Science.gov

Sample records for albumin mrna levels

  1. Decreased albumin mRNA in immunodeficient wasted' mice

    SciTech Connect

    Libertin, C.R.; Buczek, N.; Weaver, P.; Mobarhan, S.; Woloschak, G.E. Argonne National Lab., IL )

    1991-03-15

    Mice bearing the autosomal recessive gene wst (wst/wst) develop a wasting syndrome' that leads to death by 28-32 days of age. These mice have faulty repair of damage induced by ionizing radiation, immunodeficiency at secretory sites, and neurologic abnormalities. In addition to a progressively more apparent wasted phenotype, wst/wst mice show other features of failure to thrive and malnutrition. Daily body weights of the animals revealed a loss in weight between 25 and 30 days of age, a time during which normal littermates were progressively and rapidly gaining weight. Albumin mRNA levels were measured by dilution dot blot hybridizations of liver-derived RNA preparations from wasted mice, littermates, and parental controls. In all wasted mice, albumin mRNA levels were reduced 5 to 10 fold compared to controls. Northern blots revealed that the albumin mRNA present in wasted mice was normal in length though reduced in amount. These results suggest there may be a relationship between low albumin synthesis and the wasting syndrome of the wst/wst mouse.

  2. Serum Albumin Levels and Economic Status in Japanese Older Adults

    PubMed Central

    Ota, Asami; Kondo, Naoki; Murayama, Nobuko; Tanabe, Naohito; Shobugawa, Yugo; Kondo, Katsunori

    2016-01-01

    Background Low serum albumin levels are associated with aging and medical conditions such as cancer, liver dysfunction, inflammation, and malnutrition and might be an independent predictor of long-term mortality in healthy older populations. We tested the hypothesis that economic status is associated with serum albumin levels and explained by nutritional and health status in Japanese older adults. Design We performed a cross-sectional analysis using data from the Japan Gerontological Evaluation study (JAGES). The study participants were 6528 functionally independent residents (3189 men and 3339 women) aged ≥65 years living in four municipalities in Aichi prefecture. We used household income as an indicator of economic status. Multiple linear regression was used to compare serum albumin levels in relation to household income, which was classified as low, middle, and high. Additionally, mediation by nutritional and health-related factors was analyzed in multivariable models. Results With the middle-income group as reference, participants with low incomes had a significantly lower serum albumin level, even after adjustment for sex, age, residential area, education, marital status, and household structure. The estimated mean difference was −0.17 g/L (95% confidence interval, −0.33 to −0.01 g/L). The relation between serum albumin level and low income became statistically insignificant when “body mass index”, “consumption of meat or fish”, “self-rated health”, “presence of medical conditions”, “hyperlipidemia”, or “respiratory disease “was included in the model. Conclusion Serum albumin levels were lower in Japanese older adults with low economic status. The decrease in albumin levels appears to be mediated by nutrition and health-related factors with low household incomes. Future studies are needed to reveal the existence of other pathways. PMID:27276092

  3. Changes in collagen and albumin mRNA in liver tissue of mice infected with Schistosoma mansoni as determined by in situ hybridization

    PubMed Central

    1983-01-01

    We have employed in situ hybridization to evaluate the molecular mechanisms responsible for hypoalbuminemia and increased liver collagen content in murine schistosomiasis. Results were compared using a simplified method of hybridizing isolated hepatocytes from Schistosoma mansoni-infected and normal mouse liver with mouse albumin (pmalb-2) and chick pro-alpha 2(l) collagen (pCg45) probes. Whereas hepatocytes from infected mice showed significantly less albumin mRNA than hepatocytes from control, there were more grains of procollagen mRNA in hepatocytes from infected as compared with control liver. Hybridization of infected liver tissue sections with the collagen probe showed more grains per field in granulomas than in liver regions, whereas with the albumin probe there was more hybridization in liver tissue than in granulomas. These results suggest that in murine schistosomiasis a reduction in albumin mRNA sequence content may be associated with decreased albumin synthesis and ultimately leads to hypoalbuminemia. In addition, although the granuloma seems to be the primary source of type I collagen synthesis, hepatocytes are also capable of synthesizing collagen, especially under fibrogenic stimulation. PMID:6619195

  4. Repression of the albumin gene in Novikoff hepatoma cells

    SciTech Connect

    Capetanaki, Y.G.; Flytzanis, C.N.; Alonso, A.

    1982-03-01

    Novikoff hepatoma cells have lost their capacity to synthesize albumin. As a first approach to study the mechanisms underlying this event, in vitro translation in a reticulocyte system was performed using total polyadenylated mRNA from rat liver and Novikoff hepatoma cells. Immunoprecipitation of the in vitro translation products with albumin-specific antibody revealed a total lack of albumin synthesis in Novikoff hepatoma, suggesting the absence of functional albumin mRNA in these cells. Titration experiments using as probe albumin cDNA cloned in pBR322 plasmid demonstrated the absence of albumin-specific sequences in both polysomal and nuclear polyadenylated and total RNA from Novikoff cells. This albumin recombinant plasmid was obtained by screening a rat liver cDNA library with albumin (/sup 32/P)cDNA reverse transcribed from immuno-precipitated mRNA. The presence of an albumin-specific gene insert was documented with translation assays as well as by restriction mapping. Repression of the albumin gene at the transcriptional level was further demonstrated by RNA blotting experiments using the cloned albumin cDNA probe. Genomic DNA blots using the cloned albumin cDNA as probe did not reveal any large-scale deletions, insertions, or rearrangements in the albumin gene, suggesting that the processes involved in the suppression of albumin mRNA synthesis do not involve extensive genomic rearrangements.

  5. Hfq affects mRNA levels independently of degradation

    PubMed Central

    2010-01-01

    Background The bacterial Lsm protein, Hfq, is an RNA chaperone involved in many reactions related to RNA metabolism, such as replication and stability, control of small RNA activity and polyadenylation. Despite this wide spectrum of known functions, the global role of Hfq is almost certainly undervalued; its capacity to bind DNA and to interact with many other proteins are only now beginning to be taken into account. Results The role of Hfq in the maturation and degradation of the rpsO mRNA of E. coli was investigated in vivo. The data revealed a decrease in rpsO mRNA abundance concomitant to an increase in its stability when Hfq is absent. This indicates that the change in mRNA levels in hfq mutants does not result from its modification of RNA stability. Moreover, a series of independent experiments have revealed that the decrease in mRNA level is not a consequence of a reduction of translation efficiency and that Hfq is not directly implicated in translational control of rpsO expression. Reduced steady-state mRNA levels in the absence of Hfq were also shown for rpsT, rpsB and rpsB-tsf, but not for lpp, pnp or tRNA transcripts. The abundance of chimeric transcripts rpsO-lacZ and rpsB-lacZ, whose expression was driven by rpsO and rpsB promoters, respectively, was also lower in the hfq null-mutants, while the β-galactosidase yield remained about the same as in the parent wild-type strain. Conclusions The data obtained suggest that alteration of rpsO, rpsT and rpsB-tsf transcript levels observed under conditions of Hfq deficiency is not caused by the post-transcriptional events, such as mRNA destabilization or changes in translation control, and may rather result from changes in transcriptional activity. So far, how Hfq affects transcription remains unclear. We propose that one of the likely mechanisms of Hfq-mediated modulation of transcription might operate early in the elongation step, when interaction of Hfq with a nascent transcript would help to overcome

  6. Relationship Between Serum Albumin Levels and Infections in Newborn Late Preterm Infants

    PubMed Central

    Yang, Chunyan; Liu, Zhaoguo; Tian, Min; Xu, Ping; Li, Baoyun; Yang, Qiaozhi; Yang, Yujun

    2016-01-01

    Background We aimed to evaluate the clinical value of serum albumin levels for the evaluation and prognosis of late preterm infants with infections. Material/Methods This was a retrospective study performed in late preterm infants admitted at the neonatal intensive care unit (NICU) of the Liaocheng People’s Hospital between July 2012 and March 2013. Data, including laboratory test results, neonatal critical illness score (NCIS), perinatal complications and prognosis, were analyzed. The newborn infants were divided into 3 groups according to their serum albumin levels, (≥30 g/L, 25–30 g/L and ≤25 g/L for high, moderate, and low, respectively). Results Among 257 patients, birth weight was 2003±348 g, gestational age was 35.7±2.3 weeks, and 59.1% were male. In addition, 127 (49.4%) were in the low albumin group. There were 32 patients with sepsis, 190 with infections, and 35 without infection, and their rates of hypoalbuminemia were 86.0%, 50.5%, and 30.7%, respectively (P<0.05). Albumin levels of the patients who survived were higher than those of the patients who died. In the low albumin group, the number of individual-event-critical NCIS cases and the frequency of multiple organs injuries were 63.8% and 28.3%, respectively, and were higher than in the 2 other groups. Mortality was higher in patients with sepsis. Hypoalbuminemia was associated with severe adverse outcomes (odds ratio=6.3, 95% confidence interval: 3.7–10.9, P<0.001). Conclusions Hypoalbuminemia was frequent among neonates with sepsis. Lower albumin levels might be associated with a poorer prognosis. Albumin levels could be appropriate for the diagnosis and prognosis of late preterm neonates with infections. PMID:26747243

  7. Increased ischemia-modified albumin and malondialdehyde levels in videothoracoscopic surgery

    PubMed Central

    Oncel, Mufide; Kiyici, Aysel; Oncel, Murat; Sunam, Guven Sadi; Sahin, Emel; Adam, Bahattin

    2016-01-01

    BACKGROUND: Videothoracoscopic surgery leads to general organ hypoperfusion by reducing mean arterial pressure, systemic vascular resistance, and end-diastolic volume index. Oxidative stress occurs as a result of hypoperfusion. Evaluation of the short-term effects of videothoracoscopic sympathectomy on serum ischemia-modified albumin (IMA), malondialdehyde (MDA), and nitric oxide (NO) levels in patients with primary hyperhidrosis was aimed. METHODS: Twenty-six patients who underwent videothoracoscopic surgery were contributed in this study. Venous blood samples were obtained from these patients 1 h before and after the surgery. IMA, MDA, and NO levels were measured in serum samples by colorimetric methods. Albumin concentrations were also measured for each sample, and albumin-adjusted IMA levels were calculated. RESULTS: Postoperative IMA, albumin-adjusted IMA, and MDA values were significantly higher compared to the preoperative values (P = 0.003, 0.027, 0.018, respectively). However, postoperative NO levels were lower than the preoperative values (P = 0.002). There was no significant difference between pre- and postoperative albumin concentrations, and there was no significant correlation between the parameters tested. CONCLUSIONS: We can conclude that elevation in MDA and IMA levels after videothoracoscopic surgery was caused by increased oxidative stress due to minimal ischemia-reperfusion injury after the infusion of CO2 during the surgical process. Videothoracoscopic sympathectomy operation causes a decrease in NO production, and this should be taken in consideration when evaluating nitrosative stress in videothoracoscopic surgery. PMID:26933460

  8. Preoperative Assessment of Serum Albumin Level as Risk Factor for Morbidity Following Routine Oncological Surgery.

    PubMed

    Bhuiyan, M U

    2016-04-01

    This cross-sectional observational study was to establish the preoperative assessment of serum albumin level as indicator for morbidity following cancer surgery and to reduce the incidence of related postoperative complications. Therefore this study was undertaken to assess the morbidity associated with low serum level albumin and identify it as a risk factor following cancer surgery in Bangladeshi population. This study included 312 patients with malignancy who were waiting for surgery or within 60 days of postoperative period were enrolled for the study from indoor of surgical oncology department, National Institute of Cancer Research & Hospital (NICR&H), Dhaka, Bangladesh. Then the patients were submitted for further study to evaluate the preoperative fitness in terms of nutritional assessment - both clinical and biological especially serum albumin level. All the clinical (pre & post-operative including complication, if any), investigation findings were recorded accordingly. Statistical correlation was discovered between BMI and morbidity but no statistical correlation was found between WL >10% and major surgical complications of either infectious or noninfectious origin (p=NS). Conversely, a substantial statistical correlation was found between Hb% or albumin <30gm/l and major surgical complications (either infectious or noninfectious) (p<0.001). The serum albumin level below 30gm/l is a significant risk factor for oncological postoperative major complications (MC).

  9. Serum albumin level as a risk factor for mortality in burn patients

    PubMed Central

    Alejandra Aguayo-Becerra, Olivia; Torres-Garibay, Carlos; Dassaejv Macías-Amezcua, Michel; Fuentes-Orozco, Clotilde; de Guadalupe Chávez-Tostado, Mariana; Andalón-Dueñas, Elizabeth; Espinosa Partida, Arturo; Álvarez-Villaseñor, Andrea Del Socorro; Cortés-Flores, Ana Olivia; Alejandro González-Ojeda

    2013-01-01

    OBJECTIVE: Hypoalbuminemia is a common clinical deficiency in burn patients and is associated with complications related to increased extravascular fluid, including edema, abnormal healing, and susceptibility to sepsis. Some prognostic scales do not include biochemical parameters, whereas others consider them together with comorbidities. The purpose of this study was to determine whether serum albumin can predict mortality in burn patients. METHODS: We studied burn patients ≥16 years of age who had complete clinical documentation, including the Abbreviated Burn Severity Index, serum albumin, globulin, and lipids. Sensitivity and specificity analyses were performed to determine the cut-off level of albumin that predicts mortality. RESULTS: In our analysis of 486 patients, we found that mortality was higher for burns caused by flame (p = 0.000), full-thickness burns (p = 0.004), inhalation injuries (p = 0.000), burns affecting >30% of the body surface area (p = 0.001), and burns associated with infection (p = 0.008). Protein and lipid levels were lower in the patients who died (p<0.05). Albumin levels showed the highest sensitivity and specificity (84% and 83%, respectively), and the area under the receiver-operating characteristic curve (0.869) had a cut-off of 1.95 g/dL for mortality. CONCLUSION: Patients with albumin levels <2 g/dL had a mortality risk of >80%, with 84% sensitivity and 83% specificity. At admission, the albumin level could be used as a sensitive and specific marker of burn severity and an indicator of mortality. PMID:23917657

  10. Effects of dietary medium-chain triacylglycerol on mRNA level of gluconeogenic enzymes in malnourished rats.

    PubMed

    Kojima, Keiichi; Kasai, Michio

    2008-12-01

    We have reported previously that dietary medium-chain triacylglycerol (MCT) improved serum albumin concentration and protein balance in malnourished rats. To clarify the mechanisms for this effect of MCT, hepatic messenger RNA levels of gluconeogenic enzymes, pyruvate dehydrogenase (PDH) and alanine aminotransferase (ALT) were measured in rats fed low-protein diets containing either MCT or isocaloric long-chain triacylglycerol (LCT) for 2 wk. The serum albumin concentration in rats fed the MCT diet was significantly higher compared with those fed the LCT diet. Serum free fatty acids and ketone body fraction were higher in rats fed MCT compared with those fed the LCT diet. The hepatic mRNA level of PDH was significantly lower in rats fed MCT than those fed LCT. But, there was no significant difference between the two groups in mRNA of gluconeogenic enzymes or ALT. These results suggest that ketone bodies, which are an alternative energy source and might spare blood glucose, increase by MCT feeding, and the reason for the PEM (protein-energy malnutrition)-improving effect of MCT is not caused by suppression of gluconeogenesis.

  11. Selenium supplementation restores the decreased albumin level of peripheral blood mononuclear cells in streptozotocin-induced diabetic mice

    PubMed Central

    AHN, Taeho; BAE, Chun-Sik; YUN, Chul-Ho

    2016-01-01

    Previously, it has been suggested that the phenotypic level of albumin in peripheral blood mononuclear cells (PBMC) decreased in streptozotocin (STZ)-induced diabetic rats. Concomitantly, the production of oxidative stresses was also elevated in the diabetic PBMC compared to that of normal control. These results suggest the close relationship between PBMC-albumin and its antioxidant roles. Here, we expanded the previous studies and investigated the effect of selenium supplementation as inorganic (sodium selenate) forms on the levels of albumin expression and oxidative stress in PBMC of STZ-induced diabetic mice. Selenium intake recovered the decreased albumin levels to those of normal mice and reduced the production of reactive oxygen species (ROS). These results support that selenium intake may alleviate the etiology and pathology of PBMC in type 1 diabetic mice by restoring the decrease in albumin contents and the production of ROS. PMID:26726102

  12. Role of admission serum albumin levels in patients with intracerebral hemorrhage.

    PubMed

    Limaye, Kaustubh; Yang, Ju Dong; Hinduja, Archana

    2016-03-01

    Low serum albumin levels have been reported to be an independent predictor of increased morbidity and mortality in multiple disease conditions. The aim of our study was to identify the impact of low serum albumin levels on mortality and outcomes at discharge in patients with intracerebral hemorrhage. We retrospectively reviewed our prospective database of patients with intracerebral hemorrhage from January 2010 to December 2011. Patients were dichotomized into two groups based on their serum albumin levels upon admission. Hypoalbuminemia was defined as serum albumin levels ≤3.4 g/dl. The two groups were compared using Fisher's exact test for categorical variables and t test for continuous variables. Poor outcome was defined as death or discharge to a long-term nursing facility (modified Rankin Score 4-6). Out of 97 patients admitted with intracerebral hemorrhage, 90 met our inclusion criteria (42 had normal levels and 48 had hypoalbuminemia). The baseline characteristics, risk factors, etiology, location and volume of intracerebral hemorrhage, admission blood glucose, white cell count, length of hospital stay, length of intensive care unit stay, and complications were similar between both groups. Although admission hypoalbuminemia did not impact in-hospital mortality (28 vs 24 %, p = 0.635), there was a significant increase in poor outcomes at discharge (59 vs 31 %, p = 0.009) (OR 1.8; 95 % CI; 1.2-2.8). Similar to other diseases, hypoalbuminemia was associated with poor functional outcomes in patients with intracerebral hemorrhage. This will need to be confirmed in larger prospective studies before adopting therapeutic and preventive strategies in future. PMID:26133948

  13. Low-level lasers and mRNA levels of reference genes used in Escherichia coli

    NASA Astrophysics Data System (ADS)

    Teixeira, A. F.; Machado, Y. L. R. C.; Fonseca, A. S.; Mencalha, A. L.

    2016-11-01

    Low-level lasers are widely used for the treatment of diseases and antimicrobial photodynamic therapy. Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) is widely used to evaluate mRNA levels and output data from a target gene are commonly relative to a reference mRNA that cannot vary according to treatment. In this study, the level of reference genes from Escherichia coli exposed to red or infrared lasers at different fluences was evaluated. E. coli AB1157 cultures were exposed to red (660 nm) and infrared (808 nm) lasers, incubated (20 min, 37 °C), the total RNA was extracted, and cDNA synthesis was performed to evaluate mRNA levels from arcA, gyrA and rpoA genes by RT-qPCR. Melting curves and agarose gel electrophoresis were carried out to evaluate specific amplification. Data were analyzed by geNorm, NormFinder and BestKeeper. The melting curve and agarose gel electrophoresis showed specific amplification. Although mRNA levels from arcA, gyrA or rpoA genes presented no significant variations trough a traditional statistical analysis, Excel-based tools revealed that these reference genes are not suitable for E. coli cultures exposed to lasers. Our data showed that exposure to low-level red and infrared lasers at different fluences alter the mRNA levels from arcA, gyrA and rpoA in E. coli cells.

  14. Calpain expression in lymphoid cells. Increased mRNA and protein levels after cell activation.

    PubMed

    Deshpande, R V; Goust, J M; Chakrabarti, A K; Barbosa, E; Hogan, E L; Banik, N L

    1995-02-10

    Although calpain is ubiquitously present in human tissues and is thought to play a role in demyelination, its activity is very low in resting normal lymphocytes. To determine the nature of calpain expression at the mRNA and protein levels in human lymphoid cells, we studied human T lymphocytic, B lymphocytic, and monocytic lines as well as peripheral blood mononuclear cells. Stimulation of cells with the phorbol ester phorbol myristate acetate and the calcium ionophore A23187 resulted in increased calpain mRNA and protein expression. Calpain mRNA expression is also increased in human T cells stimulated with anti-CD3. A dissociation between the increases of RNA and protein suggested that calpain could be released from the cells; the subsequent experiments showed its presence in the extracellular environment. 5,6-Dichloro-1b-D-ribofuranosylbenzimidazole, a reversible inhibitor of mRNA synthesis, reduced calpain mRNA levels by 50-67% and protein levels by 72-91%. Its removal resulted in resumption of both calpain mRNA and protein synthesis. Cycloheximide, a translational inhibitor, reduced calpain protein levels by 77-81% and calpain mRNA levels by 96% in activated THP-1 cells. Interferon-gamma induced calpain mRNA and protein in U-937 and THP-1 cells. Dexamethasone increased mRNA expression in THP-1 cells. Our results indicate that activation of lymphoid cells results in de novo synthesis and secretion of calpain. PMID:7852311

  15. Long-term oral sodium bicarbonate supplementation does not improve serum albumin levels in hemodialysis patients.

    PubMed

    Bossola, Maurizio; Giungi, Stefania; Tazza, Luigi; Luciani, Giovanna

    2007-01-01

    Metabolic acidosis, a frequent event in hemodialysis patients, has been implicated as a potential cause of protein-energy malnutrition. Unfortunately, correction of metabolic acidosis by means of high bicarbonate concentration in the dialysate does not seem to lead to significant changes in nutritional parameters. The project was a single-arm, open-label, 12-month pilot study at a university-based tertiary care center aimed at evaluating whether correction of metabolic acidosis through long-term oral sodium bicarbonate supplementation improves serum albumin levels and other nutritional parameters in patients undergoing maintenance hemodialysis. Twenty highly acidotic hemodialysis patients patients were invited to consume an oral supplementation of sodium bicarbonate (1 g, thrice daily), for 12 months. Patients were followed at baseline and every month, until month 12. At each follow-up visit, dry body weight, BMI, blood pressure, presence of edema, venous bicarbonate, and serum albumin were measured. Total lymphocyte count, fasting total cholesterol and C-reactive protein were assessed every 2 months. At baseline and at 12 months, the subjective global assessment of nutritional status and the protein equivalent of nitrogen appearance normalized to actual body weight were determined. Plasma bicarbonate level rose from 18.1 +/- 2.7 to 22.1 +/- 4.5 mmol/l after 10 months (p = 0.001). Mean serum albumin levels were 3.8 +/- 0.2 mg/dl at baseline and 3.9 +/- 0.2 at the end of the study. Repeated measure ANOVA showed that there was no significant effect of bicarbonate treatment on serum albumin levels (p = 0.29), dry weight (p = 0.1), serum total cholesterol (p = 0.97), total lymphocyte count (p = 0.69), or C-reactive protein (p = 0.85). Mean subjective global assessment score was 4.53 +/- 0.37 at baseline and 4.58 +/- 0.54 at 12 months (p = 0.1). Mean nPNA (g/kg/day) was 0.86 +/- 0.05 at baseline and 0.85 +/- 0.08 at month 12. The present study demonstrates that long

  16. Association of a high normalized protein catabolic rate and low serum albumin level with carpal tunnel syndrome in hemodialysis patients

    PubMed Central

    Huang, Wen-Hung; Hsu, Ching-Wei; Weng, Cheng-Hao; Yen, Tzung-Hai; Lin, Jui-Hsiang; Lee, Meng

    2016-01-01

    Abstract Carpal tunnel syndrome (CTS) is the most common mononeuropathy in patients with end-stage renal disease (ESRD). The association between chronic inflammation and CTS in hemodialysis (HD) patients has rarely been investigated. HD patients with a high normalized protein catabolic rate (nPCR) and low serum albumin level likely have adequate nutrition and inflammation. In this study, we assume that a low serum albumin level and high nPCR is associated with CTS in HD patients. We recruited 866 maintenance hemodialysis (MHD) patients and divided them into 4 groups according to their nPCR and serum albumin levels: (1) nPCR <1.2 g/kg/d and serum albumin level <4 g/dL; (2) nPCR ≥1.2 g/kg/d and serum albumin level <4 g/dL; (3) nPCR <1.2 g/kg/d and serum albumin level ≥4 g/dL; and (4) nPCR ≥1.2 g/kg/d and serum albumin level ≥4 g/dL. After adjustment for related variables, HD duration and nPCR ≥1.2 g/kg/d and serum albumin level <4 g/dL were positively correlated with CTS. By calculating the area under the receiver-operating characteristic curve, we calculated that the nPCR and HD duration cut-off points for obtaining the most favorable Youden index were 1.29 g/kg/d and 7.5 years, respectively. Advance multivariate logistic regression analysis revealed that in MHD patients, nPCR ≥1.29 g/kg/d and serum albumin <4 g/dL, and also HD duration >7.5 years were associated with CTS. A high nPCR and low serum albumin level, which likely reflect adequate nutrition and inflammation, were associated with CTS in MHD patients. PMID:27368039

  17. Quantification of mRNA Levels Using Real-Time Polymerase Chain Reaction (PCR).

    PubMed

    Li, Yiyi; Wang, Kai; Chen, Longhua; Zhu, Xiaoxia; Zhou, Jie

    2016-01-01

    Real-time quantitative reverse transcription PCR technique has advanced greatly over the past 20 years. Messenger RNA (mRNA) levels in cells or tissues can be quantified by this approach. It is well known that changes in mRNA expression in disease, and correlation of mRNA expression profiles with clinical parameters, serve as clinically relevant biomarkers. Hence, accurate determination of the mRNA levels is critically important in describing the biological, pathological, and clinical roles of genes in health and disease. This chapter describes a real-time PCR approach to detect and quantify mRNA expression levels, which can be used for both laboratorial and clinical studies in breast cancer research.

  18. Early postoperative albumin level following total knee arthroplasty is associated with acute kidney injury

    PubMed Central

    Kim, Ha-Jung; Koh, Won-Uk; Kim, Sae-Gyeol; Park, Hyeok-Seong; Song, Jun-Gol; Ro, Young-Jin; Yang, Hong-Seuk

    2016-01-01

    Abstract Hypoalbuminemia has been reported to be an independent risk factor for acute kidney injury (AKI). However, little is known about the relationship between the albumin level and the incidence of AKI in patients undergoing total knee arthroplasty (TKA). The aim of our study was to assess incidence and risk factors for AKI and to evaluate the relationship between albumin level and AKI following TKA. The study included a retrospective review of medical records of 1309 consecutive patients who underwent TKA between January 2008 and December 2014. The patients were divided into 2 groups according to the lowest serum albumin level within 2 postoperative days (POD2_alb level < 3.0 g/dL vs ≥3.0 g/dL). Multivariate logistic regression analysis was used to assess risk factors for AKI. A comparison of incidence of AKI, hospital stay, and overall mortality in the 2 groups was performed using propensity score analysis. Of 1309 patients, 57 (4.4%) developed AKI based on Kidney Disease Improving Global Outcomes criteria. Factors associated with AKI included age (odds ratio [OR] 1.05; 95% confidence interval [CI] 1.01–1.09; P = 0.030), diabetes (OR 3.12; 95% CI 1.65–5.89; P < 0.001), uric acid (OR 1.51; 95% CI 1.26–1.82; P < 0.001), beta blocker use (OR 2.65; 95% CI 1.48–4.73; P = 0.001), diuretics (OR 16.42; 95% CI 3.08–87.68; P = 0.001), and POD2_alb level < 3.0 g/dL (OR 1.92; 95% CI 1.09–3.37; P = 0.023). After propensity score analysis, POD2_alb level<3.0 g/dL was associated with AKI occurrence (OR 1.82; 95% CI 1.03–3.24, P = 0.041) and longer hospital stay (P = 0.001). In this study, we demonstrated that POD2_alb level<3.0 g/dL was an independent risk factor for AKI and lengthened hospital stay in patients undergoing TKA. PMID:27495094

  19. Elevated neurofilament light chain (NFL) mRNA levels in prediabetic peripheral neuropathy.

    PubMed

    Celikbilek, Asuman; Tanik, Nermin; Sabah, Seda; Borekci, Elif; Akyol, Lutfi; Ak, Hakan; Adam, Mehmet; Suher, Murat; Yilmaz, Neziha

    2014-06-01

    Evidence suggests that peripheral nerve injury occurs during the early stages of disease with mild glycemic dysregulation. Two proteins, neuron-specific enolase (NSE) and neurofilament light chain (NFL), have been examined previously as possible markers of neuronal damage in the pathophysiology of neuropathies. Herein, we aimed to determine the potential value of circulatory NSE and NFL mRNA levels in prediabetic patients and in those with peripheral neuropathy. This prospective clinical study included 45 prediabetic patients and 30 age- and sex-matched controls. All prediabetic patients were assessed with respect to diabetes-related microvascular complications, such as peripheral neuropathy, retinopathy and nephropathy. mRNA levels of NSE and NFL were determined in the blood by real-time polymerase chain reaction. NSE mRNA levels were similar between prediabetic and control groups (p > 0.05), whereas NFL mRNA levels were significantly higher in prediabetics than in controls (p < 0.001). NSE mRNA levels did not significantly differ between prediabetic patients with and without peripheral neuropathy (p > 0.05), while NFL mRNA levels were significantly higher in prediabetics with peripheral neuropathy than in those without (p = 0.038). According to correlation analysis, NFL mRNA levels were positively correlated with the Douleur Neuropathique 4 questionnaire score in prediabetic patients (r = 0.302, p = 0.044). This is the first study to suggest blood NFL mRNA as a surrogate marker for early prediction of prediabetic peripheral neuropathy, while NSE mRNA levels may be of no diagnostic value in prediabetic patients.

  20. Regulation of hypothalamic somatostatin and growth hormone releasing hormone mRNA levels by inhibin.

    PubMed

    Carro, E; Señarís, R M; Mallo, F; Diéguez, C

    1999-03-20

    Although it is well established that inhibin plays a major role in the regulation of the hypothalamic-pituitary-gonadal axis, its influence in the regulation of other neuroendocrine functions is still poorly understood. Recent results indicate that inhibin suppresses plasma GH levels, but its site of action is yet unknown. Therefore, in the present work we investigated the effects of inhibin on somatostatin and growth hormone releasing hormone (GHRH) mRNA levels in the hypothalamus by 'in situ' hybridization. We found that inhibin administration (4, 12 and 24 h, i.c.v.) led to an increase in somatostatin mRNA levels in the periventricular nucleus, and to a decrease in GHRH mRNA content in the arcuate nucleus of the hypothalamus. These findings indicate that inhibin regulates the hypothalamic levels of somatostatin and GHRH mRNA.

  1. Albumin and multiple sclerosis.

    PubMed

    LeVine, Steven M

    2016-04-12

    Leakage of the blood-brain barrier (BBB) is a common pathological feature in multiple sclerosis (MS). Following a breach of the BBB, albumin, the most abundant protein in plasma, gains access to CNS tissue where it is exposed to an inflammatory milieu and tissue damage, e.g., demyelination. Once in the CNS, albumin can participate in protective mechanisms. For example, due to its high concentration and molecular properties, albumin becomes a target for oxidation and nitration reactions. Furthermore, albumin binds metals and heme thereby limiting their ability to produce reactive oxygen and reactive nitrogen species. Albumin also has the potential to worsen disease. Similar to pathogenic processes that occur during epilepsy, extravasated albumin could induce the expression of proinflammatory cytokines and affect the ability of astrocytes to maintain potassium homeostasis thereby possibly making neurons more vulnerable to glutamate exicitotoxicity, which is thought to be a pathogenic mechanism in MS. The albumin quotient, albumin in cerebrospinal fluid (CSF)/albumin in serum, is used as a measure of blood-CSF barrier dysfunction in MS, but it may be inaccurate since albumin levels in the CSF can be influenced by multiple factors including: 1) albumin becomes proteolytically cleaved during disease, 2) extravasated albumin is taken up by macrophages, microglia, and astrocytes, and 3) the location of BBB damage affects the entry of extravasated albumin into ventricular CSF. A discussion of the roles that albumin performs during MS is put forth.

  2. Albumin and multiple sclerosis.

    PubMed

    LeVine, Steven M

    2016-01-01

    Leakage of the blood-brain barrier (BBB) is a common pathological feature in multiple sclerosis (MS). Following a breach of the BBB, albumin, the most abundant protein in plasma, gains access to CNS tissue where it is exposed to an inflammatory milieu and tissue damage, e.g., demyelination. Once in the CNS, albumin can participate in protective mechanisms. For example, due to its high concentration and molecular properties, albumin becomes a target for oxidation and nitration reactions. Furthermore, albumin binds metals and heme thereby limiting their ability to produce reactive oxygen and reactive nitrogen species. Albumin also has the potential to worsen disease. Similar to pathogenic processes that occur during epilepsy, extravasated albumin could induce the expression of proinflammatory cytokines and affect the ability of astrocytes to maintain potassium homeostasis thereby possibly making neurons more vulnerable to glutamate exicitotoxicity, which is thought to be a pathogenic mechanism in MS. The albumin quotient, albumin in cerebrospinal fluid (CSF)/albumin in serum, is used as a measure of blood-CSF barrier dysfunction in MS, but it may be inaccurate since albumin levels in the CSF can be influenced by multiple factors including: 1) albumin becomes proteolytically cleaved during disease, 2) extravasated albumin is taken up by macrophages, microglia, and astrocytes, and 3) the location of BBB damage affects the entry of extravasated albumin into ventricular CSF. A discussion of the roles that albumin performs during MS is put forth. PMID:27067000

  3. mRNA levels of TLR4 and TLR5 are independent of H pylori

    PubMed Central

    Garza-González, Elvira; Bocanegra-García, Virgilio; Bosques-Padilla, Francisco Javier; Flores-Gutiérrez, Juan Pablo; Moreno, Francisco; Perez-Perez, Guillermo Ignacio

    2008-01-01

    AIM: To determine if the presence H pylori or its virulence affect toll-like receptor 4 (TLR4) and TLR5 mRNA expression levels. METHODS: For the in vivo assays, gastric biopsies were obtained from 40 patients and H pylori status was determined. For the in vitro assays, human gastric adenocarcinoma mucosal cells (AGS) were cultured in the presence or absence of twelve selected H pylori strains. H pylori strains isolated from culture-positive patients and selected strains were genotyped for cagA and vacA. The cDNA was obtained from mRNA extracted from biopsies and from infected AGS cells. TLR4 and TLR5 mRNA levels were examined by real-time PCR. RESULTS: The presence of H pylori did not affect the mRNA levels of TLR4 or TLR5 in gastric biopsies. The mRNA levels of both receptors were not influenced by the vacA status (P > 0.05 for both receptors) and there were no differences in TLR4 or TLR5 mRNA levels among the different clinical presentations/histological findings (P > 0.05). In the in vitro assay, the mRNA levels of TLR4 or TLR5 in AGS cells were not influenced by the vacAs1 status or the clinical condition associated with the strains (P > 0.05 for both TLR4 and TLR5). CONCLUSION: The results of this study show that the mRNA levels of TLR4 and TLR5 in gastric cells, both in vivo and in vitro, are independent of H pylori colonization and suggest that vacA may not be a significant player in the first step of innate immune recognition mediated by TLR4 or TLR5. PMID:18785283

  4. Total oxidant status, total antioxidant capacity and ischemia modified albumin levels in children with celiac disease.

    PubMed

    Sayar, Ersin; Özdem, Sebahat; Uzun, Gülbahar; İşlek, Ali; Yılmaz, Aygen; Artan, Reha

    2015-01-01

    In our study, we aimed to investigate ischemia modified albumin (IMA) as an oxidative stress marker, as well as other oxidant and antioxidant markers that have not been evaluated in children with celiac disease. A total of 37 pediatric patients who were diagnosed with celiac disease (CD) and 29 healthy children were enrolled in this prospective study. We evaluated the IMA, total oxidant status, total antioxidant capacity, sulfhydryl, and advanced oxidation protein products in all of the subjects. We also compared the levels at the time of the diagnosis, and following a gluten-free diet (GFD) in the children with CD. While the IMA and the other oxidant marker levels were significantly higher in the patient group compared to the control group, the antioxidant marker levels were found to be significantly lower in the patient group, compared to the control group. We also determined that the tissue transglutaminase IgA showed a highly positive correlation, and that the IMA showed a moderately positive correlation with the Marsh-Oberhuber histopathological stage. Additionally, the IMA and other oxidant marker levels were significantly lower, while the antioxidant marker levels were significantly higher after the GFD, compared to the pre-diet period. We detected that oxidative stress played a role in the pathogenesis of CD, and that this could be evaluated using oxidative stress markers, which would regress after the GFD. We also detected that IMA is a marker that shows a correlation with the histopathological stage, and may be used in the diagnosis. PMID:27411418

  5. Modulation of phosphoenolpyruvate carboxykinase mRNA levels by the hepatocellular hydration state.

    PubMed Central

    Newsome, W P; Warskulat, U; Noe, B; Wettstein, M; Stoll, B; Gerok, W; Häussinger, D

    1994-01-01

    Exposure of isolated perfused rat livers to hypo-osmotic (225 mosmol/l) perfusion media for 3 h led to a decrease of about 60% in mRNA levels for phosphoenolpyruvate carboxy-kinase (PEPCK) compared with normo-osmotic (305 mosmol/l) perfusions. Conversely, PEPCK mRNA levels increased about 3-fold during hyperosmotic (385 mosmol/l) perfusions. The anisotonicity effects were not explained by changes in the intracellular cyclic AMP (cAMP) concentration or by changes of the extracellular Na+ or Cl- activity. Similar effects of aniso-osmolarity on PEPCK mRNA levels were found in cultured rat hepatoma H4IIE.C3 cells, the experimental system used for further characterization of the effect. Whereas during the first hour of anisotonic exposure no effects on PEPCK mRNA levels were detectable, near-maximal aniso-osmolarity effects were observed within the next 2-3 h. PEPCK mRNA levels increased sigmoidally with the osmolarity of the medium, and the anisotonicity effects were most pronounced upon modulation of osmolarity between 250 and 350 mosmol/l. The aniso-osmolarity effects on PEPCK mRNA were not affected in presence of Gö 6850, protein kinase C inhibitor. cAMP increased the PEPCK mRNA levels about 2.3-fold in normo-osmotic media, whereas insulin lowered the PEPCK mRNA levels to about 8%. The effects of cAMP and insulin were also observed during hypo-osmotic and hyperosmotic exposure, respectively, but the anisotonicity effects were not abolished in presence of the hormones. The data suggest that hepatocellular hydration affects hepatic carbohydrate metabolism also over a longer term by modulating PEPCK mRNA levels. This is apparently unrelated to protein kinase C or alterations of cAMP levels. The data strengthen the view that cellular hydration is an important determinant for cell metabolic function by extending its regulatory role in carbohydrate metabolism to the level of mRNA. Images Figure 1 Figure 2 Figure 5 Figure 6 PMID:7998992

  6. Androgen control of secretory component mRNA levels in the rat lacrimal gland.

    PubMed

    Gao, J; Lambert, R W; Wickham, L A; Banting, G; Sullivan, D A

    1995-03-01

    The purpose of this investigation was to determine whether the known gender-related differences in, and the endocrine control of, the production of secretory component (SC) by the rat lacrimal gland are associated with alterations in SC mRNA content. Levels of SC mRNA were measured in lacrimal tissues of intact, sham-operated, castrated, hypophysectomized, and testosterone-treated male and female adult rats by Northern blot procedures, which utilized a specific, [alpha-32P]-labelled rat SC cDNA probe. For control purposes, SC mRNA amounts were standardized to the beta-actin content in experimental blots. The location of SC mRNA in lacrimal glands was evaluated by in situ hybridization techniques, which involved exposure of tissue sections to sense or anti-sense [35S]-labelled SC RNA probes. Our results demonstrate that: (1) lacrimal glands of male rats contain a significantly greater amount of SC mRNA than those of female rats, and that this difference co-exists with distinct, gender-associated variations in the distribution of SC mRNA in lacrimal tissue; (2) orchiectomy or hypophysectomy, but not ovariectomy or sham surgery, leads to a marked decline in the lacrimal SC mRNA content; and (3) testosterone, but not placebo, administration to castrated male and female rats induces a significant increase in the SC mRNA levels in lacrimal tissue. Overall, these findings show that gender, androgens and the hypothalamic-pituitary axis exert a considerable influence on the SC mRNA content in the rat lacrimal gland.

  7. Differential Control of Interleukin-6 mRNA Levels by Cellular Distribution of YB-1

    PubMed Central

    Kang, Sujin; Lee, Taeyun A.; Ra, Eun A.; Lee, Eunhye; Choi, Hyun jin; Lee, Sungwook; Park, Boyoun

    2014-01-01

    Cytokine production is essential for innate and adaptive immunity against microbial invaders and must be tightly controlled. Cytokine messenger RNA (mRNA) is in constant flux between the nucleus and the cytoplasm and in transcription, splicing, or decay; such processes must be tightly controlled. Here, we report a novel function of Y-box-binding protein 1 (YB-1) in modulating interleukin-6 (IL-6) mRNA levels in a cell type-specific manner. In lipopolysaccharide (LPS)-stimulated macrophages, YB-1 interacts with IL-6 mRNA and actively transports it to the extracellular space by YB-1-enriched vesicles, resulting in the proper maintenance of intracellular IL-6 mRNA levels. YB-1 secretion occurs in a cell type-specific manner. Whereas macrophages actively secret YB-1, dendritic cells maintain it predominantly in the cytoplasm even in response to LPS. Intracellular YB-1 has the distinct function of regulating IL-6 mRNA stability in dendritic cells. Moreover, because LPS differentially regulates the expression of histone deacetylase 6 (HDAC6) in macrophages and dendritic cells, this stimulus might control YB-1 acetylation differentially in both cell types. Taken together, these results suggest a unique feature of YB-1 in controlling intracellular IL-6 mRNA levels in a cell type-specific manner, thereby leading to functions that are dependent on the extracellular and intracellular distribution of YB-1. PMID:25398005

  8. Thyroid hormones regulate levels of thyrotropin-releasing-hormone mRNA in the paraventricular nucleus

    SciTech Connect

    Koller, K.J.; Wolff, R.S.; Warden, M.K.; Zoeller, R.T.

    1987-10-01

    Cellular levels of messenger RNA encoding thyrotropin-releasing hormone (TRH) were measured in the paraventricular nucleus of the hypothalamus and the reticular nucleus of the thalamus in male rats after chemical thyroidectomy and thyroid hormone, replacement. TRH mRNA levels were measured by quantitative in situ hybridization histochemistry using a /sup 35/S-labeled synthetic 48-base oligodeoxynucleotide probe and quantitative autoradiography. Chemical thyroidectomy, produced by the administration of 6-(n-propyl)-2-thiouracil (PrSur), reduced plasma thyroxine below detection limits and significantly increased TRH mRNA in the paraventricular nucleus. Treatments with exogenous L-triiodothyronine (T/sub 3/) reduced TRH mRNA to the same level in both hypothyroid and euthyroid animals. Neither PrSur treatment nor T/sub 3/ replacement influenced TRH mRNA levels in the reticular nucleus of the thalamus. Blot hybridization analysis of electrophoretically fractionated total RNA from pituitaries of these animals indicated that thyrotropin-..beta.. mRNA levels were elevated after thyroidectomy and reduced by T/sub 3/ treatment, showing that the pituitary-thyroid axis was indeed stimulated by PrSur treatment. These results suggest that thyroid hormones are involved, either directly or indirectly, in regulating the biosynthesis of TRH in the thyrotropic center of the hypothalamus.

  9. Colony-stimulating factor 1 regulates CTP: phosphocholine cytidylyltransferase mRNA levels.

    PubMed

    Tessner, T G; Rock, C O; Kalmar, G B; Cornell, R B; Jackowski, S

    1991-09-01

    Growth factor regulation of phosphatidylcholine (PtdCho) metabolism during the G1 stage of the cell cycle was investigated in the colony-stimulating factor 1 (CSF-1)-dependent murine macrophage cell-line BAC1.2F5. The transient removal of CSF-1 arrested the cells in G1. Incorporation of [3H]choline into PtdCho was stimulated significantly 1 h after growth factor addition to quiescent cells. Metabolic labeling experiments pointed to CTP:phosphocholine cytidylyltransferase (CT) as the rate-controlling enzyme for PtdCho biosynthesis in BAC1.2F5 cells. The amount of CT mRNA increased 4-fold within 15 min of CSF-1 addition and remained elevated for 2 h. The rise in CT mRNA levels was accompanied by a 50% increase in total CT specific activity in cell extracts within 4 h after the addition of CSF-1. CSF-1-dependent elevation of CT mRNA content was neither attenuated nor superinduced by the inhibition of protein synthesis with cycloheximide. The rate of CT mRNA turnover decreased in the presence of CSF-1 indicating that message stabilization was a key factor in determining the levels of CT mRNA. These data point to increased CT mRNA abundance as a component in growth factor-stimulated PtdCho synthesis.

  10. Determinants of the variability of aflatoxin-albumin adduct levels in Ghanaians.

    PubMed

    Dash, B; Afriyie-Gyawu, E; Huebner, H J; Porter, W; Wang, J S; Jolly, P E; Phillips, T D

    2007-01-01

    Hepatocellular carcinoma (HCC) is a multifactorial disease with various host and environmental factors involved in its etiology. Of these, aflatoxin exposure has been established as an important risk factor in the development of HCC; the presence of aflatoxin-albumin (AA) adducts in the blood serves as a valuable biomarker of human exposure. In this study, the relationship between a variety of different HCC host factors and the incidence of AA adduct levels was examined in a Ghanaian population at high risk for HCC. These factors included age, gender, hepatitis virus B (HVB) and hepatitis C virus (HCV) status, and genetic polymorphisms in both microsomal epoxide hydrolase (mEH) and glutathione S-transferases (GSTs). Blood samples were analyzed for AA adducts and HBV and HCV status. GSTM1 and GSTT1 deletion polymorphisms and mEH exon 3 and exon 4 single-nucleotide polymorphisms (SNPs) were determined from urine samples. In univariate analysis, age, HBV and HVC status, and GSTT1 and mEH exon 3 genotypes were not associated with AA adduct levels. However, mean adduct levels were significantly higher in both females and individuals typed heterozygous for mEH exon 4 (vs. wild types). Stratification analysis also showed that gender along with mEH exon 4 genotype and HBV status had a significant effect on adduct levels. Both females typed HBsAg+ and males with mEH exon 4 heterozygote genotypes showed significantly higher adduct levels as compared to the HBsAg- and wild types, respectively. Understanding the relationships between these host factors and the variability in aflatoxin-adduct levels may help in identifying susceptible populations in developing countries and for targeting specific public health interventions for the prevention of aflatoxicoses in populations with HCC and chronic liver diseases. PMID:17162498

  11. Cistanches Herba aqueous extract affecting serum BGP and TRAP and bone marrow Smad1 mRNA, Smad5 mRNA, TGF-β1 mRNA and TIEG1 mRNA expression levels in osteoporosis disease.

    PubMed

    Liang, Hai-Dong; Yu, Fang; Tong, Zhi-Hong; Zhang, Hong-Quan; Liang, Wu

    2013-02-01

    We studied molecular mechanism of Cistanches Herba aqueous extract (CHAE) in ovariectomized (OVX) rats, as an experimental model of postmenopausal osteoporosis. Female rats were either sham-operated or bilaterally OVX; and at 60 days postoperatively. The OVX group (n = 8) received an ovariectomy and treatment with normal saline for 90 days commencing from 20th post ovariectomy day. The ovariectomized +CHAE (OVX + CHAE) group (n = 8) received an ovariectomy and were treated with Cistanches Herba aqueous extract of 100 mg/kg body weight daily for 90 days commencing from 22nd post ovariectomy day. The ovariectomy +CHAE (OVX + CHAE) group (n = 8) received an ovariectomy, and were treated with the of 200 mg/kg body weight daily for 90 days commencing from 20th post ovariectomy day. Serum BGP and TRAP, E2, FSH and LH level, bone marrow Smad1, Smad5, TGF-β1 and TIEG1 mRNA expression levels were examined. Results showed that serum BGP and TRAP, FSH and LH levels were significantly increased, whereas E2, Smad1, Smad5, TGF-β1 and TIEG1 mRNA and proteins expression levels were significantly decreased in OVX rats compared to sham rats. 90 days of CHAE treatment could significantly decrease serum BGP and TRAP, FSH and LH levels, and increase E2, Smad1, Smad5, TGF-β1 and TIEG1 mRNA and proteins expression levels in OVX rats. It can be concluded that CHAE play its protective effect against OVX-induced bone degeneration partly by regulating some bone metabolism related genes, e.g. Smad1, Smad5, TGF-β1 and TIEG1.

  12. Transcriptional bursting explains the noise–versus–mean relationship in mRNA and protein levels

    DOE PAGES

    Dar, Roy; Shaffer, Sydney M.; Singh, Abhyudai; Razooky, Brandon S.; Simpson, Michael L.; Raj, Arjun; Weinberger, Leor S.

    2016-07-28

    Recent analysis demonstrates that the HIV-1 Long Terminal Repeat (HIV LTR) promoter exhibits a range of possible transcriptional burst sizes and frequencies for any mean-expression level. However, these results have also been interpreted as demonstrating that cell-tocell expression variability (noise) and mean are uncorrelated, a significant deviation from previous results. Here, we re-examine the available mRNA and protein abundance data for the HIV LTR and find that noise in mRNA and protein expression scales inversely with the mean along analytically predicted transcriptional burst-size manifolds. We then experimentally perturb transcriptional activity to test a prediction of the multiple burst-size model: thatmore » increasing burst frequency will cause mRNA noise to decrease along given burst-size lines as mRNA levels increase. In conclusion, the data show that mRNA and protein noise decrease as mean expression increases, supporting the canonical inverse correlation between noise and mean.« less

  13. Transcriptional Bursting Explains the Noise–Versus–Mean Relationship in mRNA and Protein Levels

    PubMed Central

    Dar, Roy D.; Shaffer, Sydney M.; Singh, Abhyudai; Razooky, Brandon S.; Simpson, Michael L.; Raj, Arjun; Weinberger, Leor S.

    2016-01-01

    Recent analysis demonstrates that the HIV-1 Long Terminal Repeat (HIV LTR) promoter exhibits a range of possible transcriptional burst sizes and frequencies for any mean-expression level. However, these results have also been interpreted as demonstrating that cell-to-cell expression variability (noise) and mean are uncorrelated, a significant deviation from previous results. Here, we re-examine the available mRNA and protein abundance data for the HIV LTR and find that noise in mRNA and protein expression scales inversely with the mean along analytically predicted transcriptional burst-size manifolds. We then experimentally perturb transcriptional activity to test a prediction of the multiple burst-size model: that increasing burst frequency will cause mRNA noise to decrease along given burst-size lines as mRNA levels increase. The data show that mRNA and protein noise decrease as mean expression increases, supporting the canonical inverse correlation between noise and mean. PMID:27467384

  14. Associated factors in modulating aflatoxin B1-albumin adduct level in three Chinese populations.

    PubMed

    Tao, Peng; Zhi-Ming, Liu; Tang-Wei, Liu; Le-Qun, Li; Min-Hao, Peng; Xue, Qin; Lu-Nam, Yan; Ren-Xiang, Liang; Zong-Liang, Wei; Lian-Wen, Wang; Qiao, Wang; Han-Ming, Shen; Choon-Nam, Ong; Santella, Regina M

    2005-03-01

    To elucidate the potential factors modulating exposure to aflatoxin B1 (AFB1) in three Chinese populations, an epidemiologic study was conducted in Fusui County and Nanning City of Guangxi Province and Chengdu City of Sichuan Province. The incidence rates of hepatocelluar carcinoma (HCC) for males in these three regions were 92-97 per 100,000, 32-47 per 100,000, and 21 per 100,000, respectively. Eighty-nine residents from Fusui, 196 residents from Nanning, and 118 residents from Chengdu were screened for AFB1-albumin adduct (AAA) levels and hepatitis virus (HBV, HCV, HDV, HEV, and HGV) infections, as well as liver biochemistry (alanine aminotransferase [ALT], aspartate aminotransferase [AST], alkaline phosphatase [ALP], y-glutamyl transpeptidase [GGT], 5'-nucleotidase, globulin [GLO], direct bilirubin, indirect bilirubin, and bile acid levels). At least one marker of hepatitis virus (HV) infection was present in 47.2% (42/89) of subjects from Fusui, while in Nanning and Chengdu the values were 15.8% (31/196) and 22.0% (26/118), respectively. In contrast to females, a higher level of AAA was observed in males; the difference was statistically significant in both the Nanning (P = 0.023) and the Chengdu (P = 0.026) subjects. In the Chengdu group, there was a significantly higher level of AAA in cases with HV infection (P = 0.041). There was a close association between AAA level and BMI in the adults without HV infection (r = 0.148, P = 0.044). Also, AAA was closely associated with DBIL and GGT in non-HV-infected minors (P < 0.05), closely associated with ALB, GLO, and GGT in HV-infected minors (P < 0.05), and closely associated with IBIL, GLO, TBA, and AST in non-HV-infected adults (P < 0.01). The co-effect of HV infection and AFB1 exposure may be responsible for the high risk of HCC in the Fusui region, whereas age, gender, BMI, and HV infection may modify individual aflatoxin levels. The relationship between AAA level and liver biochemistry indicates injury induced

  15. Role of procollagen mRNA levels in controlling the rate of procollagen synthesis.

    PubMed Central

    Rowe, L B; Schwarz, R I

    1983-01-01

    Two factors must be present for primary avian tendon cells to commit 50% of their total protein production to procollagen: ascorbate and high cell density. Scorbutic primary avian tendon cells at high cell density (greater than 4 X 10(4) cells per cm2) responded to the addition of ascorbate by a sixfold increase in the rate of procollagen synthesis. The kinetics were biphasic, showing a slow increase during the first 12 h followed by a more rapid rise to a maximum after 36 to 48 h. In contrast, after ascorbate addition, the level of accumulated cytoplasmic procollagen mRNA (alpha 2) showed a 12-h lag followed by a slow linear increase requiring 60 to 72 h to reach full induction. At all stages of the induction process, the relative increase in the rate of procollagen synthesis over the uninduced state exceeded the relative increase in the accumulation of procollagen mRNA. A similar delay in mRNA induction was observed when the cells were grown in an ascorbate-containing medium but the cell density was allowed to increase. In all cases, the rate of procollagen synthesis peaked approximately 24 h before the maximum accumulation of procollagen mRNA. The kinetics for the increase in procollagen synthesis are not, therefore, in agreement with the simple model that mRNA levels are the rate-limiting factor in the collagen pathway. We propose that the primary control point is at a later step. Further support for this idea comes from inhibitor studies, using alpha, alpha'-dipyridyl to block ascorbate action. In the presence of 0.3 mM alpha, alpha'-dipyridyl there was a specific two- to threefold decrease in procollagen production after 4 h, but this was unaccompanied by a drop in procollagen mRNA levels. Therefore, inhibitor studies give further support to the idea that primary action of ascorbate is to release a post-translational block. Images PMID:6835211

  16. Ammonium Chloride Ingestion Attenuates Exercise-Induced mRNA Levels in Human Muscle.

    PubMed

    Edge, Johann; Mündel, Toby; Pilegaard, Henriette; Hawke, Emma; Leikis, Murray; Lopez-Villalobos, Nicolas; Oliveira, Rodrigo S F; Bishop, David J

    2015-01-01

    Minimizing the decrease in intracellular pH during high-intensity exercise training promotes greater improvements in mitochondrial respiration. This raises the intriguing hypothesis that pH may affect the exercise-induced transcription of genes that regulate mitochondrial biogenesis. Eight males performed 10x2-min cycle intervals at 80% VO2speak intensity on two occasions separated by ~2 weeks. Participants ingested either ammonium chloride (ACID) or calcium carbonate (PLA) the day before and on the day of the exercise trial in a randomized, counterbalanced order, using a crossover design. Biopsies were taken from the vastus lateralis muscle before and after exercise. The mRNA level of peroxisome proliferator-activated receptor co-activator 1α (PGC-1α), citrate synthase, cytochome c and FOXO1 was elevated at rest following ACID (P<0.05). During the PLA condition, the mRNA content of mitochondrial- and glucose-regulating proteins was elevated immediately following exercise (P<0.05). In the early phase (0-2 h) of post-exercise recovery during ACID, PGC-1α, citrate synthase, cytochome C, FOXO1, GLUT4, and HKII mRNA levels were not different from resting levels (P>0.05); the difference in PGC-1α mRNA content 2 h post-exercise between ACID and PLA was not significant (P = 0.08). Thus, metabolic acidosis abolished the early post-exercise increase of PGC-1α mRNA and the mRNA of downstream mitochondrial and glucose-regulating proteins. These findings indicate that metabolic acidosis may affect mitochondrial biogenesis, with divergent responses in resting and post-exercise skeletal muscle. PMID:26656911

  17. Ammonium Chloride Ingestion Attenuates Exercise-Induced mRNA Levels in Human Muscle

    PubMed Central

    Mündel, Toby; Pilegaard, Henriette; Hawke, Emma; Leikis, Murray; Lopez-Villalobos, Nicolas; Oliveira, Rodrigo S. F.; Bishop, David J.

    2015-01-01

    Minimizing the decrease in intracellular pH during high-intensity exercise training promotes greater improvements in mitochondrial respiration. This raises the intriguing hypothesis that pH may affect the exercise-induced transcription of genes that regulate mitochondrial biogenesis. Eight males performed 10x2-min cycle intervals at 80% V˙O2peak intensity on two occasions separated by ~2 weeks. Participants ingested either ammonium chloride (ACID) or calcium carbonate (PLA) the day before and on the day of the exercise trial in a randomized, counterbalanced order, using a crossover design. Biopsies were taken from the vastus lateralis muscle before and after exercise. The mRNA level of peroxisome proliferator-activated receptor co-activator 1α (PGC-1α), citrate synthase, cytochome c and FOXO1 was elevated at rest following ACID (P<0.05). During the PLA condition, the mRNA content of mitochondrial- and glucose-regulating proteins was elevated immediately following exercise (P<0.05). In the early phase (0–2 h) of post-exercise recovery during ACID, PGC-1α, citrate synthase, cytochome C, FOXO1, GLUT4, and HKII mRNA levels were not different from resting levels (P>0.05); the difference in PGC-1α mRNA content 2 h post-exercise between ACID and PLA was not significant (P = 0.08). Thus, metabolic acidosis abolished the early post-exercise increase of PGC-1α mRNA and the mRNA of downstream mitochondrial and glucose-regulating proteins. These findings indicate that metabolic acidosis may affect mitochondrial biogenesis, with divergent responses in resting and post-exercise skeletal muscle. PMID:26656911

  18. Relation between the serum albumin level and nutrition supply in patients with pressure ulcers: retrospective study in an acute care setting.

    PubMed

    Sugino, Hirotaka; Hashimoto, Ichiro; Tanaka, Yuka; Ishida, Soshi; Abe, Yoshiro; Nakanishi, Hideki

    2014-01-01

    This retrospective study examined the validity of the commonly used serum albumin level as an indicator of nutrition status of patients with pressure ulcer(s), particularly because the serum albumin level is affected by various factors and may not be specific to malnutrition. Specifically, we investigated whether nutrition supply or inflammation affects the serum albumin level in 82 patients with pressure ulcers(s) (29 in whom pressure ulcer was present upon admission and 53 in whom pressure ulcer developed after hospital admission). Serum albumin levels, blood test including C-reactive protein (CRP) levels and blood count, caloric intake, and depth and healing of pressure ulcers were compared between various subgroups of patients. Serum albumin levels correlated with red blood cell counts and hemoglobin and CRP levels but not with caloric intake. The correlation with CRP before and after several weeks of pressure ulcer treatment was negative. The serum albumin level upon admission was higher in patients in whom the ulcer healed than in those in whom it did not heal as well as in patients who were discharged than in those who died in the hospital. The serum albumin level appears to reflect inflammation, wound healing, and disease severity rather than nutrition supply in patients with pressure ulcer. J. Med. Invest. 61: 15-21, February, 2014.

  19. Ascorbate free radical reductase mRNA levels are induced by wounding.

    PubMed Central

    Grantz, A A; Brummell, D A; Bennett, A B

    1995-01-01

    A cDNA clone encoding ascorbate free radical (AFR) reductase (EC 1.6.5.4) was isolated from tomato (Lycopersicon esculentum Mill.) and its mRNA levels were analyzed. The cDNA encoded a deduced protein of 433 amino acids and possessed amino acid domains characteristic of flavin adenine dinucleotide- and NAD(P)H-binding proteins but did not possess typical eukaryotic targeting sequences, suggesting that it encodes a cytosolic form of AFR reductase. Low-stringency genomic DNA gel blot analysis indicated that a single nuclear gene encoded this enzyme. Total ascorbate contents were greatest in leaves, with decreasing amounts in stems and roots and relatively constant levels in all stages of fruit. AFR reductase activity was inversely correlated with total ascorbate content, whereas the relative abundance of AFR reductase mRNA was directly correlated with enzyme activity in tissues examined. AFR reductase mRNA abundance increased dramatically in response to wounding, a treatment that is known to also induce ascorbate-dependent prolyl hydroxylation required for the accumulation of hydroxyproline-rich glycoproteins. In addition, AFR reductase may contribute to maintaining levels of ascorbic acid for protection against wound-induced free radical-mediated damage. Collectively, the results suggest that AFR reductase activity is regulated at the level of mRNA abundance by low ascorbate contents or by factors that promote ascorbate utilization. PMID:7784511

  20. Secretory IgA, albumin level, and bone density as markers of biostimulatory effects of laser radiation

    NASA Astrophysics Data System (ADS)

    Kucerova, Hana; Dostalova, Tatjana; Himmlova, Lucia; Bartova, Jirina; Mazanek, Jiri

    1998-12-01

    The aim of contribution is to evaluate the effects of low- level laser radiation on healing process after human molars extraction in lower jaw using frequency 5 Hz, 292 Hz and 9000 Hz. Changes in bone density and monitoring of secretory IgA and albumin levels in saliva were used as a marker of biostimulatory effect. Bone density after extraction and 6 month after surgical treatment was examined using the dental digital radiography. Bone healing was followed by osseointegration of bone structure in extraction wound. Changes of bone density, secretory IgA and albumin levels were compared in groups of patients with laser therapy and control group without laser therapy. Differences in levels of the saliva markers (sIgA and albumin) were found to be significant comparing irradiated and non-irradiated groups, as well as comparing groups irradiated by various modulatory frequencies. Density of alveolar bone (histogram) was examined on five slices acquired from every RVG image. Histograms were evaluated with computer program for microscopic image analysis. Differences of density were verified in area of the whole slice. There were no significant differences found between the bone density in irradiated and non irradiated groups perhaps due to our used therapeutical diagram.

  1. Rapid monitoring of mRNA levels with a molecular beacon during microbial fermentation.

    PubMed

    Dong, Dexian; Pang, Yanping; Gao, Qian; Huang, Xianqing; Xu, Yuquan; Li, Rongxiu

    2010-02-01

    In the microbial fermentation bioreactor, the processes of mRNA transcription, protein translation, and enzyme-catalyzed biosynthesis remain as "black boxes" of industrial monitoring and process control. Monitoring the kinetics of these "black boxes" is very helpful for optimizing and controlling the microbial fermentation process. This study first applied a molecular beacon (MB) to monitor the changes in the mRNA level of the phzC gene during antibiotic phenazine-1-carboxylic acid fermentation. Seven typical MB hybridization buffers were compared, and the effect of formamide on MBs was also studied. The results showed that rapid monitoring of the mRNA level using MBs was feasible. The optimal hybridization buffer for phzC MB was 100 mM Tris, 1 mM MgCl(2), pH 8.0. The optimal hybridization temperature was 35 degrees C, and formamide proved unsuitable for MB hybridization. The limit of detection of phzC MB was 1.67 nM and MB hybridization was complete by 7 min. Given that the time for RNA extraction is 12 min, it is possible that monitoring of phzC mRNA can be completed in less than 20 min. Since production of most amine acids, organic acids, wines, antibiotics, and proteins relies on microbial fermentation, our method may have some potential for application in these other microbial industries.

  2. Stimulation of albumin gene transcription by insulin in primary cultures of rat hepatocytes

    SciTech Connect

    Lloyd, C.E.; Kalinyak, J.E.; Hutson, S.M.; Jefferson, L.S.

    1987-02-01

    The first goal of the work reported here was to prepare single-stranded DNA sequences for use in studies on the regulation of albumin gene expression. A double-stranded rat albumin cDNA clone was subcloned into the bacteriophage vector M13mp7. Single-stranded recombinant clones were screened for albumin sequences containing either the mRNA strand or the complementary strand. Two clones were selected that contained the 1200 nucleotide long 3' end of the albumin sequence. DNA from the clone containing the mRNA strand was used as a template for DNA polymerase I to prepare a radiolabeled, single-stranded cDNA to albumin mRNA. This radiolabeled cDNA probe was used to quantitate the relative abundance of albumin mRNA in samples of total cellular RNA. DNA from the clone containing the complementary strand was used to measure relative rates of albumin gene transcription in isolated nuclei. The second goal was to use the single-stranded DNA probes to investigate the mechanism of the insulin-mediated stimulation of albumin synthesis in primary cultures of rat hepatocytes. Addition of insulin to hepatocytes maintained in a chemically defined, serum-free medium for 40 h in the absence of any hormones resulted in a specific 1.5- to 2.5-fold stimulation of albumin gene transcription that was maximal at 3 h and was maintained above control values for at least 24 h. The rate of albumin gene transcription in nuclei isolated from livers of diabetic rats was reduced to 50% of the value recorded in control nuclei. Taken together, these findings demonstrate that insulin regulates synthesis of albumin at the level of gene transcription.

  3. Digestive enzyme activity and mRNA level of trypsin in embryonic redclaw crayfish, Cherax quadricarnatus

    NASA Astrophysics Data System (ADS)

    Luo, Wen; Zhao, Yunlong; Zhou, Zhongliang; An, Chuanguang; Ma, Qiang

    2008-02-01

    The digestive enzyme activity and mRNA level of trypsin during the embryonic development of Cherax quadricarinatus were analyzed using biochemical and Fluorogenic Quantitative PCR (FQ—PCR) methods. The results show that the activities of trypsin and chymotrypsin had two different change patterns. Trypsin specific activity increased rapidly in the early stages of development and still remained high in preparation for the hatch stage. However, chymotrypsin activity peaked in stage 4 of embryonic development and decreased significantly in the last stage. The mRNA level of trypsin was elevated in all stages and two peak values were observed in stages 2 and 5 respectively. The results indicate that trypsin is very important for the utilization of the yolk during embryonic development and for the assimilation of dietary protein for larvae. The gene of trypsin is probably regulated at transcriptional level. The mRNA levels of trypsin can reflect not only trypsin activity, but also the regulatory mechanism for expression of trypsin gene to a certain degree.

  4. Upstream AUGs in embryonic proinsulin mRNA control its low translation level

    PubMed Central

    Hernández-Sánchez, Catalina; Mansilla, Alicia; de la Rosa, Enrique J.; Pollerberg, G.Elisabeth; Martínez-Salas, Encarna; de Pablo, Flora

    2003-01-01

    Proinsulin is expressed prior to development of the pancreas and promotes cell survival. Here we study the mechanism affecting the translation efficiency of a specific embryonic proinsulin mRNA. This transcript shares the coding region with the pancreatic form, but presents a 32 nt extended leader region. Translation of proinsulin is markedly reduced by the presence of two upstream AUGs within the 5′ extension of the embryonic mRNA. This attenuation is lost when the two upstream AUGs are mutated to AAG, leading to translational efficiency similar to that of the pancreatic mRNA. The upstream AUGs are recognized as initiator codons, because expression of upstream ORF is detectable from the embryonic transcript, but not from the mutated or the pancreatic mRNAs. Strict regulation of proinsulin biosynthesis appears to be necessary, since exogenous proinsulin added to embryos in ovo decreased apoptosis and generated abnormal developmental traits. A novel mechanism for low level proinsulin expression thus relies on upstream AUGs within a specific form of embryonic proinsulin mRNA, emphasizing its importance as a tightly regulated developmental signal. PMID:14532130

  5. Decreased relative expression level of trefoil factor 3 mRNA to galectin-3 mRNA distinguishes thyroid follicular carcinoma from adenoma.

    PubMed

    Takano, Toru; Miyauchi, Akira; Yoshida, Hiroshi; Kuma, Kanji; Amino, Nobuyuki

    2005-02-28

    The expression level of trefoil factor 3 (TFF3) mRNA is a marker for distinguishing thyroid follicular adenomas from carcinomas. However, when measuring the expression level of TFF3 mRNA in fine needle aspiration biopsies, an appropriate internal control mRNA, of which expression is restricted in thyroid epithelial--derived cells, is necessary, since they are often contaminated with a considerable number of blood cells, which do not express TFF3 mRNA. In this study, we evaluated the efficiency of molecular-based diagnosis of thyroid follicular carcinoma by measuring the relative expression of TFF3 mRNA by real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR) using galectin-3 mRNA as an internal control. The TFF3/galectin-3 mRNA ratio (T/G ratio) was measured in 54 follicular adenomas and 29 follicular carcinomas. It was markedly decreased in 7 follicular carcinomas of widely invasive type and with evident distant metastases. When the cutoff point was set at 16.0 by a receiver operator characteristic curve, the TG ratio showed good agreement with the pathological diagnosis [kappa=0.55; 95% confidence interval (CI), 0.34-0.77]. This agreement was better when the pathologically questionable cases were excluded (kappa=0.72; 95% CI, 0.49-0.95). Quantification of the T/G ratio may be a useful tool for the distinction between follicular adenomas and carcinomas, which is the most difficult in thyroid pathology.

  6. Assay of picogram level isocarbophos residue on tangerines and oranges with luminol-albumin chemiluminescence system.

    PubMed

    Chen, Donghua; Song, Zhenghua; Lv, Hairu

    2012-12-15

    A sensitive flow injection-chemiluminescence (FI-CL) method for the determination of isocarbophos (ICP) residue on tangerines and oranges was proposed. It was found that the CL intensity from luminol-albumin CL reaction could be obviously quenched in the presence of ICP and the decrease in CL intensity was proportional to the logarithm of ICP concentrations ranging from 1.0 to 1000 pmol L(-1), giving the limit of detection of 0.3 pmol L(-1) (3σ). The proposed procedure was successfully applied to the determination of ICP residue on tangerines and oranges with recoveries varying from 92.0 to 111.0% and RSDs less than 5.0%. The possible CL mechanism of luminol-albumin-ICP reaction was discussed, and ICP to albumin's binding constant (K(D)=1.00 × 10(6) L mol(-1)) and the number of binding sites (n=1.00) were given by the homemade FI-CL model. PMID:22980841

  7. Codon influence on protein expression in E. coli correlates with mRNA levels

    PubMed Central

    Boël, Grégory; Wong, Kam-Ho; Su, Min; Luff, Jon; Valecha, Mayank; Everett, John K.; Acton, Thomas B.; Xiao, Rong; Montelione, Gaetano T.; Aalberts, Daniel P.; Hunt, John F.

    2016-01-01

    Degeneracy in the genetic code, which enables a single protein to be encoded by a multitude of synonymous gene sequences, has an important role in regulating protein expression, but substantial uncertainty exists concerning the details of this phenomenon. Here we analyze the sequence features influencing protein expression levels in 6,348 experiments using bacteriophage T7 polymerase to synthesize messenger RNA in Escherichia coli. Logistic regression yields a new codon-influence metric that correlates only weakly with genomic codon-usage frequency, but strongly with global physiological protein concentrations and also mRNA concentrations and lifetimes in vivo. Overall, the codon content influences protein expression more strongly than mRNA-folding parameters, although the latter dominate in the initial ~16 codons. Genes redesigned based on our analyses are transcribed with unaltered efficiency but translated with higher efficiency in vitro. The less efficiently translated native sequences show greatly reduced mRNA levels in vivo. Our results suggest that codon content modulates a kinetic competition between protein elongation and mRNA degradation that is a central feature of the physiology and also possibly the regulation of translation in E. coli. PMID:26760206

  8. Analysis of xanthine dehydrogenase mRNA levels in mutants affecting the expression of the rosy locus.

    PubMed Central

    Covington, M; Fleenor, D; Devlin, R B

    1984-01-01

    Xanthine dehydrogenase (XDH) mRNA levels were measured in a number of mutants and natural variants affecting XDH gene expression. Two variants, ry+4 and ry+10, contain cis-acting elements which map to a region flanking the 5' end of the XDH gene. Ry+4, which has 2-3 times more XDH protein than a wild type strain, has 3.2 times more XDH mRNA. Ry+10 has 50% of the wild type XDH level and 54% of the wild type XDH mRNA level. Three rosy mutants which map within the structural gene were also examined. Two of these had little if any XDH mRNA, but the third mutant had 1.3 times more XDH mRNA than wild type flies. Another mutant, ry2 , which contains no XDH protein and has a 9KB transposable element inserted into the XDH gene, has normal levels of XDH mRNA transcripts which are also the same size as those found in the wild type strain. Changes in XDH mRNA levels were measured during Drosophila development and found to parallel changes in the amount of XDH protein. In addition, there were no large changes in the size of XDH mRNA during development. Images PMID:6588363

  9. Reduced mRNA expression levels of MBD2 and MBD3 in gastric carcinogenesis.

    PubMed

    Pontes, Thaís Brilhante; Chen, Elizabeth Suchi; Gigek, Carolina Oliveira; Calcagno, Danielle Queiroz; Wisnieski, Fernanda; Leal, Mariana Ferreira; Demachki, Samia; Assumpção, Paulo Pimentel; Artigiani, Ricardo; Lourenço, Laércio Gomes; Burbano, Rommel Rodriguez; Arruda Cardoso Smith, Marília

    2014-04-01

    Aberrant methylation has been reported in several neoplasias, including gastric cancer. The methyl-CpG-binding domain (MBD) family proteins have been implicated in the chromatin remodeling process, leading to the modulation of gene expression. To evaluate the role of MBD2 and MBD3 in gastric carcinogenesis and the possible association with clinicopathological characteristics, we assessed the mRNA levels and promoter methylation patterns in gastric tissues. In this study, MBD2 and MBD3 mRNA levels were determined by RT-qPCR in 28 neoplastic and adjacent nonneoplastic and 27 gastritis and non-gastritis samples. The promoter methylation status was determined by bisulfite sequencing, and we found reduced MBD2 and MBD3 levels in the neoplastic samples compared with the other groups. Moreover, a strong correlation between the MBD2 and MBD3 expression levels was observed in each set of paired samples. Our data also showed that the neoplastic tissues exhibited higher MBD2 promoter methylation than the other groups. Interestingly, the non-gastritis group was the only one with positive methylation in the MBD3 promoter region. Furthermore, a weak correlation between gene expression and methylation was observed. Therefore, our data suggest that DNA methylation plays a minor role in the regulation of MBD2 and MBD3 expression, and the presence of methylation at CpGs that interact with transcription factor complexes might also be involved in the modulation of these genes. Moreover, reduced mRNA expression of MBD2 and MBD3 is implicated in gastric carcinogenesis, and thus, further investigations about these genes should be conducted for a better understanding of the role of abnormal methylation involved in this neoplasia. PMID:24338710

  10. The extracellular protein regulator (xpr) affects exoprotein and agr mRNA levels in Staphylococcus aureus.

    PubMed Central

    Hart, M E; Smeltzer, M S; Iandolo, J J

    1993-01-01

    xpr, a regulatory element of exoprotein synthesis in Staphylococcus aureus, defined by an insertion of Tn551 into the chromosome of strain S6C, affects the expression of several exoproteins at the mRNA level. Drastic reduction in transcript levels for staphylococcal enterotoxin B (seb), lipase (geh), alpha-toxin (hla), and delta-toxin (hld) were detected, while mRNA levels for coagulase (coa) and protein A (spa) were elevated. Because the delta-toxin gene resides within the RNAIII transcript of the exoprotein regulator, agr, the reduction in hld message in the mutant strain of S6C is indicative of additional regulatory events in exoprotein gene expression. Northern (RNA) analysis of total cellular RNA hybridized with probes specific for RNAII and RNAIII (the two major transcripts of the agr operon) showed that both transcripts were reduced 16- to 32-fold at 3 h (late exponential phase) and 8- to 16-fold at 12 h (postexponential phase). These data confirm our original findings (M. S. Smeltzer, M. E. Hart, and J. J. Iandolo, Infect. Immun. 61:919-925, 1993) that two regulatory loci, agr and xpr, are interactive at the genotypic level. Images PMID:7504665

  11. Corticotropin-releasing factor and neuropeptide Y mRNA levels are modified by glucocorticoids in rainbow trout, Oncorhynchus mykiss.

    PubMed

    Doyon, Christian; Leclair, Jason; Trudeau, Vance L; Moon, Thomas W

    2006-04-01

    The primary stress response involves neuronal activation that ultimately leads to the release of glucocorticoids. Circulating glucocorticoids are thought to influence their own synthesis and release through a negative feedback mechanism that inhibits the activity of the hypothalamic and pituitary components of the stress axis. This study was designed to address the hypothesis that glucocorticoids modify corticotropin-releasing factor (CRF) and neuropeptide Y (NPY) mRNA levels in the rainbow trout (Oncorhynchus mykiss) brain. Cortisol implantation significantly reduced CRF1 and NPY mRNA levels in fish exposed to an isolation stress. In contrast, cortisol implantation did not prevent the stress-induced elevation of CRF1 and NPY mRNA levels during confinement. Treatment with the glucocorticoid receptor antagonist RU-486 reduced CRF1 mRNA levels in both isolated and confined fish, but had no effect on NPY mRNA. Although the cytochrome P450 inhibitor metyrapone reduced ACTH-induced cortisol secretion in vitro, plasma cortisol levels were elevated in isolated trout treated with metyrapone. Nevertheless, metyrapone implantation increased CRF1 and NPY mRNA levels in confined fish. Together, these results implicate cortisol as a modulator of CRF and NPY mRNA levels in the preoptic area of the trout brain, but that cortisol is only one such regulating mechanism.

  12. Transendothelial albumin flux: evidence against active transport of albumin

    SciTech Connect

    Siflinger-Birnboim, A.; Del Vecchio, P.J.; Cooper, J.A.; Malik, A.B.

    1986-03-01

    The authors studied whether albumin is actively transported across cultured pulmonary endothelium by comparing the transendothelial flux of /sup 125/I-albumin from the luminal-to-abluminal side to the flux from the abluminal-to-luminal side. Bovine pulmonary artery endothelial cells were grown to confluence on gelatinized polycarbonated filters separating abluminal from luminal compartments. Each compartment had an albumin concentration of 1 g/100 ml to equalize oncotic pressure gradients. The effect of hydrostatic pressure was eliminated by maintaining an equal level of fluid in both compartments. The transendothelial flux of albumin across the monolayer was measured by placing /sup 125/I-albumin tracer either on the luminal or the abluminal side. Equal fluxes of /sup 125/I-albumin from luminal-to-abluminal side and from abluminal-to-luminal side were observed. The results indicate that the pulmonary endothelium behaves symmetrically for albumin, indicating the absence of active transport of albumin.

  13. Expression of albumin in nonhepatic tissues and its synthesis by the bovine mammary gland.

    PubMed

    Shamay, A; Homans, R; Fuerman, Y; Levin, I; Barash, H; Silanikove, N; Mabjeesh, S J

    2005-02-01

    Albumin is a well-characterized product of the liver. In the present study, objectives were to determine if the albumin gene is also expressed in various nonhepatic tissues in the bovine; whether mammary gland epithelial cells synthesize albumin; and how its synthesis is affected by bovine mastitis. Albumin expression was monitored using reverse transcription-polymerase chain reaction. Tissues examined were: liver, mammary gland, tongue, intestine, lymph gland, testicle, ovary, and uterus. All tissues except the ovary expressed the albumin gene, albeit less so than the liver. The highest level of expression (other than liver) was found in the lymph nodes but expression was also found in the mammary gland. Incubation of mammary gland explants with the labeled amino acid L-[(35)S] methionine resulted in formation of labeled immunoprecipitable albumin, newly synthesized in the explant. Immunoprecipitable albumin in the medium verified that newly synthesized albumin was also secreted into the medium. This shows that the gland itself is a source of milk albumin. Albumin mRNA expression was approximately 4 times higher in mammary gland tissue from 6 mastitic cows compared with expression in mammary tissue from 6 healthy glands. Further, secretion of albumin was increased 3.5-fold from explants of mastitic mammary glands compared with secretion from explants of healthy mammary glands. Addition of lipopolysaccharide increased the synthesis and secretion of albumin in mammary gland cells in a dose-dependent manner. Exposure to lipopolysaccharide accelerated albumin synthesis in a time-dependent manner up to 48 h. These results lead us to suggest that the secretion of albumin by the mammary gland is part of the innate nonspecific defense system. PMID:15653522

  14. Influence of diets with different levels of protein and energy on liver albumin content in the rat.

    PubMed

    Maurice, M; Lardeux, B; De Saint-Steban, C; Bourdel, G; Feldmann, G

    1986-11-01

    The influence of protein ingestion on liver albumin synthesis and albumin content was investigated in rats fed protein as a meal (90% casein) given apart from the other dietary components provided ad libitum. In this condition, protein ingestion rapidly stimulates liver total protein synthesis. Separately fed rats were studied 6 and 20 h after the protein meal. Control rats fed mixed diets containing 13 or 80% casein were killed either during the absorptive (night) or postabsorptive (light) periods. The ratio of hepatic albumin synthesis to total protein synthesis remained fairly constant (12-15%) in all groups, indicating that albumin synthesis paralleled total protein synthesis. Liver albumin content measured in microsomes by immunonephelometry was significantly higher in separately fed rats killed 6 h postmeal than in those killed after 20 h. In rats fed 13% casein, the liver albumin content remained high regardless of the time of killing. In rats fed 80% casein, the albumin content was higher during the absorptive period than during the postabsorptive period. Immunoperoxidase staining of the hepatocyte organelles involved in albumin synthesis, especially the Golgi apparatus, was more intense for separately fed rats killed 6 h postmeal than for those killed after 20 h. Livers of rats fed 13% casein also exhibited a pattern indicative of high hepatocyte albumin content, whereas livers of rats fed 80% casein contained less. These results show that, in separate feeding, wide circadian variations of albumin synthesis run parallel to changes in liver albumin content.

  15. The impact of intra- and postoperative albumin levels as a biomarker of delirium after cardiopulmonary bypass: results of an exploratory study.

    PubMed

    Baranyi, Andreas; Rothenhäusler, Hans-Bernd

    2012-12-30

    In this prospective study the frequency of delirium after cardiac surgery with cardiopulmonary bypass (CPB) was determined. Furthermore, we investigated the impact of intra- and postoperative levels of albumin as a biomarker of delirium. Thirty-four patients who underwent elective CPB at the Department of Cardiac Surgery, Ludwig-Maximilians-University of Munich, Germany, were enroled in this prospective study. During the intensive care unit (ICU) stay and shortly after discharge from the ICU, delirious state was evaluated daily using the Delirium-Rating-Scale. Albumin was assayed pre-anaesthesia, immediately after induction of anaesthesia, at the beginning of the heart-lung-apparatus period, immediately before the opening and 5min after the opening of the aortic clamp, 24h and 48h postoperatively and on the day before discharge. After CPB, a clinical significant delirious state was observed in 11 patients (32.4%). The albumin level decreased during the surgical intervention and increased postoperatively with a maximum level at the time of discharge. CPB patients with delirious state showed a significantly lower albumin level 24h and 48h postoperatively than those without delirium. A low level of postoperative albumin seems to be a useful biomarker to identify patients with high risk of delirious state after CPB.

  16. Catabolite control of the elevation of PGK mRNA levels by heat shock in Saccharomyces cerevisiae.

    PubMed

    Piper, P W; Curran, B; Davies, M W; Hirst, K; Lockheart, A; Seward, K

    1988-05-01

    Heat shock enhances the very high level of transcription of the phosphoglycerate kinase (PGK) gene in fermentative cultures of Saccharomyces cerevisiae. This response of PGK mRNA levels was not found on gluconeogenic carbon sources, and could be switched on or off subject to availability of fermentable carbon source. The addition of glucose to yeast growing on glycerol resulted in acquisition, within 30-60 min, of the ability to elevate PGK mRNA levels after heat shock. In addition, in aerobic cultures growing on glucose the exhaustion of the medium glucose coincided with a loss of the heat-shock effect on PGK mRNA and a switch-over to slower growth by aerobic respiration. Levels of hsp26 mRNA were analysed during these experiments. Contrasting with this requirement for fermentable catabolite for manifestation of a heat-shock response of PGK mRNA levels, the PGK enzyme was not synthesized at a greater level in heat-shocked fermentative than in gluconeogenic cultures. PGK is one of only a few proteins made efficiently after mild heat shock of yeast. Thus, heat-stress-induced elevation of PGK mRNA levels does not appreciably increase PGK synthesis during exposure to high temperatures and so its role may be to assist cells repressed in mitochondrial function during recovery following a heat shock.

  17. Levels of lactoferrin, secretory IgA and serum albumin in the tear film of people with keratoconus.

    PubMed

    Balasubramanian, Sivaraman Arumugam; Pye, David Cecil; Willcox, Mark Duncan Perry

    2012-03-01

    Keratoconus is a degenerating disease of the eye which causes an irregularly shaped cornea leading to severe impairment of vision. Tear proteomics in keratoconus has been a topic of substantial discussion and speculation over many years. This study was designed to examine the levels of total protein, lactoferrin, secretory IgA and serum albumin in the tear film of people with keratoconus. Basal tears were collected using a capillary tube and corneal curvature was mapped using a topographer. Total protein in tears was estimated. The amount of regulated protein lactoferrin, constitutive protein sIgA and serum protein albumin was measured using specific ELISAs. The changes in protein concentrations in tears were correlated to the degree of corneal asphericity. There was a two-fold (p<0.0001) decrease in total protein levels between keratoconus (3.86 ± 1.62 mg/ml) and normal (7.00 ± 1.58 mg/ml) tears. The amount of lactoferrin (0.67 ± 0.28 vs. 1.13 ± 0.29 mg/ml) and secretory IgA (0.78 ± 0.36 vs. 1.70 ± 0.66 mg/ml) were significantly (p<0.0001) reduced in keratoconus tears. Variation in serum albumin levels between keratoconus (8.18 ± 4.72 μg/ml) and normal tears (11.66 ± 8.20 μg/ml) were not significant. The differences in total protein, lactoferrin and secretory IgA were not associated with contact lens wear, age, gender or atopy of subjects. The keratometry reading was negatively correlated to tear levels of total protein (r = -0.59, p < 0.01) lactoferrin (r = -0.40, p < 0.05) and secretory IgA (r = -0.34, p < 0.05). The tears of keratoconus subjects appear to have an altered protein profile, and one that might change with the severity of the disease. These findings may lead the way to understanding or monitoring disease progression.

  18. Time Course of Behavioral Alteration and mRNA Levels of Neurotrophic Factor Following Stress Exposure in Mouse.

    PubMed

    Hashikawa, Naoya; Ogawa, Takumi; Sakamoto, Yusuke; Ogawa, Mami; Matsuo, Yumi; Zamami, Yoshito; Hashikawa-Hobara, Narumi

    2015-08-01

    Stress is known to affect neurotrophic factor expression, which induces depression-like behavior. However, whether there are time-dependent changes in neurotrophic factor mRNA expression following stress remains unclear. In the present study, we tested whether chronic stress exposure induces long-term changes in depression-related behavior, serum corticosterone, and hippocampal proliferation as well as neurotrophic factor family mRNA levels, such as brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin-3 (NT-3), and ciliary neurotrophic factor (CNTF), in the mouse hippocampus. The mRNA level of neurotrophic factors (BDNF, NGF, NT-3, and CNTF) was measured using the real-time PCR. The serum corticosterone level was evaluated by enzyme-linked immunosorbent assay, and, for each subject, the hippocampal proliferation was examined by 5-bromo-2-deoxyuridine immunostaining. Mice exhibited depression-like behavior in the forced-swim test (FST) and decreased BDNF mRNA and hippocampal proliferation in the middle of the stress exposure. After 15 days of stress exposure, we observed increased immobility in the FST, serum corticosterone levels, and BDNF mRNA levels and degenerated hippocampal proliferation, maintained for at least 2 weeks. Anhedonia-like behavior in the sucrose preference test and NGF mRNA levels were decreased following 15 days of stress. NGF mRNA levels were significantly higher 1 week after stress exposure. The current data demonstrate that chronic stress exposure induces prolonged BDNF and NGF mRNA changes and increases corticosterone levels and depression-like behavior in the FST, but does not alter other neurotrophic factors or performance in the sucrose preference test.

  19. Regulation of Protein Levels in Subcellular Domains through mRNA Transport and Localized Translation*

    PubMed Central

    Willis, Dianna E.; Twiss, Jeffery L.

    2010-01-01

    Localized protein synthesis is increasingly recognized as a means for polarized cells to modulate protein levels in subcellular regions and the distal reaches of their cytoplasm. The axonal and dendritic processes of neurons represent functional domains of cytoplasm that can be separated from their cell body by vast distances. This separation provides a biological setting where the cell uses locally synthesized proteins to both autonomously respond to stimuli and to retrogradely signal the cell body of events occurring is this distal environment. Other cell types undoubtedly take advantage of this localized mechanism, but these have not proven as amenable for isolation of functional subcellular domains. Consequently, neurons have provided an appealing experimental platform for study of mRNA transport and localized protein synthesis. Molecular biology approaches have shown both the population of mRNAs that can localize into axons and dendrites and an unexpectedly complex regulation of their transport into these processes. Several lines of evidence point to similar complexities and specificity for regulation of mRNA translation at subcellular sites. Proteomics studies are beginning to provide a comprehensive view of the protein constituents of subcellular domains in neurons and other cell types. However, these have currently fallen short of dissecting temporal regulation of new protein synthesis in subcellular sites and mechanisms used to ferry mRNAs to these sites. PMID:20167945

  20. Using Spinach aptamer to correlate mRNA and protein levels in Escherichia coli.

    PubMed

    Pothoulakis, Georgios; Ellis, Tom

    2015-01-01

    In vivo gene expression measurements have traditionally relied on fluorescent proteins such as green fluorescent protein (GFP) with the help of high-sensitivity equipment such as flow cytometers. However, fluorescent proteins report only on the protein level inside the cell without giving direct information about messenger RNA (mRNA) production. In 2011, an aptamer termed Spinach was presented that acts as an RNA mimic of GFP when produced in Escherichia coli and mammalian cells. It was later shown that coexpression of a red fluorescent protein (mRFP1) and the Spinach aptamer, when included into the same gene expression cassette, could be utilized for parallel in vivo measurements of mRNA and protein production. As accurate characterization of component biological parts is becoming increasingly important for fields such as synthetic biology, Spinach in combination with mRFP1 provide a great tool for the characterization of promoters and ribosome binding sites. In this chapter, we discuss how live-cell imaging and flow cytometry can be used to detect and measure fluorescence produced in E. coli cells by different constructs that contain the Spinach aptamer and the mRFP1 gene.

  1. Dietary copper can regulate the level of mRNA for dopamine B-hydroxylase in rat adrenal gland

    SciTech Connect

    Sabban, E.L.; Failla, M.L.; McMahon, A.; Seidel, K.E. Dept. of Agriculture, Beltsville, MD )

    1991-03-15

    Recent studies have shown that Cu deficiency markedly alters the levels of dopamine (DA) and norepinephrine (NE) in several peripheral tissues of rodents. Conversion of DA to NE is mediated by dopamine B-hydroxylase (DBM). Here the authors examined the effect of dietary Cu deficiency on the levels of DA, NE and DBM mRNA in rat adrenal gland. Severe Cu deficiency was induced by feeding low Cu diet to dams beginning at 17d gestation and weaning pups to the same diet. At 7 wks of age rats fed {minus}Cu diet were characterized by depressed growth, low tissue Cu, enlarged hearts and moderate anemia. Concentrations of DA were higher in adrenals and hearts of {minus}Cu rats compared to +Cu controls. While cardiac level of NE in {minus}Cu rats were reduced to 17% that of controls, adrenal NE was unchanged by Cu deficiency. To investigate possible mechanisms responsible for the response of adrenal gland to Cu deficiency, RNA was isolated and the levels of DBH mRNA and tyrosine hydroxylase (TH) mRNA were analyzed by Northern blots. Steady state levels of adrenal DBH mRNA was increased 2-3 fold in {minus}Cu rats, whereas TH mRNA were unchanged by dietary Cu status. Upon feeding the {minus}Cu rats the Cu adequate diet overnight, there was a further increase in DBH mRNA and a slight elevation of TH mRNA levels. The results indicate that dietary copper can markedly affect the level of DBH mRNA in rat adrenal gland.

  2. Distinct regulation of vasoactive intestinal peptide (VIP) expression at mRNA and peptide levels in human neuroblastoma cells.

    PubMed

    Agoston, D V; Colburn, S; Krajniak, K G; Waschek, J A

    1992-05-25

    Neuronal differentiation was induced in cultures of the human neuroblastoma cell line subclone SH-SY5Y by 14-day treatment with dibutyryl cAMP (dBcAMP), retinoic acid, and phorbol 12-myristate 13-acetate (PMA). An approximate 4-fold increase in vasoactive intestinal peptide (VIP) mRNA concentration was observed after differentiation with retinoic acid, whereas no change in VIP mRNA concentration was observed after differentiation with dBcAMP or PMA. A short-term treatment of cells with PMA did however result in a 5-fold transient increase in VIP mRNA; prior differentiation with retinoic acid or dBcAMP diminished this effect. Observed increases in VIP mRNA were in all cases accompanied by increases in VIP immunoreactivity. Remarkably, however, long-term treatment of cells with dBcAMP, which caused no change in mRNA levels, resulted in a six-fold increase in VIP immunoreactivity. Acute (36-h) treatment with carbachol also caused an increase in VIP immunoreactivity (about 2-fold, and blocked by atropine) without an increase in VIP mRNA level. Thus, a quantitative change in gene transcription or mRNA stability appears not to be a prerequisite for increased VIP expression, indicating that regulation can occur at translational or post-translational steps.

  3. Ischemia-modified albumin levels in the prediction of acute critical neurological findings in carbon monoxide poisoning.

    PubMed

    Daş, Murat; Çevik, Yunsur; Erel, Özcan; Çorbacioğlu, Şeref Kerem

    2016-04-01

    The aim of the study was to determine whether serum ischemia-modified albumin (IMA) levels in patients with carbon monoxide (CO) poisoning were higher compared with a control group of healthy volunteers. In addition, the study sought to determine if there was a correlation between serum IMA levels and carboxyhemoglobin (COHB) levels and other critical neurological findings (CNFs). In this prospective study, the IMA levels of 100 patients with CO poisoning and 50 control individuals were compared. In addition, the IMA and COHB levels were analyzed according to absence or presence CNFs in patients with CO poisoning. The levels of IMA (mg/dL) on admittance, and during the 1(st) hour and 3(rd) hour, in patients with CO poisoning (49.90 ± 35.43, 30.21 ± 14.81, and 21.87 ± 6.03) were significantly higher, compared with the control individuals (17.30 ± 2.88). The levels of IMA in the 6(th) hour were not higher compared with control individuals. The levels of IMA on admittance, and during the 1(st) hour, 3(rd) hour, and 6(th) hour, and COHB (%) levels in patients who had CNFs were higher compared with IMA levels and COHB levels in patients who had no CNFs (p < 0.001). However, when the multivariate model was created, it was observed that IMA level on admittance was a poor indicator for prediction of CNFs (odds ratio = 1.05; 95% confidence interval, 1.01-1.08). We therefore concluded that serum IMA levels could be helpful in the diagnosis of CO poisoning. However, we believe that IMA levels cannot be used to predict which patients will develop CNFs due to CO poisoning.

  4. Hepcidin expression in liver cells: evaluation of mRNA levels and transcriptional regulation.

    PubMed

    Kanamori, Yohei; Murakami, Masaru; Matsui, Tohru; Funaba, Masayuki

    2014-08-01

    Hepcidin produced in the liver negatively regulates intestinal iron absorption, and the bone morphogenetic protein (BMP) pathway is well-known to stimulate hepcidin expression. However, the regulation of hepcidin expression has not been fully elucidated. In this study, we evaluate different systems that can be used to determine how hepcidin expression is regulated. The basal expression of hepcidin in liver cell lines, such as HepG2 cells and Hepa1-6 cells, was lower than that in the liver and primary hepatocytes; the expression levels of hepcidin in the cell lines were near the limit of detection for RT-PCR and RT-qPCR analyses. Treatment with trichostatin A, RNAlater, or MG-132 enhanced the expression of hepcidin in HepG2 cells, suggesting that histone deacetylation, instability of mRNA, or proteosomal degradation of the protein(s) that positively regulate hepcidin expression may be responsible for the decreased expression of hepcidin in HepG2 cells. In luciferase-based reporter assays, BMP induced the transcription of a reporter, hepcidin(-2018)-luc, that contains nt -2018 through nt -35 of the hepcidin promoter in HepG2 cells and Hepa1-6 cells. However, BRE-luc, a representative reporter used to evaluate BMP signaling, was unresponsive to BMP in HepG2 cells. These results suggest that hepcidin transcription can be best evaluated in liver cell lines and that the hepcidin promoter senses BMP signaling with high sensitivity. The present study demonstrates that studies regarding the regulation of hepcidin expression at the mRNA level should be evaluated in primary hepatocytes, and liver cell lines are well-suited for studies examining the transcriptional regulation of hepcidin.

  5. Serum ischemia-modified albumin levels at diagnosis and during treatment of late-onset neonatal sepsis.

    PubMed

    Yerlikaya, F Hümeyra; Kurban, Sevil; Mehmetoglu, Idris; Annagur, Ali; Altunhan, Huseyin; Erbay, Ekrem; Ors, Rahmi

    2014-11-01

    Sepsis is one of the most common infectious conditions in the neonatal period, and continues as a major source of morbidity and mortality. The aim of this study is to determine serum ischemia-modified albumin (IMA) levels in late-onset neonatal sepsis at the time of diagnosis and after therapy, and to show the meaningful on the follow-up. Also, it is aimed to compare serum IMA levels with serum C-reactive protein (CRP), procalcitonin (PCT) levels and white blood cell count. The study was performed on 33 premature babies with sepsis and 21 healthy premature controls at 7-28 days of age. In the sepsis group, biochemical parameters and blood culture samples were obtained from the blood at the onset and on the fifth day of treatment for each patient. Serum IMA, CRP, PCT and white blood cell count were significantly higher in the sepsis group before treatment when compared with the control group. In addition, the levels of IMA were positively correlated with white blood cell count, CRP and PCT in the sepsis group before treatment. In conclusion, serum IMA levels may be useful in late-onset neonatal sepsis at the time of diagnosis and after therapy. As far as we know this is the first report about the assesment of illness diagnosis and after therapy using serum IMA levels, and further studies are needed to confirm our results in larger groups of patients.

  6. Dysregulation of TAp63 mRNA and protein levels in psoriasis.

    PubMed

    Gu, Xiaolian; Lundqvist, Elisabet N; Coates, Philip J; Thurfjell, Niklas; Wettersand, Emma; Nylander, Karin

    2006-01-01

    Psoriasis is a chronic and excessive inflammation of the skin and is currently incurable. The cause of psoriasis remains poorly understood and a central and cooperative role for keratinocytes and T-cells in triggering the disease is highlighted. The p63 gene encodes six different proteins with homology to the tumor suppressor protein p53 that are crucial for normal development of ectodermally derived structures such as skin and oral mucosa. In this study, we have analyzed levels of the different p63 isoforms using quantitative reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry in 15 patients diagnosed with psoriasis. Quantitative RT-PCR results showed downregulation of the full-length TAp63 in psoriatic lesions compared to both clinically normal skin from patients (P<0.001) and matched healthy controls (P<0.001); however, p63 protein levels detected by immunohistochemistry were similar. All psoriasis lesions also had detectable levels of activated Stat3, a protein indicated in development of the disease, whereas control tissue lacked this protein. The present data show a different regulation of TAp63 in psoriasis, where the discrepancy between mRNA levels and protein expression indicates a post-transcriptional regulation analogous to that seen in p53.

  7. Long-term human primary hepatocyte cultures in a microfluidic liver biochip show maintenance of mRNA levels and higher drug metabolism compared with Petri cultures.

    PubMed

    Jellali, Rachid; Bricks, Thibault; Jacques, Sébastien; Fleury, Marie-José; Paullier, Patrick; Merlier, Franck; Leclerc, Eric

    2016-07-01

    Human primary hepatocytes were cultivated in a microfluidic bioreactor and in Petri dishes for 13 days. mRNA kinetics in biochips showed an increase in the levels of CYP2B6, CYP2C19, CYP2C8, CYP3A4, CYP1A2, CYP2D6, HNF4a, SULT1A1, UGT1A1 mRNA related genes when compared with post extraction levels. In addition, comparison with Petri dishes showed higher levels of CYP2B6, CYP2C19, CYP2C8, CYP3A4, CYP1A2, CYP2D6 related genes at the end of culture. Functional assays illustrated a higher urea and albumin production over the period of culture in biochips. Bioreactor drug metabolism (midazolam and phenacetin) was not superior to the Petri dish after 2 days of culture. The CYP3A4 midazolam metabolism was maintained in biochips after 13 days of culture, whereas it was almost undetectable in Petri dishes. This led to a 5000-fold higher value of the metabolic ratio in the biochips. CYP1A2 phenacetin metabolism was found to be higher in biochips after 5, 9 and 13 days of culture. Thus, a 100-fold higher metabolic ratio of APAP in biochips was measured after 13 days of perfusion. These results demonstrated functional primary human hepatocyte culture in the bioreactor in a long-term culture. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Preprocedural Albumin Levels and Risk of In-Stent Restenosis After Coronary Stenting With Bare-Metal Stent.

    PubMed

    Celik, Ibrahim Etem; Yarlioglues, Mikail; Kurtul, Alparslan; Duran, Mustafa; Koseoglu, Cemal; Oksuz, Fatih; Aksoy, Ozlem; Murat, Sani Namik

    2016-05-01

    In-stent restenosis (ISR) remains a significant clinical problem in patients with coronary artery disease treated with percutaneous coronary intervention. Decreased serum albumin (SA) level is related to an increased risk of cardiovascular events. The aim of the present study was to assess whether SA levels at admission are an independent predictor of ISR in patients undergoing bare-metal stent (BMS) implantation. A total of 341 patients (aged 61 ± 11, 65.4% men) with a history of BMS implantation and a further control coronary angiography due to stable angina pectoris (SAP) were included. The study population was classified into 2 groups: patients with and without ISR. The ISR was observed in 140 (41.1%) patients. We found significantly lower SA levels in patients who developed ISR than in those who did not (3.69 ± 0.41 vs 4.07 ± 0.35 mg/dL,P< .001). Multivariate analysis revealed that SA level (odds ratio 0.109, 95% confidence interval 0.017-0.700,P= .020), stent diameter, reason for stent implantation, and body mass index were independent risk factors for the development of ISR. The SA level at admission is inversely associated with ISR in patients with SAP.

  9. Reduced XPC DNA repair gene mRNA levels in clinically normal parents of xeroderma pigmentosum patients.

    PubMed

    Khan, Sikandar G; Oh, Kyu-Seon; Shahlavi, Tala; Ueda, Takahiro; Busch, David B; Inui, Hiroki; Emmert, Steffen; Imoto, Kyoko; Muniz-Medina, Vanessa; Baker, Carl C; DiGiovanna, John J; Schmidt, Deborah; Khadavi, Arash; Metin, Ahmet; Gozukara, Engin; Slor, Hanoch; Sarasin, Alain; Kraemer, Kenneth H

    2006-01-01

    Xeroderma pigmentosum group C (XP-C) is a rare autosomal recessive disorder. Patients with two mutant alleles of the XPC DNA repair gene have sun sensitivity and a 1000-fold increase in skin cancers. Clinically normal parents of XP-C patients have one mutant allele and one normal allele. As a step toward evaluating cancer risk in these XPC heterozygotes we characterized cells from 16 XP families. We identified 15 causative mutations (5 frameshift, 6 nonsense and 4 splicing) in the XPC gene in cells from 16 XP probands. All had premature termination codons (PTC) and absence of normal XPC protein on western blotting. The cell lines from 26 parents were heterozygous for the same mutations. We employed a real-time quantitative reverse transcriptase-PCR assay as a rapid and sensitive method to measure XPC mRNA levels. The mean XPC mRNA levels in the cell lines from the XP-C probands were 24% (P<10(-7)) of that in 10 normal controls. This reduced XPC mRNA level in cells from XP-C patients was caused by the PTC that induces nonsense-mediated mRNA decay. The mean XPC mRNA levels in cell lines from the heterozygous XP-C carriers were intermediate (59%, P=10(-4)) between the values for the XP patients and the normal controls. This study demonstrates reduced XPC mRNA levels in XP-C patients and heterozygotes. Thus, XPC mRNA levels may be evaluated as a marker of cancer susceptibility in carriers of mutations in the XPC gene. PMID:16081512

  10. The relationship between serum albumin levels and 24-h ambulatory blood pressure monitoring recordings in non-diabetic essential hypertensive patients

    PubMed Central

    Ahbap, Elbis; Sakaci, Tamer; Kara, Ekrem; Sahutoglu, Tuncay; Koc, Yener; Basturk, Taner; Sevinc, Mustafa; Akgol, Cuneyt; Kayalar, Arzu O.; Ucar, Zuhal A.; Bayraktar, Feyza; Unsal, Abdulkadir

    2016-01-01

    OBJECTIVES: The goal of this study was to evaluate the relationship between serum albumin levels and 24-hour ambulatory blood pressure monitoring (24-h ABPM) recordings in non-diabetic essential hypertensive patients. METHODS: A total of 354 patients (mean [SD] age: 55.5 [14.3] years, 50% females) with essential hypertension and 24-h ABPM recordings were included. Patient 24-h nighttime and daytime ABPM values, systolic and diastolic dipping status and average nocturnal dipping were recorded. The correlations between serum albumin levels and nocturnal systolic and diastolic dipping were evaluated, and correlates of average nocturnal systolic dipping were determined via a linear regression model. RESULTS: Overall, 73.2% of patients were determined to be non-dippers. The mean (SD) levels of serum albumin (4.2 [0.3] g/dL vs. 4.4 [0.4] g/dL, p<0.001) and the average nocturnal systolic (15.2 [4.8] mmHg vs. 0.3 [6.6] mmHg, p<0.001) and diastolic dipping (4.2 [8.6] mmHgvs. 18.9 [7.0] mmHg, p<0.001) were significantly lower in non-dippers than in dippers. A significant positive correlation was noted between serum albumin levels and both systolic (r=0.297, p<0.001) and diastolic dipping (r=0.265, p<0.001). The linear regression analysis revealed that for each one-unit increase in serum albumin, the average nocturnal dip in systolic BP increased by 0.17 mmHg (p=0.033). CONCLUSION: Our findings indicate an association between serum albumin levels and the deterioration of circadian BP rhythm among essential hypertensive patients along with the identification of a non-dipper pattern in more than two-thirds of patients. Our findings emphasize the importance of serum albumin levels, rather than urinary albumin excretion, as an independent predictor of nocturnal systolic dipping, at least in non-diabetic essential hypertensive patients with moderate proteinuria. PMID:27276394

  11. Accounting for experimental noise reveals that mRNA levels, amplified by post-transcriptional processes, largely determine steady-state protein levels in yeast.

    PubMed

    Csárdi, Gábor; Franks, Alexander; Choi, David S; Airoldi, Edoardo M; Drummond, D Allan

    2015-05-01

    Cells respond to their environment by modulating protein levels through mRNA transcription and post-transcriptional control. Modest observed correlations between global steady-state mRNA and protein measurements have been interpreted as evidence that mRNA levels determine roughly 40% of the variation in protein levels, indicating dominant post-transcriptional effects. However, the techniques underlying these conclusions, such as correlation and regression, yield biased results when data are noisy, missing systematically, and collinear---properties of mRNA and protein measurements---which motivated us to revisit this subject. Noise-robust analyses of 24 studies of budding yeast reveal that mRNA levels explain more than 85% of the variation in steady-state protein levels. Protein levels are not proportional to mRNA levels, but rise much more rapidly. Regulation of translation suffices to explain this nonlinear effect, revealing post-transcriptional amplification of, rather than competition with, transcriptional signals. These results substantially revise widely credited models of protein-level regulation, and introduce multiple noise-aware approaches essential for proper analysis of many biological phenomena.

  12. Accounting for Experimental Noise Reveals That mRNA Levels, Amplified by Post-Transcriptional Processes, Largely Determine Steady-State Protein Levels in Yeast

    PubMed Central

    Csárdi, Gábor; Franks, Alexander; Choi, David S.; Airoldi, Edoardo M.; Drummond, D. Allan

    2015-01-01

    Cells respond to their environment by modulating protein levels through mRNA transcription and post-transcriptional control. Modest observed correlations between global steady-state mRNA and protein measurements have been interpreted as evidence that mRNA levels determine roughly 40% of the variation in protein levels, indicating dominant post-transcriptional effects. However, the techniques underlying these conclusions, such as correlation and regression, yield biased results when data are noisy, missing systematically, and collinear---properties of mRNA and protein measurements---which motivated us to revisit this subject. Noise-robust analyses of 24 studies of budding yeast reveal that mRNA levels explain more than 85% of the variation in steady-state protein levels. Protein levels are not proportional to mRNA levels, but rise much more rapidly. Regulation of translation suffices to explain this nonlinear effect, revealing post-transcriptional amplification of, rather than competition with, transcriptional signals. These results substantially revise widely credited models of protein-level regulation, and introduce multiple noise-aware approaches essential for proper analysis of many biological phenomena. PMID:25950722

  13. Albumin Test

    MedlinePlus

    ... to a variety of conditions in addition to malnutrition , a decrease in albumin needs to be evaluated ... can also be seen in inflammation , shock, and malnutrition . They may be seen with conditions in which ...

  14. Decrease in class pi glutathione transferase mRNA levels by ultraviolet irradiation of cultured rat keratinocytes.

    PubMed

    Nakano, H; Kimura, J; Kumano, T; Hanada, K; Satoh, K; Hashimoto, I; Tsuchida, S

    1997-11-01

    The effect of ultraviolet (UV) B irradiation on pi class glutathione transferase (GST-P) gene expression was examined in cultured rat keratinocytes. Immunoblotting demonstrated GST-P to be the major GST form in the cells, and it was significantly decreased following irradiation. Northern blot analysis revealed that the mRNA decreased to 10-25% of the initial value 24 h after irradiation at a dose of 40 mJ/cm2. No remarkable changes were observed at earlier time points. Hydrogen peroxide treatment enhanced GST-P mRNA expression, with a 70% increase at 250 microM concentration. Alterations in possible trans-acting factors were examined to clarify the mechanism of repression by UV irradiation. c-Jun mRNA was induced 3.5-fold at 4 h after irradiation, but by 24 h fell to a lower level than that observed initially. c-Fos mRNA was increased 10-fold at 1 h but was completely suppressed at 12 and 24 h. Thus, the changes of c-Jun and c-Fos mRNA differed from that of GST-P mRNA. The level of mRNA for silencer factor-B was decreased to less than 10% at 12 h. UV irradiation of cells transfected with the chloramphenicol acetyltransferase (CAT) reporter gene containing enhancer (GPE I) or silencer regions of the GST-P gene did not suppress CAT activity. Although basal expression of the GST-P gene was mainly dependent on GPE I, altered expression of c-jun, c-fos and other genes coding for factors possibly trans-acting on GPE I did not appear to be responsible for the decreased GST-P mRNA levels.

  15. An improved method for absolute quantification of mRNA using multiplex polymerase chain reaction: determination of renin and angiotensinogen mRNA levels in various tissues.

    PubMed

    Dostal, D E; Rothblum, K N; Baker, K M

    1994-12-01

    We have developed a multiplex, competitive, reverse-transcriptase polymerase chain reaction (RT-PCR) method which measures absolute levels of renin, angiotensinogen, and the housekeeping transcript elongation factor-1 alpha (EF-1 alpha) mRNA. Sample RNA was simultaneously titrated with serial dilutions of renin, angiotensinogen, and EF-1 alpha competitor RNAs which flanked the endogenous concentrations of target transcripts. The samples were coreverse transcribed in the presence of random primers and resulting first-strand cDNA was coamplified for 10-15 cycles with [32P]-dCTP and primers for renin angiotensinogen, after which EF-1 alpha primers were added. Amplified DNA was separated by electrophoresis on polyacrylamide gel and radioactivity in the bands was quantified by direct radioanalytical scanning. Three conditions were necessary to obtain absolute quantification of renin and angiotensinogen mRNA levels: (a) exogenous competitor RNA was used to control for tube-to-tube variability in the efficiencies of reverse transcription and amplification; (b) Sample RNA was titrated with flanking concentrations of competitor RNA to correct for intraassay differences in the efficiency of amplification due to concentration differences between competitor and target templates; and (c) a housekeeping transcript EF-1 alpha was used to control for tube-to-tube differences in RNA loading and/or degradation. We show that the multiplex RT-PCR method is precise and accurate over approximately three logs of transcript concentration and sensitive to less than 5 and 0.5 fg for renin and angiotensinogen mRNA, respectively. This method will be useful for absolute quantification of target mRNAs, especially when the amount of sample RNA is limited or unknown and/or the gene expression is low. PMID:7887470

  16. Chlorophyllide a Oxygenase mRNA and Protein Levels Correlate with the Chlorophyll a/b Ratio in Arabidopsis thaliana.

    PubMed

    Harper, Andrea L; von Gesjen, Sigrid E; Linford, Alicia S; Peterson, Michael P; Faircloth, Ruth S; Thissen, Michelle M; Brusslan, Judy A

    2004-02-01

    Plants can change the size of their light harvesting complexes in response to growth at different light intensities. Although these changes are small compared to those observed in algae, their conservation in many plant species suggest they play an important role in photoacclimation. A polyclonal antibody to the C-terminus of the Arabidopsis thaliana chlorophyllide a oxygenase (CAO) protein was used to determine if CAO protein levels change under three conditions which perturb chlorophyll levels. These conditions were: (1) transfer to shaded light intensity; (2) limited chlorophyll synthesis, and (3) during photoinhibition. Transfer of wild-type plants from moderate to shaded light intensity resulted in a slight reduction in the Chl a/b ratio, and increases in both CAO and Lhcb1 mRNA levels as well as CAO protein levels. CAO protein levels were also measured in the cch1 mutant, a P642L missense mutation in the H subunit of Mg-chelatase. This mutant has reduced total Chl levels and an increased Chl a/b ratio when transferred to moderate light intensity. After transfer to moderate light intensity, CAO mRNA levels decreased in the cch1 mutant, and a concomitant decrease in CAO protein levels was also observed. Measurements of tetrapyrrole intermediates suggested that decreased Chl synthesis in the cch1 mutant was not a result of increased feedback inhibition at higher light intensity. When wild-type plants were exposed to photoinhibitory light intensity for 3 h, total Chl levels decreased and both CAO mRNA and CAO protein levels were also reduced. These results indicate that CAO protein levels correlate with CAO mRNA levels, and suggest that changes in Chl b levels in vascular plants, are regulated, in part, at the CAO mRNA level.

  17. Successful personalized chemotherapy for metastatic gastric cancer based on quantitative BRCA1 mRNA expression level: A case report

    PubMed Central

    HUANG, YING; WU, PUYUAN; LIU, BAORUI; DU, JUAN

    2016-01-01

    Personalized chemotherapy is based on the specific genetic profile of individual patients and is replacing the traditional ‘one size fits all’ medicine. Breast cancer 1 (BRCA1) plays a central role in the chemotherapy-induced DNA damage response. It has been repeatedly demonstrated that BRCA1 mRNA levels were negatively associated with cisplatin sensitivity, but positively associated with docetaxel sensitivity in patients with gastric cancer in experimental and clinical studies. This feature leads to customized chemotherapy based on the BRCA1 mRNA expression level and results in a high efficacy of treatment. The present study describes the case of a 77-year-old patient with metastatic gastric cancer who was treated with personalized chemotherapy based on quantitative BRCA1 mRNA expression level. This study and the available literature data suggest that the expression level of BRCA1 mRNA is dynamic to BRCA1-based chemotherapy. More importantly, de novo assessment of BRCA1 status is a preferable option for ciscisplatin- or docetaxel-resistant patients, since the expression levels of BRCA1 mRNA in certain patients may alter significantly following treatment. Therefore, BRCA1 expression should be assessed for predicting differential chemosensitivity and tailoring chemotherapy in gastric cancer. PMID:27313763

  18. Lipoprotein lipase activity and mRNA levels in bovine tissues.

    PubMed

    Hocquette, J F; Graulet, B; Olivecrona, T

    1998-10-01

    Lipoprotein lipase (LPL) in cattle has been extensively studied in adipose tissue, milk and mammary gland, but only to a limited extent in muscles. Therefore, we have adapted our in vitro LPL assay method for the measurement of LPL activity and describe, for the first time, sensitive procedures to quantify LPL activity and mRNA levels in bovine muscles. In vitro activation of bovine LPL activity is approximately 5-fold greater with rat than with bovine sera for heart and muscles, but not for adipose tissues. Values of LPL activity are in the upper range of those previously reported for rat or bovine tissues. With rat serum as activator, LPL activity in the heart of seven calves (662-832 mU g-1) is at least 3-fold lower than in the rat heart (2150-2950 mU g-1, P < 0.05). LPL activity is higher in bovine heart and oxidative muscles (412-972 mU g-1), except the diaphragm, than in mixed or glycolytic muscles (33-154 mU g-1, P < 0.05). The levels of LPL transcripts are positively related to LPL activity in bovine tissues, including muscles and adipose tissues.

  19. Albumin overload down-regulates integrin-β1 through reactive oxygen species-endoplasmic reticulum stress pathway in podocytes.

    PubMed

    Cheng, Yu-Chi; Chen, Chien-An; Chang, Jer-Ming; Chen, Hung-Chun

    2015-08-01

    Proteinuria is a major hallmark of glomerular nephropathy and endoplasmic reticulum (ER) stress plays an important role in glomerular nephropathy. The protein levels of integrin-β1 in podocytes are found to be negative correlation with amount of proteinuria. This study investigated whether urinary protein, particularly albumin, induced ER stress that consequently reduced integrin-β1 expression. All experiments were performed using primary cultured rat podocyte. Protein and mRNA expression were measured by western blotting and semiquantified reverse transcriptase polymerase chain reaction. Albumin uptake was found at 1 h after albumin addition. Albumin reduced precursor and mature forms of integrin-β1, but did not change mRNA levels of integrin-β1. Albumin induced reactive oxygen species (ROS) generation and ER stress. Antioxidant (N-acetylcysteine) suppressed albumin-induced ER stress and decrements in precursor and mature forms of integrin-β1. Then, ER stress inhibitors (4-phenylbutyrate and salubrinal) also inhibited albumin-induced decrements in precursor and mature forms of integrin-β1. The potent ER stress inducers (thapsigargin and tunicamycin) directly decreased precursor and mature forms of integrin-β1 and led appearance of unglycosylated core protein of integrin-β1. Our results show that in proteinuric disease, albumin decreases precursor and mature forms of integrin-β1 through ROS-ER stress pathway in podocytes.

  20. Albumin overload down-regulates integrin-β1 through reactive oxygen species-endoplasmic reticulum stress pathway in podocytes.

    PubMed

    Cheng, Yu-Chi; Chen, Chien-An; Chang, Jer-Ming; Chen, Hung-Chun

    2015-08-01

    Proteinuria is a major hallmark of glomerular nephropathy and endoplasmic reticulum (ER) stress plays an important role in glomerular nephropathy. The protein levels of integrin-β1 in podocytes are found to be negative correlation with amount of proteinuria. This study investigated whether urinary protein, particularly albumin, induced ER stress that consequently reduced integrin-β1 expression. All experiments were performed using primary cultured rat podocyte. Protein and mRNA expression were measured by western blotting and semiquantified reverse transcriptase polymerase chain reaction. Albumin uptake was found at 1 h after albumin addition. Albumin reduced precursor and mature forms of integrin-β1, but did not change mRNA levels of integrin-β1. Albumin induced reactive oxygen species (ROS) generation and ER stress. Antioxidant (N-acetylcysteine) suppressed albumin-induced ER stress and decrements in precursor and mature forms of integrin-β1. Then, ER stress inhibitors (4-phenylbutyrate and salubrinal) also inhibited albumin-induced decrements in precursor and mature forms of integrin-β1. The potent ER stress inducers (thapsigargin and tunicamycin) directly decreased precursor and mature forms of integrin-β1 and led appearance of unglycosylated core protein of integrin-β1. Our results show that in proteinuric disease, albumin decreases precursor and mature forms of integrin-β1 through ROS-ER stress pathway in podocytes. PMID:25713411

  1. Prenatal auditory stimulation alters the levels of CREB mRNA, p-CREB and BDNF expression in chick hippocampus.

    PubMed

    Chaudhury, Sraboni; Wadhwa, Shashi

    2009-10-01

    Prenatal auditory stimulation influences the development of the chick auditory pathway and the hippocampus showing an increase in various morphological parameters as well as expression of calcium-binding proteins. Calcium regulates the activity of cyclic adenosine monophosphate-response element binding (CREB) protein. CREB is known to play a role in development, undergo phosphorylation with neural activity as well as regulate transcription of BDNF. BDNF is important for the survival of neurons and regulates synaptic strength. Hence in the present study, we have evaluated the levels of CREB mRNA and protein along with p-CREB protein as well as BDNF mRNA and protein levels in the chick hippocampus at embryonic days (E) 12, E16, E20 and post-hatch day (PH) 1 following activation by prenatal auditory stimulation. Fertilized eggs were exposed to species-specific sound or sitar music (frequency range: 100-6300Hz) at 65dB levels for 15min/h over 24h from E10 till hatching. The control chick hippocampus showed higher CREB mRNA and p-CREB protein in the early embryonic stages, which later decline whereas BDNF mRNA and BDNF protein levels increase until PH1. The CREB mRNA and p-CREB protein were significantly increased at E12, E16 and PH1 in the auditory stimulated groups as compared to control group. A significant increase in the level of BDNF mRNA was observed from E12 and the protein expression from E16 onwards in both auditory stimulated groups. Therefore, enhanced phosphorylation of CREB during development following prenatal sound stimulation may be responsible for cell survival. Increased levels of p-CREB again at PH1 may trigger synthesis of proteins necessary for synaptic plasticity. Further, the increased levels of BDNF may also help in regulating synaptic plasticity. PMID:19559781

  2. Effects of bovine somatotropin on beta-casein mRNA levels in mammary tissue of lactating cows.

    PubMed

    Yang, J; Zhao, B; Baracos, V E; Kennelly, J J

    2005-08-01

    Bovine somatotropin (bST) increases milk production in lactating cows through its effect on nutrient partition and maintenance of mammary cell function. A positive relationship between bST treatment and abundance of beta-casein mRNA in mammary tissues from lactating cows was hypothesized. In mammary tissue isolated from 14 midlactation Holstein cows, beta-casein mRNA was 35.4% higher among 7 cows receiving continuous bST infusions at 29 mg/d for 63 d compared with tissue from 7 untreated control cows. To investigate whether increased beta-casein mRNA resulted from a direct effect of bST on the mammary gland, explants of mammary tissue from other lactating cows that had not received bST were incubated with bST and prolactin in 2 experiments. Mammary explant cultures taken from 2 lactating cows that had not been milked for 48 h were supplemented with either prolactin or bST. Both prolactin and bST stimulated higher levels of beta-casein mRNA in the mammary explants compared with their non-supplemented counterparts. Explant cultures from 4 additional lactating cows were prepared from rear quarter mammary tissue subjected to milking intervals of 6 h for right rear quarters or 20 h for left rear quarters. Both bST- and prolactin-mediated increases in beta-casein mRNA were dependent on milking intervals. That is, levels of beta-casein mRNA were increased by bST or prolactin supplementation in explants isolated from the mammary quarters biopsied 20 h after milking but not for those biopsied at 6 h after milking. Results are consistent with a potential role for bST in up-regulating or sparing beta-casein mRNA levels in lactating bovine mammary tissue in a manner similar to prolactin.

  3. Expression of insulin-like growth factors at mRNA levels during the metamorphic development of turbot (Scophthalmus maximus).

    PubMed

    Meng, Zhen; Hu, Peng; Lei, Jilin; Jia, Yudong

    2016-09-01

    Insulin-like growth factors I and II (IGF-I and IGF-II) are important regulators of vertebrate growth and development. This study characterized the mRNA expressions of igf-i and igf-ii during turbot (Scophthalmus maximus) metamorphosis to elucidate the possible regulatory role of the IGF system in flatfish metamorphosis. Results showed that the mRNA levels of igf-i significantly increased at the early-metamorphosis stage and then gradually decreased until metamorphosis was completed. By contrast, mRNA levels of igf-ii significantly increased at the pre-metamorphosis stage and then substantially decreased during metamorphosis. Meanwhile, the whole-body thyroxine (T4) levels varied during larval metamorphosis, and the highest value was observed in the climax-metamorphosis. The mRNA levels of igf-i significantly increased and decreased by T4 and thiourea (TU, inhibitor of endogenous thyroid hormone) during metamorphosis, respectively. Conversely, the mRNA levels of igf-ii remained unchanged. Furthermore, TU significantly inhibited the T4-induced mRNA up-regulation of igf-i during metamorphosis. The whole-body thyroxine (T4) levels were significantly increased and decreased by T4 and TU during metamorphosis, respectively. These results suggested that igf-i and igf-ii may play different functional roles in larval development stages, and igf-i may have a crucial function in regulating the early metamorphic development of turbot. These findings may enhance our understanding of the potential roles of the IGF system to control flatfish metamorphosis and contribute to the improvement of broodstock management for larvae.

  4. Expression of insulin-like growth factors at mRNA levels during the metamorphic development of turbot (Scophthalmus maximus).

    PubMed

    Meng, Zhen; Hu, Peng; Lei, Jilin; Jia, Yudong

    2016-09-01

    Insulin-like growth factors I and II (IGF-I and IGF-II) are important regulators of vertebrate growth and development. This study characterized the mRNA expressions of igf-i and igf-ii during turbot (Scophthalmus maximus) metamorphosis to elucidate the possible regulatory role of the IGF system in flatfish metamorphosis. Results showed that the mRNA levels of igf-i significantly increased at the early-metamorphosis stage and then gradually decreased until metamorphosis was completed. By contrast, mRNA levels of igf-ii significantly increased at the pre-metamorphosis stage and then substantially decreased during metamorphosis. Meanwhile, the whole-body thyroxine (T4) levels varied during larval metamorphosis, and the highest value was observed in the climax-metamorphosis. The mRNA levels of igf-i significantly increased and decreased by T4 and thiourea (TU, inhibitor of endogenous thyroid hormone) during metamorphosis, respectively. Conversely, the mRNA levels of igf-ii remained unchanged. Furthermore, TU significantly inhibited the T4-induced mRNA up-regulation of igf-i during metamorphosis. The whole-body thyroxine (T4) levels were significantly increased and decreased by T4 and TU during metamorphosis, respectively. These results suggested that igf-i and igf-ii may play different functional roles in larval development stages, and igf-i may have a crucial function in regulating the early metamorphic development of turbot. These findings may enhance our understanding of the potential roles of the IGF system to control flatfish metamorphosis and contribute to the improvement of broodstock management for larvae. PMID:27255364

  5. Effects of rs3846662 Variants on HMGCR mRNA and Protein Levels and on Markers of Alzheimer's Disease Pathology.

    PubMed

    Leduc, Valerie; Théroux, Louise; Dea, Doris; Dufour, Robert; Poirier, Judes

    2016-01-01

    3-Hydroxy-3-methyglutaryl coenzyme A reductase (HMGCR) is a cholesterol-regulating gene with statin relevance. rs3846662 being involved in regulation of HMGCR alternative splicing, we explored its impact on HMGCR messenger RNA (mRNA) and protein levels in the brain and the associations between those levels and levels of Alzheimer's disease pathological markers. We used brain samples derived from a cohort of 33 non-demented controls and 90 Alzheimer's disease autopsied-confirmed cases. HMGCR mRNA levels were determined in the frontal cortex (n = 114) and cerebellum (n = 110) using Taqman-qPCR, and HMGCR protein levels were determined in the frontal cortex (n = 117) using a commercial enzyme immunoassay. While densities of neurofibrillary tangles and senile plaques were determined in the frontal cortex (n = 74), total tau, phosphorylated Tau, and beta-amyloid 1-42 levels were determined in the frontal cortex (n = 94) and cerebellum (n = 91) using commercial enzyme immunoassays. Despite an increase in full-length HMGCR mRNA ratio in the frontal cortex of women carrying the AA genotype, there were no associations between rs3846662 and HMGCR mRNA or protein levels. An increased Δ13 HMGCR mRNA ratio was associated with increased levels of HMGCR proteins and neurofibrillary tangles in the frontal cortex but with reduced beta-amyloid 1-42 levels in the cerebellum, suggesting a brain cell type- or a disease progression-dependent association.

  6. Recombinant interleukin 2 regulates levels of c-myc mRNA in a cloned murine T lymphocyte.

    PubMed Central

    Reed, J C; Sabath, D E; Hoover, R G; Prystowsky, M B

    1985-01-01

    The cellular oncogene c-myc has been implicated in the regulation of growth of normal and neoplastic cells. Recently, it was suggested that c-myc gene expression may control the G0----G1-phase transition in normal lymphocytes that were stimulated to enter the cell cycle by the lectin concanavalin A (ConA). Here we describe the effects of purified recombinant interleukin 2 (rIL2) and of ConA on levels of c-myc mRNA in the noncytolytic murine T-cell clone L2. In contrast to resting (G0) primary cultures of lymphocytes, quiescent L2 cells have a higher RNA content than resting splenocytes and express receptors for interleukin 2 (IL2). Resting L2 cells are therefore best regarded as early G1-phase cells. Purified rIL2 was found to stimulate the rapid accumulation of c-myc mRNA in L2 cells. Levels of c-myc mRNA became maximal within 1 h and declined gradually thereafter. In contrast, ConA induced slower accumulation of c-myc mRNA in L2 cells, with increased levels of c-myc mRNA becoming detectable 4 to 8 h after stimulation. Experiments with the protein synthesis inhibitor cycloheximide demonstrated that the increase in levels of c-myc mRNA that were induced by ConA was a direct effect of this lectin and not secondary to IL2 production. Cyclosporin A, an immunosuppressive agent, markedly reduced the accumulation of c-myc mRNA that was induced by ConA but only slightly diminished the accumulation of c-myc mRNA that was induced by rIL2. Taken together, these data provide evidence that (i) c-myc gene expression can be regulated by at least two distinct pathways in T lymphocytes, only one of which is sensitive to cyclosporine A, and (ii) the accumulation of c-myc mRNA can be induced in T cells by IL2 during the G1 phase of the cell cycle. Images PMID:3879814

  7. Creatine kinase and alpha-actin mRNA levels decrease in diabetic rat hearts

    SciTech Connect

    Popovich, B.; Barrieux, A.; Dillmann, W.H.

    1987-05-01

    Diabetic cardiomyopathy is associated with cardiac atrophy and isoenzyme redistribution. To determine if tissue specific changes occur in mRNAs coding for ..cap alpha..-actin and creatine kinase (CK), they performed RNA blot analysis. Total ventricular RNA from control (C) and 4 wk old diabetic (D) rats were hybridized with /sup 32/P cDNA probes for ..cap alpha..-actin and CK. A tissue independent cDNA probe, CHOA was also used. Signal intensity was quantified by photodensitometry. D CK mRNA was 47 +/- 16% lower in D vs C. Insulin increases CK mRNA by 20% at 1.5 hs, and completely reverses the deficit after 4 wks. D ..cap alpha..-actin mRNA is 66 +/- 18% lower in D vs C. Insulin normalized ..cap alpha..-actin mRNA by 5 hs. CHOA mRNA is unchanged in D vs C, but D + insulin CHOA mRNA is 30 +/- 2% lower than C. In rats with diabetic cardiomyopathy, muscle specific CK and ..cap alpha..-actin mRNAs are decreased. Insulin treatment reverses these changes.

  8. Higher LPA2 and LPA6 mRNA Levels in Hepatocellular Carcinoma Are Associated with Poorer Differentiation, Microvascular Invasion and Earlier Recurrence with Higher Serum Autotaxin Levels

    PubMed Central

    Ikeda, Hitoshi; Kurano, Makoto; Sato, Masaya; Kudo, Hiroki; Maki, Harufumi; Koike, Kazuhiko; Hasegawa, Kiyoshi; Kokudo, Norihiro; Yatomi, Yutaka

    2016-01-01

    Hepatocellular carcinoma (HCC) commonly develops in patients with liver fibrosis; in these patients, the blood levels of lysophosphatidic acid (LPA) and its generating enzyme autotaxin (ATX) increase with the liver fibrosis stage. We aimed to examine the potential relevance of ATX and LPA in HCC. Fifty-eight HCC patients who underwent surgical treatment were consecutively enrolled in the study. Among the LPA receptors in HCC, higher LPA2 mRNA levels correlated with poorer differentiation, and higher LPA6 mRNA levels correlated with microvascular invasion, which suggested a higher malignant potential of HCC with increased LPA2 and LPA6 expression. In patients with primary HCC, neither LPA2 nor LPA6 mRNA levels were associated with recurrence. However, when serum ATX levels were combined for analysis as a surrogate for plasma LPA levels, the cumulative intra-hepatic recurrence rate was higher in patients in whom both serum ATX levels and LPA2 or LPA6 mRNA levels were higher than the median. However, the mRNA level of phosphatidic acid-selective phospholipase A1ɑ, another LPA-generating enzyme, in HCC patients was not associated with pathological findings or recurrence, even in combination with the expression of LPA receptors. Higher LPA2 mRNA levels were associated with poorer differentiation, and higher LPA6 levels were associated with microvascular invasion in HCC; both became a risk factor for recurrence after surgical treatment when combined with increased serum ATX levels. ATX and LPA receptors merit consideration as therapeutic targets of HCC. PMID:27583415

  9. Higher LPA2 and LPA6 mRNA Levels in Hepatocellular Carcinoma Are Associated with Poorer Differentiation, Microvascular Invasion and Earlier Recurrence with Higher Serum Autotaxin Levels.

    PubMed

    Enooku, Kenichiro; Uranbileg, Baasanjav; Ikeda, Hitoshi; Kurano, Makoto; Sato, Masaya; Kudo, Hiroki; Maki, Harufumi; Koike, Kazuhiko; Hasegawa, Kiyoshi; Kokudo, Norihiro; Yatomi, Yutaka

    2016-01-01

    Hepatocellular carcinoma (HCC) commonly develops in patients with liver fibrosis; in these patients, the blood levels of lysophosphatidic acid (LPA) and its generating enzyme autotaxin (ATX) increase with the liver fibrosis stage. We aimed to examine the potential relevance of ATX and LPA in HCC. Fifty-eight HCC patients who underwent surgical treatment were consecutively enrolled in the study. Among the LPA receptors in HCC, higher LPA2 mRNA levels correlated with poorer differentiation, and higher LPA6 mRNA levels correlated with microvascular invasion, which suggested a higher malignant potential of HCC with increased LPA2 and LPA6 expression. In patients with primary HCC, neither LPA2 nor LPA6 mRNA levels were associated with recurrence. However, when serum ATX levels were combined for analysis as a surrogate for plasma LPA levels, the cumulative intra-hepatic recurrence rate was higher in patients in whom both serum ATX levels and LPA2 or LPA6 mRNA levels were higher than the median. However, the mRNA level of phosphatidic acid-selective phospholipase A1ɑ, another LPA-generating enzyme, in HCC patients was not associated with pathological findings or recurrence, even in combination with the expression of LPA receptors. Higher LPA2 mRNA levels were associated with poorer differentiation, and higher LPA6 levels were associated with microvascular invasion in HCC; both became a risk factor for recurrence after surgical treatment when combined with increased serum ATX levels. ATX and LPA receptors merit consideration as therapeutic targets of HCC. PMID:27583415

  10. Hypoxia may increase rat insulin mRNA levels by promoting binding of the polypyrimidine tract-binding protein (PTB) to the pyrimidine-rich insulin mRNA 3'-untranslated region.

    PubMed Central

    Tillmar, Linda; Welsh, Nils

    2002-01-01

    BACKGROUND: Recent reports identify the 3'-UTR of insulin mRNA as crucial for control of insulin messenger stability. This region contains a pyrimidine-rich sequence, which is similar to the hypoxia-responsive mRNA-stabilizing element of tyrosine hydroxylase. This study aimed to determine whether hypoxia affects insulin mRNA levels. MATERIALS AND METHODS: Rat islets were incubated at normoxic or hypoxic conditions and with or without hydrogen peroxide and a nitric oxide donor. Insulin mRNA was determined by Northern hybridization. Islet homogenates were used for electrophoretic mobility shift assay with an RNA-oligonucleotide, corresponding to the pyrimidine-rich sequence of the 3'-UTR of rat insulin I mRNA. The expression of reporter gene mRNA, in islets transfected with reporter gene constructs containing the wild-type or mutated insulin mRNA pyrimidine-rich sequences, was measured by semiquantitive RT-PCR. RESULTS: Insulin mRNA was increased in response to hypoxia. This was paralleled by increased binding of the polypyrimidine tract-binding protein (PTB) to the pyrimidine-rich sequence of the 3'-UTR of insulin mRNA, which was counteracted by hydrogen peroxide. The reporter gene mRNA level containing the wild-type binding site was not increased in response to hypoxia, but mutation of the site resulted in a destabilization of the mRNA. CONCLUSIONS: The complete understanding of different diabetic conditions requires the elucidation of mechanisms that control insulin gene expression. Our data show that hypoxia may increase insulin mRNA levels by promoting the binding of PTB to the insulin mRNA 3'-UTR. Hydrogen peroxide abolishes the hypoxic effect indicating involvement of reactive oxygen species and/or the redox potential in the oxygen-signaling pathway. PMID:12359957

  11. Characterization of Trp-1 mRNA Levels in Dominant and Recessive Mutations at the Mouse Brown (B) Locus

    PubMed Central

    Jackson, I. J.; Chambers, D.; Rinchik, E. M.; Bennett, D. C.

    1990-01-01

    The mouse brown locus encodes a putative membrane-bound metalloenzyme, tyrosinase-related protein-1 (TRP-1). We have examined the effect on mRNA expression of the locus of a number of mutant alleles. The common null mutant allele, brown, produces wild-type levels of TRP-1 mRNA, which is nonfunctional. Another recessive allele, cordovan-Harwell, has an intermediate, dark-brown phenotype and produces only very low levels of presumably normal TRP-1 mRNA. Two dominant alleles appear to act by killing the melanocyte in which they are expressed. One of them, Light, has normal size and amounts of TRP-1 mRNA. The other, White-based brown, produces no detectable TRP-1 mRNA. It has a gross DNA rearrangement at the 5' end, and we speculate that this results in activation of transcription of sequences not usually seen in melanocytes, and that this is toxic to the cell. The relationship between phenotype and molecular structure at the locus is discussed, and we draw some general principles applicable to other developmental genes. PMID:2245917

  12. The Prognostic Value of BRCA1 mRNA Expression Levels Following Neoadjuvant Chemotherapy in Breast Cancer

    PubMed Central

    Margeli, Mireia; Cirauqui, Beatriz; Castella, Eva; Tapia, Gustavo; Costa, Carlota; Gimenez-Capitan, Ana; Barnadas, Agusti; Ronco, Maria Sanchez; Benlloch, Susana; Taron, Miquel; Rosell, Rafael

    2010-01-01

    Background A fraction of sporadic breast cancers has low BRCA1 expression. BRCA1 mutation carriers are more likely to achieve a pathological complete response with DNA-damage-based chemotherapy compared to non-mutation carriers. Furthermore, sporadic ovarian cancer patients with low levels of BRCA1 mRNA have longer survival following platinum-based chemotherapy than patients with high levels of BRCA1 mRNA. Methodology/Principal Findings Tumor biopsies were obtained from 86 breast cancer patients who were candidates for neoadjuvant chemotherapy, treated with four cycles of neoadjuvant fluorouracil, epirubicin and cyclophosphamide. Estrogen receptor (ER), progesterone receptor (PR), HER2, cytokeratin 5/6 and vimentin were examined by tissue microarray. HER2 were also assessed by chromogenic in situ hybridization, and BRCA1 mRNA was analyzed in a subset of 41 patients for whom sufficient tumor tissue was available by real-time quantitative PCR. Median time to progression was 42 months and overall survival was 55 months. In the multivariate analysis for time to progression and overall survival for 41 patients in whom BRCA1 could be assessed, low levels of BRCA1 mRNA, positive PR and negative lymph node involvement predicted a significantly lower risk of relapse, low levels of BRCA1 mRNA and positive PR were the only variables associated with significantly longer survival. Conclusions/Significance We provide evidence for a major role for BRCA1 mRNA expression as a marker of time to progression and overall survival in sporadic breast cancers treated with anthracycline-based chemotherapy. These findings can be useful for customizing chemotherapy. PMID:20209131

  13. Spaceflight has compartment- and gene-specific effects on mRNA levels for bone matrix proteins in rat femur

    NASA Technical Reports Server (NTRS)

    Evans, G. L.; Morey-Holton, E.; Turner, R. T.

    1998-01-01

    In the present study, we evaluated the possibility that the abnormal bone matrix produced during spaceflight may be associated with reduced expression of bone matrix protein genes. To test this possibility, we investigated the effects of a 14-day spaceflight (SLS-2 experiment) on steady-state mRNA levels for glyceraldehyde-3-phosphate dehydrogenase (GAPDH), osteocalcin, osteonectin, and prepro-alpha(1) subunit of type I collagen in the major bone compartments of rat femur. There were pronounced site-specific differences in the steady-state levels of expression of the mRNAs for the three bone matrix proteins and GAPDH in normal weight-bearing rats, and these relationships were altered after spaceflight. Specifically, spaceflight resulted in decreases in mRNA levels for GAPDH (decreased in proximal metaphysis), osteocalcin (decreased in proximal metaphysis), osteonectin (decreased in proximal and distal metaphysis), and collagen (decreased in proximal and distal metaphysis) compared with ground controls. There were no changes in mRNA levels for matrix proteins or GAPDH in the shaft and distal epiphysis. These results demonstrate that spaceflight leads to site- and gene-specific decreases in mRNA levels for bone matrix proteins. These findings are consistent with the hypothesis that spaceflight-induced decreases in bone formation are caused by concomitant decreases in expression of genes for bone matrix proteins.

  14. Comparison of levels of serum copper, zinc, albumin, globulin and alkaline phosphatase in psoriatic patients and controls: A hospital based casecontrol study

    PubMed Central

    Sheikh, Gousia; Masood, Qazi; Majeed, Sabiya; Hassan, Iffat

    2015-01-01

    Background: Psoriasis is a chronic, immune-mediated skin disease with unknown etiology, with an epidermal turnover time of <10 days compared to a normal turnover time of 4-8 weeks. This epidermal hyperproliferation accounts for many of the metabolic abnormalities including alteration in the serum levels of proteins and some trace elements. Aim: The aim was to detect any statistically significant difference in the serum levels of zinc, copper, albumin, globulin and alkaline phosphatase between psoriasis patients and healthy controls. Materials and Methods: Hundred cases of psoriasis and 100 age and sex matched controls were enrolled in a hospital based case-control study. The serum levels of zinc, copper, albumin, globulin and alkaline phosphatase were calculated and compared among the cases and controls and evaluated statistically. Results: Serum zinc levels were significantly low in the psoriasis group as compared with controls (mean 80.028 μg/dl vs. 109.179 μg/dl, P < 0.0001). Serum copper levels were significantly raised among cases as compared with controls (mean 167.317 μg/dl vs. 133.884 μg/dl P < 0.0001). Serum albumin levels were significantly decreased (3.762 g/dl vs. 4.103 g/dl, P < 0.001), whereas serum globulin levels were raised (3.296 g/dl vs. 2.596 g/dl, P = 0.0014) among cases as compared with controls, respectively. Serum alkaline phosphatase levels were comparable between the two groups. Conclusion: The results of this study show significant alterations in the serum levels of copper, zinc, albumin, and globulin in psoriatic patients. This paper aims at highlighting the possible role of trace metals copper and zinc in the aetiopathogenesis of psoriasis and also provides a proposed interplay of factors involved in the pathogenesis of psoriasis. PMID:25821726

  15. Level of expression of E-cadherin mRNA in colorectal cancer correlates with clinical outcome.

    PubMed Central

    Dorudi, S.; Hanby, A. M.; Poulsom, R.; Northover, J.; Hart, I. R.

    1995-01-01

    A series of colorectal carcinomas (n = 49) resected from patients with known clinical outcomes were analysed for E-cadherin expression using in situ hybridisation to measure mRNA. Patients surviving 5 years or longer (n = 31) exhibited significantly higher levels of E-cadherin mRNA than those surviving less than 5 years (n = 18, P = 0.003). These preliminary results from this small sample suggest that E-cadherin expression may be a useful prognostic marker in colorectal cancer patients. Images Figure 1 PMID:7880746

  16. Chronic estrogen exposure maintains elevated levels of progesterone receptor mRNA in guinea pig hypothalamus.

    PubMed

    Bayliss, D A; Millhorn, D E

    1991-05-01

    We performed in situ hybridization on hypothalamic sections from ovariectomized guinea pig using a cocktail of three 35S-labeled oligonucleotides complementary to mammalian progesterone receptor (PR) cDNA. PR mRNA was readily detected in hypothalamic neurons from guinea pigs pretreated with 17 beta-estradiol benzoate (E2B), but not from animals which did not receive supplemental E2B. The distribution of PR mRNA-containing cells corresponded well with previous localizations of PR in guinea pig. In contrast to earlier reports of E2B regulation of PR mRNA in rat hypothalamus, however, we found that PR mRNA remained elevated during chronic exposure to E2B (up to 10 days) in guinea pig. PMID:2072827

  17. Alteration of Na,K-ATPase subunit mRNA and protein levels in hypertrophied rat heart.

    PubMed

    Charlemagne, D; Orlowski, J; Oliviero, P; Rannou, F; Sainte Beuve, C; Swynghedauw, B; Lane, L K

    1994-01-14

    To determine if an altered expression of the Na,K-ATPase alpha isoform genes is responsible for an observed increase in cardiac glycoside sensitivity in compensatory hypertrophy, we performed Northern and slot blot analyses of RNA and specific immunological detection of Na,K-ATPase isoforms in rat hearts from normal and pressure overload-treated animals induced by abdominal aortic constriction. During the early phase of hypertrophy, the only alteration is a decrease in the alpha 2 mRNA isoform. In the compensated hypertrophied heart, the levels of the predominant alpha 1 isoform (mRNA and protein) and the beta 1 subunit mRNA are unchanged. In contrast, the alpha 2 isoform (mRNA and protein) is decreased by 35% and up to 61-64% in mild (< 55%) and severe (> 55%) hypertrophy, respectively. The alpha 3 isoform (mRNA and protein), which is extremely low in adult heart, is increased up to 2-fold during hypertrophy but accounts for only approximately equal to 5% of the total alpha isoform mRNA. These findings demonstrate that, in cardiac hypertrophy, the three alpha isoforms of the Na,K-ATPase are independently regulated and that regulation occurs at a pretranslational level. The pattern of expression in hypertrophied adult heart is similar to that of the neonatal heart where the inverse regulation between the alpha 2 and alpha 3 ouabain high affinity isoforms has been reported. This suggests that distinct regulatory mechanisms controlling Na,K-ATPase isoform expression may, at least in part, be involved in the sensitivity to cardiac glycosides. PMID:8288620

  18. Alteration of Porcine Serum Albumin Levels in Pork Meat by Marination in Kiwi or Pineapple Juice and Subsequent Pan Broiling

    PubMed Central

    Moon, Sung-Sil; Kim, Il-Suk; Ham, Jun-Sang; Park, Beom-Young

    2014-01-01

    This study was conducted to evaluate the changes in porcine serum albumin (PSA), a major allergen, which occur when raw pork ham is marinated with kiwi or pineapple juice, and/or when the ham is pan broiled at 300℃ for 4 min after marination. In this study, raw pork ham was soaked for 4 h or 8 h in marinades containing commercial marinating sauce only, commercial marinating sauce and 7% kiwi juice, or commercial marinating sauce and 7% pineapple juice. When the meat was marinated and then pan-broiled, pork ham meat protein was significantly denatured and hydrolyzed, and the level of PSA in the meat was significantly reduced. The PSA contents of pork broiled without marination, pork that had been marinated in commercial marinating sauce alone, pork that had been marinated in commercial marinating sauce with kiwi juice, and pork that had been marinated in commercial marinating sauce with pineapple juice, were 95.4, 43.3, 14.3, and 5.4 ng/mL, respectively (p<0.05). Marinating with pineapple juice was more effective than marinating with kiwi juice; and marination for 8 h was more effective than marinating for 4 h. These results indicate that the level of PSA in pork ham is effectively reduced, when the meat is first marinated in sauces that contain kiwi or pineapple extracts for 8 h, rather than 4 h, and then cooked. Further study is needed to determine whether marinated pork meat reduces allergenicity in vivo, as well. PMID:26761177

  19. Activity and mRNA Levels of Enzymes Involved in Hepatic Fatty Acid Synthesis in Rats Fed Naringenin.

    PubMed

    Hashimoto, Toru; Ide, Takashi

    2015-11-01

    We investigated the physiological activity of naringenin in affecting hepatic lipogenesis and serum and liver lipid levels in rats. Rats were fed diets containing 0, 1, or 2.5 g/kg naringenin for 15 d. Naringenin at a dietary level of 2.5 g/kg significantly decreased the activities and the mRNA levels of various lipogenic enzymes and sterol regulatory element binding protein-1c (SREBP-1c) mRNA level. The activities and the mRNA levels were also 9-22% and 12-38% lower, respectively, in rats fed a 1 g/kg naringenin diet than in the animals fed a naringenin-free diet, although the differences were not significant in many cases. Naringenin at 2.5 g/kg significantly lowered serum triacylglycerol, cholesterol, and phospholipid and hepatic triacylglycerol and cholesterol. This flavonoid at 1.0 g/kg also significantly lowered these parameters except for serum triacylglycerol. Naringenin levels in serum and liver dose-dependently increased, and hepatic concentrations reached levels that can affect various signaling pathways.

  20. Three-month variation of plasma pentraxin 3 compared with C-reactive protein, albumin and homocysteine levels in haemodialysis patients

    PubMed Central

    Sjöberg, Bodil; Snaedal, Sunna; Stenvinkel, Peter; Qureshi, Abdul Rashid; Heimbürger, Olof; Bárány, Peter

    2014-01-01

    Background Inflammatory markers vary considerably over time in haemodialysis (HD) patients, yet the variability is poorly defined. The aim of the study was to assess changes of plasma levels of pentraxin-3 (PTX-3), C-reactive protein (CRP), albumin and homocysteine (Hcy) over 3 months and the association between the changes in these biomarkers and mortality. Methods In 188 prevalent HD patients, inflammatory markers were measured at inclusion and after 3 months. Mortality was recorded during a median follow-up of 41 months. The changes of the biomarker levels were categorized according to change in tertile for the specific biomarker. The variation was calculated as the intra-class correlation (ICC). Mortality was analysed by Kaplan–Meier and Cox proportional hazards model. The predictive strength was calculated for single measurements and for the variation of each inflammatory marker. Results The intra-individual variation (low ICC) was largest for PTX-3 [ICC 0.44; 95% confidence interval (CI): 0.33–0.55], albumin (ICC 0.58; 95% CI: 0.49–0.67) and CRP (ICC 0.59; 95% CI: 0.51–0.68) and lowest for Hcy (ICC 0.81; 95% CI: 0.77–0.86). During follow-up, 88 patients died. Conclusions PTX-3 measurements are less stable and show higher variation within patients than CRP, albumin and Hcy. Persistently elevated PTX-3 levels are associated with high mortality. Moreover, in multivariate logistic regression we found that stable high PTX-3 adds to the mortality risk, even after inclusion of clinical factors and the three other biomarkers. The associations of decreasing albumin levels as well as low Hcy levels with worse outcome reflect protein-energy wasting. PMID:25852911

  1. Effects of seawater acclimation on mRNA levels of corticosteroid receptor genes in osmoregulatory and immune systems in trout

    USGS Publications Warehouse

    Yada, T.; Hyodo, S.; Schreck, C.B.

    2008-01-01

    Influence of environmental salinity on expression of distinct corticosteroid receptor (CR) genes, glucocorticoid receptor (GR)-1 and -2, and mineralcorticoid receptor (MR), was examined in osmoregulatory and hemopoietic organs and leucocytes of steelhead trout (Oncorhynchus mykiss). There was no significant difference in plasma cortisol levels between freshwater (FW)- or seawater (SW)-acclimated trout, whereas Na+, K+-ATPase was activated in gill of SW fish. Plasma lysozyme levels also showed a significant increase after acclimation to SW. In SW-acclimated fish, mRNA levels of GR-1, GR-2, and MR were significantly higher in gill and body kidney than those in FW. Head kidney and spleen showed no significant change in these CR mRNA levels after SW-acclimation. On the other hand, leucocytes isolated from head kidney and peripheral blood showed significant decreases in mRNA levels of CR in SW-acclimated fish. These results showed differential regulation of gene expression of CR between osmoregulatory and immune systems. ?? 2008 Elsevier Inc. All rights reserved.

  2. Low Serum Albumin Level, Male Sex, and Total Gastrectomy Are Risk Factors of Severe Postoperative Complications in Elderly Gastric Cancer Patients

    PubMed Central

    Kang, Sung Chan; Kim, Hyun Il

    2016-01-01

    Purpose It is well known that old age is a risk factor for postoperative complications. Therefore, this study aimed to explore the risk factors for poor postoperative surgical outcomes in elderly gastric cancer patients. Materials and Methods Between January 2006 and December 2015, 247 elderly gastric cancer patients who underwent curative gastrectomy were reviewed. In this study, an elderly patient was defined as a patient aged ≥65 years. All possible variables were used to explore the risk factors for poor early surgical outcomes in elderly gastric cancer patients. Results Based on multivariate analyses of preoperative risk factors, preoperative low serum albumin level (<3.5 g/dl) and male sex showed statistical significance in predicting severe postoperative complications. Additionally, in an analysis of surgery-related risk factors, total gastrectomy was a risk factor for severe postoperative complications. Conclusions Our study findings suggest that low serum albumin level, male sex, and total gastrectomy could be risk factors of severe postoperative complications in elderly gastric cancer patients. Therefore, surgeons should work carefully in cases of elderly gastric cancer patients with low preoperative serum albumin level and male sex. We believe that efforts should be made to avoid total gastrectomy in elderly gastric cancer patients. PMID:27104026

  3. Effects of age on bone mRNA levels of sclerostin and other genes relevant to bone metabolism in humans.

    PubMed

    Roforth, Matthew M; Fujita, Koji; McGregor, Ulrike I; Kirmani, Salman; McCready, Louise K; Peterson, James M; Drake, Matthew T; Monroe, David G; Khosla, Sundeep

    2014-02-01

    Although aging is associated with a decline in bone formation in humans, the molecular pathways contributing to this decline remain unclear. Several previous clinical studies have shown that circulating sclerostin levels increase with age, raising the possibility that increased production of sclerostin by osteocytes leads to the age-related impairment in bone formation. Thus, in the present study, we examined circulating sclerostin levels as well as bone mRNA levels of sclerostin using quantitative polymerase chain reaction (QPCR) analyses in needle bone biopsies from young (mean age, 30.0years) versus old (mean age, 72.9years) women. In addition, we analyzed the expression of genes in a number of pathways known to be altered with skeletal aging, based largely on studies in mice. While serum sclerostin levels were 46% higher (p<0.01) in the old as compared to the young women, bone sclerostin mRNA levels were no different between the two groups (p=0.845). However, genes related to notch signaling were significantly upregulated (p=0.003 when analyzed as a group) in the biopsies from the old women. In an additional analysis of 118 genes including those from genome-wide association studies related to bone density and/or fracture, BMP/TGFβ family genes, selected growth factors and nuclear receptors, and Wnt/Wnt-related genes, we found that mRNA levels of the Wnt inhibitor, SFRP1, were significantly increased (by 1.6-fold, p=0.0004, false discovery rate [q]=0.04) in the biopsies from the old as compared to the young women. Our findings thus indicate that despite increases in circulating sclerostin levels, bone sclerostin mRNA levels do not increase in elderly women. However, aging is associated with alterations in several key pathways and genes in humans that may contribute to the observed impairment in bone formation. These include notch signaling, which represents a potential therapeutic target for increasing bone formation in humans. Our studies further identified mRNA

  4. Hind limb suspension and long-chain omega-3 PUFA increase mRNA endocannabinoid system levels in skeletal muscle.

    PubMed

    Hutchins-Wiese, Heather L; Li, Yong; Hannon, Kevin; Watkins, Bruce A

    2012-08-01

    Muscle disuse has numerous physiological consequences that end up with significant catabolic metabolism and ultimately tissue atrophy. What is not known is how muscle atrophy affects the endocannabinoid (EC) system. Arachidonic acid (AA) is the substrate for anandamide (AEA) and 2-arachidonylgycerol (2-AG), which act as agonists for cannabinoid receptors CB1 and CB2 found in muscle. Diets with n-3 polyunsaturated fatty acids (PUFA) have been shown to reduce tissue levels of AA, AEA and 2-AG. Therefore, we hypothesized that hind limb suspension (HS)-induced muscle atrophy and intake of n-3 PUFA will change mRNA levels of the EC system. Mice were randomized and assigned to a moderate n-3 PUFA [11.7 g/kg eicosapentaenoic acid (EPA)+docosahexaenoic acid (DHA)], high n-3 PUFA (17.6 g/kg EPA+DHA) or control diets for 12 days and then subjected to HS or continued weight bearing (WB) for 14 days. HS resulted in body weight, epididymal fat pad and quadriceps muscle loss compared to WB. Compared to WB, HS had greater mRNA levels of AEA and 2-AG synthesis enzymes and CB2 in the atrophied quadriceps muscle. The high n-3 PUFA diet resulted in greater mRNA levels of EC synthesis enzymes, and CB1 and CB2. The higher mRNA levels for EC with HS and dietary n-3 PUFA suggest that muscle disuse and diet induce changes in the EC system to sensitize muscle in response to metabolic and physiological consequences of atrophy.

  5. Age-related changes in mRNA levels of hepatic transporters, cytochrome P450 and UDP-glucuronosyltransferase in female rats.

    PubMed

    Kawase, Atsushi; Ito, Ayami; Yamada, Ayano; Iwaki, Masahiro

    2015-06-01

    Hepatic transporters and metabolic enzymes affect drug pharmacokinetics. Limited information exists on the alteration in mRNA levels of hepatic transporters and metabolic enzymes with aging. We examined the effects of aging on the mRNA levels of representative hepatic drug transporters and metabolic enzymes by analyzing their levels in 10-, 30- and 50-week-old male and female rats. Levels of mRNA of drug transporters including multidrug resistance protein (Mdr)1a, multidrug resistance-associated protein (Mrp)2, breast cancer resistance protein (Bcrp) and organic anion-transporting polypeptide (Oatp)1a1, and the metabolic enzymes cytochrome P450 (CYP)3A1, CYP3A2 and UDP-glucuronosyltransferase (UGT)1A1 were analyzed using real-time reverse transcriptase polymerase chain reaction. The mRNA levels of transporters in male rats did not decrease with age, while the mRNA levels of Bcrp and Oatp1a1 in female rats decreased with age. The mRNA levels of CYP3A1 and CYP3A2 in male rats were higher than those in female rats. The mRNA levels of metabolic enzymes decreased with age in female but not male rats. In particular, the mRNA levels of UGT1A1 in 10-week-old female rats were higher than those in male rats. mRNA expression of hepatic transporters and metabolic enzymes are more susceptible to aging in female than male rats. The age-related decreases in the mRNA levels of Bcrp, Oatp1a1, CYP3A1 and CYP3A2 in female rats may affect the metabolism and transport of substrates. This study showed that aging affected the mRNA expression of hepatic transporters and metabolic enzymes in rats.

  6. Extinction of albumin gene expression in a panel of human chromosome 2 microcell hybrids

    SciTech Connect

    Cerosaletti, K.M.; Fournier, R.E.K.

    1996-02-01

    Expression of the serum albumin gene is extinguished in rat hepatoma microcell hybrids that retain mouse chromosome 1. These data define a trans-dominant extinguisher locus, Tse-2, on mouse chromosome 1. To localize the human TSE2 locus, we prepared and characterized rat/human microcell hybrids that contained either human chromosome 1 or chromosome 2, the genetic homologues of mouse chromosome 1. Rat hepatoma microcell hybrids retaining a derivative human chromosome 1 [der 1 t(1;17)(p34.3;q11.2)] expressed their serum albumin genes at levels similar to those of parental hepatoma cells. In contrast, microcell transfer of human chromosome 2 into rat hepatoma recipients produced karyotypically heterogeneous collections of hybrid clones, some of which displayed dramatic albumin extinction phenotypes. For example, albumin mRNA levels in hapatoma x fibroblast whole-cell hybrids. Expression of several other liver genes, including {alpha}1-antitrypsin, aldolase B, alcohol dehydrogenase, and phosphoenolpyruvate carboxykinase, was also affected in some of the microcell hybrids, but expression of these genes was no concordant with expression of albumin. Hybrid segregants were prepared from the albumin-extinguished hybrids, and reexpression of albumin mRNA and protein was observed in sublines that had lost or fragmented human chromosome 2. Finally, expression of mRNAs encoding the liver-enriched transactivators HNF-1, HNF-4, HNF-3{alpha}, and HNF-3{beta} was not affected in any of the chromosome 2-containing hybrids. These data define and map a genetic locus on human chromosome 2 that extinguishes albumin gene expression in trans, and they suggest that TSE2-mediated extinction is independent of HNF-1, -4, -3{alpha}, and -3{beta} expression. 61 refs., 2 figs., 3 tabs.

  7. Wastewater treatment plant effluent alters pituitary gland gonadotropin mRNA levels in juvenile coho salmon (Oncorhynchus kisutch).

    PubMed

    Harding, Louisa B; Schultz, Irvin R; da Silva, Denis A M; Ylitalo, Gina M; Ragsdale, Dave; Harris, Stephanie I; Bailey, Stephanie; Pepich, Barry V; Swanson, Penny

    2016-09-01

    It is well known that endocrine disrupting compounds (EDCs) present in wastewater treatment plant (WWTP) effluents interfere with reproduction in fish, including altered gonad development and induction of vitellogenin (Vtg), a female-specific egg yolk protein precursor produced in the liver. As a result, studies have focused on the effects of EDC exposure on the gonad and liver. However, impacts of environmental EDC exposure at higher levels of the hypothalamic-pituitary-gonad axis are less well understood. The pituitary gonadotropins, follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) are involved in all aspects of gonad development and are subject to feedback from gonadal steroids making them a likely target of endocrine disruption. In this study, the effects of WWTP effluent exposure on pituitary gonadotropin mRNA expression were investigated to assess the utility of Lh beta-subunit (lhb) as a biomarker of estrogen exposure in juvenile coho salmon (Oncorhynchus kisutch). First, a controlled 72-h exposure to 17α-ethynylestradiol (EE2) and 17β-trenbolone (TREN) was performed to evaluate the response of juvenile coho salmon to EDC exposure. Second, juvenile coho salmon were exposed to 0, 20 or 100% effluent from eight WWTPs from the Puget Sound, WA region for 72h. Juvenile coho salmon exposed to 2 and 10ng EE2L(-1) had 17-fold and 215-fold higher lhb mRNA levels relative to control fish. Hepatic vtg mRNA levels were dramatically increased 6670-fold, but only in response to 10ng EE2L(-1) and Fsh beta-subunit (fshb) mRNA levels were not altered by any of the treatments. In the WWTP effluent exposures, lhb mRNA levels were significantly elevated in fish exposed to five of the WWTP effluents. In contrast, transcript levels of vtg were not affected by any of the WWTP effluent exposures. Mean levels of natural and synthetic estrogens in fish bile were consistent with pituitary lhb expression, suggesting that the observed lhb induction may be due to

  8. Wastewater treatment plant effluent alters pituitary gland gonadotropin mRNA levels in juvenile coho salmon (Oncorhynchus kisutch).

    PubMed

    Harding, Louisa B; Schultz, Irvin R; da Silva, Denis A M; Ylitalo, Gina M; Ragsdale, Dave; Harris, Stephanie I; Bailey, Stephanie; Pepich, Barry V; Swanson, Penny

    2016-09-01

    It is well known that endocrine disrupting compounds (EDCs) present in wastewater treatment plant (WWTP) effluents interfere with reproduction in fish, including altered gonad development and induction of vitellogenin (Vtg), a female-specific egg yolk protein precursor produced in the liver. As a result, studies have focused on the effects of EDC exposure on the gonad and liver. However, impacts of environmental EDC exposure at higher levels of the hypothalamic-pituitary-gonad axis are less well understood. The pituitary gonadotropins, follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) are involved in all aspects of gonad development and are subject to feedback from gonadal steroids making them a likely target of endocrine disruption. In this study, the effects of WWTP effluent exposure on pituitary gonadotropin mRNA expression were investigated to assess the utility of Lh beta-subunit (lhb) as a biomarker of estrogen exposure in juvenile coho salmon (Oncorhynchus kisutch). First, a controlled 72-h exposure to 17α-ethynylestradiol (EE2) and 17β-trenbolone (TREN) was performed to evaluate the response of juvenile coho salmon to EDC exposure. Second, juvenile coho salmon were exposed to 0, 20 or 100% effluent from eight WWTPs from the Puget Sound, WA region for 72h. Juvenile coho salmon exposed to 2 and 10ng EE2L(-1) had 17-fold and 215-fold higher lhb mRNA levels relative to control fish. Hepatic vtg mRNA levels were dramatically increased 6670-fold, but only in response to 10ng EE2L(-1) and Fsh beta-subunit (fshb) mRNA levels were not altered by any of the treatments. In the WWTP effluent exposures, lhb mRNA levels were significantly elevated in fish exposed to five of the WWTP effluents. In contrast, transcript levels of vtg were not affected by any of the WWTP effluent exposures. Mean levels of natural and synthetic estrogens in fish bile were consistent with pituitary lhb expression, suggesting that the observed lhb induction may be due to

  9. Method for quantitative analysis of nonsense-mediated mRNA decay at the single cell level

    PubMed Central

    Pereverzev, Anton P.; Gurskaya, Nadya G.; Ermakova, Galina V.; Kudryavtseva, Elena I.; Markina, Nadezhda M.; Kotlobay, Alexey A.; Lukyanov, Sergey A.; Zaraisky, Andrey G.; Lukyanov, Konstantin A.

    2015-01-01

    Nonsense-mediated mRNA decay (NMD) is a ubiquitous mechanism of degradation of transcripts with a premature termination codon. NMD eliminates aberrant mRNA species derived from sources of genetic variation such as gene mutations, alternative splicing and DNA rearrangements in immune cells. In addition, recent data suggest that NMD is an important mechanism of global gene expression regulation. Here, we describe new reporters to quantify NMD activity at the single cell level using fluorescent proteins of two colors: green TagGFP2 and far-red Katushka. TagGFP2 was encoded by mRNA targeted to either the splicing-dependent or the long 3'UTR-dependent NMD pathway. Katushka was used as an expression level control. Comparison of the fluorescence intensities of cells expressing these reporters and cells expressing TagGFP2 and Katushka from corresponding control NMD-independent vectors allowed for the assessment of NMD activity at the single cell level using fluorescence microscopy and flow cytometry. The proposed reporter system was successfully tested in several mammalian cell lines and in transgenic Xenopus embryos. PMID:25578556

  10. Nonsense-codon mutations of the ornithine aminotransferase gene with decreased levels of mutant mRNA in gyrate atrophy.

    PubMed

    Mashima, Y; Murakami, A; Weleber, R G; Kennaway, N G; Clarke, L; Shiono, T; Inana, G

    1992-07-01

    A generalized deficiency of the mitochondrial matrix enzyme ornithine aminotransferase (OAT) is the inborn error in gyrate atrophy (GA), an autosomal recessive degenerative disease of the retina and choroid of the eye. Mutations in the OAT gene show a high degree of molecular heterogeneity in GA, reflecting the genetic heterogeneity in this disease. Using the combined techniques of PCR, denaturing gradient gel electrophoresis, and direct sequencing, we have identified three nonsense-codon mutations and one nonsense codon-generating mutation of the OAT gene in GA pedigrees. Three of them are single-base substitutions, and one is a 2-bp deletion resulting in a reading frameshift. A nonsense codon created at position 79 (TGA) by a frameshift and nonsense mutations at codons 209 (TAT----TAA) and 299 (TAC----TAG) result in abnormally low levels of OAT mRNA in the patient's skin fibroblasts. A nonsense mutation at codon 426 (CGA----TGA) in the last exon, however, has little effect on the mRNA level. Thus, the mRNA level can be reduced by nonsense-codon mutations, but the position of the mutation may be important, with earlier premature-translation termination having a greater effect than a later mutation.

  11. Frameshift mutations in the v-src gene of avian sarcoma virus act in cis to specifically reduce v-src mRNA levels.

    PubMed Central

    Simpson, S B; Stoltzfus, C M

    1994-01-01

    A portion of the avian sarcoma virus (ASV) primary RNA transcripts is alternatively spliced in chicken embryo fibroblast cells to two different messages, the src and env mRNAs. Frameshift mutations of the viral genome causing premature translation termination within the src gene result in a decreased steady-state level of the src mRNA. In marked contrast, frameshift mutations at various positions of the env gene do not decrease the level of the env mRNA. We show that the src gene product is not required in trans for splicing and accumulation of src mRNA. Conversely, the truncated Src proteins do not act negatively in trans to decrease specifically the levels of src mRNA. Taken together, these results indicate that the frameshift mutations act in cis to reduce src mRNA levels. A double mutant with a lesion in the src initiator AUG and a frameshift within the src gene demonstrated wild-type RNA levels, indicating that the src mRNA must be recognized as a translatable mRNA for the effect on src mRNA levels to occur. Our results indicate that the reduced levels do not result from decreased cytoplasmic stability of the mature src mRNA. We also show that the src gene frameshift mutations affect src mRNA levels when expressed from intronless src cDNA clones. We conclude that the reduction of src mRNA levels triggered by the presence of frameshift mutations within the src gene occurs while it is associated with the nucleus. Our data also strongly suggest that this occurs at a step of RNA processing or transport independent of RNA splicing. Images PMID:8114716

  12. A hairpin within YAP mRNA 3′UTR functions in regulation at post-transcription level

    SciTech Connect

    Gao, Yuen; Wang, Yuan; Feng, Jinyan; Feng, Guoxing; Zheng, Minying; Yang, Zhe; Xiao, Zelin; Lu, Zhanping; Ye, Lihong; Zhang, Xiaodong

    2015-04-03

    The central dogma of gene expression is that DNA is transcribed into messenger RNAs, which in turn serve as the template for protein synthesis. Recently, it has been reported that mRNAs display regulatory roles that rely on their ability to compete for microRNA binding, independent of their protein-coding function. However, the regulatory mechanism of mRNAs remains poorly understood. Here, we report that a hairpin within YAP mRNA 3′untranslated region (3′UTR) functions in regulation at post-transcription level through generating endogenous siRNAs (esiRNAs). Bioinformatics analysis for secondary structure showed that YAP mRNA displayed a hairpin structure (termed standard hairpin, S-hairpin) within its 3′UTR. Surprisingly, we observed that the overexpression of S-hairpin derived from YAP 3′UTR (YAP-sh) increased the luciferase reporter activities of transcriptional factor NF-κB and AP-1 in 293T cells. Moreover, we identified that a fragment from YAP-sh, an esiRNA, was able to target mRNA 3′UTR of NF2 (a member of Hippo-signaling pathway) and YAP mRNA 3′UTR itself in hepatoma cells. Thus, we conclude that the YAP-sh within YAP mRNA 3′UTR may serve as a novel regulatory element, which functions in regulation at post-transcription level. Our finding provides new insights into the mechanism of mRNAs in regulatory function. - Highlights: • An S-hairpin within YAP mRNA 3′UTR possesses regulatory function. • YAP-sh acts as a regulatory element for YAP at post-transcription level. • YAP-sh-3p20, an esiRNA derived from YAP-sh, targets mRNAs of YAP and NF2. • YAP-sh-3p20 depresses the proliferation of HepG2 cells in vitro.

  13. Comparison of mRNA levels of three ethylene receptors in senescing flowers of carnation (Dianthus caryophyllus L.).

    PubMed

    Shibuya, Kenichi; Nagata, Masayasu; Tanikawa, Natsu; Yoshioka, Toshihito; Hashiba, Teruyoshi; Satoh, Shigeru

    2002-03-01

    Three ethylene receptor genes, DC-ERS1, DC-ERS2 and DC-ETR1, were previously identified in carnation (Dianthus caryophyllus L.). Here, the presence of mRNAs for respective genes in flower tissues and their changes during flower senescence are investigated by Northern blot analysis. DC-ERS2 and DC-ETR1 mRNAs were present in considerable amounts in petals, ovaries and styles of the flower at the full-opening stage. In the petals the level of DC-ERS2 mRNA showed a decreasing trend toward the late stage of flower senescence, whereas it increased slightly in ovaries and was unchanged in styles throughout the senescence period. However, DC-ETR1 mRNA showed no or little changes in any of the tissues during senescence. Exogenously applied ethylene did not affect the levels of DC-ERS2 and DC-ETR1 mRNAs in petals. Ethylene production in the flowers was blocked by treatment with 1,1-dimethyl-4-(phenylsulphonyl)semicarbazide (DPSS), but the mRNA levels for DC-ERS2 and DC-ETR1 decreased in the petals. DC-ERS1 mRNA was not detected in any cases. These results indicate that DC-ERS2 and DC-ETR1 are ethylene receptor genes responsible for ethylene perception and that their expression is regulated in a tissue-specific manner and independently of ethylene in carnation flowers during senescence.

  14. Ovarian carcinoma cells in serous effusions show altered MMP-2 and TIMP-2 mRNA levels.

    PubMed

    Davidson, B; Reich, R; Berner, A; Givant-Horwitz, V; Goldberg, I; Risberg, B; Kristensen, G B; Trope, C G; Bryne, M; Kopolovic, J; Nesland, J M

    2001-11-01

    The expression of matrix metalloproteinases (MMP) and their inhibitor TIMP-2 in serous effusions from patients with ovarian carcinoma and its association with clinico-pathological parameters were analysed. The findings in carcinoma cells in effusions were compared with corresponding primary and metastatic lesions. Sixty-six effusions and 96 tissue sections were stained for MMP-1, MMP-2 and MMP-9 applying immunohistochemistry (IHC) and analysed for MMP-2, MMP-9 and TIMP-2 expression using mRNA in situ hybridisation (ISH). MMP-2 and MMP-9 mRNA levels in 30 effusions were subsequently analysed using reverse transcription- polymerase chain reaction (RT-PCR). MMP and TIMP expression was detected in both carcinoma and mesothelial cells in effusions. The levels were consistently higher in malignant cells, significantly so for MMP-1 (P=0.016) and MMP-2 (P=0.036) proteins, as well as for TIMP-2 mRNA (P=0.008). In tissue sections, MMP-1, MMP-2 and MMP-9 protein expression was mostly localised to tumour cells, while MMP-2, MMP-9 and TIMP-2 mRNA were predominantly detected in stromal cells. Adenocarcinoma cells in effusions showed a significant upregulation of MMP-2 expression compared with primary tumours, with a concomitant downregulation of TIMP-2. RT-PCR demonstrated the presence of MMP-2 and MMP-9 in 28/30 and 0/30 specimens, respectively. MMP and TIMP are thus mainly synthesised by cancer cells in effusions, while stromal cells have a similar role in solid tumours. MMP-1 and MMP-2 production predominates over that of MMP-9 in effusions. Increased MMP-2 and reduced TIMP-2 levels are seen in ovarian carcinoma cells in effusions, possibly marking the acquisition of a metastatic phenotype. PMID:11597382

  15. Acetylcholine receptor-inducing factor from chicken brain increases the level of mRNA encoding the receptor. alpha. subunit

    SciTech Connect

    Harris, D.A.; Falls, D.L.; Dill-Devor, R.M.; Fischbach, G.D. )

    1988-03-01

    A 42-kDa glycoprotein isolated from chicken brain, referred to as acetylcholine receptor-inducing activity (ARIA), that stimulates the rate of incorporation of acetylcholine receptors into the surface of chicken myotubes may play a role in the nerve-induced accumulation of receptors at developing neuromuscular synapses. Using nuclease-protection assays, the authors have found that ARIA causes a 2- to 16-fold increase in the level of mRNA encoding the {alpha} subunit of the receptor, with little or no change in the levels of {gamma}- and {delta}-subunit messengers. ARIA also increases the amount of a putative nuclear precursor of {alpha}-subunit mRNA, consistent with an activation of gene transcription. These results suggest that the concentration of {alpha} subunit may limit the rate of biosynthesis of the acetylcholine receptors in chicken myotubes. They also indicate that neuronal factors can regulate the expression of receptor subunit genes in a selective manner. Tetrodotoxin, 8-bromo-cAMP, and forskolin also increase the amount of {alpha}-subunit mRNA, with little change in the amount of {gamma}- and {delta}-subunit mRNAs. Unlike ARIA, however, these agents have little effect on the concentration of the {alpha}-subunit nuclear precursor.

  16. Changes in neurotransmitter levels and proinflammatory cytokine mRNA expressions in the mice olfactory bulb following nanoparticle exposure

    SciTech Connect

    Tin-Tin-Win-Shwe Mitsushima, Dai; Yamamoto, Shoji; Fukushima, Atsushi; Funabashi, Toshiya; Kobayashi, Takahiro; Fujimaki, Hidekazu

    2008-01-15

    Recently, there have been increasing reports that nano-sized component of particulate matter can reach the brain and may be associated with neurodegenerative diseases. Previously, our laboratory has studied the effect of intranasal instillation of nano-sized carbon black (CB) (14 nm and 95 nm) on brain cytokine and chemokine mRNA expressions and found that 14-nm CB increased IL-1{beta}, TNF-{alpha}, CCL2 and CCL3 mRNA expressions in the olfactory bulb, not in the hippocampus of mice. To investigate the effect of a single administration of nanoparticles on neurotransmitters and proinflammatory cytokines in a mouse olfactory bulb, we performed in vivo microdialysis and real-time PCR methods. Ten-week-old male BALB/c mice were implanted with guide cannula in the right olfactory bulb and, 1 week later, were instilled vehicle or CB (14 nm, 250 {mu}g) intranasally. Six hours after the nanoparticle instillation, the mice were intraperitoneally injected with normal saline or 50 {mu}g of bacteria cell wall component lipoteichoic acid (LTA), which may potentiate CB-induced neurologic effect. Extracellular glutamate and glycine levels were significantly increased in the olfactory bulb of CB-instilled mice when compared with vehicle-instilled control mice. Moreover, we found that LTA further increased glutamate and glycine levels. However, no alteration of taurine and GABA levels was observed in the olfactory bulb of the same mice. We also detected immunological changes in the olfactory bulb 11 h after vehicle or CB instillation and found that IL-1{beta} mRNA expression was significantly increased in CB- and LTA-treated mice when compared with control group. However, TNF-{alpha} mRNA expression was increased significantly in CB- and saline-treated mice when compared with control group. These findings suggest that nanoparticle CB may modulate the extracellular amino acid neurotransmitter levels and proinflammatory cytokine IL-1 {beta} mRNA expressions synergistically with LTA

  17. C3a Increases VEGF and Decreases PEDF mRNA Levels in Human Retinal Pigment Epithelial Cells

    PubMed Central

    Long, Qin; Cao, Xiaoguang; Bian, Ailing

    2016-01-01

    Complement activation, specifically complement 3 (C3) activation and C3a generation, contributes to an imbalance between angiogenic stimulation by vascular endothelial growth factor (VEGF) and angiogenic inhibition by pigment epithelial derived factor (PEDF), leading to pathological angiogenesis. This study aimed to investigate the effects of C3a and small interfering RNA (siRNA) targeting C3 on the levels of VEGF and PEDF mRNAs in human retinal pigment epithelial (RPE) cells. ARPE-19 cells were cultured in the presence of exogenous C3a at 0.1 μM and 0.3 μM C3a for 24, 48, and 72 hours. 0.1 pmol/μL duplexes of siRNA targeting C3 were applied for C3a inhibition by transfecting ARPE-19 cells for 48 hours. RT-PCR was performed to examine the level of VEGF and PEDF mRNA. A random siRNA duplex was set for control siRNA. Results demonstrated that exogenous C3a significantly upregulated VEGF and downregulated PEDF mRNA levels in cultured ARPE-19 cells, and siRNA targeting C3 transfection reversed the above changes, significantly reducing VEGF and enhancing PEDF mRNAs level in ARPE-19 cells compared to the control. The present data provided evidence that reducing C3 activation can decreases VEGF and increase PEDF mRNA level in RPE and may serve as a potential therapy in pathological angiogenesis. PMID:27747237

  18. Androgen regulates neuritin mRNA levels in an in vivo model of steroid-enhanced peripheral nerve regeneration.

    PubMed

    Fargo, Keith N; Alexander, Thomas D; Tanzer, Lisa; Poletti, Angelo; Jones, Kathryn J

    2008-05-01

    Following crush injury to the facial nerve in Syrian hamsters, treatment with androgens enhances axonal regeneration rates and decreases time to recovery. It has been demonstrated in vitro that the ability of androgen to enhance neurite outgrowth in motoneurons is dependent on neuritin-a protein that is involved in the re-establisment of neuronal connectivity following traumatic damage to the central nervous system and that is under the control of several neurotrophic and neuroregenerative factors--and we have hypothesized that neuritin is a mediator of the ability of androgen to increase peripheral nerve regeneration rates in vivo. Testosterone treatment of facial nerve-axotomized hamsters resulted in an approximately 300% increase in neuritin mRNA levels 2 days post-injury. Simultaneous treatment with flutamide, an androgen receptor blocker that is known to prevent androgen enhancement of nerve regeneration, abolished the ability of testosterone to upregulate neuritin mRNA levels. In a corroborative in vitro experiment, the androgen dihydrotestosterone induced an approximately 100% increase in neuritin mRNA levels in motoneuron-neuroblastoma cells transfected with androgen receptors, but not in cells without androgen receptors. These data confirm that neuritin is under the control of androgens, and suggest that neuritin is an important effector of androgen in enhancing peripheral nerve regeneration following injury. Given that neuritin has now been shown to be involved in responses to both central and peripheral injuries, and appears to be a common effector molecule for several neurotrophic and neurotherapeutic agents, understanding the neuritin pathway is an important goal for the clinical management of traumatic nervous system injuries. PMID:18419250

  19. Dietary iron-deficiency up-regulates hephaestin mRNA level in small intestine of rats.

    PubMed

    Sakakibara, Shoji; Aoyama, Yoritaka

    2002-05-17

    Hephaestin is a protein, recently found from the study of sla (sex-linked anemia) mouse. Hephaestin is suggested to transport iron from intestinal enterocytes into the circulation. Iron is essential for living and for humans to maintain a constant total iron concentration in whole body. In this study, it was found that dietary iron-deficiency up-regulated hephaestin mRNA level in the proximal small intestine of rats. Therefore, it is suggested that in dietary iron-deficiency, hephaestin gene expression in proximal small intestine is up-regulated to absorb more iron from diet.

  20. Methylation of bone SOST, its mRNA, and serum sclerostin levels correlate strongly with fracture risk in postmenopausal women.

    PubMed

    Reppe, Sjur; Noer, Agate; Grimholt, Runa M; Halldórsson, Bjarni V; Medina-Gomez, Carolina; Gautvik, Vigdis T; Olstad, Ole Kristoffer; Berg, Jens Petter; Datta, Harish; Estrada, Karol; Hofman, Albert; Uitterlinden, André G; Rivadeneira, Fernando; Lyle, Robert; Collas, Philippe; Gautvik, Kaare M

    2015-02-01

    Inhibition of sclerostin, a glycoprotein secreted by osteocytes, offers a new therapeutic paradigm for treatment of osteoporosis (OP) through its critical role as Wnt/catenin signaling regulator. This study describes the epigenetic regulation of SOST expression in bone biopsies of postmenopausal women. We correlated serum sclerostin to bone mineral density (BMD), fractures, and bone remodeling parameters, and related these findings to epigenetic and genetic disease mechanisms. Serum sclerostin and bone remodeling biomarkers were measured in two postmenopausal groups: healthy (BMD T-score > -1) and established OP (BMD T-score < -2.5, with at least one low-energy fracture). Bone specimens were used to analyze SOST mRNAs, single nucleotide polymorphisms (SNPs), and DNA methylation changes. The SOST gene promoter region showed increased CpG methylation in OP patients (n = 4) compared to age and body mass index (BMI) balanced controls (n = 4) (80.5% versus 63.2%, p = 0.0001) with replication in independent cohorts (n = 27 and n = 36, respectively). Serum sclerostin and bone SOST mRNA expression correlated positively with age-adjusted and BMI-adjusted total hip BMD (r = 0.47 and r = 0.43, respectively; both p < 0.0005), and inversely to serum bone turnover markers. Five SNPs, one of which replicates in an independent population-based genomewide association study (GWAS), showed association with serum sclerostin or SOST mRNA levels under an additive model (p = 0.0016 to 0.0079). Genetic and epigenetic changes in SOST influence its bone mRNA expression and serum sclerostin levels in postmenopausal women. The observations suggest that increased SOST promoter methylation seen in OP is a compensatory counteracting mechanism, which lowers serum sclerostin concentrations and reduces inhibition of Wnt signaling in an attempt to promote bone formation.

  1. miRNA and mRNA cancer signatures determined by analysis of expression levels in large cohorts of patients

    PubMed Central

    Zadran, Sohila; Remacle, F.; Levine, R. D.

    2013-01-01

    Toward identifying a cancer-specific gene signature we applied surprisal analysis to the RNAs expression behavior for a large cohort of breast, lung, ovarian, and prostate carcinoma patients. We characterize the cancer phenotypic state as a shared response of a set of mRNA or microRNAs (miRNAs) in cancer patients versus noncancer controls. The resulting signature is robust with respect to individual patient variability and distinguishes with high fidelity between cancer and noncancer patients. The mRNAs and miRNAs that are implicated in the signature are correlated and are known to contribute to the regulation of cancer-signaling pathways. The miRNA and mRNA networks are common to the noncancer and cancer patients, but the disease modulates the strength of the connectivities. Furthermore, we experimentally assessed the cancer-specific signatures as possible therapeutic targets. Specifically we restructured a single dominant connectivity in the cancer-specific gene network in vitro. We find a deflection from the cancer phenotype, significantly reducing cancer cell proliferation and altering cancer cellular physiology. Our approach is grounded in thermodynamics augmented by information theory. The thermodynamic reasoning is demonstrated to ensure that the derived signature is bias-free and shows that the most significant redistribution of free energy occurs in programming a system between the noncancer and cancer states. This paper introduces a platform that can elucidate miRNA and mRNA behavior on a systems level and provides a comprehensive systematic view of both the energetics of the expression levels of RNAs and of their changes during tumorigenicity. PMID:24101511

  2. The correlation between the psoriasis area severity index and ischemia-modified albumin, mean platelet volume levels in patients with psoriasis

    PubMed Central

    Işik, Selda; Öğretmen, Zerrin; Çakır, Dilek Ülker; Türkön, Hakan; Cevizci, Sibel; Hız, Meliha Merve

    2016-01-01

    Introduction Ischemia-modified albumin (IMA), a novel ischemia marker, and mean platelet volume (MPV), a determinant of platelet activation, have been reported as elevated markers in cardiovascular risk factors such as atherosclerosis, metabolic syndrome, diabetes mellitus (DM), hypertension, and dyslipidemia. As psoriasis is a chronic inflammatory disease having comorbidities, IMA and MPV can help determine the risk factors for psoriasis. Aim To investigate the correlation between the psoriasis area severity index (PASI), IMA and MPV levels in patients with psoriasis. Material and methods This cross-sectional, case-control study was performed between January 2014 and December 2014 at the University hospital in Çanakkale, Turkey. Forty-five patients with psoriasis and 44 healthy volunteers over 18 years of age were included in the study. In the psoriasis patient group, clinical features and PASI scores were recorded. Serum IMA and MPV concentrations were evaluated in both groups. Results The mean IMA values were 0.85 ±0.15 and 0.79 ±0.09 (in the psoriasis patients and control groups, respectively), and there was a statistically significant difference (p = 0.048). Ischemia-modified albumin levels were not correlated with PASI scores (r = 0.024; p = 0.889) but were correlated with disease duration (r = 0.323; p = 0.048). There was no statistically significant difference between the MPV values of the two groups (8.98 ±1.14 and 9.19 ±1.28 in the psoriasis patients and control groups, respectively) (p = 0.435). Conclusions Ischemia-modified albumin may be used as a marker for detecting oxidative stress in patients with psoriasis, especially those with a long disease duration. PMID:27605901

  3. The correlation between the psoriasis area severity index and ischemia-modified albumin, mean platelet volume levels in patients with psoriasis

    PubMed Central

    Işik, Selda; Öğretmen, Zerrin; Çakır, Dilek Ülker; Türkön, Hakan; Cevizci, Sibel; Hız, Meliha Merve

    2016-01-01

    Introduction Ischemia-modified albumin (IMA), a novel ischemia marker, and mean platelet volume (MPV), a determinant of platelet activation, have been reported as elevated markers in cardiovascular risk factors such as atherosclerosis, metabolic syndrome, diabetes mellitus (DM), hypertension, and dyslipidemia. As psoriasis is a chronic inflammatory disease having comorbidities, IMA and MPV can help determine the risk factors for psoriasis. Aim To investigate the correlation between the psoriasis area severity index (PASI), IMA and MPV levels in patients with psoriasis. Material and methods This cross-sectional, case-control study was performed between January 2014 and December 2014 at the University hospital in Çanakkale, Turkey. Forty-five patients with psoriasis and 44 healthy volunteers over 18 years of age were included in the study. In the psoriasis patient group, clinical features and PASI scores were recorded. Serum IMA and MPV concentrations were evaluated in both groups. Results The mean IMA values were 0.85 ±0.15 and 0.79 ±0.09 (in the psoriasis patients and control groups, respectively), and there was a statistically significant difference (p = 0.048). Ischemia-modified albumin levels were not correlated with PASI scores (r = 0.024; p = 0.889) but were correlated with disease duration (r = 0.323; p = 0.048). There was no statistically significant difference between the MPV values of the two groups (8.98 ±1.14 and 9.19 ±1.28 in the psoriasis patients and control groups, respectively) (p = 0.435). Conclusions Ischemia-modified albumin may be used as a marker for detecting oxidative stress in patients with psoriasis, especially those with a long disease duration.

  4. A Nascent Peptide Signal Responsive to Endogenous Levels of Polyamines Acts to Stimulate Regulatory Frameshifting on Antizyme mRNA*

    PubMed Central

    Yordanova, Martina M.; Wu, Cheng; Andreev, Dmitry E.; Sachs, Matthew S.; Atkins, John F.

    2015-01-01

    The protein antizyme is a negative regulator of cellular polyamine concentrations from yeast to mammals. Synthesis of functional antizyme requires programmed +1 ribosomal frameshifting at the 3′ end of the first of two partially overlapping ORFs. The frameshift is the sensor and effector in an autoregulatory circuit. Except for Saccharomyces cerevisiae antizyme mRNA, the frameshift site alone only supports low levels of frameshifting. The high levels usually observed depend on the presence of cis-acting stimulatory elements located 5′ and 3′ of the frameshift site. Antizyme genes from different evolutionary branches have evolved different stimulatory elements. Prior and new multiple alignments of fungal antizyme mRNA sequences from the Agaricomycetes class of Basidiomycota show a distinct pattern of conservation 5′ of the frameshift site consistent with a function at the amino acid level. As shown here when tested in Schizosaccharomyces pombe and mammalian HEK293T cells, the 5′ part of this conserved sequence acts at the nascent peptide level to stimulate the frameshifting, without involving stalling detectable by toe-printing. However, the peptide is only part of the signal. The 3′ part of the stimulator functions largely independently and acts at least mostly at the nucleotide level. When polyamine levels were varied, the stimulatory effect was seen to be especially responsive in the endogenous polyamine concentration range, and this effect may be more general. A conserved RNA secondary structure 3′ of the frameshift site has weaker stimulatory and polyamine sensitizing effects on frameshifting. PMID:25998126

  5. mRNA and Protein Levels of FUS, EWSR1 and TAF15 are Upregulated in Liposarcoma

    PubMed Central

    Spitzer, Jessica I.; Ugras, Stacy; Runge, Simon; Decarolis, Penelope; Antonescu, Christina; Tuschl, Tom; Singer, Samuel

    2011-01-01

    Translocations or mutations of FUS, EWSR1 and TAF15 (FET) result in distinct genetic diseases. N-terminal translocations of any FET protein to a series of transcription factors yields chimeric proteins that contribute to sarcomagenesis, whereas mutations in the conserved C-terminal domain of wild-type FUS were recently shown to cause familial amyotrophic lateral sclerosis. We thus investigated whether the loss of one FUS allele by translocation in liposarcoma may be followed by mutations in either the remaining FUS allele or the paralogous EWSR1. Furthermore, we investigated the strength of the FET promoters and their contributions to sarcomagenesis given the proteins’ frequent involvement in oncogenic translocations. We sequenced the respective genomic regions of both FUS and EWSR1 in 96 liposarcoma samples. Additionally, we determined FET transcript and protein levels in several liposarcoma cell lines. We did not observe sequence variations in either FUS or EWSR1. However, protein copy numbers reached an impressive 0.9 and 5.5 Mio of FUS and EWSR1 per tumor cell, respectively. Compared with adipose-derived stem cells, FUS and EWSR1 protein expression levels were elevated on average 28.6-fold and 7.3-fold, respectively. TAF15 mRNA levels were elevated on average 3.9-fold, though with a larger variation between samples. Interestingly, elevated TAF15 mRNA levels did not translate to strongly elevated protein levels, consistent with its infrequent occurrence as translocation partner in tumors. These results suggest that the powerful promoters of FET genes are predominantly responsible for the oncogenic effect of transcription factor translocations in sarcomas. PMID:21344536

  6. Miconia sp. Increases mRNA Levels of PPAR Gamma and Inhibits Alpha Amylase and Alpha Glucosidase

    PubMed Central

    Ortíz-Martinez, David Mizael; Rivas-Morales, Catalina; de la Garza-Ramos, Myriam Angelica; Verde-Star, Maria Julia; Nuñez-Gonzalez, Maria Adriana

    2016-01-01

    Diabetes mellitus is a public health problem worldwide. For this reason, ethanolic extract of Miconia sp. from Oaxaca, Mexico, was selected in search of an alternative against this disease. The effect of Miconia sp. on mRNA expression of PPARγ on cell line 3T3-L1, its effect on alpha amylase and alpha glucosidase, lipid accumulation during adipogenesis, and cell viability on VERO cells were evaluated. The mRNA levels of PPARγ increased on 1.393 ± 0.008 folds, lipid accumulation was increased by 29.55% with Miconia sp. extract and 34.57% with rosiglitazone, and α-amylase and α-glycosidase were inhibited with IC50 values from 28.23 ± 2.15 μg/mL and 1.95 ± 0.15 μg/mL, respectively; the IC50 on antiproliferative activity on VERO cells was 314.54 ± 45.40 μg/mL. In case of α-amylase and α-glycosidase assays, IC50 (inhibitory concentration 50) refers to necessary extract amounts to inhibit 50% of enzymatic activity. On the other hand, on antiproliferative activity, IC50 (inhibitory concentration 50) refers to necessary extract amounts to inhibit 50% of cell proliferation. It was concluded that the compounds present in Miconia sp. ethanolic extract increase mRNA expression of PPARγ, inhibit α-amylase and α-glucosidase, and increase lipid accumulation. It constitutes an alternative as adjuvant in diabetes mellitus treatment; therefore, we recommend continuing identifying the compounds responsible for its promising in vivo antidiabetic activity. PMID:27478477

  7. Miconia sp. Increases mRNA Levels of PPAR Gamma and Inhibits Alpha Amylase and Alpha Glucosidase.

    PubMed

    Ortíz-Martinez, David Mizael; Rivas-Morales, Catalina; de la Garza-Ramos, Myriam Angelica; Verde-Star, Maria Julia; Nuñez-Gonzalez, Maria Adriana; Leos-Rivas, Catalina

    2016-01-01

    Diabetes mellitus is a public health problem worldwide. For this reason, ethanolic extract of Miconia sp. from Oaxaca, Mexico, was selected in search of an alternative against this disease. The effect of Miconia sp. on mRNA expression of PPARγ on cell line 3T3-L1, its effect on alpha amylase and alpha glucosidase, lipid accumulation during adipogenesis, and cell viability on VERO cells were evaluated. The mRNA levels of PPARγ increased on 1.393 ± 0.008 folds, lipid accumulation was increased by 29.55% with Miconia sp. extract and 34.57% with rosiglitazone, and α-amylase and α-glycosidase were inhibited with IC50 values from 28.23 ± 2.15 μg/mL and 1.95 ± 0.15 μg/mL, respectively; the IC50 on antiproliferative activity on VERO cells was 314.54 ± 45.40 μg/mL. In case of α-amylase and α-glycosidase assays, IC50 (inhibitory concentration 50) refers to necessary extract amounts to inhibit 50% of enzymatic activity. On the other hand, on antiproliferative activity, IC50 (inhibitory concentration 50) refers to necessary extract amounts to inhibit 50% of cell proliferation. It was concluded that the compounds present in Miconia sp. ethanolic extract increase mRNA expression of PPARγ, inhibit α-amylase and α-glucosidase, and increase lipid accumulation. It constitutes an alternative as adjuvant in diabetes mellitus treatment; therefore, we recommend continuing identifying the compounds responsible for its promising in vivo antidiabetic activity. PMID:27478477

  8. Effect of ozone on degradation and mRNA levels of Rubisco in relation to potato leaf age

    SciTech Connect

    Eckardt, N.A.; Pell, E.J. )

    1993-05-01

    Leaf senescence is characterized by loss of the major photosynthetic enzyme, Ribulose bisphosphate carboxylase (Rubisco). Exposure to ozone (O[sub 3]) is often associated with a premature decline in the quantity of this enzyme. Declines in Rubisco quantity could arise through inhibition of synthesis or enhancement of degradation. Several experiments were conducted to investigate the effect of O[sub 3] on these events in immature and mature leaves of potato. The effect of O[sub 3] on Rubisco synthesis was investigated indirectly by measuring the relative quantities of mRNA for the rubisco large (rbcL) and small (rbcS) subunits following a 5 hour exposure to 0.309 [mu]L L[sup [minus]1] O[sup 3] or charcoal-filtered air. O[sup 3] treatment was associated with a significant loss in rbcS mRNA in immature and mature potato leaves sampled immediately following the exposure. After the O[sup 3] exposure, a set of plants was placed in the dark at 30 C for two days. Levels of rbcS mRNA declined rapidly during the first twelve hours of dark incubation, thus declines in Rubisco quantity following two days of dark incubation were ascribed to degradation. Enhanced degradation due to O[sub 3] during the dark incubation was observed in the mature leaves, but not in the immature leaves. We conclude that O[sub 3] can cause both inhibited synthesis and enhanced degradation of Rubisco, and the response in dependent on leaf age.

  9. Immunology of pouch young marsupials. I. Levels of immunoglobulin transferrin and albumin in the blood and milk of euros and wallaroos (hill kangaroos: Macropus robustus, marsupialia).

    PubMed

    Deane, E M; Cooper, D W

    1984-01-01

    The concentration of total protein, albumin, transferrin, and immunoglobulin G of adult serum, pouch young serum, milk whey and colostrum has been estimated in three species of kangaroos, Macropus robustus, Macropus rufus (= Megaleia rufa) and Macropus giganteus. No study of this kind has previously been published for any marsupial species. The three individual proteins were antigenically identical in all four kinds of fluid. Colostrum and milk whey are relatively enriched in transferrin but have low levels of immunoglobulin G. Serum concentrations of total protein, albumin and transferrin rise steadily throughout pouch life and attain adult values when the young finally leaves the pouch. Serum concentrations of immunoglobulin G are very low for the first 90-100 days of pouch life, being approximately half of those in milk whey for this period. After this the level rises rapidly and also reaches adult values when the young leaves the pouch. We suggest that in the first 90-100 days the pouch young is largely protected humorally by passive immunity acquired from the mother, and after this it increasingly makes its own responses.

  10. Effect of low and high doses of nitrous oxide on preproenkephalin mRNA and its peptide methionine enkephalin levels in the hypothalamus.

    PubMed

    Agarwal, R K; Kugel, G; Karuri, A; Gwosdow, A R; Kumar, M S

    1996-08-19

    The effect of exposure to nitrous oxide (N2O) on the levels of preproenkephalin mRNA in the hypothalamus of rats was examined. In the first experiment, rats were exposed to 1000 ppm N2O for 8 h a day over 4 days. Compared with controls (which were exposed to air over the same duration), the N2O exposed animals exhibited significant elevations in preproenkephalin mRNA levels in the hypothalamus. In a second experiment, rats were exposed to 60% N2O or air for 12, 24 and 48 h duration, and hypothalamic levels of preproenkephalin mRNA as well as methionine enkephalin were analyzed. Compared with controls, N2O exposed rats exhibited significant elevations in preproenkephalin mRNA levels. The levels on preproenkephalin mRNA were significantly higher after 48 h of N2O exposure than after 12 h of N2O exposure. Similarly, the concentration of methionine enkephalin was significantly higher after 24 and 48 h of exposure of N2O than after exposure to 12 h of N2O or air. These results indicate that (a) exposure to N2O results in significant elevations in preproenkephalin mRNA levels, (b) the increased preproenkephalin mRNA levels appear to be proportional to the concentration of N2O exposure as well as the duration of N2O exposure, and (c) N2O-induced elevation in preproenkephalin mRNA levels is associated with corresponding increase in tissue concentrations of methionine enkephalin. In total, these results suggest that N2O selectively stimulates synthesis of methionine enkephalin in the diencephalic region of the brain.

  11. Gibberellin (GA3) enhances cell wall invertase activity and mRNA levels in elongating dwarf pea (Pisum sativum) shoots

    NASA Technical Reports Server (NTRS)

    Wu, L. L.; Mitchell, J. P.; Cohn, N. S.; Kaufman, P. B.

    1993-01-01

    The invertase (EC 3.2.1.26) purified from cell walls of dwarf pea stems to homogeneity has a molecular mass of 64 kilodaltons (kD). Poly(A)+RNA was isolated from shoots of dwarf pea plants, and a cDNA library was constructed using lambda gt11 as an expression vector. The expression cDNA library was screened with polyclonal antibodies against pea cell wall invertase. One invertase cDNA clone was characterized as a full-length cDNA with 1,863 base pairs. Compared with other known invertases, one homologous region in the amino acid sequence was found. The conserved motif, Asn-Asp-Pro-Asn-Gly, is located near the N-terminal end of invertase. Northern blot analysis showed that the amount of invertase mRNA (1.86 kb) was rapidly induced to a maximal level 4 h after GA3 treatment, then gradually decreased to the control level. The mRNA level at 4 h in GA3-treated peas was fivefold higher than that of the control group. The maximal increase in activity of pea cell wall invertase elicited by GA3 occcured at 8 h after GA3 treatment. This invertase isoform was shown immunocytochemically to be localized in the cell walls, where a 10-fold higher accumulation occurred in GA3-treated tissue compared with control tissue. This study indicates that the expression of the pea shoot cell-wall invertase gene could be regulated by GA3 at transcriptional and/or translational levels.

  12. Elevated level of renal xanthine oxidase mRNA transcription after nephropathogenic infectious bronchitis virus infection in growing layers

    PubMed Central

    Lin, Huayuan; Huang, Qiqi; Liu, Weilian; Zou, Yuelong; Zhu, Shuliang; Deng, Guangfu; Kuang, Jun; Zhang, Caiying; Cao, Huabin; Hu, Guoliang

    2015-01-01

    To assess relationships between xanthine oxidase (XOD) and nephropathogenic infectious bronchitis virus (NIBV) infection, 240 growing layers (35 days old) were randomly divided into two groups (infected and control) of 120 chickens each. Each chicken in the control and infected group was intranasally inoculated with 0.2 mL sterile physiological saline and virus, respectively, after which serum antioxidant parameters and renal XOD mRNA expression in growing layers were evaluated at 8, 15 and 22 days post-inoculation (dpi). The results showed that serum glutathione peroxidase and superoxide dismutase activities in the infected group were significantly lower than in the control group at 8 and 15 dpi (p < 0.01), while serum malondialdehyde concentrations were significantly higher (p < 0.01). The serum uric acid was significantly higher than that of the control group at 15 dpi (p < 0.01). In addition, the kidney mRNA transcript level and serum activity of XOD in the infected group was significantly higher than that of the control group at 8, 15 and 22 dpi (p < 0.05). The results indicated that NIBV infection could cause the increases of renal XOD gene transcription and serum XOD activity, leading to hyperuricemia and reduction of antioxidants in the body. PMID:26119168

  13. Mitochondria of cold hardy insects: responses to cold and hypoxia assessed at enzymatic, mRNA and DNA levels.

    PubMed

    McMullen, David C; Storey, Kenneth B

    2008-03-01

    Winter survival for larvae of goldenrod gall insects, the freeze-avoiding Epiblema scudderiana, and the freeze tolerant, Eurosta solidaginis, includes entry into diapause (a torpid state of arrested development) and expression of a variety of cryoprotective adaptations. Diapause and cold winter temperatures, as well as freezing in E. solidaginis, all strongly reduce the need for mitochondrial activity. To evaluate the responses of mitochondria to these conditions, we assessed the maximal activity of cytochrome c oxidase (COX), transcript levels of COX subunit 1 (encoded on the mitochondrial genome), mitochondrial 12S rRNA levels and mitochondrial DNA content. COX activity decreased over the winter months in both species to levels that were about one-third of September values. COX activity also dropped significantly in E. scudderiana in response to cold acclimation (4,-4,-20 degrees C) or hypoxia exposure. COX activity was less sensitive to these stresses in E. solidaginis but rose by approximately 50% when larvae were thawed after freezing. COX 1 mRNA transcripts and 12S rRNA levels were unchanged over the winter months in E. scudderiana, as was COX 1 DNA content; this indicates that changes in COX enzymatic activity are likely mediated mainly by post-translational modification. However, both COX transcript and 12S rRNA levels decreased in response to hypoxia exposure in both species, whereas COX DNA did not, which indicates that transcription of the mitochondrial genome is sensitive to oxygen levels.

  14. The effect of tRNA levels on decoding times of mRNA codons

    PubMed Central

    Dana, Alexandra; Tuller, Tamir

    2014-01-01

    The possible effect of transfer ribonucleic acid (tRNA) concentrations on codons decoding time is a fundamental biomedical research question; however, due to a large number of variables affecting this process and the non-direct relation between them, a conclusive answer to this question has eluded so far researchers in the field. In this study, we perform a novel analysis of the ribosome profiling data of four organisms which enables ranking the decoding times of different codons while filtering translational phenomena such as experimental biases, extreme ribosomal pauses and ribosome traffic jams. Based on this filtering, we show for the first time that there is a significant correlation between tRNA concentrations and the codons estimated decoding time both in prokaryotes and in eukaryotes in natural conditions (−0.38 to −0.66, all P values <0.006); in addition, we show that when considering tRNA concentrations, codons decoding times are not correlated with aminoacyl-tRNA levels. The reported results support the conjecture that translation efficiency is directly influenced by the tRNA levels in the cell. Thus, they should help to understand the evolution of synonymous aspects of coding sequences via the adaptation of their codons to the tRNA pool. PMID:25056313

  15. Increased mRNA expression levels of ERCC1, OGG1 and RAI in colorectal adenomas and carcinomas

    PubMed Central

    Sæbø, Mona; Skjelbred, Camilla Furu; Nexø, Bjørn Andersen; Wallin, Håkan; Hansteen, Inger-Lise; Vogel, Ulla; Kure, Elin H

    2006-01-01

    Background The majority of colorectal cancer (CRC) cases develop through the adenoma-carcinoma pathway. If an increase in DNA repair expression is detected in both early adenomas and carcinomas it may indicate that low repair capacity in the normal mucosa is a risk factor for adenoma formation. Methods We have examined mRNA expression of two DNA repair genes, ERCC1 and OGG1 as well as the putative apoptosis controlling gene RAI, in normal tissues and lesions from 36 cases with adenomas (mild/moderat n = 21 and severe n = 15, dysplasia) and 9 with carcinomas. Results Comparing expression levels of ERCC1, OGG1 and RAI between normal tissue and all lesions combined yielded higher expression levels in lesions, 3.3-fold higher (P = 0.005), 5.6-fold higher(P < 3·10-5) and 7.7-fold higher (P = 0.0005), respectively. The levels of ERCC1, OGG1 and RAI expressions when comparing lesions, did not differ between adenomas and CRC cases, P = 0.836, P = 0.341 and P = 0.909, respectively. When comparing expression levels in normal tissue, the levels for OGG1 and RAI from CRC cases were significantly lower compared to the cases with adenomas, P = 0.012 and P = 0.011, respectively. Conclusion Our results suggest that increased expression of defense genes is an early event in the progression of colorectal adenomas to carcinomas. PMID:16914027

  16. Analysis of hepatic deiodinase 2 mRNA levels in natural fish lake populations exposed to different levels of putative thyroid disrupters.

    PubMed

    Jarque, Sergio; Bosch, Carme; Casado, Marta; Grimalt, Joan O; Raldúa, Demetrio; Piña, Benjamin

    2014-04-01

    Hepatic mRNA levels of the dio2 gene (deiodinase 2), implicated in thyroid hormone homeostasis, were analyzed in trout from six remote lakes in the Pyrenees (Spain) and the Tatra Mountains (Slovakia). Highest levels corresponded to fish from the two coldest lakes in Pyrenees, whereas relatively low levels were found in the Tatra lakes. These values correlated with the presence of highly-brominated polybrominated diphenyl ethers (PBDE) congeners in the muscle of the same animals, reflecting the distribution of these compounds across European mountain ranges. In contrast, cyp1a expression levels, diagnostic for the presence of dioxin-like pollutants, mirrored the distribution of semi-volatile organochlorine compounds, indicating the specificity of the two types of biological responses. Exposure to PDBEs is known to increase transcription of dio2 and other thyroid-related genes in laboratory experiments; we propose that our data reflects the same phenomenon in natural populations, driven by anthropogenic pollutants at the environmental concentrations.

  17. Enterostatin decreases postprandial pancreatic UCP2 mRNA levels and increases plasma insulin and amylin.

    PubMed

    Arsenijevic, Denis; Gallmann, Eva; Moses, William; Lutz, Thomas; Erlanson-Albertsson, Charlotte; Langhans, Wolfgang

    2005-07-01

    This study investigated the chronic effect of enterostatin on body weight and some of the associated changes in postprandial metabolism. Rats were adapted to 6 h of food access/day and a choice of low-fat and high-fat (HF) food and then given enterostatin or vehicle by an intraperitoneally implanted minipump delivering 160 nmol enterostatin/h continuously over a 5-day infusion period. Enterostatin resulted in a slight but significant reduction of HF intake and body weight. After the last 6-h food access period, enterostatin-treated animals had lower plasma triglyceride and free fatty acid but higher plasma glucose and lactate levels than control animals. Enterostatin infusion resulted in increased uncoupling protein-2 (UCP2) expression in various tissues, including epididymal fat and liver. UCP2 was reduced in the pancreas of enterostatin-treated animals, and this was associated with increased plasma levels of insulin and amylin. Whether these two hormones are involved in the observed decreased food intake due to enterostatin remains to be determined. As lipid metabolism appeared to be altered by enterostatin, we measured peroxisome proliferator-activated receptor (PPAR) expression in tissues and observed that PPARalpha, -beta, -gamma1, and -gamma2 expression were modified by enterostatin in epididymal fat, pancreas, and liver. This further links altered lipid metabolism with body weight loss. Our data suggest that alterations in UCP2 and PPARgamma2 play a role in the control of insulin and amylin release from the pancreas. This implies that enterostatin changes lipid and carbohydrate metabolic pathways in addition to its effects on food intake and energy expenditure. PMID:15713687

  18. Ethylene-Induced Increase in Glutamine Synthetase Activity and mRNA Levels in Hevea brasiliensis Latex Cells.

    PubMed Central

    Pujade-Renaud, V.; Clement, A.; Perrot-Rechenmann, C.; Prevot, J. C.; Chrestin, H.; Jacob, J. L.; Guern, J.

    1994-01-01

    Ethylene, used as a stimulant of latex production in Hevea brasiliensis, significantly activates the regenerating metabolism within the laticiferous cells. In this context, attention was focused on glutamine synthetase (GS; EC 6.3.1.2), a key enzyme in nitrogen metabolism. A specific and significant activation of the cytosolic glutamine synthetase (GScyt) in the laticiferous cells after ethylene treatment parallels the increase of latex yield. A marked accumulation of the corresponding mRNA was found, but in contrast, a slight and variable increase of the polypeptide level is at the limit of detection by western blotting. The GS response to ethylene might be mediated by ammonia that increases in latex cytosol following ethylene treatment. The physiological significance for such a regulation by ethylene of the GScyt is discussed in terms of the nitrogen requirement for protein synthesis associated with latex regeneration. PMID:12232192

  19. β-glucuronidase mRNA levels are correlated with gait and working memory in premutation females: understanding the role of FMR1 premutation alleles

    PubMed Central

    Kraan, C. M.; Cornish, K. M.; Bui, Q. M.; Li, X.; Slater, H. R.; Godler, D. E.

    2016-01-01

    Fragile X tremor ataxia syndrome (FXTAS) is a late-onset disorder manifesting in a proportion of FMR1 premutation individuals (PM: 55-199 CGG triplet expansions). FXTAS is associated with elevated levels of FMR1 mRNA which are toxic. In this study, relationships between neurocognitive and intra-step gait variability measures with mRNA levels, measured in blood samples, were examined in 35 PM and 35 matched control females. The real-time PCR assays measured FMR1 mRNA, and previously used internal control genes: β-Glucuronidase (GUS), Succinate Dehydrogenase 1 (SDHA) and Eukaryotic Translation Initiation Factor 4A (EI4A2). Although there was significant correlation of gait variability with FMR1 mRNA levels (p = 0.004) when normalized to GUS (FMR1/GUS), this was lost when FMR1 was normalized to SDHA and EI4A2 (2IC). In contrast, GUS mRNA level normalized to 2IC showed a strong correlation with gait variability measures (p < 0.007), working memory (p = 0.001) and verbal intelligence scores (p = 0.008). PM specific changes in GUS mRNA were not mediated by FMR1 mRNA. These results raise interest in the role of GUS in PM related disorders and emphasise the importance of using appropriate internal control genes, which have no significant association with PM phenotype, to normalize FMR1 mRNA levels. PMID:27387142

  20. β-glucuronidase mRNA levels are correlated with gait and working memory in premutation females: understanding the role of FMR1 premutation alleles.

    PubMed

    Kraan, C M; Cornish, K M; Bui, Q M; Li, X; Slater, H R; Godler, D E

    2016-01-01

    Fragile X tremor ataxia syndrome (FXTAS) is a late-onset disorder manifesting in a proportion of FMR1 premutation individuals (PM: 55-199 CGG triplet expansions). FXTAS is associated with elevated levels of FMR1 mRNA which are toxic. In this study, relationships between neurocognitive and intra-step gait variability measures with mRNA levels, measured in blood samples, were examined in 35 PM and 35 matched control females. The real-time PCR assays measured FMR1 mRNA, and previously used internal control genes: β-Glucuronidase (GUS), Succinate Dehydrogenase 1 (SDHA) and Eukaryotic Translation Initiation Factor 4A (EI4A2). Although there was significant correlation of gait variability with FMR1 mRNA levels (p = 0.004) when normalized to GUS (FMR1/GUS), this was lost when FMR1 was normalized to SDHA and EI4A2 (2IC). In contrast, GUS mRNA level normalized to 2IC showed a strong correlation with gait variability measures (p < 0.007), working memory (p = 0.001) and verbal intelligence scores (p = 0.008). PM specific changes in GUS mRNA were not mediated by FMR1 mRNA. These results raise interest in the role of GUS in PM related disorders and emphasise the importance of using appropriate internal control genes, which have no significant association with PM phenotype, to normalize FMR1 mRNA levels. PMID:27387142

  1. Effects of the pesticides prochloraz and methiocarb on human estrogen receptor alpha and beta mRNA levels analyzed by on-line RT-PCR.

    PubMed

    Hofmeister, M V; Bonefeld-Jørgensen, E C

    2004-08-01

    Exposure to endocrine disrupters such as dioxins, PCBs and certain pesticides are suspected to affect human reproductive health. We have analyzed the effect of the currently used pesticides prochloraz and methiocarb on the estrogen receptor (ER)alpha and beta mRNA levels in parallel with the natural ligand, 17beta-estradiol (E2). Using the highly sensitive on-line RT-PCR technique we were able to quantify the ERalpha and ERbeta mRNA levels in the human breast cancer cell line, MCF7-BUS. Upon exposure with E2 or prochloraz a down regulation of ERalpha and ERbeta mRNAs was observed after 48 h of treatment. Co-treatment with the ER antagonist ICI 182,780 abolished these mRNA down regulations. Western blot analyses elicited a decreased ER protein level after 3 h of exposure with prochloraz but after 24 h the ERalpha protein level had recovered to basal level. Methiocarb exposure had no effect on the ERalpha mRNA level, whereas an increase in the ERbeta mRNA level was observed after 3 h of exposure. Our study demonstrates that like E2, prochloraz had the potential to down regulate the expression of ERalpha and ERbeta mRNAs as well as the ERalpha protein level in MCF7-BUS cells.

  2. Tetrodotoxin administration in the suprachiasmatic nucleus prevents NMDA-induced reductions in pineal melatonin without influencing Per1 and Per2 mRNA levels.

    PubMed

    Paul, Ketema N; Gamble, Karen L; Fukuhara, Chiaki; Novak, Colleen M; Tosini, Gianluca; Albers, H Elliott

    2004-05-01

    The suprachiasmatic nucleus (SCN) of the anterior hypothalamus contains a light-entrainable circadian pacemaker. Neurons in the SCN are part of a circuit that conveys light information from retinal efferents to the pineal gland. Light presented during the night acutely increases mRNA levels of the circadian clock genes Per1 and Per2 in the SCN, and acutely suppresses melatonin levels in the pineal gland. The present study investigated whether the ability of light to increase Per1 and Per2 mRNA levels and suppress pineal melatonin levels requires sodium-dependent action potentials in the SCN. Per1 and Per2 mRNA levels in the SCN and pineal melatonin levels were measured in Syrian hamsters injected with tetrodotoxin (TTX) prior to light exposure or injection of N-methyl-D-aspartate (NMDA). TTX inhibited the ability of light to increase Per1 and Per2 mRNA levels and suppress pineal melatonin levels. TTX did not, however, influence the ability of NMDA to increase Per1 and Per2 mRNA levels, though it did inhibit the ability of NMDA to suppress pineal melatonin levels. These results demonstrate that action potentials in the SCN are not necessary for NMDA receptor activation to increase Per1 and Per2 mRNA levels, but are necessary for NMDA receptor activation to decrease pineal melatonin levels. Taken together, these data support the hypothesis that the mechanism through which light information is conveyed to the pacemaker in the SCN is separate from and independent of the mechanism through which light information is conveyed to the SCN cells whose efferents suppress pineal melatonin levels.

  3. Polymorphisms of the IL8 gene correlate with milking traits, SCS and mRNA level in Chinese Holstein.

    PubMed

    Chen, Renjin; Yang, Zhangping; Ji, Dejun; Mao, Yongjiang; Chen, Ying; Li, Yunlong; Wu, Haitao; Wang, Xiaolong; Chang, Lingling

    2011-08-01

    To explore the relation of Interleukin-8 (IL8) gene polymorphism with immunity against mastitis in dairy cow, the polymorphism of IL8 gene was investigated in 610 Chinese Holstein cow from 30 bull families in a dairy farm in Shanghai using polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) technique, and milk yield, milk fat percentage, milk protein percentage, 305 day corrected milk yield, 305 day milk fat yield, 305 day milk protein yield and somatic cell score (SCS) were measured and analyzed, and the mRNA levels of IL8 genotypes in blood were detected by real-time PCR. The results showed that three genotypes, KK, KA and AA were detected with frequencies of 0.187, 0.451, and 0.362, respectively. The gene frequencies of K and A were 0.412 and 0.588, respectively. The significant association of the IL8 mutations with milk yield, 305 day milk protein yield, 305 day corrected milk yield and 305 day milk fat yield, SCS, and significant association with milk protein percentage were identified, while their association with milk fat percentage were not significant. KK had higher milk yield, 305 day milk protein yield, 305 day corrected milk yield and 305 day milk fat yield than AA or KA, and the least square mean of SCS of KK was significantly lower than that of AA or KA. AA had significant lower milk protein yield than KK or KA. The relative IL8 mRNA level of KK in blood was the highest. These findings demonstrated that IL8 genotype significantly correlated with mastitis resistance and the locus could be a useful genetic marker for mastitis resistance selection and breeding in Chinese Holstein. PMID:21113675

  4. Analysis of expression of secreted phospholipases A2 in mouse tissues at protein and mRNA levels.

    PubMed

    Eerola, Leena I; Surrel, Fanny; Nevalainen, Timo J; Gelb, Michael H; Lambeau, Gérard; Laine, V Jukka O

    2006-07-01

    Secreted phospholipases A(2) (sPLA(2)) form a group of low-molecular weight enzymes that catalyze the hydrolysis of phospholipids. Some sPLA(2)s are likely to play a role in inflammation, cancer, and as antibacterial enzymes in innate immunity. We developed specific and sensitive time-resolved fluroimmunoassays (TR-FIA) for mouse group (G) IB, GIIA, GIID, GIIE, GIIF, GV and GX sPLA(2)s and measured their concentrations in mouse serum and tissues obtained from both Balb/c and C57BL/6J mice. We also analyzed the mRNA expression of the sPLA(2)s by quantitative real-time reverse transcriptase PCR (qPCR). In most tissues, the concentrations of sPLA(2) proteins corresponded to the expression of sPLA(2)s at the mRNA level. With a few exceptions, the sPLA(2) proteins were found in the gastrointestinal tract. The qPCR results showed that GIB sPLA(2) is synthesized widely in the gastrointestinal tract, including esophagus and colon, in addition to stomach and pancreas. Our results also suggest that the loss of GIIA sPLA(2) in the intestine of GIIA sPLA(2)-deficient C57BL/6J mice is not compensated by other sPLA(2)s under normal conditions. Outside the gastrointestinal tract, sPLA(2)s were expressed occasionally in a number of tissues. The TR-FIAs developed in the current study may serve as useful tools to measure the levels of sPLA(2) proteins in mouse serum and tissues in various experimental settings.

  5. Startling temperature effect on proteins when confined: single molecular level behaviour of human serum albumin in a reverse micelle.

    PubMed

    Sengupta, Bhaswati; Yadav, Rajeev; Sen, Pratik

    2016-06-01

    The present work reports the effect of confinement, and temperature therein, on the conformational fluctuation dynamics of domain-I of human serum albumin (HSA) by fluorescence correlation spectroscopy (FCS). The water-pool of a sodium bis(2-ethylhexyl)sulfosuccinate (AOT) reverse micelle has been used as the confined environment. It was observed that the conformational fluctuation time is about 6 times smaller compared to bulk medium when confined in a water-pool of 3.5 nm radius. On increasing the size of the water-pool the conformational fluctuation time was found to increase monotonically and approaches the bulk value. The effect of confinement is on par with the general belief about the restricted motion of a macromolecule upon confinement. However, the effect of temperature was found to be surprising. An increase in the temperature from 298 K to 313 K induces a larger change in the conformational fluctuation time in HSA, when confined. In the bulk medium, apparently there is no change in the conformational fluctuation time in the aforementioned temperature range, whereas, when HSA is present in an AOT water-pool of radius 3.5 nm, about an 88% increase in the fluctuation time was observed. The observed prominent thermal effect on the conformational dynamics of domain-I of HSA in the water-pool of an AOT reverse micelle as compared to in the bulk medium was concluded to arise from the confined solvent effect.

  6. The mRNA level of MLH1 in peripheral blood is a biomarker for the diagnosis of hereditary nonpolyposis colorectal cancer

    PubMed Central

    Yu, Hong; Li, Hui; Cui, Yongan; Xiao, Wei; Dai, Guihong; Huang, Junxing; Wang, Chaofu

    2016-01-01

    Hereditary nonpolyposis colorectal cancer (HNPCC) is caused by functional defects in mismatch repair (MMR) genes, including mutL homolog 1 (MLH1) and mutS homolog 2 (MSH2). This study aimed to assess whether the mRNA expression of MLH1 in peripheral blood could be used as a biomarkers for the diagnosis of HNPCC. The mRNA level of MLH1 was determined in 19 HNPCC families (46 members) using real-time quantitative polymerase chain reaction (qPCR). The mRNA levels of MLH1 in HNPCC were significantly lower than controls (P < 0.001). Receiver operating characteristic (ROC) curve showed a high diagnostic value of the mRNA level of MLH1 for the diagnosis of HNPCC with the area under curve of 0.858. At an optimal cut-off value (0.511), the mRNA level of MLH1 had a sensitivity of 81.3% and a specificity of 86.7% for distinguishing HNPCC from controls. In conclusion, the mRNA expression of MLH1 in peripheral blood may serve as a biomarker for the diagnosis of HNPCC. PMID:27294005

  7. Regulation of laminin and entactin mRNA levels by retinoic acid and dibutyryl cyclic AMP

    SciTech Connect

    Durkin, M.E.; Phillips, S.L.; Carlin, B.E.; Merlie, J.P.; Chung, A.E.

    1986-05-01

    Retinoic acid and dibutyryl cAMP induced F9 embryonal carcinoma cells to differentiate to parietal endoderm; the morphological changes were accompanied by the increased synthesis of the basement membrane glycoproteins laminin and entactin. cDNA clones have been isolated for the A (400 kD), B1 (220 kD), and B2 (205 kD) chains of laminin. Northern blot analysis indicated that the A, B1, and B2 chains were encoded by RNA species of 9.8, 6.0, and 8.0 kb, respectively. The kinetics of induction of the laminin mRNAs were studied by dot-blotting dilutions of RNA extracted from F9 cells cultured in retinoic acid and dibutyryl cAMP for increasing amounts of time and hybridizing to /sup 32/P-labeled recombinant plasmids. Very low levels of the A and B chain RNAs were found in uninduced cells, and a large increase occurred between 48 and 72 hr of growth in retinoic acid and dibutyryl cAMP. A cDNA clone was also obtained for entactin, a 150 kD glycoprotein that forms a complex with laminin. Retinoic acid and dibutyryl cAMP treatment also increased the amount of entactin RNA in F9 cells. These results suggested that a common mechanism may exist for the coordinate regulation of the 4 basement membrane protein genes during differentiation.

  8. Effect of heat stress-induced production of mitochondrial reactive oxygen species on NADPH oxidase and heme oxygenase-1 mRNA levels in avian muscle cells.

    PubMed

    Kikusato, Motoi; Yoshida, Hayami; Furukawa, Kyohei; Toyomizu, Masaaki

    2015-08-01

    Heat stress is a major factor inducing oxidative disturbance in cells. In the present study, we investigated the mechanism of overproduction of reactive oxygen species (ROS) in cultured avian muscle cells in response to heat stress, and also focused attention on the interaction of mitochondrial superoxide anions with altered NADPH oxidase (NOX), superoxide dismutase (SOD) and heme oxygenase-1 (HO-1) mRNA levels in heat-stressed cells. Exposure of cells to heat stress conditions (41°C, 6h) resulted in increased mitochondrial superoxide and intracellular ROS levels, and increased carbonyl protein content as compared with that of normal cells (37°C). The mitochondrial uncoupler 2,4-dinitrophenol lowered intracellular ROS levels in heat-stressed cells. Heat stress increased NOX4 mRNA and decreased HO-1 mRNA levels, while SOD1 and SOD2 mRNA levels remained relatively stable in heat-stressed cells. Addition of the superoxide scavenger 4-hydroxy TEMPO to the culture medium of heat-stressed cells restored mitochondrial superoxide and intracellular ROS levels as well as NOX4 and HO-1 mRNA levels to near-normal values. We suggest that mitochondrial superoxide production could play an influential role in augmenting oxidative damage to avian muscle cells, possibly via the up-regulation of NOX4 and down-regulation of HO-1 in heat-stressed avian muscle cells.

  9. Blood glutathione peroxidase-1 mRNA levels can be used as molecular biomarkers to determine dietary selenium requirements in rats.

    PubMed

    Sunde, Roger A; Thompson, Kevin M; Evenson, Jacqueline K; Thompson, Britta M

    2009-11-01

    Transcript (mRNA) levels are increasingly being used in medicine as molecular biomarkers for disease and disease risk, including use of whole blood as a target tissue for analysis. Development of blood molecular biomarkers for nutritional status, too, has potential application that parallels opportunities in medicine, including providing solid data for individualized nutrition. We previously reported that blood glutathione peroxidase-1 (Gpx1) mRNA was expressed at levels comparable to major tissues in rats and humans. To determine the efficacy of using blood Gpx1 mRNA to assess selenium (Se) status and requirements, we fed graded levels of Se (0-0.3 microg Se/g as selenite) to weanling male rats. Se status was determined by liver Se concentration and selenoenzyme activity, and selenoprotein mRNA abundance in liver and blood was determined by ribonuclease protection analysis. Liver Se and plasma glutathione peroxidase-3 and liver Gpx1 activities indicated that minimal Se requirements were at 0.08 microg Se/g diet. When total RNA was isolated from whole blood, Gpx1 mRNA in Se-deficient rats decreased to 10% of levels in Se-adequate (0.2 microg Se/g diet) rats. With Se supplementation, blood Gpx1 mRNA levels increased sigmoidally to a plateau with a minimum Se requirement of 0.08 microg Se/g diet, whereas glutathione peroxidase-4 mRNA levels were unaffected. Similarly, Gpx1 mRNA in RNA isolated from fractionated red blood cells decreased in Se-deficient rats to 23% of Se-adequate levels, with a minimum Se requirement of 0.09 microg Se/g diet. Additional studies showed that the preponderance of whole blood Gpx1 mRNA arises from erythroid cells, most likely reticulocytes and young erythrocytes. In summary, whole blood selenoprotein mRNA levels can be used as molecular biomarkers for assessing Se requirements, illustrating that whole blood has potential as a target tissue in development of molecular biomarkers for use in nutrition as well as in medicine.

  10. Blood glutathione peroxidase-1 mRNA levels can be used as molecular biomarkers to determine dietary selenium requirements in rats.

    PubMed

    Sunde, Roger A; Thompson, Kevin M; Evenson, Jacqueline K; Thompson, Britta M

    2009-11-01

    Transcript (mRNA) levels are increasingly being used in medicine as molecular biomarkers for disease and disease risk, including use of whole blood as a target tissue for analysis. Development of blood molecular biomarkers for nutritional status, too, has potential application that parallels opportunities in medicine, including providing solid data for individualized nutrition. We previously reported that blood glutathione peroxidase-1 (Gpx1) mRNA was expressed at levels comparable to major tissues in rats and humans. To determine the efficacy of using blood Gpx1 mRNA to assess selenium (Se) status and requirements, we fed graded levels of Se (0-0.3 microg Se/g as selenite) to weanling male rats. Se status was determined by liver Se concentration and selenoenzyme activity, and selenoprotein mRNA abundance in liver and blood was determined by ribonuclease protection analysis. Liver Se and plasma glutathione peroxidase-3 and liver Gpx1 activities indicated that minimal Se requirements were at 0.08 microg Se/g diet. When total RNA was isolated from whole blood, Gpx1 mRNA in Se-deficient rats decreased to 10% of levels in Se-adequate (0.2 microg Se/g diet) rats. With Se supplementation, blood Gpx1 mRNA levels increased sigmoidally to a plateau with a minimum Se requirement of 0.08 microg Se/g diet, whereas glutathione peroxidase-4 mRNA levels were unaffected. Similarly, Gpx1 mRNA in RNA isolated from fractionated red blood cells decreased in Se-deficient rats to 23% of Se-adequate levels, with a minimum Se requirement of 0.09 microg Se/g diet. Additional studies showed that the preponderance of whole blood Gpx1 mRNA arises from erythroid cells, most likely reticulocytes and young erythrocytes. In summary, whole blood selenoprotein mRNA levels can be used as molecular biomarkers for assessing Se requirements, illustrating that whole blood has potential as a target tissue in development of molecular biomarkers for use in nutrition as well as in medicine. PMID:19855070

  11. Increased A20 mRNA Level in Peripheral Blood Mononuclear Cells is Associated With Immune Phases of Patients With Chronic Hepatitis B.

    PubMed

    Sun, Yan-Yan; Fan, Yu-Chen; Wang, Na; Xia, Harry Hua-Xiang; Xiao, Xiao-Yan; Wang, Kai

    2015-12-01

    The zinc finger protein A20 is a newly identified negative regulator of immune response and mediates signal pathway of NF-κB in liver inflammation. However, the role of A20 in the natural history of patients with chronic hepatitis B (CHB) has not been demonstrated. In this present study, we aimed to investigate the dynamic expression of A20 and determine the potential association of A20 in the progression of chronic hepatitis B virus infection.This retrospective study contained 136 patients with chronic hepatitis B and 30 healthy controls (HCs). The mRNA level of A20, TNF-α, NF-κB p65 and toll-like receptor (TLR) 4 in peripheral blood mononuclear cells (PBMCs) was determined using a relative quantitative real-time polymerase chain reaction. The hepatic A20 protein expression was determined by immunohistochemistry. Clinical and laboratory parameters were obtained.In the present study, the relative expression of A20 mRNA was significantly increased in CHB patients compared with HCs and was positively associated with alanine aminotransferase, aspartate aminotransferase, and total bilirubin. In CHB patients, the levels of A20 mRNA in the immune clearance (IC) phase and hepatitis B negative (ENH) phase were significantly higher than that in immune tolerance (IT) phase and low-replicative (LR) phase (P < 0.001). Furthermore, the A20 mRNA level was significantly correlated with TNF-α/ NF-κB p65/TLR4 mRNA levels in CHB patients. Of note, we reported that cutoff values of 4.19 and 3.97 for the level of A20 mRNA have significant power in discriminating IC from IT, and ENH from LR in CHB patients respectively.In conclusion, our results suggested that increased levels of A20 mRNA and protein contribute to disease progression of chronic hepatitis B virus infection. PMID:26717404

  12. Differential changes in vascular mRNA levels between rat iliac and renal arteries produced by cessation of voluntary running.

    PubMed

    Padilla, Jaume; Jenkins, Nathan T; Roberts, Michael D; Arce-Esquivel, Arturo A; Martin, Jeffrey S; Laughlin, M Harold; Booth, Frank W

    2013-01-01

    Early vascular changes at the molecular level caused by adoption of a sedentary lifestyle are incompletely characterized. Herein, we employed the rodent wheel-lock model to identify mRNAs in the arterial wall that are responsive to the acute transition from higher to lower levels of daily physical activity. Specifically, we evaluated whether short-term cessation of voluntary wheel running alters vascular mRNA levels in rat conduit arteries previously reported to have marked increases (i.e. iliac artery) versus marked decreases (i.e. renal artery) in blood flow during running. We used young female Wistar rats with free access to voluntary running wheels. Following 23 days of voluntary running (average distance of ∼15 km per night; ∼4.4 h per night), rats in one group were rapidly transitioned to a sedentary state by locking the wheels for 7 days (n = 9; wheel-lock 7 day rats) or remained active in a second group for an additional 7 days (n = 9; wheel-lock 0 day rats). Real-time PCR was conducted on total RNA isolated from iliac and renal arteries to evaluate expression of 25 pro-atherogenic and anti-atherogenic genes. Compared with the iliac arteries of wheel-lock 0 day rats, iliac arteries of wheel-lock 7 day rats exhibited increased expression of TNFR1 (+19%), ET1 (+59%) and LOX-1 (+31%; all P < 0.05). Moreover, compared with renal arteries of wheel-lock 0 day rats, renal arteries of wheel-lock 7 day rats exhibited decreased expression of ETb (-23%), p47phox (-32%) and p67phox (-19%; all P < 0.05). These data demonstrate that cessation of voluntary wheel running for 7 days produces modest, but differential changes in mRNA levels between the iliac and renal arteries of healthy rats. This heterogeneous influence of short-term physical inactivity could be attributed to the distinct alteration in haemodynamic forces between arteries.

  13. Susceptibility loci for lung cancer are associated with mRNA levels of nearby genes in the lung.

    PubMed

    Nguyen, Justin Dang Uy; Lamontagne, Maxime; Couture, Christian; Conti, Massimo; Paré, Peter D; Sin, Don D; Hogg, James C; Nickle, David; Postma, Dirkje S; Timens, Wim; Laviolette, Michel; Bossé, Yohan

    2014-12-01

    Recent studies identified three genetic loci reproducibly associated with lung cancer in populations of European ancestry, namely 15q25, 5p15 and 6p21. The goals of this study are first to confirm whether these loci are associated with lung cancer in a French Canadian population and second to identify disease-associated single nucleotide polymorphisms (SNPs) influencing messenger RNA (mRNA) expression levels of genes in the lung, that is expression quantitative trait loci (eQTLs). SNPs were genotyped in 420 patients undergoing lung cancer surgery and compared with 3151 controls of European ancestry. Genome-wide gene expression levels in non-tumor lung tissues of the same 420 patients were also measured to identify eQTLs. Significant eQTLs were then followed-up in two replication sets (n = 339 and 363). SNPs found in the three susceptibility loci were associated with lung cancer in the French Canadian population. Strong eQTLs were found on chromosome 15q25 with the expression levels of CHRNA5 (P = 2.23 × 10(-) (22) with rs12907966). The CHRNA5-rs12907966 eQTL was convincingly validated in the two replication sets (P = 3.46 × 10(-) (16) and 2.01 × 10(-) (15)). On 6p21, a trend was observed for rs3131379 to be associated with the expression of APOM (P = 3.58 × 10(-) (4)) and validated in the replication sets (P = 1.11 × 10(-) (8) and 6.84 × 10(-) (4)). On 5p15, no significant eQTLs were found. This study confirmed that chromosomes 15q25, 5p15 and 6p21 harbored susceptibility loci for lung cancer in French Canadians. Most importantly, this study suggests that the risk alleles at 15q25 and 6p21 may mediate their effect by regulating the mRNA expression levels of CHRNA5 and APOM in the lung.

  14. Susceptibility loci for lung cancer are associated with mRNA levels of nearby genes in the lung

    PubMed Central

    Nguyen, Justin Dang Uy; Lamontagne, Maxime; Couture, Christian; Conti, Massimo; Paré, Peter D.; Sin, Don D.; Hogg, James C.; Nickle, David; Postma, Dirkje S.; Timens, Wim; Laviolette, Michel; Bossé, Yohan

    2014-01-01

    Recent studies identified three genetic loci reproducibly associated with lung cancer in populations of European ancestry, namely 15q25, 5p15 and 6p21. The goals of this study are first to confirm whether these loci are associated with lung cancer in a French Canadian population and second to identify disease-associated single nucleotide polymorphisms (SNPs) influencing messenger RNA (mRNA) expression levels of genes in the lung, that is expression quantitative trait loci (eQTLs). SNPs were genotyped in 420 patients undergoing lung cancer surgery and compared with 3151 controls of European ancestry. Genome-wide gene expression levels in non-tumor lung tissues of the same 420 patients were also measured to identify eQTLs. Significant eQTLs were then followed-up in two replication sets (n = 339 and 363). SNPs found in the three susceptibility loci were associated with lung cancer in the French Canadian population. Strong eQTLs were found on chromosome 15q25 with the expression levels of CHRNA5 (P = 2.23 × 10− 22 with rs12907966). The CHRNA5-rs12907966 eQTL was convincingly validated in the two replication sets (P = 3.46 × 10− 16 and 2.01 × 10− 15). On 6p21, a trend was observed for rs3131379 to be associated with the expression of APOM (P = 3.58 × 10− 4) and validated in the replication sets (P = 1.11 × 10− 8 and 6.84 × 10− 4). On 5p15, no significant eQTLs were found. This study confirmed that chromosomes 15q25, 5p15 and 6p21 harbored susceptibility loci for lung cancer in French Canadians. Most importantly, this study suggests that the risk alleles at 15q25 and 6p21 may mediate their effect by regulating the mRNA expression levels of CHRNA5 and APOM in the lung. PMID:25187487

  15. Serum albumin levels in burn people are associated to the total body surface burned and the length of hospital stay but not to the initiation of the oral/enteral nutrition

    PubMed Central

    Pérez-Guisado, Joaquín; de Haro-Padilla, Jesús M; Rioja, Luis F; DeRosier, Leo C; de la Torre, Jorge I

    2013-01-01

    Objective: Serum albumin levels have been used to evaluate the severity of the burns and the nutrition protein status in burn people, specifically in the response of the burn patient to the nutrition. Although it hasn’t been proven if all these associations are fully funded. The aim of this retrospective study was to determine the relationship of serum albumin levels at 3-7 days after the burn injury, with the total body surface area burned (TBSA), the length of hospital stay (LHS) and the initiation of the oral/enteral nutrition (IOEN). Subject and methods: It was carried out with the health records of patients that accomplished the inclusion criteria and were admitted to the burn units at the University Hospital of Reina Sofia (Córdoba, Spain) and UAB Hospital at Birmingham (Alabama, USA) over a 10 years period, between January 2000 and December 2009. We studied the statistical association of serum albumin levels with the TBSA, LHS and IOEN by ANOVA one way test. The confidence interval chosen for statistical differences was 95%. Duncan’s test was used to determine the number of statistically significantly groups. Results: Were expressed as mean±standard deviation. We found serum albumin levels association with TBSA and LHS, with greater to lesser serum albumin levels found associated to lesser to greater TBSA and LHS. We didn’t find statistical association with IOEN. Conclusion: We conclude that serum albumin levels aren’t a nutritional marker in burn people although they could be used as a simple clinical tool to identify the severity of the burn wounds represented by the total body surface area burned and the lenght of hospital stay. PMID:23875122

  16. Correlation analysis of hypothalamic mRNA levels of appetite regulatory neuropeptides and several metabolic parameters in 28-day-old layer chickens.

    PubMed

    Honda, Kazuhisa; Saneyasu, Takaoki; Aoki, Koji; Shimatani, Tomohiko; Yamaguchi, Takuya; Kamisoyama, Hiroshi

    2015-05-01

    Various lines of evidence suggest that appetite-related neuropeptides in the hypothalamus are regulated by adiposity signals such as leptin and insulin in mammals. In the present study, we examined age-dependent changes in the weight of abdominal fat and hypothalamic mRNA levels of neuropeptide Y (NPY, an orexigenic neuropeptide) and proopiomelanocortin (POMC, a precursor of anorexigenic neuropeptides) in growing chickens at 7, 14, 21 and 28 days of age. Hypothalamic NPY mRNA levels were significantly (P < 0.05) decreased after 14 days of age, whereas hypothalamic POMC mRNA levels were significantly (P < 0.05) increased at 28 days of age. The percentage of abdominal fat was significantly increased after 14 days of age in chickens. We next examined the correlation of hypothalamic NPY and POMC mRNA levels and several parameters at 28 days of age. There were no significant correlations between hypothalamic mRNA levels of NPY or POMC and the percentage of abdominal fat. These findings suggest that the gene expressions of NPY and POMC do not depend on adiposity in chickens, at least in 28-day-old layer chickens.

  17. Clinical Usefulness of Monitoring Expression Levels of CCL24 (Eotaxin-2) mRNA on the Ocular Surface in Patients with Vernal Keratoconjunctivitis and Atopic Keratoconjunctivitis

    PubMed Central

    2016-01-01

    Purpose. This study aimed to evaluate the clinical efficacy of using expression levels of CCL24 (eotaxin-2) mRNA on the ocular surface as a biomarker in patients with vernal keratoconjunctivitis (VKC) and atopic keratoconjunctivitis (AKC). Methods. Eighteen patients with VKC or AKC (VKC/AKC group) and 12 control subjects (control group) were enrolled in this study. The VKC/AKC clinical score was determined by objective findings in patients by using the 5-5-5 exacerbation grading scale. All subjects underwent modified impression cytology and specimens were obtained from the upper tarsal conjunctiva. Expression levels of CCL24 (eotaxin-2) mRNA on the ocular surface were determined using real-time reverse transcription polymerase chain reaction. Results. The VKC group was divided into two subgroups, depending on the clinical score: the active stage subgroup with 100 points or more of clinical scores and the stable stage subgroup with 100 points or less. CCL24 (eotaxin-2) mRNA expression levels in the active VKC/AKC stage subgroup were significantly higher than those in the stable VKC/AKC subgroup and the control group. Clinical scores correlated significantly with CCL24 (eotaxin-2) mRNA expression levels in the VKC group. Conclusions. CCL24 (eotaxin-2) mRNA expression levels on the ocular surface are a useful biomarker for clinical severity of VKC/AKC. PMID:27721987

  18. Proximal Tubules Have the Capacity to Regulate Uptake of Albumin.

    PubMed

    Wagner, Mark C; Campos-Bilderback, Silvia B; Chowdhury, Mahboob; Flores, Brittany; Lai, Xianyin; Myslinski, Jered; Pandit, Sweekar; Sandoval, Ruben M; Wean, Sarah E; Wei, Yuan; Satlin, Lisa M; Wiggins, Roger C; Witzmann, Frank A; Molitoris, Bruce A

    2016-02-01

    Evidence from multiple studies supports the concept that both glomerular filtration and proximal tubule (PT) reclamation affect urinary albumin excretion rate. To better understand these roles of glomerular filtration and PT uptake, we investigated these processes in two distinct animal models. In a rat model of acute exogenous albumin overload, we quantified glomerular sieving coefficients (GSC) and PT uptake of Texas Red-labeled rat serum albumin using two-photon intravital microscopy. No change in GSC was observed, but a significant decrease in PT albumin uptake was quantified. In a second model, loss of endogenous albumin was induced in rats by podocyte-specific transgenic expression of diphtheria toxin receptor. In these albumin-deficient rats, exposure to diphtheria toxin induced an increase in albumin GSC and albumin filtration, resulting in increased exposure of the PTs to endogenous albumin. In this case, PT albumin reabsorption was markedly increased. Analysis of known albumin receptors and assessment of cortical protein expression in the albumin overload model, conducted to identify potential proteins and pathways affected by acute protein overload, revealed changes in the expression levels of calreticulin, disabled homolog 2, NRF2, angiopoietin-2, and proteins involved in ATP synthesis. Taken together, these results suggest that a regulated PT cell albumin uptake system can respond rapidly to different physiologic conditions to minimize alterations in serum albumin level.

  19. Temporal Variation and Association of Aflatoxin B₁ Albumin-Adduct Levels with Socio-Economic and Food Consumption Factors in HIV Positive Adults.

    PubMed

    Jolly, Pauline E; Akinyemiju, Tomi F; Jha, Megha; Aban, Inmaculada; Gonzalez-Falero, Andrea; Joseph, Dnika

    2015-12-01

    The association between aflatoxin exposure and alteration in immune responses observed in humans suggest that aflatoxin could suppress the immune system and work synergistically with HIV to increase disease severity and progression to AIDS. No longitudinal study has been conducted to assess exposure to aflatoxin (AF) among HIV positive individuals. We examined temporal variation in AFB₁ albumin adducts (AF-ALB) in HIV positive Ghanaians, and assessed the association with socioeconomic and food consumption factors. We collected socioeconomic and food consumption data for 307 HIV positive antiretroviral naive adults and examined AF-ALB levels at recruitment (baseline) and at six (follow-up 1) and 12 (follow-up 2) months post-recruitment, by age, gender, socioeconomic status (SES) and food consumption patterns. Generalized linear models were used to examine the influence of socioeconomic and food consumption factors on changes in AF-ALB levels over the study period, adjusting for other covariates. AF-ALB levels (pg/mg albumin) were lower at baseline (mean AF-ALB: 14.9, SD: 15.9), higher at six months (mean AF-ALB: 23.3, SD: 26.6), and lower at 12 months (mean AF-ALB: 15.3, SD: 15.4). Participants with the lowest SES had the highest AF-ALB levels at baseline and follow up-2 compared with those with higher SES. Participants who bought less than 20% of their food and who stored maize for less than two months had lower AF-ALB levels. In the adjusted models, there was a statistically significant association between follow up time and season (dry or rainy season) on AF-ALB levels over time (p = 0.04). Asymptomatic HIV-positive Ghanaians had high plasma AF-ALB levels that varied according to season, socioeconomic status, and food consumption patterns. Steps need to be taken to ensure the safety and security of the food supply for the population, but in particular for the most vulnerable groups such as HIV positive people.

  20. Temporal Variation and Association of Aflatoxin B1 Albumin-Adduct Levels with Socio-Economic and Food Consumption Factors in HIV Positive Adults

    PubMed Central

    Jolly, Pauline E.; Akinyemiju, Tomi F.; Jha, Megha; Aban, Inmaculada; Gonzalez-Falero, Andrea; Joseph, Dnika

    2015-01-01

    The association between aflatoxin exposure and alteration in immune responses observed in humans suggest that aflatoxin could suppress the immune system and work synergistically with HIV to increase disease severity and progression to AIDS. No longitudinal study has been conducted to assess exposure to aflatoxin (AF) among HIV positive individuals. We examined temporal variation in AFB1 albumin adducts (AF-ALB) in HIV positive Ghanaians, and assessed the association with socioeconomic and food consumption factors. We collected socioeconomic and food consumption data for 307 HIV positive antiretroviral naive adults and examined AF-ALB levels at recruitment (baseline) and at six (follow-up 1) and 12 (follow-up 2) months post-recruitment, by age, gender, socioeconomic status (SES) and food consumption patterns. Generalized linear models were used to examine the influence of socioeconomic and food consumption factors on changes in AF-ALB levels over the study period, adjusting for other covariates. AF-ALB levels (pg/mg albumin) were lower at baseline (mean AF-ALB: 14.9, SD: 15.9), higher at six months (mean AF-ALB: 23.3, SD: 26.6), and lower at 12 months (mean AF-ALB: 15.3, SD: 15.4). Participants with the lowest SES had the highest AF-ALB levels at baseline and follow up-2 compared with those with higher SES. Participants who bought less than 20% of their food and who stored maize for less than two months had lower AF-ALB levels. In the adjusted models, there was a statistically significant association between follow up time and season (dry or rainy season) on AF-ALB levels over time (p = 0.04). Asymptomatic HIV-positive Ghanaians had high plasma AF-ALB levels that varied according to season, socioeconomic status, and food consumption patterns. Steps need to be taken to ensure the safety and security of the food supply for the population, but in particular for the most vulnerable groups such as HIV positive people. PMID:26633502

  1. Temporal Variation and Association of Aflatoxin B₁ Albumin-Adduct Levels with Socio-Economic and Food Consumption Factors in HIV Positive Adults.

    PubMed

    Jolly, Pauline E; Akinyemiju, Tomi F; Jha, Megha; Aban, Inmaculada; Gonzalez-Falero, Andrea; Joseph, Dnika

    2015-12-01

    The association between aflatoxin exposure and alteration in immune responses observed in humans suggest that aflatoxin could suppress the immune system and work synergistically with HIV to increase disease severity and progression to AIDS. No longitudinal study has been conducted to assess exposure to aflatoxin (AF) among HIV positive individuals. We examined temporal variation in AFB₁ albumin adducts (AF-ALB) in HIV positive Ghanaians, and assessed the association with socioeconomic and food consumption factors. We collected socioeconomic and food consumption data for 307 HIV positive antiretroviral naive adults and examined AF-ALB levels at recruitment (baseline) and at six (follow-up 1) and 12 (follow-up 2) months post-recruitment, by age, gender, socioeconomic status (SES) and food consumption patterns. Generalized linear models were used to examine the influence of socioeconomic and food consumption factors on changes in AF-ALB levels over the study period, adjusting for other covariates. AF-ALB levels (pg/mg albumin) were lower at baseline (mean AF-ALB: 14.9, SD: 15.9), higher at six months (mean AF-ALB: 23.3, SD: 26.6), and lower at 12 months (mean AF-ALB: 15.3, SD: 15.4). Participants with the lowest SES had the highest AF-ALB levels at baseline and follow up-2 compared with those with higher SES. Participants who bought less than 20% of their food and who stored maize for less than two months had lower AF-ALB levels. In the adjusted models, there was a statistically significant association between follow up time and season (dry or rainy season) on AF-ALB levels over time (p = 0.04). Asymptomatic HIV-positive Ghanaians had high plasma AF-ALB levels that varied according to season, socioeconomic status, and food consumption patterns. Steps need to be taken to ensure the safety and security of the food supply for the population, but in particular for the most vulnerable groups such as HIV positive people. PMID:26633502

  2. Regulation of mRNA Levels by Decay-Promoting Introns that Recruit the Exosome Specificity Factor Mmi1.

    PubMed

    Kilchert, Cornelia; Wittmann, Sina; Passoni, Monica; Shah, Sneha; Granneman, Sander; Vasiljeva, Lidia

    2015-12-22

    In eukaryotic cells, inefficient splicing is surprisingly common and leads to the degradation of transcripts with retained introns. How pre-mRNAs are committed to nuclear decay is unknown. Here, we uncover a mechanism by which specific intron-containing transcripts are targeted for nuclear degradation in fission yeast. Sequence elements within these "decay-promoting" introns co-transcriptionally recruit the exosome specificity factor Mmi1, which induces degradation of the unspliced precursor and leads to a reduction in the levels of the spliced mRNA. This mechanism negatively regulates levels of the RNA helicase DDX5/Dbp2 to promote cell survival in response to stress. In contrast, fast removal of decay-promoting introns by co-transcriptional splicing precludes Mmi1 recruitment and relieves negative expression regulation. We propose that decay-promoting introns facilitate the regulation of gene expression. Based on the identification of multiple additional Mmi1 targets, including mRNAs, long non-coding RNAs, and sn/snoRNAs, we suggest a general role in RNA regulation for Mmi1 through transcript degradation.

  3. Regulation of mRNA Levels by Decay-Promoting Introns that Recruit the Exosome Specificity Factor Mmi1

    PubMed Central

    Kilchert, Cornelia; Wittmann, Sina; Passoni, Monica; Shah, Sneha; Granneman, Sander; Vasiljeva, Lidia

    2015-01-01

    Summary In eukaryotic cells, inefficient splicing is surprisingly common and leads to the degradation of transcripts with retained introns. How pre-mRNAs are committed to nuclear decay is unknown. Here, we uncover a mechanism by which specific intron-containing transcripts are targeted for nuclear degradation in fission yeast. Sequence elements within these “decay-promoting” introns co-transcriptionally recruit the exosome specificity factor Mmi1, which induces degradation of the unspliced precursor and leads to a reduction in the levels of the spliced mRNA. This mechanism negatively regulates levels of the RNA helicase DDX5/Dbp2 to promote cell survival in response to stress. In contrast, fast removal of decay-promoting introns by co-transcriptional splicing precludes Mmi1 recruitment and relieves negative expression regulation. We propose that decay-promoting introns facilitate the regulation of gene expression. Based on the identification of multiple additional Mmi1 targets, including mRNAs, long non-coding RNAs, and sn/snoRNAs, we suggest a general role in RNA regulation for Mmi1 through transcript degradation. PMID:26670050

  4. Expression of NK1 receptor at the protein and mRNA level in the porcine female reproductive system.

    PubMed

    Bukowski, R

    2014-01-01

    The presence and distribution of substance P (SP) receptor NK1 was studied in the ovary, the oviduct and the uterus (uterine horn and cervix) of the domestic pig using the methods of molecular biology (RT-PCR and immunoblot) and immunohistochemistry. The expression of NK1 receptor at mRNA level was confirmed with RT-PCR in all the studied parts of the porcine female reproductive system by the presence of 525 bp PCR product and at the protein level by the detection of 46 kDa protein band in immunoblot. Immunohistochemical staining revealed the cellular distribution of NK1 receptor protein. In the ovary NKI receptor was present in the wall of arterial blood vessels, as well as in ovarian follicles of different stages of development. In the tubular organs the NK1 receptor immunohistochemical stainings were observed in the wall of the arterial blood vessels, in the muscular membrane, as well as in the mucosal epithelium. The study confirmed the presence of NK1 receptor in the tissues of the porcine female reproductive tract which clearly points to the possibility that SP can influence porcine ovary, oviduct and uterus.

  5. Merkel cell polyomavirus small T antigen mRNA level is increased following in vivo UV-radiation.

    PubMed

    Mogha, Ariane; Fautrel, Alain; Mouchet, Nicolas; Guo, Na; Corre, Sébastien; Adamski, Henri; Watier, Eric; Misery, Laurent; Galibert, Marie-Dominique

    2010-07-02

    Merkel cell carcinoma (MCC) is a rare but aggressive skin cancer involving Merkel cells. Recently, a new human polyomavirus was implicated in MCC, being present in 80% of the samples analyzed. In virus-positive MCC, the Merkel cell polyomavirus (MCPyV) is clonally integrated into the patients DNA, and carries mutations in its large T antigen, leading to a truncated protein. In non-symptomatic tissue MCPyV can reside at very low levels. MCC is also associated with older age, immunosuppression and sun exposure. However, the link with solar exposure remains unknown, as the precise mechanism and steps involved between time of infection by MCPyV and the development of MCC. We thus investigated the potential impact of solar simulated radiation (SSR) on MCPyV transcriptional activity. We screened skin samples of 20 healthy patients enrolled in a photodermatological protocol based on in vivo-administered 2 and 4 J/cm(2) SSR. Two patients were infected with two new variants of MCPyV, present in their episomal form and RT-QPCR analyses on SSR-irradiated skin samples showed a specific and unique dose-dependent increase of MCPyV small t antigen transcript. A luciferase based in vitro assay confirmed that small t promoter is indeed UV-inducible. These findings demonstrate that solar radiation has an impact on MCPyV mRNA levels that may explain the association between MCC and solar exposure.

  6. Expression of VPAC1 receptor at the level of mRNA and protein in the porcine female reproductive system.

    PubMed

    Bukowski, R; Wąsowicz, K

    2015-01-01

    The presence and distribution of vasoactive intestinal polypeptide (VIP) receptor VPAC1 was studied in the ovary, oviduct and uterus (uterine horn and cervix) of the domestic pig using methods of molecular biology (RT-PCR and immunoblot) and immunohistochemistry. The expression of VPAC1 receptor at mRNA level was confirmed with RT-PCR in all the studied parts of the porcine female reproductive system by the presence of 525 bp PCR product and at the level of proteins by the detection of 46 kDa protein band in immunoblot. Immunohistochemical stainings revealed the cellular distribution of VPAC1 receptor protein. In the ovary it was present in the wall of arterial blood vessels, as well as in the ovarian follicles of different stages. In the tubular organs the VPAC1 receptor immunohistochemical stainings were observed in the wall of the arterial blood vessels, in the muscular membrane, as well as in the mucosal epithelium. The study confirmed the presence of VPAC1 receptor in the tissues of the porcine female reproductive tract what clearly shows the possibility of influence of VIP on the porcine ovary, oviduct and uterus. PMID:25928928

  7. [Regulation of G protein-coupled receptor kinase 5 mRNA and protein level in rat brain by addictive drugs].

    PubMed

    Zhu, Min; Fan, Xue-Liang; Yang, Wei-Lin; Jiang, Yan; Ma, Lan

    2004-10-25

    G protein-coupled receptor kinase 5 (GRK5) plays an important role in the regulation of GPCR-transduced signals. Our previous study showed that acute administration of morphine could significantly increase GRK5 mRNA level in the cerebral cortex and hippocampus of the rat brain. The current study investigated the potential effects of acute administration of addictive drugs including morphine, heroine and cocaine on GRK5 mRNA level in the rat brain using in situ hybridization and analyzed the effects of acute and chronic morphine treatments on GRK5 protein level in the rat brain using Western blotting assay. Our results showed that 2 h after the initial morphine (10 mg/kg), cocaine (15 mg/kg) and heroine (1 mg/kg) treatment, the mRNA level of GRK5 in the parietal cortex increased about 110% (P<0.01), 70% (P<0.05) and 100% (P<0.01), respectively. In the temporal cortex, GRK5 mRNA level increased about 90% (P<0.01), 40% (P<0.05) and 80.0% (P<0.01), respectively . In the hippocampus, the mRNA level of GRK5 increased about 60% (P<0.01), 30% (P<0.05) and 80% (P<0.01). However, the mRNA level of GRK5 remained unchanged after acute morphine, cocaine or heroine treatment. In the cerebral cortex of the rat brain, the acute administration of morphine (NS-Mor) increased GRK5 protein level by about 60% while the chronic morphine treatment (Mor-Mor) increased GRK5 protein level even higher [about 130% compared with the control group (chronic saline treatment, NS-NS) group, P<0.01]. In the hippocampus, GRK5 protein level remained unchanged after acute administration of morphine (P>0.1),while the level of GRK5 protein tended to decrease after chronic morphine treatment (P=0.098). In the thalamus, acute morphine treatment caused no change in GRK5 protein level (P>0.1) while after chronic morphine treatment, GRK5 protein level decreased significantly (more than 90%, P<0.01), Taken together, our results indicate that addictive drugs can regulate GRK5 in the rat brain on protein level

  8. Green tea polyphenols improve cardiac muscle mRNA, and protein levels of signal pathways related to insulin and lipid metabolism and inflammation in insulin-resistant rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Epidemiologic studies indicate that the consumption of green tea polyphenols (GTP) may reduce the risk of coronary artery disease. To explore the underlying mechanisms of action at the molecular level, we examined the effects of GTP on cardiac mRNA and protein levels of genes involved in insulin an...

  9. Positive correlation between patency and mRNA levels for cyclooxygenase-2 and prostaglandin E synthase in the uterine cervix of bitches with pyometra

    PubMed Central

    TAMADA, Hiromichi; ADACHI, Nahoko; KAWATE, Noritoshi; INABA, Toshio; HATOYA, Shingo; SAWADA, Tsutomu

    2015-01-01

    Factors involved in patency of uterine cervices in the bitch with pyometra remain to be clarified. This study examined relationship between patency and mRNA levels for inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-1, COX-2 and prostaglandin E synthase (PGES) in the uterine cervix of bitches with pyometra. Cervical patency was measured by inserting the stainless steel rods with different diameter into cervical canals. Levels of mRNA expression were determined by semi-quantitative reverse transcription-polymerase chain reaction. The cervical patency was positively correlated with mRNA levels for COX-2 and PGES, but not those for iNOS and COX-1. The results suggest that gene expression of COX-2 and PGES may be involved in the regulation of patency in the uterine cervix of bitches with pyometra. PMID:26596635

  10. Hydrogen peroxide (H2O2) increases the steady-state mRNA levels of collagenase/MMP-1 in human dermal fibroblasts.

    PubMed

    Brenneisen, P; Briviba, K; Wlaschek, M; Wenk, J; Scharffetter-Kochanek, K

    1997-01-01

    Reactive oxygen species (ROS) have been shown to be important messenger molecules in the induction of several genes. In human dermal fibroblasts the herbicide paraquat (PQ2+) was used to induce intracellular oxidative stress that was modulated by the inhibition of copper, zinc superoxide dismutase (Cu,ZnSOD), glutathione peroxidase (GSHPx), catalase, and blocking of the Fenton reaction. Interstitial collagenase (MMP-1) mRNA increased time dependently for up to 72 h following paraquat treatment. A correlation with the translation of MMP-1 could, however, only be detected up to 24 h, indicating an uncoupling of transcription and translation. Interleukin-1 alpha and beta mRNA showed two peaks at 6 h and 72 h. The inhibition of catalase by aminotriazol (ATZ), inhibition of GSHPx by buthionine sulfoximine (BSO), and blocking the Fenton reaction by the iron chelator desferrioxamine (DFO) in concert led to an increase in steady-state MMP-1 mRNA levels, possibly dependent on intracellular H2O2 increase. This combined treatment potentiated MMP-1 mRNA induction up to 6.5-fold compared to paraquat treated controls. Furthermore, exogenously added H2O2 caused an increase in MMP-1 mRNA levels. In contrast, inhibition of Cu,ZnSOD by diethyldithiocarbamate (DDC), leading to diminished H2O2 production from O2.-, decreased MMP-1 mRNA induction. Collectively, our data provide evidence that H2O2 is an important intermediate in the downstream signalling pathway finally leading to the induction of increased steady state MMP-1 mRNA levels. The synthesis of MMPs may contribute to connective tissue damage in vivo related to photoaging, inflammatory diseases, and tumor invasion. PMID:8981044

  11. Developmental changes in the hypothalamic mRNA levels of prepro-orexin and orexin receptors and their sensitivity to fasting in male and female rats.

    PubMed

    Iwasa, Takeshi; Matsuzaki, Toshiya; Munkhzaya, Munkhsaikhan; Tungalagsuvd, Altankhuu; Kuwahara, Akira; Yasui, Toshiyuki; Irahara, Minoru

    2015-11-01

    Orexin, which is also called as hypocretin (Hcrt), a product of the prepro-orexin (pp-orexin//Hcrt) gene, affects various physiological and behavioral functions, such as the sleep-wake cycle and appetite. The developmental changes in the hypothalamic mRNA levels of pp-prexin and the orexin receptors OX1R and OX2R and their sensitivity to fasting were evaluated in both male and female rats. During development, hypothalamic pp-orexin/Hcrt mRNA expression increased in both male and female rats, whereas hypothalamic OX1R mRNA expression decreased in both sexes. In addition, hypothalamic OX2R mRNA expression increased in male rats, but did not change in female rats. Fasting did not affect hypothalamic pp-orexin/Hcrt mRNA expression in either sex. Hypothalamic OX1R mRNA expression was increased by fasting in the prepubertal period (postnatal days 20 and 30) in female rats, but was not affected by fasting in males. In male rats, hypothalamic OX2R mRNA expression was decreased by fasting during the neonatal period (postnatal day 10), but not the prepubertal period (postnatal days 20 and 30). In females, hypothalamic OX2R mRNA expression was also decreased by fasting; however, the fasting-induced downregulation of hypothalamic OX2R expression persisted until postnatal day 20. These results indicate that the developmental patterns of components of the orexin system and their sensitivity to fasting during the neonatal and prepubertal periods only differ slightly between the sexes. These differences might be involved in the development of some physiological and behavioral functions.

  12. Global miRNA expression and correlation with mRNA levels in primary human bone cells

    PubMed Central

    Laxman, Navya; Rubin, Carl-Johan; Mallmin, Hans; Nilsson, Olle; Pastinen, Tomi; Grundberg, Elin; Kindmark, Andreas

    2015-01-01

    MicroRNAs (miRNAs) are important post-transcriptional regulators that have recently introduced an additional level of intricacy to our understanding of gene regulation. The aim of this study was to investigate miRNA–mRNA interactions that may be relevant for bone metabolism by assessing correlations and interindividual variability in miRNA levels as well as global correlations between miRNA and mRNA levels in a large cohort of primary human osteoblasts (HOBs) obtained during orthopedic surgery in otherwise healthy individuals. We identified differential expression (DE) of 24 miRNAs, and found 9 miRNAs exhibiting DE between males and females. We identified hsa-miR-29b, hsa-miR-30c2, and hsa-miR-125b and their target genes as important modulators of bone metabolism. Further, we used an integrated analysis of global miRNA–mRNA correlations, mRNA-expression profiling, DE, bioinformatics analysis, and functional studies to identify novel target genes for miRNAs with the potential to regulate osteoblast differentiation and extracellular matrix production. Functional studies by overexpression and knockdown of miRNAs showed that, the differentially expressed miRNAs hsa-miR-29b, hsa-miR-30c2, and hsa-miR-125b target genes highly relevant to bone metabolism, e.g., collagen, type I, α1 (COL1A1), osteonectin (SPARC), Runt-related transcription factor 2 (RUNX2), osteocalcin (BGLAP), and frizzled-related protein (FRZB). These miRNAs orchestrate the activities of key regulators of osteoblast differentiation and extracellular matrix proteins by their convergent action on target genes and pathways to control the skeletal gene expression. PMID:26078267

  13. Green tea increases anti-inflammatory tristetraprolin and decreases pro-inflammatory tumor necrosis factor mRNA levels in rats

    PubMed Central

    Cao, Heping; Kelly, Meghan A; Kari, Frank; Dawson, Harry D; Urban, Joseph F; Coves, Sara; Roussel, Anne M; Anderson, Richard A

    2007-01-01

    Background Tristetraprolin (TTP/ZFP36) family proteins have anti-inflammatory activity by binding to and destabilizing pro-inflammatory mRNAs such as Tnf mRNA, and represent a potential therapeutic target for inflammation-related diseases. Tea has anti-inflammatory properties but the molecular mechanisms have not been completely elucidated. We hypothesized that TTP and/or its homologues might contribute to the beneficial effects of tea as an anti-inflammatory product. Methods Quantitative real-time PCR was used to investigate the effects of green tea (0, 1, and 2 g solid extract/kg diet) on the expression of Ttp family genes (Ttp/Tis11/Zfp36, Zfp36l1/Tis11b, Zfp36l2/Tis11d, Zfp36l3), pro-inflammatory genes (Tnf, Csf2/Gm-csf, Ptgs2/Cox2), and Elavl1/Hua/Hur and Vegf genes in liver and muscle of rats fed a high-fructose diet known to induce insulin resistance, oxidative stress, inflammation, and TNF-alpha levels. Results Ttp and Zfp36l1 mRNAs were the major forms in both liver and skeletal muscle. Ttp, Zfp36l1, and Zfp36l2 mRNA levels were more abundant in the liver than those in the muscle. Csf2/Gm-csf and Zfp36l3 mRNAs were undetectable in both tissues. Tea (1 g solid extract/kg diet) increased Ttp mRNA levels by 50–140% but Tnf mRNA levels decreased by 30% in both tissues, and Ptgs2/Cox2 mRNA levels decreased by 40% in the muscle. Tea (2 g solid extract/kg diet) increased Elavl1/Hua/Hur mRNA levels by 40% in the liver but did not affect any of the other mRNA levels in liver or muscle. Conclusion These results show that tea can modulate Ttp mRNA levels in animals and suggest that a post-transcriptional mechanism through TTP could partially account for tea's anti-inflammatory properties. The results also suggest that drinking adequate amounts of green tea may play a role in the prevention of inflammation-related diseases. PMID:17207279

  14. mRNA and Protein levels of rat pancreas specific protein disulphide isomerase are downregulated during Hyperglycemia.

    PubMed

    Gupta, Rajani; Bhar, Kaushik; Sen, Nandini; Bhowmick, Debajit; Mukhopadhyay, Satinath; Panda, Koustubh; Siddhanta, Anirban

    2016-02-01

    Diabetes (Type I and Type II) which affects nearly every organ in the body is a multi-factorial non-communicable disorder. Hyperglycemia is the most characteristic feature of this disease. Loss of beta cells is common in both types of diabetes whose detailed cellular and molecular mechanisms are yet to be elucidated. As this disease is complex, identification of specific biomarkers for its early detection, management and devising new therapies is challenging. Based on the fact that functionally defective proteins provide the biochemical basis for many diseases, in this study, we tried to identify differentially expressed proteins during hyperglycemia. For that, hyperglycemia was induced in overnight fasted rats by intra-peritoneal injection of streptozotocin (STZ). The pancreas was isolated from control and treated rats for subsequent analyses. The 2D-gel electrophoresis followed by MALDI-TOF-MS-MS analyses revealed several up- and down-regulated proteins in hyperglycemic rat pancreas including the downregulation of a pancreas specific isoform of protein disulphide isomerase a2 (Pdia2).This observation was validated by western blot. Quantitative PCR experiments showed that the level of Pdia2 mRNA is also proportionally reduced in hyperglycemic pancreas.

  15. Trehalose accumulation induced during the oxidative stress response is independent of TPS1 mRNA levels in Candida albicans.

    PubMed

    Zaragoza, Oscar; González-Párraga, Pilar; Pedreño, Yolanda; Alvarez-Peral, Francisco J; Argüelles, Juan-Carlos

    2003-06-01

    Growing cells of the Candida albicans trehalose-deficient mutant tps1/tps1 were extremely sensitive to severe oxidative stress exposure (H2O2). However, their viability was not affected after saline stress or heat-shock treatments, being roughly equivalent to that of the parental strain. In wild-type cells, these adverse conditions induced the intracellular accumulation of trehalose together with activation of trehalose-6P synthase, whereas the endogenous trehalose content and the corresponding biosynthetic activity were barely detectable in the tps1/tps1 mutant. The addition of cycloheximide did not prevent the marked induction of trehalose-6P synthase activity. Furthermore, the presence of H2O2 decreased the level of TPS1 mRNA expression. Hence, the conspicuous trehalose accumulation in response to oxidative stress is not induced by increased transcription of TPS1. Our results are consistent with a specific requirement of trehalose in order to withstand a severe oxidative stress in C. albicans, and suggest that trehalose accumulation observed under these conditions is a complex process that most probably involves post-translational modifications of the trehalose synthase complex.

  16. Genetic variation in the CHRNA5 gene affects mRNA levels and is associated with risk for alcohol dependence.

    PubMed

    Wang, J C; Grucza, R; Cruchaga, C; Hinrichs, A L; Bertelsen, S; Budde, J P; Fox, L; Goldstein, E; Reyes, O; Saccone, N; Saccone, S; Xuei, X; Bucholz, K; Kuperman, S; Nurnberger, J; Rice, J P; Schuckit, M; Tischfield, J; Hesselbrock, V; Porjesz, B; Edenberg, H J; Bierut, L J; Goate, A M

    2009-05-01

    Alcohol dependence frequently co-occurs with cigarette smoking, another common addictive behavior. Evidence from genetic studies demonstrates that alcohol dependence and smoking cluster in families and have shared genetic vulnerability. Recently a candidate gene study in nicotine dependent cases and nondependent smoking controls reported strong associations between a missense mutation (rs16969968) in exon 5 of the CHRNA5 gene and a variant in the 3'-UTR of the CHRNA3 gene and nicotine dependence. In this study we performed a comprehensive association analysis of the CHRNA5-CHRNA3-CHRNB4 gene cluster in the Collaborative Study on the Genetics of Alcoholism (COGA) families to investigate the role of genetic variants in risk for alcohol dependence. Using the family-based association test, we observed that a different group of polymorphisms, spanning CHRNA5-CHRNA3, demonstrate association with alcohol dependence defined by Diagnostic and Statistical Manual of Mental Disorders, 4th edn (DSM-IV) criteria. Using logistic regression we replicated this finding in an independent case-control series from the family study of cocaine dependence. These variants show low linkage disequilibrium with the SNPs previously reported to be associated with nicotine dependence and therefore represent an independent observation. Functional studies in human brain reveal that the variants associated with alcohol dependence are also associated with altered steady-state levels of CHRNA5 mRNA.

  17. Trypsinogen-like cDNAs and quantitative analysis of mRNA levels from the Indianmeal moth, Plodia interpunctella.

    PubMed

    Zhu, Y C; Kramer, K J; Dowdy, A K; Baker, J E

    2000-11-01

    -like specificity to the enzymes. Quantitative RT-PCR analyses showed that, in fourth instar larvae, RC688s had 1.6-fold higher PiT2a trypsinogen-like mRNA than did HD198r. Expression of PiT2b mRNA was 3.4-fold higher in HD198r than in RC688s. Expression of PiT2c mRNA was 2.8-fold higher in RC688s than in HD198r. Mean accumulation levels of mRNAs for all three trypsinogen-like proteins were slightly higher in RC688s than in HD198r based on total RNA, and 1.3-fold higher in RC688s than in HD198r based on wet weight of larval body tissues.

  18. Thyroid hormone deiodinase type 2 mRNA levels in sea lamprey (Petromyzon marinus) are regulated during metamorphosis and in response to a thyroid challenge.

    PubMed

    Stilborn, S Salina M; Manzon, Lori A; Schauenberg, Jennifer D; Manzon, Richard G

    2013-03-01

    Thyroid hormones (THs) are crucial for normal vertebrate development and are the one obligate morphogen that drives amphibian metamorphosis. However, contrary to other metamorphosing vertebrates, lampreys exhibit a sharp drop in serum TH early in metamorphosis, and anti-thyroid agents such as potassium perchlorate (KClO(4)) induce metamorphosis. The type 2 deiodinase (D2) enzyme is a key regulator of TH availability during amphibian metamorphosis. We set out to determine how D2 may be involved in the regulation of lamprey metamorphosis and thyroid homeostasis. We cloned a 1.8Kb Petromyzon marinus D2 cDNA that includes the entire protein coding region and a selenocysteine (Sec) codon. Northern blotting indicated that the lamprey D2 mRNA is the longest reported to date (>9Kb). Using real-time PCR, we showed that intestinal and hepatic D2 mRNA levels were elevated prior to and during the early stages of metamorphosis and then declined dramatically to low levels that were sustained for the remainder of metamorphosis. These data are consistent with previously reported changes in serum TH levels and deiodinase activity. Treatment of larvae with either TH or KClO(4) significantly affected D2 mRNA levels in the intestine and liver. These D2 mRNA levels during metamorphosis and in response to thyroid challenges suggest that D2 may function in the regulation of TH levels during lamprey metamorphosis and the maintenance of TH homeostasis.

  19. Generation of stable 3'-mRNA cleavage fragments induced by siRNA in cells with high-levels of duck hepatitis B virus replication.

    PubMed

    Lan, Lin; Mao, Qing; Blum, Hubert E

    2014-01-17

    Therapeutic small interfering RNAs (siRNAs) have attracted a lot of interest both in basic biomedical sciences as well as in translational medicine. Apart from their therapeutic efficacy adverse effects of siRNAs must be addressed. The generation of stable mRNA cleavage fragments and the translation of N-truncated proteins induced by antisense oligodeoxynucleotides (ASOs) have been reported. Similar to ASOs, siRNAs are considered to function via an antisense mechanism that promotes the cleavage of the target mRNA. To further investigate whether the stable mRNA cleavage fragments also occur in siRNA we constructed a short hairpin RNA (shRNA) expression plasmid, pshRNA794, containing the same sequence reported in experiments using ASOs which directly targeted the overlapping region of the pre-genomic mRNA (pgmRNA) and sub-genomic mRNA (sgmRNA) of duck hepatitis B virus (DHBV). The shRNA resulted in a 70.9% and 69.9% reduction of the DHBV mRNAs in LMH and HuH-7 cells, respectively. In addition a 70% inhibition of the DHBV DNA level was observed. Interestingly, 3'-mRNA cleavage fragments were detected in LMH but not in HuH-7 cells. Taken together, our findings demonstrate that the ASO sequence was also effective in siRNA. Importantly, our results provide direct evidence that stable 3'-mRNA fragments were generated by siRNA in cells with high levels of DHBV replication. Whether these can cause adverse RNAi effects needs to be explored further.

  20. Analysis of hepatic deiodinase 2 mRNA levels in natural fish lake populations exposed to different levels of putative thyroid disrupters.

    PubMed

    Jarque, Sergio; Bosch, Carme; Casado, Marta; Grimalt, Joan O; Raldúa, Demetrio; Piña, Benjamin

    2014-04-01

    Hepatic mRNA levels of the dio2 gene (deiodinase 2), implicated in thyroid hormone homeostasis, were analyzed in trout from six remote lakes in the Pyrenees (Spain) and the Tatra Mountains (Slovakia). Highest levels corresponded to fish from the two coldest lakes in Pyrenees, whereas relatively low levels were found in the Tatra lakes. These values correlated with the presence of highly-brominated polybrominated diphenyl ethers (PBDE) congeners in the muscle of the same animals, reflecting the distribution of these compounds across European mountain ranges. In contrast, cyp1a expression levels, diagnostic for the presence of dioxin-like pollutants, mirrored the distribution of semi-volatile organochlorine compounds, indicating the specificity of the two types of biological responses. Exposure to PDBEs is known to increase transcription of dio2 and other thyroid-related genes in laboratory experiments; we propose that our data reflects the same phenomenon in natural populations, driven by anthropogenic pollutants at the environmental concentrations. PMID:24530182

  1. Insulin release and insulin mRNA levels in rat islets of Langerhans cultured on extracellular matrix.

    PubMed

    Perfetti, R; Henderson, T E; Wang, Y; Montrose-Rafizadeh, C; Egan, J M

    1996-07-01

    Primary culture of rat islets of Langerhans lose glucose responsiveness and eventually die when cultured for a long period of time. In this study we evaluated the effect of matrigel, a basement membrane extract, on (i) islet cell survival, (ii) cell responsiveness following a glucose challenge, and (iii) mRNA levels for insulin, glucagon, and somatostatin. Pancreatic islets were isolated by collagenase digestion and plated in culture dishes either coated or not with a matrigel layer. Using the reverse hemolytic plaque assay, we determined the total number of insulin-secreting cells and the amount of insulin secreted by individual beta cells. After 1 h of exposure to 5 mM glucose, beta cells from 6-month-old rat islets cultured for 6 weeks on matrigel showed an equal number of insulin-secreting cells compared to freshly isolated islets cultured for only 3 days in the absence of matrigel (39.5 +/- 2.5 vs. 37.1 +/- 2.6%). Furthermore, the release of insulin by cells cultured on matrigel for 6 weeks increased in a glucose-dependent manner (p < 0.001) and showed an ED50 of 7 mM. However, the amount of insulin released per single beta cell was reduced by 40-60% (p < 0.02) compared to that released from isolated beta cells derived from a 3-day culture of islets. Finally, there was a 35-55% increase (p < 0.05) in the levels of insulin, glucagon, and somatostatin mRNAs in cells cultured for 6 weeks on matrigel. These data suggest a trophic effect of matrigel on the maintenance of normal beta-cell activity and function and may lead the way to the development of a new model for the study of pancreatic islets in long-term culture.

  2. EDNRA variants associate with smooth muscle mRNA levels, cell proliferation rates, and cystic fibrosis pulmonary disease severity

    PubMed Central

    Darrah, Rebecca; McKone, Edward; O'Connor, Clare; Rodgers, Christine; Genatossio, Alan; McNamara, Sharon; Gibson, Ronald; Stuart Elborn, J.; Ennis, Madeleine; Gallagher, Charles G.; Kalsheker, Noor; Aitken, Moira; Wiese, Dawn; Dunn, John; Smith, Paul; Pace, Rhonda; Londono, Douglas; Goddard, Katrina A. B.; Knowles, Michael R.

    2010-01-01

    Airway inflammation and pulmonary disease are heterogeneous phenotypes in cystic fibrosis (CF) patients, even among patients with the same cystic fibrosis transmembrane conductance regulator (CFTR) genotype. Endothelin, a proinflammatory peptide and smooth muscle agonist, is increased in CF airways, potentially contributing to the pulmonary phenotype. Four cohorts of CF patients were screened for variants in endothelin pathway genes to determine whether any of these variants associated with pulmonary function. An initial cohort of 808 CF patients homozygous for the common CF mutation, ΔF508, showed significant association for polymorphisms in the endothelin receptor A gene, EDNRA (P = 0.04), but not in the related endothelin genes (EDN1, EDN2, EDN3, or EDNRB) or NOS1, NOS2A, or NOS3. Variants within EDNRA were examined in three additional cohorts of CF patients, 238 patients from Seattle, WA, 303 from Ireland and the U.K., and 228 from Cleveland, OH, for a total of 1,577 CF patients. The three additional groups each demonstrated a significant association between EDNRA 3′-untranslated region (UTR) variant rs5335 and pulmonary function (P = 0.002). At the molecular level, single nucleotide primer extension assays suggest that the effect of the variants is quantitative. EDNRA mRNA levels from cultured primary tracheal smooth muscle cells are greater for the allele that appears to be deleterious to lung function than for the protective allele, suggesting a mechanism by which increased receptor function is harmful to the CF airway. Finally, cell proliferation studies using human airway smooth muscle cells demonstrated that cells homozygous for the deleterious allele proliferate at a faster rate than those homozygous for the protective allele. PMID:20028935

  3. Trajectories of Serum Albumin Predict Survival of Peritoneal Dialysis Patients

    PubMed Central

    Chiu, Ping-Fang; Tsai, Chun-Chieh; Wu, Chia-Lin; Yang, Tse-Yen; Liou, Hung-Hsiang; Chen, Hung-Lin; Kor, Chew-Teng; Chang, Chia-Chu; Chang, Horng-Rong

    2016-01-01

    Abstract Although initial serum albumin level is highly associated with overall and cardiovascular mortality in peritoneal dialysis (PD) patients, we consider that the dynamic change and trend of albumin after initiation of PD are also essential. We enrolled patients who received PD for more than 3 months from January 1999 to March 2014. We categorized these patients into 2 groups by the difference in serum albumin level (Δalbumin = difference between peak with initial albumin level = peak albumin level − initial albumin level) after PD. The patients with Δalbumin < 0.2 g/dL (median level) were considered as group A (n, number = 238) and those with Δalbumin ≥ 0.2 g/dL were considered as group B (n = 278). Further, we stratified these patients into quartiles: Q1 Δalbumin < −0.2 g/dL; Q2, −0.2 ≦∼ <0.2 g/dL; Q3, 0.2 ≦∼ <0.6 g/dL; and Q4, ≥0.6 g/dL. Regression analysis was performed to determine the correlation of initial albumin and Δalbumin. Group A patients presented with higher levels of serum albumin (3.71 ± 0.54 vs 3.04 ± 0.55 g/dL; P < 0.001) and hematocrit as well as better initial residual renal function. However, those in group A had lower serum albumin increment and downward-sloped trends after dialysis. In contrast, the albumin trend was upward sloped and the increment of albumin was remarkable in group B, despite the high prevalence of cardiovascular diseases and diabetes. Overtime, group A patients had poorer survival and experienced more frequent and longer hospitalizations. Group Q1 patients with least albumin increment had worst survival. Group Q4 patients with lowest initial albumin also had poor survival. Age, diabetes, cardiovascular diseases, BMI, initial albumin, and Δalbumin could affect patient outcomes independently. Regression analysis showed a better outcome can be obtained if the initial albumin level is at least above 3.15 g/dL. (Initial albumin level

  4. Comparable mRNA expression of inflammatory markers but lower claudin-1 mRNA levels in foreskin tissue of HSV-2 seropositive versus seronegative asymptomatic Kenyan young men

    PubMed Central

    Röhl, Maria; Tjernlund, Annelie; Mehta, Supriya D; Pettersson, Pernilla; Bailey, Robert C; Broliden, Kristina

    2015-01-01

    Objectives Skin biopsies from local sites of herpes simplex virus 2 (HSV-2)-induced ulcers can show infiltrates of inflammatory cells several months after macroscopic healing. We hypothesise that foreskin tissue samples of asymptomatic HSV-2 seropositive men had remaining signs of inflammation at the molecular level. Even in the absence of clinical lesions, genital inflammation may contribute to increased HIV susceptibility on sexual exposure to the virus. Setting Foreskin tissue samples were collected from men undergoing elective circumcision in Kisumu, Kenya. Participants The foreskin tissue samples (n=86) were stratified into study groups based on HSV-2 serology and assessed for mRNA expression of inflammatory markers. Markers of interest were further assessed by immunohistochemical staining within the tissue samples. Results The two study groups had comparable levels of all molecular markers (CD3, CD4, CD8, CD69, CCR5, HLA-DR, Langerin, DC-SIGN, Mannose Receptor 1, IL-1, IL-6, TNF-α, β7, IgA, IFN-α, CCL5, E-cadherin, ZO-1 and occludin), except for lower mRNA levels of the epithelial junction protein claudin-1 in the HSV-2 seropositive group (p=0.008). Although mRNA levels of claudin-1 were lower in HSV-2 seropositive individuals, the corresponding protein could be visualised in the foreskin epithelium of all samples tested. Conclusions Whereas no general inflammation was demonstrated in the foreskin of asymptomatic HSV-2 seropositive individuals, a decreased expression of claudin-1 indicates a less robust genital epithelial barrier. An intact epithelial barrier is essential for blocking mucosal entry of genital infections, including HIV. PMID:25694458

  5. Joint cytokine quantification in two rodent arthritis models: kinetics of expression, correlation of mRNA and protein levels and response to prednisolone treatment.

    PubMed

    Rioja, I; Bush, K A; Buckton, J B; Dickson, M C; Life, P F

    2004-07-01

    Biomarker quantification in disease tissues from animal models of rheumatoid arthritis (RA) can help to provide insights into the mechanisms of action of novel therapeutic agents. In this study we validated the kinetics of IL-1beta, TNF-alpha and IL-6 mRNA and protein expression levels in joints from DBA/1OlaHsd murine collagen-induced arthritis (CIA) and Lewis rat Streptococcal cell wall (SCW)-induced arthritis by real-time polymerase chain reaction (PCR) TaqMan and Enzyme-linked immunosorbent assay (ELISA). Prednisolone was used as a reference to investigate any correlation between clinical response and cytokine levels at selected time-points. To our knowledge this is the first report showing a close pattern of expression between mRNA and protein for IL-1beta and IL-6, but not for TNF-alpha, in these two models of RA. The kinetics of expression for these biomarkers suggested that the optimal sampling time-points to study the effect of compounds on both inflammation and cytokine levels were day 4 postonset in CIA and day 3 after i.v challenge in SCW-induced arthritis. Prednisolone reduced joint swelling through a mechanism associated with a reduction in IL-1beta and IL-6 protein and mRNA expression levels. At the investigated time points, protein levels for TNF-alpha in arthritic joints were lower than the lower limit of detection of the ELISA, whereas mRNA levels for this cytokine were reliably detected. These observations suggest that RT-PCR TaqMan is a sensitive technique that can be successfully applied to the quantification of mRNA levels in rodent joints from experimental arthritis models providing insights into mechanisms of action of novel anti-inflammatory drugs.

  6. Effect of sulfide, osmotic, and thermal stresses on taurine transporter mRNA levels in the gills of the hydrothermal vent-specific mussel Bathymodiolus septemdierum.

    PubMed

    Nakamura-Kusakabe, Ikumi; Nagasaki, Toshihiro; Kinjo, Azusa; Sassa, Mieko; Koito, Tomoko; Okamura, Kei; Yamagami, Shosei; Yamanaka, Toshiro; Tsuchida, Shinji; Inoue, Koji

    2016-01-01

    Hydrothermal vent environmental conditions are characterized by high sulfide concentrations, fluctuating osmolality, and irregular temperature elevations caused by vent effluents. These parameters represent potential stressors for organisms that inhabit the area around hydrothermal vents. Here, we aimed to obtain a better understanding of the adaptation mechanisms of marine species to hydrothermal vent environments. Specifically, we examined the effect of sulfide, osmolality, and thermal stress on the expression of taurine transporter (TAUT) mRNA in the gill of the deep-sea mussel Bathymodiolus septemdierum, which is a dominant species around hydrothermal vent sites. We analyzed TAUT mRNA levels by quantitative real-time polymerase chain reaction (PCR) in the gill of mussels exposed to sulfide (0.1 or 1mg/L Na2S·9H2O), hyper- (115% seawater) and hypo- (97.5%, 95.5%, and 85% seawater) osmotic conditions, and thermal stresses (12°C and 20°C) for 24 and 48h. The results showed that mussels exposed to relatively low levels of sulfide (0.1mg/L) and moderate heat stress (12°C) exhibited higher TAUT mRNA levels than the control. Although hyper- and hypo-osmotic stress did not significantly change TAUT mRNA levels, slight induction was observed in mussels exposed to low osmolality. Our results indicate that TAUT is involved in the coping mechanism of mussels to various hydrothermal vent stresses.

  7. Effect of sulfide, osmotic, and thermal stresses on taurine transporter mRNA levels in the gills of the hydrothermal vent-specific mussel Bathymodiolus septemdierum.

    PubMed

    Nakamura-Kusakabe, Ikumi; Nagasaki, Toshihiro; Kinjo, Azusa; Sassa, Mieko; Koito, Tomoko; Okamura, Kei; Yamagami, Shosei; Yamanaka, Toshiro; Tsuchida, Shinji; Inoue, Koji

    2016-01-01

    Hydrothermal vent environmental conditions are characterized by high sulfide concentrations, fluctuating osmolality, and irregular temperature elevations caused by vent effluents. These parameters represent potential stressors for organisms that inhabit the area around hydrothermal vents. Here, we aimed to obtain a better understanding of the adaptation mechanisms of marine species to hydrothermal vent environments. Specifically, we examined the effect of sulfide, osmolality, and thermal stress on the expression of taurine transporter (TAUT) mRNA in the gill of the deep-sea mussel Bathymodiolus septemdierum, which is a dominant species around hydrothermal vent sites. We analyzed TAUT mRNA levels by quantitative real-time polymerase chain reaction (PCR) in the gill of mussels exposed to sulfide (0.1 or 1mg/L Na2S·9H2O), hyper- (115% seawater) and hypo- (97.5%, 95.5%, and 85% seawater) osmotic conditions, and thermal stresses (12°C and 20°C) for 24 and 48h. The results showed that mussels exposed to relatively low levels of sulfide (0.1mg/L) and moderate heat stress (12°C) exhibited higher TAUT mRNA levels than the control. Although hyper- and hypo-osmotic stress did not significantly change TAUT mRNA levels, slight induction was observed in mussels exposed to low osmolality. Our results indicate that TAUT is involved in the coping mechanism of mussels to various hydrothermal vent stresses. PMID:26431911

  8. Effects of dietary arginine levels and carbohydrate-to-lipid ratios on mRNA expression of growth-related hormones in largemouth bass, Micropterus salmoides.

    PubMed

    Chen, Naisong; Jin, Lina; Zhou, Hengyong; Qiu, Xiaojie

    2012-10-01

    Utilizing the tissue samples and growth data collected from our two preceding researches in largemouth bass (LMB), we have investigated effects of dietary arginine (Arg) levels and carbohydrate-to-lipid (CHO/LIP) ratios on the GH, IGF-I and insulin expression in related tissues to find possible relationships between the nutrient intake, growth performance and transcript level. Hepatic IGF-I and pituitary GH mRNA levels were significantly up-regulated by lower dietary Arg levels from 1.94% to 3.01% and by higher levels from 2.76% to 3.01%, respectively, while Brockmann body (BB)-containing tissue insulin mRNA expression was not affected. Dietary CHO/LIP ratios ranging from 0.32 to 5.17 (w/w) affected pituitary GH, liver IGF-I and BB-containing tissue insulin mRNA expression in a ratio-specific pattern. The lower ratios from 0.32 to 2.36 significantly up-regulated GH and insulin transcript levels, but significantly down-regulated IGF-I transcript levels; the higher ratios did no longer exert any further effects on them. Meanwhile, two strong positive correlations (r=0.892, r=0.885) between hepatic IGF-I transcript levels and specific growth rates of tested fish were observed with varying dietary Arg levels and CHO/LIP ratios, respectively. These findings indicate that in LMB dietary Arg levels and CHO/LIP ratios regulate differentially the endocrine system of GH, IGF-I and insulin at transcription level; this system, in turn, plays a fundamental role in the regulation of the nutrient metabolism and somatic growth; and that hepatic IGF-I mRNA abundance should be a more reliable index to assess growth and nutritional fitness than the others, at least in LMB. PMID:22906421

  9. Effects of dietary arginine levels and carbohydrate-to-lipid ratios on mRNA expression of growth-related hormones in largemouth bass, Micropterus salmoides.

    PubMed

    Chen, Naisong; Jin, Lina; Zhou, Hengyong; Qiu, Xiaojie

    2012-10-01

    Utilizing the tissue samples and growth data collected from our two preceding researches in largemouth bass (LMB), we have investigated effects of dietary arginine (Arg) levels and carbohydrate-to-lipid (CHO/LIP) ratios on the GH, IGF-I and insulin expression in related tissues to find possible relationships between the nutrient intake, growth performance and transcript level. Hepatic IGF-I and pituitary GH mRNA levels were significantly up-regulated by lower dietary Arg levels from 1.94% to 3.01% and by higher levels from 2.76% to 3.01%, respectively, while Brockmann body (BB)-containing tissue insulin mRNA expression was not affected. Dietary CHO/LIP ratios ranging from 0.32 to 5.17 (w/w) affected pituitary GH, liver IGF-I and BB-containing tissue insulin mRNA expression in a ratio-specific pattern. The lower ratios from 0.32 to 2.36 significantly up-regulated GH and insulin transcript levels, but significantly down-regulated IGF-I transcript levels; the higher ratios did no longer exert any further effects on them. Meanwhile, two strong positive correlations (r=0.892, r=0.885) between hepatic IGF-I transcript levels and specific growth rates of tested fish were observed with varying dietary Arg levels and CHO/LIP ratios, respectively. These findings indicate that in LMB dietary Arg levels and CHO/LIP ratios regulate differentially the endocrine system of GH, IGF-I and insulin at transcription level; this system, in turn, plays a fundamental role in the regulation of the nutrient metabolism and somatic growth; and that hepatic IGF-I mRNA abundance should be a more reliable index to assess growth and nutritional fitness than the others, at least in LMB.

  10. Prognostic Impact of mRNA Expression Levels of HER1–4 (ERBB1–4) in Patients with Locally Advanced Rectal Cancer

    PubMed Central

    Kripp, Melanie; Merx, Kirsten; Wirtz, Ralph Markus; Gaiser, Timo; Eidt, Sebastian; Schwaab, Juliana; Post, Stefan; Wenz, Frederik; Hochhaus, Andreas

    2016-01-01

    Background. No predictive or prognostic biomarker is available for patients with locally advanced rectal cancer (LARC) undergoing perioperative chemoradiotherapy (CRT). Members of the human epidermal growth factor receptor (HER) family of receptor tyrosine kinases EGFR (HER1, ERBB1), HER2 (ERBB2), HER3 (ERBB3), and HER4 (ERBB4) are therapeutic targets in several cancers. The analysis was performed to assess expression levels and study the potential prognostic impact for disease-free and overall survival in patients with LARC. Patients and Methods. ERBB1–4 mRNA expression and tumor proliferation using Ki-67 (MKI67) mRNA were evaluated using RT-quantitative PCR in paraffin-embedded tumor samples from 86 patients (median age: 63) treated with capecitabine or 5-fluorouracil-based CRT within a phase 3 clinical trial. Results. A positive correlation of HER4 and HER2, HER3 and HER2, and HER4 and HER3 with each other was observed. Patients with high mRNA expression of ERBB1 (EGFR, HER1) had significantly increased risk for recurrence and death. Patients with high mRNA expression of MKI67 had reduced risk for relapse. Conclusion. This analysis suggests a prognostic impact of both ERBB1 and MKi67 mRNA expression in LARC patients treated with capecitabine or fluorouracil-based chemoradiotherapy.

  11. Prognostic Impact of mRNA Expression Levels of HER1-4 (ERBB1-4) in Patients with Locally Advanced Rectal Cancer.

    PubMed

    Kripp, Melanie; Merx, Kirsten; Wirtz, Ralph Markus; Gaiser, Timo; Eidt, Sebastian; Schwaab, Juliana; Post, Stefan; Wenz, Frederik; Hochhaus, Andreas; Hofheinz, Ralf-Dieter; Erben, Philipp

    2016-01-01

    Background. No predictive or prognostic biomarker is available for patients with locally advanced rectal cancer (LARC) undergoing perioperative chemoradiotherapy (CRT). Members of the human epidermal growth factor receptor (HER) family of receptor tyrosine kinases EGFR (HER1, ERBB1), HER2 (ERBB2), HER3 (ERBB3), and HER4 (ERBB4) are therapeutic targets in several cancers. The analysis was performed to assess expression levels and study the potential prognostic impact for disease-free and overall survival in patients with LARC. Patients and Methods. ERBB1-4 mRNA expression and tumor proliferation using Ki-67 (MKI67) mRNA were evaluated using RT-quantitative PCR in paraffin-embedded tumor samples from 86 patients (median age: 63) treated with capecitabine or 5-fluorouracil-based CRT within a phase 3 clinical trial. Results. A positive correlation of HER4 and HER2, HER3 and HER2, and HER4 and HER3 with each other was observed. Patients with high mRNA expression of ERBB1 (EGFR, HER1) had significantly increased risk for recurrence and death. Patients with high mRNA expression of MKI67 had reduced risk for relapse. Conclusion. This analysis suggests a prognostic impact of both ERBB1 and MKi67 mRNA expression in LARC patients treated with capecitabine or fluorouracil-based chemoradiotherapy. PMID:27610130

  12. Biofilm formation by Bacillus subtilis requires an endoribonuclease-containing multisubunit complex that controls mRNA levels for the matrix gene repressor SinR.

    PubMed

    DeLoughery, Aaron; Dengler, Vanina; Chai, Yunrong; Losick, Richard

    2016-01-01

    Biofilm formation by Bacillus subtilis is largely governed by a circuit in which the response regulator Spo0A turns on the gene for the anti-repressor SinI. SinI, in turn, binds to and inactivates SinR, a dedicated repressor of genes for matrix production. Mutants of the genes ylbF, ymcA and yaaT are blocked in biofilm formation, but the mechanism by which they act has been mysterious. A recent report attributed their role in biofilm formation to stimulating Spo0A activity. However, we detect no measurable effect on the transcription of sinI. Instead, we find that the block in biofilm formation is caused by an increase in the levels of SinR and of its mRNA. Evidence is presented that YlbF, YmcA and YaaT interact with, and control the activity of, RNase Y, which is known to destabilize sinR mRNA. We also show that the processing of another target of RNase Y, cggR-gapA mRNA, similarly depends on YlbF and YmcA. Our work suggests that sinR mRNA stability is an additional posttranscriptional control mechanism governing the switch to multicellularity and raises the possibility that YlbF, YmcA and YaaT broadly regulate mRNA stability as part of an RNase Y-containing, multi-subunit complex.

  13. Prognostic Impact of mRNA Expression Levels of HER1–4 (ERBB1–4) in Patients with Locally Advanced Rectal Cancer

    PubMed Central

    Kripp, Melanie; Merx, Kirsten; Wirtz, Ralph Markus; Gaiser, Timo; Eidt, Sebastian; Schwaab, Juliana; Post, Stefan; Wenz, Frederik; Hochhaus, Andreas

    2016-01-01

    Background. No predictive or prognostic biomarker is available for patients with locally advanced rectal cancer (LARC) undergoing perioperative chemoradiotherapy (CRT). Members of the human epidermal growth factor receptor (HER) family of receptor tyrosine kinases EGFR (HER1, ERBB1), HER2 (ERBB2), HER3 (ERBB3), and HER4 (ERBB4) are therapeutic targets in several cancers. The analysis was performed to assess expression levels and study the potential prognostic impact for disease-free and overall survival in patients with LARC. Patients and Methods. ERBB1–4 mRNA expression and tumor proliferation using Ki-67 (MKI67) mRNA were evaluated using RT-quantitative PCR in paraffin-embedded tumor samples from 86 patients (median age: 63) treated with capecitabine or 5-fluorouracil-based CRT within a phase 3 clinical trial. Results. A positive correlation of HER4 and HER2, HER3 and HER2, and HER4 and HER3 with each other was observed. Patients with high mRNA expression of ERBB1 (EGFR, HER1) had significantly increased risk for recurrence and death. Patients with high mRNA expression of MKI67 had reduced risk for relapse. Conclusion. This analysis suggests a prognostic impact of both ERBB1 and MKi67 mRNA expression in LARC patients treated with capecitabine or fluorouracil-based chemoradiotherapy. PMID:27610130

  14. The protective effect of tadalafil on IMA (ischemia modified albumin) levels in experimental renal ischemia-reperfusion injury

    PubMed Central

    Amasyali, Akin Soner; Akkurt, Abdullah; Kazan, Ercan; Yilmaz, Mustafa; Erol, Bulent; Yildiz, Yuksel; Erol, Haluk

    2015-01-01

    Introduction: To investigate the effect of the tadalafil in experimental renal I/R injury and to evaluate these changes with IMA (nonspesific early biomarker of ischemia), NO and MDA levels. Materials and methods: Twenty four female Wistar rats were randomly divided into 3 groups (n=8): Group I, sham; Group II, 60 min I/R; Group III, 60 min I/R plus tadalafil. Tadalafil was administered via an orogastric tube (10 mg/kg) 24 h prior to the procedure. After ischemia of the left kidney and 1 h of reperfusion, blood samples were obtained, and the kidney was removed. Results: Statistically significant histopathologic changes were exist between groups, with the most severe injury was determined in group II in comparison to the others (X2=21,803, P=0.000). Also mean serum IMA levels were higher in group II, but not statistically significant (19.83±7.81 U/ml, 22.26±7.14 U/ml and 19.82±7.77 U/ml, P=0.613). In addition, NO values were lower in I/R groups (P=0.049). There were no differences among the groups in terms of MDA. Conclusions: IMA may be used as a nonselective biomarker for IR injury before the occurrence of necrosis. Decreased IMA levels may indicate the nephroprotective effect of tadalafil in renal IR injury. PMID:26629074

  15. Changes in Denitrifier Abundance, Denitrification Gene mRNA Levels, Nitrous Oxide Emissions, and Denitrification in Anoxic Soil Microcosms Amended with Glucose and Plant Residues▿

    PubMed Central

    Henderson, Sherri L.; Dandie, Catherine E.; Patten, Cheryl L.; Zebarth, Bernie J.; Burton, David L.; Trevors, Jack T.; Goyer, Claudia

    2010-01-01

    In agricultural cropping systems, crop residues are sources of organic carbon (C), an important factor influencing denitrification. The effects of red clover, soybean, and barley plant residues and of glucose on denitrifier abundance, denitrification gene mRNA levels, nitrous oxide (N2O) emissions, and denitrification rates were quantified in anoxic soil microcosms for 72 h. nosZ gene abundances and mRNA levels significantly increased in response to all organic carbon treatments over time. In contrast, the abundance and mRNA levels of Pseudomonas mandelii and closely related species (nirSP) increased only in glucose-amended soil: the nirSP guild abundance increased 5-fold over the 72-h incubation period (P < 0.001), while the mRNA level significantly increased more than 15-fold at 12 h (P < 0.001) and then subsequently decreased. The nosZ gene abundance was greater in plant residue-amended soil than in glucose-amended soil. Although plant residue carbon-to-nitrogen (C:N) ratios varied from 15:1 to 30:1, nosZ gene and mRNA levels were not significantly different among plant residue treatments, with an average of 3.5 × 107 gene copies and 6.9 × 107 transcripts g−1 dry soil. Cumulative N2O emissions and denitrification rates increased over 72 h in both glucose- and plant-tissue-C-treated soil. The nirSP and nosZ communities responded differently to glucose and plant residue amendments. However, the targeted denitrifier communities responded similarly to the different plant residues under the conditions tested despite changes in the quality of organic C and different C:N ratios. PMID:20154105

  16. The 3' untranslated region of the hsp 70 genes maintains the level of steady state mRNA in Trypanosoma brucei upon heat shock.

    PubMed Central

    Lee, M G

    1998-01-01

    An increase in the transcriptional efficiency at elevated temperatures is a characteristic of transcription of heat shock protein (hsp) coding genes in most eukaryotes analyzed to date. The regulatory mechanism for hsp 70 genes expression in Trypanosoma brucei does not follow the conventional transcriptional induction mechanism. The hsp 70 locus of T.brucei appears in a permanently activated state, and transcriptional induction of hsp 70 genes by heat shock does not occur in this organism. Therefore, the differential expression of the hsp 70 genes in trypanosomes is, to a large extent, post-transcriptionally controlled. Mechanisms of post-transcriptional control of the hsp 70 gene expression were investigated. Procyclic trypanosomes were normally maintained at approximately 25 degreesC. Incubation of procyclic trypanosomes at 41 degreesC drastically reduced the steady state mRNA levels of many protein coding genes. In contrast, the expression of the hsp 70 genes is either maintained at a high level or is up-regulated. The hsp 70 intergenic region promoter together with its 3' splice acceptor sites and the 5' untranslated region (UTR) are not sufficient to maintain or up-regulate the mRNA level of a reporter gene upon heat shock. However, addition of the 3' UTR of hsp 70 genes to a reporter gene, driven by different promoters, maintained a high level expression of the mRNA during heat shock. These results suggested that the 3' UTR of the hsp 70 genes is primarily responsible for the maintenance of mRNA level during heat shock, while mRNA containing the 3' UTR from many other genes may be rapidly degraded by heat shock induced processes. PMID:9705515

  17. Urinary Hepcidin Levels in Iron-Deficient and Iron-Supplemented Piglets Correlate with Hepcidin Hepatic mRNA and Serum Levels and with Body Iron Status.

    PubMed

    Staroń, Robert; Van Swelm, Rachel P L; Lipiński, Paweł; Gajowiak, Anna; Lenartowicz, Małgorzata; Bednarz, Aleksandra; Gajewska, Małgorzata; Pieszka, Marek; Laarakkers, Coby M M; Swinkels, Dorine W; Starzyński, Rafał R

    2015-01-01

    Among livestock, domestic pig (Sus scrofa) is a species, in which iron metabolism has been most intensively examined during last decade. The obvious reason for studying the regulation of iron homeostasis especially in young pigs is neonatal iron deficiency anemia commonly occurring in these animals. Moreover, supplementation of essentially all commercially reared piglets with iron entails a need for monitoring the efficacy of this routine practice followed in the swine industry for several decades. Since the discovery of hepcidin many studies confirmed its role as key regulator of iron metabolism and pointed out the assessment of its concentrations in biological fluids as diagnostic tool for iron-related disorder. Here we demonstrate that urine hepcidin-25 levels measured by a combination of weak cation exchange chromatography and time-of-flight mass spectrometry (WCX-TOF MS) are highly correlated with mRNA hepcidin expression in the liver and plasma hepcidin-25 concentrations in anemic and iron-supplemented 28-day old piglets. We also found a high correlation between urine hepcidin level and hepatic non-heme iron content. Our results show that similarly to previously described transgenic mouse models of iron disorders, young pigs constitute a convenient animal model to explore accuracy and relationship between indicators for assessing systemic iron status. PMID:26323096

  18. [PTK7 mRNA and protein expression level in serum of patients with acute lymphocytic leukemia and its clinical significance].

    PubMed

    Zhang, Guan-Ting; Zhang, Ai-Qin

    2014-10-01

    The purpose of this study was to detect the serum PTK7 level of patients with acute lymphocytic leukemia, and to reveal its clinical value for diagnosis of diseases. A total of 136 patients diagnosed as acute lymphocytic leukemia from May 2012 to April 2014 in our hospital were enroled in this study and were divided into the L1 group (n = 42), L2 (n = 45) and L3 group (n = 49) according cytomorphology, and 48 normal children were selected as control group. Fluorescence quantitative PCR was used to detect mRNA level of PTK7 in peripheral blood mononuclear cells, and Western blot was used to detect PTK7 protein expression. The results showed that the PTK7 mRNA level in L1 group was significantly higher than that in normal group (P = 0.000) . The PTK7 mRNA level in L2 group was significantly higher than that in the L1 group (P = 0.000). The PTK7 mRNA level in L3 group and L2 group had not significantly different between each other (P = 0.123). Serum PTK7 protein level in L1 group was very significantly higher than that in normal group (P = 0.000) . The serum PTK7 protein level in L2 group were very significantly higher than that in the L1 group (P = 0.003) and serum PTK7 protein level in L3 and L2 group had no significance difference (P = 0.312) . It is concluded that the expression level of serum PTK7 protein has a potential clinical value for the diagnosis of acute lymphocytic leukemia, but without specificity for ALL subsets.

  19. Matrix metalloproteinase-9 expression is enhanced in renal parietal epithelial cells of zucker diabetic Fatty rats and is induced by albumin in in vitro primary parietal cell culture.

    PubMed

    Zhang, Yuanyuan; George, Jasmine; Li, Yun; Olufade, Rebecca; Zhao, Xueying

    2015-01-01

    As a subfamily of matrix metalloproteinases (MMPs), gelatinases including MMP-2 and MMP-9 play an important role in remodeling and homeostasis of the extracellular matrix. However, conflicting results have been reported regarding their expression level and activity in the diabetic kidney. This study investigated whether and how MMP-9 expression and activity were changed in glomerular epithelial cells upon albumin overload. In situ zymography, immunostaining and Western blot for renal MMP gelatinolytic activity and MMP-9 protein expression were performed in Zucker lean and Zucker diabetic rats. Confocal microscopy revealed a focal increase in gelatinase activity and MMP-9 protein in the glomeruli of diabetic rats. Increased glomerular MMP-9 staining was mainly observed in hyperplastic parietal epithelial cells (PECs) expressing claudin-1 in the diabetic kidneys. Interestingly, increased parietal MMP-9 was often accompanied by decreased staining for podocyte markers (nephrin and podocalyxin) in the sclerotic area of affected glomeruli in diabetic rats. Additionally, urinary excretion of podocyte marker proteins was significantly increased in association with the levels of MMP-9 and albumin in the urine of diabetic animals. To evaluate the direct effect of albumin on expression and activity of MMP-9, primary cultured rat glomerular PECs were incubated with rat serum albumin (0.25 - 1 mg/ml) for 24 - 48 hrs. MMP-9 mRNA levels were significantly increased following albumin treatment. Meanwhile, albumin administration resulted in a dose-dependent increase in MMP-9 protein and activity in culture supernatants of PECs. Moreover, albumin activated p44/42 mitogen-activated protein kinase (MAPK) in PECs. Inhibition of p44/42 MAPK suppressed albumin-induced MMP-9 secretion from glomerular PECs. Taken together, we have demonstrated that an up-regulation of MMP-9 in activated parietal epithelium is associated with a loss of adjacent podocytes in progressive diabetic nephropathy

  20. Lower levels of cannabinoid 1 receptor mRNA in female eating disorder patients: association with wrist cutting as impulsive self-injurious behavior.

    PubMed

    Schroeder, Marc; Eberlein, Christian; de Zwaan, Martina; Kornhuber, Johannes; Bleich, Stefan; Frieling, Helge

    2012-12-01

    The cannabinoid 1 (CB 1) receptor as the primary mediator of the endocannabinoid (EC) system was found to play a role in eating disorders (EDs), depression, anxiety, and suicidal behavior. The CB 1 receptor is assumed to play a crucial role in the central reward circuitry with impact on body weight and personality traits like novelty-seeking behavior. In a previous study we found higher levels of CB 1 receptor mRNA in patients with anorexia nervosa (AN) and bulimia nervosa (BN) compared to healthy control women (HCW). The aim of the present study was to investigate the possible influence of the EC and the CB 1 receptor system on wrist cutting as self-injurious behavior (SIB) in women with EDs (n=43; AN: n=20; BN: n=23). Nine ED patients with repetitive wrist cutting (AN, n=4; BN, n=5) were compared to 34 ED patients without wrist cutting and 26 HCW. Levels of CB 1 receptor mRNA were determined in peripheral blood samples using quantitative real-time PCR. ED patients with self-injurious wrist cutting exhibited significantly lower CB 1 receptor mRNA levels compared with ED patients without wrist cutting and HCW. No significant differences were found between ED patients without a history of wrist cutting and HCW. Furthermore, a negative association was detected between CB 1 receptor mRNA levels and Beck Depression Inventory (BDI) scores. To our knowledge, this is the first study reporting a down-regulation of CB 1 receptor mRNA in patients with EDs and wrist cutting as SIB. Due to the small sample size, our results should be regarded as preliminary and further studies are warranted to reveal the underlying mechanisms.

  1. Metabolic hormones regulate basal and growth hormone-dependent igf2 mRNA level in primary cultured coho salmon hepatocytes: effects of insulin, glucagon, dexamethasone, and triiodothyronine.

    PubMed

    Pierce, A L; Dickey, J T; Felli, L; Swanson, P; Dickhoff, W W

    2010-03-01

    Igf1 and Igf2 stimulate growth and development of vertebrates. Circulating Igfs are produced by the liver. In mammals, Igf1 mediates the postnatal growth-promoting effects of growth hormone (Gh), whereas Igf2 stimulates fetal and placental growth. Hepatic Igf2 production is not regulated by Gh in mammals. Little is known about the regulation of hepatic Igf2 production in nonmammalian vertebrates. We examined the regulation of igf2 mRNA level by metabolic hormones in primary cultured coho salmon hepatocytes. Gh, insulin, the glucocorticoid agonist dexamethasone (Dex), and glucagon increased igf2 mRNA levels, whereas triiodothyronine (T(3)) decreased igf2 mRNA levels. Gh stimulated igf2 mRNA at physiological concentrations (0.25x10(-9) M and above). Insulin strongly enhanced Gh stimulation of igf2 at low physiological concentrations (10(-11) M and above), and increased basal igf2 (10(-8) M and above). Dex stimulated basal igf2 at concentrations comparable to those of stressed circulating cortisol (10(-8) M and above). Glucagon stimulated basal and Gh-stimulated igf2 at supraphysiological concentrations (10(-7) M and above), whereas T(3) suppressed basal and Gh-stimulated igf2 at the single concentration tested (10(-7) M). These results show that igf2 mRNA level is highly regulated in salmon hepatocytes, suggesting that liver-derived Igf2 plays a significant role in salmon growth physiology. The synergistic regulation of igf2 by insulin and Gh in salmon hepatocytes is similar to the regulation of hepatic Igf1 production in mammals.

  2. Palmitate alters the rhythmic expression of molecular clock genes and orexigenic neuropeptide Y mRNA levels within immortalized, hypothalamic neurons.

    PubMed

    Fick, Laura J; Fick, Gordon H; Belsham, Denise D

    2011-09-30

    The control of energy homeostasis within the hypothalamus is under the regulated control of homeostatic hormones, nutrients and the expression of neuropeptides that alter feeding behavior. Elevated levels of palmitate, a predominant saturated fatty acid in diet and fatty acid biosynthesis, alter cellular function. For instance, a key mechanism involved in the development of insulin resistance is lipotoxicity, through increased circulating saturated fatty acids. Although many studies have begun to determine the underlying mechanisms of lipotoxicity in peripheral tissues, little is known about the effects of excess lipids in the brain. To determine these mechanisms we used an immortalized, clonal, hypothalamic cell line, mHypoE-44, to demonstrate that palmitate directly alters the expression of molecular clock components, by increasing Bmal1 and Clock, or by decreasing Per2, and Rev-erbα, their mRNA levels and altering their rhythmic period within individual neurons. We found that these neurons endogenously express the orexigenic neuropeptides NPY and AgRP, thus we determined that palmitate administration alters the mRNA expression of these neuropeptides as well. Palmitate treatment causes a significant increase in NPY mRNA levels and significantly alters the phase of rhythmic expression. We explored the link between AMPK and the expression of neuropeptide Y using the AMPK inhibitor compound C and the AMP analog AICAR. AMPK inhibition decreased NPY mRNA. AICAR also elevated basal NPY, but prevented the palmitate-mediated increase in NPY mRNA levels. We postulate that this palmitate-mediated increase in NPY and AgRP synthesis may initiate a detrimental positive feedback loop leading to increased energy consumption.

  3. Changes in body mass, serum leptin, and mRNA levels of leptin receptor isoforms during the premigratory period in Myotis lucifugus.

    PubMed

    Townsend, Kristy L; Kunz, Thomas H; Widmaier, Eric P

    2008-02-01

    Migration and hibernation in mammals may be preceded by a period of leptin resistance, which may in part account for the increasing adiposity and body mass that occurs during these periods. We hypothesized that hypothalamic expression of leptin receptor mRNA would decrease during the premigration (PM) period in the little brown myotis, Myotis lucifugus. Body mass of M. lucifugus increased during the PM period, but serum leptin levels did not change during that time. Hypothalamic mRNA levels for both the short (ObRa) and fully active long (ObRb) forms of the leptin receptor increased during PM, but the relative increase in ObRa was larger and occurred sooner than ObRb. mRNA levels of an inhibitor of leptin signaling (protein inhibitor of activated STAT3: PIAS3) increased in hypothalami during the PM period in bats. Adiponectin is an adipokine that has been linked to obesity in rodents; normally, serum levels of adiponectin decrease in obesity. In M. lucifugus, adiponectin mRNA levels decreased in adipose tissue during the period of mass gain, but circulating adiponectin levels did not change. We conclude that the relative changes in leptin receptor isoform expression during the PM fattening period may favor binding of leptin to the less active short isoform. Coupled with increased expression of PIAS3 and the dissociation of serum leptin levels from body mass and adiposity, these changes could account in part for the adaptive fattening during the PM period. In addition, the adipokine profiles of M. lucifugus during the PM period and that of obesity in non-hibernating mammals are strikingly dissimilar. PMID:17962952

  4. Intake of branched-chain amino acids influences the levels of MAFbx mRNA and MuRF-1 total protein in resting and exercising human muscle.

    PubMed

    Borgenvik, Marcus; Apró, William; Blomstrand, Eva

    2012-03-01

    Resistance exercise and amino acids are two major factors that influence muscle protein turnover. Here, we examined the effects of resistance exercise and branched-chain amino acids (BCAA), individually and in combination, on the expression of anabolic and catabolic genes in human skeletal muscle. Seven subjects performed two sessions of unilateral leg press exercise with randomized supplementation with BCAA or flavored water. Biopsies were collected from the vastus lateralis muscle of both the resting and exercising legs before and repeatedly after exercise to determine levels of mRNA, protein phosphorylation, and amino acid concentrations. Intake of BCAA reduced (P < 0.05) MAFbx mRNA by 30 and 50% in the resting and exercising legs, respectively. The level of MuRF-1 mRNA was elevated (P < 0.05) in the exercising leg two- and threefold under the placebo and BCAA conditions, respectively, whereas MuRF-1 total protein increased by 20% (P < 0.05) only in the placebo condition. Phosphorylation of p70(S6k) increased to a larger extent (∼2-fold; P < 0.05) in the early recovery period with BCAA supplementation, whereas the expression of genes regulating mTOR activity was not influenced by BCAA. Muscle levels of phenylalanine and tyrosine were reduced (13-17%) throughout recovery (P < 0.05) in the placebo condition and to a greater extent (32-43%; P < 0.05) following BCAA supplementation in both resting and exercising muscle. In conclusion, BCAA ingestion reduced MAFbx mRNA and prevented the exercise-induced increase in MuRF-1 total protein in both resting and exercising leg. Further-more, resistance exercise differently influenced MAFbx and MuRF-1 mRNA expression, suggesting both common and divergent regulation of these two ubiquitin ligases.

  5. Distinct changes in peptide YY binding to, and mRNA levels of, Y1 and Y2 receptors in the rat hippocampus associated with kindling epileptogenesis.

    PubMed

    Gobbi, M; Gariboldi, M; Piwko, C; Hoyer, D; Sperk, G; Vezzani, A

    1998-04-01

    Electrical kindling of the rat dorsal hippocampus induced significant changes in the binding of 125I-peptide YY to Y1 and Y2 subtypes of neuropeptide Y receptors and in their mRNA levels in the area dentata as assessed by quantitative receptor autoradiography and in situ hybridization histochemistry. Binding to Y1 receptor sites decreased by 50% (p < 0.05) in the molecular layer of the stimulated dentate gyrus, 2 days after preconvulsive stage 2 and 1 week or 1 month after generalized stage 5 seizures compared with sham-stimulated rats. Binding to Y2 receptor sites increased bilaterally by 36-87% (p < 0.05) in the hilus at stage 2 and 1 week or 1 month after stage 5. No significant changes were observed after one afterdischarge or in the other hippocampal subfields or in the cortex. Y1 receptor mRNA signal decreased bilaterally by 50-64% (p < 0.01) in the granule cell layer, 6 h but not 24 h after stages 2 and 5. The Y2 receptor mRNA signal was enhanced by 283% (p < 0.01) in the stimulated granule cell layer 24 h after stage 2. At 6 and 24 h after stage 5, mRNA levels were increased both ipsilaterally (283 and 360%, respectively; p < 0.01) and contralaterally (190 and 260%, respectively; p < 0.05). No significant changes in level of either mRNA was found following one afterdischarge. These modifications, and the enhanced neuropeptide Y release previously shown in the hippocampus, suggest that kindling is associated with lasting changes in neuropeptide Y-mediated neurotransmission.

  6. Branched chain in situ hybridization for albumin as a marker of hepatocellular differentiation: evaluation of manual and automated in situ hybridization platforms

    PubMed Central

    Shahid, Mohammad; Mubeen, Aysha; Tse, Julie; Kakar, Sanjay; Bateman, Adrian; Borger, Darrell; Rivera, Miguel; Ting, David T.; Deshpande, Vikram

    2015-01-01

    Introduction Albumin, widely recognized as a highly sensitive and specific marker of hepatocellular carcinoma (HCC) is currently unavailable in the diagnostic laboratory because of the lack of a robust platform. In a prior study we detected albumin mRNA in the majority of intrahepatic cholangiocarcinomas using a novel branched chain RNA in situ hybridization (ISH) platform. We now explore the utility of albumin ISH as a marker of hepatocellular differentiation in hepatocellular carcinomas, and compare its sensitivity with Hep Par 1 and Arginase-1. Methods We evaluated 93 HCCs and its mimics including neuroendocrine tumors of the gastrointestinal tract (n= 31), neuroendocrine tumors of the pancreas (n= 163), melanoma (n= 15), and gallbladder carcinoma (n=34). We performed ISH for albumin and immunohistochemistry for Hep Par 1 and Arginase-1. Five previously uncharacterized hepatic neoplasms from our files were also evaluated. Immunohistochemistry for Arginase-1 was performed on 59 intrahepatic cholangiocarcinomas. In addition, 43 HCCs evaluated on the manual platform, were also examined on the automated instrument. Results 55% of HCCs were moderately differentiated and 39% poorly differentiated. The sensitivity of ISH for Albumin was 99% with 92 of 93 of HCCs staining positive for albumin. In contrast to ISH, the sensitivity of immunohistochemistry for Hep Par1 and Arginase-1 was 84 % and 83 %, respectively. The sensitivity of albumin for poorly differentiated HCCs was 99%, while that for Arginase-1 and Hep Par 1 was 71% and 64%, respectively. 97% of the HCCs showed albumin positivity in >50% of tumor cells using the ISH platform, as compared to 76% and 70% for Hep Par 1 and Arginase-1 immunohistochemistry, respectively. 3 of the 5 previously uncharacterized neoplasms were positive for albumin ISH. Automated albumin ISH platform performed equivalently to the manual format, with albumin reactivity in >50% of tumor cells in all 43 cases that were tested on both

  7. An evaluation of the effects of acute and chronic L-tyrosine administration on BDNF levels and BDNF mRNA expression in the rat brain.

    PubMed

    Ferreira, Gabriela K; Scaini, Giselli; Jeremias, Isabela C; Carvalho-Silva, Milena; Gonçalves, Cinara L; Pereira, Talita C B; Oliveira, Giovanna M T; Kist, Luiza W; Bogo, Maurício R; Schuck, Patrícia F; Ferreira, Gustavo C; Streck, Emilio L

    2014-04-01

    Tyrosinemia type II, which is also known as Richner-Hanhart syndrome, is an inborn error of metabolism that is due to a block in the transamination reaction that converts tyrosine to p-hydroxyphenylpyruvate. Because the mechanisms of neurological dysfunction in hypertyrosinemic patients are poorly known and the symptoms of these patients are related to the central nervous system, the present study evaluated brain-derived neurotrophic factor (BDNF) levels and bdnf mRNA expression in young rats and during growth. In our acute protocol, Wistar rats (10 and 30 days old) were killed 1 h after a single intraperitoneal L-tyrosine injection (500 mg/kg) or saline. Chronic administration consisted of L-tyrosine (500 mg/kg) or saline injections 12 h apart for 24 days in Wistar rats (7 days old), and the rats were killed 12 h after the last injection. The brains were rapidly removed, and we evaluated the BDNF levels and bdnf mRNA expression. The present results showed that the acute administration of L-tyrosine decreased both BDNF and bdnf mRNA levels in the striatum of 10-day-old rats. In the 30-day-old rats, we observed decreased BDNF levels without modifications in bdnf transcript level in the hippocampus and striatum. Chronic administration of L-tyrosine increased the BDNF levels in the striatum of rats during their growth, whereas bdnf mRNA expression was not altered. We hypothesize that oxidative stress can interact with the BDNF system to modulate synaptic plasticity and cognitive function. The present results enhance our knowledge of the pathophysiology of hypertyrosinemia. PMID:24091827

  8. An evaluation of the effects of acute and chronic L-tyrosine administration on BDNF levels and BDNF mRNA expression in the rat brain.

    PubMed

    Ferreira, Gabriela K; Scaini, Giselli; Jeremias, Isabela C; Carvalho-Silva, Milena; Gonçalves, Cinara L; Pereira, Talita C B; Oliveira, Giovanna M T; Kist, Luiza W; Bogo, Maurício R; Schuck, Patrícia F; Ferreira, Gustavo C; Streck, Emilio L

    2014-04-01

    Tyrosinemia type II, which is also known as Richner-Hanhart syndrome, is an inborn error of metabolism that is due to a block in the transamination reaction that converts tyrosine to p-hydroxyphenylpyruvate. Because the mechanisms of neurological dysfunction in hypertyrosinemic patients are poorly known and the symptoms of these patients are related to the central nervous system, the present study evaluated brain-derived neurotrophic factor (BDNF) levels and bdnf mRNA expression in young rats and during growth. In our acute protocol, Wistar rats (10 and 30 days old) were killed 1 h after a single intraperitoneal L-tyrosine injection (500 mg/kg) or saline. Chronic administration consisted of L-tyrosine (500 mg/kg) or saline injections 12 h apart for 24 days in Wistar rats (7 days old), and the rats were killed 12 h after the last injection. The brains were rapidly removed, and we evaluated the BDNF levels and bdnf mRNA expression. The present results showed that the acute administration of L-tyrosine decreased both BDNF and bdnf mRNA levels in the striatum of 10-day-old rats. In the 30-day-old rats, we observed decreased BDNF levels without modifications in bdnf transcript level in the hippocampus and striatum. Chronic administration of L-tyrosine increased the BDNF levels in the striatum of rats during their growth, whereas bdnf mRNA expression was not altered. We hypothesize that oxidative stress can interact with the BDNF system to modulate synaptic plasticity and cognitive function. The present results enhance our knowledge of the pathophysiology of hypertyrosinemia.

  9. Protein Crystal Serum Albumin

    NASA Technical Reports Server (NTRS)

    1998-01-01

    As the most abundant protein in the circulatory system albumin contributes 80% to colloid osmotic blood pressure. Albumin is also chiefly responsible for the maintenance of blood pH. It is located in every tissue and bodily secretion, with extracellular protein comprising 60% of total albumin. Perhaps the most outstanding property of albumin is its ability to bind reversibly to an incredible variety of ligands. It is widely accepted in the pharmaceutical industry that the overall distribution, metabolism, and efficiency of many drugs are rendered ineffective because of their unusually high affinity for this abundant protein. An understanding of the chemistry of the various classes of pharmaceutical interactions with albumin can suggest new approaches to drug therapy and design. Principal Investigator: Dan Carter/New Century Pharmaceuticals

  10. Cadmium chloride alters mRNA levels of angiogenesis related genes in primary human endometrial endothelial cells grown in vitro.

    PubMed

    Helmestam, Malin; Stavreus-Evers, Anneli; Olovsson, Matts

    2010-11-01

    Cadmium, is known to cause adverse reproductive effects, and classified as an endocrine disrupting chemical (EDC). Human endometrial endothelial cells (HEEC) have a key role in the regulation of endometrial angiogenesis. These cells are known to express estrogen receptors, a feature that makes them potential targets for EDCs such as cadmium. We have designed a co-culture system, in which HEEC were grown in the same cell culture medium as endometrial stromal cells but in separate, communicating chambers. With quantitative PCR, we investigated changes in mRNA expression of genes associated with angiogenesis, sex steroids and endothelial cell specific functions. We found that cadmium altered the mRNA expression of the two important angiogenic molecules VEGF-A and PLGF. Cadmium might thus affect endometrial angiogenesis and as a consequence cause endometrial dysfunction with an increased risk for fertility problems. PMID:20580663

  11. Monitoring mRNA and protein levels in bulk and in model vesicle-based artificial cells.

    PubMed

    van Nies, Pauline; Canton, Alicia Soler; Nourian, Zohreh; Danelon, Christophe

    2015-01-01

    With rising interest in utilizing cell-free gene expression systems in bottom-up synthetic biology projects, novel labeling tools need to be developed to accurately report the dynamics and performance of the biosynthesis machinery operating in various reaction conditions. Monitoring the transcription activity has been simplified by the Spinach technology, an RNA aptamer that emits fluorescence upon binding to a small organic dye. Recently, we tracked the fluorescence of Spinach-tagged messenger RNA (mRNA) and its translation product the yellow fluorescent protein (YFP), both synthesized in the protein synthesis using recombinant elements system from a DNA template. Building on our previous study, we describe here an improved Spinach reporter with modified flanking sequences that confer higher propensity for aptamer folding and, thus, enhanced fluorescence brightness. Hence, the kinetics of mRNA and YFP production could be simultaneously monitored with unprecedented sensitivity. A combination of methodologies, comprising RNA gel analysis, real-time quantitative polymerase chain reaction, absorbance measurements, and fluorescence correlation spectroscopy, was used to convert fluorescence intensity units into absolute concentrations of transcript and YFP translational product. Furthermore, we demonstrated that the new Spinach construct greatly enhanced mRNA detection when gene expression was confined inside self-assembled lipid vesicles. Therefore, we argue that this assay could be used to evaluate systematically the performance of transcription and translation in model vesicle-based artificial cells.

  12. RNA/DNA ratio and LPL and MyoD mRNA expressions in muscle of Oreochromis niloticus fed with elevated levels of palm oil

    NASA Astrophysics Data System (ADS)

    Ayisi, Christian Larbi; Zhao, Jinliang

    2016-02-01

    Palm oil is of great potential as one of the sustainable alternatives to fish oil (FO) in aquafeeds. In this present study, five isonitrogenous diets (32% crude protein) with elevated palm oil levels of 0%, 2%, 4%, 6% and 8% were used during an 8-week feeding trial to evaluate its effects on RNA/DNA ratio and lipoprotein lipase (LPL) and MyoD mRNA expressions in muscle of Oreochromis niloticus. The results showed that RNA, DNA content as well as ratio of RNA to DNA were significantly affected ( P < 0.05), in each case the highest was recorded in fish group subjected to 6% palm oil level. There was a strong positive correlation between nucleic acid concentration (RNA concentration and RNA: DNA ratio) and specific growth rate (SGR), protein efficiency ratio (PER), while a negative correlation existed between nucleic acid concentration (RNA concentration and RNA: DNA ratio) and feed conversion ratio (FCR). The mRNA expressions of LPL and MyoD in muscle were not significantly affected by the different palm oil levels, although the highest expression was observed in fish fed with 6% palm oil level. There also existed a strong positive correlation between the mRNA expression of LPL, MyoD and SGR, PER, while their correlation with FCR was negative. In conclusion, elevated palm oil affected the RNA, DNA concentration as well as RNA/DNA ratio significantly, although the mRNA expression of LPL and MyoD were not affected significantly by elevated palm oil levels.

  13. The Co-Induced Effects of Molybdenum and Cadmium on the Trace Elements and the mRNA Expression Levels of CP and MT in Duck Testicles.

    PubMed

    Xia, Bing; Chen, Hua; Hu, Guoliang; Wang, Liqi; Cao, Huabin; Zhang, Caiying

    2016-02-01

    To investigate the chronic toxicity of molybdenum (Mo) and cadmium (Cd) on the trace elements and the mRNA expression levels of ceruloplasmin (CP) and metallothionein (MT) in duck testicles, 120 healthy 11-day-old male ducks were randomly divided into six groups with 20 ducks in each group. Ducks were treated with the diet containing different dosages of Mo or Cd. The source of Mo and Cd was hexaammonium molybdate ([(NH4)6Mo7O24·4H2O]) and cadmium sulfate (3CdSO4·8H2O), respectively, in this study. After being treated for 60 and 120 days, ten male birds in each group were randomly selected and euthanized and then testicles were aseptically collected for determining the mRNA expression levels of MT and CP, antioxidant indexes, and contents of trace elements in the testicle. In addition, testicle tissues at 120 days were subjected to histopathological analysis with the optical microscope. The results showed that co-exposure to Mo and Cd resulted in an increase in malondialdehyde (MDA) level while decrease in xanthine oxidase (XOD) and catalase (CAT) activities. The mRNA expression level of MT gene was upregulated while CP was decreased in combination groups. Contents of Mo, copper (Cu), iron (Fe), and zinc (Zn) decreased in combined groups while Cd increased in Cd and combined groups at 120 days. Furthermore, severe congestion, low sperm count, and malformation were observed in low dietary of Mo combined with Cd group and high dietary of Mo combined with Cd group. Our results suggested that Mo and Cd might aggravate testicular degeneration synergistically through altering the mRNA expression levels of MT and CP, increasing lipid peroxidation through inhibiting related enzyme activities and disturbing homeostasis of trace elements in testicles. Interaction of Mo and Cd may have a synergistic effect on the testicular toxicity. PMID:26105546

  14. The Co-Induced Effects of Molybdenum and Cadmium on the Trace Elements and the mRNA Expression Levels of CP and MT in Duck Testicles.

    PubMed

    Xia, Bing; Chen, Hua; Hu, Guoliang; Wang, Liqi; Cao, Huabin; Zhang, Caiying

    2016-02-01

    To investigate the chronic toxicity of molybdenum (Mo) and cadmium (Cd) on the trace elements and the mRNA expression levels of ceruloplasmin (CP) and metallothionein (MT) in duck testicles, 120 healthy 11-day-old male ducks were randomly divided into six groups with 20 ducks in each group. Ducks were treated with the diet containing different dosages of Mo or Cd. The source of Mo and Cd was hexaammonium molybdate ([(NH4)6Mo7O24·4H2O]) and cadmium sulfate (3CdSO4·8H2O), respectively, in this study. After being treated for 60 and 120 days, ten male birds in each group were randomly selected and euthanized and then testicles were aseptically collected for determining the mRNA expression levels of MT and CP, antioxidant indexes, and contents of trace elements in the testicle. In addition, testicle tissues at 120 days were subjected to histopathological analysis with the optical microscope. The results showed that co-exposure to Mo and Cd resulted in an increase in malondialdehyde (MDA) level while decrease in xanthine oxidase (XOD) and catalase (CAT) activities. The mRNA expression level of MT gene was upregulated while CP was decreased in combination groups. Contents of Mo, copper (Cu), iron (Fe), and zinc (Zn) decreased in combined groups while Cd increased in Cd and combined groups at 120 days. Furthermore, severe congestion, low sperm count, and malformation were observed in low dietary of Mo combined with Cd group and high dietary of Mo combined with Cd group. Our results suggested that Mo and Cd might aggravate testicular degeneration synergistically through altering the mRNA expression levels of MT and CP, increasing lipid peroxidation through inhibiting related enzyme activities and disturbing homeostasis of trace elements in testicles. Interaction of Mo and Cd may have a synergistic effect on the testicular toxicity.

  15. Effects of chronic low level lead exposure on the expression of GFAP and vimentin mRNA in the rat brain hippocampus analysed by in situ hybridization.

    PubMed

    Peters, B; Stoltenburg, G; Hummel, M; Herbst, H; Altmann, L; Wiegand, H

    1994-01-01

    In this study we used in situ hybridization to examine the effects of chronic low level lead toxicity during different periods of brain development. Low level lead is known to affect astroglia. GFAP and Vimentin were chosen as glialtypic markers for neurotoxicity. The effects of lead were investigated on male Wistar rats. Animals were divided into four groups: a control group, a permanent group exposed during gestation, lactation and post-weaning (E0-P100), a perinatal group exposed during gestation and postnatally until weaning (E0-P16), and a post-weaning exposed group (P16-P100). All experimental animals were fed a diet containing 750 ppm lead acetate. With respect to Vimentin mRNA no major differences could be detected among the treatment groups. Significant differences in GFAP mRNA levels were detected in the post-weaning group relative to controls. In this group we observed a strong increase of GFAP mRNA in the polymorphic zone of the dentate gyrus and in the CA1 region of the hippocampus. Permanent and perinatal groups showed no overt changes compared to controls. Our findings suggest that an irritation of the mature astrocyte results in a change from the quiescent to the reactive state. The majority of astrocytes that have been exposed during their development and differentiation fail to react even if the exposure is continued to adulthood. This suggests an irreversible insult by low level lead exposure during this period of time.

  16. Changes in levels of 8-hydroxyguanine in DNA, its repair and OGG1 mRNA in rat lungs after intratracheal administration of diesel exhaust particles.

    PubMed

    Tsurudome, Y; Hirano, T; Yamato, H; Tanaka, I; Sagai, M; Hirano, H; Nagata, N; Itoh, H; Kasai, H

    1999-08-01

    Diesel exhaust particles (DEP), an environmental pollutant, are known to induce lung cancer in experimental animals. To clarify whether reactive oxygen species (ROS) are involved in its carcinogenic mechanism, we examined the levels of 8-hydroxyguanine (8-OH-Gua), its total repair and the repair enzyme OGG1 mRNA in female Fischer 344 rat lungs, as markers of the response to ROS, after DEP was intratracheally instilled. The 8-OH-Gua levels in both DEP-treated groups (2 and 4 mg) were increased during the 2-8 h following exposure to DEP. The 8-OH-Gua repair activities in the DEP-treated groups decreased during the period from 2 h to 2 days following DEP exposure and then recovered to the level of the control group at 5 days after exposure. OGG1 mRNA was induced in rats treated with 4 mg DEP for 5-7 days after administration. In conclusion, the 8-OH-Gua level in rat lung DNA increases markedly at an early phase after DEP exposure, by the generation of ROS and the inhibition of 8-OH-Gua repair activity, and induction of OGG1 mRNA is also a good marker of cellular oxidative stress during carcinogenesis. PMID:10426809

  17. Increased TRPV1 and PAR2 mRNA expression levels are associated only with the esophageal reflux symptoms, but not with the extraesophageal reflux symptoms

    PubMed Central

    Kim, Jin Joo; Kim, Nayoung; Choi, Yoon Jin; Kim, Joo Sung; Jung, Hyun Chae

    2016-01-01

    Abstract Transient receptor potential vanilloid-1 (TRPV1) receptor and proteinase-activated receptor 2 (PAR2) have been implicated in the mechanism of acid-induced inflammation in gastroesophageal reflux disease (GERD). We aimed to evaluate TRPV1 and PAR2 mRNA expression levels in the GERD patients and their relationship with endoscopic findings and reflux symptoms. Sixteen healthy controls, 45 patients with erosive reflux disease (ERD), and 14 nonerosive reflux disease (NERD) patients received endoscopy and completed questionnaires. Quantitative real-time polymerase chain reactions (qPCR) of TRPV1, glial cell line-derived neurotrophic factor (GDNF), nerve growth factor (NGF), PAR2, and interleukin (IL)-8 were performed in the distal esophagus specimen. The levels of TRPV1, GDNF, NGF, PAR2, and IL-8 mRNA expression were highest in the ERD group followed by NERD and control groups and the differences between control and ERD groups were statistically significant. Within the ERD group, patients with grade B in Los Angeles (LA) classification showed significantly higher levels of TRPV1, GDNF, and NGF mRNA expression than those with grade A. Presence of reflux symptoms was associated with significant higher levels of TRPV1, PAR2, and IL-8. Notably not extraesophageal but esophageal reflux symptoms were significantly associated with them. Upregulation of TRPV1 and PAR2 pathways might play a role in the development of distal esophageal inflammation and reflux symptoms. And extraesophageal reflux symptoms might not be associated with these processes. PMID:27512850

  18. Interleukin-8 and vascular endothelial growth factor mRNA and protein levels are down-regulated in ovarian carcinoma cells in serous effusions.

    PubMed

    Davidson, Ben; Reich, Reuven; Kopolovic, Juri; Berner, Aasmund; Nesland, Jahn M; Kristensen, Gunnar B; Tropé, Claes G; Bryne, Magne; Risberg, Bjørn; van de Putte, Gregg; Goldberg, Iris

    2002-01-01

    Angiogenic factors are involved in tumor growth and spread. The aim of this study was to evaluate the expression of angiogenesis-related genes in malignant serous effusions of patients with advanced-stage (FIGO stage III and IV) ovarian carcinoma. In addition, to compare the results for carcinoma cells in effusions with corresponding primary tumors and metastatic lesions, and analyze their prognostic role. Sections from 66 effusions and 90 primary and metastatic lesions from 62 ovarian and primary peritoneal carcinoma patients, were evaluated for expression of basic fibroblast factor (bFGF), interleukin-8 (IL-8), and vascular endothelial growth factor (VEGF) using mRNA in situ hybridization (ISH). Protein expression was evaluated in a subset of specimens using immunohistochemistry (IHC). ISH results were correlated with clinical parameters. In both effusions and solid tumors, bFGF mRNA was the most commonly expressed factor (93% of effusions and 95% of solid tumors) followed by IL-8, while VEGF was expressed in a minority of the specimens (P < 0.001 for bFGF vs. IL-8 and VEGF). In solid tumors, angiogenic mRNA expression was seen in both tumor and stromal cells in the majority of positive cases. ISH results did not differ in primary and metastatic tumors. However, carcinoma cells in effusions showed down-regulated expression of VEGF, when compared with both primary tumors (P = 0.029) and metastases (P = 0.015). IL-8 showed a similar down-regulation in effusions, when compared with metastases (P = 0.005). IHC showed excellent agreement with mRNA findings on protein level. In the study of clinico-pathologic parameters, IL-8 mRNA expression in effusions was associated with higher tumor grade (P = 0.044). Angiogenic gene expression in effusions showed no correlation with patient age, previous treatment, residual tumor size, FIGO stage or disease outcome in survival analysis (P > 0.05). Peritoneal and pleural effusions showed similar expression patterns. In conclusion

  19. Increased mRNA Levels of Sphingosine Kinases and S1P Lyase and Reduced Levels of S1P Were Observed in Hepatocellular Carcinoma in Association with Poorer Differentiation and Earlier Recurrence

    PubMed Central

    Uranbileg, Baasanjav; Ikeda, Hitoshi; Kurano, Makoto; Enooku, Kenichiro; Sato, Masaya; Saigusa, Daisuke; Aoki, Junken; Ishizawa, Takeaki; Hasegawa, Kiyoshi; Kokudo, Norihiro; Yatomi, Yutaka

    2016-01-01

    Although sphingosine 1-phosphate (S1P) has been reported to play an important role in cancer pathophysiology, little is known about S1P and hepatocellular carcinoma (HCC). To clarify the relationship between S1P and HCC, 77 patients with HCC who underwent surgical treatment were consecutively enrolled in this study. In addition, S1P and its metabolites were quantitated by LC-MS/MS. The mRNA levels of sphingosine kinases (SKs), which phosphorylate sphingosine to generate S1P, were increased in HCC tissues compared with adjacent non-HCC tissues. Higher mRNA levels of SKs in HCC were associated with poorer differentiation and microvascular invasion, whereas a higher level of SK2 mRNA was a risk factor for intra- and extra-hepatic recurrence. S1P levels, however, were unexpectedly reduced in HCC compared with non-HCC tissues, and increased mRNA levels of S1P lyase (SPL), which degrades S1P, were observed in HCC compared with non-HCC tissues. Higher SPL mRNA levels in HCC were associated with poorer differentiation. Finally, in HCC cell lines, inhibition of the expression of SKs or SPL by siRNA led to reduced proliferation, invasion and migration, whereas overexpression of SKs or SPL enhanced proliferation. In conclusion, increased SK and SPL mRNA expression along with reduced S1P levels were more commonly observed in HCC tissues compared with adjacent non-HCC tissues and were associated with poor differentiation and early recurrence. SPL as well as SKs may be therapeutic targets for HCC treatment. PMID:26886371

  20. mRNA levels and methylation patterns of the 2-5A synthetase gene in control and Alzheimer's disease (AD) fibroblasts.

    PubMed

    An, S; Khanna, K K; Wu, J M

    1994-08-01

    We have examined the mRNA levels and methylation patterns of the interferon-inducible 2',5'-oligoadenylate (2-5A) synthetase gene in skin fibroblasts derived from AD and age/sex-matched control subjects. Northern or slot hybridization analysis of total RNA showed a 63% and 46% decrease in the steady state level of 2-5A synthetase mRNA in AD cells as compared to controls, following a 24 h and 48 h treatment with IFN-beta ser. The 2-5A synthetase gene as studied by Southern analysis using the methylation-sensitive restriction enzymes HpaII and Msp I was found to be hypomethylated in AD cells. No difference in methylation patterns of the actin gene existed between control and AD fibroblasts.

  1. High levels of MMP-2, MMP-9, MT1-MMP and TIMP-2 mRNA correlate with poor survival in ovarian carcinoma.

    PubMed

    Davidson, B; Goldberg, I; Gotlieb, W H; Kopolovic, J; Ben-Baruch, G; Nesland, J M; Berner, A; Bryne, M; Reich, R

    1999-01-01

    The object of this study was to analyze the potential association between the expression of MMP-2, MMP-9, MT1-MMP and TIMP-2, and disease outcome in advanced-stage ovarian carcinomas. Sections from 70 paraffin-embedded blocks (36 primary ovarian carcinomas and 34 metastatic lesions) from 45 patients diagnosed with advanced stage ovarian carcinomas (FIGO stages III-IV) were studied using mRNA in situ hybridization (ISH) technique. Patients were divided retrospectively in two groups based on disease outcome. Long-term survivors (21 patients) and short-term survivors (24 patients) were defined using a double cut-off of 36 months for disease-free survival (DFS) and 60 months for overall survival (OS). Mean follow-up period for patients that were diagnosed with advanced-stage carcinoma was 70 months. The mean values for DFS and OS were 109 and 125 months for long-term survivors, as compared to 3 and 21 months for short-term survivors, respectively. Intense mRNA signals were detected more frequently in tumor cells of short-term survivors with use of all four probes. Comparable findings were observed in peritumoral stromal cells with ISH for MMP-2, MMP-9 and TIMP-2 mRNA. Notably, primary tumors with intense mRNA signal for TIMP-2 (No = 14) were uniformly associated with a fatal outcome. In univariate analysis of primary tumors, mRNA levels of TIMP-2 in stromal cells (P = 0.0002), as well as for MMP-9 (P = 0.012) and TIMP-2 (P = 0.02) in tumor cells, correlated with poor outcome. In univariate analysis of metastatic lesions, mRNA levels of TIMP-2 in stromal cells (P = 0.031), as well as for MMP-2 (P = 0.027) and MT1-MMP (P = 0.008) in tumor cells, correlated with poor outcome. Interestingly, the presence of MT1-MMP in stromal cells correlated with longer survival (P = 0.025). In a multivariate analysis of ISH results for primary tumors, TIMP-2 levels in stromal cells (P = 0.006) and MMP-9 levels in tumor cells (P = 0.011) retained their predictive value. We conclude that

  2. Methylation and mRNA expression levels of P15, death-associated protein kinase, and suppressor of cytokine signaling-1 genes in multiple myeloma

    PubMed Central

    Liu, Lin; Tan, Lin; He, Zhenxin

    2016-01-01

    Objective(s): The aim of this study was to investigate the methylation status and mRNA expression levels of P15, death-associated protein kinase (DAPK), and suppressor of cytokine signaling-1 (SOCS1) genes in multiple myeloma (MM). Materials and Methods: The bone marrow samples of 54 MM patients were collected and the methylation status of the P15, DAPK, and SOCS1 gene promoter regions was determined by methylation-specific polymerase chain reaction. Automated sequencing technology was used to sequence the amplified products in order to analyze the base methylation sites. mRNA expression levels were determined using real-time fluorescent quantitative polymerase chain reaction. Results: Among the 54 MM patients, the positive methylation rates of the P15, DAPK, and SOCS1 genes were 27.78%, 18.52%, and 16.67%, respectively. The methylation results were confirmed by sequencing. The positive methylation rates of the P15, DAPK, and SOCS1 genes showed no correlation with patient gender, age, typing, staging, and grouping (P>0.05). There was no significant difference in the mRNA expression levels of the P15, DAPK, and SOCS1 genes between the MM patient group and the control group (P>0.05). Conclusions: Aberrant methylation of the P15, DAPK, and SOCS1 genes exists in MM, and these genes may play certain roles in pathogenesis of MM. There was no significant difference in mRNA expression levels between the methylated group and the non-methylated group, suggesting that these genes are regulated by other mechanisms during their transcription. PMID:27635200

  3. Modulation of DNA repair capacity and mRNA expression levels of XRCC1, hOGG1 and XPC genes in styrene-exposed workers

    SciTech Connect

    Hanova, Monika; Stetina, Rudolf; Vodickova, Ludmila; Vaclavikova, Radka; Hlavac, Pavel; Smerhovsky, Zdenek; Naccarati, Alessio; Polakova, Veronika; Soucek, Pavel; Kuricova, Miroslava; Manini, Paola; Kumar, Rajiv; Hemminki, Kari; Vodicka, Pavel

    2010-11-01

    Decreased levels of single-strand breaks in DNA (SSBs), reflecting DNA damage, have previously been observed with increased styrene exposure in contrast to a dose-dependent increase in the base-excision repair capacity. To clarify further the above aspects, we have investigated the associations between SSBs, micronuclei, DNA repair capacity and mRNA expression in XRCC1, hOGG1 and XPC genes on 71 styrene-exposed and 51 control individuals. Styrene concentrations at workplace and in blood characterized occupational exposure. The workers were divided into low (below 50 mg/m{sup 3}) and high (above 50 mg/m{sup 3}) styrene exposure groups. DNA damage and DNA repair capacity were analyzed in peripheral blood lymphocytes by Comet assay. The mRNA expression levels were determined by qPCR. A significant negative correlation was observed between SSBs and styrene concentration at workplace (R = - 0.38, p = 0.001); SSBs were also significantly higher in men (p = 0.001). The capacity to repair irradiation-induced DNA damage was the highest in the low exposure group (1.34 {+-} 1.00 SSB/10{sup 9} Da), followed by high exposure group (0.72 {+-} 0.81 SSB/10{sup 9} Da) and controls (0.65 {+-} 0.82 SSB/10{sup 9} Da). The mRNA expression levels of XRCC1, hOGG1 and XPC negatively correlated with styrene concentrations in blood and at workplace (p < 0.001) and positively with SSBs (p < 0.001). Micronuclei were not affected by styrene exposure, but were higher in older persons and in women (p < 0.001). In this study, we did not confirm previous findings on an increased DNA repair response to styrene-induced genotoxicity. However, negative correlations of SSBs and mRNA expression levels of XRCC1, hOGG1 and XPC with styrene exposure warrant further highly-targeted study.

  4. Correlation of Cyfra 21-1 levels in saliva and serum with CK19 mRNA expression in oral squamous cell carcinoma.

    PubMed

    Malhotra, Rewa; Urs, Aadithya B; Chakravarti, Anita; Kumar, Suman; Gupta, V K; Mahajan, Bhawna

    2016-07-01

    Oral squamous cell carcinoma (OSCC) accounts for 90 % of malignant lesions of oral cavity. The study assessed the potential of Cyfra 21-1 as a tumor marker in OSCC. The study included 50 patients of OSCC to evaluate levels of Cyfra 21-1 in serum and saliva by electrochemiluminescent immunoassay (ECLIA) and CK19 messenger RNA (mRNA) expression in tissue by florescent quantitative real-time reverse transcriptase polymerase chain reaction (RT-PCR) along with healthy individuals as control. The salivary and serum Cyfra 21-1 levels in patients of OSCC were significantly higher compared to controls (p value < 0.01). There was a 2.75-fold increase in CK19 mRNA expression in OSCC cases compared to controls. A significant positive correlation was found between serum and salivary Cyfra 21-1, serum Cyfra 21-1, and CK19 mRNA expression and between salivary Cyfra 21-1 and CK19 mRNA expression. Among these, correlation between serum and salivary Cyfra 21-1 was highly significant. Salivary and serum Cyfra 21-1 showed significantly elevated levels in grade II OSCC compared to grade I histopathologically. Elevated levels of salivary Cyfra 21-1 were associated with recurrence in OSCC patients. Reverse operating curve constructed using 3 ng/ml as a cutoff for serum Cyfra 21-1 revealed the sensitivity and specificity to be 88 and 78.2 %, respectively. Using a cutoff value of 8.5 ng/ml for salivary Cyfra 21-1, the sensitivity was found to be 93.8 % and specificity 84.3 %. We advocate salivary Cyfra 21-1 as a better diagnostic marker over serum Cyfra 21-1 as well as a potential marker in the prognosis of OSCC. PMID:26779624

  5. Cocaine differentially regulates activator protein-1 mRNA levels and DNA-binding complexes in the rat striatum and cerebellum.

    PubMed

    Couceyro, P; Pollock, K M; Drews, K; Douglass, J

    1994-10-01

    Cocaine is a psychomotor stimulant that exerts many of its behavioral and physiological effects through alteration of catecholamine reuptake systems. One early cellular response to cocaine administration is a brain region-specific alteration in the transcriptional pattern of immediate early genes belonging to the Fos/Jun family of nucleotide sequence-specific [activator protein-1 (AP-1)] DNA-binding proteins. The work described here compares cocaine-induced transcriptional regulation of immediate early gene mRNA levels, as well as AP-1 DNA-binding activity, within the striatum and cerebellum. In the striatum, acute cocaine administration increases cellular levels of c-fos and jun-B mRNA, whereas transcriptional effects in the cerebellum are limited to c-fos mRNA. After chronic cocaine treatment a desensitization of c-fos mRNA induction is observed in the striatum, with sensitization of the same transcriptional effect occurring in the cerebellum. Pharmacological studies further reveal that the dopamine D1, dopamine D2, gamma-aminobutyric acid type B, and N-methyl-D-aspartate receptor systems mediate the effects of cocaine on cerebellar neurons, whereas striatal effects are modulated through D1 and N-methyl-D-aspartate receptors. Gel retention analysis using antibodies to the various Fos and Jun proteins was used to characterize cocaine-dependent alterations in the composition of striatal and cerebellar AP-1 DNA-binding complexes. In striatum, cocaine increases the relative levels of c-Fos, Fos-B, Jun-B, and Jun-D proteins that bind the AP-1 DNA sequence element, whereas in the cerebellum only c-Fos and Jun-D binding activities are increased. These data suggest two possible neuroanatomical sites where tolerance and sensitization to cocaine can be examined at the genomic level. PMID:7969045

  6. Correlation of Cyfra 21-1 levels in saliva and serum with CK19 mRNA expression in oral squamous cell carcinoma.

    PubMed

    Malhotra, Rewa; Urs, Aadithya B; Chakravarti, Anita; Kumar, Suman; Gupta, V K; Mahajan, Bhawna

    2016-07-01

    Oral squamous cell carcinoma (OSCC) accounts for 90 % of malignant lesions of oral cavity. The study assessed the potential of Cyfra 21-1 as a tumor marker in OSCC. The study included 50 patients of OSCC to evaluate levels of Cyfra 21-1 in serum and saliva by electrochemiluminescent immunoassay (ECLIA) and CK19 messenger RNA (mRNA) expression in tissue by florescent quantitative real-time reverse transcriptase polymerase chain reaction (RT-PCR) along with healthy individuals as control. The salivary and serum Cyfra 21-1 levels in patients of OSCC were significantly higher compared to controls (p value < 0.01). There was a 2.75-fold increase in CK19 mRNA expression in OSCC cases compared to controls. A significant positive correlation was found between serum and salivary Cyfra 21-1, serum Cyfra 21-1, and CK19 mRNA expression and between salivary Cyfra 21-1 and CK19 mRNA expression. Among these, correlation between serum and salivary Cyfra 21-1 was highly significant. Salivary and serum Cyfra 21-1 showed significantly elevated levels in grade II OSCC compared to grade I histopathologically. Elevated levels of salivary Cyfra 21-1 were associated with recurrence in OSCC patients. Reverse operating curve constructed using 3 ng/ml as a cutoff for serum Cyfra 21-1 revealed the sensitivity and specificity to be 88 and 78.2 %, respectively. Using a cutoff value of 8.5 ng/ml for salivary Cyfra 21-1, the sensitivity was found to be 93.8 % and specificity 84.3 %. We advocate salivary Cyfra 21-1 as a better diagnostic marker over serum Cyfra 21-1 as well as a potential marker in the prognosis of OSCC.

  7. Tris(2-butoxyethyl)phosphate and triethyl phosphate alter embryonic development, hepatic mRNA expression, thyroid hormone levels, and circulating bile acid concentrations in chicken embryos

    SciTech Connect

    Egloff, Caroline; Crump, Doug; Porter, Emily; Williams, Kim L.; Letcher, Robert J.; Gauthier, Lewis T.; Kennedy, Sean W.

    2014-09-15

    The organophosphate flame retardants tris(2-butoxyethyl) phosphate (TBOEP) and triethyl phosphate (TEP) are used in a wide range of applications to suppress or delay the ignition and spread of fire. Both compounds have been detected in the environment and TBOEP was recently measured in free-living avian species. In this study, TBOEP and TEP were injected into the air cell of chicken embryos at concentrations ranging from 0 to 45,400 ng/g and 0 to 241,500 ng/g egg, respectively. Pipping success, development, hepatic mRNA expression of 9 target genes, thyroid hormone levels, and circulating bile acid concentrations were determined. Exposure to the highest doses of TBOEP and TEP resulted in negligible detection of the parent compounds in embryonic contents at pipping indicating their complete metabolic degradation. TBOEP exposure had limited effects on chicken embryos, with the exception of hepatic CYP3A37 mRNA induction. TEP exposure decreased pipping success to 68%, altered growth, increased liver somatic index (LSI) and plasma bile acids, and modulated genes associated with xenobiotic and lipid metabolism and the thyroid hormone pathway. Plasma thyroxine levels were decreased at all TEP doses, including an environmentally-relevant concentration (8 ng/g), and gallbladder hypotrophy was evident at ≥ 43,200 ng/g. Tarsus length and circulating thyroxine concentration emerged as potential phenotypic anchors for the modulation of transthyretin mRNA. The increase in plasma bile acids and LSI, gallbladder hypotrophy, and discoloration of liver tissue represented potential phenotypic outcomes associated with modulation of hepatic genes involved with xenobiotic and lipid metabolism. - Highlights: • TBOEP is not embryolethal to chicken embryos. • TEP affected embryonic viability, morphometric endpoints, and thyroid hormone levels. • TEP altered mRNA levels of xenobiotic and lipid metabolism genes. • TEP increased plasma bile acids and caused gallbladder hypotrophy

  8. [Detection of puma mRNA levels by real-time quantitative RT-PCR in chronic lymphocytic leukemia and its clinical significance].

    PubMed

    Zhu, Hai-Jia; Xu, Wei; Cao, Xin; Fang, Cheng; Zhu, Dan-Xia; Dong, Hua-Jie; Wang, Dong-Mei; Qiao, Chun; Miao, Kou-Rong; Liu, Peng; Li, Jian-Yong

    2010-08-01

    This study was aimed to investigate the expression level of puma (p53 up-regulated modulator of apoptosis) mRNA in chronic lymphocytic leukemia (CLL) and its significance in evaluation of CLL prognosis. The puma mRNA expressions in 100 CLL patients and 11 normal controls were measured by relative quantification RT-PCR with fluorescent dye SYBR Green I, the beta-actin was used as internal reference. The difference of puma expression rate between groups with different prognostic factors was described using the Mann-Whitney U test. The relative quantitative value of puma expression was calculated by means of 2 (-ΔCt). The results indicated that the correlation coefficients of the standard curves in qRT-PCR were ≥ 0.99. The coefficients of variations (CV) within group or between groups were < 5%, and the sensitivity reached 10² copies/microg RNA. The median puma mRNA expression level was 1.038 x 10⁻³ (4.106 x 10⁻⁴ - 2.806 x 10⁻³) in CLL patients, which was 1.220 x 10⁻³ (7.233 x 10⁻⁴ - 1.405 x 10⁻³) in normal controls. There was no difference of puma mRNA expression between CLL patients and normal controls (U = 544.5, p = 0.957). Puma expression was significantly correlated with Binet stages (p < 0.001), expression of CD38 (p = 0.002), ZAP-70 protein (p = 0.012), LDH levels (p = 0.009) and beta₂-MG (p = 0.046). The puma expression level in patients with earlier Binet stage (Binet stage A) was obviously higher than that in patients with later Binet stage (Binet stage B, C). The puma expression levels in patients with positive expression of CD38 and ZAP-70 protein, elevating levels of LDH and beta₂-MG were sharply lower than those in patients without above-mentioned unfavorable factors. The puma expression was also correlated with molecular cytogenetic abnormalities, the puma expression levels in patients with trisomy 12 (p = 0.003) and 14q32 translocation (p = 0.045) detected by FISH were significantly lower than those in patients without

  9. Starch supplementation modulates amylase enzymatic properties and amylase B mRNA level in the digestive gland of the Pacific oyster Crassostrea gigas.

    PubMed

    Huvet, A; Jeffroy, F; Daniel, J Y; Quéré, C; Le Souchu, P; Van Wormhoudt, A; Boudry, P; Moal, J; Samain, J F

    2012-09-01

    In the oyster Crassostrea gigas consumption-related traits, amylase properties and growth were found to be linked through genotypes that differed for polymorphism in the two amylase genes AMYA and AMYB. Modulation of AMYA mRNA level had already been observed in response to food availability, whereas the functional role of AMYB was still unknown. To improve knowledge about the regulation of amylase expression in C. gigas and the respective roles of the two genes, we made an assay of amylase expression at mRNA and enzymatic levels in the digestive gland of oysters that had received dietary supplements of starch. After 18 days, a significant increase of translatable mRNA for AMYB was observed, with a correlated increase in Michaelis-Menten constant Km values and a decrease in total amylase activity. This modulation is the first evidence of observable functioning of AMYB in digestive processes. Amylase B is suggested to display a higher Km than amylase A, offering a means of adapting to high substrate concentrations. The highest starch supplement level (10 mgL(-1)) induced alteration in oyster physiology. The 1 mgL(-1) treatment should be tested as a practical food supplement that could lead to growth benefits for oysters.

  10. Downregulation of TLR4 and 7 mRNA expression levels in broiler's spleen caused by diets supplemented with nickel chloride.

    PubMed

    Huang, Jianying; Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Xun; Wu, Bangyuan

    2014-06-01

    Toll-like receptors (TLRs) are important immune receptors in discriminating self from nonself and in initiating the innate and adaptive immune response. TLR4 and TLR7 have been proven to be highly expressed in chicken's spleen. Thus, this study was to evaluate the TLR4 and TLR7 messenger RNA (mRNA) expression levels in the spleen of broilers fed diets supplemented with nickel chloride (NiCl2) using the methods of quantitative real-time PCR (qRT-PCR). Two hundred forty-one-day-old avian broilers were equally divided into 4 groups and fed on a corn-soybean basal diet as control diet or the same basal diet supplemented with 300, 600, and 900 mg/kg of NiCl2 for 42 days. Results showed that TLR4 and TLR7 mRNA expression levels in the spleen were lower (P < 0.05 or P < 0.01) in the 300, 600, and 900 mg/kg groups than those in the control group. It was concluded that dietary NiCl2 in excess of 300 mg/kg could lower TLR4 and TLR7 mRNA expression levels in the spleen of broilers, implying that NiCl2 could impair the innate and adaptive immunity in spleen by injuring immunocytes and/or decreasing the content of cytokines through TLRs.

  11. Acute regulation by insulin of phosphatidylinositol-3-kinase, Rad, Glut 4, and lipoprotein lipase mRNA levels in human muscle.

    PubMed

    Laville, M; Auboeuf, D; Khalfallah, Y; Vega, N; Riou, J P; Vidal, H

    1996-07-01

    We have investigated the acute regulation by insulin of the mRNA levels of nine genes involved in insulin action, in muscle biopsies obtained before and at the end of a 3-h euglycemic hyperinsulinemic clamp. Using reverse transcription-competitive PCR, we have measured the mRNAs encoding the two insulin receptor variants, the insulin receptor substrate-1, the p85alpha subunit of phosphatidylinositol-3-kinase, Ras associated to diabetes (Rad), the glucose transporter Glut 4, glycogen synthase, 6-phosphofructo-l-kinase, lipoprotein lipase, and the hormone-sensitive lipase. Insulin infusion induced a significant increase in the mRNA level of Glut 4 (+56 +/- 13%), Rad (+96 +/- 25%), the p85alpha subunit of phosphatidylinositol-3-kinase (+92 +/- 18%) and a decrease in the lipoprotein lipase mRNA level (-49 +/- 5%), while the abundance of the other mRNAs was unaffected. The relative expression of the two insulin receptor variants was not modified. These results demonstrate an acute coordinated regulation by insulin of the expression of genes coding key proteins involved in its action in human skeletal muscle and suggest that Rad and the p85alpha regulatory subunit of phosphatidylinositol-3-kinase can be added to the list of the genes controlled by insulin. PMID:8690802

  12. Intraovarian expression of GnRH-1 and gonadotropin mRNA and protein levels in Siberian hamsters during the estrus cycle and photoperiod induced regression/recrudescence.

    PubMed

    Shahed, Asha; Young, Kelly A

    2011-01-15

    The hypothalamic-pituitary-gonadal (HPG) axis is the key reproductive regulator in vertebrates. While gonadotropin releasing hormone (GnRH), follicle stimulating (FSH), and luteinizing (LH) hormones are primarily produced in the hypothalamus and pituitary, they can be synthesized in the gonads, suggesting an intraovarian GnRH-gonadotropin axis. Because these hormones are critical for follicle maturation and steroidogenesis, we hypothesized that this intraovarian axis may be important in photoperiod-induced ovarian regression/recrudescence in seasonal breeders. Thus, we investigated GnRH-1 and gonadotropin mRNA and protein expression in Siberian hamster ovaries during (1) the estrous cycle; where ovaries from cycling long day hamsters (LD;16L:8D) were collected at proestrus, estrus, diestrus I, and diestrus II and (2) during photoperiod induced regression/recrudescence; where ovaries were collected from hamsters exposed to 14 weeks of LD, short days (SD;8L:16D), or 8 weeks post-transfer to LD after 14 weeks SD (PT). GnRH-1, LHβ, FSHβ, and common α subunit mRNA expression was observed in cycling ovaries. GnRH-1 expression peaked at diestrus I compared to other stages (p < 0.05). FSHβ and LHβ mRNA levels peaked at proestrus and diestrus I (p < 0.05), with no change in the α subunit across the cycle (p > 0.05). SD exposure decreased ovarian mass and plasma estradiol concentrations (p<0.05) and increased GnRH-1, LHβ, FSHβ, and α subunit mRNA expression as compared to LD and, except for LH, compared to PT (p < 0.05). GnRH and gonadotropin protein was also dynamically expressed across the estrous cycle and photoperiod exposure. The presence of cycling intraovarian GnRH-1 and gonadotropin mRNA suggests that these hormones may be locally involved in ovarian maintenance during SD regression and/or could potentially serve to prime ovaries for rapid recrudescence.

  13. The Binding Constant of Estradiol to Bovine Serum Albumin: An Upper-Level Experiment Utilizing Tritium-Labeled Estradiol and Liquid Scintillation Counting

    ERIC Educational Resources Information Center

    Peihong Liang; Adhyaru, Bhavin; Pearson, Wright L.; Williams, Kathryn R.

    2006-01-01

    The experiment used [to the third power]H-labeled estradiol to determine the binding constant of estradiol to bovine serum albumin. Estradiol must complex with serum proteins for the transport in the blood stream because of its low solubility in aqueous systems and estradiol-protein binding constant, where K[subscript B] is important to understand…

  14. Structure of Serum Albumin

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.; Ho, Joseph X.

    1994-01-01

    Because of its availability, low cost, stability, and unusual ligand-binding properties, serum albumin has been one of the mst extensively studied and applied proteins in biochemistry. However, as a protein, albumin is far from typical, and the widespread interest in and application of albumin have not been balanced by an understanding of its molecular structure. Indeed, for more than 30 years structural information was surmised based solely on techniques such as hydrodynamics, low-angle X-ray scattering, and predictive methods.

  15. Angiotensin II increases mRNA levels of all TGF-beta isoforms in quiescent and activated rat hepatic stellate cells.

    PubMed

    Moreno-Alvarez, Paola; Sosa-Garrocho, Marcela; Briones-Orta, Marco A; González-Espinosa, Claudia; Medina-Tamayo, Jaciel; Molina-Jijón, Eduardo; Pedraza-Chaverri, José; Macías-Silva, Marina

    2010-10-01

    AII (angiotensin II) is a vasoactive peptide that plays an important role in the development of liver fibrosis mainly by regulating profibrotic cytokine expression such as TGF-beta (transforming growth factor-beta). Activated HSCs (hepatic stellate cells) are the major cell type responsible for ECM (extracellular matrix) deposition during liver fibrosis and are also a target for AII and TGF-beta actions. Here, we studied the effect of AII on the mRNA levels of TGF-beta isoforms in primary cultures of rat HSCs. Both quiescent and activated HSCs were stimulated with AII for different time periods, and mRNA levels of TGF-beta1, TGF-beta2 and TGF-beta3 isoforms were evaluated using RNaseI protection assay. The mRNA levels of all TGF-beta isoforms, particularly TGF-beta2and TGF-beta3, were increased after AII treatment in activated HSCs. In addition, activated HSCs were able to produce active TGF-beta protein after AII treatment. The mRNA expression of TGF-beta isoforms induced by AII required both ERK1/2 and Nox (NADPH oxidase) activation but not PKC (protein kinase C) participation. ERK1/2 activation induced by AII occurs via AT1 receptors, but independently of either PKC and Nox activation or EGFR (epidermal growth factor receptor) transactivation. Interestingly, AII has a similar effect on TGF-beta expression in quiescent HSCs, although it has a smaller but significant effect on ERK1/2 activation in these cells.

  16. Immune-stimulatory effects of a bacteria-based probiotic on peripheral leukocyte subpopulations and cytokine mRNA expression levels in scouring holstein calves.

    PubMed

    Qadis, Abdul Qadir; Goya, Satoru; Yatsu, Minoru; Kimura, Atsushi; Ichijo, Toshihiro; Sato, Shigeru

    2014-05-01

    Subpopulations of peripheral leukocytes and cytokine mRNA expression levels were evaluated in scouring and healthy Holstein calves (age 10 ± 5 days; n=42) treated with a probiotic consisting of Lactobacillus plantarum, Enterococcus faecium and Clostridium butyricum. The calves were assigned to the scouring or healthy group and then subdivided into pathogen-positive treated (n=8), pathogen-positive control (n=8), pathogen-negative treated (n=6), pathogen-negative control (n=6), healthy treated (n=6) and healthy control (n=8) groups. A single dose of the probiotic (3.0 g/100 kg body weight) was given to each calf in the treatment groups for 5 days. Blood samples were collected on the first day of scour occurrence (day 0) and on day 7. In the scouring calves, smaller peripheral leukocyte subpopulations and cytokine mRNA expression levels were noted on day 0. The numbers of CD3(+) T cells; CD4(+), CD8(+) and WC1(+) γδ T cell subsets; and CD14(+), CD21(+) and CD282(+) (TLR2) cells were significantly increased in the scouring and healthy treated calves on day 7. Furthermore, interleukin-6, tumor necrosis factor-alpha and interferon-gamma mRNA expression was elevated in the peripheral leukocytes of the scouring and healthy treated calves on day 7. The scouring calves given the probiotic recovered on day 7. A significantly smaller number of peripheral leukocytes and lower cytokine mRNA expression level might be induced by scouring in calves. Repeated probiotic administration might stimulate cellular immunity and encourage recovery from scouring in pre-weaning Holstein calves. PMID:24451928

  17. MHC2TA mRNA levels and human herpesvirus 6 in multiple sclerosis patients treated with interferon beta along two-year follow-up

    PubMed Central

    2012-01-01

    Background In previous studies we found that MHC2TA +1614 genotype frequency was very different when MS patients with and without human herpesvirus 6 (HHV-6) in serum samples were compared; a different clinical behavior was also described. The purpose of the study was: 1. To evaluate if MHC2TA expression in MS patients was influenced by interferon beta (IFN-beta) treatment. 2. To study MHC2TA expression in MS patients with and without minor allele C. 3. To analyze the relation between MHC2TA mRNA levels and HHV-6 active infection in MS patients. Methods Blood and serum samples of 154 MS patients were collected in five programmed visits: basal (prior to beginning IFN-beta treatment), six, twelve, eighteen and twenty-four months later. HHV-6 in serum and MHC2TA mRNA levels were evaluated by PCR and RT-PCR, respectively. Neutralizing antibodies (NAbs) against IFN-beta were analyzed by the cytopathic effect assay. Results We found that MHC2TA mRNA levels were significantly lower among MS patients with HHV-6 active infection at the basal visit (without treatment) than in those MS patients without HHV-6 active infection at the basal visit (p = 0.012); in all the positive samples we only found variant A. Furthermore, 58/99 (58.6%) MS patients without HHV-6 along the five programmed visits and an increase of MHC2TA expression after two-years of IFN-beta treatment were clinical responders vs. 5/21 (23.8%) among those MS patients with HHV-6 and a decrease of MHC2TA mRNA levels along the two-years with IFN-beta treatment (p = 0.004); no differences were found between patients with and without NAbs. Conclusions MHC2TA mRNA levels could be decreased by the active replication of HHV-6; the absence of HHV-6 in serum and the increase of MHC2TA expression could be further studied as markers of good clinical response to IFN-beta treatment. PMID:23009575

  18. Sepsis stimulates nonlysosomal, energy-dependent proteolysis and increases ubiquitin mRNA levels in rat skeletal muscle.

    PubMed Central

    Tiao, G; Fagan, J M; Samuels, N; James, J H; Hudson, K; Lieberman, M; Fischer, J E; Hasselgren, P O

    1994-01-01

    We tested the role of different intracellular proteolytic pathways in sepsis-induced muscle proteolysis. Sepsis was induced in rats by cecal ligation and puncture; controls were sham operated. Total and myofibrillar proteolysis was determined in incubated extensor digitorum longus muscles as release of tyrosine and 3-methylhistidine, respectively. Lysosomal proteolysis was assessed by using the lysosomotropic agents NH4Cl, chloroquine, leupeptin, and methylamine. Ca(2+)-dependent proteolysis was determined in the absence or presence of Ca2+ or by blocking the Ca(2+)-dependent proteases calpain I and II. Energy-dependent proteolysis was determined in muscles depleted of ATP by 2-deoxyglucose and 2.4-dinitrophenol. Muscle ubiquitin mRNA and the concentrations of free and conjugated ubiquitin were determined by Northern and Western blots, respectively, to assess the role of the ATP-ubiquitin-dependent proteolytic pathway. Total and myofibrillar protein breakdown was increased during sepsis by 50 and 440%, respectively. Lysosomal and Ca(2+)-dependent proteolysis was similar in control and septic rats. In contrast, energy-dependent total and myofibrillar protein breakdown was increased by 172% and more than fourfold, respectively, in septic muscle. Ubiquitin mRNA was increased severalfold in septic muscle. The results suggest that the increase in muscle proteolysis during sepsis is due to an increase in nonlysosomal energy-dependent protein breakdown, which may involve the ubiquitin system. Images PMID:7989581

  19. Nonphotic entrainment by 5-HT1A/7 receptor agonists accompanied by reduced Per1 and Per2 mRNA levels in the suprachiasmatic nuclei.

    PubMed

    Horikawa, K; Yokota, S; Fuji, K; Akiyama, M; Moriya, T; Okamura, H; Shibata, S

    2000-08-01

    In mammals, the environmental light/dark cycle strongly synchronizes the circadian clock within the suprachiasmatic nuclei (SCN) to 24 hr. It is well known that not only photic but also nonphotic stimuli can entrain the SCN clock. Actually, many studies have shown that a daytime injection of 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH DPAT), a serotonin 1A/7 receptor agonist, as a nonphotic stimulus induces phase advances in hamster behavioral circadian rhythms in vivo, as well as the neuron activity rhythm of the SCN in vitro. Recent reports suggest that mammalian homologs of the Drosophila clock gene, Period (Per), are involved in photic entrainment. Therefore, we examined whether phase advances elicited by 8-OH DPAT were associated with a change of Period mRNA levels in the SCN. In this experiment, we cloned partial cDNAs encoding hamster Per1, Per2, and Per3 and observed both circadian oscillation and the light responsiveness of Period. Furthermore, we found that the inhibitory effect of 8-OH DPAT on hamster Per1 and Per2 mRNA levels in the SCN occurred only during the hamster's mid-subjective day, but not during the early subjective day or subjective night. The present findings demonstrate that the acute and circadian time-dependent reduction of Per1 and/or Per2 mRNA in the hamster SCN by 8-OH DPAT is strongly correlated with the phase resetting in response to 8-OH DPAT. PMID:10908630

  20. Polymerase chain reaction analysis of TNF-alpha and IL-6 mRNA levels in whole blood from cattle naturally or experimentally infected with Mycobacterium paratuberculosis.

    PubMed

    Adams, J L; Collins, M T; Czuprynski, C J

    1996-10-01

    Johne's disease is characterized by a chronic enteritis that results in granulomatous inflammation, cachexia, and eventual death of cattle infected with Mycobacterium paratuberculosis. The cytokines tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) have been associated with granuloma formation and wasting in other disease syndromes. The potential role of these cytokines in the development and progression of Johne's disease has not been investigated. Using the polymerase chain reaction (PCR) and specific bovine oligonucleotide cytokine primers and probes, we examined the expression of messenger RNA for these cytokines in whole blood from M. paratuberculosis infected and uninfected cattle. Cytokine mRNA levels were examined before and after in vitro incubation with E.coli lipopolysaccharide (LPS) and lipoarabinomannan (LAM) purified from M. paratuberculosis. Uninfected calves, experimentally infected calves, and naturally infected cattle all displayed similar cytokine mRNA expression patterns. However, individual animals demonstrated variability in the levels of IL-6 and TNF-alpha mRNA expression as determined by a semiquantitative PCR method using 32P-labelled oligonucleotide probes.

  1. [Monitoring CML28 mRNA levels in patients before and after HSCT by real-time quantitative RT-PCR].

    PubMed

    Zhang, Dong-Hua; Dai, Min; Zhou, Hong-Sheng; Wang, Ya-Ya; Zhang, Lu; Zhang, Li; Wang, Bin; Cao, Wen-Jing

    2005-10-01

    The purpose of this study was to establish a SYBR Green I real-time quantitative RT-PCR method for investigating the correlation between CML28 mRNA expression levels and relapse of leukemia after allo-hematopoietic stem cell transplantation (HSCT). pcDNA3.1HisA-CML28 plasmid had been constructed as the standard template. Serial monitoring of CML28 mRNA levels by SYBR Green I real-time quantitative RT-PCR technique was performed in 14 patients, including 10 patients with CML and 3 patients with AML, 1 patient with Ph(+) ALL. The results showed that the sensitivity of the established method was at 10(-4) (0.05 ng) level, with interassay variation and intraassay variation of standard samples both below 10%. The CML28 was highly expressed in AML and CML-BP or AP. CML28 level in newly diagnosed group was (6.58 +/- 2.34) x 10(-2), in pre-conditioning regimen group was (2.19 +/- 0.32) x 10(-2), in group that 1 month after HSCT was (1.35 +/- 1.28) x 10(-2), in group that 3 months after HSCT was (4.57 +/- 6.39) x 10(-3). CML28 can be detected 3 months after HSCT in 1 patient with CML-CP and 3 patients with CML-AP or BC. 2 of them with low level (<2 x 10(-2)) survived without relapse, the other 2 case with high level (>2 x 10(-2)) relapsed within one year, 1 case died and 1 case received the second time HSCT, CML28 level decreased rapidly after HSCT, but still higher than 2 x 10(-2) and relapse has taken place. The conclusions was made that CML28 mRNA level is obviously correlated with the development of leukemia. Serial quantification of CML28 mRNA levels are necessary for HSCT recipients, and more informative than a single detection. Using of this assay to evaluate MRD in the patients received HSCT is helpful for prediction of relapse.

  2. Premature termination of GAT1 transcription explains paradoxical negative correlation between nitrogen-responsive mRNA, but constitutive low-level protein production

    PubMed Central

    Isabelle, Georis; Tate, Jennifer J; Vierendeels, Fabienne; Cooper, Terrance G; Dubois, Evelyne

    2015-01-01

    The first step in executing the genetic program of a cell is production of mRNA. In yeast, almost every gene is transcribed as multiple distinct isoforms, differing at their 5′ and/or 3′ termini. However, the implications and functional significance of the transcriptome-wide diversity of mRNA termini remains largely unexplored. In this paper, we show that the GAT1 gene, encoding a transcriptional activator of nitrogen-responsive catabolic genes, produces a variety of mRNAs differing in their 5′ and 3′ termini. Alternative transcription initiation leads to the constitutive, low level production of 2 full length proteins differing in their N-termini, whereas premature transcriptional termination generates a short, highly nitrogen catabolite repression- (NCR-) sensitive transcript that, as far as we can determine, is not translated under the growth conditions we used, but rather likely protects the cell from excess Gat1. PMID:26259534

  3. Albumin - blood (serum) test

    MedlinePlus

    ... conditions for which the test may be performed: Burns (widespread) Wilson disease If you are receiving large amounts of intravenous fluids, the result of this test may be inaccurate. Albumin will be decreased during pregnancy.

  4. Enhancement on reactive oxygen species and COX-1 mRNA levels modulate the vascular relaxation induced by sodium nitroprusside in denuded mice aorta.

    PubMed

    Kangussu, Lucas M; Olivon, Vania C; Arifa, Raquel D do N; Araújo, Natália; Reis, Daniela; Assis, Marieta T de A; Soriani, Frederico M; de Souza, Daniele da G; Bendhack, Lusiane M; Bonaventura, Daniella

    2015-04-01

    This study aimed to investigate the modulation of nitric oxide/reactive oxygen species in sodium nitroprusside relaxation in mice aorta. Sodium nitroprusside induced relaxation in endothelium-intact (e+) and endothelium-denuded (e-) aortas with greater potency in e+ than in e-. The nitric oxide synthase inhibitor did not alter the sodium nitroprusside relaxation in both e+ and e- aortas. However, the superoxide anion scavenger abolished the difference in sodium nitroprusside potency between e+ and e-. Sodium nitroprusside reduced dihydroethidium-derived fluorescent products in both groups; however, the difference between intact and denuded mice aorta remains. The glutathione levels and basal antioxidant activity of superoxide dismutase were reduced in e- aorta when compared with e+, and these values were not altered by sodium nitroprusside. Confirming these results, the levels of lipid peroxidation in e+ were significantly lower when compared to e-, and these values were not altered by sodium nitroprusside. The sodium nitroprusside potency in the presence of a nonselective COX inhibitor or the EP/DP prostaglandin receptor antagonist in endothelium denuded was similar to that in intact mice aorta. Based on these results, we performed the COX-1 and COX-2 mRNA level studies, and in denuded mice aorta, there was an upregulation in COX-1 mRNA levels. Taken together, our findings show that in the absence of endothelium, there is an enhancement of superoxide levels, leading to GSH consumption and higher levels of lipid peroxidation, showing an intense redox status. Furthermore, in denuded mice aorta, there was an upregulation of COX-1 mRNA expression, leading to vasoconstrictor prostanoids synthesis. The interaction of vasoconstrictor prostanoids with its receptors EP/DP negatively modulates the vascular relaxation induced by SNP in denuded mice aorta. PMID:25619310

  5. Alterations in trace element levels and mRNA expression of Hsps and inflammatory cytokines in livers of duck exposed to molybdenum or/and cadmium.

    PubMed

    Cao, Huabin; Gao, Feiyan; Xia, Bing; Zhang, Mengmeng; Liao, Yilin; Yang, Zhi; Hu, Guoliang; Zhang, Caiying

    2016-03-01

    To evaluate the effects of dietary Molybdenum (Mo) or/and Cadmium (Cd) on trace elements and the mRNA expression levels of heat shock proteins (Hsps) and inflammatory cytokines in duck livers. 240 healthy 11-day-old ducks were randomly divided into six groups with 40 ducks in each group, which were treated with Mo or/and Cd at different doses on the basal diet for 120 days. On days 30, 60, 90 and 120, 10 birds in each group were randomly selected and euthanized and then the livers were collected to determine the contents of Mo, Cd, copper (Cu), iron (Fe), zine (Zn), Selenium (Se) and the mRNA expression levels of Hsps, inflammatory cytokines. In addition, liver tissues at 120 days were subjected to histopathological analysis with the optical microscope. The results showed that the mRNA expression of Hsp60, Hsp70, Hsp90, tumor necrosis factor-α (TNF-α), nuclear factor-kappa B (NF-κB), and cyclooxygenase-2 (COX-2) were significantly (P<0.01) upregulated in combination groups; Contents of Cu, Fe, Zn, and Se decreased in combined groups (P<0.05) in the later period of the test while contents of Mo and Cd significantly increased (P<0.01); Furthermore severe hepatocyte diffuse fatty, hepatic cords swelling, hepatic sinusoid disappeared, and inflammatory cells infiltrated around the hepatic central vein were observed in Mo combined with Cd groups. The results indicated that dietary Mo or/and Cd might lead to stress, inflammatory response, tissue damage and disturb homeostasis of trace elements in duck livers. Moreover the two elements showed a possible synergistic relationship. And the high mRNA expression of HSPs and inflammatory cytokines may play a role in the resistance of liver toxicity induced by Mo and Cd.

  6. Alterations in trace element levels and mRNA expression of Hsps and inflammatory cytokines in livers of duck exposed to molybdenum or/and cadmium.

    PubMed

    Cao, Huabin; Gao, Feiyan; Xia, Bing; Zhang, Mengmeng; Liao, Yilin; Yang, Zhi; Hu, Guoliang; Zhang, Caiying

    2016-03-01

    To evaluate the effects of dietary Molybdenum (Mo) or/and Cadmium (Cd) on trace elements and the mRNA expression levels of heat shock proteins (Hsps) and inflammatory cytokines in duck livers. 240 healthy 11-day-old ducks were randomly divided into six groups with 40 ducks in each group, which were treated with Mo or/and Cd at different doses on the basal diet for 120 days. On days 30, 60, 90 and 120, 10 birds in each group were randomly selected and euthanized and then the livers were collected to determine the contents of Mo, Cd, copper (Cu), iron (Fe), zine (Zn), Selenium (Se) and the mRNA expression levels of Hsps, inflammatory cytokines. In addition, liver tissues at 120 days were subjected to histopathological analysis with the optical microscope. The results showed that the mRNA expression of Hsp60, Hsp70, Hsp90, tumor necrosis factor-α (TNF-α), nuclear factor-kappa B (NF-κB), and cyclooxygenase-2 (COX-2) were significantly (P<0.01) upregulated in combination groups; Contents of Cu, Fe, Zn, and Se decreased in combined groups (P<0.05) in the later period of the test while contents of Mo and Cd significantly increased (P<0.01); Furthermore severe hepatocyte diffuse fatty, hepatic cords swelling, hepatic sinusoid disappeared, and inflammatory cells infiltrated around the hepatic central vein were observed in Mo combined with Cd groups. The results indicated that dietary Mo or/and Cd might lead to stress, inflammatory response, tissue damage and disturb homeostasis of trace elements in duck livers. Moreover the two elements showed a possible synergistic relationship. And the high mRNA expression of HSPs and inflammatory cytokines may play a role in the resistance of liver toxicity induced by Mo and Cd. PMID:26682514

  7. Anti-beta s-ribozyme reduces beta s mRNA levels in transgenic mice: potential application to the gene therapy of sickle cell anemia.

    PubMed

    Alami, R; Gilman, J G; Feng, Y Q; Marmorato, A; Rochlin, I; Suzuka, S M; Fabry, M E; Nagel, R L; Bouhassira, E E

    1999-04-01

    Our current strategy for gene therapy of sickle cell anemia involves retroviral vectors capable of transducing "designer" globin genes that code for novel anti-sickling globins (while resisting digestion by a ribozyme), coupled with the expression of a hammerhead ribozyme that can selectively cleave the human beta s mRNA. In this report, we have tested in vivo an anti-beta s hammerhead ribozyme embedded within a cDNA coding for the luciferase reporter gene driven by the human beta-globin promoter and hyper-sensitive sites 3 and 4 of the locus control region. We have created mice transgenic for this luciferase-ribozyme construct and bred the ribozyme transgene into mice that were already transgenic for the human beta s gene. We then measured expression of the beta s transgene at the protein and RNA levels by HPLC and primer extension. The presence of the ribozyme was associated with a statistically significant reduction in the level of beta s mRNA in spleen stress reticulocytes (from 60.5 +/- 4.1% to 52.9 +/- 4.2%) and in the percentage of beta s globin chains in very young mice (from 44.5 +/- 0.6% to 40.8 +/- 0.7%). These results demonstrate that it is possible to decrease the concentration of beta s chains and mRNA with the help of a hammerhead ribozyme. While the enormous amount of globin mRNA in reticulocytes is a challenge for ribozyme technology, the exquisite dependence of the delay time for formation of Hb S nuclei on the concentration of Hb S in red blood cells suggests that even a modest reduction in Hb S concentration would have therapeutic value.

  8. Integration of mRNA expression profile, copy number alterations, and microRNA expression levels in breast cancer to improve grade definition.

    PubMed

    Cava, Claudia; Bertoli, Gloria; Ripamonti, Marilena; Mauri, Giancarlo; Zoppis, Italo; Della Rosa, Pasquale Anthony; Gilardi, Maria Carla; Castiglioni, Isabella

    2014-01-01

    Defining the aggressiveness and growth rate of a malignant cell population is a key step in the clinical approach to treating tumor disease. The correct grading of breast cancer (BC) is a fundamental part in determining the appropriate treatment. Biological variables can make it difficult to elucidate the mechanisms underlying BC development. To identify potential markers that can be used for BC classification, we analyzed mRNAs expression profiles, gene copy numbers, microRNAs expression and their association with tumor grade in BC microarray-derived datasets. From mRNA expression results, we found that grade 2 BC is most likely a mixture of grade 1 and grade 3 that have been misclassified, being described by the gene signature of either grade 1 or grade 3. We assessed the potential of the new approach of integrating mRNA expression profile, copy number alterations, and microRNA expression levels to select a limited number of genomic BC biomarkers. The combination of mRNA profile analysis and copy number data with microRNA expression levels led to the identification of two gene signatures of 42 and 4 altered genes (FOXM1, KPNA4, H2AFV and DDX19A) respectively, the latter obtained through a meta-analytical procedure. The 42-based gene signature identifies 4 classes of up- or down-regulated microRNAs (17 microRNAs) and of their 17 target mRNA, and the 4-based genes signature identified 4 microRNAs (Hsa-miR-320d, Hsa-miR-139-5p, Hsa-miR-567 and Hsa-let-7c). These results are discussed from a biological point of view with respect to pathological features of BC. Our identified mRNAs and microRNAs were validated as prognostic factors of BC disease progression, and could potentially facilitate the implementation of assays for laboratory validation, due to their reduced number. PMID:24866763

  9. Phytoestrogens regulate mRNA and protein levels of guanine nucleotide-binding protein, beta-1 subunit (GNB1) in MCF-7 cells.

    PubMed

    Naragoni, Srivatcha; Sankella, Shireesha; Harris, Kinesha; Gray, Wesley G

    2009-06-01

    Phytoestrogens (PEs) are non-steroidal ligands, which regulate the expression of number of estrogen receptor-dependent genes responsible for a variety of biological processes. Deciphering the molecular mechanism of action of these compounds is of great importance because it would increase our understanding of the role(s) these bioactive chemicals play in prevention and treatment of estrogen-based diseases. In this study, we applied suppression subtractive hybridization (SSH) to identify genes that are regulated by PEs through either the classic nuclear-based estrogen receptor or membrane-based estrogen receptor pathways. SSH, using mRNA from genistein (GE) treated MCF-7 cells as testers, resulted in a significant increase in GNB1 mRNA expression levels as compared with 10 nM 17beta estradiol or the no treatment control. GNB1 mRNA expression was up regulated two- to fivefold following exposure to 100.0 nM GE. Similarly, GNB1 protein expression was up regulated 12- to 14-fold. GE regulation of GNB1 was estrogen receptor-dependent, in the presence of the anti-estrogen ICI-182,780, both GNB1 mRNA and protein expression were inhibited. Analysis of the GNB1 promoter using ChIP assay showed a PE-dependent association of estrogen receptor alpha (ERalpha) and beta (ERbeta) to the GNB1 promoter. This association was specific for ERalpha since association was not observed when the cells were co-incubated with GE and the ERalpha antagonist, ICI. Our data demonstrate that the levels of G-protein, beta-1 subunit are regulated by PEs through an estrogen receptor pathway and further suggest that PEs may control the ratio of alpha-subunit to beta/gamma-subunits of the G-protein complex in cells. J. Cell. Physiol. 219: 584-594, 2009. (c) 2009 Wiley-Liss, Inc. PMID:19170076

  10. [Modified albumin in harp seal blood serum].

    PubMed

    Erokhina, I A

    1999-01-01

    The content of modified albumin (Am) in harp seal (Pagophilus groenlandica Erxleben, 1777) blood serum was studied. Am was determined by paper electrophoresis by means of re-precipitation in the trichloroacetic acid-ethanol system. Modified albumin content in normal seal pups' blood serum increased from 1990 to 1994. The Am level in undernourished pups was stable from year to year and higher than in normal pups. In oceanarium investigations it was revealed a low albumin resistance to denaturation and the dependence of Am content on the animals' physiological state. Thus there is a possibility to regard modified albumin content as one of the significant parameters in biomonitoring of harp seal population and, moreover, as a supplementary criterion for estimation of seals' health state in captivity.

  11. Changes in expression levels of ERCC1, DPYD, and VEGFA mRNA after first-line chemotherapy of metastatic colorectal cancer: results of a multicenter study.

    PubMed

    Baba, Hideo; Baba, Yoshifumi; Uemoto, Shinji; Yoshida, Kazuhiro; Saiura, Akio; Watanabe, Masayuki; Maehara, Yoshihiko; Oki, Eiji; Ikeda, Yasuharu; Matsuda, Hiroyuki; Yamamoto, Masakazu; Shimada, Mitsuo; Taketomi, Akinobu; Unno, Michiaki; Sugihara, Kenichi; Ogata, Yutaka; Eguchi, Susumu; Kitano, Seigo; Shirouzu, Kazuo; Saiki, Yasumitsu; Takamori, Hiroshi; Mori, Masaki; Hirata, Toshihiko; Wakabayashi, Go; Kokudo, Norihiro

    2015-10-20

    Our previous study showed that administering oxaliplatin as first-line chemotherapy increased ERCC1 and DPD levels in liver colorectal cancers (CRCs) metastases. Second, whether the anti-VEGF monoclonal antibody bevacizumab alters tumoral VEGFA levels is unknown. We conducted this multicenter observational study to validate our previous findings on ERCC1 and DPD, and clarify the response of VEGFA expression to bavacizumab administration. 346 CRC patients with liver metastases were enrolled at 22 Japanese institutes. Resected liver metastases were available for 175 patients previously treated with oxaliplatin-based chemotherapy (chemotherapy group) and 171 receiving no previous chemotherapy (non-chemotherapy group). ERCC1, DPYD, and VEGFA mRNA levels were measured by real-time RT-PCR. ERCC1 mRNA expression was significantly higher in the chemotherapy group than in the non-chemotherapy group (P = 0.033), and were significantly correlated (Spearman's correlation coefficient = 0.42; P < 0.0001). VEGFA expression level was higher in patients receiving bevacizumab (n = 51) than in those who did not (n = 251) (P = 0.007). This study confirmed that first-line oxaliplatin-based chemotherapy increases ERCC1 and DPYD expression levels, potentially enhancing chemosensitivity to subsequent therapy. We also found that bevacizumab induces VEGFA expression in tumor cells, suggesting a biologic rationale for extending bevacizumab treatment beyond first progression. PMID:26372896

  12. High throughput detection of miRNAs and gene-specific mRNA at the single-cell level by flow cytometry

    PubMed Central

    Porichis, Filippos; Hart, Meghan G.; Griesbeck, Morgane; Everett, Holly L.; Hassan, Muska; Baxter, Amy E.; Lindqvist, Madelene; Miller, Sara M.; Soghoian, Damien Z.; Kavanagh, Daniel G.; Reynolds, Susan; Norris, Brett; Mordecai, Scott K.; Nguyen, Quan; Lai, Chunfai; Kaufmann, Daniel E.

    2014-01-01

    Fluorescent in situ hybridization (FISH) is a method that uses fluorescent probes to detect specific nucleic acid sequences at the single cell level. Here we describe optimized protocols that exploit a highly sensitive FISH method based on branched DNA technology to detect mRNA and miRNA in human leukocytes. This technique can be multiplexed and combined with fluorescent antibody protein staining to addressa variety of questions in heterogeneous cell populations. We demonstrate antigen-specific upregulation of IFNγ and IL-2 mRNAs in HIV- and CMV-specific T cells. We show simultaneous detection of cytokine mRNA and corresponding protein in single cells. We apply this method to detect mRNAs for which flow antibodies against the corresponding proteins are poor or are not available. We use this technique to show modulation of a microRNA critical for T cell function, miR-155. We adapt this assay for simultaneous detection of mRNA and proteins by Image Stream technology. PMID:25472703

  13. High-throughput detection of miRNAs and gene-specific mRNA at the single-cell level by flow cytometry.

    PubMed

    Porichis, Filippos; Hart, Meghan G; Griesbeck, Morgane; Everett, Holly L; Hassan, Muska; Baxter, Amy E; Lindqvist, Madelene; Miller, Sara M; Soghoian, Damien Z; Kavanagh, Daniel G; Reynolds, Susan; Norris, Brett; Mordecai, Scott K; Nguyen, Quan; Lai, Chunfai; Kaufmann, Daniel E

    2014-01-01

    Fluorescent in situ hybridization (FISH) is a method that uses fluorescent probes to detect specific nucleic acid sequences at the single-cell level. Here we describe optimized protocols that exploit a highly sensitive FISH method based on branched DNA technology to detect mRNA and miRNA in human leukocytes. This technique can be multiplexed and combined with fluorescent antibody protein staining to address a variety of questions in heterogeneous cell populations. We demonstrate antigen-specific upregulation of IFNγ and IL-2 mRNAs in HIV- and CMV-specific T cells. We show simultaneous detection of cytokine mRNA and corresponding protein in single cells. We apply this method to detect mRNAs for which flow antibodies against the corresponding proteins are poor or are not available. We use this technique to show modulation of a microRNA critical for T-cell function, miR-155. We adapt this assay for simultaneous detection of mRNA and proteins by ImageStream technology. PMID:25472703

  14. Evaluation of mRNA Expression Levels of cyp51A and mdr1, Candidate Genes for Voriconazole Resistance in Aspergillus flavus

    PubMed Central

    Fattahi, Azam; Zaini, Farideh; Kordbacheh, Parivash; Rezaie, Sasan; Safara, Mahin; Fateh, Roohollah; Farahyar, Shirin; Kanani, Ali; Heidari, Mansour

    2015-01-01

    Background: Voriconazole Resistance (VRC-R) in Aspergillus flavus isolates impacts the management of aspergillosis, since azoles are the first choice for prophylaxis and therapy. However, to the best of our knowledge, the mechanisms underlying voriconazole resistance are poorly understood. Objectives: The present study was designed to evaluate mRNA expression levels of cyp51A and mdr1 genes in voriconazole resistant A. flavus by a Real-Time Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) technique. Materials and Methods: Five A. flavus isolates with resistance to VRC were examined by a RT-PCR approach. Results: Four out of five isolates revealed cyp51A and mdr1 mRNA overexpression. Interestingly, the isolate, which was negative for cyp51A and mdr1 mRNA expression showed a high voriconazole Minimum Inhibitory Concentration (MIC). Furthermore, a computational-based analysis predicted that voriconazole resistance could be mediated through cooperation with a network protein interaction. Conclusions: Our experimental and in silico findings may provide new insight in the complex molecular pathways of drug resistance and also could assist design an efficient therapeutic strategy for aspergillosis treatment. PMID:26865941

  15. Increased TRPV1 and PAR2 mRNA expression levels are associated only with the esophageal reflux symptoms, but not with the extraesophageal reflux symptoms.

    PubMed

    Kim, Jin Joo; Kim, Nayoung; Choi, Yoon Jin; Kim, Joo Sung; Jung, Hyun Chae

    2016-08-01

    Transient receptor potential vanilloid-1 (TRPV1) receptor and proteinase-activated receptor 2 (PAR2) have been implicated in the mechanism of acid-induced inflammation in gastroesophageal reflux disease (GERD). We aimed to evaluate TRPV1 and PAR2 mRNA expression levels in the GERD patients and their relationship with endoscopic findings and reflux symptoms.Sixteen healthy controls, 45 patients with erosive reflux disease (ERD), and 14 nonerosive reflux disease (NERD) patients received endoscopy and completed questionnaires. Quantitative real-time polymerase chain reactions (qPCR) of TRPV1, glial cell line-derived neurotrophic factor (GDNF), nerve growth factor (NGF), PAR2, and interleukin (IL)-8 were performed in the distal esophagus specimen.The levels of TRPV1, GDNF, NGF, PAR2, and IL-8 mRNA expression were highest in the ERD group followed by NERD and control groups and the differences between control and ERD groups were statistically significant. Within the ERD group, patients with grade B in Los Angeles (LA) classification showed significantly higher levels of TRPV1, GDNF, and NGF mRNA expression than those with grade A. Presence of reflux symptoms was associated with significant higher levels of TRPV1, PAR2, and IL-8. Notably not extraesophageal but esophageal reflux symptoms were significantly associated with them.Upregulation of TRPV1 and PAR2 pathways might play a role in the development of distal esophageal inflammation and reflux symptoms. And extraesophageal reflux symptoms might not be associated with these processes. PMID:27512850

  16. Risk of childhood asthma is associated with CpG-site polymorphisms, regional DNA methylation and mRNA levels at the GSDMB/ORMDL3 locus

    PubMed Central

    Acevedo, Nathalie; Reinius, Lovisa E.; Greco, Dario; Gref, Anna; Orsmark-Pietras, Christina; Persson, Helena; Pershagen, Göran; Hedlin, Gunilla; Melén, Erik; Scheynius, Annika; Kere, Juha; Söderhäll, Cilla

    2015-01-01

    Single-nucleotide polymorphisms (SNPs) in GSDMB (Gasdermin B) and ORMDL3 (ORMDL sphingolipid biosynthesis regulator 3) are strongly associated with childhood asthma, but the molecular alterations contributing to disease remain unknown. We investigated the effects of asthma-associated SNPs on DNA methylation and mRNA levels of GSDMB and ORMDL3. Genetic association between GSDMB/ORMDL3 and physician-diagnosed childhood asthma was confirmed in the Swedish birth-cohort BAMSE. CpG-site SNPs (rs7216389 and rs4065275) showed differences in DNA methylation depending on carrier status of the risk alleles, and were significantly associated with methylation levels in two CpG sites in the 5′ UTR (untranslated region) of ORMDL3. In the Swedish Search study, we found significant differences in DNA methylation between asthmatics and controls in five CpG sites; after adjusting for lymphocyte and neutrophil cell counts, three remained significant: one in IKZF3 [IKAROS family zinc finger 3 (Aiolos); cg16293631] and two in the CpG island (CGI) of ORMDL3 (cg02305874 and cg16638648). Also, cg16293631 and cg02305874 correlated with mRNA levels of ORMDL3. The association between methylation and asthma was independent of the genotype in rs7216389, rs4065275 and rs12603332. Both SNPs and CpG sites showed significant associations with ORMDL3 mRNA levels. SNPs influenced expression independently of methylation, and the residual association between methylation and expression was not mediated by these SNPs. We found a differentially methylated region in the CGI shore of ORMDL3 with six CpG sites less methylated in CD8+ T-cells. In summary, this study supports that there are differences in DNA methylation at this locus between asthmatics and controls; and both SNPs and CpG sites are independently associated with ORMDL3 expression. PMID:25256354

  17. Tudor-SN, a component of stress granules, regulates growth under salt stress by modulating GA20ox3 mRNA levels in Arabidopsis

    PubMed Central

    Yan, Chunxia; Yan, Zongyun; Wang, Yizheng; Yan, Xiaoyuan; Han, Yuzhen

    2014-01-01

    The Tudor-SN protein (TSN) is universally expressed and highly conserved in eukaryotes. In Arabidopsis, TSN is reportedly involved in stress adaptation, but the mechanism involved in this adaptation is not understood. Here, we provide evidence that TSN regulates the mRNA levels of GA20ox3, a key enzyme for gibberellin (GA) biosynthesis. The levels of GA20ox3 transcripts decreased in TSN1/TSN2 RNA interference (RNAi) transgenic lines and increased in TSN1 over-expression (OE) transgenic lines. The TSN1 OE lines displayed phenotypes that may be attributed to the overproduction of GA. No obvious defects were observed in the RNAi transgenic lines under normal conditions, but under salt stress conditions these lines displayed slower growth than wild-type (WT) plants. Two mutants of GA20ox3, ga20ox3-1 and -2, also showed slower growth under stress than WT plants. Moreover, a higher accumulation of GA20ox3 transcripts was observed under salt stress. The results of a western blot analysis indicated that higher levels of TSN1 accumulated after salt treatment than under normal conditions. Subcellular localization studies showed that TSN1 was uniformly distributed in the cytoplasm under normal conditions but accumulated in small granules and co-localized with RBP47, a marker protein for stress granules (SGs), in response to salt stress. The results of RNA immunoprecipitation experiments indicated that TSN1 bound GA20ox3 mRNA in vivo. On the basis of these findings, we conclude that TSN is a novel component of plant SGs that regulates growth under salt stress by modulating levels of GA20ox3 mRNA. PMID:25205572

  18. Absolute Measurements of Macrophage Migration Inhibitory Factor and Interleukin-1-β mRNA Levels Accurately Predict Treatment Response in Depressed Patients

    PubMed Central

    Ferrari, Clarissa; Uher, Rudolf; Bocchio-Chiavetto, Luisella; Riva, Marco Andrea; Pariante, Carmine M.

    2016-01-01

    Background: Increased levels of inflammation have been associated with a poorer response to antidepressants in several clinical samples, but these findings have had been limited by low reproducibility of biomarker assays across laboratories, difficulty in predicting response probability on an individual basis, and unclear molecular mechanisms. Methods: Here we measured absolute mRNA values (a reliable quantitation of number of molecules) of Macrophage Migration Inhibitory Factor and interleukin-1β in a previously published sample from a randomized controlled trial comparing escitalopram vs nortriptyline (GENDEP) as well as in an independent, naturalistic replication sample. We then used linear discriminant analysis to calculate mRNA values cutoffs that best discriminated between responders and nonresponders after 12 weeks of antidepressants. As Macrophage Migration Inhibitory Factor and interleukin-1β might be involved in different pathways, we constructed a protein-protein interaction network by the Search Tool for the Retrieval of Interacting Genes/Proteins. Results: We identified cutoff values for the absolute mRNA measures that accurately predicted response probability on an individual basis, with positive predictive values and specificity for nonresponders of 100% in both samples (negative predictive value=82% to 85%, sensitivity=52% to 61%). Using network analysis, we identified different clusters of targets for these 2 cytokines, with Macrophage Migration Inhibitory Factor interacting predominantly with pathways involved in neurogenesis, neuroplasticity, and cell proliferation, and interleukin-1β interacting predominantly with pathways involved in the inflammasome complex, oxidative stress, and neurodegeneration. Conclusion: We believe that these data provide a clinically suitable approach to the personalization of antidepressant therapy: patients who have absolute mRNA values above the suggested cutoffs could be directed toward earlier access to more

  19. Low-level light-emitting diode therapy increases mRNA expressions of IL-10 and type I and III collagens on Achilles tendinitis in rats.

    PubMed

    Xavier, Murilo; de Souza, Renato Aparecido; Pires, Viviane Araújo; Santos, Ana Paula; Aimbire, Flávio; Silva, José Antônio; Albertini, Regiane; Villaverde, Antonio Balbin

    2014-01-01

    The present study investigated the effects of low-level light-emitting diode (LED) therapy (880 ± 10 nm) on interleukin (IL)-10 and type I and III collagen in an experimental model of Achilles tendinitis. Thirty male Wistar rats were separated into six groups (n = 5), three groups in the experimental period of 7 days, control group, tendinitis-induced group, and LED therapy group, and three groups in the experimental period of 14 days, tendinitis group, LED therapy group, and LED group with the therapy starting at the 7th day after tendinitis induction (LEDT delay). Tendinitis was induced in the right Achilles tendon using an intratendinous injection of 100 μL of collagenase. The LED parameters were: optical power of 22 mW, spot area size of 0.5 cm(2), and irradiation time of 170 s, corresponding to 7.5 J/cm(2) of energy density. The therapy was initiated 12 h after the tendinitis induction, with a 48-h interval between irradiations. The IL-10 and type I and III collagen mRNA expression were evaluated by real-time polymerase chain reaction at the 7th and 14th days after tendinitis induction. The results showed that LED irradiation increased IL-10 (p < 0.001) in treated group on 7-day experimental period and increased type I and III collagen mRNA expression in both treated groups of 7- and 14-day experimental periods (p < 0.05), except by type I collagen mRNA expression in LEDT delay group. LED (880 nm) was effective in increasing mRNA expression of IL-10 and type I and III collagen. Therefore, LED therapy may have potentially therapeutic effects on Achilles tendon injuries.

  20. The relative expression levels of insulin-like growth factor 1 and myostatin mRNA in the asynchronous development of skeletal muscle in ducks during early development.

    PubMed

    Hu, Yan; Liu, Hongxiang; Shan, Yanju; Ji, Gaige; Xu, Wenjuan; Shu, Jingting; Li, Huifang

    2015-08-10

    Genetic selection is a powerful tool for modifying poultry muscle yield. Insulin-like growth factor I (IGF-I) and myostatin (MSTN) are important regulators of muscle growth, especially in the myogenesis stage. This study compared the developmental pattern of the pectoralis major (PM) and lateral gastrocnemius (LM) muscles, mRNA expression characterization of IGF-I and MSTN-A and their correlation between 14 days in ovo and 1 week post-hatch in two Chinese local duck breeds. During early development, the growth of duck PM and LM followed an asynchronous pattern. Variations in PM growth rate observed with development followed the relative variations of MSTN and IGF-I expression; however, the same behavior was not observed in LM. Moreover, the profile of IGF-I expression in duck skeletal muscles indicated that genetic selection for high meat-yield poultry has altered the temporal expression of IGF-I and affected cellular characteristics and mass by hatch in a PM-specific manner. The MSTN-A expression profile showed synchronization with the growth of skeletal muscle and peaks of myofiber proliferation. The expression patterns of IGF-I and MSTN suggest that duck pectoralis fibers are prioritized for proliferation in embryogenesis. The IGF-1/MSTN-A mRNA ratios in PM and LM presented very similar trends in the changes of myofiber characteristics, and differences in the IGF-1/MSTN-A mRNA ratio in PM between the two breeds corresponded to the timing of differences in PM mass between the varieties. Our results support the hypothesis that relative levels of IGF-I and MSTN mRNA may participate in ordering muscle growth rates with selected development.

  1. Complex effects of IL1A polymorphism and calpain inhibitors on interleukin 1 alpha (IL-1 alpha) mRNA levels and secretion of IL-1 alpha protein.

    PubMed

    Lee, S; Temple, S; Roberts, S; Price, P

    2008-07-01

    Alleles of IL1A-889(C>T) and IL1A+4845(G>T) are in linkage disequilibrium. Interleukin 1alpha (IL-1alpha) is produced as a precursor protein and cleaved at positions 117-118 by calpain, generating a mature protein for export. IL1A+4845 affects amino acids expressed at position 114 and hence may modulate calpain-mediated cleavage. We sought evidence for this mechanism in intact cells. Blood leukocytes from heterozygous donors released more IL-1alpha protein than cells from IL1A(1,1) donors, while release from IL1A(2,2) cells was variable. Genotype did not affect levels of IL-1alpha mRNA, so differential cleavage of the precursor is a feasible mechanism. However, genotype also had no effect on inhibition of IL-1alpha release by pretreatment with calpain inhibitors, and calpain inhibitors reduced IL-1alpha and tumor necrosis factor alpha mRNA levels. Hence, calpain inhibitors probably affect inhibition of signal transduction pathway rather than cleavage of IL-1alpha protein. As ratios of mu-calpain/calpastatin were lowest in heterozygous donors, genetically determined IL-1alpha levels may modulate transcription of calpain and calpastatin. This could reduce the impact of IL1A genotype on IL-1alpha secretion and amplify individual variation in levels generated in culture.

  2. Chronic growth hormone (GH) hypersecretion induces reciprocal and reversible changes in mRNA levels from hypothalamic GH-releasing hormone and somatostatin neurons in the rat.

    PubMed Central

    Bertherat, J; Timsit, J; Bluet-Pajot, M T; Mercadier, J J; Gourdji, D; Kordon, C; Epelbaum, J

    1993-01-01

    Effects of growth hormone (GH) hypersecretion on somatostatin-(SRIH) and GH-releasing hormone (GHRH) were studied by in situ hybridization and receptor autoradiography in rats bearing a GH-secreting tumor. 6 and 18 wk after tumor induction, animals displayed a sharp increase in body weight and GH plasma levels; pituitary GH content was reduced by 47 and 55%, while that of prolactin and thyrotropin was unchanged. At 18 wk, hypothalamic GHRH and SRIH levels had fallen by 84 and 52%, respectively. In parallel, the density of GHRH mRNA per arcuate neuron was reduced by 52 and 50% at 6 and 18 wk, while SRIH mRNA levels increased by 71 and 83% in the periventricular nucleus (with no alteration in the hilus of the dentate gyrus). The numbers of GHRH- and SRIH-synthetizing neurons in the hypothalamus were not altered in GH-hypersecreting rats. Resection of the tumor restored hypothalamic GHRH and SRIH mRNAs to control levels. GH hypersecretion did not modify 125I-SRIH binding sites on GHRH neurons. Thus, chronic GH hypersecretion affects the expression of the genes encoding for GHRH and SRIH. The effect is long lasting, not desensitizable and reversible. Images PMID:8097209

  3. Anguillicola crassus Infection Significantly Affects the Silvering Related Modifications in Steady State mRNA Levels in Gas Gland Tissue of the European Eel

    PubMed Central

    Pelster, Bernd; Schneebauer, Gabriel; Dirks, Ron P.

    2016-01-01

    Using Illumina sequencing, transcriptional changes occurring during silvering in swimbladder tissue of the European eel have been analyzed by comparison of yellow and silver eel tissue samples. Functional annotation analysis based on GO terms revealed significant expression changes in a number of genes related to the extracellular matrix, important for the control of gas permeability of the swimbladder, and to reactive oxygen species (ROS) defense, important to cope with ROS generated under hyperbaric oxygen partial pressures. Focusing on swimbladder tissue metabolism, levels of several mRNA species encoding glucose transport proteins were several-fold higher in silver eels, while enzymes of the glycolytic pathway were not affected. The significantly higher steady state level of a transcript encoding for membrane bound carbonic anhydrase, however, suggested that CO2 production in the pentose phosphate shunt and diffusion of CO2 was of particular importance in silver eel swimbladder. In addition, the mRNA level of a large number of genes related to immune response and to sexual maturation was significantly modified in the silver eel swimbladder. The modification of several processes related to protein metabolism and transport, cell cycle, and apoptosis suggested that these changes in swimbladder metabolism and permeability were achieved by increasing cell turn-over. The impact of an infection of the swimbladder with the nematode Anguillicola crassus has been assessed by comparing these expression changes with expression changes observed between uninfected yellow eel swimbladder tissue and infected silver eel swimbladder tissue. In contrast to uninfected silver eel swimbladder tissue, in infected tissue the mRNA level of several glycolytic enzymes was significantly elevated, and with respect to extracellular matrix, several mucin genes were many-fold higher in their mRNA level. Modification of many immune related genes and of the functional categories “response to

  4. Anguillicola crassus Infection Significantly Affects the Silvering Related Modifications in Steady State mRNA Levels in Gas Gland Tissue of the European Eel.

    PubMed

    Pelster, Bernd; Schneebauer, Gabriel; Dirks, Ron P

    2016-01-01

    Using Illumina sequencing, transcriptional changes occurring during silvering in swimbladder tissue of the European eel have been analyzed by comparison of yellow and silver eel tissue samples. Functional annotation analysis based on GO terms revealed significant expression changes in a number of genes related to the extracellular matrix, important for the control of gas permeability of the swimbladder, and to reactive oxygen species (ROS) defense, important to cope with ROS generated under hyperbaric oxygen partial pressures. Focusing on swimbladder tissue metabolism, levels of several mRNA species encoding glucose transport proteins were several-fold higher in silver eels, while enzymes of the glycolytic pathway were not affected. The significantly higher steady state level of a transcript encoding for membrane bound carbonic anhydrase, however, suggested that CO2 production in the pentose phosphate shunt and diffusion of CO2 was of particular importance in silver eel swimbladder. In addition, the mRNA level of a large number of genes related to immune response and to sexual maturation was significantly modified in the silver eel swimbladder. The modification of several processes related to protein metabolism and transport, cell cycle, and apoptosis suggested that these changes in swimbladder metabolism and permeability were achieved by increasing cell turn-over. The impact of an infection of the swimbladder with the nematode Anguillicola crassus has been assessed by comparing these expression changes with expression changes observed between uninfected yellow eel swimbladder tissue and infected silver eel swimbladder tissue. In contrast to uninfected silver eel swimbladder tissue, in infected tissue the mRNA level of several glycolytic enzymes was significantly elevated, and with respect to extracellular matrix, several mucin genes were many-fold higher in their mRNA level. Modification of many immune related genes and of the functional categories "response to

  5. HER2 and ESR1 mRNA expression levels and response to neoadjuvant trastuzumab plus chemotherapy in patients with primary breast cancer

    PubMed Central

    2013-01-01

    Introduction Recent data suggest that benefit from trastuzumab and chemotherapy might be related to expression of HER2 and estrogen receptor (ESR1). Therefore, we investigated HER2 and ESR1 mRNA levels in core biopsies of HER2-positive breast carcinomas from patients treated within the neoadjuvant GeparQuattro trial. Methods HER2 levels were centrally analyzed by immunohistochemistry (IHC), silver in situ hybridization (SISH) and qRT-PCR in 217 pretherapeutic formalin-fixed, paraffin-embedded (FFPE) core biopsies. All tumors had been HER2-positive by local pathology and had been treated with neoadjuvant trastuzumab/ chemotherapy in GeparQuattro. Results Only 73% of the tumors (158 of 217) were centrally HER2-positive (cHER2-positive) by IHC/SISH, with cHER2-positive tumors showing a significantly higher pCR rate (46.8% vs. 20.3%, P <0.0005). HER2 status by qRT-PCR showed a concordance of 88.5% with the central IHC/SISH status, with a low pCR rate in those tumors that were HER2-negative by mRNA analysis (21.1% vs. 49.6%, P <0.0005). The level of HER2 mRNA expression was linked to response rate in ESR1-positive tumors, but not in ESR1-negative tumors. HER2 mRNA expression was significantly associated with pCR in the HER2-positive/ESR1-positive tumors (P = 0.004), but not in HER2-positive/ESR1-negative tumors. Conclusions Only patients with cHER2-positive tumors - irrespective of the method used - have an increased pCR rate with trastuzumab plus chemotherapy. In patients with cHER2-negative tumors the pCR rate is comparable to the pCR rate in the non-trastuzumab treated HER-negative population. Response to trastuzumab is correlated to HER2 mRNA levels only in ESR1-positive tumors. This study adds further evidence to the different biology of both subsets within the HER2-positive group. Introduction The human epidermal growth factor receptor 2 (HER2) is the prototype of a predictive biomarker for targeted treatment [1-8]. International initiatives have established the

  6. Smartphone based point-of-care detector of urine albumin

    NASA Astrophysics Data System (ADS)

    Cmiel, Vratislav; Svoboda, Ondrej; Koscova, Pavlina; Provaznik, Ivo

    2016-03-01

    Albumin plays an important role in human body. Its changed level in urine may indicate serious kidney disorders. We present a new point-of-care solution for sensitive detection of urine albumin - the miniature optical adapter for iPhone with in-built optical filters and a sample slot. The adapter exploits smart-phone flash to generate excitation light and camera to measure the level of emitted light. Albumin Blue 580 is used as albumin reagent. The proposed light-weight adapter can be produced at low cost using a 3D printer. Thus, the miniaturized detector is easy to use out of lab.

  7. Increased duodenal DMT-1 expression and unchanged HFE mRNA levels in HFE-associated hereditary hemochromatosis and iron deficiency.

    PubMed

    Byrnes, V; Barrett, S; Ryan, E; Kelleher, T; O'Keane, C; Coughlan, B; Crowe, J

    2002-01-01

    HFE-associated hereditary hemochromatosis is characterized by imbalances of iron homeostasis and alterations in intestinal iron absorption. The identification of the HFE gene and the apical iron transporter divalent metal transporter-1, DMT-1, provide a direct method to address the mechanisms of iron overload in this disease. The aim of this study was to evaluate the regulation of duodenal HFE and DMT-1 gene expression in HFE-associated hereditary hemochromatosis. Small bowel biopsies and serum iron indices were obtained from a total of 33 patients. The study population comprised 13 patients with hereditary hemochromatosis (C282Y homozygous), 10 patients with iron deficiency anemia, and 10 apparently healthy controls, all of whom were genotyped for the two common mutations in the HFE gene (C282Y and H63D). Total RNA was isolated from tissue and amplified via RT-PCR for HFE, DMT-1, and the internal control GAPDH. DMT-1 protein expression was additionally assessed by immunohistochemistry. Levels of HFE mRNA did not differ significantly between patient groups (P = 0.09), specifically between C282Y homozygotes and iron deficiency anemic patients, when compared to controls (P = 0.09, P = 0.9, respectively). In contrast, DMT-1 mRNA levels were at least twofold greater in patients with hereditary hemochromatosis and iron deficiency anemia when compared to controls (P = 0.02, P = 0.01, respectively). Heightened DMT-1 protein expression correlated with mRNA levels in all patients. Loss of HFE function in hereditary hemochromatosis is not derived from inhibition of its gene expression. DMT-1 expression in C282Y homozygote subjects is consistent with the hypothesis of a "paradoxical" duodenal iron deficiency in hereditary hemochromatosis. The observed twofold upregulation of the DMT-1 is consistent with the slow but steady increase in body iron stores observed in those presenting with clinical features of hereditary hemochromatosis.

  8. Effects of 11-ketotestosterone and temperature on inhibin subunit mRNA levels in the ovary of the shortfinned eel, Anguilla australis.

    PubMed

    Zadmajid, Vahid; Falahatimarvast, Ali; Damsteegt, Erin L; Setiawan, Alvin N; Ozaki, Yuichi; Shoae, Alireza; Lokman, P Mark

    2015-09-01

    Members of the transforming growth factor-b (TGFb) superfamily are important during early oogenesis in mammals. In this study, we tested whether documented effects of 11-ketotestosterone (11KT) on previtellogenic eel ovaries are mediated through affecting the expression of key ovarian TGFb genes. Furthermore, we investigated whether 11KT effects interacted with temperature. Accordingly, three thermal regimes were compared and their interaction with 11KT-mediated actions on expression of TGFb superfamily genes (chiefly inhibin subunits) evaluated in the eel (Anguilla australis). Inhibin subunit mRNA levels were also measured in ovarian explants cultured in vitro with 11KT and in ovaries from eels collected from the wild. In wild eels, inhibin-bA mRNA levels were higher in early than in previtellogenic eels; inhibin-a expression did not differ between stages, whereas that of inhibin-bB first decreased, then recovered with advanced developmental stage. Temperature was ineffective in modulating any of the end points, at least as long as a Q10 adjustment was made to correct for 'metabolic dose'. However, 11KT affected the expression of inhibin-a compared to control fish, while those of inhibin-b subunit genes remained unaffected. In contrast, 11KT dramatically reduced mRNA levels of inhibin-b subunits in vitro, but had inconsistent effects on inhibin-a transcript abundance. We conclude that 11KT affects ovarian inhibin subunit gene expression, but effects are not in keeping with the changes seen during early oogenesis in eels from the wild. We further contend that in vivo temperature experiments are easily biased and that Q10 corrections may be required to identify 'true' temperature effects.

  9. Molecular characterization of the aryl hydrocarbon receptor (AhR) pathway in goldfish (Carassius auratus) exposure to TCDD: the mRNA and protein levels.

    PubMed

    Lu, Ming; Chang, Ziwei; Bae, Min-Ji; Oh, Seung Min; Chung, Kyu-Hyuck; Park, Jang-Su

    2013-08-01

    In bony fish or other aquatic vertebrates, the aryl hydrocarbon receptor (AhR) signaling pathway is initiated by exposure to polycyclic (or/and halogenated) aromatic hydrocarbons (PAHs, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD), which subsequently induces the up-regulated expression of a series of related genes (such as cytochrome P4501A (CYP1A)). However, a lack of applicable protein reagents hinders our further understanding of the AhR signaling pathway, which focuses only on gene-based investigations. The goldfish (Carassius auratus) is an ideal model for a study of environmental pollution in whole-Asian fresh water. Here, three sensitive and specific polyclonal antisera against goldfish AhR1, AhR2, and CYP1A proteins were developed. These antisera not only bound the in-vitro synthesized target proteins, but recognized the real proteins expressed in goldfish tissues, with minimal cross-reactivity to non-specific proteins. Together with the analysis of semi-quantitative RT-PCR and polyclonal-antibody-based sandwich ELISA, we confirmed that goldfish AhRs differed in the expression (mRNA and protein levels) patterns among test tissues. Importantly, the relative abundance of each AhR mRNA levels from the different tissues showed no obvious consistency with their protein levels. After exposure to TCDD, goldfish AhR2 showed a more sensitivity than AhR1, and stimulated CYP1A expression directly, similar with the other reported fish models. Overall, development of these antibodies in this study will allow valuable and versatile investigations to further understand the AhR signaling pathway, and different expression (mRNA and protein) patterns represent the first step in determining the regulatory mechanisms underlying the TCDD-exposed aquatic environment.

  10. Effects of cysteamine on mRNA levels of growth hormone and its receptors and growth in orange-spotted grouper (Epinephelus coioides).

    PubMed

    Li, Yun; Liu, Xiaochun; Zhang, Yong; Ma, Xilan; Lin, Haoran

    2013-06-01

    Effects of cysteamine (CS) on growth hormone (GH) mRNA, two types of growth hormone receptor (GHR) mRNAs and growth rate in orange-spotted grouper (Epinephelus coioides) were investigated. CS could cause a modification in the structure of somatostatin, which is the most important neuroendocrine inhibitor of basal and stimulated growth hormone synthesis and release, and renders it nonimmunoreactive probably through interaction with the disulfide bonds. In the present study, cysteamine hydrochloride (CSH) enhanced the level of pituitary GH mRNA in a dose-dependent manner through attenuating or deleting the inhibiting action of somatostatin on GH mRNA expression. CSH at relatively low doses (from 1 to 3 mg/g diet) enhanced the levels of two types of GHR mRNAs in dose-dependent manner, whereas the stimulation induced by CSH declined from the peak at higher dose of CSH (4 mg/g diet). It might be attributed to the variation in GH-induced up-regulation of GHRs at different doses of GH. Feeding of CSH could induce remarkable enhancement of growth rate in orange-spotted grouper. In addition, the stimulatory effect of CSH could be potentiated by the additive effect of luteinizing hormone-releasing hormone analog (LHRH-A). Compared with individual treatments, combined feeding of CSH and LHRH-A caused more efficient elevation of growth rate after 8 weeks of feeding. CSH and LHRH-A individually and in combination remarkably increased the levels of GH and GHR mRNAs compared with the control. The combined administration of CSH and LHRH-A in diet was most effective to enhance the level of GH and GHR1 mRNA. The morphological characteristics of the experimental fish were evaluated. Compared with control, the ratios of muscle RNA/DNA, condition factors (CF) and feed conversion efficiency (FCE) were significantly enhanced in the treated groups, while the highest values were observed in the combined treatment. All the results suggested that CSH (1-3 mg/g diet) is an effective

  11. IGF-2 and FLT-1/VEGF-R1 mRNA levels reveal distinctions and similarities between congenital and common infantile hemangioma.

    PubMed

    Picard, Arnaud; Boscolo, Elisa; Khan, Zia A; Bartch, Tatianna C; Mulliken, John B; Vazquez, Marie Paule; Bischoff, Joyce

    2008-03-01

    Common infantile hemangioma appears postnatally, grows rapidly, and regresses slowly. Two types of congenital vascular tumors present fully grown at birth and behave differently from infantile hemangioma. These rare congenital tumors have been designated rapidly involuting congenital hemangioma (RICH) and noninvoluting congenital hemangioma (NICH). RICH and NICH are similar in appearance, location, and size, and have some overlapping histologic features with infantile hemangioma. At a molecular level, neither expresses glucose transporter-1, a diagnostic marker of infantile hemangioma. To gain further insight into the molecular differences and similarities between congenital and common hemangioma, we analyzed expression of insulin-like growth factor-2, known to be highly expressed in infantile hemangioma and VEGF-receptors, by quantitative real-time PCR, in three RICH and five NICH specimens. We show that insulin-like growth factor-2 mRNA was expressed in both RICH and NICH, at a level comparable with that detected in common hemangioma over 4 y of age. In contrast, mRNA levels for membrane-associated fms-like tyrosine-kinase receptor, also known as VEGF receptor-1, were uniformly increased in congenital hemangiomas compared with proliferating or involuting phase common hemangioma. These results provide the first evidence of the molecular distinctions and similarities between congenital and postnatal hemangioma.

  12. Attenuation of O(6)-methylguanine-DNA methyltransferase activity and mRNA levels by cisplatin and temozolomide in jurkat cells.

    PubMed

    D'Atri, S; Graziani, G; Lacal, P M; Nisticò, V; Gilberti, S; Faraoni, I; Watson, A J; Bonmassar, E; Margison, G P

    2000-08-01

    The DNA repair protein O(6)-methylguanine-DNA methyltransferase (MGMT) is important in cellular resistance to certain alkylating antitumor agents such as the methylating drug temozolomide (TMZ). To provide a more rational basis for clinical combinations with another commonly used drug, cisplatin, we assessed the modulation of MGMT protein and mRNA levels in the human leukemic cell line Jurkat after treatment with these agents. Cisplatin decreased MGMT activity in a time- and dose-dependent manner, with maximal suppression (50%) observed 24 h after treatment with 25 microM cisplatin. This was probably the result of decreased transcription of the MGMT gene, because there was an earlier nadir of MGMT mRNA levels after cisplatin treatment and neither cisplatin nor DNA reacted with cisplatin in vitro was able to inhibit MGMT activity in an in vitro assay. TMZ alone depleted MGMT activity in a time- and dose-dependent manner with almost complete loss of activity occurring immediately after treatment with 500 microM TMZ. Combinations of cisplatin (12.5 microM) and TMZ (250 microM) caused substantial and prolonged MGMT depletion with recovery to only 30% of pretreatment levels by 48 h. These results suggest that the clinical efficacy of TMZ and cisplatin may be improved by appropriate schedules of combinations of these agents.

  13. Increased mRNA levels for components of the lysosomal, Ca2+-activated, and ATP-ubiquitin-dependent proteolytic pathways in skeletal muscle from head trauma patients.

    PubMed Central

    Mansoor, O; Beaufrere, B; Boirie, Y; Ralliere, C; Taillandier, D; Aurousseau, E; Schoeffler, P; Arnal, M; Attaix, D

    1996-01-01

    The cellular mechanisms responsible for enhanced muscle protein breakdown in hospitalized patients, which frequently results in lean body wasting, are unknown. To determine whether the lysosomal, Ca2+-activated, and ubiquitin-proteasome proteolytic pathways are activated, we measured mRNA levels for components of these processes in muscle biopsies from severe head trauma patients. These patients exhibited negative nitrogen balance and increased rates of whole-body protein breakdown (assessed by [13C]leucine infusion) and of myofibrillar protein breakdown (assessed by 3-methylhistidine urinary excretion). Increased muscle mRNA levels for cathepsin D, m-calpain, and critical components of the ubiquitin proteolytic pathway (i.e., ubiquitin, the 14-kDa ubiquitin-conjugating enzyme E2, and proteasome subunits) paralleled these metabolic adaptations. The data clearly support a role for multiple proteolytic processes in increased muscle proteolysis. The ubiquitin proteolytic pathway could be activated by altered glucocorticoid production and/or increased circulating levels of interleukin 1beta and interleukin 6 observed in head trauma patients and account for the breakdown of myofibrillar proteins, as was recently reported in animal studies. Images Fig. 1 Fig. 1 Fig. 3 Fig. 4 PMID:8610106

  14. Effects of ethanol on gene expression in rat bone: transient dose-dependent changes in mRNA levels for matrix proteins, skeletal growth factors, and cytokines are followed by reductions in bone formation.

    PubMed

    Turner, R T; Wronski, T J; Zhang, M; Kidder, L S; Bloomfield, S A; Sibonga, J D

    1998-10-01

    Several studies were performed in female rats to determine dose and time course changes in mRNA levels for matrix proteins in bone after a single administration of ethanol. As expected, dose-dependent transient increases in blood ethanol were measured. Additionally, there was mild hypocalcemia with no change in immunoreactive parathyroid hormone. Coordinated dose-dependent increases in mRNA for type 1 collagen, osteonectin, and osteocalcin were noted in the proximal tibial metaphysis 6 hr after ethanol was given, with the peak values occurring at a dose of 1.2 g/kg (0.4 ml). Similar increases in mRNA levels for matrix proteins were noted in lumbar vertebrae after ethanol treatment. The changes were specific for bone; ethanol had no effect on mRNA levels for matrix proteins in the uterus or liver, although the mRNA concentrations tended to be reduced in uterus. Message levels for several cytokines implicated in the regulation of bone turnover were also assayed; mRNA levels for transforming growth factor-beta1, transforming growth factor-beta2, interferon-gamma, and interleukin-6 were unchanged at doses ranging from 0.14 to 1.7 g/kg. At the highest dose of ethanol, the mRNA level for tumor necrosis factor-alpha was elevated while the level for insulin-like growth factor-1 was reduced. The time course effects of ethanol (0.4 ml dose) were determined in a separate experiment. Ethanol resulted in a transient increase in mRNA levels for the three bone matrix proteins assayed. However, matrix protein synthesis, as determined by incorporation of 3H-proline into the proximal tibial metaphysis, was not changed after 6 hr. The changes in mRNA levels for the matrix proteins were preceded by brief, transient decreases in mRNA levels for interleukin-1beta, interferon-gamma, and migration inhibitory factor, and followed by a more prolonged decrease in the mRNA level for insulin-like growth factor-1. A subsequent study was performed to determine the effects of repetitive daily

  15. Acute hypoxia up-regulates HIF-1α and VEGF mRNA levels in Amazon hypoxia-tolerant Oscar (Astronotus ocellatus).

    PubMed

    Baptista, R B; Souza-Castro, N; Almeida-Val, V M F

    2016-10-01

    Amazon fish maintain oxygen uptake through a variety of strategies considered evolutionary and adaptive responses to the low water oxygen saturation, commonly found in Amazon waters. Oscar (Astronotus ocellatus) is among the most hypoxia-tolerant fish in Amazon, considering its intriguing anaerobic capacity and ability to depress oxidative metabolism. Previous studies in hypoxia-tolerant and non-tolerant fish have shown that hypoxia-inducible factor-1α (HIF-1α) gene expression is positively regulated during low oxygen exposure, affecting vascular endothelial growth factor (VEGF) transcription and fish development or tolerance in different manners. However, whether similar isoforms exists in tolerant Amazon fish and whether they are affected similarly to others physiological responses to improve hypoxia tolerance remain unknown. Here we evaluate the hepatic HIF-1α and VEGF mRNA levels after 3 h of acute hypoxia exposure (0.5 mgO2/l) and 3 h of post-hypoxia recovery. Additionally, hematological parameters and oxidative enzyme activities of citrate synthase (CS) and malate dehydrogenase (MDH) were analyzed in muscle and liver tissues. Overall, three sets of responses were detected: (1) as expected, hematocrit, hemoglobin concentration, red blood cells, and blood glucose increased, improving oxygen carrying capacity and glycolysis potential; (2) oxidative enzymes from liver decreased, corroborating the tendency to a widespread metabolic suppression; and (3) HIF-1α and VEGF increased mRNA levels in liver, revealing their role in the oxygen homeostasis through, respectively, activation of target genes and vascularization. This is the first study to investigate a hypoxia-related transcription factor in a representative Amazon hypoxia-tolerant fish and suggests that HIF-1α and VEGF mRNA regulation have an important role in enhancing hypoxia tolerance in extreme tolerant species. PMID:26994906

  16. Fetal and Neonatal Iron Deficiency Reduces Thyroid Hormone-Responsive Gene mRNA Levels in the Neonatal Rat Hippocampus and Cerebral Cortex

    PubMed Central

    Bastian, Thomas W.; Anderson, Jeremy A.; Fretham, Stephanie J.; Prohaska, Joseph R.; Georgieff, Michael K.

    2012-01-01

    Copper (Cu), iron (Fe), and thyroid hormone (TH) deficiencies produce similar defects in late brain development including hypomyelination of axons and impaired synapse formation and function, suggesting that these micronutrient deficiencies share a common mechanism contributing to these derangements. We previously demonstrated that fetal/neonatal Cu and Fe deficiencies lower circulating TH concentrations in neonatal rats. Fe deficiency also reduces whole-brain T3 content, suggesting impaired TH action in the developing Fe-deficient brain. We hypothesized that fetal/neonatal Cu and Fe deficiencies will produce mild or moderate TH deficiencies and will impair TH-responsive gene expression in the neonatal cerebral cortex and hippocampus. To test this hypothesis, we rendered pregnant Sprague Dawley rats Cu-, Fe-, or TH-deficient from early gestation through postnatal d 10 (P10). Mild and moderate TH deficiencies were induced by 1 and 3 ppm propylthiouracil treatment, respectively. Cu deficiency did not significantly alter serum or tissue TH concentrations or TH-responsive brain mRNA expression. Fe deficiency significantly lowered P10 serum total T3 (45%), serum total T4 (52%), whole brain T3 (14%), and hippocampal T3 (18%) concentrations, producing a mild TH deficiency similar to 1 ppm propylthiouracil treatment. Fe deficiency lowered Pvalb, Enpp6, and Mbp mRNA levels in the P10 hippocampus. Fe deficiency also altered Hairless, Dbm, and Dio2 mRNA levels in the P10 cerebral cortex. These results suggest that some of the brain defects associated with Fe deficiency may be mediated through altered thyroidal status and the concomitant alterations in TH-responsive gene transcription. PMID:23054056

  17. Tris(2-butoxyethyl)phosphate and triethyl phosphate alter embryonic development, hepatic mRNA expression, thyroid hormone levels, and circulating bile acid concentrations in chicken embryos.

    PubMed

    Egloff, Caroline; Crump, Doug; Porter, Emily; Williams, Kim L; Letcher, Robert J; Gauthier, Lewis T; Kennedy, Sean W

    2014-09-15

    The organophosphate flame retardants tris(2-butoxyethyl) phosphate (TBOEP) and triethyl phosphate (TEP) are used in a wide range of applications to suppress or delay the ignition and spread of fire. Both compounds have been detected in the environment and TBOEP was recently measured in free-living avian species. In this study, TBOEP and TEP were injected into the air cell of chicken embryos at concentrations ranging from 0 to 45,400 ng/g and 0 to 241,500 ng/g egg, respectively. Pipping success, development, hepatic mRNA expression of 9 target genes, thyroid hormone levels, and circulating bile acid concentrations were determined. Exposure to the highest doses of TBOEP and TEP resulted in negligible detection of the parent compounds in embryonic contents at pipping indicating their complete metabolic degradation. TBOEP exposure had limited effects on chicken embryos, with the exception of hepatic CYP3A37 mRNA induction. TEP exposure decreased pipping success to 68%, altered growth, increased liver somatic index (LSI) and plasma bile acids, and modulated genes associated with xenobiotic and lipid metabolism and the thyroid hormone pathway. Plasma thyroxine levels were decreased at all TEP doses, including an environmentally-relevant concentration (8 ng/g), and gallbladder hypotrophy was evident at ≥ 43,200 ng/g. Tarsus length and circulating thyroxine concentration emerged as potential phenotypic anchors for the modulation of transthyretin mRNA. The increase in plasma bile acids and LSI, gallbladder hypotrophy, and discoloration of liver tissue represented potential phenotypic outcomes associated with modulation of hepatic genes involved with xenobiotic and lipid metabolism.

  18. Acute hypoxia up-regulates HIF-1α and VEGF mRNA levels in Amazon hypoxia-tolerant Oscar (Astronotus ocellatus).

    PubMed

    Baptista, R B; Souza-Castro, N; Almeida-Val, V M F

    2016-10-01

    Amazon fish maintain oxygen uptake through a variety of strategies considered evolutionary and adaptive responses to the low water oxygen saturation, commonly found in Amazon waters. Oscar (Astronotus ocellatus) is among the most hypoxia-tolerant fish in Amazon, considering its intriguing anaerobic capacity and ability to depress oxidative metabolism. Previous studies in hypoxia-tolerant and non-tolerant fish have shown that hypoxia-inducible factor-1α (HIF-1α) gene expression is positively regulated during low oxygen exposure, affecting vascular endothelial growth factor (VEGF) transcription and fish development or tolerance in different manners. However, whether similar isoforms exists in tolerant Amazon fish and whether they are affected similarly to others physiological responses to improve hypoxia tolerance remain unknown. Here we evaluate the hepatic HIF-1α and VEGF mRNA levels after 3 h of acute hypoxia exposure (0.5 mgO2/l) and 3 h of post-hypoxia recovery. Additionally, hematological parameters and oxidative enzyme activities of citrate synthase (CS) and malate dehydrogenase (MDH) were analyzed in muscle and liver tissues. Overall, three sets of responses were detected: (1) as expected, hematocrit, hemoglobin concentration, red blood cells, and blood glucose increased, improving oxygen carrying capacity and glycolysis potential; (2) oxidative enzymes from liver decreased, corroborating the tendency to a widespread metabolic suppression; and (3) HIF-1α and VEGF increased mRNA levels in liver, revealing their role in the oxygen homeostasis through, respectively, activation of target genes and vascularization. This is the first study to investigate a hypoxia-related transcription factor in a representative Amazon hypoxia-tolerant fish and suggests that HIF-1α and VEGF mRNA regulation have an important role in enhancing hypoxia tolerance in extreme tolerant species.

  19. [Albumin in sepsis].

    PubMed

    Tamion, F

    2010-09-01

    Human serum albumin is a small (66kD) globular protein representing over 60 % of the total plasma protein content. It is made up of 585 amino 6 acids and contains 35 cysteine residues forming disulfide bridges that contribute to its overall tertiary structure. It has a free cysteine-derived thiol group at Cys-34, which accounts for 80 % of its redox activity. Physiologically, serum albumin exists in a reduced form with a free thiol contributing to its antioxidant properties. It is synthesized primarily in the liver and is an acute-phase protein. It is a multifunctional plasma protein ascribed ligand-binding and transport properties as well as antioxidants and enzymatic functions. It maintains colloid osmotic pressure, modulates inflammatory response and may influence oxidative damage. Hypoalbuminemia is common in the intensive care unit and may be due to decreased synthesis by the liver and/or to increased losses or increased proteolysis and clearance. Although albumin was long used to control vascular collapse in critically ill patients, the evidence suggests that it does not offer a benefit over crystalloid solutions in vascular collapse. However, human serum albumin is an important circulating antioxidant and it may be beneficial in critically ill patients to limit oxidative damage. A number of studies suggest that in specific groups of hypoalbuminemic critically ill patients, albumin administration may have beneficial effects on organ function, although the exact mechanisms remain undefined. Further trials are needed to confirm theses observations and to clearly demonstrate whether albumin should be administered in critically ill patients with hypoalbuminemia. PMID:20675098

  20. Evaluation of three reference genes of Escherichia coli for mRNA expression level normalization in view of salt and organic acid stress exposure in food.

    PubMed

    Peng, Silvio; Stephan, Roger; Hummerjohann, Jörg; Tasara, Taurai

    2014-06-01

    Escherichia coli can adapt to various stress conditions encountered in food through induction of stress response genes encoding proteins that counteract the respective stresses. To understand the impact and the induction of these genes under food-associated stresses, changes in the levels of their mRNA expression in response to such stresses can be analysed. Relative quantification of mRNA levels by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) requires normalization to reference genes with stable expression under the experimental conditions being investigated. We examined the validity of three housekeeping genes (cysG, hcaT and rssA) among E. coli strains exposed to salt and organic acid stress. The rssA gene was shown to be the most stably expressed gene under such stress adaptation experimental models. The cysG gene was the least stable, whereas the hcaT gene showed similar interstrain variability as rssA but lower expression stability in the different stress adaptation models.

  1. Levels of inflammatory cytokines, adrenal steroids, and mRNA for GRα, GRβ and 11βHSD1 in TB pleurisy.

    PubMed

    D'Attilio, Luciano; Díaz, Ariana; Santucci, Natalia; Bongiovanni, Bettina; Gardeñez, Walter; Marchesini, Marcela; Bogué, Cristina; Dídoli, Griselda; Bottasso, Oscar; Bay, María Luisa

    2013-11-01

    Our previous work on the immune-endocrine features of patients with pulmonary tuberculosis (TB) showed markedly decreased plasma levels of dehydroepiandrosterone (DHEA) together with augmented concentrations of Cortisol and pro- and anti-inflammatory cytokines. Studies in peripheral blood mononuclear cells (PBMC) indicated a lower mRNA α/β ratio of glucocorticoid receptors -GR- together with a higher 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1) mRNA expression in cases with severe pulmonary TB. Since Pleural TB (PLTB) is a rather benign manifestation of TB, we now analyzed the systemic and local immune-endocrine profile as well as the GRα, GRβ, 11βHSD1 and 11βHSD2 transcripts in PBMC and pleural effusion mononuclear cells (PEMC) of patients with PLTB. PLTB patients had increased levels of IL-1β, IL-6 and IFNγ together with reduced Cortisol and DHEA concentrations in pleural fluids. Also, a significantly increased expression of 11βHSD1 and GRα was found in PEMC compared to PBMC. Findings point out to an appropriate immune response and a substantial inflammatory reaction, wherein the low Cortisol concentrations may be equally effective, because of the increased expression of GRα and 11βHSD1 transcripts which may optimize the immunomodulatory properties of Cortisol.

  2. Nerve Growth Factor Increases mRNA Levels for the Prion Protein and the β -amyloid Protein Precursor in Developing Hamster Brain

    NASA Astrophysics Data System (ADS)

    Mobley, William C.; Neve, Rachael L.; Prusiner, Stanley B.; McKinley, Michael P.

    1988-12-01

    Deposition of amyloid filaments serves as a pathologic hallmark for some neurodegenerative disorders. The prion protein (PrP) is found in amyloid of animals with scrapie and humans with Creutzfeldt-Jakob disease; the β protein is present in amyloid deposits in Alzheimer disease and Down syndrome patients. These two proteins are derived from precursors that in the brain are expressed primarily in neurons and are membrane bound. We found that gene expression for PrP and the β -protein precursor (β -PP) is regulated in developing hamster brain. Specific brain regions showed distinct patterns of ontogenesis for PrP and β -PP mRNAs. The increases in PrP and β -PP mRNAs in developing basal forebrain coincided with an increase in choline acetyltransferase activity, raising the possibility that these markers might be coordinately controlled in cholinergic neurons and regulated by nerve growth factor (NGF). Injections of NGF into the brains of neonatal hamsters increased both PrP and β -PP mRNA levels. Increased PrP and β -PP mRNA levels induced by NGF were confined to regions that contain NGF-responsive cholinergic neurons and were accompanied by elevations in choline acetyltransferase. It remains to be established whether or not exogenous NGF acts to increase PrP and β -PP gene expression selectively in forebrain cholinergic neurons in the developing hamster and endogenous NGF regulates expression of these genes.

  3. Secretory IgA, albumin, and bone-density level changes as markers of biostimulatory effects from laser radiation on the healing process after extraction of human molars on the lower jaw

    NASA Astrophysics Data System (ADS)

    Kucerova, Hana; Dostalova, Tatjana; Himmlova, Lucia; Bartova, Jirina; Mazanek, Jiri

    1999-05-01

    The aim of study was to evaluate the effect of low-level laser radiation on the healing process after human lower molar extraction. Frequencies of 5 Hz, 292 Hz and 9000 Hz were used in this experiment. Monitoring the secretory IgA and albumin levels in saliva and changes in bone density were used as a marker of biostimulatory effect. Bone density after extraction and six month after surgical treatment was examined using the dental digital radiography. Wound closure was followed by healing of bone structure in extraction site. Changes of secretory IgA, albumin levels and bone density were compared in groups of patients with laser treatment and control group without any laser therapy. Differences in levels of the saliva markers were found to be significant comparing irradiated and non-irradiated groups, as well as comparing groups irradiated by various modulatory frequencies. Density of alveolar bone was examined on five slices acquired from every digital radiography image. Histogram were evaluated wit a computer program for microscopic image analysis. Density differences were verified in area of the whole slice. There were no significant differences found between bone density in irradiated and non irradiated groups perhaps due to our used therapeutical diagram.

  4. Differential regulation of polysome mRNA levels in mouse Hepa-1C1C7 cells exposed to dioxin.

    PubMed

    Thornley, Jessica A; Trask, Heidi W; Ridley, Christian J A; Korc, Murray; Gui, Jiang; Ringelberg, Carol S; Wang, Sinny; Tomlinson, Craig R

    2011-10-01

    The environmental agent 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD or dioxin) causes a multitude of human illnesses. In order to more fully understand the underlying biology of TCDD toxicity, we tested the hypothesis that new candidate genes could be identified using polysome RNA from TCDD-treated mouse Hepa-1c1c7 cells. We found that (i) differentially expressed whole cell and cytoplasm RNA levels are both poor predictors of polysome RNA levels; (ii) for a majority of RNAs, differential RNA levels are regulated independently in the nucleus, cytoplasm, and polysomes; (iii) for the remaining polysome RNAs, levels are regulated via several different mechanisms, including a "tagging" of mRNAs in the nucleus for immediate polysome entry; and (iv) most importantly, a gene list derived from differentially expressed polysome RNA generated new genes and cell pathways potentially related to TCDD biology.

  5. Urinary albumin in space missions.

    PubMed

    Cirillo, Massimo; De Santo, Natale G; Heer, Martina; Norsk, Peter; Elmann-Larsen, Benny; Bellini, Luigi; Stellato, Davide; Drummer, Christian

    2002-07-01

    Proteinuria was hypothesized for space mission but research data are missing. Urinary albumin, as index of proteinuria, was analyzed in frozen urine samples collected by astronauts during space missions onboard MIR station and on ground (control). Urinary albumin was measured by a double antibody radioimmunoassay. On average, 24h urinary albumin was 27.4% lower in space than on ground; the difference was statistically significant. Low urinary albumin excretion could be another effect of exposure to weightlessness (microgravity).

  6. Predictive combinatorial design of mRNA translation initiation regions for systematic optimization of gene expression levels

    PubMed Central

    Seo, Sang Woo; Yang, Jae-Seong; Cho, Han-Saem; Yang, Jina; Kim, Seong Cheol; Park, Jong Moon; Kim, Sanguk; Jung, Gyoo Yeol

    2014-01-01

    Balancing the amounts of enzymes is one of the important factors to achieve optimum performance of a designed metabolic pathway. However, the random mutagenesis approach is impractical since it requires searching an unnecessarily large number of variants and often results in searching a narrow range of expression levels which are out of optimal level. Here, we developed a predictive combinatorial design method, called UTR Library Designer, which systematically searches a large combinatorial space of expression levels. It accomplishes this by designing synthetic translation initiation region of mRNAs in a predictive way based on a thermodynamic model and genetic algorithm. Using this approach, we successfully enhanced lysine and hydrogen production in Escherichia coli. Our method significantly reduced the number of variants to be explored for covering large combinatorial space and efficiently enhanced pathway efficiency, thereby facilitating future efforts in metabolic engineering and synthetic biology. PMID:24682040

  7. Effects of ischemic preconditioning on myocardium Caspase-3, SOCS-1, SOCS-3, TNF-α and IL-6 mRNA expression levels in myocardium IR rats.

    PubMed

    Ma, Jiangwei; Qiao, Zengyong; Xu, Biao

    2013-10-01

    The aim of this study was to characterise the effects of ischemic preconditioning (IP) on heart function parameters (ΔST and ΔT), activities of serum creatine kinase (CK), lactate dehydrogenase (LDH), and levels of serum nitric oxide (NO), malondialdehyde (MDA), and myocardium Caspase-3 mRNA, SOCS-1, SOCS-3, tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) expression levels and Apoptosis index in myocardium IR rats. Results showed that ΔST and ΔST values in IP group were markedly lower than those in IR group. Compared with IR group, IP significantly (p < 0.01) decreased serum CK (0.83 ± 0.09 vs 1.36 ± 0.15), LDH (5613 ± 462 vs 7106 ± 492) activities and MDA (11.32 ± 1.05 vs 15.49 ± 1.26) level, increased the serum NO (86.39 ± 7.03 vs 53.77 ± 4.27) level in IR group. The IP induced a significant decreased in myocardium Caspase-3 mRNA (0.303 ± 0.021 vs 0.515 ± 0.022) gene expression (p < 0.01) compared to IR model group. The IP induced a significant decreased in myocardium SOCS-1 (0.241 ± 0.031 vs 0.596 ± 0.036), SOCS-3 (0.258 ± 0.031 vs 0.713 ± 0.057), TNF-α (0.137 ± 0.011 vs 0.427 ± 0.035) and IL-6 (0.314 ± 0.021 vs 0.719 ± 0.064) mRNA gene expression (p < 0.01) compared to IR model group. We conclude that IP is effective in the therapy of heart disease. These findings may have implications for the clinical development of preconditioning-based therapies for ischemic heart disease.

  8. Competition for XPO5 binding between Dicer mRNA, pre-miRNA and viral RNA regulates human Dicer levels.

    PubMed

    Bennasser, Yamina; Chable-Bessia, Christine; Triboulet, Robinson; Gibbings, Derrick; Gwizdek, Carole; Dargemont, Catherine; Kremer, Eric J; Voinnet, Olivier; Benkirane, Monsef

    2011-03-01

    MicroRNAs (miRNAs) are a class of small, noncoding RNAs that function by regulating gene expression post-transcriptionally. Alterations in miRNA expression can strongly influence cellular physiology. Here we demonstrated cross-regulation between two components of the RNA interference (RNAi) machinery in human cells. Inhibition of exportin-5, the karyopherin responsible for pre-miRNA export, downregulated expression of Dicer, the RNase III required for pre-miRNA maturation. This effect was post-transcriptional and resulted from an increased nuclear localization of Dicer mRNA. In vitro assays and cellular RNA immunoprecipitation experiments showed that exportin-5 interacted directly with Dicer mRNA. Titration of exportin-5 by overexpression of either pre-miRNA or the adenoviral VA1 RNA resulted in loss of Dicer mRNA-exportin-5 interaction and reduction of Dicer level. This saturation also occurred during adenoviral infection and enhanced viral replication. Our study reveals an important cross-regulatory mechanism between pre-miRNA or viral small RNAs and Dicer through exportin-5.

  9. Quantifying Temporal Autocorrelations for the Expression of Geobacter species mRNA Gene Transcripts at Variable Ammonium Levels during in situ U(VI) Bioremediation

    NASA Astrophysics Data System (ADS)

    Mouser, P. J.

    2010-12-01

    In order to develop decision-making tools for the prediction and optimization of subsurface bioremediation strategies, we must be able to link the molecular-scale activity of microorganisms involved in remediation processes with biogeochemical processes observed at the field-scale. This requires the ability to quantify changes in the in situ metabolic condition of dominant microbes and associate these changes to fluctuations in nutrient levels throughout the bioremediation process. It also necessitates a need to understand the spatiotemporal variability of the molecular-scale information to develop meaningful parameters and constraint ranges in complex bio-physio-chemical models. The expression of three Geobacter species genes (ammonium transporter (amtB), nitrogen fixation (nifD), and a housekeeping gene (recA)) were tracked at two monitoring locations that differed significantly in ammonium (NH4+) concentrations during a field-scale experiment where acetate was injected into the subsurface to simulate Geobacteraceae in a uranium-contaminated aquifer. Analysis of amtB and nifD mRNA transcript levels indicated that NH4+ was the primary form of fixed nitrogen during bioremediation. Overall expression levels of amtB were on average 8-fold higher at NH4+ concentrations of 300 μM or more than at lower NH4+ levels (average 60 μM). The degree of temporal correlation in Geobacter species mRNA expression levels was calculated at both locations using autocorrelation methods that describe the relationship between sample semi-variance and time lag. At the monitoring location with lower NH4+, a temporal correlation lag of 8 days was observed for both amtB and nifD transcript patterns. At the location where higher NH4+ levels were observed, no discernable temporal correlation lag above the sampling frequency (approximately every 2 days) was observed for amtB or nifD transcript fluctuations. Autocorrelation trends in recA expression levels at both locations indicated that

  10. Effects of acute diuresis stress on egr-1 (zif268) mRNA levels in brain regions associated with motivated behavior.

    PubMed

    Aher, Chetan V; Duwaerts, Caroline C; Akama, Keith T; Lucas, Louis R

    2010-01-15

    Stressors evoke a well-studied physiological stress-response, namely, an immediate systemic release of catecholamines from the adrenals followed shortly afterwards by the release of adrenal steroids. The intensity of that response can often be inferred by the amount of adrenal steroids released into the circulatory system. It is still unclear however how the intensity and duration of the stressor affect a number of brain regions, including those in the motivational system. The present study sought to determine whether a brief stressor, such as an isotonic saline injection, activated the brain's motivational system in mesolimbic regions compared with a more intense stressor exemplified by pharmacological challenges caused by the administration of a diuretic. Adult male Sprague-Dawley rats were either injected (s.c.) with isotonic saline or 5mg of the diuretic, furosemide. Controls did not receive any injections. Animals were sacrificed at 30, 60, 120, and 240 min after injection and trunk blood and brains were collected. Serum corticosterone and aldosterone levels were assessed through radioimmunoassay and mesolimbic brain activity was determined through in situ hybridization of mRNA expression of the immediate-early gene egr-1 in the caudate-putamen and nucleus accumbens. While both adrenal steroids demonstrated an initial peak in both stress groups, levels were higher and longer lasting in rats treated with furosemide. Interestingly, egr-1 mRNA levels were significantly higher only in the furosemide-treated group compared with controls. These findings suggest that a selective activation of motivational circuits occurs under thirst and salt-appetite-induced conditions such as those caused by diuresis.

  11. Comparison of the effects of pulmonary rehabilitation with chest physical therapy on the levels of fibrinogen and albumin in patients with lung cancer awaiting lung resection: a randomized clinical trial

    PubMed Central

    2014-01-01

    Background Systemic inflammation plays an important role in the initiation, promotion, and progression of lung carcinogenesis. In patients with non-small cell lung cancer (NSCLC), fibrinogen levels correlate with neoplasia. Here we compared the effects of pulmonary rehabilitation (PR) with chest physical therapy (CPT) on fibrinogen and albumin levels in patients with LC and previous inflammatory lung disease awaiting lung resection. Methods We conducted a randomized clinical trial with 24 patients who were randomly assigned to Pulmonary Rehabilitation (PR) and Chest Physical Therapy (CPT) groups. Each group underwent training 5 days weekly for 4 weeks. All patients were assessed before and after four weeks of training through clinical assessment, measurement of fibrinogen and albumin levels, spirometry, 6-minute Walk Test (6MWT), quality of life survey, and anxiety and depression scale. PR involved strength and endurance training, and CPT involved lung expansion techniques. Both groups attended educational classes. Results A mixed between-within subjects analysis of variance (ANOVA) revealed a significant interaction between time (before and after intervention) and group (PR vs. CPT) on fibrinogen levels (F(1, 22) = 0.57, p < 0.0001) and a significant main effect of time (F(1, 22) = 0.68, p = 0.004). Changes in albumin levels were not statistically significant relative to the interaction effect between time and group (F(1, 22) = 0.96, p = 0.37) nor the main effects of time (F(1, 22) = 1.00, p = 1.00) and group (F(1, 22 ) = 0.59, p = 0.45). A mixed between-within subjects ANOVA revealed significant interaction effects between time and group for the peak work rate of the unsupported upper limb exercise (F(1, 22) = 0.77, p = 0.02), endurance time (F(1, 22) = 0.60, p = 0.001), levels of anxiety (F(1, 22) = 0.60, p = 0.002) and depression (F(1, 22) = 0.74, p = 0.02), and the SF-36 physical

  12. Microvesicle entry into marrow cells mediates tissue-specific changes in mRNA by direct delivery of mRNA and induction of transcription

    PubMed Central

    Aliotta, Jason M.; Pereira, Mandy; Johnson, Kevin W.; de Paz, Nicole; Dooner, Mark S.; Puente, Napoleon; Ayala, Carol; Brilliant, Kate; Berz, David; Lee, David; Ramratnam, Bharat; McMillan, Paul N.; Hixson, Douglas C.; Josic, Djuro; Quesenberry, Peter J.

    2010-01-01

    Objective Microvesicles have been shown to mediate intercellular communication. Previously, we have correlated entry of murine lung-derived microvesicles into murine bone marrow cells with expression of pulmonary epithelial cell-specific mRNA in these marrow cells. The present studies establish that entry of lung-derived microvesicles into marrow cells is a prerequisite for marrow expression of pulmonary epithelial cell-derived mRNA. Methods/Results Murine bone marrow cells co-cultured with rat lung, but separated from them using a cell-impermeable membrane (0.4 micron pore size), were analyzed using species-specific primers (for rat or mouse). These studies revealed that surfactant B and C mRNA produced by murine marrow cells were of both rat and mouse origin. Similar results were obtained using murine lung co-cultured with rat bone marrow cells or when bone marrow cells were analyzed for the presence of species-specific albumin mRNA after co-culture with rat or murine liver. These studies show that microvesicles both deliver mRNA to marrow cells and also mediate marrow cell transcription of tissue-specific mRNA. The latter likely underlies the longer term stable change in genetic phenotype which has been observed. We have also observed microRNA in lung-derived microvesicles and studies with RNase-treated microvesicles indicate that microRNA negatively modulates pulmonary epithelial cell-specific mRNA levels in co-cultured marrow cells. In addition, we have also observed tissue-specific expression of brain, heart and liver mRNA in co-cultured marrow cells suggesting that microvesicle-mediated cellular phenotype change is a universal phenomena. Conclusion These studies suggest that cellular systems are more phenotypically labile then previously considered. PMID:20079801

  13. mRNA expression levels of PGC-1α in a transgenic and a toxin model of Huntington's disease.

    PubMed

    Török, Rita; Kónya, Júlia Anna; Zádori, Dénes; Veres, Gábor; Szalárdy, Levente; Vécsei, László; Klivényi, Péter

    2015-03-01

    Peroxisome proliferator-activated receptor-gamma (PPARγ) coactivator-1 alpha (PGC-1α) is involved in the regulation of mitochondrial biogenesis, respiration, and adaptive thermogenesis. The full-length PGC-1α (FL-PGC-1α) comprises multiple functional domains interacting with several transcriptional regulatory factors such as nuclear respiratory factors, estrogen-related receptors, and PPARs; however, a number of PGC-1α splice variants have also been reported recently. In this study, we examined the expression levels of FL-PGC-1α and N-truncated PGC-1α (NT-PGC-1α), a shorter but functionally active splice variant of PGC-1α protein, in N171-82Q transgenic and 3-nitropropionic acid-induced murine model of Huntington's disease (HD). The expression levels were determined by RT-PCR in three brain areas (striatum, cortex, and cerebellum) in three age groups (8, 12, and 16 weeks). Besides recapitulating prior findings that NT-PGC-1α is preferentially increased in 16 weeks of age in transgenic HD animals, we detected age-dependent alterations in both models, including a cerebellum-predominant upregulation of both PGC-1α variants in transgenic mice, and a striatum-predominant upregulation of both PGC-1α variants after acute 3-nitropropionic acid intoxication. The possible relevance of this expression pattern is discussed. Based on our results, we assume that increased expression of PGC-1α may serve as a compensatory mechanism in response to mitochondrial damage in transgenic and toxin models of HD, which may be of therapeutic relevance.

  14. Manganese peroxidase mRNA and enzyme activity levels during bioremediation of polycyclic aromatic hydrocarbon-contaminated soil with Phanerochaete chrysosporium

    SciTech Connect

    Bogan, B.W.; Schoenike, B.; Lamar, R.T.; Cullen, D.

    1996-07-01

    mRNA extraction from soil and quantitation by competitive reverse transcription-PCR were combined to study the expression of three manganese peroxidase (MnP) genes during removal of polycyclic aromatic hydrocarbons from cultures of Phanerochaete chrysosporium grown in presterilized soil. Periods of high mnp transcript levels and extractable MnP enzyme activity were temporally correlated, although separated by a short (1- to 2-day) lag period. This time frame also coincided with maximal rates of fluorene oxidation and chrysene disappearance in soil cultures, supporting the hypothesis that high ionization potential polycyclic aromatic hydrocarbons are oxidized in soil via MnP-dependent mechanisms. The patterns of transcript abundance over time in soil-grown P. chrysosporium were similar for all three of the mnp mRNAs studied, indicating that transcription of this gene family may be coordinately regulated under these growth conditions. 47 refs., 6 figs., 1 tab.

  15. Lysophosphatidic acid can support the formation of membranous structures and an increase in MBP mRNA levels in differentiating oligodendrocytes

    PubMed Central

    Nogaroli, Luciana; Yuelling, Larra M.; Dennis, Jameel; Gorse, Karen; Payne, Shawn G.; Fuss, Babette

    2009-01-01

    During development, differentiating oligodendrocytes progress in distinct maturation steps from premyelinating to myelinating cells. Such maturing oligodendrocytes express both receptors mediating signaling via extracellular lysophosphatidic acid (LPA) and the major enzyme generating extracellular LPA, namely phosphodiesterase-Iα/autotaxin (PD-Iα/ATX). However, the biological role of extracellular LPA during the maturation of differentiating oligodendrocytes is currently unclear. Here, we demonstrate that application of exogenous LPA induced an increase in the area occupied by the oligodendrocytes’ process network, but only when PD-Iα/ATX expression was down-regulated. This increase in network area was caused primarily by the formation of membranous structures. In addition, LPA increased the number of cells positive for myelin basic protein (MBP). This effect was associated by an increase in the mRNA levels coding for MBP but not myelin oligodendrocyte glycoprotein (MOG). Taken together, these data suggest that LPA may play a crucial role in regulating the later stages of oligodendrocyte maturation. PMID:18594965

  16. In vitro Effects of Four Native Brazilian Medicinal Plants in CYP3A4 mRNA Gene Expression, Glutathione Levels, and P-Glycoprotein Activity.

    PubMed

    Mazzari, Andre L D A; Milton, Flora; Frangos, Samantha; Carvalho, Ana C B; Silveira, Dâmaris; de Assis Rocha Neves, Francisco; Prieto, Jose M

    2016-01-01

    Erythrina mulungu Benth. (Fabaceae), Cordia verbenacea A. DC. (Boraginaceae), Solanum paniculatum L. (Solanaceae) and Lippia sidoides Cham. (Verbenaceae) are medicinal plant species native to Brazil shortlisted by the Brazilian National Health System for future clinical use. However, nothing is known about their effects in metabolic and transporter proteins, which could potentially lead to herb-drug interactions (HDI). In this work, we assess non-toxic concentrations (100 μg/mL) of the plant infusions for their in vitro ability to modulate CYP3A4 mRNA gene expression and intracellular glutathione levels in HepG2 cells, as well as P-glycoprotein (P-gp) activity in vincristine-resistant Caco-2 cells (Caco-2 VCR). Their mechanisms of action were further studied by measuring the activation of human pregnane X receptor (hPXR) in transiently co-transfected HeLa cells and the inhibition of γ-glutamyl transferase (GGT) in HepG2 cells. Our results show that P-gp activity was not affected in any case and that only Solanum paniculatum was able to significantly change CYP3A4 mRNA gene expression (twofold decrease, p < 0.05), this being correlated with an antagonist effect upon hPXR (EC50 = 0.38 mg/mL). Total intracellular glutathione levels were significantly depleted by exposure to Solanum paniculatum (-44%, p < 0.001), Lippia sidoides (-12%, p < 0.05) and Cordia verbenacea (-47%, p < 0.001). The latter plant extract was able to decrease GGT activity (-48%, p < 0.01). In conclusion, this preclinical study shows that the administration of some of these herbal medicines may be able to cause disturbances to metabolic mechanisms in vitro. Although Erythrina mulungu appears safe in our tests, active pharmacovigilance is recommended for the other three species, especially in the case of Solanum paniculatum. PMID:27594838

  17. In vitro Effects of Four Native Brazilian Medicinal Plants in CYP3A4 mRNA Gene Expression, Glutathione Levels, and P-Glycoprotein Activity.

    PubMed

    Mazzari, Andre L D A; Milton, Flora; Frangos, Samantha; Carvalho, Ana C B; Silveira, Dâmaris; de Assis Rocha Neves, Francisco; Prieto, Jose M

    2016-01-01

    Erythrina mulungu Benth. (Fabaceae), Cordia verbenacea A. DC. (Boraginaceae), Solanum paniculatum L. (Solanaceae) and Lippia sidoides Cham. (Verbenaceae) are medicinal plant species native to Brazil shortlisted by the Brazilian National Health System for future clinical use. However, nothing is known about their effects in metabolic and transporter proteins, which could potentially lead to herb-drug interactions (HDI). In this work, we assess non-toxic concentrations (100 μg/mL) of the plant infusions for their in vitro ability to modulate CYP3A4 mRNA gene expression and intracellular glutathione levels in HepG2 cells, as well as P-glycoprotein (P-gp) activity in vincristine-resistant Caco-2 cells (Caco-2 VCR). Their mechanisms of action were further studied by measuring the activation of human pregnane X receptor (hPXR) in transiently co-transfected HeLa cells and the inhibition of γ-glutamyl transferase (GGT) in HepG2 cells. Our results show that P-gp activity was not affected in any case and that only Solanum paniculatum was able to significantly change CYP3A4 mRNA gene expression (twofold decrease, p < 0.05), this being correlated with an antagonist effect upon hPXR (EC50 = 0.38 mg/mL). Total intracellular glutathione levels were significantly depleted by exposure to Solanum paniculatum (-44%, p < 0.001), Lippia sidoides (-12%, p < 0.05) and Cordia verbenacea (-47%, p < 0.001). The latter plant extract was able to decrease GGT activity (-48%, p < 0.01). In conclusion, this preclinical study shows that the administration of some of these herbal medicines may be able to cause disturbances to metabolic mechanisms in vitro. Although Erythrina mulungu appears safe in our tests, active pharmacovigilance is recommended for the other three species, especially in the case of Solanum paniculatum.

  18. In vitro Effects of Four Native Brazilian Medicinal Plants in CYP3A4 mRNA Gene Expression, Glutathione Levels, and P-Glycoprotein Activity

    PubMed Central

    Mazzari, Andre L. D. A.; Milton, Flora; Frangos, Samantha; Carvalho, Ana C. B.; Silveira, Dâmaris; de Assis Rocha Neves, Francisco; Prieto, Jose M.

    2016-01-01

    Erythrina mulungu Benth. (Fabaceae), Cordia verbenacea A. DC. (Boraginaceae), Solanum paniculatum L. (Solanaceae) and Lippia sidoides Cham. (Verbenaceae) are medicinal plant species native to Brazil shortlisted by the Brazilian National Health System for future clinical use. However, nothing is known about their effects in metabolic and transporter proteins, which could potentially lead to herb-drug interactions (HDI). In this work, we assess non-toxic concentrations (100 μg/mL) of the plant infusions for their in vitro ability to modulate CYP3A4 mRNA gene expression and intracellular glutathione levels in HepG2 cells, as well as P-glycoprotein (P-gp) activity in vincristine-resistant Caco-2 cells (Caco-2 VCR). Their mechanisms of action were further studied by measuring the activation of human pregnane X receptor (hPXR) in transiently co-transfected HeLa cells and the inhibition of γ-glutamyl transferase (GGT) in HepG2 cells. Our results show that P-gp activity was not affected in any case and that only Solanum paniculatum was able to significantly change CYP3A4 mRNA gene expression (twofold decrease, p < 0.05), this being correlated with an antagonist effect upon hPXR (EC50 = 0.38 mg/mL). Total intracellular glutathione levels were significantly depleted by exposure to Solanum paniculatum (-44%, p < 0.001), Lippia sidoides (-12%, p < 0.05) and Cordia verbenacea (-47%, p < 0.001). The latter plant extract was able to decrease GGT activity (-48%, p < 0.01). In conclusion, this preclinical study shows that the administration of some of these herbal medicines may be able to cause disturbances to metabolic mechanisms in vitro. Although Erythrina mulungu appears safe in our tests, active pharmacovigilance is recommended for the other three species, especially in the case of Solanum paniculatum.

  19. In vitro Effects of Four Native Brazilian Medicinal Plants in CYP3A4 mRNA Gene Expression, Glutathione Levels, and P-Glycoprotein Activity

    PubMed Central

    Mazzari, Andre L. D. A.; Milton, Flora; Frangos, Samantha; Carvalho, Ana C. B.; Silveira, Dâmaris; de Assis Rocha Neves, Francisco; Prieto, Jose M.

    2016-01-01

    Erythrina mulungu Benth. (Fabaceae), Cordia verbenacea A. DC. (Boraginaceae), Solanum paniculatum L. (Solanaceae) and Lippia sidoides Cham. (Verbenaceae) are medicinal plant species native to Brazil shortlisted by the Brazilian National Health System for future clinical use. However, nothing is known about their effects in metabolic and transporter proteins, which could potentially lead to herb-drug interactions (HDI). In this work, we assess non-toxic concentrations (100 μg/mL) of the plant infusions for their in vitro ability to modulate CYP3A4 mRNA gene expression and intracellular glutathione levels in HepG2 cells, as well as P-glycoprotein (P-gp) activity in vincristine-resistant Caco-2 cells (Caco-2 VCR). Their mechanisms of action were further studied by measuring the activation of human pregnane X receptor (hPXR) in transiently co-transfected HeLa cells and the inhibition of γ-glutamyl transferase (GGT) in HepG2 cells. Our results show that P-gp activity was not affected in any case and that only Solanum paniculatum was able to significantly change CYP3A4 mRNA gene expression (twofold decrease, p < 0.05), this being correlated with an antagonist effect upon hPXR (EC50 = 0.38 mg/mL). Total intracellular glutathione levels were significantly depleted by exposure to Solanum paniculatum (-44%, p < 0.001), Lippia sidoides (-12%, p < 0.05) and Cordia verbenacea (-47%, p < 0.001). The latter plant extract was able to decrease GGT activity (-48%, p < 0.01). In conclusion, this preclinical study shows that the administration of some of these herbal medicines may be able to cause disturbances to metabolic mechanisms in vitro. Although Erythrina mulungu appears safe in our tests, active pharmacovigilance is recommended for the other three species, especially in the case of Solanum paniculatum. PMID:27594838

  20. Single session of cocaine intravenous self-administration shapes goal-oriented behaviours and up-regulates Arc mRNA levels in rat medial prefrontal cortex.

    PubMed

    Fumagalli, Fabio; Franchi, Carlotta; Caffino, Lucia; Racagni, Giorgio; Riva, Marco A; Cervo, Luigi

    2009-04-01

    To separate the direct pharmacological effects of cocaine from those associated with active drug self-administration we employed a yoked control-operant paradigm and investigated the expression of well established markers of the rapid action of cocaine, i.e. the inducible early genes Arc and Zif268 and trophic factors, i.e. brain-derived neurotrophic factor (BDNF) and basic fibroblast growth factor (FGF-2), in rats after a single intravenous (i.v.) cocaine self-administration session. Animals self-administering cocaine (SA, 0.25 mg/0.1 ml saline per infusion, 2-h session) did more active lever-presses than yoked-cocaine (YC) and yoked-vehicle (YV) animals. This goal-oriented behaviour was accompanied by a selective increase in Arc mRNA levels in the medial prefrontal cortex (mPFC). There were no changes in the expression of the other genes in this brain region. mRNA levels of Arc and Zif268 in striatum and Zif268 in the nucleus accumbens markedly increased both in SA and YC animals; but there was no change in the expression of FGF-2 and BDNF. No changes were observed in hippocampus, hypothalamus, frontal cortex, and midbrain in SA and YC animals compared to YV animals in any of the genes. These findings demonstrate that a single session of cocaine i.v. self-administration is sufficient to shape rat behaviour towards goal-directed behaviours and selectively up-regulate Arc expression in mPFC (of SA animals), providing the first evidence that the mPFC's function is already profoundly influenced by the first voluntary cocaine exposure.

  1. FHIT promoter methylation status, low protein and high mRNA levels in patients with non-small cell lung cancer.

    PubMed

    Czarnecka, Karolina H; Migdalska-Sęk, Monika; Domańska, Daria; Pastuszak-Lewandoska, Dorota; Dutkowska, Agata; Kordiak, Jacek; Nawrot, Ewa; Kiszałkiewicz, Justyna; Antczak, Adam; Brzeziańska-Lasota, Ewa

    2016-09-01

    FHIT is a tumor suppressor gene that is frequently silenced in non-small cell lung cancer (NSCLC) and also in preneoplastic lesions. Promoter hypermethylation was previously observed in NSCLC, and its epigenetic silencing, observed on mRNA or protein level, was proposed to predict NSCLC outcome. In the present study we evaluated the relationship between FHIT expression on mRNA level and promoter methylation, or immunoexpression level. The aim of this study was to analyze the usefulness of FHIT as early differentiating biomarker in NSCLC patients. Lung tissue specimens were obtained from 59 patients with diagnosed NSCLC (SCC=34, AC=20, LCC=5). FHIT promoter methylation was assessed in methylation-specific PCR. Relative expression analysis of FHIT was performed in real-time PCR (qPCR) and protein immunoexpression by ELISA assay. Significant differences in FHIT expression between NSCLC histopathological groups (SCC, AC, LCC) were observed (p=0.000009), with the lowest level in SCC. FHIT expression was significantly higher (p=0.034) in men vs. women. Methylated FHIT alleles were present both in NSCLC and control specimens. Mean MI value was higher in control tissue vs. neoplasm, and in men vs. women and it increased with patient age. Significant increase in MI level was observed in N0 group vs. N1 and N2, according to the TNM staging (p=0.0073). Differences in FHIT expression levels between AC, LCC and SCC indicated the usefulness of this gene as a diagnostic marker for NSCLC subtype differentiation. FHIT promoter hypermethylation both in cancer and control tissue indicated the presence of epigenetic alterations in early stage of NSCLC development. Differences in gene promoter methylation between cancer patients with and without node infiltration might be considered as a prognostic marker. Significantly lower FHIT protein immunoexpression was revealed in the group with long and intense history of smoking assessed as PYs (PY<40 vs. PY≥40, p=0.01). These results

  2. Low-level laser irradiation alters mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts

    NASA Astrophysics Data System (ADS)

    Trajano, L. A. S. N.; Sergio, L. P. S.; Silva, C. L.; Carvalho, L.; Mencalha, A. L.; Stumbo, A. C.; Fonseca, A. S.

    2016-07-01

    Low-level lasers are used for the treatment of diseases in soft and bone tissues, but few data are available regarding their effects on genomic stability. In this study, we investigated mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts exposed to low-level infrared laser. C2C12 myoblast cultures in different fetal bovine serum concentrations were exposed to low-level infrared laser (10, 35 and 70 J cm‑2), and collected for the evaluation of DNA repair gene expression. Laser exposure increased gene expression related to base excision repair (8-oxoguanine DNA glycosylase and apurinic/apyrimidinic endonuclease 1), nucleotide excision repair (excision repair cross-complementation group 1 and xeroderma pigmentosum C protein) and genomic stabilization (ATM serine/threonine kinase and tumor protein p53) in normal and low fetal bovine serum concentrations. Results suggest that genomic stability could be part of a biostimulation effect of low-level laser therapy in injured muscles.

  3. Low-level laser irradiation alters mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts

    NASA Astrophysics Data System (ADS)

    Trajano, L. A. S. N.; Sergio, L. P. S.; Silva, C. L.; Carvalho, L.; Mencalha, A. L.; Stumbo, A. C.; Fonseca, A. S.

    2016-07-01

    Low-level lasers are used for the treatment of diseases in soft and bone tissues, but few data are available regarding their effects on genomic stability. In this study, we investigated mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts exposed to low-level infrared laser. C2C12 myoblast cultures in different fetal bovine serum concentrations were exposed to low-level infrared laser (10, 35 and 70 J cm-2), and collected for the evaluation of DNA repair gene expression. Laser exposure increased gene expression related to base excision repair (8-oxoguanine DNA glycosylase and apurinic/apyrimidinic endonuclease 1), nucleotide excision repair (excision repair cross-complementation group 1 and xeroderma pigmentosum C protein) and genomic stabilization (ATM serine/threonine kinase and tumor protein p53) in normal and low fetal bovine serum concentrations. Results suggest that genomic stability could be part of a biostimulation effect of low-level laser therapy in injured muscles.

  4. Evaluation of immune and stress status in harbour porpoises (Phocoena phocoena): can hormones and mRNA expression levels serve as indicators to assess stress?

    PubMed Central

    2013-01-01

    Background The harbour porpoise is exposed to increasing pressure caused by anthropogenic activities in its marine environment. Numerous offshore wind farms are planned or under construction in the North and Baltic Seas, which will increase underwater noise during both construction and operation. A better understanding of how anthropogenic impacts affect the behaviour, health, endocrinology, immunology and physiology of the animals is thus needed. The present study compares levels of stress hormones and mRNA expression of cytokines and acute-phase proteins in blood samples of harbour porpoises exposed to different levels of stress during handling, in rehabilitation or permanent human care. Free-ranging harbour porpoises, incidentally caught in pound nets in Denmark, were compared to harbour porpoises in rehabilitation at SOS Dolfijn in Harderwijk, the Netherlands, and individuals permanently kept in human care in the Dolfinarium Harderwijk and Fjord & Belt Kerteminde, Denmark. Blood samples were investigated for catecholamines, adrenaline, noradrenaline and dopamine, as well as for adrenocorticotropic hormone (ACTH), cortisol, metanephrine and normetanephrine. mRNA expression levels of relevant cell mediators (cytokines IL-10 and TNFα, acute-phase proteins haptoglobin and C-reactive protein and the heat shock protein HSP70) were measured using real-time PCR. Results Biomarker expression levels varied between free-ranging animals and porpoises in human care. Hormone and cytokine ranges showed correlations to each other and to the health status of investigated harbour porpoises. Hormone concentrations were higher in free-ranging harbour porpoises than in animals in human care. Adrenaline can be used as a parameter for the initial reaction to acute stress situations; noradrenaline, dopamine, ACTH and cortisol are more likely indicators for the following minutes of acute stress. There is evidence for different correlations between production of normetanephrine

  5. Hypothalamic prepro-orexin mRNA level is inversely correlated to the non-rapid eye movement sleep level in high-fat diet-induced obese mice.

    PubMed

    Tanno, Shogo; Terao, Akira; Okamatsu-Ogura, Yuko; Kimura, Kazuhiro

    2013-01-01

    Orexins are hypothalamic neuropeptides, which play important roles in the regulation and maintenance of sleep/wakefulness states and energy homeostasis. To evaluate whether alterations in orexin system is associated with the sleep/wakefulness abnormalities observed in obesity, we examined the mRNA expression of prepro-orexin, orexin receptor type 1 (orexin 1r), and orexin receptor type 2 (oxexin 2r) in the hypothalamus in mice fed with a normal diet (ND) and high-fat diet (HFD)-induced obese mice. We also compared their relationships with sleep/wakefulness. Twenty-four, 4-week-old, male C57BL/6J mice were divided randomly into three groups, which received the following: (1) ND for 17 weeks; (2) HFD for 17 weeks; and (3) ND for 7 weeks and HFD for a further 10 weeks. The body weights of mice fed the HFD for 10-17 weeks were 112-150% of the average body weight of the ND group. The daily amount of non-rapid eye movement (NREM) sleep increased significantly in HFD-fed mice. These changes were accompanied by increases in the number but decreases in the duration of each NREM sleep episode. In addition, brief awakenings (<20 s epoch) during NREM sleep was nearly 2-fold more frequent. The mRNA level of prepro-orexin in the hypothalamus was significantly reduced in HFD-induced obese mice, whereas the levels of orexin 1r and orexin 2r were unaffected. The daily amount of NREM sleep was negatively correlated with the hypothalamic prepro-orexin mRNA level, so these results suggest that the increased NREM sleep levels in HFD-induced obese mice are attributable to impaired orexin activity.

  6. Expression of insulin-like growth factor I receptors at mRNA and protein levels during metamorphosis of Japanese flounder (Paralichthys olivaceus).

    PubMed

    Zhang, Junling; Shi, Zhiyi; Cheng, Qi; Chen, Xiaowu

    2011-08-01

    Insulin-like growth factor I (IGF-I) is an important regulator of fish growth and development, and its biological actions are initiated by binding to IGF-I receptor (IGF-IR). Our previous study has revealed that IGF-I could play an important role during metamorphosis of Japanese flounder, Paralichthys olivaceus. The analysis of IGF-IR expression thus helps further elucidate the IGF-I regulation of metamorphic processes. In this study, the spatial-temporal expression of two distinct IGF-IR mRNAs was investigated by real-time RT-PCR. The spatial distribution of two IGF-IR mRNAs in adult tissues is largely overlapped, but they exhibit distinct temporal expression patterns during larval development. A remarkable decrease in IGF-IR-2 mRNA was detected during metamorphosis. In contrast, a significant increase in IGF-IR-1 mRNA was determined from pre-metamorphosis to metamorphic completion. These indicate that they may play different function roles during the flounder metamorphosis. The levels and localization of IGF-IR proteins during larval development were further studied by Western blotting and immunohistochemistry. Immunoreactive IGF-IRs were detected throughout larval development, and the IGF-IR proteins displayed a relatively abundant expression during metamorphosis. Moreover, the IGF-IR proteins appeared in key tissues, such as thickened skin beneath the migrating eye, developing intestine, gills and kidney during metamorphosis. These results further suggest that the IGF-I system may be involved in metamorphic development of Japanese flounder.

  7. An international study comparing conventional versus mRNA level testing (TargetPrint) for ER, PR, and HER2 status of breast cancer.

    PubMed

    Wesseling, Jelle; Tinterri, Corrado; Sapino, Anna; Zanconati, Fabrizio; Lutke-Holzik, Martijn; Nguyen, Bichlien; Deck, Kenneth B; Querzoli, Patrizia; Perin, Tiziana; Giardina, Carmela; Seitz, Gerhard; Guinebretière, Jean-Marc; Barone, Julie; Dekker, Laura; de Snoo, Femke; Stork-Sloots, Lisette; Roepman, Paul; Watanabe, Toru; Cusumano, Pino

    2016-09-01

    To compare results from messenger RNA (mRNA)-based TargetPrint testing with those from immunohistochemistry (IHC) and in situ hybridization (ISH) conducted according to local standard procedures at hospitals worldwide. Tumor samples were prospectively obtained from 806 patients at 22 hospitals. The mRNA level of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) was assessed by TargetPrint quantitative gene expression readouts. IHC/ISH assessments were performed according to local standards at the participating hospitals. TargetPrint readout showed a high concordance with IHC/ISH of 95 % (kappa 0.81) for ER, 81 % (kappa 0.56) for PR, and 94 % (kappa 0.76) for HER2. The positive/negative agreement between TargetPrint and IHC for ER, PR, and HER2 was 96 %/87 %, 84 %/74 %, and 74 %/98 %, respectively. The concordance rate in IHC/ISH results between hospitals varied: 88-100 % for ER (kappa 0.50-1.00); 50-100 % for PR (kappa 0.20-1.00); and 90-100 % for HER2 (kappa 0.59-1.00). mRNA readout of ER, PR, and HER2 status by TargetPrint was largely comparable to local IHC/ISH analysis. However, there was substantial discordance in IHC/ISH results between different hospitals. When results are discordant, the use of TargetPrint would improve the reliability of hormone receptor and HER2 results by prompting retesting in a reference laboratory. PMID:27377889

  8. Transplantable rat glucagonomas cause acute onset of severe anorexia and adipsia despite highly elevated NPY mRNA levels in the hypothalamic arcuate nucleus.

    PubMed Central

    Jensen, P B; Blume, N; Mikkelsen, J D; Larsen, P J; Jensen, H I; Holst, J J; Madsen, O D

    1998-01-01

    We have isolated a stable, transplantable, and small glucagonoma (MSL-G-AN) associated with abrupt onset of severe anorexia occurring 2-3 wk after subcutaneous transplantation. Before onset of anorexia, food consumption is comparable to untreated controls. Anorexia is followed by adipsia and weight loss, and progresses rapidly in severity, eventually resulting in reduction of food and water intake of 100 and 80%, respectively. During the anorectic phase, the rats eventually become hypoglycemic and hypothermic. The tumor-associated anorexia shows no sex difference, and is not affected by bilateral abdominal vagotomy, indicating a direct central effect. The adipose satiety factor leptin, known to suppress food intake by reducing hypothalamic neuropeptide Y (NPY) levels, was not found to be expressed by the tumor, and circulating leptin levels were reduced twofold in the anorectic phase. A highly significant increase in hypothalamic (arcuate nucleus) NPY mRNA levels was found in anorectic rats compared with control animals. Since elevated hypothalamic NPY is among the most potent stimulators of feeding and a characteristic of most animal models of hyperphagia, we conclude that the MSL-G-AN glucagonoma releases circulating factor(s) that overrides the hypothalamic NPY-ergic system, thereby eliminating the orexigenic effect of NPY. We hypothesize a possible central role of proglucagon-derived peptides in the observed anorexia. PMID:9435324

  9. Fructan accumulation induced by nitrogen deficiency in barley leaves correlates with the level of sucrose:fructan 6-fructosyltransferase mRNA.

    PubMed

    Wang, C; Van den Ende, W; Tillberg, J E

    2000-10-01

    Hydroponically cultivated barley plants were exposed to nitrogen (N)-deficiency followed by N-resupply. Metabolic and genetic regulation of fructan accumulation in the leaves were investigated. Fructan accumulated in barley leaves under N-deficiency was mobilized during N-resupply. The enhanced total activity of fructan-synthesizing enzymes, sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99) and sucrose:fructan 6-fructosyltransferase (6-SFT; EC 2.4. 1.10) caused by N-deficiency decreased with the mobilization of fructan during N-resupply. The activity of the barley fructan-degrading enzyme, fructan exohydrolyase (EC 3.2.1.80) was less affected by the N status. The low level of foliar soluble acid invertase activity under N-deficiency conditions was maintained during the commencement of N-resupply but increased subsequently. Further analyses by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, western blot and northern blot demonstrated that the fructan accumulation and the total activity of fructan-synthesizing enzymes correlated with the 6-SFT mRNA level. We suggest that the changes in fructan levels under N stress are intimately connected with the regulation of fructan synthetic rate which is mostly controlled by 6-SFT.

  10. Levels of nerve growth factor and its mRNA in the central nervous system of the rat correlate with cholinergic innervation.

    PubMed Central

    Korsching, S; Auburger, G; Heumann, R; Scott, J; Thoenen, H

    1985-01-01

    The levels of nerve growth factor (NGF) and its mRNA in the rat central nervous system were determined by two-site enzyme immunoassay and quantitative Northern blots, respectively. Relatively high NGF levels (0.4-1.4 ng NGF/g wet weight) were found both in the regions innervated by the magnocellular cholinergic neurons of the basal forebrain (hippocampus, olfactory bulb, neocortex) and in the regions containing the cell bodies of these neurons (septum, nucleus of the diagonal band of Broca, nucleus basalis of Meynert). Comparatively low, but significant NGF levels (0.07-0.21 ng NGF/g wet weight) were found in various other brain regions. mRNANGF was found in the hippocampus and cortex but not in the septum. This suggests that magnocellular cholinergic neurons of the basal forebrain are supplied with NGF via retrograde axonal transport from their fields of innervation. These results, taken together with those of previous studies showing that these neurons are responsive to NGF, support the concept that NGF acts as trophic factor for magnocellular cholinergic neurons. Images Fig. 2. PMID:2411537

  11. Relationship between Sustained Reductions in Plasma Lipid and Lipoprotein Concentrations with Apheresis and Plasma Levels and mRNA Expression of PTX3 and Plasma Levels of hsCRP in Patients with HyperLp(a)lipoproteinemia

    PubMed Central

    Stefanutti, Claudia; Mazza, Fabio; Steiner, Michael; Watts, Gerald F.; De Nève, Joel; Pasqualetti, Daniela; Paal, Juergen

    2016-01-01

    The effect of lipoprotein apheresis (Direct Adsorption of Lipids, DALI) (LA) on plasma levels of pentraxin 3 (PTX3), an inflammatory marker that reflects coronary plaque vulnerability, and expression of PTX3 mRNA was evaluated in patients with hyperLp(a)lipoproteinemia and angiographically defined atherosclerosis/coronary artery disease. Eleven patients, aged 55 ± 9.3 years (mean ± SD), were enrolled in the study. PTX3 soluble protein levels in plasma were unchanged by 2 sessions of LA; however, a downregulation of mRNA expression for PTX3 was observed, starting with the first session of LA (p < 0.001). The observed reduction was progressively increased in the interval between the first and second LA sessions to achieve a maximum decrease by the end of the second session. A statistically significantly greater treatment-effect correlation was observed in patients undergoing weekly treatments, compared with those undergoing treatment every 15 days. A progressive reduction in plasma levels of C-reactive protein was also seen from the first session of LA, with a statistically significant linear correlation for treatment-effect in the change in plasma levels of this established inflammatory marker (R2 = 0.99; p < 0.001). Our findings suggest that LA has anti-inflammatory and endothelium protective effects beyond its well-established efficacy in lowering apoB100-containing lipoproteins. PMID:26903710

  12. Vasopressin inhibits type-I collagen and albumin gene expression in primary cultures of adult rat hepatocytes

    SciTech Connect

    Chojkier, M.; Brenner, D.A.; Leffert, H.L.

    1989-06-05

    The mechanisms that regulate collagen gene expression in hepatic cells are poorly understood. Accelerated Ca2+ fluxes are associated with inhibiting collagen synthesis selectively in human fibroblasts. In suspension cultures of isolated hepatocytes, the Ca2+ agonist vasopressin increases cytosolic levels of free Ca2+. However, whether vasopressin's interactions with plasma membrane V1 receptors attenuate hepatic collagen production is unknown. We investigated this problem by studying vasopressin's effects on collagen synthesis and Ca2+ efflux in long-term primary cultures of differentiated and proliferation-competent adult rat hepatocytes. Twelve-day-old quiescent cultures were exposed to test substances and labeled with (5-3H)proline. Determinations of radioactivity in collagenase-sensitive and collagenase-resistant proteins were used to calculate the relative levels of collagen production. Synthetic (8-arg)vasopressin stimulated 45Ca2+ efflux within 1 min and inhibited hepatocyte collagen production within 3 h by 50%; overall rates of protein synthesis were not affected significantly. In cultures labeled with (35S)methionine, vasopressin also decreased the levels of newly synthesized and secreted albumin, but not fibrinogen, detected in specific immunoprecipitates analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Northern blot analyses using specific (32P)cDNA probes revealed 70% decreases in hybridizable levels of collagen alpha 1(I) mRNA in hepatocyte cultures treated with either vasopressin or Ca2+ ionophore A23187; hybridizable levels of albumin mRNA also fell approximately 50% following vasopressin treatment.

  13. Down-regulation of flavonoid 3'-hydroxylase gene expression by virus-induced gene silencing in soybean reveals the presence of a threshold mRNA level associated with pigmentation in pubescence.

    PubMed

    Nagamatsu, Atsushi; Masuta, Chikara; Matsuura, Hideyuki; Kitamura, Keisuke; Abe, Jun; Kanazawa, Akira

    2009-01-01

    Changes in flavonoid content are often manifested as altered pigmentation in plant tissues. Two loci have been identified as controlling pigmentation in soybean pubescence. Of these, the T locus appears to encode flavonoid 3'-hydroxylase (F3'H) protein: the T and t alleles are associated with tawny and gray colors, respectively, in pubescence. We previously down-regulated F3'H gene expression by virus-induced gene silencing (VIGS) in soybean. Despite this successful VIGS, the tawny pubescence pigmentation proved to be unchanged in greenhouse-grown plants. We hypothesized that the reduced mRNA level of the F3'H gene resulting from VIGS remained high enough to induce pigmentation. To verify this hypothesis, in the present study, we performed F3'H VIGS on plants grown under controlled conditions, in which the steady-state mRNA level of the F3'H gene was reduced to approximately 5% of that of greenhouse-grown plants. This VIGS treatment resulted in the loss of tawny pigmentation in pubescence, suggesting that the sf3'h1 gene is involved in the control of pigmentation in pubescence. We detected a marked decrease in target mRNA, an accumulation of short interfering RNAs (siRNAs), and a decrease in quercetin content relative to kaempferol in leaf tissues, indicating that sequence-specific mRNA degradation of the F3'H gene was induced. These results suggest that leaf tissues have a threshold mRNA level of the F3'H gene, which is associated with the occurrence of tawny pigmentation in pubescence. The estimated threshold mRNA level for pigmentation in pubescence was approximately 3% of the steady-state mRNA level of the F3'H gene in greenhouse-grown plants.

  14. Facile cell patterning on an albumin-coated surface.

    PubMed

    Yamazoe, Hironori; Uemura, Toshimasa; Tanabe, Toshizumi

    2008-08-19

    Fabrication of micropatterned surfaces to organize and control cell adhesion and proliferation is an indispensable technique for cell-based technologies. Although several successful strategies for creating cellular micropatterns on substrates have been demonstrated, a complex multistep process and requirements for special and expensive equipment or materials limit their prevalence as a general experimental tool. To circumvent these problems, we describe here a novel facile fabrication method for a micropatterned surface for cell patterning by utilizing the UV-induced conversion of the cell adhesive property of albumin, which is the most abundant protein in blood plasma. An albumin-coated surface was prepared by cross-linking albumin with ethylene glycol diglycidyl ether and subsequent casting of the cross-linked albumin solution on the cell culture dish. While cells did not attach to the albumin surface prepared in this way, UV exposure renders the surface cell-adhesive. Thus, surface micropatterning was achieved simply by exposing the albumin-coated surface to UV light through a mask with the desired pattern. Mouse fibroblast L929 cells were inoculated on the patterned albumin substrates, and cells attached and spread in a highly selective manner according to the UV-irradiated pattern. Although detailed investigation of the molecular-level mechanism concerning the change in cell adhesiveness of the albumin-coated surface is required, the present results would give a novel facile method for the fabrication of cell micropatterned surfaces. PMID:18627191

  15. Production of a Locus- and Allele-Specific Monoclonal Antibody for the Characterization of SLA-1*0401 mRNA and Protein Expression Levels in MHC-Defined Microminipigs

    PubMed Central

    Kametani, Yoshie; Ohshima, Shino; Miyamoto, Asuka; Shigenari, Atsuko; Takasu, Masaki; Imaeda, Noriaki; Matsubara, Tatsuya; Tanaka, Masafumi; Shiina, Takashi; Kamiguchi, Hiroshi; Suzuki, Ryuji; Kitagawa, Hitoshi; Kulski, Jerzy K.; Hirayama, Noriaki; Inoko, Hidetoshi; Ando, Asako

    2016-01-01

    The class I major histocompatibility complex (MHC) presents self-developed peptides to specific T cells to induce cytotoxity against infection. The MHC proteins are encoded by multiple loci that express numerous alleles to preserve the variability of the antigen-presenting ability in each species. The mechanism regulating MHC mRNA and protein expression at each locus is difficult to analyze because of the structural and sequence similarities between alleles. In this study, we examined the correlation between the mRNA and surface protein expression of swine leukocyte antigen (SLA)-1*0401 after the stimulation of peripheral blood mononuclear cells (PBMCs) by Staphylococcus aureus superantigen toxic shock syndrome toxin-1 (TSST-1). We prepared a monoclonal antibody (mAb) against a domain composed of Y102, L103 and L109 in the α2 domain. The Hp-16.0 haplotype swine possess only SLA-1*0401, which has the mAb epitope, while other haplotypes possess 0 to 3 SLA classical class I loci with the mAb epitopes. When PBMCs from SLA-1*0401 homozygous pigs were stimulated, the SLA-1*0401 mRNA expression level increased until 24 hrs and decreased at 48 hrs. The kinetics of the interferon regulatory transcription factor-1 (IRF-1) mRNA level were similar to those of the SLA-1*0401 mRNA. However, the surface protein expression level continued to increase until 72 hrs. Similar results were observed in the Hp-10.0 pigs with three mAb epitopes. These results suggest that TSST-1 stimulation induced both mRNA and surface protein expression of class I SLA in the swine PBMCs differentially and that the surface protein level was sustained independently of mRNA regulation. PMID:27760184

  16. c-Ha-ras down regulates the alpha-fetoprotein gene but not the albumin gene in human hepatoma cells.

    PubMed Central

    Nakao, K; Lawless, D; Ohe, Y; Miyao, Y; Nakabayashi, H; Kamiya, H; Miura, K; Ohtsuka, E; Tamaoki, T

    1990-01-01

    We studied the effects of transfection of the normal c-Ha-ras gene, rasGly-12, and its oncogenic mutant, rasVal-12, on expression of the alpha-fetoprotein (AFP) and albumin genes in a human hepatoma cell line, HuH-7. The mutant and, to a lesser extent, the normal ras gene caused reduction of the AFP mRNA but not the albumin mRNA level in transfected HuH-7 cells. Cotransfection experiments with a rasVal-12 expression plasmid and a chloramphenicol acetyltransferase reporter gene fused to AFP regulatory sequences showed that rasVal-12 suppressed the activity of enhancer and promoter regions containing A + T-rich sequences (AT motif). In contrast, rasVal-12 did not affect the promoter activity of the albumin and human hepatitis B virus pre-S1 genes even though these promoters contain homologous A + T-rich elements. ras transfection appeared to induce phosphorylation of nuclear proteins that interact with the AFP AT motif, since gel mobility analysis revealed the formation of slow-moving complexes which was reversed by phosphatase treatment. However, similar changes in complex formation were observed with the albumin and hepatitis B surface antigen pre-S1 promoters. Therefore, this effect alone cannot explain the specific down regulation of the AFP promoter and enhancer activity. ras-mediated suppression of the AFP gene may reflect the process of developmental gene regulation in which AFP gene transcription is controlled by a G-protein-linked signal transduction cascade triggered by external growth stimuli. Images PMID:1690841

  17. Differential effect of MMSET mRNA levels on survival to first-line FOLFOX and second-line docetaxel in gastric cancer

    PubMed Central

    Wei, J; Costa, C; Shen, J; Yu, L; Sanchez, J J; Qian, X; Sun, X; Zou, Z; Gimenez-Capitan, A; Yue, G; Guan, W; Rosell, R; Liu, B

    2014-01-01

    Background: Breast cancer susceptibility gene 1 (BRCA1) expression differentially affects outcome to platinum- and taxane-based chemotherapy. Mediator of DNA damage checkpoint protein 1 (MDC1), p53-binding protein 1 (53BP1), multiple myeloma SET domain (MMSET) and ubiquitin-conjugating enzyme 9 (UBC9) are involved in DNA repair and could modify the BRCA1 predictive model. Methods: Mediator of DNA damage checkpoint protein 1, 53BP1, MMSET and UBC9 mRNA were assessed in gastric tumours from patients in whom BRCA1 levels had previously been determined. Results: In vitro chemosensitivity assay, MMSET levels were higher in docetaxel-sensitive samples. In a separate cohort, survival was longer in those with low MMSET (12.3 vs 8.8 months; P=0.04) or UBC9 (12.4 vs 8.8 months; P=0.01) in patients receiving only folinic acid, fluorouracil (5-FU) and oxaliplatin (FOLFOX). Conversely, among patients receiving second-line docetaxel, longer survival was associated with high MMSET (19.1 vs 13.9 months; P=0.003). Patients with high MMSET and BRCA1 attained a median survival of 36.6 months, compared with 13.9 months for those with high BRCA1 and low MMSET (P=0.003). In the multivariate analyses, low MMSET (hazard ratio (HR), 0.59; P=0.04) and low UBC9 (HR, 0.52; P=0.01) levels were markers of longer survival to first-line FOLFOX, whereas palliative surgery (HR, 2.47; P=0.005), low BRCA1 (HR, 3.17; P=0.001) and low MMSET (HR, 2.52; P=0.004) levels were markers of shorter survival to second-line docetaxel. Conclusions: Breast cancer susceptibility gene 1, MMSET and UBC9 can be useful for customising chemotherapy in gastric cancer patients. PMID:24809779

  18. Simulated microgravity reduces mRNA levels of multidrug resistance genes 4 and 5 in non-metastatic human melanoma cells

    NASA Astrophysics Data System (ADS)

    Eiermann, Peter; Tsiockas, Wasiliki; Hauslage, Jens; Hemmersbach, Ruth; Gerzer, Rupert; Ivanova, Krassimira

    mRNA levels of sGC α and β were down-regulated by about 31% and 22%, respectively. Thus, the reduced expression of MRP4/5 could be related to the decrease in mRNA levels for the sGC subunits. In addition, the long-term exposure to simulated microgravity did not alter cellular morphology. Taken together, the results of our studies indicate that the expression of MRP4/5 in non-metastatic melanoma cells is inversely regulated by hypergravity and simulated microgravity. Finally, a reduced expression of MRP4 and MRP5 may increase the availability of drugs in cells and influence astronaut medication.

  19. Increased expression of tumor necrosis factor-alpha and decreased expression of thyroglobulin and thyroid peroxidase mRNA levels in the thyroids of iodide-treated BB/Wor rats.

    PubMed

    Mori, K; Mori, M; Stone, S; Braverman, L E; DeVito, W J

    1998-11-01

    Several lines of evidence suggest that tumor necrosis factor-alpha (TNFalpha) may contribute to the pathogenesis of autoimmune thyroid disease. It is not known, however, whether increased thyroidal TNFalpha levels are associated with changes in thyroid function. The purpose of the present study was to utilize in situ hybridization histochemistry and immunohistochemistry to determine if the expression of TNF-alpha in the thyroid is associated with a decrease in thyroglobulin (Tg) and thyroid peroxidase (TPO) mRNA levels. Lymphocytic thyroiditis was induced in BB/Wor rats by iodide administration, and thyroidal Tg and TPO mRNA levels were assessed by Northern blot analysis and in situ hybridization, and TNFalpha expression by Northern blot analysis and immunohistochemistry. Thyroids were obtained before and 1 and 2 months after iodide administration. Hematoxylin and eosin staining revealed that there was a progressive increase in mononuclear cells in the thyroids of BB/Wor rats ingesting iodide for 1 and 2 months. Northern blot analysis revealed that during the same time course there was a progressive increase in TNFalpha mRNA levels and a progressive decrease in Tg and TPO mRNA levels in the thyroids. In situ hybridization histochemistry was performed to determine if the decrease in Tg and TPO mRNA levels was associated with thyroid follicular cells in contact with infiltrating mononuclear cells. In rats treated with iodide for 1 month, there was a modest decrease in Tg and TPO mRNA levels in follicular cells in contact with infiltrating mononuclear cells. After 2 months of iodide treatment there was clearly a localized decrease in Tg and TPO mRNA levels in follicular cells in contact with infiltrating mononuclear cells. Immunohistochemical analysis did not detect TNFalpha in the thyroids from control rats or from rats treated with iodide for 1 month. In contrast, after 2 months of treatment, TNFalpha was easily detected in infiltrating mononuclear cells and in some

  20. Advanced Running Performance by Genetic Predisposition in Male Dummerstorf Marathon Mice (DUhTP) Reveals Higher Sterol Regulatory Element-Binding Protein (SREBP) Related mRNA Expression in the Liver and Higher Serum Levels of Progesterone

    PubMed Central

    Brenmoehl, Julia; Walz, Christina; Ponsuksili, Siriluck; Schwerin, Manfred; Fuellen, Georg; Hoeflich, Andreas

    2016-01-01

    Long-term-selected DUhTP mice represent a non-inbred model for inborn physical high-performance without previous training. Abundance of hepatic mRNA in 70-day male DUhTP and control mice was analyzed using the Affymetrix mouse array 430A 2.0. Differential expression analysis with PLIER corrected data was performed using AltAnalyze. Searching for over-representation in biochemical pathways revealed cholesterol metabolism being most prominently affected in DUhTP compared to unselected control mice. Furthermore, pathway analysis by AltAnalyze plus PathVisio indicated significant induction of glycolysis, fatty acid synthesis and cholesterol biosynthesis in the liver of DUhTP mice versus unselected control mice. In contrast, gluconeogenesis was partially inactivated as judged from the analysis of hepatic mRNA transcript abundance in DUhTP mice. Analysis of mRNA transcripts related to steroid hormone metabolism inferred elevated synthesis of progesterone and reduced levels of sex steroids. Abundance of steroid delta isomerase-5 mRNA (Hsd3b5, FC 4.97) was increased and steroid 17-alpha-monooxygenase mRNA (Cyp17a1, FC -11.6) was massively diminished in the liver of DUhTP mice. Assessment of steroid profiles by LC-MS revealed increased levels of progesterone and decreased levels of sex steroids in serum from DUhTP mice versus controls. Analysis of hepatic mRNA transcript abundance indicates that sterol regulatory element-binding protein-1 (SREBP-1) may play a major role in metabolic pathway activation in the marathon mouse model DUhTP. Thus, results from bioinformatics modeling of hepatic mRNA transcript abundance correlated with direct steroid analysis by mass spectrometry and further indicated functions of SREBP-1 and steroid hormones for endurance performance in DUhTP mice. PMID:26799318

  1. Effects of different dietary intake on mRNA levels of MSTN, IGF-I, and IGF-II in the skeletal muscle of Dorper and Hu sheep hybrid F1 rams.

    PubMed

    Xing, H J; Wang, Z Y; Zhong, B S; Ying, S J; Nie, H T; Zhou, Z R; Fan, Y X; Wang, F

    2014-07-24

    MSTN, IGF-І(insulin-like growth factor-І) and IGF-II (insulin-like growth factor-II) regulate skeletal muscle growth. This study investigated the effects of different dietary intake levels on skeletal muscles. Sheep was randomly assigned to 3 feeding groups: 1) the maintenance diet (M), 2) 1.4 x the maintenance diet (1.4M), and 3) 2.15 x the maintenance diet (2.15M). Before slaughtering the animals, blood samples were collected to measure plasma urea, growth hormone, and insulin concentrations. After slaughtering, the longissimus dorsi, semitendinosus, semimembranosus, gastrocnemius, soleus, and chest muscle were removed to record various parameters, including the mRNA expression levels of MSTN and IGFs, in addition to skeletal muscle fiber diameter and cross-sectional area. The result showed that as dietary intake improved, the mRNA expression levels of MSTN and IGF-II decreased, whereas IGF-Іexpression increased. The mRNA expression levels of MSTN and IGFs were significantly different in the same skeletal muscle under different dietary intake. The skeletal muscle fiber diameter and cross-sectional area increased with greater dietary intake, as observed for the mRNA expression of IGF-І; however, it contrasted to that observed for the mRNA expression of MSTN and IGF-II. In conclusion, dietary intake levels have a certain influence on MSTN and IGFs mRNA expression levels, in addition to skeletal muscle fiber diameter and cross-sectional area. This study contributes valuable information for enhancing the molecular-based breeding of sheep.

  2. Effects of different dietary intake on mRNA levels of MSTN, IGF-I, and IGF-II in the skeletal muscle of Dorper and Hu sheep hybrid F1 rams.

    PubMed

    Xing, H J; Wang, Z Y; Zhong, B S; Ying, S J; Nie, H T; Zhou, Z R; Fan, Y X; Wang, F

    2014-01-01

    MSTN, IGF-І(insulin-like growth factor-І) and IGF-II (insulin-like growth factor-II) regulate skeletal muscle growth. This study investigated the effects of different dietary intake levels on skeletal muscles. Sheep was randomly assigned to 3 feeding groups: 1) the maintenance diet (M), 2) 1.4 x the maintenance diet (1.4M), and 3) 2.15 x the maintenance diet (2.15M). Before slaughtering the animals, blood samples were collected to measure plasma urea, growth hormone, and insulin concentrations. After slaughtering, the longissimus dorsi, semitendinosus, semimembranosus, gastrocnemius, soleus, and chest muscle were removed to record various parameters, including the mRNA expression levels of MSTN and IGFs, in addition to skeletal muscle fiber diameter and cross-sectional area. The result showed that as dietary intake improved, the mRNA expression levels of MSTN and IGF-II decreased, whereas IGF-Іexpression increased. The mRNA expression levels of MSTN and IGFs were significantly different in the same skeletal muscle under different dietary intake. The skeletal muscle fiber diameter and cross-sectional area increased with greater dietary intake, as observed for the mRNA expression of IGF-І; however, it contrasted to that observed for the mRNA expression of MSTN and IGF-II. In conclusion, dietary intake levels have a certain influence on MSTN and IGFs mRNA expression levels, in addition to skeletal muscle fiber diameter and cross-sectional area. This study contributes valuable information for enhancing the molecular-based breeding of sheep. PMID:25078581

  3. Study on Serum Albumin in Third Trimester of Pregnancy.

    PubMed

    Sufrin, S; Nessa, A; Islam, M T; Das, R K; Rahman, M H

    2015-07-01

    Various hormones can cause marked changes in pregnant woman's appearance. Decreased level of serum albumin occurs in third trimester of pregnancy, which may be associated with increased maternal and infant mortality and morbidity. So, this study was carried out to evaluate and assess the level of serum albumin in third trimester of pregnancy. This cross-sectional study was carried out in the Department of Physiology Mymensingh Medical College, Mymensingh. This study enrolled 100 pregnant women of third trimester of pregnancy and 100 aged matched non-pregnant women from Mymensingh district. In this study serum albumin level in study group were 33.41 ± 4.62gm/l and in control group were 37.09 ± 4.21 gm/l, which was statistically decreased. The lower level of serum albumin in third trimester of pregnancy is the major concern of development of physiological edema during pregnancy and may be associated with pre-eclampsia.

  4. Immunolabelling, histochemistry and in situ hybridisation in human skeletal muscle fibres to detect myosin heavy chain expression at the protein and mRNA level

    PubMed Central

    SERRANO, A. L.; PÉREZ, MARGARITA; LUCÍA, A.; CHICHARRO, J. L.; QUIROZ-ROTHE, E.; RIVERO, J. L. L.

    2001-01-01

    The distribution of muscle fibres classified on the basis of their content of different myosin heavy chain (MHC) isoforms was analysed in vastus lateralis muscle biopsies of 15 young men (with an average age of 22 y) by correlating immunohistochemistry with specific anti-MHC monoclonal antibodies, myofibrillar ATPase (mATPase) histochemistry and in situ hybridisation with probes specific for MHC β-slow, MHC-IIA and MHC-IIX. The characterisation of a large number of individual fibres was compared and correlated on a fibre-to-fibre basis. The panel of monoclonal antibodies used in the study allowed classification of human skeletal muscle fibres into 5 categories according to the MHC isoform they express at the protein level, types I, I+IIA, IIA, IIAX and IIX. Hybrid fibres coexpressing two isoforms represented a considerable proportion of the fibre composition (about 14%) and were clearly underestimated by mATPase histochemistry. For a very high percentage of fibres there was a precise correspondence between the MHC protein isoforms and mRNA transcripts. The integrated methods used demonstrate a high degree of precision of the immunohistochemical procedure used for the identification and quantification of human skeletal muscle fibre types. The monoclonal antibody S5-8H2 is particularly useful for identifying hybrid IIAX fibres. This protocol offers new prospects for muscle fibre classification in human experimental studies. PMID:11554510

  5. Human gliomas and epileptic foci express high levels of a mRNA related to rat testicular sulfated glycoprotein 2, a purported marker of cell death.

    PubMed

    Danik, M; Chabot, J G; Mercier, C; Benabid, A L; Chauvin, C; Quirion, R; Suh, M

    1991-10-01

    Clone pTB16 has been isolated by differential screening of a human glioma cDNA library. Northern blot analysis has shown that pTB16 expression is several times (greater than 11-fold) higher in gliomas than in a primitive neuroectodermal tumor. This observation was supported by in situ hybridization and extended to nine other gliomas. Expression was virtually absent in adenocarcinoma cells metastasized to brain. Malignant gliomas showed stronger hybridization than benign gliomas, while blood capillaries did not show hybridization. pTB16 mRNA was also shown to be expressed in established glioma cell lines and at high levels in epileptic foci, indicating that expression of the gene may be limited to certain cell types and that its upregulation is not merely a consequence of cellular proliferation. Nucleotide sequence analysis identified pTB16 as the human counterpart for rat testicular sulfated glycoprotein 2 (SGP-2), whose function in the reproductive system remains unknown. Although SGP-2 transcripts, and hence pTB16, were recently shown to be increased in neurodegenerative diseases such as scrapie in hamsters and Alzheimer disease in humans, our observations with brain tumors and epilepsy are suggestive of a role for pTB16 in neuropathologies in general and support the hypothesis of its involvement in tissue remodeling and cell death. PMID:1924317

  6. [Current role of albumin in critical care].

    PubMed

    Aguirre Puig, P; Orallo Morán, M A; Pereira Matalobos, D; Prieto Requeijo, P

    2014-11-01

    The use of colloids in fluid therapy has been, and still continues to be a controversial topic, particularly when referring to the critical patient. The choice of the fluid that needs to be administered depends on several factors, many of which are theoretical, and continue being an object of debate. The interest in the clinical use of the albumin has emerged again, immediately after recent publications in the search of the most suitable colloid. It is the most abundant protein in the plasma, being responsible for 80% of the oncotic pressure. It regulates the balance between the intra- and extra-vascular volumes. Recent multicenter studies question the supposed lack of safety that was previously assigned to it. Furthermore, in vitro studies demonstrate other important actions besides oncotic, for example neutralization of free radicals, and exogenous (drugs) and endogenous substances (bile pigments, cholesterol). Being aware of these secondary properties of albumin, and evaluating the pathophysiology of the critical patient (in particular, sepsis), to maintain plasma albumin levels within the normal range, could be of great importance. Based on the most recent publications, the aim of this review is to briefly analyze the pathophysiology of albumin, as well as to discuss its possible indications in the critical patient. PMID:24952825

  7. Lymphatic albumin clearance from psoriatic skin

    SciTech Connect

    Staberg, B.; Klemp, P.; Aasted, M.; Worm, A.M.; Lund, P.

    1983-12-01

    In nine patients with untreated psoriasis vulgaris, human serum albumin labelled with /sup 125/I or /sup 131/I was injected intradermally in symmetrically located involved and uninvolved skin. The activity of the depots was followed by external detection, and the arrival of labelled albumin in plasma was monitored. In involved psoriatic skin the local mean half-time (T1/2) for tracer disappearance was 20.8 +/- 8.2 (S.D.) hr and in clinically normal skin, 29.1 +/- 9.6 (S.D.) hr. The difference was significant (p less than 0.002). Accordingly, the tracer from involved skin reached higher plasma levels than the tracer from uninvolved skin. However, under slight lymphatic stasis the appearance rate of radiolabelled albumin in plasma from both tissues was minimal during 1 to 2 hours after the injection, indicating that a local direct transvascular drainage of plasma albumin from the interstitium of diseased and normal skin was negligible. We conclude that the previously demonstrated increased extravasation of plasma proteins in involved psoriatic skin is compensated by an increased lymphatic drainage of plasma proteins, and not by an increased local transvascular return.

  8. Increase in proto-oncogene mRNA transcript levels in bovine lymphoid cells infected with a cytopathic type 2 bovine viral diarrhea virus.

    PubMed

    Neill, John D; Ridpath, Julia F

    2008-08-01

    Infection of susceptible animals with bovine viral diarrhea viruses (BVDV) can result in an array of disease symptoms that are dependent in part on the strain of infecting virus and the physiological status of the host. BVDV are lymphotrophic and exist as two biotypes. Cytopathic BVDV kill cells outright while noncytopathic strains can readily establish persistent infections. The molecular mechanisms behind these different affects are unknown. To gain a better understanding of the mechanisms of disease, serial analysis of gene expression (SAGE), a powerful method for global gene expression analysis, was employed to examine gene expression changes in BVDV-infected BL3 cells, a bovine B-cell lymphosarcoma cell line. SAGE libraries were constructed from mRNA derived from BL3 cells that were noninfected or infected with the cytopathic BVDV2 strain 296c. Annotation of the SAGE data showed the expression of many genes that are characteristic of B cells and integral to their function. Comparison of the SAGE databases also revealed a number of genes that were differentially expressed. Of particular interest was the increased numbers of transcripts encoding proto-oncogenes (c-fos, c-jun, junB, junD) in 296c-infected cells, all of which are constituents of the AP-1 transcriptional activation complex. Real-time RT-PCR confirmed these results and indicated that the actual increases were larger than that predicted by SAGE. In contrast, there was no corresponding increase in protein levels, but instead a significant decrease of c-jun and junB protein levels in the infected BL3 cells was observed. Rather than an increase in transcription of these genes, it appeared that these proto-oncogenes transcripts accumulated in the BVDV2-infected cells.

  9. Intake of branched-chain or essential amino acids attenuates the elevation in muscle levels of PGC-1α4 mRNA caused by resistance exercise.

    PubMed

    Samuelsson, Hedvig; Moberg, Marcus; Apró, William; Ekblom, Björn; Blomstrand, Eva

    2016-07-01

    The transcriptional coactivator peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α is recognized as the master regulator of mitochondrial biogenesis. However, recently a novel isoform, PGC-1α4, that specifically regulates muscle hypertrophy was discovered. Because stimulation of mechanistic target of rapamycin complex 1 (mTORC1) activity is tightly coupled to hypertrophy, we hypothesized that activation of this pathway would upregulate PGC-1α4. Eight male subjects performed heavy resistance exercise (10 × 8-12 repetitions at ∼75% of 1 repetition maximum in leg press) on four different occasions, ingesting in random order a solution containing essential amino acids (EAA), branched-chain amino acids (BCAA), leucine, or flavored water (placebo) during and after the exercise. Biopsies were taken from the vastus lateralis muscle before and immediately after exercise, as well as following 90 and 180 min of recovery. Signaling through mTORC1, as reflected in p70S6 kinase phosphorylation, was stimulated to a greater extent by the EAA and BCAA than the leucine or placebo supplements. Unexpectedly, intake of EAA or BCAA attenuated the stimulatory effect of exercise on PGC-1α4 expression by ∼50% (from a 10- to 5-fold increase with BCAA and EAA, P < 0.05) 3 h after exercise, whereas intake of leucine alone did not reduce this response. The 60% increase (P < 0.05) in the level of PGC-1α1 mRNA 90 min after exercise was uninfluenced by amino acid intake. Muscle glycogen levels were reduced and AMP-activated protein kinase α2 activity and phosphorylation of p38 mitogen-activated protein kinase enhanced to the same extent with all four supplements. In conclusion, induction of PGC-1α4 does not appear to regulate the nutritional (BCAA or EAA)-mediated activation of mTORC1 in human muscle. PMID:27245337

  10. Lipid-rich bovine serum albumin improves the viability and hatching ability of porcine blastocysts produced in vitro

    PubMed Central

    SUZUKI, Chie; SAKAGUCHI, Yosuke; HOSHI, Hiroyoshi; YOSHIOKA, Koji

    2015-01-01

    The effects of lipid-rich bovine serum albumin (LR-BSA) on the development of porcine blastocysts produced in vitro were examined. Addition of 0.5 to 5 mg/ml LR-BSA to porcine blastocyst medium (PBM) from Day 5 (Day 0 = in vitro fertilization) significantly increased the hatching rates of blastocysts on Day 7 and the total cell numbers in Day-7 blastocysts. When Day-5 blastocysts were cultured with PBM alone, PBM containing LR-BSA, recombinant human serum albumin or fatty acid-free BSA, addition of LR-BSA significantly enhanced hatching rates and the cell number in blastocysts that survived compared with other treatments. The diameter, ATP content and numbers of both inner cell mass and total cells in Day-6 and Day-7 blastocysts cultured with PBM containing LR-BSA were significantly higher than in blastocysts cultured with PBM alone, whereas LR-BSA had no effect on mitochondrial membrane potential. The mRNA levels of enzymes involved in fatty acid metabolism and β-oxidation (ACSL1, ACSL3, CPT1, CPT2 and KAT) in Day-7 blastocysts were significantly upregulated by the addition of LR-BSA. The results indicated that LR-BSA enhanced hatching ability and quality of porcine blastocysts produced in vitro, as determined by ATP content, blastocyst diameter and expression levels of the specific genes, suggesting that the stimulatory effects of LR-BSA arise from lipids bound to albumin. PMID:26582048

  11. Comparative effects of low-level laser therapy pre- and post-injury on mRNA expression of MyoD, myogenin, and IL-6 during the skeletal muscle repair.

    PubMed

    Alves, Agnelo Neves; Ribeiro, Beatriz Guimarães; Fernandes, Kristianne Porta Santos; Souza, Nadhia Helena Costa; Rocha, Lília Alves; Nunes, Fabio Daumas; Bussadori, Sandra Kalil; Mesquita-Ferrari, Raquel Agnelli

    2016-05-01

    This study analyzed the effect of pre-injury and post-injury irradiation with low-level laser therapy (LLLT) on the mRNA expression of myogenic regulatory factors and interleukin 6 (IL-6) during the skeletal muscle repair. Male rats were divided into six groups: control group, sham group, LLLT group, injury group; pre-injury LLLT group, and post-injury LLLT group. LLLT was performed with a diode laser (wavelength 780 nm; output power 40 mW' and total energy 3.2 J). Cryoinjury was induced by two applications of a metal probe cooled in liquid nitrogen directly onto the belly of the tibialis anterior (TA) muscle. After euthanasia, the TA muscle was removed for the isolation of total RNA and analysis of MyoD, myogenin, and IL-6 using real-time quantitative PCR. Significant increases were found in the expression of MyoD mRNA at 3 and 7 days as well as the expression of myogenin mRNA at 14 days in the post-injury LLLT group in comparison to injury group. A significant reduction was found in the expression of IL-6 mRNA at 3 and 7 days in the pre-injury LLLT and post-injury LLLT groups. A significant increase in IL-6 mRNA was found at 14 days in the post-injury LLLT group in comparison to the injury group. LLLT administered following muscle injury modulates the mRNA expression of MyoD and myogenin. Moreover, the both forms of LLLT administration were able to modulate the mRNA expression of IL-6 during the muscle repair process.

  12. Transcript copy number of genes for DNA repair and translesion synthesis in yeast: contribution of transcription rate and mRNA stability to the steady-state level of each mRNA along with growth in glucose-fermentative medium.

    PubMed

    Michán, Carmen; Monje-Casas, Fernando; Pueyo, Carmen

    2005-04-01

    We quantitated the copy number of mRNAs (NTG1, NTG2, OGG1, APN1, APN2, MSH2, MSH6, REV3, RAD30) encoding different DNA repair enzymes and translesion-synthesis polymerases in yeast. Quantitations reported examine how the steady-state number of each transcript is modulated in association with the growth in glucose-fermentative medium, and evaluate the respective contribution of the rate of mRNA degradation and transcription initiation to the specific mRNA level profile of each gene. Each transcript displayed a unique growth-related profile, therefore altering the relative abundance of mRNAs coding for proteins with similar functions, as cells proceed from exponential to stationary phase. Nonetheless, as general trend, they exhibited maximal levels when cells proliferate rapidly and minimal values when cells cease proliferation. We found that previous calculations on the stability of the investigated mRNAs might be biased, in particular regarding those that respond to heat shock stress. Overall, the mRNAs experienced drastic increments in their stabilities in response to gradual depletion of essential nutrients in the culture. However, differences among the mRNA stability profiles suggest a dynamic modulation rather than a passive process. As general rule, the investigated genes were much more frequently transcribed during the fermentative growth than later during the diauxic arrest and the stationary phase, this finding conciliating low steady-state levels with increased mRNA stabilities. Interestingly, while the rate at which each gene is transcribed appeared as the only determinant of the number of mRNA copies at the exponential growth, later, when cell growth is arrested, the rate of mRNA degradation becomes also a key factor for gene expression. In short, our results raise the question of how important the respective contribution of transcription and mRNA stability mechanisms is for the steady-state profile of a given transcript, and how this contribution may

  13. Sex differences, developmental changes, response to injury and cAMP regulation of the mRNA levels of steroidogenic acute regulatory protein, cytochrome p450scc, and aromatase in the olivocerebellar system.

    PubMed

    Lavaque, Esteban; Mayen, Aurora; Azcoitia, Iñigo; Tena-Sempere, Manuel; Garcia-Segura, Luis M

    2006-02-15

    Compelling evidence has now demonstrated direct biological actions of sex steroids at the cerebellum. Likewise, the expression of key steroidogenic factors, such as the steroidogenic acute regulatory protein (StAR), cytochrome P450 side chain cleavage (P450scc), and aromatase, at this neural site has been reported. Little is known, however, about the regulation of their genes in the cerebellum. Assessment of StAR, P450scc, and aromatase mRNAs in the cerebellum of male and female rats revealed that the expression of these genes is developmentally regulated, with the highest levels at early postnatal ages in both sexes and with significantly higher mRNA levels in postnatal males. Expression of these genes in the female remained unaltered after perinatal androgenization and along the estrous cycle. In contrast, damage of cerebellar afferent neurons of the inferior olivary nucleus evoked a significant increase in StAR, P450scc, and aromatase mRNA levels at this site, as well as a transient elevation in StAR mRNA at the cerebellum. Finally, enhancement of cAMP levels in cultured cerebellar neurons induced a significant increase in StAR and aromatase mRNA levels. In summary, we present herein novel evidence for the developmentally regulated and partially sexually dimorphic pattern of expression of StAR, P450scc, and aromatase genes in the rat cerebellum. These observations, together with the finding that the mRNA levels of these steroidogenic molecules are sensitive to injury and are regulated by intracellular cAMP, strongly suggest that local steroidogenesis is likely to play an important role during development and adaptation to neurodegenerative processes in the olivocerebellar system. PMID:16329132

  14. Robust changes in expression of brain-derived neurotrophic factor (BDNF) mRNA and protein across the brain do not translate to detectable changes in BDNF levels in CSF or plasma.

    PubMed

    Lanz, Thomas A; Bove, Susan E; Pilsmaker, Catherine D; Mariga, Abigail; Drummond, Elena M; Cadelina, Gregory W; Adamowicz, Wendy O; Swetter, Brentt J; Carmel, Sharon; Dumin, Jo Ann; Kleiman, Robin J

    2012-09-01

    Adult rats were treated acutely with peripheral kainic acid (KA), and changes in brain-derived neurotrophic factor (BDNF) mRNA and protein were tracked over time across multiple brain regions. Despite robust elevation in both mRNA and protein in multiple brain regions, plasma BDNF was unchanged and cerebrospinal fluid (CSF) BDNF levels remained undetectable. Primary neurons were then treated with KA. BDNF was similarly elevated within neurons, but was undetectable in neuronal media. Thus, while deficits in BDNF signaling have been implicated in a number of diseases, these data suggest that extracellular concentrations of BDNF may not be a facile biomarker for changes in neurons.

  15. Disturbance effects of PM₁₀ on iNOS and eNOS mRNA expression levels and antioxidant activity induced by ischemia-reperfusion injury in isolated rat heart: protective role of vanillic acid.

    PubMed

    Dianat, Mahin; Radmanesh, Esmat; Badavi, Mohammad; Mard, Seyed Ali; Goudarzi, Gholamraza

    2016-03-01

    Myocardial infarction is the acute condition of myocardial necrosis that occurs as a result of imbalance between coronary blood supply and myocardial demand. Air pollution increases the risk of death from cardiovascular diseases (CVDs). The aim of this study was to investigate the effects of particulate matter (PM) on oxidative stress, the expression of inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS) messenger RNA (mRNA) level induced by ischemia-reperfusion injury, and the protective effects of vanillic acid (VA) in the isolated rat heart. Male Wistar rats were randomly divided into eight groups (n = 10), namely control, VAc, sham, VA, PMa (0.5 mg/kg), PMb (2.5 mg/kg), PMc (5 mg/kg), and PMc + VA groups. Particles with an aerodynamic diameter <10 μm (PM10) was instilled into the trachea through a fine intubation tube. Two days following the PM10 instillation, the animal's hearts were isolated and transferred to a Langendorff apparatus. The hearts were subjected to 30 min of global ischemia followed by 60 min of reperfusion. The activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), xanthine oxidase (XOX), and lactate dehydrogenase (LDH) were measured using special kits. Reverse transcription polymerase chain reaction (RT-PCR) was used to determine levels of iNOS and eNOS mRNA. An increase in left ventricular end-diastolic pressure (LVEDP), S-T elevation, and oxidative stress in PM10 groups was observed. Ischemia-reperfusion (I/R) induction showed a significant augment in the expression of iNOS mRNA level and a significant decrease in the expression eNOS mRNA level. This effect was more pronounced in the PM groups than in the control and sham groups. Vanillic acid caused a significant decrease in LVEDP, S-T elevation, and also a significant difference in eNOS mRNA expression level, antioxidant enzymes, iNOS mRNA expression level, and oxidative stress occurred on myocardial dysfunction

  16. Analysis of adeno-associated virus (AAV) wild-type and mutant Rep proteins for their abilities to negatively regulate AAV p5 and p19 mRNA levels.

    PubMed Central

    Kyöstiö, S R; Owens, R A; Weitzman, M D; Antoni, B A; Chejanovsky, N; Carter, B J

    1994-01-01

    The rep gene of adeno-associated virus type 2 (AAV) encodes four overlapping Rep proteins that are involved in gene regulation and replication of the virus. We studied here the regulation of mRNA transcribed from the AAV p5 and p19 promoters, using transient expression in human 293 cells followed by Northern (RNA) blot analysis of the mRNA. The p5 transcript encodes the larger Rep proteins, Rep78 and Rep68, while the p19 transcript encodes the smaller proteins, Rep52 and Rep40. A plasmid (pNTC3) containing the entire AAV genome with an amber mutation in the rep gene accumulated higher levels of p5 and p19 mRNA than a plasmid containing the wild-type AAV genome. Addition of increasing amounts of the wild-type rep gene in trans from a heterologous promoter inhibited p5 and p19 mRNA accumulation from pNTC3, indicating that the levels of both transcripts were decreased by the Rep proteins. Cotransfections with plasmids producing individual wild-type Rep proteins in trans showed that p5 and p19 mRNA accumulation was inhibited 5- to 10-fold by Rep78 and Rep68 and 2- to 3-fold by Rep52 and Rep40. Analysis of carboxyl-terminal truncation mutants of Rep78 showed that the ability of Rep78 to decrease p5 and p19 mRNA levels was lost when 159 or more amino acids were deleted. Rep78 and Rep68 mutants deleted for the methionine at residue 225 showed decreased abilities to down-regulate both p5 and p19 transcript levels, while mutants containing a substitution of glycine for the methionine resembled the wild-type Rep78. A Rep78 protein with a mutation in the putative nucleoside triphosphate binding site inhibited expression from p5 but not from p19, suggesting that the regulation of p5 transcript levels by Rep78 and Rep68 differs from that of p19. A deletion analysis of AAV cis sequences revealed that an intact terminal repeat was not required for negative regulation of p5 and p19 transcript levels and that the regulation of p19 mRNA levels by Rep78 did not require the presence

  17. Comparison of albumin receptors expressed on bovine and human group G streptococci.

    PubMed Central

    Raeder, R; Otten, R A; Boyle, M D

    1991-01-01

    The albumin receptor expressed by bovine group G streptococci was extracted and affinity purified. The protein was characterized for species reactivity, and monospecific antibodies were prepared to the purified receptor. The bovine group G albumin receptor was compared functionally, antigenically, and for DNA homology with the albumin-binding protein expressed by human group G streptococci. In agreement with previous reports, the albumin-binding activity of human strains was mediated by a unique domain of the type III immunoglobulin G-Fc-binding molecule, protein G. The albumin receptor expressed by bovine group G strains was found to lack any immunoglobulin G-binding potential but displayed a wider profile of species albumin reactivity than protein G. Both albumin receptors could inhibit the binding of the other to immobilized human serum albumin, and each displayed similar binding properties. Antigenic comparison of the two albumin receptors demonstrated a low level of cross-reactivity; however comparison at the DNA level, using an oligonucleotide probe specific for the albumin-binding region of protein G, demonstrated that the two albumin receptors expressed by human and bovine group G streptococcal strains do not display significant homology. Images PMID:1846128

  18. Increased levels of cell-free human placental lactogen mRNA at 28-32 gestational weeks in plasma of pregnant women with placenta previa and invasive placenta.

    PubMed

    Kawashima, Akihiro; Sekizawa, Akihiko; Ventura, Walter; Koide, Keiko; Hori, Kyouko; Okai, Takashi; Masashi, Yoshida; Furuya, Kenichi; Mizumoto, Yoshifumi

    2014-02-01

    We compared the levels of cell-free human placental lactogen (hPL) messenger RNA (mRNA) in maternal plasma at 28 to 32 weeks of gestation between women with diagnosis of placenta previa or invasive placenta and women with an uneventful pregnancy. Sensitivity and specificity of hPL mRNA for the prediction of invasive placenta were further explored. Plasma hPL mRNA were quantified by real-time reverse-transcriptase polymerase chain reaction in women with placenta previa (n = 13), invasive placenta (n = 5), and normal pregnancies (n = 92). Median (range) hPL mRNA was significantly higher in women with placenta previa, 782 (10-2301) copies/mL of plasma, and in those with invasive placenta, 615 (522-2102) copies/mL of plasma, when compared to normal pregnancies, 90 (4-4407) copies/mL of plasma, P < .01 and P < .05, respectively. We found a sensitivity of 100% and a specificity of 61.5% for the prediction of invasive placenta among women with placenta previa. In conclusion, expression of hPL mRNA is increased in plasma of women with placenta previa and invasive placenta at 28 to 32 weeks of gestation.

  19. Molecular characterization of argininosuccinate synthase and argininosuccinate lyase from the liver of the African lungfish Protopterus annectens, and their mRNA expression levels in the liver, kidney, brain and skeletal muscle during aestivation.

    PubMed

    Chng, You R; Ong, Jasmine L Y; Ching, Biyun; Chen, Xiu L; Wong, Wai P; Chew, Shit F; Ip, Yuen K

    2014-10-01

    Argininosuccinate synthase (Ass) and argininosuccinate lyase (Asl) are involved in arginine synthesis for various purposes. The complete cDNA coding sequences of ass and asl from the liver of Protopterus annectens consisted of 1,296 and 1,398 bp, respectively. Phylogenetic analyses revealed that the deduced Ass and Asl of P. annectens had close relationship with that of the cartilaginous fish Callorhinchus milii. Besides being strongly expressed in the liver, ass and asl expression were detectable in many tissues/organs. In the liver, mRNA expression levels of ass and asl increased significantly during the induction phase of aestivation, probably to increase arginine production to support increased urea synthesis. The increases in ass and asl mRNA expression levels during the prolonged maintenance phase and early arousal phase of aestivation could reflect increased demand on arginine for nitric oxide (NO) production in the liver. In the kidney, there was a significant decrease in ass mRNA expression level after 6 months of aestivation, indicating possible decreases in the synthesis and supply of arginine to other tissues/organs. In the brain, changes in ass and asl mRNA expression levels during the three phases of aestivation could be related to the supply of arginine for NO synthesis in response to conditions that resemble ischaemia and ischaemia-reperfusion during the maintenance and arousal phase of aestivation, respectively. The decrease in ass mRNA expression level, accompanied with decreases in the concentrations of arginine and NO, in the skeletal muscle of aestivating P. annectens might ameliorate the potential of disuse muscle atrophy.

  20. The effect of 1,25 dihydroxyvitamin D3 treatment on the mRNA levels of β catenin target genes in mice with colonic inactivation of both APC alleles

    PubMed Central

    DeWitt, Marsha; Johnson, Robert L.; Snyder, Paul; Fleet, James C.

    2015-01-01

    In colon cancer, adenomatous polyposis coli (APC) inactivating gene mutations increase nuclear β-catenin levels and stimulate proliferation. In vitro, 1,25 dihydroxyvitamin D (1,25(OH)2D), suppresses β-catenin-mediated gene transcription by inducing vitamin D receptor (VDR)-β-catenin interactions. We examined whether acute treatment with 1,25(OH)2D could suppress β-catenin-mediated gene transcription in the hyperplastic colonic lesions ofmice with colon-specific deletion of both APC gene alleles (CAC; APCΔ580/Δ580). At four weeks of age, CAC; APCΔ580/Δ580 and control mice were injected with vehicle or 1,25(OH)2D (1 μg/kg body weight) once a day for three days and then killed six hours after the last injection. mRNA levels of β-catenin target genes were elevated in the colon of CAC; APCΔ580/Δ580 mice. 1,25(OH)2D increased 25 hydroxyvitamin D-24 hydroxylase mRNA levels in the colon of CAC; APCΔ580/Δ580 and control mice indicating the treatments activated the VDR. However, 1,25(OH)2D had no effect on either β-catenin target gene mRNA levels or the proliferation index in CAC; APCΔ580/Δ580 or control mice. VDR mRNA and protein levels were lower (−65% and −90%) in the colon of CAC; APCΔ580/Δ580 mice compared to control mice, suggesting loss of colon responsiveness to vitamin D. Consistent with this, vitamin D-induced expression of Transient Receptor Potential cation channel, subfamily V, member 6 mRNA was reduced in the colon of CAC; APCΔ580/Δ580 mice. Our data show that short term exposure to 1,25(OH)2D does not suppress colonic β-catenin signaling in vivo. PMID:25597951

  1. [Albumin and artificial colloids for massive bleeding].

    PubMed

    Iijima, Takehiko

    2011-01-01

    Rapid and massive bleeding has to be counteracted by efficient volume restoration against rapid loss of intravascular volume. There are two phases of volume management for massive bleeding, uncontrolled phase and controlled phase. During initial uncontrolled phase, rapid infusion of crystalloid with RCC (red cell concentrate) is the first choice of volume management to prevent shock and profound decline of hemoglobin level. After shifting to the next controlled phase, artificial colloids and RCC become the next choice for efficient volume restoration. Although albumin has not been proven to improve prognosis in clinical studies, anti-inflammatory effect could be expected. Albumin infusion may be followed in this phase, and also albumin concentrate may be beneficial to reduce subsequent tissue edema due to massive infusion of crystalloid and artificial colloid. A new generation of hydroxyethyl starch is a promising blood substitute, designed with minimum side effect. Although renal damage especially in septic patient and coagulation disorder are theoretically suspected, beneficial effect as volume expansion overwhelms these stochastic side effects. Since the side effect depends on the dose and how much it remains in the body, a purposeful use during volume expansion phase should be recommended.

  2. A quantitative analysis of the reduction in oxygen levels required to induce up-regulation of vascular endothelial growth factor (VEGF) mRNA in cervical cancer cell lines

    PubMed Central

    Chiarotto, J A; Hill, R P

    1999-01-01

    The presence of hypoxia (low oxygen concentrations) in solid tumours correlates with poor prognosis, increased metastasis, and resistance to radiotherapy and some forms of chemotherapy. Malignant cells produce an angiogenesis factor, vascular endothelial growth factor (VEGF), which may increase metastatic ability and is up-regulated in the presence of hypoxia. Clinical data for cancers of the cervix and head and neck relate oxygen levels in the tumour to treatment outcome. This suggests the possibility that the presence of VEGF mRNA might be used as a marker for relevant levels of hypoxia. Suspension cultures of three human cervical cancer cell lines, SiHa, ME-180 and HeLa, were used to investigate up-regulation of VEGF mRNA levels following exposure to precisely defined oxygen concentrations for 2 or 4 h. An oxygen sensor was used to confirm the actual levels of dissolved oxygen present. The oxygen concentrations which caused half-maximal upregulation (the Km value) of VEGF mRNA level in the three cell lines were similar except for one instance (Km at 4 h: SiHa 27.0 ± 5.7 μM, ME-180 16.8 ± 3.3 μM, HeLa 13.0 ± 1.8 μM, SiHa and HeLa P = 0.01). The Km values for the HeLa cell line as measured at 2 h (24.9 ± 0.8 μM) and 4 h (13.0 ± 1.8 μM) were significantly different (P < 0.0001). VEGF mRNA half-lives measured in air were consistent with values in the literature (SiHa 59.8 ± 5.8 min, ME-180 44.4 ± 7.2 min, HeLa 44.5 ± 6.3 min). Differences in oxygen consumption at low oxygen concentrations were noted between the different cell lines. Stirring in suspension culture was found to induce VEGF mRNA in SiHa cells. The presence of VEGF mRNA may be a marker for radiobiologic hypoxia. © 1999 Cancer Research Campaign PMID:10408392

  3. Cortical kindling induces elevated levels of AMPA and GABA receptor subunit mRNA within the amygdala/piriform region and is associated with behavioral changes in the rat.

    PubMed

    Henderson, Amy K; Galic, Michael A; Teskey, G Campbell

    2009-11-01

    Cortical kindling causes alterations within the motor cortex and results in long-standing motor deficits. Less attention has been directed to other regions that also participate in the epileptiform activity. We examined if cortical kindling could induce changes in excitatory and inhibitory receptor subunit mRNA in the amygdala/piriform regions and if such changes are associated with behavioral deficits. After cortical kindling, amygdala/piriform regions were dissected to analyze mRNA levels of NMDA, AMPA, and GABA receptor subunits using reverse transcription polymerase chain reaction, or rats were subjected to a series of behavioral tests. Kindled rats had significantly greater amounts of GluR1 and GluR2 AMPA receptor mRNA, and alpha1 and alpha2 GABA receptor subunit mRNA, compared with sham controls, which was associated with greater anxiety-like behaviors in the elevated plus maze and reduced freezing behaviors in the fear conditioning task. In summary, cortical kindling produces dynamic receptor subunit changes in regions in addition to the seizure focus.

  4. Albumin-bound bilirubin in subchoroidal fluid.

    PubMed

    Lam, W K; Lee, P F; Ray, S; Feman, S; van Heuven, W A

    1979-01-01

    The most unique property of subchoroidal fluid was found to be the high bilirubin level. One distinct yellow band in the same position as albumin was observed when it was subjected to electrophoresis on agarose film. The yellow compound was very soluble in chloroform. Its identity to bilirubin was confirmed by its absorption maximum at 445 nm, and a positive reaction with Ehrlich's diazo reagent. Subretinal fluid and liquid vitreous often had a yellowish appearance after ocular hemorrhage. However, their bilirubin level was not elevated above that of serum. Our data indicated that the degradation of RBCs may be an important causative factor of persistant detachment. PMID:758891

  5. Increased apolipoprotein E and c-fms gene expression without elevated interleukin 1 or 6 mRNA levels indicates selective activation of macrophage functions in advanced human atheroma.

    PubMed Central

    Salomon, R N; Underwood, R; Doyle, M V; Wang, A; Libby, P

    1992-01-01

    Cells found within atherosclerotic lesions can produce in culture protein mediators that may participate in atherogenesis. To test whether human atheromata actually contain transcripts for certain of these genes, we compared levels of mRNAs in carotid or coronary atheromata and in nonatherosclerotic human vessels by polymerase chain reaction (PCR) amplification of cDNAs reverse-transcribed from RNA. We measured PCR products (generated during exponential amplification) by incorporation of 32P-labeled primers. Levels of interleukin 1 alpha, 1 beta, or 6 mRNAs in plaques and controls did not differ. Compared to uninvolved vessels, plaques did contain higher levels of mRNA encoding platelet-derived growth factor A chain (42 +/- 24 vs. 12 +/- 10 fmol of product; mean +/- SD; n = 8 and 8, respectively; P = 0.007) and B chain (41 +/- 36 vs. 4 +/- 3 fmol of product, n = 14 and 6, respectively; P = 0.024). Atherosclerotic lesions consistently had much higher levels of apolipoprotein E (apoE) mRNA than did control vessels (131 +/- 71 vs. 5 +/- 3 fmol of product; n = 12 and 10, respectively; P less than 0.001). Direct RNA blot analyses confirmed elevated levels of apoE mRNA in plaque extracts. To test whether mononuclear phagocytes might be a source of the apoE mRNA, we studied a selective marker for cells of the monocytic lineage, the c-fms protooncogene, which encodes the receptor for macrophage colony-stimulating factor. Plaques also contained elevated levels of c-fms mRNA (30 +/- 17 vs. 5 +/- 3 fmol of product; n = 10 and 7, respectively; P = 0.002). Immunohistochemical colocalization demonstrated apoE protein in association with macrophages in plaques, whereas nonatherosclerotic vessels showed no immunoreactive apoE. ApoE produced locally in atheroma might modulate the functions of lesional T cells or promote "reverse cholesterol transport" by associating with high density lipoprotein particles, thus targeting them for peripheral uptake. Macrophages within the advanced

  6. Presepsin (soluble CD14 subtype) and procalcitonin levels for mortality prediction in sepsis: data from the Albumin Italian Outcome Sepsis trial

    PubMed Central

    2014-01-01

    Introduction Sepsis, a leading cause of death in critically ill patients, is the result of complex interactions between the infecting microorganisms and the host responses that influence clinical outcomes. We evaluated the prognostic value of presepsin (sCD14-ST), a novel biomarker of bacterial infection, and compared it with procalcitonin (PCT). Methods This is a retrospective, case–control study of a multicenter, randomized clinical trial enrolling patients with severe sepsis or septic shock in ICUs in Italy. We selected 50 survivors and 50 non-survivors at ICU discharge, matched for age, sex and time from sepsis diagnosis to enrollment. Plasma samples were collected 1, 2 and 7 days after enrollment to assay presepsin and PCT. Outcome was assessed 28 and 90 days after enrollment. Results Early presepsin (day 1) was higher in decedents (2,269 pg/ml, median (Q1 to Q3), 1,171 to 4,300 pg/ml) than in survivors (1,184 pg/ml (median, 875 to 2,113); P = 0.002), whereas PCT was not different (18.5 μg/L (median 3.4 to 45.2) and 10.8 μg/L (2.7 to 41.9); P = 0.31). The evolution of presepsin levels over time was significantly different in survivors compared to decedents (P for time-survival interaction = 0.03), whereas PCT decreased similarly in the two groups (P = 0.13). Presepsin was the only variable independently associated with ICU and 28-day mortality in Cox models adjusted for clinical characteristics. It showed better prognostic accuracy than PCT in the range of Sequential Organ Failure Assessment score (area under the curve (AUC) from 0.64 to 0.75 vs. AUC 0.53 to 0.65). Conclusions In this multicenter clinical trial, we provide the first evidence that presepsin measurements may have useful prognostic information for patients with severe sepsis or septic shock. These preliminary findings suggest that presepsin may be of clinical importance for early risk stratification. PMID:24393424

  7. Effect of angiotensin on glomerular filtration of albumin.

    PubMed

    Eisenbach, G M; Van Liew, J B

    1975-01-01

    Angiotensin-induced proteinuria was examined at the glomerular-tubular level in rats. Ultra-micro-disc electrophoresis was employed to determine albumin concentration of rat proximal tubular fluid samples under control conditions and during the infusion of 0.15 mug/min X 100 g body weight angiotensin II using micropuncture techniques. Under control conditions proximal tubular albumin concentration was 1.32 +/- 0.79 (SD) mg/100 ml (n = 71). There was no correlation between albumin concentration and (TF/P)-inulin ratio indicating an albumin reabsorption in the proximal tubule parallel to fluid reabsorption under control conditions. During angiotensin infusion using re-collection techniques, there is an average increase of 26 times in tubular albumin concentration, indicating an increase in albumin filtered. There was no change in GFR, SNGFR, transit time, (TF/P)-inulin ratio, an increase in urine flow rate, sodium excretion, protein excretion, mean arterial blood pressure during angiotensin infusion. Since effective glomerular filtration pressure was not increased during angiotensin it is concluded that angiotensin-induced proteinuria is due to an increase in filtered protien mediated by a change in glomerular permeability to proteins.

  8. mRNA and Protein Levels for GABA[subscript A][alpha]4, [alpha]5, [beta]1 and GABA[subscript B]R1 Receptors are Altered in Brains from Subjects with Autism

    ERIC Educational Resources Information Center

    Fatemi, S. Hossein; Reutiman, Teri J.; Folsom, Timothy D.; Rooney, Robert J.; Patel, Diven H.; Thuras, Paul D.

    2010-01-01

    We have shown altered expression of gamma-aminobutyric acid A (GABA[subscript A]) and gamma-aminobutyric acid B (GABA[subscript B]) receptors in the brains of subjects with autism. In the current study, we sought to verify our western blotting data for GABBR1 via qRT-PCR and to expand our previous work to measure mRNA and protein levels of 3…

  9. Neutrophil responsiveness to IgG, as determined by fixed ratios of mRNA levels for activating and inhibitory FcgammaRII (CD32), is stable over time and unaffected by cytokines.

    PubMed

    van Mirre, Edwin; Breunis, Willemijn B; Geissler, Judy; Hack, C Erik; de Boer, Martin; Roos, Dirk; Kuijpers, Taco W

    2006-07-15

    We tested the hypothesis that the ratio between the activating and inhibitory Fcgamma receptor type II (FcgammaRII) in neutrophils determines their responsiveness to immune complexes. We measured mRNA levels of FcgammaRII isoforms and observed differences in the ratio of FcgammaRIIa to FcgammaRIIb2 mRNA in granulocytes of 50 white and 10 black healthy volunteers, and found 4 discrete groups of ratios (ie, 4:1; 3:1, 2:1, or 1:1). The response to either dimeric IgG or aggregated IgG (aIgG) was assessed. Up-regulation of CD11b on the surface as well as the elastase release was significantly more pronounced in neutrophils with a high FcgammaRIIa/FcgammaRIIb2 mRNA ratio of 4:1 compared with a 2:1 or 1:1 ratio. Individual ratios as well as the functional responsiveness of neutrophils were constant over time, as was tested over 12 months. Neutrophil stimulation with various agents in vitro did not alter the FcgammaRIIa/FcgammaRIIb2 mRNA ratio in the neutrophils of these donors, in clear contrast to the findings in their mononuclear cells. We found a strong association between the 2B.4 haplotype of the FCGR2B promoter with increased transcriptional activity in individuals with 1:1 ratios and the more common low-expression 2B.1 haplotype in individuals with FcgammaRIIa/FcgammaRIIb2 mRNA ratios of 2:1, 3:1, or 4:1.

  10. Influence of environmental enrichment on steady-state mRNA levels for EAAC1, AMPA1 and NMDA2A receptor subunits in rat hippocampus.

    PubMed

    Andin, Josefine; Hallbeck, Martin; Mohammed, Abdul H; Marcusson, Jan

    2007-10-12

    Interaction with the environment has a key role in refining the neuronal circuitry required for normal brain function throughout life. Profound effects of enriched environment have been shown on neuronal structure and chemistry in experimental animals. Epidemiological studies imply that this is true also in man, thus cognitive stimulation has a protective effect on neurodegeneration, e.g., in Alzheimer's disease. Glutamatergic pathways are imperative for cognitive functions, such as memory, learning and long-term potentiation, and relies on the AMPA and NMDA glutamate receptors and the hippocampus, with its specific subregions, is an important anatomical substrate in this. The glutamate signalling is also dependent on a fine-tuned transport system, in the hippocampus primarily achieved by the glutamate transporter EAAC1. In this study we show how environmental enrichment modulates these parts of the glutamatergic system using quantitative in situ hybridisation. This work demonstrates for the first time that environmental enrichment modulates the mRNA expression of EAAC1 which is significantly and region specifically decreased in the hippocampus. We also provide evidence for regional and hemisphere-specific upregulation of NMDA mRNA in the hippocampus after environmental enrichment. The current work also shows that AMPA mRNA of the hippocampus is not per se changed by environmental enrichment in adult animals. Taken together, our results extend the knowledge of the glutamatergic system of specific regions of the hippocampus and its modulation by environmental enrichment and could contribute to the development of strategies aimed at limiting pathological changes associated with glutamatergic dysfunctions.

  11. Amadori albumin in diabetic nephropathy

    PubMed Central

    Neelofar, Km.; Ahmad, Jamal

    2015-01-01

    Nonenzymatic glycation of macromolecules in diabetes mellitus (DM) is accelerated due to persistent hyperglycemia. Reducing sugar such as glucose reacts non enzymatically with free €-amino groups of proteins through series of reactions forming Schiff bases. These bases are converted into Amadori product and further into AGEs. Non enzymatic glycation has the potential to alter the biological, structural and functional properties of macromolecules both in vitro and in vivo. Studies have suggested that amadori as well as AGEs are involved in the micro-macro vascular complications in DM, but most studies have focused on the role of AGEs in vascular complications of diabetes. Recently putative AGE-induced patho-physiology has shifted attention from the possible role of amadori-modified proteins, the predominant form of the glycated proteins in the development of the diabetic complications. Human serum albumin (HSA), the most abundant protein in circulation contains 59 lysine and 23 arginine residues that could, in theory be involved in glycation. Albumin has dual nature, first as a marker of intermediate glycation and second as a causative agent of the damage of tissues. Among the blood proteins, hemoglobin and albumin are the most common proteins that are glycated. HSA with a shorter half life than RBC, appears to be an alternative marker of glycemic control as it can indicate blood glucose status over a short period (2-3 weeks) and being unaffected by RBCs life span and variant haemoglobin, anemia etc which however, affect HbA1c. On the other hand, Amadori albumin may accumulate in the body tissues of the diabetic patients and participate in secondary complications. Amadori-albumin has potential role in diabetic glomerulosclerosis due to long term hyperglycaemia and plays an important role in the pathogenesis of diabetic nephropathy. This review is an approach to compile both the nature of glycated albumin as a damaging agent of tissues and as an intermediate

  12. hnRNP A2/B1 interacts with influenza A viral protein NS1 and inhibits virus replication potentially through suppressing NS1 RNA/protein levels and NS1 mRNA nuclear export

    SciTech Connect

    Wang, Yimeng; Zhou, Jianhong; Du, Yuchun

    2014-01-20

    The NS1 protein of influenza viruses is a major virulence factor and exerts its function through interacting with viral/cellular RNAs and proteins. In this study, we identified heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1) as an interacting partner of NS1 proteins by a proteomic method. Knockdown of hnRNP A2/B1 by small interfering RNA (siRNA) resulted in higher levels of NS vRNA, NS1 mRNA, and NS1 protein in the virus-infected cells. In addition, we demonstrated that hnRNP A2/B1 proteins are associated with NS1 and NS2 mRNAs and that knockdown of hnRNP A2/B1 promotes transport of NS1 mRNA from the nucleus to the cytoplasm in the infected cells. Lastly, we showed that knockdown of hnRNP A2/B1 leads to enhanced virus replication. Our results suggest that hnRNP A2/B1 plays an inhibitory role in the replication of influenza A virus in host cells potentially through suppressing NS1 RNA/protein levels and NS1 mRNA nucleocytoplasmic translocation. - Highlights: • Cellular protein hnRNP A2/B1 interacts with influenza viral protein NS1. • hnRNP A2/B1 suppresses the levels of NS1 protein, vRNA and mRNA in infected cells. • hnRNP A2/B1 protein is associated with NS1 and NS2 mRNAs. • hnRNP A2/B1 inhibits the nuclear export of NS1 mRNAs. • hnRNP A2/B1 inhibits influenza virus replication.

  13. Cellular Specificity of the Blood–CSF Barrier for Albumin Transfer across the Choroid Plexus Epithelium

    PubMed Central

    Liddelow, Shane A.; Dzięgielewska, Katarzyna M.; Møllgård, Kjeld; Whish, Sophie C.; Noor, Natassya M.; Wheaton, Benjamin J.; Gehwolf, Renate; Wagner, Andrea; Traweger, Andreas; Bauer, Hannelore; Bauer, Hans-Christian; Saunders, Norman R.

    2014-01-01

    To maintain the precise internal milieu of the mammalian central nervous system, well-controlled transfer of molecules from periphery into brain is required. Recently the soluble and cell-surface albumin-binding glycoprotein SPARC (secreted protein acidic and rich in cysteine) has been implicated in albumin transport into developing brain, however the exact mechanism remains unknown. We postulate that SPARC is a docking site for albumin, mediating its uptake and transfer by choroid plexus epithelial cells from blood into cerebrospinal fluid (CSF). We used in vivo physiological measurements of transfer of endogenous (mouse) and exogenous (human) albumins, in situ Proximity Ligation Assay (in situ PLA), and qRT-PCR experiments to examine the cellular mechanism mediating protein transfer across the blood–CSF interface. We report that at all developmental stages mouse albumin and SPARC gave positive signals with in situ PLAs in plasma, CSF and within individual plexus cells suggesting a possible molecular interaction. In contrast, in situ PLA experiments in brain sections from mice injected with human albumin showed positive signals for human albumin in the vascular compartment that were only rarely identifiable within choroid plexus cells and only at older ages. Concentrations of both endogenous mouse albumin and exogenous (intraperitoneally injected) human albumin were estimated in plasma and CSF and expressed as CSF/plasma concentration ratios. Human albumin was not transferred through the mouse blood–CSF barrier to the same extent as endogenous mouse albumin, confirming results from in situ PLA. During postnatal development Sparc gene expression was higher in early postnatal ages than in the adult and changed in response to altered levels of albumin in blood plasma in a differential and developmentally regulated manner. Here we propose a possible cellular route and mechanism by which albumin is transferred from blood into CSF across a sub-population of

  14. Dietary gamma-linolenic acid in the form of borage oil causes less body fat accumulation accompanying an increase in uncoupling protein 1 mRNA level in brown adipose tissue.

    PubMed

    Takahashi, Y; Ide, T; Fujita, H

    2000-10-01

    Rats were fed a low-fat diet containing 2% safflower oil or 20% fat diets containing either safflower oil rich in linoleic acid, borage oil containing 25% gamma (gamma)-linolenic acid or enzymatically prepared gamma-linolenic acid enriched borage oil containing 47% gamma-linolenic acid for 14 days. Energy intake and growth of animals were the same among groups. A high safflower oil diet compared with a low-fat diet caused significant increases in both epididymal and perirenal white adipose tissue weights. However, high-fat diets rich in gamma-linolenic acid failed to do so. Compared with a low-fat diet, all the high-fat diets increased mRNA levels of uncoupling protein 1 and lipoprotein lipase in brown adipose tissue. The extents of the increase were greater with high-fat diets rich in gamma-linolenic acid. Various high-fat diets, compared with a low-fat diet, decreased glucose transporter 4 mRNA in white adipose tissue to the same levels. The amount and types of dietary fat did not affect the leptin mRNA level in epididymal white adipose tissue. However, a high safflower oil diet, but not high-fat diets rich in gamma-linolenic acid relative to a low-fat diet, increased perirenal white adipose tissue leptin mRNA levels. All high-fat diets, relative to a low-fat diet, increased the hepatic mitochondrial fatty acid oxidation rate and fatty acid oxidation enzyme mRNA abundances to the same levels. High-fat diets also increased these parameters in the peroxisomal pathway, and the increases were greater with high-fat diets rich in gamma-linolenic acid. The physiological activity in increasing brown adipose tissue gene expression and peroxisomal fatty acid oxidation was similar between the two types of borage oil differing in gamma-linolenic acid content. It was suggested that dietary gamma-linolenic acid attenuates body fat accumulation through the increase in gene expressions of uncoupling protein 1 in brown adipose tissue. An increase in hepatic peroxisomal fatty acid

  15. The effect of 1,25 dihydroxyvitamin D3 treatment on the mRNA levels of β catenin target genes in mice with colonic inactivation of both APC alleles.

    PubMed

    DeWitt, Marsha; Johnson, Robert L; Snyder, Paul; Fleet, James C

    2015-04-01

    In colon cancer, adenomatous polyposis coli (APC) inactivating gene mutations increase nuclear β-catenin levels and stimulate proliferation. In vitro, 1,25 dihydroxyvitamin D (1,25(OH)2D), suppresses β-catenin-mediated gene transcription by inducing vitamin D receptor (VDR)-β-catenin interactions. We examined whether acute treatment with 1,25(OH)2D could suppress β-catenin-mediated gene transcription in the hyperplastic colonic lesions of mice with colon-specific deletion of both APC gene alleles (CAC; APC(Δ580/Δ580)). At four weeks of age, CAC; APC(Δ580/Δ580) and control mice were injected with vehicle or 1,25(OH)2D (1μg/kg body weight) once a day for three days and then killed six hours after the last injection. mRNA levels of β-catenin target genes were elevated in the colon of CAC; APC(Δ580/Δ580) mice. 1,25(OH)2D increased 25 hydroxyvitamin D-24 hydroxylase mRNA levels in the colon of CAC; APC(Δ580/Δ580) and control mice indicating the treatments activated the VDR. However, 1,25(OH)2D had no effect on either β-catenin target gene mRNA levels or the proliferation index in CAC; APC(Δ580/Δ580) or control mice. VDR mRNA and protein levels were lower (-65% and -90%) in the colon of CAC; APC(Δ580/Δ580) mice compared to control mice, suggesting loss of colon responsiveness to vitamin D. Consistent with this, vitamin D-induced expression of transient receptor potential cation channel, subfamily V, member 6 mRNA was reduced in the colon of CAC; APC(Δ580/Δ580) mice. Our data show that short term exposure to 1,25(OH)2D does not suppress colonic β-catenin signaling in vivo. This article is part of a special issue entitled '17th Vitamin D Workshop'.

  16. Dietary gamma-linolenic acid in the form of borage oil causes less body fat accumulation accompanying an increase in uncoupling protein 1 mRNA level in brown adipose tissue.

    PubMed

    Takahashi, Y; Ide, T; Fujita, H

    2000-10-01

    Rats were fed a low-fat diet containing 2% safflower oil or 20% fat diets containing either safflower oil rich in linoleic acid, borage oil containing 25% gamma (gamma)-linolenic acid or enzymatically prepared gamma-linolenic acid enriched borage oil containing 47% gamma-linolenic acid for 14 days. Energy intake and growth of animals were the same among groups. A high safflower oil diet compared with a low-fat diet caused significant increases in both epididymal and perirenal white adipose tissue weights. However, high-fat diets rich in gamma-linolenic acid failed to do so. Compared with a low-fat diet, all the high-fat diets increased mRNA levels of uncoupling protein 1 and lipoprotein lipase in brown adipose tissue. The extents of the increase were greater with high-fat diets rich in gamma-linolenic acid. Various high-fat diets, compared with a low-fat diet, decreased glucose transporter 4 mRNA in white adipose tissue to the same levels. The amount and types of dietary fat did not affect the leptin mRNA level in epididymal white adipose tissue. However, a high safflower oil diet, but not high-fat diets rich in gamma-linolenic acid relative to a low-fat diet, increased perirenal white adipose tissue leptin mRNA levels. All high-fat diets, relative to a low-fat diet, increased the hepatic mitochondrial fatty acid oxidation rate and fatty acid oxidation enzyme mRNA abundances to the same levels. High-fat diets also increased these parameters in the peroxisomal pathway, and the increases were greater with high-fat diets rich in gamma-linolenic acid. The physiological activity in increasing brown adipose tissue gene expression and peroxisomal fatty acid oxidation was similar between the two types of borage oil differing in gamma-linolenic acid content. It was suggested that dietary gamma-linolenic acid attenuates body fat accumulation through the increase in gene expressions of uncoupling protein 1 in brown adipose tissue. An increase in hepatic peroxisomal fatty acid

  17. Altered levels of POMC, AgRP and MC4-R mRNA expression in the hypothalamus and other parts of the limbic system of mice prone or resistant to chronic high-energy diet-induced obesity.

    PubMed

    Huang, Xu Feng; Han, Mei; South, Tim; Storlien, Len

    2003-11-28

    The melanocortinergic system plays an important role in promoting negative energy balance and preventing excessive fat deposition. This study has investigated the levels of mRNA expression of proopiomelanocortin (POMC), agouti-related protein (AgRP) and the melanocortin-4 receptor (MC4-R) in diet-induced obese (DIO) and diet-resistant (DR) mice. Thirty C57 mice were used in this study. Twenty-four mice were fed with a high-fat diet (HF: 40% of calories from fat, 20% from saturated fat) for 4 weeks and then classified as DIO and DR according to their body weight gain. Six mice were placed on a low-fat diet (LF: 10% of calories from fat, 1% from saturated fat) and were used as controls. After 22 weeks of feeding, visceral fat deposits were more than twice as heavy in the DIO mice as in the DR and LF mice, while the latter two groups had no significant difference. Using quantitative in situ hybridization techniques, this study found that the DIO mice had a significantly lower level of Arc POMC (-29%) and AgRP (-31%) mRNA expression than the DR and LF mice, respectively. The mice on high-fat diets had higher levels of AgRP mRNA expression in the bed nucleus of stria terminalis (BST), and ventral part of the lateral septal nucleus (LSV) than the LF mice. Furthermore, the DIO mice had a 40% higher level of MC4-R mRNA expression in the ventromedial hypothalamic nucleus (VMH) and posterodorsal part of the medial amygdaloid nucleus (MePD) than the LF mice. In conclusion, this study has demonstrated that differential expression of POMC, AgRP and MC4-R mRNA levels exists in DIO, DR and LF mice. These differences were shown to occur in the specific nuclei of the hypothalamus and other parts of the limbic system. These findings may assist in understanding the involvement of the melanocortinergic system in the regulation of body weight via the autonomic and limbic systems.

  18. 1,25-Dihydroxyvitamin D3 and its analogues increase catalase at the mRNA, protein and activity level in a canine transitional carcinoma cell line.

    PubMed

    Middleton, R P; Nelson, R; Li, Q; Blanton, A; Labuda, J A; Vitt, J; Inpanbutr, N

    2015-12-01

    Antioxidant enzymes, such as catalase, superoxide dismutases (SOD), MnSOD and Cu/ZnSOD, protect cells by scavenging reactive oxygen species (ROS). Numerous studies have reported the anti-cancer effects of 1,25-dihydroxyvitamin D3 (calcitriol) and its related analogues, seocalcitol and analogue V. In this study, canine bladder transitional cell carcinoma (cbTCC) cells were used to determine effects of calcitriol and its related analogues on antioxidant enzyme gene expression, protein expression and activity. Catalase mRNA was increased in response to calcitriol (10(-7) M), and seocalcitol (10(-7) and 10(-9) M). MnSOD mRNA was decreased in response to calcitriol at 10(-7) M. Catalase was significantly increased in response to calcitriol (10(-7) and 10(-9) M), and seocalcitol (10(-9) M). Catalase enzymatic activity increased in response to calcitriol, seocalcitol and analogue V (10(-9) M). In addition, global gene expression analysis identified the involvement of mitogen-activated protein kinase (MAPK) signalling in cbTCC's response to calcitriol and seocalcitol treatment.

  19. Novel rice OsSIPK is a multiple stress responsive MAPK family member showing rhythmic expression at mRNA level.

    PubMed

    Lee, Mi-Ok; Cho, Kyoungwon; Kim, So-Hee; Jeong, Seung-Hee; Kim, Jung-A; Jung, Young-Ho; Shim, Jaekyung; Shibato, Junko; Rakwal, Randeep; Tamogami, Shigeru; Kubo, Akihiro; Agrawal, Ganesh Kumar; Jwa, Nam-Soo

    2008-04-01

    We report isolation and transcriptional profiling of rice (Oryza sativa L.) mitogen-activated protein kinase (MAPK), OsSIPK (salicylic acid-induced protein kinase). OsSIPK gene is located on chromosome 6 most probably existing as a single copy in the rice genome, and encodes 398 amino acid polypeptide having the MAPK family signature and phosphorylation activation motif TEY. Steady state mRNA analyses of OsSIPK showed weak constitutive expression in leaves of 2-week-old rice seedlings. A time course (30-120 min) experiment using a variety of elicitors and stresses revealed that the OsSIPK mRNA is strongly induced by jasmonic acid (JA), salicylic acid (SA), ethephon, abscisic acid, cycloheximide (CHX), JA/SA + CHX, cantharidin, okadaic acid, hydrogen peroxide, chitosan, sodium chloride, and cold stress (12 degrees C), but not with wounding by cut, gaseous pollutants ozone, and sulfur dioxide, high temperature, ultraviolet C irradiation, sucrose, and drought. Its transcription was also found to be tissue-specifically regulated, and followed a rhythmic dark induction in leaves. Finally, we showed that the OsSIPK protein is localized to the nucleus. From these results, OsSIPK can be implicated in diverse stimuli-responsive signaling cascades and transcription of certain genes. PMID:18066586

  20. A retrospective analysis of 25% human serum albumin supplementation in hypoalbuminemic dogs with septic peritonitis

    PubMed Central

    Horowitz, Farrah B.; Read, Robyn L.; Powell, Lisa L.

    2015-01-01

    This study describes the influence of 25% human serum albumin (HSA) supplementation on serum albumin level, total protein (TP), colloid osmotic pressure (COP), hospital stay, and survival in dogs with septic peritonitis. Records of 39 dogs with septic peritonitis were evaluated. In the HSA group, initial and post-transfusion TP, albumin, COP, and HSA dose were recorded. In the non-supplemented group, repeated values of TP, albumin, and COP were recorded over their hospitalization. Eighteen dogs survived (53.8% mortality). Repeat albumin values were higher in survivors (mean 23.9 g/L) and elevated repeat albumin values were associated with HSA supplementation. Repeat albumin and TP were higher in the HSA supplemented group (mean 24 g/L and 51.9 g/L, respectively) and their COP increased by 5.8 mmHg. Length of hospitalization was not affected. Twenty-five percent HSA increases albumin, TP, and COP in canine patients with septic peritonitis. Higher postoperative albumin levels are associated with survival. PMID:26028681

  1. The effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin on corticotrophin-releasing hormone, arginine vasopressin, and pro-opiomelanocortin mRNA levels in the hypothalamus of the cynomolgus monkey.

    PubMed

    Shridhar, S; Farley, A; Reid, R L; Foster, W G; Van Vugt, D A

    2001-10-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a widespread environmental contaminant that has profound deleterious effects on development and reproduction. TCDD may act at one or more levels to alter the hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes. The objective of this study was to investigate whether TCDD modulates neuroendocrine systems by altering gene expression of arginine vasopressin (AVP), corticotrophin-releasing hormone (CRH), or pro-opiomelanocortin (POMC), which are important neuroregulators of the HPA and HPG axes. Four groups of female cynomolgus monkeys (Macaca fascicularis) were administered daily oral doses of gelatin capsule containing TCDD (0, 1, 5, or 25 ng/kg body weight) mixed with glucose 5 days a week for 1 year. At the end of the dosing period, animals were euthanized and brains were harvested. CRH, AVP, and POMC mRNA levels were semiquantified by in situ hybridization histochemistry on 30-microm coronal sections of the brain. Blood collected on the day of euthanasia was assayed for cortisol and progesterone. CRH mRNA levels in the paraventricular nucleus (PVN) were significantly increased by the 2 higher TCDD doses (5 and 25 ng/kg/day) compared to controls (p < 0.05). There was a trend towards increased AVP mRNA levels in both the supraoptic nucleus (SON) and PVN. No effect of TCDD on POMC was observed. Cortisol levels were significantly increased in TCDD-exposed animals. Progesterone concentrations and menstruation data indicated that TCDD did not interfere with ovulation. We conclude that TCDD stimulated the HPA axis by a central effect involving CRH, but had no effect on the HPG axis at the doses tested.

  2. Effect of fluoride and low versus high levels of dietary calcium on mRNA expression of osteoprotegerin and osteoprotegerin ligand in the bone of rats.

    PubMed

    Yu, Jun; Gao, Yanhui; Sun, Dianjun

    2013-06-01

    The ratio of osteoprotegerin ligand (OPGL) to osteoprotegerin (OPG) determines the delicate balance between bone resorption and synthesis. The main objective of the present study is to investigate the possible role of OPGL and OPG in the bone metabolism of rats exposed to fluoride and the protective or aggravating effect of calcium (Ca). In a 6-month study, 270 weanling male Sprague-Dawley rats weighing between 70 and 90 g were divided randomly into six groups of 45 rats in each group. Three groups (groups I, III, and V)served as controls and drank deionized water and were fed purified rodent diets containing either 1,000 mg Ca/kg (low Ca), 5,000 mg Ca/kg (normal Ca), or 20,000 mg Ca/kg (high Ca). The three experimental groups (groups II, IV, and VI) were given the same diets but they drank water containing 100 mg F ion/L (from NaF). Every 2 months 15 rats were randomly selected from each group and sacrificed for the study. The ratio of OPGL mRNA to OPG mRNA was significantly increased by the sixth month in the distal femur joints of the F-exposed rats. Serum tartrate-resistant acid phosphatase activity and serum calcitonin activity in the F-exposed groups was increased, although changes were not apparent in the serum alkaline phosphatase or Gla-containing proteins, especially in the low calcium and high calcium diet F-exposed groups. The results indicated that OPG and OPGL may play important roles in skeletal fluorosis, and that fluoride may enhance osteoclast formation and induce osteoclastic bone destruction. A high Ca diet did not play a protective role, but rather may aggravate the damage of fluoride.

  3. Leukotriene B(4) BLT receptor signaling regulates the level and stability of cyclooxygenase-2 (COX-2) mRNA through restricted activation of Ras/Raf/ERK/p42 AUF1 pathway.

    PubMed

    Zhai, Beibei; Yang, Huiqing; Mancini, Arturo; He, QingWen; Antoniou, John; Di Battista, John A

    2010-07-30

    Recent studies suggest that active resolution of the inflammatory response in animal models of arthritis may involve leukotriene B(4) (LTB(4))-dependent stimulation of "intermediate" prostaglandin production, which in turn favors the synthesis of "downstream" anti-inflammatory and pro-resolving lipoxins, resolvins, and protectins. We explored a putative mechanism involving LTB(4)-dependent control of cyclooxygenase-2 (COX-2) expression, the rate-limiting step in inflammatory prostaglandin biosynthesis. Indeed, LTB(4) potently up-regulated/stabilized interleukin-1beta-induced COX-2 mRNA and protein expression under conditions of COX-2 inhibitor-dependent blockade of PGE(2) release in human synovial fibroblasts (EC(50) = 16.5 + or - 1.7 nm for mRNA; 19 + or - 2.4 nm for protein, n = 4). The latter response was pertussis toxin-sensitive, and semi-quantitative reverse transcription-PCR confirmed the quantitative predominance of the BLT2 receptor. Transfection experiments, using human COX-2 promoter plasmids and chimeric luciferase-COX-2 mRNA 3'-untranslated region (3'-UTR) reporter constructs, revealed that LTB(4) exerted its stabilizing effect at the post-transcriptional level through a 116-bp adenylate/uridylate-rich sequence in the proximal region of the COX-2 3'-UTR. Using luciferase-COX-2 mRNA 3'-UTR reporter constructs and Ras/c-Raf expression and mutant constructs, we showed that the Ras/c-Raf/MEK1/2/ERK1/2 signaling pathway mediated LTB(4)-dependent COX-2 mRNA stabilization. Knockdown experiments with specific short hairpin RNAs confirmed that LTB(4) stabilization of COX-2 mRNA was apparently mediated through the RNA-binding protein, p42 AUF1. The nuclear export of p42 AUF1 was driven by c-Raf/MEK1/2/ERK1/2 signaling and sensitive to leptomycin B treatment, suggesting a CRM1-dependent mechanism. We conclude that LTB(4) may support the resolution phase of the inflammatory response by stabilizing COX-2, ensuring a reservoir of ambient pro-resolution lipid

  4. Albumin receptor effect may be due to a surface-induced conformational change in albumin

    SciTech Connect

    Reed, R.G.; Burrington, C.M.

    1989-06-15

    To determine whether equilibrium binding between albumin and hepatocytes involves a cell surface receptor for albumin, we incubated freshly isolated rat hepatocytes with /sup 125/I-albumin and determined the amount of albumin associated with the cells as a function of the total albumin concentration. The resulting two-phase binding curve showed the rat albumin-hepatocyte interaction to consist of a saturable binding interaction with a dissociation constant of 1.1 microM and 2 X 10(6) sites/cell in addition to a weak, nonsaturable binding interaction. However, the saturable binding of albumin to hepatocytes did not appear to result from the presence of an albumin receptor on the cell surface; the interaction was the same for different species of albumin, for chemically modified albumins, and for fragments of albumin representing mutually exclusive domains of the molecule. The saturable binding was, instead, found to involve a subpopulation of albumin with an enhanced affinity for the cell surface. We show that this subpopulation of albumin is generated upon contact with either solid surfaces or cell surfaces and can be transferred from one surface to another. We propose that the two-phase Scatchard binding curve and the ''albumin receptor effect'' reflect two populations of albumin that bind to the cell surface with different affinities rather than one population of albumin that binds to two classes of binding sites.

  5. The mRNA and Protein Levels of Tubulin and β-Actin Are Greatly Reduced in the Proximal Duodenum of Mice Relative to the Rest of the Small Intestines.

    PubMed

    Yu, Sungsook; Hwang, Hyekyung E; Yun, Nakhyeon; Goldenring, James R; Nam, Ki Taek

    2015-09-01

    To accurately quantify mRNA and protein levels, it is critical to choose appropriate internal standards. As the expression of housekeeping genes is assumed to remain constant, they are often employed to normalize signals to correct for sample-to-sample variations. However, recent studies have documented that β-actin and Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) expression levels change in response to various stimuli during proliferation, activation, and differentiation. We investigated levels of α-, β-, γ-tubulin, β-actin, and GAPDH vary across the gastrointestinal tract of mice. We found that different regions of the small intestines had dramatically different expression profiles, as measured by western blot, quantitative Reverse transcription polymerase chain reaction (RT-PCR), and immunohistochemical staining. These results revealed that the expression levels of tubulins and β-actin were dramatically lower in the proximal duodenum, relative to the rest of the small intestines. These varying levels of housekeeping genes may reflect differences in the activities of specialized tissues and suggest unique requirements for tubulins in these tissue types. We conclude that the use of a single housekeeping gene to normalize gene expression in the gastrointestinal tracts of mice may introduce errors, as measured differences in gene expression may reflect regulation of the internal control rather than the mRNA or protein under investigation.

  6. Albumin Dialysis for Liver Failure: A Systematic Review.

    PubMed

    Tsipotis, Evangelos; Shuja, Asim; Jaber, Bertrand L

    2015-09-01

    Albumin dialysis is the best-studied extracorporeal nonbiologic liver support system as a bridge or destination therapy for patients with liver failure awaiting liver transplantation or recovery of liver function. We performed a systematic review to examine the efficacy and safety of 3 albumin dialysis systems (molecular adsorbent recirculating system [MARS], fractionated plasma separation, adsorption and hemodialysis [Prometheus system], and single-pass albumin dialysis) in randomized trials for supportive treatment of liver failure. PubMed, Ovid, EMBASE, Cochrane's Library, and ClinicalTrials.gov were searched. Two authors independently screened citations and extracted data on patient characteristics, quality of reports, efficacy, and safety end points. Ten trials (7 of MARS and 3 of Prometheus) were identified (620 patients). By meta-analysis, albumin dialysis achieved a net decrease in serum total bilirubin level relative to standard medical therapy of 8.0 mg/dL (95% confidence interval [CI], -10.6 to -5.4) but not in serum ammonia or bile acids. Albumin dialysis achieved an improvement in hepatic encephalopathy relative to standard medical therapy with a risk ratio of 1.55 (95% CI, 1.16-2.08) but had no effect survival with a risk ratio of 0.95 (95% CI, 0.84-1.07). Because of inconsistency in the reporting of adverse events, the safety analysis was limited but did not demonstrate major safety concerns. Use of albumin dialysis as supportive treatment for liver failure is successful at removing albumin-bound molecules, such as bilirubin and at improving hepatic encephalopathy. Additional experience is required to guide its optimal use and address safety concerns.

  7. Albumin Dialysis for Liver Failure: A Systematic Review.

    PubMed

    Tsipotis, Evangelos; Shuja, Asim; Jaber, Bertrand L

    2015-09-01

    Albumin dialysis is the best-studied extracorporeal nonbiologic liver support system as a bridge or destination therapy for patients with liver failure awaiting liver transplantation or recovery of liver function. We performed a systematic review to examine the efficacy and safety of 3 albumin dialysis systems (molecular adsorbent recirculating system [MARS], fractionated plasma separation, adsorption and hemodialysis [Prometheus system], and single-pass albumin dialysis) in randomized trials for supportive treatment of liver failure. PubMed, Ovid, EMBASE, Cochrane's Library, and ClinicalTrials.gov were searched. Two authors independently screened citations and extracted data on patient characteristics, quality of reports, efficacy, and safety end points. Ten trials (7 of MARS and 3 of Prometheus) were identified (620 patients). By meta-analysis, albumin dialysis achieved a net decrease in serum total bilirubin level relative to standard medical therapy of 8.0 mg/dL (95% confidence interval [CI], -10.6 to -5.4) but not in serum ammonia or bile acids. Albumin dialysis achieved an improvement in hepatic encephalopathy relative to standard medical therapy with a risk ratio of 1.55 (95% CI, 1.16-2.08) but had no effect survival with a risk ratio of 0.95 (95% CI, 0.84-1.07). Because of inconsistency in the reporting of adverse events, the safety analysis was limited but did not demonstrate major safety concerns. Use of albumin dialysis as supportive treatment for liver failure is successful at removing albumin-bound molecules, such as bilirubin and at improving hepatic encephalopathy. Additional experience is required to guide its optimal use and address safety concerns. PMID:26311600

  8. Hyperresponsive febrile reactions to interleukin (IL) 1α and IL-1β, and altered brain cytokine mRNA and serum cytokine levels, in IL-1β-deficient mice

    PubMed Central

    Alheim, Katarina; Chai, Zhen; Fantuzzi, Giamila; Hasanvan, Homa; Malinowsky, David; Di Santo, Elena; Ghezzi, Pietro; Dinarello, Charles A.; Bartfai, Tamas

    1997-01-01

    IL-1β is an endogenous pyrogen that is induced during systemic lipopolysaccharide (LPS)- or IL-1-induced fever. We have examined the fever and cytokine responses following i.p. injection of IL-1 agonists, IL-1α and IL-1β, and compared these with response to LPS (i.p.) in wild-type and IL-1β-deficient mice. The IL-1β deficient mice appear to have elevated body temperature but exhibit a normal circadian temperature cycle. Exogenously injected IL-1β, IL-1α, or LPS induced hyperresponsive fevers in the IL-1β-deficient mice. We also observed phenotypic differences between wild-type and IL-1β-deficient mice in hypothalamic basal mRNA levels for IL-1α and IL-6, but not for IL-1β-converting enzyme or IL-1 receptor type I or type II. The IL-1α mRNA levels were down-regulated, whereas the IL-6 mRNA levels were up-regulated in the hypothalamus of IL-1β-deficient mice as compared with wild-type mice. The IL-1β-deficient mice also responded to LPS challenge with significantly higher serum corticosterone and with lower serum tumor necrosis factor type α levels than the wild-type mice. The data suggest that, in the redundant cascade of proinflammatory cytokines, IL-1β plays an important but not obligatory role in fever induction by LPS or IL-1α, as well as in the induction of serum tumor necrosis factor type α and corticosterone responses either by LPS or by IL-1α or IL-1β. PMID:9122256

  9. Hyperresponsive febrile reactions to interleukin (IL) 1alpha and IL-1beta, and altered brain cytokine mRNA and serum cytokine levels, in IL-1beta-deficient mice.

    PubMed

    Alheim, K; Chai, Z; Fantuzzi, G; Hasanvan, H; Malinowsky, D; Di Santo, E; Ghezzi, P; Dinarello, C A; Bartfai, T

    1997-03-18

    IL-1beta is an endogenous pyrogen that is induced during systemic lipopolysaccharide (LPS)- or IL-1-induced fever. We have examined the fever and cytokine responses following i.p. injection of IL-1 agonists, IL-1alpha and IL-1beta, and compared these with response to LPS (i.p.) in wild-type and IL-1beta-deficient mice. The IL-1beta deficient mice appear to have elevated body temperature but exhibit a normal circadian temperature cycle. Exogenously injected IL-1beta, IL-1alpha, or LPS induced hyperresponsive fevers in the IL-1beta-deficient mice. We also observed phenotypic differences between wild-type and IL-1beta-deficient mice in hypothalamic basal mRNA levels for IL-1alpha and IL-6, but not for IL-1beta-converting enzyme or IL-1 receptor type I or type II. The IL-1alpha mRNA levels were down-regulated, whereas the IL-6 mRNA levels were up-regulated in the hypothalamus of IL-1beta-deficient mice as compared with wild-type mice. The IL-1beta-deficient mice also responded to LPS challenge with significantly higher serum corticosterone and with lower serum tumor necrosis factor type alpha levels than the wild-type mice. The data suggest that, in the redundant cascade of proinflammatory cytokines, IL-1beta plays an important but not obligatory role in fever induction by LPS or IL-1alpha, as well as in the induction of serum tumor necrosis factor type alpha and corticosterone responses either by LPS or by IL-1alpha or IL-1beta.

  10. Oocytes in sheep homozygous for a mutation in bone morphogenetic protein receptor 1B express lower mRNA levels of bone morphogenetic protein 15 but not growth differentiation factor 9.

    PubMed

    Crawford, Janet L; Heath, Derek A; Reader, Karen L; Quirke, Laurel D; Hudson, Norma L; Juengel, Jennifer L; McNatty, Kenneth P

    2011-07-01

    The aim of this study was to test the hypothesis that the high ovulation rate in ewes (BB) homozygous for a mutation in the bone morphogenetic protein receptor type 1B (BMPR1B) gene is linked to lower BMP15 and/or GDF9 mRNA in oocytes compared with those in wild-type (++) ewes. Cumulus cell-oocyte complexes (COC) and granulosa cells (GC) were recovered from ≥1 mm diameter follicles of BB and ++ ewes during a prostaglandin-induced follicular phase. Expression levels of GDF9 and BMP15 were measured by multiplex qPCR from individual COC. The gonadotropin-induced cAMP responses of the GC from each non-atretic follicle were measured following treatment with FSH or human chorionic gonadotropin. In a separate validation experiment, GDF9 and BMP15 expression was present only in oocytes and not in cumulus cells. There was no effect of follicular diameter on oocyte-derived GDF9 or BMP15 mRNA levels. The mean expression levels of BMP15, but not GDF9, were significantly lower in all non-atretic follicles, including the subsets containing either FSH- or LH-responsive GC in BB, compared with ++, ewes. No genotype effects were noted for FSH-induced cAMP production by GC either with respect to dose of, or number of follicles responding to, FSH. However, ovaries from BB ewes contained significantly more follicles responsive to LH, with respect to cAMP production in GC. We propose that these findings are consistent with the hypothesis that the higher ovulation rate in BB sheep is due, at least in part, to lower oocyte-derived BMP15 mRNA levels together with the earlier onset of LH-responsiveness in GC.

  11. Are we missing a mineralocorticoid in teleost fish? Effects of cortisol, deoxycorticosterone and aldosterone on osmoregulation, gill Na+,K+-ATPase activity and isoform mRNA levels in Atlantic salmon

    USGS Publications Warehouse

    McCormick, S.D.; Regish, A.; O'Dea, M. F.; Shrimpton, J.M.

    2008-01-01

    It has long been held that cortisol, acting through a single receptor, carries out both glucocorticoid and mineralocorticoid actions in teleost fish. The recent finding that fish express a gene with high sequence similarity to the mammalian mineralocorticoid receptor (MR) suggests the possibility that a hormone other than cortisol carries out some mineralocorticoid functions in fish. To test for this possibility, we examined the effect of in vivo cortisol, 11-deoxycorticosterone (DOC) and aldosterone on salinity tolerance, gill Na+,K+-ATPase (NKA) activity and mRNA levels of NKA α1a and α1b in Atlantic salmon. Cortisol treatment for 6–14 days resulted in increased, physiological levels of cortisol, increased gill NKA activity and improved salinity tolerance (lower plasma chloride after a 24 h seawater challenge), whereas DOC and aldosterone had no effect on either NKA activity or salinity tolerance. NKA α1a and α1b mRNA levels, which increase in response to fresh water and seawater acclimation, respectively, were both upregulated by cortisol, whereas DOC and aldosterone were without effect. Cortisol, DOC and aldosterone had no effect on gill glucocorticoid receptor GR1, GR2 and MR mRNA levels, although there was some indication of possible upregulation of GR1 by cortisol (p = 0.07). The putative GR blocker RU486 inhibited cortisol-induced increases in salinity tolerance, NKA activity and NKA α1a and α1b transcription, whereas the putative MR blocker spironolactone had no effect. The results provide support that cortisol, and not DOC or aldosterone, is involved in regulating the mineralocorticoid functions of ion uptake and salt secretion in teleost fish.

  12. mRNA imprinting

    PubMed Central

    2011-01-01

    Following its synthesis in the nucleus, mRNA undergoes various stages that are critical for the proper synthesis, localization and possibly functionality of its encoded protein. Recently, we have shown that two RNA polymerase II (Pol II) subunits, Rpb4p and Rpb7p, associate with the nascent transcript co-transcriptionally. This “mRNA imprinting” lasts throughout the mRNA lifetime and is required for proper regulation of all major stages that the mRNA undergoes. Other possible cases of co-transcriptional imprinting are discussed. Since mRNAs can be transported from the synthesizing cell to other cells, we propose that mRNA imprinting can also affect the phenotype of the recipient cells. This can be viewed as “mRNA-based epigenetics.” PMID:21686103

  13. Unexpected Normal Colloid Osmotic Pressure in Clinical States with Low Serum Albumin

    PubMed Central

    Michelis, Regina; Sela, Shifra; Zeitun, Teuta; Geron, Ronit; Kristal, Batya

    2016-01-01

    Background In clinical states associated with systemic oxidative stress (OS) and inflammation such as chronic kidney disease (CKD), oxidative modifications of serum albumin impair its quantification, resulting in apparent hypoalbuminemia. As the maintenance of oncotic pressure/colloid osmotic pressure (COP) is a major function of albumin, this study examined the impact of albumin oxidation on COP, both in-vivo and in-vitro. Methods Patients with proteinuria and patients on chronic hemodialysis (HD) with systemic inflammation and OS were enrolled. Blood samples were collected from 134 subjects: 32 healthy controls (HC), proteinuric patients with high (n = 17) and low (n = 31) systemic inflammation and from 54 patients on chronic hemodialysis (HD) with the highest levels of OS and inflammation. Results In-vitro oxidized albumin showed significantly higher COP values than non-oxidized albumin at identical albumin levels. In vivo, in hypoalbuminemic HD patients with the highest OS and inflammation, COP values were also higher than expected for the low albumin levels. The contribution to COP by other prevalent plasma proteins, such as fibrinogen and immunoglobulins was negligible. We imply that the calculation of COP based on albumin levels should be revisited in face of OS and inflammation. Hence, in hypoalbuminemic proteinuric patients with systemic OS and inflammation the assumption of low COP should be verified by its measurements. PMID:27453993

  14. Probiotics Differently Affect Gut-Associated Lymphoid Tissue Indolamine-2,3-Dioxygenase mRNA and Cerebrospinal Fluid Neopterin Levels in Antiretroviral-Treated HIV-1 Infected Patients: A Pilot Study

    PubMed Central

    Scagnolari, Carolina; Corano Scheri, Giuseppe; Selvaggi, Carla; Schietroma, Ivan; Najafi Fard, Saeid; Mastrangelo, Andrea; Giustini, Noemi; Serafino, Sara; Pinacchio, Claudia; Pavone, Paolo; Fanello, Gianfranco; Ceccarelli, Giancarlo; Vullo, Vincenzo; d’Ettorre, Gabriella

    2016-01-01

    Recently the tryptophan pathway has been considered an important determinant of HIV-1 infected patients’ quality of life, due to the toxic effects of its metabolites on the central nervous system (CNS). Since the dysbiosis described in HIV-1 patients might be responsible for the microbial translocation, the chronic immune activation, and the altered utilization of tryptophan observed in these individuals, we speculated a correlation between high levels of immune activation markers in the cerebrospinal fluid (CSF) of HIV-1 infected patients and the over-expression of indolamine-2,3-dioxygenase (IDO) at the gut mucosal surface. In order to evaluate this issue, we measured the levels of neopterin in CSF, and the expression of IDO mRNA in gut-associated lymphoid tissue (GALT), in HIV-1-infected patients on effective combined antiretroviral therapy (cART), at baseline and after six months of probiotic dietary management. We found a significant reduction of neopterin and IDO mRNA levels after the supplementation with probiotic. Since the results for the use of adjunctive therapies to reduce the levels of immune activation markers in CSF have been disappointing so far, our pilot study showing the efficacy of this specific probiotic product should be followed by a larger confirmatory trial. PMID:27689995

  15. Albumin-deficient mouse models for studying metabolism of human albumin and pharmacokinetics of albumin-based drugs

    PubMed Central

    Roopenian, Derry C; Low, Benjamin E; Christianson, Gregory J; Proetzel, Gabriele; Sproule, Thomas J; Wiles, Michael V

    2015-01-01

    Serum albumin is the major determinant of blood colloidal osmotic pressure acting as a depot and distributor of compounds including drugs. In humans, serum albumin exhibits an unusually long half-life mainly due to protection from catabolism by neonatal Fc receptor (FcRn)-mediated recycling. These properties make albumin an attractive courier of therapeutically-active compounds. However, pharmaceutical research and development of albumin-based therapeutics has been hampered by the lack of appropriate preclinical animal models. To overcome this, we developed and describe the first mouse with a genetic deficiency in albumin and its incorporation into an existing humanized FcRn mouse model, B6.Cg-Fcgrttm1Dcr Tg(FCGRT)32Dcr/DcrJ (Tg32). Albumin-deficient strains (Alb-/-) were created by TALEN-mediated disruption of the albumin (Alb) gene directly in fertilized oocytes derived from Tg32 mice and its non-transgenic background control, C57BL/6J (B6). The resulting Alb-/- strains are analbuminemic but healthy. Intravenous administration of human albumin to Tg32-Alb-/- mFcRn-/- hFcRnTg/Tg) mice results in a remarkably extended human albumin serum half-life of ∼24 days, comparable to that found in humans, and in contrast to half-lives of 2.6–5.8 d observed in B6, B6-Alb-/- and Tg32 strains. This striking increase can be explained by the absence of competing endogenous mouse albumin and the presence of an active human FcRn. These novel albumin-deficient models provide unique tools for investigating the biology and pathobiology of serum albumin and are a more appropriate rodent surrogates for evaluating human serum albumin pharmacokinetics and albumin-based compounds. PMID:25654695

  16. Effect of Alpha-Hederin, the active constituent of Nigella sativa, on miRNA-126, IL-13 mRNA levels and inflammation of lungs in ovalbumin-sensitized male rats

    PubMed Central

    Fallahi, Maryam; Keyhanmanesh, Rana; Khamaneh, Amir Mahdi; Ebrahimi Saadatlou, Mohammad Ali; Saadat, Saeideh; Ebrahimi, Hadi

    2016-01-01

    Objective: In previous studies the therapeutic effects of Nigella sativa have been demonstrated on asthmatic animals. In the present study, the preventive effect of single dose of alpha-hederin, its active constituent, has been evaluated on lung inflammation and some inflammatory mediators in lungs of ovalbumin sensitized rat in order to elicit its mechanism. Materials and Methods: Forty rats were randomly grouped in 4 groups; control (C), sensitized (S), sensitized pretreated groups with thymoquinone (3 mg/kg i.p., S+TQ) and alpha-hederin (0.02 mg/kg i.p., S+AH). Levels of IL-13 mRNA and miRNA-126 in lung tissue and its pathological changes in each group were assessed. Results: Elevated levels of miRNA-126, IL-13 mRNA and pathological changes were observed in the sensitized group compared to the control group (p<0.001 to p<0.05). All of these factors were significantly reduced in S+TQ and S+AH groups in comparison to S group (p<0.001 to p<0.05). Although alpha-hederin decreased the levels of miRNA-126, IL-13 mRNA and pathological changes in comparison with thymoquinone, the results were statistically not significant. Conclusion: The results suggested that alpha-hederin had preventive effect on sensitized rats like thymoquinone. It may intervene in miRNA-126 expression, which consequently could interfere with IL-13 secretion pathway leading to a reduction in inflammatory responses. PMID:27247924

  17. Differential mRNA Accumulation upon Early Arabidopsis thaliana Infection with ORMV and TMV-Cg Is Associated with Distinct Endogenous Small RNAs Level.

    PubMed

    Zavallo, Diego; Debat, Humberto Julio; Conti, Gabriela; Manacorda, Carlos Augusto; Rodriguez, Maria Cecilia; Asurmendi, Sebastian

    2015-01-01

    Small RNAs (sRNAs) play important roles in plant development and host-pathogen interactions. Several studies have highlighted the relationship between viral infections, endogenous sRNA accumulation and transcriptional changes associated with symptoms. However, few studies have described a global analysis of endogenous sRNAs by comparing related viruses at early stages of infection, especially before viral accumulation reaches systemic tissues. An sRNA high-throughput sequencing of Arabidopsis thaliana leaf samples infected either with Oilseed rape mosaic virus (ORMV) or crucifer-infecting Tobacco mosaic virus (TMV-Cg) with slightly different symptomatology at two early stages of infection (2 and 4 dpi) was performed. At early stages, both viral infections strongly alter the patterns of several types of endogenous sRNA species in distal tissues with no virus accumulation suggesting a systemic signaling process foregoing to virus spread. A correlation between sRNAs derived from protein coding genes and the associated mRNA transcripts was also detected, indicating that an unknown recursive mechanism is involved in a regulatory circuit encompassing this sRNA/mRNA equilibrium. This work represents the initial step in uncovering how differential accumulation of endogenous sRNAs contributes to explain the massive alteration of the transcriptome associated with plant-virus interactions.

  18. Differential mRNA Accumulation upon Early Arabidopsis thaliana Infection with ORMV and TMV-Cg Is Associated with Distinct Endogenous Small RNAs Level

    PubMed Central

    Zavallo, Diego; Manacorda, Carlos Augusto; Rodriguez, Maria Cecilia; Asurmendi, Sebastian

    2015-01-01

    Small RNAs (sRNAs) play important roles in plant development and host-pathogen interactions. Several studies have highlighted the relationship between viral infections, endogenous sRNA accumulation and transcriptional changes associated with symptoms. However, few studies have described a global analysis of endogenous sRNAs by comparing related viruses at early stages of infection, especially before viral accumulation reaches systemic tissues. An sRNA high-throughput sequencing of Arabidopsis thaliana leaf samples infected either with Oilseed rape mosaic virus (ORMV) or crucifer-infecting Tobacco mosaic virus (TMV-Cg) with slightly different symptomatology at two early stages of infection (2 and 4dpi) was performed. At early stages, both viral infections strongly alter the patterns of several types of endogenous sRNA species in distal tissues with no virus accumulation suggesting a systemic signaling process foregoing to virus spread. A correlation between sRNAs derived from protein coding genes and the associated mRNA transcripts was also detected, indicating that an unknown recursive mechanism is involved in a regulatory circuit encompassing this sRNA/mRNA equilibrium. This work represents the initial step in uncovering how differential accumulation of endogenous sRNAs contributes to explain the massive alteration of the transcriptome associated with plant-virus interactions. PMID:26237414

  19. Distinctive expression of extracellular matrix molecules at mRNA and protein levels during formation of cellular and acellular cementum in the rat.

    PubMed

    Sasano, Y; Maruya, Y; Sato, H; Zhu, J X; Takahashi, I; Mizoguchi, I; Kagayama, M

    2001-02-01

    Little is known about differential expression of extracellular matrices secreted by cementoblasts between cellular and acellular cementum. We hypothesize that cementoblasts lining acellular cementum express extracellular matrix genes differently from those lining cellular cementum, thereby forming two distinct types of extracellular matrices. To test this hypothesis, we investigated spatial and temporal gene expression of selected extracellular matrix molecules, that is type I collagen, bone sialoprotein, osteocalcin and osteopontin, during formation of both cellular and acellular cementum using in situ hybridization. In addition, their extracellularly deposited and accumulated proteins were examined immunohistochemically. The mRNA transcripts of pro-alpha1 (I) collagen were primarily localized in cementoblasts of cellular cementum and cementocytes, while those of bone sialoprotein were predominantly seen in cementoblasts lining acellular cementum. In contrast, osteocalcin was expressed by both types of cementoblasts and cementocytes and so was osteopontin but only transiently. Our immunohistochemical examination revealed that translated proteins were localized extracellularly where the genes had been expressed intracellularly. The present study demonstrated the distinctive expression of genes and proteins of the extracellular matrix molecules between cellular and acellular cementum. PMID:11432645

  20. Putative Pacemakers in the Eyestalk and Brain of the Crayfish Procambarus clarkii Show Circadian Oscillations in Levels of mRNA for Crustacean Hyperglycemic Hormone

    PubMed Central

    Nelson-Mora, Janikua; Prieto-Sagredo, Julio; Loredo-Ranjel, Rosaura; Fanjul-Moles, María Luisa

    2013-01-01

    Crustacean hyperglycemic hormone (CHH) synthesizing cells in the optic lobe, one of the pacemakers of the circadian system, have been shown to be present in crayfish. However, the presence of CHH in the central brain, another putative pacemaker of the multi-oscillatory circadian system, of this decapod and its circadian transcription in the optic lobe and brain have yet to be explored. Therefore, using qualitative and quantitative PCR, we isolated and cloned a CHH mRNA fragment from two putative pacemakers of the multi-oscillatory circadian system of Procambarus clarkii, the optic lobe and the central brain. This CHH transcript synchronized to daily light-dark cycles and oscillated under dark, constant conditions demonstrating statistically significant daily and circadian rhythms in both structures. Furthermore, to investigate the presence of the peptide in the central brain of this decapod, we used immunohistochemical methods. Confocal microscopy revealed the presence of CHH-IR in fibers and cells of the protocerebral and tritocerebal clusters and neuropiles, particularly in some neurons located in clusters 6, 14, 15 and 17. The presence of CHH positive neurons in structures of P. clarkii where clock proteins have been reported suggests a relationship between the circadian clockwork and CHH. This work provides new insights into the circadian regulation of CHH, a pleiotropic hormone that regulates many physiological processes such as glucose metabolism and osmoregulatory responses to stress. PMID:24391849

  1. Albumin-induced apoptosis of tubular cells is modulated by BASP1.

    PubMed

    Sanchez-Niño, M D; Fernandez-Fernandez, B; Perez-Gomez, M V; Poveda, J; Sanz, A B; Cannata-Ortiz, P; Ruiz-Ortega, M; Egido, J; Selgas, R; Ortiz, A

    2015-02-12

    Albuminuria promotes tubular injury and cell death, and is associated with faster progression of chronic kidney disease (CKD) to end-stage renal disease. However, the molecular mechanisms regulating tubular cell death in response to albuminuria are not fully understood. Brain abundant signal protein 1 (BASP1) was recently shown to mediate glucose-induced apoptosis in tubular cells. We have studied the role of BASP1 in albumin-induced tubular cell death. BASP1 expression was studied in experimental puromycin aminonucleoside-induced nephrotic syndrome in rats and in human nephrotic syndrome. The role of BASP1 in albumin-induced apoptosis was studied in cultured human HK2 proximal tubular epithelial cells. Puromycin aminonucleoside induced proteinuria and increased total kidney BASP1 mRNA and protein expression. Immunohistochemistry localized the increased BASP1 to tubular cells. BASP1 expression colocalized with deoxynucleotidyl-transferase-mediated dUTP nick-end labeling staining for apoptotic cells. Increased tubular BASP1 expression was observed in human proteinuric nephropathy by immunohistochemistry, providing evidence for potential clinical relevance. In cultured tubular cells, albumin induced apoptosis and increased BASP1 mRNA and protein expression at 6-48 h. Confocal microscopy localized the increased BASP1 expression in albumin-treated cells mainly to the perinuclear area. A peripheral location near the cell membrane was more conspicuous in albumin-treated apoptotic cells, where it colocalized with actin. Inhibition of BASP1 expression by a BASP1 siRNA protected from albumin-induced apoptosis. In conclusion, albumin-induced apoptosis in tubular cells is BASP1-dependent. This information may be used to design novel therapeutic approaches to slow CKD progression based on protection of tubular cells from the adverse consequences of albuminuria.

  2. Effect of polysaccharides extract of rhizoma atractylodis macrocephalae on thymus, spleen and cardiac indexes, caspase-3 activity ratio, Smac/DIABLO and HtrA2/Omi protein and mRNA expression levels in aged rats.

    PubMed

    Guo, Ling; Sun, Yong Le; Wang, Ai Hong; Xu, Chong En; Zhang, Meng Yuan

    2012-10-01

    This study was designed to determine the possible protective effect of polysaccharides extract of rhizoma atractylodis macrocephalae on heart function in aged rats. Polysaccharides extract of rhizoma atractylodis macrocephalae was administered to aged rats. Results showed that thymus, spleen and cardiac indexs were significantly increased, whereas caspase-3 activity ratio, Smac/DIABLO and HtrA2/Omi protein expression, Smac/DIABLO and HtrA2/Omi mRNA expression levels were markedly reduced. It can be concluded that polysaccharides extract of rhizoma atractylodis macrocephalae may enhance immunity and improve heart function in aged rats.

  3. Glycation alters ligand binding, enzymatic, and pharmacological properties of human albumin.

    PubMed

    Baraka-Vidot, Jennifer; Planesse, Cynthia; Meilhac, Olivier; Militello, Valeria; van den Elsen, Jean; Bourdon, Emmanuel; Rondeau, Philippe

    2015-05-19

    Albumin, the major circulating protein in blood plasma, can be subjected to an increased level of glycation in a diabetic context. Albumin exerts crucial pharmacological activities through its drug binding capacity, i.e., ketoprofen, and via its esterase-like activity, allowing the conversion of prodrugs into active drugs. In this study, the impact of the glucose-mediated glycation on the pharmacological and biochemical properties of human albumin was investigated. Aggregation product levels and the redox state were quantified to assess the impact of glycation-mediated changes on the structural properties of albumin. Glucose-mediated changes in ketoprofen binding properties and esterase-like activity were evaluated using fluorescence spectroscopy and p-nitrophenyl acetate hydrolysis assays, respectively. With the exception of oxidative parameters, significant dose-dependent alterations in biochemical and functional properties of in vitro glycated albumin were observed. We also found that the dose-dependent increase in levels of glycation and protein aggregation and average molecular mass changes correlated with a gradual decrease in the affinity of albumin for ketoprofen and its esterase-like property. In parallel, significant alterations in both pharmacological properties were also evidenced in albumin purified from diabetic patients. Partial least-squares regression analyses established a significant correlation between glycation-mediated changes in biochemical and pharmacological properties of albumin, highlighting the important role for glycation in the variability of the drug response in a diabetic situation.

  4. Severe von Willebrand disease due to a defect at the level of von Willebrand factor mRNA expression: Detection by exonic PCR-restriction fragment length polymorphism analysis

    SciTech Connect

    Nichols, W.C.; Lyons, S.E.; Harrison, J.S.; Cody, R.L.; Ginsburg, D. )

    1991-05-01

    von Willebrand disease (vWD), the most common inherited bleeding disorder in humans, results from abnormalities in the plasma clotting protein von Willebrand factor (vWF). Severe (type III) vWD is autosomal recessive in inheritance and is associated with extremely low or undetectable vWF levels. The authors report a method designed to distinguish mRNA expression from the two vWF alleles by PCR analysis of peripheral blood platelet RNA using DNA sequence polymorphisms located within exons of the vWF gene. This approach was applied to a severe-vWD pedigree in which three of eight siblings are affected and the parents and additional siblings are clinically normal. Each parent was shown to carry a vWF allele that is silent at the mRNA level. Family members inheriting both abnormal alleles are affected with severe vWD, whereas individuals with only one abnormal allele are asymptomatic. Given the frequencies of the two exon polymorphisms reported here, this analysis should be applicable to {approx}70% of type I and type III vWD patients. This comparative DNA and RNA PCR-restriction fragment length polymorphism approach may also prove useful in identifying defects at the level of gene expression associated with other genetic disorders.

  5. Expression of albumin and cytochrome P450 enzymes in HepG2 cells cultured with a nanotechnology-based culture plate with microfabricated scaffold.

    PubMed

    Nakamura, Kazuaki; Kato, Natsuko; Aizawa, Kazuko; Mizutani, Reiko; Yamauchi, Junji; Tanoue, Akito

    2011-10-01

    The Nanoculture plate (NCP) is a recently developed plate which essentially consists of a textured surface with specific characteristics that induce spheroid formation: microfabrications with a micro-square pattern on the culture surface. The NCP can be used to generate uniform adhesive spheroids of cancer cell lines using conventional techniques without the need of any animal compounds. In this study, we assessed the performance of human hepatoma cell line HepG2 cells cultured with an NCP to evaluate the effects of the NCP on their hepatocyte-specific functions. The NCP facilitated the formation of three-dimensional (3D) HepG2 cell architecture. HepG2 cells cultured with an NCP exhibited enhanced mRNA expression levels of albumin and cytochrome P450 (CYP) enzymes compared to those cultured with a two-dimensional (2D) conventional plate. The expression levels of two specific liver-enriched transcription factors, hepatocyte nuclear factor 4α (HNF4α) and CCAAT/enhancer binding protein α (C/EBPα), were higher in HepG2 cells grown with the NCP than those in HepG2 cells grown with conventional plates before albumin and CYP enzymes expression levels were increased. The inducibility of CYP1A2 and CYP3A4 mRNA following exposure to inducers in HepG2 cells cultured with an NCP was comparable to that in HepG2 cells cultured with conventional plates, while the expression levels of CYP1A2 and CYP3A4 mRNA following exposure to inducers were higher when using an NCP than when using conventional plates. These results suggest that the use of an NCP enhances the hepatocyte-specific functions of HepG2 cells, such as drug-metabolizing enzyme expression, making the NCP/HepG2 system a useful tool for evaluating drug metabolism in vitro.

  6. Effects of insulin resistance and hepatic lipid accumulation on hepatic mRNA expression levels of apoB, MTP and L-FABP in non-alcoholic fatty liver disease.

    PubMed

    Higuchi, Nobito; Kato, Masaki; Tanaka, Masatake; Miyazaki, Masayuki; Takao, Shinichiro; Kohjima, Motoyuki; Kotoh, Kazuhiro; Enjoji, Munechika; Nakamuta, Makoto; Takayanagi, Ryoichi

    2011-11-01

    Non-alcoholic fatty liver disease (NAFLD) is considered a hepatic manifestation of metabolic syndrome, which is known to be associated with insulin resistance (IR). NAFLD occurs when the rate of hepatic fatty acid uptake from plasma and de novo fatty acid synthesis is greater than the rate of fatty acid oxidation and excretion as very low-density lipoprotein (VLDL). To estimate the effects of IR on hepatic lipid excretion, mRNA expression levels of genes involved in VLDL assembly were analyzed in NAFLD liver. Twenty-two histologically proven NAFLD patients and 10 healthy control subjects were enrolled in this study. mRNA was extracted from liver biopsy samples and real-time PCR was performed to quantify the expression levels of apolipoprotein B (apoB), microsomal triglyceride transfer protein (MTP) and liver fatty-acid binding protein (L-FABP). Hepatic expression levels of the genes were compared between NAFLD patients and control subjects. In NAFLD patients, we also examined correlations between expression levels of the genes and metabolic factors, including IR, and the extent of obesity and hepatic lipid accumulation. Hepatic expression levels of apoB, MTP and L-FABP were significantly up-regulated in NAFLD patients compared to control subjects. The expression levels of MTP were correlated with those of apoB, but not with those of L-FABP. In the NAFLD liver, the expression levels of MTP were significantly reduced in patients with HOMA-IR >2.5. In addition, a significant reduction in MTP expression was observed in livers with advanced steatosis. Enhanced expression of genes involved in VLDL assembly may be promoted to release excess lipid from NAFLD livers. However, the progression of IR and hepatic steatosis may attenuate this compensatory process.

  7. The effects of acute acetaminophen toxicity on hepatic mRNA expression of SOD, CAT, GSH-Px, and levels of peroxynitrite, nitric oxide, reduced glutathione, and malondialdehyde in rabbit.

    PubMed

    Cigremis, Yilmaz; Turel, Huseyin; Adiguzel, Kevser; Akgoz, Muslum; Kart, Asim; Karaman, Musa; Ozen, Hasan

    2009-03-01

    We investigated the regulation of antioxidant system under acetaminophen (AAP) toxicity. Twelve male New Zealand rabbits were divided into two groups with the following treatments: Group 1 animals were intraperitoneally injected with single saline (control). Group 2 animals were treated with intraperitoneal injection of AAP at a dose of 250 mg/kg body weight. Four hours following the treatments, blood samples were collected and the rabbits were sacrificed to collect liver samples. Hepatocellular damage was evaluated by aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels as well as histopathological examinations and immunohistochemical analysis. Tissue-reduced glutathione (GSH), nitric oxide (NO(.)), and malondialdehyde (MDA) levels were also measured. mRNA expression levels of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) were measured by semi-quantitative RT-PCR. It was found that liver GSH was reduced significantly in AAP-treated rabbits (P < 0.05), while MDA and NO(.) levels were increased when they were compared to control (P < 0.05). Blood AST and ALT levels were also increased following AAP treatment (P < 0.05). Hepatocellular degeneration and severe necrosis were detected in histopathological examinations. Increased immunostaining was observed for inducible nitric oxide synthase (iNOS) and nitrotyrosine in the liver. There were no changes in mRNA expression levels of SOD, CAT, and GSH-Px after AAP treatment compared to control group. These results suggest that the expression of these enzymes, which are involved in the antioxidant system, may not be altered after AAP toxicity, although classical toxic changes such as depletion of GSH, hepatocellular necrosis, and increased immunostaining for iNOS and nitrotyrosine were detected.

  8. Prognostic Value of Rising Serum Albumin During Hospitalization in Patients With Acute Heart Failure.

    PubMed

    Nakayama, Hiroyuki; Koyama, Satoshi; Kuragaichi, Takashi; Shiba, Masayuki; Fujiwara, Hisayoshi; Takatsu, Yoshiki; Sato, Yukihito

    2016-04-15

    Hypoalbuminemia is an important predictor of a poor long-term prognosis in acute heart failure (AHF). However, changes in serum albumin levels in AHF have not been described to date. Therefore, we investigated the changes in serum albumin levels in patients hospitalized for AHF. This observational study included 115 consecutive patients admitted with AHF. Serum albumin was measured on days 1, 2, 4, and 7 of their hospitalization, and the changes in its levels were assessed. Cox multivariate analysis was used to compare the long-term mortality and readmission rate between 2 groups defined according to whether their serum albumin changes showed a rising pattern (serum albumin level increased from day 2 to day 7) or not. The mean serum albumin levels were 3.51 mg/dl on day 1, 3.21 mg/dl on day 2, 3.23 mg/dl on day 4, and 3.35 mg/dl on day 7 (p <0.001 by multivariate analysis of variance). The rising pattern group including 66 patients (60.6%) was independently associated with a lower mortality and readmission rate (hazard ratios 0.450 and 0.522; p = 0.01 and 0.02, respectively). Furthermore, based on multiple linear regression analysis, the changes in hemoglobin and C-reactive protein levels during days 1 to 7 were independently correlated with the changes in serum albumin levels over the same period. In conclusion, a rising pattern of serum albumin change in a patient with AHF was correlated with a good long-term prognosis. Furthermore, the change in serum albumin levels was also associated with changes in cachectic factors. PMID:27020611

  9. Molecular identification of an androgen receptor and its changes in mRNA levels during 17α-methyltestosterone-induced sex reversal in the orange-spotted grouper Epinephelus coioides.

    PubMed

    Shi, Yu; Liu, Xiaochun; Zhang, Haifa; Zhang, Yong; Lu, Danqi; Lin, Haoran

    2012-09-01

    Androgens play a crucial role in sex differentiation, sexual maturation, and spermatogenesis in vertebrates. The action of androgens is mediated via androgen receptors (ARs). The present study reports the cloning of the cDNA sequence of the ar in the orange-spotted grouper, with high expression in testis and relatively low in subdivision of brain areas. The cDNA sequence of ar was 2358 bp, encoding a protein of 759 amino acids (aa). Phylogenetic analysis showed that the ar cDNA sequence was closely related to that of threespot wrasse (Halichoeres trimaculatus) and medaka (Oryzias latipes) arβ. As deduced from the phylogenetic tree and the high amino acid identity with the ARβ subtype of other teleosts, grouper ar seems to be more closely related to the beta than the alpha subtype cloned to date. In the first week after 17α-methyltestosterone (MT) implantation, the transcript levels of ar in the hypothalamus declined significantly, and consistently stayed at low level expression to the second week, but increased back to the control levels in the third and fourth week. In the gonad, the mRNA expression of ar was not changed in the first week compared with the control, but increased significantly in the second week, consistently reached the highest level in the third week, dropped slightly but still higher than that of the control in the fourth week. The expression pattern of ar in hypothalamus and gonad during MT-induced sex reversal suggests the involvement of ar in regulating this process in the orange-spotted grouper. The present study provides the data of the changes in the mRNA levels of ar during MT-induced sex reversal in detail to help understand the complicated signals under sex reversal.

  10. The onset of cortisol synthesis and the stress response is independent of changes in CYP11B or CYP21 mRNA levels in larval red drum (Sciaenops ocellatus).

    PubMed

    Applebaum, Scott L; Wilson, C Alexander; Holt, G Joan; Nunez, B Scott

    2010-01-15

    Although cortisol plays an important role in teleost development, the onset of cortisol production and the cortisol stress response in teleosts remain poorly understood. Here we have reported basal cortisol levels and the development of the cortisol stress response in larval red drum (Sciaenops ocellatus). We isolated partial nucleic acid sequences encoding two key corticosteroidogenic enzymes, CYP11B and CYP21 and assessed ontogenetic patterns of their mRNA levels relative to basal and stress-induced cortisol production. Basal cortisol was first detected 3 days post-hatch (DPH) and reached a maximum at 9 DPH. Cortisol did not increase in response to an acute stressor prior to 6 DPH. From 6 DPH forward, stress caused significant increases in larval cortisol content. Stress-induced cortisol levels in 6-9 DPH larvae were highest 1h post-stress. In larvae 11 DPH and older, the highest cortisol measurements occurred 0.5h post-stress. Elevated cortisol was still evident after 3h in 6 DPH larvae. From 11 DPH onward, basal cortisol levels were reestablished in larvae by 1h post-stress. CYP11B and CYP21 transcripts were detected in red drum 12h prior to hatching and in all post-hatch larvae examined. Changes in CYP11B and CYP21 mRNA levels did not occur in association with the ontogenetic appearance of cortisol, or the onset of the stress response. As larvae developed, the dynamics of the cortisol stress response matured from a low magnitude, slow recovery response, to a response similar to that observed in juvenile and adult fish. PMID:19595692

  11. Shank2 Regulates Renal Albumin Endocytosis

    PubMed Central

    Dobrinskikh, Evgenia; Lewis, Linda; Doctor, R Brian; Okamura, Kayo; Lee, Min Goo; Altmann, Christopher; Faubel, Sarah; Kopp, Jeffrey B; Blaine, Judith

    2015-01-01

    Albuminuria is a strong and independent predictor of kidney disease progression but the mechanisms of albumin handling by the kidney remain to be fully defined. Previous studies have shown that podocytes endocytose albumin. Here we demonstrate that Shank2, a large scaffolding protein originally identified at the neuronal postsynaptic density, is expressed in podocytes in vivo and in vitro and plays an important role in albumin endocytosis in podocytes. Knockdown of Shank2 in cultured human podocytes decreased albumin uptake, but the decrease was not statistically significant likely due to residual Shank2 still present in the knockdown podocytes. Complete knockout of Shank2 in podocytes significantly diminished albumin uptake in vitro. Shank2 knockout mice develop proteinuria by 8 weeks of age. To examine albumin handling in vivo in wild-type and Shank2 knockout mice we used multiphoton intravital imaging. While FITC-labeled albumin was rapidly seen in the renal tubules of wild-type mice after injection, little albumin was seen in the tubules of Shank2 knockout mice indicating dysregulated renal albumin trafficking in the Shank2 knockouts. We have previously found that caveolin-1 is required for albumin endocytosis in cultured podocytes. Shank2 knockout mice had significantly decreased expression and altered localization of caveolin-1 in podocytes suggesting that disruption of albumin endocytosis in Shank2 knockouts is mediated via caveolin-1. In summary, we have identified Shank2 as another component of the albumin endocytic pathway in podocytes. PMID:26333830

  12. Effects of Ethanol on the Expression Level of Various BDNF mRNA Isoforms and Their Encoded Protein in the Hippocampus of Adult and Embryonic Rats

    PubMed Central

    Shojaei, Shahla; Ghavami, Saeid; Panjehshahin, Mohammad Reza; Owji, Ali Akbar

    2015-01-01

    We aimed to compare the effects of oral ethanol (Eth) alone or combined with the phytoestrogen resveratrol (Rsv) on the expression of various brain-derived neurotrophic factor (BDNF) transcripts and the encoded protein pro-BDNF in the hippocampus of pregnant and embryonic rats. A low (0.25 g/kg body weight (BW)/day) dose of Eth produced an increase in the expression of BDNF exons I, III and IV and a decrease in that of the exon IX in embryos, but failed to affect BDNF transcript and pro-BDNF protein expression in adults. However, co-administration of Eth 0.25 g/kg·BW/day and Rsv led to increased expression of BDNF exons I, III and IV and to a small but significant increase in the level of pro-BDNF protein in maternal rats. A high (2.5 g/kg·BW/day) dose of Eth increased the expression of BDNF exons III and IV in embryos, but it decreased the expression of exon IX containing BDNF mRNAs in the maternal rats. While the high dose of Eth alone reduced the level of pro-BDNF in adults, it failed to change the levels of pro-BDNF in embryos. Eth differentially affects the expression pattern of BDNF transcripts and levels of pro-BDNF in the hippocampus of both adult and embryonic rats. PMID:26703578

  13. Recombinant albumin monolayers on latex particles.

    PubMed

    Sofińska, Kamila; Adamczyk, Zbigniew; Kujda, Marta; Nattich-Rak, Małgorzata

    2014-01-14

    The adsorption of recombinant human serum albumin (rHSA) on negatively charged polystyrene latex micro-particles was studied at pH 3.5 and the NaCl concentration range of 10(-3) to 0.15 M. The electrophoretic mobility of latex monotonically increased with the albumin concentration in the suspension. The coverage of adsorbed albumin was quantitatively determined using the depletion method, where the residual protein concentration was determined by electrokinetic measurements and AFM imaging. It was shown that albumin adsorption was irreversible. Its maximum coverage on latex varied between 0.7 mg m(-2) for 10(-3) M NaCl to 1.3 mg m(-2) for 0.15 M NaCl. The latter value matches the maximum coverage previously determined for human serum albumin on mica using the streaming potential method. The increase in the maximum coverage was interpreted in terms of reduced electrostatic repulsion among adsorbed molecules. These facts confirm that albumin adsorption at pH 3.5 is governed by electrostatic interactions and proceeds analogously to colloid particle deposition. The stability of albumin monolayers was measured in additional experiments where changes in the latex electrophoretic mobility and the concentration of free albumin in solutions were monitored over prolonged time periods. Based on these experimental data, a robust procedure of preparing albumin monolayers on latex particles of well-controlled coverage and molecule distribution was proposed. PMID:24354916

  14. Differential expression of glutathione S-transferases P1-1 and A1-1 at protein and mRNA levels in hepatocytes derived from human bone marrow mesenchymal stem cells.

    PubMed

    Allameh, Abdolamir; Esmaeli, Shahnaz; Kazemnejad, Somaieh; Soleimani, Masoud

    2009-06-01

    The aim of this study was to find out the profile of cellular glutathione (GSH) and GSH S-transferase (GST) in hepatocytes differentiated from adult mesenchymal stem cells (MSC). For this purpose, we have derived functionally active hepatocyte-like cells from normal human multipotent adult MSC. Then the differentiated cells were characterized by specific hepatic markers. The cellular GSH and GST catalytic activity toward 1-chloro-2,4-dinitrobenzene (CDNB) were determined in hepatocyte-like cells differentiated from MSC compared with undifferentiated MSC. Reverse transcription polymerase chain reaction (RT-PCR) and immunoblotting techniques were used to study GST-P1-1 and GST-A1-1 expression in differentiated and undifferentiated cells. The results showed that there is more than threefold increase in GST catalytic activity in hepatocytes recovered by day 14 of differentiation. GST-P1-1 mRNA expression was detected in both differentiated hepatocyte-like cells and their undifferentiated progenitors. Under similar conditions, only differentiated hepatocyte-like cells expressed GST-A1-1 mRNA. These results were further confirmed by showing that the undifferentiated cells expressed both GST-A and GST-P proteins. Unlike GST, the level of cellular GSH was declined (approximately 20%) in hepatocytes derived from MSC as compared to that of undifferentiated cells. These data may suggest that hepatogenic differentiation of human bone marrow MSC is accompanied with the regulation of factors participating in GSH conjugation pathway.

  15. Proto-oncogene mRNA levels and activities of multiple transcription factors in C3H 10T 1/2 murine embryonic fibroblasts exposed to 835.62 and 847.74 MHz cellular phone communication frequency radiation.

    PubMed

    Goswami, P C; Albee, L D; Parsian, A J; Baty, J D; Moros, E G; Pickard, W F; Roti Roti, J L; Hunt, C R

    1999-03-01

    This study was designed to determine whether two differently modulated radiofrequencies of the type generally used in cellular phone communications could elicit a general stress response in a biological system. The two modulations and frequencies studied were a frequency-modulated continuous wave (FMCW) with a carrier frequency of 835.62 MHz and a code division multiple-access (CDMA) modulation centered on 847.74 MHz. Changes in proto-oncogene expression, determined by measuring Fos, Jun, and Myc mRNA levels as well as by the DNA-binding activity of the AP1, AP2 and NF-kappaB transcription factors, were used as indicators of a general stress response. The effect of radiofrequency exposure on proto-oncogene expression was assessed (1) in exponentially growing C3H 10T 1/2 mouse embryo fibroblasts during their transition to plateau phase and (2) during transition of serum-deprived cells to the proliferation cycle after serum stimulation. Exposure of serum-deprived cells to 835.62 MHz FMCW or 847.74 MHz CDMA microwaves (at an average specific absorption rate, SAR, of 0.6 W/kg) did not significantly change the kinetics of proto-oncogene expression after serum stimulation. Similarly, these exposures did not affect either the Jun and Myc mRNA levels or the DNA-binding activity of AP1, AP2 and NF-kappaB in exponential cells during transit to plateau-phase growth. Therefore, these results suggest that the radiofrequency exposure is unlikely to elicit a general stress response in cells of this cell line under these conditions. However, statistically significant increases (approximately 2-fold, P = 0.001) in Fos mRNA levels were detected in exponential cells in transit to the plateau phase and in plateau-phase cells exposed to 835.62 MHz FMCW microwaves. For 847.74 MHz CDMA exposure, the increase was 1.4-fold (P = 0.04). This increase in Fos expression suggests that expression of specific genes could be affected by radiofrequency exposure. PMID:10073668

  16. Microporation is an efficient method for siRNA-induced knockdown of PEX5 in HepG2 cells: evaluation of the transfection efficiency, the PEX5 mRNA and protein levels and induction of peroxisomal deficiency.

    PubMed

    Ahlemeyer, Barbara; Vogt, Julia-Franziska; Michel, Vera; Hahn-Kohlberger, Petra; Baumgart-Vogt, Eveline

    2014-11-01

    The pathomechanism of peroxisomal biogenesis disorders (PBDs), a group of inherited autosomal recessive diseases with mutations of peroxin (PEX) genes, is not yet fully understood. Therefore, several knockout models, e.g., the PEX5 knockout mouse, have been generated exhibiting a complete loss of peroxisomal function. In this study, we wanted to knockdown PEX5 using the siRNA technology (1) to mimic milder forms of PBDs in which the mutated peroxin has some residual function and (2) to analyze the cellular consequences of a reduction of the PEX5 protein without adaption during the development as it is the case in a knockout animal. First, we tried to optimize the transfection of the hepatoma cell line HepG2 with PEX5 siRNA using different commercially available liposomal and non-liposomal transfection reagents (Lipofectamine(®) 2000, FuGENE 6, HiPerFect(®), INTERFERin™, RiboJuice™) as well as microporation using the Neon™ Transfection system. Microporation was found to be superior to the transfection reagents with respect to the transfection efficiency (100 vs. 0-70%), to the reduction of PEX5 mRNA (by 90 vs. 0-50%) and PEX5 protein levels (by 70 vs. 0-50%). Interestingly, we detected that a part of the cleaved PEX5 mRNA still existed as 3' fragment (15%) 24 h after microporation. Using microporation, we further analyzed whether the reduced PEX5 protein level impaired peroxisomal function. We indeed detected a reduced targeting of SKL-tagged proteins into peroxisomes as well as an increased oxidative stress as found in PBD patients and respective knockout mouse models. Knockdown of the PEX5 protein and functional consequences were at a maximum 48 h after microporation. Thereafter, the PEX5 protein was resynthesized, which may allow the temporal analysis of the loss as well as the reconstitution of peroxisomes in the future. In conclusion, we propose microporation as an efficient and reproducible method to transfect HepG2 cells with PEX5 siRNA. We succeeded

  17. Dorsal root ganglia isolated from Nf1+/- mice exhibit increased levels of mRNA expression of voltage-dependent sodium channels.

    PubMed

    Hodgdon, K E; Hingtgen, C M; Nicol, G D

    2012-03-29

    We reported previously that sensory neurons isolated from mice with a heterozygous mutation of the Nf1 gene (Nf1+/-) exhibited greater excitability and increased sodium current densities compared with wildtype mice. This raises the question as to whether the increased current density resulted from post-translational modifications or increased expression of sodium channels. Quantitative real-time polymerase chain reaction was used to measure expression levels of the nine different voltage-gated sodium channel α subunits and the four associated auxiliary β subunits in the dorsal root ganglia (DRG) obtained from wildtype and Nf1+/- mice. The Relative Expression Software Tool indicated that Nav1.1, Nav1.3, Nav1.7, and Nav1.8 were significantly elevated in DRG isolated from Nf1+/- mice. Expression of Nav1.2, Nav1.5, Nav1.6, and Nav1.9 were not significantly altered. The gene transcript for Nav1.4 was not detected. There were no significant changes in the relative expression levels of β subunits. The Nav1.9 subtype was the most abundant with Nav1.7 and Nav1.8 being the next most abundant subtypes, whereas Nav1.3 was relatively less abundant. For the β subunits, β1 was by far the most abundant subtype. These results demonstrate that the increased expression levels of Nav1.7, Nav1.8, and perhaps Nav1.1 in the Nf1+/- DRG make the largest contribution to the increased sodium current density and thus give rise to the enhanced excitability. Though the mechanisms by which many people with NF1 experience increased pain have not been elucidated, these abnormal painful states may involve elevated expression of specific sodium channel subtypes in small diameter nociceptive sensory neurons. PMID:22260870

  18. Posttranslational nitro-glycative modifications of albumin in Alzheimer's disease: implications in cytotoxicity and amyloid-β peptide aggregation.

    PubMed

    Ramos-Fernández, Eva; Tajes, Marta; Palomer, Ernest; Ill-Raga, Gerard; Bosch-Morató, Mònica; Guivernau, Biuse; Román-Dégano, Irene; Eraso-Pichot, Abel; Alcolea, Daniel; Fortea, Juan; Nuñez, Laura; Paez, Antonio; Alameda, Francesc; Fernández-Busquets, Xavier; Lleó, Alberto; Elosúa, Roberto; Boada, Mercé; Valverde, Miguel A; Muñoz, Francisco J

    2014-01-01

    Glycation and nitrotyrosination are pathological posttranslational modifications that make proteins prone to losing their physiological properties. Since both modifications are increased in Alzheimer's disease (AD) due to amyloid-β peptide (Aβ) accumulation, we have studied their effect on albumin, the most abundant protein in cerebrospinal fluid and blood. Brain and plasmatic levels of glycated and nitrated albumin were significantly higher in AD patients than in controls. In vitro turbidometry and electron microscopy analyses demonstrated that glycation and nitrotyrosination promote changes in albumin structure and biochemical properties. Glycated albumin was more resistant to proteolysis and less uptake by hepatoma cells occurred. Glycated albumin also reduced the osmolarity expected for a solution containing native albumin. Both glycation and nitrotyrosination turned albumin cytotoxic in a cell type-dependent manner for cerebral and vascular cells. Finally, of particular relevance to AD, these modified albumins were significantly less effective in avoiding Aβ aggregation than native albumin. In summary, nitrotyrosination and especially glycation alter albumin structural and biochemical properties, and these modifications might contribute for the progression of AD.

  19. Renal FcRn reclaims albumin but facilitates elimination of IgG.

    PubMed

    Sarav, Menaka; Wang, Ying; Hack, Bradley K; Chang, Anthony; Jensen, Mark; Bao, Lihua; Quigg, Richard J

    2009-09-01

    The widely distributed neonatal Fc receptor (FcRn) contributes to maintaining serum levels of albumin and IgG in adults. In the kidney, FcRn is expressed on the podocytes and the brush border of the proximal tubular epithelium. Here, we evaluated the role of renal FcRn in albumin and IgG metabolism. Compared with wild-type controls, FcRn(-/-) mice had a lower t((1/2)) for albumin (28.7 versus 39.9 h) and IgG (29.5 versus 66.1 h). Renal loss of albumin could account for the former, suggested by the progressive development of hypoalbuminemia in wild-type mice transplanted with FcRn-deficient kidneys. Furthermore, serum albumin levels returned to normal in FcRn(-/-) recipients of wild-type kidneys after removing the native FcRn-deficient kidneys. In contrast, renal loss could not account for the enhanced elimination of IgG in FcRn(-/-) mice. These mice had minimal urinary excretion of native and labeled IgG, which increased to wild-type levels in FcRn(-/-) recipients of a single FcRn-sufficient kidney (t((1/2)) of IgG was 21.7 h). Taken together, these data suggest that renal FcRn reclaims albumin, thereby maintaining the serum concentration of albumin, but facilitates the loss of IgG from plasma protein pools.

  20. Expression profile of peripheral tissue antigen genes in medullary thymic epithelial cells (mTECs) is dependent on mRNA levels of autoimmune regulator (Aire).

    PubMed

    Oliveira, Ernna H; Macedo, Claudia; Donate, Paula B; Almeida, Renata S; Pezzi, Nicole; Nguyen, Catherine; Rossi, Marcos A; Sakamoto-Hojo, Elza T; Donadi, Eduardo A; Passos, Geraldo A

    2013-01-01

    In the thymus of non-obese diabetic (NOD) mice, the expression of the autoimmune regulator (Aire) gene varies with age, and its down-regulation in young mice precedes the later emergence of type 1 diabetes mellitus (T1D). In addition, the insulin (Ins2) peripheral tissue antigen (PTA) gene, which is Aire-dependent, is also deregulated in these mice. Based in these findings, we hypothesized that the imbalance in PTA gene expression in the thymus can be associated with slight variations in Aire transcript levels. To test this, we used siRNA to knockdown Aire by in vivo electro-transfection of the thymus of BALB/c mice. The efficiency of the electro-transfection was monitored by assessing the presence of irrelevant Cy3-labeled siRNA in the thymic stroma. Importantly, Aire-siRNA reached medullary thymic epithelial cells (mTECs) down-regulating Aire. As expected, the in vivo Aire knockdown was partial and transient; the maximum 59% inhibition occurred in 48 h. The Aire knockdown was sufficient to down-regulate PTA genes; however, surprisingly, several others, including Ins2, were up-regulated. The modulation of these genes after in vivo Aire knockdown was comparable to that observed in NOD mice before the emergence of T1D. The in vitro transfections of 3.10 mTEC cells with Aire siRNA resulted in samples featuring partial (69%) and complete (100%) Aire knockdown. In these Aire siRNA-transfected 3.10 mTECs, the expression of PTA genes, including Ins2, was down-regulated. This suggests that the expression profile of PTA genes in mTECs is affected by fine changes in the transcription level of Aire.

  1. cDNA sequences and mRNA levels of two hexamerin storage proteins PinSP1 and PinSP2 from the Indianmeal moth, Plodia interpunctella.

    PubMed

    Zhu, Yu Cheng; Muthukrishnan, Subbaratnam; Kramer, Karl J

    2002-05-01

    In insects, storage proteins or hexamerins accumulate apparently to serve as sources of amino acids during metamorphosis and reproduction. Two storage protein-like cDNAs obtained from a cDNA library prepared from fourth instar larvae of the Indianmeal moth (Plodia interpunctella) were cloned and sequenced. The first clone, PinSP1, contained 2431 nucleotides with a 2295 nucleotide open reading frame (ORF) encoding a protein with 765 amino acid residues. The second cDNA, PinSP2, consisted of 2336 nucleotides with a 2250-nucleotide ORF encoding a protein with 750 amino acid residues. PinSP1 and PinSP2 shared 59% nucleotide sequence identity and 44% deduced amino acid sequence identity. A 17-amino acid signal peptide and a molecular mass of 90.4 kDa were predicted for the PinSP1 protein, whereas a 15-amino acid signal peptide and a mass of 88 kDa were predicted for PinSP2. Both proteins contained conserved insect larval storage protein signature sequence patterns and were 60-70% identical to other lepidopteran larval storage proteins. Expression of mRNA for both larval storage proteins was determined using the quantitative reverse transcription polymerase chain reaction method. Only very low levels were present in the second instar, but both mRNAs dramatically increased during the third instar, peaked in the fourth instar, decreased dramatically late in the same instar and pupal stages, and were undetectable during the adult stage. Males and females exhibited similar mRNA expression levels for both storage proteins during the pupal and adult stages. The results support the hypothesis that P. interpunctella, a species that does not feed after the larval stage, accumulates these two storage proteins as reserves during larval development for subsequent use in the pupal and adult stages.

  2. Comparison of the effect of lipopolysaccharide on tumor necrosis factor α (TNF-α) secretion and TNF and TNFR1 mRNA levels in feline endometrium throughout the estrous cycle during pyometra and after medroxyprogesterone acetate treatment

    PubMed Central

    JURSZA-PIOTROWSKA, Ewelina; SIEMIENIUCH, Marta J.

    2016-01-01

    Endotoxins released by Gram-negative bacteria are potent stimulators of tumor necrosis factor α (TNF-α) production. The objectives of this study were to evaluate plasma levels of TNF-α, TNF-α secretion, and mRNA levels of TNF and TNF-α receptor type 1 (TNFR1) following exposure to lipopolysaccharide (LPS). For this, we used cultured endometrial cells or organ cultures, throughout the estrous cycle, after hormone treatment with medroxyprogesterone acetate (MPA), and during pyometra. Plasma TNF-α concentrations were increased in animals at estrus (P < 0.05) compared to other groups. In the LPS-challenged endometrium, secretion of TNF-α by tissues collected during estrus increased (P < 0.001) compared to that of other groups. LPS, alone or combined with TNF-α, upregulated TNF gene expression in the feline endometrium at diestrus (P < 0.001 for both treatments), in queens treated short-term with MPA (P < 0.01 and P < 0.05, respectively) and in queens treated long-term with MPA (P < 0.01 and P < 0.001, respectively). During pyometra, TNF and TNFR1 mRNA were increased only after tissues were challenged with TNF-α and LPS (P < 0.001 and P < 0.01, respectively). When cultured endometrial cells were challenged with LPS, the concentration of TNF-α increased only in epithelial cells after 4 h and 12 h (P < 0.05 and P < 0.01, respectively). Since LPS did not affect stromal cells, but TNF-α increased its own transcript after 2 h (P < 0.01), 4 h (P < 0.05) and 12 h (P < 0.001), we assume that stromal cells are not directly involved in pathogen recognition, as was the case for epithelial cells. PMID:27097764

  3. 21 CFR 640.80 - Albumin (Human).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... a sterile solution of the albumin derived from human plasma. (b) Source material. The source material of Albumin (Human) shall be plasma recovered from Whole Blood prepared as prescribed in §§ 640.1 through 640.5, or Source Plasma prepared as prescribed in §§ 640.60 through 640.76. (c) Additives...

  4. 21 CFR 640.80 - Albumin (Human).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... a sterile solution of the albumin derived from human plasma. (b) Source material. The source material of Albumin (Human) shall be plasma recovered from Whole Blood prepared as prescribed in §§ 640.1 through 640.5, or Source Plasma prepared as prescribed in §§ 640.60 through 640.76. (c) Additives...

  5. 21 CFR 640.80 - Albumin (Human).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... a sterile solution of the albumin derived from human plasma. (b) Source material. The source material of Albumin (Human) shall be plasma recovered from Whole Blood prepared as prescribed in §§ 640.1 through 640.5, or Source Plasma prepared as prescribed in §§ 640.60 through 640.76. (c) Additives...

  6. 21 CFR 640.80 - Albumin (Human).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... a sterile solution of the albumin derived from human plasma. (b) Source material. The source material of Albumin (Human) shall be plasma recovered from Whole Blood prepared as prescribed in §§ 640.1 through 640.5, or Source Plasma prepared as prescribed in §§ 640.60 through 640.76. (c) Additives...

  7. 21 CFR 640.80 - Albumin (Human).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... a sterile solution of the albumin derived from human plasma. (b) Source material. The source material of Albumin (Human) shall be plasma recovered from Whole Blood prepared as prescribed in §§ 640.1 through 640.5, or Source Plasma prepared as prescribed in §§ 640.60 through 640.76. (c) Additives...

  8. Total Protein and Albumin/Globulin Ratio Test

    MedlinePlus

    ... limited. Home Visit Global Sites Search Help? Total Protein and Albumin/Globulin (A/G) Ratio Share this ... Globulin Ratio; A/G Ratio Formal name: Total Protein; Albumin to Globulin Ratio Related tests: Albumin ; Liver ...

  9. Albuminated Glycoenzymes: Enzyme Stabilization through Orthogonal Attachment of a Single-Layered Protein Shell around a Central Glycoenzyme Core.

    PubMed

    Ritter, Dustin W; Newton, Jared M; Roberts, Jason R; McShane, Michael J

    2016-05-18

    Here we demonstrate an approach to stabilize enzymes through the orthogonal covalent attachment of albumin on the single-enzyme level. Albuminated glycoenzymes (AGs) based upon glucose oxidase and catalase from Aspergillus niger were prepared in this manner. Gel filtration chromatography and dynamic light scattering support modification, with an increase in hydrodynamic radius of ca. 60% upon albumination. Both AGs demonstrate a marked resistance to aggregation during heating to 90 °C, but this effect is more profound in albuminated catalase. The functional characteristics of albuminated glucose oxidase vary considerably with exposure type. The AG's thermal inactivation is reduced more than 25 times compared to native glucose oxidase, and moderate stabilization is observed with one month storage at 37 °C. However, albumination has no effect on operational stability of glucose oxidase.

  10. Evidence of heterogeneity within colorectal liver metastases for allelic losses, mRNA level expression and in vitro response to chemotherapeutic agents.

    PubMed

    Goasguen, Nicolas; de Chaisemartin, Cecile; Brouquet, Antoine; Julié, Catherine; Prevost, Gregoire P; Laurent-Puig, Pierre; Penna, Christophe

    2010-09-01

    A goal of oncology is to predict chemosensitivity of tumors. This approach assumes that in a patient all tumor deposits are homogeneous. We have tested the heterogeneity between several samples of the same liver metastasis (LM; intrametastatic heterogeneity) or between multiple LM (intermetastatic heterogeneity) from colorectal cancer in a single patient. In 16 untreated patients, several fragments of LM and nontumorous liver were collected. Heterogeneity to anticancer drug treatment was assessed in vitro on primary tissue cultures on poly-HEMA-coated surface with or without the topoisomerase-I inhibitor metabolite SN-38. Heterogeneity of response to SN-38 was observed in 55% of cases from one fragment to another in the same LM and in 64% of cases from one LM to another in the same patient. Allelic losses were characterized on 5q, 8p, 17p, 18q, 22q using 29 microsatellites markers. Seven patients (58%) had a perfect homogeneity for allelic losses in their LM whereas 3 (21%) had intrametastatic and 2 (18%) had intermetastatic heterogeneity. The analysis of gene expression was carried out by real time RT-PCR quantification using specific probes for TS, TOPO1, ERCC1, and CES2. Level expression of genes tested appeared heterogeneous with average variations of 57(+ or - 23)%, 52(+ or - 18)%, 53(+ or - 18)%, 56(+ or - 16)% for TS, TOPO1, ERCC1, and CES2 respectively for intermetastatic variability and 47(+ or - 26)%, 36(+ or - 14)%, 38(+ or - 19)%, and 56(+ or - 29)%, respectively for intrametastatic variability. Our results demonstrate intermetastatic and intrametastatic heterogeneity suggesting that pretherapeutic analysis of a single tumor biopsy is likely to lead to a misinterpretation of sensitivity to anticancer treatment.

  11. Effect of low dose exposure to the herbicide atrazine and its metabolite on cytochrome P450 aromatase and steroidogenic factor-1 mRNA levels in the brain of premetamorphic bullfrog tadpoles (Rana catesbeiana)

    PubMed Central

    Gunderson, Mark P.; Veldhoen, Nik; Skirrow, Rachel C.; Macnab, Magnus K.; Ding, Wei; van Aggelen, Graham; Helbing, Caren C.

    2011-01-01

    The transcriptional regulator steroidogenic factor 1 (SF-1) and the enzyme cytochrome P450 aromatase (CYP19) play a central role in modulation of a broad range of tissue-specific developmental processes associated with hormone homeostasis that includes differentiation of the central nervous system. SF-1 and CYP19 expression may be targeted by a variety of endocrine disruptive agents prevalent within the environment. In the present study, we cloned and characterized partial sequences for bullfrog (Rana catesbeiana) SF-1 and CYP19 and examined the effects of a 48 h exposure to 1 and 100 μg/L of the herbicide atrazine (ATZ) and its major metabolite desethylatrazine (DEA), as well as 5 ng/L of the estrogenic chemical, 17α-ethynylestradiol (EE2), and 673 ng/L of the thyroid hormone, 3,5, 3′-triiodothyronine (T3), on SF-1 and CYP19 mRNA abundance in the brains of premetamorphic bullfrog tadpoles. Quantitative RT-PCR analysis showed an increase in CYP19 mRNA following a 48 h exposure to EE2 but not T3 while no significant changes in SF-1 transcript levels occurred. We observed a strong positive correlation between CYP19 and SF-1 transcript abundance in the ATZ-exposed animals which was not evident with DEA- or hormone-exposed tadpoles. Our results are intriguing in light of reported behavioral changes in ATZ-exposed frogs and suggest that further research is warranted to examine the relationship and role of CYP19 and SF-1 in amphibian brain development. PMID:21371610

  12. Effect of low dose exposure to the herbicide atrazine and its metabolite on cytochrome P450 aromatase and steroidogenic factor-1 mRNA levels in the brain of premetamorphic bullfrog tadpoles (Rana catesbeiana).

    PubMed

    Gunderson, Mark P; Veldhoen, Nik; Skirrow, Rachel C; Macnab, Magnus K; Ding, Wei; van Aggelen, Graham; Helbing, Caren C

    2011-03-01

    The transcriptional regulator steroidogenic factor 1 (SF-1) and the enzyme cytochrome P450 aromatase (CYP19) play a central role in modulation of a broad range of tissue-specific developmental processes associated with hormone homeostasis that includes differentiation of the central nervous system. SF-1 and CYP19 expression may be targeted by a variety of endocrine disruptive agents prevalent within the environment. In the present study, we cloned and characterized partial sequences for bullfrog (Rana catesbeiana) SF-1 and CYP19 and examined the effects of a 48h exposure to 1 and 100μg/l of the herbicide atrazine (ATZ) and its major metabolite desethylatrazine (DEA), as well as 5ng/l of the estrogenic chemical, 17α-ethynylestradiol (EE(2)), and 673ng/l of the thyroid hormone, 3,5,3'-triiodothyronine (T(3)), on SF-1 and CYP19 mRNA abundance in the brains of premetamorphic bullfrog tadpoles. Quantitative RT-PCR analysis showed an increase in CYP19 mRNA following a 48h exposure to EE(2) but not T(3) while no significant changes in SF-1 transcript levels occurred. We observed a strong positive correlation between CYP19 and SF-1 transcript abundance in the ATZ-exposed animals which was not evident with DEA- or hormone-exposed tadpoles. Our results are intriguing in light of reported behavioral changes in ATZ-exposed frogs and suggest that further research is warranted to examine the relationship and role of CYP19 and SF-1 in amphibian brain development.

  13. Lipopolysaccharide-Induced CXCL10 mRNA Level and Six Stimulant-mRNA Combinations in Whole Blood: Novel Biomarkers for Bortezomib Responses Obtained from a Prospective Multicenter Trial for Patients with Multiple Myeloma.

    PubMed

    Watanabe, Takashi; Mitsuhashi, Masato; Sagawa, Morihiko; Ri, Masaki; Suzuki, Kenshi; Abe, Masahiro; Ohmachi, Ken; Nakagawa, Yasunori; Nakamura, Shingen; Chosa, Mizuki; Iida, Shinsuke; Kizaki, Masahiro

    2015-01-01

    To identify predictive biomarkers for clinical responses to bortezomib treatment, 0.06 mL of each whole blood without any cell separation procedures was stimulated ex vivo using five agents, and eight mRNAs were quantified. In six centers, heparinized peripheral blood was prospectively obtained from 80 previously treated or untreated, symptomatic multiple myeloma (MM) patients with measurable levels of M-proteins. The blood sample was procured prior to treatment as well as 2-3 days and 1-3 weeks after the first dose of bortezomib, which was intravenously administered biweekly or weekly, during the first cycle. Six stimulant-mRNA combinations; that is, lipopolysaccharide (LPS)-granulocyte-macrophage colony-stimulating factor (GM-CSF), LPS-CXCL chemokine 10 (CXCL10), LPS-CCL chemokine 4 (CCL4), phytohemagglutinin-CCL4, zymosan A (ZA)-GMCSF and ZA-CCL4 showed significantly higher induction in the complete and very good partial response group than in the stable and progressive disease group, as determined by both parametric (t-test) and non-parametric (unpaired Mann-Whitney test) tests. Moreover, LPS-induced CXCL10 mRNA expression was significantly suppressed 2-3 days after the first dose of bortezomib in all patients, as determined by both parametric (t-test) and non-parametric (paired Wilcoxon test) tests, whereas the complete and very good partial response group showed sustained suppression 1-3 weeks after the first dose. Thus, pretreatment LPS-CXCL10 mRNA and/or the six combinations may serve as potential biomarkers for the response to bortezomib treatment in MM patients.

  14. Regulation of the glutamate transporter by amino acid deprivation and associated effects on the level of EAAC1 mRNA in the renal epithelial cell line NBL-I.

    PubMed Central

    Plakidou-Dymock, S; McGivan, J D

    1993-01-01

    The glutamate transport system of the bovine renal epithelial cell line NBL-1 was studied. The Km for Na(+)-dependent glutamate transport was found to be 13.8 +/- 2.4 microM (Vmax. 365 +/- 19.2 pmol/3 min per mg) and for Na(+)-dependent aspartate transport 4.5 +/- 1.1 microM (Vmax. 108 +/- 6.3 pmol/3 min per mg). The Km values are in close agreement with those expected for high-affinity Na(+)-dependent glutamate transport by System XAG-. Upon deprivation of amino acids, the Vmax. for Na+/aspartate co-transport rose to 203 +/- 6.0 pmol/3 min per mg (Km 3.8 +/- 0.5 microns). A probe was constructed to the high-affinity excitatory amino acid carrier (EAAC1) [Kanai and Hediger (1992) Nature (London) 360, 467-471]. The probe hybridized to a 3.5 kb transcript. On deprivation of amino acids, the level of EAAC1 mRNA decreased sharply before the measurable increase in transport levels, but was subsequently restored to control levels. A motif, which we propose is linked to amino acid deprivation, was found in the EAAC1 primary sequence. Images Figure 6 PMID:8240287

  15. Molecular mechanism of extinction of liver-specific functions in mouse hepatoma x rat fibroblast hybrids: extinction of the albumin gene

    SciTech Connect

    Papaconstantinou, J.; Wong, E.; Ratrie, H.; Szpirer, C.; Szpirer, J.

    1982-01-01

    Hybrids formed by the fusion of mouse hepatoma (BWTG3) and rat fibroblast (JF1) cells exhibit the extinction of mouse albumin and ..cap alpha..-fetoprotein synthesis. Karyotype analyses suggest that all parental chromosomes are present in the hybrids. The extinction, therefore, of mouse hepatocyte genes is attributed to the inhibitory action of the rat genome. In these studies, we show that these hybrids possess and express the mouse ..beta..-glucyronidase gene (which is encoded on the same chromosome as the mouse albumin and ..cap alpha..-fetoprotein gene), and we present data of Southern blot analysis which demonstrate that such hybrids have indeed retained both mouse and rat albumin DNA sequences. In addition, using mouse albumin cDNA, we have shown by cDNA-RNA reassociation kinetics that albumin mRNA is virtually absent in these hybrids. We conclude from these studies that the extinction of albumin synthesis involves a mechanism which results in the loss of cytoplasmic albumin mRNA.

  16. Expression levels of Protocadherin-alpha transcripts are decreased by nonsense-mediated mRNA decay with frameshift mutations and by high DNA methylation in their promoter regions.

    PubMed

    Kaneko, Ryosuke; Kawaguchi, Masahumi; Toyama, Tomoko; Taguchi, Yusuke; Yagi, Takeshi

    2009-02-01

    The mouse protocadherin (Pcdh) clusters, Pcdh-alpha, -beta, and -gamma, are located on chromosome 18. Many polymorphic variations are found in the Pcdh-alpha genes in wild-derived and laboratory mouse strains. In comparing the expression levels of Pcdh-alpha isoforms among several strains, we observed lower expression levels of Pcdh-alpha9 in BLG2 and BFM/2, and of Pcdh-alpha8 in C57BL/6 (B6) than in the other strains. For Pcdh-alpha8, high DNA methylation (72.7%) in the promoter region was found only in B6, whereas 36.4-44.3% methylation was seen in the other strains. On the other hand, the Pcdh-alpha9 DNA-methylation levels were similar (23.6-36.3%) among the strains regardless of the difference in expression levels. Interestingly, however, the Pcdh-alpha9 variable exon in both BLG2 and BFM/2 included a premature termination codon (PTC) generated by a nucleotide deletion or insertion. Treatment with emetine, a potent inhibitor of nonsense-mediated mRNA decay (NMD), increased the expression level of Pcdh-alpha9 from the BLG2-Pcdh-alpha locus. These data indicate that the transcription levels of mature Pcdh-alpha mRNAs are decreased by the DNA-methylation state of the Pcdh-alpha promoter regions and by the NMD pathway during RNA maturation. And we correct some previous data on Sugino, H., Toyama, T., Taguchi, Y., Esumi, S., Miyazaki, M., Yagi, T., (2004) Negative and positive effects of an IAP-LTR on nearby Pcdaalpha gene expression in the central nervous system and neuroblastoma cell lines, Gene 337 91-103.

  17. Serum albumin and risk of venous thromboembolism

    PubMed Central

    Folsom, Aaron. R.; Lutsey, Pamela L.; Heckbert, Susan R.; Cushman, Mary

    2010-01-01

    Summary The incidence of venous thromboembolism (VTE) is increased in patients with albuminuria. However, whether a low serum albumin concentration is associated with increased risk of VTE has been a matter of controversy. We determined the association of serum albumin with VTE incidence in two large, prospective, population-based cohorts: the Atherosclerosis Risk in Communities (ARIC) Study (n = 15,300) and the Cardiovascular Health Study (CHS) (n = 5,400). Validated VTE occurrence (n=462 in ARIC and n=174 in CHS) was ascertained during follow-up. In both studies, after adjustment for age, sex, race, use of hormone replacement therapy, estimated GFR, history of cancer, and diabetes, serum albumin tended to be associated inversely with VTE. The adjusted hazard ratio per standard deviation lower albumin was 1.18 (95% CI = 1.08, 1.31) in ARIC and 1.10 (95% CI = 0.94, 1.29) in CHS. The hazard ratio for albumin below (versus above) the fifth percentile was 1.28 (95% CI = 0.90, 1.84) in ARIC and 1.80 (95% CI = 1.11, 2.93) in CHS. In conclusion, low serum albumin was a modest marker of increased VTE risk. The observed association likely does not reflect cause and effect, but rather that low serum albumin reflects a hyperinflammatory or hypercoagulable state. Whether this association has clinical relevance warrants further study. PMID:20390234

  18. Calmodulin Involvement in Stress-Activated Nuclear Localization of Albumin in JB6 Epithelial Cells.

    SciTech Connect

    Weber, Thomas J.; Negash, Sewite; Smallwood, Heather S.; Ramos, Kenneth S.; Thrall, Brian D.; Squier, Thomas C.

    2004-06-15

    We report that in response to oxidative stress, albumin is translocated to the nucleus where it binds in concert with known transcription factors to an antioxidant response element (ARE), which controls the expression of glutathione-S-transferase and other antioxidant enzymes, functioning to mediate adaptive cellular responses. To investigate the mechanisms underlying this adaptive cell response, we have identified linkages between calcium signaling and the nuclear translocation of albumin in JB6 epithelial cells. Under resting conditions, albumin and the calcium regulatory protein, calmodulin (CaM), co-immunoprecipitate using antibodies against either protein, indicating a tight association. Calcium activation of CaM disrupts the association between CaM and albumin, suggesting that transient increases in cytosolic calcium levels function to mobilize intracellular albumin to facilitate its translocation into the nucleus. Likewise, nuclear translocation of albumin is induced by exposure of cells to hydrogen peroxide or a phorbol ester, indicating a functional linkage between reactive oxygen species, calcium, and PKC-signaling pathways. Inclusion of an antioxidant enzyme (i.e., superoxide dismutase) blocks nuclear translocation, suggesting that the oxidation of sensitive proteins functions to coordinate the adaptive cellular response. These results suggest that elevated calcium transients, and associated increases in reactive oxygen species, contribute to adaptive cellular responses through the mobilization and nuclear translocation of cellular albumin to mediate the transcriptional regulation of antioxidant responsive elements.

  19. KiSS-1 in the mammalian ovary: distribution of kisspeptin in human and marmoset and alterations in KiSS-1 mRNA levels in a rat model of ovulatory dysfunction.

    PubMed

    Gaytán, F; Gaytán, M; Castellano, J M; Romero, M; Roa, J; Aparicio, B; Garrido, N; Sánchez-Criado, J E; Millar, R P; Pellicer, A; Fraser, H M; Tena-Sempere, M

    2009-03-01

    Kisspeptins, the products of the KiSS-1 gene acting via G protein-coupled receptor 54 (GPR54), have recently emerged as pivotal signals in the hypothalamic network triggering the preovulatory surge of gonadotropins and, hence, ovulation. Additional actions of kisspeptins at other levels of the hypothalamic-pituitary-ovarian axis have been suggested but remain to date scarcely studied. We report herein the pattern of expression of KiSS-1 and GPR54 in the human and nonhuman primate ovary and evaluate changes in ovarian KiSS-1 expression in a rat model of ovulatory dysfunction. KiSS-1 and GPR54 mRNAs were detected in human ovarian tissue and cultured granulosa-lutein cells. In good agreement, kisspeptin immunoreactivity was observed in cyclic human and marmoset ovaries, with prominent signals in the theca layer of growing follicles, corpora lutea, interstitial gland, and ovarian surface epithelium. GPR54 immunoreactivity was also found in human theca and luteal cells. Administration of indomethacin to cyclic female rats disturbed ovulation and resulted in a dramatic drop in ovarian KiSS-1, but not GPR54, cyclooxygenase-2 (COX-2), or progesterone receptor, mRNA levels at the time of ovulation; an effect mimicked by the selective COX-2 inhibitor NS398 and rescued by coadministration of PGE(2). Likewise, the stimulatory effect of human choriogonadotropin on ovarian KiSS-1 expression was partially blunted by indomethacin. In contrast, KiSS-1 mRNA levels remained unaltered in another model of ovulatory failure, i.e., the RU486-treated rat. In summary, we document for the first time the expression of KiSS-1/kisspeptin and GPR54 in the human and nonhuman primate ovary. In addition, we provide evidence for the ability of inhibitors of COX-2, known to disturb follicular rupture and ovulation, to selectively alter the expression of KiSS-1 gene in rat ovary. Altogether, our results are suggestive of a conserved role of local KiSS-1 in the direct control of ovarian functions in

  20. Acute and chronic effect of ethanol on hepatic albumin synthesis in rat liver in vitro

    SciTech Connect

    Ohtake, H.; Kato, S.; Murawaki, Y.; Kishimoto, Y.; Wakushima, T.; Hirayama, C.

    1986-08-01

    To study the effects of ethanol and its metabolite on albumin metabolism, we examined the hepatic albumin synthesis and secretion in male Wistar rats in vitro, following acute and chronic ethanol administration. After acute ethanol administration, proalbumin synthesis in rat liver in vitro, declined to 47% of the control level at 4 hrs, the lowest level, and increased thereafter to slightly higher than the control level at 16 hrs. On the other hand, chronic ethanol administration for 4 weeks, increased proalbumin synthesis to 1.5 times that of the control level. In the acute ethanol group, a significant negative correlation was observed between proalbumin radioactivity and the concentration of hepatic ethanol and acetaldehyde. The variation between proalbumin radioactivity and hepatic ethanol concentration was wider than the variation between proalbumin and hepatic acetaldehyde. In the chronic ethanol group, ethanol was not detected in the liver. No significant differences from the proalbumin/albumin ratio were seen at any time point after acute or chronic ethanol administration. These findings suggest that the effects of ethanol on hepatic albumin synthesis differ with the method of ethanol administration, and acetaldehyde and/or ethanol is involved in the reduction in albumin synthesis, however, proalbumin-albumin conversion is not disturbed.

  1. Glial inhibitors influence the mRNA and protein levels of mGlu2/3, 5 and 7 receptors and potentiate the analgesic effects of their ligands in a mouse model of neuropathic pain.

    PubMed

    Osikowicz, Maria; Skup, Malgorzata; Mika, Joanna; Makuch, Wioletta; Czarkowska-Bauch, Julita; Przewlocka, Barbara

    2009-12-15

    Metabotropic glutamate (mGlu) receptors, which are present on neurons and glial cells, have been shown to play a role in neuropathic pain. The present study sought to investigate how the glial inhibitors minocycline and pentoxifylline alter the effect that chronic constriction injury (CCI) has on the expression of mGlu receptors and on their associated ligands. RT-PCR analysis revealed that seven days after CCI, the mRNA levels of glial markers C1q and GFAP, as well as those of mGlu5 and mGlu3, but not mGlu7, were elevated in the lumbar spinal cord - ipsilateral to the injury. The protein levels of the microglial marker OX42, the astroglial marker GFAP, and mGlu5 receptor protein were increased, whereas the levels of mGlu2/3 and mGlu7 receptor proteins were reduced. Preemptive and repeated intraperitoneal (i.p.) administration (16 and 1h before nerve injury and then twice daily for seven days) of minocycline (30mg/kg) and pentoxifylline (20mg/kg) prevented the injury-induced changes in the levels of mGlu3 and mGlu5 receptor mRNAs and the injury-induced changes in the protein levels of all the receptors. Repeated administration of minocycline and pentoxifylline significantly attenuated CCI-induced allodynia (von Frey test) and hyperalgesia (cold plate test) measured on day seven after injury and potentiated the antiallodynic and antihyperalgesic effects of single i.p. and intrathecal (i.t.) injections of mGlu receptor ligands: MPEP, LY379268 or AMN082. We conclude that attenuation of injury-induced glial activation can reduce glutamatergic activity, thereby contributing to regulation of pain sensation. PMID:19782473

  2. [At what concentration should albumin be prescribed?].

    PubMed

    Mantz, J

    1996-01-01

    Human albumin is available either as a 4 or a 20% solution. Only the latter is a plasma expander which increases volaemia by an amount corresponding to the four-fold of the infused volume. In addition, the sodium load by the latter per gramme of albumin is five times lower as both solutions have the same sodium content. Therefore, when the administration of albumin is indicated, the 20% solution should be preferred, as well as for volume expansion as for other uses, due to a decreased sodium load. However, this recommendation has not been substantiated by comparative studies.

  3. Ischemia-modified albumin in type 2 diabetic patients with and without peripheral arterial disease

    PubMed Central

    Shao-gang; WEI, Chun-ling; HONG, Bing; YU, Wei-nan

    2011-01-01

    OBJECTIVE: To determine whether there is an association between serum ischemia-modified albumin and the risk factor profile in type 2 diabetic patients with peripheral arterial disease and to identify the risk markers for peripheral arterial disease. METHODS: Participants included 290 patients (35.2% women) with type 2 diabetes. The ankle-brachial pressure index was measured using a standard protocol, and peripheral arterial disease was defined as an ankle-brachial index <0.90 or ≥1.3. The basal ischemia-modified albumin levels and clinical parameters were measured and analyzed. The risk factors for peripheral arterial disease were examined by multiple logistic analyses. RESULTS: Age, systolic blood pressure, total cholesterol, low-density lipoprotein cholesterol, urine albumin, homocysteine, and ischemia-modified albumin were significantly higher in patients with peripheral arterial disease than in disease-free patients (p<0.05), while ankle-brachial index was lower in the former group (p<0.05). Ischemia-modified albumin was positively associated with HbA1c and homocysteine levels (r = 0.220, p = 0.030; r = 0.446, p = 0.044, respectively), while no correlation was found with ankle-brachial index. Multiple logistic analyses indicated that HbA1c, systolic blood pressure, homocysteine and ischemia-modified albumin were independent risk factors for peripheral arterial disease in the diabetic subjects. CONCLUSION: The baseline ischemia-modified albumin levels were significantly higher and positively associated with HbA1c and homocysteine levels in type 2 diabetic patients with peripheral arterial disease. Ischemia-modified albumin was a risk marker for peripheral arterial disease. Taken together, these results might be helpful for monitoring diabetic peripheral arterial disease. PMID:22012037

  4. Antioxidant activity of albumin-bound bilirubin.

    PubMed Central

    Stocker, R; Glazer, A N; Ames, B N

    1987-01-01

    Bilirubin, when bound to human albumin and at concentrations present in normal human plasma, protects albumin-bound linoleic acid from peroxyl radical-induced oxidation in vitro. Initially, albumin-bound bilirubin (Alb-BR) is oxidized at the same rate as peroxyl radicals are formed and biliverdin is produced stoichiometrically as the oxidation product. On an equimolar basis, Alb-BR successfully competes with uric acid for peroxyl radicals but is less efficient in scavenging these radicals than vitamin C. These results show that 1 mol of Alb-BR can scavenge 2 mol of peroxyl radicals and that small amounts of plasma bilirubin are sufficient to prevent oxidation of albumin-bound fatty acids as well as of the protein itself. The data indicate a role for Alb-BR as a physiological antioxidant in plasma and the extravascular space. PMID:3475708

  5. Paclitaxel Albumin-stabilized Nanoparticle Formulation

    Cancer.gov

    This page contains brief information about paclitaxel albumin-stabilized nanoparticle formulation and a collection of links to more information about the use of this drug, research results, and ongoing clinical trials.

  6. Raman microspectroscopy of nanodiamond-induced structural changes in albumin.

    PubMed

    Svetlakova, Anastasiya S; Brandt, Nikolay N; Priezzhev, Alexander V; Chikishev, Andrey Yu

    2015-04-01

    Nanodiamonds (NDs) are promising agents for theranostic applications due to reported low toxicity and high biocompatibility, which is still being extensively tested on cellular, tissue, and organism levels. It is presumed that for experimental and future clinical applications, NDs will be administered into the organism via the blood circulation system. In this regard, the interaction of NDs with blood components needs to be thoroughly studied. We studied the interaction of carboxylated NDs (cNDs) with albumin, one of the major proteins of blood plasma. After 2-h long in vitro incubation in an aqueous solution of the protein, 100-nm cNDs were dried and the dry samples were studied with the aid of Raman microspectroscopy. The spectroscopic data indicate significant conformational changes that can be due to cND–protein interaction. A possible decrease in the functional activity of albumin related to the conformational changes must be taken into account in the in vivo applications. PMID:25901656

  7. Raman microspectroscopy of nanodiamond-induced structural changes in albumin

    NASA Astrophysics Data System (ADS)

    Svetlakova, Anastasiya S.; Brandt, Nikolay N.; Priezzhev, Alexander V.; Chikishev, Andrey Yu.

    2015-04-01

    Nanodiamonds (NDs) are promising agents for theranostic applications due to reported low toxicity and high biocompatibility, which is still being extensively tested on cellular, tissue, and organism levels. It is presumed that for experimental and future clinical applications, NDs will be administered into the organism via the blood circulation system. In this regard, the interaction of NDs with blood components needs to be thoroughly studied. We studied the interaction of carboxylated NDs (cNDs) with albumin, one of the major proteins of blood plasma. After 2-h long in vitro incubation in an aqueous solution of the protein, 100-nm cNDs were dried and the dry samples were studied with the aid of Raman microspectroscopy. The spectroscopic data indicate significant conformational changes that can be due to cND-protein interaction. A possible decrease in the functional activity of albumin related to the conformational changes must be taken into account in the in vivo applications.

  8. Bisalbuminemia. A new molecular variant, albumin Vancouver.

    PubMed

    Frohlich, J; Kozier, J; Campbell, D J; Curnow, J V; Tárnoky, A L

    1978-11-01

    Of 18 members of a Fiji Indian family investigated, eight of the 12 males and two of the six females had an electrophoretically slow-type bisalbuminemia (alloalbuminemia). The albumin was characterized by the hiterto unique ratio of the two bands (Al A 35%: variant 65%), and by dye-binding studies and electrophoretic mobility in different media. The data suggest that this is a new variant, which we propose to call albumin Vancouver (Al Va).

  9. Albumin-induced apoptosis of glomerular parietal epithelial cells is modulated by extracellular signal-regulated kinase 1/2

    PubMed Central

    Ohse, Takamoto; Krofft, Ron D.; Wu, Jimmy S.; Eddy, Allison A.; Pippin, Jeffrey W.; Shankland, Stuart J.

    2012-01-01

    Background. The biological role(s) of glomerular parietal epithelial cells (PECs) is not fully understood in health or disease. Given its location, PECs are constantly exposed to low levels of filtered albumin, which is increased in nephrotic states. We tested the hypothesis that PECs internalize albumin and increased uptake results in apoptosis. Methods. Confocal microscopy of immunofluorescent staining and immunohistochemistry were used to demonstrate albumin internalization in PECs and to quantitate albumin uptake in normal mice and rats