaded human serum albumin NPs. The improved antitumor activity of F-CM-HSANPs may be attributable to the protection of drug from enzymatic deactivation followed by the selective localization at the desired site. These results suggest that the intravenous injection of F-CM-HSANPs is likely to have an advantage in the current clinical CM formulation, because it does not require the use of a solubilization agent and it is better able to target the tumor tissue. PMID:27574403

  11. Quantitation of 4,4′-methylene diphenyl diisocyanate human serum albumin adducts

    PubMed Central

    Luna, Leah G.; Green, Brett J.; Zhang, Fagen; Arnold, Scott M.; Siegel, Paul D.; Bartels, Michael J.

    2016-01-01

    4,4′-Methylene diphenyl diisocyanate (herein 4,4′-MDI) is used in the production of polyurethane foams, elastomers, coatings, adhesives and the like for a wide range of commercial products. Occupational exposure to MDI levels above current airborne exposure limits can elicit immune mediated hypersensitivity reactions such as occupational asthma in sensitive individuals. To accurately determine exposure, there has been increasing interest in developing analytical methods to measure internal biomarkers of exposure to MDI. Previous investigators have reported methodologies for measuring MDI diamine metabolites and MDI-Lysine (4,4′-MDI-Lys) adducts. The purpose of this study was to develop and validate an ultra performance liquid chromatography isotope dilution tandem mass spectrometry (UPLC-ID/MS/MS) quantitation method via a signature peptide approach to enable biomonitoring of 4,4′-MDI adducted to human serum albumin (HSA) in plasma. A murine, anti-4,4′-MDI monoclonal IgM antibody was bound to magnetic beads and utilized for enrichment of the MDI adducted HSA. Following enrichment, trypsin digestion was performed to generate the expected 414 site (primary site of adduction) 4,4′-MDI-adducted HSA signature peptide that was quantified by UPLC-ID/MS/MS. An Agilent 6530 UPLC/quadrupole time of flight MS (QTOF) system was utilized for intact adducted protein analysis and an Agilent 6490 UPLC/MS/MS system operated in multiple reaction monitoring (MRM) mode was utilized for quantification of the adducted signature peptide biomarker both for in chemico and worker serum samples. Worker serum samples were initially screened utilizing the previously developed 4,4′-MDI-Lys amino acid method and results showed that 12 samples were identified as quantifiable for 4,4′-MDI-Lys adducts. The signature peptide adduct approach was applied to the 12 worker samples identified as quantifiable for 4,4′-MDI-Lys adducts. Results indicated no positive results were obtained

  12. Probing the binding of morin to human serum albumin by optical spectroscopy.

    PubMed

    Qi, Zu-de; Zhang, Yue; Liao, Feng-Lin; Ou-Yang, Yi-Wen; Liu, Yi; Yang, Xi

    2008-03-13

    Morin [2-(2,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-1-benzopyran-4-one], a member of flavonols, is an important bioactive compound by interacting with nucleic acids, enzymes and protein. Its binding to human serum albumin was investigated by fluorescence quenching, fluorescence anisotropy, and UV-vis absorbance under the simulative physiological condition. Fluorescence quenching data show that the interaction of morin with HSA forms a non-fluorescent complex with the binding constants of 1.394 x 10(5), 1.489 x 10(5), 1.609 x 10(5) and 1.717 x 10(5)M(-1) at 292, 298, 303 and 310 K, respectively. The thermodynamics parameters, enthalpy change (DeltaH) and entropy change (DeltaS) were calculated to be 8.97 kJ mol(-1) and 129.15 J mol(-1)K(-1) via van't Hoff equation. From the spectroscopic results and thermodynamics parameters, it is observed that van der Waals and hydrogen bonds are predominant intermolecular forces when forming the complex. The distance r=4.25 nm between donor (Trp214) and accepter (morin) was estimated based on the Förster theory of non-radiative energy transfer. The red shift of UV-vis absorbance shows that morin is bound to several amino acids on the hydrophobic pocket of HSA. Moreover, the competitive probes, such as warfarin and ibuprofen (site I and II probes, respectively), reveal that the binding location of morin to HSA in the site I of the hydrophobic pocket, which corresponds to the results of UV-vis absorbance, while morin also binds other lower affinity binding sites on HSA from the fluorescence anisotropy spectroscopy. PMID:18178358

  13. Novel 7-(dimethylamino)fluorene-based fluorescent probes and their binding to human serum albumin.

    PubMed

    Park, Kwanghee Koh; Park, Joon Woo; Hamilton, Andrew D

    2009-10-21

    A novel solvatochromic fluorescent molecule, 9,9-dibutyl-7-(dimethylamino)-2-fluorenesulfonate 2 was synthesized from 2-nitrofluorene in moderate yield. The fluorescence spectra of 2 and 7-(dimethylamino)-2-fluorenesulfonate 1 shift to shorter wavelengths as the polarity of the medium decreases. Both 1 and 2 bind to hydrophobic sites of human serum albumin (HSA). The apparent binding constants were determined by fluorescence titration to be 0.37 x 10(6) M(-1) for 1 and 2.2 x 10(6) M(-1) for 2. The energy of the Trp-214 fluorescence of HSA is transferred to the HSA-bound fluorophores with near 100% efficiency. The covalent bonding of acrylodan (AC) to Cys-34 has little effect on the binding affinity of 2 to HSA or fluorescent behavior of HSA-bound 2. Bound 2 also has little effect on the fluorescence of AC, but 2-->AC and Trp-214-->2-->AC resonance energy transfers were observed. Competitive binding between the fluorene compounds and other ligands such as 1-anilino-8-naphthalenesulfonate, aspirin, S-(+)-ibuprofen and phenylbutazone were also studied fluorometrically. The results indicated that the primary binding site of 2 to HSA is site II in domain IIIA, whereas 1 binds to site I in domain IIA, but a different region from the phenylbutazone binding site. Because of its large molar absorptivity, strong fluorescence, sensitivity to its environment, and high binding constant to HSA, 2 can be used successfully in the study of proteins and their binding properties. PMID:19795061

  14. Thermodynamic characterization of drug binding to human serum albumin by isothermal titration microcalorimetry.

    PubMed

    Aki, H; Yamamoto, M

    1994-12-01

    Binding sites on human serum albumin (HSA) for anionic drugs and fatty acids have been thermodynamically characterized by microcalorimetry. The binding and the thermodynamic parameters were directly computed from the calorimetric titration data at 37 degrees C in a phosphate buffer (pH 7.4) using one- and two-class binding models. From compensation analyses plotting the molar enthalpy change (delta Hm,i) versus those of the molar free energy (delta Gm,i) and molar entropy (delta Sm,i) for each class of binding sites, HSA binding sites were classified into groups S1, S2, and S3. Group S1 included high-affinity binding sites for site II-bound drugs, such as ibuprofen, flufenamic acid, and ethacrynic acid, and short- or medium-length alkyl-chain fatty acids; group S2 included low-affinity binding sites of site II-bound drugs and long-length alkyl-chain fatty acids; and group S3 contained the high-affinity binding sites for site I-bound drugs, such as phenylbutazone, oxphenbutazone, and warfarin, and long-length alkyl-chain fatty acids. High- and low-affinity bindings sites for salicylic acid and acetylaslicylic acid agreed with the regions of groups S3 and S2, respectively. Groups S1 and S2 were characterized by large negative values of delta Hm,i and delta Sm,i, reflecting van der Waals interaction and hydrogen-bonding formation in low dielectric media, and the main force to stabilize the binding complex in group S3 was a hydrophobic interaction, characterized by a small negative delta Hm,i and minor or positive values of delta Sm,i (entropy-driven). PMID:7891299

  15. A mixed-mode resin with tryptamine ligand for human serum albumin separation.

    PubMed

    Wu, Qi-Ci; Lin, Dong-Qiang; Shi, Wei; Zhang, Qi-Lei; Yao, Shan-Jing

    2016-01-29

    Mixed-mode chromatography (MMC) is a new technology that uses specially-designed ligands to improve the adsorption selectivity with multimodal protein-ligand interactions for protein separation. A new MMC resin TA-B-6FF with tryptamine as the functional ligand was prepared and used for human serum albumin (HSA) separation. Adsorption equilibria of plasma-derived HSA (pHSA) were investigated and compared with a commercial tryptophan-based resin (MX-Trp-650m), and the influence of pH and salt addition was studied. The results showed that weak acidic conditions (pH 5.0-7.0) were favorable for HSA adsorption. The maximum adsorption capacity of TA-B-6FF was 141.33mg/g at pH 5.0, which was two times higher than that of MX-Trp-650m. TA-B-6FF also showed better salt-tolerance than MX-Trp-650m. Moreover, TA-B-6FF was used to separate recombinant HSA (rHSA) from Pichia pastoris culture broth. The results indicated that rHSA could be directly captured by TA-B-6FF without dilution or pH adjustment. High purity (87.75%) of rHSA monomer could be obtained with a recovery of 98.53% through two-step elution process. Total content of rHSA monomer and degraded fragment was 99.75%, the removal of host cell proteins reached about 90%. The results demonstrate that new TA-B-6FF resin has a great potential for rHSA purification directly from the complex fermentation broth. PMID:26772961

  16. Study on the interaction of catechins with human serum albumin using spectroscopic and electrophoretic techniques

    NASA Astrophysics Data System (ADS)

    Trnková, Lucie; Boušová, Iva; Staňková, Veronika; Dršata, Jaroslav

    2011-01-01

    The interaction between eight naturally occurring flavanols (catechin, epicatechin, gallocatechin, epigallocatechin, catechin gallate, epicatechin gallate, gallocatechin gallate, and epigallocatechin gallate) and human serum albumin (HSA) has been investigated by spectroscopic (fluorescence quenching and UV-Vis absorption) and electrophoretic (native and SDS PAGE) techniques under simulated physiological conditions (pH 7.40, 37 °C). The spectroscopic results confirmed the complex formation for the tested systems. The binding constants and the number of binding sites were obtained by analysis of fluorescence data. The strongest binding affinity to HSA was found for epicatechin gallate and decreased in the order epicatechin gallate ⩾ catechin gallate > epigallocatechin gallate > gallocatechin gallate ≫ epicatechin ⩾ catechin > gallocatechin ⩾ epigallocatechin. All free energy changes possessed negative sign indicating the spontaneity of catechin-HSA systems formation. The binding distances between the donor (HSA) and the acceptors (catechins) estimated by the Förster theory revealed that non-radiation energy transfer from HSA to catechins occurred with high possibility. According to results obtained by native PAGE, the galloylated catechins increased the electrophoretic mobility of HSA, which indicated the change in the molecular charge of HSA, whilst the non-galloylated catechins caused no changes. The ability of aggregation and cross-linking of tested catechins with HSA was not proved by SDS-PAGE. The relationship between the structure characteristics of all tested catechins (e.g. presence of the galloyl moiety on the C-ring, the number of hydroxyl groups on the B-ring, and the spatial arrangement of the substituents on the C-ring) and their binding properties to HSA is discussed. The presented study contributes to the current knowledge in the area of protein-ligand binding, particularly catechin-HSA interactions.

  17. Identification of dityrosine cross-linked sites in oxidized human serum albumin.

    PubMed

    Annibal, Andrea; Colombo, Graziano; Milzani, Aldo; Dalle-Donne, Isabella; Fedorova, Maria; Hoffmann, Ralf

    2016-04-15

    Reactive oxygen species (ROS) can oxidize virtually all cellular components. In proteins cysteine, methionine, tryptophan, and tyrosine residues are most prone to oxidation and their oxidized forms are thus considered as biomarkers of oxidative protein damages. Ultraviolet radiation and some endogenous ROS can produce tyrosine radicals reacting with other tyrosine residues yielding intra- or intermolecular cross-links in proteins. These 3,3'-dityrosines can be quantified by their characteristic fluorescence, but analytical methods to identify the modification sites in proteins are still missing. Although mass spectrometry (MS) is routinely used to map other post-translational modifications, the analysis of dityrosines is challenged by simultaneous fragmentations of both cross-linked peptide chains producing complex tandem mass spectra. Additionally, the fragmentation patterns differ from linear peptides. Here, we studied the fragmentation behavior of dityrosine cross-linked peptides obtained by incubating three peptides (AAVYHHFISDGVR, TEVSSNHVLIYLDK, and LVAYYTLIGASGQR) with horseradish peroxidase in the presence of hydrogen peroxide. Homo- and hetero-dimerization via dityrosine was monitored by fluorescence spectroscopy and MS. The fragmentation characteristics of dityrosine-linked peptides were studied on an ESI-LTQ-Orbitrap-MS using collision induced dissociation, which allowed localizing the cross-linked positions and provided generic rules to identify this oxidative modification. When human serum albumin oxidized with 50-fold molar excess of HOCl in phosphate buffer saline was analyzed by nanoRPC-ESI-MS/MS, an automatic database search considering all possible (in-silico generated) tyrosine-containing peptides as dynamic modifications revealed four different types of oxidatively modified tyrosine residues including dityrosines linking ten different Tyr residues. The automatic database search was confirmed by manual interpretation of each tandem mass spectrum

  18. Hypohalous acid-modified human serum albumin induces neutrophil NADPH oxidase activation, degranulation, and shape change.

    PubMed

    Gorudko, Irina V; Grigorieva, Daria V; Shamova, Ekaterina V; Kostevich, Valeria A; Sokolov, Alexey V; Mikhalchik, Elena V; Cherenkevich, Sergey N; Arnhold, Jürgen; Panasenko, Oleg M

    2014-03-01

    Halogenated lipids, proteins, and lipoproteins formed in reactions with myeloperoxidase (MPO)-derived hypochlorous acid (HOCl) and hypobromous acid (HOBr) can contribute to the regulation of functional activity of cells and serve as mediators of inflammation. Human serum albumin (HSA) is the major plasma protein target of hypohalous acids. This study was performed to assess the potency of HSA modified by HOCl (HSA-Cl) and HOBr (HSA-Br) to elicit selected neutrophil responses. HSA-Cl/Br were found to induce neutrophil degranulation, generation of reactive oxygen intermediates, shape change, and actin cytoskeleton reorganization. Thus HSA-Cl/Br can initially act as a switch and then as a feeder of the "inflammatory loop" under oxidative stress. In HSA-Cl/Br-treated neutrophils, monoclonal antibodies against CD18, the β subunit of β2 integrins, reduced the production of superoxide anion radicals and hydrogen peroxide as well as MPO exocytosis, suggesting that CD18 contributed to neutrophil activation. HSA-Cl/Br-induced neutrophil responses were also inhibited by genistein, a broad-specificity tyrosine kinase inhibitor, and wortmannin, a phosphoinositide 3-kinase (PI3K) inhibitor, supporting the notion that activation of both tyrosine kinase and PI3K may play a role in neutrophil activation by HSA modified in MPO-dependent reactions. These results confirm the hypothesis that halogenated molecules formed in vivo via MPO-dependent reactions can be considered as a new class of biologically active substances potentially able to contribute to activation of myeloid cells in sites of inflammation and serve as inflammatory response modulators. PMID:24384524

  19. Optimization of human serum albumin monoliths for chiral separations and high-performance affinity chromatography.

    PubMed

    Pfaunmiller, Erika L; Hartmann, Mahli; Dupper, Courtney M; Soman, Sony; Hage, David S

    2012-12-21

    Various organic-based monoliths were prepared and optimized for immobilization of the protein human serum albumin (HSA) as a binding agent for chiral separations and high-performance affinity chromatography. These monoliths contained co-polymers based on glycidyl methacrylate (GMA) and ethylene glycol dimethacrylate (EDMA) or GMA and trimethylolpropane trimethacrylate (TRIM). A mixture of cyclohexanol and 1-dodecanol was used as the porogen, with the ratio of these solvents being varied along with the polymerization temperature to generate a library of monoliths. These monoliths were used with both the Schiff base and epoxy immobilization methods and measured for their final content of HSA. Monoliths showing the highest protein content were further evaluated in chromatographic studies using R/S-warfarin and d/l-tryptophan as model chiral solutes. A 2.6-2.7-fold increase in HSA content was obtained in the final monoliths when compared to similar HSA monoliths prepared according to the literature. The increased protein content made it possible for the new monoliths to provide higher retention and/or two-fold faster separations for the tested solutes when using 4.6mm i.d.× 50 mm columns. These monoliths were also used to create 4.6mm i.d.× 10 mm HSA microcolumns that could separate the same chiral solutes in only 1.5-6.0 min. The approaches used in this study could be extended to the separation of other chiral solutes and to the optimization of organic monoliths for use with additional proteins as binding agents. PMID:23010249

  20. Study of the interaction of C60 fullerene with human serum albumin in aqueous solution

    SciTech Connect

    Li, Song; Zhao, Xiongce; Mo, Yiming; Cummings, Peter T; Heller, William T

    2013-01-01

    Concern about the toxicity of engineered nanoparticles, such as the prototypical nanomaterial C60 fullerene, continues to grow. While evidence continues to mount that C60 and its derivatives may pose health hazards, the specific molecular interactions of these particles with biological macromolecules require further investigation. To better understand the interaction of C60 with proteins, the protein human serum albumin (HSA) was studied in solution with C60 at C60:HSA molar ratios ranging from 1:2 to 4:1. HSA is the major protein component of blood plasma and plays a role in a variety of functions, such as the maintenance of blood pH and pressure. The C60-HSA interaction was probed by a combination of circular dichroism (CD) spectroscopy, small-angle neutron scattering (SANS) and atomistic molecular dynamics (MD) simulations to understand C60-driven changes in the structure of HSA in solution. The CD spectroscopy demonstrates that the secondary structure of the protein decreases in -helical content in response to the presence of C60. Similarly, C60 produces subtle changes in the solution conformation of HSA, as evidenced by the SANS data and MD. The data do not indicate that C60 is causing a change in the oligomerization state of the protein. Taken together results demonstrate that C60 interacts with HSA, but it does not strongly perturb the structure of the protein by unfolding it or inducing aggregation, suggesting a mechanism for transporting C60 throughout the body to accumulate in various tissues.

  1. Exploring the interaction between picoplatin and human serum albumin: The effects on protein structure and activity.

    PubMed

    Wang, Yanqing; Wu, Peirong; Zhou, Xinchun; Zhang, Hongmei; Qiu, Ligan; Cao, Jian

    2016-09-01

    For the first time, the effects of picoplatin on the structure and esterase-like catalytic activity of human serum albumin (HSA) have been investigated by spectroscopic approaches and molecular modeling. The circular dichroism (CD) spectral examinations indicated that the binding of picoplatin with HSA induced a slight decrease of a-helix content of protein and unfolded the constituent polypeptides of the protein. The synchronous fluorescence and three-dimensional fluorescence spectral methods were used to estimate the effect of picoplatin on the micro-environmental changes of the Trp and Tyr residues of HSA, indicating that the micro-environment around the Tyr and Trp residue is partly disturbed by picoplatin. UV-vis absorption spectral result indicated the formation of the ground state complex between picoplatin with HSA. The ANS binding assay indicated the existence of competitive combination of picoplatin and ANS with HSA. The studies on the effects of picoplatin on the binding of HSA with bilirubin and heme showed that picoplatin binding caused a change of angle between two chromophores of bound bilirubin and the binding site of picoplatin does not locate in subdomain IB in HSA that bound with heme. The molecular modeling results showed that picoplatin binds to the connection between domain I and domain II by hydrophobic, hydrogen bonds, and van der Waals forces. In addition, HSA maintains most of its esterase activity in the presence of picoplatin. The investigations on how picoplatin interacts with HSA are important for the understanding of the anticancer mechanism and toxicity of platinum-based anticancer drug. PMID:27484966

  2. Binding of naproxen enantiomers to human serum albumin studied by fluorescence and room-temperature phosphorescence

    NASA Astrophysics Data System (ADS)

    Lammers, Ivonne; Lhiaubet-Vallet, Virginie; Ariese, Freek; Miranda, Miguel A.; Gooijer, Cees

    2013-03-01

    The interaction of the enantiomers of the non-steroidal anti-inflammatory drug naproxen (NPX) with human serum albumin (HSA) has been investigated using fluorescence and phosphorescence spectroscopy in the steady-state and time-resolved mode. The absorption, fluorescence excitation, and fluorescence emission spectra of (S)-NPX and (R)-NPX differ in shape in the presence of HSA, indicating that these enantiomers experience a different environment when bound. In solutions containing 0.2 M KI, complexation with HSA results in a strongly increased NPX fluorescence intensity and a decreased NPX phosphorescence intensity due to the inhibition of the collisional interaction with the heavy atom iodide. Fluorescence intensity curves obtained upon selective excitation of NPX show 8-fold different slopes for bound and free NPX. No significant difference in the binding constants of (3.8 ± 0.6) × 105 M-1 for (S)-NPX and (3.9 ± 0.6) × 105 M-1 for (R)-NPX was found. Furthermore, the addition of NPX quenches the phosphorescence of the single tryptophan in HSA (Trp-214) based on Dexter energy transfer. The short-range nature of this mechanism explains the upward curvature of the Stern-Volmer plot observed for HSA: At low concentrations NPX binds to HSA at a distance from Trp-214 and no quenching occurs, whereas at high NPX concentrations the phosphorescence intensity decreases due to dynamic quenching by NPX diffusing into site I from the bulk solution. The dynamic quenching observed in the Stern-Volmer plots based on the longest phosphorescence lifetime indicates an overall binding constant to HSA of about 3 × 105 M-1 for both enantiomers.

  3. Optimization of human serum albumin monoliths for chiral separations and high-performance affinity chromatography

    PubMed Central

    Pfaunmiller, Erika L.; Hartmann, Mahli; Dupper, Courtney M.; Soman, Sony; Hage, David S.

    2012-01-01

    Various organic-based monoliths were prepared and optimized for immobilization of the protein human serum albumin (HSA) as a binding agent for chiral separations and high-performance affinity chromatography. These monoliths contained co-polymers based on glycidyl methacrylate (GMA) and ethylene glycol dimethacrylate (EDMA) or GMA and trimethylolpropane trimethacrylate (TRIM). A mixture of cyclohexanol and 1-dodecanol was used as the porogen, with the ratio of these solvents being varied along with the polymerization temperature to generate a library of monoliths. These monoliths were used with both the Schiff base and epoxy immobilization methods and measured for their final content of HSA. Monoliths showing the highest protein content were further evaluated in chromatographic studies using R/S-warfarin and d/l-tryptophan as model chiral solutes. A 2.6–2.7-fold increase in HSA content was obtained in the final monoliths when compared to similar HSA monoliths prepared according to the literature. The increased protein content made it possible for the new monoliths to provide higher retention and/or two-fold faster separations for the tested solutes when using 4.6 mm i.d. × 50 mm columns. These monoliths were also used to create 4.6 mm i.d. × 10 mm HSA microcolumns that could separate the same chiral solutes in only 1.5–6.0 min. The approaches used in this study could be extended to the separation of other chiral solutes and to the optimization of organic monoliths for use with additional proteins as binding agents. PMID:23010249

  4. Nature of autofluorescence in human serum albumin under its native, unfolding and digested forms

    NASA Astrophysics Data System (ADS)

    Manjunath, S.; Rao, Bola Sadashiva Satish; Satyamoorthy, Kapaettu; Mahato, Krishna Kishore

    2014-02-01

    Autofluorescence characteristics of human serum albumin (HSA) are highly sensitive to its local environment. Identification and characterization of the proteins in normal and disease conditions may have great clinical implications. Aim of the present study was to understand how autofluorescence properties of HSA varies with denaturation under urea (3.0M, 6.0M, 9.0M) and guanidine hydrochloride (GnHCl) (2.0M, 4.0M, 6.0M) as well as digestion with trypsin. Towards this, we have recorded the corresponding autofluorescence spectra of HSA at 281nm laser excitation and compared the outcomes. Although, HSA contains 1 tryptophan and 17 tyrosine residues, it has shown intense autofluorescence due to tryptophan as compared to the tyrosine in native form, which may be due to the fluorescence resonance energy transfer (FRET) from tyrosine to tryptophan. As the unfolding progresses in denatured and digested forms of the protein, a clear increase in tyrosine fluorescence as compared to tryptophan was observed, which may be due to the increase of tryptophan - tyrosine separation disturbing the FRET between them resulting in differences in the overall autofluorescence properties. The decrease in tryptophan fluorescence of around 17% in urea denatured, 32% in GnHCl denatured and 96% in tryptic digested HSA was observed as compared to its native form. The obtained results show a clear decrease in FRET between tyrosine and tryptophan residues with the progression of unfolding and urea seems to be less efficient than GnHCl in unfolding of HSA. These results demonstrate the potential of autofluorescence in characterizing proteins in general and HSA in particular.

  5. Subnanosecond fluorescence spectroscopy of human serum albumin as a method to estimate the efficiency of the depression therapy

    NASA Astrophysics Data System (ADS)

    Syrejshchikova, T. I.; Gryzunov, Yu. A.; Smolina, N. V.; Komar, A. A.; Uzbekov, M. G.; Misionzhnik, E. J.; Maksimova, N. M.

    2010-05-01

    The efficiency of the therapy of psychiatric diseases is estimated using the fluorescence measurements of the conformational changes of human serum albumin in the course of medical treatment. The fluorescence decay curves of the CAPIDAN probe (N-carboxyphenylimide of the dimethylaminonaphthalic acid) in the blood serum are measured. The probe is specifically bound to the albumin drug binding sites and exhibits fluorescence as a reporter ligand. A variation in the conformation of the albumin molecule substantially affects the CAPIDAN fluorescence decay curve on the subnanosecond time scale. A subnanosecond pulsed laser or a Pico-Quant LED excitation source and a fast photon detector with a time resolution of about 50 ps are used for the kinetic measurements. The blood sera of ten patients suffering from depression and treated at the Institute of Psychiatry were preliminary clinically tested. Blood for analysis was taken from each patient prior to the treatment and on the third week of treatment. For ten patients, the analysis of the fluorescence decay curves of the probe in the blood serum using the three-exponential fitting shows that the difference between the amplitudes of the decay function corresponding to the long-lived (9 ns) fluorescence of the probe prior to and after the therapeutic procedure reliably differs from zero at a significance level of 1% ( p < 0.01).

  6. Serum albumin attenuates the open-channel blocking effects of propofol on the human Kv1.5 channel.

    PubMed

    Kojima, Akiko; Bai, Jia-Yu; Ito, Yuki; Ding, Wei-Guang; Kitagawa, Hirotoshi; Matsuura, Hiroshi

    2016-07-15

    The intravenous anesthetic propofol modulates various ion channel functions. It is generally accepted that approximately 98% of propofol binds to blood constituents and that the free (unbound) drug preferentially affects target proteins including ion channels. However, modulatory effects of propofol on ion channels have not been previously explored in the presence of serum albumin. This study was designed to investigate the effects of serum albumin on the blocking action of propofol on the human Kv1.5 (hKv1.5) current. Whole-cell patch-clamp method was used to record the hKv1.5 channel current, heterologously expressed in Chinese hamster ovary cells, in the absence and presence of bovine serum albumin (BSA). Propofol induced a time-dependent decline of the hKv1.5 current during depolarizing steps and slowed the time course of tail current decay upon repolarization, supporting that propofol acts as an open-channel blocker. This blocking effect was reversible and concentration-dependent with an IC50 of 62.9±3.1μM (n = 6). Bath application of 1% BSA markedly reduced the blocking potency of propofol on hKv1.5 current (IC50 of 1116.0±491.4μM; n = 6). However, in the presence of BSA, the propofol-induced inhibition of hKv1.5 current was also accompanied by a gradual decline of activated current during depolarization and deceleration of deactivating tail current upon repolarization. The presence of BSA greatly attenuated the blocking potency of propofol on hKv1.5 channel without affecting the mode of action of propofol on the channel. Serum albumin thus appears to bind to propofol and thereby reducing effective concentrations of the drug for inhibition of hKv1.5 channel. PMID:27164421

  7. Unraveling the binding mechanism of asiatic acid with human serum albumin and its biological implications.

    PubMed

    Gokara, Mahesh; Malavath, Tirupathi; Kalangi, Suresh Kumar; Reddana, Pallu; Subramanyam, Rajagopal

    2014-01-01

    Asiatic acid (AsA), a naturally occurring pentacyclictriterpenoid found in Centella asiatica, plays a major role in neuroprotection, anticancer, antioxidant, and hepatoprotective activities. Human serum albumin (HSA), a blood plasma protein, participates in the regulation of plasma osmotic pressure and transports endogenous and exogenous substances. The study undertaken to analyze the drug-binding mechanisms of HSA is crucial in understanding the bioavailability of drugs. In this study, we analyzed the cytotoxic activity of AsA on HepG2 (human hepatocellular carcinoma) cell lines and its binding, conformational, docking, molecular simulation studies with HSA under physiological pH 7.2. These studies revealed a clear decrease in the viability of HepG2 cells upon exposure to AsA in a dose-dependent manner with an IC50 of 45 μM. Further studies showed the quenching of intrinsic fluorescence of HSA by AsA with a binding constant of KAsA = 3.86 ± 0.01 × 10(4) M(-1), which corresponds to the free energy of (ΔG) -6.3 kcal M(-1) at 25 °C. Circular dichroism (CD) studies revealed that there is a clear decrease in the α-helical content from 57.50 ± 2.4 to 50% ± 2.3 and an increase in the β-turns from 25 ± 0.65 to 29% ± 0.91 and random coils from 17.5% ± 0.95 to 21% ± 1.2, suggesting partial unfolding of HSA. Autodock studies revealed that the AsA is bound to the subdomain IIA with hydrophobic and hydrophilic interactions. From molecular dynamics, simulation data (RMSD, Rg and RMSF) emphasized the local conformational changes and rigidity of the residues of both HSA and HSA-AsA complexes. PMID:23844909

  8. Oxidative stresses induced by glycoxidized human or bovine serum albumin on human monocytes.

    PubMed

    Rondeau, Philippe; Singh, Nihar Ranjan; Caillens, Henri; Tallet, Frank; Bourdon, Emmanuel

    2008-09-15

    Oxidative stress and protein modifications are frequently observed in numerous disease states. Albumin, the major circulating protein in blood, can undergo increased glycoxidation in diabetes. Protein glycoxidation can lead to the formation of advanced glycoxidation end products, which induce various deleterious effects on cells. Herein, we report the effect of glucose or methylglyoxal-induced oxidative modifications on BSA or HSA protein structures and on THP1 monocyte physiology. The occurrence of oxidative modifications was found to be enhanced in glycoxidized BSA and HSA, after determination of their free thiol group content, relative electrophoretic migration, carbonyl content, and antioxidant activities. Cells treated with glycoxidized albumin exhibited an overgeneration of intracellular reactive oxygen species, impairments in proteasomal activities, enhancements in RAGE expression, and an accumulation of carbonylated proteins. These novel observations made in the presence of a range of modified BSA and HSA facilitate the comparison of the glycoxidation extent of albumin with the oxidative stress induced in cultured monocytes. Finally, this study reconfirms the influence of experimental conditions in which AGEs are generated and the concentration levels in experiments designed to mimic pathological conditions. PMID:18616999

  9. The Effect of Hydrophobic Pockets in Human Serum Albumin Adsorption to Self-Assembled Monolayers

    NASA Astrophysics Data System (ADS)

    Choi, Eugene J.; Jia, Shijin; Petrash, Stanislaw; Foster, Mark D.

    2001-04-01

    Molecular properties of proteins and their interactions with surfaces have an effect on protein adsorption, which is one of the first and most important events that occurs when a biological fluid contacts a surface. For biomaterials applications, blood reaction to foreign objects can cause thrombosis. To understand thrombosis, it is necessary to understand the mechanism of adsorption of blood proteins onto artificial surfaces. Such interactions as hydrophobicity^1,2, electrostatics^3 and specific binding^4 have been found to be driving forces for protein adsorption. Self-assembled monolayers (SAMs) provide an ideal surface for which protein adsorption behavior can be studied.^1 SAMs provide chemical homogeneity, robustness, and variable surface functionality. The hydrophobicity of SAMs has been of great interest in studying surface interactions with proteins.^1, 2 The packing density of alkyl chains of SAMs can also be varied in order to obtain different surface properties. The most abundant protein in the blood is human serum albumin (HSA). Because HSA acts as a fatty acid transporter, it has six binding sites for fatty acids. Pitt and Cooper^4 have shown that alkylation of surfaces increases the initial adsorption rate of delipidized (fatty acid free) HSA. Petrash et al.^5 have shown that delipidized HSA binds more tenaciously to less densely packed alkyl SAMs than to densely packed alkyl SAMs when desorbed by sodium dodecyl sulfate. Using X-ray reflectivity to study the adsorbed protein layer thickness, lipidized HSA (fatty acid bound) adsorption and desorption studies showed that specific binding of HSA is one of the main factors in binding tenacity between HSA and less densely packed alkyl SAMs. Atomic force microscopy was used as a complementary technique to confirm these results, and neutron reflectivity and spectroscopy techniques will also be used to study the adsorption behaviors of HSA and other blood proteins in future work. 1. Prime, K. L.; Whitesides

  10. Structural changes and metal binding by proalbumins and other amino-terminal genetic variants of human serum albumin.

    PubMed Central

    Takahashi, N; Takahashi, Y; Putnam, F W

    1987-01-01

    Proalbumins are rare genetic variants of human serum albumin containing a basic propeptide that is not removed during post-transcriptional processing because of a mutation in the site of excision, an Arg-Arg sequence. We have identified the amino acid substitutions in three different types of proalbumins designated Gainesville, Taipei, and Takefu. The first two proalbumins are identical to previously described proalbumins of the Christchurch and Lille types, respectively, and exhibit the characteristic properties of susceptibility to tryptic cleavage and of lower metal-binding affinity. Takefu is a third type of proalbumin and resists tryptic cleavage because of the substitution Arg-1----Pro. Each of the first two types of proalbumins has been identified in geographically separate, ethnically diverse populations and therefore must have arisen by independent mutations. There is some tendency for mutations in albumin to cluster in the propeptide sequence. Although the substitution His3----Gln in the genetic variant albumin Nagasaki-3 decreases metal-binding affinity, mutations further down the polypeptide chain have no such effect, nor is there any reduction of copper-binding affinity in albumin from patients with Wilson disease. Images PMID:3478700

  11. Correlated and Anticorrelated Domain Movement of Human Serum Albumin: A Peek into the Complexity of the Crowded Milieu.

    PubMed

    Biswas, Saikat; Chowdhury, Pramit Kumar

    2016-06-01

    Protein dynamics in cells have been shown to be markedly different from that in dilute solutions because of the highly crowded cellular interior. The volume exclusion arising from the high concentration of macromolecules present can affect both equilibrium and kinetic processes involving protein conformational changes. While global changes in structure leading to modulations in the stability of the protein have been well-documented, local changes that can have a large bearing on the functional aspects of these biomolecules are rare to come across. Using the multidomain serum protein human serum albumin and a fluorescence resonance energy transfer (FRET)-based approach, with fluorescent reporters in each of its three domains, we, in this article, have provided a detailed mapping of variations in the interdomain distances (as a function of pH) in the presence of five macromolecular crowding agents, differing based on their constituent monomers and average molecular weight(s). From the observation of correlated domain movements for dextran based crowding agents to anticorrelated motion induced by Ficoll 70, and both correlated and anticorrelated action for PEG8000 (PEG8), our results reveal the inherent complexity of a crowded milieu with the serum protein serving as an able sensor for decoding such variations. Differences in the manner in which the macromolecular crowders of similar average molecular weights influence the protein conformational ensemble also provide insights into the possible variations at the molecular level that these polymeric molecules possess. Evidence is presented in support of the fact that for the large molecular weight crowding agents and PEG8, soft interactions predominate over hard sphere potentials. Finally, the nature of domain movements encountered for the serum protein are of immense significance with respect to the function of human serum albumin (HSA) as a prolific binder and transporter of small molecules. PMID:27163260

  12. Spectroscopic investigations of the interactions of tramadol hydrochloride and 5-azacytidine drugs with human serum albumin and human hemoglobin proteins.

    PubMed

    Tunç, Sibel; Cetinkaya, Ahmet; Duman, Osman

    2013-03-01

    The interactions of tramadol hydrochloride (THC) and 5-azacytidine (AZA) drugs with human serum albumin (HSA) and human hemoglobin (HMG) proteins were investigated by fluorescence, UV absorption and circular dichroism (CD) spectroscopy at pH 7.4 and different temperatures. The UV absorption spectra and the fluorescence quenching of HSA and HMG proteins indicated the formation of HSA-THC and HMG-THC complexes via static quenching mechanism. AZA did not interact with HSA and HMG proteins. It was found that the formation of HMG-THC complex was stronger than that of HSA-THC complex. The stability of HSA-THC and HMG-THC complexes decreased with increasing temperature. The number of binding site was found as one for HSA-THC and HMG-THC systems. Negative enthalpy change (ΔH) and Gibbs free energy change (ΔG) and positive entropy change (ΔS) values were obtained for these systems. The binding of THC-HSA and HMG proteins was spontaneous and exothermic. In addition, electrostatic interactions between protein and drug molecules played an important role in the binding processes. The results of CD analysis revealed that the addition of THC led to a significant conformational change in the secondary structure of HSA protein, on the contrary to HMG protein. PMID:23428887

  13. [Raman spectra of single human living erythrocyte with the effect of pH and serum albumin].

    PubMed

    Wu, Zheng-Jie; Wang, Cheng; Lin, Zheng-Chun; Jiao, Qing-Ze

    2014-05-01

    In the present work, a cell environment which mimicked the real body environment according to the concentration radio between serum albumin and hemoglobin was built, and the cell morphology, the membrane deformation capacity, and the structure of intracellular hemoglobin of single human living erythrocyte under the effect of pH and serum albumin were studied. It was found that at different suspension pH, the magnitude of variations in cell shape and membrane deformation capacity changes with the structural changes of the intracellular hemoglobin. At pH 4. 14, 4. 76 and 10. 18, the loss of helical structure for hemoglobin, exposing of the hydrophobic amino acid in the globin chains, and changing of the combination of heme and globin, would completely destroy the stability of hemoglobin's structure, which seriously changes RBC's morphology and membrane deformation capacity. While at pH 6. 51 and 7. 80, the Raman spectra of erythrocytes are found to have no such changes, indicating that the structure of intracellular hemoglobin was not varied, thus the cell morphology and membrane deformation capacity are quite close to the normal values. At pH 5. 49 and 8. 76, RBC's morphology and membrane deformation capacity have different degrees of variation, but the structure of intracellular hemoglobin has not changed, suggesting that the cell morphology and membrane deformation capacity may be reversible. The results suggest that in the suspension solution containing serum albumin, erythrocytes have better ability to regulate and control the variation of the extracellular pH. In summary, upon building an environment which contains the same concentration radio of serum albumin to hemoglobin in the blood, this work performed systematic studies on the effect of pH on human erythrocytes. It can not only help to solve the problems about the mechanism of the structural and functional changes of erythrocytes induced by environmental pH, but also elucidates the possible variation of

  14. Identification and mapping of linear antibody epitopes in human serum albumin using high-density Peptide arrays.

    PubMed

    Hansen, Lajla Bruntse; Buus, Soren; Schafer-Nielsen, Claus

    2013-01-01

    We have recently developed a high-density photolithographic, peptide array technology with a theoretical upper limit of 2 million different peptides per array of 2 cm(2). Here, we have used this to perform complete and exhaustive analyses of linear B cell epitopes of a medium sized protein target using human serum albumin (HSA) as an example. All possible overlapping 15-mers from HSA were synthesized and probed with a commercially available polyclonal rabbit anti-HSA antibody preparation. To allow for identification of even the weakest epitopes and at the same time perform a detailed characterization of key residues involved in antibody binding, the array also included complete single substitution scans (i.e. including each of the 20 common amino acids) at each position of each 15-mer peptide. As specificity controls, all possible 15-mer peptides from bovine serum albumin (BSA) and from rabbit serum albumin (RSA) were included as well. The resulting layout contained more than 200.000 peptide fields and could be synthesized in a single array on a microscope slide. More than 20 linear epitope candidates were identified and characterized at high resolution i.e. identifying which amino acids in which positions were needed, or not needed, for antibody interaction. As expected, moderate cross-reaction with some peptides in BSA was identified whereas no cross-reaction was observed with peptides from RSA. We conclude that high-density peptide microarrays are a very powerful methodology to identify and characterize linear antibody epitopes, and should advance detailed description of individual specificities at the single antibody level as well as serologic analysis at the proteome-wide level. PMID:23894373

  15. Study on the interaction of antiviral drug 'Tenofovir' with human serum albumin by spectral and molecular modeling methods

    NASA Astrophysics Data System (ADS)

    Shahabadi, Nahid; Hadidi, Saba; Feizi, Foroozan

    2015-03-01

    This study was designed to examine the interaction of Tenofovir (Ten) with human serum albumin (HSA) under physiological conditions. The binding of drugs with human serum albumin is a crucial factor influencing the distribution and bioactivity of drugs in the body. To understand the action mechanisms between Ten and HSA, the binding of Ten with HSA was investigated by a combined experimental and computational approach. UV-vis results confirmed that Ten interacted with HSA to form a ground-state complex and values of the Stern-Volmer quenching constant indicate the presence of a static component in the quenching mechanism. As indicated by the thermodynamic parameters (positive ΔH and ΔS values), hydrophobic interaction plays a major role in the Ten-HSA complex. Through the site marker competitive experiment, Ten was confirmed to be located in site I of HSA. Furthermore, UV-vis absorption spectra, synchronous fluorescence spectrum and CD data were used to investigate the structural change of HSA molecules with addition of Ten, the results indicate that the secondary structure of HSA molecules was changed in the presence of Ten. The experimental results were in agreement with the results obtained via molecular docking study.

  16. Five recombinant fragments of human serum albumin-tools for the characterization of the warfarin binding site.

    PubMed Central

    Dockal, M.; Chang, M.; Carter, D. C.; Rüker, F.

    2000-01-01

    Human serum albumin (HSA) interacts with a vast array of chemically diverse ligands at specific binding sites. To pinpoint the essential structural elements for the formation of the warfarin binding site on human serum albumin, a defined set of five recombinant proteins comprising combinations of domains and/or subdomains of the N-terminal part were prepared and characterized by biochemical standard procedures, tryptophanyl fluorescence, and circular dichroic measurements, indicating well-preserved secondary and tertiary structures. Affinity constants for binding to warfarin were estimated by fluorescence titration experiments and found to be highest for HSA-DOM I-II and HSA, followed by HSA-DOM IB-II, HSA-DOM II, and HSA-DOM I-IIA. In addition, ultraviolet difference spectroscopy and induced circular dichroism experiments were carried out to get an in depth understanding of the binding mechanism of warfarin to the fragments as stand-alone proteins. This systematic study indicates that the primary warfarin binding site is centered in subdomain IIA with indispensable structural contributions of subdomain IIB and domain I, while domain III is not involved in this binding site, underlining the great potential that lies in the use of combinations of recombinant fragments for the study and accurate localization of ligand binding sites on HSA. PMID:10975567

  17. Human serum albumin-benzo[a]pyrene anti-diol epoxide adduct structure elucidation by fluorescence line narrowing spectroscopy.

    PubMed

    Day, B W; Doxtader, M M; Rich, R H; Skipper, P L; Singh, K; Dasari, R R; Tannenbaum, S R

    1992-01-01

    Cryogenic (4-10 K) laser-induced vibrationless ground state and vibronic excited state fluorescence emission spectra of the adducts resulting from reaction in vitro of human serum albumin and the carcinogen (+-)-r-7,t-8-dihydroxy-c-9,c-10-epoxy-7,8,9,10- tetrahydrobenzo[a]-pyrene were recorded in order to determine the structures formed. Comparison of these fluorescence line-narrowed (FLN) spectra to those obtained from BaP-7,8,9,10- tetrahydrotetrols, synthetic N-t-BOC-alaninate ester, and N tau- and N pi-histidine amine anti-BaPDE adducts revealed that a mixture of adduct types are formed with the protein. Extensive dialysis of the adducted protein simplified the FLN spectrum, causing it to become nearly identical to the FLN spectrum obtained from the stable peptide adduct. Comparison of the FLN spectra of the synthetic histidine adducts to those obtained from peptide adducts isolated from enzymic digestion of the adducted protein indicated that only one of the imidazole nitrogens is the nucleophile which forms a stable adduct with anti-BaPDE. The FLN studies confirm that N tau-histidine adducts are formed between human serum albumin and the C-10 position of anti-BaPDE. PMID:1581540

  18. Differential Effects of Methoxy Group on the Interaction of Curcuminoids with Two Major Ligand Binding Sites of Human Serum Albumin

    PubMed Central

    Sato, Hiroki; Chuang, Victor Tuan Giam; Yamasaki, Keishi; Yamaotsu, Noriyuki; Watanabe, Hiroshi; Nagumo, Kohei; Anraku, Makoto; Kadowaki, Daisuke; Ishima, Yu; Hirono, Shuichi; Otagiri, Masaki; Maruyama, Toru

    2014-01-01

    Curcuminoids are a group of compounds with a similar chemical backbone structure but containing different numbers of methoxy groups that have therapeutic potential due to their anti-inflammatory and anti-oxidant properties. They mainly bind to albumin in plasma. These findings influence their body disposition and biological activities. Spectroscopic analysis using site specific probes on human serum albumin (HSA) clearly indicated that curcumin (Cur), demethylcurcumin (Dmc) and bisdemethoxycurcumin (Bdmc) bind to both Site I (sub-site Ia and Ib) and Site II on HSA. At pH 7.4, the binding constants for Site I were relatively comparable between curcuminoids, while the binding constants for Site II at pH 7.4 were increased in order Cur < Dmc < Bdmc. Binding experiments using HSA mutants showed that Trp214 and Arg218 at Site I, and Tyr411 and Arg410 at Site II are involved in the binding of curcuminoids. The molecular docking of all curcuminoids to the Site I pocket showed that curcuminoids stacked with Phe211 and Trp214, and interacted with hydrophobic and aromatic amino acid residues. In contrast, each curcuminoid interacted with Site II in a different manner depending whether a methoxy group was present or absent. A detailed analysis of curcuminoids-albumin interactions would provide valuable information in terms of understanding the pharmacokinetics and the biological activities of this class of compounds. PMID:24498401

  19. Evidence that L-Arginine inhibits glycation of human serum albumin (HSA) in vitro

    SciTech Connect

    Servetnick, D.A.; Wiesenfeld, P.L.; Szepesi, B. )

    1990-02-26

    Previous work by Brownlee has shown that glycation of bovine serum albumin can be reduced in the presence of aminoguanidine (AG). Presumably, the guanidinium group on AG interferes with further rearrangement of amadori products to advanced glycosylated end products (AGE). Since L-arginine (ARG) also contains a guanidinium group, its ability to inhibit the formation of AGE products was investigated. HSA was incubated at 37{degrees}C in the presence or absence of glucose; with glucose and fructose; or with sugars in the presence or absence of ARG or AG. A tracer amount of U-{sup 14}C-glucose was added to each tube containing sugars. Protein bound glucose was separated from unreacted glucose by gel filtration. Radioactivity, total protein, fluorescence, and glucose concentration were measured. Preliminary data show enhanced binding of {sup 14}C-glucose to HSA with fructose at all time points. A 30-40% decrease in {sup 14}C-glucose incorporation was observed when ARG or AG as present. ARG and AG were equally effective in inhibiting incorporation of {sup 14}C-glucose. FPLC analysis is in progress to determine the type and degree of HSA crosslinking during the 2 week incubation period.

  20. Synthesis and mass-spectrometric characterization of human serum albumins modified by covalent binding of two non-steroidal anti-inflammatory drugs: tolmetin and zomepirac.

    PubMed Central

    Zia-Amirhosseini, P; Ding, A; Burlingame, A L; McDonagh, A F; Benet, L Z

    1995-01-01

    Human serum albumins modified by covalently bound tolmetin or zomepirac were synthesized as models for similar products formed in vivo from acyl glucuronides. Activated esters of both drugs were prepared with 1-ethyl-3-(3-dimethylaminopropyl)-carbodi-imide, and then allowed to react with human serum albumin. Tryptic digests of both protein products were analysed by HPLC to identify peptides containing covalently bound drugs, and binding sites on albumin were identified by high-performance tandem MS. Three binding sites were common to both products, i.e. lysine-195, -199 and -351. Three further modified residues were identified for the tolmetin-albumin product, i.e. aspartic acid 1, and lysine-524 and -536. PMID:7487878

  1. Discordant uptake of Tc-99m DTPA-galactosyl human serum albumin and Tc-99m Sn colloid in a patient with severe acute hepatitis.

    PubMed

    Miyazaki, C; Matsunaga, T; Kubo, K

    1994-08-01

    A patient with recently diagnosed severe acute hepatitis underwent serial liver scintigraphy with Tc-99m Sn colloid and Tc-99m DTPA-galactosyl human serum albumin. In initial studies, radionuclide distribution on Tc-99m DTPA-galactosyl human serum albumin scintigraphy was completely discrepant to that on Tc-99m Sn colloid scintigraphy. In a follow-up study 1 month later, the distribution of both radionuclides in the liver appeared relatively homogeneous. The uptake of Tc-99m DTPA-galactosyl human serum albumin and Tc-99m Sn colloid reflects the function of hepatocytes and Kupffer cells, respectively. Both kinds of scintigraphic study may be helpful to assess histopathologic change of different hepatic tissue architectures. PMID:7955747

  2. The automatic use of capillary isoelectric focusing with whole column imaging detection for carbamazepine binding to human serum albumin.

    PubMed

    Maciążek-Jurczyk, Małgorzata; Pawliszyn, Janusz

    2016-08-01

    The binding of the anticonvulsant drug carbamazepine (CBZ) to human serum albumin, both without (dHSA) and in the presence of fatty acids (HSA) was studied in real time by capillary isoelectric focusing with whole column imaging detection (cIEF-WCID). Reaction mixtures at different CBZ:HSA and CBZ:dHSA molar ratios (0:1/25:1) were prepared in phosphate buffer saline (PBS) solution at a physiological pH (7.4), and incubated for 0-72h at 37°C in a water bath. Application of the cIEF-WCID method allowed for observations on the impact of increasing CBZ:serum albumin molar ratios on isoelectric point (pI) shifts, as well as changes in peak area and absorbance, which serve as evidence of structural alterations occurring in the protein in the presence of CBZ. The obtained cIEF-WCID results indicated that the dynamic process of complex formation is not dependent on incubation time. The presented work allowed for recognition of different types of interactions, as well as for the calculation of association constants that demonstrate the stability of the complex. This study was also designed to examine the possible impact of fatty acids (FAs) on protein stability and drug delivery in blood. PMID:26809616

  3. Influence of the binding of reduced NAMI-A to human serum albumin on the pharmacokinetics and biological activity.

    PubMed

    Novohradský, V; Bergamo, A; Cocchietto, M; Zajac, J; Brabec, V; Mestroni, G; Sava, G

    2015-01-28

    NAMI-A is a ruthenium-based drug endowed with the unique property of selectively targeting solid tumour metastases. Although two clinical studies had already been completed, limited information exists on the behavior of NAMI-A after injection into the bloodstream. PK data in humans informs us of a rather low free drug concentration, of a relatively high half-life time of elimination and of a linear relationship between the administered dose and the corresponding AUC for up to toxic doses. In the present study, we examined the chemical kinetics of albumin binding with or without the presence of reducing agents, and we evaluated how these chemical aspects might influence the in vivo PK and the in vitro ability of NAMI-A to inhibit cell migration, which is a bona fide, rapid and easy way to suggest anti-metastatic properties. The experimental data support the binding of NAMI-A to serum albumin. The reaction is facilitated when the drug is in its reduced form and, in agreement with already reported data, the adduct formed with albumin maintains the biological activity of the ruthenium drug. The formation of the adduct is favored by low ratios of NAMI-A : HSA and by the reduction of the drug with ascorbic acid. The difference in in vivo PK and the faster binding to albumin of the reduced NAMI-A seem to suggest that the drug is not rapidly reduced immediately upon injection, even at low doses. Most probably, cell and protein binding prevail over the reduction of the drug. This observation supports the thesis that the reduction of the drug before injection must be considered relevant for the pharmacological activity of NAMI-A against tumour metastases. PMID:25489765

  4. A Humanized Mouse Model to Study Human Albumin and Albumin Conjugates Pharmacokinetics.

    PubMed

    Low, Benjamin E; Wiles, Michael V

    2016-01-01

    Albumin is a large, highly abundant protein circulating in the blood stream which is regulated and actively recycled via the neonatal Fc receptor (FcRn). In humans this results in serum albumin having an exceptional long half-life of ~21 days. Some time ago it was realized that these intrinsic properties could be harnessed and albumin could be used as a privileged drug delivery vehicle. However, active development of albumin based therapeutics has been hampered by the lack of economic, relevant experimental models which can accurately recapitulate human albumin metabolism and pharmacokinetics. In mice for example, introduced human albumin is not recycled and is catabolized rapidly. This is mainly due to the failure of mouse FcRn to bind human albumin consequently, human albumin has a half-life of only 2-3 days in mice. To overcome this we developed and characterized a humanized mouse model which is null for mouse FcRn and mouse albumin, but is transgenic for, and expressing functional human FcRn. Published data clearly demonstrate that upon injection of human albumin into this model animal that it accurately recapitulates human albumin FcRn dependent serum recycling, with human albumin now having a half-life ~24 days, closely mimicking that observed in humans. In this practical review we briefly review this model and outline its use for pharmacokinetic studies of human albumin. PMID:27150087

  5. Anti-Inflammatory Activity in the Low Molecular Weight Fraction of Commercial Human Serum Albumin (LMWF5A).

    PubMed

    Thomas, Gregory W; Rael, Leonard T; Mains, Charles W; Slone, Denetta; Carrick, Matthew M; Bar-Or, Raphael; Bar-Or, David

    2016-01-01

    The innate immune system is increasingly being recognized as a critical component in osteoarthritis (OA) pathophysiology. An ex vivo immunoassay utilizing human peripheral blood mononuclear cells (PBMC) was developed in order to assess the OA anti-inflammatory properties of the low molecular weight fraction (<5 kDa) of commercial human serum albumin (LMWF5A). PBMC from various donors were pre-incubated with LMWF5A before LPS stimulation. TNFα release was measured by ELISA in supernatants after an overnight incubation. A ≥ 30% decrease in TNFα release was observed. This anti-inflammatory effect is potentially useful in assessing potency of LMWF5A for the treatment of OA. PMID:25961642

  6. An integrated approach with experimental and computational tools outlining the cooperative binding between 2-phenylchromone and human serum albumin.

    PubMed

    Caruso, Ícaro Putinhon; Barbosa Filho, José Maria; de Araújo, Alexandre Suman; de Souza, Fátima Pereira; Fossey, Marcelo Andrés; Cornélio, Marinônio Lopes

    2016-04-01

    2-Phenylchromone (2PHE) is a flavone, found in cereals and herbs, indispensable in the human diet. Its chemical structure is the basis of all flavonoids present in black and green tea, soybean, red fruits and so on. Although offering such nutritional value, it still requires a molecular approach to understand its interactions with a specific target. The combination of experimental and computational techniques makes it possible to describe the interaction between 2PHE and human serum albumin (HSA). Fluorescence spectroscopy results show that the quenching mechanism is static, and thermodynamic analysis points to an entropically driven complex. The binding density function method provides information about a positive cooperative interaction, while drug displacement experiments indicate Sites 1 and 2 of HSA as the most probable binding sites. From the molecular dynamic study, it appears that the molecular docking is in agreement with experimental data and thus more realistic. PMID:26593575

  7. Effect of Human and Bovine Serum Albumin on kinetic Chemiluminescence of Mn (III)-Tetrakis (4-Sulfonatophenyl) Porphyrin-Luminol-Hydrogen Peroxide System

    PubMed Central

    Kazemi, Sayed Yahya; Abedirad, Seyed Mohammad

    2012-01-01

    The present work deals with an attempt to study the effect of human and bovine serum albumin on kinetic parameters of chemiluminescence of luminol-hydrogen peroxide system catalyzed by manganese tetrasulfonatophenyl porphyrin (MnTSPP). The investigated parameters involved pseudo-first-order rise and fall rate constant for the chemiluminescence burst, maximum level intensity, time to reach maximum intensity, total light yield, and values of the intensity at maximum CL which were evaluated by nonlinear least square program KINFIT. Because of interaction of metalloporphyrin with proteins, the CL parameters are drastically affected. The systems resulted in Stern-Volmer plots with kQ values of 3.17 × 105 and 3.7 × 105 M−1 in the quencher concentration range of 1.5 × 10−6 to 1.5 × 10−5 M for human serum albumin (HSA) and bovine serum albumin (BSA), respectively. PMID:22645466

  8. [Pulsed radiolysis of aqueous solutions of serum albumin containing naphthoquinones].

    PubMed

    Pribush, A G; Savich, A V

    1987-01-01

    As was shown by the pulse radiolysis method the simultaneous presence of naphthoquinone and human serum albumin molecules in an aqueous solution leads to the adsorption of the former on the surface of the latter. It is suggested that in these conditions the protein tertiary structure changes. New conformation reduces the reactivity of albumin toward the hydrated electron. PMID:3628723

  9. Experimental investigation of the serum albumin fascia microstructure

    NASA Astrophysics Data System (ADS)

    Buzoverya, M. E.; Shcherbak, Yu. P.; Shishpor, I. V.

    2012-09-01

    The results of theoretical and experimental investigation of biological liquids are reported. Structural effects observed in fascias are considered with account of the molecular features of albumin and the concept of supramolecular organization of polymers. It is revealed that the morphology of human serum albumin fascias depends on the concentration and quality of the solvent. It is shown that the water-salt fascias of albumin are more structured than water solutions with the same concentration.

  10. Effect of Short Chain Poly(ethylene glycol)s on the Hydration Structure and Dynamics around Human Serum Albumin.

    PubMed

    Samanta, Nirnay; Luong, Trung Quan; Das Mahanta, Debasish; Mitra, Rajib Kumar; Havenith, Martina

    2016-01-26

    We report the changes in the hydration dynamics around a globular protein, human serum albumin (HSA), in the presence of two short chain crowding agents, namely poly(ethylene glycol)s (PEG 200 and 400). The change in the network water structure is investigated using FTIR spectroscopy in the far-infrared (FIR) frequency range. Site specific changes are obtained by time-resolved fluorescence spectroscopic technique using the intrinsic fluorophore tryptophan (Trp214) of HSA. The collective hydration dynamics of HSA in the presence of PEG molecules are obtained using terahertz (THz) time domain spectroscopy (TTDS) and high intensity p-Ge THz measurements. Our study affirms a considerable perturbation of HSA hydration beyond a critical concentration of PEG. PMID:26720549

  11. Probing the micellar properties of Quinacrine 2HCl and its binding with surfactants and Human Serum Albumin

    NASA Astrophysics Data System (ADS)

    Usman, Muhammad; Siddiq, Mohammad

    2013-09-01

    This manuscript reports physicochemical behavior of an antimalarial drug Quinacrine 2HCl (QUN) drug as well as its interaction with surfactant and Human Serum Albumin (HSA). Surface tension and specific conductivity were employed to detect the critical micelle concentration (CMC) and thus its surface and thermodynamic parameters were calculated. Solublization of this drug within micelles of anionic surfactant sodium dodecyl sulfate (SDS) has also been studied. UV/Visible spectroscopy was used to calculate partition coefficient (Kx), free energy of partition and number of drug molecules per micelle. The complexation of drug with HSA at physiological conditions (pH 7.4) has been analyzed by using UV/Visible and fluorescence spectroscopy. In this way the values of drug-protein binding constant, number of binding sites and free energy of binding were calculated.

  12. Denaturation of human serum albumin under the action of cetyltrimethylammonium bromide according to fluorescence polarization data of protein

    NASA Astrophysics Data System (ADS)

    Vlasova, I. M.; Zhuravleva, V. V.; Saletskii, A. M.

    2012-03-01

    Denaturation of human serum albumin (HSA) under the action of cationic detergent cetyltrimethylammonium bromide (CTAB) is studied at different pH values by estimating the rotational diffusion of protein via fluorescence polarization. The degree of polarization of HSA tryptophan fluorescence, the rotational relaxation time, the rotational diffusion coefficient and the effective Einstein radius of the HSA molecules in solutions with different CTAB concentrations at different pH values are determined. The obtained rotational diffusion parameters of the HSA molecules show that under the action of CTAB, HSA denaturation has a one-stage character and proceeds more intensely and effectively at pH values higher than the p I value of protein (4.7).

  13. The orientation of protoberberine alkaloids and their binding activities to human serum albumin by surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Zhao, Yu; Bai, Xueyuan; Wang, Yingping; Zhao, Daqing

    2011-03-01

    Raman and surface-enhanced Raman scattering (SERS) technique are reliably used to compare relative intensity shifts and to investigate the adsorption geometry of protoberberine alkaloids on Ag nanoparticles. We report joint application of fluorescence and SERS spectroscopy to study the interaction between protoberberine alkaloids and human serum albumin (HSA). We propose SERS technique to improve the quenching interaction caused by protoberberine alkaloids which are used to be applied in recognition process of fluorescent drugs with large biomolecules. The fluorescence results show that the fluorescence intensity of HSA is significantly decreased in presence of protoberberine alkaloids. The SERS technique demonstrates obvious advantages over direct measurements in discriminating and identifying pharmaceutical molecules. By means of this method, we are able to detect important information concerning the orientation of protoberberine alkaloids when interacting with HSA. We also show that the nitrogen atom is free, but a benzene ring and two adjacent methoxy groups are involved in the spontaneously electrostatic inducement and subsequently binding with HSA.

  14. Pre-association of polynuclear platinum anticancer agents on a protein, human serum albumin. Implications for drug design†

    PubMed Central

    Montero, Eva I.; Benedetti, Brad T.; Mangrum, John B.; Oehlsen, Michael J.; Qu, Yun; Farrell, Nicholas P.

    2009-01-01

    The interactions of polynuclear platinum complexes with human serum albumin were studied. The compounds examined were the “non-covalent” analogs of the trinuclear BBR3464 as well as the dinuclear spermidine-bridged compounds differing in only the presence or absence of a central -NH2-+ (BBR3571 and analogs). Thus, closely-related compounds could be compared. Evidence for pre-association, presumably through electrostatic and hydrogen-bonding, was obtained from fluorescence and circular dichroism spectroscopy and Electrospray Ionization Mass Spectrometry (ESI-MS). In the case of those compounds containing Pt-Cl bonds, further reaction took place presumably through displacement by sulfur nucleophiles. The implications for protein pre-association and plasma stability of polynuclear platinum compounds are discussed. PMID:17992278

  15. Kaempferol-human serum albumin interaction: Characterization of the induced chirality upon binding by experimental circular dichroism and TDDFT calculations

    NASA Astrophysics Data System (ADS)

    Matei, Iulia; Ionescu, Sorana; Hillebrand, Mihaela

    2012-10-01

    The experimental induced circular dichroism (ICD) and absorption spectra of the achiral flavonoid kaempferol upon binding to human serum albumin (HSA) were correlated to electronic CD and UV-vis spectra theoretically predicted by time-dependent density functional theory (TDDFT). The neutral and four anionic species of kaempferol in various conformations were considered in the calculations. The appearance of the experimental ICD signal was rationalized in terms of kaempferol binding to HSA in a distorted, chiral, rigid conformation. The comparison between the experimental and simulated spectra allowed for the identification of the kaempferol species that binds to HSA, namely the anion generated by deprotonation of the hydroxyl group in position 7. This approach constitutes a convenient method for evidencing the binding species and for determining its conformation in the binding pocket of the protein. Its main advantage over the UV-vis absorption method lays in the fact that only the bound ligand species gives an ICD signal.

  16. Study of interaction between human serum albumin and three antioxidants: ascorbic acid, α-tocopherol, and proanthocyanidins.

    PubMed

    Li, Xiangrong; Chen, Dejun; Wang, Gongke; Lu, Yan

    2013-01-01

    Ascorbic acid, α-tocopherol and proanthocyanidins are three classic dietary antioxidants. In this study, the interaction between the three antioxidants and human serum albumin (HSA) was investigated by several spectroscopic techniques. Experimental results proved that the three antioxidants quench the fluorescence of HSA through a static (proanthocyanidins) or static-dynamic combined quenching mechanism (ascorbic acid and α-tocopherol). Thermodynamic investigations revealed that the combination between ascorbic acid or proanthocyanidins and HSA was driven mainly by electrostatic interaction, and the hydrophobic interactions play a major role for α-tocopherol-HSA association. Binding site I was found to be the primary binding site for ascorbic acid and proanthocyanidins, and site II for α-tocopherol. Additionally, the three antioxidants may induce conformational and microenvironmental changes of HSA. PMID:24140914

  17. Luminescent probe in the study of surfactant-induced structural changes in serum albumin in human blood plasma

    NASA Astrophysics Data System (ADS)

    Melnikov, A. G.; Pravdin, A. B.; Kochubey, V. I.; Melnikov, G. V.

    2005-06-01

    The luminescence-kinetic technique of the monitoring of structural changes in albumins of human blood plasma that uses a luminescent probe-eosin is proposed. Phosphorescence of eosin bound to the globular proteins of blood plasma-albumins was recorded at room temperature. It is found that under the action of sodium dodecylsulfate on the albumins the rate constant of eosin phosphorescence decay grows and the intensity of eosin phosphorescence decreases. It is assumed that these changes are connected with the denaturing of blood plasma albumins by sodium dodecylsulfate.

  18. A fluorescent reporter detects details of aromatic ligand interference in drug-binding sites of human serum albumin.

    PubMed

    Dobretsov, Gennady; Smolina, Natalia; Syrejshchikova, Tatiana; Brilliantova, Varvara; Uzbekov, Marat

    2016-09-01

    Human serum albumin (HSA) transports many ligands including small aromatic molecules: metabolites, drugs etc. Phenylbutazone is an anti-inflammatory drug, which binds to the drug-binding site I of HSA. Its interaction with this site has been studied using a fluorescent dye, CAPIDAN, whose fluorescence in serum originates from HSA and is sensitive to the changes in HSA site I in some diseases. Its fluorescence in HSA solutions is strongly suppressed by phenylbutazone. This phenomenon seems to be a basic sign of a simple drug-dye competition. However, a more detailed study of the time-resolved fluorescence decay of CAPIDAN has shown that phenylbutazone lowers fluorescence without changing the total amount of bound dye. In brief, the HSA-bound dye forms three populations due to three types of environment at the binding sites. The first two populations probably have a rather strong Coulomb interaction with the positive charge of residues Arginine 218 or Arginine 222 in site I and are responsible for approximately 90% of the total fluorescence. Phenylbutazone blocks this interaction and therefore lowers this fluorescence. At the same time the binding of the third population increases considerably in the presence of phenylbutazone, and, as a result, the actual number of bound dye molecules remains almost unchanged despite the ligand competition. So, time resolved fluorescence of the reporter allows to observe details of interactions and interference of aromatic ligands in drug binding site I of HSA both in isolated HSA and in serum. PMID:27318089

  19. Probing the interaction of human serum albumin with DPPH in the absence and presence of the eight antioxidants

    NASA Astrophysics Data System (ADS)

    Li, Xiangrong; Chen, Dejun; Wang, Gongke; Lu, Yan

    2015-02-01

    Albumin represents a very abundant and important circulating antioxidant in plasma. DPPH radical is also called 2,2-diphenyl-1-picrylhydrazyl. It has been widely used for measuring the efficiency of antioxidants. In this paper, the ability of human serum albumin (HSA) to scavenge DPPH radical was investigated using UV-vis absorption spectra. The interaction between HSA and DPPH was investigated in the absence and presence of eight popular antioxidants using fluorescence spectroscopy. These results indicate the antioxidant activity of HSA against DPPH radical is similar to glutathione and the value of IC50 is 5.200 × 10-5 mol L-1. In addition, the fluorescence experiments indicate the quenching mechanism of HSA, by DPPH, is a static process. The quenching process of DPPH with HSA is easily affected by the eight antioxidants, however, they cannot change the quenching mechanism of DPPH with HSA. The binding of DPPH to HSA primarily takes place in subdomain IIA and exists two classes of binding sites with two different interaction behaviors. The decreased binding constants and the number of binding sites of DPPH with HSA by the introduction of the eight antioxidants may result from the competition of the eight antioxidants and DPPH binding to HSA. The binding of DPPH to HSA may induce the micro-environment of the lone Trp-214 from polar to slightly nonpolar.

  20. Mapping the Interactions between the Alzheimer’s Aβ-Peptide and Human Serum Albumin beyond Domain Resolution

    PubMed Central

    Algamal, Moustafa; Milojevic, Julijana; Jafari, Naeimeh; Zhang, William; Melacini, Giuseppe

    2013-01-01

    Human serum albumin (HSA) is a potent inhibitor of Aβ self-association and this novel, to our knowledge, function of HSA is of potential therapeutic interest for the treatment of Alzheimer’s disease. It is known that HSA interacts with Aβ oligomers through binding sites evenly partitioned across the three albumin domains and with comparable affinities. However, as of this writing, no information is available on the HSA-Aβ interactions beyond domain resolution. Here, we map the HSA-Aβ interactions at subdomain and peptide resolution. We show that each separate subdomain of HSA domain 3 inhibits Aβ self-association. We also show that fatty acids (FAs) compete with Aβ oligomers for binding to domain 3, but the determinant of the HSA/Aβ oligomer interactions are markedly distinct from those of FAs. Although salt bridges with the FA carboxylate determine the FA binding affinities, hydrophobic contacts are pivotal for Aβ oligomer recognition. Specifically, we identified a site of Aβ oligomer recognition that spans the HSA (494–515) region and aligns with the central hydrophobic core of Aβ. The HSA (495–515) segment includes residues affected by FA binding and this segment is prone to self-associate into β-amyloids, suggesting that sites involved in fibrilization may provide a lead to develop inhibitors of Aβ self-association. PMID:24094411

  1. Interaction of coffee compounds with serum albumins. Part II: Diterpenes.

    PubMed

    Guercia, Elena; Forzato, Cristina; Navarini, Luciano; Berti, Federico

    2016-05-15

    Cafestol and 16-O-methylcafestol are diterpenes present in coffee, but whilst cafestol is found in both Coffea canephora and Coffea arabica, 16-O-methylcafestol (16-OMC) was reported to be specific of only C. canephora. The interactions of such compounds, with serum albumins, have been studied. Three albumins have been considered, namely human serum albumin (HSA), fatty acid free HSA (ffHSA) and bovine serum albumin (BSA). The proteins interact with the diterpenes at the interface between Sudlow site I and the fatty acid binding site 6 in a very peculiar way, leading to a significant change in the secondary structure. The diterpenes do not displace reference binding drugs of site 2, but rather they enhance the affinity of the site for the drugs. They, therefore, may alter the pharmacokinetic profile of albumin - bound drugs. PMID:26776001

  2. Catabolism of (64)Cu and Cy5.5-labeled human serum albumin in a tumor xenograft model.

    PubMed

    Kang, Choong Mo; Kim, Hyunjung; Koo, Hyun-Jung; Park, Jin Won; An, Gwang Il; Choi, Joon Young; Lee, Kyung-Han; Kim, Byung-Tae; Choe, Yearn Seong

    2016-07-01

    Human serum albumin (HSA), the most abundant protein in blood plasma, has been used as a drug carrier for the last few decades. Residualizingly radiolabeled serum albumin has been reported to be avidly taken up by tumors of sarcoma-bearing mice and to most likely undergo lysosomal degradation. In this study, we prepared (64)Cu-1,4,7,10-tetraazacyclododecane-N,N',N″,N'″-tetraacetic acid (DOTA) and Cy5.5-conjugated HSA (dual probe), and evaluated its tumor uptake and catabolism. Two dual probes were prepared using different DOTA conjugation sites of HSA (one via Lys residues and the other via the Cys residue). (64)Cu-DOTA-Lys-HSA-Cy5.5 (dual probe-Lys) exhibited higher uptake by RR1022 sarcoma cells in vitro than (64)Cu-DOTA-Cys-HSA-Cy5.5 (dual probe-Cys). In RR1022 tumor-bearing mice, the two dual probes showed a similar level of tumor uptake, but uptake of dual probe-Lys was reduced in the liver and spleen compared to dual probe-Cys, probably because of the presence of a higher number of DOTA molecules in the former. At 24 and 48 h after injection, dual probe-Lys was intact or partially degraded in blood, liver, kidney, and tumor samples, but (64)Cu-DOTA-Lys was observed in the urine using radioactivity detection. Similarly, Cy5.5-Lys was observed in the urine using fluorescence detection. These results indicate that dual probe-Lys may be useful for predicting the catabolic fate of drug-HSA conjugates. PMID:27098932

  3. The effects of chondroitin sulfate and serum albumin on the fibrillation of human islet amyloid polypeptide at phospholipid membranes.

    PubMed

    Li, Yang; Wang, Li; Lu, Tong; Wei, Ying; Li, Fei

    2016-04-28

    Glycosaminoglycans and serum albumin are important cellular components that regulate the fibril formation of proteins. Whereas the effects of cellular components on the fibrillation of amyloid proteins in bulk solution are widely studied, less attention has been paid to the effects of cellular components on amyloidogenesis occurring at cellular membranes. In this study, we focus on the impacts of chondroitin sulfate A (CSA) and bovine serum albumin (BSA) on the amyloidogenic behaviors of human islet amyloid polypeptide (hIAPP) at phospholipid membranes consisting of neutral POPC and anionic POPG. Using the thioflavin T fluorescence assay, atomic force microscopy, circular dichroism and nuclear magnetic resonance measurements, we demonstrate that CSA has an intensive promotion effect on the fibrillation of hIAPP at the POPC membrane, which is larger than the total effect of CSA alone and POPC alone. The further enhanced promotion of the fibrillation of hIAPP by CSA at the neutral membrane is associated with a specific interaction of CSA with POPC. In contrast, the activity of BSA as an inhibitor of hIAPP fibrillation observed in bulk solution decreases dramatically in the presence of POPG vesicles. The dramatic loss of the inhibition efficiency of BSA arises essentially from a specific interaction with the POPG component, but not simply from suppression by an opposite effect of the anionic membrane. The findings in this study suggest that the interactions between membranes and cellular components may have a significant effect on the activity of the cellular components in regulating the fibrillation of hIAPP. PMID:27067251

  4. Crystallographic analysis reveals the structural basis of the high-affinity binding of iophenoxic acid to human serum albumin

    PubMed Central

    2011-01-01

    Background Iophenoxic acid is an iodinated radiocontrast agent that was withdrawn from clinical use because of its exceptionally long half-life in the body, which was due in part to its high-affinity binding to human serum albumin (HSA). It was replaced by Iopanoic acid, which has an amino rather than a hydroxyl group at position 3 on the iodinated benzyl ring and, as a result, binds to albumin with lower affinity and is excreted more rapidly from the body. To understand how iophenoxic acid binds so tightly to albumin, we wanted to examine the structural basis of its interaction with HSA. Results We have determined the co-crystal structure of HSA in complex with iophenoxic acid at 2.75 Å resolution, revealing a total of four binding sites, two of which - in drugs sites 1 and 2 on the protein - are likely to be occupied at clinical doses. High-affinity binding of iophenoxic acid occurs at drug site 1. The structure reveals that polar and apolar groups on the compound are involved in its interactions with drug site 1. In particular, the 3-hydroxyl group makes three hydrogen bonds with the side-chains of Tyr 150 and Arg 257. The mode of binding to drug site 2 is similar except for the absence of a binding partner for the hydroxyl group on the benzyl ring of the compound. Conclusions The HSA-iophenoxic acid structure indicates that high-affinity binding to drug site 1 is likely to be due to extensive desolvation of the compound, coupled with the ability of the binding pocket to provide a full set of salt-bridging or hydrogen bonding partners for its polar groups. Consistent with this interpretation, the structure also suggests that the lower-affinity binding of iopanoic acid arises because replacement of the 3-hydroxyl by an amino group eliminates hydrogen bonding to Arg 257. This finding underscores the importance of polar interactions in high-affinity binding to albumin. PMID:21501503

  5. Serum albumin complexation of acetylsalicylic acid metabolites.

    PubMed

    Jurkowski, Wiktor; Porebski, Grzegorz; Obtułowicz, Krystyna; Roterman, Irena

    2009-06-01

    One possible origin of the type I hypersensitivity reaction is reaction of drugs such as acetylsalicylic acid and its metabolites being complexed with human serum albumin. Albumin, being transporting molecule abundant in blood plasma is able to bind large array of ligands varying from small single carbon particles to long hydrophobic tailed lipidic acids (e.g. myristic acid). This non specificity is possible because of multi domain scaffold and large flexibility of inter-domain loops, which results in serious reorientation of domains. Hypothesis that acetylsalicylic acid metabolites may play indirect role in activation of allergic reaction has been tested. Binding of acetylsalicylic acid metabolites in intra-domain space causes significant increase of liability of domains IIIA and IIIB. One of metabolites, salicyluric acid, once is bound causes distortion and partial unfolding of helices in domains IA, IIB and IIIB. Changed are both directions and amplitude of relative motions as well as intra-domain distances. In result albumin is able to cross-link of adjacent IgE receptors which subsequently starts allergic reaction. PMID:19689242

  6. Sulfation of Lower Chlorinated Polychlorinated Biphenyls Increases Their Affinity for the Major Drug-Binding Sites of Human Serum Albumin.

    PubMed

    Rodriguez, Eric A; Li, Xueshu; Lehmler, Hans-Joachim; Robertson, Larry W; Duffel, Michael W

    2016-05-17

    The disposition of toxicants is often affected by their binding to serum proteins, of which the most abundant in humans is serum albumin (HSA). There is increasing interest in the toxicities of environmentally persistent polychlorinated biphenyls (PCBs) with lower numbers of chlorine atoms (LC-PCBs) due to their presence in both indoor and outdoor air. PCB sulfates derived from metabolic hydroxylation and sulfation of LC-PCBs have been implicated in endocrine disruption due to high affinity-binding to the thyroxine-carrying protein, transthyretin. Interactions of these sulfated metabolites of LC-PCBs with HSA, however, have not been previously explored. We have now determined the relative HSA-binding affinities for a group of LC-PCBs and their hydroxylated and sulfated derivatives by selective displacement of the fluorescent probes 5-dimethylamino-1-naphthalenesulfonamide and dansyl-l-proline from the two major drug-binding sites on HSA (previously designated as Site I and Site II). Values for half-maximal displacement of the probes indicated that the relative binding affinities were generally PCB sulfate ≥ OH-PCB > PCB, although this affinity was site- and congener-selective. Moreover, specificity for Site II increased as the numbers of chlorine atoms increased. Thus, hydroxylation and sulfation of LC-PCBs result in selective interactions with HSA which may affect their overall retention and toxicity. PMID:27116425

  7. Interaction between curcumin and human serum albumin in the presence of excipients and the effect of binding on curcumin photostability.

    PubMed

    Vukićević, Milica; Tønnesen, Hanne Hjorth

    2016-06-01

    Curcumin (Cur) is known to bind to human serum albumin (HSA) which may lead to a reduced phototoxic effect of the compound in the presence of serum or saliva. The influence of excipients on the Cur-HSA binding was studied by HSA florescence quenching and Cur absorption and emission spectroscopy in the presence and absence of the selected excipients. Photostabilty of Cur in the presence of HSA was evaluated, as well as the effect of excipients on HSA bound Cur photodegradation. Cyclodextrins (CDs) (2-hydroxypropyl-β-cyclodextrin and 2-hydroxypropyl-γ-cyclodextrin) and polymers (polyethylene glycol 400, PEG 400 and Pluronic F-127, PF-127) were selected for the study. CDs and PF-127 seem to decrease Cur binding to HSA, probably through competitive binding. Cur was still bound to HSA in polyethylene glycol (PEG) solutions at the highest investigated concentration (5% w/v). However, high PEG concentration appears to have effect on the protein conformation, as shown by the fluorescence quenching study. Low Cur photostability in the presence of HSA could be improved by the addition of hydroxylpropyl-γ-cyclodextrin (HPγCD) to the samples, whereas PEG and PF-127 showed no effect. PMID:25716057

  8. Biodegradable human serum albumin nanoparticles as contrast agents for the detection of hepatocellular carcinoma by magnetic resonance imaging.

    PubMed

    Watcharin, Waralee; Schmithals, Christian; Pleli, Thomas; Köberle, Verena; Korkusuz, Hüdayi; Huebner, Frank; Zeuzem, Stefan; Korf, Hans W; Vogl, Thomas J; Rittmeyer, Claudia; Terfort, Andreas; Piiper, Albrecht; Gelperina, Svetlana; Kreuter, Jörg

    2014-05-01

    Tumor visualization by magnetic resonance imaging (MRI) and nanoparticle-based contrast agents may improve the imaging of solid tumors such as hepatocellular carcinoma (HCC). In particular, human serum albumin (HSA) nanoparticles appear to be a suitable carrier due to their safety and feasibility of functionalization. In the present study HSA nanoparticles were conjugated with gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA) using carbodiimide chemistry. The nanoparticles had a uniform spherical shape and a diameter of 235±19nm. For better optical visualization in vitro and in vivo, the HSA-Gd nanoparticles were additionally labeled with rhodamine 123. As shown by confocal microscopy and flow cytometry analysis, the fluorescent nanoparticles were readily taken up by Huh-7 hepatocellular carcinoma cells. After 24h incubation in blood serum, less than 5% of the Gd(III) was released from the particles, which suggests that this nanoparticulate system may be stable in vivo and, therefore, may serve as potentially safe T1 MRI contrast agent for MRI of hepatocellular carcinoma. PMID:24365328

  9. Affinity precipitation of human serum albumin using a thermo-response polymer with an L-thyroxin ligand

    PubMed Central

    2013-01-01

    Background Affinity precipitation has been reported as a potential technology for the purification of proteins at the early stage of downstream processing. The technology could be achieved using reversible soluble-insoluble polymers coupled with an affinity ligand to purify proteins from large volumes of dilute solution material such as fermentation broths or plasma. In this study, a thermo-response polymer was synthesized using N-methylol acrylamide, N-isopropyl acrylamide and butyl acrylate as monomers. The molecular weight of the polymer measured by the viscosity method was 3.06 × 104 Da and the lower critical solution temperature (LCST) was 28.0°C.The recovery of the polymer above the LCST was over 95.0%. Human serum albumin (HSA) is the most abundant protein in the human serum system, and it has important functions in the human body. High purity HSA is required in pharmaceuticals. Safe and efficient purification is a crucial process during HSA production. Results A thermo-response polymer was synthesized and L-thyroxin immobilized on the polymer as an affinity ligand to enable affinity precipitation of HSA. The LCST of the affinity polymer was 31.0°C and the recovery was 99.6% of its original amount after recycling three times. The optimal adsorption condition was 0.02 M Tris–HCl buffer (pH 7.0) and the HSA adsorption capacity was 14.9 mg/g polymer during affinity precipitation. Circular dichroism spectra and a ForteBio Octet system were used to analyze the interactions between the affinity polymer and HSA during adsorption and desorption. The recovery of total HSA by elution with 1.0 mol/L NaSCN was 93.6%. When the affinity polymer was applied to purification of HSA from human serum, HSA could be purified to single-band purity according to SDS-PAGE. Conclusion A thermo-response polymer was synthesized and L-thyroxin was attached to the polymer. Affinity precipitation was used to purify HSA from human serum. PMID:24341315

  10. Effects of DHLA-capped CdSe/ZnS quantum dots on the fibrillation of human serum albumin.

    PubMed

    Vannoy, Charles H; Leblanc, Roger M

    2010-08-26

    Nanoparticles (NPs) are extremely small in size and possess very large surface areas, which gives them unique properties and applications distinct from those of bulk systems. When exposed to biological fluid, these NPs may become coated with proteins and other biomolecules given their dynamic nature. Hence, there is a significant possibility of an enhanced rate of protein fibrillation by utilizing the NPs as nucleation centers and, thus, promoting fibril formation. Protein fibrillation is closely associated with many fatal human diseases, including neurodegenerative diseases and a variety of systemic amyloidoses. This topic of protein-NP interaction brings about many key issues and concerns, especially with respect to the potential risks to human health and the environment. Herein, we demonstrate the effects of specific NPs, semiconductor quantum dots (QDs), in the process of protein fibril formation from samples of human serum albumin (HSA). The protein-NP systems are analyzed by time-lapse Thioflavin T spectroscopy, Congo red binding assays, circular dichroism (CD), protein fluorescence spectroscopy, and transmission electron microscopy (TEM). Our experimental results illustrate that an increased rate of fibrillation occurs following a thermally activated mechanism in conjunction with the addition of NPs into the protein system. These results give rise to the understanding and possibility of controlling biological self-assembly processes for use in nanobiotechnology and nanomedicine. PMID:20681557

  11. Proteolytic processing of human serum albumin generates EPI-X4, an endogenous antagonist of CXCR4.

    PubMed

    Zirafi, Onofrio; Hermann, Patrick C; Münch, Jan

    2016-06-01

    The chemokine receptor CXCR4 is an important G protein-coupled receptor. Signaling via CXCL12 regulates a number of important biologic processes, including immune responses, organogenesis, or hematopoiesis. Dysregulation of CXCR4 signaling is associated with a variety of diseases, such as cancer development and metastasis, immunodeficiencies, or chronic inflammation. Here, we review our findings on endogenous peptide inhibitor of CXCR4 as a novel antagonist of CXCR4. This peptide is a 16-residue fragment of human serum albumin and was isolated as an inhibitor of CXCR4-tropic human immunodeficiency virus type 1 from a blood-derived peptide library. Endogenous peptide inhibitor of CXCR4 binds the second extracellular loop of CXCR4, thereby preventing engagement of CXCL12 and antagonizing the receptor. Consequently, endogenous peptide inhibitor of CXCR4 inhibits CXCL12-mediated migration of CXCR4-expressing cells in vitro, mobilizes hematopoietic stem cells, and suppresses inflammatory responses in vivo. We discuss the generation of endogenous peptide inhibitor of CXCR4, its relevance as biomarker for disease, and its role in human immunodeficiency virus/acquired immunodeficiency syndrome pathogenesis and cancer. Furthermore, we discuss why optimized endogenous peptide inhibitor of CXCR4 derivatives might have advantages over other CXCR4 antagonists. PMID:26965637

  12. Cell death pathway induced by resveratrol-bovine serum albumin nanoparticles in a human ovarian cell line

    PubMed Central

    GUO, LIYUAN; PENG, YAN; LI, YULIAN; YAO, JINGPING; ZHANG, GUANGMEI; CHEN, JIE; WANG, JING; SUI, LIHUA

    2015-01-01

    Resveratrol-bovine serum albumin nanoparticles (RES-BSANP) exhibit chemotherapeutic properties, which trigger apoptosis. The aim of the present study was to investigate the caspase-independent cell death pathway induced by RES-BSANP in human ovarian cancer SKOV3 cells and to analyze its mechanism. Morphological changes were observed by apoptotic body/cell nucleus DNA staining using inverted and fluorescence microscopy. The cell death pathway was determined by phosphatidylserine translocation. Western blot analysis was conducted to detect the activation of apoptosis-inducing factor (AIF), cytochrome c (Cyto c) and B-cell lymphoma 2-associated X protein (Bax). Apoptotic body and nuclear condensation and fragmentation were observed simultaneously following treatment with RES-BSANP. RES-BSANP induced apoptosis in a dose-dependent manner in the human ovarian cancer SKOV3 cells. The translocation of AIF from the mitochondria to the cytoplasm occurred earlier than that of Cyto c. In addition, Bax binding to the mitochondria was required for the release of AIF and Cyto c from the mitochondria. The AIF apoptosis pathway may present an alternative caspase-dependent apoptosis pathway in human ovarian cell death induced by RES-BSANP. Elucidation of this pathway may be critical for the treatment of cancer using high doses of RES-BSANP. PMID:25663913

  13. Pharmacokinetics and Tissue Distribution of Folate-Decorated Human Serum Albumin Loaded With Nano-Hydroxycamptothecin for Tumor Targeting.

    PubMed

    Wang, Wenchao; Liang, Hui; Sun, Baihe; Xu, Jialin; Zeng, Zhen; Zhao, Xiaojun; Li, Qingyong

    2016-06-01

    The goal of this work is to develop the method of preparing folate (FA)-decorated human serum albumin (HSA) loaded with nano-hydroxycamptothecin (nHCPT) nanoparticles (NPs) (FA-HSA-nHCPT-NPs) and to explore its antitumor activity in vivo and in vitro. FA-HSA-nHCPT-NPs were obtained by preparing nHCPT by a high-pressure homogenization technique followed with an anti-solvent method. The drug-loading efficiency of the FA-HSA-nHCPT-NPs was 7.8%. We adopted the human breast cancer cells (FA receptor-expressing MCF-7 cells) and BALB/c mice inoculated with human MCF-7 cells to determine the antitumor activity of FA-HSA-nHCPT-NPs in vitro and in vivo, respectively. The antitumor activity of FA-HSA-nHCPT-NPs was stronger than that of the raw HCPT in both conditions. Tissue distribution analysis showed that the FA-HSA-nHCPT-NPs carried more HCPT to tumors than the raw HCPT. The tumor inhibitory rate of FA-HSA-nHCPT-NPs was much higher compared with the raw HCPT. Th7us, the FA-HSA-nHCPT-NPs could serve as a viable delivery system with an obvious target effect on tumor. PMID:27129905

  14. Spectroscopic analysis of the impact of oxidative stress on the structure of human serum albumin (HSA) in terms of its binding properties

    NASA Astrophysics Data System (ADS)

    Maciążek-Jurczyk, M.; Sułkowska, A.

    2015-02-01

    Oxygen metabolism has an important role in the pathogenesis of rheumatoid arthritis (RA). Reactive oxygen species (ROS) are produced in the course of cellular oxidative phosphorylation and by activated phagocytic cells during oxidative bursts, exceed the physiological buffering capacity and result in oxidative stress. ROS result in oxidation of serum albumin, which causes a number of structural changes in the spatial structure, may influence the binding and cause significant drug interactions, particularly in polytherapy. During the oxidation modification of amino acid residues, particularly cysteine and methionine may occur. The aim of the study was to investigate the influence of oxidative stress on human serum albumin (HSA) structure and evaluate of possible alterations in the binding of the drug to oxidized human serum albumin (oHSA). HSA was oxidized by a chloramine-T (CT). CT reacts rapidly with sulfhydryl groups and at pH 7.4 the reaction was monitored by spectroscopic techniques. Modification of free thiol group in the Cys residue in HSA was quantitatively determined by the use of Ellman's reagent. Changes of albumin conformation were examined by comparison of modified (oHSA) and nonmodified human serum albumin (HSA) absorption spectra, emission spectra, red-edge shift (REES) and synchronous spectroscopy. Studies of absorption spectra indicated that changes in the value of absorbance associated with spectral changes in the region of 200-250 nm involve structural alterations in peptide backbone conformation. Synchronous fluorescence spectroscopy technique confirmed changes of position of tryptophanyl and tyrosyl residues fluorescent band caused by CT. Moreover analysis of REES effect allowed to observe structural changes caused by CT in the region of the hydrophobic pocket containing the tryptophanyl residue. Effect of oxidative stress on binding of anti-rheumatic drugs, sulfasalazine (SSZ) and sulindac (SLD) in the high and low affinity binding sites was

  15. Spectroscopic analysis of the impact of oxidative stress on the structure of human serum albumin (HSA) in terms of its binding properties.

    PubMed

    Maciążek-Jurczyk, M; Sułkowska, A

    2015-02-01

    Oxygen metabolism has an important role in the pathogenesis of rheumatoid arthritis (RA). Reactive oxygen species (ROS) are produced in the course of cellular oxidative phosphorylation and by activated phagocytic cells during oxidative bursts, exceed the physiological buffering capacity and result in oxidative stress. ROS result in oxidation of serum albumin, which causes a number of structural changes in the spatial structure, may influence the binding and cause significant drug interactions, particularly in polytherapy. During the oxidation modification of amino acid residues, particularly cysteine and methionine may occur. The aim of the study was to investigate the influence of oxidative stress on human serum albumin (HSA) structure and evaluate of possible alterations in the binding of the drug to oxidized human serum albumin (oHSA). HSA was oxidized by a chloramine-T (CT). CT reacts rapidly with sulfhydryl groups and at pH 7.4 the reaction was monitored by spectroscopic techniques. Modification of free thiol group in the Cys residue in HSA was quantitatively determined by the use of Ellman's reagent. Changes of albumin conformation were examined by comparison of modified (oHSA) and nonmodified human serum albumin (HSA) absorption spectra, emission spectra, red-edge shift (REES) and synchronous spectroscopy. Studies of absorption spectra indicated that changes in the value of absorbance associated with spectral changes in the region of 200-250 nm involve structural alterations in peptide backbone conformation. Synchronous fluorescence spectroscopy technique confirmed changes of position of tryptophanyl and tyrosyl residues fluorescent band caused by CT. Moreover analysis of REES effect allowed to observe structural changes caused by CT in the region of the hydrophobic pocket containing the tryptophanyl residue. Effect of oxidative stress on binding of anti-rheumatic drugs, sulfasalazine (SSZ) and sulindac (SLD) in the high and low affinity binding sites was

  16. Review of the rational use and adverse reactions to human serum albumin in the People’s Republic of China

    PubMed Central

    Zhou, Ting; Lu, Saihua; Liu, Xiufeng; Zhang, Ye; Xu, Feng

    2013-01-01

    Human serum albumin (HSA) is an ideal natural colloid that has been widely used in clinical practice for supplemental albumin or as a plasma substitute during therapeutic plasma exchanges to redress hypoproteinemia. However, a paucity of well-designed clinical trials, a lack of a clear cut survival benefit, and frequent case reports of adverse drug reaction (ADR) make the use of HSA controversial. This study aims to review and to comment on the reported ADRs of HSA in the People’s Republic of China, so as to provide the basis for rational HSA use in clinical settings. Data on the ADR case reports from HSA administration between January 1990 and December 2012 available from the China National Knowledge Infrastructure (CNKI) database, Wanfang data (WF), and Chinese Biomedical Literature (CBM) were reviewed. The reasons for using HSA, the types of ADRs, the causality of ADRs and the rationality for HSA administration were extracted and analyzed. In total, 61 cases of ADR reports were identified of which the primary disease of patients using HSA was malignant tumor (34.42%). The primary ADR was anaphylaxis (59.02%). Of the 61 cases, 30 were caused by irrational use of HSA. The most common irrational use was off-label use (56.67%), followed by inappropriate infusion rate. Therefore, we conclude that to avoid the occurrence of ADRs, guidelines for using HSA are needed to guarantee its rational use and HSA should be used strictly according to these guidelines. In addition, medical staff, including clinical pharmacists and nurses, should pay more attention to the patients who inject HSA to ensure its safe use in the clinic. PMID:24348023

  17. Molecular Structure-Affinity Relationship of Bufadienolides and Human Serum Albumin In Vitro and Molecular Docking Analysis

    PubMed Central

    Wang, Honglan; Zhang, Junfeng; Duan, Jinao; Ma, Hongyue; Wu, Qinan

    2015-01-01

    The development of bufadienolides as anti-tumor agents is limited due to poor pharmacokinetic properties regarding drug half-lives and toxicity in vivo. These serious factors might be improved by increasing the drug/albumin-binding ratio. This study therefore investigated the relationship between the structural properties of nine bufadienolides and their affinities for human serum albumin (HSA) by a fluorescence spectroscopy-based analysis and molecular docking. Fluorescence quenching data showed that the interaction of each bufadienolide with HSA formed a non-fluorescent complex, while thermodynamic parameters revealed negative ΔS and ΔH values, corresponding to changes in enthalpy and entropy, respectively. The structural differences between the various bufadienolides markedly influenced their binding affinity for HSA. With the exception of a C = O bond at the C12 position that decreased the binding affinity for HSA, other polar groups tended to increase the affinity, especially a hydroxyl (OH) group at assorted bufadienolide sites. The rank order of binding affinities for drugs with tri-hydroxyl groups was as follows: 11-OH > 5-OH > 16-OH; in addition, 16-acetoxy (OAc), 10-aldehyde and 14-epoxy constituents notably enhanced the binding affinity. Among these groups, 11-OH and 16-acetyl were especially important for a seamless interaction between the bufadienolides and HSA. Furthermore, molecular docking analysis revealed that either an 11-OH or a 16-OAc group spatially close to a five-membered lactone ring significantly facilitated the anchoring of these compounds within site I of the HSA pocket via hydrogen bonding (H-bonding) with Tyr150 or Lys199, respectively. In summary, bufadienolide structure strongly affects binding with HSA, and 11-OH or 16-OAc groups improve the drug association with key amino acid residues. This information is valuable for the prospective development of bufadienolides with improved pharmacological profiles as novel anti-tumor drugs

  18. Glycated human serum albumin isolated from poorly controlled diabetic patients impairs cholesterol efflux from macrophages: an investigation by mass spectrometry.

    PubMed

    Traldi, Pietro; Castilho, Gabriela; Sartori, Camila H; Machado-Lima, Adriana; Nakandakare, Edna R; Corrêa-Giannella, Maria Lucia C; Roverso, Marco; Porcu, Simona; Lapolla, Annunziata; Passarelli, Marisa

    2015-01-01

    Advanced glycation end-products impair ABCA-1-mediated cholesterol efflux by eliciting inflammation, the generation of reactive oxygen species and endoplasmatic reticulum (ER) stress. The glycation level of human serum albumin (HSA) from type 1 and type 2 diabetic patients was determined by matrix assisted laser desorption/ionization (MALDI) mass spectrometry and related to possible impairment of ER function and cellular cholesterol efflux. Comparison of the MALDI spectra from healthy and diabetic subjects allowed us to determine an increased HSA mean mass of 1297 Da for type 1 and 890 Da for type 2. These values reflect a mean condensation of at least 8 glucose units and 5 glucose units, respectively. Mouse peritoneal macrophages were treated with HSA from control, type 1 and type 2 diabetic subjects in order to measure the expression of Grp78, Grp94, protein disulfide isomerase (PDI), calreticulin (CRT) and ABCA-1. (14)C-cholesterol overloaded-J774 macrophages were treated with HSA from control and diabetic subjects and further incubated with apo A-1 to determine the cholesterol efflux. Combined analyses comprising HSA from type 1 and type 2 diabetic patients were performed in cellular functional assays. In macrophages, PDI expression increased 89% and CRT 3.4 times in comparison to HSA from the control subjects. ABCA-1 protein level and apo A-I mediated cholesterol efflux were, respectively, 50% and 60% reduced in macrophages exposed to HSA from type 1 and type 2 diabetic patients when compared to that exposed to HSA from control subjects. We provide evidence that the level of glycation that occurs in albumin in vivo damages the ER function related to the impairment in macrophage reverse cholesterol transport and so contributes to atherosclerosis in diabetes. PMID:26307703

  19. Molecular structure-affinity relationship of bufadienolides and human serum albumin in vitro and molecular docking analysis.

    PubMed

    Zhou, Jing; Lu, Guodi; Wang, Honglan; Zhang, Junfeng; Duan, Jinao; Ma, Hongyue; Wu, Qinan

    2015-01-01

    The development of bufadienolides as anti-tumor agents is limited due to poor pharmacokinetic properties regarding drug half-lives and toxicity in vivo. These serious factors might be improved by increasing the drug/albumin-binding ratio. This study therefore investigated the relationship between the structural properties of nine bufadienolides and their affinities for human serum albumin (HSA) by a fluorescence spectroscopy-based analysis and molecular docking. Fluorescence quenching data showed that the interaction of each bufadienolide with HSA formed a non-fluorescent complex, while thermodynamic parameters revealed negative ΔS and ΔH values, corresponding to changes in enthalpy and entropy, respectively. The structural differences between the various bufadienolides markedly influenced their binding affinity for HSA. With the exception of a C = O bond at the C12 position that decreased the binding affinity for HSA, other polar groups tended to increase the affinity, especially a hydroxyl (OH) group at assorted bufadienolide sites. The rank order of binding affinities for drugs with tri-hydroxyl groups was as follows: 11-OH > 5-OH > 16-OH; in addition, 16-acetoxy (OAc), 10-aldehyde and 14-epoxy constituents notably enhanced the binding affinity. Among these groups, 11-OH and 16-acetyl were especially important for a seamless interaction between the bufadienolides and HSA. Furthermore, molecular docking analysis revealed that either an 11-OH or a 16-OAc group spatially close to a five-membered lactone ring significantly facilitated the anchoring of these compounds within site I of the HSA pocket via hydrogen bonding (H-bonding) with Tyr150 or Lys199, respectively. In summary, bufadienolide structure strongly affects binding with HSA, and 11-OH or 16-OAc groups improve the drug association with key amino acid residues. This information is valuable for the prospective development of bufadienolides with improved pharmacological profiles as novel anti-tumor drugs

  20. Advanced Glycation-Modified Human Serum Albumin Evokes Alterations in Membrane and Eryptosis in Erythrocytes.

    PubMed

    Awasthi, Saurabh; Gayathiri, S K; Ramya, R; Duraichelvan, R; Dhason, A; Saraswathi, N T

    2015-11-01

    Increased burden of advanced glycation end-products (AGEs) in case of hyperglycemic conditions leads to the development of retinopathy, nephropathy, and cardiovascular and neurological disorders such as Alzheimer's disease. AGEs are considered as pro-oxidants, and their accumulation increases the oxidative stress. The prolonged exposure to these AGEs is the fundamental cause of chronic oxidative stress. Abnormal morphology of red blood cells (RBCs) and excessive eryptosis has been observed in diabetes, glomerulonephritis, dyslipidemia, and obesity, but yet the contribution of extracellular AGEs remains undefined. In this study, we investigated the effect of AGEs on erythrocytes to determine their impact on the occurrence of different pathological forms of these blood cells. Specifically, carboxymethyllysine (CML), carboxyethyllysine (CEL), and Arg-pyrimidine (Arg-P) which have been reported to be the most pre-dominant AGEs formed under in vivo conditions were used in this study. Results suggested the eryptotic properties of CML, CEL, and Arg-P for RBCs, which were evident from the highly damaged cell membrane and occurrence of abnormal morphologies. Methylglyoxal-modified albumin showed more severe effects, which can be attributed to the high reactivity and pro-oxidant nature of glycation end products. These findings suggest the possible role of AGE-modified albumin towards the morphological changes in erythrocyte's membrane associated with diabetic conditions. PMID:26276445

  1. [Study of interaction between levofloxacin and human serum albumin by multi-spectroscopic and molecular modeling methods].

    PubMed

    Huang, Fang; Dong, Cheng-Yu; Zhang, Li-Yang; Liu, Ying

    2014-04-01

    Levofloxacin (LVFX) is widely used in clinical treatment due to it has a broad spectrum of in vitro activity against Gram-positive and Gram-negative bacteria. Human serum albumin (HSA) is the most abundant protein in plasma and constitutes approximately half of the protein founds in human blood. And more than 90% of the drugs used in people are bound to HSA. So it is commonly used for the investigation of drug-serum albumin interaction because the binding will significantly influence the absorption, distribution, metabolism excretion, stability and toxicity of the drugs. Therefore, detailed investigating the interaction of LVFX with HSA is very important to understand the pharmacokinetic behavior of the LVFX. In this paper, the interaction of LVFX and HSA has been studied fluorescence, UV, Fourier transform infrared (FT-IR) and molecular modeling method. The results indicated that LVFX induced the intrinsic fluorescence quenching of HSA though a static quenching procedure, and the effective binding constants (K(a)) were calculated to be 9.44 x 10(4) L x mol(-1) (294 K) and 2.74 x 10(4) L x mol(-1) (310 K) by used of the Stern-Volmer equation. According to the Vant's Hoff equation, the reaction was characterized by negative enthalpy (deltaH = -59.00 kJ x mol(-1)) and negative entropy (delta S = - 105.38 J x mol(-1) x K(-1)), indicated that the predominant forces in the LVFX-HSA complex were hydrogen bonding and van der Waals forces. By displacement measurements, the specific binding of LVFX in the vicinity of Site I of HSA was clarified. The binding distance of 3.66 nm between Trp214 and HSA was obtained by the Förster theory on resonance energy transfer. Furthermore, the binding details between LVFX and HSA were further confirmed by molecular docking studies, which were consistent with the experimental results. The alternations of protein secondary structure were calculated from FT-IR spectra. Upon formation of LVFX-HSA complexes, the amount of alpha

  2. Study on the interaction of artificial and natural food colorants with human serum albumin: A computational point of view.

    PubMed

    Masone, Diego; Chanforan, Céline

    2015-06-01

    Due to the high amount of artificial food colorants present in infants' diets, their adverse effects have been of major concern among the literature. Artificial food colorants have been suggested to affect children's behavior, being hyperactivity the most common disorder. In this study we compare binding affinities of a group of artificial colorants (sunset yellow, quinoline yellow, carmoisine, allura red and tartrazine) and their natural industrial equivalents (carminic acid, curcumin, peonidin-3-glucoside, cyanidin-3-glucoside) to human serum albumin (HSA) by a docking approach and further refinement through atomistic molecular dynamics simulations. Due to the protein-ligand conformational interface complexity, we used collective variable driven molecular dynamics to refine docking predictions and to score them according to a hydrogen-bond criterion. With this protocol, we were able to rank ligand affinities to HSA and to compare between the studied natural and artificial food additives. Our results show that the five artificial colorants studied bind better to HSA than their equivalent natural options, in terms of their H-bonding network, supporting the hypothesis of their potential risk to human health. PMID:25935119

  3. Probing the interaction of a therapeutic flavonoid, pinostrobin with human serum albumin: multiple spectroscopic and molecular modeling investigations.

    PubMed

    Feroz, Shevin R; Mohamad, Saharuddin B; Bakri, Zarith S D; Malek, Sri N A; Tayyab, Saad

    2013-01-01

    Interaction of a pharmacologically important flavonoid, pinostrobin (PS) with the major transport protein of human blood circulation, human serum albumin (HSA) has been examined using a multitude of spectroscopic techniques and molecular docking studies. Analysis of the fluorescence quenching data showed a moderate binding affinity (1.03 × 10(5) M(-1) at 25°C) between PS and HSA with a 1∶1 stoichiometry. Thermodynamic analysis of the binding data (ΔS = +44.06 J mol(-1) K(-1) and ΔH = -15.48 kJ mol(-1)) and molecular simulation results suggested the involvement of hydrophobic and van der Waals forces, as well as hydrogen bonding in the complex formation. Both secondary and tertiary structural perturbations in HSA were observed upon PS binding, as revealed by intrinsic, synchronous, and three-dimensional fluorescence results. Far-UV circular dichroism data revealed increased thermal stability of the protein upon complexation with PS. Competitive drug displacement results suggested the binding site of PS on HSA as Sudlow's site I, located at subdomain IIA, and was well supported by the molecular modelling data. PMID:24116089

  4. Probing the Interaction of a Therapeutic Flavonoid, Pinostrobin with Human Serum Albumin: Multiple Spectroscopic and Molecular Modeling Investigations

    PubMed Central

    Feroz, Shevin R.; Mohamad, Saharuddin B.; Bakri, Zarith S. D.; Malek, Sri N. A.; Tayyab, Saad

    2013-01-01

    Interaction of a pharmacologically important flavonoid, pinostrobin (PS) with the major transport protein of human blood circulation, human serum albumin (HSA) has been examined using a multitude of spectroscopic techniques and molecular docking studies. Analysis of the fluorescence quenching data showed a moderate binding affinity (1.03 × 105 M−1 at 25°C) between PS and HSA with a 1∶1 stoichiometry. Thermodynamic analysis of the binding data (ΔS = +44.06 J mol−1 K−1 and ΔH = −15.48 kJ mol−1) and molecular simulation results suggested the involvement of hydrophobic and van der Waals forces, as well as hydrogen bonding in the complex formation. Both secondary and tertiary structural perturbations in HSA were observed upon PS binding, as revealed by intrinsic, synchronous, and three-dimensional fluorescence results. Far-UV circular dichroism data revealed increased thermal stability of the protein upon complexation with PS. Competitive drug displacement results suggested the binding site of PS on HSA as Sudlow’s site I, located at subdomain IIA, and was well supported by the molecular modelling data. PMID:24116089

  5. Expression and bioactivity of recombinant human serum albumin and dTMP fusion proteins in CHO cells.

    PubMed

    Ru, Yi; Zhi, Dejuan; Guo, Dingding; Wang, Yong; Li, Yang; Wang, Meizhu; Wei, Suzhen; Wang, Haiqing; Wang, Na; Che, Jingmin; Li, Hongyu

    2016-09-01

    The 14-amino acid (IEGPTLRQWLAARA) thrombopoietin mimetic peptide (TMP) shares no sequence homology with native thrombopoietin (TPO). When dimerized, it displays a high-binding affinity for the TPO receptor and has equipotent bioactivity with recombinant human TPO (rhTPO) in stimulating proliferation and maturation of megakaryocytes in vitro. However, TMP is limited for clinical usage because of its short half-life in vivo. In this study, fusion proteins that composed of tandem dimer of TMP (dTMP) genetically fused at the C- or N-terminus of human serum albumin (HSA) were separately expressed in Chinese hamster ovary (CHO) cells. In vitro bioactivity assays showed that purified fusion proteins promoted the proliferation of megakaryocytes in a dose-dependent manner and activated signal transducer and activator of transcription (STAT) pathway in TPO receptor-dependent manner. Following subcutaneous administration, both HSA-dTMP and dTMP-HSA significantly elevated peripheral platelet counts in normal mice in a dose-dependent manner. In addition, fusion with HSA successfully prolonged dTMP half-life in mice. However, when HSA was fused at the C-terminus of dTMP, the bioactivity of dTMP-HSA was about half of that of HSA-dTMP. In conclusion, these results suggested that HSA/dTMP fusion proteins might be potential drugs for thrombocytopenia and, when HSA was fused at the N-terminus of dTMP, the fusion protein had a higher activity. PMID:27115755

  6. Investigation of the interaction between quercetin and human serum albumin by multiple spectra, electrochemical impedance spectra and molecular modeling.

    PubMed

    Dai, Jie; Zou, Ting; Wang, Li; Zhang, Yezhong; Liu, Yi

    2014-12-01

    Quercetin (Qu), a flavonoid compound, exists widely in the human diet and exhibits a variety of pharmacological activities. This work is aimed at studying the effect of Qu on the bioactive protein, human serum albumin (HSA) under simulated biophysical conditions. Multiple spectroscopic methods (including fluorescence and circular dichroism), electrochemical impedance spectra (EIS) and molecular modeling were employed to investigate the interaction between Qu and HSA. The fluorescence quenching and EIS experimental results showed that the fluorescence quenching of HSA was caused by formation of a Qu-HSA complex in the ground state, which belonged to the static quenching mechanism. Based on the calculated thermodynamic parameters, it concluded that the interaction was a spontaneous process and hydrogen bonds combined with van der Waal's forces played a major role in stabilizing the Qu-HSA complex. Molecular modeling results demonstrated that several amino acids participated in the binding process and the formed Qu-HSA complex was stabilized by H-bonding network at site I in sub-domain IIA, which was further confirmed by the site marker competitive experiments. The evidence from circular dichroism (CD) indicated that the secondary structure and microenvironment of HSA were changed. Alterations in the conformation of HSA were observed with a reduction in the amount of α helix from 59.9% (free HSA) to 56% (Qu-HSA complex), indicating a slight unfolding of the protein polypeptides. PMID:24801949

  7. Caffeic acid phenethyl ester exhibiting distinctive binding interaction with human serum albumin implies the pharmacokinetic basis of propolis bioactive components.

    PubMed

    Li, Hongliang; Wu, Fan; Tan, Jing; Wang, Kai; Zhang, Cuiping; Zheng, Huoqing; Hu, Fuliang

    2016-04-15

    Caffeic acid phenethyl ester (CAPE), as one of the major bioactive components present in propolis, exhibits versatile bioactivities, especially for its potent cytotoxic effects on several cancer cell models. To understand the pharmacokinetic characteristics of CAPE, the binding interaction between CAPE and human serum albumin (HSA) was investigated in vitro using multiple spectroscopic methods and molecular docking. The results reveal that CAPE exhibits a distinctive binding interaction with HSA comparing with other propolis components. The association constant K(A) (L mol(-1)) of the binding reaches 10(6) order of magnitude, which is significantly stronger than the other components of propolis. Based on the theory of fluorescence resonance energy transfer, the binding distance was calculated as 5.7 nm, which is longer than that of the other components of propolis. The thermodynamic results indicate that the binding is mainly driven by hydrogen bonds and van der Waals force. The docking and drugs (warfarin and ibuprofen) competitive results show that CAPE is located in the subdomain IIA (Sudlow's site I, FA7) of HSA, and Gln196 and Lys199 contribute to the hydrogen bonds. Circular dichroism spectra suggest an alteration of the secondary structure of HSA due to its partial unfolding in the presence of CAPE. PMID:26829518

  8. Synthesis, cytotoxicity assessment, and interaction and docking of novel palladium(II) complexes of imidazole derivatives with human serum albumin.

    PubMed

    Eslami Moghadam, Mahboube; Divsalar, Adeleh; Abolhosseini Shahrnoy, Abdolghafar; Saboury, Ali Akbar

    2016-08-01

    Imidazole analogs are the agents that attract both bioinorganic chemist and drug designer. Numerous methods have been proposed for synthesis of imidazole derivatives. In this study, a series of heterocyclic system with p-conjugated system such as 2-aryl-imidazo[4,5-f][1,10]phenanthroline analogs were synthesized. Then, three new palladium(II) complexes containing 2-(Furan-2-yl)-1H-Imidazo[4,5-f][1,10]Phenanthroline (FIP) and 2-(thiophen-2-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (TIP) ligands were synthesized. The structures of the compounds, [Pd(Phen)(TIP)](NO3)2, [Pd(Phen)(FIP)](NO3)2, and [Pd(FIP)2]Cl were determined by spectroscopic methods and elemental analysis. Biological activity of the complexes synthesized was assessed against chronic myelogenous leukemia cell line, K562. Also, the interactions of human serum albumin with complexes were investigated using isothermal titration in the Tris buffer, pH 7.4. According to the results obtained, it was found that there is a set of six binding sites for these complexes on HSA with positive cooperativity in the binding process. Docking technique was also applied to confirm the experimental results. The results showed that smaller complexes have higher interaction affinity. PMID:26338667

  9. Study of non-covalent interactions between MRI contrast agents and human serum albumin by NMR diffusometry.

    PubMed

    Henoumont, C; Vander Elst, L; Laurent, S; Muller, Robert N

    2009-06-01

    The NMR diffusometry technique, based on the measurement of the diffusion coefficient of a ligand in the absence and in the presence of its macromolecular partner, was used to study the affinity for human serum albumin (HSA) of four gadolinium complexes, potential or already used magnetic resonance imaging contrast agents. Diamagnetic lanthanum(III) ion or europium(III) ion, which has the advantage of shifting the NMR signals far away from those of the macromolecule, was used to avoid the excessive broadening of the NMR signals induced by the gadolinium(III) ion. Titration experiments, in which the HSA concentration was kept constant and the concentration of the europium or lanthanum chelate was varied, were performed to evaluate the association constant and the number of binding sites. Some additional information about the kinetics of the exchange between the free and the bound chelate was also obtained. Competition experiments with ibuprofen and salicylate, which are ligands with a known affinity for the macromolecule and for which the binding site is known, were also performed to get information about the binding site of the contrast agents. PMID:19241095

  10. Dansyl labeling to modulate the relative affinity of bile acids for the binding sites of human serum albumin.

    PubMed

    Rohacova, Jana; Sastre, German; Marin, M Luisa; Miranda, Miguel A

    2011-09-01

    Binding of natural bile acids to human serum albumin (HSA) is an important step in enterohepatic circulation and provides a measure of liver function. In this article, we report on the use of four dansyl (Dns) derivatives of cholic acid (ChA) to demonstrate a regiodifferentiation in their relative affinity for the two binding sites of HSA. Using both steady-state and time-resolved fluorescence, formation of Dns-ChA@HSA complexes was confirmed; the corresponding binding constants were determined, and their distribution between bulk solution and HSA microenvironment was estimated. By means of energy transfer from Trp to the Dns moiety, donor-acceptor distances were estimated (21-25 Å) and found to be compatible with both site 1 and site 2 occupancies. Nevertheless, titration using warfarin and ibuprofen as specific displacement probes clearly indicated that 3α- and 3β-Dns-ChA bind to HSA at site 2, whereas their C-7 regioisomers bind to HSA at site 1. Furthermore, the C-3-labeled compounds are displaced by lithocholic acid, whereas they are insensitive to ChA, confirming the assumption that the former binds to HSA at site 2. Thus, Dns labeling provides a useful tool to modulate the relative affinity of ChA to the major binding sites of HSA and, in combination with other fluorescent ChA analogs, to mimic the binding behavior of natural bile acids. PMID:21797258

  11. Studies on the synthesis, characterization, human serum albumin binding and biological activity of single chain surfactant-cobalt(III) complexes.

    PubMed

    Vignesh, G; Sugumar, K; Arunachalam, S; Vignesh, S; Arthur James, R; Arun, R; Premkumar, K

    2016-03-01

    The interaction of surfactant-cobalt(III) complexes [Co(bpy)(dien)TA](ClO4)3 · 3H2O (1) and [Co(dien)(phen)TA](ClO4)3 · 4H2O (2), where bpy = 2,2'-bipyridine, dien = diethylenetriamine, phen = 1,10-phenanthroline and TA = tetradecylamine with human serum albumin (HSA) under physiological conditions was analyzed using steady state, synchronous, 3D fluorescence, UV/visabsorption and circular dichroism spectroscopic techniques. The results show that these complexes cause the fluorescence quenching of HSA through a static mechanism. The binding constant (Kb ) and number of binding-sites (n) were obtained at different temperatures. The corresponding thermodynamic parameters (∆G°, ∆H° and ∆S°) and Ea were also obtained. According to Förster's non-radiation energy transfer theory, the binding distance (r) between the complexes and HSA were calculated. The results of synchronous and 3D fluorescence spectroscopy indicate that the binding process has changed considerably the polarity around the fluorophores, along with changes in the conformation of the protein. The antimicrobial and anticancer activities of the complexes were tested and the results show that the complexes have good activities against pathogenic microorganisms and cancer cells. PMID:26250655

  12. Multifunctional Effect of Human Serum Albumin Reduces Alzheimer's Disease Related Pathologies in the 3xTg Mouse Model.

    PubMed

    Ezra, Assaf; Rabinovich-Nikitin, Inna; Rabinovich-Toidman, Polina; Solomon, Beka

    2015-01-01

    Alzheimer's disease (AD), the prevalent dementia in the elderly, involves many related and interdependent pathologies that manifests simultaneously, eventually leading to cognitive impairment and death. No treatment is currently available; however, an agent addressing several key pathologies simultaneously has a better therapeutic potential. Human serum albumin (HSA) is a highly versatile protein, harboring multifunctional properties that are relevant to key pathologies underlying AD. This study provides insight into the mechanism for HSA's therapeutic effect. In vivo, a myriad of beneficial effects were observed by pumps infusing HSA intracerebroventricularly, for the first time in an AD 3xTg mice model. A significant effect on amyloid-β (Aβ) pathology was observed. Aβ1-42, soluble oligomers, and total plaque area were reduced. Neuroblastoma SHSY5Y cell line confirmed that the reduction in Aβ1-42 toxicity was due to direct binding rather than other properties of HSA. Total and hyperphosphorylated tau were reduced along with an increase in tubulin, suggesting increased microtubule stability. HSA treatment also reduced brain inflammation, affecting both astrocytes and microglia markers. Finally, evidence for blood-brain barrier and myelin integrity repair was observed. These multidimensional beneficial effects of intracranial administrated HSA, together or individually, contributed to an improvement in cognitive tests, suggesting a non-immune or Aβ efflux dependent means for treating AD. PMID:26682687

  13. Synthesis, characterization and the interaction of some new water-soluble metal Schiff base complexes with human serum albumin

    NASA Astrophysics Data System (ADS)

    Asadi, Mozaffar; Asadi, Zahra; Sadi, Somaye Barzegar; Zarei, Leila; Baigi, Fatemeh Moosavi; Amirghofran, Zahra

    2014-03-01

    Some new water-soluble Schiff base complexes of Na2[M(L)(H2O)n]; (M = Zn, Cu, Ni, Mn) with a new water-soluble Schiff base ligand where L denotes an asymmetric N2O2 Schiff base ligands; N,N";-bis(5-sulfosalicyliden)-3,4-diaminobenzophenone (5-SO3-3,4-salbenz) were synthesized and characterized. The formation constants of the water soluble Schiff base complexes were calculated by Ketelaar's equation. The theoretical molecular structure for the complexes was computed by using the HF method and the 6-311G basis set. The mechanism of binding of Na2[M(L)(H2O)n] with human serum albumin (HSA) was studied by fluorescence spectroscopic technique. The results of fluorescence titration showed that the intrinsic fluorescence of HSA was quenched by the complexes; which was rationalized in terms of the dynamic quenching mechanism. The values of Stern-Volmer constants, quenching rate constants, binding constants, binding sites and average aggregation number of HSA have been determined. The thermodynamic parameters, were calculated by van't Hoff equation, indicate that the binding is entropy driven and enthalpically disfavored. Based on the Förster theory of non-radiation energy transfer, the efficiency of energy transfer and the distance between the donor (Trp residues) and the acceptor (complex) were obtained. Finally, the growth inhibitory effects of the complexes toward the K562 cancer cell line were measured.

  14. Generation of TALE nickase-mediated gene-targeted cows expressing human serum albumin in mammary glands

    PubMed Central

    Luo, Yan; Wang, Yongsheng; Liu, Jun; Cui, Chenchen; Wu, Yongyan; Lan, Hui; Chen, Qi; Liu, Xu; Quan, Fusheng; Guo, Zekun; Zhang, Yong

    2016-01-01

    Targeting exogenous genes at milk protein loci via gene-targeting technology is an ideal strategy for producing large quantities of pharmaceutical proteins. Transcription- activator-like effector (TALE) nucleases (TALENs) are an efficient genome-editing tool. However, the off-target effects may lead to unintended gene mutations. In this study, we constructed TALENs and TALE nickases directed against exon 2 of the bovine β-lactoglobulin (BLG) locus. The nickases can induce a site-specific DNA single-strand break, without inducing double-strand break and nonhomologous end joining mediated gene mutation, and lower cell apoptosis rate than TALENs. After co-transfecting the bovine fetal fibroblasts with human serum albumin (HSA) gene-targeting vector and TALE nickase expression vectors, approximately 4.8% (40/835) of the cell clones contained HSA at BLG locus. Unexpectedly, one homozygous gene-targeted cell clone (1/835, 0.1%) was obtained by targeting both alleles of BLG in a single round of transfection. The recombinant protein mimicking the endogenous BLG was highly expressed and correctly folded in the mammary glands of the targeted cows, and the expression level of HSA was significantly increased in the homozygous targeted cows. Results suggested that the combination of TALE nickase-mediated gene targeting and somatic cell nuclear transfer is a feasible and safe approach in producing gene-targeted livestock. PMID:26853907

  15. Study on the interaction of the epilepsy drug, zonisamide with human serum albumin (HSA) by spectroscopic and molecular docking techniques

    NASA Astrophysics Data System (ADS)

    Shahabadi, Nahid; Khorshidi, Aref; Moghadam, Neda Hossinpour

    2013-10-01

    In the present investigation, an attempt has been made to study the interaction of zonisamide (ZNS) with the transport protein, human serum albumin (HSA) employing UV-Vis, fluorometric, circular dichroism (CD) and molecular docking techniques. The results indicated that binding of ZNS to HSA caused strong fluorescence quenching of HSA through static quenching mechanism, hydrogen bonds and van der Waals contacts are the major forces in the stability of protein ZNS complex and the process of the binding of ZNS with HSA was driven by enthalpy (ΔH = -193.442 kJ mol-1). The results of CD and UV-Vis spectroscopy showed that the binding of this drug to HSA induced conformational changes in HSA. Furthermore, the study of molecular docking also indicated that zonisamide could strongly bind to the site I (subdomain IIA) of HSA mainly by hydrophobic interaction and there were hydrogen bond interactions between this drug and HSA, also known as the warfarin binding site.

  16. Study of the effect of Cal-Red on the secondary structure of human serum albumin by spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Dong, Lijun; Chen, Xingguo; Hu, Zhide

    2007-11-01

    The effect of Cal-Red on the structure of human serum albumin (HSA) was studied using Resonance light scattering (RLS), Fourier transformed Infrared (FT-IR) and Circular dichroism (CD) spectroscopic methods. The RLS spectroscopic results show that the RLS intensity of HSA was significantly increased in the presence of Cal-Red. The binding parameters of HSA with Cal-Red were studied at different temperatures of 289, 299, 309 and 319 K at pH 4.1. It is indicated by the Scatchard plots that the binding constant K decreased from 4.03 × 10 8 to 7.59 × 10 7 l/mol and the maximum binding number N decreased from 215 to 152 with increasing the temperature, respectively. The binding process was exothermic and spontaneous, as indicated by the thermodynamic analyses, and the major part of the binding energy is hydrophobic interaction. The enthalpy change Δ H0, the free energy change Δ G0 and the entropy change Δ S0 of 289 K were calculated to be -42.75 kJ/mol, -47.56 kJ/mol and 16.66 J/mol K, respectively. The alterations of protein secondary structure in the presence of Cal-Red in aqueous solution were quantitatively calculated from FT-IR and CD spectroscopy with reductions of α-helices content about 5%, β-turn from 10% to 2% and with increases of β-sheet from 38% to 51%.

  17. A fluorescence-based high throughput assay for the determination of small molecule–human serum albumin protein binding

    PubMed Central

    McCallum, Megan M.; Pawlak, Alan J.; Shadrick, William R.; Simeonov, Anton; Jadhav, Ajit; Yasgar, Adam; Maloney, David J.; Arnold, Leggy A.

    2014-01-01

    Herein, we describe the development of a fluorescence-based high throughput assay to determine the small molecule binding towards human serum albumin (HSA). This innovative competition assay is based on the use of a novel fluorescent small molecule Red Mega 500 with unique spectroscopic and binding properties. The commercially available probe displays a large fluorescence intensity difference between the protein-bound and protein-unbound state. The competition of small molecules for HSA binding in the presence of probe resulted in low fluorescence intensities. The assay was evaluated with the LOPAC small molecule library of 1280 compounds identifying known high protein binders. The small molecule competition of HSA–Red Mega 500 binding was saturable at higher compound concentrations and exhibited IC50 values between 3–24 μM. The compound affinity towards HSA was confirmed by isothermal titration calorimetry indicating that the new protein binding assay is a valid high throughput assay to determine plasma protein binding. PMID:24390461

  18. Interaction of meropenem with 'N' and 'B' isoforms of human serum albumin: a spectroscopic and molecular docking study.

    PubMed

    Rehman, Md Tabish; Ahmed, Sarfraz; Khan, Asad U

    2016-09-01

    Carbapenems are used to control the outbreak of β-lactamases expressing bacteria. The effectiveness of drugs is influenced by its interaction with human serum albumin (HSA). Strong binding of carbapenems to HSA may lead to decreased bioavailability of the drug. The non-optimal drug dosage will provide a positive selection pressure on bacteria to develop resistance. Here, we investigated the interaction between meropenem and HSA at physiological pH 7.5 (N-isoform HSA) and non-physiological pH 9.2 (B-isoform HSA). Results showed that meropenem quenches the fluorescence of both 'N' and 'B' isoforms of HSA (ΔG < 0 and binding constant ~10(4) M(-1)). Electrostatic interactions and van der Waal interactions along with H-bonds stabilized the complex of meropenem with 'N' and 'B' isoforms of HSA, respectively. Molecular docking results revealed that meropenem binds to HSA near Sudlow's site II (subdomain IIIA) close to Trp-214 with a contribution of a few residues of subdomain IIA. CD spectroscopy showed a change in the conformation of both the isoforms of HSA upon meropenem binding. The catalytic efficiency of HSA (only N-isoform) on p-nitrophenyl acetate was increased primarily due to a decrease in Km and an increase in kcat values. This study provides an insight into the molecular basis of interaction between meropenem and HSA. PMID:26372227

  19. Determination of human serum alpha1-acid glycoprotein and albumin binding of various marketed and preclinical kinase inhibitors.

    PubMed

    Zsila, Ferenc; Fitos, Ilona; Bencze, Gyula; Kéri, György; Orfi, László

    2009-01-01

    There are about 380 protein kinase inhibitors in drug development as of today and 15 drugs have been marketed already for the treatment of cancer. This time 139 validated kinase targets are in the focus of drug research of pharmaceutical companies and big efforts are made for the development of new, druglike kinase inhibitors. Plasma protein binding is an important factor of the ADME profiling of a drug compound. Human serum albumin (HSA) and alpha(1)-acid glycoprotein (AAG) are the most relevant drug carriers in blood plasma. Since previous literature data indicated that AAG is the principal plasma binding component of some kinase inhibitors the present work focuses on the comprehensive evaluation of AAG binding of a series of marketed and experimental kinase inhibitors by using circular dichroism (CD) spectroscopy approach. HSA binding was also evaluated by affinity chromatography. Protein binding interactions of twenty-six kinase inhibitors are characterized. The contribution of AAG and HSA binding data to the pharmacokinetic profiles of the investigated therapeutic agents is discussed. Structural, biological and drug binding properties of AAG as well as the applicability of the CD method in studying drug-protein binding interactions are also briefly reviewed. PMID:19519376

  20. Non-covalent attachment of silver nanoclusters onto single-walled carbon nanotubes with human serum albumin as linking molecule

    NASA Astrophysics Data System (ADS)

    Rodríguez-Galván, Andrés; Heredia, Alejandro; Amelines-Sarria, Oscar; Rivera, Margarita; Medina, Luis A.; Basiuk, Vladimir A.

    2015-03-01

    The attachment of silver nanoclusters (AgNCs) onto single-walled carbon nanotubes (SWNTs) for the formation of integrated fluorescence sites has attracted much attention due their potential applications as biological probes and nanovectors in theragnosis. Here, we report the preparation through assembly of fluorescent quasi 1-D nanomaterial based on SWNTs and silver nanoclusters (AgNCs) non-covalently attached to human serum albumin as biological linker. The fluorescent SWNT-AgNCs-HSA conjugates were characterized by atomic force microscopy, high-resolution transmission electron microscopy (HRTEM), high angle annular dark field scanning TEM (HAADF-STEM), fluorescent and UV-vis spectroscopy. The above techniques confirmed that AgNCs were non-covalently attached onto the external surface of SWNTs. In addition, it was observed that the modification did not affect the optical properties of the synthesized AgNCs since the absorption spectra and fluorescence under UV irradiation (λ = 365 nm) remain the same. The effect of the functionalized systems was tested on mammal red blood cells (RBCs) and it was found that their structural integrity was compromised by the conjugates, limiting their biological and medical applications.

  1. Safety assessment of genetically modified rice expressing human serum albumin from urine metabonomics and fecal bacterial profile.

    PubMed

    Qi, Xiaozhe; Chen, Siyuan; Sheng, Yao; Guo, Mingzhang; Liu, Yifei; He, Xiaoyun; Huang, Kunlun; Xu, Wentao

    2015-02-01

    The genetically modified (GM) rice expressing human serum albumin (HSA) is used for non-food purposes; however, its food safety assessment should be conducted due to the probability of accidental mixture with conventional food. In this research, Sprague Dawley rats were fed diets containing 50% (wt/wt) GM rice expressing HSA or non-GM rice for 90 days. Urine metabolites were detected by (1)H NMR to examine the changes of the metabolites in the dynamic process of metabolism. Fecal bacterial profiles were detected by denaturing gradient gel electrophoresis to reflect intestinal health. Additionally, short chain fatty acids and fecal enzymes were investigated. The results showed that compared with rats fed the non-GM rice, some significant differences were observed in rats fed with the GM rice; however, these changes were not significantly different from the control diet group. Additionally, the gut microbiota was associated with blood indexes and urine metabolites. In conclusion, the GM rice diet is as safe as the traditional daily diet. Furthermore, urine metabonomics and fecal bacterial profiles provide a non-invasive food safety assessment rat model for genetically modified crops that are used for non-food/feed purposes. Fecal bacterial profiles have the potential for predicting the change of blood indexes in future. PMID:25478734

  2. Binding mechanism of trans-N-caffeoyltyramine and human serum albumin: Investigation by multi-spectroscopy and docking simulation.

    PubMed

    Ma, Xiaoli; Yan, Jin; Xu, Kailin; Guo, Luiqi; Li, Hui

    2016-06-01

    trans-N-Caffeoyltyramine (TNC), which was isolated from the Cortex Lycii in our laboratory, is a phenolic amide compound with multiple pharmacological activities. The interaction between TNC and human serum albumin (HSA) was studied by Nuclear magnetic resonance (NMR) relaxation experiment, fluorescence spectroscopy, and docking simulation. NMR methodology is based on the analysis of selective and non-selective spin-lattice relaxation rate enhancements of TNC protons in the presence of the HSA. Result indicated that the interaction occurred between HSA and TNC, and changed the proton magnetic environment of TNC. Fluorescence spectroscopy confirmed that TNC displayed a strong capability to quench the fluorescence of HSA, and the acting forces for binding were hydrogen bonds and van der Waals forces. Furthermore, the circular dichroism, synchronous, and three-dimensional fluorescence spectra, which were employed to determine the conformation of protein, revealed that binding of TNC with HSA could induce conformational changes in HSA. In addition, the molecular modeling results exhibited that TNC mainly bonded to site I in sub-domain IIA of HSA. PMID:27131098

  3. Structural alterations of human serum albumin caused by glycative and oxidative stressors revealed by circular dichroism analysis.

    PubMed

    Monacelli, Fiammetta; Storace, Daniela; D'Arrigo, Cristina; Sanguineti, Roberta; Borghi, Roberta; Pacini, Davide; Furfaro, Anna L; Pronzato, Maria A; Odetti, Patrizio; Traverso, Nicola

    2013-01-01

    The aim of this work was to evaluate the ability of oxidative and glycative stressors to modify properties of human serum albumin (HSA) by analyzing markers of glycation (pentosidine) and oxidation (advanced oxidative protein products (AOPPs)) and assessing fluorescence and circular dichroism. HSA was incubated for up to 21 days with ribose, ascorbic acid (AA) and diethylenetriamine pentacetate (DTPA) in various combinations in order to evaluate influences of these substances on the structure of HSA. Ribose was included as a strong glycative molecule, AA as a modulator of oxidative stress, and DTPA as an inhibitor of metal-catalyzed oxidation. Ribose induced a significant increase in pentosidine levels. AA and DTPA prevented the accumulation of pentosidine, especially at later time points. Ribose induced a mild increase in AOPP formation, while AA was a strong inducer of AOPP formation. Ribose, in combination with AA, further increased the formation of AOPP. DTPA prevented the AA-induced generation of AOPP. Ribose was also a potent inducer of fluorescence at 335nm ex/385nm em, which is typical of pentosidine. AA and DTPA prevented this fluorescence. Circular dichroism showed complex results, in which AA and DTPA were strong modifiers of the percentages of the alpha-helical structure of HSA, while ribose affected the structure of HSA only at later time points. PMID:23702842

  4. Based on SERS conformational studies of ginsenoside Rb1 and its metabolites before and after combined with human serum albumin

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Wang, Yingping; Bai, Xueyuan; Zhao, Bing

    2015-02-01

    Surface-enhanced Raman scattering (SERS) and fluorescence spectroscopy were employed to probe the interaction of the pharmaceutical and natural product molecules, ginsenoside Rb1, Rd, Rg3 and compound K (CK), with human serum albumin (HSA). Normal Raman spectra of these four ginsenosides were obtained from solid powder on glass slide. Based on the unsplit peak at 1445 cm-1, the stacking modes of ginsenoside Rb1, Rd, Rg3 and CK were quite similar, when the deconvolution of alkyl chain was not occurred. SERS spectra of ginsenoside Rb1, Rd, Rg3 and CK were obtained from a colloidal silver surface on a self-assembled SERS substrate, the most enhanced modes were those with certain motions perpendicular to the metal surface, such as C24dbnd C25 stretch and Csbnd H out-of-plane bending from alkyl chain. The SERS spectra were used to predict similar perpendicular orientation of flexible alkyl chain and parallel orientation of carbocyclic rings on Ag colloid particles. Therefore, when combined with HSA, the transformations of four ginsenosides still exhibit similar, although in different binding cavities in subdomain IIA and IIIA by making the methyls at C26 and C27 perpendicular plugging into the hydrophobic site of HSA, while the aglycone and glucose nearby are perpendicularly exposed outside to fit other suitable active targeting sites.

  5. Generation of TALE nickase-mediated gene-targeted cows expressing human serum albumin in mammary glands.

    PubMed

    Luo, Yan; Wang, Yongsheng; Liu, Jun; Cui, Chenchen; Wu, Yongyan; Lan, Hui; Chen, Qi; Liu, Xu; Quan, Fusheng; Guo, Zekun; Zhang, Yong

    2016-01-01

    Targeting exogenous genes at milk protein loci via gene-targeting technology is an ideal strategy for producing large quantities of pharmaceutical proteins. Transcription-activator-like effector (TALE) nucleases (TALENs) are an efficient genome-editing tool. However, the off-target effects may lead to unintended gene mutations. In this study, we constructed TALENs and TALE nickases directed against exon 2 of the bovine β-lactoglobulin (BLG) locus. The nickases can induce a site-specific DNA single-strand break, without inducing double-strand break and nonhomologous end joining mediated gene mutation, and lower cell apoptosis rate than TALENs. After co-transfecting the bovine fetal fibroblasts with human serum albumin (HSA) gene-targeting vector and TALE nickase expression vectors, approximately 4.8% (40/835) of the cell clones contained HSA at BLG locus. Unexpectedly, one homozygous gene-targeted cell clone (1/835, 0.1%) was obtained by targeting both alleles of BLG in a single round of transfection. The recombinant protein mimicking the endogenous BLG was highly expressed and correctly folded in the mammary glands of the targeted cows, and the expression level of HSA was significantly increased in the homozygous targeted cows. Results suggested that the combination of TALE nickase-mediated gene targeting and somatic cell nuclear transfer is a feasible and safe approach in producing gene-targeted livestock. PMID:26853907

  6. Chloramphenicol binding to human serum albumin: Determination of binding constants and binding sites by steady-state fluorescence

    NASA Astrophysics Data System (ADS)

    Ding, Fei; Zhao, Guangyu; Chen, Shoucong; Liu, Feng; Sun, Ying; Zhang, Li

    2009-07-01

    The interaction between chloramphenicol and human serum albumin (HSA) was studied by fluorescence, UV/vis, circular dichroism (CD) and three-dimensional fluorescence spectroscopy. Fluorescence data revealed that the fluorescence quenching of HSA by chloramphenicol was the result of the formation of drug-HSA complex, and the effective quenching constants ( Ka) were 2.852 × 10 4, 2.765 × 10 4, 2.638 × 10 4 and 2.542 × 10 4 M -1 at 287, 295, 303 and 311 K, respectively. The thermodynamic parameters, enthalpy change (Δ H) and entropy change (Δ S) for the reaction were calculated to be -3.634 kJ mol -1 and 72.66 J mol -1 K -1 according to van't Hoff equation. The results indicated that the hydrophobic and electrostatic interactions played a major role in the binding of drug to HSA. The distance r between donor and acceptor was obtained to be 3.63 nm according to Förster's theory. Site marker competitive experiments indicated that the binding of drug to HSA primarily took place in subdomain IIA. The alterations of HSA secondary structure in the presence of chloramphenicol were confirmed by the evidences from synchronous fluorescence, CD and three-dimensional fluorescence spectra. In addition, the effect of common ions on the binding constants of drug-HSA complex was also discussed.

  7. Spectroscopic and molecular simulation studies on the interaction of di-(2-ethylhexyl) phthalate and human serum albumin.

    PubMed

    Wang, Yaping; Zhang, Guowen

    2015-03-01

    Di-(2-ethylhexyl) phthalate (DEHP) is widely used as a plasticizer in industrial production, but may have a potential health risk. In this study, the binding characteristics of DEHP with human serum albumin (HSA) in aqueous solution at pH 7.4 were determined using UV/vis absorption, fluorescence, Fourier transform infrared (FTIR) spectroscopy and circular dichroism (CD), along with a molecular simulation technique. Analysis of the fluorescence titration data at different temperatures suggested that the fluorescence quenching mechanism of HSA by DEHP was static. The calculated thermodynamic parameters indicated that hydrophobic forces played a predominant role in formation of the DEHP-HSA complex, but hydrogen bonds could not be omitted. Site marker competitive experiments and denaturation studies showed that the binding of DEHP to HSA primarily took place in subdomain IIA of HSA, and molecular docking results further corroborated the binding sites. The synchronous fluorescence, UV/vis absorption, FTIR and CD spectra revealed that the addition of DEHP induced changes in the secondary structure of HSA. Protein surface hydrophobicity (PSH) tests indicated that DEHP binding to HSA caused an increase in the PSH. Moreover, the effects of some metal ions on the binding constant of DEHP - HSA interaction were also investigated. PMID:24913815

  8. Evidence that Chemical Chaperone 4-Phenylbutyric Acid Binds to Human Serum Albumin at Fatty Acid Binding Sites

    PubMed Central

    James, Joel; Shihabudeen, Mohamed Sham; Kulshrestha, Shweta; Goel, Varun; Thirumurugan, Kavitha

    2015-01-01

    Endoplasmic reticulum stress elicits unfolded protein response to counteract the accumulating unfolded protein load inside a cell. The chemical chaperone, 4-Phenylbutyric acid (4-PBA) is a FDA approved drug that alleviates endoplasmic reticulum stress by assisting protein folding. It is found efficacious to augment pathological conditions like type 2 diabetes, obesity and neurodegeneration. This study explores the binding nature of 4-PBA with human serum albumin (HSA) through spectroscopic and molecular dynamics approaches, and the results show that 4-PBA has high binding specificity to Sudlow Site II (Fatty acid binding site 3, subdomain IIIA). Ligand displacement studies, RMSD stabilization profiles and MM-PBSA binding free energy calculation confirm the same. The binding constant as calculated from fluorescence spectroscopic studies was found to be kPBA = 2.69 x 105 M-1. Like long chain fatty acids, 4-PBA induces conformational changes on HSA as shown by circular dichroism, and it elicits stable binding at Sudlow Site II (fatty acid binding site 3) by forming strong hydrogen bonding and a salt bridge between domain II and III of HSA. This minimizes the fluctuation of HSA backbone as shown by limited conformational space occupancy in the principal component analysis. The overall hydrophobicity of W214 pocket (located at subdomain IIA), increases upon occupancy of 4-PBA at any FA site. Descriptors of this pocket formed by residues from other subdomains largely play a role in compensating the dynamic movement of W214. PMID:26181488

  9. Identification of Glucose-Binding Pockets in Human Serum Albumin Using Support Vector Machine and Molecular Dynamics Simulations.

    PubMed

    Ranganarayanan, Preethi; Thanigesan, Narmadha; Ananth, Vivek; Jayaraman, Valadi K; Ramakrishnan, Vigneshwar

    2016-01-01

    Human Serum Albumin (HSA) has been suggested to be an alternate biomarker to the existing Hemoglobin-A1c (HbA1c) marker for glycemic monitoring. Development and usage of HSA as an alternate biomarker requires the identification of glycation sites, or equivalently, glucose-binding pockets. In this work, we combine molecular dynamics simulations of HSA and the state-of-art machine learning method Support Vector Machine (SVM) to predict glucose-binding pockets in HSA. SVM uses the three dimensional arrangement of atoms and their chemical properties to predict glucose-binding ability of a pocket. Feature selection reveals that the arrangement of atoms and their chemical properties within the first 4Å from the centroid of the pocket play an important role in the binding of glucose. With a 10-fold cross validation accuracy of 84 percent, our SVM model reveals seven new potential glucose-binding sites in HSA of which two are exposed only during the dynamics of HSA. The predictions are further corroborated using docking studies. These findings can complement studies directed towards the development of HSA as an alternate biomarker for glycemic monitoring. PMID:26886739

  10. A study of the adsorption of the amphiphilic penicillins cloxacillin and dicloxacillin onto human serum albumin using surface tension isotherms

    NASA Astrophysics Data System (ADS)

    Barbosa, Silvia; Leis, David; Taboada, Pablo; Attwood, David; Mosquera, Victor

    The interaction of human serum albumin (HSA) with two structurally similar anionic amphiphilic penicillins, cloxacillin and dicloxacillin, at 25°C has been examined by surface tension measurements under conditions at which the HSA molecule was positively (pH 4.5) or negatively charged (pH 7.4). Measurements were at fixed HSA concentrations (0.0125 and 0.125% w/v) and at drug concentrations over a range including, where possible, the critical micelle concentration (cmc). Interaction between anionic drugs and positively charged HSA at pH 7.4 resulted in an increase of the cmc of each drug as a consequence of its removal from solution by adsorption. Limited data for cloxacillin at pH 4.5 indicated an apparent decrease of the cmc in the presence of HSA suggesting a facilitation of the aggregation by association with the protein. Changes in the surface tension-log (drug concentration) plots in the presence of HSA have been discussed in terms of the adsorption of drug at the air-solution and protein-solution interfaces. Standard free energy changes associated with the micellization of both drugs and their adsorption at the air-solution interface have been calculated and compared.

  11. Abacavir and warfarin modulate allosterically kinetics of NO dissociation from ferrous nitrosylated human serum heme-albumin

    SciTech Connect

    Ascenzi, Paolo Imperi, Francesco; Coletta, Massimo; Fasano, Mauro

    2008-05-02

    Human serum albumin (HSA) participates to heme scavenging, in turn HSA-heme binds gaseous diatomic ligands at the heme-Fe-atom. Here, the effect of abacavir and warfarin on denitrosylation kinetics of HSA-heme-Fe(II)-NO (i.e., k{sub off}) is reported. In the absence of drugs, the value of k{sub off} is (1.3 {+-} 0.2) x 10{sup -4} s{sup -1}. Abacavir and warfarin facilitate NO dissociation from HSA-heme-Fe(II)-NO, the k{sub off} value increases to (8.6 {+-} 0.9) x 10{sup -4} s{sup -1}. From the dependence of k{sub off} on the drug concentration, values of the dissociation equilibrium constant for the abacavir and warfarin binding to HSA-heme-Fe(II)-NO (i.e., K = (1.2 {+-} 0.2) x 10{sup -3} M and (6.2 {+-} 0.7) x 10{sup -5} M, respectively) were determined. The increase of k{sub off} values reflects the stabilization of the basic form of HSA-heme-Fe by ligands (e.g., abacavir and warfarin) that bind to Sudlow's site I. This event parallels the stabilization of the six-coordinate derivative of the HSA-heme-Fe(II)-NO atom. Present data highlight the allosteric modulation of HSA-heme-Fe(II) reactivity by heterotropic effectors.

  12. Studies on the interaction of total saponins of panax notoginseng and human serum albumin by Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Xie, Meng-Xia; Kang, Juan; Zheng, Dong

    2003-10-01

    Total saponins of panax notoginseng (TPNS), isolated from the roots of panax notoginseng (Burk) F.H. Chen, have been considered as the main active components of San-Chi and have various therapeutical actions. Their interactions with human serum albumin have been investigated by Fourier transformed infrared spectrometry and fluorescence methods. The results showed that TPNS combined with HSA through C=O and CN groups of polypeptide chain. The drug-protein combination caused the significant loss of α-helix structure and the microenvironment changes of the tyrosine residues in protein at higher drug concentration. Combining the curve-fitting results of amide I and amide III bands, the alterations of protein secondary structure after drug complexation were quantitatively determined. The α-helix structure has a decrease of ≈6%, from 55 to 49% and the β-sheet increased ≈3%, from 23 to 26% at high drug concentration. However, no major alterations were observed for the β-turn and random coil structures up on drug-protein binding.

  13. Molecular interaction investigation between three CdTe:Zn(2+) quantum dots and human serum albumin: A comparative study.

    PubMed

    Huang, Shan; Qiu, Hangna; Liu, Yi; Huang, Chusheng; Sheng, Jiarong; Su, Wei; Xiao, Qi

    2015-12-01

    Water-soluble Zn-doped CdTe quantum dots (CdTe:Zn(2+) QDs) have attracted great attention in biological and biomedical applications. In particular, for any potential in vivo application, the interaction of CdTe:Zn(2+) QDs with human serum albumin (HSA) is of greatest importance. As a step toward the elucidation of the fate of CdTe:Zn(2+) QDs introduced to organism, the molecular interactions between CdTe:Zn(2+) QDs with three different sizes and HSA were systematically investigated by spectroscopic techniques. Three CdTe:Zn(2+) QDs with maximum emission of 514 nm (green QDs, GQDs), 578 nm (yellow QDs, YQDs), and 640 nm (red QDs, RQDs) were tested. The binding of CdTe:Zn(2+) QDs with HSA was a result of the formation of HSA-QDs complex and electrostatic interactions played major roles in stabilizing the complex. The Stern-Volmer quenching constant, associative binding constant, and corresponding thermodynamic parameters were calculated. The site-specific probe competitive experiments revealed that the binding location of CdTe:Zn(2+) QDs with HSA was around site I. The microenvironmental and conformational changes of HSA induced by CdTe:Zn(2+) QDs were analyzed. These results suggested that the conformational change of HSA was dramatically at secondary structure level and the biological activity of HSA was weakened in the present of CdTe:Zn(2+) QDs with bigger size. PMID:26555713

  14. Fluorimetric study of the interaction between human serum albumin and quinolones-terbium complex and its application

    NASA Astrophysics Data System (ADS)

    Wang, Yusheng; Feng, Lin; Jiang, Chongqiu

    2005-10-01

    A highly sensitive spectrofluorimetric method is proposed for determination of human serum albumin (HSA) and some quinolone drugs. Using quinolones-terbium (Tb 3+) complex as a fluorescent probe, in the buffer solution of pH 7.8, HSA can remarkably enhance the fluorescence intensity of the quinolones-Tb 3+ complex at 545 nm and the enhanced fluorescence intensity of Tb 3+ ion is in proportion to the concentration of HSA and quinolone drugs. Optimum conditions for the determination of HSA were also investigated. The linear ranges and limits of detection are 8.0 × 10 -9 to 8.0 × 10 -8 mol L -1, 4.20 × 10 -9 mol L -1 (for HSA); 1.0 × 10 -6 to 4.0 × 10 -6 mol L -1, 1.87 × 10 -8 mol L -1 (for norfloxacin) and 1.0 × 10 -7 to 1.0 × 10 -6 mol L -1, 4.82 × 10 -8 mol L -1 (for enoxacine), respectively. This method is simple, practical and relatively free interference from coexisting substances, as well as much more sensitive than most of the existing assays.

  15. A novel drug-polyethylene glycol liquid compound method to prepare 10-hydroxycamptothecin loaded human serum albumin nanoparticle.

    PubMed

    Yang, Zhenbo; Gong, Wei; Wang, Zhiyuan; Li, Bingsheng; Li, Mingyuan; Xie, Xiangyang; Zhang, Hui; Yang, Yang; Li, Zhiping; Li, Ying; Yu, Fanglin; Mei, Xingguo

    2015-07-25

    Drug loading strategies and the methods derived for implementing those strategies are crucially important to the preparation of drug loaded human serum albumin nanoparticles (HSA-NPs), because each of them is focused on wrapping up specific types of drugs via certain physical and chemical properties. However, poor adaptability still exists to load drugs like model substance 10-hydroxycamptothecin (HCPT) by conventional methods. Because it typically represents a large class of water-insoluble drugs, who also structurally possess a certain number of hydrophilic groups. So even though they majorly have lipophilicity but they are of low liposolubility. This article presents a new concept of a loading strategy that takes a drug polymer liquid compound as a loading medium. The drug polymer liquid compound was made from low weight polyethylene glycol (l-PEG) and HCPT. Consequently, this strategy has managed to fabricate HCPT-loaded HSA-NPs through an unconventional approach that overcomes drawbacks of current loading means and better results have been obtained, like high entrapment efficiency (over 99%) and less toxicity involvement. Afterward, in vitro and in vivo evaluations and characterizations were performed to help with the in-depth interpretation of the loading mechanism in order to reveal and further investigate the possible far-reaching applications of this method. PMID:26027489

  16. Investigation of the Interaction between Patulin and Human Serum Albumin by a Spectroscopic Method, Atomic Force Microscopy, and Molecular Modeling

    PubMed Central

    Yuqin, Li; Guirong, You; Zhen, Yang; Caihong, Liu; Baoxiu, Jia; Jiao, Chen; Yurong, Guo

    2014-01-01

    The interaction of patulin with human serum albumin (HSA) was studied in vitro under normal physiological conditions. The study was performed using fluorescence, ultraviolet-visible spectroscopy (UV-Vis), circular dichroism (CD), atomic force microscopy (AFM), and molecular modeling techniques. The quenching mechanism was investigated using the association constants, the number of binding sites, and basic thermodynamic parameters. A dynamic quenching mechanism occurred between HSA and patulin, and the binding constants (K) were 2.60 × 104, 4.59 × 104, and 7.01 × 104 M−1 at 288, 300, and 310 K, respectively. Based on fluorescence resonance energy transfer, the distance between the HSA and patulin was determined to be 2.847 nm. The ΔG0, ΔH0, and ΔS0 values across various temperatures indicated that hydrophobic interaction was the predominant binding force. The UV-Vis and CD results confirmed that the secondary structure of HSA was altered in the presence of patulin. The AFM results revealed that the individual HSA molecule dimensions were larger after interaction with patulin. In addition, molecular modeling showed that the patulin-HSA complex was stabilized by hydrophobic and hydrogen bond forces. The study results suggested that a weak intermolecular interaction occurred between patulin and HSA. Overall, the results are potentially useful for elucidating the toxigenicity of patulin when it is combined with the biomolecular function effect, transmembrane transport, toxicological, testing and other experiments. PMID:25110690

  17. Sucrose dependence of solute retention on human serum albumin stationary phase: hydrophobic effect and surface tension considerations.

    PubMed

    Peyrin, E; Guillaume, Y C; Morin, N; Guinchard, C

    1998-07-15

    In a chromatographic system using human serum albumin (HSA) as a stationary phase, D,L dansyl amino acids as solutes, and sucrose as a mobile-phase modifier, a study on the surface tension effect of sugar on compound retention was carried out by varying the salting-out agent concentration c and the column temperature T. The thermodynamic parameters for solute transfer from the mobile to the stationary phase were determined from linear van't Hoff plots. An enthalpy-entropy compensation study revealed that the type of interaction between solute and HSA was independent of the molecular structure of the dansyl amino acids and the mobile-phase composition. An analysis of the experimental variations in the retention factor and the enantioselectivity values with c was performed using a theoretical model. It was shown that the decrease in solute retention accompanying the sucrose concentration increase was principally governed by a structural rearrangement of the binding cavity due to the increased surface tension effects. The cavity apolar residues were assumed to fold out of contact with the medium in order to reduce the surface area accessible to sucrose molecules, thus implying a restriction of the curvature radius of the cavity. Such behavior caused a decrease in the hydrophobic interaction for ligand binding on HSA explaining the observed thermodynamic parameter trends over the sucrose concentration range. PMID:9684542

  18. Effect of functionalized magnetic MnFe2O4 nanoparticles on fibrillation of human serum albumin.

    PubMed

    Sen, Shubhatam; Konar, Suraj; Pathak, Amita; Dasgupta, Swagata; DasGupta, Sunando

    2014-10-01

    Pathogenesis of amyloid-related diseases is related to nonnative folding of proteins with the formation of insoluble deposits in the extracellular space of various tissues. Having the unique properties of small size, large surface area, biodegradability, and relative nontoxicity, magnetic nanoparticles have drawn a lot of attention in biomedical applications. Herein, we demonstrate the effect of bare and differently functionalized magnetic MnFe2O4 nanoparticles on fibrillation of human serum albumin in vitro. The process has been monitored using Thioflavin T fluorescence, Congo red binding assay, circular dichroism, fluorescence microscopy, and transmission electron microscopy. From our experimental results, amine functionalized MnFe2O4 nanoparticles are found to inhibit formation of fibrils more effectively than bare ones, while carboxylated nanoparticles do not have a significant effect on fibrillation. This study has explored the prospects of using specific magnetic nanoparticles with appropriate modification to control self-assembly of proteins and may act as a precursor in therapeutic applications. PMID:25247718

  19. Ultrasonic microdialysis coupled with capillary electrophoresis electrochemiluminescence study the interaction between trimetazidine dihydrochloride and human serum albumin.

    PubMed

    Sun, Shuangjiao; Long, Chanjuan; Tao, Chunyao; Meng, Sa; Deng, Biyang

    2014-12-01

    The paper describes a homemade ultrasonic microdialysis device coupled with capillary electrophoresis electrochemiluminescence (CE-ECL) for studying the interaction between human serum albumin (HSA) and trimetazidine dihydrochloride (TMZ). The time required for equilibrium by ultrasonic microdialysis was 45min, which was far less than that by traditional dialysis (240min). It took 80min to achieve the required combination equilibrium by normal incubation and only 20min by ultrasonic. Compared with traditional dialysis, the use of ultrasonic microdialysis simplified experimental procedures, shortened experimental time and saved consumption of sample. A simple, sensitive and selective determination of TMZ was developed using CE-ECL and the parameters that affected ECL intensity were optimized. Under the optimized conditions, the linear range of TMZ was from 0.075 to 80μmol/L (r(2)=0.9974). The detection limit was 26nmol/L with RSD of 2.8%. The number of binding sites and binding constant were 1.54 and 15.17L/mol, respectively. PMID:25440662

  20. Rapid Screening of Drug-Protein Binding Using High-Performance Affinity Chromatography with Columns Containing Immobilized Human Serum Albumin

    PubMed Central

    Li, Ying-Fei; Zhang, Xiao-Qiong; Hu, Wei-Yu; Li, Zheng; Liu, Ping-Xia; Zhang, Zhen-Qing

    2013-01-01

    For drug candidates, a plasma protein binding (PPB) more than 90% is more meaningful and deserves further investigation in development. In the study, a high-performance liquid chromatography method employing column containing immobilized human serum albumin (HSA) to screen in vitro PPB of leading compounds was established and successfully applied to tested compounds. Good correlation (a coefficient correlation of 0.96) was attained between the reciprocal values (X) of experimentally obtained retention time of reference compounds eluted through HSA column and the reported PPB values (Y) with a correlation equation of Y = 92.03 − 97.01X. The method was successfully applied to six test compounds, and the result was confirmed by the conventional ultrafiltration technique, and both yielded equal results. However, due to the particular protein immobilized to column, the method cannot be applied for all compounds and should be exploited judiciously based on the value of the logarithmic measure of the acid dissociation constant (pKa) as per the requirement. If α1-acid glycoprotein and other plasma proteins could be immobilized like HSA with their actual ratio in plasma to column simultaneously, the result attained using immobilized column may be more accurate, and the method could be applied to more compounds without pKa limitation. PMID:23607050

  1. Startling temperature effect on proteins when confined: single molecular level behaviour of human serum albumin in a reverse micelle.

    PubMed

    Sengupta, Bhaswati; Yadav, Rajeev; Sen, Pratik

    2016-06-01

    The present work reports the effect of confinement, and temperature therein, on the conformational fluctuation dynamics of domain-I of human serum albumin (HSA) by fluorescence correlation spectroscopy (FCS). The water-pool of a sodium bis(2-ethylhexyl)sulfosuccinate (AOT) reverse micelle has been used as the confined environment. It was observed that the conformational fluctuation time is about 6 times smaller compared to bulk medium when confined in a water-pool of 3.5 nm radius. On increasing the size of the water-pool the conformational fluctuation time was found to increase monotonically and approaches the bulk value. The effect of confinement is on par with the general belief about the restricted motion of a macromolecule upon confinement. However, the effect of temperature was found to be surprising. An increase in the temperature from 298 K to 313 K induces a larger change in the conformational fluctuation time in HSA, when confined. In the bulk medium, apparently there is no change in the conformational fluctuation time in the aforementioned temperature range, whereas, when HSA is present in an AOT water-pool of radius 3.5 nm, about an 88% increase in the fluctuation time was observed. The observed prominent thermal effect on the conformational dynamics of domain-I of HSA in the water-pool of an AOT reverse micelle as compared to in the bulk medium was concluded to arise from the confined solvent effect. PMID:27166785

  2. Characterization of the comparative drug binding to intra- (liver fatty acid binding protein) and extra- (human serum albumin) cellular proteins.

    PubMed

    Rowland, Andrew; Hallifax, David; Nussio, Matthew R; Shapter, Joseph G; Mackenzie, Peter I; Brian Houston, J; Knights, Kathleen M; Miners, John O

    2015-01-01

    1. This study compared the extent, affinity, and kinetics of drug binding to human serum albumin (HSA) and liver fatty acid binding protein (LFABP) using ultrafiltration and surface plasmon resonance (SPR). 2. Binding of basic and neutral drugs to both HSA and LFABP was typically negligible. Binding of acidic drugs ranged from minor (fu > 0.8) to extensive (fu < 0.1). Of the compounds screened, the highest binding to both HSA and LFABP was observed for the acidic drugs torsemide and sulfinpyrazone, and for β-estradiol (a polar, neutral compound). 3. The extent of binding of acidic drugs to HSA was up to 40% greater than binding to LFABP. SPR experiments demonstrated comparable kinetics and affinity for the binding of representative acidic drugs (naproxen, sulfinpyrazone, and torsemide) to HSA and LFABP. 4. Simulations based on in vitro kinetic constants derived from SPR experiments and a rapid equilibrium model were undertaken to examine the impact of binding characteristics on compartmental drug distribution. Simulations provided mechanistic confirmation that equilibration of intracellular unbound drug with the extracellular unbound drug is attained rapidly in the absence of active transport mechanisms for drugs bound moderately or extensively to HSA and LFABP. PMID:25801059

  3. Effects of surface functionalization on the adsorption of human serum albumin onto nanoparticles – a fluorescence correlation spectroscopy study

    PubMed Central

    Maffre, Pauline; Brandholt, Stefan; Nienhaus, Karin; Shang, Li; Parak, Wolfgang J

    2014-01-01

    Summary By using fluorescence correlation spectroscopy (FCS), we have studied the adsorption of human serum albumin (HSA) onto Fe–Pt nanoparticles (NPs, 6 nm radius), CdSe/ZnS quantum dots (QDs, 5 nm radius) and Au and Ag nanoclusters (1–4 nm radius), which are enshrouded by various water-solubilizing surface layers exposing different chemical functional groups (carboxyl, amino and both), thereby endowing the NPs with different surface charges. We have also measured the effects of modified surface functionalizations on the protein via succinylation and amination. A step-wise increase in hydrodynamic radius with protein concentration was always observed, revealing formation of protein monolayers coating the NPs, independent of their surface charge. The differences in the thickness of the protein corona were rationalized in terms of the different orientations in which HSA adsorbs onto the NPs. The midpoints of the binding transition, which quantifies the affinity of HSA toward the NP, were observed to differ by almost four orders of magnitude. These variations can be understood in terms of specific Coulombic interactions between the proteins and the NP surfaces. PMID:25551031

  4. Albumin-deficient mouse models for studying metabolism of human albumin and pharmacokinetics of albumin-based drugs

    PubMed Central

    Roopenian, Derry C; Low, Benjamin E; Christianson, Gregory J; Proetzel, Gabriele; Sproule, Thomas J; Wiles, Michael V

    2015-01-01

    Serum albumin is the major determinant of blood colloidal osmotic pressure acting as a depot and distributor of compounds including drugs. In humans, serum albumin exhibits an unusually long half-life mainly due to protection from catabolism by neonatal Fc receptor (FcRn)-mediated recycling. These properties make albumin an attractive courier of therapeutically-active compounds. However, pharmaceutical research and development of albumin-based therapeutics has been hampered by the lack of appropriate preclinical animal models. To overcome this, we developed and describe the first mouse with a genetic deficiency in albumin and its incorporation into an existing humanized FcRn mouse model, B6.Cg-Fcgrttm1Dcr Tg(FCGRT)32Dcr/DcrJ (Tg32). Albumin-deficient strains (Alb-/-) were created by TALEN-mediated disruption of the albumin (Alb) gene directly in fertilized oocytes derived from Tg32 mice and its non-transgenic background control, C57BL/6J (B6). The resulting Alb-/- strains are analbuminemic but healthy. Intravenous administration of human albumin to Tg32-Alb-/- mFcRn-/- hFcRnTg/Tg) mice results in a remarkably extended human albumin serum half-life of ∼24 days, comparable to that found in humans, and in contrast to half-lives of 2.6–5.8 d observed in B6, B6-Alb-/- and Tg32 strains. This striking increase can be explained by the absence of competing endogenous mouse albumin and the presence of an active human FcRn. These novel albumin-deficient models provide unique tools for investigating the biology and pathobiology of serum albumin and are a more appropriate rodent surrogates for evaluating human serum albumin pharmacokinetics and albumin-based compounds. PMID:25654695

  5. Effects of the Infusion of 4% or 20% Human Serum Albumin on the Skeletal Muscle Microcirculation in Endotoxemic Rats

    PubMed Central

    Damiani, Elisa; Ince, Can; Orlando, Fiorenza; Pierpaoli, Elisa; Cirioni, Oscar; Giacometti, Andrea; Mocchegiani, Federico; Pelaia, Paolo; Provinciali, Mauro; Donati, Abele

    2016-01-01

    Background Sepsis-induced microcirculatory alterations contribute to tissue hypoxia and organ dysfunction. In addition to its plasma volume expanding activity, human serum albumin (HSA) has anti-oxidant and anti-inflammatory properties and may have a protective role in the microcirculation during sepsis. The concentration of HSA infused may influence these effects. We compared the microcirculatory effects of the infusion of 4% and 20% HSA in an experimental model of sepsis. Methods Adult male Wistar rats were equipped with arterial and venous catheters and received an intravenous infusion of lipopolysaccharide (LPS, serotype O127:B8, 10 mg/kg over 30 minutes) or vehicle (SHAM, n = 6). Two hours later, endotoxemic animals were randomized to receive 10 mL/kg of either 4% HSA (LPS+4%HSA, n = 6), 20% HSA (LPS+20%HSA, n = 6) or 0.9% NaCl (LPS+0.9%NaCl, n = 6). No fluids were given to an additional 6 animals (LPS). Vessel density and perfusion were assessed in the skeletal muscle microcirculation with sidestream dark field videomicroscopy at baseline (t0), 2 hours after LPS injection (t1), after HSA infusion (t2) and 1 hour later (t3). The mean arterial pressure (MAP) and heart rate were recorded. Serum endothelin-1 was measured at t2. Results MAP was stable over time in all groups. The microcirculatory parameters were significantly altered in endotoxemic animals at t1. The infusion of both 4% and 20% HSA similarly increased the perfused vessel density and blood flow velocity and decreased the flow heterogeneity to control values. Microvascular perfusion was preserved in the LPS+20%HSA group at t3, whereas alterations reappeared in the LPS+4%HSA group. Conclusions In a rat model of normotensive endotoxemia, the infusion of 4% or 20% HSA produced a similar acute improvement in the microvascular perfusion in otherwise unresuscitated animals. PMID:26942605

  6. Role of arg-410 and tyr-411 in human serum albumin for ligand binding and esterase-like activity.

    PubMed Central

    Watanabe, H; Tanase, S; Nakajou, K; Maruyama, T; Kragh-Hansen, U; Otagiri, M

    2000-01-01

    Recombinant wild-type human serum albumin (rHSA), the single-residue mutants R410A, Y411A, Y411S and Y411F and the double mutant R410A/Y411A were produced using a yeast expression system. The recombinant proteins were correctly folded, as they had the same stability towards guanidine hydrochloride and the same CD spectrum as HSA isolated from serum (native HSA). Thus the global structures of the recombinant proteins are probably very similar to that of native HSA. We investigated, by ultrafiltration and CD, the high-affinity binding of two representative site II ligands, namely ketoprofen and diazepam. According to the crystal structure of HSA, the residues Arg-410 and Tyr-411 protrude into the centre of site II (in subdomain 3A), and the binding results showed that the guanidino moiety of Arg-410, the phenolic oxygen and the aromatic ring of Tyr-411 are important for ketoprofen binding. The guanidino moiety probably interacts electrostatically with the carboxy group of ketoprofen, the phenolic oxygen could make a hydrogen-bond with the keto group of the ligand, and the aromatic ring may participate in a specific stacking interaction with one of or both of the aromatic rings of ketoprofen. By contrast, Arg-410 is not important for diazepam binding. The two parts of Tyr-411 interact favourably with diazepam, and probably do so in the same way as with ketoprofen. In addition to its unique ligand binding properties, HSA also possesses an esterase-like activity, and studies with p-nitrophenyl acetate as a substrate showed that, although Arg-410 is important, the enzymic activity of HSA is much more dependent on the presence of Tyr-411. A minor activity could be registered when serine, but not alanine or phenylalanine, was present at position 411. PMID:10903143

  7. Role of arg-410 and tyr-411 in human serum albumin for ligand binding and esterase-like activity.

    PubMed

    Watanabe, H; Tanase, S; Nakajou, K; Maruyama, T; Kragh-Hansen, U; Otagiri, M

    2000-08-01

    Recombinant wild-type human serum albumin (rHSA), the single-residue mutants R410A, Y411A, Y411S and Y411F and the double mutant R410A/Y411A were produced using a yeast expression system. The recombinant proteins were correctly folded, as they had the same stability towards guanidine hydrochloride and the same CD spectrum as HSA isolated from serum (native HSA). Thus the global structures of the recombinant proteins are probably very similar to that of native HSA. We investigated, by ultrafiltration and CD, the high-affinity binding of two representative site II ligands, namely ketoprofen and diazepam. According to the crystal structure of HSA, the residues Arg-410 and Tyr-411 protrude into the centre of site II (in subdomain 3A), and the binding results showed that the guanidino moiety of Arg-410, the phenolic oxygen and the aromatic ring of Tyr-411 are important for ketoprofen binding. The guanidino moiety probably interacts electrostatically with the carboxy group of ketoprofen, the phenolic oxygen could make a hydrogen-bond with the keto group of the ligand, and the aromatic ring may participate in a specific stacking interaction with one of or both of the aromatic rings of ketoprofen. By contrast, Arg-410 is not important for diazepam binding. The two parts of Tyr-411 interact favourably with diazepam, and probably do so in the same way as with ketoprofen. In addition to its unique ligand binding properties, HSA also possesses an esterase-like activity, and studies with p-nitrophenyl acetate as a substrate showed that, although Arg-410 is important, the enzymic activity of HSA is much more dependent on the presence of Tyr-411. A minor activity could be registered when serine, but not alanine or phenylalanine, was present at position 411. PMID:10903143

  8. Analysis of glipizide binding to normal and glycated human serum albumin by high-performance affinity chromatography.

    PubMed

    Matsuda, Ryan; Li, Zhao; Zheng, Xiwei; Hage, David S

    2015-07-01

    In diabetes, the elevated levels of glucose in the bloodstream can result in the nonenzymatic glycation of proteins such as human serum albumin (HSA). This type of modification has been shown to affect the interactions of some drugs with HSA, including several sulfonylurea drugs that are used to treat type II diabetes. This study used high-performance affinity chromatography (HPAC) to examine the interactions of glipizide (i.e., a second-generation sulfonylurea drug) with normal HSA or HSA that contained various levels of in vitro glycation. Frontal analysis indicated that glipizide was interacting with both normal and glycated HSA through two general groups of sites: a set of relatively strong interactions and a set of weaker interactions with average association equilibrium constants at pH 7.4 and 37 °C in the range of 2.4-6.0 × 10(5) and 1.7-3.7 × 10(4) M(-1), respectively. Zonal elution competition studies revealed that glipizide was interacting at both Sudlow sites I and II, which were estimated to have affinities of 3.2-3.9 × 10(5) and 1.1-1.4 × 10(4) M(-1). Allosteric effects were also noted to occur for this drug between the tamoxifen site and the binding of R-warfarin at Sudlow site I. Up to an 18% decrease in the affinity for glipizide was observed at Sudlow site I ongoing from normal HSA to glycated HSA, while up to a 27% increase was noted at Sudlow site II. This information should be useful in indicating how HPAC can be used to investigate other drugs that have complex interactions with proteins. These results should also be valuable in providing a better understanding of how glycation may affect drug-protein interactions and the serum transport of drugs such as glipizide during diabetes. PMID:25912461

  9. Development of Diagnostic Fragment Ion Library for Glycated Peptides of Human Serum Albumin: Targeted Quantification in Prediabetic, Diabetic, and Microalbuminuria Plasma by Parallel Reaction Monitoring, SWATH, and MSE.

    PubMed

    Korwar, Arvind M; Vannuruswamy, Garikapati; Jagadeeshaprasad, Mashanipalya G; Jayaramaiah, Ramesha H; Bhat, Shweta; Regin, Bhaskaran S; Ramaswamy, Sureshkumar; Giri, Ashok P; Mohan, Viswanathan; Balasubramanyam, Muthuswamy; Kulkarni, Mahesh J

    2015-08-01

    Human serum albumin is one of the most abundant plasma proteins that readily undergoes glycation, thus glycated albumin has been suggested as an additional marker for monitoring glycemic status. Hitherto, only Amadori-modified peptides of albumin were quantified. In this study, we report the construction of fragment ion library for Amadori-modified lysine (AML), N(ε)-(carboxymethyl)lysine (CML)-, and N(ε)-(carboxyethyl)lysine (CEL)-modified peptides of the corresponding synthetically modified albumin using high resolution accurate mass spectrometry (HR/AM). The glycated peptides were manually inspected and validated for their modification. Further, the fragment ion library was used for quantification of glycated peptides of albumin in the context of diabetes. Targeted Sequential Window Acquisition of all THeoretical Mass Spectra (SWATH) analysis in pooled plasma samples of control, prediabetes, diabetes, and microalbuminuria, has led to identification and quantification of 13 glycated peptides comprised of four AML, seven CML, and two CEL modifications, representing nine lysine sites of albumin. Five lysine sites namely K549, K438, K490, K88, and K375, were observed to be highly sensitive for glycation modification as their respective m/z showed maximum fold change and had both AML and CML modifications. Thus, peptides involving these lysine sites could be potential novel markers to assess the degree of glycation in diabetes. PMID:26023067

  10. Oxidation of Arg-410 promotes the elimination of human serum albumin.

    PubMed

    Iwao, Yasunori; Anraku, Makoto; Yamasaki, Keishi; Kragh-Hansen, Ulrich; Kawai, Keiichi; Maruyama, Toru; Otagiri, Masaki

    2006-04-01

    The effect of the oxidation of amino acid residues on albumin on its in vivo elimination was investigated using mutants and oxidized HSAs. The single-residue mutants (H146A, K199A, W214A, R218H, R410A, Y411A) and oxidized HSAs were produced by the recombinant DNA techniques and incubation with a metal ion-catalyzed oxidation (MCO) system for 12, 24, 48 or 72 h. Pharmacokinetics were evaluated in mice after labeling with 111In. Structural and functional properties were examined by several spectroscopic techniques. Time-dependent increase in carbonyl group content resulted in increase in the liver clearance of oxidized HSAs. Slight decreases in alpha-helical content as the result of oxidation was induced by the increases in accessible hydrophobic areas and the net negative charge on the HSA molecule. No significant change in the pharmacokinetics and structural properties was observed for the W214A, R218H and Y411A mutants, but the properties for the H146A, K199A and R410A mutants were affected (extent of effect: R410A > K199A > H146A). The liver clearance of these proteins is closely correlated to hydrophobicity (r = 0.929, P < 0.01) and the net charge of the proteins (r=0.930, P < 0.01). The rate of elimination of HSA is closely related to the hydrophobicity and net charge of the molecule. Further, the R410A mutants had a short half-life and structure similar to oxidized HSA after oxidation. Therefore, the modification of Arg-410 via oxidative stress may promote the elimination of HSA. PMID:16497569

  11. Poly(hydroxyethyl methacrylate)-based composite cryogel with embedded macroporous cellulose beads for the separation of human serum immunoglobulin and albumin.

    PubMed

    Ye, Jialei; Yun, Junxian; Lin, Dong-Qiang; Xu, Linhong; Kirsebom, Harald; Shen, Shaochuan; Yang, Gensheng; Yao, Kejian; Guan, Yi-Xin; Yao, Shan-Jing

    2013-12-01

    A novel super-macroporous monolithic composite cryogel was prepared by embedding macroporous cellulose beads into poly(hydroxyethyl methacrylate) cryogel. The cellulose beads were fabricated by using a microchannel liquid-flow focusing and cryopolymerization method, while the composite cryogel was prepared by cryogenic radical polymerization of the hydroxyethyl methacrylate monomer with poly(ethylene glycol) diacrylate as cross-linker together with the cellulose beads. After graft polymerization with (vinylbenzyl)trimethylammonium chloride, the composite cryogel was applied to separate immunoglobulin-G and albumin from human serum. Immunoglobulin-G with a mean purity of 83.2% and albumin with a purity of 98% were obtained, indicating the composite cryogel as a promising chromatographic medium in bioseparation for the isolation of important bioactive proteins like immunoglobulins and albumins. PMID:24151195

  12. Interaction of sulpiride and serum albumin: Modeling from spectrofluorimetric data

    NASA Astrophysics Data System (ADS)

    Fragoso, Viviane Muniz da Silva; Silva, Dilson

    2015-12-01

    We have applied the fluorescence quenching modeling to study the process of interaction of sulpiride with human serum albumin (HSA) and bovine (BSA). Albumin is more abundant protein in blood and it emits fluorescence when excited by 260-295 nm. Sulpiride is an atypical antipsychotic used in the treatment of many psychiatric disorders. As sulpiride is fluorescent, we developed a mathematical model to analyzing the interaction of two fluorescent substances. This model was able to separate the albumin fluorescence from the quencher fluorescence. Results have shown that sulpiride quenches the fluorescence of both albumins by a static process, due to the complex formation drugalbumin. The association constants calculated for sulpiride-HSA was 2.20 (± 0.08) × 104 M-1 at 37° C, and 5.46 (± 0.20) × 104 M-1, 25 ° C, and the primary binding site to sulpiride in the albumin is located closer to the subdomain IB.

  13. Antigen presentation of detergent free glutamate decarboxylase (GAD65) is affected by human serum albumin as carrier protein

    PubMed Central

    Steed, Jordan; Gilliam, Lisa K.; Harris, Robert A.; Lernmark, Åke; Hampe, Christiane S.

    2008-01-01

    1. Summary The smaller isoform of glutamate decarboxylase (GAD65) is a major autoantigen in type 1 diabetes (TID). Its hydrophobic character requires detergent to keep the protein in solution, which complicates studies of antigen processing and presentation. In this study an attempt was made to replace detergent with human serum albumin (HSA) for in vitro antigen presentation. Different preparations of recombinant human GAD65 complexed with HSA were incubated with Priess B cells (HLA DRB1*0401) and antigen presentation was tested with HLA DRB1*0401-restricted and epitope-specific T33.1 (GAD65 epitope 274-286) and T35 (GAD65 epitope 115-127) T cell hybridomas. Specific epitope recognition by T33.1 (274-286) and T35 (115-127) cells varied between the different GAD65/HSA preparations, and a reverse pattern of antigen presentation were detected by the two hybridoma. The HSA-specific T-cell hybridoma 17.9 response to the different GAD65/HSA preparations followed the same pattern as that observed for the T33.1 cells. The content of immunoreactive GAD65 measured with four GAD65 antibodies indicated that the lowest GAD65 concentration resulted in the highest 274-286, but the lowest 115-127 presentation. This suggests that HSA-GAD65 complexes qualitatively affect the epitope specificity of GAD65 presentation. HSA may enhance the 274-286 epitope presentation, while suppressing the 115-127 epitope. PMID:18353353

  14. Interaction of a tyrosine kinase inhibitor, vandetanib with human serum albumin as studied by fluorescence quenching and molecular docking.

    PubMed

    Kabir, Md Zahirul; Feroz, Shevin R; Mukarram, Abdul Kadir; Alias, Zazali; Mohamad, Saharuddin B; Tayyab, Saad

    2016-08-01

    Interaction of a tyrosine kinase inhibitor, vandetanib (VDB), with the major transport protein in the human blood circulation, human serum albumin (HSA), was investigated using fluorescence spectroscopy, circular dichroism (CD) spectroscopy, and molecular docking analysis. The binding constant of the VDB-HSA system, as determined by fluorescence quenching titration method was found in the range, 8.92-6.89 × 10(3 )M(-1) at three different temperatures, suggesting moderate binding affinity. Furthermore, decrease in the binding constant with increasing temperature revealed involvement of static quenching mechanism, thus affirming the formation of the VDB-HSA complex. Thermodynamic analysis of the binding reaction between VDB and HSA yielded positive ΔS (52.76 J mol(-1) K(-1)) and negative ΔH (-6.57 kJ mol(-1)) values, which suggested involvement of hydrophobic interactions and hydrogen bonding in stabilizing the VDB-HSA complex. Far-UV and near-UV CD spectral results suggested alterations in both secondary and tertiary structures of HSA upon VDB-binding. Three-dimensional fluorescence spectral results also showed significant microenvironmental changes around the Trp residue of HSA consequent to the complex formation. Use of site-specific marker ligands, such as phenylbutazone (site I marker) and diazepam (site II marker) in competitive ligand displacement experiments indicated location of the VDB binding site on HSA as Sudlow's site I (subdomain IIA), which was further established by molecular docking results. Presence of some common metal ions, such as Ca(2+), Zn(2+), Cu(2+), Ba(2+), Mg(2+), and Mn(2+) in the reaction mixture produced smaller but significant alterations in the binding affinity of VDB to HSA. PMID:26331959

  15. Human serum albumin-mimetic chromatography based hexadecyltrimethylammonium bromide as a novel direct probe for protein binding of acidic drugs.

    PubMed

    Salary, Mina; Hadjmohammadi, Mohammadreza

    2015-10-10

    Human serum albumin (HSA) is the most important drug carrier in humans mainly binding acidic drugs. Negatively charged compounds bind more strongly to HSA than it would be expected from their lipophilicity alone. With the development of new acidic drugs, there is a high need for rapid and simple protein binding screening technologies. Biopartitioning micellar chromatography (BMC) is a mode of micellar liquid chromatography, which can be used as an in vitro system to model the biopartitioning process of drugs when there are no active processes. In this study, a new kind of BMC using hexadecyltrimethylammonium bromide (CTAB) as micellar mobile phases was used for the prediction of protein binding of acidic drugs based on the similar property of CTAB micelles to HSA. The use of BMC is simple, reproducible and can provide key information about the pharmacological behavior of drugs such as protein binding properties of new compounds during the drug discovery process. The relationships between the MLC retention data of a heterogeneous set of 17 acidic and neutral drugs and their plasma protein binding parameter were studied and second-order polynomial models obtained in two different concentrations (0.07 and 0.09M) of CTAB. However, the developed models are only being able to distinguish between strongly and weakly binding drugs. Also, the developed models were characterized by both the descriptive and predictive ability (R(2)=0.885, RCV(2)=0.838 and R(2)=0.898, RCV(2)=0.859 for 0.07 and 0.09M CTAB, respectively). The application of the developed model to a prediction set demonstrated that the model was also reliable with good predictive accuracy. PMID:25988296

  16. The interaction of human serum albumin with selected lanthanide and actinide ions: Binding affinities, protein unfolding and conformational changes.

    PubMed

    Ali, Manjoor; Kumar, Amit; Kumar, Mukesh; Pandey, Badri N

    2016-04-01

    Human serum albumin (HSA), the most abundant soluble protein in blood plays critical roles in transportation of biomolecules and maintenance of osmotic pressure. In view of increasing applications of lanthanides- and actinides-based materials in nuclear energy, space, industries and medical applications, the risk of exposure with these metal ions is a growing concern for human health. In present study, binding interaction of actinides/lanthanides [thorium: Th(IV), uranium: U(VI), lanthanum: La(III), cerium: Ce(III) and (IV)] with HSA and its structural consequences have been investigated. Ultraviolet-visible, Fourier transform-infrared, Raman, Fluorescence and Circular dichroism spectroscopic techniques were applied to study the site of metal ions interaction, binding affinity determination and the effect of metal ions on protein unfolding and HSA conformation. Results showed that these metal ions interacted with carbonyl (CO..:)/amide(N..-H) groups and induced exposure of aromatic residues of HSA. The fluorescence analysis indicated that the actinide binding altered the microenvironment around Trp214 in the subdomain IIA. Binding affinity of U(VI) to HSA was slightly higher than that of Th(IV). Actinides and Ce(IV) altered the secondary conformation of HSA with a significant decrease of α-helix and an increase of β-sheet, turn and random coil structures, indicating a partial unfolding of HSA. A correlation was observed between metal ion's ability to alter HSA conformation and protein unfolding. Both cationic effects and coordination ability of metal ions seemed to determine the consequences of their interaction with HSA. Present study improves our understanding about the protein interaction of these heavy ions and their impact on its secondary structure. In addition, binding characteristics may have important implications for the development of rational antidote for the medical management of health effects of actinides and lanthanides. PMID:26821345

  17. Inhibitory effect of quercetin in the formation of advance glycation end products of human serum albumin: An in vitro and molecular interaction study.

    PubMed

    Alam, Md Maroof; Ahmad, Irshad; Naseem, Imrana

    2015-08-01

    Non-enzymatic glycation entails the reaction between the carbonyl group of a sugar with the amino group of a protein giving rise to Schiff base and Amadori products. The formation of advanced glycation end products (AGEs) leads to the generation of free radicals, which play an important role in the pathophysiology of ageing and diabetes. Bioavailable dietary antioxidants like quercetin (QC) are thought to inhibit AGEs formation. This study was aimed to investigate the effect of quercetin on AGE formation and features the glycation of human serum albumin (HSA) and its characterization by various spectroscopic techniques. The effect of quercetin, against the formation of AGEs was studied using a glycated human serum albumin product, haemoglobin-δ-gluconolactone, and aminoguanidine. The results were then corroborated with estimation of protein oxidation, lipid peroxidation and comet assay. On the basis of the experimental data, computational docking studies were then performed to understand the location of the site of quercetin binding and its best bound conformation with respect to human serum albumin. Through this study we have demonstrated the mechanism of formation of AGE and its inhibition by quercetin. We have also suggested that the supplementation with dietary antioxidants like quercetin might protect against free radical toxicity. PMID:25982953

  18. (PCG) Protein Crystal Growth Horse Serum Albumin

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Horse Serum Albumin crystals grown during the USML-1 (STS-50) mission's Protein Crystal Growth Glovebox Experiment. These crystals were grown using a vapor diffusion technique at 22 degrees C. The crystals were allowed to grow for nine days while in orbit. Crystals of 1.0 mm in length were produced. The most abundant blood serum protein, regulates blood pressure and transports ions, metabolites, and therapeutic drugs. Principal Investigator was Edward Meehan.

  19. Combined image guided monitoring the pharmacokinetics of rapamycin loaded human serum albumin nanoparticles with a split luciferase reporter

    NASA Astrophysics Data System (ADS)

    Wang, Fu; Yang, Kai; Wang, Zhe; Ma, Ying; Gutkind, J. Silvio; Hida, Naoki; Niu, Gang; Tian, Jie

    2016-02-01

    Imaging guided techniques have been increasingly employed to investigate the pharmacokinetics (PK) and biodistribution of nanoparticle based drug delivery systems. In most cases, however, the PK profiles of drugs could vary significantly from those of drug delivery carriers upon administration in the blood circulation, which complicates the interpretation of image findings. Herein we applied a genetically encoded luciferase reporter in conjunction with near infrared (NIR) fluorophores to investigate the respective PK profiles of a drug and its carrier in a biodegradable drug delivery system. In this system, a prototype hydrophobic agent, rapamycin (Rapa), was encapsulated into human serum albumin (HSA) to form HSA Rapa nanoparticles, which were then labeled with Cy5 fluorophore to facilitate the fluorescence imaging of HSA carrier. Meanwhile, we employed transgenetic HN12 cells that were modified with a split luciferase reporter, whose bioluminescence function is regulated by Rapa, to reflect the PK profile of the encapsulated agent. It was interesting to discover that there existed an obvious inconsistency of PK behaviors between HSA carrier and rapamycin in vitro and in vivo through near infrared fluorescence imaging (NIFRI) and bioluminescence imaging (BLI) after treatment with Cy5 labeled HSA Rapa. Nevertheless, HSA Rapa nanoparticles manifested favorable in vivo PK and tumor suppression efficacy in a follow-up therapeutic study. The developed strategy of combining a molecular reporter and a fluorophore in this study could be extended to other drug delivery systems to provide profound insights for non-invasive real-time evaluation of PK profiles of drug-loaded nanoparticles in pre-clinical studies.Imaging guided techniques have been increasingly employed to investigate the pharmacokinetics (PK) and biodistribution of nanoparticle based drug delivery systems. In most cases, however, the PK profiles of drugs could vary significantly from those of drug delivery

  20. Insights into the morphology of human serum albumin and sodium dodecyl sulfate complex: A spectroscopic and microscopic approach.

    PubMed

    Chatterjee, Surajit; Mukherjee, Tushar Kanti

    2016-09-15

    Exploring and understanding the fundamental interaction between protein and surfactant is utmost important for various pharmaceutical and biomedical applications. However, very less is known about the arrangement of individual negatively charged sodium dodecyl sulfate (SDS) molecules on the human serum albumin (HSA). Here, we have investigated the morphology and mechanistic insights of complexation between HSA and SDS by means of photoluminescence (PL) spectroscopy, circular dichroism (CD) and PL microscopy using amine-functionalized silicon quantum dot (Si QD) as an external luminescent marker. The present study is based on a unique and dynamic SDS-Si QD system. The synthesized allylamine-functionalized Si QDs show a distinct PL band centered at 455nm upon excitation at 375nm. At neutral pH, these Si QDs form ordered aggregates in the presence of 1mM SDS due to the hydrogen bonding interaction with the sulfate head groups of surfactants, which is manifested in the appearance of a large Stokes shifted luminescence band centered at 610nm. It has been observed that the PL intensity of SDS-Si QD aggregates at 610nm decreases gradually with concomitant increase in the PL intensity of monomeric Si QDs at 455nm upon increasing the concentration of HSA from 1 to 10μM. These observations combined with PL lifetime, PL microscopy and CD results reveal that SDS forms micelle-like aggregates on the partially unfolded HSA mainly via electrostatic interaction between negatively charged sulfate head groups and positively charged residues of partially unfolded HSA. For the present HSA-SDS system, our results fit a model with type I "necklace and bead"-like structures, where micelle-like SDS aggregates wrap around by the partially unfolded HSA backbone. PMID:27280537

  1. Cordycepin and N6-(2-Hydroxyethyl)-Adenosine from Cordyceps pruinosa and Their Interaction with Human Serum Albumin

    PubMed Central

    Meng, Zebin; Kang, Jichuan; Wen, Tingchi; Lei, Bangxing; Hyde, Kevin David

    2015-01-01

    Cordyceps pruinosa (CP) is often used as Traditional Chinese Medicine, but the substance basis of its medicinal properties is unclear. In this study, two compounds were isolated from CP cultures by column chromatography, and identified as cordycepin and N6-(2-hydroxyethyl)-adenosine (HEA) by Nuclear Magnetic Resonance. In order to understand the efficacy of these two substances as potential therapeutic agents, it is necessary to explore their binding with proteins. The molecular mechanisms of interaction between cordycepin, HEA and human serum albumin (HSA) were studied using UV and fluorescence spectroscopy. The bingding constants between HSA and cordycepin were 4.227, 3.573 and 3.076 × 103·at 17, 27 and 37°C respectively, and that of HSA and HEA were 27.102, 19.409 and 13.002 × 103·at the three tempretures respectively. Both cordycepin and HEA can quench the intrinsic fluorescence of HSA via static quenching, and they can bind with HSA to form complexes with a single binding site. The interaction forces between cordycepin and HSA were determined as electrostatic and hydrophobic, and those of HEA and HSA were hydrogen bonding and van der Waals forces. Using Foster's equation, the distance between fluorophores of cordycepin and HSA, and HEA and HSA are estimated to be 5.31 nm and 4.98 nm, respectively. In this study, cordycepin was isolated for the first time from CP, and will provide a new source of cordycepin and expand the use of this taxon. The interaction mechanisms between cordycepin and HSA was studied for the first time, which will provide a useful guide for the clinical application of cordycepin. The pharmacological importance of this study is to understand the interaction of HSA with cordycepin and HEA, which will be essential for the future designing of drugs based on the two compounds. PMID:25811172

  2. Complexes between fluorescent cholic acid derivatives and human serum albumin. a photophysical approach to investigate the binding behavior.

    PubMed

    Rohacova, Jana; Marin, M Luisa; Miranda, Miguel A

    2010-04-01

    Interaction between bile acids and plasma proteins has attracted considerable attention over past decades. In fact, binding of bile acids to human serum albumin (HSA) determines their level in plasma, a value that can be used as a test for liver function. However, very little is known about the role that bile acids-HSA complexes play in hepatic uptake. In the present paper, we report on the utility of the singlet excited state properties of 4-nitrobenzo-2-oxa-1,3-diazole (NBD) fluorescent derivatives of cholic acid (ChA); namely, 3alpha-NBD-ChA, 3beta-NBD-ChA, 3beta-NBD-ChTau, 7alpha-NBD-ChA, and 7beta-NBD-ChA to clarify key aspects of bile acids-HSA interactions that remain poorly understood. On the basis of either absorption or emission measurements, formation of NBD-ChA@HSA complexes with 1:1 stoichiometry has been proven. Enhancement of the fluorescence emission upon addition of HSA has been used for determination of the binding constants, which are in the range of 10(4) M(-1). Energy transfer from tryptophan to NBD-ChA occurs by a FRET mechanism; the donor-acceptor distances have been determined according to Forster's theory. The estimated values (27-30 A) are compatible with both site I and site II occupancy and do not provide sufficient information for a safe assignment; however, fluorescence titration using warfarin (site I probe) and ibuprofen (site II probe) for displacement clearly indicates that the employed cholic acid derivatives bind to HSA at site I. PMID:20232881

  3. Understanding the physical and chemical nature of the warfarin drug binding site in human serum albumin: experimental and theoretical studies.

    PubMed

    Abou-Zied, Osama K

    2015-01-01

    Human serum albumin (HSA) is one of the major carrier proteins in the body and constitutes approximately half of the protein found in blood plasma. It plays an important role in lipid metabolism, and its ability to reversibly bind a large variety of pharmaceutical compounds makes it a crucial determinant of drug pharmacokinetics and pharmacodynamics. This review deals with one of the protein's major binding sites "Sudlow I" which includes a binding pocket for the drug warfarin (WAR). The binding nature of this important site can be characterized by measuring the spectroscopic changes when a ligand is bound. Using several drugs, including WAR, and other drug-like molecules as ligands, the results emphasize the nature of Sudlow I as a flexible binding site, capable of binding a variety of ligands by adapting its binding pockets. The high affinity of the WAR pocket for binding versatile molecular structures stems from the flexibility of the amino acids forming the pocket. The binding site is shown to have an ionization ability which is important to consider when using drugs that are known to bind in Sudlow I. Several studies point to the important role of water molecules trapped inside the binding site in molecular recognition and ligand binding. Water inside the protein's cavity is crucial in maintaining the balance between the hydrophobic and hydrophilic nature of the binding site. Upon the unfolding and refolding of HSA, more water molecules are trapped inside the binding site which cause some swelling that prevents a full recovery from the denatured state. Better understanding of the mechanism of binding in macromolecules such as HSA and other proteins can be achieved by combining experimental and theoretical studies which produce significant synergies in studying complex biochemical phenomena. PMID:25738490

  4. Dynamics of Loop 1 of Domain I in Human Serum Albumin WhenDissolved in Ionic Liquids

    SciTech Connect

    Page, Taylor; Kraut, Nadine; Page, Phillip; Baker, Gary A; Bright, Frank

    2009-01-01

    We report on the rotational reorientation dynamics associated with loop 1 of domain I within a large multidomain protein (human serum albumin, HSA) when it is dissolved in binary mixtures of ionic liquid (1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C4mim][Tf2N]), 1-butyl-3-methylimidazolium tetrafluoroborate ([C4mim][BF4]), or 1-butyl-3-methylimidazolium hexafluorophosphate ([C4mim][PF6])) and distilled deionized water (ddH2O) as a function of temperature and water loading. In IL/2% ddH2O (v/v) mixtures, loop 1 of domain I is more significantly denatured in comparison to the protein dissolved in aqueous solutions containing strong chemical denaturants (e.g., 8 M guanidine HCl (Gu HCl) or urea). As water loading increases, there is evidence for progressive refolding of loop 1 of domain I followed by recoupling with domains I, II, and III in the [C4mim][BF4]/ddH2O mixtures at 20 C. Above 30% (v/v) water, where domain I appears refolded, the Ac reporter molecule s semiangle steadily decreases from 35 to 20 with increasing water loading. From the perspective of domain I in HSA, this behavior is similar to the effects of dilution from 4 to 0 M Gu HCl in aqueous solution. Overall, these results lend insight into the tangle of biocatalytic and structural/dynamical mechanisms that enzymes may undergo in ionic liquid-based systems. It will be particularly motivating to extend this work to include enzyme-attuned ionic liquids shown to improve biocatalytic performance beyond that possible in the native (predominantly aqueous) setting.

  5. Analysis of free drug fractions by ultrafast affinity extraction: interactions of sulfonylurea drugs with normal or glycated human serum albumin.

    PubMed

    Zheng, Xiwei; Matsuda, Ryan; Hage, David S

    2014-12-01

    Ultrafast affinity extraction and a multi-dimensional affinity system were developed for measuring free drug fractions at therapeutic levels. This approach was used to compare the free fractions and global affinity constants of several sulfonylurea drugs in the presence of normal human serum albumin (HSA) or glycated forms of this protein, as are produced during diabetes. Affinity microcolumns containing immobilized HSA were first used to extract the free drug fractions in injected drug/protein mixtures. As the retained drug eluted from the HSA microcolumn, it was passed through a second HSA column for further separation and measurement. Items that were considered during the optimization of this approach included the column sizes and flow rates that were used, and the time at which the second column was placed on-line with the HSA microcolumn. This method required only 1.0 μL of a sample per injection and was able to measure free drug fractions as small as 0.09-2.58% with an absolute precision of ±0.02-0.5%. The results that were obtained indicated that glycation can affect the free fractions of sulfonylurea drugs at typical therapeutic levels and that the size of this effect varies with the level of HSA glycation. Global affinity constants that were estimated from these free drug fractions gave good agreement with those predicted from previous binding studies or determined through a reference method. The same approach could be utilized with other drugs and proteins or modified binding agents of clinical or pharmaceutical interest. PMID:25456590

  6. Combined image guided monitoring the pharmacokinetics of rapamycin loaded human serum albumin nanoparticles with a split luciferase reporter.

    PubMed

    Wang, Fu; Yang, Kai; Wang, Zhe; Ma, Ying; Gutkind, J Silvio; Hida, Naoki; Niu, Gang; Tian, Jie

    2016-02-21

    Imaging guided techniques have been increasingly employed to investigate the pharmacokinetics (PK) and biodistribution of nanoparticle based drug delivery systems. In most cases, however, the PK profiles of drugs could vary significantly from those of drug delivery carriers upon administration in the blood circulation, which complicates the interpretation of image findings. Herein we applied a genetically encoded luciferase reporter in conjunction with near infrared (NIR) fluorophores to investigate the respective PK profiles of a drug and its carrier in a biodegradable drug delivery system. In this system, a prototype hydrophobic agent, rapamycin (Rapa), was encapsulated into human serum albumin (HSA) to form HSA Rapa nanoparticles, which were then labeled with Cy5 fluorophore to facilitate the fluorescence imaging of HSA carrier. Meanwhile, we employed transgenetic HN12 cells that were modified with a split luciferase reporter, whose bioluminescence function is regulated by Rapa, to reflect the PK profile of the encapsulated agent. It was interesting to discover that there existed an obvious inconsistency of PK behaviors between HSA carrier and rapamycin in vitro and in vivo through near infrared fluorescence imaging (NIFRI) and bioluminescence imaging (BLI) after treatment with Cy5 labeled HSA Rapa. Nevertheless, HSA Rapa nanoparticles manifested favorable in vivo PK and tumor suppression efficacy in a follow-up therapeutic study. The developed strategy of combining a molecular reporter and a fluorophore in this study could be extended to other drug delivery systems to provide profound insights for non-invasive real-time evaluation of PK profiles of drug-loaded nanoparticles in pre-clinical studies. PMID:26818100

  7. Studies on interaction between gatifloxacin and human serum albumin as well as effect of copper(II) on the reaction

    NASA Astrophysics Data System (ADS)

    Tan, Fei; Guo, Ming; Yu, QinSen

    2005-10-01

    The binding characteristics of gatifloxacin (GTFX) and human serum albumin (HSA) have been studied by fluorescence spectroscopy in aqueous solution, and the interaction influenced by copper(II) was also explored in the paper. The results show that the two-reaction equilibrium constant and the number of binding sites were K = 1.16 × 10 5 l mol -1, n = 1.27 for GTFX and K = 1.62 × 10 5 l mol -1, n = 1.74 for GTFX-Cu 2+, respectively. The quenching mechanism of fluorescence of HSA by GTFX is a static quenching procedure. The binding distance between GTFX and HSA and the energy transfer efficiency are obtained based on the theory of Fōrster spectroscopy energy transfer. The effect of GTFX on the conformation of HSA was also been analyzed by using synchronous fluorescence spectroscopy. The interaction of GTFX and HSA has been studied by flow-mixed microcalorimetry in the absence and presence of copper(II) and their thermodynamic parameters were obtained. The enthalpy changes and the entropy changes were calculated to be Δ H ≈ 0, Δ S > 0 in the absence of copper(II),which indicated that static forces played major role in the interaction of GTFX and HSA, and to be Δ H ≈ 0, Δ S > 0 in the presence of copper(II),which indicated that the static forces also played major role on the reaction. The molar free energy changes of the two reactions are identical with each other because the entropy-enthalpy compensation happened between the two reactions.

  8. Assessment of the Dissociation Energetics of Some Selected Ligand Drugs Bound on Human Serum Albumin by Differential Scanning Calorimetry.

    PubMed

    Faroongsarng, Damrongsak

    2016-04-01

    Drug-protein binding may play a role in the thermal energetics of protein denaturation and could lead to the determination of its equilibrium dissociation parameter. The aim of this study was to assess the energetics of a drug that was bound to human serum albumin (HSA) during thermal denaturation. Drugs that were bound at a single high-affinity primary binding site on HSA, including diazepam and ibuprofen, were employed. Commercial HSA was treated with charcoal to remove stabilizers and adjusted to 20% w/v in a pH 7.4 buffered solution. Serial concentrations of individual drugs up to 0.16 mmole/g-protein were added to the cleaned HSA solutions whereas diazepam was added to a commercial HSA solution. Samples were subjected to differential scanning calorimetry (DSC) set to run from 37 to 90°C at 3.0°C/min. Binding of the drug slightly increased the denaturing temperature of the cleaned HSA due to a shift in the equilibrium toward the native protein bound with the drug. Diazepam depressed the denaturing temperature of the commercial HSA by competing with the stabilizers already bound to the primary site of the HSA. This yielded not only the HSA-stabilizer but also the HSA-diazepam type complexes that exhibited a different denaturation process. A rational approximation of the Lumry-Eyring protein denaturation model was used to treat the DSC endotherms. The approximated scheme: [Formula: see text] was successfully fitted to the data. It was used to determine the dissociation parameters for diazepam and ibuprofen bound to the HSA. These results were comparable to those obtained from other methods. PMID:26246411

  9. Preparation and in vitro investigation of antigastric cancer activities of carvacrol-loaded human serum albumin nanoparticles.

    PubMed

    Maryam, Keshavarzi; Shakeri, Shahryar; Kiani, Keyhaneh

    2015-10-01

    In this study, carvacrol-loaded human serum albumin (HSA) nanoparticles were developed and characterised. Nanoparticles were prepared by desolvation and emulsion/desolvation methods. Encapsulation efficiency (EE%) and loading capacity (LC%) of nanoparticles prepared by desolvation method were 48.4 and 45.1%, respectively. Carvacrol-loaded nanoparticles had 132±42 nm in diameter with monomodal distribution. Carvacrol-loaded nanoparticles which is prepared by emulsion/desolvation method had EE% and LC% of 32 and 32.3%, respectively, and 230±38 nm in size. The release of carvacrol from nanoparticles was monitored in phosphate-buffered saline (pH=7.4), 100 rpm at 37°C for 10 days. About 21.4% of carvacrol was released after 3 h from nanoparticles that were prepared by desolvation method. In emulsion/desolvation method, 26.8% of total carvacrol was released during 3 h of incubation. Cytotoxicity effect of loaded carvacrol was assessed by 3-[4, 5 dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) test on gastric cancer cells line (AGS). Cell line was exposed to the free carvacrol, unloaded and carvacrol-loaded nanoparticles for 48 h. The half maximal inhibitory concentration (IC50) for free carvacrol, unloaded and carvacrol-loaded HSA nanoparticles were 30, 1070 and 120 µg/ml, respectively. In conclusion, the results of this study showed applications of HSA nanoparticles for entrapment of carvacrol and antigastric cancer activity. Moreover, loading of carvacrol in combination with chemotherapy agents into the HSA nanoparticles may treat cancer cells better than single drug loaded nanoparticles. PMID:26435283

  10. Stereo-Selectivity of Human Serum Albumin to Enantiomeric and Isoelectronic Pollutants Dissected by Spectroscopy, Calorimetry and Bioinformatics

    PubMed Central

    Ahmad, Ejaz; Rabbani, Gulam; Zaidi, Nida; Singh, Saurabh; Rehan, Mohd; Khan, Mohd Moin; Rahman, Shah Kamranur; Quadri, Zainuddin; Shadab, Mohd.; Ashraf, Mohd Tashfeen; Subbarao, Naidu; Bhat, Rajiv; Khan, Rizwan Hasan

    2011-01-01

    1–naphthol (1N), 2–naphthol (2N) and 8–quinolinol (8H) are general water pollutants. 1N and 2N are the configurational enantiomers and 8H is isoelectronic to 1N and 2N. These pollutants when ingested are transported in the blood by proteins like human serum albumin (HSA). Binding of these pollutants to HSA has been explored to elucidate the specific selectivity of molecular recognition by this multiligand binding protein. The association constants (Kb) of these pollutants to HSA were moderate (104–105 M−1). The proximity of the ligands to HSA is also revealed by their average binding distance, r, which is estimated to be in the range of 4.39–5.37 nm. The binding free energy (ΔG) in each case remains effectively the same for each site because of enthalpy–entropy compensation (EEC). The difference observed between ΔCpexp and ΔCpcalc are suggested to be caused by binding–induced flexibility changes in the HSA. Efforts are also made to elaborate the differences observed in binding isotherms obtained through multiple approaches of calorimetry, spectroscopy and bioinformatics. We suggest that difference in dissociation constants of pollutants by calorimetry, spectroscopic and computational approaches could correspond to occurrence of different set of populations of pollutants having different molecular characteristics in ground state and excited state. Furthermore, our observation of enhanced binding of pollutants (2N and 8H) in the presence of hemin signifies that ligands like hemin may enhance the storage period of these pollutants in blood that may even facilitate the ill effects of these pollutants. PMID:22073150

  11. Synergistic Effect of Human Serum Albumin and Fullerene on Gd-DO3A for Tumor-Targeting Imaging.

    PubMed

    Zhang, Ying; Zou, Toujun; Guan, Mirong; Zhen, Mingming; Chen, Daiqin; Guan, Xiangping; Han, Hongbin; Wang, Chunru; Shu, Chunying

    2016-05-11

    A macromolecular magnetic resonance imaging (MRI) contrast agent was successfully synthesized by conjugating the gadolinium/1,4,7,10-tetraazacyclododecane-1,4,7-tetracetic acid complex (Gd-DO3A) with 6,6-phenyl-C61 butyric acid (PC61BA) and upon further modification with human serum albumin (HSA). The final product, PC61BA-(Gd-DO3A)/HSA, has a high stability and exhibits a much higher relaxivity (r1 = 89.1 mM(-1) s(-1) at 0.5 T, 300 K) than Gd-DO3A (r1 = 4.7 mM(-1) s(-1)) does under the same condition, producing the synergistic positive effect of HSA and C60 on the relaxivity of Gd-DO3A. The in vivo MR images of PC61BA-(Gd-DO3A)/HSA-treated tumor-bearing mice show strong signal enhancement for the tumor area due to the enhanced permeability and retention effect. The maximum accumulation of PC61BA-(Gd-DO3A)/HSA at the tumor site was achieved at 4 h postinjection, which may guide surgery. The results from the hematology and histological observations indicate that PC61BA-(Gd-DO3A)/HSA has no obvious toxicity in vivo. These unique properties of PC61BA-(Gd-DO3A)/HSA enable them to be highly efficient for tumor-targeting MRI in vivo, possibly providing a good solution for tumor diagnosis. PMID:27097822

  12. Ligand Binding to the FA3-FA4 Cleft Inhibits the Esterase-Like Activity of Human Serum Albumin

    PubMed Central

    Ascenzi, Paolo; Leboffe, Loris; di Masi, Alessandra; Trezza, Viviana; Fanali, Gabriella; Gioia, Magda; Coletta, Massimo; Fasano, Mauro

    2015-01-01

    The hydrolysis of 4-nitrophenyl esters of hexanoate (NphOHe) and decanoate (NphODe) by human serum albumin (HSA) at Tyr411, located at the FA3-FA4 site, has been investigated between pH 5.8 and 9.5, at 22.0°C. Values of Ks, k+2, and k+2/Ks obtained at [HSA] ≥ 5×[NphOXx] and [NphOXx] ≥ 5×[HSA] (Xx is NphOHe or NphODe) match very well each other; moreover, the deacylation step turns out to be the rate limiting step in catalysis (i.e., k+3 << k+2). The pH dependence of the kinetic parameters for the hydrolysis of NphOHe and NphODe can be described by the acidic pKa-shift of a single amino acid residue, which varies from 8.9 in the free HSA to 7.6 and 7.0 in the HSA:NphOHe and HSA:NphODe complex, respectively; the pK>a-shift appears to be correlated to the length of the fatty acid tail of the substrate. The inhibition of the HSA-Tyr411-catalyzed hydrolysis of NphOHe, NphODe, and 4-nitrophenyl myristate (NphOMy) by five inhibitors (i.e., diazepam, diflunisal, ibuprofen, 3-indoxyl-sulfate, and propofol) has been investigated at pH 7.5 and 22.0°C, resulting competitive. The affinity of diazepam, diflunisal, ibuprofen, 3-indoxyl-sulfate, and propofol for HSA reflects the selectivity of the FA3-FA4 cleft. Under conditions where Tyr411 is not acylated, the molar fraction of diazepam, diflunisal, ibuprofen, and 3-indoxyl-sulfate bound to HSA is higher than 0.9 whereas the molar fraction of propofol bound to HSA is ca. 0.5. PMID:25790235

  13. Ligand binding to the FA3-FA4 cleft inhibits the esterase-like activity of human serum albumin.

    PubMed

    Ascenzi, Paolo; Leboffe, Loris; di Masi, Alessandra; Trezza, Viviana; Fanali, Gabriella; Gioia, Magda; Coletta, Massimo; Fasano, Mauro

    2015-01-01

    The hydrolysis of 4-nitrophenyl esters of hexanoate (NphOHe) and decanoate (NphODe) by human serum albumin (HSA) at Tyr411, located at the FA3-FA4 site, has been investigated between pH 5.8 and 9.5, at 22.0°C. Values of Ks, k+2, and k+2/Ks obtained at [HSA] ≥ 5×[NphOXx] and [NphOXx] ≥ 5×[HSA] (Xx is NphOHe or NphODe) match very well each other; moreover, the deacylation step turns out to be the rate limiting step in catalysis (i.e., k+3 < k+2). The pH dependence of the kinetic parameters for the hydrolysis of NphOHe and NphODe can be described by the acidic pKa-shift of a single amino acid residue, which varies from 8.9 in the free HSA to 7.6 and 7.0 in the HSA:NphOHe and HSA:NphODe complex, respectively; the pK>a-shift appears to be correlated to the length of the fatty acid tail of the substrate. The inhibition of the HSA-Tyr411-catalyzed hydrolysis of NphOHe, NphODe, and 4-nitrophenyl myristate (NphOMy) by five inhibitors (i.e., diazepam, diflunisal, ibuprofen, 3-indoxyl-sulfate, and propofol) has been investigated at pH 7.5 and 22.0°C, resulting competitive. The affinity of diazepam, diflunisal, ibuprofen, 3-indoxyl-sulfate, and propofol for HSA reflects the selectivity of the FA3-FA4 cleft. Under conditions where Tyr411 is not acylated, the molar fraction of diazepam, diflunisal, ibuprofen, and 3-indoxyl-sulfate bound to HSA is higher than 0.9 whereas the molar fraction of propofol bound to HSA is ca. 0.5. PMID:25790235

  14. High-efficiency secretory expression of human neutrophil gelatinase-associated lipocalin from mammalian cell lines with human serum albumin signal peptide.

    PubMed

    Chen, Wei; Zhao, Xiaozhi; Zhang, Mingxin; Yuan, Yimin; Ge, Liyuan; Tang, Bo; Xu, Xiaoyu; Cao, Lin; Guo, Hongqian

    2016-02-01

    Human neutrophil gelatinase associated lipocalin (NGAL) is a secretory glycoprotein initially isolated from neutrophils. It is thought to be involved in the incidence and development of immunological diseases and cancers. Urinary and serum levels of NGAL have been investigated as a new biomarker of acute kidney injury (AKI), for an earlier and more accurate detection method than with creatinine level. However, expressing high-quality recombinant NGAL is difficult both in Escherichia coli and mammalian cells for the low yield. Here, we cloned and fused NGAL to the C-terminus of signal peptides of human NGAL, human interleukin-2 (IL2), gaussia luciferase (Gluc), human serum albumin preproprotein (HSA) or an hidden Markov model-generated signal sequence (HMM38) respectively for transient expression in Expi293F suspension cells to screen for their ability to improve the secretory expression of recombinant NGAL. The best results were obtained with signal peptide derived from HSA. The secretory recombinant protein could react specifically with NGAL antibody. For scaled production, we used HSA signal peptide to establish stable Chinese hamster ovary cell lines. Then we developed a convenient colony-selection system to select high-expression, stable cell lines. Moreover, we purified the NGAL with Ni-Sepharose column. The recombinant human NGAL displayed full biological activity. We provide a method to enhance the secretory expression of recombinant human NGAL by using the HSA signal peptide and produce the glycoprotein in mammalian cells. PMID:26518367

  15. Simultaneous determination of four local anesthetics by CE with ECL and study on interaction between procainamide and human serum albumin.

    PubMed

    Duan, Hong-Bing; Cao, Jun-Tao; Yang, Jiu-Jun; Wang, Hui; Liu, Yan-Ming

    2016-07-01

    A new method of capillary electrophoresis (CE) coupled with tris(2, 2'-bipyridyl) ruthenium(II) electrochemiluminescence (ECL) detection has been developed to detect four local anesthetics procainamide (PAH), tetracaine (TCH), proparacaine (PCH) and cinchocaine (CIN) simultaneously. An europium (III)-doped prussian blue analogue film (Eu-PB) modified platinum electrode was prepared and applied to improve the detection sensitivity. The parameters including additives, concentration and pH of the running buffer, separation voltage and detection potential that affect CE separation and ECL detection were optimized in detail. The four local anesthetics were baseline separated and detected within 10min under the optimized conditions. The detection limits (LOD) of PAH, TCH, PCH and CIN are 5.5×10(-8), 9.6×10(-8), 2.5×10(-8) and 3.5×10(-8)molL(-1) (S/N=3), respectively. RSDs of the migration time for four analytes range from 1.2% to 2.5% within intraday and from 2.4% to 4.9% in interday, RSDs of the peak area for four analytes are from 1.7% to 3.3% within intraday and from 2.2% to 5.6% in interday, respectively. The limits of quantitation (LOQ) (S/N=10) for PAH, TCH, PCH and CIN in human urine sample are 5.9×10(-7), 9.2×10(-7), 8.3×10(-7) and 5.0×10(-7)molL(-1), separately. The recoveries (n=3) of four analytes in human urine are from 87.6% to 107.7% with less than 5.9% in RSDs. The developed method was used to determine four local anesthetics in human urine samples and investigate the interaction between PAH and human serum albumin (HSA). The number of binding sites and the binding constant of PAH with HSA were calculated to be 1.03 and 2.4×10(4)Lmol(-1), respectively. PMID:27154684

  16. Investigation of binding mechanism of novel 8-substituted coumarin derivatives with human serum albumin and α-1-glycoprotein.

    PubMed

    Yeggoni, Daniel Pushpa Raju; Manidhar, Darla Mark; Suresh Reddy, Cirandur; Subramanyam, Rajagopal

    2016-09-01

    Coumarin molecules have biological activities possessing lipid-controlling activity, anti-hepatitis C activity, anti-diabetic, anti-Parkinson activity, and anti-cancer activity. Here, we have presented an inclusive study on the interaction of 8-substituted-7-hydroxy coumarin derivatives (Umb-1/Umb-2) with α-1-glycoprotein (AGP) and human serum albumin (HSA) which are the major carrier proteins in the human blood plasma. Binding constants obtained from fluorescence emission data were found to be KUmb-1=3.1 ± .01 × 10(4) M(-1), KUmb-2 = 7 ± .01 × 10(4) M(-1), which corresponds to -6.1 and -6.5 kcal/mol of free energy for Umb-1 and Umb-2, respectively, suggesting that these derivatives bind strongly to HSA. Also these molecules bind to AGP with binding constants of KUmb-1-AGP=3.1 ± .01 × 10(3) M(-1) and KUmb-2-AGP = 4.6 ± .01 × 10(3) M(-1). Further, the distance, r between the donor (HSA) and acceptor (Umb-1/Umb-2) was calculated based on the Forster's theory of non-radiation energy transfer and the values were observed to be 1.14 and 1.29 nm in Umb-1-HSA and Umb-2-HSA system, respectively. The protein secondary structure of HSA was partially unfolded upon binding of Umb-1 and Umb-2. Furthermore, site displacement experiments with lidocaine, phenylbutazone (IIA), and ibuprofen (IIIA) proves that Umb derivatives significantly bind to subdomain IIIA of HSA which is further supported by docking studies. Furthermore, Umb-1 binds to LYS402 with one hydrogen bond distance of 2.8 Å and Umb-2 binds to GLU354 with one hydrogen bond at a distance of 2.0 Å. Moreover, these molecules are stabilized by hydrophobic interactions and hydrogen bond between the hydroxyl groups of carbon-3 of coumarin derivatives. PMID:26440860

  17. In vitro hemocompatibility and toxic mechanism of graphene oxide on human peripheral blood T lymphocytes and serum albumin.

    PubMed

    Ding, Zhijia; Zhang, Zhijun; Ma, Hongwei; Chen, Yanyan

    2014-11-26

    Graphene oxide (GO) has shown tremendous application potential as a biomedical material. However, its interactions with blood components are not yet well understood. In this work, we assess the toxicity of pristine GO (p-GO) and functionalized GO (GO-COOH and GO-PEI) to primary human peripheral blood T lymphocytes and human serum albumin (HSA), and also study the underlying toxic mechanism. Our results indicate that p-GO and GO-COOH have good biocompatibility to T lymphocytes at the concentration below 25 μg mL(-1), but notable cytotoxicity above 50 μg mL(-1). By contrast, GO-PEI exhibits significant toxicity even at 1.6 μg mL(-1). Further investigations show that although p-GO does not enter into the cell or damage the membrane, its presence leads to the increase in reactive oxygen species (ROS), moderate DNA damage, and T lymphocyte apoptosis. Interestingly, little effect on T lymphocyte immune response suppression is observed in this process despite p-GO inflicting cell apoptosis. The toxic mechanism is that p-GO interacts directly with the protein receptors to inhibit their ligand-binding ability, leading to ROS-dependent passive apoptosis through the B-cell lymphoma-2 (Bcl-2) pathway. Compared with p-GO, GO-COOH exhibits a similar toxic effect on T lymphocytes except keeping a normal ROS level. A proposed toxic mechanism is that GO-COOH inhibits protein receptor-ligand binding, and passes the passive apoptosis signal to nucleus DNA through a ROS-independent mechanism. On the other hand, GO-PEI shows severe hematotoxicity to T lymphocytes by inducing membrane damage. For plasma protein HSA, the binding of GO-COOH results in minimal conformational change and HSA's binding capacity to bilirubin remains unaffected, while the binding of p-GO and GO-PEI exhibits strong toxicity on HSA. These findings on the interactions of two-dimensional nanomaterials and biological systems, along with the enquiry of the mechanisms, would provide essential support for further

  18. In vitro and in vivo synthesis of the hepatitis B virus surface antigen and of the receptor for polymerized human serum albumin from recombinant human adenoviruses.

    PubMed Central

    Ballay, A; Levrero, M; Buendia, M A; Tiollais, P; Perricaudet, M

    1985-01-01

    We have developed an adenovirus vector to express foreign proteins under the control of the adenovirus E1a promoter. Two recombinant plasmids, harbouring either the S gene or the pre-S2 region and the S gene of hepatitis B virus under the control of the E1a promoter, were used to construct two recombinant adenoviruses. These two viruses direct the synthesis of hepatitis B virus surface antigen (HBsAg) particles during the time course of an infectious cycle. When the pre-S2 region is present in the constructed virus, the synthesis of particles carrying the receptor for polymerized human serum albumin (pHSA) is observed. Moreover, the inoculation of rabbits with this latter purified recombinant adenovirus elicits the production of antibodies that react with both HBsAg and pHSA receptor. Images Fig. 4. PMID:3004975

  19. Quantitative determination of biological sulfhydryl groups by postcolumn derivatization and elucidation of microheterogeneity of serum albumins.

    PubMed

    Yasuhara, T; Nokihara, K

    1998-08-15

    A quantitative analytical system for biological sulfhydryl compounds has been developed using an ion-pair reagent with isocratic elution and an on-line postcolumn derivatization with Ellman-type reagents. As human or bovine serum albumin has 35 cysteinyl residues, one cysteinyl residue exists as a free sulfhydryl moiety, and this gives rise to the microheterogeneity in serum albumin. Here we report for the first time the quantitative characterization of the microheterogeneity of serum albumin. Cysteine was found to be the major molecule attached to the sulfydryl group of the serum albumins. Although glutathione could not be detected, the Cys-Gly element of glutathione was found. Freshly prepared human serum albumin from healthy volunteers contained 0.46 nmol of Cys/mL of serum, 0.24 nmol of Cys-Gly/mL of serum, and very small amounts of glutathione (0.02 nmol/mL). PMID:9726170

  20. The viability of mouse spermatogonial germ cells on a novel scaffold, containing human serum albumin and calcium phosphate nanoparticles

    PubMed Central

    Yadegar, Mona; Hekmatimoghaddam, Seyed Hossein; Nezami Saridar, Saeide; Jebali, Ali

    2015-01-01

    Background: In spermatogenesis, spermatogonial cells differentiate to the haploid gametes. It has been shown that spermatogenesis can be done at in vitro condition. In vitro spermatogenesis may provide an open window to treat male infertility. Objective: The aim of this study was to evaluate the effects of a novel scaffold containing human serum albumin (HSA)/tri calcium phosphate nanoparticles (TCP NPs) on the mouse spermatogonial cell line (SCL). Materials and Methods: First, TCP NPs were synthesized by reaction of calcium nitrate and diammonium phosphate at pH 13. Then, serial concentrations of TCP NPs were separately added to 500 mg/mL HSA, and incubated in the 100oC water for 30 min. In the next step, each scaffold was cut (2×2mm), placed into sterile well of microplate, and then incubated for 1, 2, and 3 days at 37oC with mouse SCL. After incubation, the cytotoxicity of the scaffolds was evaluated by different tests including 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide (MTT) assay, lactate dehydrogenase (LDH) assay, vital staining, and cell counting. On the other hand, the release of TCP NPs and HSA from the scaffolds was measured. Results: Based on microscopic observation, the size of cavities for all scaffolds was near 200-500 µm, and the size of TCP NPs was near 50-100 nm. All toxicity tests showed that the increase of TCP concentration in the scaffold did not affect mouse SCL. It means that the percentage of cell viability, LDH release, vital cells, and cell quantity was 85%, 105%, 90%, and 110%, respectively. But, the increase of incubation time led to increase of LDH release (up to 115%) and cell count (up to 115%). Also, little decrease of cell viability and vital cells was seen when incubation time was increased. Here, no release of TCP NPs and HSA was seen after increase of TCP concentration and incubation time. Conclusion: It can be concluded that the increase of TCP concentration in HSA/ TCP NPs scaffold does not lead to

  1. Depletion of human serum albumin in embryo culture media for in vitro fertilization using monolithic columns with immobilized antibodies.

    PubMed

    Tarasova, Irina A; Lobas, Anna A; Černigoj, Urh; Solovyeva, Elizaveta M; Mahlberg, Barbara; Ivanov, Mark V; Panić-Janković, Tanja; Nagy, Zoltan; Pridatchenko, Marina L; Pungor, Andras; Nemec, Blaž; Vidic, Urška; Gašperšič, Jernej; Krajnc, Nika Lendero; Vidič, Jana; Gorshkov, Mikhail V; Mitulović, Goran

    2016-09-01

    Affinity depletion of abundant proteins such as HSA is an important stage in routine sample preparation prior to MS/MS analysis of biological samples with high range of concentrations. Due to the charge competition effects in electrospray ion source that results in discrimination of the low-abundance species, as well as limited dynamic range of MS/MS, restricted typically by three orders of magnitude, the identification of low-abundance proteins becomes a challenge unless the sample is depleted from high-concentration compounds. This dictates a need for developing efficient separation technologies allowing fast and automated protein depletion. In this study, we performed evaluation of a novel immunoaffinity-based Convective Interaction Media analytical columns (CIMac) depletion column with specificity to HSA (CIMac-αHSA). Because of the convective flow-through channels, the polymethacrylate CIMac monoliths afford flow rate independent binding capacity and resolution that results in relatively short analysis time compared with traditional chromatographic supports. Seppro IgY14 depletion kit was used as a benchmark to control the results of depletion. Bottom-up proteomic approach followed by label-free quantitation using normalized spectral indexes were employed for protein quantification in G1/G2 and cleavage/blastocyst in vitro fertilization culture media widely utilized in clinics for embryo growth in vitro. The results revealed approximately equal HSA level of 100 ± 25% in albumin-enriched fractions relative to the nondepleted samples for both CIMac-αHSA column and Seppro kit. In the albumin-free fractions concentrated 5.5-fold by volume, serum albumin was identified at the levels of 5-30% and 20-30% for the CIMac-αHSA and Seppro IgY14 spin columns, respectively. PMID:27122488

  2. Multispectroscopic and docking studies on the binding of chlorogenic acid isomers to human serum albumin: Effects of esteryl position on affinity.

    PubMed

    Tang, Bin; Huang, Yanmei; Ma, Xiangling; Liao, Xiaoxiang; Wang, Qing; Xiong, Xinnuo; Li, Hui

    2016-12-01

    Structural differences among various dietary polyphenols affect their absorption, metabolism, and bioactivities. In this work, chlorogenic acid (CA) and its two positional isomers, neochlorogenic acid (NCA) and cryptochlorogenic acid (CCA), were investigated for their binding reactions with human serum albumin (HSA) using fluorescence, ultraviolet-visible, Fourier transform infrared and circular dichroism spectroscopies, as well as molecular docking. All three isomers were bound to HSA at Sudlow's site I and affected the protein secondary structure. CCA presented the strongest ability of hydrogen-bond formation, and both CA and NCA generated more electrostatic interactions with HSA. The albumin-binding capacity of these compounds decreased in the order CCA>NCA>CA. The compound with 4-esteryl structure showed higher binding affinity and larger conformational changes to HSA than that with 3- or 5-esteryl structures. These comparative studies on structure-affinity relationship contributed to the structural modification and design of phenolic food additives or new polyphenol-like drugs. PMID:27374553

  3. Comparative analysis the binding affinity of mycophenolic sodium and meprednisone with human serum albumin: Insight by NMR relaxation data and docking simulation.

    PubMed

    Ma, Xiaoli; He, Jiawei; Yan, Jin; Wang, Qing; Li, Hui

    2016-03-25

    Mycophenolic sodium is an immunosuppressive agent that is always combined administration with corticosteroid in clinical practice. Considering the distribution and side-effect of the drug may change when co-administrated drug exist, this paper comparatively analyzed the binding ability of mycophenolic sodium and meprednisone toward human serum albumin by nuclear magnetic resonance relaxation data and docking simulation. The nuclear magnetic resonance approach was based on the analysis of proton selective and non-selective relaxation rate enhancement of the ligand in the absence and presence of macromolecules. The contribution of the bound ligand fraction to the observed relaxation rate in relation to protein concentration allowed the calculation of the affinity index. This approach allowed the comparison of the binding affinity of mycophenolic sodium and meprednisone. Molecular modeling was operated to simulate the binding model of ligand and albumin through Autodock 4.2.5. Competitive binding of mycophenolic sodium and meprednisone was further conducted through fluorescence spectroscopy. PMID:26892221

  4. Superior serum half life of albumin tagged TNF ligands

    SciTech Connect

    Mueller, Nicole; Schneider, Britta; Pfizenmaier, Klaus; Wajant, Harald

    2010-06-11

    Due to their immune stimulating and apoptosis inducing properties, ligands of the TNF family attract increasing interest as therapeutic proteins. A general limitation of in vivo applications of recombinant soluble TNF ligands is their notoriously rapid clearance from circulation. To improve the serum half life of the TNF family members TNF, TWEAK and TRAIL, we genetically fused soluble variants of these molecules to human serum albumin (HSA). The serum albumin-TNF ligand fusion proteins were found to be of similar bioactivity as the corresponding HSA-less counterparts. Upon intravenous injection (i.v.), serum half life of HSA-TNF ligand fusion proteins, as determined by ELISA, was around 15 h as compared to approximately 1 h for all of the recombinant control TNF ligands without HSA domain. Moreover, serum samples collected 6 or 24 h after i.v. injection still contained high TNF ligand bioactivity, demonstrating that there is only limited degradation/inactivation of circulating HSA-TNF ligand fusion proteins in vivo. In a xenotransplantation model, significantly less of the HSA-TRAIL fusion protein compared to the respective control TRAIL protein was required to achieve inhibition of tumor growth indicating that the increased half life of HSA-TNF ligand fusion proteins translates into better therapeutic action in vivo. In conclusion, our data suggest that genetic fusion to serum albumin is a powerful and generally applicable mean to improve bioavailability and in vivo activity of TNF ligands.

  5. Effects of Gold Salt Speciation and Structure of Human and Bovine Serum Albumin on the Synthesis and Stability of Gold Nanostructures

    NASA Astrophysics Data System (ADS)

    Miranda, Érica; Tofanello, Aryane; Brito, Adrianne; Lopes, David; Giacomelli, Fernando; Albuquerque, Lindomar; Costa, Fanny; Ferreira, Fabio; Araujo-Chaves, Juliana; de Castro, Carlos; Nantes, Iseli

    2016-03-01

    The present study aimed to investigate the influence of albumin structure and gold speciation on the synthesis of gold nanoparticles (GNPs). The strategy of synthesis was the addition of HAuCl4 solutions at different pH values (3-12) to solutions of human and bovine serum albumins (HSA and BSA) at the same corresponding pH values. Different pH values influence the GNP synthesis due to gold speciation. Besides the inherent effect of pH on the native structure of albumins, the use N-ethylmaleimide (NEM)-treated and heat-denaturated forms of HSA and BSA provided additional insights about the influence of protein structure, net charge, and thiol group approachability on the GNP synthesis. NEM treatment, heating, and the extreme values of pH promoted loss of the native albumin structure. The formation of GNPs indicated by the appearance of surface plasmon resonance (SPR) bands became detectable from fifteen days of the synthesis processes that were carried out with native, NEM-treated and heat-denaturated forms of HSA and BSA, exclusively at pH 6 and 7. After two months of incubation, SPR band was also detected for all synthesis carried out at pH 8.0. The mean values of the hydrodynamic radius (RH) were 24 and 34 nm for GNPs synthesized with native HSA and BSA, respectively. X-ray diffraction (XRD) revealed crystallites of 13 nm. RH, XRD, and zeta potential values were consistent with GNP capping by the albumins. However, the GNPs produced with NEM-treated and heat-denaturated albumins exhibited loss of protein capping by lowering the ionic strength. This result suggests a significant contribution of non-electrostatic interactions of albumins with the GNP surface, in these conditions. The denaturation of proteins exposes hydrophobic groups to the solvent, and these groups could interact with the gold surface. In these conditions, the thiol blockage or oxidation, the latter probably favored upon heating, impaired the formation of a stable capping by thiol coordination

  6. Effects of Gold Salt Speciation and Structure of Human and Bovine Serum Albumins on the Synthesis and Stability of Gold Nanostructures

    PubMed Central

    Miranda, Érica G. A.; Tofanello, Aryane; Brito, Adrianne M. M.; Lopes, David M.; Albuquerque, Lindomar J. C.; de Castro, Carlos E.; Costa, Fanny N.; Giacomelli, Fernando C.; Ferreira, Fabio F.; Araújo-Chaves, Juliana C.; Nantes, Iseli L.

    2016-01-01

    The present study aimed to investigate the influence of albumin structure and gold speciation on the synthesis of gold nanoparticles (GNPs). The strategy of synthesis was the addition of HAuCl4 solutions at different pH values (3–12) to solutions of human and bovine serum albumins (HSA and BSA) at the same corresponding pH values. Different pH values influence the GNP synthesis due to gold speciation. Besides the inherent effect of pH on the native structure of albumins, the use N-ethylmaleimide (NEM)-treated and heat-denaturated forms of HSA and BSA provided additional insights about the influence of protein structure, net charge, and thiol group approachability on the GNP synthesis. NEM treatment, heating, and the extreme values of pH promoted loss of the native albumin structure. The formation of GNPs indicated by the appearance of surface plasmon resonance (SPR) bands became detectable from 15 days of the synthesis processes that were carried out with native, NEM-treated and heat-denaturated forms of HSA and BSA, exclusively at pH 6 and 7. After 2 months of incubation, SPR band was also detected for all synthesis carried out at pH 8.0. The mean values of the hydrodynamic radius (RH) were 24 and 34 nm for GNPs synthesized with native HSA and BSA, respectively. X-ray diffraction (XRD) revealed crystallites of 13 nm. RH, XRD, and zeta potential values were consistent with GNP capping by the albumins. However, the GNPs produced with NEM-treated and heat-denaturated albumins exhibited loss of protein capping by lowering the ionic strength. This result suggests a significant contribution of non-electrostatic interactions of albumins with the GNP surface, in these conditions. The denaturation of proteins exposes hydrophobic groups to the solvent, and these groups could interact with the gold surface. In these conditions, the thiol blockage or oxidation, the latter probably favored upon heating, impaired the formation of a stable capping by thiol coordination with

  7. Effects of Gold Salt Speciation and Structure of Human and Bovine Serum Albumins on the Synthesis and Stability of Gold Nanostructures.

    PubMed

    Miranda, Érica G A; Tofanello, Aryane; Brito, Adrianne M M; Lopes, David M; Albuquerque, Lindomar J C; de Castro, Carlos E; Costa, Fanny N; Giacomelli, Fernando C; Ferreira, Fabio F; Araújo-Chaves, Juliana C; Nantes, Iseli L

    2016-01-01

    The present study aimed to investigate the influence of albumin structure and gold speciation on the synthesis of gold nanoparticles (GNPs). The strategy of synthesis was the addition of HAuCl4 solutions at different pH values (3-12) to solutions of human and bovine serum albumins (HSA and BSA) at the same corresponding pH values. Different pH values influence the GNP synthesis due to gold speciation. Besides the inherent effect of pH on the native structure of albumins, the use N-ethylmaleimide (NEM)-treated and heat-denaturated forms of HSA and BSA provided additional insights about the influence of protein structure, net charge, and thiol group approachability on the GNP synthesis. NEM treatment, heating, and the extreme values of pH promoted loss of the native albumin structure. The formation of GNPs indicated by the appearance of surface plasmon resonance (SPR) bands became detectable from 15 days of the synthesis processes that were carried out with native, NEM-treated and heat-denaturated forms of HSA and BSA, exclusively at pH 6 and 7. After 2 months of incubation, SPR band was also detected for all synthesis carried out at pH 8.0. The mean values of the hydrodynamic radius (RH) were 24 and 34 nm for GNPs synthesized with native HSA and BSA, respectively. X-ray diffraction (XRD) revealed crystallites of 13 nm. RH, XRD, and zeta potential values were consistent with GNP capping by the albumins. However, the GNPs produced with NEM-treated and heat-denaturated albumins exhibited loss of protein capping by lowering the ionic strength. This result suggests a significant contribution of non-electrostatic interactions of albumins with the GNP surface, in these conditions. The denaturation of proteins exposes hydrophobic groups to the solvent, and these groups could interact with the gold surface. In these conditions, the thiol blockage or oxidation, the latter probably favored upon heating, impaired the formation of a stable capping by thiol coordination with the

  8. Preparation and biodistribution of 188Re-labeled folate conjugated human serum albumin magnetic cisplatin nanoparticles (188Re-folate-CDDP/HSA MNPs) in vivo

    PubMed Central

    Tang, Qiu-Sha; Chen, Dao-Zhen; Xue, Wen-Qun; Xiang, Jing-Ying; Gong, Yong-Chi; Zhang, Li; Guo, Cai-Qin

    2011-01-01

    Background The purpose of this study was to develop intraperitoneal hyperthermic therapy based on magnetic fluid hyperthermia, nanoparticle-wrapped cisplatin chemotherapy, and magnetic particles of albumin. In addition, to combine the multiple-killing effects of hyperthermal targeting therapy, chemotherapy, and radiotherapy, the albumin-nanoparticle surfaces were linked with radionuclide 188Re-labeled folic acid ligand (188Re-folate-CDDP/HSA). Methods Human serum albumin was labeled with 188Re using the pre-tin method. Reaction time and optimal conditions of labeling were investigated. The particles were intravenously injected into mice, which were sacrificed at different time points. Radioactivity per gram of tissue of percent injected dose (% ID/g) was measured in vital organs. The biodistribution of 188Re-folate-CDDP/HAS magnetic nanoparticles was assessed. Results Optimal conditions for 188Re-labeled folate-conjugated albumin combined with cisplatin magnetic nanoparticles were: 0.1 mL of sodium gluconate solution (0.3 mol/L), 0.1 mL of concentrated hydrochloric acid with dissolved stannous chloride (10 mg/mL), 0.04 mL of acetic acid buffer solution (pH 5, 0.2 mol/L), 30 mg of folate-conjugated albumin combined with cisplatin magnetic nanoparticles, and 188ReO4 eluent (0.1 mL). The rate of 188Re-folate-CDDP-HSA magnetic nanoparticle formation exceeded 90%, and radiochemical purity exceeded 95%. The overall labeling rate was 83% in calf serum at 37°C. The major uptake tissues were the liver, kidney, intestine, and tumor after the 188Re-folate-CDDP/HSA magnetic nanoparticles were injected into nude mice. Uptake of 188Re-folate-CDDP/HSA magnetic nanoparticles increased gradually after injection, peaked at 8 hours with a value of 8.83 ± 1.71, and slowly decreased over 24 hours in vivo. Conclusion These results indicate that 188Re-folate-CDDP/HSA magnetic nanoparticles can be used in radionuclide-targeted cancer therapy. Surface-modified albumin nanoparticles with

  9. Species Dependence of [64Cu]Cu-Bis(thiosemicarbazone) Radiopharmaceutical Binding to Serum Albumins

    PubMed Central

    Basken, Nathan E.; Mathias, Carla J.; Lipka, Alexander E.; Green, Mark A.

    2008-01-01

    Introduction Interactions of three copper(II) bis(thiosemicarbazone) PET radiopharmaceuticals with human serum albumin, and the serum albumins of four additional mammalian species, were evaluated. Methods 64Cu-labeled diacetyl bis(N4-methylthiosemicarbazonato)copper(II) (Cu-ATSM), pyruvaldehyde bis(N4-methylthiosemicarbazonato)copper(II) (Cu-PTSM), and ethylglyoxal bis(thiosemicarbazonato)copper(II) (Cu-ETS) were synthesized and their binding to human, canine, rat, baboon, and porcine serum albumins quantified by ultrafiltration. Protein binding was also measured for each tracer in human, porcine, rat, and mouse serum. Results The interaction of these neutral, lipophilic copper chelates with serum albumin is highly compound- and species-dependent. Cu-PTSM and Cu-ATSM exhibit particularly high affinity for human serum albumin (HSA), while the albumin binding of Cu-ETS is relatively insensitive to species. At HSA concentrations of 40 mg/mL, “% Free” (non-albumin-bound) levels of radiopharmaceutical were 4.0 ± 0.1%; 5.3 ± 0.2%; and 38.6 ± 0.8% for Cu-PTSM; Cu-ATSM; and Cu-ETS, respectively. Conclusions Species-dependent variations in radiopharmaceutical binding to serum albumin may need to be considered when using animal models to predict the distribution and kinetics of these compounds in humans. PMID:18355683

  10. Anti-tumor activity of fenretinide complexed with human serum albumin in lung cancer xenograft mouse model

    PubMed Central

    Teti, Gabriella; Salvatore, Viviana; Focaroli, Stefano; Tesei, Anna; Pignatta, Sara; Falconi, Mirella

    2014-01-01

    Sufficient knowledge regarding cellular and molecular basis of lung cancer progression and metastasis would help in the development of novel and effective strategies for the treatment of lung cancer. 4HPR is a synthetic retinoid with potential anti-tumor activity but is still limited because of its poor bioavailability. The use of albumin as a complexing agent for a hydrophobic drug is expected to improve the water solubility and consequently their bioavailability.This study investigated the antitumor activity of a novel complex between albumin and 4-HPR in a mouse model of human lung cancer and focuses on role and mechanism of Cav-1 mainly involved in regulating cancer and Acsvl3 mainly connected with tumor growth. Their expressions were assayed by immunohistochemistry and qRT-PCR, to demonstrate the reduction of the tumor growth following the drug treatment. Our results showed a high antitumor activity of 4HPR-HSA by reduction of the volume of tumor mass and the presence of a high level of apoptotic cell by TUNEL assay. The downregulation of Cav-1 and Acsvl3 suggested a reduction of tumor growth. In conclusion, we demonstrated the great potential of 4HPR-HSA in the treatment of lung cancer. More data about the mechanism of drug delivery the 4HPR-HSA are necessary. PMID:25015569

  11. Molecular modeling and spectroscopic studies on binding of 2,6-bis[4-(4-amino-2-trifluoromethylphenoxy)benzoyl] pyridine to human serum albumin

    NASA Astrophysics Data System (ADS)

    He, Wen-ying; Chen, Hui-juan; Sheng, Fen-ling; Yao, Xiao-jun

    2009-10-01

    BAFP (2,6-bis[4-(4-amino-2-trifluoromethylphenoxy)benzoyl] pyridine), a synthesized polyimide compound, was exploited for the first time to analyze its interaction with human serum albumin (HSA) by molecular modeling, fluorescence and Fourier transform infrared attenuated total reflection spectroscopy (FTIR ATR) with drug concentrations of 3.3 × 10 -6 to 3.0 × 10 -5 mol L -1. Molecular docking was performed to reveal the possible binding mode. The results suggested that BAFP can strongly bind to human serum albumin (HSA) and the primary binding site of BAFP is located in site II of HSA, which is supported by the results from the competitive experiment. The binding constants for the interaction of BAFP with HSA have been evaluated from relevant fluorescence data at different temperatures (296, 303, 310 and 308 K). The alterations of the protein secondary structure in the presence of BAFP in aqueous solution were quantitatively calculated by the evidences from FTIR ATR spectroscopes. The binding process was exothermic and spontaneous, as indicated by the thermodynamic analyses, and the major part of the binding energy is hydrophobic interaction, which is also in good agreement with the results of molecule modeling study. The enthalpy change Δ H0, the free energy change Δ G0 and the entropy change Δ S0 of 296 K were calculated to be -7.75, -27.68 kJ mol -1 and 67.33 J mol -1 K -1, respectively.

  12. Study of human serum albumin structure by dynamic light scattering: two types of reactions under different pH and interaction with physiologically active compounds

    NASA Astrophysics Data System (ADS)

    Luik, A. I.; Naboka, Yu. N.; Mogilevich, S. E.; Hushcha, T. O.; Mischenko, N. I.

    1998-09-01

    The effect of pH and binding of ten physiologically active compounds (isoproterenol, yohimbine, propranolol, clonidine, phenylephrine, carbachol, tripeptide fMLP, diphenhydramine, chlorpromazine and atropine) on the molecular structure of human serum albumin (HSA) has been studied using the dynamic light scattering. It was found that albumin globule has the most compact configuration (Stokes diameter 59-62 Å) at physiological pH 7.4. The changes in pH, both increase to 8.0 and decrease to 5.4, result in the growth of globule size to 72-81 Å. At acidic shift of pH an additional peak arises in the correlation spectra caused by the light scattering on the structures with the Stokes diameters of 29-37 Å. Those conform to the sizes of the albumin subdomains. The indicated peak is not displayed at basic shift of pH. The interaction with propranolol, clonidine, phenylephrine, carbachol and tripeptide fMLP which hinder adenylate cyclase (AdC) and activate Ca-polyphosphoinositide (Ca-PPI) signaling system of a cell initiates structural rearrangements similar to acidic transitions. Isoproterenol, yohimbine diphenhydramine, chlorpromazine and atropine, which activate AdC and hinder Ca-PPI, cause conformational changes of HSA similar to basic transitions.

  13. Arginine 485 of human serum albumin interacts with the benzophenone moiety of ketoprofen in the binding pocket of subdomain III A and III B.

    PubMed

    Kaneko, K; Chuang, V T G; Ito, T; Suenaga, A; Watanabe, H; Maruyama, T; Otagiri, M

    2012-05-01

    Arylpropionic acid nonsteroidal anti-inflammatory drusg (NSAIDs) primarily bind to subdomain III A (site II) of human serum albumin (HSA). Ketoprofen (KP), an arylpropionic acid that contains a photoreactive benzophenone moiety, was used to photolabel the binding region of site II. LC/Q-TOF mass spectrometry determination revealed that R485 was the amino acid residue that formed covalent adduct with the benzophenone moiety of KP. Point mutation of arginine 485 to alanine showed a slight decrease in the overall binding percentage of KP when compared to that of native HSA. The induced circular dichroism spectral data of KP with both R485A and native albumin confirmed the photolabeling findings. Interestingly, an increase in the extent of [14C]KP covalent adduct formation with the 11.6 kDa peptide derived from subdomain IIB-IIIA was observed for R485A. In contrast, mutation of arginine 410 caused a significant reduction of binding percentage, confirming the importance of this residue in high affinity binding of arylpropionic acid derivatives. This may indicate that while KP's carboxylate interacts electrostatically with arginine 410, the benzophenone moiety may have swung away from helix 6 in the absence of arginine 485. In this study, photolabeling of native and mutants albumins, R485A and R410C with [14C]KP confirmed that R485 involved in the non-electrostatic interaction with the benzophenone moiety of KP, but not vital to hold KP in the binding pocket of subdomain IIIA. PMID:22764574

  14. Glycated serum albumin: a potential disease marker and an intermediate index of diabetes control.

    PubMed

    Raghav, Alok; Ahmad, Jamal

    2014-01-01

    Glycation is a non-enzymatic spontaneous process in proteins which has remarkable impact on its physical and functional aspect. This alteration with addition of carbohydrate residue to human serum albumin leads to several pathological events such as diabetic nephropathy, neuropathy, retinopathy and cardiovascular complications. Human serum albumin is the major protein and is most susceptible to non-enzymatic glycation. Structural and biological properties of functional albumin alter due to the addition of reducing carbohydrate to free amino terminal residues vivo. These irreversible changes in functional albumin are stable which makes this modified albumin as new gold standard future diagnostic marker in diabetes associated complications. Glycated albumin can be used to determine the glycemic control due to short half life than erythrocytes which makes it an alternate reliable disease marker in diabetes. In this review, Human serum albumin glycation has been overviewed, stating concept of glycation and sites that are prone to this modifications. Impact of non-enzymatic addition of carbohydrate to albumin's structural and biological properties has also been elaborated. Accurate measurements of glycated albumin with implications of new highly sensitive techniques have also been described briefly. Interestingly human serum albumin imposed glycation can serve as future tool not for diagnosing diabetes but also its potential in assessment of diabetes associated complications. PMID:25311816

  15. SDS-binding assay based on tyrosine fluorescence as a tool to determine binding properties of human serum albumin in blood plasma

    NASA Astrophysics Data System (ADS)

    Zhdanova, Nadezda; Shirshin, Evgeny; Fadeev, Victor; Priezzhev, Alexander

    2016-04-01

    Among all plasma proteins human serum albumin (HSA) is the most studied one as it is the main transport protein and can bind a wide variety of ligands especially fatty acids (FAs). The concentration of FAs bound to HSA in human blood plasma differs by three times under abnormal conditions (fasting, physical exercises or in case of social important diseases). In the present study a surfactant sodium dodecyl sulfate (SDS) was used to simulate FAs binding to HSA. It was shown that the increase of Tyr fluorescence of human blood plasma due to SDS addition can be completely explained by HSA-SDS complex formation. Binding parameters of SDS-HSA complex (average number of sites and apparent constant of complex formation) were determined from titration curves based on tyrosine (Tyr) fluorescence.

  16. Surface receptors for serum albumin in group C and G streptococci show three different types of albumin specificity.

    PubMed Central

    Wideback, K; Kronvall, G

    1982-01-01

    A total of 100 bacterial strains were tested for binding uptake of radiolabeled albumin preparations from 15 mammalian species. Three types of surface structures with specific binding sites for albumin were defined. A previously described receptor for albumin was separated into type a in Streptococcus equisimilis strains and in human group G streptococcal strains and type b in bovine group C streptococci. A new type of albumin receptor, type c, was found in Streptococcus dysgalactiae strains, the only receptor type so far with high affinity for bovine serum albumin. Type of albumin receptor correlated with bacterial species. The three receptor types showed high binding capacities; 2 X 10(8) bacterial organisms bound from 5 to 16 micrograms of albumin. All types of albumin receptors were stable to heat treatment at 80 degrees C for 5 min, but susceptible to both pepsin and trypsin treatment. Bacteria-bound albumin preparations were eluted at various concentrations of KSCN, reflecting differences in affinity. Up to 500 micrograms of human fibrinogen or polyclonal human immunoglobulin G had no inhibitory effect on the uptake of albumin, indicating a separate molecular localization of receptors for these proteins. PMID:6295942

  17. Upregulation of oxidative stress markers in human microvascular endothelial cells by complexes of serum albumin and digestion products of glycated casein.

    PubMed

    Deo, Permal; Glenn, Josephine V; Powell, Lesley A; Stitt, Alan W; Ames, Jennifer M

    2009-01-01

    The extent of absorption of dietary advanced glycation end products (AGEs) is not fully known. The possible physiological impact of these absorbed components on inflammatory processes has been studied little and was the aim of this investigation. Aqueous solutions of bovine casein and glucose were heated at 95 degrees C for 5 h to give AGE-casein (AGE-Cas). Simulated stomach and small intestine digestion of AGE-Cas and dialysis (molecular mass cutoff of membrane = 1 kDa) resulted in a low molecular mass (LMM) fraction of digestion products, which was used to prepare bovine serum albumin (BSA)-LMM-AGE-Cas complexes. Stimulation of human microvascular endothelial cells with BSA-LMM-AGE-Cas complexes significantly increased mRNA expression of the receptor of AGE (RAGE), galectin-3 (AGE-R3), tumor necrosis factor alpha, and a marker of the mitogen-activated protein kinase pathway (MAPK-1), as well as p65NF-kappaB activation. Cells treated with LMM digestion products of AGE-Cas significantly increased AGE-R3 mRNA expression. Intracellular reactive oxygen species production increased significantly in cells challenged with BSA-LMM-AGE-Cas and LMM-AGE-Cas. In conclusion, in an in vitro cell system, digested dietary AGEs complexed with serum albumin play a role in the regulation of RAGE and downstream inflammatory pathways. AGE-R3 may protect against these effects. PMID:19827132

  18. Water-soluble molybdenocene complexes with both proliferative and antiproliferative effects on cancer cell lines and their binding interactions with human serum albumin

    PubMed Central

    Feliciano, Idainés; Matta, Jaime; Meléndez, Enrique

    2010-01-01

    Two water-soluble molybdenocene complexes containing oxygen chelating ligands, maltolato and malonate, have been synthesized to elucidate the role of the ancillary ligands in the molybdenocene cytotoxic activity. The structural characterizations of these species by 1H NMR and IR spectroscopies suggest that both molybdenocene complexes contain the ligands in a bidentate fashion and elemental analysis and mass spectrometry corroborate the proposed formula for the species to be Cp2Mo(malonate) and [Cp2Mo(maltolato)]Cl (Cp is cyclopentadienyl). Metal–albumin binding studies were pursued using UV–vis spectroscopy and cyclic voltammetric techniques. Whereas metal–albumin binding studies using UV–vis spectroscopy did not show any evidence of interaction, cyclic voltammetry experiments showed that molybdenocene complexes may be involved in weak binding interactions with albumin, most likely in hydrophobic interactions. The cytotoxic activities of Cp2Mo(malonate) and [Cp2Mo(maltolato)]Cl alone with Cp2MoCl2 were investigated in HT-29 colon cancer and MCF-7 breast cancer cell lines using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cell viability assay. Cp2Mo(malonate) and [Cp2Mo(maltolato)]Cl showed slight improvement in terms of cytotoxic activity as compared with Cp2MoCl2 in the HT-29 colon cancer cell line, whereas for MCF-7 all the molybdenocene species exhibited a proliferative profile. The molybdenocene-containing chelating ligands showed stronger proliferative effects than Cp2MoCl2. There is no correlation between the binding affinity of molybdenocenes for human serum albumin and cytotoxic activity toward HT-29 and MCF-7 cancer cells. PMID:19536567

  19. Immunodetection of Serum Albumin Adducts as Biomarkers for Organophosphorus Exposure

    PubMed Central

    Chen, Sigeng; Zhang, Jun; Lumley, Lucille

    2013-01-01

    A major challenge in organophosphate (OP) research has been the identification and utilization of reliable biomarkers for the rapid, sensitive, and efficient detection of OP exposure. Although Tyr 411 OP adducts to human serum albumin (HSA) have been suggested to be one of the most robust biomarkers in the detection of OP exposure, the analysis of HSA-OP adduct detection has been limited to techniques using mass spectrometry. Herein, we describe the procurement of two monoclonal antibodies (mAb-HSA-GD and mAb-HSA-VX) that recognized the HSA Tyr 411 adduct of soman (GD) or S-[2-(diisopropylamino)ethyl]-O-ethyl methylphosphonothioate (VX), respectively, but did not recognize nonphosphonylated HSA. We showed that mAb-HSA-GD was able to detect the HSA Tyr 411 OP adduct at a low level (i.e., human blood plasma treated with 180 nM GD) that could not be detected by mass spectrometry. mAb-HSA-GD and mAb-HSA-VX showed an extremely low-level detection of GD adducted to HSA (on the order of picograms). mAb-HSA-GD could also detect serum albumin OP adducts in blood plasma samples from different animals administered GD, including rats, guinea pigs, and monkeys. The ability of the two antibodies to selectively recognize nerve agents adducted to serum albumin suggests that these antibodies could be used to identify biomarkers of OP exposure and provide a new biologic approach to detect OP exposure in animals. PMID:23192655

  20. Probing the binding of an endocrine disrupting compound-Bisphenol F to human serum albumin: Insights into the interactions of harmful chemicals with functional biomacromolecules

    NASA Astrophysics Data System (ADS)

    Pan, Fang; Xu, Tianci; Yang, Lijun; Jiang, Xiaoqing; Zhang, Lei

    2014-11-01

    Bisphenol F (BPF) as an endocrine disrupting compounds (EDCs) pollutant in the environment poses a great threat to human health. To evaluate the toxicity of BPF at the protein level, the effects of BPF on human serum albumin (HSA) were investigated at three temperatures 283, 298, and 308 K by multiple spectroscopic techniques. The experimental results showed that BPF effectively quenched the intrinsic fluorescence of HSA via static quenching. The number of binding sites, the binding constant, the thermodynamic parameters and the binding subdomain were measured, and indicated that BPF could spontaneously bind with HSA on subdomain IIA through H-bond and van der Waals interactions. Furthermore, the conformation of HSA was demonstrably changed in the presence of BPF. The work provides accurate and full basic data for clarifying the binding mechanisms of BPF with HSA in vivo and is helpful for understanding its effect on protein function during its transportation and distribution in blood.

  1. Photooxidation of Tryptophan and Tyrosine Residues in Human Serum Albumin Sensitized by Pterin: A Model for Globular Protein Photodamage in Skin.

    PubMed

    Reid, Lara O; Roman, Ernesto A; Thomas, Andrés H; Dántola, M Laura

    2016-08-30

    Human serum albumin (HSA) is the most abundant protein in the circulatory system. Oxidized albumin was identified in the skin of patients suffering from vitiligo, a depigmentation disorder in which the protection against ultraviolet (UV) radiation fails because of the lack of melanin. Oxidized pterins, efficient photosensitizers under UV-A irradiation, accumulate in the skin affected by vitiligo. In this work, we have investigated the ability of pterin (Ptr), the parent compound of oxidized pterins, to induce structural and chemical changes in HSA under UV-A irradiation. Our results showed that Ptr is able to photoinduce oxidation of the protein in at least two amino acid residues: tryptophan (Trp) and tyrosine (Tyr). HSA undergoes oligomerization, yielding protein structures whose molecular weight increases with irradiation time. The protein cross-linking, due to the formation of dimers of Tyr, does not significantly affect the secondary and tertiary structures of HSA. Trp is consumed in the photosensitized process, and N-formylkynurenine was identified as one of its oxidation products. The photosensitization of HSA takes place via a purely dynamic process, which involves the triplet excited state of Ptr. The results presented in this work suggest that protein photodamage mediated by endogenous photosensitizers can significantly contribute to the harmful effects of UV-A radiation on the human skin. PMID:27500308

  2. Characterization of the binding of metoprolol tartrate and guaifenesin drugs to human serum albumin and human hemoglobin proteins by fluorescence and circular dichroism spectroscopy.

    PubMed

    Duman, Osman; Tunç, Sibel; Kancı Bozoğlan, Bahar

    2013-07-01

    The interactions of metoprolol tartrate (MPT) and guaifenesin (GF) drugs with human serum albumin (HSA) and human hemoglobin (HMG) proteins at pH 7.4 were studied by fluorescence and circular dichroism (CD) spectroscopy. Drugs quenched the fluorescence spectra of HSA and HMG proteins through a static quenching mechanism. For each protein-drug system, the values of Stern-Volmer quenching constant, bimolecular quenching constant, binding constant and number of binding site on the protein molecules were determined at 288.15, 298.15, 310.15 and 318.15 K. It was found that the binding constants of HSA-MPT and HSA-GF systems were smaller than those of HMG-MPT and HMG-GF systems. For both drugs, the affinity of HMG was much higher than that of HSA. An increase in temperature caused a negative effect on the binding reactions. The number of binding site on blood proteins for MPT and GF drugs was approximately one. Thermodynamic parameters showed that MPT interacted with HSA through electrostatic attraction forces. However, hydrogen bonds and van der Waals forces were the main interaction forces in the formation of HSA-GF, HMG-MPT and HMG-GF complexes. The binding processes between protein and drug molecules were exothermic and spontaneous owing to negative ∆H and ∆G values, respectively. The values of binding distance between protein and drug molecules were calculated from Förster resonance energy transfer theory. It was found from CD analysis that the bindings of MPT and GF drugs to HSA and HMG proteins altered the secondary structure of HSA and HMG proteins. PMID:23471625

  3. Effect of Solution Conditions on the Nanoscale Intermolecular Interactions Between Human Serum Albumin and Low Grafting Density Surfaces of Poly(ethylene oxide)

    NASA Astrophysics Data System (ADS)

    Rixman, Monica; Macias, Celia; Dean, Delphine; Ortiz, Christine

    2003-03-01

    The first step in the biological rejection response to an implanted blood-contacting biomaterial is the non-covalent adsorption of proteins onto the surface, which triggers a cascade reaction ultimately resulting in thrombus formation. Using the technique of high resolution force spectroscopy, we have quantified the nonspecific intermolecular forces between fatty acid-complexed human serum albumin (HSA) covalently attached to a cantilever probe tip and individual end-grafted poly(ethylene oxide) mushrooms. In order to help elucidate the molecular origins of the constituent forces (e.g. steric, electrostatic, van der Waals), experiments were performed varying both the solution environmental conditions (e.g. ionic strength, removal of the bound fatty acids, and the addition of the antihydrophobic agent isopropanol), and the probe deflection rate.

  4. Investigation of the binding sites and orientation of caffeine on human serum albumin by surface-enhanced Raman scattering and molecular docking

    NASA Astrophysics Data System (ADS)

    Wang, Weinan; Zhang, Wei; Duan, Yaokai; Jiang, Yong; Zhang, Liangren; Zhao, Bing; Tu, Pengfei

    2013-11-01

    Fluorescence, normal Raman and surface-enhanced Raman scattering (SERS) were introduced to explore the absorptive geometry of caffeine on Human Serum Albumin (HSA) at physiological condition. The molecular docking was also employed to make a better understanding of the interaction between caffeine and HSA as well as to elucidate the detailed information of the major binding site. The results showed that caffeine could bind to HSA via the hydrophobic force of aromatic stacking and the main binding group on caffeine could be the pyrimidine ring. In addition, a consecutive set of changes in the orientation of caffeine molecule had been demonstrated during the process of caffeine binding to HSA, and the primary binding site was considered to be a hydrophobic cavity formed by Leu198, Lys199, Ser202, Phe211, Trp214, Val344, Ser454 and Leu481 in domain II.

  5. Human serum albumin nanoparticles as an efficient noscapine drug delivery system for potential use in breast cancer: preparation and in vitro analysis.

    PubMed

    Sebak, Safaa; Mirzaei, Maryam; Malhotra, Meenakshi; Kulamarva, Arun; Prakash, Satya

    2010-01-01

    Drug delivery systems such as nanoparticles can provide enhanced efficacy for anticancer agents. Noscapine, a widely used cough suppressant for decades has recently been shown to cause significant inhibition and regression of tumor volumes without any detectable toxicity in cells or tissues. Nanoparticles made of human serum albumin (HSA) represent promising strategy for targeted drug delivery to tumor cells by enhancing the drug's bioavailability and distribution, and reducing the body's response towards drug resistance. In the present study, we report for the first time the incorporation and delivery of noscapine-loaded HSA nanoparticles to tumor cells. The nanoparticles were designed and optimized to achieve a particle size in the range of 150-300 nm with a drug-loading efficiency of 85%-96%. The nanoparticles were evaluated in vitro for their anticancer activity and efficacy on breast cancer cells. PMID:20957217

  6. Study on the Mechanism of Interaction Between Tubeimoside I and Human Serum Albumin at Different Temperatures by Three-Dimensional Fluorescence Spectrum

    NASA Astrophysics Data System (ADS)

    Lin, Xiaogang; Li, Wenchao; Ye, Changbin; Liu, Zhiyuan

    2015-06-01

    Tubeimoside (TBMS), the bulb of Bolbostemma paniculatum (Maxim.) Franquet (Cucurbitaceae), is one of the traditional Chinese medicines often used for the treatment of tumors as well as for detoxication. Tubeimoside I (TBMS I) is one of the main active ingredients of TBMS, the mechanism of action of which remains unknown. Human serum albumin (HSA) is the most abundant carrier protein in blood circulation. Three-dimensional (3D) fluorescence spectra and the excitation-emission matrix of interaction between TBMS I and HSA were measured at different temperatures. The results showed that HSA fluorescence was quenched by TBMS I through a static quenching mechanism. Also, the HSA fluorescence was quenched with the temperature increase from 283 K to 353 K. 3D spectral results revealed the changes in the secondary structure of HSA upon interaction with TBMS I.

  7. Analysis of the interactions of multicomponents in Cornus officinalis Sieb. et Zucc. with human serum albumin using on-line dialysis coupled with HPLC.

    PubMed

    Liu, Xiao; Han, Zhi-Ping; Wang, Yu-Ling; Gao, Yue; Zhang, Zhi-Qi

    2011-03-15

    Interactions of three iridoid glycosides extracted from Cornus officinalis Sieb. et Zucc. (CIG) with protein were simultaneously explored by on-line dialysis sampling coupled with high-performance liquid chromatography (DS-HPLC). Three main compounds in CIG were unequivocally identified as loganin, sweroside and cornuside by comparing their t(R), MS data and UV spectra with those of reference compounds. Dialysis recoveries and quantitative characteristics of DS-HPLC for three iridoid glycosides were determined. Recoveries of dialysis sampling ranged from 73.9 to 91.7% with the RSD below 3.0%. Based on the determination of concentrations before and after interaction with human serum albumin (HSA), the binding parameters of loganin, sweroside and cornuside with HSA were obtained and the binding mechanisms were investigated. PMID:21345748

  8. Human serum albumin supported lipid patterns for the targeted recognition of microspheres coated by membrane based on ss-DNA hybridization

    SciTech Connect

    Zhang Xiaoming; He Qiang; Duan Li; Li Junbai . E-mail: jbli@iccas.ac.cn

    2006-10-27

    Human serum albumin (HSA) patterns have been successfully fabricated for the deposition of lipid bilayer, 1,2-dimyristoyl-sglycerophosphate (DMPA), by making use of the micro-contact printing ({mu}CP) technique and liposome fusion. Confocal laser scanning microscopy (CLSM) results indicate that lipid bilayer has been assembled in HSA patterns with a good stability. Such well-defined lipid patterns formed on HSA surface create possibility to incorporate specific components like channels or receptors for specific recognition. In view of this, microspheres coated with lipid membranes were immobilized in HSA-supported lipid patterns via the hybridization of complementary ss-DNAs. This procedure enables to transfer solid materials to a soft surface through a specific recognition.

  9. Study of Thermal Denaturing of Human Serum Albumin in the Presence of Potassium Chloride by the Excitation/Emission Matrix Method

    NASA Astrophysics Data System (ADS)

    Grigoryan, K. R.; Shilajyan, H. A.

    2013-11-01

    We have used fluorescence spectroscopy (intrinsic protein fluorescence, 2D spectra), the fluorescence excitation and emission matrix method (3D spectra), and electronic absorption spectroscopy in the UV region to study thermal denaturing of human serum albumin (HSA) in the presence of potassium chloride in the temperature interval 36 °C-90 °C. In order to study the protein denaturing mechanism, we consider the melting curves plotted from data obtained from three-dimensional fluorescence spectra. We discuss the effect of external factors (temperature and electrostatic interactions) on the mechanism for thermal denaturing of HSA. We show that the side chains of the protein are more sensitive to external factors, and undergo more extensive changes (Tm = 56.73 °C) than the polypeptide chain (Tm = 60.17 °C).

  10. Analysis of drug-protein interactions by high-performance affinity chromatography: interactions of sulfonylurea drugs with normal and glycated human serum albumin.

    PubMed

    Matsuda, Ryan; Anguizola, Jeanethe; Hoy, Krina S; Hage, David S

    2015-01-01

    High-performance affinity chromatography (HPAC) is a type of liquid chromatography that has seen growing use as a tool for the study of drug-protein interactions. This report describes how HPAC can be used to provide information on the number of binding sites, equilibrium constants, and changes in binding that can occur during drug-protein interactions. This approach will be illustrated through recent data that have been obtained by HPAC for the binding of sulfonylurea drugs and other solutes to the protein human serum albumin (HSA), and especially to forms of this protein that have been modified by non-enzymatic glycation. The theory and use of both frontal analysis and zonal elution competition studies in such work will be discussed. Various practical aspects of these experiments will be presented, as well as factors to consider in the extension of these methods to other drugs and proteins or additional types of biological interactions. PMID:25749961

  11. Online preconcentration by transient isotachophoresis in linear polymer on a poly(methyl methacrylate) microchip for separation of human serum albumin immunoassay mixtures.

    PubMed

    Mohamadi, Mohamad Reza; Kaji, Noritada; Tokeshi, Manabu; Baba, Yoshinobu

    2007-05-15

    Online preconcentration of human serum albumin (HSA) and its immunocomplex with a monoclonal antibody by on-chip transient isotachophoresis is reported. An 800-fold signal enhancement was achieved following the preconcentration on standard cross-channel microchips made of poly (methyl methacrylate). Sample injection, preconcentration, and separation were done continuously and controlled solely by a sequential voltage switching program. The preconcentration was followed by on-chip nondenaturing gel electrophoresis in methylcellulose solution. The method was applied to microchip electrophoresis immunoassay of HSA. Baseline separation of HSA and its immunocomplex was achieved in 25 s in the first 1 cm of the microchannel. In a direct immunoassay, the minimum detectable concentration of fluorescent labeled HSA by laser-induced fluorescence detection was 7.5 pM. PMID:17437335

  12. Direct quantification of human serum albumin in human blood serum without separation of gamma-globulin by the total internal reflected resonance light scattering of thorium-sodium dodecylbenzene sulfonate at water/tetrachloromethane interface.

    PubMed

    Feng, Ping; Huang, Cheng Zhi; Li, Yuan Fang

    2002-09-01

    A direct quantification of human serum albumin (HSA) in blood serum samples without separation is proposed based on the measurements of total internal reflected resonance light scattering (TIR-RLS) at water/tetrachloromethane (H(2)O/CCl(4)) interfaces. In the pH range of 6.37-6.59, the coadsorption of the binary complex of HSA-Th(IV) with sodium dodecylbenzene sulfonate occurs at the H(2)O/CCl(4) interface, forming an amphiphilic layer and displaying greatly enhanced TIR-RLS signals with the maximum peak located at 340-370 nm. The enhanced TIR-RLS intensity is in proportion to the HSA concentration in the range 0.15-1.0 micro gml(-1). The limit of detection is 14.4 ngml(-1). The contents of HSA in blood serum samples were determined with the recovery of 97.1-102.3% and RSD of 0.6-2.9%, which are identical to those obtained according to the spectrofluorimetric method using chrome azurol S. PMID:12234467

  13. Trajectories of Serum Albumin Predict Survival of Peritoneal Dialysis Patients

    PubMed Central

    Chiu, Ping-Fang; Tsai, Chun-Chieh; Wu, Chia-Lin; Yang, Tse-Yen; Liou, Hung-Hsiang; Chen, Hung-Lin; Kor, Chew-Teng; Chang, Chia-Chu; Chang, Horng-Rong

    2016-01-01

    Abstract Although initial serum albumin level is highly associated with overall and cardiovascular mortality in peritoneal dialysis (PD) patients, we consider that the dynamic change and trend of albumin after initiation of PD are also essential. We enrolled patients who received PD for more than 3 months from January 1999 to March 2014. We categorized these patients into 2 groups by the difference in serum albumin level (Δalbumin = difference between peak with initial albumin level = peak albumin level − initial albumin level) after PD. The patients with Δalbumin < 0.2 g/dL (median level) were considered as group A (n, number = 238) and those with Δalbumin ≥ 0.2 g/dL were considered as group B (n = 278). Further, we stratified these patients into quartiles: Q1 Δalbumin < −0.2 g/dL; Q2, −0.2 ≦∼ <0.2 g/dL; Q3, 0.2 ≦∼ <0.6 g/dL; and Q4, ≥0.6 g/dL. Regression analysis was performed to determine the correlation of initial albumin and Δalbumin. Group A patients presented with higher levels of serum albumin (3.71 ± 0.54 vs 3.04 ± 0.55 g/dL; P < 0.001) and hematocrit as well as better initial residual renal function. However, those in group A had lower serum albumin increment and downward-sloped trends after dialysis. In contrast, the albumin trend was upward sloped and the increment of albumin was remarkable in group B, despite the high prevalence of cardiovascular diseases and diabetes. Overtime, group A patients had poorer survival and experienced more frequent and longer hospitalizations. Group Q1 patients with least albumin increment had worst survival. Group Q4 patients with lowest initial albumin also had poor survival. Age, diabetes, cardiovascular diseases, BMI, initial albumin, and Δalbumin could affect patient outcomes independently. Regression analysis showed a better outcome can be obtained if the initial albumin level is at least above 3.15 g/dL. (Initial albumin level

  14. In Vitro Enhancement of Carvedilol Glucuronidation by Amiodarone-Mediated Altered Protein Binding in Incubation Mixture of Human Liver Microsomes with Bovine Serum Albumin.

    PubMed

    Sekimoto, Makoto; Takamori, Toru; Nakamura, Saki; Taguchi, Masato

    2016-01-01

    Carvedilol is mainly metabolized in the liver to O-glucuronide (O-Glu). We previously found that the glucuronidation activity of racemic carvedilol in pooled human liver microsomes (HLM) was increased, R-selectively, in the presence of amiodarone. The aim of this study was to clarify the mechanisms for the enhancing effect of amiodarone on R- and S-carvedilol glucuronidation. We evaluated O-Glu formation of R- and S-carvedilol enantiomers in a reaction mixture of HLM including 0.2% bovine serum albumin (BSA). In the absence of amiodarone, glucuronidation activity of R- and S-carvedilol for 25 min was 0.026, and 0.51 pmol/min/mg protein, and that was increased by 6.15 and 1.60-fold in the presence of 50 µM amiodarone, respectively. On the other hand, in the absence of BSA, or when BSA was replaced with human serum albumin, no enhancing effect of amiodarone on glucuronidation activity was observed, suggesting that BSA played a role in the mechanisms for the enhancement of glucuronidation activity. Unbound fraction of S-carvedilol in the reaction mixture was greater than that of R-carvedilol in the absence of amiodarone. Also, the addition of amiodarone caused a greater increase of unbound fraction of R-carvedilol than that of S-carvedilol. These results suggest that the altered protein binding by amiodarone is a key mechanism for R-selective stimulation of carvedilol glucuronidation. PMID:27476943

  15. Binding mechanism of the tyrosine-kinase inhibitor nilotinib to human serum albumin determined by 1H STD NMR, 19F NMR, and molecular modeling.

    PubMed

    Yan, Jin; Wu, Di; Sun, Pingchuan; Ma, Xiaoli; Wang, Lili; Li, Shanshan; Xu, Kailin; Li, Hui

    2016-05-30

    Drug interaction with albumins significantly affects in vivo drug transport and biological metabolism. To gain insight into the binding mechanisms of tyrosine-kinase inhibitor nilotinib (NIL) to human serum albumin (HSA), an approach combining (1)H saturation-transfer difference (STD) nuclear magnetic resonance (NMR) spectroscopy, (19)F NMR spectroscopy, steady-state fluorescence quenching, and molecular modeling was adopted. (19)F NMR was used to determine the binding constant, and a value of 4.12 × 10(3)M(-1) was obtained. Fluorescence spectroscopy was also used to determine the binding constant, and the value obtained was within the same order of magnitude. The binding process was mainly driven by hydrogen bonds and van der Waals forces. Displacement experiments further showed that NIL mainly bound to the hydrophobic cavity of HSA's subdomain IIA, also called Sudlow's site I. Molecular docking simulation was also used to establish a molecular binding model, and findings were consistent with those of displacement and the (1)H STD NMR experiments. PMID:26922576

  16. Crystals of Serum Albumin for Use in Genetic Engineering and Rational Drug Design

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor)

    1996-01-01

    Serum albumin crystal forms have been produced which exhibit superior x-ray diffraction quality. The crystals are produced from both recombinant and wild-type human serum albumin, canine, and baboon serum albumin and allow the performance of drug-binding studies as well as genetic engineering studies. The crystals are grown from solutions of polyethylene glycol or ammonium sulphate within prescribed limits during growth times from one to several weeks and include the following space groups: P2(sub 1), C2, P1.

  17. Granulomatous interstitial pneumonia in a miniature swine associated with repeated intravenous injections of Tc-99m human serum albumin: concise communication

    SciTech Connect

    Whinnery, J.E.; Young, J.T.

    1980-03-01

    Albumin lung-scanning agents have a proven high degree of safety, with the only contraindication to their use being allergic hypersensitivity. We have used these agents to investigate the physiologic effects of high G/sub z/ acceleratory forces on pulmonary perfusion using the miniature swine. Multiple doses of human macroaggregated albumin and human-albumin microspheres were given to a miniature swine at various levels of centrifugal acceleration over a 6-wk period. The dosages given were the same per kilogram as those used for routine clinical human studies. The animal subsequently died from a severe granulomatous interstitial pneumonia. The granulomatous lesions suggest that the pathogenesis may have involved a cell-mediated delayed hypersensitivity. This interstitial pneumonia may represent the end point in a chronic hypersensitivity response to the human-albumin lung-scanning agents.

  18. Subchronic toxicity study in vivo and allergenicity study in vitro for genetically modified rice that expresses pharmaceutical protein (human serum albumin).

    PubMed

    Sheng, Yao; Qi, Xiaozhe; Liu, Yifei; Guo, Mingzhang; Chen, Siyuan; He, Xiaoyun; Huang, Kunlun; Xu, Wentao

    2014-10-01

    Genetically modified (GM) crops that express pharmaceutical proteins have become an important focus of recent genetic engineering research. Food safety assessment is necessary for the commercial development of these crops. Subchronic toxicity study in vivo and allergenicity study in vitro were designed to evaluate the food safety of the rice variety expressing human serum albumin (HSA). Animals were fed rodent diets containing 12.5%, 25.0% and 50.0% GM or non-GM rice for 90 days. The composition analysis of the GM rice demonstrated several significant differences. However, most of the differences remained within the ranges reported in the literature. In the animal study, a range of indexes including clinical observation, feed efficiency, hematology, serum chemistry, organ weights and histopathology were examined. Random changes unrelated to the GM rice exposure, within the range of historical control values and not associated with any signs of illness were observed. The results of heat stability and in vitro digestion of HSA indicated no evidence of potential allergenicity of the protein. Overall, the results of these studies suggest that the GM rice appears to be safe as a dietary ingredient when it is used at up to 50% in the diet on a subchronic basis. PMID:25086369

  19. Serum albumin analysis for type II diabetes detection using surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Lin, Jinyong; Cao, Gang; Lin, Juqiang; Liu, Nenrong; Liao, Fadian; Ruan, Qiuyong; Wu, Shanshan; Huang, Zufang; Li, Ling; Chen, Rong

    2014-09-01

    Surface-enhanced Raman scattering (SERS) spectroscopy combined with membrane electrophoresis (ME) was firstly employed to detect albumin variation in type II diabetic development. Albumin was first purified from human serum by ME and then mixed with silver nanoparticles to perform SERS spectral analysis. SERS spectra were obtained from blood albumin samples of 20 diabetic patients and 19 healthy volunteers. Subtle but discernible changes in the acquired mean spectra of the two groups were observed. Tentative assignment of albumin SERS bands indicated specific structural changes of albumin molecule with diabetic development. Meanwhile, PCA-LDA diagnostic algorithms were employed to classify the two kinds of albumin SERS spectra, yielding the diagnostic sensitivity of 90% and specificity of 94.7%. The results from this exploratory study demonstrated that the EM-SERS method in combination with multivariate statistical analysis has great potential for the label-free detection of albumin variation for improving type II diabetes screening.

  20. Complexes of dendrimers with bovine serum albumin.

    PubMed

    Mandeville, J S; Tajmir-Riahi, H A

    2010-02-01

    We report the complexation of bovine serum albumin (BSA) with several dendrimers of different compositions mPEG-PAMAM (G3), mPEG-PAMAM (G4), and PAMAM (G4) at physiological conditions using constant protein concentration and various dendrimer contents. FTIR, CD, and fluorescence spectroscopic methods were used to analyze polymer binding mode, the binding constant, and the effects of dendrimer complexation on BSA stability and conformation. Structural analysis showed that dendrimers bind BSA via hydrophilic and hydrophobic interactions with a number of bound polymers (n): 1.30 for mPEG-PAMAM-G3, 1.30 for mPEG-PAMAM-G4, and 1.0 for PAMAM-G4. The polymer-BSA binding constants were K(mPEG-G3) = 5.0 (+/-0.8) x 10(3) M(-1), K(mPEG-G4) = 1.0 (+/-0.3) x 10(4) M(-1), and K(PAMAM-G4) = 1.1 (+/-0.4) x 10(4) M(-1). Dendrimer binding altered BSA conformation with a major reduction of alpha-helix and an increase in random coil and turn structures, indicating a partial protein unfolding. PMID:20085247

  1. Glycated serum albumin stimulates expression of endothelial cell specific molecule-1 in human umbilical vein endothelial cells: Implication in diabetes mediated endothelial dysfunction.

    PubMed

    Nirala, Bikesh K; Perumal, Vivekanandan; Gohil, Nivedita K

    2015-07-01

    Pro-inflammatory conditions induced by products of protein glycation in diabetes substantially enhance the risk of endothelial dysfunction and related vascular complications. Endothelial cell specific molecule-1 (ESM-1) or endocan has been demonstrated as a potential biomarker in cancer and sepsis. Its role in diabetes-induced pathologies remains unknown. The expression of ESM-1 gene is under cytokine regulation, indicating its role in endothelium-dependent pathological disorders. In this study, we investigated the effect of advanced glycated human serum albumin (AGE-HSA) on the production of ESM-1. We show that AGE-HSA exerts a modulating role on the expression of ESM-1 in human umbilical vein endothelial cells. It up-regulates expression of ESM-1 protein in a dose-dependent manner which correlates with its messenger RNA (mRNA) transcription. RAGE and galectin-3, both AGE receptors, show antagonistic action on its expression. While gene silencing of RAGE has down-regulatory effect, that of galectin-3 has up-regulatory effect on AGE-induced expression of ESM-1. Inhibition of MAPKKK and JNK pathways did not alter the expression. In contrast, phosphatidylinositol 3 kinase (PI3K) inhibition significantly up-regulated ESM-1 expression. In conclusion, these results suggest that AGE-induced activation of human umbilical vein endothelial cells promotes formation of endocan which is an endothelial dysfunction marker and may be related to vascular disease in diabetes. PMID:25963575

  2. Investigation of bovine serum albumin glycation by THz spectroscopy

    NASA Astrophysics Data System (ADS)

    Cherkasova, Olga P.; Nazarov, Maxim M.; Shkurinov, Alexander P.

    2016-04-01

    Protein glycation is accelerated under hyperglycemic conditions resulting to loss in the structure and biological functions of proteins. The transmission THz spectroscopy has been used for measuring of bovine serum albumin glycation dynamics. It was found that amplitude of albumin THz absorption depends on type of sugars and incubation time.

  3. Interaction between two sulfate-conjugated uremic toxins, p-cresyl sulfate and indoxyl sulfate, during binding with human serum albumin.

    PubMed

    Watanabe, Hiroshi; Noguchi, Tsuyoshi; Miyamoto, Yohei; Kadowaki, Daisuke; Kotani, Shunsuke; Nakajima, Makoto; Miyamura, Shigeyuki; Ishima, Yu; Otagiri, Masaki; Maruyama, Toru

    2012-07-01

    Recently, p-cresyl sulfate (PCS) has been identified as a protein-bound uremic toxin. Moreover, the serum-free concentration of PCS, which is associated with its efficacy of hemodialysis, appears to be a good predictor of survival in chronic kidney disease (CKD). We previously found that PCS interacts with indoxyl sulfate (IS), another sulfate-conjugated uremic toxin, during renal excretion via a common transporter. The purpose of this study was to further investigate the interaction between PCS and IS on the binding to human serum albumin (HSA). Here, we used ultrafiltration to show that there is only one high-affinity binding site for PCS, with a binding constant on the order of 10(5) M(-1) (i.e., comparable to that of IS). However, a binding constant of the low-affinity binding site for PCS is 2.5-fold greater than that for IS. Displacement of a fluorescence probe showed that PCS mainly binds to site II, which is the high-affinity site for PCS, on HSA. This finding was further supported by experiments using mutant HSA (R410A/Y411A) that displayed reduced site II ligand binding. A Klotz analysis showed that there could be competitive inhibition between PCS and IS on HSA binding. A similar interaction between PCS and IS on HSA was also observed under the conditions mimicking CKD stage 4 to 5. The present study suggests that competitive interactions between PCS and IS in both HSA binding and the renal excretion process could contribute to fluctuations in their free serum concentrations in patients with CKD. PMID:22513409

  4. Human serum albumin-stabilized gold nanoclusters act as an electron transfer bridge supporting specific electrocatalysis of bilirubin useful for biosensing applications.

    PubMed

    Santhosh, Mallesh; Chinnadayyala, Somasekhar R; Singh, Naveen K; Goswami, Pranab

    2016-10-01

    Human serum albumin (HSA)-stabilized Au18 nanoclusters (AuNCs) were synthesized and chemically immobilized on an Indium tin oxide (ITO) plate. The assembly process was characterized by advanced electrochemical and spectroscopic techniques. The bare ITO electrode generated three irreversible oxidation peaks, whereas the HSA-AuNC-modified electrode produced a pair of redox peaks for bilirubin at a formal potential of 0.27V (vs. Ag/AgCl). However, the native HSA protein immobilized on the ITO electrode failed to produce any redox peak for bilirubin. The results indicate that the AuNCs present in HSA act as electron transfer bridge between bilirubin and the ITO plate. Docking studies of AuNC with HSA revealed that the best docked structure of the nanocluster is located around the vicinity of the bilirubin binding site, with an orientation that allows specific oxidation. When the HSA-AuNC-modified electrode was employed for the detection of bilirubin using chronoamperometry at 0.3V (vs. Ag/AgCl), a steady-state current response against bilirubin in the range of 0.2μM to 7μM, with a sensitivity of 0.34μAμM(-1) and limit of detection of 86.32nM at S/N 3, was obtained. The bioelectrode was successfully applied to measure the bilirubin content in spiked serum samples. The results indicate the feasibility of using HSA-AuNC as a biorecognition element for the detection of serum bilirubin levels using an electrochemical technique. PMID:27126550

  5. Low Molecular Weight Fraction of Commercial Human Serum Albumin Induces Morphologic and Transcriptional Changes of Bone Marrow-Derived Mesenchymal Stem Cells.

    PubMed

    Bar-Or, David; Thomas, Gregory W; Rael, Leonard T; Gersch, Elizabeth D; Rubinstein, Pablo; Brody, Edward

    2015-08-01

    Osteoarthritis (OA) is the most common chronic disease of the joint; however, the therapeutic options for severe OA are limited. The low molecular weight fraction of commercial 5% human serum albumin (LMWF5A) has been shown to have anti-inflammatory properties that are mediated, in part, by a diketopiperazine that is present in the albumin preparation and that was demonstrated to be safe and effective in reducing pain and improving function when administered intra-articularly in a phase III clinical trial. In the present study, bone marrow-derived mesenchymal stem cells (BMMSCs) exposed to LMWF5A exhibited an elongated phenotype with diffuse intracellular F-actin, pronounced migratory leading edges, and filopodia-like projections. In addition, LMWF5A promoted chondrogenic condensation in "micromass" culture, concurrent with the upregulation of collagen 2α1 mRNA. Furthermore, the transcription of the CXCR4-CXCL12 axis was significantly regulated in a manner conducive to migration and homing. Several transcription factors involved in stem cell differentiation were also found to bind oligonucleotide response element probes following exposure to LMWF5A. Finally, a rapid increase in PRAS40 phosphorylation was observed following treatment, potentially resulting in the activation mTORC1. Proteomic analysis of synovial fluid taken from a preliminary set of patients indicated that at 12 weeks following administration of LMWF5A, a microenvironment exists in the knee conducive to stem cell infiltration, self-renewal, and differentiation, in addition to indications of remodeling with a reduction in inflammation. Taken together, these findings imply that LMWF5A treatment may prime stem cells for both mobilization and chondrogenic differentiation, potentially explaining some of the beneficial effects achieved in clinical trials. PMID:26041739

  6. The Five-To-Six-Coordination Transition of Ferric Human Serum Heme-Albumin Is Allosterically-Modulated by Ibuprofen and Warfarin: A Combined XAS and MD Study

    PubMed Central

    Bionducci, Monica; Fanali, Gabriella; Meli, Massimiliano; Colombo, Giorgio; Fasano, Mauro; Ascenzi, Paolo; Mobilio, Settimio

    2014-01-01

    Human serum albumin (HSA) is involved physiologically in heme scavenging; in turn, heme-albumin (HSA-heme-Fe) displays globin-like properties. Here, the allosteric effect of ibuprofen and warfarin on the local atomic structure around the ferric heme-Fe (heme-Fe(III)) atom of HSA-heme-Fe (HSA-heme-Fe(III)) has been probed by Fe-K edge X-ray absorption spectroscopy (XAS). The quantitative analysis of the Fe-K edge extended X-ray absorption fine structure (EXAFS) signals and modeling of the near edge (XANES) spectral features demonstrated that warfarin and ibuprofen binding modify the local structure of the heme-Fe(III). Combined XAS data analysis and targeted molecular dynamics (MD) simulations provided atomic resolution insights of protein structural rearrangements required to accommodate the heme-Fe(III) upon ibuprofen and warfarin binding. In the absence of drugs, the heme-Fe(III) atom is penta-coordinated having distorted 4+1 configuration made by the nitrogen atoms of the porphyrin ring and the oxygen phenoxy atom of the Tyr161 residue. MD simulations show that ibuprofen and warfarin association to the secondary fatty acid (FA) binding site 2 (FA2) induces a reorientation of domain I of HSA-heme-Fe(III), this leads to the redirection of the His146 residue providing an additional bond to the heme-Fe(III) atom, providing the 5+1 configuration. The comparison of Fe-K edge XANES spectra calculated using MD structures with those obtained experimentally confirms the reliability of the proposed structural model. As a whole, combining XAS and MD simulations it has been possible to provide a reliable model of the heme-Fe(III) atom coordination state and to understand the complex allosteric transition occurring in HSA-heme-Fe(III) upon ibuprofen and warfarin binding. PMID:25153171

  7. Glycated Serum Albumin and AGE Receptors.

    PubMed

    Vetter, Stefan W

    2015-01-01

    In vivo modification of proteins by molecules with reactive carbonyl groups leads to intermediate and advanced glycation end products (AGE). Glucose is a significant glycation reagent due to its high physiological concentration and poorly controlled diabetics show increased albumin glycation. Increased levels of glycated and AGE-modified albumin have been linked to diabetic complications, neurodegeneration, and vascular disease. This review discusses glycated albumin formation, structural consequences of albumin glycation on drug binding, removal of circulating AGE by several scavenger receptors, as well as AGE-induced proinflammatory signaling through activation of the receptor for AGE. Analytical methods for quantitative detection of protein glycation and AGE formation are compared. Finally, the use of glycated albumin as a novel clinical marker to monitor glycemic control is discussed and compared to glycated hemoglobin (HbA1c) as long-term indicator of glycemic status. PMID:26471084

  8. 20(s)-ginsenoside Rg3-loaded magnetic human serum albumin nanospheres applied to HeLa cervical cancer cells in vitro.

    PubMed

    Yang, Rui; Chen, Daozhen; Li, Mengfei; Miao, Fengqin; Liu, Peidang; Tang, Qiusha

    2014-01-01

    20(s)-ginsenoside Rg3 is extracted from traditional Chinese medicine, red ginseng. However, due to its poor aqueous solubility and low oral bioavailability, the use of 20(s)-Rg3 is limited. This study aimed to explore a method of preparing nano-sized 20(s)-ginsenoside Rg3 particle named 20(s)-ginsenoside Rg3-loaded magnetic human serum albumin nanospheres (20(s)-Rg3/HSAMNP) to change dosage form to improve its aqueous solubility and bioavailability. 20(s)-Rg3/HSAMNP were prepared by the desolvation-crosslinking method. The character of 20(s)-Rg3/HSAMNP was detected. An antiproliferative effect and cell apoptosis rates of 20(s)-Rg3/HSAMNP on human cervical cancer cells were determined by the MTT assay and flow cytometry, respectively. TEM analysis showed that 20(s)-Rg3/HSAMNP were approximately spherical and uniform in size. Thermodynamic testing showed that the corresponding magnetic fluid of a specific concentration rosed to a steady temperature of 42-65○C. Iron content was approximately 3 mg/mL. Drug encapsulation efficiency was approximately 70%. The potential of 20(s)-Rg3/HSAMNP combined with magnetic hyperthermia therapy to inhibit cell growth and induce apoptosis was much more prominent than that of the other groups. A new dosage form of 20(s)-Rg3 was prepared, which effectively induced apoptosis in HeLa cervical cancer cells in vitro when combined with hyperthermia. PMID:25226895

  9. Development and Characterization of a Novel Fusion Protein of a Mutated Granulocyte Colony-Stimulating Factor and Human Serum Albumin in Pichia pastoris

    PubMed Central

    Huang, Yan-Shan; Wen, Xiao-Fang; Yang, Zhi-Yu; Wu, Yi-Liang; Lu, You; Zhou, Lin-Fu

    2014-01-01

    The purpose of the present work was to develop a novel, long-acting and potent human serum albumin/granulocyte colony stimulating factor (HSA/G-CSF) therapeutic fusion protein. The novel fusion protein, called HMG, was constructed by genetically fusing mutated human derived G-CSF (mG-CSF) to the C-terminal of HSA and then prepared in Pichia pastoris. The molecular mass of HMG was about 85 kDa and the isoelectric point was 5.3. Circular dichroism spectroscopy suggested that mG-CSF retained nearly all of its native secondary structure, regardless of fusion. The binding capabilities of mG-CSF moiety to G-CSF receptor and HSA moiety to warfarin showed very little change after fusing. The bioactivity of HMG (11.0×106 IU/mg) was more than twice that of rHSA/G-CSF (4.6×106 IU/mg). A mutation was made at the 718th amino acid of HMG, substituting Ala for Thr, to investigate the glycosylation of HMG expressed in P. pastoris. Data indicated that HMG was modified at Thr718, speculatively with the addition of a mannose chain. In conclusion, a novel HSA/G-CSF fusion protein was successfully constructed based on a mutated G-CSF. This protein showed more potent bioactivity than rHSA/G-CSF and thus may be a suitable long-acting G-CSF. PMID:25535738

  10. Mass Spectrometric Characterization of Human Serum Albumin Adducts Formed with N-Oxidized Metabolites of 2-Amino-1-methyl-phenylimidazo[4,5-b]pyridine in Human Plasma and Hepatocytes

    PubMed Central

    Wang, Yi; Peng, Lijuan; Bellamri, Medjda; Langoueët, Sophie; Turesky, Robert J.

    2015-01-01

    2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a carcinogenic heterocyclic aromatic amine formed in cooked meats, is metabolically activated to electrophilic intermediates that form covalent adducts with DNA and protein. We previously identified an adduct of PhIP formed at the Cys34 residue of human serum albumin following reaction of albumin with the genotoxic metabolite 2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine (HONH-PhIP). The major adducted peptide recovered from a tryptic/chymotryptic digest was identified as the missed-cleavage peptide LQQC*[SO2PhIP]PFEDHVK, a [Cysteine-S-yl-PhIP]-S-dioxide linked adduct. In this investigation, we have characterized the albumin adduction products of N-sulfooxy-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (N-sulfooxy-PhIP), which is thought to be a major genotoxic metabolite of PhIP formed in vivo. Targeted and data-dependent scanning methods showed that N-sulfooxy-PhIP adducted to the Cys34 of albumin in human plasma to form LQQC*[SO2PhIP]PFEDHVK at levels that were 8 to 10-fold greater than the adduct levels formed with N-(acetyloxy)-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (N-acetoxy-PhIP) or HONH-PhIP. We also discovered that N-sulfooxy-PhIP forms an adduct at the sole tryptophan (Trp214) residue of albumin in the sequence AW*[PhIP]AVAR. However, stable adducts of PhIP with albumin were not detected in human hepatocytes. Instead, PhIP and 2-amino-1-methyl-6-(5-hydroxy)-phenylimidazo[4,5-b]pyridine (5-HO-PhIP), a solvolysis product of the proposed nitrenium ion of PhIP, were recovered during the proteolysis, suggesting a labile sulfenamide linkage had formed between an N-oxidized intermediate of PhIP and Cys34 of albumin. A stable adduct was formed at the Tyr411 residue of albumin in hepatocytes, and identified as a deaminated product of PhIP, Y*[desaminoPhIP]TK, where the 4-HO-tyrosine group bound to the C-2 imidazole atom of PhIP. PMID:25815793

  11. Mass Spectrometric Characterization of Human Serum Albumin Adducts Formed with N-Oxidized Metabolites of 2-Amino-1-methylphenylimidazo[4,5-b]pyridine in Human Plasma and Hepatocytes.

    PubMed

    Wang, Yi; Peng, Lijuan; Bellamri, Medjda; Langouët, Sophie; Turesky, Robert J

    2015-05-18

    2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a carcinogenic heterocyclic aromatic amine formed in cooked meats, is metabolically activated to electrophilic intermediates that form covalent adducts with DNA and protein. We previously identified an adduct of PhIP formed at the Cys(34) residue of human serum albumin following reaction of albumin with the genotoxic metabolite 2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine (HONH-PhIP). The major adducted peptide recovered from a tryptic/chymotryptic digest was identified as the missed-cleavage peptide LQQC*([SO2PhIP])PFEDHVK, a [cysteine-S-yl-PhIP]-S-dioxide linked adduct. In this investigation, we have characterized the albumin adduction products of N-sulfooxy-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (N-sulfooxy-PhIP), which is thought to be a major genotoxic metabolite of PhIP formed in vivo. Targeted and data-dependent scanning methods showed that N-sulfooxy-PhIP adducted to the Cys(34) of albumin in human plasma to form LQQC*([SO2PhIP])PFEDHVK at levels that were 8-10-fold greater than the adduct levels formed with N-(acetyloxy)-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (N-acetoxy-PhIP) or HONH-PhIP. We also discovered that N-sulfooxy-PhIP forms an adduct at the sole tryptophan (Trp(214)) residue of albumin in the sequence AW*([PhIP])AVAR. However, stable adducts of PhIP with albumin were not detected in human hepatocytes. Instead, PhIP and 2-amino-1-methyl-6-(5-hydroxy)phenylimidazo[4,5-b]pyridine (5-HO-PhIP), a solvolysis product of the proposed nitrenium ion of PhIP, were recovered during the proteolysis, suggesting a labile sulfenamide linkage had formed between an N-oxidized intermediate of PhIP and Cys(34) of albumin. A stable adduct was formed at the Tyr(411) residue of albumin in hepatocytes and identified as a deaminated product of PhIP, Y(*[desaminoPhIP])TK, where the 4-HO-tyrosine group bound to the C-2 imidazole atom of PhIP. PMID:25815793

  12. THE SECRETORY PATHWAYS OF RAT SERUM GLYCOPROTEINS AND ALBUMIN

    PubMed Central

    Redman, Colvin M.; Cherian, M. George

    1972-01-01

    These studies compare the secretory pathways of newly formed rat serum glycoproteins and albumin by studying their submicrosomal localization at early times after the beginning of their synthesis and also by determining the submicrosomal site of incorporation of N-acetylglucosamine, mannose, galactose, and leucine into protein. N-acetylglucosamine, mannose, and galactose were only incorporated in vitro into proteins from membrane-attached polysomes and not into proteins from free polysomes. Mannose incorporation occurred in the rough endoplasmic reticulum, was stimulated by puromycin but not by cycloheximide, and 90% of the mannose-labeled protein was bound to the membranes. Galactose incorporation, by contrast, occurred in the smooth microsome fraction and 89% of the radioactive protein was in the cisternae. Albumin was mostly recovered (98%) in the cisternae, with negligible amounts in the membranes. To determine whether the radio-active sugars were being incorporated into serum proteins or into membrane protein, the solubilized in vivo-labeled proteins were treated with specific antisera to rat serum proteins or to albumin. Immunoelectrophoresis of the 14C-labeled leucine membrane and cisternal proteins showed that the membranes contained radioactive serum glycoprotein but no albumin, while the cisternal fraction contained all of the radioactive albumin and some glycoproteins. The results indicate that newly formed serum glycoproteins remain attached to the membranes of the rough endoplasmic reticulum after they are released from the membrane-attached polysomes, while albumin passes directly into the cisternae. PMID:5057975

  13. Effect of guanidine hydrochloride and urea on the interaction of 6-thioguanine with human serum albumin: a spectroscopic and molecular dynamics based study.

    PubMed

    Ishtikhar, Mohd; Khan, Anam; Chang, Chih-Kai; Lin, Lilian Tsai-Wei; Wang, Steven S-S; Khan, Rizwan Hasan

    2016-07-01

    6-thioguanine (6-TG) is an antineoplastic, nucleobase guanine, purine analog drug belongs to thiopurine drug-family of antimetabolites. In the present study, we report an experimental approach towards interaction mechanism of 6-TG with human serum albumin (HSA) and examine the chemical stability of HSA in the presence of denaturants such as guanidine hydrochloride (GdnHCl) and urea. Interaction of 6-TG with HSA has been studied by various spectroscopic and spectropolarimeteric methods to investigate what short of binding occurs at physiological conditions. 6-TG binds in the hydrophobic cavity of subdomain IIA of HSA by static quenching mechanism which induces conformation alteration in the protein structure. That helpful for further study of denaturation process where change in secondary structures causes unfolding of protein that also responsible for severance of domain III from rest of the protein part. We have also performed molecular simulation and molecular docking study in the presence of denaturating agents to determine the binding property of 6-TG and the effect of denaturating agents on the structural activity of HSA. We had found that GdnHCl is more effective denaturating agent when compared to urea. Hence, this study provides straight evidence of the binding mechanism of 6-TG with HSA and the formation of intermediate or unfolding transition that causes unfolding of HSA. PMID:26208966

  14. A toxic organic solvent-free technology for the preparation of PEGylated paclitaxel nanosuspension based on human serum albumin for effective cancer therapy

    PubMed Central

    Yin, Tingjie; Dong, Lihui; Cui, Bei; Wang, Lei; Yin, Lifang; Zhou, Jianping; Huo, Meirong

    2015-01-01

    Clinically, paclitaxel (PTX) is one of most commonly prescribed therapies against a wide range of solid neoplasms. Despite its success, the clinical applicability of PTX (Taxol®) is severely hampered by systemic toxicities induced by Cremophor EL. While attempts to bypass the need for Cremophor EL have been developed through platforms such as Abraxane™, nab™ relies heavily on the use of organic solvents, namely, chloroform. The toxicity introduced by residual chloroform poses a potential risk to patient health. To mitigate the toxicities of toxic organic solvent-based manufacture methods, we have designed a method for the formulation of PTX nanosuspensions (PTX-PEG [polyethylene glycol]-HSA [human serum albumin]) that eliminates the dependence on toxic organic solvents. Coined the solid-dispersion technology, this technique permits the dispersion of PTX into PEG skeleton without the use of organic solvents or Cremophor EL as a solubilizer. Once the PTX-PEG dispersion is complete, the dispersion can be formulated with HSA into nanosuspensions suitable for intravenous administration. Additionally, the incorporation of PEG permits the prolonged circulation through the steric stabilization effect. Finally, HSA-mediated targeting permits active receptor-mediated endocytosis for enhanced tumor uptake and reduced side effects. By eliminating the need for both Cremophor EL and organic solvents while simultaneously increasing antitumor efficacy, this method provides a superior alternative to currently accepted methods for PTX delivery. PMID:26715846

  15. In vitro binding of leukotriene B4 (LTB4) to human serum albumin: evidence from spectroscopic, molecular modeling, and competitive displacement studies.

    PubMed

    Zsila, Ferenc; Bikádi, Zsolt; Lockwood, Samuel F

    2005-08-15

    Circular dichroism (CD) and UV absorption spectroscopy were utilized for the first time to investigate the interaction between leukotriene B4 (LTB4) and human serum albumin (HSA) in vitro. The weak intrinsic CD signal of LTB4 was enhanced fivefold in the presence of HSA. The red-shifted, hypochromic, and reduced vibrational fine structure of the ligand/protein UV absorption spectrum indicated complexation of the two molecules in solution. Results obtained from CD titration experiments were subjected to non-linear regression analysis to estimate the binding parameters (Ka = 6.7 x 10(4) M(-1), n = 1). Palmitic acid strongly decreased the induced CD signal of the LTB4/HSA complex, suggesting the role of a high-affinity fatty acid HSA binding site in the leukotriene complexation. Molecular modeling calculations based on the crystal structure of HSA predicted that the long-chain fatty acid site that overlaps with drug binding site II in subdomain IIIA was the most likely binding location for LTB4. Using the drug site II-specific marker ligand rac-ibuprofen, this prediction was confirmed with induced-CD displacement measurements. To the authors' knowledge, the current study represents the first demonstration of binding of LTB4 to HSA in vitro and has implications for the biological transport of this important pro-inflammatory mediator in vivo. PMID:15993588

  16. Development of a neuromedin U-human serum albumin conjugate as a long-acting candidate for the treatment of obesity and diabetes. Comparison with the PEGylated peptide.

    PubMed

    Neuner, Philippe; Peier, Andrea M; Talamo, Fabio; Ingallinella, Paolo; Lahm, Armin; Barbato, Gaetano; Di Marco, Annalise; Desai, Kunal; Zytko, Karolina; Qian, Ying; Du, Xiaobing; Ricci, Davide; Monteagudo, Edith; Laufer, Ralph; Pocai, Alessandro; Bianchi, Elisabetta; Marsh, Donald J; Pessi, Antonello

    2014-01-01

    Neuromedin U (NMU) is an endogenous peptide implicated in the regulation of feeding, energy homeostasis, and glycemic control, which is being considered for the therapy of obesity and diabetes. A key liability of NMU as a therapeutic is its very short half-life in vivo. We show here that conjugation of NMU to human serum albumin (HSA) yields a compound with long circulatory half-life, which maintains full potency at both the peripheral and central NMU receptors. Initial attempts to conjugate NMU via the prevalent strategy of reacting a maleimide derivative of the peptide with the free thiol of Cys34 of HSA met with limited success, because the resulting conjugate was unstable in vivo. Use of a haloacetyl derivative of the peptide led instead to the formation of a metabolically stable conjugate. HSA-NMU displayed long-lasting, potent anorectic, and glucose-normalizing activity. When compared side by side with a previously described PEG conjugate, HSA-NMU proved superior on a molar basis. Collectively, our results reinforce the notion that NMU-based therapeutics are promising candidates for the treatment of obesity and diabetes. PMID:24222478

  17. Binding of hydroxyquinoline probes to human serum albumin: combining molecular modeling and Förster's resonance energy transfer spectroscopy to understand flexible ligand binding.

    PubMed

    Abou-Zied, Osama K; Al-Lawatia, Najla; Elstner, Marcus; Steinbrecher, Thomas B

    2013-01-31

    Human serum albumin (HSA) is the most abundant protein in blood plasma. It has high relevance for the lipid metabolism, and its ability to bind a large variety of natural and pharmaceutical compounds makes it a crucial determinant of drug pharmaco-kinetics and -dynamics. The drug binding properties of HSA can be characterized by spectroscopic analysis of bound probe molecules. We have recently characterized the subdomain IIA binding site of HSA using three hydroxyquinoline derivatives. In this work, we extend our study by combining data from energy transfer experiments, ligand docking, and long molecular dynamics (MD) simulations. Multiple possible binding locations are found within the subdomain IIA site, and their solvent accessibility and interactions with ligands are analyzed in detail. Binding pockets appear well hydrated during simulations, with ligands in direct contact to water molecules at all times. Binding free energies in good agreement to experiment are calculated. The HSA apoprotein is found to exhibit significant conformational flexibility over 250 ns of simulation time, but individual domains remain structurally stable. Two rotamers of Trp214 were observed on a time scale longer than 50 ns in the MD simulations, supporting the experimental observation of two fluorescence lifetime components. The flexible protein structure and heterogeneous nature of its binding sites explain the ability of HSA to act as a versatile molecular transporter. The combination of experimental and computational molecular distance information allows the conclusion that hydroxyquinoline probes bind in a binding mode similar to the anticoagulant drug warfarin. PMID:23297700

  18. Endocytosis of a mannose-terminated glycoprotein and formaldehyde-treated human serum albumin in liver and kidney cells from fish (Salmo alpinus L.).

    PubMed

    Smedsrud, T; Dannevig, B H; Tolleshaug, H; Berg, T

    1984-01-01

    The uptake and degradation of a mannose-terminated glycoprotein, yeast invertase, in char (Salmo alpinus L.) tissue was studied after intravenously injection of the 125I-labelled protein. 125I-labelled formaldehyde-treated human serum albumin (fHSA) and native HSA was also injected for comparison. Labelled invertase was rapidly cleared from blood and at about the same rate as labelled fHSA (at 8 degrees C). Approximately 50% of the initial concentration remained in blood 15 min after the injection of the ligands. Acid soluble degradation products appeared in the circulation about 60 min after the injection of the proteins. 125I-labelled invertase was recovered in the liver, pronephros and kidney. The clearance of labelled invertase from blood and the uptake in the organs were inhibited by co-injection of excess unlabelled invertase. fHSA was taken up in the pronephros and kidney tissue, while HSA was not taken up in any organs. In vitro degradation of the labelled ligands was studied in isolated pronephros cells, which had taken up the proteins in vivo. The degradation of invertase in isolated cells was partly inhibited by ammonium chloride. Ammonium chloride and chloroquine inhibited degradation of fHSA, but not leupeptin. These results together suggest that invertase and fHSA were taken up in the organs described by the receptor-mediated endocytosis. The degradation was partly or wholly lysosomal. PMID:6500136

  19. A Rapid Study of Botanical Drug-Drug Interaction with Protein by Re-ligand Fishing using Human Serum Albumin-Functionalized Magnetic Nanoparticles.

    PubMed

    Qing, Lin-Sen; Xue, Ying; Ding, Li-Sheng; Liu, Yi-Ming; Liang, Jian; Liao, Xun

    2015-12-01

    A great many active constituents of botanical drugs bind to human serum albumin (HSA) reversibly with a dynamic balance between the free- and bound-forms in blood. The curative or side effect of a drug depends on its free-form level, which is always influenced by other drugs, combined dosed or multi-constituents of botanical drugs. This paper presented a rapid and convenient methodology to investigate the drug-drug interactions with HSA. The interaction of two steroidal saponins, dioscin and pseudo-protodioscin, from a botanical drug was studied for their equilibrium time and equilibrium amount by re-ligand fishing using HSA functionalized magnetic nanoparticles. A clear competitive situation was obtained by this method. The equilibrium was reached soon about 15 s at a ratio of 0.44: 1. Furthermore, the interaction of pseudo-protodioscin to total steroidal saponins from DAXXK was also studied. The operation procedures of this method were faster and more convenient compared with other methods reported. PMID:26882690

  20. Exploring the interaction between Salvia miltiorrhiza and human serum albumin: Insights from herb-drug interaction reports, computational analysis and experimental studies.

    PubMed

    Shao, Xin; Ai, Ni; Xu, Donghang; Fan, Xiaohui

    2016-05-15

    Human serum albumin (HSA) binding is one of important pharmacokinetic properties of drug, which is closely related to in vivo distribution and may ultimately influence its clinical efficacy. Compared to conventional drug, limited information on this transportation process is available for medicinal herbs, which significantly hampers our understanding on their pharmacological effects, particularly when herbs and drug are co-administrated as polytherapy to the ailment. Several lines of evidence suggest the existence of Salvia miltiorrhiza-Warfarin interaction. Since Warfarin is highly HSA bound in the plasma with selectivity to site I, it is critical to evaluate the possibility of HSA-related herb-drug interaction. Herein an integrated approach was employed to analyze the binding of chemicals identified in S. miltiorrhiza to HSA. Molecular docking simulations revealed filtering criteria for HSA site I compounds that include docking score and key molecular determinants for binding. For eight representative ingredients from the herb, their affinity and specificity to HSA site I was measured and confirmed fluorometrically, which helps to improve the knowledge of interaction mechanisms between this herb and HSA. Our results indicated that several compounds in S. miltiorrhiza were capable of decreasing the binding constant of Warfarin to HSA site I significantly, which may increase free drug concentration in vivo, contributing to the herb-drug interaction observed clinically. Furthermore, the significance of HSA mediated herb-drug interactions was further implied by manual mining on the published literatures on S. miltiorrhiza. PMID:26926393

  1. Biophysical and molecular docking insight into interaction mechanism and thermal stability of human serum albumin isoforms with a semi-synthetic water-soluble camptothecin analog irinotecan hydrochloride.

    PubMed

    Ishtikhar, Mohd; Khan, Mohsin Vahid; Khan, Shawez; Chaturvedi, Sumit Kumar; Badr, Gamal; Mahmoud, Mohamed H; Khan, Rizwan Hasan

    2016-07-01

    In the present work, we have examined the binding parameters, thermodynamics, and stability of human serum albumin (HSA) isoforms at pH 7.4 and 9.0, using spectroscopic, calorimetric, and molecular docking methods in the presence of water-soluble camptothecin analog irinotecan hydrochloride (CPT-11). We observed that CPT-11 binds to HSA through a static quenching procedure of ground-state complex formation with N-isoform and B-isoform. Hydrogen bond and hydrophobic interactions are the major governing forces that participating in the formation of protein-drug complex. To determine the binding site of CPT-11 within HSA molecules, we also have performed molecular docking experiments. We explored the CPT-11-mediated stability and modulation of HSA by performing dynamic light scattering (DLS) and differential scanning calorimetry (DSC) experiments. DLS and DSC techniques are used to determine the size and the melting point (Tm) of HSA, which was decreased in the presence of CPT-11. Therefore, CPT-11 plays an important role in HSA stability and protein-ligand interactions. The present study provides valuable information in the field of pharmacokinetics, pharmaco-dynamics, and drug discovery. PMID:26309154

  2. Investigation of influence of different values of pH on mechanisms of binding of human serum albumin with markers of fluorescein family

    NASA Astrophysics Data System (ADS)

    Vlasova, Irina M.; Saletsky, Alexander M.

    2009-11-01

    Objective and background dataThis work is dedicated to investigation of influence of different values of pH on mechanisms of binding of human serum albumin (HSA) with markers of fluorescent family - eosin, erythrosin and fluorescein. For this purpose were detected changes in markers fluorescence, in markers molecular association, in the effective constants of binding of markers to HSA and also in changes in related chemical bonds in HSA-marker association. Such analysis of changes in binding of biomolecules (such as proteins) with different ligands (such as markers) is extremely interesting from the point of view of a biomedicine and pharmaceuticals, so from the point of view of bionanotechnology: for example, at creation of new drugs. MethodsThe investigations of steady-state fluorescence, polarized fluorescence, molecular association of markers of fluorescein family in HSA solutions are presented in this work, also the analysis of changes in related chemical bonds in HSA-marker association by Raman spectroscopy is done, and also the effective constants of binding of markers to HSA are calculated. Results and conclusionAll investigations show the leading role of chemical and electrostatic interactions between markers and HSA. The received data allow one to get information about mechanisms of interaction of markers to HSA, that can be useful at research of structure and properties of binding Centers (drug-binding Centers) of transport blood protein-HSA, what is of great importance in medical investigations of binding of drugs to HSA.

  3. A combined spectroscopic, docking and molecular dynamics simulation approach to probing binding of a Schiff base complex to human serum albumin

    NASA Astrophysics Data System (ADS)

    Fani, N.; Bordbar, A. K.; Ghayeb, Y.

    2013-02-01

    The molecular mechanism of a Schiff base complex ((E)-((E)-2-(3-((E)-((E)-3(mercapto (methylthio) methylene)cyclopentylidene) amino) propylimino) cyclopentylidene) (methylthio) methanethiol) binding to Human Serum Albumin (HSA) was investigated by fluorescence quenching, absorption spectroscopy, molecular docking and molecular dynamics (MD) simulation procedures. The fluorescence emission of HSA was quenched by this Schiff base complex that has been analyzed for estimation of binding parameters. The titration of Schiff base solution by various amount of HSA was also followed by UV-Vis absorption spectroscopy and the corresponding data were analyzed by suitable models. The results revealed that this Schiff base has an ability to bind strongly to HSA and formed 1:1 complex. Energy transfer mechanism of quenching was discussed and the value of 5.45 ± 0.06 nm was calculated as the mean distance between the bound complex and the Trp residue. This is implying the high possibility of energy transfer from HSA to this Schiff base complex. Molecular docking results indicated that the main active binding site for this Schiff base complex is site III in subdomain IB. Moreover, MD simulation results suggested that this Schiff base complex can interact with HSA, without affecting the secondary structure of HSA but probably with a slight modification of its tertiary structure. MD simulations, molecular docking and experimental data reciprocally supported each other.

  4. Probing the binding of two 19-nortestosterone derivatives to human serum albumin: insights into the interactions of steroid hormone drugs with functional biomacromolecule.

    PubMed

    He, Jiawei; Wang, Qing; Ma, Xiangling; Yang, Hongqin; Li, Shanshan; Xu, Kailin; Li, Hui

    2016-09-01

    Norethindrone acetate (NETA) is a fatty acid ester of norethindrone (NET) that can convert to its more active parent compound NET when orally administered. To study the interactions of NETA and NET with human serum albumin (HSA), we applied fluorescence spectroscopy, circular dichroism (CD), and molecular docking. The effects of metal ions on the HSA-NETA/NET system were also explored. Fluorescence data showed that the quenching mechanism of HSA by NETA and NET was consistent with a static model and that the binding constant of NETA was higher than that of NET. Thermodynamic parameters indicated that hydrogen bonds and van der Waals forces were the main forces maintaining the stability of the HSA-NETA/NET complex. Molecular modeling studies revealed that NETA and NET were bound within subdomain IIA of HSA, in accordance with the site probe results. Synchronous fluorescence spectroscopy, CD, and three-dimensional fluorescence spectroscopy further confirmed that the binding of NETA/NET to HSA changed the secondary structure of the protein. All other metal ions, except for Ca(2+) , decreased the K value of the HSA-NETA/NET system with enhancement of the maximum effectiveness of NETA/NET. Three commercially available steroid hormone drugs influenced the binding ability of NETA on HSA to different extents. This study provides novel insights into the interactions between HSA and NETA/NET, as well as a solid foundation for future research on drug pharmacokinetics and pharmacodynamics. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26940023

  5. Time Resolved EPR Study on the Photoinduced Long-Range Charge-Separated State in Protein: Electron Tunneling Mediated by Arginine Residue in Human Serum Albumin.

    PubMed

    Fuki, Masaaki; Murai, Hisao; Tachikawa, Takashi; Kobori, Yasuhiro

    2016-05-19

    To elucidate how local molecular conformations play a role on electronic couplings for the long-range photoinduced charge-separated (CS) states in protein systems, we have analyzed time-resolved electron paramagnetic resonance (TREPR) spectra by polarized laser irradiations of 9,10-anthraquinone-1-sulfonate (AQ1S(-)) bound to human serum albumin (HSA). Analyses of the magnetophotoselection effects on the EPR spectra and a docking simulation clarified the molecular geometry and the electronic coupling of the long-range CS states of AQ1S(•2-)-tryptophan214 radical cation (W214(•+)) separated by 1.2 nm. The ligand of AQ1S(-) has been demonstrated to be bound to the drug site I in HSA. Molecular conformations of the binding region were estimated by the docking simulations, indicating that an arginine218 (R218(+)) residue bound to AQ1S(•2-) mediates the long-range electron-transfer. The energetics of triad states of AQ1S(•2-)-R218(+)-W214(•+) and AQ1S(-)-R218(•)-W214(•+) have been computed on the basis of the density functional molecular orbital calculations, providing the clear evidence for the long-range electronic couplings of the CS states in terms of the superexchange tunneling model through the arginine residue. PMID:27116363

  6. Developing an Anticancer Copper(II) Pro-Drug Based on the His242 Residue of the Human Serum Albumin Carrier IIA Subdomain.

    PubMed

    Qi, Jinxu; Zhang, Yao; Gou, Yi; Zhang, Zhenlei; Zhou, Zuping; Wu, Xiaoyang; Yang, Feng; Liang, Hong

    2016-05-01

    To increase delivery efficiency, anticancer activity, and selectivity of anticancer metal agents in vivo, we proposed to develop the anticancer metal pro-drug based on His242 residue of the human serum albumin (HSA) carrier IIA subdomain. To confirm our hypothesis, we prepared two Cu(II) compounds [Cu(P4 mT)Cl and Cu(Bp44 mT)Cl] by modifying Cu(II) compound ligand structure. Studies with two HSA complex structures revealed that Cu(P4 mT)Cl bound to the HSA subdomain IIA via hydrophobic interactions, but Cu(Bp44 mT)Cl bound to the HSA subdomain IIA via His242 replacement of a Cl atom of Cu(Bp44 mT)Cl, and a coordination to Cu(2+). Furthermore, Cu(II) compounds released from HSA could be regulated at different pHs. In vivo data revealed that the HSA-Cu(Bp44 mT) complex increased copper's selectivity and capacity of inhibiting tumor growth compared to Cu(Bp44 mT)Cl alone. PMID:27017838

  7. Analysis of the interactions between human serum albumin/amphiphilic penicillin in different aqueous media: an isothermal titration calorimetry and dynamic light scattering study

    NASA Astrophysics Data System (ADS)

    Barbosa, Silvia; Taboada, Pablo; Mosquera, Victor

    2005-04-01

    The complexation process of the amphiphilic penicillins sodium cloxacillin and sodium dicloxacillin with the protein human serum albumin (HSA) in aqueous buffered solutions of pH 4.5 and 7.4 at 25 °C was investigated through isothermal titration calorimetry (ITC) and dynamic light scattering. ITC experiments were carried out in the very dilute regime and showed that although hydrophobic interactions are the leading forces for complexation, electrostatic interactions also play an important role. The possibility of the formation of hydrogen bonds is also deduced from experimental data. The thermodynamic quantities of the binding mechanism, i.e, the enthalpy, ΔHITCi, entropy, ΔSITCi, Gibbs energy, ΔGITCi, binding constant, KITCi and the number of binding sites, ni, were obtained. The binding was saturable and is characterised by Langmuir adsorption isotherms. From ITC data and following a theoretical model, the number of bound and free penicillin molecules was calculated. From Scatchard plots, KITCi and ni were obtained and compared with those from ITC data. The interaction potential between the HSA-penicillin complexes and their stability were determined at pH 7.4 from the dependence of the diffusion coefficients on protein concentration by application of the DLVO colloidal stability theory. The results indicate decreasing stability of the colloidal dispersion of the drug-protein complexes with increase in the concentration of added drug.

  8. Application of a fluorescent biosensor based-on magneto-γ-Fe2 O3 -methyldopa nanoparticles for adsorption of human serum albumin.

    PubMed

    Shahabadi, Nahid; Maghsudi, Maryam; Shiri, Farshad

    2016-06-01

    Understanding and controlling the interaction between the polymer methyldopa (2-amino-3-(3,4-dihydroxyphenyl)-2-methyl-propanoic acid) (PMDP)-γ-Fe2 O3 nanoparticles and biological fluids is important if the potential of nanoparticles (NPs) in biomedicine is to be realized. Physicochemical studies on the interactions between proteins and NPs are influenced by the surface properties of the NPs. To identify the effects of the NP surface, interactions between human serum albumin (HSA) and PMDP-γ-Fe2 O3 NPs were investigated. Here, the adsorption of HSA onto small (10-30 nm diameter) PMDP-γ-Fe2 O3 NPs was quantitatively analyzed using spectroscopic methods. The fluorescence quenching data were checked for the inner-filter effect, the main confounding factor in the observed quenching. The binding constants, Ka , were calculated at different temperatures, using a nonlinear fit to the experimental data, and the thermodynamic parameters ∆H, ∆S and ∆G were given. The obtained thermodynamic signature suggests that hydrophobic interactions at least are present. This result indicates that the structure of the protein turns from a structureless denatured state at pH 3 into an ordered biologically active native state on addition of PMDP-γ-Fe2 O3 NPs. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26542088

  9. NMR metabolomics profiling of blood plasma mimics shows that medium- and long-chain fatty acids differently release metabolites from human serum albumin

    NASA Astrophysics Data System (ADS)

    Jupin, M.; Michiels, P. J.; Girard, F. C.; Spraul, M.; Wijmenga, S. S.

    2014-02-01

    Metabolite profiling by NMR of body fluids is increasingly used to successfully differentiate patients from healthy individuals. Metabolites and their concentrations are direct reporters of body biochemistry. However, in blood plasma the NMR-detected free-metabolite concentrations are also strongly affected by interactions with the abundant plasma proteins, which have as of yet not been considered much in metabolic profiling. We previously reported that many of the common NMR-detected metabolites in blood plasma bind to human serum albumin (HSA) and many are released by fatty acids present in fatted HSA. HSA is the most abundant plasma protein and main transporter of endogenous and exogenous metabolites. Here, we show by NMR how the two most common fatty acids (FAs) in blood plasma - the long-chain FA, stearate (C18:0) and medium-chain FA, myristate (C14:0) - affect metabolite-HSA interaction. Of the set of 18 common NMR-detected metabolites, many are released by stearate and/or myristate, lactate appearing the most strongly affected. Myristate, but not stearate, reduces HSA-binding of phenylalanine and pyruvate. Citrate signals were NMR invisible in the presence of HSA. Only at high myristate-HSA mole ratios 11:1, is citrate sufficiently released to be detected. Finally, we find that limited dilution of blood-plasma mimics releases HSA-bound metabolites, a finding confirmed in real blood plasma samples. Based on these findings, we provide recommendations for NMR experiments for quantitative metabolite profiling.

  10. The increased binding affinity of curcumin with human serum albumin in the presence of rutin and baicalin: A potential for drug delivery system

    NASA Astrophysics Data System (ADS)

    Liu, Bing-Mi; Zhang, Jun; Hao, Ai-Jun; Xu, Liang; Wang, Dan; Ji, Hui; Sun, Shi-Jie; Chen, Bo-Qi; Liu, Bin

    2016-02-01

    The impacts of rutin and baicalin on the interaction of curcumin (CU) with human serum albumin (HSA) were investigated by fluorescence and circular dichroism (CD) spectroscopies under imitated physiological conditions. The results showed that the fluorescence quenching of HSA by CU was a simultaneous static and dynamic quenching process, irrespective of the presence or absence of flavonoids. The binding constants between CU and HSA in the absence and presence of rutin and baicalin were 2.268 × 105 M- 1, 3.062 × 105 M- 1, and 3.271 × 105 M- 1, indicating that the binding affinity was increased in the case of two flavonoids. Furthermore, the binding distance determined according to Förster's theory was decreased in the presence of flavonoids. Combined with the fact that flavonoids and CU have the same binding site (site I), it can be concluded that they may simultaneously bind in different regions in site I, and formed a ternary complex of flavonoid-HSA-CU. Meanwhile, the results of fluorescence quenching, CD and three-dimensional fluorescence spectra revealed that flavonoids further strengthened the microenvironmental and conformational changes of HSA induced by CU binding. Therefore, it is possible to develop a novel complex involving CU, flavonoid and HSA for CU delivery. The work may provide some valuable information in terms of improving the poor bioavailabiliy of CU.

  11. Exploring the interaction between Salvia miltiorrhiza and human serum albumin: Insights from herb-drug interaction reports, computational analysis and experimental studies

    NASA Astrophysics Data System (ADS)

    Shao, Xin; Ai, Ni; Xu, Donghang; Fan, Xiaohui

    2016-05-01

    Human serum albumin (HSA) binding is one of important pharmacokinetic properties of drug, which is closely related to in vivo distribution and may ultimately influence its clinical efficacy. Compared to conventional drug, limited information on this transportation process is available for medicinal herbs, which significantly hampers our understanding on their pharmacological effects, particularly when herbs and drug are co-administrated as polytherapy to the ailment. Several lines of evidence suggest the existence of Salvia miltiorrhiza-Warfarin interaction. Since Warfarin is highly HSA bound in the plasma with selectivity to site I, it is critical to evaluate the possibility of HSA-related herb-drug interaction. Herein an integrated approach was employed to analyze the binding of chemicals identified in S. miltiorrhiza to HSA. Molecular docking simulations revealed filtering criteria for HSA site I compounds that include docking score and key molecular determinants for binding. For eight representative ingredients from the herb, their affinity and specificity to HSA site I was measured and confirmed fluorometrically, which helps to improve the knowledge of interaction mechanisms between this herb and HSA. Our results indicated that several compounds in S. miltiorrhiza were capable of decreasing the binding constant of Warfarin to HSA site I significantly, which may increase free drug concentration in vivo, contributing to the herb-drug interaction observed clinically. Furthermore, the significance of HSA mediated herb-drug interactions was further implied by manual mining on the published literatures on S. miltiorrhiza.

  12. Analysis of the Interaction of Dp44mT with Human Serum Albumin and Calf Thymus DNA Using Molecular Docking and Spectroscopic Techniques

    PubMed Central

    Xu, Zhongjie; Liu, Youxun; Zhou, Sufeng; Fu, Yun; Li, Changzheng

    2016-01-01

    Di-2-pyridylketone-4,4,-dimethyl-3-thiosemicarbazone (Dp44mT) exhibits significant antitumor activity. However, the mechanism of its pharmacological interaction with human serum albumin (HSA) and DNA remains poorly understood. Here, we aimed to elucidate the interactions of Dp44mT with HSA and DNA using MTT assays, spectroscopic methods, and molecular docking analysis. Our results indicated that addition of HSA at a ratio of 1:1 did not alter the cytotoxicity of Dp44mT, but did affect the cytotoxicity of the Dp44mT-Cu complex. Data from fluorescence quenching and UV-VIS absorbance measurements demonstrated that Dp44mT could bind to HSA with a moderate affinity (Ka = approximately 104 M−1). CD spectra revealed that Dp44mT could slightly disrupt the secondary structure of HSA. Dp44mT could also interact with Ct-DNA, but had a moderate binding constant (KEB = approximately 104 M−1). Docking studies indicated that the IB site of HSA, but not the IIA and IIIA sites, could be favorable for Dp44mT and that binding of Dp44mT to HSA involved hydrogen bonds and hydrophobic force, consistent with thermodynamic results from spectral investigations. Thus, the moderate binding affinity of Dp44mT with HSA and DNA partially contributed to its antitumor activity and may be preferable in drug design approaches. PMID:27376275

  13. Combined docking, molecular dynamics simulations and spectroscopic studies for the rational design of a dipeptide ligand for affinity chromatography separation of human serum albumin.

    PubMed

    Aghaee, Elham; Ghasemi, Jahan B; Manouchehri, Firouzeh; Balalaie, Saeed

    2014-10-01

    A computational approach to designing a peptide-based ligand for the purification of human serum albumin (HSA) was undertaken using molecular docking and molecular dynamics (MD) simulation. A three-step procedure was performed to design a specific ligand for HSA. Based on the candidate pocket structure of HSA (warfarin binding site), a peptide library was built. These peptides were then docked into the pocket of HSA using the GOLD program. The GOLDscore values were used to determine the affinity of peptides for HSA. Consequently, the dipeptide Trp-Trp, which shows a high GOLDscore value, was selected and linked to a spacer arm of Lys[CO(CH2)5NH] on the surface of ECH-lysine sepharose 4 gel. For further evaluation, the Autodock Vina program was used to dock the linked compound into the pocket of HSA. The docking simulation was performed to obtain a first guess of the binding structure of the spacer-Trp-Trp-HSA complex and subsequently analyzed by MD simulations to assess the reliability of the docking results. These MD simulations indicated that the ligand-HSA complex remains stable, and water molecules can bridge between the ligand and the protein by hydrogen bonds. Finally, absorption spectroscopic studies were performed to illustrate the appropriateness of the binding affinity of the designed ligand toward HSA. These studies demonstrate that the designed dipeptide can bind preferentially to the warfarin binding site. PMID:25220335

  14. Studies of the Interaction between Isoimperatorin and Human Serum Albumin by Multispectroscopic Method: Identification of Possible Binding Site of the Compound Using Esterase Activity of the Protein

    PubMed Central

    Ranjbar, Samira; Shokoohinia, Yalda; Ghobadi, Sirous; Gholamzadeh, Saeed; Moradi, Nastaran; Ashrafi-Kooshk, Mohammad Reza; Aghaei, Abbas

    2013-01-01

    Isoimperatorin is one of the main components of Prangos ferulacea as a linear furanocoumarin and used as anti-inflammatory, analgesic, antispasmodic, and anticancer drug. Human serum albumin (HSA) is a principal extracellular protein with a high concentration in blood plasma and carrier for many drugs to different molecular targets. Since the carrying of drug by HSA may affect on its structure and action, we decided to investigate the interaction between HSA and isoimperatorin using fluorescence and UV spectroscopy. Fluorescence data indicated that isoimperatorin quenches the intrinsic fluorescence of the HSA via a static mechanism and hydrophobic interaction play the major role in the drug binding. The binding average distance between isoimperatorin and Trp 214 of HSA was estimated on the basis of the theory of Förster energy transfer. Decrease of protein surface hydrophobicity (PSH) was also documented upon isoimperatorin binding. Furthermore, the synchronous fluorescence spectra show that the microenvironment of the tryptophan residues does not have obvious changes. Site marker compettive and fluorescence experiments revealed that the binding of isoimperatorin to HSA occurred at or near site I. Finally, the binding details between isoimperatorin and HSA were further confirmed by molecular docking and esterase activity inhibition studies which revealed that drug was bound at subdomain IIA. PMID:24319355

  15. ANALYSIS OF DRUG INTERACTIONS WITH MODIFIED PROTEINS BY HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY: BINDING OF GLIBENCLAMIDE TO NORMAL AND GLYCATED HUMAN SERUM ALBUMIN

    PubMed Central

    Matsuda, Ryan; Anguizola, Jeanethe; Joseph, K.S.; Hage, David S.

    2012-01-01

    High-performance affinity chromatography (HPAC) was used to examine the changes in binding that occur for the sulfonylurea drug glibenclamide with human serum albumin (HSA) at various stages of glycation for HSA. Frontal analysis on columns containing normal HSA or glycated HSA indicated glibenclamide was interacting through both high affinity sites (association equilibrium constant, Ka, 1.4–1.9 × 106 M−1 at pH 7.4 and 37°C) and lower affinity sites (Ka, 4.4–7.2 × 104 M−1). Competition studies were used to examine the effect of glycation at specific binding sites of HSA. An increase in affinity of 1.7- to 1.9-fold was seen at Sudlow site I with moderate to high levels of glycation. An even larger increase of 4.3- to 6.0-fold in affinity was noted at Sudlow site II for all of the tested samples of glycated HSA. A slight decrease in affinity may have occurred at the digitoxin site, but this change was not significant for any individual glycated HSA sample. These results illustrate how HPAC can be used as tool for examining the interactions of relatively non-polar drugs like glibenclamide with modified proteins and should lead to a more complete understanding of how glycation can alter the binding of drugs in blood. PMID:23092871

  16. CHARACTERIZATION OF INTERACTION KINETICS BETWEEN CHIRAL SOLUTES AND HUMAN SERUM ALBUMIN BY USING HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY AND PEAK PROFILING

    PubMed Central

    Tong, Zenghan; Hage, David S.

    2011-01-01

    Peak profiling and high-performance columns containing immobilized human serum albumin (HSA) were used to study the interaction kinetics of chiral solutes with this protein. This approach was tested using the phenytoin metabolites 5-(3-hydroxyphenyl)-5-phenylhydantoin (m-HPPH) and 5-(4-hydroxyphenyl)-5-phenylhydantoin (p-HPPH) as model analytes. HSA columns provided some resolution of the enantiomers for each phenytoin metabolite, which made it possible to simultaneously conduct kinetic studies on each chiral form. The dissociation rate constants for these interactions were determined by using both the single flow rate and multiple flow rate peak profiling methods. Corrections for non-specific interactions with the support were also considered. The final estimates obtained at pH 7.4 and 37°C for the dissociation rate constants of these interactions were 8.2–9.6 s−1 for the two enantiomers of m-HPPH and 3.2–4.1 s−1 for the enantiomers of p-HPPH. These rate constants agreed with previous values that have been reported for other drugs and solutes that have similar affinities and binding regions on HSA. The approach used in this report was not limited to phenytoin metabolites or HSA but could be applied to a variety of other chiral solutes and proteins. This method could also be adopted for use in the rapid screening of drug-protein interactions. PMID:21872871

  17. Sodium dodecyl sulphate modulates the fibrillation of human serum albumin in a dose-dependent manner and impacts the PC12 cells retraction.

    PubMed

    Movaghati, Sina; Moosavi-Movahedi, Ali Akbar; Khodagholi, Fariba; Digaleh, Hadi; Kachooei, Ehsan; Sheibani, Nader

    2014-10-01

    Protein aggregation is impacted by many factors including temperature, pH, and the presence of surfactants, electrolytes, and metal ions. The addition of sodium dodecyl sulphate (SDS) at different concentrations may play a significant role in the human serum albumin (HSA) fibrillation pathway. Here the heat induction of HSA fibrillation incubated with different concentrations of SDS was evaluated using a variety of techniques. These included ThT fluorescence, Congo red absorbance, circular dichroism, dynamic light scattering, and atomic force microscopy (AFM). To explore HSA surface properties, the surface tension of solutions was measured using Du Noüy Ring method tensiometry. In addition, the criteria of neurite outgrowth and complexity were monitored by exposing PC12 cells to different forms of HSA amyloid intermediates. ThT fluorescence kinetic studies indicated that SDS at low concentrations induced more fibrillation of HSA, while SDS at high concentrations inhibited the fibrillation of HSA. At higher SDS concentrations hydrophobic forces had a significant role whereas at lower SDS concentrations electrostatic forces were dominant. The cell culture studies demonstrated the significant impact of SDS concentration on HSA fibrillation and subsequent neuronal cell morphology. The HSA incubated with low concentrations of SDS inhibited neurite outgrowth and complexity of the PC12 cells, whereas high concentrations of SDS had lesser effect. Thus, SDS acts as a salt at lower concentrations, while at higher concentrations acts as a chaperon, with significant impact on fibrillation of HSA. PMID:25073074

  18. Studies on the interaction between promethazine and human serum albumin in the presence of flavonoids by spectroscopic and molecular modeling techniques.

    PubMed

    He, Ling-Ling; Wang, Zhi-Xin; Wang, Yong-Xia; Liu, Xian-Ping; Yang, Yan-Jie; Gao, Yan-Ping; Wang, Xin; Liu, Bin; Wang, Xin

    2016-09-01

    Fluorescence, absorption, time-correlated single photon counting (TCSPC), and circular dichroism (CD) spectroscopic techniques as well as molecular modeling methods were used to study the binding characterization of promethazine (PMT) to human serum albumin (HSA) and the influence of flavonoids, rutin and baicalin, on their affinity. The results indicated that the fluorescence quenching mechanism of HSA by PMT is a static quenching due to the formation of complex. The reaction was spontaneous and mainly mediated by hydrogen bonds and hydrophobic interactions. The binding distance between the tryptophan residue of HSA and PMT is less than 8nm, which indicated that the energy transfer from the tryptophan residue of HSA to PMT occurred. The binding site of PMT on HSA was located in sites I and the presence of PMT can cause the conformational changes of HSA. There was the competitive binding to HSA between PMT and flavonoids because of the overlap of binding sites in HSA. The flavonoids could decrease the association constant and increase the binding distance. In addition, their synergistic effect can further change the conformation of HSA. The decrease in the affinities of PMT binding to HSA in the presence of flavonoids may lead to the increase of free drug in blood, which would affect the transportation or disposition of drug and evoke an adverse or toxic effect. Hence, rationalising dosage and diet regimens should be taken into account in clinical application of PMT. PMID:27315330

  19. Determination of Supplier-to-Supplier and Lot-to-Lot Variability in Glycation of Recombinant Human Serum Albumin Expressed in Oryza sativa

    PubMed Central

    Frahm, Grant E.; Smith, Daryl G. S.; Kane, Anita; Lorbetskie, Barry; Cyr, Terry D.; Girard, Michel; Johnston, Michael J. W.

    2014-01-01

    The use of different expression systems to produce the same recombinant human protein can result in expression-dependent chemical modifications (CMs) leading to variability of structure, stability and immunogenicity. Of particular interest are recombinant human proteins expressed in plant-based systems, which have shown particularly high CM variability. In studies presented here, recombinant human serum albumins (rHSA) produced in Oryza sativa (Asian rice) (OsrHSA) from a number of suppliers have been extensively characterized and compared to plasma-derived HSA (pHSA) and rHSA expressed in yeast (Pichia pastoris and Saccharomyces cerevisiae). The heterogeneity of each sample was evaluated using size exclusion chromatography (SEC), reversed-phase high-performance liquid chromatography (RP-HPLC) and capillary electrophoresis (CE). Modifications of the samples were identified by liquid chromatography-mass spectrometry (LC-MS). The secondary and tertiary structure of the albumin samples were assessed with far U/V circular dichroism spectropolarimetry (far U/V CD) and fluorescence spectroscopy, respectively. Far U/V CD and fluorescence analyses were also used to assess thermal stability and drug binding. High molecular weight aggregates in OsrHSA samples were detected with SEC and supplier-to-supplier variability and, more critically, lot-to-lot variability in one manufactures supplied products were identified. LC-MS analysis identified a greater number of hexose-glycated arginine and lysine residues on OsrHSA compared to pHSA or rHSA expressed in yeast. This analysis also showed supplier-to-supplier and lot-to-lot variability in the degree of glycation at specific lysine and arginine residues for OsrHSA. Both the number of glycated residues and the degree of glycation correlated positively with the quantity of non-monomeric species and the chromatographic profiles of the samples. Tertiary structural changes were observed for most OsrHSA samples which correlated well

  20. Investigation of the binding of cis/trans-[MCl4(1H-indazole)(NO)](-) (M = Ru, Os) complexes to human serum albumin.

    PubMed

    Dömötör, Orsolya; Rathgeb, Anna; Kuhn, Paul-Steffen; Popović-Bijelić, Ana; Bačić, Goran; Enyedy, Eva Anna; Arion, Vladimir B

    2016-06-01

    Overall binding affinity of sodium or indazolium cis/trans-[MCl4(1H-indazole)(NO)] (M = Ru, Os) complexes towards human serum albumin (HSA) and high molecular mass components of the blood serum was monitored by ultrafiltration. HSA was found to be mainly responsible for the binding of the studied ruthenium and osmium complexes. In other words, this protein can provide a depot for the compounds and can affect their biodistribution and transport processes. In order to elucidate the HSA binding sites tryptophan fluorescence quenching studies and displacement reactions with the established site markers warfarin and dansylglycine were performed. Conditional stability constants for the binding to sites I and II on HSA were computed showing that the studied ruthenium and osmium complexes are able to bind into both sites with moderately strong affinity (logK' = 4.4-5.1). Site I is slightly more favored over site II for all complexes. No significant differences in the HSA binding properties were found for these metal complexes demonstrating negligible influence of the type of counterion (sodium vs indazolium), the metal ion center identity (Ru vs. Os) or the position of the nitrosyl group on the binding event. Electron paramagnetic resonance spin labeling of HSA revealed that indazolium trans-[RuCl4(1H-indazole)(NO)] and long-chain fatty acids show competitive binding to HSA. Moreover, this complex has a higher affinity for site I, but when present in excess, it is able to bind to site II as well, and displace fatty acids. PMID:26908285

  1. A novel exendin-4 human serum albumin fusion protein, E2HSA, with an extended half-life and good glucoregulatory effect in healthy rhesus monkeys

    SciTech Connect

    Zhang, Ling; Wang, Lin; Meng, Zhiyun; Gan, Hui; Gu, Ruolan; Wu, Zhuona; Gao, Lei; Zhu, Xiaoxia; Sun, Wenzhong; Li, Jian; Zheng, Ying; Dou, Guifang

    2014-03-07

    Highlights: • E2HSA has an extended half-life and good plasma stability. • E2HSA could improve glucose-dependent insulin secretion. • E2HSA has excellent glucoregulatory effects in vivo. • E2HSA could potentially be used as a new long-acting GLP-1 receptor agonist for type 2 diabetes management. - Abstract: Glucagon-like peptide-1 (GLP-1) has attracted considerable research interest in terms of the treatment of type 2 diabetes due to their multiple glucoregulatory functions. However, the short half-life, rapid inactivation by dipeptidyl peptidase-IV (DPP-IV) and excretion, limits the therapeutic potential of the native incretin hormone. Therefore, efforts are being made to develop the long-acting incretin mimetics via modifying its structure. Here we report a novel recombinant exendin-4 human serum albumin fusion protein E2HSA with HSA molecule extends their circulatory half-life in vivo while still retaining exendin-4 biological activity and therapeutic properties. In vitro comparisons of E2HSA and exendin-4 showed similar insulinotropic activity on rat pancreatic islets and GLP-1R-dependent biological activity on RIN-m5F cells, although E2HSA was less potent than exendin-4. E2HSA had a terminal elimation half-life of approximate 54 h in healthy rhesus monkeys. Furthermore, E2HSA could reduce postprandial glucose excursion and control fasting glucose level, dose-dependent suppress food intake. Improvement in glucose-dependent insulin secretion and control serum glucose excursions were observed during hyperglycemic clamp test (18 h) and oral glucose tolerance test (42 h) respectively. Thus the improved physiological characterization of E2HSA make it a new potent anti-diabetic drug for type 2 diabetes therapy.

  2. Chromatographic analysis of the effects of fatty acids and glycation on binding by probes for Sudlow sites I and II to human serum albumin.

    PubMed

    Anguizola, Jeanethe; Debolt, Erin; Suresh, D; Hage, David S

    2016-05-15

    The primary endogenous ligands of human serum albumin (HSA) are non-esterified fatty acids, with 0.1-2mol of fatty acids normally being bound to HSA. In type II diabetes, fatty acid levels in serum are often elevated, and the presence of high glucose results in an increase in the non-enzymatic glycation of HSA. High-performance affinity chromatography (HPAC) was used to examine the combined effects of glycation and the presence of long chain fatty acids on the binding of HSA with R-warfarin and l-tryptophan (i.e., probes for Sudlow sites I and II, the major sites for drugs on this protein). Zonal elution competition studies were used to examine the interactions of myristic acid, palmitic acid and stearic acid with these probes on HSA. It was found that all these fatty acids had direct competition with R-warfarin at Sudlow site I of normal HSA and glycated HSA, with the glycated HSA typically having stronger binding for the fatty acids at this site. At Sudlow site II, direct competition was observed for all the fatty acids with l-tryptophan when using normal HSA, while glycated HSA gave no competition or positive allosteric interactions between these fatty acids and l-tryptophan. These data indicated that glycation can alter the interactions of drugs and fatty acids at specific binding sites on HSA. The results of this study should lead to a better understanding of how these interactions may change during diabetes and demonstrate how HPAC can be used to examine drug/solute-protein interactions in complex systems. PMID:26468085

  3. Protein extracts from cultured cells contain nonspecific serum albumin.

    PubMed

    Miyara, Masatsugu; Umeda, Kanae; Ishida, Keishi; Sanoh, Seigo; Kotake, Yaichiro; Ohta, Shigeru

    2016-06-01

    Serum is an important component of cell culture media. The present study demonstrates contamination of intracellular protein extract by bovine serum albumin from the culture media and illustrates how this contamination can cause the misinterpretation of western blot results. Preliminary experiments can prevent the misinterpretation of some experimental results, and optimization of the washing process may enable specific protein detection. PMID:26967711

  4. Complexation of serum albumins and triton X-100: Quenching of tryptophan fluorescence and analysis of the rotational diffusion of complexes

    NASA Astrophysics Data System (ADS)

    Vlasova, I. M.; Vlasov, A. A.; Saletskii, A. M.

    2016-07-01

    The polarized and nonpolarized fluorescence of bovine serum albumin and human serum albumin in Triton X-100 solutions is studied at different pH values. Analysis of the constants of fluorescence quenching for BSA and HSA after adding Triton X-100 and the hydrodynamic radii of BSA/HSA-detergent complexes show that the most effective complexation between both serum albumins and Triton X-100 occurs at pH 5.0, which lies near the isoelectric points of the proteins. Complexation between albumin and Triton X-100 affects the fluorescence of the Trp-214 residing in the hydrophobic pockets of both BSA and HSA.

  5. Hyperglycemia induced structural and functional changes in human serum albumin of diabetic patients: a physico-chemical study.

    PubMed

    Neelofar, Km; Arif, Zarina; Alam, Khursheed; Ahmad, Jamal

    2016-07-19

    Structural and functional changes in albumin are of particular interest as numerous studies in vivo have reported a strong involvement of glycated-HSA in the development and progression of chronic diabetic complications. Non-enzymatic addition of glucose molecules to a protein induces structural changes in it. These changes depend on the degree of glycation. In this study, conformational changes in glycated-HSA and its antioxidant capacity were evaluated. HSA was purified from diabetic patients with/without CKD and healthy subjects. Glycation induced an increase in the molecular mass of HSA as determined by mass spectroscopy. Further secondary and tertiary structural changes were observed by UV, circular dichroism (CD) spectroscopy, Fourier transform infrared spectroscopy (FTIR), tryptophan and 1-anilinonaphthalene-8-sulfonic acid (ANS) fluorescence. The mean α-helix content was found to be 59.46% for normal HSA and it was reduced down to 45.63% in HSA isolated from diabetic patients without CKD and to 37.48% in CKD-HSA. FTIR analysis showed Amide I and Amide II band shifting in HSA of diabetic patients without and with CKD. These findings indicate the secondary structure changes in glycated HSA. The tertiary structure is also affected by in vivo glycation as confirmed by intrinsic fluorescence and ANS fluorescence results. Consequently, these structural changes associated with glycation provoked a reduction in the free thiol group and a strong increment of protein carbonyl contents and the fructosamine level in glycated HSA. Antioxidant activity was evaluated by a RBC hemolysis test. The result indicates that the free radical scavenging capacities of HSA were decreased in diabetic patients with or without CKD. Our study revealed that structural and functional features of glycated HSA, isolated from diabetic patients with and without CKD were significantly different from the HSA isolated from non-diabetic subjects. Moreover these changes were more prominent in HSA

  6. Serum Albumin Levels and Economic Status in Japanese Older Adults

    PubMed Central

    Ota, Asami; Kondo, Naoki; Murayama, Nobuko; Tanabe, Naohito; Shobugawa, Yugo; Kondo, Katsunori

    2016-01-01

    Background Low serum albumin levels are associated with aging and medical conditions such as cancer, liver dysfunction, inflammation, and malnutrition and might be an independent predictor of long-term mortality in healthy older populations. We tested the hypothesis that economic status is associated with serum albumin levels and explained by nutritional and health status in Japanese older adults. Design We performed a cross-sectional analysis using data from the Japan Gerontological Evaluation study (JAGES). The study participants were 6528 functionally independent residents (3189 men and 3339 women) aged ≥65 years living in four municipalities in Aichi prefecture. We used household income as an indicator of economic status. Multiple linear regression was used to compare serum albumin levels in relation to household income, which was classified as low, middle, and high. Additionally, mediation by nutritional and health-related factors was analyzed in multivariable models. Results With the middle-income group as reference, participants with low incomes had a significantly lower serum albumin level, even after adjustment for sex, age, residential area, education, marital status, and household structure. The estimated mean difference was −0.17 g/L (95% confidence interval, −0.33 to −0.01 g/L). The relation between serum albumin level and low income became statistically insignificant when “body mass index”, “consumption of meat or fish”, “self-rated health”, “presence of medical conditions”, “hyperlipidemia”, or “respiratory disease “was included in the model. Conclusion Serum albumin levels were lower in Japanese older adults with low economic status. The decrease in albumin levels appears to be mediated by nutrition and health-related factors with low household incomes. Future studies are needed to reveal the existence of other pathways. PMID:27276092

  7. Exploring the binding mechanism of ondansetron hydrochloride to serum albumins: Spectroscopic approach

    NASA Astrophysics Data System (ADS)

    Sandhya, B.; Hegde, Ashwini H.; K. C., Ramesh; Seetharamappa, J.

    2012-02-01

    The mechanism of interaction of ondansetron hydrochloride (OND) to serum albumins [bovine serum albumin (BSA) and human serum albumin (HSA)] was studied for the first time employing fluorimetric, circular dichroism, FTIR and UV-vis absorption techniques under the simulated physiological conditions. Fluorimetric results were utilized to investigate the binding and conformational characteristics of protein upon interaction with varying concentrations of the drug. Higher binding constant values revealed the strong interaction between the drug and protein while the number of binding sites close to unity indicated single class of binding site for OND in protein. Thermodynamic results revealed that both hydrogen bond and hydrophobic interactions played a major role in stabilizing drug-protein complex. Site marker competitive experiments indicated that the OND bound to albumins at subdomin II A (Sudlow's site I). Further, the binding distance between OND and serum albumin was calculated based on the Förster's theory of non-radioactive energy transfer and found to be 2.30 and 3.41 nm, respectively for OND-BSA and OND-HSA. The circular dichroism data revealed that the presence of OND decreased the α-helix content of serum albumins. 3D-fluorescence results also indicated the conformational changes in protein upon interaction with OND. Further, the effects of some cations have been investigated in the interaction of drug to protein.

  8. Exploring the binding mechanism of ondansetron hydrochloride to serum albumins: spectroscopic approach.

    PubMed

    B, Sandhya; Hegde, Ashwini H; K C, Ramesh; J, Seetharamappa

    2012-02-01

    The mechanism of interaction of ondansetron hydrochloride (OND) to serum albumins [bovine serum albumin (BSA) and human serum albumin (HSA)] was studied for the first time employing fluorimetric, circular dichroism, FTIR and UV-vis absorption techniques under the simulated physiological conditions. Fluorimetric results were utilized to investigate the binding and conformational characteristics of protein upon interaction with varying concentrations of the drug. Higher binding constant values revealed the strong interaction between the drug and protein while the number of binding sites close to unity indicated single class of binding site for OND in protein. Thermodynamic results revealed that both hydrogen bond and hydrophobic interactions played a major role in stabilizing drug-protein complex. Site marker competitive experiments indicated that the OND bound to albumins at subdomin II A (Sudlow's site I). Further, the binding distance between OND and serum albumin was calculated based on the Förster's theory of non-radioactive energy transfer and found to be 2.30 and 3.41 nm, respectively for OND-BSA and OND-HSA. The circular dichroism data revealed that the presence of OND decreased the α-helix content of serum albumins. 3D-fluorescence results also indicated the conformational changes in protein upon interaction with OND. Further, the effects of some cations have been investigated in the interaction of drug to protein. PMID:22112579

  9. Protein stability, conformational change and binding mechanism of human serum albumin upon binding of embelin and its role in disease control.

    PubMed

    Yeggoni, Daniel Pushparaju; Rachamallu, Aparna; Subramanyam, Rajagopal

    2016-07-01

    Here, we present the inclusive binding mode of phytochemical embelin, an anticancer drug with human serum albumin (HSA) established under physiological condition. Also, to understand the pharmacological role of embelin molecule, here, we have studied the anti-cancer activity of embelin on human cervical cancer cell line (HeLa cell line), which revealed that embelin showed dose dependent inhibition in the growth of cancer cells and also induces 26.3% of apoptosis at an IC50 value of 29μM. Further, embelin was titrated with HSA and the fluorescence emission quenching of HSA due to the formation of the HSA-embelin complex was observed. The binding constant of this complex is 5.9±.01×10(4)M(-1) and the number of bound embelin molecules is approximately 1.0. Consequently, molecular displacement and computational docking experiments show that the embelin is binding to subdomain IB to HSA. Further evidence from microTOF-Q mass spectrometry showed an increase in mass from 66,563Da to 66,857Da observed for free HSA and HSA+embelin complex, signifying that there is robust binding of embelin with HSA. In addition, the variations of HSA secondary structural elements in presence of embelin were confirmed by circular dichroism which indicates partial unfolding of protein. Furthermore, the transmission electron micrographs established that complex formation leads to aggregation of HSA plus embelin. Molecular dynamics simulations revealed that the stability of the HSA-embelin complexes and results suggests that at around 3500ps the complex reaches equilibration state which clearly contributes to the understanding of the stability of the HSA-embelin complexes. PMID:27130964

  10. Raman, SERS, and induced circular dichroism techniques as a probe of pharmaceuticals in their interactions with the human serum albumin and p-glycoprotein

    NASA Astrophysics Data System (ADS)

    Fleury, Fabrice; Ianoul, Anatoli I.; Baggetto, Loris; Jardillier, Jean-Claude; Alix, Alain J.; Nabiev, Igor R.

    1999-04-01

    Camptothecin (CPT) derivatives are the well known inhibitors of the human DNA topoisomerase (topo) I. Two of them, irinotecan and topotecan, are just in the clinics; 9-amino- CPT is on the stage II of clinical trials, and the active search for new derivatives is now in progress. Stability of the CPT derivatives on their way to the target and resistance of cancer cells to these drugs present the crucial problem of the chemotherapy. Human serum albumin (HSA) is the mediator of transport and metabolism of numerous pharmaceuticals in the blood and P-glycoprotein (P- gp) plays a crucial role of the mediator of the multidrug resistance (MDR) of the cancer cells. This paper present the result of analysis of molecular interactions of some drugs of CPT family with the HSA and P-gp. Induced circular dichroism (CD) and Raman techniques have been applied for monitoring molecular interaction of drugs with HSA as well as to identify the conformational transition of the protein induced by the drug binding. Drug molecular determinants responsible for interaction have been identified and their binding sites within the HSA have been localized. New cancer cells lines exhibiting an extremely high level of MDR resistance have been established and were shown to contain the P-gp overproduced in the quantities of 35 percent from the all membrane proteins. The membrane fractions of these cells with the controls presented by the membranes of the parental membrane proteins. The membrane fractions of these cells with the controls presented by the membranes of the parental sensitive cells may be used as a model system for spectroscopic analysis of the specific pharmaceuticals/P-gp interactions.

  11. Identification and quantification of major maillard cross-links in human serum albumin and lens protein. Evidence for glucosepane as the dominant compound.

    PubMed

    Biemel, Klaus M; Friedl, D Alexander; Lederer, Markus O

    2002-07-12

    Glycation reactions leading to protein modifications (advanced glycation end products) contribute to various pathologies associated with the general aging process and long term complications of diabetes. However, only few relevant compounds have so far been detected in vivo. We now report on the first unequivocal identification of the lysine-arginine cross-links glucosepane 5, DOGDIC 6, MODIC 7, and GODIC 8 in human material. For their accurate quantification by coupled liquid chromatography-electrospray ionization mass spectrometry, (13)C-labeled reference compounds were synthesized independently. Compounds 5-8 are formed via the alpha-dicarbonyl compounds N(6)-(2,3-dihydroxy-5,6-dioxohexyl)-l-lysinate (1a,b), 3-deoxyglucosone (), methylglyoxal (), and glyoxal (), respectively. The protein-bound dideoxyosone 1a,b seems to be of prime significance for cross-linking because it presumably is not detoxified by mammalian enzymes as readily as 2-4. Hence, the follow-up product glucosepane 5 was found to be the dominant compound. Up to 42.3 pmol of 5/mg of protein was identified in human serum albumin of diabetics; the level of 5 correlates markedly with the glycated hemoglobin HbA(1c). In the water-insoluble fraction of lens proteins from normoglycemics, concentration of 5 ranges between 132.3 and 241.7 pmol/mg. The advanced glycoxidation end product GODIC 8 is elevated significantly in brunescent lenses, indicating enhanced oxidative stress in this material. Compounds 5-8 thus appear predestined as markers for pathophysiological processes. PMID:11978796

  12. In vitro inhibition and enhancement of liver microsomal S-777469 metabolism by long-chain fatty acids and serum albumin: insight into in vitro and in vivo discrepancy of metabolite formation in humans.

    PubMed

    Sekiguchi, Kazutaka; Kanazu, Takushi; Murayama, Norie; Yamazaki, Hiroshi; Yamaguchi, Yoshitaka

    2016-06-01

    1. It was previously demonstrated that 10% of S-777469, a cannabinoid receptor 2 selective agonist, is metabolized to its carboxylic acid metabolite (S-777469 5-carboxylic acid, 5-CA) in humans in vivo, while the formation of 5-CA is extremely low in human cryopreserved hepatocytes and liver microsomes (HLMs). In this study, factors causing the different metabolite formation rates of S-777469 in vitro and in vivo were investigated. 2. Formation of 5-CA and S-777469 5-hydroxymethyl (5-HM), a precursor metabolite of 5-CA, was catalyzed by CYP2C9. Arachidonic acid, α-linolenic acid, oleic acid and myristic acid, which have been reported to exist in liver microsomes, inhibited S-777469 oxidation by CYP2C9, but serum albumin enhanced this reactions. 3. The IC50 values of these fatty acids for 5-CA formation from 5-HM were lower than those of 5-HM formation from S-777469. Serum albumin extensively enhanced 5-CA formation from 5-HM in comparison to 5-HM formation from S-777469. 4. CYP2C9 was the enzyme responsible for S-777469 oxidation in human livers. The suppressive effects of several fatty acids and enhancing action of serum albumin in vitro are likely to be the causal factors for the apparently different rates of in vitro and in vivo metabolite formation of S-777469. PMID:26677906

  13. Structural studies on serum albumins under green light irradiation.

    PubMed

    Comorosan, Sorin; Polosan, Silviu; Popescu, Irinel; Ionescu, Elena; Mitrica, Radu; Cristache, Ligia; State, Alina Elena

    2010-10-01

    This paper presents two new experimental results: the protective effect of green light (GL) on ultraviolet (UV) denaturation of proteins, and the effect of GL on protein macromolecular structures. The protective effect of GL was revealed on two serum albumins, bovine (BSA) and human (HSA), and recorded by electrophoresis, absorption, and circular dichroism spectra. The effect of GL irradiation on protein structure was recorded by using fluorescence spectroscopy and electrophoresis. These new effects were modeled by quantum-chemistry computation using Gaussian 03 W, leading to good fit between theoretical and experimental absorption and circular dichroism spectra. A mechanism for these phenomena is suggested, based on a double-photon absorption process. This nonlinear effect may lead to generation of long-lived Rydberg macromolecular systems, capable of long-range interactions. These newly suggested systems, with macroscopic quantum coherence behaviors, may block the UV denaturation processes. PMID:20473754

  14. PRODUCTION OF UNIFORMLY SIZED SERUM ALBUMIN AND DEXTROSE MICROBUBBLES

    PubMed Central

    Borrelli, Michael J.; O’Brien, William D.; Bernock, Laura J.; Williams, Heather R.; Hamilton, Eric; Wu, Jonah; Oelze, Michael L.; Culp, William C.

    2011-01-01

    Uniformly-sized preparations with average microbubble (MB) diameters from 1 µm to 7 µm were produced reliably by sonicating decafluorobutane-saturated solutions of serum albumin and dextrose. Detailed protocols for producing and size-separating the MBs are presented, along with the effects that changing each production parameter (serum albumin concentration, sonication power, sonication time, etc.) had on MB size distribution and acoustic stability. These protocols can be used to produce MBs for experimental applications or serve as templates for developing new protocols that yield MBs with physical and acoustic properties better suited to specific applications. Size stability and ultrasonic performance quality control tests were developed to assure that successive MB preparations perform identically and to distinguish the physical and acoustic properties of identically sized MBs produced with different serum albumin-dextrose formulations and sonication parameters. MBs can be stored at 5°C for protracted periods (2 weeks to one year depending on formulation). PMID:21689961

  15. Strong interactions with polyethylenimine-coated human serum albumin nanoparticles (PEI-HSA NPs) alter α-synuclein conformation and aggregation kinetics

    NASA Astrophysics Data System (ADS)

    Mohammad-Beigi, Hossein; Shojaosadati, Seyed Abbas; Marvian, Amir Tayaranian; Pedersen, Jannik Nedergaard; Klausen, Lasse Hyldgaard; Christiansen, Gunna; Pedersen, Jan Skov; Dong, Mingdong; Morshedi, Dina; Otzen, Daniel E.

    2015-11-01

    The interaction between nanoparticles (NPs) and the small intrinsically disordered protein α-synuclein (αSN), whose aggregation is central in the development of Parkinson's disease, is of great relevance in biomedical applications of NPs as drug carriers. Here we showed using a combination of different techniques that αSN interacts strongly with positively charged polyethylenimine-coated human serum albumin (PEI-HSA) NPs, leading to a significant alteration in the αSN secondary structure. In contrast, the weak interactions of αSN with HSA NPs allowed αSN to remain unfolded. These different levels of interactions had different effects on αSN aggregation. While the weakly interacting HSA NPs did not alter the aggregation kinetic parameters of αSN, the rate of primary nucleation increased in the presence of PEI-HSA NPs. The aggregation rate changed in a PEI-HSA NP-concentration dependent and size independent manner and led to fibrils which were covered with small aggregates. Furthermore, PEI-HSA NPs reduced the level of membrane-perturbing oligomers and reduced oligomer toxicity in cell assays, highlighting a potential role for NPs in reducing αSN pathogenicity in vivo. Collectively, our results highlight the fact that a simple modification of NPs can strongly modulate interactions with target proteins, which may have important and positive implications in NP safety.The interaction between nanoparticles (NPs) and the small intrinsically disordered protein α-synuclein (αSN), whose aggregation is central in the development of Parkinson's disease, is of great relevance in biomedical applications of NPs as drug carriers. Here we showed using a combination of different techniques that αSN interacts strongly with positively charged polyethylenimine-coated human serum albumin (PEI-HSA) NPs, leading to a significant alteration in the αSN secondary structure. In contrast, the weak interactions of αSN with HSA NPs allowed αSN to remain unfolded. These different

  16. Revealing the ionization ability of binding site I of human serum albumin using 2-(2'-hydroxyphenyl)benzoxazole as a pH sensitive probe.

    PubMed

    Abou-Zied, Osama K

    2012-02-28

    The ability of site I of human serum albumin (HSA) to bind medium sized molecules is important for the distribution, metabolism, and efficacy of many drugs. Herein, we show that this binding site has the ionization ability that may alter the drug structure during the process of its delivery. We reveal this ability by employing 2-(2'-hydroxyphenyl)benzoxazole (HBO) as a pH sensitive probe. Binding of HBO in site I is studied here at physiological pH 7.2 using steady-state and lifetime spectroscopic measurements, molecular docking and molecular dynamics (MD) simulation methods. The complex photophysics of HBO and the unique fluorescence signature of its anionic form indicate that, upon binding with HSA, the molecule exists in equilibrium between the anionic and the syn-keto forms. The position of HBO inside the binding site was determined experimentally by measuring the fluorescence quenching of W214, the sole tryptophan residue in HSA. The ionization degree of HBO inside the binding site was estimated to be close to the ionization degree of HBO in an aqueous solution of pH 10. This was concluded by comparing the fluorescence behavior of bound HBO to that of HBO in different solvents and in aqueous solutions of different pH values. Molecular docking and MD simulations show that HBO binds in site I close to W214, confirming the experimental results, and pinpoint the dominant role of hydrophobic interactions in the binding site. The formation of the anionic form is proposed to be due to through-space interaction between the OH group of HBO and both R222 and I290 with a binding mode similar to that of warfarin in site I. Comparison of the results with those of HBO mixed with key amino acids in solution indicates the importance of through-space interaction in the formation of the anion, similar to enzymatic reactions. PMID:22267206

  17. S-Nitrosated human serum albumin dimer as novel nano-EPR enhancer applied to macromolecular anti-tumor drugs such as micelles and liposomes.

    PubMed

    Kinoshita, Ryo; Ishima, Yu; Ikeda, Mayumi; Kragh-Hansen, Ulrich; Fang, Jun; Nakamura, Hideaki; Chuang, Victor T G; Tanaka, Ryota; Maeda, Hitoshi; Kodama, Azusa; Watanabe, Hiroshi; Maeda, Hiroshi; Otagiri, Masaki; Maruyama, Toru

    2015-11-10

    The enhanced permeability and retention (EPR) effect is a unique phenomenon of solid tumors, and it can serve as a basis for the development of macromolecular anticancer therapy. We have previously found that recombinant human serum albumin dimer, and especially its S-nitrosated form (SNO-HSA-Dimer), is an enhancer of the EPR effect. In this study, we investigated the influence of SNO-HSA-Dimer on the anti-tumor effect of two types of macromolecular anti-tumor drugs, namely N-(2-hydroxypropyl)methacrylamide polymer conjugated with zinc protoporphyrin, which forms micelles and can be used for fluorescence studies. The other was PEGylated liposomal doxorubicin (Doxil), a typical example of a stealth liposome approved for medical usage. In mice having C26 tumors with highly permeable vasculature, SNO-HSA-Dimer increases tumor accumulation of the drugs by a factor 3-4 and thereby their anti-tumor effects. Experiments with Evans blue revealed increased EPR effect in all parts of the tumor. Furthermore, SNO-HSA-Dimer improves the anti-metastatic effects of Doxil and reduces its minor uptake in non-tumorous organs such as liver and kidney. Tumor accumulation of Doxil in B16 tumors, which are characterized by a low permeable vasculature, increased even more (6-fold) in the presence of SNO-HSA-Dimer, and the improved accumulation lead to decreased tumor volume and increased survival of the animals. The administration of SNO-HSA-Dimer itself is safe, because it has no effect on blood pressure, heart rate or on several biochemical parameters. The present findings indicate that SNO-HSA-Dimer is promising for enhancing the EPR effect and consequently the specific, therapeutic effects of macromolecular anticancer drugs. PMID:26302904

  18. Interaction between Human Serum Albumin and antidiabetic compounds and its influence on the O2((1)Δg)-mediated degradation of the protein.

    PubMed

    Challier, C; Beassoni, P; Boetsch, C; García, N A; Biasutti, M A; Criado, S

    2015-01-01

    The complexity depicted by disease scenarios as diabetes mellitus, constitutes a very interesting field of study when drugs and biologically relevant components may be affected by such environments. In this report, the interaction between the protein Human Serum Albumin (HSA) and two antidiabetics (Andb), Gliclazide (Gli) and Glipizide (Glip) was studied through fluorescence and docking assays, in order to characterize these systems. On the basis that HSA and Andb can be exposed in vivo at high Reactive Oxygen Species (ROS) concentrations in diabetic patients, the degradative process of the protein free and bound to Andb, in presence of the species singlet molecular oxygen (O2((1)Δg)), was evaluated. Fluorescence and docking assays indicated that Gli, as well as Glip bind to HSA on two sites, with binding constants values in the order of 10(4)-10(5)M(-1). Likewise, docking assays revealed that the location of Gli or Glip on the protein may be the HSA binding sites II and III. Thermodynamic parameters showed that the interaction between HSA and Glip is a favored, enthalpically-controlled process. Oxygen uptake experiments indicated that Glip is less photooxidizable than Gli through a O2((1)Δg)-mediated process. Besides, the protein-Andb binding produced a decrease in the overall rate constant for O2((1)Δg) quenching as compared to the value for the free protein. This fact could be interpreted in terms of a reduction in the availability of Tyrosine residues in the bonded protein, with a concomitant decrease in the physical quenching deactivation of the oxidative species. PMID:25490375

  19. Fatty acids binding to human serum albumin: Changes of reactivity and glycation level of Cysteine-34 free thiol group with methylglyoxal.

    PubMed

    Pavićević, Ivan D; Jovanović, Vesna B; Takić, Marija M; Penezić, Ana Z; Aćimović, Jelena M; Mandić, Ljuba M

    2014-10-17

    Fatty acids (FAs) binding to human serum albumin (HSA) could lead to the changes of Cys-34 thiol group accessibility and reactivity, i.e. its scavenger capacity and antioxidant property. The influence of saturated, mono and poly unsaturated, and fish oil FAs binding to HSA on the carbonylation level and the reactivity of HSA-SH and HSA modified with methylglyoxal (MG-HSA-SH) was investigated. Changes of thiol group reactivity were followed by determination of pseudo first order rate constant (k') for thiols reaction with 5,5'-dithiobis(2-nitrobenzoic acid). HSA changes were monitored using native PAG electrophoresis and fluorescence spectroscopy. For FA/HSA molar ratios screening, qTLC and GC were used. FAs increase thiol group carbonylation levels from 8% to 20%. The k' values obtained for FAs-free HSA-SH and FAs-free MG-HSA-SH are almost equal (7.5×10(-3) and 7.7×10(-3)s(-1), resp.). Binding of all FAs amplify the reactivity (k' values from 14.6×10(-3) to 26.0×10(-3)s(-1)) of HSA-SH group for 2-3.5times in the order: palmitic, docosahexaenoic, fish oil extract, stearic, oleic, myristic and eicosapentaenoic acid, due to HSA conformational changes. FAs-bound MG-HSA-SH samples follow that pattern, but their k' values (from 9.8×10(-3) to 14.3×10(-3)s(-1)) were lower compared to unmodified HSA due to additional conformation changes of HSA molecules during carbonylation. Carbonylation level and reactivity of Cys34 thiol group of unmodified and carbonylated HSA depend on type of FAs bound to HSA, which implies the possibility for modulation of -SH reactivity (scavenger capacity and antioxidant property) by FAs as a supplement. PMID:25451573

  20. Analysis of drug-protein binding using on-line immunoextraction and high-performance affinity microcolumns: Studies with normal and glycated human serum albumin.

    PubMed

    Matsuda, Ryan; Jobe, Donald; Beyersdorf, Jared; Hage, David S

    2015-10-16

    A method combining on-line immunoextraction microcolumns with high-performance affinity chromatography (HPAC) was developed and tested for use in examining drug-protein interactions with normal or modified proteins. Normal human serum albumin (HSA) and glycated HSA were used as model proteins for this work. High-performance immunoextraction microcolumns with sizes of 1.0-2.0 cm × 2.1mm i.d. and containing anti-HSA polyclonal antibodies were developed and tested for their ability to bind normal HSA or glycated HSA. These microcolumns were able to extract up to 82-93% for either type of protein at 0.05-0.10 mL/min and had a binding capacity of 0.34-0.42 nmol HSA for a 1.0 cm × 2.1mm i.d. microcolumn. The immunoextraction microcolumns and their adsorbed proteins were tested for use in various approaches for drug binding studies. Frontal analysis was used with the adsorbed HSA/glycated HSA to measure the overall affinities of these proteins for the drugs warfarin and gliclazide, giving comparable values to those obtained previously using similar protein preparations that had been covalently immobilized within HPAC columns. Zonal elution competition studies with gliclazide were next performed to examine the specific interactions of this drug at Sudlow sites I and II of the adsorbed proteins. These results were also comparable to those noted in prior work with covalently immobilized samples of normal HSA or glycated HSA. These experiments indicated that drug-protein binding studies can be carried out by using on-line immunoextraction microcolumns with HPAC. The same method could be used in the future with clinical samples and other drugs or proteins of interest in pharmaceutical studies or biomedical research. PMID:26381571

  1. Fatty acids bound to human serum albumin and its structural variants modulate apolipoprotein B secretion in HepG2 cells.

    PubMed

    Ha, Ji-Sook; Theriault, Andre; Bhagavan, Nadhipuram V; Ha, Chung-Eun

    2006-07-01

    Epidemiologic studies have shown an inverse relationship between human serum albumin (HSA) levels and coronary heart disease (CHD). However, no mechanisms have been identified to explain this relationship. We hypothesized that this relationship is due to differences in binding affinity of fatty acids to HSA and subsequent atherogenic lipoprotein synthesis and secretion from hepatocytes. To test our hypothesis we undertook the current study. Using HepG2 cells, we demonstrated that oleic acid (OA) bound to HSA in a molar ratio of 4:1 and after incubation for 24 h stimulated apolipoprotein B (apoB) secretion. We also tested whether mutant forms of HSA could alter the binding affinity for fatty acids and change the availability of substrate for lipoprotein secretion. Based on the results obtained in this study using 11 HSA mutant proteins complexed with OA, we were able to classify into three major mutant groups based on their effects on apoB secretion. One group in particular (R410Q/Y411W, R410A/Y411A, and W214L/Y411W) showed a significantly diminished effect on apoB secretion when compared to the wild type HSA/OA complex. Furthermore, the amount of free OA internalized in HepG2 cells in the presence of HSA mutant proteins was in good agreement with the effects seen on apoB secretion by the various HSA mutants. This suggests that some mutant forms of HSA might potentially bind fatty acids with a much higher binding affinity and thus deprive fatty acids available for lipoprotein assembly in hepatocytes. In conclusion, our data illustrate that certain HSA polymorphic forms may be protective against the development of CHD and warrants further investigation. PMID:16843720

  2. Steric and allosteric effects of fatty acids on the binding of warfarin to human serum albumin revealed by molecular dynamics and free energy calculations.

    PubMed

    Fujiwara, Shin-Ichi; Amisaki, Takashi

    2011-01-01

    Human serum albumin (HSA) binds with drugs and fatty acids (FAs). This study was initiated to elucidate the relationship between the warfarin binding affinity of HSA and the positions of bound FA molecules. Molecular dynamics simulations of 11 HSA-warfarin-myristate complexes were performed. HSA-warfarin binding free energy was then calculated for each of the complexes by the molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) method. The results indicated that the magnitude of the binding free energy was smaller in HSA-warfarin complexes that had 4 or more myristate molecules than in complexes with no myristate molecules. The unfavorable effect on the HSA-warfarin binding affinity was caused sterically by the binding of a myristate molecule to the FA binding site closest to the warfarin binding site. On the other hand, the magnitude of HSA-warfarin binding free energy was largest when 3 myristate molecules were bound to the high-affinity sites. The strongest HSA-warfarin binding was attributable to favorable entropic contribution related to larger atomic fluctuations of the amino acid residues at the warfarin binding site. In the binding of 2 myristate molecules to the sites with the highest and second-highest affinities, allosteric modulation that enhanced electrostatic interactions between warfarin and some of the amino acid residues around the warfarin binding site was observed. This study clarified the structural and energetic properties of steric/allosteric effects of FAs on the HSA-warfarin binding affinity and illustrated the approach to analyze protein-ligand interactions in situations such that multiple ligands bind to the other sites of the protein. PMID:21720037

  3. A novel quantification strategy of transferrin and albumin in human serum by species-unspecific isotope dilution laser ablation inductively coupled plasma mass spectrometry (ICP-MS).

    PubMed

    Feng, Liuxing; Zhang, Dan; Wang, Jun; Shen, Dairui; Li, Hongmei

    2015-07-16

    Species-specific (SS) isotope dilution analysis with gel electrophoresis (GE)-laser ablation (LA)-ICP-MS is a promising technique for the quantification of particular metal-binding proteins in biological samples. However, unavailable isotopically enriched spike and metal losses in GE separation are main limitations for SS-isotope dilution PAGE-LA-ICP-MS. In this study, we report for the first time the absolute quantification of transferrin (Tf) and albumin (Alb) in human serum by non-denaturing (native) GE combined with species-unspecific isotope dilution mass spectrometry (IDMS). In order to achieve a homogeneous distribution of both protein and isotope-enriched spike (simulated isotope equilibration), immersing the protein strips with (34)S spike solution after gel electrophoresis was demonstrated to be an effective way of spike addition. Furthermore, effects of immersion time and (34)S spike concentration were investigated to obtain optimal conditions of the post-electrophoresis isotope dilution method. The relative mass of spike and ablated sample (m(sp)/m(sam)) in IDMS equation was calculated by standard Tf and Alb proteins, which could be applied to the quantification of Tf and Alb in ERM-DA470k/IFCC for method confirmation. The results were in agreement with the certified value with good precision and small uncertainty (1.5-3%). In this method, species-specific spike protein is not necessary and the integrity of the heteroatom-protein could be maintained in sample preparation process. Moreover, the application of species-unspecific isotope dilution GE-LA-ICP-MS has the potential to offer reliable, direct and simultaneous quantification of proteins after conventional 1D and 2D gel electrophoretic separations. PMID:26073803

  4. Analysis of multi-site drug-protein interactions by high-performance affinity chromatography: Binding by glimepiride to normal or glycated human serum albumin.

    PubMed

    Matsuda, Ryan; Li, Zhao; Zheng, Xiwei; Hage, David S

    2015-08-21

    High-performance affinity chromatography (HPAC) was used in a variety of formats to examine multi-site interactions between glimepiride, a third-generation sulfonylurea drug, and normal or in vitro glycated forms of the transport protein human serum albumin (HSA). Frontal analysis revealed that glimepiride interacts with normal HSA and glycated HSA at a group of high affinity sites (association equilibrium constant, or Ka, 9.2-11.8×10(5)M(-1) at pH 7.4 and 37°C) and a group of lower affinity regions (Ka, 5.9-16×10(3)M(-1)). Zonal elution competition studies were designed and carried out in both normal- and reversed-role formats to investigate the binding by this drug at specific sites. These experiments indicated that glimepiride was interacting at both Sudlow sites I and II. Allosteric effects were also noted with R-warfarin at Sudlow site I and with tamoxifen at the tamoxifen site on HSA. The binding at Sudlow site I had a 2.1- to 2.3-fold increase in affinity in going from normal HSA to the glycated samples of HSA. There was no significant change in the affinity for glimepiride at Sudlow site II in going from normal HSA to a moderately glycated sample of HSA, but a slight decrease in affinity was seen in going to a more highly glycated HSA sample. These results demonstrated how various HPAC-based methods can be used to profile and characterize multi-site binding by a drug such as glimepiride to a protein and its modified forms. The information obtained from this study should be useful in providing a better understanding of how drug-protein binding may be affected by glycation and of how separation and analysis methods based on HPAC can be employed to study systems with complex interactions or that involve modified proteins. PMID:26189669

  5. Use of entrapment and high-performance affinity chromatography to compare the binding of drugs and site-specific probes with normal and glycated human serum albumin

    PubMed Central

    Jackson, Abby J.; Anguizola, Jeanethe; Pfaunmiller, Erika L.; Hage, David S.

    2013-01-01

    Protein entrapment and high-performance affinity chromatography were used with zonal elution to examine the changes in binding that occurred for site-specific probes and various sulfonylurea drugs with normal and glycated forms of human serum albumin (HSA). Samples of this protein in a soluble form were physically entrapped within porous silica particles by using glycogen-capped hydrazide-activated silica; these supports were then placed into 1.0 cm × 2.1 mm inner diameter columns. Initial zonal elution studies were performed using (R)-warfarin and L-tryptophan as probes for Sudlow sites I and II (i.e., the major drug binding sites of HSA), giving quantitative measures of binding affinities in good agreement with literature values. It was also found for solutes with multisite binding to the same proteins, such as many sulfonylurea drugs, that this method could be used to estimate the global affinity of the solute for the entrapped protein. This entrapment and zonal approach provided retention information with precisions of ±0.1–3.3% (± one standard deviation) and elution within 0.50–3.00 min for solutes with binding affinities of 1 × 104–3 × 105 M−1. Each entrapped-protein column was used for many binding studies, which decreased the cost and amount of protein needed per injection (e.g., the equivalent of only 125–145 pmol of immobilized HSA or glycated HSA per injection over 60 sample application cycles). This method can be adapted for use with other proteins and solutes and should be valuable in high-throughput screening or quantitative studies of drug–protein binding or related biointeractions. PMID:23657448

  6. Analysis of Multi-Site Drug-Protein Interactions by High-Performance Affinity Chromatography: Binding by Glimepiride to Normal or Glycated Human Serum Albumin

    PubMed Central

    Matsuda, Ryan; Li, Zhao; Zheng, Xiwei; Hage, David S.

    2015-01-01

    High-performance affinity chromatography (HPAC) was used in a variety of formats to examine multi-site interactions between glimepiride, a third-generation sulfonylurea drug, and normal or in vitro glycated forms of the transport protein human serum albumin (HSA). Frontal analysis revealed that glimepiride interacts with normal HSA and glycated HSA at a group of high affinity sites (association equilibrium constant, or Ka, 9.2–11.8 × 105 M−1 at pH 7.4 and 37°C) and a group of lower affinity regions (Ka, 5.9–16.2 × 103 M−1). Zonal elution competition studies were designed and carried out in both normal- and reversed-role formats to investigate the binding by this drug at specific sites. These experiments indicated that glimepiride was interacting at both Sudlow sites I and II. Allosteric effects were also noted with R-warfarin at Sudlow site I and with tamoxifen at the tamoxifen site on HSA. The binding at Sudlow site I had a 2.1- to 2.3-fold increase in affinity in going from normal HSA to the glycated samples of HSA. There was no significant change in the affinity for glimepiride at Sudlow site II in going from normal HSA to a moderately glycated sample of HSA, but a slight decrease in affinity was seen in going to a more highly glycated HSA sample. These results demonstrated how various HPAC-based methods can be used to profile and characterize multi-site binding by a drug such as glimepiride to a protein and its modified forms. The information obtained from this study should be useful in providing a better understanding of how drug-protein binding may be affected by glycation and of how separation and analysis methods based on HPAC can be employed to study systems with complex interactions or that involve modified proteins. PMID:26189669

  7. HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY AND THE ANALYSIS OF DRUG INTERACTIONS WITH MODIFIED PROTEINS: BINDING OF GLICLAZIDE WITH GLYCATED HUMAN SERUM ALBUMIN

    PubMed Central

    Matsuda, Ryan; Anguizola, Jeanethe; Joseph, K.S.; Hage, David S.

    2011-01-01

    This study used high-performance affinity chromatography (HPAC) to examine the binding of gliclazide (i.e., a sulfonylurea drug used to treat diabetes) with the protein human serum albumin (HSA) at various stages of modification due to glycation. Frontal analysis conducted with small HPAC columns was first used to estimate the number of binding sites and association equilibrium constants (Ka) for gliclazide with normal HSA and glycated HSA. Both normal and glycated HSA interacted with gliclazide according to a two-site model, with a class of high affinity sites (average Ka, 7.1-10 × 104 M−1) and a group of lower affinity sites (average Ka, 5.7-8.9 × 103 M−1) at pH 7.4 and 37°C. Competition experiments indicated that Sudlow sites I and II of HSA were both involved in these interactions, with the Ka values for gliclazide at these sites being 1.9 × 104 M−1 and 6.0 × 104 M−1, respectively, for normal HSA. Two samples of glycated HSA had similar affinities to normal HSA for gliclazide at Sudlow site I, but one sample had a 1.9-fold increase in affinity at this site. All three glycated HSA samples differed from normal HSA in their affinity for gliclazide at Sudlow site II. This work illustrated how HPAC can be used to examine both the overall binding of a drug with normal or modified proteins and the site-specific changes that can occur in these interactions as a result of protein modification. PMID:21922305

  8. Detection of hepatocellular carcinoma in transgenic mice by Gd-DTPA- and rhodamine 123-conjugated human serum albumin nanoparticles in T1 magnetic resonance imaging.

    PubMed

    Watcharin, Waralee; Schmithals, Christian; Pleli, Thomas; Köberle, Verena; Korkusuz, Hüdayi; Hübner, Frank; Waidmann, Oliver; Zeuzem, Stefan; Korf, Horst-Werner; Terfort, Andreas; Gelperina, Svetlana; Vogl, Thomas J; Kreuter, Jörg; Piiper, Albrecht

    2015-02-10

    Nanoparticle (NP)-based contrast agents that enable high resolution anatomic T1-weighted magnetic resonance imaging (MRI) offer the prospect of improving differential diagnosis of liver tumors such as hepatocellular carcinoma (HCC). In the present study, we investigated the possibility of employing novel non-toxic human serum albumin nanoparticles conjugated with Gd-DTPA and rhodamine 123 (Gd-Rho-HSA-NPs) for the detection of HCC by T1-weighted MRI. In addition, the influence of surface coating of the NPs with poloxamine 908, which alters the absorptive behavior of NPs and changes their distribution between the liver and tumor was examined. MRI of transgenic mice with endogenously formed HCCs following intravenous injection of Gd-Rho-HSA-NPs revealed a strong negative contrast of the tumors. Contrasting of the HCCs by NP-enhanced MRI required less Gd as compared to gadolinium-ethoxybenzyl-diethylenetriaminepentaacetic acid-enhanced MRI, which currently provides the most sensitive detection of HCC in patients. Immunohistochemical analyses revealed that the Gd-Rho-HSA-NPs were localized to macrophages, which were - similar to HCC in patients - fewer in number in HCC as compared to the liver tissue, which is in agreement with the negative contrasting of HCC in Gd-Rho-HSA-NP-enhanced MRI. Poloxamine-coated NPs showed lower accumulation in the tumor macrophages and caused a longer lasting enhancement of the MRI signal. These data indicate that Gd-Rho-HSA-NPs enable sensitive detection of HCC by T1-weighted MRI in mice with endogenous HCC through their uptake by macrophages. Poloxamine coating of the NPs delayed the tumor localization of the NPs. PMID:25499552

  9. Two-step Synthesis of Galactosylated Human Serum Albumin as a Targeted Optical Imaging Agent for Peritoneal Carcinomatosis

    PubMed Central

    Regino, Celeste Aida S.; Ogawa, Mikako; Alford, Raphael; Wong, Karen J.; Kosaka, Noboyuki; Williams, Mark; Field, Brain J.; Takahashi, Masatoshi; Choyke, Peter L.; Kobayashi, Hisataka

    2011-01-01

    An optical probe, RG-(gal)28GSA, was synthesized to improve the detection of peritoneal implants by targeting the β-d-galactose receptors highly expressed on the cell surface of a wide variety of cancers arising from the ovary, pancreas, colon, and stomach. Evaluation of RG-(gal)28GSA, RG-(gal)20GSA, glucose-analog RG-(glu)28GSA, and control RG-HSA, demonstrates specificity for the galactose, binding to several human adenocarcinoma cell lines, and cellular internalization. Studies using peritoneally disseminated SHIN3 xenografts in mice also confirmed a preference for galactose with the ability to detect submillimeter size lesions. Preliminary toxicity study for RG-(gal)28GSA using Balb/c mice reveal no toxic effects up to 100x of the standard imaging dose of 1mg/kg administered either intraperitoneally or intravenously. These data indicate that RG-(gal)28GSA can selectively target a variety of human adenocarcinoma, can improve intraoperative or endoscopic tumor detection and resection, and may have little or no toxic in vivo effects; hence, it may be clinically translatable. PMID:20102220

  10. Spectroscopic characterization of effective components anthraquinones in Chinese medicinal herbs binding with serum albumins

    NASA Astrophysics Data System (ADS)

    Bi, Shuyun; Song, Daqian; Kan, Yuhe; Xu, Dong; Tian, Yuan; Zhou, Xin; Zhang, Hanqi

    2005-11-01

    The interactions of serum albumins such as human serum albumin (HSA) and bovine serum albumin (BSA) with emodin, rhein, aloe-emodin and aloin were assessed employing fluorescence quenching and absorption spectroscopic techniques. The results obtained revealed that there are relatively strong binding affinity for the four anthraquinones with HSA and BSA and the binding constants for the interactions of anthraquinones with HSA or BSA at 20 °C were obtained. Anthraquinone-albumin interactions were studied at different temperatures and in the presence of some metal ions. And the competition binding of anthraquinones with serum albumins was also discussed. The Stern-Volmer curves suggested that the quenching occurring in the reactions was the static quenching process. The binding distances and transfer efficiencies for each binding reactions were calculated according to the Föster theory of non-radiation energy transfer. Using thermodynamic equations, the main action forces of these reactions were also obtained. The reasons of the different binding affinities for different anthraquinone-albumin reactions were probed from the point of view of molecular structures.

  11. Oxidative changes in the blood and serum albumin differentiate rats with monoarthritis and polyarthritis.

    PubMed

    Bracht, Adelar; Silveira, Sandra Silva; Castro-Ghizoni, Cristiane Vizioli; Sá-Nakanishi, Anacharis Babeto; Oliveira, Márcia Rosângela Neves; Bersani-Amado, Ciomar Aparecida; Peralta, Rosane Marina; Comar, Jurandir Fernando

    2016-01-01

    Adjuvant arthritis in rats, as rheumatoid arthritis in humans, may be of greater or lesser severity, namely polyarthritis and monoarthritis, respectively. The present study was planned to evaluate the oxidative changes in the blood and specifically in the serum albumin of rats with adjuvant-induced mono- and poly-arthritis. Total antioxidant capacity, thiols, carbonyl groups, albumin, uric acid and ascorbic acid were measured in the total serum. The specific oxidative status of albumin was also measured after separation by affinity chromatography. All serum oxidative parameters were close to normal in monoarthritic rats with the exception of the ascorbic acid concentration, which was 23 % lower, and albumin carbonyl groups, which were 64 % higher. Many modifications were found in polyarthritic rats, specially the ascorbic acid concentration (35 % lower) and albumin carbonyl groups (102 % higher). The results revealed that the levels of ascorbic acid in the serum and carbonyl groups in the albumin molecule can be regarded as indicators of the severity of arthritis since they were modified by both monoarthritis and polyarthritis, but to different degrees. PMID:26835218

  12. Complexation of amphotericin B and curcumin with serum albumins: solubility and effect on erythrocyte membrane damage

    PubMed Central

    Kudva, Avinash K; Manoj, MN; Swamy, Bale M; Ramadoss, Candadai S

    2011-01-01

    Amphotericin and curcumin are known to form complexes with albumins individually. In-silico analysis shows that amphotericin B and curcumin have separate binding regions on human serum albumin and bovine serum albumin. The complex formed with albumin in the presence of both amphotericin and curcumin is water soluble, and it retains antifungal activity. Interestingly, it was found that the presence of curcumin in the complex significantly delayed the red cell lysis by amphotericin B, indicating the possibility of moderating the toxic side effects of the drug using curcumin. Furthermore, since the presumed ternary complex is stable and water soluble, its potential use in the treatment of visceral leishmaniasis (kala azar) and systemic fungal infections needs to be evaluated.

  13. In-vivo delivery of therapeutic proteins by genetically-modified cells: comparison of organoids and human serum albumin alginate-coated beads.

    PubMed

    Shinya, E; Dervillez, X; Edwards-Lévy, F; Duret, V; Brisson, E; Ylisastigui, L; Lévy, M C; Cohen, J H; Klatzmann, D

    1999-12-01

    We have designed a self-assembling multimeric soluble CD4 molecule by inserting the C-terminal fragment of the alpha chain of human C4-binding protein (C4bp alpha) at the C-terminal end of human soluble CD4 genes. This CD4-C4bp alpha fusion protein (sMulti-CD4) and two other reference molecules, a fusion protein of human serum albumin (HSA) and the first two domains of CD4 (HSA-CD4) and monomeric soluble CD4 (sMono-CD4), were delivered in vivo by genetically modified 293 cells. These cells were implanted in mice as organoids and also encapsulated in HSA alginate-coated beads. sMulti-CD4 showed an apparent molecular weight of about 300-350 kDa, in accordance with a possible heptamer formula. sMulti-CD4 produced either in cell culture or in vivo in mice appeared to be a better invitro inhibitor of HIV infection than sMono-CD4. Plasma levels of sMulti-CD4, HSA-CD4, and sMono-CD4 reached approximately 2,300, 2,700, and 170 ng/mL, respectively, 13 weeks after in-vivo organoid implantation, which had formed tumours at that time. This suggests that the plasma half-life of sMulti-CD4 is much longer than that of sMono-CD4. The 293 xenogeneic cells encapsulated in HSA alginate-coated beads remained alive and kept secreting sMono-CD4 or HSA-CD4 continuously at significant levels for 18 weeks in nude mice, without tumour formation. When implanted in immunocompetent Balb/c mice, they were rejected two to three weeks after implantation. In contrast, encapsulated BL4 hybridoma cells remained alive and kept secreting BL4 anti-CD4 mAb for at least four weeks in Balb/c mice. These results suggest the clinical potential of the C4bp-multimerizing system, which could improve both the biological activity and the poor in-vivo pharmacokinetic performance of a monomeric functional protein like soluble CD4. These data also show that a systemic delivery of therapeutic proteins, including immunoglobulins, can be obtained by the in-vivo implantation of engineered allogeneic cells encapsulated

  14. Characterization and comparative analysis of 2,4-toluene diisocyanate and 1,6-hexamethylene diisocyanate haptenated human serum albumin and hemoglobin.

    PubMed

    Mhike, Morgen; Hettick, Justin M; Chipinda, Itai; Law, Brandon F; Bledsoe, Toni A; Lemons, Angela R; Nayak, Ajay P; Green, Brett J; Beezhold, Donald H; Simoyi, Reuben H; Siegel, Paul D

    2016-04-01

    Diisocyanates (dNCOs) are low molecular weight chemical sensitizers that react with autologous proteins to produce neoantigens. dNCO-haptenated proteins have been used as immunogens for generation of dNCO-specific antibodies and as antigens to screen for dNCO-specific antibodies in exposed individuals. Detection of dNCO-specific antibodies in exposed individuals for diagnosis of dNCO asthma has been hampered by poor sensitivities of the assay methods in that specific IgE can only be detected in approximately 25% of the dNCO asthmatics. Apart from characterization of the conjugates used for these immunoassays, the choice of the carrier protein and the dNCO used are important parameters that can influence the detection of dNCO-specific antibodies. Human serum albumin (HSA) is the most common carrier protein used for detection of dNCO specific-IgE and -IgG but the immunogenicity and/or antigenicity of other proteins that may be modified by dNCO in vivo is not well documented. In the current study, 2,4-toluene diisocyanate (TDI) and 1,6-hexamethylene diisocyanate (HDI) were reacted with HSA and human hemoglobin (Hb) and the resultant adducts were characterized by (i) HPLC quantification of the diamine produced from acid hydrolysis of the adducts, (ii) 2,4,6-trinitrobenzene sulfonic acid (TNBS) assay to assess extent of cross-linking, (iii) electrophoretic migration in polyacrylamide gels to analyze intra- and inter-molecular cross-linking, and (iv) evaluation of antigenicity using a monoclonal antibody developed previously to TDI conjugated to Keyhole limpet hemocyanin (KLH). Concentration-dependent increases in the amount of dNCO bound to HDI and TDI, cross-linking, migration in gels, and antibody-binding were observed. TDI reactivity with both HSA and Hb was significantly higher than HDI. Hb-TDI antigenicity was approximately 30% that of HSA-TDI. In conclusion, this data suggests that both, the extent of haptenation as well as the degree of cross-linking differs

  15. 21 CFR 640.80 - Albumin (Human).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... a sterile solution of the albumin derived from human plasma. (b) Source material. The source material of Albumin (Human) shall be plasma recovered from Whole Blood prepared as prescribed in §§ 640.1 through 640.5, or Source Plasma prepared as prescribed in §§ 640.60 through 640.76. (c) Additives...

  16. 21 CFR 640.80 - Albumin (Human).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... a sterile solution of the albumin derived from human plasma. (b) Source material. The source material of Albumin (Human) shall be plasma recovered from Whole Blood prepared as prescribed in §§ 640.1 through 640.5, or Source Plasma prepared as prescribed in §§ 640.60 through 640.76. (c) Additives...

  17. 21 CFR 640.80 - Albumin (Human).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... a sterile solution of the albumin derived from human plasma. (b) Source material. The source material of Albumin (Human) shall be plasma recovered from Whole Blood prepared as prescribed in §§ 640.1 through 640.5, or Source Plasma prepared as prescribed in §§ 640.60 through 640.76. (c) Additives...

  18. 21 CFR 640.80 - Albumin (Human).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... a sterile solution of the albumin derived from human plasma. (b) Source material. The source material of Albumin (Human) shall be plasma recovered from Whole Blood prepared as prescribed in §§ 640.1 through 640.5, or Source Plasma prepared as prescribed in §§ 640.60 through 640.76. (c) Additives...

  19. 21 CFR 640.80 - Albumin (Human).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... a sterile solution of the albumin derived from human plasma. (b) Source material. The source material of Albumin (Human) shall be plasma recovered from Whole Blood prepared as prescribed in §§ 640.1 through 640.5, or Source Plasma prepared as prescribed in §§ 640.60 through 640.76. (c) Additives...

  20. Mesoporous silica nanoparticles with bilayer coating of poly(acrylic acid-co-itaconic acid) and human serum albumin (HSA): A pH-sensitive carrier for gemcitabine delivery.

    PubMed

    Pourjavadi, Ali; Tehrani, Zahra Mazaheri

    2016-04-01

    Novel bilayer coated mesoporous silica nanoparticle (MCM-41) based on pH sensitive poly(acrylic acid-co-itaconic acid) and human serum albumin (HSA) was designed for controlled delivery of gemcitabine (anticancer drug) to cancer cells. The shell around the mesoporous silica has bilayer structure. Poly(acrylic acid-co-itaconic acid) was used as pH-sensitive inner shell and human serum albumin, HSA, was used as outer shell. The core-shell structure was formed due to electrostatic interaction between ammonium groups of modified MCM-41 and carboxylate groups of copolymer. Also, the albumin layer was wrapped around the copolymer coated nanoparticle by electrostatic interaction between ammonium groups from protein and carboxylate ions of copolymer shell. Moreover, the maximum release occurred at pH 5.5 (pH of endosomes) because the bilayer shell collapsed at this pH. The drug nanocarrier would be a good candidate for tumor therapy due to its biocompatibility, controlled release and pH responsive behavior. PMID:26838909

  1. Production of transgenic cattle highly expressing human serum albumin in milk by phiC31 integrase-mediated gene delivery.

    PubMed

    Luo, Yan; Wang, Yongsheng; Liu, Jun; Lan, Hui; Shao, Minghao; Yu, Yuan; Quan, Fusheng; Zhang, Yong

    2015-10-01

    Transgenic cattle expressing high levels of recombinant human serum albumin (HSA) in their milk may as an alternative source for commercial production. Our objective was to produce transgenic cattle highly expressing HSA in milk by using phiC31 integrase system and somatic cell nuclear transfer (SCNT). The mammary-specific expression plasmid pIACH(-), containing the attB recognition site for phiC31 integrase, were co-transfected with integrase expression plasmid pCMVInt into bovine fetal fibroblast cells (BFFs). PhiC31 integrase-mediated integrations in genome of BFFs were screened by nested inverse PCR. After analysis of sequence of the PCR products, 46.0% (23/50) of the both attB-genome junction sites (attL and attR) were confirmed, and four pseudo attP sites were identified. The integration rates in BF3, BF11, BF19 and BF4 sites were 4.0% (2/50), 6.0% (3/50), 16.0% (8/50) and 20.0% (10/50), respectively. BF3 is located in the bovine chromosome 3 collagen alpha-3 (VI) chain isomer 2 gene, while the other three sites are located in the non-coding region. The transgenic cell lines from BF11, BF19 and BF4 sites were used as donors for SCNT. Two calves from transgenic cells BF19 were born, one died within a few hours after birth, and another calf survived healthy. PCR and Southern blot analysis revealed integration of the transgene in the genome of cloned calves. The nested reverse PCR confirmed that the integration site in cloned calves was identical to the donor cells. The western blotting assessment indicated that recombinant HSA was expressed in the milk of transgenic cattle and the expression level was about 4-8 mg/mL. The present study demonstrated that phiC31 integrase system was an efficient and safety gene delivery tool for producing HSA transgenic cattle. The production of recombinant HSA in the milk of cattle may provide a large-scale and cost-effective resource. PMID:26198751

  2. Investigating 2,2'-bipyridine-3,3'-diol as a microenvironment-sensitive probe: its binding to cyclodextrins and human serum albumin.

    PubMed

    Abou-Zied, Osama K

    2007-08-23

    The 2,2'-bipyridine-3,3'-diol molecule (BP(OH)2) was investigated as a potential photophysical probe in inclusion and biological studies. Binding of BP(OH)2 to cyclodextrins (CDs) and human serum albumin (HSA) was studied by following the changes in its absorption and fluorescence spectra. The stoichiometric ratios and binding constants of the complexes were deduced by fitting the changes in the spectral intensity to binding isotherms. The stoichiometric ratio in the BP(OH)2/(alpha-CD) complex is dominated by 1:2, whereas in all other CDs and in HSA this ratio is 1:1. The structure of the BP(OH)2:(alpha-CD)2 complex, calculated using ab initio methods, indicates that the inclusion of the BP(OH)2 molecule is axial and centered between the two cavities of alpha-CD with van der Waals and electrostatic interactions dominating the binding. Analysis of these results along with the inclusion results of BP(OH)2 in beta-CD, methyl-beta-CD, 2,6-di-O-methyl-beta-CD, and gamma-CD shows that absorption and fluorescence of BP(OH)2 are very sensitive to the change in the cavity size of CD and its hydrophobicity. This change is reflected in the form of a decrease in the intensity of the absorption peaks of the BP(OH)2/water complex in the region 400-450 nm and a red shift in the fluorescence peak as the cavity size decreases and its hydrophobicity increases. Binding of BP(OH)2 as a probe ligand to HSA, a prototype protein, reflects the hydrophobic interior of HSA in a similar manner. The spectral changes indicate that BP(OH)2 binds in the hydrophobic cavity of HSA's subdomain IIA. The results presented here show that BP(OH)2 can be used in binding sites and biological systems as a microenvironment-sensitive probe. PMID:17655352

  3. Characterization of subdomain IIA binding site of human serum albumin in its native, unfolded, and refolded states using small molecular probes.

    PubMed

    Abou-Zied, Osama K; Al-Shihi, Othman I K

    2008-08-13

    Subdomain IIA binding site of human serum albumin (HSA) was characterized by examining the change in HSA fluorescence in the native, unfolded, and refolded states. The study was carried out in the absence and presence of small molecular probes using steady-state and time-resolved fluorescence measurements. 2-Pyridone, 3-pyridone, and 4-pyridone bear similar molecular structures to those found in many drugs and are used here as probes. They are found to specifically bind in subdomain IIA and cause a reduction in the fluorescence intensity and lifetime of the Trp-214 residue in native HSA which is located in the same subdomain. The efficiency of energy transfer from Trp-214 fluorescence to the probes was found to depend on the degree of the spectral overlap between the donor's fluorescence and the acceptor's absorption. After probe binding in subdomain IIA, the distance between the donor and acceptor was calculated using Forster theory. The calculated quenching rate constants and binding constants were also shown to depend on the degree of spectral overlap. The results point to a static quenching mechanism operating in the complexes. Denaturation of HSA in the presence of guanidine hydrochloride (GdnHCl) starts at [GdnHCl] > 1.0 M and is complete at [GdnHCl] > or = 6.0 M. Upon unfolding, two fluorescence peaks were observed. One peak was assigned to the fluorescence of Trp-214 in a polar environment, and the other peak was assigned to tyrosine fluorescence. A reduction of the fluorescence intensity of the two peaks upon binding of the probes to the denatured HSA indicates that Tyr-263 in subdomain IIA is one of the tyrosine residues responsible for the second fluorescence peak. The results were confirmed by measuring the fluorescence spectra and lifetimes of denatured HSA at different excitation wavelengths, and of L-tryptophan and L-tyrosine free in buffer. The measured lifetimes of denatured HSA are typical of tryptophan in a polar environment and are slightly

  4. NMR identification of endogenous metabolites interacting with fatted and non-fatted human serum albumin in blood plasma: Fatty acids influence the HSA-metabolite interaction

    NASA Astrophysics Data System (ADS)

    Jupin, Marc; Michiels, Paul J.; Girard, Frederic C.; Spraul, Manfred; Wijmenga, Sybren S.

    2013-03-01

    Metabolites and their concentrations are direct reporters on body biochemistry. Thanks to technical developments metabolic profiling of body fluids, such as blood plasma, by for instance NMR has in the past decade become increasingly accurate enabling successful clinical diagnostics. Human Serum Albumin (HSA) is the main plasma protein (˜60% of all plasma protein) and responsible for the transport of endogenous (e.g. fatty acids) and exogenous metabolites, which it achieves thanks to its multiple binding sites and its flexibility. HSA has been extensively studied with regard to its binding of drugs (exogenous metabolites), but only to a lesser extent with regard to its binding of endogenous (non-fatty acid) metabolites. To obtain correct NMR measured metabolic profiles of blood plasma and/or potentially extract information on HSA and fatty acids content, it is necessary to characterize these endogenous metabolite/plasma protein interactions. Here, we investigate these metabolite-HSA interactions in blood plasma and blood plasma mimics. The latter contain the roughly twenty metabolites routinely detected by NMR (also most abundant) in normal relative concentrations with fatted or non-fatted HSA added or not. First, we find that chemical shift changes are small and seen only for a few of the metabolites. In contrast, a significant number of the metabolites display reduced resonance integrals and reduced free concentrations in the presence of HSA or fatted HSA. For slow-exchange (or strong) interactions, NMR resonance integrals report the free metabolite concentration, while for fast exchange (weak binding) the chemical shift reports on the binding. Hence, these metabolites bind strongly to HSA and/or fatted HSA, but to a limited degree because for most metabolites their concentration is smaller than the HSA concentration. Most interestingly, fatty acids decrease the metabolite-HSA binding quite significantly for most of the interacting metabolites. We further find

  5. Initial Study of Radiological and Clinical Efficacy Radioembolization Using 188Re-Human Serum Albumin (HSA) Microspheres in Patients with Progressive, Unresectable Primary or Secondary Liver Cancers

    PubMed Central

    Nowicki, Mirosław L.; Ćwikła, Jarosław B.; Sankowski, Artur J.; Shcherbinin, Sergey; Grimes, Josh; Celler, Anna; Buscombe, John R.; Bator, Andrzej; Pech, Maciej; Mikołajczak, Renata; Pawlak, Dariusz

    2014-01-01

    Background The aim of this initial study was to evaluate the clinical and radiological effectiveness of radioembolization (RE) using 188Re-Human Serum Albumin (HSA) microspheres in patients with advanced, progressive, unresectable primary or secondary liver cancers, not suitable to any other form of therapy. Material/Methods Overall, we included 13 patients with 20 therapy sessions. Clinical and radiological responses were assessed at 6 weeks after therapy, and then every 3 months. The objective radiological response was classified according to Response Evaluation Criteria in Solid Tumors (RECIST) v.1.0 by sequential MRI. Adverse events were evaluated using NCI CTCAE v.4.03. Results There were 4 patients with hepatocellular carcinoma (HCC), 6 with metastatic colorectal cancer (mCRC), 2 with neuroendocrine carcinoma (NEC), and 1 patient with ovarian carcinoma. Mean administered activity of 188Re HSA was 7.24 GBq (range 3.8–12.4) A high microspheres labeling efficacy of over 97±2.1% and low urinary excretion of 188Re (6.5±2.3%) during first 48-h follow-up. Median overall survival (OS) for all patients was 7.1 months (CI 6.2–13.3) and progression-free survival (PFS) was 5.1 months (CI 2.4–9.9). In those patients who had a clinical partial response (PR), stable disease (SD), and disease progression (DP) as assessed 6 weeks after therapy, the median OS was 9/5/4 months, respectively, and PFS was 5/2/0 months, respectively. The treatment adverse events (toxicity) were at an acceptable level. Initially and after 6 weeks, the CTC AE was grade 2, while after 3 months it increased to grade 3 in 4 subjects. This effect was mostly related to rapid cancer progression in this patient subgroup. Conclusions The results of this preliminary study indicate that RE using 188Re HSA is feasible and a viable option for palliative therapy in patients with extensive progressive liver cancer. It was well tolerated by most patients, with a low level of toxicity during the 3 months of

  6. EVALUATION OF ALTERNATIVES TO WARFARIN AS PROBES FOR SUDLOW SITE I OF HUMAN SERUM ALBUMIN CHARACTERIZATION BY HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY

    PubMed Central

    Joseph, K.S.; Moser, Annette C.; Basiaga, Sara; Schiel, John E.; Hage, David S.

    2009-01-01

    Warfarin is often used as a site-specific probe for examining the binding of drugs and other solutes to Sudlow site I of human serum albumin (HSA). However, warfarin has strong binding to HSA and the two chiral forms of warfarin have slightly different binding affinities for this protein. Warfarin also undergoes a slow change in structure when present in common buffers used for binding studies. This report examined the use of four related, achiral compounds (i.e., coumarin, 7-hydroxycoumarin, 7-hydroxy-4-methylcoumarin, and 4-hydroxycoumarin) as possible alternative probes for Sudlow site I in drug binding studies. High-performance affinity chromatography and immobilized HSA columns were used to compare and evaluate the binding properties of these probe candidates. Binding for each of the tested probe candidates to HSA was found to give a good fit to a two-site model. The first group of sites had moderate-to-high affinities for the probe candidates with association equilibrium constants that ranged from 6.4 × 103 M−1 (coumarin) to 5.5 × 104 M−1 (4-hydroxycoumarin) at pH 7.4 and 37°C. The second group of weaker, and probably non-specific, binding regions, had association equilibrium constants that ranged from 3.8 × 101 M−1 (7-hydroxy-4-methylcoumarin) to 7.3 × 102 M−1 (coumarin). Competition experiments based on zonal elution indicated that all of these probe candidates competed with warfarin at their high affinity regions. Warfarin also showed competition with coumarin, 7-hydroxycoumarin and 7-hydroxy-4-methycoumarin for their weak affinity sites but appeared to not bind and or compete for all of the weak sites of 4-hydroxycoumarin. It was found from this group that 4-hydroxycoumarin was the best alternative to warfarin for examining the interactions of drugs at Sudlow site I on HSA. These results also provided information on how the major structural components of warfarin contribute to the binding of this drug at Sudlow site I. PMID:18926542

  7. Significance of functional hepatic resection rate calculated using 3D CT/99mTc-galactosyl human serum albumin single-photon emission computed tomography fusion imaging

    PubMed Central

    Tsuruga, Yosuke; Kamiyama, Toshiya; Kamachi, Hirofumi; Shimada, Shingo; Wakayama, Kenji; Orimo, Tatsuya; Kakisaka, Tatsuhiko; Yokoo, Hideki; Taketomi, Akinobu

    2016-01-01

    AIM: To evaluate the usefulness of the functional hepatic resection rate (FHRR) calculated using 3D computed tomography (CT)/99mTc-galactosyl-human serum albumin (GSA) single-photon emission computed tomography (SPECT) fusion imaging for surgical decision making. METHODS: We enrolled 57 patients who underwent bi- or trisectionectomy at our institution between October 2013 and March 2015. Of these, 26 patients presented with hepatocellular carcinoma, 12 with hilar cholangiocarcinoma, six with intrahepatic cholangiocarcinoma, four with liver metastasis, and nine with other diseases. All patients preoperatively underwent three-phase dynamic multidetector CT and 99mTc-GSA scintigraphy. We compared the parenchymal hepatic resection rate (PHRR) with the FHRR, which was defined as the resection volume counts per total liver volume counts on 3D CT/99mTc-GSA SPECT fusion images. RESULTS: In total, 50 patients underwent bisectionectomy and seven underwent trisectionectomy. Biliary reconstruction was performed in 15 patients, including hepatopancreatoduodenectomy in two. FHRR and PHRR were 38.6 ± 19.9 and 44.5 ± 16.0, respectively; FHRR was strongly correlated with PHRR. The regression coefficient for FHRR on PHRR was 1.16 (P < 0.0001). The ratio of FHRR to PHRR for patients with preoperative therapies (transcatheter arterial chemoembolization, radiation, radiofrequency ablation, etc.), large tumors with a volume of > 1000 mL, and/or macroscopic vascular invasion was significantly smaller than that for patients without these factors (0.73 ± 0.19 vs 0.82 ± 0.18, P < 0.05). Postoperative hyperbilirubinemia was observed in six patients. Major morbidities (Clavien-Dindo grade ≥ 3) occurred in 17 patients (29.8%). There was no case of surgery-related death. CONCLUSION: Our results suggest that FHRR is an important deciding factor for major hepatectomy, because FHRR and PHRR may be discrepant owing to insufficient hepatic inflow and congestion in patients with preoperative

  8. Comparative solution equilibrium studies on pentamethylcyclopentadienyl rhodium complexes of 2,2'-bipyridine and ethylenediamine and their interaction with human serum albumin.

    PubMed

    Enyedy, Éva A; Mészáros, János P; Dömötör, Orsolya; Hackl, Carmen M; Roller, Alexander; Keppler, Bernhard K; Kandioller, Wolfgang

    2015-11-01

    Complex formation equilibrium processes of the (N,N) donor containing 2,2'-bipyridine (bpy) and ethylenediamine (en) with (η(5)-pentamethylcyclopentadienyl)rhodium(III) were investigated in aqueous solution via pH-potentiometry, (1)H NMR spectroscopy, and UV-vis spectrophotometry in the absence and presence of chloride ions. The structure of [RhCp*(en)Cl]ClO4 (Cp*, pentamethylcyclopentadienyl) was also studied by single-crystal X-ray diffraction. pKa values of 8.56 and 9.58 were determined for [RhCp*(bpy)(H2O)](2+) and [RhCp*(en)(H2O)](2+), respectively resulting in the formation of negligible amount of mixed hydroxido complexes at pH 7.4. Stability and the H2O/Cl(-) co-ligand exchange constants of bpy and en complexes considerably exceed those of the bidentate O-donor deferiprone. The strong affinity of the bpy and en complexes to chloride ions most probably contributes to their low antiproliferative effect. Interactions between human serum albumin (HSA) and [RhCp*(H2O)3](2+), its complexes formed with deferiprone, bpy and en were also monitored by (1)H NMR spectroscopy, ultrafiltration/UV-vis and spectrofluorometry. Numerous binding sites (≥ 8) are available for [RhCp*(H2O)3](2+); and the interaction takes place most probably via covalent bonds through the imidazole nitrogen of His. According to the various fluorescence studies [RhCp*(H2O)3](2+) binds on sites I and II, and coordination of surface side chain donor atoms of the protein is also feasible. The binding of the bpy and en complex is weaker and slower compared to that of [RhCp*(H2O)3](2+), and formation of ternary HSA-RhCp*-ligand adducts was proved. In the case of the deferiprone complex, the RhCp* fragment is cleaved off when HSA is loaded with low equivalents of the compound. PMID:26364131

  9. Hybrid paclitaxel and gold nanorod-loaded human serum albumin nanoparticles for simultaneous chemotherapeutic and photothermal therapy on 4T1 breast cancer cells.

    PubMed

    Peralta, Donna V; Heidari, Zahra; Dash, Srikanta; Tarr, Matthew A

    2015-04-01

    The use of human serum albumin nanoparticles (HSAPs) as a drug carrier system for cancer treatment has proven successful through current marketable clinical formulations. Despite this success, there is a current lack of multifunctional HSAPs, which offer combinational therapies of more than one proven technique. Gold nanorods (AuNRs) have also shown medicinal promise due to their photothermal therapy capabilities. In this study, a desolvation and cross-linking approach was employed to successfully encapsulate gold nanorods into HSAPs simultaneously with the chemotherapeutic drug paclitaxel (PAC); forming PAC-AuNR-HSAPs with desirable overall particle sizes of 299 ± 6 nm. The loading efficiency of paclitaxel into PAC-AuNR-HSAPs reached up to 3 μg PAC/mg HSA. The PAC-AuNR-HSAPs experienced photothermal heating; with the bulk particle solution reaching up to 46 °C after 15 min of near-IR laser exposure. This heat increase marked the successful attainment of the temperature necessary to cause severe cellular hyperthermia and necrosis. The encasement strategy facilitated a colloidal hybrid treatment system capable of enhanced permeability and retention effects, photothermal ablation of cancer cells, and release of the active paclitaxel of up to 188 ng (from PAC-AuNR-HSAPs created with 30 mg HSA) in a single 15 min irradiation session. When treated with PAC-AuNR-HSAPs containing 20 μg PAC/mL particle solution, 4T1 mouse breast cancer cells experienced ∼82% cell death without irradiation and ∼94% cell death after just one irradiation session. The results for PAC-AuNR-HSAPs were better than that of free PAC, which only killed ∼77% of the cells without irradiation and ∼80% with irradiation. The hybrid particle system also lends itself to future customizable external functionalities via conjugated targeting ligands, such as antibodies. Internal entrapment of patient tailored medication combinations are also possible with this combination treatment platform, which

  10. Interaction of purine bases and nucleosides with serum albumin

    NASA Astrophysics Data System (ADS)

    Sułkowska, A.; Michnik, A.

    1997-06-01

    The proton NMR spectra of alkyl derivatives of adenine and adenosine have been studied. High-resolution (400 MHz) proton spectra were recorded at 300 K at increasing concentrations of serum albumin. The dependence of the chemical shifts and the line width of the individual spectral lines on the protein concentration provides some detailed information about the nature of the complexes between the purine derivatives and albumin. Comparison of data for the methylated and non-methylated purine bases and nucleosides indicates the formation of non-specific complexes with serum albumin. However, the presence of the ethyl group in 8-ethyl-9 N-methyladenine means that in the adenine derivative-serum albumin complex the ethyl chain preserves its dominant role in binding. An advantage of our model is that the π-π interaction between the adenine ring and the amino acids of the protein can be replaced by hydrophobic interaction in the case of complexation of the ethyl adenine derivative.

  11. Scaffold materials from glycosylated and PEGylated bovine serum albumin.

    PubMed

    Wang, Kai; David, Allan E; Choi, Young-Suk; Wu, Yonnie; Buschle-Diller, Gisela

    2015-09-01

    Bovine serum albumin has been PEGylated and glycosylated to create mimetic materials for the extracellular matrix (ECM) with potential tissue engineering applications. Different surfaces for cell adhesion were achieved by crosslinking the initial albumin product and forming either a coating or a sponge-like three-dimensional morphology to mimic the mesh structure of natural ECM. The biocompatibility of the albumin matrix with mammalian cells was evaluated using cell culture assays with NIH 3T3 cells. The results indicated that glycoprotein composition and specific morphology of the assembly can improve the cell growth environment. These ECM mimetic structures might eventually be considered to serve as alternatives for the more expensive collagen and elastin based ECM substances currently in use in tissue engineering. PMID:25691091

  12. Identification of cross-reactive single-domain antibodies against serum albumin using next-generation DNA sequencing.

    PubMed

    Henry, Kevin A; Tanha, Jamshid; Hussack, Greg

    2015-10-01

    Antibodies that cross-react with multiple isoforms or homologue of a given protein are often desirable, especially in therapeutic applications. Here, we report the identification of several unique, clonally unrelated, single-domain antibodies (sdAbs) that bind to multiple serum albumin orthologues (human, rhesus, rat and mouse) with low-to-medium nanomolar affinity from a llama immunized only with human serum albumin. Using single-round panning of a phage-displayed sdAb library against serum albumins and next-generation DNA sequencing, we were able to predict patterns of sdAb reactivity to the albumins of different species with ∼90% accuracy. We expect this strategy to be generally applicable for identifying cross-reactive sdAbs, particularly when these exist at low frequency and/or are poorly enriched by panning. Moreover, the sdAbs identified here are of potential interest for serum half-life extension of biologics. PMID:26319004

  13. Competitive binding of phenylbutazone and colchicine to serum albumin in multidrug therapy: A spectroscopic study

    NASA Astrophysics Data System (ADS)

    Sułkowska, A.; Maciążek-Jurczyk, M.; Bojko, B.; Równicka, J.; Zubik-Skupień, I.; Temba, E.; Pentak, D.; Sułkowski, W. W.

    2008-06-01

    The binding sites for phenylbutazone and colchicine were identified in tertiary structure of bovine and human serum albumin with the use of spectrofluorescence analysis. It was found that phenylbutazone has two binding sites in both sera albumins (HSA and BSA), while colchicine has one binding site in BSA as well as in HSA. The comparison of the quenching effect of BSA and HSA fluorescence by phenylbutazone and colchicine allows us to identify subdomain IIA in protein as the binding site for these two drugs. In this subdomain tryptophan 214 is located. The participation of tyrosyl and tryptophanyl residues of protein was also estimated in the drug-albumin complex. The comparison of quenching of fluorescence of HSA and BSA excited at 280 nm with that at 295 nm allowed us to state that the participation of tyrosyl residues of albumin in the phenylbutazone-serum albumin interaction is significant. The analysis of quenching of fluorescence of BSA in the binary and ternary systems showed that phenylbutazone does not affect the complex formed between colchicine and BSA. Similarly, colchicine has no effect on the Phe-BSA complex. However marked differences were observed for the complex with HSA. On the basis of Ka and KQ values it was concluded that colchicine may probably cause displacement of phenylbutazone from its complex with serum albumin (SA). Static and dynamic quenching for the binary and ternary systems is also discussed. The competition of phenylbutazone and colchicine in binding to serum albumin should be taken into account in the multi-drug therapy.

  14. A spectroscopic study of phenylbutazone and aspirin bound to serum albumin in rheumatoid diseases.

    PubMed

    Maciążek-Jurczyk, M; Sułkowska, A; Bojko, B; Równicka-Zubik, J; Sułkowski, W W

    2011-11-01

    Interaction of phenylbutazone (PBZ) and aspirin (ASA), two drugs recommended in rheumatoid diseases (RDs), when binding to human (HSA) and bovine (BSA) serum albumins, has been studied by quenching of fluorescence and proton nuclear magnetic resonance ((1)HNMR) techniques. On the basis of spectrofluorescence measurements high affinity binding sites of PBZ and ASA on albumin as well as their interaction within the binding sites were described. A low affinity binding site has been studied by proton nuclear magnetic resonance spectroscopy. Using fluorescence spectroscopy the location of binding site in serum albumin (SA) for PBZ and ASA was found. Association constants K(a) were determined for binary (i.e. PBZ-SA and ASA-SA) and ternary complexes (i.e. PBZ-[ASA]-SA and ASA-[PBZ]-SA). PBZ and ASA change the affinity of each other to the binding site in serum albumin (SA). The presence of ASA causes the increase of association constants K(aI) of PBZ-SA complex. Similarly, PBZ influences K(aI) of ASA-SA complex. This phenomenon shows that the strength of binding and the stability of the complexes increase in the presence of the second drug. The decrease of K(aII) values suggests that the competition between PBZ and ASA in binding to serum albumin in the second class of binding sites occurs. The analysis of (1)HNMR spectral parameters i.e. changes of chemical shifts and relaxation times of the drug indicate that the presence of ASA weakens the interaction of PBZ with albumin. Similarly PBZ weakens the interaction of ASA with albumin. This conclusion points to the necessity of using a monitoring therapy owning to the possible increase of uncontrolled toxic effects. PMID:21856214

  15. A spectroscopic study of phenylbutazone and aspirin bound to serum albumin in rheumatoid diseases

    NASA Astrophysics Data System (ADS)

    Maciążek-Jurczyk, M.; Sułkowska, A.; Bojko, B.; Równicka-Zubik, J.; Sułkowski, W. W.

    2011-11-01

    Interaction of phenylbutazone (PBZ) and aspirin (ASA), two drugs recommended in rheumatoid diseases (RDs), when binding to human (HSA) and bovine (BSA) serum albumins, has been studied by quenching of fluorescence and proton nuclear magnetic resonance ( 1HNMR) techniques. On the basis of spectrofluorescence measurements high affinity binding sites of PBZ and ASA on albumin as well as their interaction within the binding sites were described. A low affinity binding site has been studied by proton nuclear magnetic resonance spectroscopy. Using fluorescence spectroscopy the location of binding site in serum albumin (SA) for PBZ and ASA was found. Association constants Ka were determined for binary (i.e. PBZ-SA and ASA-SA) and ternary complexes (i.e. PBZ-[ASA]-SA and ASA-[PBZ]-SA). PBZ and ASA change the affinity of each other to the binding site in serum albumin (SA). The presence of ASA causes the increase of association constants KaI of PBZ-SA complex. Similarly, PBZ influences KaI of ASA-SA complex. This phenomenon shows that the strength of binding and the stability of the complexes increase in the presence of the second drug. The decrease of KaII values suggests that the competition between PBZ and ASA in binding to serum albumin in the second class of binding sites occurs. The analysis of 1HNMR spectral parameters i.e. changes of chemical shifts and relaxation times of the drug indicate that the presence of ASA weakens the interaction of PBZ with albumin. Similarly PBZ weakens the interaction of ASA with albumin. This conclusion points to the necessity of using a monitoring therapy owning to the possible increase of uncontrolled toxic effects.

  16. Gold nanoparticles with different amino acid surfaces: serum albumin adsorption, intracellular uptake and cytotoxicity.

    PubMed

    Cai, Huanxin; Yao, Ping

    2014-11-01

    Gold nanoparticles with aspartate, glycine, leucine, lysine, and serine surfaces were produced from the mixed solutions of HAuCl4 and respective amino acids via UV irradiation. The amino acids bind to the nanoparticle surfaces via amine groups and their carboxylic groups extend out to stabilize the nanoparticles. The nanoparticles have diameters of 15-47 nm in pH 7.4 aqueous solution and have diameters of 62-73 nm after 48 h incubation in cell culture containing serum. The nanoparticles adsorb human and bovine serum albumins on their surfaces by specific interactions, characterized by the intrinsic fluorescence quenching of the albumins. The albumin adsorption effectively decreases the aggregation of the nanoparticles in cell culture and also decreases the intracellular uptake of the nanoparticles. The gold nanoparticles produced from leucine and lysine, which have amphiphilic groups on their surfaces, present better biocompatibility than the other gold nanoparticles. PMID:25466455

  17. Binding of several benzodiazepines to bovine serum albumin: Fluorescence study

    NASA Astrophysics Data System (ADS)

    Machicote, Roberta G.; Pacheco, María E.; Bruzzone, Liliana

    2010-10-01

    The interactions of lorazepam, oxazepam and bromazepam with bovine serum albumin (BSA) were studied by fluorescence spectrometry. The Stern-Volmer quenching constants and corresponding thermodynamic parameters Δ H, Δ G and Δ S were calculated. The binding constants and the number of binding sites were also investigated. The distances between the donor (BSA) and the acceptors (benzodiazepines) were obtained according to fluorescence resonance energy transfer and conformational changes of BSA were observed from synchronous fluorescence spectra.

  18. Interactions of thioflavin T with serum albumins: Spectroscopic analyses

    NASA Astrophysics Data System (ADS)

    Sen, Priyankar; Fatima, Sadaf; Ahmad, Basir; Khan, Rizwan Hasan

    2009-09-01

    The interaction of thioflavin T (ThT) with serum albumins from four different mammalian species i.e. human, bovine, porcine and rabbit, has been investigated by circular dichroism (CD), fluorescence spectroscopy and ITC. The binding constant ( K) for HSA was found to be 9.9 × 10 4 M -1, 4.3 × 10 4 M -1 for RSA, 1.07 × 10 4 M -1 for PSA and 0.3 × 10 4 M -1 for BSA and the number of binding sites ( n) were 1.14, 1.06, 0.94 and 0.8, respectively, which is very significant. By using unfolding pathway of HSA in the presence of urea, domain II of HSA has been assigned to possess binding site of ThT. Its binding constant is comparable to many drugs that bind at domain II of HSA, like salicylate, warfarin, digitoxin, etc. Acting force between HSA and ThT is showing that both hydrophobic and electrostatic forces have contributed for the interaction. Δ Gbinding, Δ H and Δ S were calculated to be -28.46 kJ mol -1, -3.50 kJ mol -1 and 81.04 J K -1 mol -1, respectively. The data described here will help to increase our understanding about the interaction of ThT with native proteins. The results also indicate that care must be taken while using ThT as a probe for detecting amyloid fibrils.

  19. Mechanical characterization of cross-linked serum albumin microcapsules.

    PubMed

    de Loubens, Clément; Deschamps, Julien; Georgelin, Marc; Charrier, Anne; Edwards-Levy, Florence; Leonetti, Marc

    2014-07-01

    Controlling the deformation of microcapsules and capsules is essential in numerous biomedical applications. The mechanical properties of the membrane of microcapsules made of cross-linked human serum albumin (HSA) are revealed by two complementary experiments in the linear elastic regime. The first provides the surfacic shear elastic modulus Gs by the study of small deformations of a single capsule trapped in an elongational flow: Gs varies from 0.002 to 5 N m(-1). The second gives the volumic Young's modulus E of the membrane by shallow and local indentations of the membrane with an AFM probe: E varies from 20 kPa to 1 MPa. The surfacic and volumic elastic moduli increase with the size of the capsule up to three orders of magnitude and with the protein concentration of the membrane. The membrane thickness is evaluated from these two membrane mechanical characteristics and increases with the size and the initial HSA concentration from 2 to 20 μm. PMID:24817568

  20. PEGylated Cationic Serum Albumin for Boosting Retroviral Gene Transfer.

    PubMed

    Palesch, David; Boldt, Felix; Müller, Janis A; Eisele, Klaus; Stürzel, Christina M; Wu, Yuzhou; Münch, Jan; Weil, Tanja

    2016-08-17

    Retroviral vectors are common tools for introducing genes into the genome of a cell. However, low transduction rates are a major limitation in retroviral gene transfer, especially in clinical applications. We generated cationic human serum albumin (cHSA) protected by a shell of poly(ethylene glycol) (PEG); this significantly enhanced retroviral gene transduction with potentially attractive pharmacokinetics and low immunogenicity. By screening a panel of chemically optimized HSA compounds, we identified a very potent enhancer that boosted the transduction rates of viral vectors. Confocal microscopy revealed a drastically increased number of viral particles attached to the surfaces of target cells. In accordance with the positive net charge of cationic and PEGylated HSA, this suggests a mechanism of action in which the repulsion of the negatively charged cellular and viral vector membranes is neutralized, thereby promoting attachment and ultimately transduction. Importantly, the transduction-enhancing PEGylated HSA derivative evaded recognition by HSA-specific antibodies and macrophage activation. Our findings hold great promise for facilitating improved retroviral gene transfer. PMID:27239020

  1. The interaction between bovine serum albumin and surfactants.

    PubMed Central

    Jones, M N; Skinner, H A; Tipping, E

    1975-01-01

    1. Potassium n-decyl phosphate binds exothermically to bovine serum albumin at pH 7.0 to form a specific complex containing approx. 60 phosphate anions. 2. The formation of the complex is accompanied by changes in the u.v. difference spectrum of the protein. 3. At higher phosphate concentrations (above 0.4mM) surfactant molecules continue to be bound, and the protein undergoes a gross change in conformation. 4. n-Dodecyltri-methylammonium bromide binds endothermically to bovine serum albumin at pH7.0 but the extent of binding for a given free surfactant concentration is less than for the phosphate surfactant. 5. Binding is accompanied by a small change in the specific viscosity and by changes in the u.v. difference spectrum of the protein. 6. It is suggested that over the surfactant concentration ranges studied n-decyl phosphate ions first bind to the C-terminal part of the protein and then to the more compact N-terminal part whereas n-dodecyltrimethylammonium ions bind only to the C-terminal part of bovine serum albumin. PMID:1180891

  2. Circular dichroism study of the interaction between mutagens and bilirubin bound to different binding sites of serum albumins.

    PubMed

    Orlov, Sergey; Goncharova, Iryna; Urbanová, Marie

    2014-05-21

    Although recent investigations have shown that bilirubin not only has a negative role in the organism but also exhibits significant antimutagenic properties, the mechanisms of interactions between bilirubin and mutagens are not clear. In this study, interaction between bilirubin bound to different binding sites of mammalian serum albumins with structural analogues of the mutagens 2-aminofluorene, 2,7-diaminofluorene and mutagen 2,4,7-trinitrofluorenone were investigated by circular dichroism and absorption spectroscopy. Homological human and bovine serum albumins were used as chiral matrices, which preferentially bind different conformers of bilirubin in the primary binding sites and make it observable by circular dichroism. These molecular systems approximated a real system for the study of mutagens in blood serum. Differences between the interaction of bilirubin bound to primary and to secondary binding sites of serum albumins with mutagens were shown. For bilirubin bound to secondary binding sites with low affinity, partial displacement and the formation of self-associates were observed in all studied mutagens. The associates of bilirubin bound to primary binding sites of serum albumins are formed with 2-aminofluorene and 2,4,7-trinitrofluorenone. It was proposed that 2,7-diaminofluorene does not interact with bilirubin bound to primary sites of human and bovine serum albumins due to the spatial hindrance of the albumins binding domains. The spatial arrangement of the bilirubin bound to serum albumin along with the studied mutagens was modelled using ligand docking, which revealed a possibility of an arrangement of the both bilirubin and 2-aminofluorene and 2,4,7-trinitrofluorenone in the primary binding site of human serum albumin. PMID:24589992

  3. Evaluation of the biointeraction of colorant flavazin with human serum albumin: insights from multiple spectroscopic studies, in silico docking and molecular dynamics simulation.

    PubMed

    Peng, Wei; Ding, Fei; Jiang, Yu-Ting; Sun, Ying; Peng, Yu-Kui

    2014-06-01

    Azo compounds are the largest chemical class of agents frequently used as colorants in a variety of consumer goods and farm produce; therefore, they may become a hazard to public health, because numerous azo compounds and their metabolites are proven to be carcinogens and mutagens. Herein several qualitative and quantitative analytical techniques, including steady state and time-resolved fluorescence, circular dichroism (CD), computer-aided molecular docking as well as molecular dynamics simulation, were employed to ascertain the molecular recognition between the principal vehicle of ligands in human plasma, albumin and a model azo compound, flavazin. The results show that the albumin spatial structure was changed in the presence of flavazin with a decrease of α-helix suggesting partial protein destabilization/self-regulation, as derived from steady state fluorescence, far-UV CD and detailed analyses of three-dimensional fluorescence spectra. Time-resolved fluorescence further evinced that the recognition mechanism is related to albumin-flavazin adduct