Science.gov

Sample records for albumin total protein

  1. Total Protein and Albumin/Globulin Ratio Test

    MedlinePlus

    ... limited. Home Visit Global Sites Search Help? Total Protein and Albumin/Globulin (A/G) Ratio Share this ... Globulin Ratio; A/G Ratio Formal name: Total Protein; Albumin to Globulin Ratio Related tests: Albumin ; Liver ...

  2. Study of the effect of total serum protein and albumin concentrations on canine fructosamine concentration.

    PubMed Central

    Loste, A; Marca, M C

    1999-01-01

    The relationship among serum fructosamine concentration and total serum protein and albumin concentrations were evaluated in healthy and sick dogs (diabetics and dogs with insulinoma were not included). Fructosamine was determined using a commercial colorimetric nitroblue tetrazolium method applied to the Technicon RA-500 (Bayer). Serum fructosamine concentration was not correlated to total protein in normoproteinemic (r = 0.03) and hyperproteinemic dogs (r = 0.29), but there was a high correlation (r = 0.73) in hypoproteinemic dogs. Similar comparison between serum fructosamine and albumin concentrations showed middle correlation (r = 0.49) in normoalbuminemic dogs and high degree of correlation (r = 0.67) in hypoalbuminemic dogs. These results showed the importance of recognizing serum glucose concentration as well as total serum protein and albumin concentrations in the assay of canine serum fructosamine concentration. PMID:10369572

  3. Continuous versus intermittent exercise effects on urinary excretion of albumin and total protein.

    PubMed

    Montelpare, W J; Klentrou, P; Thoden, J

    2002-09-01

    Several studies have reported post-exercise increases of urinary concentrations of plasma proteins. However, under normal conditions, through mechanisms of size and electrical charge selection, the kidney restricts the clearance of molecules as large as albumin. Post-exercise increases in albuminuria occur following the physiological stress of intense exercise, most likely as a result of the exercise induced blood acidity changes which lead to a change in the arrangement of the albumin molecule, and subsequently the filtration characteristics of the glomerular capillary wall. The purpose of the present study was therefore to determine the extent to which different types of exercise could induce a transient condition of post-exercise increases in the urinary output of total protein and albumin. All 14 males, who agreed to participate in the study, performed a continuous and an intermittent cycling protocol on a stationary bicycle ergometer. The results showed that: a) intermittent exercise had a greater influence than continuous exercise on the total output of urine albumin, and of urine total protein; b) concentrations of blood pH and blood lactate, were associated with changes in the clearance of urine albumin and urine total protein. Post-exercise proteinuria response seems to be transient and therefore renal trauma is not suspected at the early stages of observation. Furthermore, these results indicate that the kidney undergoes distinct physiological adjustments during exercise, and that these adjustments are relative to the intensity of the exercise stress. PMID:12413038

  4. Protein Crystal Serum Albumin

    NASA Technical Reports Server (NTRS)

    1998-01-01

    As the most abundant protein in the circulatory system albumin contributes 80% to colloid osmotic blood pressure. Albumin is also chiefly responsible for the maintenance of blood pH. It is located in every tissue and bodily secretion, with extracellular protein comprising 60% of total albumin. Perhaps the most outstanding property of albumin is its ability to bind reversibly to an incredible variety of ligands. It is widely accepted in the pharmaceutical industry that the overall distribution, metabolism, and efficiency of many drugs are rendered ineffective because of their unusually high affinity for this abundant protein. An understanding of the chemistry of the various classes of pharmaceutical interactions with albumin can suggest new approaches to drug therapy and design. Principal Investigator: Dan Carter/New Century Pharmaceuticals

  5. Relation of plasma calcium to total protein and albumin in African grey (Psittacus erithacus) and Amazon (Amazona spp.) parrots.

    PubMed

    Lumeij, J T

    1990-10-01

    A significant correlation was found between total calcium and albumin concentration in the plasma of 70 African grey parrots (r=0.37; P<0.05). A correlation formula for plasma calcium concentration in the African grey parrot was derived on the basis of the concentration of albumin: Adjusted Ca (mmol/1) = Ca (mmol/1) - 0.015 Albumin (g/1) + 0.4. About 14% of the variability in calcium was attributable to the change in the concentration of plasma albumin concentration (R2=0.137). The correlation between calcium and total protein in African greys and between calcium and albumin and calcium and total protein in Amazons was not significant. PMID:18679980

  6. [The significance of low levels of total proteins, albumins, globulins and complement factors in ascitic fluid and the development of spontaneous bacterial peritonitis in patients with liver cirrhosis].

    PubMed

    Ljubicić, N; Bilić, A; Babić, Z; Roić, D; Banić, M

    1992-01-01

    Spontaneous bacterial peritonitis is one of the most common complications of ascitic fluid in patients with liver cirrhosis. The aim of this study was to investigate the role of total protein, albumin, globulin and complement ascitic fluid concentrations in development of spontaneous bacterial peritonitis in patients with liver cirrhosis. In patients with liver cirrhosis and spontaneous bacterial peritonitis (n = 8) the ascitic fluid total protein, albumin and globulin concentrations were significantly lower than in patients with sterile ascites (n = 11) (p < 0.01). The ascitic fluid complement C3 and C4 concentrations were significantly lower in patients with spontaneous bacterial peritonitis than in patients with sterile ascites (9.1 +/- 3.1 mg/dL to 22.9 +/- 17.4 mg/dL, p < 0.01; 3.8 +/- 5.9 mg/dL to 8.2 +/- 5.9 mg/dL, p < 0.01, respectively). The ascites total protein, albumin, globulin and complement concentrations in cirrhotic patients with spontaneous bacterial peritonitis were significantly lower than in patients with sterile ascites demonstrating the importance of those factors in ascitic fluid defense against secondary bacterial infection. PMID:1343119

  7. Total protein

    MedlinePlus

    The total protein test measures the total amount of two classes of proteins found in the fluid portion of your ... nutritional problems, kidney disease or liver disease . If total protein is abnormal, you will need to have more ...

  8. Total protein

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003483.htm Total protein To use the sharing features on this page, please enable JavaScript. The total protein test measures the total amount of two classes ...

  9. Use of 125I- and 51Cr-Labeled Albumin for the Measurement of Gastrointestinal and Total Albumin Catabolism*

    PubMed Central

    Kerr, Robert M.; Bois, John J. Du; Holt, Peter R.

    1967-01-01

    A method for the simultaneous measurement of gastrointestinal protein loss and total albumin turnover entailing the use of a combination of 125iodine- and 51chromium-labeled albumin is described. Albumin turnover was calculated by the measurement of albumin-125I plasma decay and cumulative urinary excretion, and the results obtained agreed closely with previous studies utilizing albumin-131I. Gastrointestinal catabolism was calculated from the rate of fecal excretion of 51Cr and the specific activity of plasma albumin-51Cr, and these data were related to the calculated albumin turnover results. During the period of 6-14 days after administration, the ratio of specific activties of albumin-125I and -51Cr in plasma and in extravascular spaces or gastric and biliary secretions remained almost identical. Fecal excretion of 51Cr was also quite stable at this time. In six normal subjects gastrointestinal catabolism accounted for less than 10% of total albumin catabolism. Excessive gastrointestinal protein losses did not contribute to the low serum albumin in three patients with cirrhosis or in two adults with the nephrotic syndrome. Multiple mechanisms leading to hypoalbuminemia were demonstrated in other subjects with a variety of gastrointestinal disorders. Images PMID:5630419

  10. Malnutrition in Alzheimer’s Disease, Dementia with Lewy Bodies, and Frontotemporal Lobar Degeneration: Comparison Using Serum Albumin, Total Protein, and Hemoglobin Level

    PubMed Central

    Hashimoto, Mamoru; Tanaka, Hibiki; Fujise, Noboru; Matsushita, Masateru; Miyagawa, Yusuke; Hatada, Yutaka; Fukuhara, Ryuji; Hasegawa, Noriko; Todani, Shuji; Matsukuma, Kengo; Kawano, Michiyo; Ikeda, Manabu

    2016-01-01

    Malnutrition among dementia patients is an important issue. However, the biochemical markers of malnutrition have not been well studied in this population. The purpose of this study was to compare biochemical blood markers among patients with Alzheimer’s disease (AD), dementia with Lewy bodies (DLB), and frontotemporal lobar degeneration (FTLD). A total of 339 dementia outpatients and their family caregivers participated in this study. Low serum albumin was 7.2 times more prevalent among patients with DLB and 10.1 times more prevalent among those with FTLD than among those with AD, with adjustment for age. Low hemoglobin was 9.1 times more common in female DLB patients than in female AD patients, with adjustment for age. The levels of biochemical markers were not significantly correlated with cognitive function. Family caregivers of patients with low total protein, low albumin, or low hemoglobin were asked if the patients had loss of weight or appetite; 96.4% reported no loss of weight or appetite. In conclusion, nutritional status was worse in patients with DLB and FTLD than in those with AD. A multidimensional approach, including blood testing, is needed to assess malnutrition in patients with dementia. PMID:27336725

  11. (PCG) Protein Crystal Growth Human Serum Albumin

    NASA Technical Reports Server (NTRS)

    1989-01-01

    (PCG) Protein Crystal Growth Human Serum Albumin. Contributes to many transport and regulatory processes and has multifunctional binding properties which range from various metals, to fatty acids, hormones, and a wide spectrum of therapeutic drugs. The most abundant protein of the circulatory system. It binds and transports an incredible variety of biological and pharmaceutical ligands throughout the blood stream. Principal Investigator on STS-26 was Larry DeLucas.

  12. (PCG) Protein Crystal Growth Horse Serum Albumin

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Horse Serum Albumin crystals grown during the USML-1 (STS-50) mission's Protein Crystal Growth Glovebox Experiment. These crystals were grown using a vapor diffusion technique at 22 degrees C. The crystals were allowed to grow for nine days while in orbit. Crystals of 1.0 mm in length were produced. The most abundant blood serum protein, regulates blood pressure and transports ions, metabolites, and therapeutic drugs. Principal Investigator was Edward Meehan.

  13. Total oxidant status, total antioxidant capacity and ischemia modified albumin levels in children with celiac disease.

    PubMed

    Sayar, Ersin; Özdem, Sebahat; Uzun, Gülbahar; İşlek, Ali; Yılmaz, Aygen; Artan, Reha

    2015-01-01

    In our study, we aimed to investigate ischemia modified albumin (IMA) as an oxidative stress marker, as well as other oxidant and antioxidant markers that have not been evaluated in children with celiac disease. A total of 37 pediatric patients who were diagnosed with celiac disease (CD) and 29 healthy children were enrolled in this prospective study. We evaluated the IMA, total oxidant status, total antioxidant capacity, sulfhydryl, and advanced oxidation protein products in all of the subjects. We also compared the levels at the time of the diagnosis, and following a gluten-free diet (GFD) in the children with CD. While the IMA and the other oxidant marker levels were significantly higher in the patient group compared to the control group, the antioxidant marker levels were found to be significantly lower in the patient group, compared to the control group. We also determined that the tissue transglutaminase IgA showed a highly positive correlation, and that the IMA showed a moderately positive correlation with the Marsh-Oberhuber histopathological stage. Additionally, the IMA and other oxidant marker levels were significantly lower, while the antioxidant marker levels were significantly higher after the GFD, compared to the pre-diet period. We detected that oxidative stress played a role in the pathogenesis of CD, and that this could be evaluated using oxidative stress markers, which would regress after the GFD. We also detected that IMA is a marker that shows a correlation with the histopathological stage, and may be used in the diagnosis. PMID:27411418

  14. Purification, identification and preliminary crystallographic studies of a 2S albumin seed protein from Lens culinaris

    SciTech Connect

    Gupta, Pankaj; Gaur, Vineet; Salunke, Dinakar M.

    2008-08-01

    A 2S albumin from L. culinaris was purified and crystallized and preliminary crystallographic studies were carried out. Lens culinaris (lentil) is a widely consumed high-protein-content leguminous crop. A 2S albumin protein (26.5 kDa) has been identified using NH{sub 2}-terminal sequencing from a 90% ammonium sulfate saturation fraction of total L. culinaris seed protein extract. The NH{sub 2}-terminal sequence shows very high homology to PA2, an allergy-related protein from Pisum sativum. The 2S albumin protein was purified using a combination of size-exclusion and ion-exchange chromatography. Crystals of the 2S seed albumin obtained using the hanging-drop vapour-diffusion method diffracted to 2.5 Å resolution and were indexed in space group P4{sub 1} (or P4{sub 3}), with unit-cell parameters a = b = 78.6, c = 135.2 Å.

  15. CSF total protein

    MedlinePlus

    CSF total protein is a test to determine the amount of protein in your spinal fluid, also called cerebrospinal fluid (CSF). ... The normal protein range varies from lab to lab, but is typically about 15 to 60 mg/dL. Note: mg/dL = ...

  16. PEGylated Albumin-Based Polyion Complex Micelles for Protein Delivery.

    PubMed

    Jiang, Yanyan; Lu, Hongxu; Chen, Fan; Callari, Manuela; Pourgholami, Mohammad; Morris, David L; Stenzel, Martina H

    2016-03-14

    An increasing amount of therapeutic agents are based on proteins. However, proteins as drug have intrinsic problems such as their low hydrolytic stability. Delivery of proteins using nanoparticles has increasingly been the focus of interest with polyion complex micelles, prepared from charged block copolymer and the oppositely charged protein, as an example of an attractive carrier for proteins. Inspired by this approach, a more biocompatible pathway has been developed here, which replaces the charged synthetic polymer with an abundant protein, such as albumin. Although bovine serum albumin (BSA) was observed to form complexes with positively charged proteins directly, the resulting protein nanoparticle were not stable and aggregated to large precipitates over the course of a day. Therefore, maleimide functionalized poly(oligo (ethylene glycol) methyl ether methacrylate) (MI-POEGMEMA) (Mn = 26000 g/mol) was synthesized to generate a polymer-albumin conjugate, which was able to condense positively charged proteins, here lysozyme (Lyz) as a model. The PEGylated albumin polyion complex micelle with lysozyme led to nanoparticles between 15 and 25 nm in size depending on the BSA to Lyz ratio. The activity of the encapsulated protein was tested using Sprouty 1 (C-12; Spry1) proteins, which can act as an endogenous angiogenesis inhibitor. Condensation of Spry1 with the PEGylated albumin could improve the anticancer efficacy of Spry1 against the breast cancer cells lowering the IC50 value of the protein. Furthermore, the high anticancer efficacy of the POEGMEMA-BSA/Spry1 complex micelle was verified by effectively inhibiting the growth of three-dimensional MCF-7 multicellular tumor spheroids. The PEGylated albumin complex micelle has great potential as a drug delivery vehicle for a new generation of cancer pharmaceuticals. PMID:26809948

  17. Protein extracts from cultured cells contain nonspecific serum albumin.

    PubMed

    Miyara, Masatsugu; Umeda, Kanae; Ishida, Keishi; Sanoh, Seigo; Kotake, Yaichiro; Ohta, Shigeru

    2016-06-01

    Serum is an important component of cell culture media. The present study demonstrates contamination of intracellular protein extract by bovine serum albumin from the culture media and illustrates how this contamination can cause the misinterpretation of western blot results. Preliminary experiments can prevent the misinterpretation of some experimental results, and optimization of the washing process may enable specific protein detection. PMID:26967711

  18. Biologically active protein fragments containing specific binding regions of serum albumin or related proteins

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor)

    1998-01-01

    In accordance with the present invention, biologically active protein fragments can be constructed which contain only those specific portions of the serum albumin family of proteins such as regions known as subdomains IIA and IIIA which are primarily responsible for the binding properties of the serum albumins. The artificial serums that can be prepared from these biologically active protein fragments are advantageous in that they can be produced much more easily than serums containing the whole albumin, yet still retain all or most of the original binding potential of the full albumin proteins. In addition, since the protein fragment serums of the present invention can be made from non-natural sources using conventional recombinant DNA techniques, they are far safer than serums containing natural albumin because they do not carry the potentially harmful viruses and other contaminants that will be found in the natural substances.

  19. 21 CFR 862.1645 - Urinary protein or albumin (nonquantitative) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Urinary protein or albumin (nonquantitative) test... Chemistry Test Systems § 862.1645 Urinary protein or albumin (nonquantitative) test system. (a) Identification. A urinary protein or albumin (nonquantitative) test system is a device intended to...

  20. 21 CFR 862.1645 - Urinary protein or albumin (nonquantitative) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Urinary protein or albumin (nonquantitative) test... Chemistry Test Systems § 862.1645 Urinary protein or albumin (nonquantitative) test system. (a) Identification. A urinary protein or albumin (nonquantitative) test system is a device intended to...

  1. 21 CFR 862.1645 - Urinary protein or albumin (nonquantitative) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Urinary protein or albumin (nonquantitative) test... Chemistry Test Systems § 862.1645 Urinary protein or albumin (nonquantitative) test system. (a) Identification. A urinary protein or albumin (nonquantitative) test system is a device intended to...

  2. 21 CFR 862.1645 - Urinary protein or albumin (nonquantitative) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Urinary protein or albumin (nonquantitative) test... Chemistry Test Systems § 862.1645 Urinary protein or albumin (nonquantitative) test system. (a) Identification. A urinary protein or albumin (nonquantitative) test system is a device intended to...

  3. 21 CFR 862.1645 - Urinary protein or albumin (nonquantitative) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Urinary protein or albumin (nonquantitative) test... Chemistry Test Systems § 862.1645 Urinary protein or albumin (nonquantitative) test system. (a) Identification. A urinary protein or albumin (nonquantitative) test system is a device intended to...

  4. The effects of Hespan on serum and lymphatic albumin, globulin, and coagulant protein.

    PubMed Central

    Lucas, C E; Denis, R; Ledgerwood, A M; Grabow, D

    1988-01-01

    The effects of hydroxyethyl starch (Hespan) resuscitation on serum and lymphatic proteins following hemorrhagic shock were studied in 34 splenectomized dogs. Following shock, five randomly assigned treatment groups received the shed blood plus 50 mL/kg of salt solution (RL) or RL with varying concentrations (0.22-1.5 gm/kg) of Hespan. Each dog received 50 ml/kg/d of the test solution for three days after shock. Prothrombin time, partial thromboplastin time, thrombin time, total serum protein, albumin, globulin, and coagulant protein activity of fibrinogen, prothrombin, and factor VIII were measured before shock, at the end of shock, following resuscitation, and on day 3; thoracic duct lymph values were obtained on day 3. Hespan-supplemented resuscitation lowered all serum proteins including albumin, globulin and coagulant proteins; concomitantly, the lymph protein rose after Hespan resuscitation. This decrease in serum proteins and rise in lymph proteins parallels similar results after albumin resuscitation in man and animals and suggests that Hespan induces an oncotically controlled extravascular protein relocation. Further studies on the significance of these findings need to be conducted. PMID:2451485

  5. Chromatographic and traditional albumin isotherms on cellulose: a model for wound protein adsorption on modified cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Albumin is the most abundant protein found in healing wounds. Traditional and chromatogrpahic protein isotherms of albumin binding on modified cotton fibers are useful in understanding albumin binding to cellulose wound dressings. An important consideration in the design of cellulosic wound dressin...

  6. Albumin-Like Protein is the Major Protein Constituent of Luminal Fluid in the Human Endolymphatic Sac

    PubMed Central

    Kim, Sung Huhn; Kim, Un-Kyoung; Lee, Won-Sang; Bok, Jinwoong; Song, Jung-Whan; Seong, Je Kyung; Choi, Jae Young

    2011-01-01

    The endolymphatic sac (ES) is an inner ear organ that is connected to the cochleo-vestibular system through the endolymphatic duct. The luminal fluid of the ES contains a much higher concentration of proteins than any other compartment of the inner ear. This high protein concentration likely contributes to inner ear fluid volume regulation by creating an osmotic gradient between the ES lumen and the interstitial fluid. We characterized the protein profile of the ES luminal fluid of patients (n = 11) with enlarged vestibular aqueducts (EVA) by proteomics. In addition, we investigated differences in the protein profiles between patients with recent hearing deterioration and patients without hearing deterioration. The mean total protein concentration of the luminal fluid was 554.7±94.6 mg/dl. A total of 58 out of 517 spots detected by 2-DE were analyzed by MALDI-TOF MS. The protein profile of the luminal fluid was different from the profile of plasma. Proteins identified from 29 of the spots were also present in the MARC-filtered human plasma; however, the proteins identified from the other 25 spots were not detected in the MARC-filtered human plasma. The most abundant protein in the luminal fluid was albumin-like proteins, but most of them were not detected in MARC-filtered human plasma. The concentration of albumin-like proteins was higher in samples from patients without recent hearing deterioration than in patients with recent hearing deterioration. Consequently, the protein of ES luminal fluid is likely to be originated from both the plasma and the inner ear and considering that inner ear fluid volumes increase abnormally in patients with EVA following recent hearing deterioration, it is tempting to speculate that albumin-like proteins may be involved in the regulation of inner ear fluid volume through creation of an osmotic gradient during pathological conditions such as endolymphatic hydrops. PMID:21738753

  7. Photo selective protein immobilization using bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Kim, Wan-Joong; Kim, Ansoon; Huh, Chul; Park, Chan Woo; Ah, Chil Seong; Kim, Bong Kyu; Yang, Jong-Heon; Chung, Kwang Hyo; Choi, Yo Han; Hong, Jongcheol; Sung, Gun Yong

    2012-11-01

    A simple and selective technique which immobilizes protein onto a solid substrate by using UV illumination has been developed. In protein immobilization, a Bovine serum albumin (BSA) performed bifunctional role as a cross-linker between substrate and proteins and as a blocker inhibiting a nonspecific protein adsorption. A new photo-induced protein immobilization process has been investigated at each step by fluorescence microscopy, ellipsometry, and Fourier transform infrared (FT-IR) spectroscopy. A UV photomask has been used to induce selective protein immobilization on target regions of the surface of the SiO2 substrates under UV illumination with negligible nonspecific binding. The UV illumination also showed improved photostability than the conventional methods which employed bifunctional photo-crosslinker molecules of photo-reactive diazirine. This new UV illumination-based photo-addressable protein immobilization provides a new approach for developing novel protein microarrays for multiplexed sensing as well as other types of bio-immobilization in biomedical devices and biotechnologies.

  8. Insulin Is Required to Maintain Albumin Expression by Inhibiting Forkhead Box O1 Protein.

    PubMed

    Chen, Qing; Lu, Mingjian; Monks, Bobby R; Birnbaum, Morris J

    2016-01-29

    Diabetes is accompanied by dysregulation of glucose, lipid, and protein metabolism. In recent years, much effort has been spent on understanding how insulin regulates glucose and lipid metabolism, whereas the effect of insulin on protein metabolism has received less attention. In diabetes, hepatic production of serum albumin decreases, and it has been long established that insulin positively controls albumin gene expression. In this study, we used a genetic approach in mice to identify the mechanism by which insulin regulates albumin gene transcription. Albumin expression was decreased significantly in livers with insulin signaling disrupted by ablation of the insulin receptor or Akt. Concomitant deletion of Forkhead Box O1 (Foxo1) in these livers rescued the decreased albumin secretion. Furthermore, activation of Foxo1 in the liver is sufficient to suppress albumin expression. These results suggest that Foxo1 acts as a repressor of albumin expression. PMID:26668316

  9. A Monoclonal IgM Protein with Antibody-like Activity for Human Albumin

    PubMed Central

    Hauptman, Stephen; Tomasi, Thomas B.

    1974-01-01

    The serum of a patient (L'ec) with an IgM lambda monoclonal protein was noted to bind albumin on immunoelectrophoresis. Analytical ultracentrifugation of the L'ec serum demonstrated 23S and 12S peaks, but no 4S (albumin) boundary. Immunologically identical 20S and 9S IgM proteins were isolated from the serum and the addition in vitro of either the patient's albumin or albumin isolated from normal serum was shown to reconstitute the 23S and 12S boundaries. The binding of high molecular weight IgM to albumin was demonstated by Sephadex G200 chromatography with 125I-labeled albumin and isolated IgM. Immunoelectrophoresis of the L'ec IgM developed with aggregated albumin (reverse immunoelectrophoresis) also demonstrated the binding of albumin to IgM. That all of the patient's IgM complexed with albumin was shown by affinity chromatography employing an aggregated albumin-immunoadsorbent column. Binding was shown to be of the noncovalent type by polyacrylamide gel electrophoresis in 8 M urea. With hot trypsin proteolysis, Fabμ and Fcμ5 fragments were isolated, and monomer albumin was shown to complex only with the Fabμ fragment by both analytical ultracentrifugation and molecular sieve chromatogaphy employing 125I-labeled Fab fragments. 1 mol of Fabμ fragment bound 1 mol of monomer albumin. Polymers of human albumin, produced by heat aggregation, precipitated with the isolated L'ec protein on gel diffusion analysis and, when coated on sheep red blood cells, gave a hemagglutination titer greater than 1 million with the whole L'ec serum. 50 additional monoclonal IgM, 33 IgA, and 80 IgG sera failed to show precipitation or hemagglutination with aggregated albumin. Native monomer albumin inhibited precipitation only at high concentrations (> 50 mg/ml); dimer albumin or fragments of albumin produced by trypsin digestion inhibited at low concentrations (0.4 mg/ml). No reactivity occurred with the albumin of five other mammalian species, including bovine. The L'ec protein

  10. Recombinant fusion protein of albumin-retinol binding protein inactivates stellate cells

    SciTech Connect

    Choi, Soyoung; Park, Sangeun; Kim, Suhyun; Lim, Chaeseung; Kim, Jungho; Cha, Dae Ryong; Oh, Junseo

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer We designed novel recombinant albumin-RBP fusion proteins. Black-Right-Pointing-Pointer Expression of fusion proteins inactivates pancreatic stellate cells (PSCs). Black-Right-Pointing-Pointer Fusion proteins are successfully internalized into and inactivate PSCs. Black-Right-Pointing-Pointer RBP moiety mediates cell specific uptake of fusion protein. -- Abstract: Quiescent pancreatic- (PSCs) and hepatic- (HSCs) stellate cells store vitamin A (retinol) in lipid droplets via retinol binding protein (RBP) receptor and, when activated by profibrogenic stimuli, they transform into myofibroblast-like cells which play a key role in the fibrogenesis. Despite extensive investigations, there is, however, currently no appropriate therapy available for tissue fibrosis. We previously showed that the expression of albumin, composed of three homologous domains (I-III), inhibits stellate cell activation, which requires its high-affinity fatty acid-binding sites asymmetrically distributed in domain I and III. To attain stellate cell-specific uptake, albumin (domain I/III) was coupled to RBP; RBP-albumin{sup domain} {sup III} (R-III) and albumin{sup domain} {sup I}-RBP-albumin{sup III} (I-R-III). To assess the biological activity of fusion proteins, cultured PSCs were used. Like wild type albumin, expression of R-III or I-R-III in PSCs after passage 2 (activated PSCs) induced phenotypic reversal from activated to fat-storing cells. On the other hand, R-III and I-R-III, but not albumin, secreted from transfected 293 cells were successfully internalized into and inactivated PSCs. FPLC-purified R-III was found to be internalized into PSCs via caveolae-mediated endocytosis, and its efficient cellular uptake was also observed in HSCs and podocytes among several cell lines tested. Moreover, tissue distribution of intravenously injected R-III was closely similar to that of RBP. Therefore, our data suggest that albumin-RBP fusion protein comprises

  11. Retinol Binding Protein-Albumin Domain III Fusion Protein Deactivates Hepatic Stellate Cells

    PubMed Central

    Park, Sangeun; Choi, Soyoung; Lee, Min-Goo; Lim, Chaeseung; Oh, Junseo

    2012-01-01

    Liver fibrosis is characterized by accumulation of extracellular matrix, and activated hepatic stellate cells (HSCs) are the primary source of the fibrotic neomatrix and considered as therapeutic target cells. We previously showed that albumin in pancreatic stellate cells (PSCs), the key cell type for pancreatic fibrogenesis, is directly involved in the formation of vitamin A-containing lipid droplets, inhibiting PSC activation. In this study, we evaluated the anti-fibrotic activity of both albumin and retinol binding protein-albumin domain III fusion protein (R-III), designed for stellate cell-targeted delivery of albumin III, in rat primary HSCs and investigated the underlying mechanism. Forced expression of albumin or R-III in HSCs after passage 2 (activated HSCs) induced lipid droplet formation and deactivated HSCs, whereas point mutations in high-affinity fatty acid binding sites of albumin domain III abolished their activities. Exogenous R-III, but not albumin, was successfully internalized into and deactivated HSC-P2. When HSCs at day 3 after plating (pre-activated HSCs) were cultured in the presence of purified R-III, spontaneous activation of HSCs was inhibited even after passage 2, suggestive of a potential for preventive effect. Furthermore, treatment of HSCs-P2 with R-III led to a significant reduction in both cytoplasmic levels of all-trans retinoic acid and the subsequent retinoic acid signaling. Therefore, our data suggest that albumin deactivates HSCs with reduced retinoic acid levels and that R-III may have therapeutic and preventive potentials on liver fibrosis. PMID:23161170

  12. Depletion of the highly abundant protein albumin from human plasma using the Gradiflow.

    PubMed

    Rothemund, Deborah L; Locke, Vicki L; Liew, Audrey; Thomas, Theresa M; Wasinger, Valerie; Rylatt, Dennis B

    2003-03-01

    Analysis of complex protein samples by two-dimensional electrophoresis (2-DE) is often more difficult in the presence of a few predominant proteins. In plasma, proteins such as albumin mask proteins of lower abundance, as well as significantly limiting the amount of protein that can be loaded onto the immobilized pH gradient strip. In this paper the Gradiflow, a preparative electrophoresis system, has been used to deplete human plasma of the highly abundant protein albumin under native and denatured conditions. A three step protocol incorporating a charge separation to collect proteins with an isoelectric point greater than albumin and two size separations to isolate proteins larger and smaller than albumin, was used. When the albumin depleted fractions were analysed on pH 3-10 2-DE gels, proteins that were masked by albumin were revealed and proteins not seen in the unfractionated plasma sample were visualised. Matrix-assisted laser desorption/ionisation-time of flight mass spectrometry analysis confirmed the identification of the protein that lies beneath albumin to be C4B-binding protein alpha chain. The liquid fractions from the Gradiflow separations were also analysed by liquid chromatography-tandem mass spectrometry to confirm the proteins were separated according to their size and charge mobility in an electric field. PMID:12627381

  13. Fusion protein of retinol-binding protein and albumin domain III reduces liver fibrosis

    PubMed Central

    Lee, Hongsik; Jeong, Hyeyeun; Park, Sangeun; Yoo, Wonbaek; Choi, Soyoung; Choi, Kyungmin; Lee, Min-Goo; Lee, Mihwa; Cha, DaeRyong; Kim, Young-Sik; Han, Jeeyoung; Kim, Wonkon; Park, Sun-Hwa; Oh, Junseo

    2015-01-01

    Activated hepatic stellate cells (HSCs) play a key role in liver fibrosis, and inactivating HSCs has been considered a promising therapeutic approach. We previously showed that albumin and its derivative designed for stellate cell-targeting, retinol-binding protein–albumin domain III fusion protein (referred to as R-III), inactivate cultured HSCs. Here, we investigated the mechanism of action of albumin/R-III in HSCs and examined the anti-fibrotic potential of R-III in vivo. R-III treatment and albumin expression downregulated retinoic acid (RA) signaling which was involved in HSC activation. RA receptor agonist and retinaldehyde dehydrogenase overexpression abolished the anti-fibrotic effect of R-III and albumin, respectively. R-III uptake into cultured HSCs was significantly decreased by siRNA-STRA6, and injected R-III was localized predominantly in HSCs in liver. Importantly, R-III administration reduced CCl4- and bile duct ligation-induced liver fibrosis. R-III also exhibited a preventive effect against CCl4-inducd liver fibrosis. These findings suggest that the anti-fibrotic effect of albumin/R-III is, at least in part, mediated by downregulation of RA signaling and that R-III is a good candidate as a novel anti-fibrotic drug. PMID:25864124

  14. TOTAL LYMPHOCYTE COUNT AND SERUM ALBUMIN AS PREDICTORS OF NUTRITIONAL RISK IN SURGICAL PATIENTS

    PubMed Central

    ROCHA, Naruna Pereira; FORTES, Renata Costa

    2015-01-01

    Background: Early detection of changes in nutritional status is important for a better approach to the surgical patient. There are several nutritional measures in clinical practice, but there is not a complete method for determining the nutritional status, so, health professionals should only choose the best method to use. Aim: To evaluate the total lymphocyte count and albumin as predictors of identification of nutritional risk in surgical patients. Methods: Prospective longitudinal study was conducted with 69 patients undergoing surgery of the gastrointestinal tract. The assessment of nutritional status was evaluated by objective methods (anthropometry and biochemical tests) and subjective methods (subjective global assessment). Results: All parameters used in the nutritional assessment detected a high prevalence of malnutrition, with the exception of BMI which detected only 7.2% (n=5). The albumin (p=0.01), the total lymphocytes count (p=0.02), the percentage of adequacy of skinfolds (p<0.002) and the subjective global assessment (p<0.001) proved to be useful as predictors of risk of postoperative complications, since the smaller the values of albumin and lymphocyte count and higher the score the subjective global assessment were higher risks of surgical complications. Conclusions: A high prevalence of malnutrition was found, except for BMI. The use of albumin and total lymphocyte count were good predictor for the risk of postoperative complications and when used with other methods of assessing the nutritional status, such as the subjective global assessment and the percentage of adequacy of skinfolds, can be useful for identification of nutritional risk and postoperative complications. PMID:26537145

  15. Lipid transfer proteins and 2S albumins as allergens.

    PubMed

    Pastorello, E A; Pompei, C; Pravettoni, V; Brenna, O; Farioli, L; Trambaioli, C; Conti, A

    2001-01-01

    Plant lipid transfer proteins, a widespread family of proteins, have been recently identified as important food allergens. Their common structural features, such as eight conserved cysteines forming disulfide bridges, basic isoelectric point and high similarity in amino acid sequence, are the basis of allergic clinical cross-reactivity. This has been demonstrated for the LTP allergens of the Prunoideae subfamily, whose similarity is about 95% as demonstrated for the purified allergens of peach, apricot, plum and apple. A relevant aspect is the existence of sequence homology of LTPs of botanically unrelated foods, as demonstrated for LTPs of maize and peach. A class of food allergens of well recognized clinical importance is that of seed storage 2S albumins. They have been identified in the most diffused edible seeds and nuts, such as mustard, sesame, Brazil nut, walnut and peanut. In particular, a strong correlation between IgE-binding to these proteins and food-induced anaphylaxis has been demonstrated for Brazil nut and sesame seeds. PMID:11298008

  16. Glass transitions in aqueous solutions of protein (bovine serum albumin).

    PubMed

    Shinyashiki, Naoki; Yamamoto, Wataru; Yokoyama, Ayame; Yoshinari, Takeo; Yagihara, Shin; Kita, Rio; Ngai, K L; Capaccioli, Simone

    2009-10-29

    Measurements by adiabatic calorimetry of heat capacities and enthalpy relaxation rates of a 20% (w/w) aqueous solution of bovine serum albumin (BSA) by Kawai, Suzuki, and Oguni [Biophys. J. 2006, 90, 3732] have found several enthalpy relaxations at long times indicating different processes undergoing glass transitions. In a quenched sample, one enthalpy relaxation at around 110 K and another over a wide temperature range (120-190 K) were observed. In a sample annealed at 200-240 K after quenching, three separated enthalpy relaxations at 110, 135, and above 180 K were observed. Dynamics of processes probed by adiabatic calorimetric data are limited to long times on the order of 10(3) s. A fuller understanding of the processes can be gained by probing the dynamics over a wider time/frequency range. Toward this goal, we performed broadband dielectric measurements of BSA-water mixtures at various BSA concentrations over a wide frequency range of thirteen decades from 2 mHz to 1.8 GHz at temperatures from 80 to 270 K. Three relevant relaxation processes were detected. For relaxation times equal to 100 s, the three processes are centered approximately at 110, 135, and 200 K, in good agreement with those observed by adiabatic calorimetry. We have made the following interpretation of the molecular origins of the three processes. The fastest relaxation process having relaxation time of 100 or 1000 s at ca. 110 K is due to the secondary relaxation of uncrystallized water (UCW) in the hydration shell. The intermediate relaxation process with 100 s relaxation time at ca. 135 K is due to ice. The slowest relaxation process having relaxation time of 100 s at ca. 200 K is interpreted to originate from local chain conformation fluctuations of protein slaved by water. Experimental evidence supporting these interpretations include the change of temperature dependence of the relaxation time of the UCW at approximately T(gBSA) approximately = 200 K, the glass transition temperature of

  17. Ellipsometric studies of synthetic albumin-binding chitosan-derivatives and selected blood plasma proteins

    NASA Astrophysics Data System (ADS)

    Sarkar, Sabyasachi

    This dissertation summarizes work on the synthesis of chitosan-derivatives and the development of ellipsometric methods to characterize materials of biological origin. Albumin-binding chitosan-derivatives were synthesized via addition reactions that involve amine groups naturally present in chitosan. These surfaces were shown to have an affinity towards human serum albumin via ELISA, UV spectroscopy and SDS PAGE. Modified surfaces were characterized with IR ellipsometry at various stages of their synthesis using appropriate optical models. It was found that spin cast chitosan films were anisotropic in nature. All optical models used for characterizing chitosan-derivatives were thus anisotropic. Chemical signal dependence on molecular structure and composition was illustrated via IR spectroscopic ellipsometry (IRSE). An anisotropic optical model of an ensemble of Lorentz oscillators were used to approximate material behavior. The presence of acetic acid in spin-cast non-neutralized chitosan samples was thus shown. IRSE application to biomaterials was also demonstrated by performing a step-wise chemical characterizations during synthesis stages. Protein adsorbed from single protein solutions on these modified surfaces was monitored by visible in-situ variable wavelength ellipsometry. Based on adsorption profiles obtained from single protein adsorption onto silicon surfaces, lumped parameter kinetic models were developed. These models were used to fit experimental data of immunoglobulin-G of different concentrations and approximate conformational changes in fibrinogen adsorption. Biomaterial characterization by ellipsometry was further extended to include characterization of individual protein solutions in the IR range. Proteins in an aqueous environment were characterized by attenuated total internal reflection (ATR) IR ellipsometry using a ZnSe prism. Parameterized dielectric functions were created for individual proteins using Lorentz oscillators. These

  18. Studies on the interaction of total saponins of panax notoginseng and human serum albumin by Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Xie, Meng-Xia; Kang, Juan; Zheng, Dong

    2003-10-01

    Total saponins of panax notoginseng (TPNS), isolated from the roots of panax notoginseng (Burk) F.H. Chen, have been considered as the main active components of San-Chi and have various therapeutical actions. Their interactions with human serum albumin have been investigated by Fourier transformed infrared spectrometry and fluorescence methods. The results showed that TPNS combined with HSA through C=O and CN groups of polypeptide chain. The drug-protein combination caused the significant loss of α-helix structure and the microenvironment changes of the tyrosine residues in protein at higher drug concentration. Combining the curve-fitting results of amide I and amide III bands, the alterations of protein secondary structure after drug complexation were quantitatively determined. The α-helix structure has a decrease of ≈6%, from 55 to 49% and the β-sheet increased ≈3%, from 23 to 26% at high drug concentration. However, no major alterations were observed for the β-turn and random coil structures up on drug-protein binding.

  19. Protein-protein binding before and after photo-modification of albumin

    NASA Astrophysics Data System (ADS)

    Rozinek, Sarah C.; Glickman, Randolph D.; Thomas, Robert J.; Brancaleon, Lorenzo

    2016-03-01

    Bioeffects of directed-optical-energy encompass a wide range of applications. One aspect of photochemical interactions involves irradiating a photosensitizer with visible light in order to induce protein unfolding and consequent changes in function. In the past, irradiation of several dye-protein combinations has revealed effects on protein structure. Beta lactoglobulin, human serum albumin (HSA) and tubulin have all been photo-modified with meso-tetrakis(4- sulfonatophenyl)porphyrin (TSPP) bound, but only in the case of tubulin has binding caused a verified loss of biological function (loss of ability to form microtubules) as a result of this light-induced structural change. The current work questions if the photo-induced structural changes that occur to HSA, are sufficient to disable its biological function of binding to osteonectin. The albumin-binding protein, osteonectin, is about half the molecular weight of HSA, so the two proteins and their bound product can be separated and quantified by size exclusion high performance liquid chromatography. TSPP was first bound to HSA and irradiated, photo-modifying the structure of HSA. Then native HSA or photo-modified HSA (both with TSPP bound) were compared, to assess loss in HSA's innate binding ability as a result of light-induced structure modification.

  20. Early postoperative albumin level following total knee arthroplasty is associated with acute kidney injury

    PubMed Central

    Kim, Ha-Jung; Koh, Won-Uk; Kim, Sae-Gyeol; Park, Hyeok-Seong; Song, Jun-Gol; Ro, Young-Jin; Yang, Hong-Seuk

    2016-01-01

    Abstract Hypoalbuminemia has been reported to be an independent risk factor for acute kidney injury (AKI). However, little is known about the relationship between the albumin level and the incidence of AKI in patients undergoing total knee arthroplasty (TKA). The aim of our study was to assess incidence and risk factors for AKI and to evaluate the relationship between albumin level and AKI following TKA. The study included a retrospective review of medical records of 1309 consecutive patients who underwent TKA between January 2008 and December 2014. The patients were divided into 2 groups according to the lowest serum albumin level within 2 postoperative days (POD2_alb level < 3.0 g/dL vs ≥3.0 g/dL). Multivariate logistic regression analysis was used to assess risk factors for AKI. A comparison of incidence of AKI, hospital stay, and overall mortality in the 2 groups was performed using propensity score analysis. Of 1309 patients, 57 (4.4%) developed AKI based on Kidney Disease Improving Global Outcomes criteria. Factors associated with AKI included age (odds ratio [OR] 1.05; 95% confidence interval [CI] 1.01–1.09; P = 0.030), diabetes (OR 3.12; 95% CI 1.65–5.89; P < 0.001), uric acid (OR 1.51; 95% CI 1.26–1.82; P < 0.001), beta blocker use (OR 2.65; 95% CI 1.48–4.73; P = 0.001), diuretics (OR 16.42; 95% CI 3.08–87.68; P = 0.001), and POD2_alb level < 3.0 g/dL (OR 1.92; 95% CI 1.09–3.37; P = 0.023). After propensity score analysis, POD2_alb level<3.0 g/dL was associated with AKI occurrence (OR 1.82; 95% CI 1.03–3.24, P = 0.041) and longer hospital stay (P = 0.001). In this study, we demonstrated that POD2_alb level<3.0 g/dL was an independent risk factor for AKI and lengthened hospital stay in patients undergoing TKA. PMID:27495094

  1. The Association between Diabetic Retinopathy and Levels of Ischemia-Modified Albumin, Total Thiol, Total Antioxidant Capacity, and Total Oxidative Stress in Serum and Aqueous Humor

    PubMed Central

    Kirboga, Kadir; Ozec, Ayse V.; Kosker, Mustafa; Dursun, Ayhan; Toker, Mustafa I.; Aydin, Huseyin; Erdogan, Haydar; Topalkara, Aysen; Arici, Mustafa K.

    2014-01-01

    Purpose. To investigate the oxidant and antioxidant status of patients with type 2 diabetes mellitus and nonproliferative diabetic retinopathy (DRP). Methods. Forty-four patients who had cataract surgery were enrolled in the study. We included 22 patients with DRP in one group and 22 patients in the control group. Samples of aqueous humor and serum were taken from all patients. Serum and aqueous ischemia-modified albumin (IMA), total thiol, total antioxidant capacity (TAC), and total oxidative stress (TOS) levels were compared in two groups. Results. Median serum IMA levels were 44.80 absorbance units in the DRP group and 40.15 absorbance units in the control group (P = 0.031). Median serum total thiol levels in the DRP group were significantly less than those in the control group (3051.13 and 3910.12, resp., P = 0.004). Mean TOS levels in the serum were 2.93 ± 0.19 in the DRP group and 2.61 ± 0.26 in the control group (P = 0.039). The differences in mean total thiol, TAC, and TOS levels in the aqueous humor and mean TAC levels in the serum were not statistically significant. Conclusion. IMA, total thiol, and TOS levels in the serum might be useful markers in monitoring the risk of DRP development. PMID:25580282

  2. Role of Serum Interleukin 6, Albumin and C-Reactive Protein in COPD Patients

    PubMed Central

    Emami Ardestani, Mohammad

    2015-01-01

    Background: Chronic obstructive pulmonary disease (COPD) is a non-specific inflammation, which involves the airways, lung parenchyma and pulmonary vessels. The inflammation causes the activation of inflammatory cells and the release of various inflammatory mediators such as interleukin-8 (IL-8), IL-6 and tumor necoris factor alpha (TNF-a). The purpose of the present study was to measure serum IL-6, C-reactive protein (CRP) (as a positive phase reactant) and albumin level (as a negative phase reactant) in COPD patients (only due to cigarette smoking not bio-mass), non COPD smokers and healthy subjects using enzyme-linked immunosorbent assay (ELISA); we compared the differences in inflammatory factors among groups. Materials and Methods: A total of 180 males were enrolled in this study and divided into three equal groups. The first group was 60 smokers who had COPD. The second group included 60 smokers without COPD and the third group consisted of people who were not smokers and did not have COPD; 5 mL of venous blood was taken from all participants and it was collected in a test tube containing anticoagulant and then centrifuged at 3000 rpm for 10 minutes. Serum was separated and used to measure the amount of IL-6, CRP and albumin. Spirometry was performed according to the criteria set by the American Thoracic Society. Results: The mean serum level of IL-6 was 83.2±7.5 pg/mL in group I, 54.9±24.3 pg/mL in group II and 46.9±10.4 pg/mL in group III. There was a significant difference among the three groups (P<0.001). The mean serum level of CRP was 28.9±14.9 mg/dL in the first group, 19.9±8.5 mg/dL in the second group and 4.2±2.3 mg/dL in the third group (P=0.02). But by controlling the confounding effects of age, this difference was not significant (P=0.49). The mean serum level of albumin was I 4.1±0.57 mg/dL in group I, 4.3±0.56 mg/dL in group II and 4.1±0.53 mg/dL in group III. There was no significant difference among the three groups in this regard (P=0

  3. Serum Albumin Stimulates Protein Kinase G-dependent Microneme Secretion in Toxoplasma gondii.

    PubMed

    Brown, Kevin M; Lourido, Sebastian; Sibley, L David

    2016-04-29

    Microneme secretion is essential for motility, invasion, and egress in apicomplexan parasites. Although previous studies indicate that Ca(2+) and cGMP control microneme secretion, little is known about how these pathways are naturally activated. Here we have developed genetically encoded indicators for Ca(2+) and microneme secretion to better define the signaling pathways that regulate these processes in Toxoplasma gondii We found that microneme secretion was triggered in vitro by exposure to a single host protein, serum albumin. The natural agonist serum albumin induced microneme secretion in a protein kinase G-dependent manner that correlated with increased cGMP levels. Surprisingly, serum albumin acted independently of elevated Ca(2+) and yet it was augmented by artificial agonists that raise Ca(2+), such as ethanol. Furthermore, although ethanol elevated intracellular Ca(2+), it alone was unable to trigger secretion without the presence of serum or serum albumin. This dichotomy was recapitulated by zaprinast, a phosphodiesterase inhibitor that elevated cGMP and separately increased Ca(2+) in a protein kinase G-independent manner leading to microneme secretion. Taken together, these findings reveal that microneme secretion is centrally controlled by protein kinase G and that this pathway is further augmented by elevation of intracellular Ca(2.) PMID:26933037

  4. Size-dependent interaction of silica nanoparticles with lysozyme and bovine serum albumin proteins.

    PubMed

    Yadav, Indresh; Aswal, Vinod K; Kohlbrecher, Joachim

    2016-05-01

    The interaction of three different sized (diameter 10, 18, and 28 nm) anionic silica nanoparticles with two model proteins-cationic lysozyme [molecular weight (MW) 14.7 kDa)] and anionic bovine serum albumin (BSA) (MW 66.4 kDa) has been studied by UV-vis spectroscopy, dynamic light scattering (DLS), and small-angle neutron scattering (SANS). The adsorption behavior of proteins on the nanoparticles, measured by UV-vis spectroscopy, is found to be very different for lysozyme and BSA. Lysozyme adsorbs strongly on the nanoparticles and shows exponential behavior as a function of lysozyme concentration irrespective of the nanoparticle size. The total amount of adsorbed lysozyme, as governed by the surface-to-volume ratio, increases on lowering the size of the nanoparticles for a fixed volume fraction of the nanoparticles. On the other hand, BSA does not show any adsorption for all the different sizes of the nanoparticles. Despite having different interactions, both proteins induce similar phase behavior where the nanoparticle-protein system transforms from one phase (clear) to two phase (turbid) as a function of protein concentration. The phase behavior is modified towards the lower concentrations for both proteins with increasing the nanoparticle size. DLS suggests that the phase behavior arises as a result of the nanoparticles' aggregation on the addition of proteins. The size-dependent modifications in the interaction potential, responsible for the phase behavior, have been determined by SANS data as modeled using the two-Yukawa potential accounting for the repulsive and attractive interactions in the systems. The protein-induced interaction between the nanoparticles is found to be short-range attraction for lysozyme and long-range attraction for BSA. The magnitude of attractive interaction irrespective of protein type is enhanced with increase in the size of the nanoparticles. The total (attractive+repulsive) potential leading to two-phase formation is found to be

  5. [The effect of the albumin concentration on the relation between the concentration of ionized calcium and total calcium in the blood of dogs].

    PubMed

    Mischke, R; Hänies, R; Lange, K; Rivera Ramirez, P A

    1996-06-01

    Based on the results of 367 healthy dogs of different age, it could be demonstrated that the concentration of ionized calcium corrected to the pH-value of 7.4 ([Cai (7.4)]) as well as the concentration of total calcium ([Catot]) clearly decreased with increasing age. The most obvious changes were found during the first four months. The [Cai (7.4)] was not influenced distinctly by sex or by breed. The reference range (2.5-97.5% quantil) for [Cai (7.4)] in heparinized plasma was 1.32-1.51 mmol/l in 4-months- to 1-year-old dogs and 1.22-1.46 mmol/l in dogs older than one year, corresponding to a proportion of Cai to Catot of 44.9-54.9%. A moderately close correlation existed between [Cai (7.4)] and the [Catot] (r = 0.754) (n = 393 adult dogs: 180 healthy animals and 213 unselected patients). A similar correlation coefficient was found between the concentrations of Catot and albumin (r = 0.718) or total protein (r = 0.617), respectively. The proportion of Cai to Catot decreased with an increasing concentration of albumin, whereas [Cai (7.4)] tended to increase. The correction of the [Catot] for albumin did not lead to an increased correlation coefficient for the relation with [Cai (7.4)] (r = 0.676). In addition to albumin concentration, the relation between [Cai (7.4)] and the Catot is primarily influenced by complex-forming ions. This became clear by the transient citrate-induced decrease of [Cai (7.4)] whereas [Catot] increased after infusion of fresh frozen plasma in dogs suffering from diarrhea. This investigation shows the limits of the estimation of calcium homoeostasis on the basis of the [Catot]. PMID:8766900

  6. Size-dependent interaction of silica nanoparticles with lysozyme and bovine serum albumin proteins

    NASA Astrophysics Data System (ADS)

    Yadav, Indresh; Aswal, Vinod K.; Kohlbrecher, Joachim

    2016-05-01

    The interaction of three different sized (diameter 10, 18, and 28 nm) anionic silica nanoparticles with two model proteins—cationic lysozyme [molecular weight (MW) 14.7 kDa)] and anionic bovine serum albumin (BSA) (MW 66.4 kDa) has been studied by UV-vis spectroscopy, dynamic light scattering (DLS), and small-angle neutron scattering (SANS). The adsorption behavior of proteins on the nanoparticles, measured by UV-vis spectroscopy, is found to be very different for lysozyme and BSA. Lysozyme adsorbs strongly on the nanoparticles and shows exponential behavior as a function of lysozyme concentration irrespective of the nanoparticle size. The total amount of adsorbed lysozyme, as governed by the surface-to-volume ratio, increases on lowering the size of the nanoparticles for a fixed volume fraction of the nanoparticles. On the other hand, BSA does not show any adsorption for all the different sizes of the nanoparticles. Despite having different interactions, both proteins induce similar phase behavior where the nanoparticle-protein system transforms from one phase (clear) to two phase (turbid) as a function of protein concentration. The phase behavior is modified towards the lower concentrations for both proteins with increasing the nanoparticle size. DLS suggests that the phase behavior arises as a result of the nanoparticles' aggregation on the addition of proteins. The size-dependent modifications in the interaction potential, responsible for the phase behavior, have been determined by SANS data as modeled using the two-Yukawa potential accounting for the repulsive and attractive interactions in the systems. The protein-induced interaction between the nanoparticles is found to be short-range attraction for lysozyme and long-range attraction for BSA. The magnitude of attractive interaction irrespective of protein type is enhanced with increase in the size of the nanoparticles. The total (attractive+repulsive) potential leading to two-phase formation is found to be

  7. Solution structure of RicC3, a 2S albumin storage protein from Ricinus communis.

    PubMed

    Pantoja-Uceda, David; Bruix, Marta; Giménez-Gallego, Guillermo; Rico, Manuel; Santoro, Jorge

    2003-12-01

    The three-dimensional structure in aqueous solution of recombinant (15)N labeled RicC3, a 2S albumin protein from the seeds of castor bean (Ricinus communis), has been determined by NMR methods. The computed structures were based on 1564 upper limit distance constraints derived from NOE cross-correlation intensities measured in the 2D-NOESY and 3D-HSQC-NOESY experiments, 70 phi torsion angle constraints obtained from (3)J(HNH)(alpha) couplings measured in the HNHA experiment, and 30 psi torsion angle constraints derived from (3)J(H)(alpha)(Ni+1) couplings measured in the HNHB experiment. The computed structures showed a RMSD radius of 0.64 A for the structural core. The resulting structure consists of five amphipatic helices arranged in a right-handed super helix, a folding motif first observed in nonspecific lipid transfer proteins. Different than the latter, RicC3 does have not an internal cavity, a fact that can be related to the exchange in the pairing of disulfide bridges in the segment.CXC. Previous attempts to determine high resolution structures of a 2S albumin protein by either X-ray crystallography or NMR methods failed because of the heterogeneity of the protein prepared from natural sources. Both 2S albumins and nonspecific lipid transfer proteins belong to the prolamine superfamily, some of whose members are food allergens. The solution structure for recombinant RicC3 determined here is a suitable representative structure for the broad family of seed 2S albumin proteins, which may help to establish meaningful relationships between structure and allergenicity. RicC3 is also the peptidic component of the immunomodulator Inmunoferon, a widely used pharmaceutical product, and its structure is expected to help understand its pharmaceutical activity. PMID:14636051

  8. Trans-splicing Into Highly Abundant Albumin Transcripts for Production of Therapeutic Proteins In Vivo

    PubMed Central

    Wang, Jun; Mansfield, S Gary; Cote, Colette A; Jiang, Ping Du; Weng, Ke; Amar, Marcelo JA; Brewer, Bryan H; Remaley, Alan T; McGarrity, Gerard J; Garcia-Blanco, Mariano A; Puttaraju, M

    2008-01-01

    Spliceosome-mediated RNA trans-splicing has emerged as an exciting mode of RNA therapy. Here we describe a novel trans-splicing strategy, which targets highly abundant pre-mRNAs, to produce therapeutic proteins in vivo. First, we used a pre-trans-splicing molecule (PTM) that mediated trans-splicing of human apolipoprotein A-I (hapoA-I) into the highly abundant mouse albumin exon 1. Hydrodynamic tail vein injection of the hapoA-I PTM plasmid in mice followed by analysis of the chimeric transcripts and protein, confirmed accurate and efficient trans-splicing into albumin pre-mRNA and production of hapoA-I protein. The versatility of this approach was demonstrated by producing functional human papillomavirus type-16 E7 (HPV16-E7) single-chain antibody in C57BL/6 mice and functional factor VIII (FVIII) and phenotypic correction in hemophilia A mice. Altogether, these studies demonstrate that trans-splicing to highly abundant albumin transcripts can be used as a general platform to produce therapeutic proteins in vivo. PMID:19066600

  9. A flow injection sampling resonance light scattering system for total protein determination in human serum

    NASA Astrophysics Data System (ADS)

    Dong, Lijun; Li, Ying; Zhang, Yaheng; Chen, Xingguo; Hu, Zhide

    2007-04-01

    A novel flow injection method with resonance light scattering detection was developed for the determination of total protein concentrations. This method is based on the enhancement of RLS signals from Methyl Blue (MB) by protein. The enhanced RLS intensities at 333 nm, in a pH 4.1 acidic aqueous solution, were proportional to the protein concentration over the range 2.0-37.3 and 1.0-36.0 μg ml -1 for human serum albumin (HSA) and bovine serum albumin (BSA), respectively. The corresponding limits of detection (3 σ) of 45 ng ml -1 for HSA and 80 ng ml -1 for BSA were attained. The method was successfully applied to the quantification of total proteins in human serum samples, the maximum relative error is less than 1% and the recovery is between 98% and 102%. The sample throughput was 60 h -1.

  10. Determination of protein-ligand binding affinity by NMR: observations from serum albumin model systems.

    PubMed

    Fielding, Lee; Rutherford, Samantha; Fletcher, Dan

    2005-06-01

    The usefulness of bovine serum albumin (BSA) as a model protein for testing NMR methods for the study of protein-ligand interactions is discussed. Isothermal titration calorimetry established the binding affinity and stoichiometry of the specific binding site for L-tryptophan, D-tryptophan, naproxen, ibuprofen, salicylic acid and warfarin. The binding affinities of the same ligands determined by NMR methods are universally weaker (larger KD). This is because the NMR methods are susceptible to interference from additional non-specific binding. The L-tryptophan-BSA and naproxen-BSA systems were the best behaved model systems. PMID:15816062

  11. Effect of auranofin on plasma fibronectin, C reactive protein, and albumin levels in arthritic rats.

    PubMed Central

    Connolly, K M; Stecher, V J; Pruden, D J

    1988-01-01

    Auranofin, a member of a class of compounds with disease modifying activity, was given to arthritic rats to determine if it could reverse the abnormal plasma concentrations of fibronectin (Fn), C reactive protein (CRP), and albumin, which were unaffected by treatment with non-steroidal anti-inflammatory drugs (NSAIDs). When auranofin was orally administered for two weeks to adjuvant induced arthritic rats it significantly inhibited swelling of the injected and non-injected paws at doses of 3 and 10 mg/kg. Rocket electroimmunoassay measurement of plasma proteins in normal, arthritic, and auranofin treated arthritic rats indicated that auranofin at 10 mg/kg significantly decreased (by 77%) the abnormally high concentration of arthritic rat plasma Fn, though it had no effect on Fn concentrations when administered to normal rats. CRP, which was raised approximately twofold above normal in arthritic rats, was reduced by 56% after treatment of arthritic rats with auranofin at 10 mg/kg, though CRP concentrations in normal rats were unaffected by auranofin treatment. Depressed albumin concentrations in arthritic rats were significantly enhanced (by 30%) by dosing with 10 mg/kg of auranofin. At the 3 mg/kg dose, auranofin did not significantly change plasma concentrations of Fn, CRP, and albumin in arthritic rats. At a dose of 10 mg/kg, however, auranofin, in addition to inhibiting chronic systemic paw inflammation, also altered abnormal concentrations of plasma Fn, CRP, and albumin in the adjuvant arthritic rat, thus distinguishing auranofin from standard NSAIDs we have previously tested. PMID:3260094

  12. Moringa oleifera aqueous leaf extract inhibits reducing monosaccharide-induced protein glycation and oxidation of bovine serum albumin.

    PubMed

    Nunthanawanich, Pornpimon; Sompong, Weerachat; Sirikwanpong, Sukrit; Mäkynen, Kittana; Adisakwattana, Sirichai; Dahlan, Winai; Ngamukote, Sathaporn

    2016-01-01

    Advanced glycation end products (AGEs) play an important factor for pathophysiology of diabetes and its complications. Moringa oleifera is one of the medicinal plants that have anti-hyperglycemic activity. However, anti-glycation property of Moringa oleifera leaf extract on the different types of reducing monosaccharides-induced protein glycation has not been investigated. Therefore, the aim of this study was to examine the protective effect of Moringa oleifera aqueous leaf extract (MOE) on reducing sugars-induced protein glycation and protein oxidation. Total phenolic content of MOE was measured using the Folin-Ciocalteu method. Bovine serum albumin was incubated with 0.5 M of reducing sugars (glucose or fructose) with or without MOE (0.5-2.0 mg/mL) for 1, 2, 3 and 4 weeks. The results found that total phenolic content was 38.56 ± 1.50 mg gallic acid equivalents/g dry extract. The formation of fluorescent and non-fluorescent AGEs [N (ε)-(carboxymethyl) lysine (CML)] and the level of fructosamine were determined to indicate protein glycation, whereas the level of protein carbonyl content and thiol group were examined for protein oxidation. MOE (0.5-2.0 mg/mL) significantly inhibited the formation of fluorescent, N (ε)-CML and markedly decreased fructosamine level (P < 0.05). Moreover, MOE significantly prevented protein oxidation manifested by reducing protein carbonyl and the depletion of protein thiol in a dose-dependent manner (P < 0.05). Thus, the findings indicated that polyphenols containing in MOE have high potential for decreasing protein glycation and protein oxidation that may delay or prevent AGE-related diabetic complications. PMID:27468399

  13. High Mobility Group Box Protein 1 Boosts Endothelial Albumin Transcytosis through the RAGE/Src/Caveolin-1 Pathway.

    PubMed

    Shang, Dan; Peng, Tao; Gou, Shanmiao; Li, Yiqing; Wu, Heshui; Wang, Chunyou; Yang, Zhiyong

    2016-01-01

    High-mobility group box protein 1 (HMGB1), an inflammatory mediator, has been reported to destroy cell-cell junctions, resulting in vascular endothelial hyperpermeability. Here, we report that HMGB1 increases the endothelial transcytosis of albumin. In mouse lung vascular endothelial cells (MLVECs), HMGB1 at a concentration of 500 ng/ml or less did not harm cell-cell junctions but rapidly induced endothelial hyperpermeability to (125)I-albumin. HMGB1 induced an increase in (125)I-albumin and AlexaFluor 488-labeled albumin internalization in endocytosis assays. Depletion of receptor for advanced glycation end products (RAGE), but not TLR2 or TLR4, suppressed HMGB1-induced albumin transcytosis and endocytosis. Genetic and pharmacological destruction of lipid rafts significantly inhibited HMGB1-induced albumin endocytosis and transcytosis. HMGB1 induced the rapid phosphorylation of caveolin (Cav)-1 and Src. Either RAGE gene silencing or soluble RAGE suppressed Cav-1 Tyr14 phosphorylation and Src Tyr418 phosphorylation. The Src inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo[3,4-d] pyrimidine (PP2) blocked HMGB1-induced Cav-1 Tyr14 phosphorylation. PP2 and overexpression of Cav-1 with a T14F mutation significantly inhibited HMGB1-induced transcytosis and albumin endocytosis. Our findings suggest that HMGB1 induces the transcytosis of albumin via RAGE-dependent Src phosphorylation and Cav-1 phosphorylation. These studies revealed a new mechanism of HMGB1-induced endothelial hyperpermeability. PMID:27572515

  14. High Mobility Group Box Protein 1 Boosts Endothelial Albumin Transcytosis through the RAGE/Src/Caveolin-1 Pathway

    PubMed Central

    Shang, Dan; Peng, Tao; Gou, Shanmiao; Li, Yiqing; Wu, Heshui; Wang, Chunyou; Yang, Zhiyong

    2016-01-01

    High-mobility group box protein 1 (HMGB1), an inflammatory mediator, has been reported to destroy cell-cell junctions, resulting in vascular endothelial hyperpermeability. Here, we report that HMGB1 increases the endothelial transcytosis of albumin. In mouse lung vascular endothelial cells (MLVECs), HMGB1 at a concentration of 500 ng/ml or less did not harm cell-cell junctions but rapidly induced endothelial hyperpermeability to 125I-albumin. HMGB1 induced an increase in 125I-albumin and AlexaFluor 488-labeled albumin internalization in endocytosis assays. Depletion of receptor for advanced glycation end products (RAGE), but not TLR2 or TLR4, suppressed HMGB1-induced albumin transcytosis and endocytosis. Genetic and pharmacological destruction of lipid rafts significantly inhibited HMGB1-induced albumin endocytosis and transcytosis. HMGB1 induced the rapid phosphorylation of caveolin (Cav)-1 and Src. Either RAGE gene silencing or soluble RAGE suppressed Cav-1 Tyr14 phosphorylation and Src Tyr418 phosphorylation. The Src inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo[3,4-d] pyrimidine (PP2) blocked HMGB1-induced Cav-1 Tyr14 phosphorylation. PP2 and overexpression of Cav-1 with a T14F mutation significantly inhibited HMGB1-induced transcytosis and albumin endocytosis. Our findings suggest that HMGB1 induces the transcytosis of albumin via RAGE-dependent Src phosphorylation and Cav-1 phosphorylation. These studies revealed a new mechanism of HMGB1-induced endothelial hyperpermeability. PMID:27572515

  15. Human podocytes perform polarized, caveolae-dependent albumin endocytosis

    PubMed Central

    Dobrinskikh, Evgenia; Okamura, Kayo; Kopp, Jeffrey B.; Doctor, R. Brian

    2014-01-01

    The renal glomerulus forms a selective filtration barrier that allows the passage of water, ions, and small solutes into the urinary space while restricting the passage of cells and macromolecules. The three layers of the glomerular filtration barrier include the vascular endothelium, glomerular basement membrane (GBM), and podocyte epithelium. Podocytes are capable of internalizing albumin and are hypothesized to clear proteins that traverse the GBM. The present study followed the fate of FITC-labeled albumin to establish the mechanisms of albumin endocytosis and processing by podocytes. Confocal imaging and total internal reflection fluorescence microscopy of immortalized human podocytes showed FITC-albumin endocytosis occurred preferentially across the basal membrane. Inhibition of clathrin-mediated endocytosis and caveolae-mediated endocytosis demonstrated that the majority of FITC-albumin entered podocytes through caveolae. Once internalized, FITC-albumin colocalized with EEA1 and LAMP1, endocytic markers, and with the neonatal Fc receptor, a marker for transcytosis. After preloading podocytes with FITC-albumin, the majority of loaded FITC-albumin was lost over the subsequent 60 min of incubation. A portion of the loss of albumin occurred via lysosomal degradation as pretreatment with leupeptin, a lysosomal protease inhibitor, partially inhibited the loss of FITC-albumin. Consistent with transcytosis of albumin, preloaded podocytes also progressively released FITC-albumin into the extracellular media. These studies confirm the ability of podocytes to endocytose albumin and provide mechanistic insight into cellular mechanisms and fates of albumin handling in podocytes. PMID:24573386

  16. Interaction of lipid vesicle with silver nanoparticle-serum albumin protein corona

    NASA Astrophysics Data System (ADS)

    Chen, Ran; Choudhary, Poonam; Schurr, Ryan N.; Bhattacharya, Priyanka; Brown, Jared M.; Chun Ke, Pu

    2012-01-01

    The physical interaction between a lipid vesicle and a silver nanoparticle (AgNP)-human serum albumin (HSA) protein "corona" has been examined. Specifically, the binding of AgNPs and HSA was analyzed by spectrophotometry, and the induced conformational changes of the HSA were inferred from circular dichroism spectroscopy. The fluidity of the vesicle, a model system for mimicking cell membrane, was found to increase with the increased exposure to AgNP-HSA corona, though less pronounced compared to that induced by AgNPs alone. This study offers additional information for understanding the role of physical forces in nanoparticle-cell interaction and has implications for nanomedicine and nanotoxicology.

  17. Serum albumin levels in burn people are associated to the total body surface burned and the length of hospital stay but not to the initiation of the oral/enteral nutrition

    PubMed Central

    Pérez-Guisado, Joaquín; de Haro-Padilla, Jesús M; Rioja, Luis F; DeRosier, Leo C; de la Torre, Jorge I

    2013-01-01

    Objective: Serum albumin levels have been used to evaluate the severity of the burns and the nutrition protein status in burn people, specifically in the response of the burn patient to the nutrition. Although it hasn’t been proven if all these associations are fully funded. The aim of this retrospective study was to determine the relationship of serum albumin levels at 3-7 days after the burn injury, with the total body surface area burned (TBSA), the length of hospital stay (LHS) and the initiation of the oral/enteral nutrition (IOEN). Subject and methods: It was carried out with the health records of patients that accomplished the inclusion criteria and were admitted to the burn units at the University Hospital of Reina Sofia (Córdoba, Spain) and UAB Hospital at Birmingham (Alabama, USA) over a 10 years period, between January 2000 and December 2009. We studied the statistical association of serum albumin levels with the TBSA, LHS and IOEN by ANOVA one way test. The confidence interval chosen for statistical differences was 95%. Duncan’s test was used to determine the number of statistically significantly groups. Results: Were expressed as mean±standard deviation. We found serum albumin levels association with TBSA and LHS, with greater to lesser serum albumin levels found associated to lesser to greater TBSA and LHS. We didn’t find statistical association with IOEN. Conclusion: We conclude that serum albumin levels aren’t a nutritional marker in burn people although they could be used as a simple clinical tool to identify the severity of the burn wounds represented by the total body surface area burned and the lenght of hospital stay. PMID:23875122

  18. Quantification of total content of non-esterified fatty acids bound to human serum albumin.

    PubMed

    Pavićević, Ivan D; Jovanović, Vesna B; Takić, Marija M; Aćimović, Jelena M; Penezić, Ana Z; Mandić, Ljuba M

    2016-09-10

    Non-esterified fatty acids bound to the human serum albumin (HSA) contribute to several HSAs properties of special concern in pathologies, for instance to the reactivity of the free HSA-Cys34 thiol group (important antioxidative thiol pool in plasma), and to the affinity for binding of molecules and ions (for example cobalt as a prominent biomarker in heart ischemia). Therefore, the method for determination of FAs bound to HSA was developed. FAs were released from HSA (previously isolated from serum by ammonium sulfate precipitation) using acidic copper(II) sulfate in phosphoric acid, extracted by n-heptane-chloroform (4:1, v/v) mixture, spotted on TL silica-gel and then developed with n-heptane-chloroform-acetic acid (5:3:0.3, v/v/v). Common office flatbed scanner and software solution for densitometric image analysis, developed in R, were used. The linearity of calibration curve in concentration range from 0.1 to 5.0mmol/L stearic acid was achieved. The method was proved to be precise (with RSD of 1.4-4.7%) and accurate. Accuracy was examined by standard addition method (recoveries 97.2-102.5%) and by comparison to results of GC. The method is sample saving, technically less demanding, and cheap, and therefore suitable for determination of FAs/HSA ratio when elevated concentrations of free FAs are reliable diagnostic/risk parameter of pathological states. PMID:27394177

  19. Interaction of bovine serum albumin protein with self assembled monolayer of mercaptoundecanoic acid

    NASA Astrophysics Data System (ADS)

    Poonia, Monika; Agarwal, Hitesh; Manjuladevi, V.; Gupta, R. K.

    2016-05-01

    Detection of proteins and other biomolecules in liquid phase is the essence for the design of a biosensor. The sensitivity of a sensor can be enhanced by the appropriate functionalization of the sensing area so as to establish the molecular specific interaction. In the present work, we have studied the interaction of bovine serum albumin (BSA) protein with a chemically functionalized surface using a quartz crystal microbalance (QCM). The gold-coated quartz crystals (AT-cut/5 MHz) were functionalized by forming self-assembled monolayer (SAM) of 11-Mercaptoundecanoic acid (MUA). The adsorption characteristics of BSA onto SAM of MUA on quartz crystal are reported. BSA showed the highest affinity for SAM of MUA as compared to pure gold surface. The SAM of MUA provides carboxylated surface which enhances not only the adsorption of the BSA protein but also a very stable BSA-MUA complex in the liquid phase.

  20. Protein adsorption on low temperature isotropic carbon. III. Isotherms, competitivity, desorption and exchange of human albumin and fibrinogen.

    PubMed

    Feng, L; Andrade, J D

    1994-04-01

    In this paper we consider the adsorption of albumin and fibrinogen on low temperature isotropic carbon (LTIC). A subsequent paper considers the adsorption of other plasma proteins [Feng L, Andrade JD, Colloids and Surfaces (in press)]. Carbon fragments and silica plates were used as adsorbents. Adsorption was carried out by incubating the adsorbents in solutions of 125I-labelled and unlabelled proteins (single component system), or with buffer-diluted human plasma (multicomponent system). Adsorbed proteins then underwent displacement by buffer, by single protein solutions or by dilute plasma. Results show that the LTIC substrate adsorbs a large amount of proteins before saturation, which may be due to multilayer adsorption. LTIC also irreversibly holds adsorbed proteins against the exchange agents used; little adsorbed proteins can be displaced, even after a very short adsorption time. There is no preferential adsorption for either albumin or fibrinogen on LTIC from their binary solutions, suggesting that both proteins have high affinities for the surface. Such strong interactions between LTIC and proteins are not attributed to electrostatic interactions. On the other hand, protein adsorption on the silica surface is selective and reversible, with a much higher affinity for fibrinogen than albumin and an even higher affinity for some other plasma proteins. The paper also discusses the effect of sequential protein addition to a solution on the surface concentration and suppression of adsorption of both proteins in the presence of other plasma proteins. A very important conclusion is that the LTIC surface is very active towards proteins adsorption. PMID:8061122

  1. Interaction of singlet oxygen with bovine serum albumin and the role of the protein nano-compartmentalization.

    PubMed

    Giménez, Rodrigo E; Vargová, Veronika; Rey, Valentina; Turbay, M Beatriz Espeche; Abatedaga, Inés; Morán Vieyra, Faustino E; Paz Zanini, Verónica I; Mecchia Ortiz, Juan H; Katz, Néstor E; Ostatná, Veronika; Borsarelli, Claudio D

    2016-05-01

    Singlet molecular oxygen ((1)O2) contributes to protein damage triggering biophysical and biochemical changes that can be related with aging and oxidative stress. Serum albumins, such as bovine serum albumin (BSA), are abundant proteins in blood plasma with different biological functions. This paper presents a kinetic and spectroscopic study of the (1)O2-mediated oxidation of BSA using the tris(2,2'-bipyridine)ruthenium(II) cation [Ru(bpy)3](2+) as sensitizer. BSA quenches efficiently (1)O2 with a total (chemical+physical interaction) rate constant kt(BSA)=7.3(±0.4)×10(8)M(-1)s(-1), where the chemical pathway represented 37% of the interaction. This efficient quenching by BSA indicates the participation of several reactive residues. MALDI-TOF MS analysis of intact BSA confirmed that after oxidation by (1)O2, the mass protein increased the equivalent of 13 oxygen atoms. Time-resolved emission spectra analysis of BSA established that Trp residues were oxidized to N'-formylkynurenine, being the solvent-accessible W134 preferentially oxidized by (1)O2 as compared with the buried W213. MS confirmed oxidation of at least two Tyr residues to form dihydroxyphenylalanine, with a global reactivity towards (1)O2 six-times lower than for Trp residues. Despite the lack of MS evidences, kinetic and chemical analysis also suggested that residues other than Trp and Tyr, e.g. Met, must react with (1)O2. Modeling of the 3D-structure of BSA indicated that the oxidation pattern involves a random distribution of (1)O2 into BSA; allowing also the interaction of (1)O2 with buried residues by its diffusion from the bulk solvent through interconnected internal hydrophilic and hydrophobic grooves. PMID:26898504

  2. Albumin and multiple sclerosis.

    PubMed

    LeVine, Steven M

    2016-01-01

    Leakage of the blood-brain barrier (BBB) is a common pathological feature in multiple sclerosis (MS). Following a breach of the BBB, albumin, the most abundant protein in plasma, gains access to CNS tissue where it is exposed to an inflammatory milieu and tissue damage, e.g., demyelination. Once in the CNS, albumin can participate in protective mechanisms. For example, due to its high concentration and molecular properties, albumin becomes a target for oxidation and nitration reactions. Furthermore, albumin binds metals and heme thereby limiting their ability to produce reactive oxygen and reactive nitrogen species. Albumin also has the potential to worsen disease. Similar to pathogenic processes that occur during epilepsy, extravasated albumin could induce the expression of proinflammatory cytokines and affect the ability of astrocytes to maintain potassium homeostasis thereby possibly making neurons more vulnerable to glutamate exicitotoxicity, which is thought to be a pathogenic mechanism in MS. The albumin quotient, albumin in cerebrospinal fluid (CSF)/albumin in serum, is used as a measure of blood-CSF barrier dysfunction in MS, but it may be inaccurate since albumin levels in the CSF can be influenced by multiple factors including: 1) albumin becomes proteolytically cleaved during disease, 2) extravasated albumin is taken up by macrophages, microglia, and astrocytes, and 3) the location of BBB damage affects the entry of extravasated albumin into ventricular CSF. A discussion of the roles that albumin performs during MS is put forth. PMID:27067000

  3. Protein bodies from the cotyledons of Cytisus scoparius L. (Link). Ultrastructure, isolation, and subunit composition of albumin, legumin and vicilin.

    PubMed

    Citharel, L; Citharel, J

    1985-09-01

    The structure of protein bodies differs in the upper and lower parts of the cotyledons of mature seeds of Cytisus scoparius L. The palisade-mesophyll cells contain essentially homogeneous protein bodies, without globoids, but the protein bodies of the spongy-mesophyll cells are heterogeneous, with numerous globoids. Albumins, legumins and vicilins were selectively extracted from isolated protein bodies and their subunits separated by SDS-PAGE, under non-reducing and reducing conditions. PMID:24241309

  4. Total Cellular RNA Modulates Protein Activity.

    PubMed

    Majumder, Subhabrata; DeMott, Christopher M; Reverdatto, Sergey; Burz, David S; Shekhtman, Alexander

    2016-08-16

    RNA constitutes up to 20% of a cell's dry weight, corresponding to ∼20 mg/mL. This high concentration of RNA facilitates low-affinity protein-RNA quinary interactions, which may play an important role in facilitating and regulating biological processes. In the yeast Pichia pastoris, the level of ubiquitin-RNA colocalization increases when cells are grown in the presence of dextrose and methanol instead of methanol as the sole carbon source. Total RNA isolated from cells grown in methanol increases β-galactosidase activity relative to that seen with RNA isolated from cells grown in the presence of dextrose and methanol. Because the total cellular RNA content changes with growth medium, protein-RNA quinary interactions can alter in-cell protein biochemistry and may play an important role in cell adaptation, critical to many physiological and pathological states. PMID:27456029

  5. [The effect of a different level of crude protein in the feed of chickens from 1 to 14 days after hatching on the development of body weight, the biochemical parameters of the liver and breast muscle and the serum level of total protein and albumin].

    PubMed

    Forner, C; Kolb, E; Taubert, U

    1991-02-01

    The effect of a concentration of crude protein of 170 or of 227 g/kg in the ration of chicken from the 1st to the 14th day after hatching on biochemical values of the liver, the M. pectoralis superficialis and the serum was analysed. The significance of developmental investigations in domestic animals under normal and pathological conditions is discussed. PMID:2025215

  6. Adsorption of bovine serum albumin (BSA) onto lecithin studied by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy.

    PubMed

    Tantipolphan, R; Rades, T; McQuillan, A J; Medlicott, N J

    2007-06-01

    The adsorption of bovine serum albumin (BSA) to lecithin was investigated by ATR-FTIR spectroscopy. Lecithin films were prepared by casting aliquots of 3.2 microg lecithin in methanol onto ZnSe ATR prisms. Surface morphology and the thickness of the films were investigated by laser scanning confocal electron microscopy and scanning electron microscopy and the thickness of the films used for adsorption studies was estimated to be 40 A. The dependency of the CO peak area on the lecithin mass in the calibration curve confirms that the thickness of the film is below the penetration depth of the infrared evanescent wave. Size exclusion HPLC and fluorescence spectroscopy show that BSA conformation in up to 1M NaCl and CaCl(2) solutions is similar to that in water with no aggregation or changes in protein conformation seen over 4h. The kinetics of BSA adsorption on the lecithin film from water, NaCl and CaCl(2) solutions demonstrates that ions promote the protein adsorption. BSA bound more in the presence of NaCl compared to CaCl(2) at equivalent concentrations. The adsorption appeared greatest at a 0.1M concentration for both NaCl and CaCl(2). The results are explained in terms of absorptive reactivity of BSA and lecithin surfaces upon salt addition. PMID:17240095

  7. Interaction of lipid vesicle with silver nanoparticle-serum albumin protein corona

    PubMed Central

    Chen, Ran; Choudhary, Poonam; Schurr, Ryan N.; Bhattacharya, Priyanka; Brown, Jared M.; Chun Ke, Pu

    2012-01-01

    The physical interaction between a lipid vesicle and a silver nanoparticle (AgNP)-human serum albumin (HSA) protein “corona” has been examined. Specifically, the binding of AgNPs and HSA was analyzed by spectrophotometry, and the induced conformational changes of the HSA were inferred from circular dichroism spectroscopy. The fluidity of the vesicle, a model system for mimicking cell membrane, was found to increase with the increased exposure to AgNP-HSA corona, though less pronounced compared to that induced by AgNPs alone. This study offers additional information for understanding the role of physical forces in nanoparticle-cell interaction and has implications for nanomedicine and nanotoxicology. PMID:22271932

  8. Structural aspects of a protein-surfactant assembly: native and reduced States of human serum albumin.

    PubMed

    Anand, Uttam; Ray, Sutapa; Ghosh, Subhadip; Banerjee, Rajat; Mukherjee, Saptarshi

    2015-04-01

    The inherently present seventeen disulfide bonds of the circulatory protein, human serum albumin (HSA) provide the necessary structural stability. Various spectroscopic approaches were used to investigate the effect of reduction of these disulfide bonds and its binding with the anionic surfactant, sodium dodecyl sulfate (SDS). Based on several spectroscopic analyses, our investigations highlight the following interesting aspects: (1) HSA on reduction loses not only its tertiary structure but also a significant amount of secondary structure as well. However, the reduced state of the protein is not like the molten-globule, (2) this structural loss of the protein due to reduction is more prominent than that caused by higher SDS concentrations alone and can certainly be attributed to the role of disulfide bonds, (3) lower surfactant concentrations provide marginal structural rigidity to the native state of the protein, whereas, higher concentrations of SDS induces secondary structure to the reduced state of HSA, (4) the binding of SDS with both the native and reduced states of HSA, occurred in three distinct stages which was followed by a saturation stage. However, the nature of such binding is different for both the states as investigated by using the Stern-Volmer equations and estimating the thermodynamic parameters. Besides, in contrast to the native state, the reduced state of HSA shows that the lone tryptophan residue gets more buried. However, there occurs a sudden decrement in the lifetime of the tryptophan and the hydrodynamic diameter increases by twofold. PMID:25821118

  9. 21 CFR 862.1635 - Total protein test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Total protein test system. 862.1635 Section 862....1635 Total protein test system. (a) Identification. A total protein test system is a device intended to measure total protein(s) in serum or plasma. Measurements obtained by this device are used in...

  10. 21 CFR 862.1635 - Total protein test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Total protein test system. 862.1635 Section 862....1635 Total protein test system. (a) Identification. A total protein test system is a device intended to measure total protein(s) in serum or plasma. Measurements obtained by this device are used in...

  11. Association of a high normalized protein catabolic rate and low serum albumin level with carpal tunnel syndrome in hemodialysis patients.

    PubMed

    Huang, Wen-Hung; Hsu, Ching-Wei; Weng, Cheng-Hao; Yen, Tzung-Hai; Lin, Jui-Hsiang; Lee, Meng

    2016-06-01

    Carpal tunnel syndrome (CTS) is the most common mononeuropathy in patients with end-stage renal disease (ESRD). The association between chronic inflammation and CTS in hemodialysis (HD) patients has rarely been investigated. HD patients with a high normalized protein catabolic rate (nPCR) and low serum albumin level likely have adequate nutrition and inflammation. In this study, we assume that a low serum albumin level and high nPCR is associated with CTS in HD patients. We recruited 866 maintenance hemodialysis (MHD) patients and divided them into 4 groups according to their nPCR and serum albumin levels: (1) nPCR <1.2 g/kg/d and serum albumin level <4 g/dL; (2) nPCR ≥1.2 g/kg/d and serum albumin level <4 g/dL; (3) nPCR <1.2 g/kg/d and serum albumin level ≥4 g/dL; and (4) nPCR ≥1.2 g/kg/d and serum albumin level ≥4 g/dL. After adjustment for related variables, HD duration and nPCR ≥1.2 g/kg/d and serum albumin level <4 g/dL were positively correlated with CTS. By calculating the area under the receiver-operating characteristic curve, we calculated that the nPCR and HD duration cut-off points for obtaining the most favorable Youden index were 1.29 g/kg/d and 7.5 years, respectively. Advance multivariate logistic regression analysis revealed that in MHD patients, nPCR ≥1.29 g/kg/d and serum albumin <4 g/dL, and also HD duration >7.5 years were associated with CTS. A high nPCR and low serum albumin level, which likely reflect adequate nutrition and inflammation, were associated with CTS in MHD patients. PMID:27368039

  12. Association of a high normalized protein catabolic rate and low serum albumin level with carpal tunnel syndrome in hemodialysis patients

    PubMed Central

    Huang, Wen-Hung; Hsu, Ching-Wei; Weng, Cheng-Hao; Yen, Tzung-Hai; Lin, Jui-Hsiang; Lee, Meng

    2016-01-01

    Abstract Carpal tunnel syndrome (CTS) is the most common mononeuropathy in patients with end-stage renal disease (ESRD). The association between chronic inflammation and CTS in hemodialysis (HD) patients has rarely been investigated. HD patients with a high normalized protein catabolic rate (nPCR) and low serum albumin level likely have adequate nutrition and inflammation. In this study, we assume that a low serum albumin level and high nPCR is associated with CTS in HD patients. We recruited 866 maintenance hemodialysis (MHD) patients and divided them into 4 groups according to their nPCR and serum albumin levels: (1) nPCR <1.2 g/kg/d and serum albumin level <4 g/dL; (2) nPCR ≥1.2 g/kg/d and serum albumin level <4 g/dL; (3) nPCR <1.2 g/kg/d and serum albumin level ≥4 g/dL; and (4) nPCR ≥1.2 g/kg/d and serum albumin level ≥4 g/dL. After adjustment for related variables, HD duration and nPCR ≥1.2 g/kg/d and serum albumin level <4 g/dL were positively correlated with CTS. By calculating the area under the receiver-operating characteristic curve, we calculated that the nPCR and HD duration cut-off points for obtaining the most favorable Youden index were 1.29 g/kg/d and 7.5 years, respectively. Advance multivariate logistic regression analysis revealed that in MHD patients, nPCR ≥1.29 g/kg/d and serum albumin <4 g/dL, and also HD duration >7.5 years were associated with CTS. A high nPCR and low serum albumin level, which likely reflect adequate nutrition and inflammation, were associated with CTS in MHD patients. PMID:27368039

  13. The study of a light-activated albumin protein solder to bond layers of porcine small intestinal submucosa.

    PubMed

    Ware, Mark H; Buckley, Christine A

    2003-01-01

    This study investigated the feasibility of bonding layers of porcine small intestinal submucosa (SIS, Cook Biotech, Inc.) with a light-activated protein solder. SIS is an acellular, collagen-based extracellular matrix material that is approximately 100 microns thick. The solder consists of bovine serum albumin and indocyanine green dye (ICG) in deionized water. The solder is activated by an 808 nm diode laser, which denatures the albumin, causing the albumin to bond with the collagen of the tissue. The predictable absorption and thermal energy diffusion rates of ICG increase the chances of reproducible results. To determine the optimal condition for laser soldering SIS, the following parameters were varied: albumin concentration (from 30-45% (w/v) in increments of 5%), the concentration of ICG (from 0.5-2.0 mg/ml H2O) and the irradiance of the laser (10-64 W/cm2). While many of the solder compositions and laser irradiance combinations resulted in no bonding, a solder composition of 45% albumin, ICG concentration of 0.5 mg/ml H2O, and a laser irradiance of 21 W/cm2 did produce a bond between two pieces of SIS. The average shear strength of this bond was 29.5 +/- 17.1 kPa (n = 14). This compares favorably to our previous work using fibrin glue as an adhesive, in which the average shear strength was 27 +/- 15.8 kPa (n = 40). PMID:12724859

  14. Grafting of bovine serum albumin proteins on plasma-modified polymers for potential application in tissue engineering

    NASA Astrophysics Data System (ADS)

    Kasálková, Nikola Slepičková; Slepička, Petr; Kolská, Zdeňka; Hodačová, Petra; Kučková, Štěpánka; Švorčík, Václav

    2014-04-01

    In this work, an influence of bovine serum albumin proteins grafting on the surface properties of plasma-treated polyethylene and poly- l-lactic acid was studied. The interaction of the vascular smooth muscle cells with the modified polymer surface was determined. The surface properties were characterized by X-ray photoelectron spectroscopy, atomic force microscopy, nano-LC-ESI-Q-TOF mass spectrometry, electrokinetic analysis, and goniometry. One of the motivations for this work is the idea that by the interaction of the cell with substrate surface, the proteins will form an interlayer between the cell and the substrate. It was proven that when interacting with the plasma-treated high-density polyethylene and poly- l-lactic acid, the bovine serum albumin protein is grafted on the polymer surface. Since the proteins are bonded to the substrate surface, they can stimulate cell adhesion and proliferation.

  15. Correlation Between C-reactive Protein and Non-enzymatic Antioxidants (Albumin, Ferritin, Uric Acid and Bilirubin) in Hemodialysis Patients

    PubMed Central

    Beciragic, Amela; Resic, Halima; Prohic, Nejra; Karamehic, Jasenko; Smajlovic, Ajdin; Masnic, Fahrudin; Ajanovic, Selma; Coric, Aida

    2015-01-01

    Introduction: Increased levels of C-Reactive Protein are found in 30-60% on hemodialysis patients and it is closely associated with the progression of atherosclerosis, cardiovascular morbidity and mortality. Non enzymatic antioxidants are antioxidants which primarily retain potentially dangerous ions of iron and copper in their inactive form and thereby prevent its participation in the production of free radicals. Aim: The aim of the study was to examine the relationship of CRP and non enzymatic antioxidants (albumin, ferritin, uric acid and bilirubin) i.e. examine the importance of CRP as a serum biomarker in assessing the condition of inflammation and its relationship to antioxidant protection in patients on hemodialysis. Methods: The study was cross-sectional, clinical, comparative and descriptive. The study involved 100 patients (non diabetic) on chronic hemodialysis. The control group consisted of 50 subjects without subjective and objective indicators of chronic renal disease. In all patients, the concentration of CRP as well as concentrations of non enzymatic antioxidants were determined. Results: In the group of hemodialysis patients 60% were men and 40% women. The average age of hemodialysis patients was 54.13 ± 11.8 years and the average age of the control group 41.72 ± 9.8 years. The average duration of hemodialysis treatment was 91.42 ± 76.2 months. In the group of hemodialysis patients statistically significant, negative linear correlation was determined between the concentration of CRP in and albumin concentration (rho = -0.251, p = 0.012) as well as negative, statistics insignificant, linear correlation between serum CRP and the concentration of uric acid (r = -0.077, p = 0.448). Furthermore, the positive, linear correlation was determined between serum CRP and ferritin (r = 0.159, p = 0.114) and positive linear correlation between CRP and total serum bilirubin (r = 0.121, p = 0.230). In the control group was determined a statistically significant

  16. Chromatography of carbon nanotubes separated albumin from other serum proteins: a method for direct analysis of their interactions.

    PubMed

    Kuboki, Yoshinori; Koshikawa, Takamitu; Takita, Hiroko; Fujisawa, Ryuichi; Lee, Min-ho; Abe, Shigeaki; Akasaka, Tsukasa; Uo, Motohiro; Watari, Fumio; Sammons, Rachel

    2010-08-01

    Chromatography technology was employed to clarify the mechanism of interaction between multi-wall carbon nanotubes (MWCNT) and proteins. A column (16x100 mm) was packed with purified MWCNT, and various proteins were eluted with phosphate buffered saline (PBS) with and without gradient systems. It was found that albumin in bovine serum was eluted immediately from the column without any adsorption to MWCNT. Conversely, the non-albumin proteins, including a protein of 85 kDa molecular mass and a group of proteins with molecular masses higher than 115 kDa, exhibited considerably high affinity towards MWCNT. A sample of pure bovine serum albumin was also eluted immediately from the column, while lysozyme did not elute as a peak with PBS, but eluted with 0.6 M NaCl. Fundamentally, carbon nanotubes are devoid of any electrical charge. Therefore, other forces including the hydrogen bonds, hydrophilic interactions, and van der Waals forces were most probably responsible for the differential elution behaviors. In conclusion, this chromatographic method provided a simple and direct analysis of the interactions between carbon nanotubes and the various proteins. PMID:20610879

  17. In vivo genome editing of the albumin locus as a platform for protein replacement therapy.

    PubMed

    Sharma, Rajiv; Anguela, Xavier M; Doyon, Yannick; Wechsler, Thomas; DeKelver, Russell C; Sproul, Scott; Paschon, David E; Miller, Jeffrey C; Davidson, Robert J; Shivak, David; Zhou, Shangzhen; Rieders, Julianne; Gregory, Philip D; Holmes, Michael C; Rebar, Edward J; High, Katherine A

    2015-10-01

    Site-specific genome editing provides a promising approach for achieving long-term, stable therapeutic gene expression. Genome editing has been successfully applied in a variety of preclinical models, generally focused on targeting the diseased locus itself; however, limited targeting efficiency or insufficient expression from the endogenous promoter may impede the translation of these approaches, particularly if the desired editing event does not confer a selective growth advantage. Here we report a general strategy for liver-directed protein replacement therapies that addresses these issues: zinc finger nuclease (ZFN) -mediated site-specific integration of therapeutic transgenes within the albumin gene. By using adeno-associated viral (AAV) vector delivery in vivo, we achieved long-term expression of human factors VIII and IX (hFVIII and hFIX) in mouse models of hemophilia A and B at therapeutic levels. By using the same targeting reagents in wild-type mice, lysosomal enzymes were expressed that are deficient in Fabry and Gaucher diseases and in Hurler and Hunter syndromes. The establishment of a universal nuclease-based platform for secreted protein production would represent a critical advance in the development of safe, permanent, and functional cures for diverse genetic and nongenetic diseases. PMID:26297739

  18. (Na+ + K+)-ATPase Is a Target for Phosphoinositide 3-Kinase/Protein Kinase B and Protein Kinase C Pathways Triggered by Albumin*

    PubMed Central

    Peruchetti, Diogo B.; Pinheiro, Ana Acacia S.; Landgraf, Sharon S.; Wengert, Mira; Takiya, Christina M.; Guggino, William B.; Caruso-Neves, Celso

    2011-01-01

    In recent decades, evidence has confirmed the crucial role of albumin in the progression of renal disease. However, the possible role of signaling pathways triggered by physiologic concentrations of albumin in the modulation of proximal tubule (PT) sodium reabsorption has not been considered. In the present work, we have shown that a physiologic concentration of albumin increases the expression of the α1 subunit of (Na+ + K+)-ATPase in LLC-PK1 cells leading to an increase in enzyme activity. This process involves the sequential activation of PI3K/protein kinase B and protein kinase C pathways promoting inhibition of protein kinase A. This integrative network is inhibited when albumin concentration is increased, similar to renal disease, leading to a decrease in the α1 subunit of (Na+ + K+)-ATPase expression. Together, the results indicate that variation in albumin concentration in PT cells has an important effect on PT sodium reabsorption and, consequently, on renal sodium excretion. PMID:22057272

  19. Evaluation of capillary zone electrophoresis for the determination of protein composition in therapeutic immunoglobulins and human albumins.

    PubMed

    Christians, Stefan; van Treel, Nadine Denise; Bieniara, Gabriele; Eulig-Wien, Annika; Hanschmann, Kay-Martin; Giess, Siegfried

    2016-07-01

    Capillary zone electrophoresis (CZE) provides an alternative means of separating native proteins on the basis of their inherent electrophoretic mobilities. The major advantage of CZE is the quantification by UV detection, circumventing the drawbacks of staining and densitometry in the case of gel electrophoresis methods. The data of this validation study showed that CZE is a reliable assay for the determination of protein composition in therapeutic preparations of human albumin and human polyclonal immunoglobulins. Data obtained by CZE are in line with "historical" data obtained by the compendial method, provided that peak integration is performed without time correction. The focus here was to establish a rapid and reliable test to substitute the current gel based zone electrophoresis techniques for the control of protein composition of human immunoglobulins or albumins in the European Pharmacopoeia. We believe that the more advanced and modern CZE method described here is a very good alternative to the procedures currently described in the relevant monographs. PMID:27156142

  20. Albumin-coated SPIONs: an experimental and theoretical evaluation of protein conformation, binding affinity and competition with serum proteins.

    PubMed

    Yu, Siming; Perálvarez-Marín, Alex; Minelli, Caterina; Faraudo, Jordi; Roig, Anna; Laromaine, Anna

    2016-08-14

    The variety of nanoparticles (NPs) used in biological applications is increasing and the study of their interaction with biological media is becoming more important. Proteins are commonly the first biomolecules that NPs encounter when they interact with biological systems either in vitro or in vivo. Among NPs, super-paramagnetic iron oxide nanoparticles (SPIONs) show great promise for medicine. In this work, we study in detail the formation, composition, and structure of a monolayer of bovine serum albumin (BSA) on SPIONs. We determine, both by molecular simulations and experimentally, that ten molecules of BSA form a monolayer around the outside of the SPIONs and their binding strength to the SPIONs is about 3.5 × 10(-4) M, ten times higher than the adsorption of fetal bovine serum (FBS) on the same SPIONs. We elucidate a strong electrostatic interaction between BSA and the SPIONs, although the secondary structure of the protein is not affected. We present data that supports the strong binding of the BSA monolayer on SPIONs and the properties of the BSA layer as a protein-resistant coating. We believe that a complete understanding of the behavior and morphology of BSA-SPIONs and how the protein interacts with SPIONs is crucial for improving NP surface design and expanding the potential applications of SPIONs in nanomedicine. PMID:27241081

  1. ANALYSIS OF DRUG-PROTEIN BINDING BY ULTRAFAST AFFINITY CHROMATOGRAPHY USING IMMOBILIZED HUMAN SERUM ALBUMIN

    PubMed Central

    Mallik, Rangan; Yoo, Michelle J.; Briscoe, Chad J.; Hage, David S.

    2010-01-01

    Human serum albumin (HSA) was explored for use as a stationary phase and ligand in affinity microcolumns for the ultrafast extraction of free drug fractions and the use of this information for the analysis of drug-protein binding. Warfarin, imipramine, and ibuprofen were used as model analytes in this study. It was found that greater than 95% extraction of all these drugs could be achieved in as little as 250 ms on HSA microcolumns. The retained drug fraction was then eluted from the same column under isocratic conditions, giving elution in less than 40 s when working at 4.5 mL/min. The chromatographic behavior of this system gave a good fit with that predicted by computer simulations based on a reversible, saturable model for the binding of an injected drug with immobilized HSA. The free fractions measured by this method were found to be comparable to those determined by ultrafiltration, and equilibrium constants estimated by this approach gave good agreement with literature values. Advantages of this method include its speed and the relatively low cost of microcolumns that contain HSA. The ability of HSA to bind many types of drugs also creates the possibility of using the same affinity microcolumn to study and measure the free fractions for a variety of pharmaceutical agents. These properties make this technique appealing for use in drug binding studies and in the high-throughput screening of new drug candidates. PMID:20227701

  2. Fatty acid-binding site environments of serum vitamin D-binding protein and albumin are different

    PubMed Central

    Swamy, Narasimha; Ray, Rahul

    2008-01-01

    Vitamin D-binding protein (DBP) and albumin (ALB) are abundant serum proteins and both possess high-affinity binding for saturated and unsaturated fatty acids. However, certain differences exist. We surmised that in cases where serum albumin level is low, DBP presumably can act as a transporter of fatty acids. To explore this possibility we synthesized several alkylating derivatives of 14C-palmitic acid to probe the fatty acid binding pockets of DBP and ALB. We observed that N-ethyl-5-phenylisooxazolium-3′-sulfonate-ester (WRK ester) of 14C-palmitic acid specifically labeled DBP; but p-nitrophenyl- and N-hydroxysuccinimidyl-esters failed to do so. However, p-nitrophenyl ester of 14C-palmitic acid specifically labeled bovine ALB, indicating that the micro-environment of the fatty acid-binding domains of DBP and ALB may be different; and DBP may not replace ALB as a transporter of fatty acids. PMID:18374965

  3. Exploring the interaction between picoplatin and human serum albumin: The effects on protein structure and activity.

    PubMed

    Wang, Yanqing; Wu, Peirong; Zhou, Xinchun; Zhang, Hongmei; Qiu, Ligan; Cao, Jian

    2016-09-01

    For the first time, the effects of picoplatin on the structure and esterase-like catalytic activity of human serum albumin (HSA) have been investigated by spectroscopic approaches and molecular modeling. The circular dichroism (CD) spectral examinations indicated that the binding of picoplatin with HSA induced a slight decrease of a-helix content of protein and unfolded the constituent polypeptides of the protein. The synchronous fluorescence and three-dimensional fluorescence spectral methods were used to estimate the effect of picoplatin on the micro-environmental changes of the Trp and Tyr residues of HSA, indicating that the micro-environment around the Tyr and Trp residue is partly disturbed by picoplatin. UV-vis absorption spectral result indicated the formation of the ground state complex between picoplatin with HSA. The ANS binding assay indicated the existence of competitive combination of picoplatin and ANS with HSA. The studies on the effects of picoplatin on the binding of HSA with bilirubin and heme showed that picoplatin binding caused a change of angle between two chromophores of bound bilirubin and the binding site of picoplatin does not locate in subdomain IB in HSA that bound with heme. The molecular modeling results showed that picoplatin binds to the connection between domain I and domain II by hydrophobic, hydrogen bonds, and van der Waals forces. In addition, HSA maintains most of its esterase activity in the presence of picoplatin. The investigations on how picoplatin interacts with HSA are important for the understanding of the anticancer mechanism and toxicity of platinum-based anticancer drug. PMID:27484966

  4. Protections of bovine serum albumin protein from damage on functionalized graphene-based electrodes by flavonoids.

    PubMed

    Sun, Bolu; Gou, Yuqiang; Xue, Zhiyuan; Zheng, Xiaoping; Ma, Yuling; Hu, Fangdi; Zhao, Wanghong

    2016-05-01

    A sensitive electrochemical sensor based on bovine serum albumin (BSA)/poly (diallyldimethylammonium chloride) (PDDA) functionalized graphene nanosheets (PDDA-G) composite film modified glassy carbon electrode (BSA/PDDA-G/GCE) had been developed to investigate the oxidative protein damage and protections of protein from damage by flavonoids. The performance of this sensor was remarkably improved due to excellent electrical conductivity, strong adsorptive ability, and large effective surface area of PDDA-G. The BSA/PDDA-G/GCE displayed the greatest degree of BSA oxidation damage at 40min incubation time and in the pH5.0 Fenton reagent system (12.5mM FeSO4, 50mM H2O2). The antioxidant activities of four flavonoids had been compared by fabricated sensor based on the relative peak current ratio of SWV, because flavonoids prevented BSA damage caused by Fenton reagent and affected the BSA signal in a solution containing Co(bpy)3(3+). The sensor was characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM). UV-vis spectrophotometry and FTIR were also used to investigate the generation of hydroxyl radical and BSA damage, respectively. On the basis of results from electrochemical methods, the order of the antioxidant activities of flavonoids is as follows: (+)-catechin>kaempferol>apigenin>naringenin. A novel, direct SWV analytical method for detection of BSA damage and assessment of the antioxidant activities of four flavonoids was developed and this electrochemical method provided a simple, inexpensive and rapid detection of BSA damage and evaluation of the antioxidant activities of samples. PMID:26952415

  5. Low Serum Albumin Level, Male Sex, and Total Gastrectomy Are Risk Factors of Severe Postoperative Complications in Elderly Gastric Cancer Patients

    PubMed Central

    Kang, Sung Chan; Kim, Hyun Il

    2016-01-01

    Purpose It is well known that old age is a risk factor for postoperative complications. Therefore, this study aimed to explore the risk factors for poor postoperative surgical outcomes in elderly gastric cancer patients. Materials and Methods Between January 2006 and December 2015, 247 elderly gastric cancer patients who underwent curative gastrectomy were reviewed. In this study, an elderly patient was defined as a patient aged ≥65 years. All possible variables were used to explore the risk factors for poor early surgical outcomes in elderly gastric cancer patients. Results Based on multivariate analyses of preoperative risk factors, preoperative low serum albumin level (<3.5 g/dl) and male sex showed statistical significance in predicting severe postoperative complications. Additionally, in an analysis of surgery-related risk factors, total gastrectomy was a risk factor for severe postoperative complications. Conclusions Our study findings suggest that low serum albumin level, male sex, and total gastrectomy could be risk factors of severe postoperative complications in elderly gastric cancer patients. Therefore, surgeons should work carefully in cases of elderly gastric cancer patients with low preoperative serum albumin level and male sex. We believe that efforts should be made to avoid total gastrectomy in elderly gastric cancer patients. PMID:27104026

  6. Albumin-coated SPIONs: an experimental and theoretical evaluation of protein conformation, binding affinity and competition with serum proteins

    NASA Astrophysics Data System (ADS)

    Yu, Siming; Perálvarez-Marín, Alex; Minelli, Caterina; Faraudo, Jordi; Roig, Anna; Laromaine, Anna

    2016-07-01

    The variety of nanoparticles (NPs) used in biological applications is increasing and the study of their interaction with biological media is becoming more important. Proteins are commonly the first biomolecules that NPs encounter when they interact with biological systems either in vitro or in vivo. Among NPs, super-paramagnetic iron oxide nanoparticles (SPIONs) show great promise for medicine. In this work, we study in detail the formation, composition, and structure of a monolayer of bovine serum albumin (BSA) on SPIONs. We determine, both by molecular simulations and experimentally, that ten molecules of BSA form a monolayer around the outside of the SPIONs and their binding strength to the SPIONs is about 3.5 × 10-4 M, ten times higher than the adsorption of fetal bovine serum (FBS) on the same SPIONs. We elucidate a strong electrostatic interaction between BSA and the SPIONs, although the secondary structure of the protein is not affected. We present data that supports the strong binding of the BSA monolayer on SPIONs and the properties of the BSA layer as a protein-resistant coating. We believe that a complete understanding of the behavior and morphology of BSA-SPIONs and how the protein interacts with SPIONs is crucial for improving NP surface design and expanding the potential applications of SPIONs in nanomedicine.The variety of nanoparticles (NPs) used in biological applications is increasing and the study of their interaction with biological media is becoming more important. Proteins are commonly the first biomolecules that NPs encounter when they interact with biological systems either in vitro or in vivo. Among NPs, super-paramagnetic iron oxide nanoparticles (SPIONs) show great promise for medicine. In this work, we study in detail the formation, composition, and structure of a monolayer of bovine serum albumin (BSA) on SPIONs. We determine, both by molecular simulations and experimentally, that ten molecules of BSA form a monolayer around the

  7. [The behavior of serum total protein and protein fractions during the use of various hormonal contraceptives].

    PubMed

    Klinger, G; Scheler, R; Tarnick, M; Krause, G; Hesse, A; Carol, W

    1977-01-01

    Total protein fractions in the serum were measured in 213 women who used various contraceptive preparations (53 used Gravistat, 56 Non-Ovlon, 37 Ovosiston, 67 Deposiston). Blood samples were taken before the 1st, 3rd, 6th, 12th, and 24th cycles of use and 4 weeks after discontinuing preparation use. Serum protein concentrations decreased through the first 18 cycles of contraceptive use, after which a continual increase was observed. Serum albumin concentrations deceased during the first 3 cycles of use, after which increases were observed, which in the case of Non-Ovlon and Gravistat exceeded original values. Serum alpha 1 and alpha 2 globulin concentrations showed relative increases during the first 3 cycles, after which a decrease was observed. Serum beta globulin increased in the first 3 cycles of use; a decrease was observed between the 12th and 18 cycles, followed by another increase. Serum gamma globulin levels increased during the first 6 cycles, followed by a marked decrease, which extended partially into the post-treatment period. The changes are comparable to those observed during an undisturbed pregnancy. Deposiston caused the most marked changes in the parameters; this is attributed to the estrogenic nature of the preparation. PMID:73442

  8. Glutaraldehyde mediated conjugation of amino-coated magnetic nanoparticles with albumin protein for nanothermotherapy.

    PubMed

    Zhao, Lingyun; Yang, Bing; Dai, Xiaochen; Wang, Xiaowen; Gao, Fuping; Zhang, Xiaodong; Tang, Jintian

    2010-11-01

    A novel bioconjugation of amino saline capped Fe3O4 magnetic nanoparticles (MNPs) with bovine serum albumin (BSA) was developed by applying glutaraldehyde as activator. Briefly, Fe3O4 MNs were synthesized by the chemical co-precipitation method. Surface modification of the prepared MNPs was performed by employing amino saline as the coating agent. Glutaraldehyde was further applied as an activation agent through which BSA was conjugated to the amino-coated MNPs. The structure of the BSA-MNs was confirmed by FTIR analysis. Physico-chemical characterizations of the BSA-MNPs, such as surface morphology, surface charge and magnetic properties were investigated by Transmission Electron Microscopy (TEM), zeta-Potential and Vibrating Sample Magnetometer (VSM), etc. Magnetic inductive heating characteristics of the BSA-MNPs were analyzed by exposing the MNPs suspension (magnetic fluid) under alternative magnetic field (AMF). The results demonstrate that BSA was successfully conjugated with amino-coated MNs mediated through glutaraldehyde activation. The nanoparticles were spherical shaped with approximately 10 nm diameter. Possessing ideal magnetic inductive heating characteristics, which can generate very rapid and efficient heating while upon AMF exposure, BSA-MNPs can be applied as a novel candidature for magnetic nanothermotherapy for cancer treatment. In vitro cytotoxicity study on the human hepatocellular liver carcinoma cells (HepG-2) indicates that BSA-MNP is an efficient agent for cancer nanothermotherapy with satisfied biocompatibility, as rare cytotoxicity was observed in the absence of AMF. Moreover, our investigation provides a methodology for fabrication protein conjugated MNPs, for instance monoclonal antibody conjugated MNPs for targeting cancer nanothermotherapy. PMID:21137877

  9. Surface receptors for serum albumin in group C and G streptococci show three different types of albumin specificity.

    PubMed Central

    Wideback, K; Kronvall, G

    1982-01-01

    A total of 100 bacterial strains were tested for binding uptake of radiolabeled albumin preparations from 15 mammalian species. Three types of surface structures with specific binding sites for albumin were defined. A previously described receptor for albumin was separated into type a in Streptococcus equisimilis strains and in human group G streptococcal strains and type b in bovine group C streptococci. A new type of albumin receptor, type c, was found in Streptococcus dysgalactiae strains, the only receptor type so far with high affinity for bovine serum albumin. Type of albumin receptor correlated with bacterial species. The three receptor types showed high binding capacities; 2 X 10(8) bacterial organisms bound from 5 to 16 micrograms of albumin. All types of albumin receptors were stable to heat treatment at 80 degrees C for 5 min, but susceptible to both pepsin and trypsin treatment. Bacteria-bound albumin preparations were eluted at various concentrations of KSCN, reflecting differences in affinity. Up to 500 micrograms of human fibrinogen or polyclonal human immunoglobulin G had no inhibitory effect on the uptake of albumin, indicating a separate molecular localization of receptors for these proteins. PMID:6295942

  10. Characterization of the comparative drug binding to intra- (liver fatty acid binding protein) and extra- (human serum albumin) cellular proteins.

    PubMed

    Rowland, Andrew; Hallifax, David; Nussio, Matthew R; Shapter, Joseph G; Mackenzie, Peter I; Brian Houston, J; Knights, Kathleen M; Miners, John O

    2015-01-01

    1. This study compared the extent, affinity, and kinetics of drug binding to human serum albumin (HSA) and liver fatty acid binding protein (LFABP) using ultrafiltration and surface plasmon resonance (SPR). 2. Binding of basic and neutral drugs to both HSA and LFABP was typically negligible. Binding of acidic drugs ranged from minor (fu > 0.8) to extensive (fu < 0.1). Of the compounds screened, the highest binding to both HSA and LFABP was observed for the acidic drugs torsemide and sulfinpyrazone, and for β-estradiol (a polar, neutral compound). 3. The extent of binding of acidic drugs to HSA was up to 40% greater than binding to LFABP. SPR experiments demonstrated comparable kinetics and affinity for the binding of representative acidic drugs (naproxen, sulfinpyrazone, and torsemide) to HSA and LFABP. 4. Simulations based on in vitro kinetic constants derived from SPR experiments and a rapid equilibrium model were undertaken to examine the impact of binding characteristics on compartmental drug distribution. Simulations provided mechanistic confirmation that equilibration of intracellular unbound drug with the extracellular unbound drug is attained rapidly in the absence of active transport mechanisms for drugs bound moderately or extensively to HSA and LFABP. PMID:25801059

  11. Conformational stability of a model protein (bovine serum albumin) during primary emulsification process of PLGA microspheres synthesis.

    PubMed

    Kang, Feirong; Singh, Jagdish

    2003-07-01

    The goal of this study was to investigate the conformational stability of a model protein, bovine serum albumin (BSA), during the primary emulsification process of poly(D,L-lactide-co-glycolide) (PLGA) microspheres preparation. Differential scanning calorimeter (DSC) was utilized to assess the conformational structure of BSA during primary emulsification in the presence and absence of PLGA. Three excipients [i.e. mannitol, hydroxypropyl-beta-cyclodextrin (HP-beta-CD) and sodium dodecyl sulfate (SDS)] were investigated for their stabilizing effect on BSA during emulsification process. The DSC profile of intact BSA was best fitted by a non-2-state model with two peaks, which have midpoint temperatures (T(m1), 60.9 +/- 0.4 degrees C and T(m2), 66.4 +/- 1.0 degrees C), respectively, and a total calorimetric enthalpy Delta H(tot) of 599 +/- 42 kJ/mol. After emulsifying BSA aqueous solution with methylene chloride, an additional apparent peak at a higher temperature was observed. The T(m) of this peak was 77.4 +/- 0.8 degrees C. HP-beta-CD was able to suppress the occurrence of an additional peak, whereas mannitol failed. SDS increased the thermal stability of BSA dramatically. Furthermore, HP-beta-CD increased BSA recovery from 72 +/- 8% to 89 +/- 7% after extraction from w/o in the presence of PLGA. These results provided evidence that HP-beta-CD could be a promising excipient for conformational stability of BSA during synthesis of PLGA microspheres. PMID:12818819

  12. Structure of Serum Albumin

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.; Ho, Joseph X.

    1994-01-01

    Because of its availability, low cost, stability, and unusual ligand-binding properties, serum albumin has been one of the mst extensively studied and applied proteins in biochemistry. However, as a protein, albumin is far from typical, and the widespread interest in and application of albumin have not been balanced by an understanding of its molecular structure. Indeed, for more than 30 years structural information was surmised based solely on techniques such as hydrodynamics, low-angle X-ray scattering, and predictive methods.

  13. Evaluation of Ischemia-Modified Albumin, Malondialdehyde, and Advanced Oxidative Protein Products as Markers of Vascular Injury in Diabetic Nephropathy

    PubMed Central

    Ahmad, Afzal; Manjrekar, Poornima; Yadav, Charu; Agarwal, Ashish; Srikantiah, Rukmini Mysore; Hegde, Anupama

    2016-01-01

    AIM This study aimed at evaluation of ischemia-modified albumin (IMA), malondialdehyde (MDA), and advanced oxidative protein products (AOPP) as markers of vascular injury in diabetic nephropathy (DN) with derivation of cutoff values for the same. MATERIALS AND METHODS Study population comprised 60 diabetes patients and 30 controls, with diabetes patients further categorized into three groups based on urine albumin/creatinine ratio (UACR) of <30 mg/g (diabetes without microalbuminuria), 30–300 mg/g (early DN), and >300 mg/g of creatinine (overt DN). Serum IMA, MDA, and AOPP were estimated by enzyme-linked immunosorbent assay; HbA1c, serum creatinine, urine albumin, and urine creatinine were estimated using automated analyzers. Statistical analysis was done using analysis of variance, Pearson’s correlation coefficient, and receiver-operating characteristic curve. RESULTS A statistically significant difference was found in the levels of IMA among patients with early DN (154 ng/mL), diabetes without nephropathy (109.4 ng/mL), and healthy controls (45.7 ng/mL), with highest levels in early DN cases. Similar increase was seen in AOPP as well. A significant correlation was observed between IMA and UACR in diabetes without nephropathy (r = 0.448). CONCLUSION The present study postulates serum IMA as a novel biomarker for the assessment of disease progression in diabetes even before microalbuminuria, and a cutoff point ≥99 ng/mL can be used for detection of early DN. PMID:27158221

  14. Interaction study on bovine serum albumin physically binding to silver nanoparticles: Evolution from discrete conjugates to protein coronas

    NASA Astrophysics Data System (ADS)

    Guo, Jun; Zhong, Ruibo; Li, Wanrong; Liu, Yushuang; Bai, Zhijun; Yin, Jun; Liu, Jingran; Gong, Pei; Zhao, Xinmin; Zhang, Feng

    2015-12-01

    The nanostructures formed by inorganic nanoparticles together with organic molecules especially biomolecules have attracted increasing attention from both industries and researching fields due to their unique hybrid properties. In this paper, we systemically studied the interactions between amphiphilic polymer coated silver nanoparticles and bovine serum albumins by employing the fluorescence quenching approach in combination with the Stern-Volmer and Hill equations. The binding affinity was determined to 1.30 × 107 M-1 and the interaction was spontaneously driven by mainly the van der Waals force and hydrogen-bond mediated interactions, and negatively cooperative from the point of view of thermodynamics. With the non-uniform coating of amphiphilic polymer, the silver nanoparticles can form protein coronas which can become discrete protein-nanoparticle conjugates when controlling their molar ratios of mixing. The protein's conformational changes upon binding nanoparticles was also studied by using the three-dimensional fluorescence spectroscopy.

  15. The antifungal properties of a 2S albumin-homologous protein from passion fruit seeds involve plasma membrane permeabilization and ultrastructural alterations in yeast cells.

    PubMed

    Agizzio, Ana Paula; Da Cunha, Maura; Carvalho, André O; Oliveira, Marco Antônio; Ribeiro, Suzanna F F; Gomes, Valdirene M

    2006-10-01

    Different types of antimicrobial proteins were purified from plant seeds, including chitinases, β-1,3-glucanases, defensins, thionins, lipid transfer proteins and 2S albumins. It has become clear that these groups of proteins play an important role in the protection of plants from microbial infection. Recent results from our laboratory have shown that the defense-related proteins from passion fruit seeds, named Pf1 and Pf2 (which show sequence homology with 2S albumins), inhibit fungal growth and glucose-stimulated acidification of the medium by Saccharomyces cerevisiae cells. The aim of this study was to determine whether 2S albumins from passion fruit seeds induce plasma membrane permeabilization and cause morphological alterations in yeast cells. Initially, we used an assay based on the uptake of SYTOX Green, an organic compound that fluoresces upon interaction with nucleic acids and penetrates cells with compromised plasma membranes, to investigate membrane permeabilization in S. cerevisiae cells. When viewed with a confocal laser microscope, S. cervisiae cells showed strong SYTOX Green fluorescence in the cytosol, especially in the nuclei. 2S albumins also inhibited glucose-stimulated acidification of the medium by S. cerevisiae cells, which indicates a probable impairment of fungal metabolism. The microscopical analysis of the yeast cells treated with 2S albumins demonstrated several morphological alterations in cell shape, cell surface, cell wall and bud formation, as well as in the organization of intracellular organelles. PMID:25193649

  16. Spectroscopic investigations of the interactions of tramadol hydrochloride and 5-azacytidine drugs with human serum albumin and human hemoglobin proteins.

    PubMed

    Tunç, Sibel; Cetinkaya, Ahmet; Duman, Osman

    2013-03-01

    The interactions of tramadol hydrochloride (THC) and 5-azacytidine (AZA) drugs with human serum albumin (HSA) and human hemoglobin (HMG) proteins were investigated by fluorescence, UV absorption and circular dichroism (CD) spectroscopy at pH 7.4 and different temperatures. The UV absorption spectra and the fluorescence quenching of HSA and HMG proteins indicated the formation of HSA-THC and HMG-THC complexes via static quenching mechanism. AZA did not interact with HSA and HMG proteins. It was found that the formation of HMG-THC complex was stronger than that of HSA-THC complex. The stability of HSA-THC and HMG-THC complexes decreased with increasing temperature. The number of binding site was found as one for HSA-THC and HMG-THC systems. Negative enthalpy change (ΔH) and Gibbs free energy change (ΔG) and positive entropy change (ΔS) values were obtained for these systems. The binding of THC-HSA and HMG proteins was spontaneous and exothermic. In addition, electrostatic interactions between protein and drug molecules played an important role in the binding processes. The results of CD analysis revealed that the addition of THC led to a significant conformational change in the secondary structure of HSA protein, on the contrary to HMG protein. PMID:23428887

  17. 21 CFR 862.1635 - Total protein test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Total protein test system. 862.1635 Section 862.1635 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1635 Total protein test system....

  18. 21 CFR 862.1635 - Total protein test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Total protein test system. 862.1635 Section 862.1635 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1635 Total protein test system....

  19. 21 CFR 862.1635 - Total protein test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Total protein test system. 862.1635 Section 862.1635 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1635 Total protein test system....

  20. Denaturation of human serum albumin under the action of cetyltrimethylammonium bromide according to fluorescence polarization data of protein

    NASA Astrophysics Data System (ADS)

    Vlasova, I. M.; Zhuravleva, V. V.; Saletskii, A. M.

    2012-03-01

    Denaturation of human serum albumin (HSA) under the action of cationic detergent cetyltrimethylammonium bromide (CTAB) is studied at different pH values by estimating the rotational diffusion of protein via fluorescence polarization. The degree of polarization of HSA tryptophan fluorescence, the rotational relaxation time, the rotational diffusion coefficient and the effective Einstein radius of the HSA molecules in solutions with different CTAB concentrations at different pH values are determined. The obtained rotational diffusion parameters of the HSA molecules show that under the action of CTAB, HSA denaturation has a one-stage character and proceeds more intensely and effectively at pH values higher than the p I value of protein (4.7).

  1. Conformational changes of bovine plasma albumin prior to the salting-out of protein in concentrated salt solution.

    PubMed

    Sogami, M; Inouye, H; Nagaoka, S; Era, S

    1982-09-01

    By working at very low protein concentration (ca. 0.003%), it is possible to measure tryptophyl fluorescence intensity at 350 nm (F350) of bovine plasma albumin (BPA) as a function of pH under precipitating conditions (acidic concentrated salt solutions). Under such conditions, distinct changes in F350 were seen before the starting of precipitation of BPA and no further changes in F350 over the precipitating pH range. Comparison of pH-profiles monitored by F350 with those by solubility in the presence of various salts at various concentrations indicated that the change of solubility is observed after definite changes in conformation of the protein. PMID:7129758

  2. Measurements of long-range interactions between protein-functionalized surfaces by total internal reflection microscopy.

    PubMed

    Wang, Zhaohui; Gong, Xiangjun; Ngai, To

    2015-03-17

    Understanding the interaction between protein-functionalized surfaces is an important subject in a variety of protein-related processes, ranging from coatings for biomedical implants to targeted drug carriers and biosensors. In this work, utilizing a total internal reflection microscope (TIRM), we have directly measured the interactions between micron-sized particles decorated with three types of common proteins concanavalin A (ConA), bovine serum albumin (BSA), lysozyme (LYZ), and glass surface coated with soy proteins (SP). Our results show that the protein adsorption greatly affects the charge property of the surfaces, and the interactions between those protein-functionalized surfaces depend on solution pH values. At pH 7.5-10.0, all these three protein-functionalized particles are highly negatively charged, and they move freely above the negatively charged SP-functionalized surface. The net interaction between protein-functionalized surfaces captured by TIRM was found as a long-range, nonspecific double-layer repulsion. When pH was decreased to 5.0, both protein-functionalized surfaces became neutral and double-layer repulsion was greatly reduced, resulting in adhesion of all three protein-functionalized particles to the SP-functionalized surface due to the hydrophobic attraction. The situation is very different at pH = 4.0: BSA-decorated particles, which are highly charged, can move freely above the SP-functionalized surfaces, while ConA- and LYZ-decorated particles can only move restrictively in a limited range. Our results quantify these nonspecific kT-scale interactions between protein-functionalized surfaces, which will enable the design of surfaces for use in biomedical applications and study of biomolecular interactions. PMID:25719226

  3. Electrolyte effect on the phase behavior of silica nanoparticles with lysozyme and bovine-serum-albumin proteins

    NASA Astrophysics Data System (ADS)

    Yadav, Indresh; Aswal, V. K.; Kohlbrecher, J.

    2015-05-01

    Small-angle neutron scattering (SANS) and dynamic light scattering (DLS) studies have been carried out to investigate the effect of an electrolyte on the phase behavior of anionic silica nanoparticles with two globular proteins—cationic lysozyme [molecular weight (MW) 14.7 kDa] and anionic bovine serum albumin (MW 66.4 kDa). The results are compared with our earlier published work on similar systems without any electrolyte [I. Yadav, S. Kumar, V. K. Aswal, and J. Kohlbrecher, Phys. Rev. E 89, 032304 (2014), 10.1103/PhysRevE.89.032304]. Both the nanoparticle-protein systems transform to two phase at lower concentration of protein in the presence of an electrolyte. The autocorrelation function in DLS suggests that the diffusion coefficient (D) of a nanoparticle-protein system decreases in approaching two phase with the increase in protein concentration. This variation in D can be attributed to increase in attractive interaction and/or overall increase in the size. Further, these two contributions (interaction and structure) are determined from the SANS data. The changes in the phase behavior of nanoparticle-protein systems in the presence of an electrolyte are explained in terms of modifications in both the repulsive and attractive components of interaction between nanoparticles. In a two-phase system individual silica nanoparticles coexist along with their fractal aggregates.

  4. A fluorescence-based high throughput assay for the determination of small molecule–human serum albumin protein binding

    PubMed Central

    McCallum, Megan M.; Pawlak, Alan J.; Shadrick, William R.; Simeonov, Anton; Jadhav, Ajit; Yasgar, Adam; Maloney, David J.; Arnold, Leggy A.

    2014-01-01

    Herein, we describe the development of a fluorescence-based high throughput assay to determine the small molecule binding towards human serum albumin (HSA). This innovative competition assay is based on the use of a novel fluorescent small molecule Red Mega 500 with unique spectroscopic and binding properties. The commercially available probe displays a large fluorescence intensity difference between the protein-bound and protein-unbound state. The competition of small molecules for HSA binding in the presence of probe resulted in low fluorescence intensities. The assay was evaluated with the LOPAC small molecule library of 1280 compounds identifying known high protein binders. The small molecule competition of HSA–Red Mega 500 binding was saturable at higher compound concentrations and exhibited IC50 values between 3–24 μM. The compound affinity towards HSA was confirmed by isothermal titration calorimetry indicating that the new protein binding assay is a valid high throughput assay to determine plasma protein binding. PMID:24390461

  5. Affinity of rosmarinic acid to human serum albumin and its effect on protein conformation stability.

    PubMed

    Peng, Xin; Wang, Xiangchao; Qi, Wei; Su, Rongxin; He, Zhimin

    2016-02-01

    Rosmarinic acid (RA) is a natural polyphenol contained in many aromatic plants with promising biological activities. The interaction between RA and human serum albumin (HSA) was investigated by multi-spectroscopic, electrochemistry, molecular docking and molecular dynamics simulation methods. The fluorescence emission of HSA was quenched by RA through a combined static and dynamic quenching mechanism, but the static quenching was the major constituent. Fluorescence experiments suggested that RA was bound to HSA with moderately strong binding affinity through hydrophobic interaction. The probable binding location of RA was located near site I of HSA. Additionally, as shown by the Fourier transform infrared (FT-IR) and circular dichroism (CD) spectra, RA can result in conformational and structural alterations of HSA. Furthermore, the molecular dynamics studies were used to investigate the stability of the HSA and HSA-RA system. Altogether, the results can provide an important insight for the applications of RA in the food industry. PMID:26304336

  6. Pre-association of polynuclear platinum anticancer agents on a protein, human serum albumin. Implications for drug design†

    PubMed Central

    Montero, Eva I.; Benedetti, Brad T.; Mangrum, John B.; Oehlsen, Michael J.; Qu, Yun; Farrell, Nicholas P.

    2009-01-01

    The interactions of polynuclear platinum complexes with human serum albumin were studied. The compounds examined were the “non-covalent” analogs of the trinuclear BBR3464 as well as the dinuclear spermidine-bridged compounds differing in only the presence or absence of a central -NH2-+ (BBR3571 and analogs). Thus, closely-related compounds could be compared. Evidence for pre-association, presumably through electrostatic and hydrogen-bonding, was obtained from fluorescence and circular dichroism spectroscopy and Electrospray Ionization Mass Spectrometry (ESI-MS). In the case of those compounds containing Pt-Cl bonds, further reaction took place presumably through displacement by sulfur nucleophiles. The implications for protein pre-association and plasma stability of polynuclear platinum compounds are discussed. PMID:17992278

  7. Expression and bioactivity of recombinant human serum albumin and dTMP fusion proteins in CHO cells.

    PubMed

    Ru, Yi; Zhi, Dejuan; Guo, Dingding; Wang, Yong; Li, Yang; Wang, Meizhu; Wei, Suzhen; Wang, Haiqing; Wang, Na; Che, Jingmin; Li, Hongyu

    2016-09-01

    The 14-amino acid (IEGPTLRQWLAARA) thrombopoietin mimetic peptide (TMP) shares no sequence homology with native thrombopoietin (TPO). When dimerized, it displays a high-binding affinity for the TPO receptor and has equipotent bioactivity with recombinant human TPO (rhTPO) in stimulating proliferation and maturation of megakaryocytes in vitro. However, TMP is limited for clinical usage because of its short half-life in vivo. In this study, fusion proteins that composed of tandem dimer of TMP (dTMP) genetically fused at the C- or N-terminus of human serum albumin (HSA) were separately expressed in Chinese hamster ovary (CHO) cells. In vitro bioactivity assays showed that purified fusion proteins promoted the proliferation of megakaryocytes in a dose-dependent manner and activated signal transducer and activator of transcription (STAT) pathway in TPO receptor-dependent manner. Following subcutaneous administration, both HSA-dTMP and dTMP-HSA significantly elevated peripheral platelet counts in normal mice in a dose-dependent manner. In addition, fusion with HSA successfully prolonged dTMP half-life in mice. However, when HSA was fused at the C-terminus of dTMP, the bioactivity of dTMP-HSA was about half of that of HSA-dTMP. In conclusion, these results suggested that HSA/dTMP fusion proteins might be potential drugs for thrombocytopenia and, when HSA was fused at the N-terminus of dTMP, the fusion protein had a higher activity. PMID:27115755

  8. Covalent attachment of metal chelates to proteins:the stability in vivo and in vitro of the conjugate of albumin with a chelate of 111indium.

    PubMed Central

    Meares, C F; Goodwin, D A; Leung, C S; Girgis, A Y; Silvester, D J; Nunn, A D; Lavender, P J

    1976-01-01

    Human serum albumin has been conjugated to 1-(p-bnezenediazonium)-(ethylenedinitrilo)tetraacetic acid, a powerful chelating agent, and radioactive 111indium ions have been added specifically to the chelating groups. The product, with a specific radioactivity of about 1 mCi/mg of protein, was employed as a radiotracer in scintillation scanning studies with human volunteers. Results show that 48 hr after injection, practically all of the label remains attached to albumin. This is confirmed by electrophoresis of serum proteins; 7 days after injection, 85% of the radioactivity in the serum is still in the albumin fraction. These observations agree with in vitro studies of the labeled albumin in human serum, where loss of the metal ion from the chelating group to the protein transferrin amounts to less than 3% after 1 week and less than 5% after 2 weeks. Measurements of the distribution of label in mice up to 23 days after injection suggest that metabolism of the labeled protein does not lead to binding of indium ions by transferrin. The binding of indium and other metal ions by transferrin has previously posed a major impediment to the use of metal chelates for in vivo diagnostic procedures. Demonstration of the kinetic inertness of the chelate in these experiments suggests the use of related chelates as physical probes of biological systems. Images PMID:825856

  9. Albumin Test

    MedlinePlus

    ... to a variety of conditions in addition to malnutrition , a decrease in albumin needs to be evaluated ... can also be seen in inflammation , shock, and malnutrition . They may be seen with conditions in which ...

  10. Albuminated Glycoenzymes: Enzyme Stabilization through Orthogonal Attachment of a Single-Layered Protein Shell around a Central Glycoenzyme Core.

    PubMed

    Ritter, Dustin W; Newton, Jared M; Roberts, Jason R; McShane, Michael J

    2016-05-18

    Here we demonstrate an approach to stabilize enzymes through the orthogonal covalent attachment of albumin on the single-enzyme level. Albuminated glycoenzymes (AGs) based upon glucose oxidase and catalase from Aspergillus niger were prepared in this manner. Gel filtration chromatography and dynamic light scattering support modification, with an increase in hydrodynamic radius of ca. 60% upon albumination. Both AGs demonstrate a marked resistance to aggregation during heating to 90 °C, but this effect is more profound in albuminated catalase. The functional characteristics of albuminated glucose oxidase vary considerably with exposure type. The AG's thermal inactivation is reduced more than 25 times compared to native glucose oxidase, and moderate stabilization is observed with one month storage at 37 °C. However, albumination has no effect on operational stability of glucose oxidase. PMID:27111632

  11. Protein adsorption and cell adhesion on nanoscale bioactive coatings formed from poly(ethylene glycol) and albumin microgels

    PubMed Central

    Scott, Evan A.; Nichols, Michael D.; Cordova, Lee H.; George, Brandon J.; Jun, Young-Shin; Elbert, Donald L.

    2008-01-01

    Late-term thrombosis on drug-eluting stents is an emerging problem that might be addressed using extremely thin, biologically-active hydrogel coatings. We report a dip-coating strategy to covalently link poly(ethylene glycol) (PEG) to substrates, producing coatings with <≈100 nm thickness. Gelation of PEG-octavinylsulfone with amines in either bovine serum albumin (BSA) or PEG-octaamine was monitored by dynamic light scattering (DLS), revealing the presence of microgels before macrogelation. NMR also revealed extremely high end group conversions prior to macrogelation, consistent with the formation of highly crosslinked microgels and deviation from Flory-Stockmayer theory. Before macrogelation, the reacting solutions were diluted and incubated with nucleophile-functionalized surfaces. Using optical waveguide lightmode spectroscopy (OWLS) and quartz crystal microbalance with dissipation (QCM-D), we identified a highly hydrated, protein-resistant layer with a thickness of approximately 75 nm. Atomic force microscopy in buffered water revealed the presence of coalesced spheres of various sizes but with diameters less than about 100 nm. Microgel-coated glass or poly(ethylene terephthalate) exhibited reduced protein adsorption and cell adhesion. Cellular interactions with the surface could be controlled by using different proteins to cap unreacted vinylsulfone groups within the coating. PMID:18771802

  12. Rapid Screening of Drug-Protein Binding Using High-Performance Affinity Chromatography with Columns Containing Immobilized Human Serum Albumin

    PubMed Central

    Li, Ying-Fei; Zhang, Xiao-Qiong; Hu, Wei-Yu; Li, Zheng; Liu, Ping-Xia; Zhang, Zhen-Qing

    2013-01-01

    For drug candidates, a plasma protein binding (PPB) more than 90% is more meaningful and deserves further investigation in development. In the study, a high-performance liquid chromatography method employing column containing immobilized human serum albumin (HSA) to screen in vitro PPB of leading compounds was established and successfully applied to tested compounds. Good correlation (a coefficient correlation of 0.96) was attained between the reciprocal values (X) of experimentally obtained retention time of reference compounds eluted through HSA column and the reported PPB values (Y) with a correlation equation of Y = 92.03 − 97.01X. The method was successfully applied to six test compounds, and the result was confirmed by the conventional ultrafiltration technique, and both yielded equal results. However, due to the particular protein immobilized to column, the method cannot be applied for all compounds and should be exploited judiciously based on the value of the logarithmic measure of the acid dissociation constant (pKa) as per the requirement. If α1-acid glycoprotein and other plasma proteins could be immobilized like HSA with their actual ratio in plasma to column simultaneously, the result attained using immobilized column may be more accurate, and the method could be applied to more compounds without pKa limitation. PMID:23607050

  13. Multifunctionality of Acidulated Serum Albumin on Inhibiting Zn²⁺-Mediated Amyloid β-Protein Fibrillogenesis and Cytotoxicity.

    PubMed

    Xie, Baolong; Dong, Xiaoyan; Wang, Yongjian; Sun, Yan

    2015-07-01

    Fibrillogenesis of amyloid β-proteins (Aβ) mediated by transition-metal ions such as Zn(2+) in neuronal cells plays a causative role in Alzheimer's disease. Hence, it is highly desired to design multifunctional agents capable of inhibiting Aβ aggregation and modulating metal-Aβ species. In this study, we fabricated acidulated human serum albumin (A-HSA) as a multifunctional agent for binding Zn(2+) and modulating Zn(2+)-mediated Aβ fibrillogenesis and cytotoxicity. On average, 19.5 diglycolic anhydrides were modified onto the surface of human serum albumin (HSA). It was confirmed that A-HSA kept the stability and biocompatibility of native HSA. Moreover, it could inhibit Aβ42 fibrillogenesis and change the pathway of Zn(2+)-mediated Aβ42 aggregation, as demonstrated by extensive biophysical assays. In addition, upon incubation with A-HSA, the cytotoxicity presented by Zn(2+)-Aβ42 aggregates was significantly mitigated in living cells. The results showed that A-HSA had much stronger inhibitory effect on Zn(2+)-mediated Aβ42 fibrillogenesis and cytotoxicity than equimolar HSA. Isothermal titration calorimetry and stopped-flow fluorescence measurements were then performed to investigate the working mechanism of A-HSA. The studies showed that the A-HSA surface, with more negative charges, not only had stronger affinity for Zn(2+) but also might decrease the binding affinity of Aβ42 for Zn(2+). Moreover, hydrophobic binding and electrostatic repulsion could work simultaneously on the bound Aβ42 on the A-HSA surface. As a result, Aβ42 conformations could be stretched, which avoided the formation of toxic Zn(2+)-Aβ42 aggregates. The research thus revealed that A-HSA is a multifunctional agent capable of altering the pathway of Zn(2+)-mediated Aβ42 aggregation and greatly mitigating the amyloid cytotoxicity. PMID:26070334

  14. Albumin stimulates p44/p42 extracellular-signal-regulated mitogen-activated protein kinase in opossum kidney proximal tubular cells.

    PubMed

    Dixon, R; Brunskill, N J

    2000-03-01

    The presence of protein in the urine of patients with renal disease is an adverse prognostic feature. It has therefore been suggested that proteinuria per se may be responsible for the development of renal tubulo-interstitial scarring and fibrosis, and disturbances in tubular cell growth and proliferation. We have used the opossum kidney proximal tubular cell line to investigate the effects of albumin on cell growth. The effect of albumin on cell proliferation was investigated by cell counting and measurement of [(3)H]thymidine incorporation. We studied the effect of recombinant human albumin on the activity of p44/p42 extracellular-signal-regulated mitogen-activated protein kinase (MAP kinase ) using an in vitro kinase assay, and immunoblotting with antibodies against active extracellular-signal-regulated kinase (ERK). The effects of the ERK inhibitor PD98059 were also examined. Recombinant human albumin was found to stimulate proliferation of opossum kidney cells in a dose-dependent manner, with maximal stimulation at a concentration of 1 mg/ml. In addition, recombinant human albumin activated ERK in a time-dependent (maximal after 5 min) and dose-dependent (maximal at 1 mg/ml) fashion. These effects on cell proliferation and ERK activity were inhibited by PD98059, and were not reproduced by ovalbumin or mannitol. The data therefore indicate that albumin is able to stimulate growth and proliferation of proximal tubular cells that is dependent on the ERK family of MAP kinases. The potential importance of this pathway in the development of renal disease is discussed. PMID:10677388

  15. Effect of storage time and temperature on the total protein concentration and electrophoretic fractions in equine serum

    PubMed Central

    Alberghina, Daniela; Casella, Stefania; Giannetto, Claudia; Marafioti, Simona; Piccione, Giuseppe

    2013-01-01

    Serum protein electrophoresis (SPE) is a technique that could be considered one of the most useful diagnostic aids available to the clinician. The effect of storage time and temperature on the total proteins and electrophoretic fractions (albumin, α1-, α2-, β1-, β2-, and γ-globulins) was assessed in 24 healthy horses. All samples, collected by jugular vein puncture, were centrifuged and divided into 4 aliquots. The 1st aliquot was analyzed within 3 h from collection (time 0), the 2nd was refrigerated at +4°C for 24 h, the 3rd was refrigerated at +4°C for 48 h, and the last was frozen at −20°C for 48 h. One-way repeated-measures analysis of variance (ANOVA) showed a significant effect (P < 0.05) of the different storage conditions on the concentrations of all the parameters studied and significant variations in the percentages of albumin, α1-globulins, α2-globulins, and γ-globulins. Compared with time 0 the total protein concentration increased significantly after 48 h at −20°C, the albumin percentage decreased after 48 h at −20°C, the α1-globulin percentage increased after 24 h at +4°C, the α2-globulin percentage increased after 48 h at +4°C and at −20°C, and the γ-globulin percentage increased after 48 h at −20°C. The results should help veterinary practitioners handle and store equine serum samples appropriately. Further investigations at different storage times and temperatures could be useful. PMID:24124272

  16. Biocompatible Size-Defined Dendrimer-Albumin Binding Protein Hybrid Materials as a Versatile Platform for Biomedical Applications.

    PubMed

    Maly, Jan; Stanek, Ondrej; Frolik, Jan; Maly, Marek; Ennen, Franka; Appelhans, Dietmar; Semeradtova, Alena; Wrobel, Dominika; Stofik, Marcel; Knapova, Tereza; Kuchar, Milan; Stastna, Lucie Cervenkova; Cermak, Jan; Sebo, Peter; Maly, Petr

    2016-04-01

    For the design of a biohybrid structure as a ligand-tailored drug delivery system (DDS), it is highly sophisticated to fabricate a DDS based on smoothly controllable conjugation steps. This article reports on the synthesis and the characterization of biohybrid conjugates based on noncovalent conjugation between a multivalent biotinylated and PEGylated poly(amido amine) (PAMAM) dendrimer and a tetrameric streptavidin-small protein binding scaffold. This protein binding scaffold (SA-ABDwt) possesses nM affinity toward human serum albumin (HSA). Thus, well-defined biohybrid structures, finalized by binding of one or two HSA molecules, are available at each conjugation step in a controlled molar ratio. Overall, these biohybrid assemblies can be used for (i) a controlled modification of dendrimers with the HSA molecules to increase their blood-circulation half-life and passive accumulation in tumor; (ii) rendering dendrimers a specific affinity to various ligands based on mutated ABD domain, thus replacing tedious dendrimer-antibody covalent coupling and purification procedures. PMID:26748571

  17. Human serum albumin-mimetic chromatography based hexadecyltrimethylammonium bromide as a novel direct probe for protein binding of acidic drugs.

    PubMed

    Salary, Mina; Hadjmohammadi, Mohammadreza

    2015-10-10

    Human serum albumin (HSA) is the most important drug carrier in humans mainly binding acidic drugs. Negatively charged compounds bind more strongly to HSA than it would be expected from their lipophilicity alone. With the development of new acidic drugs, there is a high need for rapid and simple protein binding screening technologies. Biopartitioning micellar chromatography (BMC) is a mode of micellar liquid chromatography, which can be used as an in vitro system to model the biopartitioning process of drugs when there are no active processes. In this study, a new kind of BMC using hexadecyltrimethylammonium bromide (CTAB) as micellar mobile phases was used for the prediction of protein binding of acidic drugs based on the similar property of CTAB micelles to HSA. The use of BMC is simple, reproducible and can provide key information about the pharmacological behavior of drugs such as protein binding properties of new compounds during the drug discovery process. The relationships between the MLC retention data of a heterogeneous set of 17 acidic and neutral drugs and their plasma protein binding parameter were studied and second-order polynomial models obtained in two different concentrations (0.07 and 0.09M) of CTAB. However, the developed models are only being able to distinguish between strongly and weakly binding drugs. Also, the developed models were characterized by both the descriptive and predictive ability (R(2)=0.885, RCV(2)=0.838 and R(2)=0.898, RCV(2)=0.859 for 0.07 and 0.09M CTAB, respectively). The application of the developed model to a prediction set demonstrated that the model was also reliable with good predictive accuracy. PMID:25988296

  18. The interaction of human serum albumin with selected lanthanide and actinide ions: Binding affinities, protein unfolding and conformational changes.

    PubMed

    Ali, Manjoor; Kumar, Amit; Kumar, Mukesh; Pandey, Badri N

    2016-04-01

    Human serum albumin (HSA), the most abundant soluble protein in blood plays critical roles in transportation of biomolecules and maintenance of osmotic pressure. In view of increasing applications of lanthanides- and actinides-based materials in nuclear energy, space, industries and medical applications, the risk of exposure with these metal ions is a growing concern for human health. In present study, binding interaction of actinides/lanthanides [thorium: Th(IV), uranium: U(VI), lanthanum: La(III), cerium: Ce(III) and (IV)] with HSA and its structural consequences have been investigated. Ultraviolet-visible, Fourier transform-infrared, Raman, Fluorescence and Circular dichroism spectroscopic techniques were applied to study the site of metal ions interaction, binding affinity determination and the effect of metal ions on protein unfolding and HSA conformation. Results showed that these metal ions interacted with carbonyl (CO..:)/amide(N..-H) groups and induced exposure of aromatic residues of HSA. The fluorescence analysis indicated that the actinide binding altered the microenvironment around Trp214 in the subdomain IIA. Binding affinity of U(VI) to HSA was slightly higher than that of Th(IV). Actinides and Ce(IV) altered the secondary conformation of HSA with a significant decrease of α-helix and an increase of β-sheet, turn and random coil structures, indicating a partial unfolding of HSA. A correlation was observed between metal ion's ability to alter HSA conformation and protein unfolding. Both cationic effects and coordination ability of metal ions seemed to determine the consequences of their interaction with HSA. Present study improves our understanding about the protein interaction of these heavy ions and their impact on its secondary structure. In addition, binding characteristics may have important implications for the development of rational antidote for the medical management of health effects of actinides and lanthanides. PMID:26821345

  19. Synthesis of nano-bioactive glass-ceramic powders and its in vitro bioactivity study in bovine serum albumin protein

    NASA Astrophysics Data System (ADS)

    Nabian, Nima; Jahanshahi, Mohsen; Rabiee, Sayed Mahmood

    2011-07-01

    Bioactive glasses and ceramics have proved to be able to chemically bond to living bone due to the formation of an apatite-like layer on its surface. The aim of this work was preparation and characterization of bioactive glass-ceramic by sol-gel method. Nano-bioglass-ceramic material was crushed into powder and its bioactivity was examined in vitro with respect to the ability of hydroxyapatite layer to form on the surface as a result of contact with bovine serum albumin (BSA) protein. The obtained nano-bioactive glass-ceramic was analyzed before and after contact with BSA solution. This study used scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray powder diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis to examine its morphology, crystallinity and composition. The TEM images showed that the NBG particles size were 10-40 nm. Bioactivity of nanopowder was confirmed by SEM and XRD due to the presence of a rich bone-like apatite layer. Therefore, this nano-BSA-bioglass-ceramic composite material is promising for medical applications such as bone substitutes and drug carriers.

  20. Quantification Assays for Total and Polyglutamine-Expanded Huntingtin Proteins

    PubMed Central

    Boogaard, Ivette; Smith, Melanie; Pulli, Kristiina; Szynol, Agnieszka; Albertus, Faywell; Lamers, Marieke B. A. C.; Dijkstra, Sipke; Kordt, Daniel; Reindl, Wolfgang; Herrmann, Frank; McAllister, George; Fischer, David F.; Munoz-Sanjuan, Ignacio

    2014-01-01

    The expansion of a CAG trinucleotide repeat in the huntingtin gene, which produces huntingtin protein with an expanded polyglutamine tract, is the cause of Huntington's disease (HD). Recent studies have reported that RNAi suppression of polyglutamine-expanded huntingtin (mutant HTT) in HD animal models can ameliorate disease phenotypes. A key requirement for such preclinical studies, as well as eventual clinical trials, aimed to reduce mutant HTT exposure is a robust method to measure HTT protein levels in select tissues. We have developed several sensitive and selective assays that measure either total human HTT or polyglutamine-expanded human HTT proteins on the electrochemiluminescence Meso Scale Discovery detection platform with an increased dynamic range over other methods. In addition, we have developed an assay to detect endogenous mouse and rat HTT proteins in pre-clinical models of HD to monitor effects on the wild type protein of both allele selective and non-selective interventions. We demonstrate the application of these assays to measure HTT protein in several HD in vitro cellular and in vivo animal model systems as well as in HD patient biosamples. Furthermore, we used purified recombinant HTT proteins as standards to quantitate the absolute amount of HTT protein in such biosamples. PMID:24816435

  1. Caveolae-Dependent and -Independent Uptake of Albumin in Cultured Rodent Pulmonary Endothelial Cells

    PubMed Central

    Li, Hui-Hua; Li, Jin; Wasserloos, Karla J.; Wallace, Callen; Sullivan, Mara G.; Bauer, Philip M.; Stolz, Donna B.; Lee, Janet S.; Watkins, Simon C.; St Croix, Claudette M.; Pitt, Bruce R.; Zhang, Li-Ming

    2013-01-01

    Although a critical role for caveolae-mediated albumin transcytosis in pulmonary endothelium is well established, considerably less is known about caveolae-independent pathways. In this current study, we confirmed that cultured rat pulmonary microvascular (RPMEC) and pulmonary artery (RPAEC) endothelium endocytosed Alexa488-labeled albumin in a saturable, temperature-sensitive mode and internalization resulted in co-localization by fluorescence microscopy with cholera B toxin and caveolin-1. Although siRNA to caveolin-1 (cav-1) in RPAEC significantly inhibited albumin uptake, a remnant portion of albumin uptake was cav-1-independent, suggesting alternative pathways for albumin uptake. Thus, we isolated and cultured mouse lung endothelial cells (MLEC) from wild type and cav-1-/- mice and noted that ~ 65% of albumin uptake, as determined by confocal imaging or live cell total internal reflectance fluorescence microscopy (TIRF), persisted in total absence of cav-1. Uptake of colloidal gold labeled albumin was evaluated by electron microscopy and demonstrated that albumin uptake in MLEC from cav-1-/- mice was through caveolae-independent pathway(s) including clathrin-coated pits that resulted in endosomal accumulation of albumin. Finally, we noted that albumin uptake in RPMEC was in part sensitive to pharmacological agents (amiloride [sodium transport inhibitor], Gö6976 [protein kinase C inhibitor], and cytochalasin D [inhibitor of actin polymerization]) consistent with a macropinocytosis-like process. The amiloride sensitivity accounting for macropinocytosis also exists in albumin uptake by both wild type and cav-1-/- MLEC. We conclude from these studies that in addition to the well described caveolar-dependent pulmonary endothelial cell endocytosis of albumin, a portion of overall uptake in pulmonary endothelial cells is cav-1 insensitive and appears to involve clathrin-mediated endocytosis and macropinocytosis-like process. PMID:24312378

  2. Bovine Serum Albumin-Catalyzed Deprotonation of [1-13C]-Glycolaldehyde: Protein Reactivity Toward Deprotonation of α–Hydroxy α–Carbonyl Carbon

    PubMed Central

    Go, Maybelle K.; Malabanan, M. Merced; Amyes, Tina L.; Richard, John P.

    2010-01-01

    Bovine serum albumin (BSA) in D2O at 25 °C and pD 7.0 was found to catalyze the deuterium exchange reactions of [1-13C]-glycolaldehyde ([1-13C]-GA) to form [1-13C, 2-2H]-GA and [1-13C, 2,2-di-2H]-GA. The formation of [1-13C, 2-2H]-GA and [1-13C, 2,2-di-2H]-GA in a total yield of 51 ± 3% was observed at early reaction times, and at latter times [1-13C, 2-2H]-GA was observed to undergo BSA-catalyzed conversion to [1-13C, 2,2-di-2H]-GA. The overall second-order rate constant for these deuterium exchange reactions is (kE)P = 0.25 M−1 s−1. By comparison, values of (kE)P = 0.04 M−1 s−1 (Go, M. K., Amyes, T. L., and Richard, J. P. (2009), Biochemistry 48, 5769–5778) and 0.06 M−1 s−1 (Go, M. K., Koudelka, A., Amyes, T. L., and Richard, J. P. (2010), Biochemistry 49, 5377–5389) have been determined, respectively, for the wildtype- and K12G mutant TIM-catalyzed deuterium exchange reactions of [1-13C]-GA to form [1-13C, 2,2-di-2H]-GA. These data show that TIM and BSA exhibit a modest catalytic activity towards deprotonation of α-hydroxy α-carbonyl carbon. It is suggested that this activity is intrinsic to many globular proteins, and that it must be enhanced to demonstrate successful de novo design of protein catalysts of reactions through enamine intermediates. PMID:20687575

  3. A retrospective analysis of 25% human serum albumin supplementation in hypoalbuminemic dogs with septic peritonitis

    PubMed Central

    Horowitz, Farrah B.; Read, Robyn L.; Powell, Lisa L.

    2015-01-01

    This study describes the influence of 25% human serum albumin (HSA) supplementation on serum albumin level, total protein (TP), colloid osmotic pressure (COP), hospital stay, and survival in dogs with septic peritonitis. Records of 39 dogs with septic peritonitis were evaluated. In the HSA group, initial and post-transfusion TP, albumin, COP, and HSA dose were recorded. In the non-supplemented group, repeated values of TP, albumin, and COP were recorded over their hospitalization. Eighteen dogs survived (53.8% mortality). Repeat albumin values were higher in survivors (mean 23.9 g/L) and elevated repeat albumin values were associated with HSA supplementation. Repeat albumin and TP were higher in the HSA supplemented group (mean 24 g/L and 51.9 g/L, respectively) and their COP increased by 5.8 mmHg. Length of hospitalization was not affected. Twenty-five percent HSA increases albumin, TP, and COP in canine patients with septic peritonitis. Higher postoperative albumin levels are associated with survival. PMID:26028681

  4. Micropinocytic Ingestion of Glycosylated Albumin by Isolated Microvessels: Possible Role in Pathogenesis of Diabetic Microangiopathy

    NASA Astrophysics Data System (ADS)

    Williams, Stuart K.; Devenny, James J.; Bitensky, Mark W.

    1981-04-01

    Microvessels isolated from rat epididymal fat exhibit differential vesicular ingestion rates for unmodified and nonenzymatically glycosylated rat albumin. While unmodified rat albumin is excluded from ingestion by endothelial micropinocytic vesicles, glycosylated albumin is avidly taken up by endocytosis. Interaction of albumin and glycosylated albumin with endothelium was studied with a double-label fluorescence assay of micropinocytosis. When glycosylated albumin was present at a concentration of 6% with respect to total albumin (the level found in ``non diabetic'' serum), only glycosylated albumin was ingested. At higher concentrations of glycosylated albumin (those found in diabetic serum), both albumin and glycosylated albumin are ingested. Glycosylation of endothelial membrane components results in stimulated ingestion of glycosylated albumin, persistent exclusion of unmodified albumin, and unaltered micropinocytic ingestion of native ferritin. These results indicate that nonenzymatic glycosylation of serum albumin may result in rapid vesicle-mediated extravasation of albumin. Chronic microvascular leakage of glycosylated albumin could contribute to the pathogenesis of diabetic microangiopathy.

  5. Antigen presentation of detergent free glutamate decarboxylase (GAD65) is affected by human serum albumin as carrier protein

    PubMed Central

    Steed, Jordan; Gilliam, Lisa K.; Harris, Robert A.; Lernmark, Åke; Hampe, Christiane S.

    2008-01-01

    1. Summary The smaller isoform of glutamate decarboxylase (GAD65) is a major autoantigen in type 1 diabetes (TID). Its hydrophobic character requires detergent to keep the protein in solution, which complicates studies of antigen processing and presentation. In this study an attempt was made to replace detergent with human serum albumin (HSA) for in vitro antigen presentation. Different preparations of recombinant human GAD65 complexed with HSA were incubated with Priess B cells (HLA DRB1*0401) and antigen presentation was tested with HLA DRB1*0401-restricted and epitope-specific T33.1 (GAD65 epitope 274-286) and T35 (GAD65 epitope 115-127) T cell hybridomas. Specific epitope recognition by T33.1 (274-286) and T35 (115-127) cells varied between the different GAD65/HSA preparations, and a reverse pattern of antigen presentation were detected by the two hybridoma. The HSA-specific T-cell hybridoma 17.9 response to the different GAD65/HSA preparations followed the same pattern as that observed for the T33.1 cells. The content of immunoreactive GAD65 measured with four GAD65 antibodies indicated that the lowest GAD65 concentration resulted in the highest 274-286, but the lowest 115-127 presentation. This suggests that HSA-GAD65 complexes qualitatively affect the epitope specificity of GAD65 presentation. HSA may enhance the 274-286 epitope presentation, while suppressing the 115-127 epitope. PMID:18353353

  6. Immune sensitization to methylene diphenyl diisocyanate (MDI) resulting from skin exposure: albumin as a carrier protein connecting skin exposure to subsequent respiratory responses

    PubMed Central

    2011-01-01

    Background Methylene diphenyl diisocyanate (MDI), a reactive chemical used for commercial polyurethane production, is a well-recognized cause of occupational asthma. The major focus of disease prevention efforts to date has been respiratory tract exposure; however, skin exposure may also be an important route for inducing immune sensitization, which may promote subsequent airway inflammatory responses. We developed a murine model to investigate pathogenic mechanisms by which MDI skin exposure might promote subsequent immune responses, including respiratory tract inflammation. Methods Mice exposed via the skin to varying doses (0.1-10% w/v) of MDI diluted in acetone/olive oil were subsequently evaluated for MDI immune sensitization. Serum levels of MDI-specific IgG and IgE were measured by enzyme-linked immunosorbant assay (ELISA), while respiratory tract inflammation, induced by intranasal delivery of MDI-mouse albumin conjugates, was evaluated based on bronchoalveolar lavage (BAL). Autologous serum IgG from "skin only" exposed mice was used to detect and guide the purification/identification of skin proteins antigenically modified by MDI exposure in vivo. Results Skin exposure to MDI resulted in specific antibody production and promoted subsequent respiratory tract inflammation in animals challenged intranasally with MDI-mouse albumin conjugates. The degree of (secondary) respiratory tract inflammation and eosinophilia depended upon the (primary) skin exposure dose, and was maximal in mice exposed to 1% MDI, but paradoxically limited in mice receiving 10-fold higher doses (e.g. 10% MDI). The major antigenically-modified protein at the local MDI skin exposure site was identified as albumin, and demonstrated biophysical changes consistent with MDI conjugation. Conclusions MDI skin exposure can induce MDI-specific immune sensitivity and promote subsequent respiratory tract inflammatory responses and thus, may play an important role in MDI asthma pathogenesis. MDI

  7. Thrombin stimulates albumin transcytosis in lung microvascular endothelial cells via activation of acid sphingomyelinase.

    PubMed

    Kuebler, Wolfgang M; Wittenberg, Claudia; Lee, Warren L; Reppien, Eike; Goldenberg, Neil M; Lindner, Karsten; Gao, Yizhuo; Winoto-Morbach, Supandi; Drab, Marek; Mühlfeld, Christian; Dombrowsky, Heike; Ochs, Matthias; Schütze, Stefan; Uhlig, Stefan

    2016-04-15

    Transcellular albumin transport occurs via caveolae that are abundant in lung microvascular endothelial cells. Stimulation of albumin transcytosis by proinflammatory mediators may contribute to alveolar protein leak in lung injury, yet the regulation of albumin transport and its underlying molecular mechanisms are so far incompletely understood. Here we tested the hypothesis that thrombin may stimulate transcellular albumin transport across lung microvascular endothelial cells in an acid-sphingomyelinase dependent manner. Thrombin increased the transport of fluorescently labeled albumin across confluent human lung microvascular endothelial cell (HMVEC-L) monolayers to an extent that markedly exceeds the rate of passive diffusion. Thrombin activated acid sphingomyelinase (ASM) and increased ceramide production in HMVEC-L, but not in bovine pulmonary artery cells, which showed little albumin transport in response to thrombin. Thrombin increased total caveolin-1 (cav-1) content in both whole cell lysates and lipid rafts from HMVEC-L, and this effect was blocked by inhibition of ASM or de novo protein biosynthesis. Thrombin-induced uptake of albumin into lung microvascular endothelial cells was confirmed in isolated-perfused lungs by real-time fluorescence imaging and electron microscopy of gold-labeled albumin. Inhibition of ASM attenuated thrombin-induced albumin transport both in confluent HMVEC-L and in intact lungs, whereas HMVEC-L treatment with exogenous ASM increased albumin transport and enriched lipid rafts in cav-1. Our findings indicate that thrombin stimulates transcellular albumin transport in an acid sphingomyelinase-dependent manner by inducing de novo synthesis of cav-1 and its recruitment to membrane lipid rafts. PMID:26851257

  8. ALBUMIN CAUSES INCREASED MYOSIN LIGHT CHAIN KINASE EXPRESSION IN ASTROCYTES VIA P38 MITOGEN ACTIVATED PROTEIN KINASE

    PubMed Central

    Rossi, Janet L.; Ralay Ranaivo, Hantamala; Patel, Fatima; Chrzaszcz, MaryAnn; Venkatesan, Charu; Wainwright, Mark S.

    2011-01-01

    Myosin light chain kinase (MLCK) plays an important role in the reorganization of the cytoskeleton leading to disruption of vascular barrier integrity in multiple organs including the blood brain barrier (BBB) after traumatic brain injury (TBI). MLCK has been linked to transforming growth factor (TGF) and rho kinase signaling pathways, but the mechanisms regulating MLCK expression following TBI are not well understood. Albumin leaks into the brain parenchyma following TBI, activates glia and has been linked to TGF-β receptor signaling. We investigated the role of albumin in the increase in MLCK in astrocytes and the signaling pathways involved in this increase. Following midline closed-skull TBI in mice, there was a significant increase in MLCK-immunoreactive (IR) cells and albumin extravasation, which was prevented by treatment with the MLCK inhibitor ML-7. Using immunohistochemical methods, we identified the MCLK-IR cells as astrocytes. In primary astrocytes, exposure to albumin increased both isoforms of MLCK, 130 and 210. Inhibition of the TGF-β receptor partially prevented the albumin-induced increase in both isoforms, which was not prevented by inhibition of smad3. Inhibition of p38 MAPK, but not ERK, JNK or rho kinase also prevented this increase. These results are further evidence of a role of MCLK in the mechanisms of BBB compromise following TBI, and identify astrocytes as a cell type, in addition to endothelium in the BBB which express MLCK. These findings implicate albumin, acting through p38 MAPK, in a novel mechanism by which activation of MLCK following TBI may lead to compromise of the BBB. PMID:21360574

  9. Analysis of drug-protein interactions by high-performance affinity chromatography: interactions of sulfonylurea drugs with normal and glycated human serum albumin.

    PubMed

    Matsuda, Ryan; Anguizola, Jeanethe; Hoy, Krina S; Hage, David S

    2015-01-01

    High-performance affinity chromatography (HPAC) is a type of liquid chromatography that has seen growing use as a tool for the study of drug-protein interactions. This report describes how HPAC can be used to provide information on the number of binding sites, equilibrium constants, and changes in binding that can occur during drug-protein interactions. This approach will be illustrated through recent data that have been obtained by HPAC for the binding of sulfonylurea drugs and other solutes to the protein human serum albumin (HSA), and especially to forms of this protein that have been modified by non-enzymatic glycation. The theory and use of both frontal analysis and zonal elution competition studies in such work will be discussed. Various practical aspects of these experiments will be presented, as well as factors to consider in the extension of these methods to other drugs and proteins or additional types of biological interactions. PMID:25749961

  10. Photooxidation of Tryptophan and Tyrosine Residues in Human Serum Albumin Sensitized by Pterin: A Model for Globular Protein Photodamage in Skin.

    PubMed

    Reid, Lara O; Roman, Ernesto A; Thomas, Andrés H; Dántola, M Laura

    2016-08-30

    Human serum albumin (HSA) is the most abundant protein in the circulatory system. Oxidized albumin was identified in the skin of patients suffering from vitiligo, a depigmentation disorder in which the protection against ultraviolet (UV) radiation fails because of the lack of melanin. Oxidized pterins, efficient photosensitizers under UV-A irradiation, accumulate in the skin affected by vitiligo. In this work, we have investigated the ability of pterin (Ptr), the parent compound of oxidized pterins, to induce structural and chemical changes in HSA under UV-A irradiation. Our results showed that Ptr is able to photoinduce oxidation of the protein in at least two amino acid residues: tryptophan (Trp) and tyrosine (Tyr). HSA undergoes oligomerization, yielding protein structures whose molecular weight increases with irradiation time. The protein cross-linking, due to the formation of dimers of Tyr, does not significantly affect the secondary and tertiary structures of HSA. Trp is consumed in the photosensitized process, and N-formylkynurenine was identified as one of its oxidation products. The photosensitization of HSA takes place via a purely dynamic process, which involves the triplet excited state of Ptr. The results presented in this work suggest that protein photodamage mediated by endogenous photosensitizers can significantly contribute to the harmful effects of UV-A radiation on the human skin. PMID:27500308

  11. Total protein or high-abundance protein: Which offers the best loading control for Western blotting?

    PubMed

    Thacker, Jonathan S; Yeung, Derrick H; Staines, W Richard; Mielke, John G

    2016-03-01

    Western blotting routinely involves a control for variability in the amount of protein across immunoblot lanes. Normalizing a target signal to one found for an abundantly expressed protein is widely regarded as a reliable loading control; however, this approach is being increasingly questioned. As a result, we compared blotting for two high-abundance proteins (actin and glyceraldehyde 3-phosphate dehydrogenase [GAPDH]) and two total protein membrane staining methods (Ponceau and Coomassie Brilliant Blue) to determine the best control for loading variability. We found that Ponceau staining optimally balanced accuracy and precision, and we suggest that this approach be considered as an alternative to normalizing with a high-abundance protein. PMID:26706797

  12. Copper inhibits activated protein C: protective effect of human albumin and an analogue of its high-affinity copper-binding site, d-DAHK.

    PubMed

    Bar-Or, David; Rael, Leonard T; Winkler, James V; Yukl, Richard L; Thomas, Gregory W; Shimonkevitz, Richard P

    2002-02-01

    Activated protein C (APC) is useful in the treatment of sepsis. Ischemia and acidosis, which often accompany sepsis, cause the release of copper from loosely bound sites. We investigated (i) whether physiological concentrations of copper inhibit APC anticoagulant activity and (ii) if any copper-induced APC inhibition is reversible by human serum albumin (HSA) or a high-affinity copper-binding analogue of the human albumin N-terminus, d-Asp-d-Ala-d-His-d-Lys (d-DAHK). APC activity after 30 min of incubation with CuCl2 (10 microM) was decreased 26% below baseline. HSA, both alone and when combined with various ratios of CuCl2, increased APC activity significantly above baseline. d-DAHK alone and 2:1 and 4:1 ratios of d-DAHK:CuCl2 also increased APC activity. APC contained 1.4 microM copper, which helps explain the increased APC activity with HSA and d-DAHK alone. These in vitro results indicate that copper inhibits APC activity and that albumin and d-DAHK reverse the copper-induced APC deactivation. PMID:11820775

  13. Composites containing albumin protein or cyanoacrylate adhesives and biodegradable scaffolds: II. In vivo wound closure study in a rat model

    NASA Astrophysics Data System (ADS)

    McNally-Heintzelman, Karen M.; Heintzelman, Douglas L.; Duffy, Mark T.; Bloom, Jeffrey N.; Soller, Eric C.; Gilmour, Travis M.; Hoffman, Grant T.; Edward, Deepak

    2004-07-01

    Our Scaffold-Enhanced Biological Adhesive (SEBA) system was investigated as an alternative to sutures or adhesives alone for repair of wounds. Two scaffold materials were investigated: (i) a synthetic biodegradable material fabricated from poly(L-lactic-co-glycolic acid); and (ii) a biologic material, small intestinal submucosa, manufactured by Cook BioTech. Two adhesive materials were also investigated: (i) a biologic adhesive composed of 50%(w/v) bovine serum albumin solder and 0.5mg/ml indocyanine green dye mixed in deionized water, and activated with an 808-nm diode laser; and (ii) Ethicon"s Dermabond, a 2-octyl-cyanoacrylate. The tensile strength and time-to-failure of skin incisions repaired in vivo in a rat model were measured at seven days postoperative. Incisions closed by protein solder alone, by Dermabond alone, or by suture, were also tested for comparison. The tensile strength of repairs formed using the SEBA system were 50% to 65% stronger than repairs formed by suture or either adhesive alone, with significantly less variations within each experimental group (average standard deviations of 15% for SEBA versus 38% for suture and 28% for adhesive alone). In addition, the time-to-failure curves showed a longevity not previously seen with the suture or adhesive alone techniques. The SEBA system acts to keep the dermis in tight apposition during the critical early phase of wound healing when tissue gaps are bridged by scar and granulation tissue. It has the property of being more flexible than either of the adhesives alone and may allow the apposed edges to move in conjunction with each other as a unit for a longer period of time and over a greater range of stresses than adhesives alone. This permits more rapid healing and establishment of integrity since the microgaps between the dermis edges are significantly reduced. By the time the scaffolds are sloughed from the wound site, there is greater strength and healing than that produced by adhesive alone or

  14. A Humanized Mouse Model to Study Human Albumin and Albumin Conjugates Pharmacokinetics.

    PubMed

    Low, Benjamin E; Wiles, Michael V

    2016-01-01

    Albumin is a large, highly abundant protein circulating in the blood stream which is regulated and actively recycled via the neonatal Fc receptor (FcRn). In humans this results in serum albumin having an exceptional long half-life of ~21 days. Some time ago it was realized that these intrinsic properties could be harnessed and albumin could be used as a privileged drug delivery vehicle. However, active development of albumin based therapeutics has been hampered by the lack of economic, relevant experimental models which can accurately recapitulate human albumin metabolism and pharmacokinetics. In mice for example, introduced human albumin is not recycled and is catabolized rapidly. This is mainly due to the failure of mouse FcRn to bind human albumin consequently, human albumin has a half-life of only 2-3 days in mice. To overcome this we developed and characterized a humanized mouse model which is null for mouse FcRn and mouse albumin, but is transgenic for, and expressing functional human FcRn. Published data clearly demonstrate that upon injection of human albumin into this model animal that it accurately recapitulates human albumin FcRn dependent serum recycling, with human albumin now having a half-life ~24 days, closely mimicking that observed in humans. In this practical review we briefly review this model and outline its use for pharmacokinetic studies of human albumin. PMID:27150087

  15. Speed associated with plasma pH, oxygen content, total protein and urea in an 80 km race.

    PubMed

    Hoffman, R M; Hess, T M; Williams, C A; Kronfeld, D S; Griewe-Crandell, K M; Waldron, J E; Graham-Thiers, P M; Gay, L S; Splan, R K; Saker, K E; Harris, P A

    2002-09-01

    To test the hypothesis that endurance performance may be related quantitatively to changes in blood, we measured selected blood variables then determined their reference ranges and associations with speed during an 80 km race. The plan had 46 horses in a 2 x 2 factorial design testing a potassium-free electrolyte mix and a vitamin supplement. Blood samples were collected before the race, at 21, 37, 56 and 80 km, and 20 min after finishing, for assay of haematocrit, plasma pH, pO2, pCO2, [Na+], [K+], [Ca++], [Mg++], [Cl-], lactate, glucose, urea, cortisol, alpha-tocopherol, ascorbate, creatine kinase, aspartate amino transferase, lipid hydroperoxides, total protein, albumin and creatinine, and erythrocyte glutathione and glutathione peroxidase. Data from 34 finishers were analysed statistically. Reference ranges for resting and running horses were wide and overlapping and, therefore, limiting with respect to evaluation of individual horses. Speed correlations were most repeatable, with variables reflecting blood oxygen transport (enabling exercise), acidity and electrolytes (limiting exercise) and total protein (enabling then, perhaps, limiting). Stepwise regressions also included plasma urea concentration (limiting). The association of speed with less plasma acidity and urea suggests the potential for fat adaptation and protein restriction in endurance horses, as found previously in Arabians performing repeated sprints. Conditioning horses fed fat-fortified and protein-restricted diets may not only improve performance but also avoid grain-associated disorders. PMID:12405657

  16. Mo-CBP3, an Antifungal Chitin-Binding Protein from Moringa oleifera Seeds, Is a Member of the 2S Albumin Family

    PubMed Central

    Freire, José E. C.; Vasconcelos, Ilka M.; Moreno, Frederico B. M. B.; Batista, Adelina B.; Lobo, Marina D. P.; Pereira, Mirella L.; Lima, João P. M. S.; Almeida, Ricardo V. M.; Sousa, Antônio J. S.; Monteiro-Moreira, Ana C. O.; Oliveira, José T. A.; Grangeiro, Thalles B.

    2015-01-01

    Mo-CBP3 is a chitin-binding protein from M. oleifera seeds that inhibits the germination and mycelial growth of phytopathogenic fungi. This protein is highly thermostable and resistant to pH changes, and therefore may be useful in the development of new antifungal drugs. However, the relationship of MoCBP3 with the known families of carbohydrate-binding domains has not been established. In the present study, full-length cDNAs encoding 4 isoforms of Mo-CBP3 (Mo-CBP3-1, Mo-CBP3-2, Mo-CBP3-3 and Mo-CBP3-4) were cloned from developing seeds. The polypeptides encoded by the Mo-CBP3 cDNAs were predicted to contain 160 (Mo-CBP3-3) and 163 amino acid residues (Mo-CBP3-1, Mo-CBP3-2 and Mo-CBP3-4) with a signal peptide of 20-residues at the N-terminal region. A comparative analysis of the deduced amino acid sequences revealed that Mo-CBP3 is a typical member of the 2S albumin family, as shown by the presence of an eight-cysteine motif, which is a characteristic feature of the prolamin superfamily. Furthermore, mass spectrometry analysis demonstrated that Mo-CBP3 is a mixture of isoforms that correspond to different mRNA products. The identification of Mo-CBP3 as a genuine member of the 2S albumin family reinforces the hypothesis that these seed storage proteins are involved in plant defense. Moreover, the chitin-binding ability of Mo-CBP3 reveals a novel functionality for a typical 2S albumin. PMID:25789746

  17. Selective hydrolysis of milk proteins to facilitate the elimination of the ABBOS epitope of bovine serum albumin and other immunoreactive epitopes.

    PubMed

    Alting, A C; Meijer, R J; van Beresteijn, E C

    1998-08-01

    Milk proteins are hydrolyzed to prevent immunological reactions, but immunoreactive epitopes, including the ABBOS epitope of bovine serum albumin (BSA), can still be detected in commercially available milk protein hydrolysates. We used lactococcal cell-envelope proteinase (CEP) for the hydrolysis of the individual milk proteins and of mixtures thereof, or for the hydrolysis of sodium caseinate (contaminated with whey proteins). CEP exclusively degraded casein, leaving the four major whey proteins intact. This property facilitated the removal of the intact whey proteins from the casein fragments by ultrafiltration. Depending on the molecular mass of the whey protein to be removed, membranes with cutoff values between 3 and 30 kDa were used, resulting in casein hydrolysates free of protein fragments with cross-reactive whey-protein-specific IgE (immunoglobulin E) or ABBOS antibody-binding sites. Even the casein itself was degraded in such a way by CEP that cross-reactive casein-specific IgE antibody-binding sites could be eliminated. The product could find application in infant formulas for therapeutic and preventive treatment of children with cow's milk allergy; in addition, the preventive use of such formulas in children genetically susceptible to the development of insulin-dependent diabetes mellitus (IDDM) should be considered if a relationship between the consumption of BSA and IDDM were to become more apparent. The method is also applicable for preparing casein-free whey protein preparations. PMID:9713762

  18. Solid-state 13C-NMR spectroscopy of adduction products of 2,5-hexanedione with ribonuclease, albumin, and rat neurofilament protein.

    PubMed

    Yan, B; DeCaprio, A P; Zhu, M; Bank, S

    1996-10-21

    The Paal-Knorr condensation reaction between the gamma-diketone 2,5-hexanedione (2,5-HD) and epsilon-amine moieties of proteins of various molecular weight, including ribonuclease (RNase), bovine serum albumin (BSA) and rat neurofilament (NF), has been investigated by solid-state 13C-NMR spectroscopy. These proteins all reacted with 2,5-HD with the formation of 2,5-dimethylpyrrole (2,5-DMP) derivatives. The size and complexity of the protein affected the rate of formation of 2,5-DMP derivatives. Using the selective reducing reagent NaCNBH3, the Paal-Knorr reaction intermediates were trapped by conversion into amines, which were identified by solid-state NMR spectroscopy. The secondary autoxidation reaction following the formation of 2,5-DMP derivatives was also studied by solid-state NMR spectroscopy. PMID:8950225

  19. Growth Status and Its Relationship with Serum Lipids and Albumin in Children with Cystic Fibrosis.

    PubMed

    Fallahi, Gholam Hossein; Latifi, Sahar; Mahmoudi, Maryam; Kushki, Davood; Haghhi Ashtiani, Mohammad Taghi; Morteza, Afsaneh; Rezaei, Nima

    2016-04-01

    Cystic fibrosis (CF) is an autosomal recessive disease, which affects many organs as it impairs chloride channel. This study was performed to evaluate growth status and its relationship with some laboratory indices such as Cholesterol (chol), Triglyceride (TG), albumin and total protein in children with CF referred to pediatrics center. This study was designed as a cross-sectional study in one year section. Demographic features were compared with standard percentiles curves. Chol, TG, albumin, total protein, prothrombin time, and hemoglobin were measured. Stool exams were also performed. A questionnaire was designed to obtain a history of the first presentation of disease, birth weight, type of labor and parent relativity. In 52% of patients, failure to thrive (FTT) was the first presentation. Steatorrhea and respiratory infections were the first presentations, which were seen in 13.7% and 33% of the cases, respectively. The weight of 88% of patients was below the 15th percentile while 82% had a height percentile below 15th. Head circumference in 53% of patients was below the 15th percentile. There was a significant association between weight percentile and serum albumin and total protein (P=0.03 and P=0.007, respectively). There was also a significant relationship between height percentile and serum albumin and total protein (P<0.001 and P<0.000, respectively). The relationships between head circumference and serum albumin and total protein were also significant (P=0.006 and P<0.000, respectively). There was also a significant association between height percentile and hemoglobin. The decrease in anthropometric percentiles leads to decreased serum albumin and total protein. PMID:27309270

  20. What Characteristics Confer Proteins the Ability to Induce Allergic Responses? IgE Epitope Mapping and Comparison of the Structure of Soybean 2S Albumins and Ara h 2.

    PubMed

    Han, Youngshin; Lin, Jing; Bardina, Ludmilla; Grishina, Galina A; Lee, Chaeyoon; Seo, Won Hee; Sampson, Hugh A

    2016-01-01

    Ara h 2, a peanut 2S albumin, is associated with severe allergic reactions, but a homologous protein, soybean 2S albumin, is not recognized as an important allergen. Structural difference between these proteins might explain this clinical discrepancy. Therefore, we mapped sequential epitopes and compared the structure of Ara h 2, Soy Al 1, and Soy Al 3 (Gly m 8) to confirm whether structural differences account for the discrepancy in clinical responses to these two proteins. Commercially synthesized peptides covering the full length of Ara h 2 and two soybean 2S albumins were analyzed by peptide microarray. Sera from 10 patients with peanut and soybean allergies and seven non-atopic controls were examined. The majority of epitopes in Ara h 2 identified by microarray are consistent with those identified previously. Several regions in the 2S albumins are weakly recognized by individual sera from different patients. A comparison of allergenic epitopes on peanut and soybean proteins suggests that loop-helix type secondary structures and some amino acids with a large side chain including lone electron pair, such as arginine, glutamine, and tyrosine, makes the peptides highly recognizable by the immune system. By utilizing the peptide microarray assay, we mapped IgE epitopes of Ara h 2 and two soybean 2S albumins. The use of peptide microarray mapping and analysis of the epitope characteristics may provide critical information to access the allergenicity of food proteins. PMID:27187334

  1. Amadori albumin in diabetic nephropathy.

    PubMed

    Neelofar, Km; Ahmad, Jamal

    2015-01-01

    Nonenzymatic glycation of macromolecules in diabetes mellitus (DM) is accelerated due to persistent hyperglycemia. Reducing sugar such as glucose reacts non enzymatically with free €-amino groups of proteins through series of reactions forming Schiff bases. These bases are converted into Amadori product and further into AGEs. Non enzymatic glycation has the potential to alter the biological, structural and functional properties of macromolecules both in vitro and in vivo. Studies have suggested that amadori as well as AGEs are involved in the micro-macro vascular complications in DM, but most studies have focused on the role of AGEs in vascular complications of diabetes. Recently putative AGE-induced patho-physiology has shifted attention from the possible role of amadori-modified proteins, the predominant form of the glycated proteins in the development of the diabetic complications. Human serum albumin (HSA), the most abundant protein in circulation contains 59 lysine and 23 arginine residues that could, in theory be involved in glycation. Albumin has dual nature, first as a marker of intermediate glycation and second as a causative agent of the damage of tissues. Among the blood proteins, hemoglobin and albumin are the most common proteins that are glycated. HSA with a shorter half life than RBC, appears to be an alternative marker of glycemic control as it can indicate blood glucose status over a short period (2-3 weeks) and being unaffected by RBCs life span and variant haemoglobin, anemia etc which however, affect HbA1c. On the other hand, Amadori albumin may accumulate in the body tissues of the diabetic patients and participate in secondary complications. Amadori-albumin has potential role in diabetic glomerulosclerosis due to long term hyperglycaemia and plays an important role in the pathogenesis of diabetic nephropathy. This review is an approach to compile both the nature of glycated albumin as a damaging agent of tissues and as an intermediate

  2. Podocytes degrade endocytosed albumin primarily in lysosomes.

    PubMed

    Carson, John M; Okamura, Kayo; Wakashin, Hidefumi; McFann, Kim; Dobrinskikh, Evgenia; Kopp, Jeffrey B; Blaine, Judith

    2014-01-01

    Albuminuria is a strong, independent predictor of chronic kidney disease progression. We hypothesize that podocyte processing of albumin via the lysosome may be an important determinant of podocyte injury and loss. A human urine derived podocyte-like epithelial cell (HUPEC) line was used for in vitro experiments. Albumin uptake was quantified by Western blot after loading HUPECs with fluorescein-labeled (FITC) albumin. Co-localization of albumin with lysosomes was determined by confocal microscopy. Albumin degradation was measured by quantifying FITC-albumin abundance in HUPEC lysates by Western blot. Degradation experiments were repeated using HUPECs treated with chloroquine, a lysosome inhibitor, or MG-132, a proteasome inhibitor. Lysosome activity was measured by fluorescence recovery after photo bleaching (FRAP). Cytokine production was measured by ELISA. Cell death was determined by trypan blue staining. In vivo, staining with lysosome-associated membrane protein-1 (LAMP-1) was performed on tissue from a Denys-Drash trangenic mouse model of nephrotic syndrome. HUPECs endocytosed albumin, which co-localized with lysosomes. Choloroquine, but not MG-132, inhibited albumin degradation, indicating that degradation occurs in lysosomes. Cathepsin B activity, measured by FRAP, significantly decreased in HUPECs exposed to albumin (12.5% of activity in controls) and chloroquine (12.8%), and declined further with exposure to albumin plus chloroquine (8.2%, p<0.05). Cytokine production and cell death were significantly increased in HUPECs exposed to albumin and chloroquine alone, and these effects were potentiated by exposure to albumin plus chloroquine. Compared to wild-type mice, glomerular staining of LAMP-1 was significantly increased in Denys-Drash mice and appeared to be most prominent in podocytes. These data suggest lysosomes are involved in the processing of endocytosed albumin in podocytes, and lysosomal dysfunction may contribute to podocyte injury and

  3. Podocytes Degrade Endocytosed Albumin Primarily in Lysosomes

    PubMed Central

    Carson, John M.; Okamura, Kayo; Wakashin, Hidefumi; McFann, Kim; Dobrinskikh, Evgenia; Kopp, Jeffrey B.; Blaine, Judith

    2014-01-01

    Albuminuria is a strong, independent predictor of chronic kidney disease progression. We hypothesize that podocyte processing of albumin via the lysosome may be an important determinant of podocyte injury and loss. A human urine derived podocyte-like epithelial cell (HUPEC) line was used for in vitro experiments. Albumin uptake was quantified by Western blot after loading HUPECs with fluorescein-labeled (FITC) albumin. Co-localization of albumin with lysosomes was determined by confocal microscopy. Albumin degradation was measured by quantifying FITC-albumin abundance in HUPEC lysates by Western blot. Degradation experiments were repeated using HUPECs treated with chloroquine, a lysosome inhibitor, or MG-132, a proteasome inhibitor. Lysosome activity was measured by fluorescence recovery after photo bleaching (FRAP). Cytokine production was measured by ELISA. Cell death was determined by trypan blue staining. In vivo, staining with lysosome-associated membrane protein-1 (LAMP-1) was performed on tissue from a Denys-Drash trangenic mouse model of nephrotic syndrome. HUPECs endocytosed albumin, which co-localized with lysosomes. Choloroquine, but not MG-132, inhibited albumin degradation, indicating that degradation occurs in lysosomes. Cathepsin B activity, measured by FRAP, significantly decreased in HUPECs exposed to albumin (12.5% of activity in controls) and chloroquine (12.8%), and declined further with exposure to albumin plus chloroquine (8.2%, p<0.05). Cytokine production and cell death were significantly increased in HUPECs exposed to albumin and chloroquine alone, and these effects were potentiated by exposure to albumin plus chloroquine. Compared to wild-type mice, glomerular staining of LAMP-1 was significantly increased in Denys-Drash mice and appeared to be most prominent in podocytes. These data suggest lysosomes are involved in the processing of endocytosed albumin in podocytes, and lysosomal dysfunction may contribute to podocyte injury and

  4. Conjugation of poly-L-lysine to albumin and horseradish peroxidase: a novel method of enhancing the cellular uptake of proteins.

    PubMed Central

    Shen, W C; Ryser, H J

    1978-01-01

    The carbodiimide-catalyzed conjugation of a 6700 molecular weight fragment of poly-L-lysine to radiolabeled human serum albumin or to horseradish peroxidase enhances the membrane transport of each protein into cultured mouse fibroblasts approximately 11- and 200-fold, respectively. At least 50% of the peroxidase activity remained after conjugation. Trypsinization and carbamylation of the two conjugates demonstrates that the enhancement of their cellular uptake is related to their poly-L-lysine content. Simple addition to the medium of comparable amounts of free poly-L-lysine has no effect on the transport of either native protein. Addition of poly-L-ornithine (molecular weight 200,000) at 3-30 microgram/ml, a condition known to cause enhancement of 125I-labeled human serum albumin uptake by mouse sarcoma cells, has no visible effect on the cellular uptake of native horseradish peroxidase. The intracellular localization of the enzyme-poly-L-lysine conjugate can be demonstrated cytochemically by either light or transmission electron microscopy. A concentration of conjugate that increases the uptake more than 200-fold does not cause any detectable morphological change suggestive of cell toxicity. Furthermore, because poly-L-lysine is an excellent substrate for intracellular proteolytic enzymes, it can be expected to be broken down and reutilized in the cell. Images PMID:273916

  5. Small-angle neutron scattering study of differences in phase behavior of silica nanoparticles in the presence of lysozyme and bovine serum albumin proteins

    NASA Astrophysics Data System (ADS)

    Yadav, Indresh; Kumar, Sugam; Aswal, V. K.; Kohlbrecher, J.

    2014-03-01

    The differences in phase behavior of anionic silica nanoparticles (88 Å) in the presence of two globular proteins [cationic lysozyme (molecular weight (MW) 14.7 kD) and anionic bovine serum albumin (BSA) (MW 66.4 kD)] have been studied by small-angle neutron scattering. The measurements were carried out on a fixed concentration (1 wt %) of Ludox silica nanoparticles with varying concentrations of proteins (0-5 wt %) at pH = 7. It is found that, despite having different natures (opposite charges), both proteins can render to the same kind of aggregation of silica nanoparticles. However, the concentration regions over which the aggregation is observed are widely different for the two proteins. Lysozyme with very small amounts (e.g., 0.01 wt %) leads to the aggregation of silica nanoparticles. On the other hand, silica nanoparticles coexist with BSA as independent entities at low protein concentrations and turn to aggregates at high protein concentrations (>1 wt %). In the case of lysozyme, the charge neutralization by the protein on the nanoparticles gives rise to the protein-mediated aggregation of the nanoparticles. The nanoparticle aggregates coexist with unaggregated nanoparticles at low protein concentrations, whereas, they coexist with a free protein at higher protein concentrations. For BSA, the nonadsorbing nature of the protein produces the depletion force that causes the aggregation of the nanoparticles at higher protein concentrations. The evolution of the interaction is modeled by the two Yukawa potential, taking account of both attractive and repulsive terms of the interaction in these systems. The nanoparticle aggregation is found to be governed by the short-range attraction for lysozyme and the long-range attraction for BSA. The aggregates are characterized by the diffusion limited aggregate type of mass fractal morphology.

  6. Repression of the albumin gene in Novikoff hepatoma cells.

    PubMed Central

    Capetanaki, Y G; Flytzanis, C N; Alonso, A

    1982-01-01

    Novikoff hepatoma cells have lost their capacity to synthesize albumin. As a first approach to study the mechanisms underlying this event, in vitro translation in a reticulocyte system was performed using total polyadenylated mRNA from rat liver and Novikoff hepatoma cells. Immunoprecipitation of the in vitro translation products with albumin-specific antibody revealed a total lack of albumin synthesis in Novikoff hepatoma, suggesting the absence of functional albumin mRNA in these cells. Titration experiments using as probe albumin cDNA cloned in pBR322 plasmid demonstrated the absence of albumin-specific sequences in both polysomal and nuclear polyadenylated and total RNA from Novikoff cells. This albumin recombinant plasmid was obtained by screening a rat liver cDNA library with albumin [32P]cDNA reverse transcribed from immuno-precipitated mRNA. The presence of an albumin-specific gene insert was documented with translation assays as well as by restriction mapping. Repression of the albumin gene at the transcriptional level was further demonstrated by RNA blotting experiments using the cloned albumin cDNA probe. Genomic DNA blots using the cloned albumin cDNA as probe did not reveal any large-scale deletions, insertions, or rearrangements in the albumin gene, suggesting that the processes involved in the suppression of albumin mRNA synthesis do not involve extensive genomic rearrangements. Images PMID:6180302

  7. Protein electrophoresis - serum

    MedlinePlus

    Normal value ranges are: Total protein: 6.4 to 8.3 g/dL (grams per deciliter) Albumin: 3.5 to 5.0 g/dL Alpha-1 ... Decreased total protein may indicate: Abnormal loss of protein from the digestive tract or the inability of the digestive tract ...

  8. Comparison of Urinary Total Proteins by Four Different Methods.

    PubMed

    Yalamati, Padma; Karra, Madhu Latha; Bhongir, Aparna V

    2016-10-01

    The total proteins in human urine have been compared by sulfosalicylic acid, sulfosalicylic acid with sodium sulphate and trichloroacetic acid methods with pyrogallol red molybdate method as there are no studies found quantifying imprecision and bias components. Fresh urine of 36 patients was analyzed by four methods. Imprecision and inaccuracy were determined by repeated analysis and method comparison studies using correlation plots, Bland and Altman, and Passing and Bablok regression analyses respectively. The coefficient of variation was 5.07 % for pyrogallol red molybdate; 6.84 % for sulfosalicylic acid; 3.97 % for sulfosalicylic acid with sodium sulphate and 5.93 % for trichloroacetic acid methods. Bland and Altman analysis showed a bias of 5.8, 1.7 and -5.4 for pyrogallol red molybdate versus sulfosalicylic acid, sulfosalicylic acid with sodium sulphate and trichloroacetic acid methods respectively. Passing and Bablok regression revealed a constant bias for pyrogallol red molybdate versus all turbidimetric methods but a proportional bias only with trichloroacetic acid method. Sulfosalicylic acid with sodium sulphate method is preferred to sulfosalicylic acid and trichloroacetic acid methods. PMID:27605745

  9. Analysis of drug-protein binding using on-line immunoextraction and high-performance affinity microcolumns: Studies with normal and glycated human serum albumin.

    PubMed

    Matsuda, Ryan; Jobe, Donald; Beyersdorf, Jared; Hage, David S

    2015-10-16

    A method combining on-line immunoextraction microcolumns with high-performance affinity chromatography (HPAC) was developed and tested for use in examining drug-protein interactions with normal or modified proteins. Normal human serum albumin (HSA) and glycated HSA were used as model proteins for this work. High-performance immunoextraction microcolumns with sizes of 1.0-2.0 cm × 2.1mm i.d. and containing anti-HSA polyclonal antibodies were developed and tested for their ability to bind normal HSA or glycated HSA. These microcolumns were able to extract up to 82-93% for either type of protein at 0.05-0.10 mL/min and had a binding capacity of 0.34-0.42 nmol HSA for a 1.0 cm × 2.1mm i.d. microcolumn. The immunoextraction microcolumns and their adsorbed proteins were tested for use in various approaches for drug binding studies. Frontal analysis was used with the adsorbed HSA/glycated HSA to measure the overall affinities of these proteins for the drugs warfarin and gliclazide, giving comparable values to those obtained previously using similar protein preparations that had been covalently immobilized within HPAC columns. Zonal elution competition studies with gliclazide were next performed to examine the specific interactions of this drug at Sudlow sites I and II of the adsorbed proteins. These results were also comparable to those noted in prior work with covalently immobilized samples of normal HSA or glycated HSA. These experiments indicated that drug-protein binding studies can be carried out by using on-line immunoextraction microcolumns with HPAC. The same method could be used in the future with clinical samples and other drugs or proteins of interest in pharmaceutical studies or biomedical research. PMID:26381571

  10. Comparison of Calcium Phosphate and Zinc Oxide Nanoparticles as Dermal Penetration Enhancers for Albumin

    PubMed Central

    Shokri, Narges; Javar, H. A.

    2015-01-01

    Dermal drug delivery is highly preferred by patients due to its several advantages. Protein therapeutics have attracted huge attention recently. Since dermal delivery of proteins encounter problems, in this investigation, zinc oxide nanoparticles and calcium phosphate nanoparticles were compared as enhancers for dermal permeation of albumin. Albumin was applied simultaneously with zinc oxide nanoparticles or calcium phosphate nanoparticles on pieces of mouse skin. Skin permeation of albumin over time was determined using a diffusion cell. Skin distribution of the nanoparticles and albumin over time was determined by optical and fluorescence microscopy. Zinc oxide nanoparticles and calcium phosphate nanoparticles acted as enhancers for skin permeation of albumin. Cumulative permeated albumin in presence of zinc oxide nanoparticles after 0, 0.5, 1, 1.5 and 2 h, were 0±0, 11.7±3.3, 21.1±3.5, 40.2±3.6 and 40.2±3.6 mg, respectively and in presence of calcium phosphate nanoparticles were 0±0, 20.9±7.4, 33.8±5.5, 33.8±3.7 and 33.8±3.7 mg, respectively. After 0.5 h, little amount of albumin was permeated in presence of every kind of the nanoparticles. After 0.5 or 1 h, the permeated albumin in presence of calcium phosphate nanoparticles was more than that in presence of zinc oxide nanoparticles and after 1.5 h the permeated albumin in presence of zinc oxide nanoparticles was more than that in presence of calcium phosphate nanoparticles. Images of skin distribution of the two nanoparticles over time, were somewhat different and distribution of albumin correlated with the distribution of the nanoparticles alone. The profiles of albumin permeation (in presence of each of the nanoparticles) versus time was delayed and linear for both nanoparticles while the slope for calcium phosphate nanoparticles was higher than zinc oxide nanoparticles. The enhancer effect of zinc oxide nanoparticles was stronger while the enhancer effect of calcium phosphate nanoparticles was

  11. Comparison of Calcium Phosphate and Zinc Oxide Nanoparticles as Dermal Penetration Enhancers for Albumin.

    PubMed

    Shokri, Narges; Javar, H A

    2015-01-01

    Dermal drug delivery is highly preferred by patients due to its several advantages. Protein therapeutics have attracted huge attention recently. Since dermal delivery of proteins encounter problems, in this investigation, zinc oxide nanoparticles and calcium phosphate nanoparticles were compared as enhancers for dermal permeation of albumin. Albumin was applied simultaneously with zinc oxide nanoparticles or calcium phosphate nanoparticles on pieces of mouse skin. Skin permeation of albumin over time was determined using a diffusion cell. Skin distribution of the nanoparticles and albumin over time was determined by optical and fluorescence microscopy. Zinc oxide nanoparticles and calcium phosphate nanoparticles acted as enhancers for skin permeation of albumin. Cumulative permeated albumin in presence of zinc oxide nanoparticles after 0, 0.5, 1, 1.5 and 2 h, were 0±0, 11.7±3.3, 21.1±3.5, 40.2±3.6 and 40.2±3.6 mg, respectively and in presence of calcium phosphate nanoparticles were 0±0, 20.9±7.4, 33.8±5.5, 33.8±3.7 and 33.8±3.7 mg, respectively. After 0.5 h, little amount of albumin was permeated in presence of every kind of the nanoparticles. After 0.5 or 1 h, the permeated albumin in presence of calcium phosphate nanoparticles was more than that in presence of zinc oxide nanoparticles and after 1.5 h the permeated albumin in presence of zinc oxide nanoparticles was more than that in presence of calcium phosphate nanoparticles. Images of skin distribution of the two nanoparticles over time, were somewhat different and distribution of albumin correlated with the distribution of the nanoparticles alone. The profiles of albumin permeation (in presence of each of the nanoparticles) versus time was delayed and linear for both nanoparticles while the slope for calcium phosphate nanoparticles was higher than zinc oxide nanoparticles. The enhancer effect of zinc oxide nanoparticles was stronger while the enhancer effect of calcium phosphate nanoparticles was

  12. Albumin quotient, IgG concentration, and IgG index determinations in cerebrospinal fluid of neonatal foals.

    PubMed

    Andrews, F M; Geiser, D R; Sommardahl, C S; Green, E M; Provenza, M

    1994-06-01

    Total protein (TP), albumin, and IgG concentrations were measured in CSF from the atlanto-occipital (AO) and lumbosacral (LS) sites and in serum of 15 clinically normal neonatal foals < or = 10 days old (mean, 7.0 days). The albumin quotient (AQ; CSF albumin/serum albumin x 100) and IgG index ([CSF IgG/serum IgG] x [serum albumin/CSF albumin]), indicators of blood-brain barrier permeability and intrathecal IgG production, respectively, were then calculated. Mean +/- SD values obtained from the foals of this study were: serum albumin, 2,900 +/- 240 mg/dl; serum IgG, 1,325 +/- 686 mg/dl; AO CSF total protein (TP), 82.8 +/- 19.2 mg/dl; LS CSF TP, 83.6 +/- 16.1 mg/dl; AO CSF albumin, 52.0 +/- 8.6 mg/dl; LS CSF albumin, 53.8 +/- 15.7 mg/dl; AO CSF IgG, 10.2 +/- 5.5 mg/dl; LS CSF IgG, 9.9 +/- 5.7 mg/dl; AO AQ, 1.86 +/- 0.29; LS AQ, 1.85 +/- 0.51, AO IgG index, 0.52 +/- 0.28; and LS IgG index, 0.48 +/- 0.27. Significant difference between values for the AO and LS sites was not found. A CSF albumin concentration > 85.2 mg/dl or AQ > 2.4, as determined by mean +/- 2 SD, may indicate increased blood-brain barrier permeability. An IgG index value > 1.0 may indicate intrathecal IgG production. Values obtained for foals of this study should serve as baseline for comparison in the evaluation of blood-brain barrier permeability and intrathecal IgG production in neonatal foals with neurologic disease. PMID:7944008

  13. Characterization of the binding of metoprolol tartrate and guaifenesin drugs to human serum albumin and human hemoglobin proteins by fluorescence and circular dichroism spectroscopy.

    PubMed

    Duman, Osman; Tunç, Sibel; Kancı Bozoğlan, Bahar

    2013-07-01

    The interactions of metoprolol tartrate (MPT) and guaifenesin (GF) drugs with human serum albumin (HSA) and human hemoglobin (HMG) proteins at pH 7.4 were studied by fluorescence and circular dichroism (CD) spectroscopy. Drugs quenched the fluorescence spectra of HSA and HMG proteins through a static quenching mechanism. For each protein-drug system, the values of Stern-Volmer quenching constant, bimolecular quenching constant, binding constant and number of binding site on the protein molecules were determined at 288.15, 298.15, 310.15 and 318.15 K. It was found that the binding constants of HSA-MPT and HSA-GF systems were smaller than those of HMG-MPT and HMG-GF systems. For both drugs, the affinity of HMG was much higher than that of HSA. An increase in temperature caused a negative effect on the binding reactions. The number of binding site on blood proteins for MPT and GF drugs was approximately one. Thermodynamic parameters showed that MPT interacted with HSA through electrostatic attraction forces. However, hydrogen bonds and van der Waals forces were the main interaction forces in the formation of HSA-GF, HMG-MPT and HMG-GF complexes. The binding processes between protein and drug molecules were exothermic and spontaneous owing to negative ∆H and ∆G values, respectively. The values of binding distance between protein and drug molecules were calculated from Förster resonance energy transfer theory. It was found from CD analysis that the bindings of MPT and GF drugs to HSA and HMG proteins altered the secondary structure of HSA and HMG proteins. PMID:23471625

  14. Studies on sodium-borohydride-reducible hexose in glucosyl-albumin.

    PubMed

    Sharma, K K; Rai, K B; Pattabiraman, T N

    1983-08-01

    Glucosylated albumin of human serum isolated by dye-ligand chromatography on blue Sepharose, was not found to be completely reducible by sodium borohydride. The percentage reducible hexose as judged by phenol-sulphuric acid reaction was in the range of 49.7 +/- 12.8 in control subjects (n = 24) and 53.8 +/- 14.2 in diabetics (n = 50). Increase in the level of total hexose bound to albumin and reducible hexose were equally significant in diabetes (P less than 0.001). Sodium chloride gradient elution during chromatography on blue Sepharose showed that glucosylated albumin had lesser affinity than the native protein to the matrix. It is proposed that an addition product between hexose and albumin is formed during nonenzymatic reaction and this adduct is fairly stable and is not reducible by sodium borohydride. PMID:6626188

  15. Glycated Serum Albumin and AGE Receptors.

    PubMed

    Vetter, Stefan W

    2015-01-01

    In vivo modification of proteins by molecules with reactive carbonyl groups leads to intermediate and advanced glycation end products (AGE). Glucose is a significant glycation reagent due to its high physiological concentration and poorly controlled diabetics show increased albumin glycation. Increased levels of glycated and AGE-modified albumin have been linked to diabetic complications, neurodegeneration, and vascular disease. This review discusses glycated albumin formation, structural consequences of albumin glycation on drug binding, removal of circulating AGE by several scavenger receptors, as well as AGE-induced proinflammatory signaling through activation of the receptor for AGE. Analytical methods for quantitative detection of protein glycation and AGE formation are compared. Finally, the use of glycated albumin as a novel clinical marker to monitor glycemic control is discussed and compared to glycated hemoglobin (HbA1c) as long-term indicator of glycemic status. PMID:26471084

  16. Recombinant albumin monolayers on latex particles.

    PubMed

    Sofińska, Kamila; Adamczyk, Zbigniew; Kujda, Marta; Nattich-Rak, Małgorzata

    2014-01-14

    The adsorption of recombinant human serum albumin (rHSA) on negatively charged polystyrene latex micro-particles was studied at pH 3.5 and the NaCl concentration range of 10(-3) to 0.15 M. The electrophoretic mobility of latex monotonically increased with the albumin concentration in the suspension. The coverage of adsorbed albumin was quantitatively determined using the depletion method, where the residual protein concentration was determined by electrokinetic measurements and AFM imaging. It was shown that albumin adsorption was irreversible. Its maximum coverage on latex varied between 0.7 mg m(-2) for 10(-3) M NaCl to 1.3 mg m(-2) for 0.15 M NaCl. The latter value matches the maximum coverage previously determined for human serum albumin on mica using the streaming potential method. The increase in the maximum coverage was interpreted in terms of reduced electrostatic repulsion among adsorbed molecules. These facts confirm that albumin adsorption at pH 3.5 is governed by electrostatic interactions and proceeds analogously to colloid particle deposition. The stability of albumin monolayers was measured in additional experiments where changes in the latex electrophoretic mobility and the concentration of free albumin in solutions were monitored over prolonged time periods. Based on these experimental data, a robust procedure of preparing albumin monolayers on latex particles of well-controlled coverage and molecule distribution was proposed. PMID:24354916

  17. Truly Absorbed Microbial Protein Synthesis, Rumen Bypass Protein, Endogenous Protein, and Total Metabolizable Protein from Starchy and Protein-Rich Raw Materials: Model Comparison and Predictions.

    PubMed

    Parand, Ehsan; Vakili, Alireza; Mesgaran, Mohsen Danesh; van Duinkerken, Gert; Yu, Peiqiang

    2015-07-29

    This study was carried out to measure truly absorbed microbial protein synthesis, rumen bypass protein, and endogenous protein loss, as well as total metabolizable protein, from starchy and protein-rich raw feed materials with model comparisons. Predictions by the DVE2010 system as a more mechanistic model were compared with those of two other models, DVE1994 and NRC-2001, that are frequently used in common international feeding practice. DVE1994 predictions for intestinally digestible rumen undegradable protein (ARUP) for starchy concentrates were higher (27 vs 18 g/kg DM, p < 0.05, SEM = 1.2) than predictions by the NRC-2001, whereas there was no difference in predictions for ARUP from protein concentrates among the three models. DVE2010 and NRC-2001 had highest estimations of intestinally digestible microbial protein for starchy (92 g/kg DM in DVE2010 vs 46 g/kg DM in NRC-2001 and 67 g/kg DM in DVE1994, p < 0.05 SEM = 4) and protein concentrates (69 g/kg DM in NRC-2001 vs 31 g/kg DM in DVE1994 and 49 g/kg DM in DVE2010, p < 0.05 SEM = 4), respectively. Potential protein supplies predicted by tested models from starchy and protein concentrates are widely different, and comparable direct measurements are needed to evaluate the actual ability of different models to predict the potential protein supply to dairy cows from different feedstuffs. PMID:26118653

  18. Shank2 Regulates Renal Albumin Endocytosis

    PubMed Central

    Dobrinskikh, Evgenia; Lewis, Linda; Doctor, R Brian; Okamura, Kayo; Lee, Min Goo; Altmann, Christopher; Faubel, Sarah; Kopp, Jeffrey B; Blaine, Judith

    2015-01-01

    Albuminuria is a strong and independent predictor of kidney disease progression but the mechanisms of albumin handling by the kidney remain to be fully defined. Previous studies have shown that podocytes endocytose albumin. Here we demonstrate that Shank2, a large scaffolding protein originally identified at the neuronal postsynaptic density, is expressed in podocytes in vivo and in vitro and plays an important role in albumin endocytosis in podocytes. Knockdown of Shank2 in cultured human podocytes decreased albumin uptake, but the decrease was not statistically significant likely due to residual Shank2 still present in the knockdown podocytes. Complete knockout of Shank2 in podocytes significantly diminished albumin uptake in vitro. Shank2 knockout mice develop proteinuria by 8 weeks of age. To examine albumin handling in vivo in wild-type and Shank2 knockout mice we used multiphoton intravital imaging. While FITC-labeled albumin was rapidly seen in the renal tubules of wild-type mice after injection, little albumin was seen in the tubules of Shank2 knockout mice indicating dysregulated renal albumin trafficking in the Shank2 knockouts. We have previously found that caveolin-1 is required for albumin endocytosis in cultured podocytes. Shank2 knockout mice had significantly decreased expression and altered localization of caveolin-1 in podocytes suggesting that disruption of albumin endocytosis in Shank2 knockouts is mediated via caveolin-1. In summary, we have identified Shank2 as another component of the albumin endocytic pathway in podocytes. PMID:26333830

  19. In Vitro Enhancement of Carvedilol Glucuronidation by Amiodarone-Mediated Altered Protein Binding in Incubation Mixture of Human Liver Microsomes with Bovine Serum Albumin.

    PubMed

    Sekimoto, Makoto; Takamori, Toru; Nakamura, Saki; Taguchi, Masato

    2016-01-01

    Carvedilol is mainly metabolized in the liver to O-glucuronide (O-Glu). We previously found that the glucuronidation activity of racemic carvedilol in pooled human liver microsomes (HLM) was increased, R-selectively, in the presence of amiodarone. The aim of this study was to clarify the mechanisms for the enhancing effect of amiodarone on R- and S-carvedilol glucuronidation. We evaluated O-Glu formation of R- and S-carvedilol enantiomers in a reaction mixture of HLM including 0.2% bovine serum albumin (BSA). In the absence of amiodarone, glucuronidation activity of R- and S-carvedilol for 25 min was 0.026, and 0.51 pmol/min/mg protein, and that was increased by 6.15 and 1.60-fold in the presence of 50 µM amiodarone, respectively. On the other hand, in the absence of BSA, or when BSA was replaced with human serum albumin, no enhancing effect of amiodarone on glucuronidation activity was observed, suggesting that BSA played a role in the mechanisms for the enhancement of glucuronidation activity. Unbound fraction of S-carvedilol in the reaction mixture was greater than that of R-carvedilol in the absence of amiodarone. Also, the addition of amiodarone caused a greater increase of unbound fraction of R-carvedilol than that of S-carvedilol. These results suggest that the altered protein binding by amiodarone is a key mechanism for R-selective stimulation of carvedilol glucuronidation. PMID:27476943

  20. Development and Characterization of a Novel Fusion Protein of a Mutated Granulocyte Colony-Stimulating Factor and Human Serum Albumin in Pichia pastoris

    PubMed Central

    Huang, Yan-Shan; Wen, Xiao-Fang; Yang, Zhi-Yu; Wu, Yi-Liang; Lu, You; Zhou, Lin-Fu

    2014-01-01

    The purpose of the present work was to develop a novel, long-acting and potent human serum albumin/granulocyte colony stimulating factor (HSA/G-CSF) therapeutic fusion protein. The novel fusion protein, called HMG, was constructed by genetically fusing mutated human derived G-CSF (mG-CSF) to the C-terminal of HSA and then prepared in Pichia pastoris. The molecular mass of HMG was about 85 kDa and the isoelectric point was 5.3. Circular dichroism spectroscopy suggested that mG-CSF retained nearly all of its native secondary structure, regardless of fusion. The binding capabilities of mG-CSF moiety to G-CSF receptor and HSA moiety to warfarin showed very little change after fusing. The bioactivity of HMG (11.0×106 IU/mg) was more than twice that of rHSA/G-CSF (4.6×106 IU/mg). A mutation was made at the 718th amino acid of HMG, substituting Ala for Thr, to investigate the glycosylation of HMG expressed in P. pastoris. Data indicated that HMG was modified at Thr718, speculatively with the addition of a mannose chain. In conclusion, a novel HSA/G-CSF fusion protein was successfully constructed based on a mutated G-CSF. This protein showed more potent bioactivity than rHSA/G-CSF and thus may be a suitable long-acting G-CSF. PMID:25535738

  1. Drug Delivery Vehicles Based on Albumin-Polymer Conjugates.

    PubMed

    Jiang, Yanyan; Stenzel, Martina

    2016-06-01

    Albumin has been a popular building block to create nanoparticles for drug delivery purposes. The performance of albumin as a drug carrier can be enhanced by combining protein with polymers, which allows the design of carriers to encompass a broader spectrum of drugs while features unique to synthetic polymers such as stimuli-responsiveness are introduced. Nanoparticles based on polymer-albumin hybrids can be divided into two classes: one that carries album as a bioactive surface coating and the other that uses albumin as biocompatible, although nonbioactive, building block. Nanoparticles with bioactive albumin surface coating can either be prepared by self-assembly of albumin-polymer conjugates or by postcoating of existing nanoparticles with albumin. Albumin has also been used as building block, either in its native or denatured form. Existing albumin nanoparticles are coated with polymers, which can influence the degradation of albumin or impact on the drug release. Finally, an alternative way of using albumin by denaturing the protein to generate a highly functional chain, which can be modified with polymer, has been presented. These albumin nanoparticles are designed to be extremely versatile so that they can deliver a wide variety of drugs, including traditional hydrophobic drugs, metal-based drugs and even therapeutic proteins and siRNA. PMID:26947019

  2. [Comparative analysis of total cell protein electrophoregram of pathogenic Burkholderia].

    PubMed

    Budchenko, A A; Iliukhin, V I; Viktorov, D V

    2005-01-01

    Whole-cell proteins of 22 strain of Burkhoderia pseudomallei, including 13 B. mallei, 5 B. cepacia strains and 14 strains of opportunistically pathogenic Pseudomonas defined by 1D SDC-PAAG electrophoresis. Electrophoregrams contained 35 to 45 protein fractions sized 19 to 130 kDa, which were highly reproductive. On the basis of computer-aided comparative analysis of protein patterns the interspecies and intraspecies grouping of studied microorganisms was made. The cluster analysis of the similarity matrix of protein spectra made it possible to allocate two groups of strains at the level of similarity of 78%. Group I was formed by Burkholderia species that previously belonged to the II RNA-DNA homology group of Pseudomonas: B. pseudomallei, B. mallei, B. cepacia. All Pseudomonas species were added to the 2nd Group: P. aeruginosa, P. stutzeri, P. testosterone, P. fluorescens, P. putida, P. mendocina. Four phenons were isolated among the strains of B. pseudomallei and 2 phenons--among the strains of B. mallei at the threshold similarity level (89%). The authors conclude that the comparative analysis of electrophoregrams of whole-cell proteins can be useful in the identification and typing of pathogenic Burkholderia. PMID:15954473

  3. Single Particle Dynamic Imaging and Fe3+ Sensing with Bright Carbon Dots Derived from Bovine Serum Albumin Proteins

    NASA Astrophysics Data System (ADS)

    Yang, Qingxiu; Wei, Lin; Zheng, Xuanfang; Xiao, Lehui

    2015-12-01

    In this work, we demonstrated a convenient and green strategy for the synthesis of highly luminescent and water-soluble carbon dots (Cdots) by carbonizing carbon precursors, i.e., Bovine serum albumin (BSA) nanoparticles, in water solution. Without post surface modification, the as-synthesized Cdots exhibit fluorescence quantum yield (Q.Y.) as high as 34.8% and display superior colloidal stability not only in concentrated salt solutions (e.g. 2 M KCl) but also in a wide range of pH solutions. According to the FT-IR measurements, the Cdots contain many carboxyl groups, providing a versatile route for further chemical and biological functionalization. Through conjugation of Cdots with the transacting activator of transcription (TAT) peptide (a kind of cell penetration peptide (CPP)) derived from human immunodeficiency virus (HIV), it is possible to directly monitor the dynamic interactions of CPP with living cell membrane at single particle level. Furthermore, these Cdots also exhibit a dosage-dependent selectivity toward Fe3+ among other metal ions, including K+, Na+, Mg2+, Hg2+, Co2+, Cu2+, Pb2+ and Al3+. We believed that the Cdots prepared by this strategy would display promising applications in various areas, including analytical chemistry, nanomedicine, biochemistry and so on.

  4. Single Particle Dynamic Imaging and Fe3+ Sensing with Bright Carbon Dots Derived from Bovine Serum Albumin Proteins

    PubMed Central

    Yang, Qingxiu; Wei, Lin; Zheng, Xuanfang; Xiao, Lehui

    2015-01-01

    In this work, we demonstrated a convenient and green strategy for the synthesis of highly luminescent and water-soluble carbon dots (Cdots) by carbonizing carbon precursors, i.e., Bovine serum albumin (BSA) nanoparticles, in water solution. Without post surface modification, the as-synthesized Cdots exhibit fluorescence quantum yield (Q.Y.) as high as 34.8% and display superior colloidal stability not only in concentrated salt solutions (e.g. 2 M KCl) but also in a wide range of pH solutions. According to the FT-IR measurements, the Cdots contain many carboxyl groups, providing a versatile route for further chemical and biological functionalization. Through conjugation of Cdots with the transacting activator of transcription (TAT) peptide (a kind of cell penetration peptide (CPP)) derived from human immunodeficiency virus (HIV), it is possible to directly monitor the dynamic interactions of CPP with living cell membrane at single particle level. Furthermore, these Cdots also exhibit a dosage-dependent selectivity toward Fe3+ among other metal ions, including K+, Na+, Mg2+, Hg2+, Co2+, Cu2+, Pb2+ and Al3+. We believed that the Cdots prepared by this strategy would display promising applications in various areas, including analytical chemistry, nanomedicine, biochemistry and so on. PMID:26634992

  5. Startling temperature effect on proteins when confined: single molecular level behaviour of human serum albumin in a reverse micelle.

    PubMed

    Sengupta, Bhaswati; Yadav, Rajeev; Sen, Pratik

    2016-06-01

    The present work reports the effect of confinement, and temperature therein, on the conformational fluctuation dynamics of domain-I of human serum albumin (HSA) by fluorescence correlation spectroscopy (FCS). The water-pool of a sodium bis(2-ethylhexyl)sulfosuccinate (AOT) reverse micelle has been used as the confined environment. It was observed that the conformational fluctuation time is about 6 times smaller compared to bulk medium when confined in a water-pool of 3.5 nm radius. On increasing the size of the water-pool the conformational fluctuation time was found to increase monotonically and approaches the bulk value. The effect of confinement is on par with the general belief about the restricted motion of a macromolecule upon confinement. However, the effect of temperature was found to be surprising. An increase in the temperature from 298 K to 313 K induces a larger change in the conformational fluctuation time in HSA, when confined. In the bulk medium, apparently there is no change in the conformational fluctuation time in the aforementioned temperature range, whereas, when HSA is present in an AOT water-pool of radius 3.5 nm, about an 88% increase in the fluctuation time was observed. The observed prominent thermal effect on the conformational dynamics of domain-I of HSA in the water-pool of an AOT reverse micelle as compared to in the bulk medium was concluded to arise from the confined solvent effect. PMID:27166785

  6. Choline and acetylcholine detection based on peroxidase-like activity and protein antifouling property of platinum nanoparticles in bovine serum albumin scaffold.

    PubMed

    He, Shao-Bin; Wu, Gang-Wei; Deng, Hao-Hua; Liu, Ai-Lin; Lin, Xin-Hua; Xia, Xing-Hua; Chen, Wei

    2014-12-15

    Platinum nanoparticles (PtNPs) in the scaffold of bovine serum albumin (BSA) through biomineralization are found to possess excellent peroxidase-like activity that can catalyze N-ethyl-N-(3-sulfopropyl)-3-methylaniline sodium salt (TOPS) coupled with 4-amino-antipyrine (4-AAP) by the action of hydrogen peroxide to give an obvious purple product. Based on this phenomenon, acetylcholinesterase (AChE) and choline oxidase (ChOx) are used to catalyze ACh and choline to form the active product H2O2 and the as-produced H2O2 is detected optically. Owning to the protection effect of the protein shell, BSA-PtNPs turn out to be very stable and preserve the catalytic activity in the presence of protein and even in the real plasma samples. This protein antifouling property makes the BSA-PtNPs suitable for a wide range of applications in sensors for biological samples. Choline in infant formula and ACh in plasma have been successfully detected. PMID:25038538

  7. Molecular Aspects of the Interaction of Iminium and Alkanolamine Forms of the Anticancer Alkaloid Chelerythrine with Plasma Protein Bovine Serum Albumin.

    PubMed

    Bhuiya, Sutanwi; Pradhan, Ankur Bikash; Haque, Lucy; Das, Suman

    2016-01-14

    The interaction between a quaternary benzophenanthridine alkaloid chelerythrine (herein after, CHL) and bovine serum albumin (herein after, BSA) was probed by employing various spectroscopic tools and isothermal titration calorimetry (ITC). Fluorescence studies revealed that the binding affinity of the alkanolamine form of the CHL is higher compared to the iminium counterpart. This was further established by fluorescence polarization anisotropy measurement and ITC. Fluorescence quenching study along with time-resolved fluorescence measurements establish that both forms of CHL quenched the fluorescence intensity of BSA through the mechanism of static quenching. Site selective binding and molecular modeling studies revealed that the alkaloid binds predominantly in the BSA subdomain IIA by electrostatic and hydrophobic forces. From Forster resonance energy transfer (FRET) studies, the average distances between the protein donor and the alkaloid acceptor were found to be 2.71 and 2.30 nm between tryptophan (Trp) 212 (donor) and iminium and alkanolamine forms (acceptor), respectively. Circular dichroism (CD) study demonstrated that the α-helical organization of the protein is reduced due to binding with CHL along with an increase in the coiled structure. This is indicative of a small but definitive partial unfolding of the protein. Thermodynamic parameters obtained from ITC experiments revealed that the interaction is favored by negative enthalpy change and positive entropy change. PMID:26653994

  8. Interaction between Human Serum Albumin and antidiabetic compounds and its influence on the O2((1)Δg)-mediated degradation of the protein.

    PubMed

    Challier, C; Beassoni, P; Boetsch, C; García, N A; Biasutti, M A; Criado, S

    2015-01-01

    The complexity depicted by disease scenarios as diabetes mellitus, constitutes a very interesting field of study when drugs and biologically relevant components may be affected by such environments. In this report, the interaction between the protein Human Serum Albumin (HSA) and two antidiabetics (Andb), Gliclazide (Gli) and Glipizide (Glip) was studied through fluorescence and docking assays, in order to characterize these systems. On the basis that HSA and Andb can be exposed in vivo at high Reactive Oxygen Species (ROS) concentrations in diabetic patients, the degradative process of the protein free and bound to Andb, in presence of the species singlet molecular oxygen (O2((1)Δg)), was evaluated. Fluorescence and docking assays indicated that Gli, as well as Glip bind to HSA on two sites, with binding constants values in the order of 10(4)-10(5)M(-1). Likewise, docking assays revealed that the location of Gli or Glip on the protein may be the HSA binding sites II and III. Thermodynamic parameters showed that the interaction between HSA and Glip is a favored, enthalpically-controlled process. Oxygen uptake experiments indicated that Glip is less photooxidizable than Gli through a O2((1)Δg)-mediated process. Besides, the protein-Andb binding produced a decrease in the overall rate constant for O2((1)Δg) quenching as compared to the value for the free protein. This fact could be interpreted in terms of a reduction in the availability of Tyrosine residues in the bonded protein, with a concomitant decrease in the physical quenching deactivation of the oxidative species. PMID:25490375

  9. The role of albumin receptors in regulation of albumin homeostasis: Implications for drug delivery.

    PubMed

    Bern, Malin; Sand, Kine Marita Knudsen; Nilsen, Jeannette; Sandlie, Inger; Andersen, Jan Terje

    2015-08-10

    Albumin is the most abundant protein in blood and acts as a molecular taxi for a plethora of small insoluble substances such as nutrients, hormones, metals and toxins. In addition, it binds a range of medical drugs. It has an unusually long serum half-life of almost 3weeks, and although the structure and function of albumin has been studied for decades, a biological explanation for the long half-life has been lacking. Now, recent research has unravelled that albumin-binding cellular receptors play key roles in the homeostatic regulation of albumin. Here, we review our current understanding of albumin homeostasis with a particular focus on the impact of the cellular receptors, namely the neonatal Fc receptor (FcRn) and the cubilin-megalin complex, and we discuss their importance on uses of albumin in drug delivery. PMID:26055641

  10. Composites containing albumin protein or cyanoacrylate adhesives and biodegradable scaffolds: I. Acute wound closure study in a rat model

    NASA Astrophysics Data System (ADS)

    Hoffman, Grant T.; Soller, Eric C.; Heintzelman, Douglas L.; Duffy, Mark T.; Bloom, Jeffrey N.; Gilmour, Travis M.; Gonnerman, Krista N.; McNally-Heintzelman, Karen M.

    2004-07-01

    Composite adhesives composed of biodegradable scaffolds impregnated with a biological or synthetic adhesive were investigated for use in wound closure as an alternative to using either one of the adhesives alone. Two different scaffold materials were investigated: (i) a synthetic biodegradable material fabricated from poly(L-lactic-co-glycolic acid); and (ii) a biological material, small intestinal sub mucosa, manufactured by Cook BioTech. The biological adhesive was composed of 50%(w/v) bovine serum albumin solder and 0.5mg/ml indocyanine green dye mixed in deionized water, and activated with an 808-nm diode laser. The synthetic adhesive was Ethicon's Dermabond, a 2-octyl-cyanoacrylate. The tensile strength of skin incisions repaired ex vivo in a rat model, by adhesive alone or in combination with a scaffold, as well as the time-to-failure, were measured and compared. The tensile strength of repairs formed using the scaffold-enhanced biological adhesives were on average, 80% stronger than their non-enhanced counterparts, with an accompanying increase in the time-to-failure of the repairs. These results support the theory that a scaffold material with an irregular surface that bridges the wound provides a stronger, more durable and consistent adhesion, due to the distribution of the tensile stress forces over the many micro-adhesions provided by the irregular surface, rather than the one large continuous adhesive contact. This theory is also supported by several previous ex vivo experiments demonstrating enhanced tensile strength of irregular versus smooth scaffold surfaces in identical tissue repairs performed on bovine thoracic aorta, liver, spleen, small intestine and lung tissue.

  11. Studies of the Interaction between Isoimperatorin and Human Serum Albumin by Multispectroscopic Method: Identification of Possible Binding Site of the Compound Using Esterase Activity of the Protein

    PubMed Central

    Ranjbar, Samira; Shokoohinia, Yalda; Ghobadi, Sirous; Gholamzadeh, Saeed; Moradi, Nastaran; Ashrafi-Kooshk, Mohammad Reza; Aghaei, Abbas

    2013-01-01

    Isoimperatorin is one of the main components of Prangos ferulacea as a linear furanocoumarin and used as anti-inflammatory, analgesic, antispasmodic, and anticancer drug. Human serum albumin (HSA) is a principal extracellular protein with a high concentration in blood plasma and carrier for many drugs to different molecular targets. Since the carrying of drug by HSA may affect on its structure and action, we decided to investigate the interaction between HSA and isoimperatorin using fluorescence and UV spectroscopy. Fluorescence data indicated that isoimperatorin quenches the intrinsic fluorescence of the HSA via a static mechanism and hydrophobic interaction play the major role in the drug binding. The binding average distance between isoimperatorin and Trp 214 of HSA was estimated on the basis of the theory of Förster energy transfer. Decrease of protein surface hydrophobicity (PSH) was also documented upon isoimperatorin binding. Furthermore, the synchronous fluorescence spectra show that the microenvironment of the tryptophan residues does not have obvious changes. Site marker compettive and fluorescence experiments revealed that the binding of isoimperatorin to HSA occurred at or near site I. Finally, the binding details between isoimperatorin and HSA were further confirmed by molecular docking and esterase activity inhibition studies which revealed that drug was bound at subdomain IIA. PMID:24319355

  12. Subchronic toxicity study in vivo and allergenicity study in vitro for genetically modified rice that expresses pharmaceutical protein (human serum albumin).

    PubMed

    Sheng, Yao; Qi, Xiaozhe; Liu, Yifei; Guo, Mingzhang; Chen, Siyuan; He, Xiaoyun; Huang, Kunlun; Xu, Wentao

    2014-10-01

    Genetically modified (GM) crops that express pharmaceutical proteins have become an important focus of recent genetic engineering research. Food safety assessment is necessary for the commercial development of these crops. Subchronic toxicity study in vivo and allergenicity study in vitro were designed to evaluate the food safety of the rice variety expressing human serum albumin (HSA). Animals were fed rodent diets containing 12.5%, 25.0% and 50.0% GM or non-GM rice for 90 days. The composition analysis of the GM rice demonstrated several significant differences. However, most of the differences remained within the ranges reported in the literature. In the animal study, a range of indexes including clinical observation, feed efficiency, hematology, serum chemistry, organ weights and histopathology were examined. Random changes unrelated to the GM rice exposure, within the range of historical control values and not associated with any signs of illness were observed. The results of heat stability and in vitro digestion of HSA indicated no evidence of potential allergenicity of the protein. Overall, the results of these studies suggest that the GM rice appears to be safe as a dietary ingredient when it is used at up to 50% in the diet on a subchronic basis. PMID:25086369

  13. Facile synthesis of nano-sized agarose based amino acid-Its pH-dependent protein-like behavior and interactions with bovine serum albumin.

    PubMed

    Chudasama, Nishith A; Siddhanta, A K

    2015-11-19

    In a facile synthesis agarose was amphoterically functionalized to afford nano-sized agarose amino acids, aminoagarose succinate half-esters (AAE) containing one pendant carboxyl group. Nano-sized AAEs (<10 nm; DLS) were characterized and they had three various degrees of substitution [overall DSs 0.88, 0.89 and 0.96], both the amino and half-ester groups were placed on C-6 positions of the 1,3 beta-d-galactopyranose moieties of agarose backbone ((13)C NMR). AAEs performed like large protein molecules exhibiting pH-responsive structural variations (optical rotatory dispersion), presenting a mixed solubility pattern like random coil (soluble) and aggregate (precipitation) formations. Circular dichroism studies showed their pH-dependent associative interactions with bovine serum albumin, which indicated complexation at acidic and basic pHs, and decomplexation at pH 6.8 with AAE (DS 0.96). Thus, these nano-sized AAE based systems may be of potential utility in the domains demanding the merits of preferential protein bindings e.g. pH-responsive cationic/anionic drug carrier, separations or chiral sensing applications. PMID:26413976

  14. Identification and quantification of major maillard cross-links in human serum albumin and lens protein. Evidence for glucosepane as the dominant compound.

    PubMed

    Biemel, Klaus M; Friedl, D Alexander; Lederer, Markus O

    2002-07-12

    Glycation reactions leading to protein modifications (advanced glycation end products) contribute to various pathologies associated with the general aging process and long term complications of diabetes. However, only few relevant compounds have so far been detected in vivo. We now report on the first unequivocal identification of the lysine-arginine cross-links glucosepane 5, DOGDIC 6, MODIC 7, and GODIC 8 in human material. For their accurate quantification by coupled liquid chromatography-electrospray ionization mass spectrometry, (13)C-labeled reference compounds were synthesized independently. Compounds 5-8 are formed via the alpha-dicarbonyl compounds N(6)-(2,3-dihydroxy-5,6-dioxohexyl)-l-lysinate (1a,b), 3-deoxyglucosone (), methylglyoxal (), and glyoxal (), respectively. The protein-bound dideoxyosone 1a,b seems to be of prime significance for cross-linking because it presumably is not detoxified by mammalian enzymes as readily as 2-4. Hence, the follow-up product glucosepane 5 was found to be the dominant compound. Up to 42.3 pmol of 5/mg of protein was identified in human serum albumin of diabetics; the level of 5 correlates markedly with the glycated hemoglobin HbA(1c). In the water-insoluble fraction of lens proteins from normoglycemics, concentration of 5 ranges between 132.3 and 241.7 pmol/mg. The advanced glycoxidation end product GODIC 8 is elevated significantly in brunescent lenses, indicating enhanced oxidative stress in this material. Compounds 5-8 thus appear predestined as markers for pathophysiological processes. PMID:11978796

  15. Analysis of multi-site drug-protein interactions by high-performance affinity chromatography: Binding by glimepiride to normal or glycated human serum albumin.

    PubMed

    Matsuda, Ryan; Li, Zhao; Zheng, Xiwei; Hage, David S

    2015-08-21

    High-performance affinity chromatography (HPAC) was used in a variety of formats to examine multi-site interactions between glimepiride, a third-generation sulfonylurea drug, and normal or in vitro glycated forms of the transport protein human serum albumin (HSA). Frontal analysis revealed that glimepiride interacts with normal HSA and glycated HSA at a group of high affinity sites (association equilibrium constant, or Ka, 9.2-11.8×10(5)M(-1) at pH 7.4 and 37°C) and a group of lower affinity regions (Ka, 5.9-16×10(3)M(-1)). Zonal elution competition studies were designed and carried out in both normal- and reversed-role formats to investigate the binding by this drug at specific sites. These experiments indicated that glimepiride was interacting at both Sudlow sites I and II. Allosteric effects were also noted with R-warfarin at Sudlow site I and with tamoxifen at the tamoxifen site on HSA. The binding at Sudlow site I had a 2.1- to 2.3-fold increase in affinity in going from normal HSA to the glycated samples of HSA. There was no significant change in the affinity for glimepiride at Sudlow site II in going from normal HSA to a moderately glycated sample of HSA, but a slight decrease in affinity was seen in going to a more highly glycated HSA sample. These results demonstrated how various HPAC-based methods can be used to profile and characterize multi-site binding by a drug such as glimepiride to a protein and its modified forms. The information obtained from this study should be useful in providing a better understanding of how drug-protein binding may be affected by glycation and of how separation and analysis methods based on HPAC can be employed to study systems with complex interactions or that involve modified proteins. PMID:26189669

  16. Analysis of Multi-Site Drug-Protein Interactions by High-Performance Affinity Chromatography: Binding by Glimepiride to Normal or Glycated Human Serum Albumin

    PubMed Central

    Matsuda, Ryan; Li, Zhao; Zheng, Xiwei; Hage, David S.

    2015-01-01

    High-performance affinity chromatography (HPAC) was used in a variety of formats to examine multi-site interactions between glimepiride, a third-generation sulfonylurea drug, and normal or in vitro glycated forms of the transport protein human serum albumin (HSA). Frontal analysis revealed that glimepiride interacts with normal HSA and glycated HSA at a group of high affinity sites (association equilibrium constant, or Ka, 9.2–11.8 × 105 M−1 at pH 7.4 and 37°C) and a group of lower affinity regions (Ka, 5.9–16.2 × 103 M−1). Zonal elution competition studies were designed and carried out in both normal- and reversed-role formats to investigate the binding by this drug at specific sites. These experiments indicated that glimepiride was interacting at both Sudlow sites I and II. Allosteric effects were also noted with R-warfarin at Sudlow site I and with tamoxifen at the tamoxifen site on HSA. The binding at Sudlow site I had a 2.1- to 2.3-fold increase in affinity in going from normal HSA to the glycated samples of HSA. There was no significant change in the affinity for glimepiride at Sudlow site II in going from normal HSA to a moderately glycated sample of HSA, but a slight decrease in affinity was seen in going to a more highly glycated HSA sample. These results demonstrated how various HPAC-based methods can be used to profile and characterize multi-site binding by a drug such as glimepiride to a protein and its modified forms. The information obtained from this study should be useful in providing a better understanding of how drug-protein binding may be affected by glycation and of how separation and analysis methods based on HPAC can be employed to study systems with complex interactions or that involve modified proteins. PMID:26189669

  17. Early postoperative albumin level following total knee arthroplasty is associated with acute kidney injury: A retrospective analysis of 1309 consecutive patients based on kidney disease improving global outcomes criteria.

    PubMed

    Kim, Ha-Jung; Koh, Won-Uk; Kim, Sae-Gyeol; Park, Hyeok-Seong; Song, Jun-Gol; Ro, Young-Jin; Yang, Hong-Seuk

    2016-08-01

    Hypoalbuminemia has been reported to be an independent risk factor for acute kidney injury (AKI). However, little is known about the relationship between the albumin level and the incidence of AKI in patients undergoing total knee arthroplasty (TKA). The aim of our study was to assess incidence and risk factors for AKI and to evaluate the relationship between albumin level and AKI following TKA.The study included a retrospective review of medical records of 1309 consecutive patients who underwent TKA between January 2008 and December 2014. The patients were divided into 2 groups according to the lowest serum albumin level within 2 postoperative days (POD2_alb level < 3.0 g/dL vs ≥3.0 g/dL). Multivariate logistic regression analysis was used to assess risk factors for AKI. A comparison of incidence of AKI, hospital stay, and overall mortality in the 2 groups was performed using propensity score analysis.Of 1309 patients, 57 (4.4%) developed AKI based on Kidney Disease Improving Global Outcomes criteria. Factors associated with AKI included age (odds ratio [OR] 1.05; 95% confidence interval [CI] 1.01-1.09; P = 0.030), diabetes (OR 3.12; 95% CI 1.65-5.89; P < 0.001), uric acid (OR 1.51; 95% CI 1.26-1.82; P < 0.001), beta blocker use (OR 2.65; 95% CI 1.48-4.73; P = 0.001), diuretics (OR 16.42; 95% CI 3.08-87.68; P = 0.001), and POD2_alb level < 3.0 g/dL (OR 1.92; 95% CI 1.09-3.37; P = 0.023). After propensity score analysis, POD2_alb level<3.0 g/dL was associated with AKI occurrence (OR 1.82; 95% CI 1.03-3.24, P = 0.041) and longer hospital stay (P = 0.001).In this study, we demonstrated that POD2_alb level<3.0 g/dL was an independent risk factor for AKI and lengthened hospital stay in patients undergoing TKA. PMID:27495094

  18. Physico-chemical characterization of protein-pigment interactions in tempera paint reconstructions: casein/cinnabar and albumin/cinnabar.

    PubMed

    Duce, Celia; Ghezzi, Lisa; Onor, Massimo; Bonaduce, Ilaria; Colombini, Maria Perla; Tine', Maria Rosaria; Bramanti, Emilia

    2012-02-01

    In this work, we characterized paint reconstructions using ovalbumin and casein as binders, and cinnabar (HgS) as a pigment, before and after artificial ageing. Egg and casein are common paint binders that were used historically in the technique of tempera painting. Despite extensive research on the identification of proteinaceous binders in paintings, there is a substantial lack of knowledge regarding the ageing pathway of their protein content, and their chemical interaction with inorganic pigments. Thermogravimetric analysis, infrared spectroscopy and size-exclusion chromatography (SEC) were used to reveal the physico-chemical processes involved in the ageing of proteins in paintings. Taken together, the three techniques highlighted that proteins are subject to both cross-linking and hydrolysis upon ageing, and to a lesser extent, to oxidation of the side chains. Mercury-protein interactions were also revealed using a cold vapour generation atomic fluorescence spectrometer mercury-specific detector coupled to SEC. The study clearly showed that HgS forms stable complexes with proteins and acts as a sensitizer in cross-linking, hydrolysis and oxidation. PMID:22231511

  19. Changes of protein kinetics in nephrotic patients.

    PubMed

    Castellino, Pietro; Cataliotti, Alessandro

    2002-01-01

    Nephrotic patients show various abnormalities in protein kinetics. Plasma albumin levels and the total plasma albumin pool are reduced. The rate of hepatic absolute and fractional albumin synthesis are increased. Transferrin synthesis is also increased. Fibrinogen levels are elevated in nephrotic syndrome because of an increase in the hepatic synthesis. Regulation of albumin and fibrinogen synthesis seems to be coordinated. A low protein diet has been proposed as a therapeutic tool in nephrotic patients--clinical studies have shown that such a diet reduces proteinuria and increases renal survival. Nephrotic patients can adapt to moderate protein restriction with no sign of malnutrition and maintenance of a neutral nitrogen balance. Albumin and fibrinogen synthesis are ameliorated by dietary protein restriction and these changes are correlated with the beneficial effect of the diet on proteinuria. PMID:11790950

  20. HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY AND THE ANALYSIS OF DRUG INTERACTIONS WITH MODIFIED PROTEINS: BINDING OF GLICLAZIDE WITH GLYCATED HUMAN SERUM ALBUMIN

    PubMed Central

    Matsuda, Ryan; Anguizola, Jeanethe; Joseph, K.S.; Hage, David S.

    2011-01-01

    This study used high-performance affinity chromatography (HPAC) to examine the binding of gliclazide (i.e., a sulfonylurea drug used to treat diabetes) with the protein human serum albumin (HSA) at various stages of modification due to glycation. Frontal analysis conducted with small HPAC columns was first used to estimate the number of binding sites and association equilibrium constants (Ka) for gliclazide with normal HSA and glycated HSA. Both normal and glycated HSA interacted with gliclazide according to a two-site model, with a class of high affinity sites (average Ka, 7.1-10 × 104 M−1) and a group of lower affinity sites (average Ka, 5.7-8.9 × 103 M−1) at pH 7.4 and 37°C. Competition experiments indicated that Sudlow sites I and II of HSA were both involved in these interactions, with the Ka values for gliclazide at these sites being 1.9 × 104 M−1 and 6.0 × 104 M−1, respectively, for normal HSA. Two samples of glycated HSA had similar affinities to normal HSA for gliclazide at Sudlow site I, but one sample had a 1.9-fold increase in affinity at this site. All three glycated HSA samples differed from normal HSA in their affinity for gliclazide at Sudlow site II. This work illustrated how HPAC can be used to examine both the overall binding of a drug with normal or modified proteins and the site-specific changes that can occur in these interactions as a result of protein modification. PMID:21922305

  1. Time Resolved EPR Study on the Photoinduced Long-Range Charge-Separated State in Protein: Electron Tunneling Mediated by Arginine Residue in Human Serum Albumin.

    PubMed

    Fuki, Masaaki; Murai, Hisao; Tachikawa, Takashi; Kobori, Yasuhiro

    2016-05-19

    To elucidate how local molecular conformations play a role on electronic couplings for the long-range photoinduced charge-separated (CS) states in protein systems, we have analyzed time-resolved electron paramagnetic resonance (TREPR) spectra by polarized laser irradiations of 9,10-anthraquinone-1-sulfonate (AQ1S(-)) bound to human serum albumin (HSA). Analyses of the magnetophotoselection effects on the EPR spectra and a docking simulation clarified the molecular geometry and the electronic coupling of the long-range CS states of AQ1S(•2-)-tryptophan214 radical cation (W214(•+)) separated by 1.2 nm. The ligand of AQ1S(-) has been demonstrated to be bound to the drug site I in HSA. Molecular conformations of the binding region were estimated by the docking simulations, indicating that an arginine218 (R218(+)) residue bound to AQ1S(•2-) mediates the long-range electron-transfer. The energetics of triad states of AQ1S(•2-)-R218(+)-W214(•+) and AQ1S(-)-R218(•)-W214(•+) have been computed on the basis of the density functional molecular orbital calculations, providing the clear evidence for the long-range electronic couplings of the CS states in terms of the superexchange tunneling model through the arginine residue. PMID:27116363

  2. Transforming the treatment for hemophilia B patients: update on the clinical development of recombinant fusion protein linking recombinant coagulation factor IX with recombinant albumin (rIX-FP).

    PubMed

    Santagostino, Elena

    2016-05-01

    Recombinant fusion protein linking recombinant coagulation factor IX with recombinant albumin (rIX-FP; Idelvion®(†)) is an innovative new treatment designed to extend the half-life of factor IX (FIX) and ease the burden of care for hemophilia B patients. The rIX-FP clinical development program - PROLONG-9FP - is in its advanced phases, with pivotal studies in previously treated adults, adolescents, and pediatrics now completed. Across all age groups studied, rIX-FP has demonstrated a markedly improved pharmacokinetic profile compared with plasma-derived and recombinant FIX treatments, with a 30-40% higher incremental recovery, an approximately 5-fold longer half-life, a lower clearance, and a greater area under the curve. rIX-FP has been very well tolerated with an excellent safety profile. In the pivotal studies, there have been no reports of FIX inhibitors or antidrug antibodies, and few treatment-related adverse events have been observed. Prophylactic regimens of rIX-FP administered once weekly to once every 14 days have been highly effective. When used for surgical prophylaxis, a single infusion of rIX-FP has been sufficient to maintain hemostasis, even during major orthopedic surgery. An ongoing study is now enrolling previously untreated patients and evaluating the possibility of extending the dosing interval to every 21 days. There is little doubt that rIX-FP will transform the treatment of hemophilia B. PMID:27288064

  3. Penetrable silica microspheres for immobilization of bovine serum albumin and their application to the study of the interaction between imatinib mesylate and protein by frontal affinity chromatography.

    PubMed

    Ma, Liyun; Li, Jing; Zhao, Juan; Liao, Han; Xu, Li; Shi, Zhi-guo

    2016-01-01

    In the current study, novel featured silica, named penetrable silica, simultaneously containing macropores and mesopores, was immobilized with bovine serum albumin (BSA) via Schiff base method. The obtained BSA-SiO2 was employed as the high-performance liquid chromatographic (HPLC) stationary phase. Firstly, D- and L-tryptophan were used as probes to investigate the chiral separation ability of the BSA-SiO2 stationary phase. An excellent enantioseparation factor was obtained up to 4.3 with acceptable stability within at least 1 month. Next, the BSA-SiO2 stationary phase was applied to study the interaction between imatinib mesylate (IM) and BSA by frontal affinity chromatography. A single type of binding site was found for IM with the immobilized BSA, and the hydrogen-bonding and van der Waals interactions were expected to be contributing interactions based on the thermodynamic studies, and this was a spontaneous process. Compared to the traditional silica for HPLC stationary phase, the proposed penetrable silica microsphere possessed a larger capacity to bond more BSA, minimizing column overloading effects and enhancing enantioseparation ability. In addition, the lower running column back pressure and fast mass transfer were meaningful for the column stability and lifetime. It was a good substrate to immobilize biomolecules for fast chiral resolution and screening drug-protein interactions. PMID:26573171

  4. ANALYSIS OF DRUG INTERACTIONS WITH MODIFIED PROTEINS BY HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY: BINDING OF GLIBENCLAMIDE TO NORMAL AND GLYCATED HUMAN SERUM ALBUMIN

    PubMed Central

    Matsuda, Ryan; Anguizola, Jeanethe; Joseph, K.S.; Hage, David S.

    2012-01-01

    High-performance affinity chromatography (HPAC) was used to examine the changes in binding that occur for the sulfonylurea drug glibenclamide with human serum albumin (HSA) at various stages of glycation for HSA. Frontal analysis on columns containing normal HSA or glycated HSA indicated glibenclamide was interacting through both high affinity sites (association equilibrium constant, Ka, 1.4–1.9 × 106 M−1 at pH 7.4 and 37°C) and lower affinity sites (Ka, 4.4–7.2 × 104 M−1). Competition studies were used to examine the effect of glycation at specific binding sites of HSA. An increase in affinity of 1.7- to 1.9-fold was seen at Sudlow site I with moderate to high levels of glycation. An even larger increase of 4.3- to 6.0-fold in affinity was noted at Sudlow site II for all of the tested samples of glycated HSA. A slight decrease in affinity may have occurred at the digitoxin site, but this change was not significant for any individual glycated HSA sample. These results illustrate how HPAC can be used as tool for examining the interactions of relatively non-polar drugs like glibenclamide with modified proteins and should lead to a more complete understanding of how glycation can alter the binding of drugs in blood. PMID:23092871

  5. A Rapid Study of Botanical Drug-Drug Interaction with Protein by Re-ligand Fishing using Human Serum Albumin-Functionalized Magnetic Nanoparticles.

    PubMed

    Qing, Lin-Sen; Xue, Ying; Ding, Li-Sheng; Liu, Yi-Ming; Liang, Jian; Liao, Xun

    2015-12-01

    A great many active constituents of botanical drugs bind to human serum albumin (HSA) reversibly with a dynamic balance between the free- and bound-forms in blood. The curative or side effect of a drug depends on its free-form level, which is always influenced by other drugs, combined dosed or multi-constituents of botanical drugs. This paper presented a rapid and convenient methodology to investigate the drug-drug interactions with HSA. The interaction of two steroidal saponins, dioscin and pseudo-protodioscin, from a botanical drug was studied for their equilibrium time and equilibrium amount by re-ligand fishing using HSA functionalized magnetic nanoparticles. A clear competitive situation was obtained by this method. The equilibrium was reached soon about 15 s at a ratio of 0.44: 1. Furthermore, the interaction of pseudo-protodioscin to total steroidal saponins from DAXXK was also studied. The operation procedures of this method were faster and more convenient compared with other methods reported. PMID:26882690

  6. In situ ATR-IR spectroscopy study of adsorbed protein: Visible light denaturation of bovine serum albumin on TiO2

    NASA Astrophysics Data System (ADS)

    Bouhekka, A.; Bürgi, T.

    2012-11-01

    In this work in situ Fourier transform infrared-attenuated total reflection (FTIR-ATR) spectroscopy in a flow-through cell was used to study the effect of visible light irradiation on bovine serum albumin (BSA) adsorbed on porous TiO2 films. The experiments were performed in water at concentrations of 10-6 mol/l at room temperature. The curve fitting method of the second derivative spectra allowed us to explore details of the secondary structure of pure BSA in water and conformation changes upon adsorption as well as during and after illumination by visible light. The results clearly show that visible light influences the conformation of adsorbed BSA. The appearance of a shift of the amide I band, in the original spectra, from 1653 cm-1 to 1648 cm-1, is interpreted by the creation of random coil in the secondary structure of adsorbed BSA. The second derivative analysis of infrared spectra permits direct quantitative analysis of the secondary structural components of BSA, which show that the percentage of α-helix decreases during visible light illumination whereas the percentage of random coil increases.

  7. Investigation of bovine serum albumin glycation by THz spectroscopy

    NASA Astrophysics Data System (ADS)

    Cherkasova, Olga P.; Nazarov, Maxim M.; Shkurinov, Alexander P.

    2016-04-01

    Protein glycation is accelerated under hyperglycemic conditions resulting to loss in the structure and biological functions of proteins. The transmission THz spectroscopy has been used for measuring of bovine serum albumin glycation dynamics. It was found that amplitude of albumin THz absorption depends on type of sugars and incubation time.

  8. In-vivo delivery of therapeutic proteins by genetically-modified cells: comparison of organoids and human serum albumin alginate-coated beads.

    PubMed

    Shinya, E; Dervillez, X; Edwards-Lévy, F; Duret, V; Brisson, E; Ylisastigui, L; Lévy, M C; Cohen, J H; Klatzmann, D

    1999-12-01

    We have designed a self-assembling multimeric soluble CD4 molecule by inserting the C-terminal fragment of the alpha chain of human C4-binding protein (C4bp alpha) at the C-terminal end of human soluble CD4 genes. This CD4-C4bp alpha fusion protein (sMulti-CD4) and two other reference molecules, a fusion protein of human serum albumin (HSA) and the first two domains of CD4 (HSA-CD4) and monomeric soluble CD4 (sMono-CD4), were delivered in vivo by genetically modified 293 cells. These cells were implanted in mice as organoids and also encapsulated in HSA alginate-coated beads. sMulti-CD4 showed an apparent molecular weight of about 300-350 kDa, in accordance with a possible heptamer formula. sMulti-CD4 produced either in cell culture or in vivo in mice appeared to be a better invitro inhibitor of HIV infection than sMono-CD4. Plasma levels of sMulti-CD4, HSA-CD4, and sMono-CD4 reached approximately 2,300, 2,700, and 170 ng/mL, respectively, 13 weeks after in-vivo organoid implantation, which had formed tumours at that time. This suggests that the plasma half-life of sMulti-CD4 is much longer than that of sMono-CD4. The 293 xenogeneic cells encapsulated in HSA alginate-coated beads remained alive and kept secreting sMono-CD4 or HSA-CD4 continuously at significant levels for 18 weeks in nude mice, without tumour formation. When implanted in immunocompetent Balb/c mice, they were rejected two to three weeks after implantation. In contrast, encapsulated BL4 hybridoma cells remained alive and kept secreting BL4 anti-CD4 mAb for at least four weeks in Balb/c mice. These results suggest the clinical potential of the C4bp-multimerizing system, which could improve both the biological activity and the poor in-vivo pharmacokinetic performance of a monomeric functional protein like soluble CD4. These data also show that a systemic delivery of therapeutic proteins, including immunoglobulins, can be obtained by the in-vivo implantation of engineered allogeneic cells encapsulated

  9. Lactate dehydrogenase X, malate dehydrogenase and total protein in rat spermatozoa during epididymal transit.

    PubMed

    Vermouth, N T; Carriazo, C S; Ponce, R H; Blanco, A

    1986-01-01

    Lactate dehydrogenase isozyme X (LDH X), malate dehydrogenase (MDH) and total soluble protein have been determined in lysates of spermatozoa isolated from caput, corpus and cauda of rat epididymis. Transit of spermatozoa through epididymis is accompanied by a reduction of LDH X, MDH and total protein per cell in sexually rested animals. The profiles of reduction along epididymal segments are different for the three variables studied. Mating with receptive females during the 5 days prior to determinations increases significantly the levels of MDH in spermatozoa from all sections of epididymis and produces increase of total soluble protein in the cells contained in cauda. PMID:3956158

  10. Formulation of plant based Rainbow trout feeds on an Ideal Protein Basis can reduce total dietary protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fish meal has been a primary protein source in trout feeds and any changes that can reduce fish meal levels and total costs are beneficial. Replacing fish meal with plant protein is a first step, but amino acid content of plant based diets can be limiting. Amino acids are needed for many metabolic...

  11. Direct quantification of human serum albumin in human blood serum without separation of gamma-globulin by the total internal reflected resonance light scattering of thorium-sodium dodecylbenzene sulfonate at water/tetrachloromethane interface.

    PubMed

    Feng, Ping; Huang, Cheng Zhi; Li, Yuan Fang

    2002-09-01

    A direct quantification of human serum albumin (HSA) in blood serum samples without separation is proposed based on the measurements of total internal reflected resonance light scattering (TIR-RLS) at water/tetrachloromethane (H(2)O/CCl(4)) interfaces. In the pH range of 6.37-6.59, the coadsorption of the binary complex of HSA-Th(IV) with sodium dodecylbenzene sulfonate occurs at the H(2)O/CCl(4) interface, forming an amphiphilic layer and displaying greatly enhanced TIR-RLS signals with the maximum peak located at 340-370 nm. The enhanced TIR-RLS intensity is in proportion to the HSA concentration in the range 0.15-1.0 micro gml(-1). The limit of detection is 14.4 ngml(-1). The contents of HSA in blood serum samples were determined with the recovery of 97.1-102.3% and RSD of 0.6-2.9%, which are identical to those obtained according to the spectrofluorimetric method using chrome azurol S. PMID:12234467

  12. Effects of gamma irradiation on chickpea seeds vis-a-vis total seed storage proteins, antioxidant activity and protein profiling.

    PubMed

    Bhagyawant, S S; Gupta, N; Shrivastava, N

    2015-01-01

    The present work describes radiation—induced effects on seed composition vis—à—vis total seed proteins, antioxidant levels and protein profiling employing two dimensional gel electrophoresis (2D—GE) in kabuli and desi chickpea varities. Seeds were exposed to the radiation doses of 1,2,3,4 and 5 kGy. The total protein concentrations decreased and antioxidant levels were increased with increasing dose compared to control seed samples. Radiation induced effects were dose dependent to these seed parameters while it showed tolerance to 1 kGy dose. Increase in the dose was complimented with increase in antioxidant levels, like 5 kGy enhanced % scavenging activities in all the seed extracts. Precisely, the investigations reflected that the dose range from 2 to 5 kGy was effective for total seed storage proteins, as depicted quantitatively and qualitative 2D—GE means enhance antioxidant activities in vitro. PMID:26516115

  13. Protein stability, conformational change and binding mechanism of human serum albumin upon binding of embelin and its role in disease control.

    PubMed

    Yeggoni, Daniel Pushparaju; Rachamallu, Aparna; Subramanyam, Rajagopal

    2016-07-01

    Here, we present the inclusive binding mode of phytochemical embelin, an anticancer drug with human serum albumin (HSA) established under physiological condition. Also, to understand the pharmacological role of embelin molecule, here, we have studied the anti-cancer activity of embelin on human cervical cancer cell line (HeLa cell line), which revealed that embelin showed dose dependent inhibition in the growth of cancer cells and also induces 26.3% of apoptosis at an IC50 value of 29μM. Further, embelin was titrated with HSA and the fluorescence emission quenching of HSA due to the formation of the HSA-embelin complex was observed. The binding constant of this complex is 5.9±.01×10(4)M(-1) and the number of bound embelin molecules is approximately 1.0. Consequently, molecular displacement and computational docking experiments show that the embelin is binding to subdomain IB to HSA. Further evidence from microTOF-Q mass spectrometry showed an increase in mass from 66,563Da to 66,857Da observed for free HSA and HSA+embelin complex, signifying that there is robust binding of embelin with HSA. In addition, the variations of HSA secondary structural elements in presence of embelin were confirmed by circular dichroism which indicates partial unfolding of protein. Furthermore, the transmission electron micrographs established that complex formation leads to aggregation of HSA plus embelin. Molecular dynamics simulations revealed that the stability of the HSA-embelin complexes and results suggests that at around 3500ps the complex reaches equilibration state which clearly contributes to the understanding of the stability of the HSA-embelin complexes. PMID:27130964

  14. A novel exendin-4 human serum albumin fusion protein, E2HSA, with an extended half-life and good glucoregulatory effect in healthy rhesus monkeys

    SciTech Connect

    Zhang, Ling; Wang, Lin; Meng, Zhiyun; Gan, Hui; Gu, Ruolan; Wu, Zhuona; Gao, Lei; Zhu, Xiaoxia; Sun, Wenzhong; Li, Jian; Zheng, Ying; Dou, Guifang

    2014-03-07

    Highlights: • E2HSA has an extended half-life and good plasma stability. • E2HSA could improve glucose-dependent insulin secretion. • E2HSA has excellent glucoregulatory effects in vivo. • E2HSA could potentially be used as a new long-acting GLP-1 receptor agonist for type 2 diabetes management. - Abstract: Glucagon-like peptide-1 (GLP-1) has attracted considerable research interest in terms of the treatment of type 2 diabetes due to their multiple glucoregulatory functions. However, the short half-life, rapid inactivation by dipeptidyl peptidase-IV (DPP-IV) and excretion, limits the therapeutic potential of the native incretin hormone. Therefore, efforts are being made to develop the long-acting incretin mimetics via modifying its structure. Here we report a novel recombinant exendin-4 human serum albumin fusion protein E2HSA with HSA molecule extends their circulatory half-life in vivo while still retaining exendin-4 biological activity and therapeutic properties. In vitro comparisons of E2HSA and exendin-4 showed similar insulinotropic activity on rat pancreatic islets and GLP-1R-dependent biological activity on RIN-m5F cells, although E2HSA was less potent than exendin-4. E2HSA had a terminal elimation half-life of approximate 54 h in healthy rhesus monkeys. Furthermore, E2HSA could reduce postprandial glucose excursion and control fasting glucose level, dose-dependent suppress food intake. Improvement in glucose-dependent insulin secretion and control serum glucose excursions were observed during hyperglycemic clamp test (18 h) and oral glucose tolerance test (42 h) respectively. Thus the improved physiological characterization of E2HSA make it a new potent anti-diabetic drug for type 2 diabetes therapy.

  15. Results of a phase I/II open-label, safety and efficacy trial of coagulation factor IX (recombinant), albumin fusion protein in haemophilia B patients

    PubMed Central

    Martinowitz, U; Lissitchkov, T; Lubetsky, A; Jotov, G; Barazani-Brutman, T; Voigt, C; Jacobs, I; Wuerfel, T; Santagostino, E

    2015-01-01

    Introduction rIX-FP is a coagulation factor IX (recombinant), albumin fusion protein with more than fivefold half-life prolongation over other standard factor IX (FIX) products available on the market. Aim This prospective phase II, open-label study evaluated the safety and efficacy of rIX-FP for the prevention of bleeding episodes during weekly prophylaxis and assessed the haemostatic efficacy for on-demand treatment of bleeding episodes in previously treated patients with haemophilia B. Methods The study consisted of a 10–14 day evaluation of rIX-FP pharmacokinetics (PK), and an 11 month safety and efficacy evaluation period with subjects receiving weekly prophylaxis treatment. Safety was evaluated by the occurrence of related adverse events, and immunogenic events, including development of inhibitors. Efficacy was evaluated by annualized spontaneous bleeding rate (AsBR), and the number of injections to achieve haemostasis. Results Seventeen subjects participated in the study, 13 received weekly prophylaxis and 4 received episodic treatment only. No inhibitors were detected in any subject. The mean and median AsBR were 1.25, and 1.13 respectively in the weekly prophylaxis arm. All bleeding episodes were treated with 1 or 2 injections of rIX-FP. Three prophylaxis subjects who were treated on demand prior to study entry had >85% reduction in AsBR compared to the bleeding rate prior to study entry. Conclusion This study demonstrated the efficacy for weekly routine prophylaxis of rIX-FP to prevent spontaneous bleeding episodes and for the treatment of bleeding episodes. In addition no safety issues were detected during the study and an improved PK profile was demonstrated. PMID:25990590

  16. Exploration and Validation of C-Reactive Protein/Albumin Ratio as a Novel Inflammation-Based Prognostic Marker in Nasopharyngeal Carcinoma

    PubMed Central

    Zhang, Yuan; Zhou, Guan-Qun; Liu, Xu; Chen, Lei; Li, Wen-Fei; Tang, Ling-Long; Liu, Qing; Sun, Ying; Ma, Jun

    2016-01-01

    Background: The prognostic value of C-reactive protein/albumin ratio (CRP/Alb), a novel inflammation-based marker, remains unknown in nasopharyngeal carcinoma (NPC). Methods: We conducted a retrospective review of 1572 consecutive patients with non-metastatic NPC. Patients were randomly divided into a training set (n = 514) and validation set (n = 1058). The prognostic value of the CRP/Alb ratio and the modified Glasgow prognostic score (mGPS; a well-recognized inflammation-based score) was assessed. Results: Receiver-operating characteristic analysis identified 0.05 as the optimal CRP/Alb cut-off value for disease failure in the training set. Patients with a CRP/Alb > 0.05 had poorer overall survival (OS), distant metastasis-free survival (DMFS) and disease-free survival (DFS) in the training set (all P < 0.05). These results were confirmed in the validation set (all P < 0.05) and the whole cohort (all P < 0.001). In multivariate analysis of the entire cohort, the pretreatment CRP/Alb ratio was an independent prognostic factor for OS (HR, 1.394; 95% CI, 1.004-1.937; P = 0.048) and DMFS (HR, 1.545; 95% CI, 1.124-2.122; P = 0.007), but not for DFS (P = 0.083). The mGPS had no significant independent prognostic value for any end-point. Conclusion: CRP/Alb ratio is an useful prognostic indicator in patients with NPC, independent of disease stage. PMID:27471556

  17. Long-acting recombinant coagulation factor IX albumin fusion protein (rIX-FP) in hemophilia B: results of a phase 3 trial

    PubMed Central

    Martinowitz, Uri; Lissitchkov, Toshko; Pan-Petesch, Brigitte; Hanabusa, Hideji; Oldenburg, Johannes; Boggio, Lisa; Negrier, Claude; Pabinger, Ingrid; von Depka Prondzinski, Mario; Altisent, Carmen; Castaman, Giancarlo; Yamamoto, Koji; Álvarez-Roman, Maria-Teresa; Voigt, Christine; Blackman, Nicole; Jacobs, Iris

    2016-01-01

    A global phase 3 study evaluated the pharmacokinetics, efficacy, and safety of recombinant fusion protein linking coagulation factor IX with albumin (rIX-FP) in 63 previously treated male patients (12-61 years) with severe hemophilia B (factor IX [FIX] activity ≤2%). The study included 2 groups: group 1 patients received routine prophylaxis once every 7 days for 26 weeks, followed by either 7-, 10-, or 14-day prophylaxis regimen for a mean of 50, 38, or 51 weeks, respectively; group 2 patients received on-demand treatment of bleeding episodes for 26 weeks and then switched to a 7-day prophylaxis regimen for a mean of 45 weeks. The mean terminal half-life of rIX-FP was 102 hours, 4.3-fold longer than previous FIX treatment. Patients maintained a mean trough of 20 and 12 IU/dL FIX activity on prophylaxis with rIX-FP 40 IU/kg weekly and 75 IU/kg every 2 weeks, respectively. There was 100% reduction in median annualized spontaneous bleeding rate (AsBR) and 100% resolution of target joints when subjects switched from on-demand to prophylaxis treatment with rIX-FP (P < .0001). The median AsBR was 0.00 for all prophylaxis regimens. Overall, 98.6% of bleeding episodes were treated successfully, including 93.6% that were treated with a single injection. No patient developed an inhibitor, and no safety concerns were identified. These results indicate rIX-FP is safe and effective for preventing and treating bleeding episodes in patients with hemophilia B at dosing regimens of 40 IU/kg weekly and 75 IU/kg every 2 weeks. This trial was registered at www.clinicaltrials.gov as #NCT0101496274. PMID:26755710

  18. Long-acting recombinant coagulation factor IX albumin fusion protein (rIX-FP) in hemophilia B: results of a phase 3 trial.

    PubMed

    Santagostino, Elena; Martinowitz, Uri; Lissitchkov, Toshko; Pan-Petesch, Brigitte; Hanabusa, Hideji; Oldenburg, Johannes; Boggio, Lisa; Negrier, Claude; Pabinger, Ingrid; von Depka Prondzinski, Mario; Altisent, Carmen; Castaman, Giancarlo; Yamamoto, Koji; Álvarez-Roman, Maria-Teresa; Voigt, Christine; Blackman, Nicole; Jacobs, Iris

    2016-04-01

    A global phase 3 study evaluated the pharmacokinetics, efficacy, and safety of recombinant fusion protein linking coagulation factor IX with albumin (rIX-FP) in 63 previously treated male patients (12-61 years) with severe hemophilia B (factor IX [FIX] activity ≤2%). The study included 2 groups: group 1 patients received routine prophylaxis once every 7 days for 26 weeks, followed by either 7-, 10-, or 14-day prophylaxis regimen for a mean of 50, 38, or 51 weeks, respectively; group 2 patients received on-demand treatment of bleeding episodes for 26 weeks and then switched to a 7-day prophylaxis regimen for a mean of 45 weeks. The mean terminal half-life of rIX-FP was 102 hours, 4.3-fold longer than previous FIX treatment. Patients maintained a mean trough of 20 and 12 IU/dL FIX activity on prophylaxis with rIX-FP 40 IU/kg weekly and 75 IU/kg every 2 weeks, respectively. There was 100% reduction in median annualized spontaneous bleeding rate (AsBR) and 100% resolution of target joints when subjects switched from on-demand to prophylaxis treatment with rIX-FP (P< .0001). The median AsBR was 0.00 for all prophylaxis regimens. Overall, 98.6% of bleeding episodes were treated successfully, including 93.6% that were treated with a single injection. No patient developed an inhibitor, and no safety concerns were identified. These results indicate rIX-FP is safe and effective for preventing and treating bleeding episodes in patients with hemophilia B at dosing regimens of 40 IU/kg weekly and 75 IU/kg every 2 weeks. This trial was registered atwww.clinicaltrials.govas #NCT0101496274. PMID:26755710

  19. Interpretation of Serum Calcium in Patients with Abnormal Serum Proteins

    PubMed Central

    Payne, R. B.; Little, A. J.; Williams, R. B.; Milner, J. R.

    1973-01-01

    Two hundred consecutive specimens received in this laboratory for “liver function tests” showed a wide range of abnormal protein concentrations. Calcium concentration correlated closely with albumin (r = 0·867) but less closely with total protein (r = 0·682). A simple formula for adjusting calcium concentration was derived from the regression equation of calcium on albumin. Adjusted calcium = calcium - albumin + 4·0, where calcium is in mg/100 ml and albumin in g/100 ml. Low calcium concentrations were found in 49 (24·5%) and raised concentrations in six (3%) of the 200 blood specimens taken for liver function tests. After adjustment, the 95% limits of the observed range were identical with the 95% limits of the normal range determined in this laboratory. Unlike adjustments based on total protein or specific gravity, the adjustment on albumin in 39 specimens which showed hypergammaglobulinaemia on electrophoresis gave normal calcium concentrations. PMID:4758544

  20. Dietary protein and plasma total homocysteine, cysteine concentrations in coronary angiographic subjects

    PubMed Central

    2013-01-01

    Background Dietary patterns are associated with plasma total homocysteine (tHcy) concentrations in healthy populations, but the associations between dietary protein and tHcy, total cysteine (tCys) in high risk populations are unclear. We therefore examined the association between dietary protein and tHcy and tCys concentrations in coronary angiographic subjects. Methods We conducted a cross-sectional study of 1015 Chinese patients who underwent coronary angiography (40–85 y old). With the use of food-frequency questionnaires, we divided the total protein intakes into high animal-protein and high plant-protein diets. Circulating concentrations of tHcy and tCys were simultaneously measured by high-performance liquid chromatography with fluorescence detection. Results We found that high animal-protein diet was positively associated with hyperhomocysteinemia after adjustment for potential confounders, with the subjects in the highest quartile of intake having the greatest increase in risk (OR: 4.14, 95% CI: 2.67-6.43), whereas high plant-protein diet was inversely related to hyperhomocysteinemia, with a higher intake being protective. Compared with the first quartile of intake, the adjusted OR was 0.59 (95% CI: 0.38-0.91) for the fourth quartile. The total protein intake was positively associated with the risk of hypercysteinemia and the participants in highest quartile had significant OR of 1.69 (95% CI: 1.02-2.87) compared with those in lowest quartile. In multivariate linear regression analyses, high animal-protein and total-protein intakes were positively associated with plasma tHcy and tCys concentrations. The plant-protein intake was a negative determinant of plasma tHcy concentrations. Conclusions High animal-protein diet was positively associated with high tHcy concentrations, whereas high plant-protein diet was inversely associated with tHcy concentrations. Furthermore the total protein intake was strongly related to tCys concentrations. PMID:24195518

  1. Changes in total plasma content of electrolytes and proteins with maximal exercise.

    NASA Technical Reports Server (NTRS)

    Van Beaumont, W.; Strand, J. C.; Petrofsky, J. S.; Hipskind, S. G.; Greenleaf, J. E.

    1973-01-01

    To determine to what extent the increases in concentration of plasma proteins and electrolytes with short maximal work were a result of hemoconcentration, the changes in plasma volume and total content of the plasma constituents were simultaneously evaluated. The results obtained from six human subjects indicated that in comparison to preexercise values there was a net decrease in total content of plasma protein, sodium, and chloride in the first 2 min of the postexercise period, due primarily to a significant loss (13-15%) of plasma fluid. The total plasma potassium content was increased immediately after exercise but was significantly below the preexercise plasma content after 2 min of recovery.

  2. [Pulsed radiolysis of aqueous solutions of serum albumin containing naphthoquinones].

    PubMed

    Pribush, A G; Savich, A V

    1987-01-01

    As was shown by the pulse radiolysis method the simultaneous presence of naphthoquinone and human serum albumin molecules in an aqueous solution leads to the adsorption of the former on the surface of the latter. It is suggested that in these conditions the protein tertiary structure changes. New conformation reduces the reactivity of albumin toward the hydrated electron. PMID:3628723

  3. Intestinal mucosa in diabetes: synthesis of total proteins and sucrase-isomaltase

    SciTech Connect

    Olsen, W.A.; Perchellet, E.; Malinowski, R.L.

    1986-06-01

    The effects of insulin deficiency on nitrogen metabolism in muscle and liver have been extensively studied with recent in vivo demonstration of impaired protein synthesis in rats with streptozotocin-induced diabetes. Despite the significant contribution of small intestinal mucosa to overall protein metabolism, the effect of insulin deficiency on intestinal protein synthesis have not been completely defined. The authors studied the effects of streptozotocin-induced diabetes on total protein synthesis by small intestinal mucosa and on synthesis of a single enzyme protein of the enterocyte brush-border membrane sucrase-isomaltase. They used the flood-dose technique to minimize the difficulties of measuring specific radioactivity of precursor phenylalanine and determined incorporation into mucosal proteins and sucrase-isomaltase 20 min after injection of the labeled amino acid. Diabetes did not alter mucosal mass as determined by weight and content of protein and DNA during the 5 days after injection of streptozotocin. Increased rates of sucrase-isomaltase synthesis developed beginning on day 3, and those of total protein developed on day 5. Thus intestinal mucosal protein synthesis is not an insulin-sensitive process.

  4. Comparison Between Measured and Calculated Free Calcium Values at Different Serum Albumin Concentrations

    PubMed Central

    Mir, Altaf Ahmad; Goyal, Bela; Datta, Sudip Kumar; Ikkurthi, Saidaiah; Pal, Arnab

    2016-01-01

    Introduction: Free ionic calcium is the metabolically active component of total calcium (TCa) in blood. However, most laboratories report TCa levels that are dependent on serum albumin concentration. Hence, several formulae have evolved to calculate free calcium levels from TCa after adjustment for albumin. However, free calcium can directly be measured using direction selective electrodes rather than spectrophotometric methods used in autoanalyzers. Objectives: This study compares the levels of free calcium obtained by measurement by direct ion selective electrode (ISE) and the one calculated as a function of TCa by formulae. Materials and Methods: A total of 254 serum samples submitted to clinical biochemistry laboratory of a tertiary care hospital were analyzed for total protein, albumin, and TCa by standard spectrophotometric methods and for free calcium by direct ISE. Three commonly used formulae viz. Orrell, Berry et al. and Payne et al. were used to calculate adjusted TCa. Calculated free calcium was obtained by taking 50% of these values. Results: A significant difference (P < 0.05) was observed between calculated free calcium by all the three formulae and measured free calcium estimated by direct ISE using paired t-test and Bland–Altman plots. Conclusion: Formulae for predicting free calcium by estimating TCa and albumin lacks consistency in prediction and free calcium should be evaluated by direct measurement. PMID:27365914

  5. THE SECRETORY PATHWAYS OF RAT SERUM GLYCOPROTEINS AND ALBUMIN

    PubMed Central

    Redman, Colvin M.; Cherian, M. George

    1972-01-01

    These studies compare the secretory pathways of newly formed rat serum glycoproteins and albumin by studying their submicrosomal localization at early times after the beginning of their synthesis and also by determining the submicrosomal site of incorporation of N-acetylglucosamine, mannose, galactose, and leucine into protein. N-acetylglucosamine, mannose, and galactose were only incorporated in vitro into proteins from membrane-attached polysomes and not into proteins from free polysomes. Mannose incorporation occurred in the rough endoplasmic reticulum, was stimulated by puromycin but not by cycloheximide, and 90% of the mannose-labeled protein was bound to the membranes. Galactose incorporation, by contrast, occurred in the smooth microsome fraction and 89% of the radioactive protein was in the cisternae. Albumin was mostly recovered (98%) in the cisternae, with negligible amounts in the membranes. To determine whether the radio-active sugars were being incorporated into serum proteins or into membrane protein, the solubilized in vivo-labeled proteins were treated with specific antisera to rat serum proteins or to albumin. Immunoelectrophoresis of the 14C-labeled leucine membrane and cisternal proteins showed that the membranes contained radioactive serum glycoprotein but no albumin, while the cisternal fraction contained all of the radioactive albumin and some glycoproteins. The results indicate that newly formed serum glycoproteins remain attached to the membranes of the rough endoplasmic reticulum after they are released from the membrane-attached polysomes, while albumin passes directly into the cisternae. PMID:5057975

  6. New quantitative total protein S-assay system for diagnosing protein S type II deficiency: clinical application of the screening system for protein S type II deficiency.

    PubMed

    Tsuda, Tomohide; Jin, Xiuri; Tsuda, Hiroko; Ieko, Masahiro; Morishita, Eriko; Adachi, Tomoko; Hamasaki, Naotaka

    2012-01-01

    Venous thromboembolism (VTE) incidence is rising rapidly in Japan with lifestyle westernization and aging. Deficiency of protein S, an important blood coagulation regulator, is a risk factor for VTE. Protein S deficiency prevalence in Asians is approximately 10 times that in Caucasians and that of protein S type II deficiency, associated with the protein S Tokushima mutation (K155E), is quite high in Japan. However, currently available methods for measuring protein S are not precise enough for detection of this deficiency. We developed a novel assay system for precise simultaneous determinations of total protein S activity and total protein S antigen level, using a general-purpose automated analyzer, allowing protein S-specific activity (ratio of total protein S activity to total protein S antigen level) to be calculated. Mean specific activity was 0.99 for samples from healthy individuals but 0.69 or less (mean-3SD) in protein S type II-deficient and warfarin-treated samples, but was 1.0 in an estrogen-treated sample with significantly decreased protein S antigen. Protein S gene analyses in healthy individuals with specific activity 0.69 or less revealed the K155E mutation in all three. These results show our new assay system to be an effective screening tool for protein S type II deficiency. This system can also be used in an automated analyzer, facilitating numerous sample measurements, and is, thus, applicable to regular medical checkups and diagnosing VTE. Such applications would potentially contribute to early detection of protein S type II deficiency, and, thereby, to thrombosis prevention. PMID:22157257

  7. Simultaneous serum desalting and total protein determination by macroporous reversed-phase chromatography.

    PubMed

    Boichenko, Alexander; Govorukhina, Natalia; van der Zee, Ate G J; Bischoff, Rainer

    2013-04-01

    Macroporous reversed-phase (mRP) chromatography was successfully used to develop an accurate and precise method for total protein in serum. The limits of detection (0.83 μg, LOD) and quantification (2.51 μg, LOQ) for the mRP method are comparable with those of the widely used micro BCA protein assay. The mRP method can be used to determine the total protein concentration across a wide dynamic range by detecting chromatographic peaks at 215 nm and 280 nm. The method has the added advantage of desalting and denaturing proteins, leading to more complete digestion by trypsin and to better LC-MS-MS identification in shotgun proteomics experiments. PMID:23388688

  8. Bioprocess monitoring: minimizing sample matrix effects for total protein quantification with bicinchoninic acid assay.

    PubMed

    Reichelt, Wieland N; Waldschitz, Daniel; Herwig, Christoph; Neutsch, Lukas

    2016-09-01

    Determining total protein content is a routine operation in many laboratories. Despite substantial work on assay optimization interferences, the widely used bicinchoninic acid (BCA) assay remains widely recognized for its robustness. Especially in the field of bioprocess engineering the inaccuracy caused by interfering substances remains hardly predictable and not well understood. Since the introduction of the assay, sample pre-treatment by trichloroacetic acid (TCA) precipitation has been indicated as necessary and sufficient to minimize interferences. However, the sample matrix in cultivation media is not only highly complex but also dynamically changing over process time in terms of qualitative and quantitative composition. A significant misestimation of the total protein concentration of bioprocess samples is often observed when following standard work-up schemes such as TCA precipitation, indicating that this step alone is not an adequate means to avoid measurement bias. Here, we propose a modification of the BCA assay, which is less influenced by sample complexity. The dynamically changing sample matrix composition of bioprocessing samples impairs the conventional approach of compensating for interfering substances via a static offset. Hence, we evaluated the use of a correction factor based on an internal spike measurement for the respective samples. Using protein spikes, the accuracy of the BCA protein quantification could be improved fivefold, taking the BCA protein quantification to a level of accuracy comparable to other, more expensive methods. This will allow reducing expensive iterations in bioprocess development to due inaccurate total protein analytics. PMID:27314233

  9. Albumin adsorption on to aluminium oxide and polyurethane surfaces.

    PubMed

    Sharma, C P; Sunny, M C

    1990-05-01

    The changes in protein adsorption onto aluminium surfaces coated with different thicknesses of oxide layers were examined. The oxide layers on aluminium substrates were derived by the anodizing technique. Protein adsorption studies were conducted using 125I-labelled albumin and the amount of albumin adsorbed was estimated with the help of a gamma counter. An increase in albumin adsorption was observed on oxide layer coated aluminium surfaces. The effect of anti-Hageman factor on albumin and fibrinogen adsorption on to bare aluminium, oxide layer coated aluminium and bare polyether urethane urea surfaces was also investigated. It was observed that the presence of anti-Hageman factor increased the adsorption of albumin and fibrinogen on to all these substrates. PMID:2383620

  10. Holograms of fluorescent albumin

    NASA Astrophysics Data System (ADS)

    Ordóñez-Padilla, M. J.; Olivares-Pérez, A.; Berriel-Valdos, L. R.; Mejias-Brizuela, N. Y.; Fuentes-Tapia, I.

    2011-09-01

    We report the characterization and analysis of photochromic films gallus gallus albumin as a matrix modified for holographic recording. Photo-oxidation of homogeneous mixtures prepared with albumin-propylene glycol, to combine chemically with aqueous solution of ammonium dichromate at certain concentrations. We analyzed the diffraction gratings, through the diffraction efficiency of the proposed material. Also, eosin was used as a fluorescent agent, so it is found that produces an inhibitory effect, thus decreasing the diffraction efficiency of the matrices prepared in near-identical circumstances. The work was to achieve stability of albumin films, were prepared with propylene glycol. Finally, experimental studies were performed with films when subjected to aqueous solution of eosin (fluorescent agent) to verify the ability to increase or decrease in diffraction efficiency.

  11. Evidence that the ZNT3 protein controls the total amount of elemental zinc in synaptic vesicles

    USGS Publications Warehouse

    Linkous, D.H.; Flinn, J.M.; Koh, J.Y.; Lanzirotti, A.; Bertsch, P.M.; Jones, B.F.; Giblin, L.J.; Frederickson, C.J.

    2008-01-01

    The ZNT3 protein decorates the presynaptic vesicles of central neurons harboring vesicular zinc, and deletion of this protein removes staining for zinc. However, it has been unclear whether only histochemically reactive zinc is lacking or if, indeed, total elemental zinc is missing from neurons lacking the Slc30a3 gene, which encodes the ZNT3 protein. The limitations of conventional histochemical procedures have contributed to this enigma. However, a novel technique, microprobe synchrotron X-ray fluorescence, reveals that the normal 2- to 3-fold elevation of zinc concentration normally present in the hippocampal mossy fibers is absent in Slc30a3 knockout (ZNT3) mice. Thus, the ZNT3 protein evidently controls not only the "stainability" but also the actual mass of zinc in mossy-fiber synaptic vesicles. This work thus confirms the metal-transporting role of the ZNT3 protein in the brain. ?? The Histochemical Society, Inc.

  12. Evidence That the ZNT3 Protein Controls the Total Amount of Elemental Zinc in Synaptic Vesicles

    SciTech Connect

    Linkous,D.; Flinn, J.; Koh, J.; Lanzirotti, A.; Bertsch, P.; Jones, B.; Giblin, L.; Fredrickson, C.

    2008-01-01

    The ZNT3 protein decorates the presynaptic vesicles of central neurons harboring vesicular zinc, and deletion of this protein removes staining for zinc. However, it has been unclear whether only histochemically reactive zinc is lacking or if, indeed, total elemental zinc is missing from neurons lacking the Slc30a3 gene, which encodes the ZNT3 protein. The limitations of conventional histochemical procedures have contributed to this enigma. However, a novel technique, microprobe synchrotron X-ray fluorescence, reveals that the normal 2- to 3-fold elevation of zinc concentration normally present in the hippocampal mossy fibers is absent in Slc30a3 knockout (ZNT3) mice. Thus, the ZNT3 protein evidently controls not only the 'stainability' but also the actual mass of zinc in mossy-fiber synaptic vesicles. This work thus confirms the metal-transporting role of the ZNT3 protein in the brain.

  13. Age-related changes in total protein and collagen metabolism in rat liver.

    PubMed

    Mays, P K; McAnulty, R; Laurent, G J

    1991-12-01

    Liver collagen levels are determined by a balance between synthesis and degradation, processes known to have rapid rates in growing animals. We report age-related changes in liver collagen synthesis and degradation rates, as well as protein synthesis rates, in rats at five ages from 1 to 24 mo. Fractional collagen synthesis rates were determined after injection of [14C]proline with a flooding dose of unlabeled proline and its incorporation as hydroxy-[14C]proline into proteins. Fractional protein synthesis rates were based on the uptake of [14C]proline into proteins. Fractional collagen degradation rates were calculated from the difference between collagen fractional synthesis and deposition rates. Fractional rates of collagen synthesis were similar between 1 mo (23.0% +/- 4.6%/day) and 24 mo (19.6% +/- 3.4%/day) of age. Collagen deposition into the extracellular matrix was extremely low at every age studied; therefore degradation pathways accounted for the bulk of the collagen synthesized. The mean fractional synthesis rate for the total protein pool was unaltered between 1 mo (105.0% +/- 7.2%/day) and 15 mo (89.9% +/- 6.0%/day) of age, after which it increased to 234.9% +/- 33.0%/day (p less than 0.05) by 24 mo of age. These results indicate that liver collagen and total protein synthesis rates were maintained at relatively high levels during development and maturity but that protein synthesis rates were highest in senescent animals. PMID:1959872

  14. Estimation of Levels of Salivary Mucin, Amylase and Total Protein in Gingivitis and Chronic Periodontitis Patients

    PubMed Central

    Bhandary, Rahul; Thomas, Biju; Kumari, Suchetha

    2014-01-01

    Background: Periodontal diseases are a group of inflammatory conditions resulting from interaction between a pathogenic bacterial biofilm and susceptible host’s inflammatory response eventually leading to the destruction of periodontal structures and subsequent tooth loss. Hence, investigation of salivary proteins in individuals with periodontal diseases may be useful to enhance the knowledge of their roles in these diseases. Materials and Methods: This case-control study was conducted at A.B. Shetty Memorial Institute of Dental Sciences, Mangalore. The study comprised of 90 patients of age between 25-60 years who were clinically examined and divided into three groups of 30 each: namely clinically healthy, gingivitis and chronic periodontitis. These were classified according to the values of gingival index score, clinical attachment loss and probing pocket depth. Unstimulated saliva was collected and salivary mucin, amylase and total protein levels were determined. Statistical analysis: Results obtained were tabulated and statistically analyzed using ANOVA test and Karl pearson’s correlation test. Results: The results of the study showed an increased concentration of salivary mucin, amylase and total protein in gingivitis patients and increased levels of amylase and total protein in saliva of chronic periodontitis patients compared to healthy individuals which were statistically significant. A decrease in mucin concentration was observed in the periodontitis group compared to gingivitis group. A positive correlation was present between salivary mucin, amylase and total protein levels in the three groups. Conclusion: Salivary mucin, amylase and total protein may serve as an important biochemical parameter of inflammation of the periodontium. Also, it can be hypothesized that various enzyme inhibitors might be useful as a part of host modulation therapy in the treatment of periodontal diseases. PMID:25478449

  15. Photoinduced conformational changes to porphyrin-bound albumin reduces albumin binding to Osteonectin

    NASA Astrophysics Data System (ADS)

    Rozinek, Sarah C.; Thomas, Robert J.; Brancaleon, Lorenzo

    2015-03-01

    Low intensity laser irradiation of photoactive ligands bound non-covalently to proteins can generate a structural change in the proteins, which is detectable spectroscopically. This light induced protein modification could help to study the structure/function relationship in proteins or to prompt non-native protein properties. That is, only if we can determine if and how protein function is effected. Much work has shown small light-induced secondary and tertiary structural changes to albumin have occurred when the protein is bound to a porphyrin such as protoporphyrin IX or meso-tetra(4- sulfonatophenyl)porphyrin (TSPP) and irradiated. This Affinity-Depletion study aims to explore the conformational change of TSPP-bound albumin after visible-light irradiation by testing its ability to bind the biologically relevant albumin receptor, osteonectin. Osteonectin has been covalently attached to magnetic beads, forming an affinity column, but after ten trials (of varied protocol) no substantial albumin-to-osteonectin binding could be achieved.

  16. Total Protein of Whole Saliva as a Biomarker of Anaerobic Threshold

    ERIC Educational Resources Information Center

    Bortolini, Miguel Junior Sordi; De Agostini, Guilherme Gularte; Reis, Ismair Teodoro; Lamounier, Romeu Paulo Martins Silva; Blumberg, Jeffrey B.; Espindola, Foued Salmen

    2009-01-01

    Saliva provides a convenient and noninvasive matrix for assessing specific physiological parameters, including some biomarkers of exercise. We investigated whether the total protein concentration of whole saliva (TPWS) would reflect the anaerobic threshold during an incremental exercise test. After a warm-up period, 13 nonsmoking men performed a…

  17. Binding of Sulpiride to Seric Albumins

    PubMed Central

    da Silva Fragoso, Viviane Muniz; de Morais Coura, Carla Patrícia; Hoppe, Luanda Yanaan; Soares, Marília Amável Gomes; Silva, Dilson; Cortez, Celia Martins

    2016-01-01

    The aim of this work was to study the interaction of sulpiride with human serum albumin (HSA) and bovine serum albumin (BSA) through the fluorescence quenching technique. As sulpiride molecules emit fluorescence, we have developed a simple mathematical model to discriminate the quencher fluorescence from the albumin fluorescence in the solution where they interact. Sulpiride is an antipsychotic used in the treatment of several psychiatric disorders. We selectively excited the fluorescence of tryptophan residues with 290 nm wavelength and observed the quenching by titrating HSA and BSA solutions with sulpiride. Stern-Volmer graphs were plotted and quenching constants were estimated. Results showed that sulpiride form complexes with both albumins. Estimated association constants for the interaction sulpiride–HSA were 2.20 (±0.08) × 104 M−1, at 37 °C, and 5.46 (±0.20) × 104 M−1, at 25 °C. Those for the interaction sulpiride-BSA are 0.44 (±0.01) × 104 M−1, at 37 °C and 2.17 (±0.04) × 104 M−1, at 25 °C. The quenching intensity of BSA, which contains two tryptophan residues in the peptide chain, was found to be higher than that of HSA, what suggests that the primary binding site for sulpiride in albumin should be located next to the sub domain IB of the protein structure. PMID:26742031

  18. Binding of Sulpiride to Seric Albumins.

    PubMed

    da Silva Fragoso, Viviane Muniz; de Morais Coura, Carla Patrícia; Hoppe, Luanda Yanaan; Soares, Marília Amável Gomes; Silva, Dilson; Cortez, Celia Martins

    2016-01-01

    The aim of this work was to study the interaction of sulpiride with human serum albumin (HSA) and bovine serum albumin (BSA) through the fluorescence quenching technique. As sulpiride molecules emit fluorescence, we have developed a simple mathematical model to discriminate the quencher fluorescence from the albumin fluorescence in the solution where they interact. Sulpiride is an antipsychotic used in the treatment of several psychiatric disorders. We selectively excited the fluorescence of tryptophan residues with 290 nm wavelength and observed the quenching by titrating HSA and BSA solutions with sulpiride. Stern-Volmer graphs were plotted and quenching constants were estimated. Results showed that sulpiride form complexes with both albumins. Estimated association constants for the interaction sulpiride-HSA were 2.20 (±0.08) × 10⁴ M(-1), at 37 °C, and 5.46 (±0.20) × 10⁴ M(-1), at 25 °C. Those for the interaction sulpiride-BSA are 0.44 (±0.01) × 10⁴ M(-1), at 37 °C and 2.17 (±0.04) × 10⁴ M(-1), at 25 °C. The quenching intensity of BSA, which contains two tryptophan residues in the peptide chain, was found to be higher than that of HSA, what suggests that the primary binding site for sulpiride in albumin should be located next to the sub domain IB of the protein structure. PMID:26742031

  19. Serum albumin and muscle measures in a cohort of healthy young and old participants.

    PubMed

    Reijnierse, E M; Trappenburg, M C; Leter, M J; Sipilä, S; Stenroth, L; Narici, M V; Hogrel, J Y; Butler-Browne, G; McPhee, J S; Pääsuke, M; Gapeyeva, H; Meskers, C G M; Maier, A B

    2015-10-01

    Consensus on clinically valid diagnostic criteria for sarcopenia requires a systematical assessment of the association of its candidate measures of muscle mass, muscle strength, and physical performance on one side and muscle-related clinical parameters on the other side. In this study, we systematically assessed associations between serum albumin as a muscle-related parameter and muscle measures in 172 healthy young (aged 18-30 years) and 271 old participants (aged 69-81 year) from the European MYOAGE study. Muscle measures included relative muscle mass, i.e., total- and appendicular lean mass (ALM) percentage, absolute muscle mass, i.e., ALM/height(2) and total lean mass in kilograms, handgrip strength, and walking speed. Muscle measures were standardized and analyzed in multivariate linear regression models, stratified by age. Adjustment models included age, body composition, C-reactive protein and lifestyle factors. In young participants, serum albumin was positively associated with lean mass percentage (p = 0.007) and with ALM percentage (p = 0.001). In old participants, serum albumin was not associated with any of the muscle measures. In conclusion, the association between serum albumin and muscle measures was only found in healthy young participants and the strongest for measures of relative muscle mass. PMID:26310888

  20. Oxidative damage to human plasma proteins by ozone.

    PubMed

    Cross, C E; Reznick, A Z; Packer, L; Davis, P A; Suzuki, Y J; Halliwell, B

    1992-01-01

    Exposure of human plasma to ozone produces oxidative protein damage, measured as protein carbonyl formation. Isolated human albumin or creatine phosphokinase are oxidized much faster than are total proteins. Consideration must be given to proteins as targets of oxidative injury by ozone in vivo. PMID:1568641

  1. Hydrodynamic size-based separation and characterization of protein aggregates from total cell lysates

    PubMed Central

    Tanase, Maya; Zolla, Valerio; Clement, Cristina C; Borghi, Francesco; Urbanska, Aleksandra M; Rodriguez-Navarro, Jose Antonio; Roda, Barbara; Zattoni, Andrea; Reschiglian, Pierluigi; Cuervo, Ana Maria; Santambrogio, Laura

    2016-01-01

    Herein we describe a protocol that uses hollow-fiber flow field-flow fractionation (FFF) coupled with multiangle light scattering (MALS) for hydrodynamic size-based separation and characterization of complex protein aggregates. The fractionation method, which requires 1.5 h to run, was successfully modified from the analysis of protein aggregates, as found in simple protein mixtures, to complex aggregates, as found in total cell lysates. In contrast to other related methods (filter assay, analytical ultracentrifugation, gel electrophoresis and size-exclusion chromatography), hollow-fiber flow FFF coupled with MALS allows a flow-based fractionation of highly purified protein aggregates and simultaneous measurement of their molecular weight, r.m.s. radius and molecular conformation (e.g., round, rod-shaped, compact or relaxed). The polyethersulfone hollow fibers used, which have a 0.8-mm inner diameter, allow separation of as little as 20 μg of total cell lysates. In addition, the ability to run the samples in different denaturing and nondenaturing buffer allows defining true aggregates from artifacts, which can form during sample preparation. The protocol was set up using Paraquat-induced carbonylation, a model that induces protein aggregation in cultured cells. This technique will advance the biochemical, proteomic and biophysical characterization of molecular-weight aggregates associated with protein mutations, as found in many CNS degenerative diseases, or chronic oxidative stress, as found in aging, and chronic metabolic and inflammatory conditions. PMID:25521790

  2. Evaluation of Plasma Fibrinogen Degradation Products and Total Serum Protein Concentration in Oral Submucous Fibrosis

    PubMed Central

    B.N.V.S., Satish; B., Maharudrappa; K.M., Prashant; Hugar, Deepa; Allad, Umesh; Prabhu, Prasanth S.

    2014-01-01

    Background: Oral submucous fibrosis (OSMF) is a potentially malignant disorder with a multifactorial etiology. Malnutrition is a major problem for the inhabitants of most countries where OSMF is prevalent. Recently, a new direction in the etiopathogenesis was provided by the identification of fibrinogen degradation products (FDP) in the plasma of OSMF patients. Aims and Objectives: To assess the role of FDP in the etiology of OSMF and to correlate with the nutritional status by evaluating the total serum protein level. The study also determines to evaluate the correlation between the levels of plasma FDP with respect to the staging and grading of OSMF. Correlation between the levels of Total Serum Protein (TSP) with respect to the staging and grading of OSMF was also evaluated. Materials and Methods: The study included 30 cases clinically and histopathologically diagnosed as oral submucous fibrosis. The FDP levels were assessed using both qualitative and semi quantitative method as supplied by ‘Tulip Diagnostics (P) Ltd. Total Serum Protein (TSP) estimation was done by Biuret method using Liquixx Protein kit by Erba, Manheim. Results: The study indicates that in qualitative assessment of FDP only 14 subjects showed the presence of FDP levels>200ng/ml. In semiquantitative assessment there is no significant association between varying clinical stages and histopathological grades and FDP levels. Total serum Protein level showed a marginal increase in all subjects. The study revealed a positive correlation between FDP and TSP in all OSMF subjects. Conclusion: A larger sample size which would be a better representation of the population and the use of different methods which have higher sensitivities and specificities to evaluate FDP level and detailed fractional analysis of protein along with immunoglobulin profiling would facilitate in attaining more conclusive results. PMID:24995245

  3. Human serum albumin and its relation with oxidative stress.

    PubMed

    Sitar, Mustafa Erinç; Aydin, Seval; Cakatay, Ufuk

    2013-01-01

    Human serum albumin, a negative acute phase reactant and marker of nutritive status, presents at high concentrations in plasma. Albumin has always been used in many clinical states especially to improve circulatory failure. It has been showed that albumin is involved in many bioactive functions such as regulation of plasma osmotic pressure, binding and transport of various endogenous or exogenous compounds, and finally extracellular antioxidant defenses. Molecules like transferrin, caeruloplasmin, haptoglobin, uric acid, bilirubin, alpha-tocopherol, glucose, and albumin constitute extracellular antioxidant defenses in blood plasma but albumin is the most potent one. Most of the antioxidant properties of albumin can be attributed to its unique biochemical structure. The protein possesses antioxidant properties such as binding copper tightly and iron weakly, scavenging free radicals, e.g., hypochlorous acid (HOCl) and Peroxynitrite (ONOOH) and providing thiol group (-SH). Whether it is chronic or acute, during many pathological conditions, biomarkers of oxidative protein damage increase and this observation continues with considerable oxidation of human serum albumin. There is an important necessity to specify its interactions with Reactive Oxygen Species. Generally, it may lower the availability of pro-oxidants and be preferentially oxidized to protect other macromolecules but all these findings make it necessary that researchers give a more detailed explanation of albumin and its relations with oxidative stress. PMID:24273915

  4. Albumin infusion in humans does not model exercise induced hypervolaemia after 24 hours

    NASA Technical Reports Server (NTRS)

    Haskell, A.; Gillen, C. M.; Mack, G. W.; Nadel, E. R.

    1998-01-01

    We rapidly infused 234 +/- 3 mL of 5% human serum albumin in eight men while measuring haematocrit, haemoglobin concentration, plasma volume (PV), albumin concentration, total protein concentration, osmolality, sodium concentration, renin activity, aldosterone concentration, and atrial natriuretic peptide concentration to test the hypotheses that plasma volume expansion and plasma albumin content expansion will not persist for 24 h. Plasma volume and albumin content were expanded for the first 6 h after infusion (44.3 +/- 1.9-47.2 +/- 2.0 mL kg-1 and 1.9 +/- 0.1-2.1 +/- 0.1 g kg-1 at pre-infusion and 1 h, respectively, P < 0.05), but by 24 h plasma volume and albumin content decreased significantly from 1 h post-infusion and were not different from pre-infusion (44.8 +/- 1.9 mL kg-1 and 1.9 +/- 0.1 g kg-1, respectively). Plasma aldosterone concentration showed a significant effect of time over the 24 h after infusion (P < 0.05), and showed a trend to decrease at 2 h after infusion (167.6 +/- 32.5(-1) 06.2 +/- 13.4 pg mL-1, P = 0.07). These data demonstrate that a 6.8% expansion of plasma volume and 10.5% expansion of plasma albumin content by infusion does not remain in the vascular space for 24 h and suggest a redistribution occurs between the intravascular space and interstitial fluid space.

  5. ACCURACY OF SERUM - ASCITES ALBUMIN GRADIENT IN THE AETIOLOGICAL DIAGNOSIS OF ASCITES.

    PubMed

    Seth, A K; Rangarao, R; Pakhetra, R; Baskaran, V; Rana, Pvs; Rajamani, S

    2002-04-01

    50 adults with ascites admitted to our hospital were studied. Simultaneous samples of ascitic fluid and blood were collected and subjected to analysis including ascitic fluid total protein and serum ascites albumin gradient The cut off value of serum-ascites albumin gradient for differentiating between high and low gradient was taken as 1.1 gm % and of ascitic fluid protein for differentiating exudate and transudate as 2.5 gm%. The sensitivity, specificity, positive predictive value and negative predictive value of high gradient and transudative ascites in diagnosing portal hypertension were 943%, 60%, 84.6%, 81.8% and 62.9%, 133%, 91.7% and 50% respectively. High gradient ascites is a sensitive test in the diagnosis of portal hypertension as a cause of ascites. The exudate-transudate approach has severe limitations in the differential diagnosis of ascites. PMID:27407357

  6. RubisCO is not a major fraction of total protein in marine phytoplankton

    NASA Astrophysics Data System (ADS)

    Losh, J.; Young, J. N.; Morel, F. M.

    2012-12-01

    Ribulose 1,5 bisphosphate carboxylase oxygnenase (Rubisco) concentrations were quantified as a proportion of total protein in diatoms to determine whether Rubisco is as abundant in phytoplankton as previously thought. This enzyme has been assumed to be a major fraction of total protein in phytoplankton, as has been demonstrated in plants, potentially constituting a large sink for cellular nitrogen (N). Marine diatoms were grown in batch cultures, and in N-limited continuous cultures at various carbon dioxide (CO2) levels. Quantitative western blots were performed using commercially available global antibodies and protein standards. Field incubations with natural populations of organisms from the coast of California were conducted under both N-limited and N-replete incubations with varying CO2. In all experiments, Rubisco represented less than 5% of total protein. Within exponentially growing batch cultures, concentrations ranged from 2-4%, while in N-limited laboratory and field cultures, concentrations were less than 1%. In some experiments under N-limiting conditions, Rubisco concentrations decreased with decreasing growth rates or with increasing CO2. These results were used as a basis of a theoretical calculation of maximum Rubisco activity and suggest that phytoplankton contain the minimum amount of Rubisco necessary to operate. Unlike plants, Rubisco is not a major sink of cellular N in phytoplankton. This has implications for phytoplankton's response to increasing CO2 under N-limitation.

  7. Rubisco is a small fraction of total protein in marine phytoplankton.

    PubMed

    Losh, Jenna L; Young, Jodi N; Morel, François M M

    2013-04-01

    Ribulose 1,5 bisphosphate carboxylase oxygenase (Rubisco) concentrations were quantified as a proportion of total protein in eight species of microalgae. This enzyme has been assumed to be a major fraction of total protein in phytoplankton, as has been demonstrated in plants, potentially constituting a large sink for cellular nitrogen. Representative microalgae were grown in batch and continuous cultures under nutrient-replete, nitrogen (N)-limited, or phosphorus (P)-limited conditions with varying CO(2). Quantitative Western blots were performed using commercially available global antibodies and protein standards. Field incubations with natural populations of organisms from the coast of California were conducted under both nutrient-replete and N-limited conditions with varying CO(2). In all experiments, Rubisco represented < 6% of total protein. In nutrient-replete exponentially growing batch cultures, concentrations ranged from 2% to 6%, while in nutrient-limited laboratory and field cultures, concentrations were < 2.5%. Rubisco generally decreased with increasing CO(2) and with decreasing growth rates. Based on a calculation of maximum Rubisco activity, these results suggest that phytoplankton contain the minimum concentration of enzyme necessary to support observed growth rates. Unlike in plants, Rubisco does not account for a major fraction of cellular N in phytoplankton. PMID:23343368

  8. Why do total-body decay curves of iodine-labeled proteins begin with a delay

    SciTech Connect

    Regoeczi, E.

    1987-09-01

    The initial delay that occurs in total-body radiation curves reaching their single-exponential slopes was analyzed from 106 experiments involving several mammalian species (guinea pig, mouse, rabbit, and rat) and plasma proteins (alpha 1-acid glycoprotein, antithrombin III, fibrinogen, immunoglobulin G, and transferrin) in 14 different combinations. The time interval (Td) between injection and the intercept of the slope with the full-dose value was adopted as a measure of curve nonideality. The overall mean Td was 6.6 h, but individual values showed a significant correlation to protein half-lives, whereby proteins of unequal metabolic properties exhibited different mean Td values. Targeting protein to the liver abolished delay. Choice of the isotope (/sup 125/I or /sup 131/I) and size of the labeled protein had no influence on the magnitude of delay. Whole-body radiation curves of animals that received (/sup 125/I)iodotyrosines, Na/sup 131/I, or /sup 131/I-polyvinylpyrrolidone exhibited no initial delays. These results do not support the earlier notion that delay is caused by a redistribution of the labeled protein in the body to radiometrically more favorable sites. However, they are compatible with the assumption that delayed passage of a protein dose through the extracellular matrix and/or retarded transfer of proteolytic products from extravascular catabolic sites to plasma may be responsible for the phenomenon.

  9. Lymphatic albumin clearance from psoriatic skin

    SciTech Connect

    Staberg, B.; Klemp, P.; Aasted, M.; Worm, A.M.; Lund, P.

    1983-12-01

    In nine patients with untreated psoriasis vulgaris, human serum albumin labelled with /sup 125/I or /sup 131/I was injected intradermally in symmetrically located involved and uninvolved skin. The activity of the depots was followed by external detection, and the arrival of labelled albumin in plasma was monitored. In involved psoriatic skin the local mean half-time (T1/2) for tracer disappearance was 20.8 +/- 8.2 (S.D.) hr and in clinically normal skin, 29.1 +/- 9.6 (S.D.) hr. The difference was significant (p less than 0.002). Accordingly, the tracer from involved skin reached higher plasma levels than the tracer from uninvolved skin. However, under slight lymphatic stasis the appearance rate of radiolabelled albumin in plasma from both tissues was minimal during 1 to 2 hours after the injection, indicating that a local direct transvascular drainage of plasma albumin from the interstitium of diseased and normal skin was negligible. We conclude that the previously demonstrated increased extravasation of plasma proteins in involved psoriatic skin is compensated by an increased lymphatic drainage of plasma proteins, and not by an increased local transvascular return.

  10. Interaction of sulpiride and serum albumin: Modeling from spectrofluorimetric data

    NASA Astrophysics Data System (ADS)

    Fragoso, Viviane Muniz da Silva; Silva, Dilson

    2015-12-01

    We have applied the fluorescence quenching modeling to study the process of interaction of sulpiride with human serum albumin (HSA) and bovine (BSA). Albumin is more abundant protein in blood and it emits fluorescence when excited by 260-295 nm. Sulpiride is an atypical antipsychotic used in the treatment of many psychiatric disorders. As sulpiride is fluorescent, we developed a mathematical model to analyzing the interaction of two fluorescent substances. This model was able to separate the albumin fluorescence from the quencher fluorescence. Results have shown that sulpiride quenches the fluorescence of both albumins by a static process, due to the complex formation drugalbumin. The association constants calculated for sulpiride-HSA was 2.20 (± 0.08) × 104 M-1 at 37° C, and 5.46 (± 0.20) × 104 M-1, 25 ° C, and the primary binding site to sulpiride in the albumin is located closer to the subdomain IB.

  11. Interaction of coffee compounds with serum albumins. Part II: Diterpenes.

    PubMed

    Guercia, Elena; Forzato, Cristina; Navarini, Luciano; Berti, Federico

    2016-05-15

    Cafestol and 16-O-methylcafestol are diterpenes present in coffee, but whilst cafestol is found in both Coffea canephora and Coffea arabica, 16-O-methylcafestol (16-OMC) was reported to be specific of only C. canephora. The interactions of such compounds, with serum albumins, have been studied. Three albumins have been considered, namely human serum albumin (HSA), fatty acid free HSA (ffHSA) and bovine serum albumin (BSA). The proteins interact with the diterpenes at the interface between Sudlow site I and the fatty acid binding site 6 in a very peculiar way, leading to a significant change in the secondary structure. The diterpenes do not displace reference binding drugs of site 2, but rather they enhance the affinity of the site for the drugs. They, therefore, may alter the pharmacokinetic profile of albumin - bound drugs. PMID:26776001

  12. Serum albumin: touchstone or totem?

    PubMed

    Margarson, M P; Soni, N

    1998-08-01

    A decrease in serum albumin concentrations is an almost inevitable finding in disease states, and is primarily mediated in the acute phase by alterations in vascular permeability and redistribution. This change is not disease specific but marked changes that persist are generally associated with a poorer prognosis. Critical appraisal of long-standing practices and the availability of alternative colloid solutions have led to a reduction in albumin replacement therapy, and a widespread tolerance of lower albumin concentrations in patients. The factors determining serum albumin concentrations, their measurement and the implications of hypoalbuminaemia are reviewed. The clinical value of serum albumin measurement is discussed. PMID:9797524

  13. Binding and hydrolysis of soman by human serum albumin.

    PubMed

    Li, Bin; Nachon, Florian; Froment, Marie-Thérèse; Verdier, Laurent; Debouzy, Jean-Claude; Brasme, Bernardo; Gillon, Emilie; Schopfer, Lawrence M; Lockridge, Oksana; Masson, Patrick

    2008-02-01

    Human plasma and fatty acid free human albumin were incubated with soman at pH 8.0 and 25 degrees C. Four methods were used to monitor the reaction of albumin with soman: progressive inhibition of the aryl acylamidase activity of albumin, the release of fluoride ion from soman, 31P NMR, and mass spectrometry. Inhibition (phosphonylation) was slow with a bimolecular rate constant of 15 +/- 3 M(-1) min (-1). MALDI-TOF and tandem mass spectrometry of the soman-albumin adduct showed that albumin was phosphonylated on tyrosine 411. No secondary dealkylation of the adduct (aging) occurred. Covalent docking simulations and 31P NMR experiments showed that albumin has no enantiomeric preference for the four stereoisomers of soman. Spontaneous reactivation at pH 8.0 and 25 degrees C, measured as regaining of aryl acylamidase activity and decrease of covalent adduct (pinacolyl methylphosphonylated albumin) by NMR, occurred at a rate of 0.0044 h (-1), indicating that the adduct is quite stable ( t1/2 = 6.5 days). At pH 7.4 and 22 degrees C, the covalent soman-albumin adduct, measured by MALDI-TOF mass spectrometry, was more stable ( t1/2 = 20 days). Though the concentration of albumin in plasma is very high (about 0.6 mM), its reactivity with soman (phosphonylation and phosphotriesterase activity) is too slow to play a major role in detoxification of the highly toxic organophosphorus compound soman. Increasing the bimolecular rate constant of albumin for organophosphates is a protein engineering challenge that could lead to a new class of bioscavengers to be used against poisoning by nerve agents. Soman-albumin adducts detected by mass spectrometry could be useful for the diagnosis of soman exposure. PMID:18163544

  14. Mechanism of increased clearance of glycated albumin by proximal tubule cells.

    PubMed

    Wagner, Mark C; Myslinski, Jered; Pratap, Shiv; Flores, Brittany; Rhodes, George; Campos-Bilderback, Silvia B; Sandoval, Ruben M; Kumar, Sudhanshu; Patel, Monika; Ashish; Molitoris, Bruce A

    2016-05-01

    Serum albumin is the most abundant plasma protein and has a long half-life due to neonatal Fc receptor (FcRn)-mediated transcytosis by many cell types, including proximal tubule cells of the kidney. Albumin also interacts with, and is modified by, many small and large molecules. Therefore, the focus of the present study was to address the impact of specific known biological albumin modifications on albumin-FcRn binding and cellular handling. Binding at pH 6.0 and 7.4 was performed since FcRn binds albumin strongly at acidic pH and releases it after transcytosis at physiological pH. Equilibrium dissociation constants were measured using microscale thermophoresis. Since studies have shown that glycated albumin is excreted in the urine at a higher rate than unmodified albumin, we studied glucose and methylgloxal modified albumins (21 days). All had reduced affinity to FcRn at pH 6.0, suggesting these albumins would not be returned to the circulation via the transcytotic pathway. To address why modified albumin has reduced affinity, we analyzed the structure of the modified albumins using small-angle X-ray scattering. This analysis showed significant structural changes occurring to albumin with glycation, particularly in the FcRn-binding region, which could explain the reduced affinity to FcRn. These results offer an explanation for enhanced proximal tubule-mediated sorting and clearance of abnormal albumins. PMID:26887834

  15. Comparison of Albumin, Hydroxyethyl Starch and Ringer Lactate Solution as Priming Fluid for Cardiopulmonary Bypass in Paediatric Cardiac Surgery

    PubMed Central

    Prajapati, Mrugesh; Solanki, Atul; Pandya, Himani

    2016-01-01

    Introduction In paediatric cardiac surgery, there is still not any information with regard to the best choice of priming fluids for Cardiopulmonary Bypass (CPB). Albumin, Hydroxyethyl Starch (HES) & ringer lactate are equally used, but each has its advantages & disadvantages. Albumin & HES had better fluid balance which affect outcome in paediatric cardiac surgery significantly. Aim To compare priming solution containing albumin, hydroxyethyl starch and ringer lactate during elective open-heart surgery in paediatrics aged up to 3 years. Materials and Methods All patients were managed by standardized institution protocol and were randomly distributed into three groups based on the priming solution which is used in the CPB Circuit and having 35 patients in each group. Group A: Receive albumin 10 ml/kg in priming solution, Group B: Receive Hydroxyethyl starch (HES130/0.4) 6% 20ml/kg in priming solution, Group C: Receive ringer lactate priming solution. Primary outcome variable included perioperative haemoglobin, total protein, colloid osmotic pressure, platelets, fluid balance, urine output, post-operative blood loss, blood products usage, renal & liver function, extubation time, ICU stay & outcome. Results Patients receiving albumin had higher perioperative platelet count, total protein level & colloid osmotic pressure, lesser post-operative blood loss & blood products requirement. Patients receiving HES had lower level of platelets postoperatively than ringer lactate group but not associated with increase blood loss. HES did not affect renal function & haemostasis in this dose. Patients receiving ringer lactate had positive fluid balance intraoperatively. All three groups have similar effect on renal & liver function, urine output, time to extubation, ICU stay & outcome. Conclusion We conclude that albumin is expensive but better prime as maintain haemostasis, colloid oncotic pressure & reduced blood product requirement. HES will not hamper haemostasis & renal

  16. Effect of altered eating pattern on serum fructosamine: total protein ratio and plasma glucose level.

    PubMed

    Ch'ng, S L; Cheah, S H; Husain, R; Duncan, M T

    1989-05-01

    The effect of alteration of eating pattern during Ramadan on body mass index (BMI), serum fructosamine: total protein ratio (F/TP), and glucose level in 18 healthy male Asiatic Moslems were studied. The results showed a significant decrease (p less than 0.025) in F/TP at the second week of Ramadan in 11 subjects who experienced continuous decrease in BMI throughout Ramadan. The remaining 7 subjects showed no significant changes in BMI and F/TP. No evidence of hypoglycaemia was observed in the subjects during the study. Serum fructosamine: total protein ratio in subjects with altered eating pattern preferably should be interpreted along with the change in body mass index. PMID:2774480

  17. Modular Total Synthesis of Protein Kinase C Activator (-)-Indolactam V.

    PubMed

    Haynes-Smith, Jeremy; Diaz, Italia; Billingsley, Kelvin L

    2016-05-01

    A concise, eight-step total synthesis of (-)-indolactam V, a nanomolar agonist of protein kinase C, is reported. The synthesis relies upon an efficient copper-catalyzed amino acid arylation to establish the indole C4-nitrogen bond. This cross-coupling method is applicable to a range of hydrophobic amino acids, providing a platform for further diversification of indolactam alkaloid scaffolds and studies on their potent biological activity. PMID:27074538

  18. Facile cell patterning on an albumin-coated surface.

    PubMed

    Yamazoe, Hironori; Uemura, Toshimasa; Tanabe, Toshizumi

    2008-08-19

    Fabrication of micropatterned surfaces to organize and control cell adhesion and proliferation is an indispensable technique for cell-based technologies. Although several successful strategies for creating cellular micropatterns on substrates have been demonstrated, a complex multistep process and requirements for special and expensive equipment or materials limit their prevalence as a general experimental tool. To circumvent these problems, we describe here a novel facile fabrication method for a micropatterned surface for cell patterning by utilizing the UV-induced conversion of the cell adhesive property of albumin, which is the most abundant protein in blood plasma. An albumin-coated surface was prepared by cross-linking albumin with ethylene glycol diglycidyl ether and subsequent casting of the cross-linked albumin solution on the cell culture dish. While cells did not attach to the albumin surface prepared in this way, UV exposure renders the surface cell-adhesive. Thus, surface micropatterning was achieved simply by exposing the albumin-coated surface to UV light through a mask with the desired pattern. Mouse fibroblast L929 cells were inoculated on the patterned albumin substrates, and cells attached and spread in a highly selective manner according to the UV-irradiated pattern. Although detailed investigation of the molecular-level mechanism concerning the change in cell adhesiveness of the albumin-coated surface is required, the present results would give a novel facile method for the fabrication of cell micropatterned surfaces. PMID:18627191

  19. Effects of glycation on meloxicam binding to human serum albumin

    NASA Astrophysics Data System (ADS)

    Trynda-Lemiesz, Lilianna; Wiglusz, Katarzyna

    2011-05-01

    The current study reports a binding of meloxicam a pharmacologically important new generation, non-steroidal anti-inflammatory drug to glycated form of the human serum albumin (HSA). The interaction of the meloxicam with nonglycated and glycated albumin has been studied at pH 7.4 in 0.05 M sodium phosphate buffer with 0.1 M NaCl, using fluorescence quenching technique and circular dichroism spectroscopy. Results of the present study have shown that the meloxicam could bind both forms of albumin glycated and nonglycated at a site, which was close to the tryptophan residues. Similarly, how for native albumin glycated form has had one high affinity site for the drug with association constants of the order of 10 5 M -1. The glycation process of the HSA significantly has affected the impact of the meloxicam on the binding of other ligands such as warfarin and bilirubin. The affinity of the glycated albumin for bilirubin as for native albumin has been reduced by meloxicam but observed effect was weaker by half (about 20%) compared with nonglycated albumin. In contrast to the native albumin meloxicam binding to glycated form of the protein only slightly affected the binding of warfarin. It seemed possible that the effects on warfarin binding might be entirely attributable to the Lys 199 modification which was in site I.

  20. Total protein quantitation using the bicinchoninic acid assay and gradient elution moving boundary electrophoresis.

    PubMed

    Kralj, Jason G; Munson, Matthew S; Ross, David

    2014-07-01

    We investigated the ability of gradient elution moving boundary electrophoresis (GEMBE) with capacitively coupled contactless conductivity detection (C(4) D) to assay total protein concentration using the bicinchoninic acid (BCA) reaction. We chose this format because GEMBE-C(4) D behaves as a concentration dependent detection system, unlike optical methods that also rely on pathlength (due to Beer's law). This system tolerates proteins well compared with other capillary electrophoretic methods, allowing the capillary to be reused without coatings or additional hydroxide wash steps. The typical reaction protocol was modified by reducing the pH slightly from 11.25 to 9.4, which enabled elimination of tartrate from the reagents. We estimated that copper (I) could be detected at approximately 3.0 μmol/L, which agrees with similar GEMBE and CZE systems utilizing C(4) D. Under conditions similar to the BCA "micro method" assay, we determined the LOD for three common proteins (insulin, BSA, and bovine gamma globulin) and found that they agree well with the existing spectroscopic detection methods. Further, we investigated how long reaction times impact the LOD and found that the conversion was proportional to log(time). This indicated that little sensitivity is gained by extending the reaction past 1 h. Hence, GEMBE provides an alternative platform for total protein assays while maintaining the excellent sensitivity of the optical-based methods. PMID:24648165

  1. Impact of albumin on drug delivery--new applications on the horizon.

    PubMed

    Elsadek, Bakheet; Kratz, Felix

    2012-01-10

    Over the past decades, albumin has emerged as a versatile carrier for therapeutic and diagnostic agents, primarily for diagnosing and treating diabetes, cancer, rheumatoid arthritis and infectious diseases. Market approved products include fatty acid derivatives of human insulin or the glucagon-like-1 peptide (Levemir(®) and Victoza(®)) for treating diabetes, the taxol albumin nanoparticle Abraxane(®) for treating metastatic breast cancer which is also under clinical investigation in further tumor indications, and (99m)Tc-aggregated albumin (Nanocoll(®) and Albures(®)) for diagnosing cancer and rheumatoid arthritis as well as for lymphoscintigraphy. In addition, an increasing number of albumin-based or albumin-binding drugs are in clinical trials such as antibody fusion proteins (MM-111) for treating HER2/neu positive breast cancer (phase I), a camelid albumin-binding nanobody anti-HSA-anti-TNF-α (ATN-103) in phase II studies for treating rheumatoid arthritis, an antidiabetic Exendin-4 analog bound to recombinant human albumin (phase I/II), a fluorescein-labeled albumin conjugate (AFL)-human serum albumin for visualizing the malignant borders of brain tumors for improved surgical resection, and finally an albumin-binding prodrug of doxorubicin (INNO-206) entering phase II studies against sarcoma and gastric cancer. In the preclinical setting, novel approaches include attaching peptides with high-affinity for albumin to antibody fragments, the exploitation of albumin-binding gadolinium contrast agents for magnetic resonance imaging, and physical or covalent attachment of antiviral, antibacterial, and anticancer drugs to albumin that are permanently or transiently attached to human serum albumin (HSA) or act as albumin-binding prodrugs. This review gives an overview of the expanding field of preclinical and clinical drug applications and developments that use albumin as a protein carrier to improve the pharmacokinetic profile of the drug or to target the drug

  2. A Novel Albumin Gene Mutation (R222I) in Familial Dysalbuminemic Hyperthyroxinemia

    PubMed Central

    Schoenmakers, Nadia; Moran, Carla; Campi, Irene; Agostini, Maura; Bacon, Olivia; Rajanayagam, Odelia; Schwabe, John; Bradbury, Sonia; Barrett, Timothy; Geoghegan, Frank; Druce, Maralyn; Beck-Peccoz, Paolo; O'Toole, Angela; Clark, Penelope; Bignell, Michelle; Lyons, Greta; Halsall, David; Gurnell, Mark

    2014-01-01

    Context: Familial dysalbuminemic hyperthyroxinemia, characterized by abnormal circulating albumin with increased T4 affinity, causes artefactual elevation of free T4 concentrations in euthyroid individuals. Objective: Four unrelated index cases with discordant thyroid function tests in different assay platforms were investigated. Design and Results: Laboratory biochemical assessment, radiolabeled T4 binding studies, and ALB sequencing were undertaken. 125I-T4 binding to both serum and albumin in affected individuals was markedly increased, comparable with known familial dysalbuminemic hyperthyroxinemia cases. Sequencing showed heterozygosity for a novel ALB mutation (arginine to isoleucine at codon 222, R222I) in all four cases and segregation of the genetic defect with abnormal biochemical phenotype in one family. Molecular modeling indicates that arginine 222 is located within a high-affinity T4 binding site in albumin, with substitution by isoleucine, which has a smaller side chain predicted to reduce steric hindrance, thereby facilitating T4 and rT3 binding. When tested in current immunoassays, serum free T4 values from R222I heterozygotes were more measurably abnormal in one-step vs two-step assay architectures. Total rT3 measurements were also abnormally elevated. Conclusions: A novel mutation (R222I) in the ALB gene mediates dominantly inherited dysalbuminemic hyperthyroxinemia. Susceptibility of current free T4 immunoassays to interference by this mutant albumin suggests likely future identification of individuals with this variant binding protein. PMID:24646103

  3. Relative rates of albumin equilibration in the skin interstitium and lymph during vasodilation

    SciTech Connect

    Powers, M.R.; Wallace, J.R.; Bell, D.R.

    1986-03-01

    The initial equilibration of /sup 125/I-labeled albumin between the vascular and extravascular compartments was studied in hindpaw skin of 6 anesthetized rabbits. Papavarine (200 ug/min) was infused into a small branch of the femoral artery of one limb with the contralateral limb as a control. There was a 1.2-fold increase in lymph flow (p < 0.01) with no significant change in the lymph-to-plasma total protein concentration ratio from prepopliteal lymphatics following papavarine. After reaching a constant, elevated lymph flow, tracer labeled albumin was infused to maintain the plasma activity constant for 3 hrs. The plasma volume in tissue samples was measured using /sup 131/I-labeled albumin injected 10 min before ending the experiment. Endogenous albumin was measured in plasma, lymph, and tissue samples using rocket electroimmunoassay. After 3 hrs of tracer infusion, lymph specific activity relative to plasma was significantly greater in the vasodilated hindlimb (0.30 +/- 0.07 vs 0.13 +/- 0.05; mean +/- SE; p < 0.01). Extravascular specific activity relative to plasma was greater in the vasodilated limb (0.13 +/- 0.02 vs 0.09 +/- 0.02; p < 0.05). Thus, vasodilation increased the rates at which lymph and tissue equilibrate with plasma. Also, the difference between lymph and tissue equilibration was greater in the vasodilated hindlimb.

  4. Coordinate secretion of mouse alphafetoprotein, mouse albumin and rat albumin by mouse hepatoma-rat hepatoma hybrid cells.

    PubMed

    Cassio, D; Hassoux, R; Dupiers, M; Uriel, J; Weiss, M C

    1980-09-01

    Mouse heptoma cells that secrete large amounts of alpha-fetoprotein (AFP) and albumin have been crossed with rat hepatoma cells that secret only albumin, and in relatively small amounts, to investigate the influence of each parental genome upon the expression of serum proteins. All of the ten independent hybrid clones examined produce mouse AFP and both mouse and rat albumin; none produces rat AFP. The absence of production of rat AFP by the hybrids suggests that different mechanisms are involved in the initiation and in the maintenance of expression of this function. The secretion of the three proteins by the hybrid cells is coordinate: Whatever the growth phase (exponential or stationary) and irrespective of the amounts produced over a wide range, the ratio secreted of mouse AFP to mouse albumin is near to one, and that of mouse albumin to rat albumin is near to five. In addition, even though the pattern of protein secretion during the growth cycle of hybrid cells is different from those of both parents, the products of both parental genomes conform to the new hybrid pattern. Finally, some hybrids secrete less of the proteins with increasing numbers of cell generations, yet all three continue to be secreted in coordinate fashion. Since the rates of secretion of serum proteins probably reflect their rates of synthesis, we conclude that coordinate secretion indicates coordinate synthesis, and may reflect coordinate transcription of the relevant genes. PMID:6158520

  5. Multiexcitation Fluorogenic Labeling of Surface, Intracellular, and Total Protein Pools in Living Cells.

    PubMed

    Naganbabu, Matharishwan; Perkins, Lydia A; Wang, Yi; Kurish, Jeffery; Schmidt, Brigitte F; Bruchez, Marcel P

    2016-06-15

    Malachite green (MG) is a fluorogenic dye that shows fluorescence enhancement upon binding to its engineered cognate protein, a fluorogen activating protein (FAP). Energy transfer donors such as cyanine and rhodamine dyes have been conjugated with MG to modify the spectral properties of the fluorescent complexes, where the donor dyes transfer energy through Förster resonance energy transfer to the MG complex resulting in binding-conditional fluorescence emission in the far-red region. In this article, we use a violet-excitable dye as a donor to sensitize the far-red emission of the MG-FAP complex. Two blue emitting fluorescent coumarin dyes were coupled to MG and evaluated for energy transfer to the MG-FAP complex via its secondary excitation band. 6,8-Difluoro-7-hydroxycoumarin-3-carboxylic acid (Pacific blue, PB) showed the most efficient energy transfer and maximum brightness in the far-red region upon violet (405 nm) excitation. These blue-red (BluR) tandem dyes are spectrally varied from other tandem dyes and are able to produce fluorescence images of the MG-FAP complex with a large Stokes shift (>250 nm). These dyes are cell-permeable and are used to label intracellular proteins. Used together with a cell-impermeable hexa-Cy3-MG (HCM) dye that labels extracellular proteins, we are able to visualize extracellular, intracellular, and total pools of cellular protein using one fluorogenic tag that combines with distinct dyes to effect different spectral characteristics. PMID:27159569

  6. A Platform for Combined DNA and Protein Microarrays Based on Total Internal Reflection Fluorescence

    PubMed Central

    Asanov, Alexander; Zepeda, Angélica; Vaca, Luis

    2012-01-01

    We have developed a novel microarray technology based on total internal reflection fluorescence (TIRF) in combination with DNA and protein bioassays immobilized at the TIRF surface. Unlike conventional microarrays that exhibit reduced signal-to-background ratio, require several stages of incubation, rinsing and stringency control, and measure only end-point results, our TIRF microarray technology provides several orders of magnitude better signal-to-background ratio, performs analysis rapidly in one step, and measures the entire course of association and dissociation kinetics between target DNA and protein molecules and the bioassays. In many practical cases detection of only DNA or protein markers alone does not provide the necessary accuracy for diagnosing a disease or detecting a pathogen. Here we describe TIRF microarrays that detect DNA and protein markers simultaneously, which reduces the probabilities of false responses. Supersensitive and multiplexed TIRF DNA and protein microarray technology may provide a platform for accurate diagnosis or enhanced research studies. Our TIRF microarray system can be mounted on upright or inverted microscopes or interfaced directly with CCD cameras equipped with a single objective, facilitating the development of portable devices. As proof-of-concept we applied TIRF microarrays for detecting molecular markers from Bacillus anthracis, the pathogen responsible for anthrax. PMID:22438738

  7. Isotopomer distributions in amino acids from a highly expressed protein as a proxy for those from total protein

    SciTech Connect

    Shaikh, Afshan; Shaikh, Afshan S.; Tang, Yinjie; Mukhopadhyay, Aindrila; Keasling, Jay D.

    2008-06-27

    {sup 13}C-based metabolic flux analysis provides valuable information about bacterial physiology. Though many biological processes rely on the synergistic functions of microbial communities, study of individual organisms in a mixed culture using existing flux analysis methods is difficult. Isotopomer-based flux analysis typically relies on hydrolyzed amino acids from a homogeneous biomass. Thus metabolic flux analysis of a given organism in a mixed culture requires its separation from the mixed culture. Swift and efficient cell separation is difficult and a major hurdle for isotopomer-based flux analysis of mixed cultures. Here we demonstrate the use of a single highly-expressed protein to analyze the isotopomer distribution of amino acids from one organism. Using the model organism E. coli expressing a plasmid-borne, his-tagged Green Fluorescent Protein (GFP), we show that induction of GFP does not affect E. coli growth kinetics or the isotopomer distribution in nine key metabolites. Further, the isotopomer labeling patterns of amino acids derived from purified GFP and total cell protein are indistinguishable, indicating that amino acids from a purified protein can be used to infer metabolic fluxes of targeted organisms in a mixed culture. This study provides the foundation to extend isotopomer-based flux analysis to study metabolism of individual strains in microbial communities.

  8. Vanillin restrains non-enzymatic glycation and aggregation of albumin by chemical chaperone like function.

    PubMed

    Awasthi, Saurabh; Saraswathi, N T

    2016-06-01

    Vanillin a major component of vanilla bean extract is commonly used a natural flavoring agent. Glycation is known to induce aggregation and fibrillation of globular proteins such as albumin, hemoglobin. Here we report the inhibitory potential of vanillin toward early and advanced glycation modification and amyloid like aggregation of albumin based on the determination of both early and advanced glycation and conformational changes in albumin using circular dichroism. Inhibition of aggregation and fibrillation of albumin was determined based on amyloid specific dyes i.e., Congo red and Thioflavin T and microscopic imaging. It was evident that vanillin restrains glycation of albumin and exhibits protective effect toward its native conformation. PMID:26893056

  9. Redox activity distinguishes solid-state electron transport from solution-based electron transfer in a natural and artificial protein: cytochrome C and hemin-doped human serum albumin.

    PubMed

    Amdursky, Nadav; Ferber, Doron; Pecht, Israel; Sheves, Mordechai; Cahen, David

    2013-10-28

    Integrating proteins in molecular electronic devices requires control over their solid-state electronic transport behavior. Unlike "traditional" electron transfer (ET) measurements of proteins that involve liquid environments and a redox cycle, no redox cofactor is needed for solid-state electron transport (ETp) across the protein. Here we show the fundamental difference between these two approaches by macroscopic area measurements, which allow measuring ETp temperature dependence down to cryogenic temperatures, via cytochrome C (Cyt C), an ET protein with a heme (Fe-porphyrin) prosthetic group as a redox centre. We compare the ETp to electrochemical ET measurements, and do so also for the protein without the Fe (with metal-free porphyrin) and without porphyrin. As removing the porphyrin irreversibly alters the protein's conformation, we repeat these measurements with human serum albumin (HSA), 'doped' (by non-covalent binding) with a single hemin equivalent, i.e., these natural and artificial proteins share a common prosthetic group. ETp via Cyt C and HSA-hemin are very similar in terms of current magnitude and temperature dependence, which suggests similar ETp mechanisms via these two systems, thermally activated hopping (with ~0.1 eV activation energy) >190 K and tunneling by superexchange <190 K. Also, ET rates to and from the Fe redox centres (Fe(2+) <=> Fe(3+) + e(-)), measured by electrochemistry of HSA-hemin are only 4 times lower than those for Cyt C. However, while removing the Fe redox centre from the porphyrin ring markedly affects the ET rate, it hardly changes the ETp currents through these proteins, while removing the macrocycle (from HSA, which retains its conformation) significantly reduces ETp efficiency. These results show that solid-state ETp across proteins does not require the presence of a redox cofactor, and that while for ET the Fe ion is the main electron mediator, for ETp the porphyrin ring has this function. PMID:24008341

  10. Novel Transgenic Mouse Model for Studying Human Serum Albumin as a Biomarker of Carcinogenic Exposure.

    PubMed

    Sheng, Jonathan; Wang, Yi; Turesky, Robert J; Kluetzman, Kerri; Zhang, Qing-Yu; Ding, Xinxin

    2016-05-16

    Albumin is a commonly used serum protein for studying human exposure to xenobiotic compounds, including therapeutics and environmental pollutants. Often, the reactivity of albumin with xenobiotic compounds is studied ex vivo with human albumin or plasma/serum samples. Some studies have characterized the reactivity of albumin with chemicals in rodent models; however, differences between the orthologous peptide sequences of human and rodent albumins can result in the formation of different types of chemical-protein adducts with different interaction sites or peptide sequences. Our goal is to generate a human albumin transgenic mouse model that can be used to establish human protein biomarkers of exposure to hazardous xenobiotics for human risk assessment via animal studies. We have developed a human albumin transgenic mouse model and characterized the genotype and phenotype of the transgenic mice. The presence of the human albumin gene in the genome of the model mouse was confirmed by genomic PCR analysis, whereas liver-specific expression of the transgenic human albumin mRNA was validated by RT-PCR analysis. Further immunoblot and mass spectrometry analyses indicated that the transgenic human albumin protein is a full-length, mature protein, which is less abundant than the endogenous mouse albumin that coexists in the serum of the transgenic mouse. The transgenic protein was able to form ex vivo adducts with a genotoxic metabolite of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, a procarcinogenic heterocyclic aromatic amine formed in cooked meat. This novel human albumin transgenic mouse model will facilitate the development and validation of albumin-carcinogen adducts as biomarkers of xenobiotic exposure and/or toxicity in humans. PMID:27028147

  11. Interaction of Citrinin with Human Serum Albumin

    PubMed Central

    Poór, Miklós; Lemli, Beáta; Bálint, Mónika; Hetényi, Csaba; Sali, Nikolett; Kőszegi, Tamás; Kunsági-Máté, Sándor

    2015-01-01

    Citrinin (CIT) is a mycotoxin produced by several Aspergillus, Penicillium, and Monascus species. CIT occurs worldwide in different foods and drinks and causes health problems for humans and animals. Human serum albumin (HSA) is the most abundant plasma protein in human circulation. Albumin forms stable complexes with many drugs and xenobiotics; therefore, HSA commonly plays important role in the pharmacokinetics or toxicokinetics of numerous compounds. However, the interaction of CIT with HSA is poorly characterized yet. In this study, the complex formation of CIT with HSA was investigated using fluorescence spectroscopy and ultrafiltration techniques. For the deeper understanding of the interaction, thermodynamic, and molecular modeling studies were performed as well. Our results suggest that CIT forms stable complex with HSA (logK ~ 5.3) and its primary binding site is located in subdomain IIA (Sudlow’s Site I). In vitro cell experiments also recommend that CIT-HSA interaction may have biological relevance. Finally, the complex formations of CIT with bovine, porcine, and rat serum albumin were investigated, in order to test the potential species differences of CIT-albumin interactions. PMID:26633504

  12. Total Protein Profile and Drug Resistance in Candida albicans Isolated from Clinical Samples

    PubMed Central

    Thawani, Vijay; Mehra, Arti

    2016-01-01

    This study was done to assess the antifungal susceptibility of clinical isolates of Candida albicans and to evaluate its total protein profile based on morphological difference on drug resistance. Hundred and twenty clinical isolates of C. albicans from various clinical specimens were tested for susceptibility against four antifungal agents, namely, fluconazole, itraconazole, amphotericin B, and ketoconazole. A significant increase of drug resistance in clinical isolates of C. albicans was observed. The study showed 50% fluconazole and itraconazole resistance at 32 μg mL−1 with a MIC50 and MIC90 values at 34 and 47 and 36 and 49 μg mL−1, respectively. All isolates were sensitive to amphotericin B and ketoconazole. The SDS-PAGE protein profile showed a prevalent band of ~52.5 kDa, indicating overexpression of gene in 72% strains with fluconazole resistance. Since the opportunistic infections of Candida spp. are increasing along with drug resistance, the total protein profile will help in understanding the evolutionary changes in drug resistance and also to characterize them. PMID:27478638

  13. Human serum albumin homeostasis: a new look at the roles of synthesis, catabolism, renal and gastrointestinal excretion, and the clinical value of serum albumin measurements.

    PubMed

    Levitt, David G; Levitt, Michael D

    2016-01-01

    Serum albumin concentration (CP) is a remarkably strong prognostic indicator of morbidity and mortality in both sick and seemingly healthy subjects. Surprisingly, the specifics of the pathophysiology underlying the relationship between CP and ill-health are poorly understood. This review provides a summary that is not previously available in the literature, concerning how synthesis, catabolism, and renal and gastrointestinal clearance of albumin interact to bring about albumin homeostasis, with a focus on the clinical factors that influence this homeostasis. In normal humans, the albumin turnover time of about 25 days reflects a liver albumin synthesis rate of about 10.5 g/day balanced by renal (≈6%), gastrointestinal (≈10%), and catabolic (≈84%) clearances. The acute development of hypoalbuminemia with sepsis or trauma results from increased albumin capillary permeability leading to redistribution of albumin from the vascular to interstitial space. The best understood mechanism of chronic hypoalbuminemia is the decreased albumin synthesis observed in liver disease. Decreased albumin production also accounts for hypoalbuminemia observed with a low-protein and normal caloric diet. However, a calorie- and protein-deficient diet does not reduce albumin synthesis and is not associated with hypoalbuminemia, and CP is not a useful marker of malnutrition. In most disease states other than liver disease, albumin synthesis is normal or increased, and hypoalbuminemia reflects an enhanced rate of albumin turnover resulting either from an increased rate of catabolism (a poorly understood phenomenon) or enhanced loss of albumin into the urine (nephrosis) or intestine (protein-losing enteropathy). The latter may occur with subtle intestinal pathology and hence may be more prevalent than commonly appreciated. Clinically, reduced CP appears to be a result rather than a cause of ill-health, and therapy designed to increase CP has limited benefit. The ubiquitous occurrence of

  14. Human serum albumin homeostasis: a new look at the roles of synthesis, catabolism, renal and gastrointestinal excretion, and the clinical value of serum albumin measurements

    PubMed Central

    Levitt, David G; Levitt, Michael D

    2016-01-01

    Serum albumin concentration (CP) is a remarkably strong prognostic indicator of morbidity and mortality in both sick and seemingly healthy subjects. Surprisingly, the specifics of the pathophysiology underlying the relationship between CP and ill-health are poorly understood. This review provides a summary that is not previously available in the literature, concerning how synthesis, catabolism, and renal and gastrointestinal clearance of albumin interact to bring about albumin homeostasis, with a focus on the clinical factors that influence this homeostasis. In normal humans, the albumin turnover time of about 25 days reflects a liver albumin synthesis rate of about 10.5 g/day balanced by renal (≈6%), gastrointestinal (≈10%), and catabolic (≈84%) clearances. The acute development of hypoalbuminemia with sepsis or trauma results from increased albumin capillary permeability leading to redistribution of albumin from the vascular to interstitial space. The best understood mechanism of chronic hypoalbuminemia is the decreased albumin synthesis observed in liver disease. Decreased albumin production also accounts for hypoalbuminemia observed with a low-protein and normal caloric diet. However, a calorie- and protein-deficient diet does not reduce albumin synthesis and is not associated with hypoalbuminemia, and CP is not a useful marker of malnutrition. In most disease states other than liver disease, albumin synthesis is normal or increased, and hypoalbuminemia reflects an enhanced rate of albumin turnover resulting either from an increased rate of catabolism (a poorly understood phenomenon) or enhanced loss of albumin into the urine (nephrosis) or intestine (protein-losing enteropathy). The latter may occur with subtle intestinal pathology and hence may be more prevalent than commonly appreciated. Clinically, reduced CP appears to be a result rather than a cause of ill-health, and therapy designed to increase CP has limited benefit. The ubiquitous occurrence of

  15. A high-capacity hydrophobic adsorbent for human serum albumin.

    PubMed

    Belew, M; Peterson, E A; Porath, J

    1985-12-01

    A simple method, based on salting out hydrophobic interaction chromatography, for the efficient removal of trace amounts of serum albumin from partially purified protein preparations is described. The method is also successfully applied for the purification of albumin from Cohn fraction IV, a by-product obtained from the commercial fractionation of human serum proteins by the ethanol precipitation procedure. About 70% of the adsorbed albumin can be eluted by buffer of low ionic strength and can thus be lyophilized directly, if required. The adsorbent can be used for several cycles of adsorption and desorption without affecting its selectivity or capacity. Its adsorption properties and capacity for serum albumin are compared with those of the commercially available adsorbent Blue Sepharose CL-6B. PMID:3879424

  16. Molecular interactions between albumin and proximal tubular cells.

    PubMed

    Brunskill, N J

    1998-01-01

    In glomerular diseases the filtration of excess proteins into the proximal tubule, together with their subsequent reabsorption may represent an important pathological mechanism underlying progressive renal scarring. The most prominent protein in glomerular filtrate, albumin, is reabsorbed by receptor-mediated endocytosis by proximal tubular cells. It binds both to scavenger-type receptors and to megalin in the proximal tubule. Some of these receptors appear to be shared with other cell types, particularly endothelial cells. The endocytic uptake of albumin is subjected to complex hormonal and enzymatic regulation. In addition to being reabsorbed in the proximal tubule, albumin may act as a signalling molecule in these cells, and may induce the expression of numerous pro-inflammatory genes. Modulation of the interaction of albumin with proximal tubular cells may eventually prove to be of therapeutic importance in the treatment of renal diseases. PMID:9807019

  17. Total RNA and protein content, Cyclin B1 expression and developmental competence of prepubertal goat oocytes.

    PubMed

    Anguita, Begoña; Paramio, Maria-Teresa; Jiménez-Macedo, Ana R; Morató, Roser; Mogas, Teresa; Izquierdo, Dolors

    2008-01-30

    The aim of this study was to examine the relationship between the developmental competence of oocytes and their total RNA and protein contents, and the level of Cyclin B1 transcription. Ovaries from prepubertal goats were collected from a slaughterhouse. Oocytes were recovered by slicing and those with two or more layers of cumulus cells and homogenous cytoplasm were matured in vitro (20-25 oocytes per drop) for 27 h. Both before and after IVM, samples of oocytes were denuded and categorised into four group treatments by diameter (<110 microm, 110-125 microm, 125-135 microm; >135 microm), separated into sub-groups of 10 oocytes per treatment-replicate and stored in liquid nitrogen until total RNA content analysis by spectophotometry, total protein content analysis by a colorimetric assay and Cyclin B1 transcription analysis by RT-PCR. For the study of developmental competence, the rest of the matured oocytes were fertilised in vitro in groups of 20-25 for 24 h. Presumptive zygotes were denuded, sorted into the four categories of diameter noted above, and placed into culture drops in groups of 18-25 for in vitro culture. Cleavage rate was evaluated at 48 hpi and embryo development at 8 d post-insemination. There were four replicates of each treatment for each assay or evaluation point of the experiment. There were no significant differences between the size categories of oocytes at collection in total RNA content, total protein content and Cyclin B1 mRNA. There were significant differences (P<0.05) in the expression of Cyclin B1 before IVM with oocytes in the >135 mm diameter category having the highest value for this variant. There were no significant differences in these characteristics between the categories of oocyte diameter after IVM except in respect of total RNA content, which was lower for the largest size of oocytes (>135 microm; mean+/-S.D.=12.3+/-1.84 ng/oocyte) than the other three size groups (19.2+/-1.38-22.1+/-4.44 ng/oocyte; P<0.05). Significant

  18. Application of Near Infrared Reflectance Spectroscopy on Determination of Moisture, Total oil and Protein Contents of In-shell Peanuts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Moisture, total oil and protein content of peanuts are important factors in peanut grading. A method that could rapidly and nondestructively measure these parameters for in-shell peanuts would be extremely useful. NIR reflectance spectroscopy was used to analyze the moisture, total oil and protein ...

  19. Use of liposomal amplifiers in total internal reflection fluorescence fiber-optic biosensors for protein detection.

    PubMed

    Chang, Ying-Feng; Fu, Chen; Chen, Yi-Ting; Fang-Ju Jou, Amily; Chen, Chii-Chang; Chou, Chien; Annie Ho, Ja-An

    2016-03-15

    Evanescent-wave excited fluorescence technology has been demonstrated to enhance sensitivity and reduce matrix effects, making it suitable for biosensor development. In this study, we developed a liposome-based, total internal reflection fluorescence, fiber-optic biosensor (TIRF-FOB) for protein detection, which integrates a liposomal amplifier and sandwich immunoassay format with TIRF-FOB. In addition, the antibody-tagged and fluorophore-entrapped liposomes for heterogeneous detection of target molecules were designed and synthesized. This biosensor successfully detected the target protein (model analyzed here is IgG) with a limit of detection (LOD) of 2.0 attomoles for the target protein (equivalent to 2.0 pg/mL of protein presented in 150 μL of sample solution). The features of this ultra-sensitive liposomal TIRF-FOB are (i) fluorescence is excited via evanescent waves and amplified via liposomes; (ii) the use of two polyclonal antibodies in the sandwich assay format increases the specificity and lowers the cost of our assay. Based on the exceptional detection sensitivity and cost-effectiveness, we believe that the proposed biosensor has great potential as a practical, clinical diagnostic tool in the near future. PMID:26595485

  20. The nutrient composition of European ready meals: protein, fat, total carbohydrates and energy.

    PubMed

    Kanzler, Sonja; Manschein, Martin; Lammer, Guido; Wagner, Karl-Heinz

    2015-04-01

    Despite the increasing social importance of ready meals, only few studies have been conducted on their nutrient composition. Therefore, 32 chilled, frozen and heat-treated ready meals (only main dishes) from the continental European market were analysed for protein, fat, total carbohydrate and energy. Half of the meals were nutritionally imbalanced by providing elevated fat (>30% of energy) and low carbohydrate levels (<50% of energy). Protein was generally above recommendations and ranged from 8.0 to 47.2g per serving. The inter-package variation was high, reaching 19.04 ± 2.90 g/package for fat. After proposing understandable guidelines to improve nutritional quality for the food industry, seven "nutritionally optimised" ready meals were created at the European level and analysed, however success was limited. If product labelling is to be useful for consumers, our results also indicate a need for better quality control to reduce the differences between content and labelling. PMID:25442542

  1. Les protéines totales et leurs fractions dans le sérum et dans les sécrétions endométriales chez la vache atteinte d'infertilité sine materia

    PubMed Central

    Lamothe, P.; Guay, P.; Ibrahim, M.; Tremblay, A.

    1972-01-01

    Total proteins, albumine and globulins of serum and uterine secretions were evaluated in two groups of 15 normal and 15 repeat breeder cows. Cyclic significant variations of all studied parameters were observed in uterine secretions of normal cows although only total proteins showed the same pattern in repeat breeder cows where individual variations were noted to be very important. Concentrations of total proteins, albumin (P<0.05) and β globulins (P<0.01) were different between the two groups during either the estrous or the postestrous period. Concentration of proteins in uterine fluid was higher in normal breeder cows during postestrus and diestrus. PMID:4259937

  2. Quantitative surface studies of protein adsorption by infrared spectroscopy. II. Quantification of adsorbed and bulk proteins

    SciTech Connect

    Fink, D.J.; Hutson, T.B.; Chittur, K.K.; Gendreau, R.M.

    1987-08-15

    Attenuated total reflectance Fourier transform infrared spectra of surface-adsorbed proteins are correlated with concentration measurements determined by /sup 125/I-labeled proteins. This paper demonstrates that linear correlations between the intensity of the major bands of proteins and the quantity of proteins can be obtained for human albumin and immunoglobulin G up to surface concentrations of approximately 0.25 microgram/cm2. A poorer correlation was observed for human fibrinogen. A linear correlation was also observed between the concentration in the bulk solution and the major bands of albumin up to a concentration of 60 mg/ml.

  3. The Association between Total Protein and Vegetable Protein Intake and Low Muscle Mass among the Community-Dwelling Elderly Population in Northern Taiwan.

    PubMed

    Huang, Ru-Yi; Yang, Kuen-Cheh; Chang, Hao-Hsiang; Lee, Long-Teng; Lu, Chia-Wen; Huang, Kuo-Chin

    2016-01-01

    Sarcopenia, highly linked with fall, frailty, and disease burden, is an emerging problem in aging society. Higher protein intake has been suggested to maintain nitrogen balance. Our objective was to investigate whether pre-sarcopenia status was associated with lower protein intake. A total of 327 community-dwelling elderly people were recruited for a cross-sectional study. We adopted the multivariate nutrient density model to identify associations between low muscle mass and dietary protein intake. The general linear regression models were applied to estimate skeletal muscle mass index across the quartiles of total protein and vegetable protein density. Participants with diets in the lowest quartile of total protein density (<13.2%) were at a higher risk for low muscle mass (odds ratio (OR) 3.03, 95% confidence interval (CI) 1.37-6.72) than those with diets in the highest quartile (≥17.2%). Similarly, participants with diets in the lowest quartile of vegetable protein density (<5.8%) were at a higher risk for low muscle mass (OR 2.34, 95% CI 1.14-4.83) than those with diets in the highest quartile (≥9.4%). Furthermore, the estimated skeletal muscle mass index increased significantly across the quartiles of total protein density (p = 0.023) and vegetable protein density (p = 0.025). Increasing daily intakes of total protein and vegetable protein densities appears to confer protection against pre-sarcopenia status. PMID:27322317

  4. The Association between Total Protein and Vegetable Protein Intake and Low Muscle Mass among the Community-Dwelling Elderly Population in Northern Taiwan

    PubMed Central

    Huang, Ru-Yi; Yang, Kuen-Cheh; Chang, Hao-Hsiang; Lee, Long-Teng; Lu, Chia-Wen; Huang, Kuo-Chin

    2016-01-01

    Sarcopenia, highly linked with fall, frailty, and disease burden, is an emerging problem in aging society. Higher protein intake has been suggested to maintain nitrogen balance. Our objective was to investigate whether pre-sarcopenia status was associated with lower protein intake. A total of 327 community-dwelling elderly people were recruited for a cross-sectional study. We adopted the multivariate nutrient density model to identify associations between low muscle mass and dietary protein intake. The general linear regression models were applied to estimate skeletal muscle mass index across the quartiles of total protein and vegetable protein density. Participants with diets in the lowest quartile of total protein density (<13.2%) were at a higher risk for low muscle mass (odds ratio (OR) 3.03, 95% confidence interval (CI) 1.37–6.72) than those with diets in the highest quartile (≥17.2%). Similarly, participants with diets in the lowest quartile of vegetable protein density (<5.8%) were at a higher risk for low muscle mass (OR 2.34, 95% CI 1.14–4.83) than those with diets in the highest quartile (≥9.4%). Furthermore, the estimated skeletal muscle mass index increased significantly across the quartiles of total protein density (p = 0.023) and vegetable protein density (p = 0.025). Increasing daily intakes of total protein and vegetable protein densities appears to confer protection against pre-sarcopenia status. PMID:27322317

  5. Aging-associated oxidized albumin promotes cellular senescence and endothelial damage

    PubMed Central

    Luna, Carlos; Alique, Matilde; Navalmoral, Estefanía; Noci, Maria-Victoria; Bohorquez-Magro, Lourdes; Carracedo, Julia; Ramírez, Rafael

    2016-01-01

    Increased levels of oxidized proteins with aging have been considered a cardiovascular risk factor. However, it is unclear whether oxidized albumin, which is the most abundant serum protein, induces endothelial damage. The results of this study indicated that with aging processes, the levels of oxidized proteins as well as endothelial microparticles release increased, a novel marker of endothelial damage. Among these, oxidized albumin seems to play a principal role. Through in vitro studies, endothelial cells cultured with oxidized albumin exhibited an increment of endothelial damage markers such as adhesion molecules and apoptosis levels. In addition, albumin oxidation increased the amount of endothelial microparticles that were released. Moreover, endothelial cells with increased oxidative stress undergo senescence. In addition, endothelial cells cultured with oxidized albumin shown a reduction in endothelial cell migration measured by wound healing. As a result, we provide the first evidence that oxidized albumin induces endothelial injury which then contributes to the increase of cardiovascular disease in the elderly subjects. PMID:27042026

  6. Hydrophobic conjugated microporous polymers for sorption of human serum albumin

    NASA Astrophysics Data System (ADS)

    Zheng, Chunli; Du, Miaomiao; Feng, Shanshan; Sun, Hanxue; Li, An; He, Chi; Zhang, TianCheng; Wang, Qiaorui; Wei, Wei

    2016-02-01

    This paper investigated the sorption of human serum albumin (HSA) from water by three kinds of conjugated microporous polymers (CMPs) with surface hydrophobicity and intrinsic porosity. It was found that the three CMPs captured HSA with fast sorption kinetics and good working capacity. Equilibrium was obtained at 80 min for all the tests, and the maximum sorption quantity (qm) ranged from 0.07 to 0.14 mg/mg. With the increase in the particle external surface area of the CMPs, a greater extent of HSA sorption was achieved. Moreover, promoting the dispersion of CMPs in HSA aqueous solution was also beneficial to the extraction. Attenuated Total Reflection Fourier Transform Infrared spectroscopy verified the interactions between the CMPs and the Nsbnd H, Cdbnd O, and Csbnd N groups of HSA. This paper might provide fundamental guidance for the practical application of CMPs to proteins separation and recovery.

  7. Transport of nitrated albumin across continuous vascular endothelium

    PubMed Central

    Predescu, Dan; Predescu, Sanda; Malik, Asrar B.

    2002-01-01

    Because modification of plasma albumin on tyrosine residues generates nitrated albumin (NOA) that may function as a mechanism of nitrogen monoxide clearance from microcirculation, we investigated biochemicaly and morphologically the cell surface binding and the transendothelial transport of NOA. An electron microscopic study was carried out with mouse lungs and hearts perfused in situ with NOA and NOA-Au complexes. The results indicate that NOA-Au can bind to the endothelial cell surface, and its binding can be blocked by albumin plus nitrotyrosine (NO-tyrosine) or abolished by excess NOA. We detected NOA-Au into perivascular spaces as early as 30 sec after the beginning of its perfusion. NOA, unlike native albumin, leaves the vascular lumina via both endothelial caveolae and open junctions. By cross-linking and ligand blotting analysis, we showed that NOA interacted with the same albumin binding proteins of 16–18, 30–32, 60, and 74 kDa as native albumin. ELISA performed on tissue homogenates obtained from the same specimens showed that NOA transport was 2- to 4-fold greater than native albumin. The augmented transendothelial transport of NOA reflects its transcytosis as well as its exit from the microcirculation via open junctions. The increased transport of NOA may serve as an important mechanism that protects a vascular bed against the damaging effects of nitrogen monoxide and peroxynitrite. PMID:12370442

  8. Proteolytically-induced changes of secondary structural protein conformation of bovine serum albumin monitored by Fourier transform infrared (FT-IR) and UV-circular dichroism spectroscopy

    NASA Astrophysics Data System (ADS)

    Güler, Günnur; Vorob'ev, Mikhail M.; Vogel, Vitali; Mäntele, Werner

    2016-05-01

    Enzymatically-induced degradation of bovine serum albumin (BSA) by serine proteases (trypsin and α-chymotrypsin) in various concentrations was monitored by means of Fourier transform infrared (FT-IR) and ultraviolet circular dichroism (UV-CD) spectroscopy. In this study, the applicability of both spectroscopies to monitor the proteolysis process in real time has been proven, by tracking the spectral changes together with secondary structure analysis of BSA as proteolysis proceeds. On the basis of the FTIR spectra and the changes in the amide I band region, we suggest the progression of proteolysis process via conversion of α-helices (1654 cm- 1) into unordered structures and an increase in the concentration of free carboxylates (absorption of 1593 and 1402 cm- 1). For the first time, the correlation between the degree of hydrolysis and the concentration of carboxylic groups measured by FTIR spectroscopy was revealed as well. The far UV-CD spectra together with their secondary structure analysis suggest that the α-helical content decreases concomitant with an increase in the unordered structure. Both spectroscopic techniques also demonstrate that there are similar but less spectral changes of BSA for the trypsin attack than for α-chymotrypsin although the substrate/enzyme ratio is taken the same.

  9. KINETIC STUDIES OF DRUG-PROTEIN INTERACTIONS BY USING PEAK PROFILING AND HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY: EXAMINATION OF MULTI-SITE INTERACTIONS OF DRUGS WITH HUMAN SERUM ALBUMIN COLUMNS

    PubMed Central

    Tong, Zenghan; Schiel, John E.; Papastavros, Efthimia; Ohnmacht, Corey M.; Smith, Quentin R.; Hage, David S.

    2010-01-01

    Carbamazepine and imipramine are drugs that have significant binding to human serum albumin (HSA), the most abundant serum protein in blood and a common transport protein for many drugs in the body. Information on the kinetics of these drug interactions with HSA would be valuable in understanding the pharmacokinetic behavior of these drugs and could provide data that might lead to the creation of improved assays for these analytes in biological samples. In this report, an approach based on peak profiling was used with high-performance affinity chromatography to measure the dissociation rate constants for carbamazepine and imipramine with HSA. This approach compared the elution profiles for each drug and a non-retained species on an HSA column and control column over a board range of flow rates. Various approaches for the corrections of non-specific binding between these drugs and the support were considered and compared in this process. Dissociation rate constants of 1.7 (± 0.2) s-1 and 0.67 (± 0.04) s-1 at pH 7.4 and 37 °C were estimated by this approach for HSA in its interactions with carbamazepine and imipramine, respectively. These results gave good agreement with rate constants that have determined by other methods or for similar solute interactions with HSA. The approach described in this report for kinetic studies is not limited to these particular drugs or HSA but can also be extended to other drugs and proteins. PMID:21067755

  10. The role of albumin in nutritional support.

    PubMed

    Mobarhan, S

    1988-12-01

    Hypoalbuminemia is considered one of the hallmarks of protein-calorie malnutrition and chronic liver disease. Recently, serum albumin has also been proposed as a critical predictor of the response to nutritional support and tolerance to enteral feeding in critically ill patients. Albumin is essential for maintenance of plasma colloidal osmotic pressure, prevention of edema, and transport of certain drugs and nutrients. Experimental studies have shown that rapid plasma expansion and reduced plasma protein concentration and osmotic pressure induce a net secretion of sodium and water into the small intestinal lumen. However, the effects of chronic hypoalbuminemia per se on intestinal absorption, independent of malnutrition, have not been fully studied. It is documented that both chronic illness and malnutrition may profoundly affect intestinal anatomical structure and function, inducing some degree of malabsorption. In the last few years, some have advocated albumin infusion to improve clinical response to patients with hypoalbuminemia receiving parenteral nutritional support or to reduce intestinal intolerance and diarrhea in patients receiving enteral tube feeding. A review of the literature shows that both clinical and experimental data to support these suggestions are scarce and further investigations are needed. Hypoalbuminemia is one of many parameters of malnutrition, and it is unlikely that correction of a single parameter for a short time would lead to major clinical benefits. PMID:3147998

  11. Renal Type A Intercalated Cells Contain Albumin in Organelles with Aldosterone-Regulated Abundance

    PubMed Central

    Jensen, Thomas Buus; Cheema, Muhammad Umar; Szymiczek, Agata; Damkier, Helle Hasager; Praetorius, Jeppe

    2015-01-01

    Albumin has been identified in preparations of renal distal tubules and collecting ducts by mass spectrometry. This study aimed to establish whether albumin was a contaminant in those studies or actually present in the tubular cells, and if so, identify the albumin containing cells and commence exploration of the origin of the intracellular albumin. In addition to the expected proximal tubular albumin immunoreactivity, albumin was localized to mouse renal type-A intercalated cells and cells in the interstitium by three anti-albumin antibodies. Albumin did not colocalize with markers for early endosomes (EEA1), late endosomes/lysosomes (cathepsin D) or recycling endosomes (Rab11). Immuno-gold electron microscopy confirmed the presence of albumin-containing large spherical membrane associated bodies in the basal parts of intercalated cells. Message for albumin was detected in mouse renal cortex as well as in a wide variety of other tissues by RT-PCR, but was absent from isolated connecting tubules and cortical collecting ducts. Wild type I MDCK cells showed robust uptake of fluorescein-albumin from the basolateral side but not from the apical side when grown on permeable support. Only a subset of cells with low peanut agglutinin binding took up albumin. Albumin-aldosterone conjugates were also internalized from the basolateral side by MDCK cells. Aldosterone administration for 24 and 48 hours decreased albumin abundance in connecting tubules and cortical collecting ducts from mouse kidneys. We suggest that albumin is produced within the renal interstitium and taken up from the basolateral side by type-A intercalated cells by clathrin and dynamin independent pathways and speculate that the protein might act as a carrier of less water-soluble substances across the renal interstitium from the capillaries to the tubular cells. PMID:25874770

  12. Influence of saline infusion on blood-tissue albumin transport.

    PubMed

    Renkin, E M; Rew, K; Wong, M; O'Loughlin, D; Sibley, L

    1989-08-01

    Anesthetized rats were infused with lactated Ringer solution (LR) at constant rate for 30 or 60 min; delivered volume loads ranged from 0.03 to 0.08 ml/g body wt. Controls were given only a sustaining infusion of saline at 0.002 ml.g-1.h-1. Only 7-14% of the LR remained in the plasma at the end of the infusion; 76-88% entered the interstitial compartment, and 7-17% was excreted. The amount of plasma protein lost from the circulation with the extravasated fluid was studied simultaneously by two methods: 1) material balance in the whole animal and 2) changes in 131I-labeled albumin uptake (VA) and water content (VW) in individual tissues. The extravasation of 0.03-0.06 ml fluid/g body wt (75-160% initial plasma volume) did not significantly increase plasma protein extravasation in the whole rat. Nearly all of the sampled tissues of LR-infused rats had higher VW than controls. Tissue VA tended to increase with VW, but the regression slopes (delta VA/delta VW), a measure of the tracer albumin concentration of capillary filtrate relative to plasma, were low; skin, 0.006; paw, 0.018; skeletal muscles, 0.007; heart, 0.057; jejunum, 0.095; ileum, 0.045; cecum, 0.026; and colon, 0.027. These ratios are consistent with the very small loss of total plasma protein observed and attest to high solvent-drag reflection coefficients (sigma approximately equal to 1 - delta VA/delta VW): greater than 0.98 in capillaries of skeletal muscles, skin, and paw and 0.91-0.97 in heart and intestine. PMID:2764135

  13. Albumin contributes to kidney disease progression in Alport syndrome.

    PubMed

    Jarad, George; Knutsen, Russell H; Mecham, Robert P; Miner, Jeffrey H

    2016-07-01

    Alport syndrome is a familial kidney disease caused by defects in the collagen type IV network of the glomerular basement membrane. Lack of collagen-α3α4α5(IV) changes the glomerular basement membrane morphologically and functionally, rendering it leaky to albumin and other plasma proteins. Filtered albumin has been suggested to be a cause of the glomerular and tubular injuries observed at advanced stages of Alport syndrome. To directly investigate the role that albumin plays in the progression of disease in Alport syndrome, we generated albumin knockout (Alb(-/-)) mice to use as a tool for removing albuminuria as a component of kidney disease. Mice lacking albumin were healthy and indistinguishable from control littermates, although they developed hypertriglyceridemia. Dyslipidemia was observed in Alb(+/-) mice, which displayed half the normal plasma albumin concentration. Alb mutant mice were bred to collagen-α3(IV) knockout (Col4a3(-/-)) mice, which are a model for human Alport syndrome. Lack of circulating and filtered albumin in Col4a3(-/-);Alb(-/-) mice resulted in dramatically improved kidney disease outcomes, as these mice lived 64% longer than did Col4a3(-/-);Alb(+/+) and Col4a3(-/-);Alb(+/-) mice, despite similar blood pressures and serum triglyceride levels. Further investigations showed that the absence of albumin correlated with reduced transforming growth factor-β1 signaling as well as reduced tubulointerstitial, glomerular, and podocyte pathology. We conclude that filtered albumin is injurious to kidney cells in Alport syndrome and perhaps in other proteinuric kidney diseases, including diabetic nephropathy. PMID:27147675

  14. Importance of albumin binding in the assay for carnitine palmitoyltransferase.

    PubMed Central

    McCormick, K; Notar-Francesco, V J

    1983-01-01

    Alterations in the long-chain acyl-CoA binding to albumin in the carnitine palmitoyltransferase (CPT) assay appreciably affect the reaction at commonly used substrate concentrations. Since in the CPT assay the latter are typically well below saturation or Vmax. values, the measured enzyme activity depends on both the absolute quantity of albumin in the CPT assay and any biochemical modification of its binding. The present study verifies the striking dependence of the K0.5 for palmitoyl-CoA on albumin and the misleading 'activation' of the enzyme by compounds that also avidly bind to albumin. In assessing the intracellular physiological relevance of any modifier of CPT, the effects of protein binding in the assay assume particular importance. Indeed, any compound that alters CPT activity may do so, not directly, but as an assay artifact changing the free or unbound substrate concentrations. PMID:6661210

  15. [THE PHYSICAL CHEMICAL, BIOLOGICAL BASICS OF CELLS ABSORPTION OF UNESTERIFIED FATTY ACIDS; ALBUMIN, CAVEOLIN, CLATHRIN AND LIPID-BINDING PROTEINS OF CYTOPLASM (THE LECTURE)].

    PubMed

    Titov, V N; Shoibonov, B B

    2016-03-01

    From aposition of phylogenetic theory of general pathology, obesity and metabolic syndrome are pathology of fatty cells. However, the first is a pathology of phylogenetically early visceral fatty cells of omentum. They supply with substratum of energy realization of biologic function of trophology, homeostasis, endoecology and adaptation. The visceral fatty cells of omentum have no receptors to insulin and synthesize adaptively insulin and they are not characterized by biologic reaction of proliferation. The obesity is a pathology of late in phylogenesis subcutaneous adpocytes. They are insulin-dependent and supply with substratum of energy realization of one biologic function of locomotion--movement at the expense of constriction of cross-striated miocytes. The adipocytes in terms of adaptation synthesize humoral mediator adponectin and actively implement biologic function of proliferation. Under both aphysiologic conditions increases passive by gradient of concentration, absorption by cells albumin-unbound free fatty acids in unionized form in micellae's composition. The passive aphysiologic absorption of free fatty acids by cells which under intracellular compartmentalization don't oxidize mitochondria results in synthesis, accumulation of triglycerides in cytoplasm of cells which don't implement it physiologically. The aphysiologic absorption of free fatty acids by cells, their etherification in triglyceride, in particular, in phylogenetically late β-cells of islets and either late cardiomyocytes which fatty acids don't synthesize de novo results in development of aphysiologic processes and disorder of function. From position of biology, these cells in vivo are subjected to loss similar to apoptosis. The formation of corpuscles of apoptosis compromise biologic function of endoecology activating biologic reaction of inflammation. PMID:27506107

  16. Label-Free Determination of Protein Binding in Aqueous Solution using Overlayer Enhanced Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (OE-ATR-FTIR)

    NASA Astrophysics Data System (ADS)

    Ruthenburg, Travis; Aweda, Tolulope; Park, Simon; Meares, Claude; Land, Donald

    2009-03-01

    Protein binding/affinity studies are often performed using Surface Plasmon Resonance techniques that don't produce much spectral information. Measurement of protein binding affinity using FTIR is traditionally performed using high protein concentration or deuterated solvent. By immobilizing a protein near the surface of a gold-coated germanium internal reflection element interactions can be measured between an immobilized protein and free proteins or small molecules in aqueous solution. By monitoring the on and off rates of these interactions, the dissociation constant for the system can be determined. The dissociation constant for the molecule Yttrium-DOTA binding to the antibody 2D12.5 system was determined to be 100nM. Results will also be presented from our measurements of Bovine Serum Albumin (BSA) binding to anti-BSA.

  17. Glycated serum albumin: a potential disease marker and an intermediate index of diabetes control.

    PubMed

    Raghav, Alok; Ahmad, Jamal

    2014-01-01

    Glycation is a non-enzymatic spontaneous process in proteins which has remarkable impact on its physical and functional aspect. This alteration with addition of carbohydrate residue to human serum albumin leads to several pathological events such as diabetic nephropathy, neuropathy, retinopathy and cardiovascular complications. Human serum albumin is the major protein and is most susceptible to non-enzymatic glycation. Structural and biological properties of functional albumin alter due to the addition of reducing carbohydrate to free amino terminal residues vivo. These irreversible changes in functional albumin are stable which makes this modified albumin as new gold standard future diagnostic marker in diabetes associated complications. Glycated albumin can be used to determine the glycemic control due to short half life than erythrocytes which makes it an alternate reliable disease marker in diabetes. In this review, Human serum albumin glycation has been overviewed, stating concept of glycation and sites that are prone to this modifications. Impact of non-enzymatic addition of carbohydrate to albumin's structural and biological properties has also been elaborated. Accurate measurements of glycated albumin with implications of new highly sensitive techniques have also been described briefly. Interestingly human serum albumin imposed glycation can serve as future tool not for diagnosing diabetes but also its potential in assessment of diabetes associated complications. PMID:25311816

  18. The quantitative effect of serum albumin, serum urea, and valproic acid on unbound phenytoin concentrations in children.

    PubMed

    ter Heine, Rob; van Maarseveen, Erik M; van der Westerlaken, Monique M L; Braun, Kees P J; Koudijs, Suzanne M; Berg, Maarten J Ten; Malingré, Mirte M

    2014-06-01

    Dosing of phenytoin is difficult in children because of its variable pharmacokinetics and protein binding. Possible covariates for this protein binding have mostly been univariately investigated in small, and often adult, adult populations. We conducted a study to identify and quantify these covariates in children. We extracted data on serum phenytoin concentrations, albumin, triglycerides, urea, total bilirubin and creatinine concentrations and data on coadministration of valproic acid or carbamazepine in 186 children. Using nonlinear mixed effects modeling the effects of covariates on the unbound phenytoin fraction were investigated. Serum albumin, serum urea concentrations, and concomitant valproic acid use significantly influenced the unbound phenytoin fraction. For clinical practice, we recommend that unbound phenytoin concentrations are measured routinely. However, if this is impossible, we suggest to use our model to calculate the unbound concentration. In selected children, close treatment monitoring and dose reductions should be considered to prevent toxicity. PMID:23670246

  19. Determination of total mercury in seafood and other protein-rich products

    SciTech Connect

    Landi, S.; Fagioli, F.; Locatelli, C.

    1992-11-01

    A previously developed wet-digestion method for the determination of total mercury in plants by cold vapor atomic absorption spectroscopy (CVAAS) was extended to the analysis of seafood and other products rich in proteins. Oxidation of matrixes is accomplished by K{sub 2}Cr{sub 2}O{sub 7} in the presence of diluted H{sub 2}SO{sub 4}; a simple air condenser is used to reflux vapors released from the boiling mixture. The original procedure (A) and 2 modifications (B and C), which differ with respect to the mode of acidification and/or digestion time and the types of condensers used, were compared for precision and accuracy by means of National Institute of Standards and Technology Research Material 50 Albacore Tuna and proved to be reliable (Hg present, 0.95{plus_minus}0.1 {mu}g/g; Hg found, 0.97 {plus_minus} 0.029 {mu}g/g [A], 0.98 {plus_minus} 0.018 {mu}g/g [B], and 0.94 {plus_minus} 0.025 {mu}g/g [C]). The modified procedures were tested further in Hg recovery experiments on a variety of biological matrixes with different spiking substances and again showed good analytical characteristics (overall average recoveries = 98 {plus_minus} 5.1% for seafood and 100 {plus_minus} 3.6 for protein-rich baby foods). 22 refs., 1 fig., 5 tabs.

  20. Physicochemical and sensory characteristics of whey protein hydrolysates generated at different total solids levels.

    PubMed

    Spellman, David; O'Cuinn, Gerard; FitzGerald, Richard J

    2005-05-01

    Whey protein hydrolysates were generated at different total solids (TS) levels (50-300 g/l) using the commercially available proteolytic preparation Debitrase HYW20, while enzyme to substrate ratio, pH and temperature were maintained constant. Hydrolysis proceeded at a faster rate at lower TS reaching a degree of hydrolysis (DH) of 16.6% at 300 g TS/l, compared with a DH of 22.7% at 50 g TS/l after 6 h hydrolysis. The slower breakdown of intact whey proteins at high TS was quantified by gel-permeation HPLC. Reversed-phase (RP) HPLC of hydrolysate samples of equivalent DH (approximately 15%) generated at different TS levels indicated that certain hydrophobic peptide peaks were present at higher levels in hydrolysates generated at low TS. Sensory evaluation showed that hydrolysates with equivalent DH values were significantly (P < 0.0005) less bitter when generated at 300 g TS/l (mean bitterness score = 25.4%) than hydrolysates generated at 50 g TS/l (mean bitterness score = 39.9%). A specific hydrophobic peptide peak present at higher concentrations in hydrolysates generated at low TS was isolated and identified as beta-lactoglobulin f(43-57), a fragment having the physical and chemical characteristics of a bitter peptide. PMID:15909678

  1. Effect of Human and Bovine Serum Albumin on kinetic Chemiluminescence of Mn (III)-Tetrakis (4-Sulfonatophenyl) Porphyrin-Luminol-Hydrogen Peroxide System

    PubMed Central

    Kazemi, Sayed Yahya; Abedirad, Seyed Mohammad

    2012-01-01

    The present work deals with an attempt to study the effect of human and bovine serum albumin on kinetic parameters of chemiluminescence of luminol-hydrogen peroxide system catalyzed by manganese tetrasulfonatophenyl porphyrin (MnTSPP). The investigated parameters involved pseudo-first-order rise and fall rate constant for the chemiluminescence burst, maximum level intensity, time to reach maximum intensity, total light yield, and values of the intensity at maximum CL which were evaluated by nonlinear least square program KINFIT. Because of interaction of metalloporphyrin with proteins, the CL parameters are drastically affected. The systems resulted in Stern-Volmer plots with kQ values of 3.17 × 105 and 3.7 × 105 M−1 in the quencher concentration range of 1.5 × 10−6 to 1.5 × 10−5 M for human serum albumin (HSA) and bovine serum albumin (BSA), respectively. PMID:22645466

  2. Screening of immunomodulatory activity of total and protein extracts of some Moroccan medicinal plants.

    PubMed

    Daoudi, Abdeljlil; Aarab, Lotfi; Abdel-Sattar, Essam

    2013-04-01

    Herbal and traditional medicines are being widely used in practice in many countries for their benefits of treating different ailments. A large number of plants in Morocco were used in folk medicine to treat immune-related disorders. The objective of this study is to evaluate the immunomodulatory activity of protein extracts (PEs) of 14 Moroccan medicinal plants. This activity was tested on the proliferation of immune cells. The prepared total and PEs of the plant samples were tested using MTT (3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide) assay on the splenocytes with or without stimulation by concanavalin-A (Con-A), a mitogenic agent used as positive control. The results of this study indicated different activity spectra. Three groups of activities were observed. The first group represented by Citrullus colocynthis, Urtica dioica, Elettaria cardamomum, Capparis spinosa and Piper cubeba showed a significant immunosuppressive activity. The second group that showed a significant immunostimulatory activity was represented by Aristolochia longa, Datura stramonium, Marrubium vulgare, Sinapis nigra, Delphynium staphysagria, Lepidium sativum, Ammi visnaga and Tetraclinis articulata. The rest of the plant extracts did not alter the proliferation induced by Con-A. This result was more important for the PE than for the total extract. In conclusion, this study revealed an interesting immunomodulating action of certain PEs, which could explain their traditional use. The results of this study may also have implications in therapeutic treatment of infections, such as prophylactic and adjuvant with cancer chemotherapy. PMID:22301818

  3. Blood count and C-reactive protein evolution in gastric cancer patients with total gastrectomy surgery

    PubMed Central

    CSENDES J., Attila; MUÑOZ Ch., Andrea; BURGOS L., Ana María

    2014-01-01

    Background The complete blood count (CBC) and C-reactive protein (CRP) are useful inflammatory parameters for ruling out acute postoperative inflammatory complications. Aim To determine their changes in gastric cancer patients submitted to total gastrectomy. Methods This is a prospective study, with 36 patients with gastric cancer who were submitted to elective total gastrectomy. On the first, third and fifth postoperative day (POD), blood count and CRP changes were assessed. Patients with postoperative complications were excluded. Results Twenty-one (58%) were men and 15 (42%) women. The mean age was 65 years. The leukocytes peaked on the 1st POD with a mean of 13,826 u/mm³, and decreased to 8,266 u/mm³ by the 5th POD. The bacilliforms peaked on the 1st POD with a maximum value of 1.48%. CRP reached its maximum level on the 3rd POD with a mean of 144.64 mg/l±44.84. Preoperative hematocrit (HCT) was 35% and 33.67% by the 5th POD. Hemoglobin, showed similar values. Conclusions Leukocytes increased during the 1st POD but reached normal values by the 5th POD. CRP peaked on the 3rd POD but did not reach normal values by the 5th POD. PMID:25626929

  4. Increased nutritive value of transgenic potato by expressing a nonallergenic seed albumin gene from Amaranthus hypochondriacus.

    PubMed

    Chakraborty, S; Chakraborty, N; Datta, A

    2000-03-28

    Improvement of nutritive value of crop plants, in particular the amino acid composition, has been a major long-term goal of plant breeding programs. Toward this end, we reported earlier the cloning of the seed albumin gene AmA1 from Amaranthus hypochondriacus. The AmA1 protein is nonallergenic in nature and is rich in all essential amino acids, and the composition corresponds well with the World Health Organization standards for optimal human nutrition. In an attempt to improve the nutritional value of potato, the AmA1 coding sequence was successfully introduced and expressed in tuber-specific and constitutive manner. There was a striking increase in the growth and production of tubers in transgenic populations and also of the total protein content with an increase in most essential amino acids. The expressed protein was localized in the cytoplasm as well as in the vacuole of transgenic tubers. Thus we have been able to use a seed albumin gene with a well-balanced amino acid composition as a donor protein to develop a transgenic crop plant. The results document, in addition to successful nutritional improvement of potato tubers, the feasibility of genetically modifying other crop plants with novel seed protein composition. PMID:10716698

  5. Elimination of the free sulfhydryl group in the human serum albumin (HSA) moiety of human interferon-alpha2b and HSA fusion protein increases its stability against mechanical and thermal stresses.

    PubMed

    Zhao, Hong Liang; Xue, Chong; Wang, Yang; Sun, Bo; Yao, Xue Qin; Liu, Zhi Min

    2009-06-01

    Interferon-alpha2b (IFN-alpha2b) and human serum albumin (HSA) fusion protein (IFN-alpha2b-HSA) is a promising long acting formulation of IFN-alpha2b for the treatment of hepatitis C. However, accelerated mechanical and thermal stress tests revealed that IFN-alpha2b-HSA was prone to disulfide-linked aggregation. The formation of aggregates was associated with an increase in immunogenicity in mice. The addition of non-ionic surfactant Tween 80 increased the stability of IFN-alpha2b-HSA against agitation, but its thermal stability was not improved. Moreover, Tween 80 prompted the aggregation of IFN-alpha2b-HSA during quiescent storage. To increase the stability of IFN-alpha2b-HSA, the unpaired cysteine residue in this fusion protein was substituted with serine by site-directed mutagenesis. The resultant fusion protein was designated as IFN-alpha2b-HSA(C34S). IFN-alpha2b-HSA(C34S) had significant higher stability over IFN-alpha2b-HSA, which was evidenced by the facts that after agitation for 72 h or incubation at 60 degrees C for 2 h, more than 90% of IFN-alpha2b-HSA(C34S) remained monomeric. Consistent with its improved stability, the immunogenicity of IFN-alpha2b-HSA(C34S) increased less significantly after agitation. Pharmacokinetics studies in rats revealed that both fusion proteins had similar pharmacokinetic behavior, both with a half-life of about 50 h. PMID:19462475

  6. The Virucidal EB Peptide Protects Host Cells from Herpes Simplex Virus Type 1 Infection in the Presence of Serum Albumin and Aggregates Proteins in a Detergent-Like Manner▿

    PubMed Central

    Bultmann, Hermann; Girdaukas, Gary; Kwon, Glen S.; Brandt, Curtis R.

    2010-01-01

    The linear cationic amphiphilic EB peptide, derived from the FGF4 signal sequence, was previously shown to be virucidal and to block herpes simplex type I (HSV-1) entry (H. Bultmann, J. S. Busse, and C. R. Brandt, J. Virol. 75:2634–2645, 2001). Here we show that cells treated with EB (RRKKAAVALLPAVLLALLAP) for less than 5 min are also protected from infection with HSV-1. Though protection was lost over a period of 5 to 8 h, it was reinduced as rapidly as during the initial treatment. Below a 20 μM concentration of EB, cells gained protection in a serum-dependent manner, requiring bovine serum albumin (BSA) as a cofactor. Above 40 μM, EB coprecipitated with BSA under hypotonic conditions. Coprecipitates retained antiviral activity and released active peptide. NaCl (≥0.3 M) blocked coprecipitation without interfering with antiviral activity. As shown for β-galactosidase, EB below 20 μM acted as an enzyme inhibitor, whereas above 40 to 100 μM EB, β-galactosidase was precipitated as was BSA or other unrelated proteins. Pyrene fluorescence spectroscopy revealed that in the course of protein aggregation, EB acted like a cationic surfactant and self associated in a process resembling micelle formation. Both antiviral activity and protein aggregation did not depend on stereospecific EB interactions but depended strongly on the sequence of the peptide's hydrophobic tail. EB resembles natural antimicrobial peptides, such as melittin, but when acting in a nonspecific detergent-like manner, it primarily seems to target proteins. PMID:20643896

  7. Evidence for covalent binding of acyl glucuronides to serum albumin via an imine mechanism as revealed by tandem mass spectrometry.

    PubMed Central

    Ding, A; Ojingwa, J C; McDonagh, A F; Burlingame, A L; Benet, L Z

    1993-01-01

    Acyl glucuronide metabolites of bilirubin and many drugs can react with serum albumin in vivo to form covalent adducts. Such adducts may be responsible for some toxic effects of carboxylic nonsteroidal antiinflammatory agents. The mechanism of formation of the adducts and their chemical structures are unknown. In this paper we describe the use of tandem mass spectrometry to locate binding sites and elucidate the binding mechanism involved in the formation of covalent adducts from tolmetin glucuronide and albumin in vitro. Human serum albumin and excess tolmetin glucuronide were coincubated in the presence of sodium cyanoborohydride to trap imine intermediates. The total protein product was reduced, carboxymethylated, and digested with trypsin. Six tolmetin-containing peptides (indicated by absorbance at 313 nm) were isolated by high-pressure liquid chromatography and analyzed by liquid secondary-ion mass spectrometry and collision-induced dissociation, using a four-sector tandem mass spectrometer. All six peptides contained tolmetin linked covalently via a glucuronic acid to protein lysine groups. Major attachment sites on the protein were Lys-195, -199, and -525; minor sites were identified as Lys-137, -351, and -541. Our results show unambiguously that the glucuronic acid moiety of acyl glucuronides can be retained within the structure when these reactive metabolites bind covalently to proteins, and they suggest that acyl migration followed by Schiff base (imine) formation is a credible mechanism for the generation of covalent adducts in vivo. PMID:8483897

  8. Statin-sensitive endocytosis of albumin by glomerular podocytes.

    PubMed

    Eyre, Jeanette; Ioannou, Kyriakos; Grubb, Blair D; Saleem, Moin A; Mathieson, Peter W; Brunskill, Nigel J; Christensen, Erik I; Topham, Peter S

    2007-02-01

    Glomerular podocytes are critical regulators of glomerular permeability via the slit diaphragm and may play a role in cleaning the glomerular filter. Whether podocytes are able to endocytose proteins is uncertain. We studied protein endocytosis in conditionally immortalized mouse and human podocytes using FITC-albumin by direct quantitative assay and by fluorescence microscopy and electron microscopy in mouse podocytes. Furthermore, in vivo uptake was studied in human, rat, and mouse podocytes. Both mouse and human podocytes displayed specific one-site binding for FITC-albumin with K(d) of 0.91 or 0.44 mg/ml and B(max) of 3.15 or 0.81 microg/mg cell protein, respectively. In addition, they showed avid endocytosis of FITC-albumin with K(m) of 9.48 or 4.5 mg/ml and V(max) of 474.3 or 97.4 microg.mg cell protein(-1).h(-1), respectively. Immunoglobulin and transferrin were inefficient competitors of this process, indicating some specificity for albumin. Accumulation of endocytosed albumin could be demonstrated in intracellular vesicles by fluorescence confocal microscopy and electron microscopy. Endocytosis was sensitive to pretreatment with simvastatin. In vivo accumulation of albumin was found in all three species but was most pronounced in the rat. We conclude that podocytes are able to endocytose protein in a statin-sensitive manner. This function is likely to be highly significant in health and disease. In addition, protein endocytosis by podocytes may represent a useful, measurable phenotypic characteristic against which potentially injurious or beneficial interventions can be assessed. PMID:17032937

  9. Albumin impregnated vascular grafts: albumin resorption and tissue reactions.

    PubMed

    Cziperle, D J; Joyce, K A; Tattersall, C W; Henderson, S C; Cabusao, E B; Garfield, J D; Kim, D U; Duhamel, R C; Greisler, H P

    1992-01-01

    This study aimed to determine the kinetics of albumin resorption from and the healing of two types of albumin impregnated Vasculour II (Bard Cardiovascular) Dacron grafts (ACG-A and ACG-B) using whole blood preclotted Vasculour II Dacron grafts (without albumin) as controls (PCC). Prostheses measuring 4 mm ID x 50 mm length were implanted in the aortoiliac position in 24 dogs (ACG-A n = 12, ACG-B n = 24, PCC n = 12) and explanted after 1, 2 4, and 6 months. Platelet count, platelet aggregometry to 10(-5) M ADP, prothrombin time (PT), and partial thromboplastin time (PTT) were determined preoperatively and at explantation. Sections of the explanted grafts were assayed for human albumin by immunohistochemical techniques utilizing a rabbit polyclonal mono-specific antibody for human albumin followed by the addition of a biotinylated goat anti-rabbit IgG. Immunoperoxidase staining was then performed using Avidin D horse-radish peroxidase. Histology of the grafts (light microscopy, scanning electron microscopy, and transmission electron microscopy) as well as percent thrombus free surface area (TFSA) by computerized planimetry were also determined. Seven of 48 grafts were occluded (85.4% patency) with no difference among the three groups. Platelet aggregometry was not predictive of graft patency. No change in PT or PTT occurred nor was there any difference among the three groups. Retained albumin was detected in every one-month explant but not beyond that time, with the sensitivity for detecting human albumin in this assay being 20 mg albumin per gram of Dacron. All ACG explants at one month revealed inner capsular fibrin coagula not present in PCC specimens.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1388174

  10. Cellular Specificity of the Blood–CSF Barrier for Albumin Transfer across the Choroid Plexus Epithelium

    PubMed Central

    Liddelow, Shane A.; Dzięgielewska, Katarzyna M.; Møllgård, Kjeld; Whish, Sophie C.; Noor, Natassya M.; Wheaton, Benjamin J.; Gehwolf, Renate; Wagner, Andrea; Traweger, Andreas; Bauer, Hannelore; Bauer, Hans-Christian; Saunders, Norman R.

    2014-01-01

    To maintain the precise internal milieu of the mammalian central nervous system, well-controlled transfer of molecules from periphery into brain is required. Recently the soluble and cell-surface albumin-binding glycoprotein SPARC (secreted protein acidic and rich in cysteine) has been implicated in albumin transport into developing brain, however the exact mechanism remains unknown. We postulate that SPARC is a docking site for albumin, mediating its uptake and transfer by choroid plexus epithelial cells from blood into cerebrospinal fluid (CSF). We used in vivo physiological measurements of transfer of endogenous (mouse) and exogenous (human) albumins, in situ Proximity Ligation Assay (in situ PLA), and qRT-PCR experiments to examine the cellular mechanism mediating protein transfer across the blood–CSF interface. We report that at all developmental stages mouse albumin and SPARC gave positive signals with in situ PLAs in plasma, CSF and within individual plexus cells suggesting a possible molecular interaction. In contrast, in situ PLA experiments in brain sections from mice injected with human albumin showed positive signals for human albumin in the vascular compartment that were only rarely identifiable within choroid plexus cells and only at older ages. Concentrations of both endogenous mouse albumin and exogenous (intraperitoneally injected) human albumin were estimated in plasma and CSF and expressed as CSF/plasma concentration ratios. Human albumin was not transferred through the mouse blood–CSF barrier to the same extent as endogenous mouse albumin, confirming results from in situ PLA. During postnatal development Sparc gene expression was higher in early postnatal ages than in the adult and changed in response to altered levels of albumin in blood plasma in a differential and developmentally regulated manner. Here we propose a possible cellular route and mechanism by which albumin is transferred from blood into CSF across a sub-population of

  11. Cellular specificity of the blood-CSF barrier for albumin transfer across the choroid plexus epithelium.

    PubMed

    Liddelow, Shane A; Dzięgielewska, Katarzyna M; Møllgård, Kjeld; Whish, Sophie C; Noor, Natassya M; Wheaton, Benjamin J; Gehwolf, Renate; Wagner, Andrea; Traweger, Andreas; Bauer, Hannelore; Bauer, Hans-Christian; Saunders, Norman R

    2014-01-01

    To maintain the precise internal milieu of the mammalian central nervous system, well-controlled transfer of molecules from periphery into brain is required. Recently the soluble and cell-surface albumin-binding glycoprotein SPARC (secreted protein acidic and rich in cysteine) has been implicated in albumin transport into developing brain, however the exact mechanism remains unknown. We postulate that SPARC is a docking site for albumin, mediating its uptake and transfer by choroid plexus epithelial cells from blood into cerebrospinal fluid (CSF). We used in vivo physiological measurements of transfer of endogenous (mouse) and exogenous (human) albumins, in situ Proximity Ligation Assay (in situ PLA), and qRT-PCR experiments to examine the cellular mechanism mediating protein transfer across the blood-CSF interface. We report that at all developmental stages mouse albumin and SPARC gave positive signals with in situ PLAs in plasma, CSF and within individual plexus cells suggesting a possible molecular interaction. In contrast, in situ PLA experiments in brain sections from mice injected with human albumin showed positive signals for human albumin in the vascular compartment that were only rarely identifiable within choroid plexus cells and only at older ages. Concentrations of both endogenous mouse albumin and exogenous (intraperitoneally injected) human albumin were estimated in plasma and CSF and expressed as CSF/plasma concentration ratios. Human albumin was not transferred through the mouse blood-CSF barrier to the same extent as endogenous mouse albumin, confirming results from in situ PLA. During postnatal development Sparc gene expression was higher in early postnatal ages than in the adult and changed in response to altered levels of albumin in blood plasma in a differential and developmentally regulated manner. Here we propose a possible cellular route and mechanism by which albumin is transferred from blood into CSF across a sub-population of specialised

  12. Acute hypoproteinemic fluid overload: its determinants, distribution, and treatment with concentrated albumin and diuretics.

    PubMed

    Pappova, E; Bachmeier, W; Crevoisier, J L; Kollar, J; Kollar, M; Tobler, P; Zahler, H W; Zaugg, D; Lundsgaard-Hansen, P

    1977-01-01

    We simulated the use of massive volumes of crystalloid fluids as a treatment of acute plasma loss in a standardized experimental model and studied the factors determining the retention or excretion of the resulting acute hypoproteinemic fluid overload, its distribution within the body, and its treatment with concentrated albumin and diuretics. In accordance with the classic Starling concept, the serum protein level, i.e. the serum colloid osmotic pressure, determined the excretion/retention ratio of a given water and sodium load. Of the total fluid retention, fat and muscle each accommodated 25%, whereas the skin, which contributes only 7% to the total body weight, accounted for 37% and increased its volume by roughly one third. Concentrated albumin promoted fluid excretion in direct proportion to the achieved increment of the serum protein level and abolished the edema of fat, muscle and skin. Furosemide was virtually ineffective. The implications of these results for the 'adult respiratory distress syndrome' and disturbed wound healing are discussed and related to the concept of a critical threshold of the serum protein level. PMID:919420

  13. The effect of volume replacement on serum protein concentration during cardiopulmonary bypass.

    PubMed

    Kmiecik, S A; Stammers, A H; Petterson, C M; Liu, J L; Nichols, J D; Kohtz, R J; Mills, N J; Zheng, H; Hock, L M

    2001-12-01

    Although controversy exists concerning the optimal total protein and colloid osmotic pressure that should be maintained during cardiopulmonary bypass (CPB), the primary volume expanders remain albumin and 6% hetastarch. The purpose of this study was to quantify the effect of adding boluses of volume replacement agents under various conditions to total serum protein values during CPB. A standard CPB circuit was utilized in eight 45-kg swine that had a priming volume (physiologic saline solution) of 2309 +/- 245 mL. Volumetric alterations occurred throughout the CPB period by the addition of combinations of physiologic saline solution, 6% hetastarch or 5% swine albumin. Pre- and postadministration samples were assayed for total serum protein, total protein, and albumin throughout the CPB period and at pre- and postvolume administration times. There was a significant decline in total serum protein with the initiation of CPB (6.14 +/- 0.49 g/dL vs. 3.40 +/- 0.43 g/dL, p < .0001). Addition of 12.5 g of swine albumin (N = 5) to two different swine increased total serum protein significantly when compared to adding 500 mL of 6% hetastarch (N = 6) (swine albumin 12.4 +/- 6.3% vs. hetastarch 3.3 +/- 2.1%, p < .005). A reduction in total serum protein occurred after hemodilution with varying amount of physiologic saline solution: 250-450 mL (7.4 +/- 4.5%), 451-650 mL (9.6 +/- 5.6%), and 651-1050 mL (19.4 +/- 4.0%). In summary, knowledge of total serum protein concentration and estimated circulating blood volume can be used to guide albumin and hetastarch administration following hemodilution. PMID:11806434

  14. Interference of Cerebrospinal Fluid Total Protein Measurement by Povidone-Iodine Contamination

    PubMed Central

    Gounden, Verena; Sacks, David B; Zhao, Zhen

    2014-01-01

    Background A falsely high cerebrospinal fluid (CSF) total protein (TP) result measured by pyrogallol red (PGR) method was suspected to be caused by preparation of the collection site with povidone-iodine (PVP-iodine) solution. Methods CSF TP was evaluated for interference in samples with different final concentrations of PVP-iodine (up to 0.25% PVP and 0.025% iodine) or iodine alone (up to 0.025% iodine) using three methods: PGR, modified biuret and benzethonium chloride (BZTC). Interference exceeding ±20% of the baseline value is considered clinically significant according the criterion defined by College of American Pathologists. Results There was a positive interference with the PGR method and a negative inference for the BZTC method in CSF samples spiked with PVP-iodine. The PVP-iodine (up to 0.25% PVP and 0.025% iodine) did not cause a clinically significant interference with the modified biuret method. PVP alone without iodine caused a positive interference with the PGR method but did not interfere with the modified biuret or the BZTC method. When the samples were spiked with iodine alone, none of the three methods was affected (change < 20%) by iodine concentration up to 0.025%. Conclusions Contamination of CSF specimens with PVP-iodine can lead to interference with CSF TP measurements using PGR or BZTC methods. PMID:25446880

  15. Changes in IgG and total plasma protein glycomes in acute systemic inflammation

    PubMed Central

    Novokmet, Mislav; Lukić, Edita; Vučković, Frano; –Durić, Željko; Keser, Toma; Rajšl, Katarina; Remondini, Daniel; Castellani, Gastone; Gašparović, Hrvoje; Gornik, Olga; Lauc, Gordan

    2014-01-01

    Recovery after cardiac surgery is a complex process that has to compensate for both individual variability and extensive tissue damage in the context of systemic inflammation. Protein glycosylation is essential in many steps of the inflammatory cascade, but due to technological limitations the role of individual variation in glycosylation in systemic inflammation has not been addressed until now. We analysed composition of the total plasma and IgG N-glycomes in 107 patients undergoing cardiac surgery. In nearly all individuals plasma N-glycome underwent the same pattern of changes in the first 72 h, revealing a general mechanism of glycosylation changes. To the contrary, changes in the IgG glycome were very individualized. Bi-clustering analysis revealed the existence of four distinct patterns of changes. One of them, characterized by a rapid increase in galactosylated glycoforms, was associated with nearly double mortality risk measured by EuroSCORE II. Our results indicate that individual variation in IgG glycosylation changes during acute systemic inflammation associates with increased mortality risk and indicates new avenues for the development of personalized diagnostic and therapeutic approach. PMID:24614541

  16. [Isoelectric spectra of liver tissue and blood serum albumin for rabbits of different age].

    PubMed

    Sopkina, D A; Ostolovskiĭ, E M; Ivlev, V N

    1978-01-01

    The isoelectric spectrum of albumin isolated from the liver and blood serum of 30-, 45- and 90-day rabbits was studied. By the method of isoelectric focusing in the boron-borate buffer--mannitol system. It is shown that the liver albumin displays heterogeneity ans is separated into four-five fractions, with pJ 4.8-6.0. Age peculiarities are found for the isoelectric spectrum of this protein. The serum albumin spectrum for rabbits of the studied age groups is characterized by the presence of a homogeneous peak with pJ 5.59, 5.57 and 5.47 corresponding to 30, 45 and 90-day age, respectively. Identity of serum albumin and protein of some liver albumin spectrum components is established by analyzing the pattern of the isoelectric spectrum for a mixture of preparations of 90-day rabbit proteins under comparison. PMID:34911

  17. Albumin concentration significantly impacts on free teicoplanin plasma concentrations in non-critically ill patients with chronic bone sepsis.

    PubMed

    Brink, A J; Richards, G A; Lautenbach, E E G; Rapeport, N; Schillack, V; van Niekerk, L; Lipman, J; Roberts, J A

    2015-06-01

    The impact of decreased serum albumin concentrations on free antibiotic concentrations in non-critically ill patients is poorly described. This study aimed to describe the pharmacokinetics of a high-dose regimen of teicoplanin, a highly protein-bound antibiotic, in non-critically ill patients with hypoalbuminaemia. Ten patients with chronic bone sepsis and decreased serum albumin concentrations (<35 g/L) receiving teicoplanin 12 mg/kg 12-hourly intravenously for 48 h followed by 12 mg/kg once daily were enrolled. Surgical debridement was performed on Day 3. Samples of venous blood were collected pre-infusion and post-infusion during the first 4 days of therapy. Total and free teicoplanin concentrations were assayed using validated chromatographic methods. The median serum albumin concentration for the cohort was 18 (IQR 15-24) g/L. After 48 h, the median (IQR) free trough (fC(min)) and total trough (tC(min)) concentrations were 2.90 (2.67-3.47) mg/L and 15.54 (10.28-19.12) mg/L, respectively, although trough concentrations declined thereafter. Clearance of the free concentrations was significantly high relative to the total fraction at 38.6 (IQR 29.9-47.8) L/h and 7.0 (IQR 6.8-9.8) L/h, respectively (P<0.001). Multiple linear regression analysis demonstrated that whereas total teicoplanin concentration did not impact on free concentrations (P=0.174), albumin concentration did (P<0.001). This study confirms the significant impact of hypoalbuminaemia on free concentrations of teicoplanin in non-critically ill patients, similar to that in critically ill patients. Furthermore, the poor correlation with total teicoplanin concentration suggests that therapeutic drug monitoring of free concentrations should be used in these patients. PMID:25819167

  18. The influence of albumin on corrosion resistance of titanium in fluoride solution.

    PubMed

    Ide, Katsuhisa; Hattori, Masayuki; Yoshinari, Masao; Kawada, Eiji; Oda, Yutaka

    2003-09-01

    Proteins can interact with corrosion reactions in several ways. In this study, we investigated the effect of albumin on the corrosion resistance of titanium in the presence of fluoride. The effects of the NaF concentration, albumin concentration, and pH on the corrosion characteristics of commercially pure titanium (CP-Ti) were examined by means of electrochemical techniques. The corrosion resistance of titanium decreased as the NaF concentration increased and as pH decreased. The corrosion resistance of titanium in NaF solutions was improved in the presence of albumin. The natural electrode potential was elevated, and the passive current density was reduced by albumin at a concentration of 0.01%. The polarization resistance rose with increased concentrations of albumin in fluoride solution. These results showed that the albumin in saliva and dental plaque affected the corrosion resistance of CP-Ti in fluoride solution. PMID:14621001

  19. Megalin mediates transepithelial albumin clearance from the alveolar space of intact rabbit lungs

    PubMed Central

    Buchäckert, Yasmin; Rummel, Sebastian; Vohwinkel, Christine U; Gabrielli, Nieves M; Grzesik, Benno A; Mayer, Konstantin; Herold, Susanne; Morty, Rory E; Seeger, Werner; Vadász, István

    2012-01-01

    The alveolo-capillary barrier is effectively impermeable to large solutes such as proteins. A hallmark of acute lung injury/acute respiratory distress syndrome is the accumulation of protein-rich oedema fluid in the distal airspaces. Excess protein must be cleared from the alveolar space for recovery; however, the mechanisms of protein clearance remain incompletely understood. In intact rabbit lungs 29.8 ± 2.2% of the radio-labelled alveolar albumin was transported to the vascular compartment at 37°C within 120 min, as assessed by real-time measurement of 125I-albumin clearance from the alveolar space. At 4°C or 22°C significantly lower albumin clearance (3.7 ± 0.4 or 16.2 ± 1.1%, respectively) was observed. Deposition of a 1000-fold molar excess of unlabelled albumin into the alveolar space or inhibition of cytoskeletal rearrangement or clathrin-dependent endocytosis largely inhibited the transport of 125I-albumin to the vasculature, while administration of unlabelled albumin to the vascular space had no effect on albumin clearance. Furthermore, albumin uptake capacity was measured as about 0.37 mg ml−1 in cultured rat lung epithelial monolayers, further highlighting the (patho)physiological relevance of active alveolar epithelial protein transport. Moreover, gene silencing and pharmacological inhibition of the multi-ligand receptor megalin resulted in significantly decreased albumin binding and uptake in monolayers of primary alveolar type II and type I-like and cultured lung epithelial cells. Our data indicate that clearance of albumin from the distal air spaces is facilitated by an active, high-capacity, megalin-mediated transport process across the alveolar epithelium. Further understanding of this mechanism is of clinical importance, since an inability to clear excess protein from the alveolar space is associated with poor outcome in patients with acute lung injury/acute respiratory distress syndrome. PMID:22826129

  20. Biocompatibility of electrospun human albumin: a pilot study.

    PubMed

    Noszczyk, B H; Kowalczyk, T; Łyżniak, M; Zembrzycki, K; Mikułowski, G; Wysocki, J; Kawiak, J; Pojda, Z

    2015-01-01

    Albumin is rarely used for electrospinning because it does not form fibres in its native globular form. This paper presents a novel method for electrospinning human albumin from a solution containing pharmaceutical grade protein and 25% polyethylene oxide (PEO) used as the fibre-forming agent. After spontaneous cross-linking at body temperature, with no further chemicals added, the fibres become insoluble and the excess PEO can be washed out. Albumin deposited along the fibres retains its native characteristics, such as its non-adhesiveness to cells and its susceptibility for degradation by macrophages. To demonstrate this we evaluated the mechanical properties, biocompatibility and biodegradability of this novel product. After subcutaneous implantation in mice, albumin mats were completely resorbable within six days and elicited only a limited local inflammatory response. In vitro, the mats suppressed cell attachment and migration. As this product is inexpensive, produced from human pharmaceutical grade albumin without chemical modifications, retains its native protein properties and fulfils the specific requirements for anti-adhesive dressings, its clinical use can be expedited. We believe that it could specifically be used when treating paediatric patients with epidermolysis bullosa, in whom non-healing wounds occur after minor hand injuries which lead to rapid adhesions and devastating contractures. PMID:25727172

  1. Modulation of albumin-induced endoplasmic reticulum stress in renal proximal tubule cells by upregulation of mapk phosphatase-1.

    PubMed

    Gorostizaga, Alejandra; Mori Sequeiros García, Maria Mercedes; Acquier, Andrea; Gomez, Natalia V; Maloberti, Paula M; Mendez, Carlos F; Paz, Cristina

    2013-10-25

    High amounts of albumin in urine cause tubulointerstitial damage that leads to a rapid deterioration of the renal function. Albumin exerts its injurious effects on renal cells through a process named endoplasmic reticulum (ER) stress due to the accumulation of unfolded proteins in the ER lumen. In addition, albumin promotes phosphorylation and consequent activation of MAPKs such as ERK1/2. Since ERK1/2 activation promoted by albumin is a transient event, the aims of the present work were to identify the phosphatase involved in their dephosphorylation in albumin-exposed cells and to analyze the putative regulation of this phosphatase by albumin. We also sought to determine the role played by the phospho/dephosphorylation of ERK1/2 in the cellular response to albumin-induced ER stress. MAP kinase phosphatase-1, MKP-1, is a nuclear enzyme involved in rapid MAPK dephosphorylation. Here we present evidence supporting the notion that this phosphatase is responsible for ERK1/2 dephosphorylation after albumin exposure in OK cells. Moreover, we demonstrate that exposure of OK cells to albumin transiently increases MKP-1 protein levels. The increase was evident after 15 min of exposure, peaked at 1 h (6-fold) and declined thereafter. In cells overexpressing flag-MKP-1, albumin caused the accumulation of this chimera, promoting MKP-1 stabilization by a posttranslational mechanism. Albumin also promoted a transient increase in MKP-1 mRNA levels (3-fold at 1 h) through the activation of gene transcription. In addition, we also show that albumin increased mRNA levels of GRP78, a key marker of ER stress, through an ERK-dependent pathway. In line with this finding, our studies demonstrate that flag-MKP-1 overexpression blunted albumin-induced GRP78 upregulation. Thus, our work demonstrates that albumin overload not only triggers MAPK activation but also tightly upregulates MKP-1 expression, which might modulate ER stress response to albumin overload. PMID:23994741

  2. Total protein, animal protein, and physical activity in relation to muscle mass in middle-aged and older Americans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistance training is recognized as a good strategy for retarding age-related declines in muscle mass and strength. Recent studies have also highlighted the potential value of protein intakes in excess of current recommendations. The roles that leisure-time physical activity and protein quality mig...

  3. Albumin - blood (serum) test

    MedlinePlus

    ... nutrients, such as with: After weight-loss surgery Crohn disease Low-protein diets Celiac disease Whipple disease Increased ... Bilirubin blood test Burns Celiac disease - sprue Cirrhosis Crohn disease Diabetes and kidney disease Glomerulonephritis Hepatitis Hepatorenal syndrome ...

  4. Fast and selective determination of total protein in milk powder via titration of moving reaction boundary electrophoresis.

    PubMed

    Guo, Cheng-ye; Wang, Hou-yu; Liu, Xiao-ping; Fan, Liu-yin; Zhang, Lei; Cao, Cheng-xi

    2013-05-01

    In this paper, moving reaction boundary titration (MRBT) was developed for rapid and accurate quantification of total protein in infant milk powder, from the concept of moving reaction boundary (MRB) electrophoresis. In the method, the MRB was formed by the hydroxide ions and the acidic residues of milk proteins immobilized via cross-linked polyacrylamide gel (PAG), an acid-base indicator was used to denote the boundary motion. As a proof of concept, we chose five brands of infant milk powders to study the feasibility of MRBT method. The calibration curve of MRB velocity versus logarithmic total protein content of infant milk powder sample was established based on the visual signal of MRB motion as a function of logarithmic milk protein content. Weak influence of nonprotein nitrogen (NPN) reagents (e.g., melamine and urea) on MRBT method was observed, due to the fact that MRB was formed with hydroxide ions and the acidic residues of captured milk proteins, rather than the alkaline residues or the NPN reagents added. The total protein contents in infant milk powder samples detected via the MRBT method were in good agreement with those achieved by the classic Kjeldahl method. In addition, the developed method had much faster measuring speed compared with the Kjeldahl method. PMID:23483553

  5. Albumin induced cytokine expression in porcine adipose tissue explants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Albumin has historically been included in medium designed for use with adipose tissue when evaluating metabolism, gene expression or protein secretion. However, recent studies with mouse adipocytes (Ruan et al., J. Biol. Chem. 278:47585-47593, 2003) and human adipose tissue (Schlesinger et al., Ame...

  6. Functional and rheological properties of amaranth albumins extracted from two Mexican varieties.

    PubMed

    Silva-Sánchez, C; González-Castañeda, J; de León-Rodríguez, A; Barba de la Rosa, A P

    2004-01-01

    The functional and rheological properties of amaranth albumins isolates extracted from two new Mexican varieties were determined. Functional properties tested were protein solubility, foaming, water and oil absorption capacities, emulsifying activity, and emulsion stability. The maximum solubility values for both amaranth albumins were found above pH 6 and values were compared to the solubility of egg albumins. Albumins from amaranth showed excellent foaming capacity and foaming stability at pH 5, suggesting that this protein could be used as whipping agents as egg albumins, also the water and oil absorption capacities reached their maximum values at acidic pH, suggesting that amaranth albumins could be appropriate in preparation of acidic foods. The rheological test based on farinograms and alveograms showed that wheat flour supplemented with 1% amaranth albumins improves the dough properties due to higher mixing stability and the bread had better crumb characteristics. In addition of the known high nutritional values of amaranth albumins, our results indicate the high potential for use of these proteins as an ingredient in food preparations. PMID:15678726

  7. Absorptive-mediated endocytosis of cationized albumin and a beta-endorphin-cationized albumin chimeric peptide by isolated brain capillaries. Model system of blood-brain barrier transport

    SciTech Connect

    Kumagai, A.K.; Eisenberg, J.B.; Pardridge, W.M.

    1987-11-05

    Cationized albumin (pI greater than 8), unlike native albumin (pI approximately 4), enters cerebrospinal fluid (CSF) rapidly from blood. This suggests that a specific uptake mechanism for cationized albumin may exist at the brain capillary wall, i.e. the blood-brain barrier. Isolated bovine brain capillaries rapidly bound cationized (/sup 3/H)albumin and approximately 70% of the bound radioactivity was resistant to mild acid wash, which is assumed to represent internalized peptide. Binding was saturable and a Scatchard plot gave a maximal binding capacity (Ro) = 5.5 +/- 0.7 micrograms/mgp (79 +/- 10 pmol/mgp), and a half-saturation constant (KD) = 55 +/- 8 micrograms/ml (0.8 +/- 0.1 microM). The binding of cationized (/sup 3/H)albumin (pI = 8.5-9) was inhibited by protamine, protamine sulfate, and polylysine (molecular weight = 70,000) with a Ki of approximately 3 micrograms/ml for all three proteins. The use of cationized albumin in directed delivery of peptides through the blood-brain barrier was examined by coupling (/sup 3/H)beta-endorphin to unlabeled cationized albumin (pI = 8.5-9) using the bifunctional reagent, N-succinimidyl 3-(2-pyridyldithio)proprionate. The (/sup 3/H)beta-endorphin-cationized albumin chimeric peptide was rapidly bound and endocytosed by isolated bovine brain capillaries, and this was inhibited by unlabeled cationized albumin but not by unconjugated beta-endorphin or native bovine albumin. Cationized albumin provides a new tool for studying absorptive-mediated endocytosis at the brain capillary and may also provide a vehicle for directed drug delivery through the blood-brain barrier.

  8. Interactions of aptamers with sera albumins

    NASA Astrophysics Data System (ADS)

    Cortez, Célia Martins; Silva, Dilson; Silva, Camila M. C.; Missailidis, Sotiris

    2012-09-01

    The interactions of two short aptamers to human and bovine serum albumins were studied by fluorescence spectroscopic techniques. Intrinsic fluorescence of BSA and HSA were measured by selectively exciting their tryptophan residues. Gradual quenching was observed by titration of both proteins with aptamers. Aptamers are oligonucleic acid or peptide molecules that bind a specific target and can be used for both biotechnological and clinical purposes, since they present molecular recognition properties like that commonly found in antibodies. Two aptamers previously selected against the MUC1 tumour marker were used in this study, one selected for the protein core and one for the glycosylated MUC1. Stern-Volmer graphs were plotted and quenching constants were estimated. Plots obtained from experiments carried out at 25 °C and 37 °C showed the quenching of fluorescence of by aptamers to be a collisional phenomenon. Stern-Volmer constants estimated for HSA quenched by aptamer A were 1.68 × 105 (±5 × 103) M-1 at 37 °C, and 1.37 × 105 (±103) M-1 at 25 °C; and quenched by aptamer B were 1.67 × 105 (±5 × 103) M-1 at 37 °C, and 1.32 × 105 (±103) M-1 at 25 °C. Results suggest that the primary binding site for aptamers on albumin is close to tryptophan residues in sub domain IIA.

  9. Iron absorption in humans: bovine serum albumin compared with beef muscle and egg white

    SciTech Connect

    Hurrell, R.F.; Lynch, S.R.; Trinidad, T.P.; Dassenko, S.A.; Cook, J.D.

    1988-01-01

    We studied the influence of bovine serum albumin and beef meat on nonheme iron absorption in humans and on dialyzable iron in vitro. The addition of serum albumin to a maize gruel had no significant effect on nonheme Fe absorption whereas the addition of beef meat caused a threefold increase. When added to a bread meal, serum albumin caused a modest 60% increase in nonheme Fe absorption and beef meat had no effect. When added to a protein-free meal, serum albumin reduced Fe absorption by 47% compared with a 72% reduction on addition of egg white. The bioavailability of nonheme Fe from meals containing serum albumin was consistently overestimated by the in vitro technique. We conclude that the facilitation of nonheme Fe absorption by meat is not a general property of all animal protein but is better explained by the action of one or more specific animal tissues.

  10. Improved dialytic removal of protein-bound uraemic toxins with use of albumin binding competitors: an in vitro human whole blood study

    PubMed Central

    Tao, Xia; Thijssen, Stephan; Kotanko, Peter; Ho, Chih-Hu; Henrie, Michael; Stroup, Eric; Handelman, Garry

    2016-01-01

    Protein-bound uraemic toxins (PBUTs) cause various deleterious effects in end-stage kidney disease patients, because their removal by conventional haemodialysis (HD) is severely limited by their low free fraction in plasma. Here we provide an experimental validation of the concept that the HD dialytic removal of PBUTs can be significantly increased by extracorporeal infusion of PBUT binding competitors. The binding properties of indoxyl sulfate (IS), indole-3-acetic acid (IAA) and hippuric acid (HIPA) and their binding competitors, ibuprofen (IBU), furosemide (FUR) and tryptophan (TRP) were studied in uraemic plasma. The effect of binding competitor infusion on fractional removal of PBUT was then quantified in an ex vivo single-pass HD model using uraemic human whole blood. The infusion of a combination of IBU and FUR increased the fractional removal of IS from 6.4 ± 0.1 to 18.3 ± 0.4%. IAA removal rose from 16.8 ± 0.3 to 34.5 ± 0.7%. TRP infusion increased the removal of IS and IAA to 10.5 ± 0.1% and 27.1 ± 0.3%, respectively. Moderate effects were observed on HIPA removal. Pre-dialyzer infusion of PBUT binding competitors into the blood stream can increase the HD removal of PBUTs. This approach can potentially be applied in current HD settings. PMID:27001248

  11. Total Protein Extraction and 2-D Gel Electrophoresis Methods for Burkholderia Species

    PubMed Central

    Velapatiño, Billie; Zlosnik, James E. A.; Hird, Trevor J.; Speert, David P.

    2013-01-01

    The investigation of the intracellular protein levels of bacterial species is of importance to understanding the pathogenic mechanisms of diseases caused by these organisms. Here we describe a procedure for protein extraction from Burkholderia species based on mechanical lysis using glass beads in the presence of ethylenediamine tetraacetic acid and phenylmethylsulfonyl fluoride in phosphate buffered saline. This method can be used for different Burkholderia species, for different growth conditions, and it is likely suitable for the use in proteomic studies of other bacteria. Following protein extraction, a two-dimensional (2-D) gel electrophoresis proteomic technique is described to study global changes in the proteomes of these organisms. This method consists of the separation of proteins according to their isoelectric point by isoelectric focusing in the first dimension, followed by separation on the basis of molecular weight by acrylamide gel electrophoresis in the second dimension. Visualization of separated proteins is carried out by silver staining. PMID:24192802

  12. Albumin Dialysis for Liver Failure: A Systematic Review.

    PubMed

    Tsipotis, Evangelos; Shuja, Asim; Jaber, Bertrand L

    2015-09-01

    Albumin dialysis is the best-studied extracorporeal nonbiologic liver support system as a bridge or destination therapy for patients with liver failure awaiting liver transplantation or recovery of liver function. We performed a systematic review to examine the efficacy and safety of 3 albumin dialysis systems (molecular adsorbent recirculating system [MARS], fractionated plasma separation, adsorption and hemodialysis [Prometheus system], and single-pass albumin dialysis) in randomized trials for supportive treatment of liver failure. PubMed, Ovid, EMBASE, Cochrane's Library, and ClinicalTrials.gov were searched. Two authors independently screened citations and extracted data on patient characteristics, quality of reports, efficacy, and safety end points. Ten trials (7 of MARS and 3 of Prometheus) were identified (620 patients). By meta-analysis, albumin dialysis achieved a net decrease in serum total bilirubin level relative to standard medical therapy of 8.0 mg/dL (95% confidence interval [CI], -10.6 to -5.4) but not in serum ammonia or bile acids. Albumin dialysis achieved an improvement in hepatic encephalopathy relative to standard medical therapy with a risk ratio of 1.55 (95% CI, 1.16-2.08) but had no effect survival with a risk ratio of 0.95 (95% CI, 0.84-1.07). Because of inconsistency in the reporting of adverse events, the safety analysis was limited but did not demonstrate major safety concerns. Use of albumin dialysis as supportive treatment for liver failure is successful at removing albumin-bound molecules, such as bilirubin and at improving hepatic encephalopathy. Additional experience is required to guide its optimal use and address safety concerns. PMID:26311600

  13. Blood zinc protoporphyrin, serum total protein, and total cholesterol levels in automobile workshop workers in relation to lead toxicity: Our experience.

    PubMed

    Pachathundikandi, Suneesh Kumar; Varghese, Earaly Thomas

    2006-09-01

    Blood zinc protoporphyrin (ZPP), serum total protein (TP), and total cholesterol (TC) levels in automobile workshop workers in relation to lead toxicity were analysed. In the present study, automobile workshop workers (healthy male workers at an age between 28 and 35 from four major automobile workshops in Kottayam, Kerala State, India) and the control (male healthy adults at an age between 28 and 35 residing at Aymanam, a distant village at Kottayam District, Kerala having reduced or no chance of lead exposure) displayed significant difference in blood lead (BPb) and blood ZZP (BZPP) level. The mean value of BPb in automobile workshop workers was 15.76±0.33 μg/dl, while in the control it was 8.20±0.15 μg/dl. In automobile workshop workers, the mean value of BZPP was 34.2±0.62 μg/dl. The control group exhibited a mean of 11.5±0.22 μg/dl. Automobile workshop workers exhibited significant increase in BZPP was corresponding to the increase in BPb level. The total protein levels estimated in automobile workshop workers showed significant decrease compared to control individuals, but was within the reference range of healthy individuals. The mean value of TP level in automobile workshop workers and control was 6.9±0.13 g/dl and 7.71±0.18 g/dl, respectively. There was no significant difference in blood haemoglobin (BHb) level among the automobile workshop workers and control. The serum TC level in automobile workshop workers showed significant decrease compared to the control individuals, but was with in the reference range of healthy individuals. The mean level of serum TC in automobile workshop workers was 162.00±3.44 mg/dl and the same in control was 172.86±4.32 mg/dl. The present study affirms occupational lead toxicity in automobile workshop workers and its effect on serum protein and cholesterol levels. PMID:23105626

  14. Importance of albumin in cross-reactivity among cat, dog and horse allergens.

    PubMed

    Cabañas, R; López-Serrano, M C; Carreira, J; Ventas, P; Polo, F; Caballero, M T; Contreras, J; Barranco, P; Moreno-Ancillo, A

    2000-01-01

    Different allergenic proteins have been involved in cross-reactivity among animals. Albumins seem to be cross-sensitizing allergenic components. The aim of this study was to assess the importance of albumin as a cross-reactive allergen in patients sensitized to cat, dog and horse. One hundred and seventeen patients sensitized to cat were tested for IgE reactivity using skin prick tests and RAST assays with cat, dog and horse hair/dander extracts and their purified albumin extracts. RAST-inhibition studies were carried out to assess cross-reactivity among cat, dog and horse and among their purified albumins. It was found that 22% of patients exhibited specific IgE to cat albumin; 41% of patients sensitized to cat were also sensitized to dog and horse. Out of these patients, 21% had IgE to three albumins and 17% to two. Reciprocal inhibitions were observed among cat, dog and horse albumins and also among cat, dog and horse hair/dander extracts, using in the latter experiment sera from patients not sensitized to albumins. IgE binding to horse extract was inhibited 30% by its homologous albumin and IgE binding to cat and dog extracts in almost 15% by their respective albumins. It was concluded that albumins from these three animals share some epitopes that account for the cross-reactivity observed in around one-third of patients sensitized to cat, dog and horse. Nevertheless, more than 50% of specific IgE that cross-reacts among these three animals is directed to allergens other than albumin. PMID:10879993

  15. [Effects of colchicine on the content of ribonucleic acids and total proteins of cultured nerve cells. Preliminary study].

    PubMed

    Noel-Courtey, B

    1975-03-01

    Nervous cells from chick embryo lumbo-sacral spinal cord have been cultivated in vitro and treated with colchicine. The effects of this alkaloid on the RNA and the total protein contents of nervous cells have been studied by quantitative cytochemical methods. The RNA content has been measured by cytophotometry after DNase digestion and gallocyanine-chromalun staining; the cellular protein content has been measured after Naphtol Yellow S staining. In colchicine treated cultures, the main part of the nervous cell population consists of spheroidal and piriform neuroblasts; some cells are neurocytes with short processes. During the 48 first hours in vitro, the RNA content is approximatively identical in treated cells as in controls. The cellular total protein content is much lower in the treated cells than in the controls. PMID:1222295

  16. A Homogeneous Fluorescent Sensor for Human Serum Albumin

    PubMed Central

    Wang, Rongsheng E.; Tian, Ling; Chang, Yie-Hwa

    2012-01-01

    Human serum albumin is the most abundant protein in the body and is an important biomarker used for disease-related diagnosis. Although the traditional enzyme-linked immunosorbent assay (ELISA) approach can precisely measure the concentration of human serum albumin, the multi-step procedure and time-consuming preparations of ELISA limit its diagnostic applications, preventing accurate point-of-care testing, for example. Herein, we report the recent development of an antibody-based albumin sensor that allows for a homogeneous measurement of albumin concentrations in saliva, urine and serum, in which this type of sensor is validated for the first time. The assay only requires simple mixing, and relies on time-resolved (TR) fluorescence resonance energy transfer (FRET) to produce robust, sensitive signals. The whole process, from sample preparation to final read-out, is expected to take less than one hour and requires only a standard plate-reader, thus making the sensor a convenient and cost-effective tool for albumin analysis. PMID:22326845

  17. Superior serum half life of albumin tagged TNF ligands

    SciTech Connect

    Mueller, Nicole; Schneider, Britta; Pfizenmaier, Klaus; Wajant, Harald

    2010-06-11

    Due to their immune stimulating and apoptosis inducing properties, ligands of the TNF family attract increasing interest as therapeutic proteins. A general limitation of in vivo applications of recombinant soluble TNF ligands is their notoriously rapid clearance from circulation. To improve the serum half life of the TNF family members TNF, TWEAK and TRAIL, we genetically fused soluble variants of these molecules to human serum albumin (HSA). The serum albumin-TNF ligand fusion proteins were found to be of similar bioactivity as the corresponding HSA-less counterparts. Upon intravenous injection (i.v.), serum half life of HSA-TNF ligand fusion proteins, as determined by ELISA, was around 15 h as compared to approximately 1 h for all of the recombinant control TNF ligands without HSA domain. Moreover, serum samples collected 6 or 24 h after i.v. injection still contained high TNF ligand bioactivity, demonstrating that there is only limited degradation/inactivation of circulating HSA-TNF ligand fusion proteins in vivo. In a xenotransplantation model, significantly less of the HSA-TRAIL fusion protein compared to the respective control TRAIL protein was required to achieve inhibition of tumor growth indicating that the increased half life of HSA-TNF ligand fusion proteins translates into better therapeutic action in vivo. In conclusion, our data suggest that genetic fusion to serum albumin is a powerful and generally applicable mean to improve bioavailability and in vivo activity of TNF ligands.

  18. Bovine serum albumin as the dominant form of dietary protein reduces subcutaneous fat mass, plasma leptin and plasma corticosterone in high fat-fed C57/BL6J mice.

    PubMed

    McManus, Bettina L; Korpela, Riitta; Speakman, John R; Cryan, John F; Cotter, Paul D; Nilaweera, Kanishka N

    2015-08-28

    Increasing evidence suggests that the source of dietary protein can have an impact on weight gain and fat mass during high-fat feeding in both humans and rodents. The present study examined whether dietary bovine serum albumin (BSA) as the dominant source of protein alters energy balance and adiposity associated with high-fat feeding. C57/BL6J mice were given a diet with 10 % of energy from fat and 20 % of energy from casein or a diet with 45 % of energy from fat and either 20 % of energy from casein (HFD) or BSA (HFD+BSA) for 13 weeks. The HFD+BSA diet did not significantly alter daily energy expenditure, locomotor activity and RER, but did increase cumulative energy intake and percentage of lean mass while reducing feed efficiency and percentage of fat mass when compared with the HFD (P< 0·05). In subcutaneous adipose tissue (SAT), the HFD+BSA diet increased the mRNA levels of PPARα (PPARA), carnitine palmitoyltransferase 1b (CPT1b) and uncoupling protein 3 (UCP3), but reduced the mRNA level of leptin when compared with the HFD (P< 0·05). The SAT mRNA levels of PPARA, CPT1b and UCP3 were negatively correlated (P< 0·05) with SAT mass, which was reduced in HFD+BSA mice compared with HFD controls (P< 0·01). No differences in epididymal fat mass existed between the groups. The HFD+BSA diet normalised plasma leptin and corticosterone levels compared with the HFD (P< 0·05). While differences in leptin levels were associated with the percentage of fat mass (P< 0·01), changes in corticosterone concentrations were independent of the percentage of fat mass (P< 0·05). The data suggest that the HFD+BSA diet influences plasma leptin levels via SAT mass reduction where mRNA levels of genes linked to β-oxidation were increased, whereas differences in plasma corticosterone levels were not related to fat mass reduction. PMID:26189974

  19. Glycation alters ligand binding, enzymatic, and pharmacological properties of human albumin.

    PubMed

    Baraka-Vidot, Jennifer; Planesse, Cynthia; Meilhac, Olivier; Militello, Valeria; van den Elsen, Jean; Bourdon, Emmanuel; Rondeau, Philippe

    2015-05-19

    Albumin, the major circulating protein in blood plasma, can be subjected to an increased level of glycation in a diabetic context. Albumin exerts crucial pharmacological activities through its drug binding capacity, i.e., ketoprofen, and via its esterase-like activity, allowing the conversion of prodrugs into active drugs. In this study, the impact of the glucose-mediated glycation on the pharmacological and biochemical properties of human albumin was investigated. Aggregation product levels and the redox state were quantified to assess the impact of glycation-mediated changes on the structural properties of albumin. Glucose-mediated changes in ketoprofen binding properties and esterase-like activity were evaluated using fluorescence spectroscopy and p-nitrophenyl acetate hydrolysis assays, respectively. With the exception of oxidative parameters, significant dose-dependent alterations in biochemical and functional properties of in vitro glycated albumin were observed. We also found that the dose-dependent increase in levels of glycation and protein aggregation and average molecular mass changes correlated with a gradual decrease in the affinity of albumin for ketoprofen and its esterase-like property. In parallel, significant alterations in both pharmacological properties were also evidenced in albumin purified from diabetic patients. Partial least-squares regression analyses established a significant correlation between glycation-mediated changes in biochemical and pharmacological properties of albumin, highlighting the important role for glycation in the variability of the drug response in a diabetic situation. PMID:25915793

  20. Development of a new method for determination of total haem protein in fish muscle.

    PubMed

    Chaijan, Manat; Undeland, Ingrid

    2015-04-15

    Using classic haem protein quantification methods, the extraction step in buffer or acid acetone often becomes limiting if muscle is oxidised and/or stored; haem-proteins then tend to bind to muscle components like myofibrils and/or biomembranes. The objective of this study was to develop a new haem protein determination method for fish muscle overcoming such extractability problems. The principle was to homogenise and heat samples in an SDS-containing phosphate buffer to dissolve major muscle components and convert ferrous/ferric haem proteins to hemichromes with a unique absorption peak at 535 nm. Hb-recovery tests with the new and classic methods showed that the new method and Hornsey's method performed significantly better on fresh Hb-enriched cod mince than Brown's and Drabkin's methods; recovery was ⩾98%. However, in highly oxidised samples and in cod protein isolates made with acid pH-shift processing, the new method performed better than Hornsey's method (63% and 87% vs. 50% and 68% recovery). Further, the new method performed well in fish muscle with ⩽30% lipid, <5% NaCl and pH 5.5-7.0; it was also unaffected by freezing/frozen storage. PMID:25466135

  1. Pru du 2S albumin or Pru du vicilin?

    PubMed

    Garino, Cristiano; De Paolis, Angelo; Coïsson, Jean Daniel; Arlorio, Marco

    2015-06-01

    A short partial sequence of 28 amino acids is all the information we have so far about the putative allergen 2S albumin from almond. The aim of this work was to analyze this information using mainly bioinformatics tools, in order to verify its rightness. Based on the results reported in the paper describing this allergen from almond, we analyzed the original data of amino acids sequencing through available software. The degree of homology of the almond 12kDa protein with any other known 2S albumin appears to be much lower than the one reported in the paper that firstly described it. In a publicly available cDNA library we discovered an expressed sequence tag which translation generates a protein that perfectly matches both of the sequencing outputs described in the same paper. A further analysis indicated that the latter protein seems to belong to the vicilin superfamily rather than to the prolamin one. The fact that also vicilins are seed storage proteins known to be highly allergenic would explain the IgE reactivity originally observed. Based on our observations we suggest that the IgE reactive 12kDa protein from almond currently known as Pru du 2S albumin is in reality the cleaved N-terminal region of a 7S vicilin like protein. PMID:25854802

  2. Effect of tribology processes on adsorption of albumin

    NASA Astrophysics Data System (ADS)

    Yan, Yu; Yang, Hongjuan; Wang, Linghe; Su, Yanjing; Qiao, Lijie

    2016-03-01

    As soon as artificial joint replacements are implanted into patients, the adsorption of proteins can occur. Joint implants operate in a protein-rich and relatively corrosive environment under tribological contact. The contacted area acted as an anodic part and the rest of the surface was more cathodic. Therefore, the adsorption of proteins is different in and outside the wear track. Adsorbed proteins would denature during rubbing and a tribofilm could form. The tribofilm can lubricate the surface and act as a barrier to corrosion damage. However, to observe the adsorption of proteins in situ has always been a challenge. Scanning Kelvin probe force microscope (SKPFM) was used to study the adsorption of albumin on the surface of CoCrMo alloy under simulated tribology movement. Fluorescence microscopy (FM) was employed to reveal the protein molecules in the wear scar. It was found that albumin molecules can decrease the surface potential and accelerate the corrosion process. In the wear track, albumin denatured and changed the surface potential as time progressed.

  3. Exploring the binding mechanism of ondansetron hydrochloride to serum albumins: Spectroscopic approach

    NASA Astrophysics Data System (ADS)

    Sandhya, B.; Hegde, Ashwini H.; K. C., Ramesh; Seetharamappa, J.

    2012-02-01

    The mechanism of interaction of ondansetron hydrochloride (OND) to serum albumins [bovine serum albumin (BSA) and human serum albumin (HSA)] was studied for the first time employing fluorimetric, circular dichroism, FTIR and UV-vis absorption techniques under the simulated physiological conditions. Fluorimetric results were utilized to investigate the binding and conformational characteristics of protein upon interaction with varying concentrations of the drug. Higher binding constant values revealed the strong interaction between the drug and protein while the number of binding sites close to unity indicated single class of binding site for OND in protein. Thermodynamic results revealed that both hydrogen bond and hydrophobic interactions played a major role in stabilizing drug-protein complex. Site marker competitive experiments indicated that the OND bound to albumins at subdomin II A (Sudlow's site I). Further, the binding distance between OND and serum albumin was calculated based on the Förster's theory of non-radioactive energy transfer and found to be 2.30 and 3.41 nm, respectively for OND-BSA and OND-HSA. The circular dichroism data revealed that the presence of OND decreased the α-helix content of serum albumins. 3D-fluorescence results also indicated the conformational changes in protein upon interaction with OND. Further, the effects of some cations have been investigated in the interaction of drug to protein.

  4. Exploring the binding mechanism of ondansetron hydrochloride to serum albumins: spectroscopic approach.

    PubMed

    B, Sandhya; Hegde, Ashwini H; K C, Ramesh; J, Seetharamappa

    2012-02-01

    The mechanism of interaction of ondansetron hydrochloride (OND) to serum albumins [bovine serum albumin (BSA) and human serum albumin (HSA)] was studied for the first time employing fluorimetric, circular dichroism, FTIR and UV-vis absorption techniques under the simulated physiological conditions. Fluorimetric results were utilized to investigate the binding and conformational characteristics of protein upon interaction with varying concentrations of the drug. Higher binding constant values revealed the strong interaction between the drug and protein while the number of binding sites close to unity indicated single class of binding site for OND in protein. Thermodynamic results revealed that both hydrogen bond and hydrophobic interactions played a major role in stabilizing drug-protein complex. Site marker competitive experiments indicated that the OND bound to albumins at subdomin II A (Sudlow's site I). Further, the binding distance between OND and serum albumin was calculated based on the Förster's theory of non-radioactive energy transfer and found to be 2.30 and 3.41 nm, respectively for OND-BSA and OND-HSA. The circular dichroism data revealed that the presence of OND decreased the α-helix content of serum albumins. 3D-fluorescence results also indicated the conformational changes in protein upon interaction with OND. Further, the effects of some cations have been investigated in the interaction of drug to protein. PMID:22112579

  5. Relationship of Circulating Total Homocysteine and C-Reactive Protein to Trabecular Bone in Postmenopausal Women

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Homocysteine (Hcy) and C-reactive protein (CRP) are novel risk factors for osteoporosis. The purpose of this analysis was to determine the relationship of Hcy and CRP to volumetric trabecular bone, but also to assess their relationship to areal composite bone in healthy postmenopausal women (N=184)....

  6. Characterization of methylene diphenyl diisocyanate haptenated human serum albumin and hemoglobin

    PubMed Central

    Mhike, Morgen; Chipinda, Itai; Hettick, Justin M.; Simoyi, Reuben H.; Lemons, Angela; Green, Brett J.; Siegel, Paul D.

    2013-01-01

    Protein haptenation by polyurethane industrial intermediate methylene diphenyl diisocyanate (MDI) is thought to be an important step in the development of diisocyanate (dNCO)-specific allergic sensitization; however, MDI haptenated albumins used to screen specific antibody are often poorly characterized. Recently, the need to develop standardized immunoassays using a consistent, well characterized dNCO-haptenated protein to screen for the presence of MDI-specific IgE and IgG from workers’ sera has been emphasized and recognized. This has been challenging to achieve due to the bivalent, electrophilic nature of dNCO leading to the capability to produce multiple cross-linked protein species and polymeric additions to proteins. In the present study, MDI was reacted with human serum albumin (HSA) and hemoglobin (Hb) at molar ratios ranging from 1:1 to 40:1 MDI: protein. Adducts were characterized by (1) loss of available trinitrobenzene sulfonic acid (TNBS) binding to primary amines, (2) electrophoretic migration in polyacrylamide gels, (3) quantification of methylene diphenyl diamine following acid hydrolysis and (4) immunoassay. Concentration dependent changes in all the above noted parameters were observed demonstrating increase in both number and complexity of conjugates formed with increasing MDI concentration. In conclusion, a series of bio-analytical assays should be performed to standardize MDI-antigen preparations across lots and laboratories for measurement of specific antibody in exposed workers which in total indicate degree of intra- and inter-molecular cross-linking, number of dNCO bound, number of different specific binding sites on the protein and degree of immuno-reactivity. PMID:23743149

  7. Albumin-deficient mouse models for studying metabolism of human albumin and pharmacokinetics of albumin-based drugs

    PubMed Central

    Roopenian, Derry C; Low, Benjamin E; Christianson, Gregory J; Proetzel, Gabriele; Sproule, Thomas J; Wiles, Michael V

    2015-01-01

    Serum albumin is the major determinant of blood colloidal osmotic pressure acting as a depot and distributor of compounds including drugs. In humans, serum albumin exhibits an unusually long half-life mainly due to protection from catabolism by neonatal Fc receptor (FcRn)-mediated recycling. These properties make albumin an attractive courier of therapeutically-active compounds. However, pharmaceutical research and development of albumin-based therapeutics has been hampered by the lack of appropriate preclinical animal models. To overcome this, we developed and describe the first mouse with a genetic deficiency in albumin and its incorporation into an existing humanized FcRn mouse model, B6.Cg-Fcgrttm1Dcr Tg(FCGRT)32Dcr/DcrJ (Tg32). Albumin-deficient strains (Alb-/-) were created by TALEN-mediated disruption of the albumin (Alb) gene directly in fertilized oocytes derived from Tg32 mice and its non-transgenic background control, C57BL/6J (B6). The resulting Alb-/- strains are analbuminemic but healthy. Intravenous administration of human albumin to Tg32-Alb-/- mFcRn-/- hFcRnTg/Tg) mice results in a remarkably extended human albumin serum half-life of ∼24 days, comparable to that found in humans, and in contrast to half-lives of 2.6–5.8 d observed in B6, B6-Alb-/- and Tg32 strains. This striking increase can be explained by the absence of competing endogenous mouse albumin and the presence of an active human FcRn. These novel albumin-deficient models provide unique tools for investigating the biology and pathobiology of serum albumin and are a more appropriate rodent surrogates for evaluating human serum albumin pharmacokinetics and albumin-based compounds. PMID:25654695

  8. Fluorescence lifetime measurements of native and glycated human serum albumin and bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Joshi, Narahari V.; Joshi, Virgina O. d.; Contreras, Silvia; Gil, Herminia; Medina, Honorio; Siemiarczuk, Aleksander

    1999-05-01

    Nonenzymatic glycation, also known as Maillard reaction, plays an important role in the secondary complications of the diabetic pathology and aging, therefore, human serum albumin (HSA) and bovine serum albumin (BSA) were glycated by a conventional method in our laboratory using glucose as the glycating agent. Fluorescence lifetime measurements were carried out with a laser strobe fluorometer equipped with a nitrogen/dye laser and a frequency doubler as a pulsed excitation source. The samples were excited at 295 nm and the emission spectra were recorded at 345 nm. The obtained decay curves were tried for double and triple exponential functions. It has been found that the shorter lifetime increases for glycated proteins as compared with that of the native ones. For example, in the case of glycated BSA the lifetime increased from 1.36 ns to 2.30 ns. Similarly, for HSA, the lifetime increases from 1.58 ns to 2.26 ns. Meanwhile, the longer lifetime changed very slightly for both proteins (from 6.52 ns to 6.72 ns). The increase in the lifetime can be associated with the environmental effect; originated from the attachment of glucose to some lysine residues. A good example is Trp 214 which is in the cage of Lys 225, Lys 212, Lys 233, Lys 205, Lys 500, Lys 199 and Lys 195. If fluorescence lifetime technique is calibrated and properly used it could be employed for assessing glycation of proteins.

  9. Interaction of purine bases and nucleosides with serum albumin

    NASA Astrophysics Data System (ADS)

    Sułkowska, A.; Michnik, A.

    1997-06-01

    The proton NMR spectra of alkyl derivatives of adenine and adenosine have been studied. High-resolution (400 MHz) proton spectra were recorded at 300 K at increasing concentrations of serum albumin. The dependence of the chemical shifts and the line width of the individual spectral lines on the protein concentration provides some detailed information about the nature of the complexes between the purine derivatives and albumin. Comparison of data for the methylated and non-methylated purine bases and nucleosides indicates the formation of non-specific complexes with serum albumin. However, the presence of the ethyl group in 8-ethyl-9 N-methyladenine means that in the adenine derivative-serum albumin complex the ethyl chain preserves its dominant role in binding. An advantage of our model is that the π-π interaction between the adenine ring and the amino acids of the protein can be replaced by hydrophobic interaction in the case of complexation of the ethyl adenine derivative.

  10. Point substitutions in albumin genetic variants from Asia.

    PubMed Central

    Arai, K; Madison, J; Shimizu, A; Putnam, F W

    1990-01-01

    Despite their rarity and physiologically neutral character, more inherited structural variants of serum albumin (alloalbumins) are known than for any other human protein except hemoglobin. Including three previously unreported examples described here, we have identified 13 different point substitutions in alloalbumins of Japanese origin. Of these only albumin B and two proalbumins have been reported in other ethnic groups, and these are the most common variants of European origin. Some alloalbumins of Asiatic origin, but not yet identified in Japanese, are present in diverse ethnic groups. An alloalbumin found in indigenes of New Guinea (lysine----asparagine at position 313) is also present in Caucasians of various European descents. Albumin Lambadi, occurring in a tribal group in south India, has a mutation (glutamic acid----lysine at position 501) also found as a rare variant in individuals of diverse ethnic origin resident on four continents. These results suggest that some alloalbumins with the same substitution may have originated by independent mutations in various populations. This, together with the apparent clustering of point substitutions in the protein structure, may reflect hypermutability of the albumin gene. PMID:2404284

  11. Raman microspectroscopy of nanodiamond-induced structural changes in albumin.

    PubMed

    Svetlakova, Anastasiya S; Brandt, Nikolay N; Priezzhev, Alexander V; Chikishev, Andrey Yu

    2015-04-01

    Nanodiamonds (NDs) are promising agents for theranostic applications due to reported low toxicity and high biocompatibility, which is still being extensively tested on cellular, tissue, and organism levels. It is presumed that for experimental and future clinical applications, NDs will be administered into the organism via the blood circulation system. In this regard, the interaction of NDs with blood components needs to be thoroughly studied. We studied the interaction of carboxylated NDs (cNDs) with albumin, one of the major proteins of blood plasma. After 2-h long in vitro incubation in an aqueous solution of the protein, 100-nm cNDs were dried and the dry samples were studied with the aid of Raman microspectroscopy. The spectroscopic data indicate significant conformational changes that can be due to cND–protein interaction. A possible decrease in the functional activity of albumin related to the conformational changes must be taken into account in the in vivo applications. PMID:25901656

  12. Effect of Buddhist meditation on serum cortisol and total protein levels, blood pressure, pulse rate, lung volume and reaction time.

    PubMed

    Sudsuang, R; Chentanez, V; Veluvan, K

    1991-09-01

    Serum cortisol and total protein levels, blood pressure, heart rate, lung volume, and reaction time were studied in 52 males 20-25 years of age practicing Dhammakaya Buddhist meditation, and in 30 males of the same age group not practicing meditation. It was found that after meditation, serum cortisol levels were significantly reduced, serum total protein level significantly increased, and systolic pressure, diastolic pressure and pulse rate significantly reduced. Vital capacity, tidal volume and maximal voluntary ventilation were significantly lower after meditation than before. There were also significant decreases in reaction time after mediation practice. The percentage decrease in reaction time during meditation was 22%, while in subjects untrained in meditation, the percentage decrease was only 7%. Results from these studies indicate that practising Dhammakaya Buddhist meditation produces biochemical and physiological changes and reduces the reaction time. PMID:1801007

  13. Interference of salts used on aqueous two-phase systems on the quantification of total proteins.

    PubMed

    Golunski, Simone Maria; Sala, Luisa; Silva, Marceli Fernandes; Dallago, Rogério Marcos; Mulinari, Jéssica; Mossi, Altemir José; Brandelli, Adriano; Kalil, Susana Juliano; Di Luccio, Marco; Treichel, Helen

    2016-02-01

    In this study the interference of potassium phosphate, sodium citrate, sodium chloride and sodium nitrate salts on protein quantification by Bradford's method was assessed. Potassium phosphate and sodium citrate salts are commonly used in aqueous two-phase systems for enzyme purification. Results showed that the presence of potassium phosphate and sodium citrate salts increase the absorbance of the samples, when compared with the samples without any salt. The increase in absorptivity of the solution induces errors on protein quantification, which are propagated to the calculations of specific enzyme activity and consequently on purification factor. The presence of sodium chloride and sodium nitrate practically did not affect the absorbance of inulinase, probably the metals present in the enzyme extract did not interact with the added salts. PMID:26616454

  14. Absolute quantitation of NAPQI-modified rat serum albumin by LC-MS/MS: monitoring acetaminophen covalent binding in vivo.

    PubMed

    LeBlanc, André; Shiao, Tze Chieh; Roy, René; Sleno, Lekha

    2014-09-15

    Acetaminophen is known to cause hepatoxicity via the formation of a reactive metabolite, N-acetyl p-benzoquinone imine (NAPQI), as a result of covalent binding to liver proteins. Serum albumin (SA) is known to be covalently modified by NAPQI and is present at high concentrations in the bloodstream and is therefore a potential biomarker to assess the levels of protein modification by NAPQI. A newly developed method for the absolute quantitation of serum albumin containing NAPQI covalently bound to its active site cysteine (Cys34) is described. This optimized assay represents the first absolute quantitation of a modified protein, with very low stoichiometric abundance, using a protein-level standard combined with isotope dilution. The LC-MS/MS assay is based on a protein standard modified with a custom-designed reagent, yielding a surrogate peptide (following digestion) that is a positional isomer to the target peptide modified by NAPQI. To illustrate the potential of this approach, the method was applied to quantify NAPQI-modified SA in plasma from rats dosed with acetaminophen. The resulting method is highly sensitive (capable of quantifying down to 0.0006% of total RSA in its NAPQI-modified form) and yields excellent precision and accuracy statistics. A time-course pharmacokinetic study was performed to test the usefulness of this method for following acetaminophen-induced covalent binding at four dosing levels (75-600 mg/kg IP), showing the viability of this approach to directly monitor in vivo samples. This approach can reliably quantify NAPQI-modified albumin, allowing direct monitoring of acetaminophen-related covalent binding. PMID:25168029

  15. Albumin transport across pulmonary capillary-interstitial barrier in anesthetized dogs.

    PubMed

    Ishibashi, M; Reed, R K; Townsley, M I; Parker, J C; Taylor, A E

    1991-05-01

    To evaluate albumin transport across the pulmonary capillary endothelial and interstitial barriers, we simultaneously measured blood-to-tissue (QA,t) and blood-to-lymph (QA,l) clearances of 125I-radiolabeled albumin as well as endogenous albumin clearance (Qa,l) in the canine lung in vivo (n = 10). Steady-state prenodal lung lymph flows (Qw,l) and protein clearances were measured over a 2-h period at a constant capillary pressure (Pc, 13-33 cmH2O). Comparison between QA,t and QA,l as a function of Pc suggests that little of the albumin that crossed the capillary wall remained in the lung tissue, with most leaving in the lymph. Qw,l increased significantly as Pc increased, but lung tissue water was minimally affected. From the ratio of the clearance-Pc slopes for albumin and water, the albumin reflection coefficient was estimated to be 0.81 using QA,l and Qw,l and 0.56 using Qa,l and Qw,l. The permeability surface area product for the sum of blood-to-tissue and blood-to-lymph fluxes of labeled albumin (QA,t + QA,l) was 31 +/- 9 microliters/min, whereas that calculated from the blood-to-lymph flux of endogenous albumin (Qa,l) was 97 +/- 22 microliters/min. These data suggest that 1) both tissue and lymph accumulations of albumin must be considered when microvascular permeability is evaluated using protein tracers; 2) lymph clearance, but not tissue accumulation of albumin, was filtration dependent; and 3) lymph flow was an important contributor to the safety factor against edema formation over a moderate range of capillary pressures. PMID:1864792

  16. Protein biomarkers for enhancement of radiation dose and injury assessment in nonhuman primate total-body irradiation model.

    PubMed

    Ossetrova, Natalia I; Sandgren, David J; Blakely, William F

    2014-06-01

    Development and validation of early-response radiation injury biomarkers are critical for effective triage and medical management of irradiated individuals. Plasma protein and haematological profiles were evaluated using multivariate linear-regression analysis to provide dose-response calibration curves for photon-radiation dose assessment in 30 rhesus macaques total-body-irradiated to 1-8.5 Gy with (60)Co gamma rays (0.55 Gy min(-1)). Equations for radiation dose received were established based on different combinations of protein biomarkers [i.e. C-reactive protein (CRP), serum amyloid A (SAA), interleukin 6 (IL-6) and Flt3 Ligand (Flt3L)] at samples collection time-points 6 h, 1, 2, 3, 4 and 7 d post-total-body irradiation. Dynamic changes in the levels of CRP, SAA, IL-6 and Flt3L may function as prognostic indicators of the time course and severity of acute radiation sickness (ARS). The combination of protein biomarkers provides greater accuracy for early radiation assessment than any one biomarker alone. PMID:24925901

  17. A Novel Albumin-Based Tissue Scaffold for Autogenic Tissue Engineering Applications

    PubMed Central

    Li, Pei-Shan; -Liang Lee, I.; Yu, Wei-Lin; Sun, Jui-Sheng; Jane, Wann-Neng; Shen, Hsin-Hsin

    2014-01-01

    Tissue scaffolds provide a framework for living tissue regeneration. However, traditional tissue scaffolds are exogenous, composed of metals, ceramics, polymers, and animal tissues, and have a defined biocompatibility and application. This study presents a new method for obtaining a tissue scaffold from blood albumin, the major protein in mammalian blood. Human, bovine, and porcine albumin was polymerised into albumin polymers by microbial transglutaminase and was then cast by freeze-drying-based moulding to form albumin tissue scaffolds. Scanning electron microscopy and material testing analyses revealed that the albumin tissue scaffold possesses an extremely porous structure, moderate mechanical strength, and resilience. Using a culture of human mesenchymal stem cells (MSCs) as a model, we showed that MSCs can be seeded and grown in the albumin tissue scaffold. Furthermore, the albumin tissue scaffold can support the long-term osteogenic differentiation of MSCs. These results show that the albumin tissue scaffold exhibits favourable material properties and good compatibility with cells. We propose that this novel tissue scaffold can satisfy essential needs in tissue engineering as a general-purpose substrate. The use of this scaffold could lead to the development of new methods of artificial fabrication of autogenic tissue substitutes. PMID:25034369

  18. Species Dependence of [64Cu]Cu-Bis(thiosemicarbazone) Radiopharmaceutical Binding to Serum Albumins

    PubMed Central

    Basken, Nathan E.; Mathias, Carla J.; Lipka, Alexander E.; Green, Mark A.

    2008-01-01

    Introduction Interactions of three copper(II) bis(thiosemicarbazone) PET radiopharmaceuticals with human serum albumin, and the serum albumins of four additional mammalian species, were evaluated. Methods 64Cu-labeled diacetyl bis(N4-methylthiosemicarbazonato)copper(II) (Cu-ATSM), pyruvaldehyde bis(N4-methylthiosemicarbazonato)copper(II) (Cu-PTSM), and ethylglyoxal bis(thiosemicarbazonato)copper(II) (Cu-ETS) were synthesized and their binding to human, canine, rat, baboon, and porcine serum albumins quantified by ultrafiltration. Protein binding was also measured for each tracer in human, porcine, rat, and mouse serum. Results The interaction of these neutral, lipophilic copper chelates with serum albumin is highly compound- and species-dependent. Cu-PTSM and Cu-ATSM exhibit particularly high affinity for human serum albumin (HSA), while the albumin binding of Cu-ETS is relatively insensitive to species. At HSA concentrations of 40 mg/mL, “% Free” (non-albumin-bound) levels of radiopharmaceutical were 4.0 ± 0.1%; 5.3 ± 0.2%; and 38.6 ± 0.8% for Cu-PTSM; Cu-ATSM; and Cu-ETS, respectively. Conclusions Species-dependent variations in radiopharmaceutical binding to serum albumin may need to be considered when using animal models to predict the distribution and kinetics of these compounds in humans. PMID:18355683

  19. A Novel Albumin-Based Tissue Scaffold for Autogenic Tissue Engineering Applications

    NASA Astrophysics Data System (ADS)

    Li, Pei-Shan; -Liang Lee, I.; Yu, Wei-Lin; Sun, Jui-Sheng; Jane, Wann-Neng; Shen, Hsin-Hsin

    2014-07-01

    Tissue scaffolds provide a framework for living tissue regeneration. However, traditional tissue scaffolds are exogenous, composed of metals, ceramics, polymers, and animal tissues, and have a defined biocompatibility and application. This study presents a new method for obtaining a tissue scaffold from blood albumin, the major protein in mammalian blood. Human, bovine, and porcine albumin was polymerised into albumin polymers by microbial transglutaminase and was then cast by freeze-drying-based moulding to form albumin tissue scaffolds. Scanning electron microscopy and material testing analyses revealed that the albumin tissue scaffold possesses an extremely porous structure, moderate mechanical strength, and resilience. Using a culture of human mesenchymal stem cells (MSCs) as a model, we showed that MSCs can be seeded and grown in the albumin tissue scaffold. Furthermore, the albumin tissue scaffold can support the long-term osteogenic differentiation of MSCs. These results show that the albumin tissue scaffold exhibits favourable material properties and good compatibility with cells. We propose that this novel tissue scaffold can satisfy essential needs in tissue engineering as a general-purpose substrate. The use of this scaffold could lead to the development of new methods of artificial fabrication of autogenic tissue substitutes.

  20. Unexpected Normal Colloid Osmotic Pressure in Clinical States with Low Serum Albumin

    PubMed Central

    Michelis, Regina; Sela, Shifra; Zeitun, Teuta; Geron, Ronit; Kristal, Batya

    2016-01-01

    Background In clinical states associated with systemic oxidative stress (OS) and inflammation such as chronic kidney disease (CKD), oxidative modifications of serum albumin impair its quantification, resulting in apparent hypoalbuminemia. As the maintenance of oncotic pressure/colloid osmotic pressure (COP) is a major function of albumin, this study examined the impact of albumin oxidation on COP, both in-vivo and in-vitro. Methods Patients with proteinuria and patients on chronic hemodialysis (HD) with systemic inflammation and OS were enrolled. Blood samples were collected from 134 subjects: 32 healthy controls (HC), proteinuric patients with high (n = 17) and low (n = 31) systemic inflammation and from 54 patients on chronic hemodialysis (HD) with the highest levels of OS and inflammation. Results In-vitro oxidized albumin showed significantly higher COP values than non-oxidized albumin at identical albumin levels. In vivo, in hypoalbuminemic HD patients with the highest OS and inflammation, COP values were also higher than expected for the low albumin levels. The contribution to COP by other prevalent plasma proteins, such as fibrinogen and immunoglobulins was negligible. We imply that the calculation of COP based on albumin levels should be revisited in face of OS and inflammation. Hence, in hypoalbuminemic proteinuric patients with systemic OS and inflammation the assumption of low COP should be verified by its measurements. PMID:27453993

  1. Urinary Albumin Excretion and Vascular Function in Rheumatoid Arthritis

    PubMed Central

    2016-01-01

    Rheumatoid arthritis (RA) is associated with significant cardiovascular (CV) morbidity and mortality. Increased urinary albumin excretion is a marker of CV risk. There are only few data on urinary albumin excretion in RA patients. Aim of the present study was to investigate urinary albumin excretion in RA patients and analyze, whether there is an association between urinary albumin excretion and vascular function as measured by the augmentation index (AIx). In a total of 341 participants (215 with RA, 126 without RA) urinary albumin-creatinine ratio (ACR) was determined and the AIx was measured. The Kolmogorov-Smirnov-test was used to cluster patient groups whose distributions of ACR can be considered to be equal. A crude analysis showed a median ACR of 6.6 mg/g in the RA group and 5.7 mg/g in patients without RA (P > 0.05). In order to account for diabetes (DM) we formed 4 distinct patient groups. Group 1: RA-/DM- (n = 74); group 2: RA+/DM- (n = 195); group 3: RA-/DM+ (n = 52); group 4: RA+/DM+ (n = 20). Clustering of these groups revealed two distinct patient groups: those without RA and DM, and those with either RA or DM or both. The latter group showed statistically significant higher ACR (median 8.1 mg/g) as the former (median 4.5 mg/g). We found no significant correlation between AIx and ACR. Urinary albumin excretion in patients with RA or DM or both is higher than in subjects without RA and DM. This can be seen as a sign of vascular alteration and increased CV risk in these patients. PMID:26955238

  2. Urinary Albumin Excretion and Vascular Function in Rheumatoid Arthritis.

    PubMed

    Pieringer, Herwig; Brummaier, Tobias; Piringer, Bettina; Auer-Hackenberg, Lorenz; Hartl, Andreas; Puchner, Rudolf; Pohanka, Erich; Schmid, Michael

    2016-03-01

    Rheumatoid arthritis (RA) is associated with significant cardiovascular (CV) morbidity and mortality. Increased urinary albumin excretion is a marker of CV risk. There are only few data on urinary albumin excretion in RA patients. Aim of the present study was to investigate urinary albumin excretion in RA patients and analyze, whether there is an association between urinary albumin excretion and vascular function as measured by the augmentation index (AIx). In a total of 341 participants (215 with RA, 126 without RA) urinary albumin-creatinine ratio (ACR) was determined and the AIx was measured. The Kolmogorov-Smirnov-test was used to cluster patient groups whose distributions of ACR can be considered to be equal. A crude analysis showed a median ACR of 6.6 mg/g in the RA group and 5.7 mg/g in patients without RA (P > 0.05). In order to account for diabetes (DM) we formed 4 distinct patient groups. Group 1: RA-/DM- (n = 74); group 2: RA+/DM- (n = 195); group 3: RA-/DM+ (n = 52); group 4: RA+/DM+ (n = 20). Clustering of these groups revealed two distinct patient groups: those without RA and DM, and those with either RA or DM or both. The latter group showed statistically significant higher ACR (median 8.1 mg/g) as the former (median 4.5 mg/g). We found no significant correlation between AIx and ACR. Urinary albumin excretion in patients with RA or DM or both is higher than in subjects without RA and DM. This can be seen as a sign of vascular alteration and increased CV risk in these patients. PMID:26955238

  3. Combined nitrogen limitation and cadmium stress stimulate total carbohydrates, lipids, protein and amino acid accumulation in Chlorella vulgaris (Trebouxiophyceae).

    PubMed

    Chia, Mathias Ahii; Lombardi, Ana Teresa; da Graça Gama Melão, Maria; Parrish, Christopher C

    2015-03-01

    Metals have interactive effects on the uptake and metabolism of nutrients in microalgae. However, the effect of trace metal toxicity on amino acid composition of Chlorella vulgaris as a function of varying nitrogen concentrations is not known. In this research, C. vulgaris was used to investigate the influence of cadmium (10(-7) and 2.0×10(-8)molL(-1) Cd) under varying nitrogen (2.9×10(-6), 1.1×10(-5) and 1.1×10(-3)molL(-1)N) concentrations on its growth rate, biomass and biochemical composition. Total carbohydrates, total proteins, total lipids, as well as individual amino acid proportions were determined. The combination of Cd stress and N limitation significantly inhibited growth rate and cell density of C. vulgaris. However, increasing N limitation and Cd stress stimulated higher dry weight and chlorophyll a production per cell. Furthermore, biomolecules like total proteins, carbohydrates and lipids increased with increasing N limitation and Cd stress. Ketogenic and glucogenic amino acids were accumulated under the stress conditions investigated in the present study. Amino acids involved in metal chelation like proline, histidine and glutamine were significantly increased after exposure to combined Cd stress and N limitation. We conclude that N limitation and Cd stress affects the physiology of C. vulgaris by not only decreasing its growth but also stimulating biomolecule production. PMID:25625522

  4. Electrostatic unfolding and interactions of albumin driven by pH changes: a molecular dynamics study.

    PubMed

    Baler, K; Martin, O A; Carignano, M A; Ameer, G A; Vila, J A; Szleifer, I

    2014-01-30

    A better understanding of protein aggregation is bound to translate into critical advances in several areas, including the treatment of misfolded protein disorders and the development of self-assembling biomaterials for novel commercial applications. Because of its ubiquity and clinical potential, albumin is one of the best-characterized models in protein aggregation research; but its properties in different conditions are not completely understood. Here, we carried out all-atom molecular dynamics simulations of albumin to understand how electrostatics can affect the conformation of a single albumin molecule just prior to self-assembly. We then analyzed the tertiary structure and solvent accessible surface area of albumin after electrostatically triggered partial denaturation. The data obtained from these single protein simulations allowed us to investigate the effect of electrostatic interactions between two proteins. The results of these simulations suggested that hydrophobic attractions and counterion binding may be strong enough to effectively overcome the electrostatic repulsions between the highly charged monomers. This work contributes to our general understanding of protein aggregation mechanisms, the importance of explicit consideration of free ions in protein solutions, provides critical new insights about the equilibrium conformation of albumin in its partially denatured state at low pH, and may spur significant progress in our efforts to develop biocompatible protein hydrogels driven by electrostatic partial denaturation. PMID:24393011

  5. Electrostatic Unfolding and Interactions of Albumin Driven by pH Changes: A Molecular Dynamics Study

    PubMed Central

    2015-01-01

    A better understanding of protein aggregation is bound to translate into critical advances in several areas, including the treatment of misfolded protein disorders and the development of self-assembling biomaterials for novel commercial applications. Because of its ubiquity and clinical potential, albumin is one of the best-characterized models in protein aggregation research; but its properties in different conditions are not completely understood. Here, we carried out all-atom molecular dynamics simulations of albumin to understand how electrostatics can affect the conformation of a single albumin molecule just prior to self-assembly. We then analyzed the tertiary structure and solvent accessible surface area of albumin after electrostatically triggered partial denaturation. The data obtained from these single protein simulations allowed us to investigate the effect of electrostatic interactions between two proteins. The results of these simulations suggested that hydrophobic attractions and counterion binding may be strong enough to effectively overcome the electrostatic repulsions between the highly charged monomers. This work contributes to our general understanding of protein aggregation mechanisms, the importance of explicit consideration of free ions in protein solutions, provides critical new insights about the equilibrium conformation of albumin in its partially denatured state at low pH, and may spur significant progress in our efforts to develop biocompatible protein hydrogels driven by electrostatic partial denaturation. PMID:24393011

  6. Albumin-containing sol-gel glasses: chemical and biological study.

    PubMed

    Iucci, G; Infante, G; Rossi, L; Polzonetti, G; Rosato, N; Avigliano, L; Savini, I; Catani, M V; Palacios, A C

    2004-05-01

    Glasses incorporating increasing amounts of bovine serum albumin were prepared by sol-gel techniques from a tetra methoxy silane precursor. The surface of the glass samples was studied by X-ray photoelectron spectroscopy, revealing that the protein is present also in the superficial layer of the silica network. Moreover, the protein is distributed in a dose-dependent way, since the N/Si atomic ratio increases linearly with the albumin concentration in the reaction mixture. Angle-dependent measurements show that the protein distribution occurs homogeneously and is the same at different sampling depths. Protein incorporation in the bulk SiO2 network, with a uniform protein distribution between bulk and surface, is confirmed by infrared spectroscopy measurements, performed both in reflectance and transmittance mode. The reaction with a specific antibody and the adhesivity assay of osteoblastic cells show that embedded albumin present on the glass surface is able to interact with other proteins. PMID:15386968

  7. The interaction between bovine serum albumin and surfactants.

    PubMed Central

    Jones, M N; Skinner, H A; Tipping, E

    1975-01-01

    1. Potassium n-decyl phosphate binds exothermically to bovine serum albumin at pH 7.0 to form a specific complex containing approx. 60 phosphate anions. 2. The formation of the complex is accompanied by changes in the u.v. difference spectrum of the protein. 3. At higher phosphate concentrations (above 0.4mM) surfactant molecules continue to be bound, and the protein undergoes a gross change in conformation. 4. n-Dodecyltri-methylammonium bromide binds endothermically to bovine serum albumin at pH7.0 but the extent of binding for a given free surfactant concentration is less than for the phosphate surfactant. 5. Binding is accompanied by a small change in the specific viscosity and by changes in the u.v. difference spectrum of the protein. 6. It is suggested that over the surfactant concentration ranges studied n-decyl phosphate ions first bind to the C-terminal part of the protein and then to the more compact N-terminal part whereas n-dodecyltrimethylammonium ions bind only to the C-terminal part of bovine serum albumin. PMID:1180891

  8. Complexation of serum albumins and triton X-100: Quenching of tryptophan fluorescence and analysis of the rotational diffusion of complexes

    NASA Astrophysics Data System (ADS)

    Vlasova, I. M.; Vlasov, A. A.; Saletskii, A. M.

    2016-07-01

    The polarized and nonpolarized fluorescence of bovine serum albumin and human serum albumin in Triton X-100 solutions is studied at different pH values. Analysis of the constants of fluorescence quenching for BSA and HSA after adding Triton X-100 and the hydrodynamic radii of BSA/HSA-detergent complexes show that the most effective complexation between both serum albumins and Triton X-100 occurs at pH 5.0, which lies near the isoelectric points of the proteins. Complexation between albumin and Triton X-100 affects the fluorescence of the Trp-214 residing in the hydrophobic pockets of both BSA and HSA.

  9. Luminescent probe in the study of surfactant-induced structural changes in serum albumin in human blood plasma

    NASA Astrophysics Data System (ADS)

    Melnikov, A. G.; Pravdin, A. B.; Kochubey, V. I.; Melnikov, G. V.

    2005-06-01

    The luminescence-kinetic technique of the monitoring of structural changes in albumins of human blood plasma that uses a luminescent probe-eosin is proposed. Phosphorescence of eosin bound to the globular proteins of blood plasma-albumins was recorded at room temperature. It is found that under the action of sodium dodecylsulfate on the albumins the rate constant of eosin phosphorescence decay grows and the intensity of eosin phosphorescence decreases. It is assumed that these changes are connected with the denaturing of blood plasma albumins by sodium dodecylsulfate.

  10. Immunological changes following protein losing enteropathy after surgery total cavopulmonary connection (TCPC) by cytomics

    NASA Astrophysics Data System (ADS)

    Bocsi, József; Lenz, Dominik; Mittag, Anja; Sauer, Ursula; Wild, Lena; Hess, John; Schranz, Dietmar; Hambsch, Jörg; Schneider, Peter; Tárnok, Attila

    2008-02-01

    Complex immunophenotyping single-cell analysis are essential for systems biology and cytomics. The application of cytomics in immunology and cardiac research and diagnostics is very broad, ranging from the better understanding of the cardiovascular cell biology to the identification of heart function and immune consequences after surgery. TCPC or Fontan-type circulation is an accepted palliative surgery for patients with a functionally univentricular heart. Protein-losing enteropathy (PLE), the enteric loss of proteins, is a potential late complication after TCPC surgery. PLE etiology is poorly understood, but immunological factors seem to play a role. This study was aimed to gain insight into immune phenotype alterations following post-TCPC PLE. Patients were studied during routine follow-up up to 5yrs after surgery, blood samples of TCPC patients without (n=21, age 6.8+/-2.6 years at surgery; mean+/-SD) and with manifest PLE (n=12, age 12.8+/- 4.5 years at sampling) and age matched healthy children (control, n=22, age 8.6+/-2.5 years) were collected. Routine laboratory, immune phenotype and serological parameters were determined. Following PLE the immune phenotype dramatically changed with signs of acute inflammation (increased neutrophil and monocyte count, CRP, IL-8). In contrast, lymphocyte count (NK-cells, αβTCR +CD4 +, αβTCR +CD8 + cells) decreased (p<0.001). The residual T-cells had elevated CD25 and CD69 expression. In PLE-patients unique cell populations with CD3 +αβ/γδTCR - and αβTCR +CD4 -8 - phenotype were present in increased frequencies. Our studies show dramatically altered leukocyte phenotype after PLE in TCPC patients. These alterations resemble to changes in autoimmune diseases. We conclude that autoimmune processes may play a role in etiology and pathophysiology of PLE.

  11. Inhibiting Amadori-modified albumin formation improves biomarkers of podocyte damage in diabetic rats

    PubMed Central

    Cohen, Margo P; Shearman, Clyde W

    2013-01-01

    Recent studies have shown that urinary excretion of podocyte proteins is an indicator of podocyte injury, and that podocyte abnormalities and elevated concentrations of Amadori-modified glycated albumin (AGA) are linked to the development of diabetic nephropathy and to each other. We evaluated relationships between urinary markers of podocyte damage, increased AGA and filtration function in rats made diabetic by streptozotocin injection and treated for 8 weeks with a compound that inhibits the formation of AGA, with age-matched nondiabetic and diabetic rats serving as controls. Blood and urine were collected for measurement of glycated albumin, creatinine, albumin, nephrin, podocalyxin, and βig-h3 protein. The elevated circulating concentrations of glycated albumin and higher urinary levels of these podocyte markers as well as of albumin that were observed in diabetic rats compared with nondiabetic controls were significantly reduced in animals receiving test compound, and decrease in urinary biomarkers correlated with reduction in AGA. The results provide evidence that lowering the concentration of AGA, independent of filtration status and hyperglycemia, reduces urinary nephrin, podocalyxin, and βig-h3 protein, linking the increased glycated albumin associated with diabetes to podocyte abnormalities and shedding of podocyte proteins into the urine. PMID:24303153

  12. Jatropha curcas hemagglutinin is similar to a 2S albumin allergen from the same source and has unique sugar affinities.

    PubMed

    Nair, Divya N; Singh, Vijay; Yamaguchi, Yoshiki; Singh, Desh Deepak

    2012-11-01

    We have previously reported the purification and preliminary X-ray characterization of a hemagglutinin from the seeds of Jatropha curcas and, with the detailed sequencing information available now, we find that it is similar to a 2S albumin allergen isolated from the same source. Through a search of Jatropha genome database (http://www.kazusa.or.jp/jatropha/), we map it to the sequence id JcCA0234191 (now referred to as Jcr4S00619.70 in the new version, release 4.5) which has a conserved alpha amylase inhibitor/seed storage protein domain found in the 2S albumin allergens. The putative sequence of the small and large chains of the protein is assigned and the total mass of the two subunits matches with the intact mass 10 kDa determined through MALDI. The protein retains hemagglutination activity between pH 6-9 and up to 60 °C on heat treatment and its hemagglutination activity is inhibited by sialic acid and fetuin. Bioinformatics studies show that the isolated protein sequence clusters in close association with a 2S albumin from Ricinus communis in phylogeny analysis and has a conservation of the characteristic four disulfide linkage pattern. Hemagglutinins and lectins are known to have allergenic effects through their interaction with immunoglobulin E and histamine release and earlier studies have shown that this interaction can be inhibited by lectin-specific sugars. We hope this report bridges the plant allergens and hemagglutinins further for exploring possible mediation of allergenic activity through sialic acid and complex sugar interactions and generates further interest in the area. PMID:22798079

  13. The role played by endocytosis in albumin-induced secretion of TGF-beta1 by proximal tubular epithelial cells.

    PubMed

    Diwakar, Ramaswamy; Pearson, Alex L; Colville-Nash, Paul; Brunskill, Nigel J; Dockrell, Mark E C

    2007-05-01

    Proteinuria predicts the decline of renal function in chronic kidney disease. Reducing albuminuria has been shown to be associated with a reduction in this rate of decline. Proximal tubular epithelial cells (PTECs), when exposed to albumin produce matrix proteins, proinflammatory and profibrotic cytokines like TGF-beta(1). Some of these effects are dependent on endocytosis of albumin by PTECs. However, conditions like diabetic nephropathy, believed to be associated with reduced albumin endocytosis, are associated with interstitial fibrosis. Moreover, megalin, the putative albumin binding receptor in PTECs, has potential signaling motifs in its cytoplasmic domain, suggesting its ability to signal in response to ligand binding from the apical surface of PTECs. Hence, we looked to see whether albumin-induced secretion of TGF-beta(1) by PTECs is dependent on albumin endocytosis or whether it could occur in the absence of albumin endocytosis. We studied the production of TGF-beta(1) in two accepted models of PTECs, opossum kidney cells and human kidney cell clone-8 cells, with widely varying degrees of endocytosis. We then studied the effect of inhibiting albumin endocytosis with various inhibitors on albumin-induced TGF-beta(1) secretion. Our results indicate that albumin-induced TGF-beta(1) secretion by PTECs does not require albumin endocytosis and therefore the mechanism for the induction of some profibrotic responses by albumin may differ from those required for some of the inflammatory responses. Moreover, we found that albumin-induced TGF-beta(1) secretion by PTECs is not dependent on its interaction with megalin. PMID:17213467

  14. Study of influence of millimeter range electromagnetic waves on water-saline solutions of albumin

    NASA Astrophysics Data System (ADS)

    Shahinyan, Mariam A.; Antonyan, Ara P.; Mikaelyan, Marieta S.; Vardevanyan, Poghos O.

    2015-01-01

    In this work, the effect of electromagnetic waves of millimeter diapason (EMW MM) on both melting parameters of serum albumin from human blood and its solution density has been studied. It was shown that the irradiation of albumin solution results in protein denaturation at higher temperatures than in the case of nonirradiated samples, which indicates the increase of albumin packing degree. It was also shown that the enhancement of albumin solution density takes place which indicates the protein packing degree change as well. The obtained data show that the effect of EMW MM does not depend on frequency of these waves, because alterations are revealed at all studied frequencies — 41.8, 48 and 51.8GHz.

  15. V3 Stain-free Workflow for a Practical, Convenient, and Reliable Total Protein Loading Control in Western Blotting

    PubMed Central

    Posch, Anton; Kohn, Jonathan; Oh, Kenneth; Hammond, Matt; Liu, Ning

    2013-01-01

    The western blot is a very useful and widely adopted lab technique, but its execution is challenging. The workflow is often characterized as a "black box" because an experimentalist does not know if it has been performed successfully until the last of several steps. Moreover, the quality of western blot data is sometimes challenged due to a lack of effective quality control tools in place throughout the western blotting process. Here we describe the V3 western workflow, which applies stain-free technology to address the major concerns associated with the traditional western blot protocol. This workflow allows researchers: 1) to run a gel in about 20-30 min; 2) to visualize sample separation quality within 5 min after the gel run; 3) to transfer proteins in 3-10 min; 4) to verify transfer efficiency quantitatively; and most importantly 5) to validate changes in the level of the protein of interest using total protein loading control. This novel approach eliminates the need of stripping and reprobing the blot for housekeeping proteins such as β-actin, β-tubulin, GAPDH, etc. The V3 stain-free workflow makes the western blot process faster, transparent, more quantitative and reliable. PMID:24429481

  16. Determination of secondary structural changes in gluten proteins during mixing using Fourier transform horizontal attenuated total reflectance spectroscopy.

    PubMed

    Seabourn, Bradford W; Chung, Okkyung K; Seib, Paul A; Mathewson, Paul R

    2008-06-11

    Fourier transform horizontal attenuated total reflectance (FT-HATR) was used to examine changes in the secondary structure of gluten proteins in a flour-water dough system during mixing. Midinfrared spectra of mixed dough revealed changes in four bands in the amide III region associated with secondary structure in proteins: 1317 (alpha-helix), 1285 (beta-turn), 1265 (random coil), and 1242 cm (-1) (beta-sheet). The largest band, which also showed the greatest change in second derivative band area (SDBA) during mixing, was located at 1242 cm (-1). The bands at 1317 and 1285 cm (-1) also showed an increase in SDBA over time. Conversely, the band at 1265 cm (-1) showed a corresponding decrease over time as the doughs were mixed. All bands reached an optimum corresponding to the minimum mobility of the dough as determined by the mixograph. Increases in alpha-helix, beta-turn, and beta-sheet secondary structures during mixing suggest that the dough proteins assume a more ordered conformation. These results demonstrate that it is possible, using infrared spectroscopic techniques, to relate the rheological behavior of developing dough in a mixograph directly to changes in the structure of the gluten protein system. PMID:18489117

  17. Surface tension in situ in flooded alveolus unaltered by albumin.

    PubMed

    Kharge, Angana Banerjee; Wu, You; Perlman, Carrie E

    2014-09-01

    In the acute respiratory distress syndrome, plasma proteins in alveolar edema liquid are thought to inactivate lung surfactant and raise surface tension, T. However, plasma protein-surfactant interaction has been assessed only in vitro, during unphysiologically large surface area compression (%ΔA). Here, we investigate whether plasma proteins raise T in situ in the isolated rat lung under physiologic conditions. We flood alveoli with liquid that omits/includes plasma proteins. We ventilate the lung between transpulmonary pressures of 5 and 15 cmH2O to apply a near-maximal physiologic %ΔA, comparable to that of severe mechanical ventilation, or between 1 and 30 cmH2O, to apply a supraphysiologic %ΔA. We pause ventilation for 20 min and determine T at the meniscus that is present at the flooded alveolar mouth. We determine alveolar air pressure at the trachea, alveolar liquid phase pressure by servo-nulling pressure measurement, and meniscus radius by confocal microscopy, and we calculate T according to the Laplace relation. Over 60 ventilation cycles, application of maximal physiologic %ΔA to alveoli flooded with 4.6% albumin solution does not alter T; supraphysiologic %ΔA raise T, transiently, by 51 ± 4%. In separate experiments, we find that addition of exogenous surfactant to the alveolar liquid can, with two cycles of maximal physiologic %ΔA, reduce T by 29 ± 11% despite the presence of albumin. We interpret that supraphysiologic %ΔA likely collapses the interfacial surfactant monolayer, allowing albumin to raise T. With maximal physiologic %ΔA, the monolayer likely remains intact such that albumin, blocked from the interface, cannot interfere with native or exogenous surfactant activity. PMID:24970853

  18. Effect of Cell Phone Use on Salivary Total Protein, Enzymes and Oxidative Stress Markers in Young Adults: A Pilot Study

    PubMed Central

    Joy, Jasmi; Sunitha, Venkatesh; Rai, Manoj P.; Rao, Suresh; Nambranathayil, Shafeeque; Baliga, Manjeshwar Shrinath

    2015-01-01

    Introduction: The present study aimed to assess the levels of salivary enzymes, protein and oxidant-antioxidant system in young college-going cell phone users. Materials and Methods: The cell users (students) were categorized in to two groups – less mobile users and high mobile users, based on the duration and frequency of cell use. Unstimulated whole saliva samples of the volunteers were analysed for amylase, lactate dehydrogenase (LDH), malondialdehdye (MDA) and glutathione (GSH). Results: High mobile users had significantly higher levels of amylase (p = 0.001), LDH (p = 0.002) and MDA (p = 0.002) in saliva, when compared to less mobile users. The marginal decrease in salivary total proteins, GSH and flow rate were statistically not significant (p >0.05). Conclusion: Significant changes in salivary enzymes and MDA suggest adverse effect of high use of cell phones on cell health. PMID:25859446

  19. Investigation of Bovine Serum Albumin (BSA) Attachment onto Self-Assembled Monolayers (SAMs) Using Combinatorial Quartz Crystal Microbalance with Dissipation (QCM-D) and Spectroscopic Ellipsometry (SE)

    PubMed Central

    Phan, Hanh T. M.; Bartelt-Hunt, Shannon; Rodenhausen, Keith B.; Schubert, Mathias; Bartz, Jason C.

    2015-01-01

    Understanding protein adsorption kinetics to surfaces is of importance for various environmental and biomedical applications. Adsorption of bovine serum albumin to various self-assembled monolayer surfaces including neutral and charged hydrophilic and hydrophobic surfaces was investigated using in-situ combinatorial quartz crystal microbalance with dissipation and spectroscopic ellipsometry. Adsorption of bovine serum albumin varied as a function of surface properties, bovine serum albumin concentration and pH value. Charged surfaces exhibited a greater quantity of bovine serum albumin adsorption, a larger bovine serum albumin layer thickness, and increased density of bovine serum albumin protein compared to neutral surfaces at neutral pH value. The quantity of adsorbed bovine serum albumin protein increased with increasing bovine serum albumin concentration. After equilibrium sorption was reached at pH 7.0, desorption of bovine serum albumin occurred when pH was lowered to 2.0, which is below the isoelectric point of bovine serum albumin. Our data provide further evidence that combinatorial quartz crystal microbalance with dissipation and spectroscopic ellipsometry is a sensitive analytical tool to evaluate attachment and detachment of adsorbed proteins in systems with environmental implications. PMID:26505481

  20. A reliable non-separation fluorescence quenching assay for total glycated serum protein: a simple alternative to nitroblue tetrazolium reduction.

    PubMed

    Blincko, S; Colbert, D; John, W G; Edwards, R

    2000-05-01

    A simple non-separation assay for the measurement of total glycated serum protein is described. It was found that the fluorescence intensity of a solution of a fluorescein-boronic acid derivative was quenched in proportion to the amount of serum added. This led to the development of an assay in which 10 microL of serum is added to 4 mL of a solution of the fluorescein-boronic acid derivative and the fluorescence intensity is measured after 15 min. The results, as measured by drop in fluorescence intensity, calibrated by a single standard, were compared with the results for nitroblue tetrazolium (NBT) reduction of fructosamine and showed good correlation (r=0.936, n=114). The intra-assay precision (seven samples each measured 10 times) was less than 2.1% (concentration range 190-660 micromol/L); inter-assay precision for seven samples in 10 assays was less than 2.5% (over the same concentration range). Dilution of serum that had a high concentration of total glycated protein showed the assay to be linear. Serum samples (with low, medium and high total glycated protein concentrations) showed less than 2.1% difference from base results with added glucose (up to 60 mmol/L), less than 9.7% difference with added bilirubin (up to 250 micromol/L) and less than 6.9% with added triglycerides (up to 50 mmol/L). Addition of haemoglobin (up to 0.9 g/dL) with high glycation (11.7% HbA1c) to plasma (298 micromol/L total glycated protein) showed less than 10% difference from the base result. Assays performed over a range of temperatures (12-34 degrees C) showed no significant differences in the results. The assay gives similar results to the currently used NTB method but with significantly less susceptibility to interferences. As such the method should be a useful aid in the management of diabetes. PMID:10817254

  1. A New Method To Image Heme-Fe, Total Fe, and Aggregated Protein Levels after Intracerebral Hemorrhage

    PubMed Central

    Hackett, Mark J.; DeSouza, Mauren; Caine, Sally; Bewer, Brian; Nichol, Helen; Paterson, Phyllis G.; Colbourne, Frederick

    2015-01-01

    An intracerebral hemorrhage (ICH) is a devastating stroke that results in high mortality and significant disability in survivors. Unfortunately, the underlying mechanisms of this injury are not yet fully understood. After the primary (mechanical) trauma, secondary degenerative events contribute to ongoing cell death in the peri-hematoma region. Oxidative stress is thought to be a key reason for this delayed injury, which is likely due to free-Fe-catalyzed free radical reactions. Unfortunately, this is difficult to prove with conventional biochemical assays that fail to differentiate between alterations that occur within the hematoma and peri-hematoma zone. This is a critical limitation, as the hematoma contains tissue severely damaged by the initial hemorrhage and is unsalvageable, whereas the peri-hematoma region is less damaged but at risk from secondary degenerative events. Such events include oxidative stress mediated by free Fe presumed to originate from hemoglobin breakdown. Therefore, minimizing the damage caused by oxidative stress following hemoglobin breakdown and Fe release is a major therapeutic target. However, the extent to which free Fe contributes to the pathogenesis of ICH remains unknown. This investigation used a novel imaging approach that employed resonance Raman spectroscopic mapping of hemoglobin, X-ray fluorescence microscopic mapping of total Fe, and Fourier transform infrared spectroscopic imaging of aggregated protein following ICH in rats. This multimodal spectroscopic approach was used to accurately define the hematoma/peri-hematoma boundary and quantify the Fe concentration and the relative aggregated protein content, as a marker of oxidative stress, within each region. The results revealed total Fe is substantially increased in the hematoma (0.90 μg cm−2), and a subtle but significant increase in Fe that is not in the chemical form of hemoglobin is present within the peri-hematoma zone (0.32 μg cm−2) within 1 day of ICH

  2. A method for determination of unoxidized and total methionine in protein concentrates, with special reference to fish meals.

    PubMed

    Njaa, L R

    1980-03-01

    1. An automated colorimetric method for determination of methionine using an iodoplatinate reagent is described. Methionine sulphoxide does not react under the chosen conditions. 2. The method may be used to distinguish between unoxidized and total methionine by doing one determination without and one determination with previous reduction of a portion of the sample with titanium trichloride. Methionine sulphoxide is then obtained by difference. 3. The method has been used with protein concentrates, mainly fish meals, after hydrolysis with barium hydroxide. Interference from cysteine-cystine is eliminated by adding a small amount of cadmium acetate to the sample before hydrolysis. 4. Results obtained for total methionine and for methionine sulphoxide by independent methods show good agreement with results obtained with the iodoplatinate method. PMID:7378341

  3. In-vivo assessment of total body protein in rats by prompt-γ neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Stamatelatos, Ion E.; Boozer, Carol N.; Ma, Ruimei; Yasumura, Seiichi

    1997-02-01

    A prompt-(gamma) neutron activation analysis facility for in vivo determination of total body protein (TBP) in rats has been designed. TBP is determined in vivo by assessment of total body nitrogen. The facility is based on a 252Cf radionuclide neutron source within a heavy water moderator assembly and two NaI(Tl) scintillation detectors. The in vivo precision of the technique, as estimated by three repeated measurements of 15 rats is 6 percent, for a radiation dose equivalent of 60 mSv. The radiation dose per measurement is sufficiently low to enable serial measurements on the same animal. MCNP-4A Monte Carlo transport code was utilized to calculate thermal neutron flux correction factors to account for differences in size and shape of the rats and calibration phantoms. Good agrement was observed in comparing body nitrogen assessment by prompt-(gamma) neutron activation and chemical carcass analysis.

  4. Role played by Disabled-2 in albumin induced MAP Kinase signalling

    SciTech Connect

    Diwakar, Ramaswamy Pearson, Alexander L.; Colville-Nash, Paul; Baines, Deborah L.; Dockrell, Mark E.C.

    2008-02-15

    Albumin has been shown to activate the mitogen activated protein kinase (MAPK) pathway in proximal tubular cells (PTECs) of the kidney. Megalin, the putative receptor for albumin has potential signalling properties. However, the mechanisms by which megalin signals are unclear. The adaptor phosphoprotein Disabled-2 (Dab2) is known to interact with the cytoplasmic tail of megalin and may be involved in albumin-mediated MAPK signalling. In this study, we investigated the role of Dab2 in albumin-mediated MAPK signalling and further studied the role of Dab2 in albumin-induced TGF{beta}-1 secretion, a MAPK dependent event. We used RNA interference to knockdown Dab2 protein abundance in HKC-8 cells a model of human PTECs. Albumin activated ERK1,2 and Elk-1 in a MEK-1 dependent manner and resulted in secretion of TGF{beta}-1. In the absence of albumin, knockdown of Dab2 resulted in a trend towards increase in pERK1,2 consistent with its putative role as an inhibitor of cell proliferation. However albumin-induced ERK1,2 activation was completely abolished by Dab2 knockdown. Dab2 knockdown did not however result in inhibition of albumin-induced TGF{beta}-1 secretion. These results suggest that Dab2 is a ligand dependent bi-directional regulator of ERK1,2 activity by demonstrating that in addition to its more traditional role as an inhibitor of ERK1,2 it may also activate ERK1,2.

  5. Study on the interaction of the toxic food additive carmoisine with serum albumins: a microcalorimetric investigation.

    PubMed

    Basu, Anirban; Kumar, Gopinatha Suresh

    2014-05-30

    The interaction of the synthetic azo dye and food colorant carmoisine with human and bovine serum albumins was studied by microcalorimetric techniques. A complete thermodynamic profile of the interaction was obtained from isothermal titration calorimetry studies. The equilibrium constant of the complexation process was of the order of 10(6)M(-1) and the binding stoichiometry was found to be 1:1 with both the serum albumins. The binding was driven by negative standard molar enthalpy and positive standard molar entropy contributions. The binding affinity was lower at higher salt concentrations in both cases but the same was dominated by mostly non-electrostatic forces at all salt concentrations. The polyelectrolytic forces contributed only 5-8% of the total standard molar Gibbs energy change. The standard molar enthalpy change enhanced whereas the standard molar entropic contribution decreased with rise in temperature but they compensated each other to keep the standard molar Gibbs energy change almost invariant. The negative standard molar heat capacity values suggested the involvement of a significant hydrophobic contribution in the complexation process. Besides, enthalpy-entropy compensation phenomenon was also observed in both the systems. The thermal stability of the serum proteins was found to be remarkably enhanced on binding to carmoisine. PMID:24742664

  6. Interactions Between Sirolimus and Anti-Inflammatory Drugs: Competitive Binding for Human Serum Albumin

    PubMed Central

    Khodaei, Arash; Bolandnazar, Soheila; Valizadeh, Hadi; Hasani, Leila; Zakeri-Milani, Parvin

    2016-01-01

    Purpose: The aim of the present study was investigating the effects of three anti-inflammatory drugs, on Sirolimus protein biding. The binding site of Sirolimus on human serum albumin (HSA) was also determined. Methods: Six different concentrations of Sirolimus were separately exposed to HSA at pH 7.4 and 37°C. Ultrafiltration method was used for separating free drug; then free drug concentrations were measured by HPLC. Finally, Sirolimus protein binding parameters was calculated using Scatchard plots. The same processes were conducted in the presence of NSAIDs at lower concentration of albumin and different pH conditions. To characterize the binding site of Sirolimus on albumin, the free concentration of warfarin sodium and Diazepam, site I and II specific probes, bound to albumin were measured upon the addition of increasing Sirolimus concentrations. Results: Based on the obtained results presence of Diclofenac, Piroxicam and Naproxen, could significantly decrease the percentage of Sirolimus protein binding. The Binding reduction was the most in the presence of Piroxicam. Sirolimus-NSAIDs interactions were increased in higher pH values and also in lower albumin concentrations. Probe displacement study showed that Sirolimus may mainly bind to site I on albumin molecule. Conclusion: More considerations in co-administration of NSAIDs and Sirolimus is recommended. PMID:27478785

  7. CD36 mediates proximal tubular binding and uptake of albumin and is upregulated in proteinuric nephropathies.

    PubMed

    Baines, Richard J; Chana, Ravinder S; Hall, Matthew; Febbraio, Maria; Kennedy, David; Brunskill, Nigel J

    2012-10-01

    Dysregulation of renal tubular protein handling in proteinuria contributes to the development of chronic kidney disease. We investigated the role of CD36 as a novel candidate mediator of albumin binding and endocytosis in the kidney proximal tubule using both in vitro and in vivo approaches, and in nephrotic patient renal biopsy samples. In CD36-transfected opossum kidney proximal tubular cells, both binding and uptake of albumin were substantially enhanced. A specific CD36 inhibitor abrogated this effect, but receptor-associated protein, which blocks megalin-mediated endocytosis of albumin, did not. Mouse proximal tubular cells expressed CD36 and this was absent in CD36 null animals, whereas expression of megalin was equal in these animals. Compared with wild-type mice, CD36 null mice demonstrated a significantly increased urinary protein-to-creatinine ratio and albumin-to-creatinine ratio. Proximal tubular cells expressed increased CD36 when exposed to elevated albumin concentrations in culture medium. Expression of CD36 was studied in renal biopsy tissue obtained from adult patients with heavy proteinuria due to minimal change disease, membranous nephropathy, or focal segmental glomerulosclerosis. Proximal tubular CD36 expression was markedly increased in proteinuric individuals. We conclude that CD36 is a novel mediator influencing binding and uptake of albumin in the proximal tubule that is upregulated in proteinuric renal diseases. CD36 may represent a potential therapeutic target in proteinuric nephropathy. PMID:22791331

  8. Characteristics of albumin binding to opossum kidney cells and identification of potential receptors.

    PubMed

    Brunskill, N J; Nahorski, S; Walls, J

    1997-02-01

    Albumin re-absorption in the kidney proximal tubule may be pathophysiological in disease. Opossum kidney (OK) cell monolayers were used to investigate the characteristics of [125I]-labelled albumin binding at 4 degrees C. Two binding sites were identified, one with high affinity (KD 154.8 +/-7 mg/l) and low capacity, the other with low affinity (KD 8300 +/- 1000 mg/l) and high capacity. Binding was sensitive to lectins Glycine max and Ulex europaeus I, but not other lectins, indicating involvement of a glycoprotein(s) in the binding process. Binding was also sensitive to a number of agents known to inhibit binding to scavenger receptors. [125I]-Labelled albumin ligand blotting of OK cell membrane proteins identified several albumin-binding proteins with identical lectin affinities to those proteins mediating albumin binding to OK cell monolayers. These results provide initial evidence of the identity of albumin receptors in kidney tubules, and suggest that they may be members of the family of scavenger receptors. PMID:9000429

  9. Serum protein electrophoresis in spontaneous canine hyperadrenocorticalism.

    PubMed

    van den Broek, A H; Lida, J

    1989-01-01

    The serum protein concentrations of dogs with confirmed spontaneous hyperadrenocorticalism were determined by agarose gel electrophoresis before and during treatment with mitotane. In untreated animals a significant increase was detected in the mean concentration of total protein and the mean concentration and percentage of alpha-2 globulin. The mean concentration and percentage of albumin and gamma-globulin were significantly decreased. In animals on treatment the mean concentration of total proteins and the mean concentration and percentage of beta-2 globulin were significantly reduced. PMID:2466309

  10. Uptake of palmitate by hepatocyte suspensions: facilitation by albumin?

    PubMed

    Pond, S M; Davis, C K; Bogoyevitch, M A; Gordon, R A; Weisiger, R A; Bass, L

    1992-05-01

    Albumin-dependent uptake of unbound [3H]palmitic acid by hepatocytes isolated from female rat livers was studied and the experimental results compared with the predictions of a noncompartmental diffusion-reaction theory for the cellular uptake of protein-bound ligands. The outright theoretical predictions involve values for the parameters of the system, some newly measured (hepatocyte radii and the rate constant for the dissociation of palmitate-albumin complex) and some taken from the literature (diffusion coefficients and the equilibrium association constant for the palmitate-albumin complex). The measured unbound clearance of [3H]palmitic acid, defined as the initial uptake velocity divided by the unbound [3H]palmitic acid concentration in the medium, was enhanced 6.6-fold as the concentration of human serum albumin was increased from approximately 5 to 480 microM. This enhancement factor was predicted by the theory, according to which the enhancement reflects codiffusion of bound ligand across the unstirred layer adjacent to the cell membrane and, therefore, an increased delivery of unbound ligand to the cell surface. In contrast, the absolute magnitude of the unbound clearance was consistent with the theory only for the lowest published value for the equilibrium association constant, 15 microM-1. For higher published values (62 and 94 microM-1), the magnitude of the unbound clearance observed experimentally was severalfold higher than that predicted by the theory. If in fact the association constant exceeds 30 microM-1, the data would imply that an albumin-dependent facilitation mechanism exists which enhances the availability of palmitate to the cell over and above the enhancement predicted by the diffusion-reaction theory. PMID:1590397

  11. Interaction of ergosterol with bovine serum albumin and human serum albumin by spectroscopic analysis.

    PubMed

    Cheng, Zhengjun

    2012-10-01

    This study was designed to examine the interactions of ergosterol with bovine serum albumin (BSA) and human serum albumin (HSA) under physiological conditions with the drug concentrations in the range of 2.99-105.88 μM and the concentration of proteins was fixed at 5.0 μM. The analysis of emission spectra quenching at different temperatures revealed that the quenching mechanism of HSA/BSA by ergosterol was the static quenching. The number of binding sites n and the binding constants K were obtained at various temperatures. The distance r between ergosterol and HSA/BSA was evaluated according to Föster non-radioactive energy transfer theory. The results of synchronous fluorescence, 3D fluorescence, FT-IR, CD and UV-Vis absorption spectra showed that the conformations of HSA/BSA altered in the presence of ergosterol. The thermodynamic parameters, free energy change (ΔG), enthalpy change (ΔH) and entropy change (ΔS) for BSA-ergosterol and HSA-ergosterol systems were calculated by the van't Hoff equation and discussed. Besides, with the aid of three site markers (for example, phenylbutazone, ibuprofen and digitoxin), we have reported that ergosterol primarily binds to the tryptophan residues of BSA/HSA within site I (subdomain II A). PMID:22733490

  12. Analbuminemia: three cases resulting from different point mutations in the albumin gene.

    PubMed Central

    Watkins, S; Madison, J; Galliano, M; Minchiotti, L; Putnam, F W

    1994-01-01

    Analbuminemia is a very rare recessive disorder in which subjects have little or no circulating albumin, although albumin is normally the most abundant plasma protein and has many functions. Analbuminemia is caused by a variety of mutations in the albumin gene and is exhibited only by subjects homozygous for the defect. Previously the mutation had been identified at the molecular level in only two human cases; in one case it resulted from an exon-splicing defect, and in the other case it was caused by a nucleotide insertion that caused a frameshift and premature stop codon. In this investigation we identified the mutations in three unrelated subjects from different countries. In each instance a single-nucleotide mutation produced a stop codon, but the mutations occurred at three different sites: (i) in an Italian male a C-->T transition at nt 2368 in the genomic sequence of albumin, (ii) a C-->T transition at nt 4446 for an American female, and (iii) a G-->A transition at nt 7708 in a Canadian male. The size of the albumin fragment that might have been produced for the three cases varied from 31- to 213-amino acid residues, but no evidence for a circulating albumin fragment was obtained. The paradox is that analbuminemia is extremely rare (frequency < 1 x 10(6)); yet the virtual absence of albumin is tolerable despite its multiple functions. Images PMID:7937781

  13. Structure-based mutagenesis reveals the albumin-binding site of the neonatal Fc receptor

    PubMed Central

    Andersen, Jan Terje; Dalhus, Bjørn; Cameron, Jason; Daba, Muluneh Bekele; Plumridge, Andrew; Evans, Leslie; Brennan, Stephan O.; Gunnarsen, Kristin Støen; Bjørås, Magnar; Sleep, Darrell; Sandlie, Inger

    2012-01-01

    Albumin is the most abundant protein in blood where it has a pivotal role as a transporter of fatty acids and drugs. Like IgG, albumin has long serum half-life, protected from degradation by pH-dependent recycling mediated by interaction with the neonatal Fc receptor, FcRn. Although the FcRn interaction with IgG is well characterized at the atomic level, its interaction with albumin is not. Here we present structure-based modelling of the FcRn–albumin complex, supported by binding analysis of site-specific mutants, providing mechanistic evidence for the presence of pH-sensitive ionic networks at the interaction interface. These networks involve conserved histidines in both FcRn and albumin domain III. Histidines also contribute to intramolecular interactions that stabilize the otherwise flexible loops at both the interacting surfaces. Molecular details of the FcRn–albumin complex may guide the development of novel albumin variants with altered serum half-life as carriers of drugs. PMID:22215085

  14. Subcellular and single-molecule imaging of plant fluorescent proteins using total internal reflection fluorescence microscopy (TIRFM)

    PubMed Central

    Vizcay-Barrena, Gema; Webb, Stephen E. D.; Martin-Fernandez, Marisa L.; Wilson, Zoe A.

    2011-01-01

    Total internal reflection fluorescence microscopy (TIRFM) has been proven to be an extremely powerful technique in animal cell research for generating high contrast images and dynamic protein conformation information. However, there has long been a perception that TIRFM is not feasible in plant cells because the cell wall would restrict the penetration of the evanescent field and lead to scattering of illumination. By comparative analysis of epifluorescence and TIRF in root cells, it is demonstrated that TIRFM can generate high contrast images, superior to other approaches, from intact plant cells. It is also shown that TIRF imaging is possible not only at the plasma membrane level, but also in organelles, for example the nucleus, due to the presence of the central vacuole. Importantly, it is demonstrated for the first time that this is TIRF excitation, and not TIRF-like excitation described as variable-angle epifluorescence microscopy (VAEM), and it is shown how to distinguish the two techniques in practical microscopy. These TIRF images show the highest signal-to-background ratio, and it is demonstrated that they can be used for single-molecule microscopy. Rare protein events, which would otherwise be masked by the average molecular behaviour, can therefore be detected, including the conformations and oligomerization states of interacting proteins and signalling networks in vivo. The demonstration of the application of TIRFM and single-molecule analysis to plant cells therefore opens up a new range of possibilities for plant cell imaging. PMID:21865179

  15. Determination of total protein content in white wines by solid phase spectrometry in a SI-LOV system.

    PubMed

    Vidigal, Susana S M P; Tóth, Ildikó V; Rangel, António O S S

    2012-07-15

    Although present at low concentration in wine samples, proteins, have considerable technological importance, due to their capability of haze formation. The present work presents a methodology for the quantification of total protein in white wine in a sequential injection lab-on-valve system, exploiting the bead injection concept for solid phase extraction with spectrophotometric detection. The method is based on the retention of the proteins in the solid support, NTA (nitrilotriacetic acid) superflow beads, charged by Cu(2+). The change in the absorbance is monitored at 500nm at the surface of the beads after addition of the Folin-Ciocalteu's reagent (FCr). The developed method presented a sample consumption of 400μL per assay and a consumption of FCr and Cu(2+) solution of 25μL and 100μL per assay, respectively. It was possible to achieve a linear range up to 0.30g/L with a limit of detection and quantification of 0.03 and 0.10g/L, respectively. The proposed method was successfully applied to white wine samples. PMID:22817935

  16. Circulating vitamin D binding protein, total, free and bioavailable 25-hydroxyvitamin D and risk of colorectal cancer

    PubMed Central

    Ying, Hou-Qun; Sun, Hui-Ling; He, Bang-Shun; Pan, Yu-Qin; Wang, Feng; Deng, Qi-Wen; Chen, Jie; Liu, Xian; Wang, Shu-Kui

    2015-01-01

    Epidemiological investigation have suggested that there is a significantly inverse association between circulating 25-hydroxyvitamin D (25(OH)D) and the risk for developing colorectal cancer (CRC) in humans. However, little is known about the role of vitamin D binding protein (VDBP) in colorectal carcinogenesis. Blood samples were collected from 212 CRC patients and 212 controls matched with age, gender and blood collection time. We used logistic regression to calculate the odds ratios and 95% confidence intervals for further estimation of the association of the quartiles of VDBP, total, free and bioavailable 25(OH)D with CRC risk. The results revealed that there was no significant association between circulating VDBP concentrations and CRC in the present study, and that a negative association existed between total 25(OH)D and the risk of CRC, which was unchanged after adjustment for VDBP. Higher levels of free and bioavailable 25(OH)D were significantly associated with decreased risk of CRC. After stratifying by VDBP, high levels of total, free and bioavailable 25(OH)D were associated significantly with decreased CRC risk among participants with circulating VDBP below the median. These findings indicate that VDBP is not directly associated with the risk of CRC, but it modulates circulating free and bioavailable 25(OH)D concentration. PMID:25609140

  17. Anisotropic energy flow and allosteric ligand binding in albumin

    PubMed Central

    Li, Guifeng; Magana, Donny; Dyer, R. Brian

    2014-01-01

    Allosteric interactions in proteins generally involve propagation of local structural changes through the protein to a remote site. Anisotropic energy transport is thought to couple the remote sites, but the nature of this process is poorly understood. Here, we report the relationship between energy flow through the structure of bovine serum albumin and allosteric interactions between remote ligand binding sites of the protein. Ultrafast infrared spectroscopy is used to probe the flow of energy through the protein backbone following excitation of a heater dye, a metalloporphyrin or malachite green, bound to different binding sites in the protein. We observe ballistic and anisotropic energy flow through the protein structure following input of thermal energy into the flexible ligand binding sites, without local heating of the rigid helix bundles that connect these sites. This efficient energy transport mechanism enables the allosteric propagation of binding energy through the connecting helix structures. PMID:24445265

  18. Anisotropic energy flow and allosteric ligand binding in albumin

    NASA Astrophysics Data System (ADS)

    Li, Guifeng; Magana, Donny; Dyer, R. Brian

    2014-01-01

    Allosteric interactions in proteins generally involve propagation of local structural changes through the protein to a remote site. Anisotropic energy transport is thought to couple the remote sites, but the nature of this process is poorly understood. Here, we report the relationship between energy flow through the structure of bovine serum albumin and allosteric interactions between remote ligand binding sites of the protein. Ultrafast infrared spectroscopy is used to probe the flow of energy through the protein backbone following excitation of a heater dye, a metalloporphyrin or malachite green, bound to different binding sites in the protein. We observe ballistic and anisotropic energy flow through the protein structure following input of thermal energy into the flexible ligand binding sites, without local heating of the rigid helix bundles that connect these sites. This efficient energy transport mechanism enables the allosteric propagation of binding energy through the connecting helix structures.

  19. Complexes of dendrimers with bovine serum albumin.

    PubMed

    Mandeville, J S; Tajmir-Riahi, H A

    2010-02-01

    We report the complexation of bovine serum albumin (BSA) with several dendrimers of different compositions mPEG-PAMAM (G3), mPEG-PAMAM (G4), and PAMAM (G4) at physiological conditions using constant protein concentration and various dendrimer contents. FTIR, CD, and fluorescence spectroscopic methods were used to analyze polymer binding mode, the binding constant, and the effects of dendrimer complexation on BSA stability and conformation. Structural analysis showed that dendrimers bind BSA via hydrophilic and hydrophobic interactions with a number of bound polymers (n): 1.30 for mPEG-PAMAM-G3, 1.30 for mPEG-PAMAM-G4, and 1.0 for PAMAM-G4. The polymer-BSA binding constants were K(mPEG-G3) = 5.0 (+/-0.8) x 10(3) M(-1), K(mPEG-G4) = 1.0 (+/-0.3) x 10(4) M(-1), and K(PAMAM-G4) = 1.1 (+/-0.4) x 10(4) M(-1). Dendrimer binding altered BSA conformation with a major reduction of alpha-helix and an increase in random coil and turn structures, indicating a partial protein unfolding. PMID:20085247

  20. Complexes of green tea polyphenol, epigalocatechin-3-gallate, and 2S albumins of peanut.

    PubMed

    Vesic, Jelena; Stambolic, Ivan; Apostolovic, Danijela; Milcic, Milos; Stanic-Vucinic, Dragana; Cirkovic Velickovic, Tanja

    2015-10-15

    2S albumins of peanuts are seed storage proteins, highly homologous in structure and described as major elicitors of anaphylactic reactions to peanut (allergens Ara h 2 and Ara h 6). Epigallocatechin-3-gallate (EGCG) is the most biologically potent polyphenol of green tea. Non-covalent interactions of EGCG with proteins contribute to its diverse biological activities. Here we used the methods of circular dichroism, fluorescence quenching titration, isothermal titration calorimetry and computational chemistry to elucidate interactions of EGCG and 2S albumins. Similarity in structure and overall fold of 2S albumins yielded similar putative binding sites and similar binding modes with EGCG. Binding affinity determined for Ara h 2 was in the range described for complexes of EGCG and other dietary proteins. Binding of EGCG to 2S albumins affects protein conformation, by causing an α-helix to β-structures transition in both proteins. 2S albumins of peanuts may be good carriers of physiologically active green tea catechin. PMID:25952873

  1. 21 CFR 640.80 - Albumin (Human).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... a sterile solution of the albumin derived from human plasma. (b) Source material. The source material of Albumin (Human) shall be plasma recovered from Whole Blood prepared as prescribed in §§ 640.1 through 640.5, or Source Plasma prepared as prescribed in §§ 640.60 through 640.76. (c) Additives...

  2. 21 CFR 640.80 - Albumin (Human).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... a sterile solution of the albumin derived from human plasma. (b) Source material. The source material of Albumin (Human) shall be plasma recovered from Whole Blood prepared as prescribed in §§ 640.1 through 640.5, or Source Plasma prepared as prescribed in §§ 640.60 through 640.76. (c) Additives...

  3. 21 CFR 640.80 - Albumin (Human).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... a sterile solution of the albumin derived from human plasma. (b) Source material. The source material of Albumin (Human) shall be plasma recovered from Whole Blood prepared as prescribed in §§ 640.1 through 640.5, or Source Plasma prepared as prescribed in §§ 640.60 through 640.76. (c) Additives...

  4. 21 CFR 640.80 - Albumin (Human).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... a sterile solution of the albumin derived from human plasma. (b) Source material. The source material of Albumin (Human) shall be plasma recovered from Whole Blood prepared as prescribed in §§ 640.1 through 640.5, or Source Plasma prepared as prescribed in §§ 640.60 through 640.76. (c) Additives...

  5. 21 CFR 640.80 - Albumin (Human).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... a sterile solution of the albumin derived from human plasma. (b) Source material. The source material of Albumin (Human) shall be plasma recovered from Whole Blood prepared as prescribed in §§ 640.1 through 640.5, or Source Plasma prepared as prescribed in §§ 640.60 through 640.76. (c) Additives...

  6. Redox homeostasis of albumin in relation to alpha-lipoic acid and dihydrolipoic acid.

    PubMed

    Atukeren, Pinar; Aydin, Seval; Uslu, Ezel; Gumustas, M Koray; Cakatay, Ufuk

    2010-01-01

    Albumin represents the predominant circulating antioxidant agent in plasma exposed to continuous oxidative stress and a change in serum albumin structure accounts for its antioxidant properties. Alterations in the redox status of albumin may result in impairments of its biological properties. Alpha-lipoic acid (LA), a naturally occurring thiol compound found in virtually all species, is a potent antioxidant with high efficacy which is also involved in the chelation of metal ions, regeneration of antioxidants, and repair of oxidatively damaged proteins. In human body LA is rapidly reduced to dihydrolipoic acid (DHLA) after intake into the cell. Both, LA and DHLA are amphipathic molecules which act as antioxidants both in hydrophilic and lipophilic environments. The present study aimed to investigate the antioxidant/pro-oxidant effects of LA and DHLA due to their concentrations in metal-catalyzed protein oxidation (MCO) of human serum albumin (HSA). Progressive oxidative modification of albumin was found in MCO system by an increased content of protein hydroperoxides (POOH), protein carbonyl groups (PCO) which is the former's major breakdown product, and other protein oxidation markers such as advanced oxidized protein products (AOPP) and protein thiol groups (P-SH). The possible antioxidant protective effects of LA and DHLA were observed with 25 microM and 50 microM; DHLA being more influential. Protein oxidation parameters were found to be lower and P-SH levels seemed higher. However, prooxidant effects of both LA and DHLA came on the scene with increased concentrations of 75 microM and 100 microM where the latter seemed the most hazardous with contradicted results. It is clear that the loss of biological activity of human serum albumin by MCO system appears of medical relevance and if LA exerts similar effects seen in the present study, it is possible that cellular prooxidant activity can also result consuming this unique antioxidant in certain doses. PMID

  7. The effects of different preservation processes on the total protein and growth factor content in a new biological product developed from human amniotic membrane.

    PubMed

    Russo, Alessandra; Bonci, Paola; Bonci, Paolo

    2012-06-01

    The aim of this work is to quantify the total protein and growth factors content in a tissue-suspension obtained from processed human amniotic membrane (hAM). hAM was collected, frozen, freeze dried, powdered and sterilized by γ-irradiation. At each step of the process, samples were characterized for the total protein amounts by a Bradford protein assay and for the growth factor concentrations by ELISA test of the tissue suspensions. Frozen-hAM samples show higher release of total proteins and specific growth factors in the tissue suspension in comparison with freeze-dried hAM. We observed that even if the protein extraction is hindered once the tissue is dried, the powdering process allows a greater release in the tissue suspension of total proteins and growth factors after tissue re-solubilization in comparison with only the freeze-drying process (+91 ± 13% for EGF, +16 ± 4% for HGF, +11 ± 5% for FGF, +16 ± 9% for TGF-β1), and a greater release of EGF (85 ± 10%) in comparison with only the freezing process, because proteins become much readily solubilized in the solution. According with these results, we describe a protocol to obtain a new sterile biological product from hAM tissue, with well-known effects of thermal, mechanical and physical processes on the total protein and grow factors contents. PMID:21681392

  8. Sequence homology between RNAs encoding rat alpha-fetoprotein and rat serum albumin.

    PubMed Central

    Jagodzinski, L L; Sargent, T D; Yang, M; Glackin, C; Bonner, J

    1981-01-01

    We have determined the sequences of the recombinant DNA inserts of three bacterial plasmid cDNA clones containing most of the rat alpha a-fetoprotein mRNA. The resultant nucleotide sequence of alpha-fetoprotein was exhaustively compared to the nucleotide sequence of the mRNA encoding rat serum albumin. These two mRNAs have extensive homology (50%) throughout and the same intron locations. The amino acid sequence of rat alpha-fetoprotein has been deduced from the nucleotide sequence, and its comparison to rat serum albumin's amino acid sequence reveals a 34% homology. The regularly spaced positions of the cysteines found in serum albumin are conserved in rat alpha-fetoprotein, indicating that these two proteins may have a similar secondary folding structure. These homologies indicate that alpha-fetoprotein and serum albumin were derived by duplication of a common ancestral gene and constitute a gene family. PMID:6167988

  9. Ultrasonic frequency analysis for estimating pH in albumin-rich biofluids.

    PubMed

    Rackov, Andrien A; Burns, David H

    2016-03-01

    Ultrasound is known as a non-invasive imaging modality capable of propagating through highly scattering media such as tissue, blood, and other biological fluids, yet currently provides little chemical information. We have developed a straightforward and rapid methodology for estimating pH in albumin-rich biofluids based on analysis of ultrasonic frequencies. Albumin is the most abundant protein in serum and undergoes conformational changes with pH. It was shown that when ultrasound propagated through albumin solutions, the attenuation of collected ultrasound signals increased with pH. By measuring the ultrasound frequency spectra at several albumin concentrations and pH values, the pH of the solutions could be determined by multilinear regression. Differences in absolute protein content contributed to signal differences in the frequency profiles and were minimized through normalization of each spectrum by the sum of all its frequency intensities. This strategy was applied to human serum samples from multiple donors, for which a multilinear regression model was developed with a coefficient of determination (R(2)) of 0.93 and a standard error of estimate (SEE) of 0.08 pH units. The use of albumin as a pH indicator opens the doors for estimations in other albumin-rich media, such as amniotic fluid and cerebrospinal fluid. PMID:26717815

  10. [Spectroscopic studies on the binding of phenazopyridine hydrochloride and bovine serum albumin].

    PubMed

    Zhou, Hong; Chen, Chang-Yun; Xie, An-Jian

    2007-09-01

    The binding of phenazopyridine hydrochloride and bovine serum albumin under physiological conditions was studied by spectroscopic method. The quenching mechanism of the fluorescence of bovine serum albumin by phenazopyridine hydrochloride was studied with fluorescence and absorption spectroscopy. The binding constant Kb and the number of binding sites n were determined at different temperatures according to Scatchard equation, and the main binding force was discussed by thermodynamic equations. The effect of the drug on bovine serum albumin conformation was also studied by using synchronous fluorescence spectroscopy. The quenching mechanism of phenazopyridine hydrochloride to bovine serum albumin is static quenching and non-radiation energy transfer. The binding constants Kb at 15, 25 and 37 degrees C are 2.47 x 10(7), 9.15 x 10(6) and 4.36 x 10(6) mol(-1) with one binding site, respectively. The thermodynamic parameters of the reaction are DeltaH = -71.2 kJ x mol(-1), and DeltaS = 124.8 J x mol(-1) x K(-1). Binding phenazopyridine hydrochloride to bovine serum albumin is a spontaneous inter-molecular interaction in which entropy increases and Gibbs free energy decreases. The binding distance r between phenazopyridine hydrochloride and bovine serum albumin is 1.61 nm according to Forster theory of non-radiation energy transfer. The binding force is electrostatic interaction. Phenazopyridine hydrochloride can be deposited and transported by serum protein in vivo. Phenazopyridine hydrochloride does affect the serum protein conformation. PMID:18051539

  11. Higher Total Protein Intake and Change in Total Protein Intake Affect Body Composition but Not Metabolic Syndrome Indexes in Middle-Aged Overweight and Obese Adults Who Perform Resistance and Aerobic Exercise for 36 Weeks123

    PubMed Central

    Campbell, Wayne W; Kim, Jung Eun; Amankwaah, Akua F; Gordon, Susannah L; Weinheimer-Haus, Eileen M

    2015-01-01

    Background: Studies assessing the effects of protein supplementation on changes in body composition (BC) and health rarely consider the impact of total protein intake (TPro) or the change in TPro (CTPro) from participants’ usual diets. Objective: This secondary data analysis assessed the impact of TPro and CTPro on changes in BC and metabolic syndrome (MetS) indexes in overweight and obese middle-aged adults who participated in an exercise training program. Methods: Men and women [n = 117; age: 50 ± 0.7 y, body mass index (BMI; in kg/m2): 30.1 ± 0.3; means ± SEs] performed resistance exercise 2 d/wk and aerobic exercise 1 d/wk and consumed an unrestricted diet along with 200-kcal supplements (0, 10, 20, or 30 g whey protein) twice daily for 36 wk. Protein intake was assessed via 4-d food records. Multiple linear regression model and stratified analysis were applied for data analyses. Results: Among all subjects, TPro and CTPro were inversely associated (P < 0.05) with changes in body mass, fat mass (FM), and BMI. Changes in BC were different (P < 0.05) among groups that consumed <1.0 (n = 43) vs. ≥1.0 to <1.2 (n = 29) vs. ≥1.2 g · kg−1 · d−1 (n = 45). The TPro group with ≥1.0 to <1.2 g · kg−1 · d−1 reduced FM and %FM and increased percentage of LM (%LM) compared with the lowest TPro group, whereas the TPro group with ≥1.2 g · kg−1 · d−1 presented intermediate responses on changes in FM, %FM, and %LM. The gain in LM was not different among groups. In addition, MetS indexes were not influenced by TPro and CTPro. Conclusions: In conjunction with exercise training, higher TPro promoted positive changes in BC but not in MetS indexes in overweight and obese middle-aged adults. Changes in TPro from before to during the intervention also influenced BC responses and should be considered in future research when different TPro is achieved via diet or supplements. This trial was registered at clinicaltrials.gov as NCT00812409. PMID:26246322

  12. Plasma protein binding of nitroxynil in several species.

    PubMed

    Alvinerie, M; Floc'h, R; Galtier, P

    1991-06-01

    The binding of nitroxynil to total plasma proteins of cows, sheep and rabbits was characterized using equilibrium dialysis. The data indicate clearly that nitroxynil was highly (97-98%) bound to plasma protein of each animal. This linear binding would be due to the particular power exerted by serum albumin. The results are in good agreement with known pharmacokinetic properties of nitroxynil in domestic species. PMID:1920604

  13. Adsorbed serum albumin is permissive to macrophage attachment to perfluorocarbon polymer surfaces in culture.

    PubMed

    Godek, M L; Michel, R; Chamberlain, L M; Castner, D G; Grainger, D W

    2009-02-01

    Monocyte/macrophage adhesion to biomaterials, correlated with foreign body response, occurs through protein-mediated surface interactions. Albumin-selective perfluorocarbon (FC) biomaterials are generally poorly cell-conducive because of insufficient receptor-mediated surface interactions, but macrophages bind to albumin-coated substrates and also preferentially to highly hydrophobic fluorinated surfaces. Bone marrow macrophages (BMMO) and IC-21, RAW 264.7, and J774A.1 monocyte/macrophage cells were cultured on FC surfaces. Protein deposition onto two distinct FC surfaces from complex and single-component solutions was tracked using fluorescence and time-of-flight secondary ion mass spectrometry (ToF-SIMS) methods. Cell adhesion and growth on protein pretreated substrates were compared by light microscopy. Flow cytometry and integrin-directed antibody receptor blocking were used to assess integrins critical for monocyte/macrophage adhesion in vitro. Albumin predominantly adsorbs onto both FC surfaces from 10% serum. In cultures preadsorbed with albumin or serum-dilutions, BMMO responded similar to IC-21 at early time points. Compared with Teflon AF, plasma-polymerized FC was less permissive to extended cell proliferation. The beta(2) integrins play major roles in macrophage adhesion to FC surfaces: antibody blocking significantly disrupted cell adhesion. Albumin-mediated cell adhesion mechanisms to FC surfaces could not be clarified. Primary BMMO and secondary IC-21 macrophages behave similarly on FC surfaces, regardless of preadsorbed protein biasing, with respect to adhesion, cell morphology, motility, and proliferation. PMID:18306309

  14. Adsorbed serum albumin is permissive to macrophage attachment to perfluorocarbon polymer surfaces in culture

    PubMed Central

    Godek, M.L.; Michel, R.; Chamberlain, L. M.; Castner, D. G.; Grainger, D.W.

    2013-01-01

    Monocyte/macrophage adhesion to biomaterials, correlated with foreign body response, occurs through protein-mediated surface interactions. Albumin-selective perfluorocarbon (FC) biomaterials are generally poorly cell-conducive due to insufficient receptor-mediated surface interactions, but macrophages bind to albumin-coated substrates and also preferentially to highly hydrophobic fluorinated surfaces. Bone marrow macrophages (BMMO) and IC-21, RAW 264.7 and J774A.1 monocyte/macrophage cells were cultured on FC surfaces. Protein deposition onto two distinct FC surfaces from complex and single-component solutions was tracked using fluorescence and time-of-flight secondary ion mass spectrometry (ToF-SIMS) methods. Cell adhesion and growth on protein pre-treated substrates were compared by light microscopy. Flow cytometry and integrin-directed antibody receptor blocking assessed integrins critical for monocyte/macrophage adhesion in vitro. Albumin predominantly adsorbs onto both FC surfaces from 10% serum. In cultures pre-adsorbed with albumin or serum-dilutions, BMMO responded similar to IC-21 at early time points. Compared to Teflon® AF, plasma-polymerized FC was less permissive to extended cell proliferation. The β2 integrins play major roles in macrophage adhesion to FC surfaces: antibody blocking significantly disrupted cell adhesion. Albumin-mediated cell adhesion mechanisms to FC surfaces could not be clarified. Primary BMMO and secondary IC-21 macrophages behave similarly on FC surfaces, regardless of pre-adsorbed protein biasing, with respect to adhesion, cell morphology, motility and proliferation. PMID:18306309

  15. Oxidative changes in the blood and serum albumin differentiate rats with monoarthritis and polyarthritis.

    PubMed

    Bracht, Adelar; Silveira, Sandra Silva; Castro-Ghizoni, Cristiane Vizioli; Sá-Nakanishi, Anacharis Babeto; Oliveira, Márcia Rosângela Neves; Bersani-Amado, Ciomar Aparecida; Peralta, Rosane Marina; Comar, Jurandir Fernando

    2016-01-01

    Adjuvant arthritis in rats, as rheumatoid arthritis in humans, may be of greater or lesser severity, namely polyarthritis and monoarthritis, respectively. The present study was planned to evaluate the oxidative changes in the blood and specifically in the serum albumin of rats with adjuvant-induced mono- and poly-arthritis. Total antioxidant capacity, thiols, carbonyl groups, albumin, uric acid and ascorbic acid were measured in the total serum. The specific oxidative status of albumin was also measured after separation by affinity chromatography. All serum oxidative parameters were close to normal in monoarthritic rats with the exception of the ascorbic acid concentration, which was 23 % lower, and albumin carbonyl groups, which were 64 % higher. Many modifications were found in polyarthritic rats, specially the ascorbic acid concentration (35 % lower) and albumin carbonyl groups (102 % higher). The results revealed that the levels of ascorbic acid in the serum and carbonyl groups in the albumin molecule can be regarded as indicators of the severity of arthritis since they were modified by both monoarthritis and polyarthritis, but to different degrees. PMID:26835218

  16. Protease Inhibition by Oleic Acid Transfer From Chronic Wound Dressings to Albumin

    SciTech Connect

    Edwards, J. V.; Howley, Phyllis; Davis, Rachel M.; Mashchak, Andrew D.; Goheen, Steven C.

    2007-08-01

    High elastase and cathepsin G activities have been observed in chronic wounds. These levels can inhibit healing through degradation of growth factors, cytokines, and extracellular matrix proteins. Oleic acid (18:1) is a non-toxic elastase inhibitor with some potential for redressing the imbalance of elastase activity found in chronic wounds. Cotton wound dressing material was characterized as a transfer carrier for affinity uptake of 18:1 by albumin under conditions mimicking chronic wounds. 18:1-treated cotton was examined for its ability to bind and release the fatty acid in the presence of albumin. The mechanism of 18:1 uptake from cotton and binding by albumin was examined with both intact dressings and cotton fiber-designed chromatography. Raman spectra of the albumin-18:1 complexes under liquid-liquid equilibrium conditions revealed fully saturated albumin-18:1 complexes with a 1:1 weight ratio of albumin:18:1. Cotton chromatography under liquid-solid equilibrium conditions revealed oleic acid transfer from cotton to albumin at 27 mole equivalents of 18:1 per mole albumin. Cotton was contrasted with hydrogel, and hydrocolloid wound dressing for its comparative ability to lower elastase activity. Each dressing material evaluated was found to release 18:1 in the presence of albumin with significant inhibition of elastase activity. The 18:1-formulated wound dressings lowered elastase activity in a dose dependent manner in the order cotton gauze > hydrogel > hydrocolloid. In contrast the cationic serine protease Cathepsin G was inihibited by 18:1 within a narrow range of 18:1-cotton formulations. Four per cent Albumin solutions were most effective in binding cotton bound-18:1. However, 2% albumin was sufficient to transfer quantities of 18:1 necessary to achieve a significant elastase-lowering effect. Formulations with 128 mg 18:1/g cotton gauze had equivalent elastase lowering with 1 - 4% albumin. 18:1 bound to cotton wound dressings may have promise in the

  17. The amyloid in familial amyloid cardiomyopathy of Danish origin is related to pre-albumin.

    PubMed Central

    Husby, G; Ranløv, P J; Sletten, K; Marhaug, G

    1985-01-01

    Amyloid obtained from the myocardium of a patient (Han) with familial amyloid cardiomyopathy of Danish origin was studied. Gel filtration and electrophoresis of purified and denatured amyloid fibrils Han revealed various fractions ranging in mol. wt from 40,000 to 8,000 daltons. Amyloid Han and fractions reacted with an antiserum against amyloid Han showing a reaction of identity with each other; partial identity between Han and human pre-albumin was observed, while no reaction was seen with AA or AL proteins. Cardiac tissue sections from Han showed reactivity with antisera to amyloid Han, pre-albumin and protein AP, but not with anti-AA or anti-AL in indirect immunofluorescence. Amino acid composition and sequence studies of a protein fraction of amyloid Han with mol. wt 15,000 daltons confirmed the structural relationship with pre-albumin. Images Fig. 2 Fig. 3 PMID:3924450

  18. The amyloid in familial amyloid cardiomyopathy of Danish origin is related to pre-albumin.

    PubMed

    Husby, G; Ranløv, P J; Sletten, K; Marhaug, G

    1985-04-01

    Amyloid obtained from the myocardium of a patient (Han) with familial amyloid cardiomyopathy of Danish origin was studied. Gel filtration and electrophoresis of purified and denatured amyloid fibrils Han revealed various fractions ranging in mol. wt from 40,000 to 8,000 daltons. Amyloid Han and fractions reacted with an antiserum against amyloid Han showing a reaction of identity with each other; partial identity between Han and human pre-albumin was observed, while no reaction was seen with AA or AL proteins. Cardiac tissue sections from Han showed reactivity with antisera to amyloid Han, pre-albumin and protein AP, but not with anti-AA or anti-AL in indirect immunofluorescence. Amino acid composition and sequence studies of a protein fraction of amyloid Han with mol. wt 15,000 daltons confirmed the structural relationship with pre-albumin. PMID:3924450

  19. Further studies on immunoglobulin G- and albumin-binding properties of streptococci of serological group L.

    PubMed

    Sippel, K; Lämmler, C

    1995-09-01

    In this study, all 88 streptococci of serological group L isolated from cows, pigs, poultry and humans bound 125I-immunoglobulin G, and, in addition, 22 cultures interacted with 125I-albumin. IgG- and albumin-binding sites were solubilized from the streptococcal surface by heat extraction at an acid pH and also by mutanolysin treatment of the bacteria. Western blot analysis of these binding proteins revealed that almost identical protein bands were responsible for 125I-IgG and -albumin binding. Certain protein fractions of the cultures interacted exclusively with 125I-IgG, indicating that there are two groups of IgG receptors among streptococci of this serogroup. PMID:8594855

  20. Covalent albumin microparticles as an adjuvant for production of mucosal vaccines against hepatitis B.

    PubMed

    Sitta, Danielly L A; Guilherme, Marcos R; Garcia, Francielle P; Cellet, Thelma S P; Nakamura, Celso V; Muniz, Edvani C; Rubira, Adley F

    2013-09-01

    Covalently modified albumin (BSA) microparticles were developed for potential use as an adjuvant in mucosal vaccines against hepatitis B. To synthesize consistent protein particles, a covalent approach was proposed to modify BSA. Our strategy was to bond maleic anhydride (MA) molecules to BSA structure by nucleophilic reaction for further radical cross-linking/polymerization reaction with N',N'-dimethylacrylamide (DMAAm). The presence of poly(N',N'-dimethylacrylamide) in the protein network enables the microparticles to show well-defined, homogeneous forms. Cytotoxicity tests showed that the cytotoxic concentration for 50% of VERO cells (CC50) was 216.25 ± 5.30 μg mL(-1) in 72 h of incubation. The obtained CC50 value is relatively low for an incubation time of 72 h, suggesting an acceptable biocompatibility. Assay of total protein showed that the encapsulation efficiency of the microparticles with hepatitis B surface antigen (HBsAg) was 77.7 ± 0.2%. For the reference sample, which was incubated without HBsAg, the quantity of protein was below the limit of detection. PMID:23863080

  1. Spread Films of Human Serum Albumin at the Air-Water Interface: Optimization, Morphology, and Durability.

    PubMed

    Campbell, Richard A; Ang, Joo Chuan; Sebastiani, Federica; Tummino, Andrea; White, John W

    2015-12-22

    It has been known for almost one hundred years that a lower surface tension can be achieved at the air-water interface by spreading protein from a concentrated solution than by adsorption from an equivalent total bulk concentration. Nevertheless, the factors that control this nonequilibrium process have not been fully understood. In the present work, we apply ellipsometry, neutron reflectometry, X-ray reflectometry, and Brewster angle microscopy to elaborate the surface loading of human serum albumin in terms of both the macroscopic film morphology and the spreading dynamics. We show that the dominant contribution to the surface loading mechanism is the Marangoni spreading of protein from the bulk of the droplets rather than the direct transfer of their surface films. The films can be spread on a dilute subphase if the concentration of the spreading solution is sufficient; if not, dissolution of the protein occurs, and only a textured adsorbed layer slowly forms. The morphology of the spread protein films comprises an extended network with regions of less textured material or gaps. Further, mechanical cycling of the surface area of the spread films anneals the network into a membrane that approach constant compressibility and has increased durability. Our work provides a new perspective on an old problem in colloid and interface science. The scope for optimization of the surface loading mechanism in a range of systems leading to its exploitation in deposition-based technologies in the future is discussed. PMID:26607026

  2. Dietary Intake of Total, Animal, and Vegetable Protein and Risk of Type 2 Diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-NL Study

    PubMed Central

    Sluijs, Ivonne; Beulens, Joline W.J.; van der A, Daphne L.; Spijkerman, Annemieke M.W.; Grobbee, Diederick E.; van der Schouw, Yvonne T.

    2010-01-01

    OBJECTIVE Dietary recommendations are focused mainly on relative dietary fat and carbohydrate content in relation to diabetes risk. Meanwhile, high-protein diets may contribute to disturbance of glucose metabolism, but evidence from prospective studies is scarce. We examined the association among dietary total, vegetable, and animal protein intake and diabetes incidence and whether consuming 5 energy % from protein at the expense of 5 energy % from either carbohydrates or fat was associated with diabetes risk. RESEARCH DESIGN AND METHODS A prospective cohort study was conducted among 38,094 participants of the European Prospective Investigation into Cancer and Nutrition (EPIC)-NL study. Dietary protein intake was measured with a validated food frequency questionnaire. Incident diabetes was verified against medical records. RESULTS During 10 years of follow-up, 918 incident cases of diabetes were documented. Diabetes risk increased with higher total protein (hazard ratio 2.15 [95% CI 1.77–2.60] highest vs. lowest quartile) and animal protein (2.18 [1.80–2.63]) intake. Adjustment for confounders did not materially change these results. Further adjustment for adiposity measures attenuated the associations. Vegetable protein was not related to diabetes. Consuming 5 energy % from total or animal protein at the expense of 5 energy % from carbohydrates or fat increased diabetes risk. CONCLUSIONS Diets high in animal protein are associated with an increased diabetes risk. Our findings also suggest a similar association for total protein itself instead of only animal sources. Consumption of energy from protein at the expense of energy from either carbohydrates or fat may similarly increase diabetes risk. This finding indicates that accounting for protein content in dietary recommendations for diabetes prevention may be useful. PMID:19825820

  3. Encapsulated multicellular spheroids of rat hepatocytes produce albumin and urea in a spouted bed circulating culture system.

    PubMed

    Takabatake, H; Koide, N; Tsuji, T

    1991-12-01

    Multicellular spheroids are spherical cell-aggregates that retain tridimensional architecture and tissue-specific functions. For use of multicellular spheroids of hepatocytes in a bioreactor for hybrid artificial liver support, we studied the effect of encapsulation and circulating culture on their integrity and tissue-specific functions. Multicellular spheroids of rat hepatocytes were encapsulated into microdroplets of calcium alginate gel and were used as a bioreactor in medium circulating in a spouted bed chamber. Approximately 10% of the hepatocytes of an adult rat were entrapped in a bioreactor chamber, connected to a gas exchanger and a medium reservoir. The total bed volume of the system was 250 ml. The pH and DO2 of the hormonally defined circulating medium was maintained constantly. Albumin and urea were produced in a linear fashion for 64 h at the rates of 0.02 micrograms/microgram cell protein/day and 0.15-0.2 ng/micrograms cell protein/day, respectively. Viability and structural stability of the spheroids were well preserved after the culture period. These results indicate that these encapsulated multicellular hepatocyte spheroids will provide a useful bioreactor for the continuous production of albumin, in vitro and also a prototype hybrid artificial liver support. PMID:1763969

  4. Early albumin infusion to infants at risk for respiratory distress

    PubMed Central

    Bland, R. D.; Clarke, T. L.; Harden, L. B.; Mayer, Judith L.; Ries, J. P.; Madden, W. A.; Crast, F. W.; Coyer, W. F.; Bass, J. W.

    1973-01-01

    In a randomized prospective study, 100 high-risk infants (selected on the basis of a cord serum protein level of 4·6 g/100 ml or less, gestational age under 37 weeks, birthweight 2500 g or less, and/or arterial pH below 7·25) received 8 ml/kg of either 25% salt-poor albumin or 5% dextrose in water before the age of 2 hours. All infants were then managed supportively with warmth, appropriate oxygen supplementation, isotonic fluid infusion, and close monitoring, without further administration of colloid or hypertonic alkali solutions over the first 4 hours of life. No statistically significant difference was shown between early colloid and early dextrose-water administration for either the incidence of idiopathic respiratory distress syndrome (RDS) or the mortality of high-risk infants, suggesting no apparent advantage of albumin over simple glucose-water infusion to hypoproteinaemic newborns shortly after birth. However, among the infants of 28 weeks' gestation or less admitted to the study, 3 of 4 albumin-treated patients survived, while 5 comparable infants in the dextrose-water group died within 12 hours of birth. For the 100 infants taken together there was a significant improvement in morbidity and mortality from previous experience in the same nursery, indicating that prompt supportive care, including early fluid administration, may be instrumental in reducing the incidence and severity of RDS. PMID:4749684

  5. Albumin extravasation rates in tissues of anesthetized and unanesthetized rats

    SciTech Connect

    Renkin, E.M.; Joyner, W.L.; Gustafson-Sgro, M.; Plopper, G.; Sibley, L.

    1989-05-01

    Bovine serum albumin (BSA) labeled with /sup 131/I was injected intravenously in chronically prepared, unanesthetized rats and into pentobarbital-anesthetized rats that had received 2 ml 5% BSA to help sustain plasma volume. Initial uptake rates (clearances) in skin, skeletal muscles, diaphragm, and heart (left ventricle) were measured over 1 h. BSA labeled with /sup 125/I was injected terminally to correct for intravascular /sup 131/I-BSA. Observed clearances were in the following order in both groups of animals: heart much greater than diaphragm approximately equal to skin greater than resting skeletal muscles. Differences between unanesthetized and anesthetized animals were small and inconsistently directed. Our results suggest that the lower albumin clearances reported in the literature for anesthetized rats are not the result of their immobility or any direct effect of anesthesia on albumin transport in these tissues. The lower transport rates appear to result indirectly from changes produced by anesthesia and/or surgery in controllable parameters such as plasma volume and intravascular protein mass.

  6. Inhibitory effect of gold nanoparticles on the D-ribose glycation of bovine serum albumin

    PubMed Central

    Liu, Weixi; Cohenford, Menashi A; Frost, Leslie; Seneviratne, Champika; Dain, Joel A

    2014-01-01

    Formation of advanced glycation end products (AGEs) by nonenzymatic glycation of proteins is a major contributory factor to the pathophysiology of diabetic conditions including senile dementia and atherosclerosis. This study describes the inhibitory effect of gold nanoparticles (GNPs) on the D-ribose glycation of bovine serum albumin (BSA). A combination of analytical methods including ultraviolet–visible spectrometry, high performance liquid chromatography, circular dichroism, and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry were used to determine the extent of BSA glycation in the presence of citrate reduced spherical GNPs of various sizes and concentrations. GNPs of particle diameters ranging from 2 nm to 20 nm inhibited BSA’s AGE formation. The extent of inhibition correlated with the total surface area of the nanoparticles. GNPs of highest total surface area yielded the most inhibition whereas those with the lowest total surface area inhibited the formation of AGEs the least. Additionally, when GNPs’ total surface areas were set the same, their antiglycation activities were similar. This inhibitory effect of GNPs on BSA’s glycation by D-ribose suggests that colloidal particles may have a therapeutic application for the treatment of diabetes and conditions that promote hyperglycemia. PMID:25473284

  7. Unexpected depletion of plasma arachidonate and total protein in cats fed a low arachidonic acid diet due to peroxidation.

    PubMed

    Chamberlin, Amy; Mitsuhashi, Yuka; Bigley, Karen; Bauer, John E

    2011-10-01

    An opportunity to investigate a low-arachidonic acid (AA) feline diet possibly related to elevated peroxide value (PV) during storage on plasma phospholipid (PL) and reproductive tissue fatty acid (FA) profiles presented itself in the present study. Cats (nine animals per group) had been fed one of three dry extruded, complete and balanced diets for 300 d before spaying. The diets contained adequate AA (0.3 g/kg), similar concentration of antioxidants and were stored at ambient temperature, but differed in FA composition. The diets were designated as follows: diet A (high linoleic acid), diet B (high γ-linolenic acid) and diet C (adequate linoleic acid). Diet samples that were obtained the week before spaying revealed an elevated PV of diet A v. diets B and C (135 v. 5.80 and 2.12 meq/kg fat, respectively). Records revealed decreased food consumption of diet A cats beginning at 240 d but without weight loss; thus an opportunity presented to investigate diet PV effects. Total plasma protein and PL-AA concentrations in group A were significantly decreased at 140 and 300 d. Uterine and ovarian tissues collected at surgery revealed modest decrements of AA. Diet A was below minimum standards at 0.015 % (minimum 0.02 %), probably due to oxidation. The time at which diet A became unacceptable may have occurred between 60 and 140 d because plasma PL-AA was within our normal colony range (approximately 4-7 % relative) after 56 d of feeding. High-linoleic acid-containing diets may be more likely to be oxidised requiring additional antioxidants. The findings suggest that reduced plasma protein in combination with plasma AA concentrations may serve as biomarkers of diet peroxidation in cats before feed refusal, weight loss or tissue depletion. PMID:22005409

  8. Synthesis and application of lactosylated, 99mTc chelating albumin for measurement of liver function.

    PubMed

    Chaumet-Riffaud, Philippe; Martinez-Duncker, Ivan; Marty, Anne-Laure; Richard, Cyrille; Prigent, Alain; Moati, Frederic; Sarda-Mantel, Laure; Scherman, Daniel; Bessodes, Michel; Mignet, Nathalie

    2010-04-21

    Neogalactosylated and neolactosylated albumins are currently used as radiopharmaceutical agents for imaging the liver asialoglycoprotein receptors, which allows the quantification of hepatic liver function in various diseases and also in healthy liver transplant donors. We developed an original process for synthesizing a chelating neolactosylated human albumin using maleimidopropyl-lactose and maleimidopropyl-diethylene triamine pentaacetic acid (DTPA) derivatives. The lactosylated protein (LACTAL) conjugate showed excellent liver uptake compared to nonlactosylated protein and a very high signal-to-noise ratio, based on functional assessment of biodistribution in mice using (99m)Tc-scintigraphy. PMID:20201600

  9. Induced Long-Range Attractive Potentials of Human Serum Albumin by Ligand Binding

    SciTech Connect

    Sato, Takaaki; Komatsu, Teruyuki; Nakagawa, Akito; Tsuchida, Eishun

    2007-05-18

    Small-angle x-ray scattering and dielectric spectroscopy investigation on the solutions of recombinant human serum albumin and its heme hybrid revealed that heme incorporation induces a specific long-range attractive potential between protein molecules. This is evidenced by the enhanced forward intensity upon heme binding, despite no hindrance to rotatory Brownian motion, unbiased colloid osmotic pressure, and discontiguous nearest-neighbor distance, confirming monodispersity of the proteins. The heme-induced potential may play a trigger role in recognition of the ligand-filled human serum albumins in the circulatory system.

  10. Reactions of trimethylphosphine analogues of auranofin with bovine serum albumin

    SciTech Connect

    Isab, A.A.; Shaw, C.F. III; Hoeschele, J.D.; Locke, J.

    1988-10-05

    The reactions of bovine serum albumin (BSA) with (trimethylphosphine)(2,3,4,6-tetra-O-acetyl-1-thio-..beta..-D-glucopyranosato-S)gold(I), Me/sub 3/PAuSAtg, and its chloro analogue, Me/sub 3/PAuCl, were studied to develop insights into the role of the phosphine ligand in the serum chemistry of the related antiarthritic drug auranofin (triethylphosphine)(2,3,4,6-tetra-O-acetyl-1-thio-..beta..-D-glucopyranosato-S)gold(I). /sup 31/P NMR spectroscopy, protein modification, and gel-exclusion chromatography methods were employed. Comparison of the reactions of the methyl derivatives to the previously reported reactions of auranofin and Et/sub 3/PAuCl with BSA demonstrated that similar chemical species are formed but revealed three major differences. Despite these differences, the results for the methyl analogues provide important confirmation for previously developed chemical models of auranofin reactions in serum. Me/sub 3/PO was not observed in reaction mixtures lacking tetraacetylthioglucose (AtgSH); this result affirms the role of AtgSH, displaced by the reaction of Me/sub 3/PAuSAtg at Cys-34, in the generation of the phosphine oxide (an important metabolite in vivo). The weak binding sites on albumin react with Me/sub 3/PAuCl, but not Me/sub 3/PAuSAtg, demonstrating the importance of the strength and reactivity of the anionic ligand-gold bond on the reactions of auranofin analogues. The gold binding capacity of albumin is enhanced after Me/sub 3/PO is formed, consistent with reductive cleavage of albumin disulfide bonds by trimethylphosphine. 24 references, 2 figures, 3 tables.

  11. Identification of albumin-bound fatty acids as the major factor in serum-induced lipid accumulation by cultured cells.

    PubMed

    Mackenzie, C G; Mackenzie, J B; Reiss, O K; Wisneski, J A

    1970-11-01

    Factors responsible for the high lipogenic activity of rabbit serum were investigated using an assay procedure based on the gravimetric determination of the 24 hr increase in cell lipid. Cellular synthesis of fatty acids was inhibited by the presence of serum in the assay medium. Approximately 90% of the increase in cell lipid produced by serum fractions was due to triglyceride accumulation. Fractionation of rabbit serum by precipitation with ammonium sulfate or by ultracentrifugation in high density medium, both indicated that three-quarters of its lipogenic activity was associated with albumin. The lipoproteins prepared by ultracentrifugation also exhibited about one-half the activity of whole serum. The lipogenic activity of albumin was confirmed by the high potency of the albumin isolated in a nearly pure form from proteins of d>1.21 by precipitation with trichloroacetic acid and extraction with ethanol. As judged from chemical and isotopic analysis, neither the lipid content nor the lipid composition of the albumin was appreciably altered during its isolation. Of the albumin-bound lipids, only the free fatty acids, as determined by DEAE column chromatography, were present in an amount sufficient to account for the observed increase in cell triglycerides. In control experiments with horse serum of low lipogenic activity, the proteins of d>1.21 also possessed low activity in conjunction with a low content of free fatty acid. However, the albumin isolated from the latter preparation exhibited the high lipogenic activity of rabbit serum albumin. Chemical and isotopic analysis of the recovered horse serum albumin revealed that its free fatty acid content was the same as that of rabbit serum albumin. These results indicated that the isolation of horse serum albumin was attended by a substantial increase in its free fatty acid content. When the rabbit serum and horse serum content of media were adjusted to provide equivalent concentrations of albumin-bound fatty

  12. Albumin-induced apoptosis of glomerular parietal epithelial cells is modulated by extracellular signal-regulated kinase 1/2

    PubMed Central

    Ohse, Takamoto; Krofft, Ron D.; Wu, Jimmy S.; Eddy, Allison A.; Pippin, Jeffrey W.; Shankland, Stuart J.

    2012-01-01

    Background. The biological role(s) of glomerular parietal epithelial cells (PECs) is not fully understood in health or disease. Given its location, PECs are constantly exposed to low levels of filtered albumin, which is increased in nephrotic states. We tested the hypothesis that PECs internalize albumin and increased uptake results in apoptosis. Methods. Confocal microscopy of immunofluorescent staining and immunohistochemistry were used to demonstrate albumin internalization in PECs and to quantitate albumin uptake in normal mice and rats as well as experimental models of membranous nephropathy, minimal change disease/focal segmental glomerulosclerosis and protein overload nephropathy. Fluorescence-activated cell sorting analysis was performed on immortalized cultured PECs exposed to fluorescein isothiocyanate (FITC)-labeled albumin in the presence of an endosomal inhibitor or vehicle. Apoptosis was measured by Hoechst staining in cultured PECs exposed to bovine serum albumin. Levels of phosphorylated extracellular signal-regulated kinase 1 and 2 (p-ERK1/2) were restored by retroviral infection of mitogen-activated protein kinase (MEK) 1/2 and reduced by U0126 in PECs exposed to high albumin levels in culture and apoptosis measured by Hoechst staining. Results. PECs internalized albumin normally, and this was markedly increased in all of the experimental disease models (P < 0.05 versus controls). Cultured immortalized PECs also internalize FITC-labeled albumin, which was reduced by endosomal inhibition. A consequence of increased albumin internalization was PEC apoptosis in vitro and in vivo. Candidate signaling pathways underlying these events were examined. Data showed markedly reduced levels of phosphorylated extracellular signal-regulated kinase 1 and 2 (ERK1/2) in PECs exposed to high albumin levels in nephropathy and in culture. A role for ERK1/2 in limiting albumin-induced apoptosis was shown by restoring p-ERK1/2 by retroviral infection, which reduced

  13. Dietary total antioxidant capacity from different assays in relation to serum C-reactive protein among young Japanese women

    PubMed Central

    2012-01-01

    Background The association between dietary total antioxidant capacity (TAC) from different assays and serum C-reactive protein (CRP) has not been assessed in non-Western populations. We examined the association between dietary TAC and serum CRP concentration in young Japanese women using different four TAC assays. Methods The subjects were 443 young Japanese women aged 18–22 years. Dietary TAC was assessed with a self-administered diet history questionnaire and the TAC value of each food using the following four assays: ferric reducing ability of plasma (FRAP); oxygen radical absorbance capacity (ORAC); Trolox equivalent antioxidant capacity (TEAC); and total radical-trapping antioxidant parameter (TRAP). Serum CRP concentrations were measured by highly sensitive nephelometry. Results The major contributor to dietary TAC was green, barley, and oolong tea (FRAP: 53%, ORAC: 45%, TEAC: 36%, and TRAP: 44%). The prevalence of elevated CRP concentrations (≥ 1 mg/L) was 5.6%. TAC from FRAP was inversely associated with serum CRP concentrations (adjusted odds ratio [OR] for elevated CRP concentration in high [compared with low] dietary TAC group: 0.39 [95% confidence interval (CI): 0.16-0.98]; P = 0.04). TAC from ORAC was inversely associated with CRP, although the association was not significant (OR: 0.48 [95% CI: 0.20-1.14]; P = 0.10). TAC from TEAC was inversely associated with CRP (OR: 0.32 [95% CI: 0.12-0.82]; P = 0.02), as was TAC from TRAP (OR: 0.31 [95% CI: 0.12-0.81]; P = 0.02). Conclusions Dietary TAC was inversely associated with serum CRP concentration in young Japanese women regardless of assay. Further studies are needed in other populations to confirm these results. PMID:23110638

  14. Alveolar albumin leakage during large tidal volume ventilation and surfactant dysfunction.

    PubMed

    Liu, J M; Evander, E; Zhao, J; Wollmer, P; Jonson, B

    2001-07-01

    Detergent given as an aerosol and large tidal volume ventilation (LTVV) have been observed, by us, to promote lung injury by an additive effect on alveolocapillary barrier function. The surfactant system may be further damaged if protein leakage occurs into the alveoli. The aim was to study the effect of detergent and LTVV on the alveolar leakage of albumin and also the effect of detergent on surface activity of lung washings and lung tissue extracts. Technetium-99m-labelled human serum albumin was given intravenously. The alveolar leakage of albumin was measured after perturbing the surfactant system with the detergent dioctyl sodium sulfosuccinate either singly or in combination with LTVV. Four groups of rabbits were studied after 3 h of experimental ventilation. Surface tension measurements of tissue extracts, lung mechanics and gas exchange did not show any differences between groups. Wet lung weight and albumin leakage were significantly increased in the two groups subjected to LTVV compared with groups given normal tidal volume ventilation. Low doses of detergent did not affect surface activity of lung tissue extracts or alveolar leakage of albumin. LTVV increased alveolar leakage of albumin and produced oedema. No additive effect was seen when detergent and LTVV were combined. PMID:11442575

  15. Differential effects of insulin deficiency on albumin and fibrinogen synthesis in humans.

    PubMed Central

    De Feo, P; Gaisano, M G; Haymond, M W

    1991-01-01

    Insulin deficiency decreases tissue protein synthesis, albumin mRNA concentration, and albumin synthesis in rats. In contrast, insulin deficiency does not change, or, paradoxically, increases estimates of whole body protein synthesis in humans. To determine if such estimates of whole body protein synthesis could obscure potential differential effects of insulin on the synthetic rates of individual proteins, we determined whole body protein synthesis and albumin and fibrinogen fractional synthetic rates using 5-h simultaneous infusions of [14C]leucine and [13C]bicarbonate, in six type 1 diabetics during a continuous i.v. insulin infusion (to maintain euglycemia) and after short-term insulin withdrawal (12 +/- 2 h). Insulin withdrawal increased (P less than 0.03) whole body proteolysis by approximately 35% and leucine oxidation by approximately 100%, but did not change 13CO2 recovery from NaH13CO3 or estimates of whole body protein synthesis (P = 0.21). Insulin deficiency was associated with a 29% decrease (P less than 0.03) in the albumin fractional synthetic rate but a 50% increase (P less than 0.03) in that of fibrinogen. These data provide strong evidence that albumin synthesis in humans is an insulin-sensitive process, a conclusion consistent with observations in rats. The increase in fibrinogen synthesis during insulin deficiency most likely reflects an acute phase protein response due to metabolic stress. These data suggest that the absence of changes in whole body protein synthesis after insulin withdrawal is the result of the summation of differential effects of insulin deficiency on the synthesis of specific body proteins. PMID:1909352

  16. Incorporation of single dinitrophenyl-modified proteins in to the 30S subunit of Escherichia coli ribosomes by total reconstitution for localization by immune electron microscopy

    SciTech Connect

    Olah, T.V.

    1989-01-01

    The ribosome is a structurally defined organelle whose function is central to the existence of all organisms. It is the unique site of protein biosynthesis in all cells. A detailed understanding of ribosome structure is essential in understanding the process of translation. This thesis represents a new approach to the systematic localization of individual proteins contained in the small subunit of Escherichia coli ribosomes using immunoelectron microscopy. All 30S proteins were purified using high performance liquid chromatography (HPLC) and eight isolated proteins (S12,S21,S14,S19,S18,S17,S16 and S13) were derivatized with 2,4-(3,5-{sup 3}H)dinitrofluorobenzene (DNFB). The extent of modification of these proteins was estimated by both radioactivity and integrated peak areas, using dual wavelength monitoring at 214nm to detect protein and 360nm (to detect dinitrophenyl groups). Each dinitrophenylated protein was introduced in place of the corresponding unmodified protein into totally reconstituted 30S subunits. Antibodies raised against the DNP-hapten bound effectively to such reconstituted subunits and did not cause dissociation of the modified protein from the subunit. Electron microscopy of the immune complexes was used to localize the modified protein on the subunit surface. Incorporation of any of the DNP-modified proteins, with the exception of DNP-S18, does not interfere with the functionality of the ribosome as measure by the binding of Phe-tRNA{sup Phe} or the synthesis of poly(Phe) in a poly(U)-dependent manner. Results show that unmodified protein competes with DNP-protein and that DNP-protein can function, as its native counterpart, in stimulating uptake of specific proteins during reconstitution. This data provides evidence that each DNP-protein occupies the same position in 30S subunits as does the corresponding unmodified protein.

  17. Paclitaxel Albumin-stabilized Nanoparticle Formulation

    Cancer.gov

    This page contains brief information about paclitaxel albumin-stabilized nanoparticle formulation and a collection of links to more information about the use of this drug, research results, and ongoing clinical trials.

  18. Carotenoids, Birdsong and Oxidative Status: Administration of Dietary Lutein Is Associated with an Increase in Song Rate and Circulating Antioxidants (Albumin and Cholesterol) and a Decrease in Oxidative Damage

    PubMed Central

    Casagrande, Stefania; Pinxten, Rianne; Zaid, Erika; Eens, Marcel

    2014-01-01

    Despite the appealing hypothesis that carotenoid-based colouration signals oxidative status, evidence supporting the antioxidant function of these pigments is scarce. Recent studies have shown that lutein, the most common carotenoid used by birds, can enhance the expression of non-visual traits, such as birdsong. Nevertheless, the underlying physiological mechanisms remain unclear. In this study we hypothesized that male European starlings (Sturnus vulgaris) fed extra lutein increase their song rate as a consequence of an improved oxidative status. Although birdsong may be especially sensitive to the redox status, this has, to the best of our knowledge, never been tested. Together with the determination of circulating oxidative damage (ROMs, reactive oxygen metabolites), we quantified uric acid, albumin, total proteins, cholesterol, and testosterone, which are physiological parameters potentially sensitive to oxidation and/or related to both carotenoid functions and birdsong expression. We found that the birds fed extra lutein sang more frequently than control birds and showed an increase of albumin and cholesterol together with a decrease of oxidative damage. Moreover, we could show that song rate was associated with high levels of albumin and cholesterol and low levels of oxidative damage, independently from testosterone levels. Our study shows for the first time that song rate honestly signals the oxidative status of males and that dietary lutein is associated with the circulation of albumin and cholesterol in birds, providing a novel insight to the theoretical framework related to the honest signalling of carotenoid-based traits. PMID:25549336

  19. In vivo biocompatibility, clearance, and biodistribution of albumin vehicles for pulmonary drug delivery

    PubMed Central

    Woods, A.; Patel, A.; Spina, D.; Riffo-Vasquez, Y.; Babin-Morgan, A.; de Rosales, R.T.M.; Sunassee, K.; Clark, S.; Collins, H.; Bruce, K.; Dailey, L.A.; Forbes, B.

    2015-01-01

    The development of clinically acceptable albumin-based nanoparticle formulations for use in pulmonary drug delivery has been hindered by concerns about the toxicity of nanomaterials in the lungs combined with a lack of information on albumin nanoparticle clearance kinetics and biodistribution. In this study, the in vivo biocompatibility of albumin nanoparticles was investigated following a single administration of 2, 20, and 390 μg/mouse, showing no inflammatory response (TNF-α and IL-6, cellular infiltration and protein concentration) compared to vehicle controls at the two lower doses, but elevated mononucleocytes and a mild inflammatory effect at the highest dose tested. The biodistribution and clearance of 111In labelled albumin solution and nanoparticles over 48 h following a single pulmonary administration to mice was investigated by single photon emission computed tomography and X-ray computed tomography imaging and terminal biodistribution studies. 111In labelled albumin nanoparticles were cleared more slowly from the mouse lung than 111In albumin solution (64.1 ± 8.5% vs 40.6 ± 3.3% at t = 48 h, respectively), with significantly higher (P < 0.001) levels of albumin nanoparticle-associated radioactivity located within the lung tissue (23.3 ± 4.7%) compared to the lung fluid (16.1 ± 4.4%). Low amounts of 111In activity were detected in the liver, kidneys, and intestine at time points > 24 h indicating that small amounts of activity were cleared from the lungs both by translocation across the lung mucosal barrier, as well as mucociliary clearance. This study provides important information on the fate of albumin vehicles in the lungs, which may be used to direct future formulation design of inhaled nanomedicines. PMID:25980621

  20. Raman Spectroscopy Provides a Powerful Diagnostic Tool for Accurate Determination of Albumin Glycation

    PubMed Central

    Dingari, Narahara Chari; Horowitz, Gary L.; Kang, Jeon Woong; Dasari, Ramachandra R.; Barman, Ishan

    2012-01-01

    We present the first demonstration of glycated albumin detection and quantification using Raman spectroscopy without the addition of reagents. Glycated albumin is an important marker for monitoring the long-term glycemic history of diabetics, especially as its concentrations, in contrast to glycated hemoglobin levels, are unaffected by changes in erythrocyte life times. Clinically, glycated albumin concentrations show a strong correlation with the development of serious diabetes complications including nephropathy and retinopathy. In this article, we propose and evaluate the efficacy of Raman spectroscopy for determination of this important analyte. By utilizing the pre-concentration obtained through drop-coating deposition, we show that glycation of albumin leads to subtle, but consistent, changes in vibrational features, which with the help of multivariate classification techniques can be used to discriminate glycated albumin from the unglycated variant with 100% accuracy. Moreover, we demonstrate that the calibration model developed on the glycated albumin spectral dataset shows high predictive power, even at substantially lower concentrations than those typically encountered in clinical practice. In fact, the limit of detection for glycated albumin measurements is calculated to be approximately four times lower than its minimum physiological concentration. Importantly, in relation to the existing detection methods for glycated albumin, the proposed method is also completely reagent-free, requires barely any sample preparation and has the potential for simultaneous determination of glycated hemoglobin levels as well. Given these key advantages, we believe that the proposed approach can provide a uniquely powerful tool for quantification of glycation status of proteins in biopharmaceutical development as well as for glycemic marker determination in routine clinical diagnostics in the future. PMID:22393405

  1. Albumin in Burn Shock Resuscitation: A Meta-Analysis of Controlled Clinical Studies

    PubMed Central

    Greenhalgh, David G.; Wilkes, Mahlon M.

    2016-01-01

    Critical appraisal of outcomes after burn shock resuscitation with albumin has previously been restricted to small relatively old randomized trials, some with high risk of bias. Extensive recent data from nonrandomized studies assessing the use of albumin can potentially reduce bias and add precision. The objective of this meta-analysis was to determine the effect of burn shock resuscitation with albumin on mortality and morbidity in adult patients. Randomized and nonrandomized controlled clinical studies evaluating mortality and morbidity in adult patients receiving albumin for burn shock resuscitation were identified by multiple methods, including computer database searches and examination of journal contents and reference lists. Extracted data were quantitatively combined by random-effects meta-analysis. Four randomized and four nonrandomized studies with 688 total adult patients were included. Treatment effects did not differ significantly between the included randomized and nonrandomized studies. Albumin infusion during the first 24 hours showed no significant overall effect on mortality. However, significant statistical heterogeneity was present, which could be abolished by excluding two studies at high risk of bias. After those exclusions, albumin infusion was associated with reduced mortality. The pooled odds ratio was 0.34 with a 95% confidence interval of 0.19 to 0.58 (P < .001). Albumin administration was also accompanied by decreased occurrence of compartment syndrome (pooled odds ratio, 0.19; 95% confidence interval, 0.07–0.50; P < .001). This meta-analysis suggests that albumin can improve outcomes of burn shock resuscitation. However, the scope and quality of current evidence are limited, and additional trials are needed. PMID:25426807

  2. Highly sensitive bovine serum albumin biosensor based on liquid crystal

    NASA Astrophysics Data System (ADS)

    Sharma, Vikash; Kumar, Ajay; Ganguly, Prasun; Biradar, A. M.

    2014-01-01

    A highly sensitive liquid crystal (LC) based bovine serum albumin (BSA) protein biosensor is designed. A uniform homeotropic alignment of nematic LC was observed in BSA free substrate which changed into homogeneous in presence of BSA. The change in the LC orientation is found to depend strongly on BSA concentration. This change in the LC alignment is attributed to the modification in the surface conditions which is verified by contact angle measurements. We have detected an ultra low concentration (0.5 μg/ml) of BSA. The present study demonstrates the utilization of LC in the realization of high sensitivity biosensors.

  3. Three-dimensional structure of human serum albumin

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.; He, Xiao-Min; Munson, Sibyl H.; Twigg, Pamela D.; Gernert, Kim M.; Broom, M. Beth; Miller, Teresa Y.

    1989-01-01

    The three-dimensional structure of human serum albumin has been solved at 6.0 A resolution by the method of multiple isomorphous replacement. Crystals were grown from solutions of polyethylene glycol in the infrequently observed space group P42(1)2 and diffracted X-rays to lattice d-spacings of less than 2.9 A. The electron density maps are of high quality and revealed the structure as a predominantly alpha-helical globin protein in which the course of the polypeptide can be traced. The binding loci of several organic compounds have been determined.

  4. Bovine Serum Albumin binding to CoCrMo nanoparticles and the influence on dissolution

    NASA Astrophysics Data System (ADS)

    Simoes, T. A.; Brown, A. P.; Milne, S. J.; Brydson, R. M. D.

    2015-10-01

    CoCrMo alloys exhibit good mechanical properties, excellent biocompatibility and are widely utilised in orthopaedic joint replacements. Metal-on-metal hip implant degradation leads to the release of metal ions and nanoparticles, which persist through the implant's life and could be a possible cause of health complications. This study correlates preferential binding between proteins and metal alloy nanoparticles to the alloy's corrosion behaviour and the release of metal ions. TEM images show the formation of a protein corona in all particles immersed in albumin containing solutions. Only molybdenum release was significant in these tests, suggesting high dissolution of this element when CoCrMo alloy nanoparticles are produced as wear debris in the presence of serum albumin. The same trend was observed during extended exposure of molybdenum reference nanoparticles to albumin.

  5. Cigarette smoke induces alterations in the drug-binding properties of human serum albumin.

    PubMed

    Clerici, Marco; Colombo, Graziano; Secundo, Francesco; Gagliano, Nicoletta; Colombo, Roberto; Portinaro, Nicola; Giustarini, Daniela; Milzani, Aldo; Rossi, Ranieri; Dalle-Donne, Isabella

    2014-04-01

    Albumin is the most abundant plasma protein and serves as a transport and depot protein for numerous endogenous and exogenous compounds. Earlier we had shown that cigarette smoke induces carbonylation of human serum albumin (HSA) and alters its redox state. Here, the effect of whole-phase cigarette smoke on HSA ligand-binding properties was evaluated by equilibrium dialysis and size-exclusion HPLC or tryptophan fluorescence. The binding of salicylic acid and naproxen to cigarette smoke-oxidized HSA resulted to be impaired, unlike that of curcumin and genistein, chosen as representative ligands. Binding of the hydrophobic fluorescent probe 4,4'-bis(1-anilino-8-naphtalenesulfonic acid) (bis-ANS), intrinsic tryptophan fluorescence, and susceptibility to enzymatic proteolysis revealed slight changes in albumin conformation. These findings suggest that cigarette smoke-induced modifications of HSA may affect the binding, transport and bioavailability of specific ligands in smokers. PMID:24388826

  6. Decoration of heparin and bovine serum albumin on polysulfone membrane assisted via polydopamine strategy for hemodialysis.

    PubMed

    Xie, Bingwu; Zhang, Ranran; Zhang, Huan; Xu, Anxiu; Deng, Yi; Lv, Yalin; Deng, Feng; Wei, Shicheng

    2016-06-01

    Renal failure brings about abnormality of waste and toxins and deposition in the body. In clinic, the waste and toxins in vitro are eliminated by hemodialysis device with polysulfone (PSF) porous membranes. In the work, decoration of heparin (Hep) and bovine serum albumin (BSA) on PSF membranes would be beneficial to improve the hemocompatibility and reduce the anaphylatoxin formation during hemodialysis. The PSF porous membranes are surface-modified by simply dipping them into dopamine aqueous solution for 8 h. Then, Hep and BSA are immobilized covalently onto the resultant membrane. Attenuated total reflectance Fourier transform infrared spectra (ATR-FTIR) confirms that Hep and BSA are successfully introduced onto the surface of PSF membranes. Scanning electronic microscopy (SEM) and atomic force microscopy (AFM) display the changes of surface morphologies after modification. The result of water contact angle measurement shows that the hydrophilicity of PSF membranes is remarkably improved after coating polydopamine (pDA) and binding Hep and BSA. The experiments of hemocompatibility indicate that Hep and BSA grafted onto membranes suppress the adhesion of platelet and enhance the anticoagulation ability of PSF membranes. Furthermore, the protein adsorption tests reveal that Hep and BSA immobilized onto membranes depress the protein absorption and develop antifouling-protein ability of pristine membrane. This study proves a convenient and simple approach to graft two functional organic polymers which, respectively, play a vital role and then improve the hemocompatibility and biocompatibility of PSF membranes for their biomedical and blood-contacting applications. PMID:27018964

  7. Competitive binding of phenylbutazone and colchicine to serum albumin in multidrug therapy: A spectroscopic study

    NASA Astrophysics Data System (ADS)

    Sułkowska, A.; Maciążek-Jurczyk, M.; Bojko, B.; Równicka, J.; Zubik-Skupień, I.; Temba, E.; Pentak, D.; Sułkowski, W. W.

    2008-06-01

    The binding sites for phenylbutazone and colchicine were identified in tertiary structure of bovine and human serum albumin with the use of spectrofluorescence analysis. It was found that phenylbutazone has two binding sites in both sera albumins (HSA and BSA), while colchicine has one binding site in BSA as well as in HSA. The comparison of the quenching effect of BSA and HSA fluorescence by phenylbutazone and colchicine allows us to identify subdomain IIA in protein as the binding site for these two drugs. In this subdomain tryptophan 214 is located. The participation of tyrosyl and tryptophanyl residues of protein was also estimated in the drug-albumin complex. The comparison of quenching of fluorescence of HSA and BSA excited at 280 nm with that at 295 nm allowed us to state that the participation of tyrosyl residues of albumin in the phenylbutazone-serum albumin interaction is significant. The analysis of quenching of fluorescence of BSA in the binary and ternary systems showed that phenylbutazone does not affect the complex formed between colchicine and BSA. Similarly, colchicine has no effect on the Phe-BSA complex. However marked differences were observed for the complex with HSA. On the basis of Ka and KQ values it was concluded that colchicine may probably cause displacement of phenylbutazone from its complex with serum albumin (SA). Static and dynamic quenching for the binary and ternary systems is also discussed. The competition of phenylbutazone and colchicine in binding to serum albumin should be taken into account in the multi-drug therapy.

  8. Kidney Injury Molecule-1 Enhances Endocytosis of Albumin in Renal Proximal Tubular Cells.

    PubMed

    Zhao, Xueying; Jiang, Chen; Olufade, Rebecca; Liu, Dong; Emmett, Nerimiah

    2016-04-01

    Receptor-mediated endocytosis plays an important role in albumin reabsorption by renal proximal tubule epithelial cells. Kidney injury molecule-1 (KIM-1) is a scavenger receptor that is upregulated on the apical membrane of proximal tubules in proteinuric kidney disease. In this study, we examined the cellular localization and functional role of KIM-1 in cultured renal tubule epithelial cells (TECs). Confocal immunofluorescence microscopy reveals intracellular and cell surface localization of KIM-1 in primary renal TECs. Albumin stimulation resulted in a redistribution of KIM-1 and tight junction protein zonula occludens-1 in primary TEC monolayer. An increase in albumin internalization was observed in both primary TECs expressing endogenous KIM-1 and rat kidney cell line (NRK-52E) overexpressing exogenous KIM-1. KIM-1-induced albumin accumulation was abolished by its specific antibody. Moreover, endocytosed KIM-1 and its cargo proteins were delivered from endosomes to lysosomes for degradation in a clathrin-dependent pathway. Supportive evidence includes (1) detection of KIM-1 in Rab5-positive early endosomes, Rab7-positive late endosomes/multivesicular bodies, and LAMP1-positive lysosomes, (2) colocalization of KIM-1 and clathrin in the intracellular vesicles, and (3) blockade of KIM-1-mediated albumin internalization by chlorpromazine, an inhibitor of clathrin-dependent endocytosis. KIM-1 expression was upregulated by albumin but downregulated by transforming growth factor-β1. Taken together, our data indicate that KIM-1 increases albumin endocytosis in renal tubule epithelial cells, at least partially via a clathrin-dependent mechanism. J. Cell. Physiol. 231: 896-907, 2016. © 2015 Wiley Periodicals, Inc. PMID:26332568

  9. Interaction of triprolidine hydrochloride with serum albumins: thermodynamic and binding characteristics, and influence of site probes.

    PubMed

    Sandhya, B; Hegde, Ashwini H; Kalanur, Shankara S; Katrahalli, Umesha; Seetharamappa, J

    2011-04-01

    The interaction between triprolidine hydrochloride (TRP) to serum albumins viz. bovine serum albumin (BSA) and human serum albumin (HSA) has been studied by spectroscopic methods. The experimental results revealed the static quenching mechanism in the interaction of TRP with protein. The number of binding sites close to unity for both TRP-BSA and TRP-HSA indicated the presence of single class of binding site for the drug in protein. The binding constant values of TRP-BSA and TRP-HSA were observed to be 4.75 ± 0.018 × 10(3) and 2.42 ± 0.024 × 10(4)M(-1) at 294 K, respectively. Thermodynamic parameters indicated that the hydrogen bond and van der Waals forces played the major role in the binding of TRP to proteins. The distance of separation between the serum albumin and TRP was obtained from the Förster's theory of non-radioactive energy transfer. The metal ions viz., K(+), Ca(2+), Co(2+), Cu(2+), Ni(2+), Mn(2+) and Zn(2+) were found to influence the binding of the drug to protein. Displacement experiments indicated the binding of TRP to Sudlow's site I on both BSA and HSA. The CD, 3D fluorescence spectra and FT-IR spectral results revealed the changes in the secondary structure of protein upon interaction with TRP. PMID:21215548

  10. Seasonal trends in nesting leatherback turtle (Dermochelys coriacea) serum proteins further verify capital breeding hypothesis

    PubMed Central

    Perrault, Justin R.; Wyneken, Jeanette; Page-Karjian, Annie; Merrill, Anita; Miller, Debra L.

    2014-01-01

    Serum protein concentrations provide insight into the nutritional and immune status of organisms. It has been suggested that some marine turtles are capital breeders that fast during the nesting season. In this study, we documented serum proteins in neophyte and remigrant nesting leatherback sea turtles (Dermochelys coriacea). This allowed us to establish trends across the nesting season to determine whether these physiological parameters indicate if leatherbacks forage or fast while on nesting grounds. Using the biuret method and agarose gel electrophoresis, total serum protein (median = 5.0 g/dl) and protein fractions were quantified and include pre-albumin (median = 0.0 g/dl), albumin (median = 1.81 g/dl), α1-globulin (median = 0.90 g/dl), α2-globulin (median = 0.74 g/dl), total α-globulin (median = 1.64 g/dl), β-globulin (median = 0.56 g/dl), γ-globulin (median = 0.81 g/dl) and total globulin (median = 3.12 g/dl). The albumin:globulin ratio (median = 0.59) was also calculated. Confidence intervals (90%) were used to establish reference intervals. Total protein, albumin and total globulin concentrations declined in successive nesting events. Protein fractions declined at less significant rates or remained relatively constant during the nesting season. Here, we show that leatherbacks are most likely fasting during the nesting season. A minimal threshold of total serum protein concentrations of around 3.5–4.5 g/dl may physiologically signal the end of the season's nesting for individual leatherbacks. The results presented here lend further insight into the interaction between reproduction, fasting and energy reserves and will potentially improve the conservation and management of this imperiled species. PMID:27293623

  11. High-field NMR T 2 relaxation mechanism in D2O solutions of albumin

    NASA Astrophysics Data System (ADS)

    Yilmaz, A.; Zengin, B.

    2013-07-01

    400 MHz NMR T 2 in D2O solutions of albumin and pure D2O were measured at different temperatures. A relation, based on the chemical exchange between bound HDO and non-exchangeable protein protons, was derived theoretically for the contributions of bound HDO [ P b(1/ T 2b)]. A second relation was also derived theoretically by considering spin-rotation interactions between bound HDO and surrounding protein protons. The P b(1/ T 2b) values in albumin solutions were then determined by replacing experimental data into the first relation. The values of the 1/ T 2 and P b(1/ T 2b) in albumin solutions increase linearly with temperature( T), whereas the 1/ T 2 in D2O decreases with T. In addition, the spin-rotation correlation times were calculated from the second relation. The dipolar correlation time of albumin was then reproduced from the spin-rotation correlation times for confirmative purposes. In conclusion, the 1/ T 2 in albumin solutions with D2O is caused by spin-rotation interactions.

  12. Albumin interacts specifically with a 60-kDa microvascular endothelial glycoprotein.

    PubMed Central

    Schnitzer, J E; Carley, W W; Palade, G E

    1988-01-01

    Confluent monolayers of microvascular endothelial cells, derived from the rat epididymal fat pad and grown in culture, were radioiodinated by using the lactoper-oxidase method. Their radioiodinated surface polypeptides were detected by NaDodSO4/PAGE (followed by autoradiography) and were characterized by both lectin affinity chromatography and protease digestion to identify the proteins involved in albumin binding. All detected polypeptides were sensitive to Pronase digestion, whereas several polypeptides were resistant to trypsin. Pronase treatment of the cell monolayer significantly reduced the specific binding of radioiodinated rat serum albumin, but trypsin digestion did not. Limax flavus, Ricinus communis, and Triticum vulgaris agglutinins competed significantly with radioiodinated rat serum albumin binding, whereas other lectins did not. A single 60-kDa glyco-protein was precipitated in common by these three lectins and was trypsin-resistant and Pronase-sensitive. Rat serum albumin affinity chromatography columns weakly but specifically bound a 60-kDa polypeptide from cell lysates derived from radioiodinated cell monolayers. These findings indicate that the 60-kDa glycoprotein is directly involved in a specific interaction of albumin with the cultured microvascular endothelial cells used in these experiments. Images PMID:3413125

  13. Interaction of some cardiovascular drugs with bovine serum albumin at physiological conditions using glassy carbon electrode: A new approach.

    PubMed

    Afsharan, Hadi; Hasanzadeh, Mohammad; Shadjou, Nasrin; Jouyban, Abolghasem

    2016-08-01

    In this report, for the first time, the non-modified glassy carbon electrode was used for detection of cardiovascular drug interaction with bovine serum albumin (BSA). These interactions were tested at physiological conditions (T=37°C and pH=7.4 phosphate buffer solution) in different incubation times (0-4h) by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and square wave voltammetry (SWV). The applications of DPV for quantitative investigation of some cardiovascular drug interaction with BSA (as a model of serum albumin proteins) were discussed. The herein described approach is expected to promote the exploitation of electrochemically-based methods for the study of drug-serum albumin protein interaction which is necessary in biochemical and biosensing studies. This report may open a new window to application of electrochemical sensors towards interactions of cardiovascular drugs with BSA and human serum albumin (HAS) in the near future. PMID:27157732

  14. Rapid fluorescent monitoring of total protein patterns on sodium dodecyl sulfate-polyacrylamide gels and western blots before immunodetection and sequencing.

    PubMed

    Alba, F J; Daban, J R

    1998-10-01

    The fluorogenic dye 2-methoxy-2,4-diphenyl-3(2H)-furanone (MDPF) has been used for the detection of total protein patterns on polyvinylidene difluoride (PVDF) membranes. Fluorescent staining of protein bands on membranes with this covalent dye is completed in 20 min. Wet membranes are translucent, allowing protein visualization by transillumination with ultraviolet light. The resulting images can be recorded using Polaroid film or a charge-coupled device camera. Electrophoretic bands containing 5-10 ng of protein can be detected on the MDPF-stained Western blot. When proteins are directly transferred to the membrane using a slot blotting device, as little as 0.5 ng of protein can be detected. Previous visualization of protein bands on sodium dodecyl sulfate-polyacrylamide gels with the noncovalent fluorescent dye Nile red (Alba et al., BioTechniques, 1996, 21, 625-626) does not interfere with further MDPF staining and fluorescent detection of these bands transferred to PVDF membranes. Thus, Nile red and MDPF staining can be performed sequentially, allowing the rapid monitoring of total protein patterns on both the electrophoretic gel and Western blot. Using the conditions described in this study, MDPF staining does not preclude further N-terminal microsequencing and immunodetection of specific bands with polyclonal antibodies. PMID:9820958

  15. Structural studies on serum albumins under green light irradiation.

    PubMed

    Comorosan, Sorin; Polosan, Silviu; Popescu, Irinel; Ionescu, Elena; Mitrica, Radu; Cristache, Ligia; State, Alina Elena

    2010-10-01

    This paper presents two new experimental results: the protective effect of green light (GL) on ultraviolet (UV) denaturation of proteins, and the effect of GL on protein macromolecular structures. The protective effect of GL was revealed on two serum albumins, bovine (BSA) and human (HSA), and recorded by electrophoresis, absorption, and circular dichroism spectra. The effect of GL irradiation on protein structure was recorded by using fluorescence spectroscopy and electrophoresis. These new effects were modeled by quantum-chemistry computation using Gaussian 03 W, leading to good fit between theoretical and experimental absorption and circular dichroism spectra. A mechanism for these phenomena is suggested, based on a double-photon absorption process. This nonlinear effect may lead to generation of long-lived Rydberg macromolecular systems, capable of long-range interactions. These newly suggested systems, with macroscopic quantum coherence behaviors, may block the UV denaturation processes. PMID:20473754

  16. Recognition of oxidized albumin and thyroid antigens by psoriasis autoantibodies

    PubMed Central

    Al-Shobaili, Hani A.; Ahmed, Ahmed A.; Rasheed, Zafar

    2015-01-01

    Objectives: To investigate the role of reactive-oxygen-species (ROS) induced epitopes on human-serum-albumin (HSA) and thyroid antigens in psoriasis autoimmunity. Methods: This study was performed in the College of Medicine, Qassim University, Buraidah, Saudi Arabia between May 2014 and February 2015. The study was designed to explore the role of ROS-induced epitopes in psoriasis autoimmunity. Singlet-oxygen (or ROS)-induced epitopes on protein (ROS-epitopes-albumin) was characterized by in-vitro and in-vivo. Thyroid antigens were prepared from rabbit thyroid, and thyroglobulin was isolated from thyroid extract. Immunocross-reactions of protein-A purified anti-ROS-epitopes-HSA-immunoglobulin G (IgGs) with thyroid antigen, thyroglobulin, and their oxidized forms were determined. Binding characteristics of autoantibodies in chronic plaque psoriasis patients (n=26) against ROS-epitopes-HSA and also with native and oxidized thyroid antigens were screened, and the results were compared with age-matched controls (n=22). Results: The anti-ROS-epitopes-HSA-IgGs showed cross-reactions with thyroid antigen, thyroglobulin and with their oxidized forms. High degree of specific binding by psoriasis IgGs to ROS-epitopes-HSA, ROS-thyroid antigen and ROS-thyroglobulin was observed. Immunoglobulin G from normal-human-controls showed negligible binding with all tested antigens. Moreover, sera from psoriasis patients had higher levels of carbonyl contents compared with control sera. Conclusion: Structural alterations in albumin, thyroid antigens by ROS, generate unique neo-epitopes that might be one of the factors for the induction of autoantibodies in psoriasis. PMID:26620982

  17. Luminescent spectral characteristics of eosin in solutions of human serum albumin when denatured by treatment with sodium dodecyl sulfate

    NASA Astrophysics Data System (ADS)

    Vlasova, I. M.; Zemlyanskii, A. Yu.; Saletskii, A. M.

    2006-09-01

    From analysis of the fluorescence spectra of eosin molecules in a solution with human serum albumin (HSA), we have obtained information about the dynamics of protein conformational rearrangements during denaturing of the protein when treated with sodium dodecyl sulfate (SDS) for different pH values of the solution. We hypothesize that HSA denaturing in the presence of SDS occurs in two stages: the first stage is loosening of the protein globules, and the second stage is complete unfolding of the protein molecules. We have shown that denaturating of the protein in the presence of SDS passes through both stages for a solution pH below the isoelectric point of the albumin, while the denaturing stops in the first stage for a solution pH above the isoelectric point of the albumin.

  18. Cotton and Protein Interactions

    SciTech Connect

    Goheen, Steven C.; Edwards, J. V.; Rayburn, Alfred R.; Gaither, Kari A.; Castro, Nathan J.

    2006-06-30

    The adsorbent properties of important wound fluid proteins and cotton cellulose are reviewed. This review focuses on the adsorption of albumin to cotton-based wound dressings and some chemically modified derivatives targeted for chronic wounds. Adsorption of elastase in the presence of albumin was examined as a model to understand the interactive properties of these wound fluid components with cotton fibers. In the chronic non-healing wound, elastase appears to be over-expressed, and it digests tissue and growth factors, interfering with the normal healing process. Albumin is the most prevalent protein in wound fluid, and in highly to moderately exudative wounds, it may bind significantly to the fibers of wound dressings. Thus, the relative binding properties of both elastase and albumin to wound dressing fibers are of interest in the design of more effective wound dressings. The present work examines the binding of albumin to two different derivatives of cotton, and quantifies the elastase binding to the same derivatives following exposure of albumin to the fiber surface. An HPLC adsorption technique was employed coupled with a colorimetric enzyme assay to quantify the relative binding properties of albumin and elastase to cotton. The results of wound protein binding are discussed in relation to the porosity and surface chemistry interactions of cotton and wound proteins. Studies are directed to understanding the implications of protein adsorption phenomena in terms of fiber-protein models that have implications for rationally designing dressings for chronic wounds.

  19. Ileal and total tract nutrient digestibilities and fecal characteristics of dogs as affected by soybean protein inclusion in dry, extruded diets.

    PubMed

    Clapper, G M; Grieshop, C M; Merchen, N R; Russett, J C; Brent, J L; Fahey, G C

    2001-06-01

    Plant-based protein sources are generally less variable in chemical composition than animal-based protein sources. However, relatively few data are available on the nutrient digestibilities of plant-based protein sources by companion animals. The effects of including selected soybean protein sources in dog diets on nutrient digestion at the ileum and in the total tract, as well as on fecal characteristics, were evaluated. Six protein sources were used: soybean meal (SBM), Soyafluff 200W (soy flour), Profine F (traditional aqueous-alcohol extracted soy protein concentrate [SPC 1]), Profine E (extruded SPC [SPC 2]), Soyarich I (modified molecular weight SPC [SPC 3]), and poultry meal (PM). All diets were extruded and kibbled. Test ingredients varied in CP and fat contents; however, diets were formulated to be isonitrogenous and isocaloric. Nutrient intakes were similar, except for total dietary fiber (TDF), which was lower (P < 0.01) for dogs fed the PM diet. Apparent ileal digestibilities of DM, OM, fat, and TDF were not different among treatments; however, CP digestibility at the terminal ileum was higher (P < 0.01) for diets containing soy protein sources than for PM. Total tract CP digestibility was greater (P < 0.01) for soy protein-containing diets than for PM. Apparent total tract digestibilities of DM, OM, fat, and TDF were not different among treatments. Apparent amino acid digestibilities at the terminal ileum, excluding methionine, threonine, alanine, and glycine, were higher (P < 0.01) for soy protein-containing diets than for PM. Dogs fed SPC diets had lower (P < 0.01) fecal outputs (g asis feces/g DMI) than dogs fed the SF diet, and dogs fed SBM tended (P < 0.11) to have lower fecal outputs than dogs fed the SF diet. However, dogs fed the PM diet had lower (P < 0.03) fecal outputs than dogs fed SPC-containing diets. Fecal outputs and scores reflected the TDF and nonstructural carbohydrate contents of the soy protein fraction. Soy protein sources are

  20. A Comparative Analysis of Synonymous Codon Usage Bias Pattern in Human Albumin Superfamily

    PubMed Central

    Mirsafian, Hoda; Mat Ripen, Adiratna; Singh, Aarti; Teo, Phaik Hwan; Merican, Amir Feisal; Mohamad, Saharuddin Bin

    2014-01-01

    Synonymous codon usage bias is an inevitable phenomenon in organismic taxa across the three domains of life. Though the frequency of codon usage is not equal across species and within genome in the same species, the phenomenon is non random and is tissue-specific. Several factors such as GC content, nucleotide distribution, protein hydropathy, protein secondary structure, and translational selection are reported to contribute to codon usage preference. The synonymous codon usage patterns can be helpful in revealing the expression pattern of genes as well as the evolutionary relationship between the sequences. In this study, synonymous codon usage bias patterns were determined for the evolutionarily close proteins of albumin superfamily, namely, albumin, α-fetoprotein, afamin, and vitamin D-binding protein. Our study demonstrated that the genes of the four albumin superfamily members have low GC content and high values of effective number of codons (ENC) suggesting high expressivity of these genes and less bias in codon usage preferences. This study also provided evidence that the albumin superfamily members are not subjected to mutational selection pressure. PMID:24707212

  1. Optical signaling in biofluids: a nondenaturing photostable molecular probe for serum albumins.

    PubMed

    Dey, Gourab; Gaur, Pankaj; Giri, Rajanish; Ghosh, Subrata

    2016-01-31

    The systematic investigation of the interaction of a new class of molecular materials with proteins through structure-optical signaling relationship studies has led to the development of efficient fluorescent probes that can detect and quantify serum albumins in biofluids without causing any denaturation. PMID:26675447

  2. Peroxidase mediated conjugation of corn fibeer gum and bovine serum albumin to improve emulsifying properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The emulsifying properties of corn fiber gum (CFG), a naturally-occurring polysaccharide protein complex, were improved by kinetically controlled formation of hetero-covalent linkages with bovine serum albumin (BSA), using horseradish peroxidase. The formation of hetero-crosslinked CFG-BSA conjugate...

  3. Early Fluid and Protein Shifts in Men During Water Immersion

    NASA Technical Reports Server (NTRS)

    Hinghofer-Szalkay, H.; Harrison, M. H.; Greenleaf, J. E.

    1987-01-01

    High precision blood and plasma densitometry was used to measure transvascular fluid shifts during water immersion to the neck. Six men (28-49 years) undertook 30 min of standing immersion in water at 35.0 +/- 0.2 C; immersion was preceded by 30 min control standing in air at 28 +/- 1 C. Blood was sampled from an antecubital catheter for determination of Blood Density (BD), Plasma Density (PD), Haematocrit (Ht), total Plasma Protein Concentration (PPC), and Plasma Albumin Concentration (PAC). Compared to control, significant decreases (p less than 0.01) in all these measures were observed after 20 min immersion. At 30 min, plasma volume had increased by 11.0 +/- 2.8%; the average density of the fluid shifted from extravascular fluid into the vascular compartment was 1006.3 g/l; albumin moved with the fluid and its albumin concentration was about one-third of the plasma protein concentration during early immersion. These calculations are based on the assumption that the F-cell ratio remained unchanged. No changes in erythrocyte water content during immersion were found. Thus, immersion-induced haemodilution is probably accompanied by protein (mainly albumin) augmentation which accompanies the intra-vascular fluid shift.

  4. Fructosylation generates neo-epitopes on human serum albumin.

    PubMed

    Allarakha, Shaziya; Ahmad, Parvez; Ishtikhar, Mohd; Zaheer, Mohammad Shoaib; Siddiqi, Sheelu Shafiq; Moinuddin; Ali, Asif

    2015-05-01

    Hyperglycemia is the defining feature of diabetes mellitus. The persistently high levels of reducing sugars like glucose and fructose cause glycation of various macromolecules in the body. Human serum albumin (HSA), the most abundant serum protein with a myriad of functions, is prone to glycation and consequent alteration in its structural and biological properties. This study aimed to assess the role of fructose-modified human serum albumin as a marker of diabetic pathophysiology. We carried out modification of HSA with fructose and the changes induced were studied by various physicochemical studies. Fructose modified-HSA showed hyperchromicity in UV spectrum and increased AGE-specific fluorescence as well as quenching of tryptophan fluorescence. In SDS-PAGE protein aggregation was seen. Amadori products were detected by NBT. The fructose modified HSA had higher content of carbonyls along with perturbations in secondary structure as revealed by CD and FT-IR. A greater hydrodynamic radius of fructose-modified HSA was evident by DLS measurement. The fructose-modified HSA induced high titre antibodies in experimental animals exhibiting high specificity towards the immunogen. PMID:25914162

  5. Preliminary crystallographic studies of four crystal forms of serum albumin

    NASA Technical Reports Server (NTRS)

    Carter, D. C.; Chang, B.; Ho, J. X.; Keeling, K.; Krishnasami, Z.

    1994-01-01

    Several crystal forms of serum albumin suitable for three-dimensional structure determination have been grown. These forms include crystals of recombinant and wild-type human serum albumin, baboon serum albumin, and canine serum albumin. The intrinsic limits of X-ray diffraction for these crystals are in the range 0.28-0.22 nm. Two of the crystal forms produced from human and canine albumin include incorporated long-chain fatty acids. Molecular replacement experiments have been successfully conducted on each crystal form using the previously determined atomic coordinates of human serum albumin illustrating the conserved tertiary structure.

  6. Preliminary crystallographic studies of four crystal forms of serum albumin.

    PubMed

    Carter, D C; Chang, B; Ho, J X; Keeling, K; Krishnasami, Z

    1994-12-15

    Several crystal forms of serum albumin suitable for three-dimensional structure determination have been grown. These forms include crystals of recombinant and wild-type human serum albumin, baboon serum albumin, and canine serum albumin. The intrinsic limits of X-ray diffraction for these crystals are in the range 0.28-0.22 nm. Two of the crystal forms produced from human and canine albumin include incorporated long-chain fatty acids. Molecular replacement experiments have been successfully conducted on each crystal form using the previously determined atomic coordinates of human serum albumin illustrating the conserved tertiary structure. PMID:7813459

  7. Study of the dielectric function of aqueous solutions of glucose and albumin by THz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Nazarov, M. M.; Cherkasova, O. P.; Shkurinov, A. P.

    2016-06-01

    We report a study of aqueous solutions of glucose and bovine serum albumin using THz time-domain spectroscopy. To describe the permittivity of the solutions of these substances, we use a simplified model being applicable in the frequency range of 0.05 – 2.7 THz. On the assumption that most of the water molecules become bound at high concentrations of glucose and protein in the solution, the changes in water characteristics are investigated. To improve the reliability of the results, the measurements are performed by two independent methods: the method of attenuated total internal reflection and the transmission method. Combination of the results obtained by these two methods allows expanding the spectral range towards lower frequencies.

  8. Polymerized soluble venom--human serum albumin

    SciTech Connect

    Patterson, R.; Suszko, I.M.; Grammer, L.C.

    1985-03-01

    Extensive previous studies have demonstrated that attempts to produce polymers of Hymenoptera venoms for human immunotherapy resulted in insoluble precipitates that could be injected with safety but with very limited immunogenicity in allergic patients. We now report soluble polymers prepared by conjugating bee venom with human serum albumin with glutaraldehyde. The bee venom-albumin polymer (BVAP) preparation was fractionated on Sephacryl S-300 to have a molecular weight range higher than catalase. /sup 125/I-labeled bee venom phospholipase A was almost completely incorporated into BVAP. Rabbit antibody responses to bee venom and bee venom phospholipase A were induced by BVAP. Human antisera against bee venom were absorbed by BVAP. No new antigenic determinants on BVAP were present as evidenced by absorption of antisera against BVAP by bee venom and albumin. BVAP has potential immunotherapeutic value in patients with anaphylactic sensitivity to bee venom.

  9. Interaction of silicon nanoparticles with the molecules of bovine serum albumin in aqueous solutions

    SciTech Connect

    Anenkova, K A; Sergeeva, I A; Petrova, G P; Fedorova, K V; Osminkina, L A; Timoshenko, Viktor Yu

    2011-05-31

    Using the method of photon-correlation spectroscopy, the coefficient of translational diffusion D{sub t} and the hydrodynamic radius R of the particles in aqueous solutions of the bovine serum albumin, containing silicon nanoparticles, are determined. The character of the dependence of these parameters on the concentration of the protein indicates the absence of interaction between the studied particles in the chosen range of albumin concentrations 0.2 - 1.0 mg mL{sup -1}. (optical technologies in biophysics and medicine)

  10. Nanoencapsulation of ultra-small superparamagnetic particles of iron oxide into human serum albumin nanoparticles

    PubMed Central

    Altinok, Mahmut; Urfels, Stephan; Bauer, Johann

    2014-01-01

    Summary Human serum albumin nanoparticles have been utilized as drug delivery systems for a variety of medical applications. Since ultra-small superparamagnetic particles of iron oxide (USPIO) are used as contrast agents in magnetic resonance imaging, their encapsulation into the protein matrix enables the synthesis of diagnostic and theranostic agents by surface modification and co-encapsulation of active pharmaceutical ingredients. The present investigation deals with the surface modification and nanoencapsulation of USPIO into an albumin matrix by using ethanolic desolvation. Particles of narrow size distribution and with a defined particle structure have been achieved. PMID:25551054

  11. Quantitation of yeast total proteins in sodium dodecyl sulfate-polyacrylamide gel electrophoresis sample buffer for uniform loading.

    PubMed

    Sheen, Hyukho

    2016-04-01

    Proteins in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) sample buffer are difficult to quantitate due to SDS and reducing agents being in the buffer. Although acetone precipitation has long been used to clean up proteins from detergents and salts, previous studies showed that protein recovery from acetone precipitation varies from 50 to 100% depending on the samples tested. Here, this article shows that acetone precipitates proteins highly efficiently from SDS-PAGE sample buffer and that quantitative recovery is achieved in 5 min at room temperature. Moreover, precipitated proteins are resolubilized with urea/guanidine, rather than with SDS. Thus, the resolubilized samples are readily quantifiable with Bradford reagent without using SDS-compatible assays. PMID:26796977

  12. A novel mechanism of action for salidroside to alleviate diabetic albuminuria: effects on albumin transcytosis across glomerular endothelial cells.

    PubMed

    Wu, Dan; Yang, Xiaoyan; Zheng, Tao; Xing, Shasha; Wang, Jianghong; Chi, Jiangyang; Bian, Fang; Li, Wenjing; Xu, Gao; Bai, Xiangli; Wu, Guangjie; Jin, Si

    2016-02-01

    Salidroside (SAL) is a phenylethanoid glycoside isolated from the medicinal plant Rhodiola rosea. R. rosea has been reported to have beneficial effects on diabetic nephropathy (DN) and high-glucose (HG)-induced mesangial cell proliferation. Given the importance of caveolin-1 (Cav-1) in transcytosis of albumin across the endothelial barrier, the present study was designed to elucidate whether SAL could inhibit Cav-1 phosphorylation and reduce the albumin transcytosis across glomerular endothelial cells (GECs) to alleviate diabetic albuminuria as well as to explore its upstream signaling pathway. To assess the therapeutic potential of SAL and the mechanisms involved in DN albuminuria, we orally administered SAL to db/db mice, and the effect of SAL on the albuminuria was measured. The albumin transcytosis across GECs was explored in a newly established in vitro cellular model. The ratio of albumin to creatinine was significantly reduced upon SAL treatment in db/db mice. SAL decreased the albumin transcytosis across GECs in both normoglycemic and hyperglycemic conditions. SAL reversed the HG-induced downregulation of AMP-activated protein kinase and upregulation of Src kinase and blocked the upregulation Cav-1 phosphorylation. Meanwhile, SAL decreased mitochondrial superoxide anion production and moderately depolarized mitochondrial membrane potential. We conclude that SAL exerts its proteinuria-alleviating effects by downregulation of Cav-1 phosphorylation and inhibition of albumin transcytosis across GECs. These studies provide the first evidence of interference with albumin transcytosis across GECs as a novel approach to the treatment of diabetic albuminuria. PMID:26646098

  13. Spectroscopic and molecular docking studies on the charge transfer complex of bovine serum albumin with quinone in aqueous medium and its influence on the ligand binding property of the protein

    NASA Astrophysics Data System (ADS)

    Satheshkumar, Angupillai; Elango, Kuppanagounder P.

    2014-09-01

    The spectral techniques such as UV-Vis, 1H NMR and fluorescence and electrochemical experiments have been employed to investigate the interaction between 2-methoxy-3,5,6-trichloro-1,4-benzoquinone (MQ; a water soluble quinone) and bovine serum albumin (BSA) in aqueous medium. The fluorescence of BSA was quenched by MQ via formation of a 1:1 BSA-MQ charge transfer adduct with a formation constant of 3.3 × 108 L mol-1. Based on the Forster’s theory the binding distance between them is calculated as 2.65 nm indicating high probability of binding. For the first time, influence of quinone on the binding property of various types of ligands such as aspirin, ascorbic acid, nicotinimide and sodium stearate has also been investigated. The results indicated that the strong and spontaneous binding existing between BSA and MQ, decreased the intensity of binding of these ligands with BSA. Since Tryptophan (Trp) is the basic residue present in BSA, a comparison between binding property of Trp-MQ adduct with that of BSA-MQ with these ligands has also been attempted. 1H NMR titration study indicated that the Trp forms a charge transfer complex with MQ, which reduces the interaction of Trp with the ligands. Molecular docking study supported the fact that the quinone interacts with the Trp212 unit of the BSA and the free energy change of binding (ΔG) for the BSA-MQ complex was found to be -46 kJ mol-1, which is comparable to our experimental free energy of binding (-49 kJ mol-1) obtained from fluorescence study.

  14. Effects of non-enzymatic glycation in human serum albumin. Spectroscopic analysis.

    PubMed

    Szkudlarek, A; Sułkowska, A; Maciążek-Jurczyk, M; Chudzik, M; Równicka-Zubik, J

    2016-01-01

    Human serum albumin (HSA), transporting protein, is exposed during its life to numerous factors that cause its functions become impaired. One of the basic factors --glycation of HSA--occurs in diabetes and may affect HSA-drug binding. Accumulation of advanced glycation end-products (AGEs) leads to diseases e.g. diabetic and non-diabetic cardiovascular diseases, Alzheimer disease, renal disfunction and in normal aging. The aim of the present work was to estimate how non-enzymatic glycation of human serum albumin altered its tertiary structure using fluorescence technique. We compared glycated human serum albumin by glucose (gHSA(GLC)) with HSA glycated by fructose (gHSA(FRC)). We focused on presenting the differences between gHSA(FRC) and nonglycated (HSA) albumin used acrylamide (Ac), potassium iodide (KI) and 2-(p-toluidino)naphthalene-6-sulfonic acid (TNS). Changes of the microenvironment around the tryptophan residue (Trp-214) of non-glycated and glycated proteins was investigated by the red-edge excitation shift method. Effect of glycation on ligand binding was examined by the binding of phenylbutazone (PHB) and ketoprofen (KP), which a primary high affinity binding site in serum albumin is subdomain IIA and IIIA, respectively. At an excitation and an emission wavelength of λex 335nm and λem 420nm, respectively the increase of fluorescence intensity and the blue-shift of maximum fluorescence was observed. It indicates that the glycation products decreases the polarity microenvironment around the fluorophores. Analysis of red-edge excitation shift method showed that the red-shift for gHSA(FRC) is higher than for HSA. Non-enzymatic glycation also caused, that the Trp residue of gHSA(FRC) becomes less accessible for the negatively charged quencher (I(-)), KSV value is smaller for gHSA(FRC) than for HSA. TNS fluorescent measurement demonstrated the decrease of hydrophobicity in the glycated albumin. KSV constants for gHSA-PHB systems are higher than for the

  15. Effects of non-enzymatic glycation in human serum albumin. Spectroscopic analysis

    NASA Astrophysics Data System (ADS)

    Szkudlarek, A.; Sułkowska, A.; Maciążek-Jurczyk, M.; Chudzik, M.; Równicka-Zubik, J.

    2016-01-01

    Human serum albumin (HSA), transporting protein, is exposed during its life to numerous factors that cause its functions become impaired. One of the basic factors - glycation of HSA - occurs in diabetes and may affect HSA-drug binding. Accumulation of advanced glycation end-products (AGEs) leads to diseases e.g. diabetic and non-diabetic cardiovascular diseases, Alzheimer disease, renal disfunction and in normal aging. The aim of the present work was to estimate how non-enzymatic glycation of human serum albumin altered its tertiary structure using fluorescence technique. We compared glycated human serum albumin by glucose (gHSAGLC) with HSA glycated by fructose (gHSAFRC). We focused on presenting the differences between gHSAFRC and nonglycated (HSA) albumin used acrylamide (Ac), potassium iodide (KI) and 2-(p-toluidino)naphthalene-6-sulfonic acid (TNS). Changes of the microenvironment around the tryptophan residue (Trp-214) of non-glycated and glycated proteins was investigated by the red-edge excitation shift method. Effect of glycation on ligand binding was examined by the binding of phenylbutazone (PHB) and ketoprofen (KP), which a primary high affinity binding site in serum albumin is subdomain IIA and IIIA, respectively. At an excitation and an emission wavelength of λex 335 nm and λem 420 nm, respectively the increase of fluorescence intensity and the blue-shift of maximum fluorescence was observed. It indicates that the glycation products decreases the polarity microenvironment around the fluorophores. Analysis of red-edge excitation shift method showed that the red-shift for gHSAFRC is higher than for HSA. Non-enzymatic glycation also caused, that the Trp residue of gHSAFRC becomes less accessible for the negatively charged quencher (I-), KSV value is smaller for gHSAFRC than for HSA. TNS fluorescent measurement demonstrated the decrease of hydrophobicity in the glycated albumin. KSV constants for gHSA-PHB systems are higher than for the unmodified serum

  16. Analysis of refractometry for determining total plasma protein in hybrid striped bass(Morone chrysops x M. saxatilis) at various salinities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Total plasma protein (TPP) is a broad clinical indicator of health, stress, and well being. A simple and rapid technique for determining TPP is refractometry, which measures the refractive index of all dissolved materials in solution. It was hypothesized plasma dissolved solids in fish held at inc...

  17. Fe3O4NPs mediated nonenzymatic electrochemical immunosensor for the total protein of Nosema bombycis detection without addition of substrate.

    PubMed

    Xie, Hua; Zhang, Qiqi; Wang, Qin; Chai, Yaqin; Yuan, Yali; Yuan, Ruo

    2015-04-28

    In this work, we proposed a novel electrochemical immunosensor for sensitive detection of the total protein of Nosema bombycis based on Fe3O4 nanoparticles (Fe3O4NPs) as catalyst to electrocatalyze the reduction of methylene blue (MB) with the aid of Fe3O4NPs-DNA dendrimers for the signal amplification. PMID:25806964

  18. Evaluation of plant and animal protein sources as partial or total replacement of fish meal in diets for juvenile Nile tilapia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A feeding trial was conducted in a closed system with Nile tilapia (Oreochromis niloticus) juveniles (mean weight, 2.84 g) to examine the effects of total replacement of fish meal (FM), with and without supplementation of DL-methionine (Met) and L-lysine (Lys), by plant protein sources. Fish were f...

  19. Evidence that L-Arginine inhibits glycation of human serum albumin (HSA) in vitro

    SciTech Connect

    Servetnick, D.A.; Wiesenfeld, P.L.; Szepesi, B. )

    1990-02-26

    Previous work by Brownlee has shown that glycation of bovine serum albumin can be reduced in the presence of aminoguanidine (AG). Presumably, the guanidinium group on AG interferes with further rearrangement of amadori products to advanced glycosylated end products (AGE). Since L-arginine (ARG) also contains a guanidinium group, its ability to inhibit the formation of AGE products was investigated. HSA was incubated at 37{degrees}C in the presence or absence of glucose; with glucose and fructose; or with sugars in the presence or absence of ARG or AG. A tracer amount of U-{sup 14}C-glucose was added to each tube containing sugars. Protein bound glucose was separated from unreacted glucose by gel filtration. Radioactivity, total protein, fluorescence, and glucose concentration were measured. Preliminary data show enhanced binding of {sup 14}C-glucose to HSA with fructose at all time points. A 30-40% decrease in {sup 14}C-glucose incorporation was observed when ARG or AG as present. ARG and AG were equally effective in inhibiting incorporation of {sup 14}C-glucose. FPLC analysis is in progress to determine the type and degree of HSA crosslinking during the 2 week incubation period.

  20. The effect of dextran to restore the activity of pulmonary surfactant inhibited by albumin.

    PubMed

    Lu, J J; Cheung, W W Y; Yu, L M Y; Policova, Z; Li, D; Hair, M L; Neumann, A W

    2002-04-01

    Pulmonary surfactant is crucial to maintain the proper functioning of the respiration system. Certain types of blood proteins (e.g. albumin) were found to inhibit the activity of pulmonary surfactant. Axisymmetric Drop Shape Analysis (ADSA) was used to study the effect of dextran to restore the activity of an albumin-inhibited pulmonary surfactant. It was found that dextran could effectively restore surface tension properties of the inhibited surfactant in vitro. Furthermore, dextran improved the performance of pulmonary surfactants when albumin was absent. It was found that when a surfactant film was under high compression (e.g. above 70% surface area reduction), the presence of dextran increased film stability, so that the film could sustain high surface pressures without being collapsing. PMID:12380007

  1. Effects of protein kinase C activation on sodium, potassium, chloride, and total CO2 transport in the rabbit cortical collecting tubule.

    PubMed Central

    Hays, S R; Baum, M; Kokko, J P

    1987-01-01

    Several hormones induce phosphatidylinositol turnover in cell membranes and thus activate protein kinase C. Activation of protein kinase C can, in turn, have effects on epithelial transport. These experiments were designed to investigate the effects of two activators of protein kinase C, phorbol 12-myristate,13-acetate (PMA) and L-alpha-1,2-dioctanoylglycerol (L-alpha-1,2-DOG), and two inactive analogues, 4 alpha-phorbol and 4-O-methyl phorbol 12-myristate,13-acetate, on sodium, potassium, chloride, and total CO2 transport in the rabbit cortical collecting tubule. Utilizing in vitro microperfusion techniques, we found that activation of protein kinase C with either PMA or L-alpha-1,2-DOG significantly inhibited net sodium absorption, net potassium secretion and transepithelial voltage in a dose-dependent manner. There was no effect on net chloride or total CO2 transport. In contrast, the inactive phorbol analogues did not alter either sodium or potassium transport. These studies demonstrate that in the rabbit cortical collecting tubule sodium and potassium transport can be inhibited by compounds known to activate proteins kinase C. Thus, hormones that induce phosphatidylinositol turnover in the rabbit cortical collecting tubule may lead to inhibition of sodium transport by activation of protein kinase C. PMID:3680514

  2. Antagonism of insulin action on muscle by the albumin-bound B chain of insulin

    PubMed Central

    Ensinck, J. W.; Mahler, R. J.; Vallance-Owen, J.

    1965-01-01

    1. The presence of a substance associated with human albumin that exerts anti-insulin activity on the isolated rat diaphragm has been confirmed. This factor has been removed from albumin, thereby providing a source of non-antagonistic carrier protein. 2. Derivatives of the polypeptide B chain of insulin obtained by chemical scission of the interchain disulphide bonds have been separated by conventional techniques. In the presence of non-antagonistic albumin, the reduced and sulpho-B chain preparations inhibited insulin action on muscle. 3. The B chain resulting from reductive cleavage of insulin by bovine-liver extracts, in association with human albumin, exhibited a comparable anti-insulin effect. 4. It is postulated that the B chain interacts with albumin to enable solubilization of the chain and that inhibition of insulin action on muscle may occur as a result of competition for cellular receptor sites by the B chain. 5. The implication of these findings in relation to a circulating insulin antagonist is discussed. PMID:14342222

  3. Production of recombinant albumin by a herd of cloned transgenic cattle.

    PubMed

    Echelard, Yann; Williams, Jennifer L; Destrempes, Margaret M; Koster, Julie A; Overton, Susan A; Pollock, Daniel P; Rapiejko, Karen T; Behboodi, Esmail; Masiello, Nicholas C; Gavin, William G; Pommer, Jerry; Van Patten, Scott M; Faber, David C; Cibelli, Jose B; Meade, Harry M

    2009-06-01

    Purified plasma derived human albumin has been available as a therapeutic product since World War II. However, cost effective recombinant production of albumin has been challenging due to the amount needed and the complex folding pattern of the protein. In an effort to provide an abundant source of recombinant albumin, a herd of transgenic cows expressing high levels of rhA in their milk was generated. Expression cassettes efficiently targeting the secretion of human albumin to the lactating mammary gland were obtained and tested in transgenic mice. A high expressing transgene was transfected in primary bovine cell lines to produce karyoplasts for use in a somatic cell nuclear transfer program. Founder transgenic cows were produced from four independent cell lines. Expression levels varying from 1-2 g/l to more than 40 g/l of correctly folded albumin were observed. The animals expressing the highest levels of rhA exhibited shortened lactation whereas cows yielding 1-2 g/l had normal milk production. This herd of transgenic cattle is an easily scalable and well characterized source of rhA for biomedical uses. PMID:19031005

  4. Low molecular weight fucoidan protects renal tubular cells from injury induced by albumin overload

    PubMed Central

    Jia, Yingli; Sun, Yi; Weng, Lin; Li, Yingjie; Zhang, Quanbin; Zhou, Hong; Yang, Baoxue

    2016-01-01

    Albuminuria is a causative and aggravating factor for progressive renal damage in chronic kidney disease (CKD). The aim of this study was to determine if low molecular weight fucoidan (LMWF) could protect renal function and tubular cells from albumin overload caused injury. Treatment with 10 mg/g bovine serum albumin caused renal dysfunction, morphological changes, and overexpression of inflammation and fibrosis associated proteins in 129S2/Sv mice. LMWF (100 mg/kg) protected against kidney injury and renal dysfunction with decreased blood creatinine by 34% and urea nitrogen by 25%, increased creatinine clearance by 48%, and decreased significantly urinary albumin concentration. In vitro proximal tubule epithelial cell (NRK-52E) model showed that LMWF dose-dependently inhibited overexpression of proinflammatory and profibrotic factors, oxidative stress and apoptosis caused by albumin overload. These experimental results indicate that LMWF protects against albumin overload caused renal injury by inhibiting inflammation, fibrosis, oxidative stress and apoptosis, which suggests that LMWF could be a promising candidate drug for preventing CKD. PMID:27545472

  5. Microglial AGE-albumin is critical in promoting alcohol-induced neurodegeneration in rats and humans.

    PubMed

    Byun, Kyunghee; Bayarsaikhan, Delger; Bayarsaikhan, Enkhjargal; Son, Myeongjoo; Oh, Seyeon; Lee, Jaesuk; Son, Hye-In; Won, Moo-Ho; Kim, Seung U; Song, Byoung-Joon; Lee, Bonghee

    2014-01-01

    Alcohol is a neurotoxic agent, since long-term heavy ingestion of alcohol can cause various neural diseases including fetal alcohol syndrome, cerebellar degeneracy and alcoholic dementia. However, the molecular mechanisms of alcohol-induced neurotoxicity are still poorly understood despite numerous studies. Thus, we hypothesized that activated microglial cells with elevated AGE-albumin levels play an important role in promoting alcohol-induced neurodegeneration. Our results revealed that microglial activation and neuronal damage were found in the hippocampus and entorhinal cortex following alcohol treatment in a rat model. Increased AGE-albumin synthesis and secretion were also observed in activated microglial cells after alcohol exposure. The expressed levels of receptor for AGE (RAGE)-positive neurons and RAGE-dependent neuronal death were markedly elevated by AGE-albumin through the mitogen activated protein kinase pathway. Treatment with soluble RAGE or AGE inhibitors significantly diminished neuronal damage in the animal model. Furthermore, the levels of activated microglial cells, AGE-albumin and neuronal loss were significantly elevated in human brains from alcoholic indivisuals compared to normal controls. Taken together, our data suggest that increased AGE-albumin from activated microglial cells induces neuronal death, and that efficient regulation of its synthesis and secretion is a therapeutic target for preventing alcohol-induced neurodegeneration. PMID:25140518

  6. Low molecular weight fucoidan protects renal tubular cells from injury induced by albumin overload.

    PubMed

    Jia, Yingli; Sun, Yi; Weng, Lin; Li, Yingjie; Zhang, Quanbin; Zhou, Hong; Yang, Baoxue

    2016-01-01

    Albuminuria is a causative and aggravating factor for progressive renal damage in chronic kidney disease (CKD). The aim of this study was to determine if low molecular weight fucoidan (LMWF) could protect renal function and tubular cells from albumin overload caused injury. Treatment with 10 mg/g bovine serum albumin caused renal dysfunction, morphological changes, and overexpression of inflammation and fibrosis associated proteins in 129S2/Sv mice. LMWF (100 mg/kg) protected against kidney injury and renal dysfunction with decreased blood creatinine by 34% and urea nitrogen by 25%, increased creatinine clearance by 48%, and decreased significantly urinary albumin concentration. In vitro proximal tubule epithelial cell (NRK-52E) model showed that LMWF dose-dependently inhibited overexpression of proinflammatory and profibrotic factors, oxidative stress and apoptosis caused by albumin overload. These experimental results indicate that LMWF protects against albumin overload caused renal injury by inhibiting inflammation, fibrosis, oxidative stress and apoptosis, which suggests that LMWF could be a promising candidate drug for preventing CKD. PMID:27545472

  7. The effect of total starvation and very low energy diet in lean men on kinetics of whole body protein and five hepatic secretory proteins.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is unclear whether the rate of weight loss, independent of magnitude, affects whole body protein metabolism and the synthesis and plasma concentrations of specific hepatic secretory proteins. We examined 1) whether lean men losing weight rapidly (starvation) show greater changes in whole body pro...

  8. Proteomic Analysis of Polypeptides Captured from Blood during Extracorporeal Albumin Dialysis in Patients with Cholestasis and Resistant Pruritus

    PubMed Central

    Gay, Marina; Pares, Albert; Carrascal, Montserrat; Bosch-i-Crespo, Pau; Gorga, Marina; Mas, Antoni; Abian, Joaquin

    2011-01-01

    Albumin dialysis using the molecular adsorbent recirculating system (MARS) is a new therapeutic approach for liver diseases. To gain insight into the mechanisms involved in albumin dialysis, we analyzed the peptides and proteins absorbed into the MARS strong anion exchange (SAX) cartridges as a result of the treatment of patients with cholestasis and resistant pruritus. Proteins extracted from the SAX MARS cartridges after patient treatment were digested with two enzymes. The resulting peptides were analyzed by multidimensional liquid chromatography coupled to tandem mass spectrometry. We identified over 1,500 peptide sequences corresponding to 144 proteins. In addition to the proteins that are present in control albumin-derived samples, this collection includes 60 proteins that were specific to samples obtained after patient treatment. Five of these proteins (neutrophil defensin 1 [HNP-1], secreted Ly-6/uPAR-related protein 1 [SLURP1], serum amyloid A, fibrinogen alpha chain and pancreatic prohormone) were confirmed to be removed by the dialysis procedure using targeted selected-reaction monitoring MS/MS. Furthermore, capture of HNP-1 and SLURP1 was also validated by Western blot. Interestingly, further analyses of SLURP1 in serum indicated that this protein was 3-fold higher in cholestatic patients than in controls. Proteins captured by MARS share certain structural and biological characteristics, and some of them have important biological functions. Therefore, their removal could be related either to therapeutic or possible adverse effects associated with albumin dialysis. PMID:21779339

  9. Stereoselective interaction of cinchona alkaloid isomers with bovine serum albumin.

    PubMed

    Liu, Yan; Chen, Mingmao; Jiang, Longguang; Song, Ling

    2015-08-15

    The dependence of the interaction between bovine serum albumin (BSA) and two cinchona alkaloids, quinine (QN) and quinidine (QD), on the absolute configuration of these stereoisomers has been comprehensively studied. The FTIR spectra showed that QN and QD interacted with both CO and C-N groups of BSA, resulting in changes to the secondary structure of the protein. Fluorescence quenching of BSA by the stereoisomers revealed lower efficiency for QD in quenching the Trp emission of BSA when compared to QN. Further analysis accurately described the different binding behaviors and recognition discrepancies of QN and QD towards BSA, which was reflected through binding affinities, driving forces, energy changes and conformational changes during the ligand-protein interactions. Synchronous fluorescence further proved that QD was farther from Trp and Tyr than that of QN. This work could provide basic data for clarifying the binding interaction, metabolism and distribution of cinchona alkaloid stereoisomers in vivo. PMID:25794736

  10. Characterizing Active Pharmaceutical Ingredient Binding to Human Serum Albumin by Spin-Labeling and EPR Spectroscopy.

    PubMed

    Hauenschild, Till; Reichenwallner, Jörg; Enkelmann, Volker; Hinderberger, Dariush

    2016-08-26

    Drug binding to human serum albumin (HSA) has been characterized by a spin-labeling and continuous-wave (CW) EPR spectroscopic approach. Specifically, the contribution of functional groups (FGs) in a compound on its albumin-binding capabilities is quantitatively described. Molecules from different drug classes are labeled with EPR-active nitroxide radicals (spin-labeled pharmaceuticals (SLPs)) and in a screening approach CW-EPR spectroscopy is used to investigate HSA binding under physiological conditions and at varying ratios of SLP to protein. Spectral simulations of the CW-EPR spectra allow extraction of association constants (KA ) and the maximum number (n) of binding sites per protein. By comparison of data from 23 SLPs, the mechanisms of drug-protein association and the impact of chemical modifications at individual positions on drug uptake can be rationalized. Furthermore, new drug modifications with predictable protein binding tendency may be envisaged. PMID:27460503

  11. Comparative studies of the effects of copper sulfate and zinc sulfate on serum albumins

    NASA Astrophysics Data System (ADS)

    Plotnikova, O. A.; Melnikov, G. V.; Melnikov, A. G.; Kovalenko, A. V.

    2016-04-01

    The work is devoted to the study of the interaction of heavy metals with bovine serum albumin (BSA) and human serum albumin (HSA), by quenching of the intrinsic fluorescence of proteins and fluorescent probe pyrene by heavy metal ions. Sulfates of copper and zinc (CuSO4, ZnSO4) were taken as the metal salts. The value of the Stern-Volmer constants of quenching of intrinsic fluorescence of proteins and fluorescence probe pyrene reduced from Cu (II) to the Zn (II). It was experimentally found that the copper ions have a greater ability to fluorescence quenching, which is probably associated with the greater availability of protein chromophore groups to copper ions and with adsorbed fluorescent probe pyrene in the protein globule.

  12. Determination of the binding properties of the uremic toxin phenylacetic acid to human serum albumin.

    PubMed

    Saldanha, Juliana F; Yi, Dan; Stockler-Pinto, Milena B; Soula, Hédi A; Chambert, Stéphane; Fouque, Denis; Mafra, Denise; Soulage, Christophe O

    2016-06-01

    Uremic toxins are compounds normally excreted in urine that accumulate in patients with chronic kidney disease as a result of decreased renal clearance. Phenylacetic acid (PAA) has been identified as a new protein bound uremic toxin. The purpose of this study was to investigate in vitro the interaction between PAA and human serum albumin (HSA) at physiological and pathological concentrations. We used ultrafiltration to show that there is a single high-affinity binding site for PAA on HSA, with a binding constant on the order of 3.4 × 10(4) M(-1) and a maximal stoichiometry of 1.61 mol per mole. The PAA, at the concentration reported in end-stage renal patients, was 26% bound to albumin. Fluorescent probe competition experiments demonstrated that PAA did not bind to Sudlow's site I (in subdomain IIA) and only weakly bind to Sudlow's site II (in subdomain IIIA). The PAA showed no competition with other protein-bound uremic toxins such as p-cresyl-sulfate or indoxyl sulfate for binding to serum albumin. Our results provide evidence that human serum albumin can act as carrier protein for phenylacetic acid. PMID:26945842

  13. Process monitor in thermal denaturation of albumin using dynamic speckle method based on wavelet entropy

    NASA Astrophysics Data System (ADS)

    Li, Xinzhong; Chen, Qingdong; Zhen, Zhiqiang; Yan, Haitao; Liu, Huihui; Li, Liben

    2009-11-01

    The process of thermal denaturation of the albumin was investigated using dynamic speckle method based on wavelet entropy and analyzed by light scattering theory. In experiments, the dynamic speckle patterns sequences generated by albumin colloid during denaturing were acquired using a CCD camera. By analyzing the variations of wavelet entropy values of the THSPs (the time history of speckle patterns), the thermal denaturation process of albumin could be divided into two stages. At former heating process, the values of wavelet entropy were bigger; correspondingly, the protein particles were aggregated and flocculated quickly. Conversely, at latter heating process, the wavelet entropy values decreased drastically, which meant there was slow aggregation. According to those, the movement properties of the protein molecule ensemble were analyzed during thermal denaturation of the albumin. The results show that this method is effective to analyze the process of movement and aggregation of protein molecules quantitatively. The experiment proved that this method is an useful tool to investigate the particles motion in solution.

  14. Crystallographic analysis reveals the structural basis of the high-affinity binding of iophenoxic acid to human serum albumin

    PubMed Central

    2011-01-01

    Background Iophenoxic acid is an iodinated radiocontrast agent that was withdrawn from clinical use because of its exceptionally long half-life in the body, which was due in part to its high-affinity binding to human serum albumin (HSA). It was replaced by Iopanoic acid, which has an amino rather than a hydroxyl group at position 3 on the iodinated benzyl ring and, as a result, binds to albumin with lower affinity and is excreted more rapidly from the body. To understand how iophenoxic acid binds so tightly to albumin, we wanted to examine the structural basis of its interaction with HSA. Results We have determined the co-crystal structure of HSA in complex with iophenoxic acid at 2.75 Å resolution, revealing a total of four binding sites, two of which - in drugs sites 1 and 2 on the protein - are likely to be occupied at clinical doses. High-affinity binding of iophenoxic acid occurs at drug site 1. The structure reveals that polar and apolar groups on the compound are involved in its interactions with drug site 1. In particular, the 3-hydroxyl group makes three hydrogen bonds with the side-chains of Tyr 150 and Arg 257. The mode of binding to drug site 2 is similar except for the absence of a binding partner for the hydroxyl group on the benzyl ring of the compound. Conclusions The HSA-iophenoxic acid structure indicates that high-affinity binding to drug site 1 is likely to be due to extensive desolvation of the compound, coupled with the ability of the binding pocket to provide a full set of salt-bridging or hydrogen bonding partners for its polar groups. Consistent with this interpretation, the structure also suggests that the lower-affinity binding of iopanoic acid arises because replacement of the 3-hydroxyl by an amino group eliminates hydrogen bonding to Arg 257. This finding underscores the importance of polar interactions in high-affinity binding to albumin. PMID:21501503

  15. Comparison of antioxidant properties of different therapeutic albumin preparations.

    PubMed

    Plantier, Jean-Luc; Duretz, Véronique; Devos, Véronique; Urbain, Rémi; Jorieux, Sylvie

    2016-07-01

    Albumin displays several important functions for homeostasis amongst which the maintenance of the plasma redox-state. The study aim was to compare the redox state of pharmaceutical human albumin preparations since it reflects the oxidation-reduction status of the surrounding environment. Using an array of analytical methods, four commercially available albumins were compared with respect to their structural characteristics (cobalt ion binding, glycation, spectrophotometric and fluorometric profiles) and their ability to scavenge hydroxyl, peroxyl or free radicals. The different albumins exhibited a similar structural profile as well as hydroxyl and peroxyl scavenging activities. By contrast, the albumin from LFB (Vialebex(®)) possessed a significantly higher capacity to transfer electrons to DPPH, as compared with other albumins that was correlated with the level of free cysteine-34. Commercially available albumins differed for some of their antioxidant properties. The albumin preparation possessing the highest level of free cysteine-34 exhibited the highest antioxidant potential. PMID:27156143

  16. Effect of different albumin concentrations in extracorporeal circuit prime on perioperative fluid status in young children.

    PubMed

    Yu, Kun; Liu, Yinglong; Hei, Feilong; Li, Jingwen; Long, Cun

    2008-01-01

    This study examined the effects of different dosages of albumin priming for extracorporeal circuit (ECC) on perioperative fluid status and fluid management in young children. A total of 151 consecutive pediatric patients (2-36 months old) scheduled for open heart surgery, were divided into two groups randomly, to receive either a 3% albumin solution (L group, n = 68) or a 5% albumin (H group, n = 83). Perioperative fluid intake, urine output, blood loss, diuretic dosage, the use of allogeneic blood products, ultrafiltration, and daily balance were recorded for 24 hrs in intensive care unit (ICU). Serial hematocrits, colloid osmotic pressure (COP) were measured. Outcomes and complications were documented. There were no significant differences in demographics, types of surgical procedures, baseline data such as hemoglobin, COP, and serum albumin. Patients in H group had significantly higher COPs, less urine output and more diuretic usage during operation and postoperatively (p < 0.05); at 6 hrs postoperatively, there were no differences between two groups. No statistically significant differences were found between the two groups in blood loss and the amount of allogenic blood products infused, length of mechanical ventilation, ICU or hospital stay, complications, or mortality. Higher concentration of albumin prime in ECC showed decreased positive fluid balances, but produced less urine output and required more diuretic usage postoperatively. Thus, no significant clinical benefit resulted from the increased dosage. PMID:18812733

  17. Establishment of reference intervals for plasma protein electrophoresis in Indo-Pacific green sea turtles, Chelonia mydas.

    PubMed

    Flint, Mark; Matthews, Beren J; Limpus, Colin J; Mills, Paul C

    2015-01-01

    Biochemical and haematological parameters are increasingly used to diagnose disease in green sea turtles. Specific clinical pathology tools, such as plasma protein electrophoresis analysis, are now being used more frequently to improve our ability to diagnose disease in the live animal. Plasma protein reference intervals were calculated from 55 clinically healthy green sea turtles using pulsed field electrophoresis to determine pre-albumin, albumin, α-, β- and γ-globulin concentrations. The estimated reference intervals were then compared with data profiles from clinically unhealthy turtles admitted to a local wildlife hospital to assess the validity of the derived intervals and identify the clinically useful plasma protein fractions. Eighty-six per cent {19 of 22 [95% confidence interval (CI) 65-97]} of clinically unhealthy turtles had values outside the derived reference intervals, including the following: total protein [six of 22 turtles or 27% (95% CI 11-50%)], pre-albumin [two of five, 40% (95% CI 5-85%)], albumin [13 of 22, 59% (95% CI 36-79%)], total albumin [13 of 22, 59% (95% CI 36-79%)], α- [10 of 22, 45% (95% CI 24-68%)], β- [two of 10, 20% (95% CI 3-56%)], γ- [one of 10, 10% (95% CI 0.3-45%)] and β-γ-globulin [one of 12, 8% (95% CI 0.2-38%)] and total globulin [five of 22, 23% (8-45%)]. Plasma protein electrophoresis shows promise as an accurate adjunct tool to identify a disease state in marine turtles. This study presents the first reference interval for plasma protein electrophoresis in the Indo-Pacific green sea turtle. PMID:27293722

  18. Establishment of reference intervals for plasma protein electrophoresis in Indo-Pacific green sea turtles, Chelonia mydas

    PubMed Central

    Flint, Mark; Matthews, Beren J.; Limpus, Colin J.; Mills, Paul C.

    2015-01-01

    Biochemical and haematological parameters are increasingly used to diagnose disease in green sea turtles. Specific clinical pathology tools, such as plasma protein electrophoresis analysis, are now being used more frequently to improve our ability to diagnose disease in the live animal. Plasma protein reference intervals were calculated from 55 clinically healthy green sea turtles using pulsed field electrophoresis to determine pre-albumin, albumin, α-, β- and γ-globulin concentrations. The estimated reference intervals were then compared with data profiles from clinically unhealthy turtles admitted to a local wildlife hospital to assess the validity of the derived intervals and identify the clinically useful plasma protein fractions. Eighty-six per cent {19 of 22 [95% confidence interval (CI) 65–97]} of clinically unhealthy turtles had values outside the derived reference intervals, including the following: total protein [six of 22 turtles or 27% (95% CI 11–50%)], pre-albumin [two of five, 40% (95% CI 5–85%)], albumin [13 of 22, 59% (95% CI 36–79%)], total albumin [13 of 22, 59% (95% CI 36–79%)], α- [10 of 22, 45% (95% CI 24–68%)], β- [two of 10, 20% (95% CI 3–56%)], γ- [one of 10, 10% (95% CI 0.3–45%)] and β–γ-globulin [one of 12, 8% (95% CI 0.2–38%)] and total globulin [five of 22, 23% (8–45%)]. Plasma protein electrophoresis shows promise as an accurate adjunct tool to identify a disease state in marine turtles. This study presents the first reference interval for plasma protein electrophoresis in the Indo-Pacific green sea turtle.

  19. Trajectories of Serum Albumin Predict Survival of Peritoneal Dialysis Patients

    PubMed Central

    Chiu, Ping-Fang; Tsai, Chun-Chieh;