Science.gov

Sample records for alcaligenes faecalis m3a

  1. Metabolism of acrylate to {beta}-hydroxypropionate and its role in dimethylsulfoniopropionate lyase induction by a salt marsh sediment bacterium, Alcaligenes faecalis M3A

    SciTech Connect

    Ansede, J.H.; Pellechia, P.J.; Yoch, D.C.

    1999-11-01

    Dimethylsulfoniopropionate (DMSP) is degraded to dimethylsulfide (DMS) and acrylate by the enzyme DMSP lyase. DMS or acrylate can serve as a carbon source for both free-living and endophytic bacteria in the marine environment. In this study, the authors report on the mechanism of DMSP-acrylate metabolism by Alcaligenes faecalis M3A. Suspensions of citrate-grown cells expressed a low level of DMSP lyase activity that could be induced to much higher levels in the presence of DMSP, acrylate, and its metabolic product, {beta}-hydroxypropionate. DMSP was degraded outside the cell, resulting in an extracellular accumulation of acrylate, which in suspensions of citrate-grown cells was then metabolized at a low endogenous rate. The inducible nature of acrylate metabolism was evidenced by both an increase in the rate of its degradation over time and the ability of acrylate-grown cells to metabolize this molecule at about an eight times higher rate than citrate-grown cells. Therefore, acrylate induces both its production (from DMSP) and its degradation by an acrylase enzyme. {sup 1}H and {sup 13}C nuclear magnetic resonance analyses were used to identify the products resulting from [1-{sup 13}C]acrylate metabolism. The results indicated that A.faecalis first metabolized acrylate to {beta}-hydroxypropionate outside the cell, which was followed by its intracellular accumulation and subsequent induction of DMSP lyase activity. In summary, the mechanism of DMSP degradation to acrylate and the subsequent degradation of acrylate to {beta}-hydroxypropionate in the aerobic {beta}-Proteobacterium A.faecalis has been described.

  2. Alcaligenes faecalis rhinotracheitis in Manitoba turkeys.

    PubMed

    Boycott, B R; Wyman, H R; Wong, F C

    1984-01-01

    An outbreak of alcaligenes rhinotracheitis occurred on one premises housing five turkey flocks totaling 25,000 poults. Prominent findings were severe respiratory difficulty resulting from excess mucus in the nasopharynx, lachrimation, and tracheal collapse. Sinus and tracheal cultures consistently yielded Alcaligenes faecalis. An adenovirus was isolated and four flocks became positive for CELO virus by agar-gel-precipitin (AGP) tests. Mortality by flocks ranged from 4% to 48%. Treatment was unsuccessful and appeared to increase the mortality rate. The course of the disease was about 6 weeks, and recovered turkeys were marketed 1 week later than the usual date. PMID:6525132

  3. Size of diffusion pore of Alcaligenes faecalis.

    PubMed

    Ishii, J; Nakae, T

    1988-03-01

    The diffusion pore of the outer membrane of Alcaligenes faecalis was shown to be substantially smaller than the Escherichia coli porin pore. In experiments with intact cells, pentoses and hexoses penetrated into the NaCl-expanded periplasm, whereas saccharides of Mr greater than 342 did not. Cells treated with 0.5 M saccharides of Mr greater than 342 weighed 33 to 38% less than cells treated with isotonic solution, suggesting that these saccharides do not permeate through the outer membrane. The diffusion rates of various solutes through the liposome membranes reconstituted from the Mr-43,000 outer membrane protein showed the following characteristics. (i) The relative diffusion rates of pentoses, hexoses, and methylhexoses appeared to be about 1.0, 0.6, and negligibly small, respectively. (ii) The diffusion rate of glucose appeared to be about 1/10th that with the E. coli B porin. (iii) The diffusion rate of gluconic acid was five to seven times higher than that of glucose. (iv) The diffusion rates of beta-lactam antibiotics appeared to be 40 to less than 10% of those with the E. coli B porin. PMID:2835003

  4. Size of diffusion pore of Alcaligenes faecalis.

    PubMed Central

    Ishii, J; Nakae, T

    1988-01-01

    The diffusion pore of the outer membrane of Alcaligenes faecalis was shown to be substantially smaller than the Escherichia coli porin pore. In experiments with intact cells, pentoses and hexoses penetrated into the NaCl-expanded periplasm, whereas saccharides of Mr greater than 342 did not. Cells treated with 0.5 M saccharides of Mr greater than 342 weighed 33 to 38% less than cells treated with isotonic solution, suggesting that these saccharides do not permeate through the outer membrane. The diffusion rates of various solutes through the liposome membranes reconstituted from the Mr-43,000 outer membrane protein showed the following characteristics. (i) The relative diffusion rates of pentoses, hexoses, and methylhexoses appeared to be about 1.0, 0.6, and negligibly small, respectively. (ii) The diffusion rate of glucose appeared to be about 1/10th that with the E. coli B porin. (iii) The diffusion rate of gluconic acid was five to seven times higher than that of glucose. (iv) The diffusion rates of beta-lactam antibiotics appeared to be 40 to less than 10% of those with the E. coli B porin. Images PMID:2835003

  5. Biodegradation of phenol at high initial concentration by Alcaligenes faecalis.

    PubMed

    Jiang, Yan; Wen, Jianping; Bai, Jing; Jia, Xiaoqiang; Hu, Zongding

    2007-08-17

    Strain Alcaligenes faecalis was isolated and identified as a member of the genus Alcaligenes by using BIOLOG and 16S rDNA sequence analysis. The phenol biodegradation tests showed that the phenol-degrading potential of A. faecalis related greatly to the different physiological phases of inoculum. The maximum phenol degradation occurred at the late phase of the exponential growth stages, where 1600 mg L(-1) phenol was completely degraded within 76 h. A. faecalis secreted and accumulated a vast quantity of phenol hydroxylase in this physiological phase, which ensured that the cells could quickly utilize phenol as a sole carbon and energy source. In addition, the kinetic behavior of A. faecalis in batch cultures was also investigated over a wide range of initial phenol concentrations (0-1600 mg L(-1)) by using Haldane model. It was clear that the Haldane kinetic model adequately described the dynamic behavior of the phenol biodegradation by the strain of A. faecalis. PMID:17597295

  6. Effect of humidity on infection of turkeys with Alcaligenes faecalis.

    PubMed

    Slavik, M F; Skeeles, J K; Beasley, J N; Harris, G C; Roblee, P; Hellwig, D

    1981-01-01

    Turkeys maintained at 75% to 80% relative humidity were more adversely affected by Alcaligenes faecalis infection than turkeys maintained at 20 to 35% relative humidity. Alcaligenes faecalis was reisolated earlier and more often from turkeys maintained at the higher humidity. Clinically, the turkeys maintained at high humidity exhibited both sinusitis and conjunctivitis earlier than the turkeys at low humidity. In both groups, antibody titers as determined by a microagglutination test developed by 2 weeks postinoculation and started to decline after the third week, lymphocytosis was demonstrated at 1 week postinoculation, and a lymphopenia developed at 5 weeks postinoculation. PMID:7337613

  7. Draft genome sequence of Alcaligenes faecalis subsp. faecalis NCIB 8687 (CCUG 2071).

    PubMed

    Phung, Le T; Trimble, William L; Meyer, Folker; Gilbert, Jack A; Silver, Simon

    2012-09-01

    Alcaligenes faecalis subsp. faecalis NCIB 8687, the betaproteobacterium from which arsenite oxidase had its structure solved and the first "arsenate gene island" identified, provided a draft genome of 3.9 Mb in 186 contigs (with the largest 15 comprising 90% of the total) for this opportunistic pathogen species. PMID:22933773

  8. Partial characterization of the hemagglutinin of Alcaligenes faecalis.

    PubMed

    Simmons, D G; Rose, L P; Brogden, K A; Rimler, R B

    1984-01-01

    The hemagglutinin of Alcaligenes faecalis was partially characterized. Hemagglutination (HA) was blocked by enzymes inactivating proteins, by heat, and by antisera but not by sugar-blocking substances. Pili were not determined to be a factor in HA activity. There was no connection between virulence and HA activity. PMID:6148928

  9. Metabolic energy from arsenite oxidation in Alcaligenes faecalis

    NASA Astrophysics Data System (ADS)

    Anderson, G. L.; Love, M.; Zeider, B. K.

    2003-05-01

    The aerobic soil bacterium, Alcaligenes faecalis, survives in cultures containing greater than 10 g/L of aqueous arsenic. Toleration of arsenite occurs by the enzymatic oxidation of arsenite (As^III), to the less toxic arsenate (As^V). In defined media, the bacterium grows faster in the presence of arsenite than in its absence. This suggests that the bacterium uses the redox potential of arsenite oxidation as metabolic energy. The oxidation occurs via periplasmic arsenite oxidase, azurin, and cytochrome c [11] which presumably pass electron equivalents through an electron transport chain involving cytochrome c oxidase aud oxygen as the terminal electron acceptor. The associated proton translocation would allow synthesis of ATP and provide a useful means of harnessing the redox potential of arsenite oxidation. Arsenite and arsenate assays of the media during bacterial growth indicate that arsenite is depleted during the exponential growth phase and occurs concomitantly with the expression of arsenite oxidase. These results suggest that arsenite is detoxified to arsenate during bacterial growth and are inconsistent with previous reported interpretations of growth data. Alcaligenes faecalis is dependent on organic carbon sources and is therefore not chemolithoautotrophic. The relationship between succinate and arsenite utilisation provides evidence for the use of arsenite as a supplemental energy source. Because Alcaligenes faecalis not only tolerates, but thrives, in very high concentrations of arsenic has important implications in bioremediation of environments contaminated by aqueous arsenic.

  10. Draft Genome Sequence of Alcaligenes faecalis Strain IITR89, an Indole-Oxidizing Bacterium.

    PubMed

    Regar, Raj Kumar; Gaur, Vivek Kumar; Mishra, Gayatri; Jadhao, Sudhir; Kamthan, Mohan; Manickam, Natesan

    2016-01-01

    We report the draft genome sequence of Alcaligenes faecalis strain IITR89, a bacterium able to form indigo by utilizing indole as the sole carbon source. The Alcaligenes species is increasingly reported for biodegradation of diverse toxicants and thus complete sequencing may provide insight into biodegradation capabilities and other phenotypes. PMID:26941148

  11. Draft Genome Sequence of Alcaligenes faecalis Strain IITR89, an Indole-Oxidizing Bacterium

    PubMed Central

    Regar, Raj Kumar; Gaur, Vivek Kumar; Mishra, Gayatri; Jadhao, Sudhir; Kamthan, Mohan

    2016-01-01

    We report the draft genome sequence of Alcaligenes faecalis strain IITR89, a bacterium able to form indigo by utilizing indole as the sole carbon source. The Alcaligenes species is increasingly reported for biodegradation of diverse toxicants and thus complete sequencing may provide insight into biodegradation capabilities and other phenotypes. PMID:26941148

  12. A Newly Sequenced Alcaligenes faecalis Strain: Implications for Novel Temporal Symbiotic Relationships.

    PubMed

    Hernández-Mendoza, Armando; Lozano-Aguirre Beltrán, Luis Fernando; Martínez-Ocampo, Fernando; Quiroz-Castañeda, Rosa Estela; Dantán-González, Edgar

    2014-01-01

    We report here the draft genome sequence of Alcaligenes faecalis strain MOR02, a bacterium that is able to colonize nematodes in a temporary fashion and kill insects for their own benefit. The availability of the genome should enable us to explain these phenotypes. PMID:25540337

  13. Unusual causes of peritonitis in a peritoneal dialysis patient: Alcaligenes faecalis and Pantoea agglomerans

    PubMed Central

    2011-01-01

    An 87 -year-old female who was undergoing peritoneal dialysis presented with peritonitis caused by Alcaligenes faecalis and Pantoea agglomerans in consecutive years. With the following report we discuss the importance of these unusual microorganisms in peritoneal dialysis patients. PMID:21477370

  14. The complete genome sequence of Alcaligenes faecalis ZD02, a novel potential bionematocide.

    PubMed

    Ju, Shouyong; Zheng, Jinshui; Lin, Jian; Geng, Ce; Zhu, Lei; Guan, Ziyu; Zheng, Ziqiang; Sun, Ming

    2016-01-20

    Root-knot nematodes (RKNs) can infect almost all crops, and result in huge economic losses in agriculture. There is no effective and environmentally safe means available to control RKNs. Alcaligenes faecalis ZD02 isolated from free living nematode Caenorhabditis elegans cadavers shows toxicity against RKN Meloidogyne incognita, that makes this strain to be a good bionematicide candidate for controlling of RKNs. Here, we firstly report the complete genome of A. faecalis ZD02 and describe its features. Additionally, we found two potential virulence factors in this genome, which play important roles for the nematocidal activity of A. faecalis ZD02. PMID:26656226

  15. Negative findings concerning Alcaligenes faecalis as an etiologic agent in acute respiratory disease of turkeys.

    PubMed

    Singer, N; Weisman, Y; Aronovici, A

    1981-01-01

    An acute respiratory disease of turkeys in Israel was first reported in November 1978. Alcaligenes faecalis was isolated from sick turkeys and from chickens not affected by the disease. Plate agglutination tests with A. faecalis antigen of 1,067 turkey and 494 chicken serum samples gave variable results: healthy turkeys gave positive reactions and sick turkeys sometimes gave negative ones. All isolated strains were highly sensitive in vitro drug sensitivity tests, but chemotherapy failed in the field. Pathogenicity trials with A. faecalis, given alone or in combination with Yucaipa virus to 8-day-old turkey poults, failed to reproduce the disease. PMID:7259671

  16. Alcaligenes faecalis subsp. parafaecalis subsp. nov., a bacterium accumulating poly-beta-hydroxybutyrate from acetone-butanol bioprocess residues.

    PubMed

    Schroll, G; Busse, H J; Parrer, G; Rölleke, S; Lubitz, W; Denner, E B

    2001-04-01

    The authors have previously isolated a solvent tolerant bacterium, strain G(T), (T = type strain) capable to convert acetone-butanol bioprocess residues into poly-beta-hydroxybutyrate. Strain G(T) was initially identified as Alcaligenes spp by standard bacteriological tests. In this study the taxonomic position of the bacterium was investigated in detail. The 165 rDNA sequence analysis, the G + C content of DNA (56 mol%) and the presence of ubiquinone Q-8 confirmed strain G(T) as a representative of the genus Alcaligenes. In the polyamine pattern of the bacterium putrescine and cadaverine were detected, but only trace amounts of 2-hydroxyputrescine. The extremely low content of 2-hydroxyputrescine is remarkable, since this unique diamine is a common marker for beta-proteobacteria. Phylogenetic analyses of 16S rDNA demonstrated that Alcaligenes sp. G(T) is most closely related to the species Alcaligenes faecalis (99.6% sequence similarity to A. faecalis HR4 and 98.7% sequence similarity to A. faecalis [ATCC 8750T = DSM 30030T]. On the basis of DNA-DNA relatedness (56% similarity), the unique polyamine pattern, the physiological and biochemical differences strain G(T) could be distinguished from the species A. faecalis. Therefore, a new subspecies for the species Alcaligenes faecalis is proposed; Alcaligenes faecalis subsp. parafaecalis subsp. nov. PMID:11403397

  17. Characterization of protease from Alcaligens faecalis and its antibacterial activity on fish pathogens.

    PubMed

    Annamalai, N; Kumar, Arun; Saravanakumar, A; Vijaylakshmi, S; Balasubramanian, T

    2011-11-01

    Alcaligens faecalis AU01 isolated from seafood industry effluent produced an alkaline protease. The optimum culture conditions for growth as well as enzyme production were 37 degrees C and pH 8. The partially purified protease had specific activity of 9.66 with 17.77% recovery with the molecular weight of 33 kDa and it was active between 30-70 degrees C and optimum being at 55 degrees C and pH 9. The enzyme retains more than 85% activity at 70 degrees C and 78% even at pH 10. The enzyme inhibited the growth of fish pathogens such as Flavobacterium sp., Pseudomonas fluorescens, Vibrio harveyi, Proteus sp. and Vibrio parahaemolyticus. From the present study it can be concluded that Alcaligens faecalis AU01 has the potential for aquaculture as probiotic agent and other several applications. PMID:22471216

  18. N2O and N2 production during heterotrophic nitrification by Alcaligenes faecalis strain NR.

    PubMed

    Zhao, Bin; An, Qiang; He, Yi Liang; Guo, Jin Song

    2012-07-01

    A heterotrophic nitrifier, strain NR, was isolated from a membrane bioreactor. Strain NR was identified as Alcaligenes faecalis by Auto-Microbic system and 16S rRNA gene sequence analysis. A. faecalis strain NR shows a capability of heterotrophic nitrification and N(2)O and N(2) production as well under the aerobic condition. Further tests demonstrated that neither nitrite nor nitrate could be denitrified aerobically by strain NR. However, when hydroxylamine was used as the sole nitrogen source, nitrogenous gases were detected. With an enzyme assay, a 0.063 U activity of hydroxylamine oxidase was observed, while nitrate reductase and nitrite reductase were undetectable. Thus, nitrogenous gas was speculated to be produced via hydroxylamine. Therefore, two different metabolic pathways might exist in A. faecalis NR. One is heterotrophic nitrification by oxidizing ammonium to nitrite and nitrate. The other is oxidizing ammonium to nitrogenous gas directly via hydroxylamine. PMID:22534373

  19. Alcaligenes faecalis ZD02, a Novel Nematicidal Bacterium with an Extracellular Serine Protease Virulence Factor.

    PubMed

    Ju, Shouyong; Lin, Jian; Zheng, Jinshui; Wang, Shaoying; Zhou, Hongying; Sun, Ming

    2016-01-01

    Root knot nematodes (RKNs) are the world's most damaging plant-parasitic nematodes (PPNs), and they can infect almost all crops. At present, harmful chemical nematicides are applied to control RKNs. Using microbial nematicides has been proposed as a better management strategy than chemical control. In this study, we describe a novel nematicidal bacterium named Alcaligenes faecalis ZD02. A. faecalis ZD02 was isolated from Caenorhabditis elegans cadavers and has nematostatic and nematicidal activity, as confirmed by C. elegans growth assay and life span assay. In addition, A. faecalis ZD02 fermentation broth showed toxicity against C. elegans and Meloidogyne incognita. To identify the nematicidal virulence factor, the genome of strain ZD02 was sequenced. By comparing all of the predicted proteins of strain ZD02 to reported nematicidal virulence factors, we determined that an extracellular serine protease (Esp) has potential to be a nematicidal virulence factor, which was confirmed by bioassay on C. elegans and M. incognita. Using C. elegans as the target model, we found that both A. faecalis ZD02 and the virulence factor Esp can damage the intestines of C. elegans. The discovery that A. faecalis ZD02 has nematicidal activity provides a novel bacterial resource for the control of RKNs. PMID:26826227

  20. Nitrous oxide production by Alcaligenes faecalis under transient and dynamic aerobic and anaerobic conditions

    SciTech Connect

    Otte, S.; Grobben, N.G.; Robertson, L.A.; Jetten, M.S.M.; Kuenen, J.G.

    1996-07-01

    Nitrous oxide production contributes to both greenhouse effect and ozone depletion in the stratosphere. A significant part of the global N2O emission can be attributed to microbial processes, especially nitrification and denitrification, used in biological wastewater treatment systems. This study looks at the efficiency of denitrification and the enzymes involved, with the emphasis on N2O production during the transient phase from aerobic to anaerobic conditions and vice versa. The effect of repetitive changing aerobic-anaerobic conditions on N2O was also studied. Alcaligenes faecalis was used as the model denitrofing organism. 35 refs., 3 figs., 1 tab.

  1. Effect of nitrogen source on curdlan production by Alcaligenes faecalis ATCC 31749.

    PubMed

    Jiang, Longfa

    2013-01-01

    This study aims to investigate the effect of nitrogen source on curdlan production by Alcaligenes faecalis ATCC 31749. Curdlan production fell when excess nitrogen source was present, while biomass accumulation increased as the level of nitrogen source raised. Curdlan production and biomass accumulation were greater with urea compared with those with other nitrogen sources. The highest production of curdlan and biomass accumulation by A. faecalis ATCC 31749 was 28.16 g L(-1) and 9.58 g L(-1), respectively, with urea, whereas those with NH(4)Cl were 15.17 g L(-1) and 6.25 g L(-1), respectively. The optimum fermentation time for curdlan production was also affected by the nitrogen source in the medium. PMID:23085490

  2. Alcaligenes faecalis: an unusual cause of skin and soft tissue infection.

    PubMed

    Tena, Daniel; Fernández, Cristina; Lago, María R

    2015-01-01

    Skin and soft tissue infection (SSTI) due to Alcaligenes faecalis is very rare and has never been studied. The aim of the present study was to investigate the clinical and microbiological characteristics of this infection. We conducted a retrospective review of 5 cases that occurred at our institution over a period of 6 years. All patients had underlying diseases, and infection was secondary to vascular disease or recent surgery in 4 of them. The most common clinical presentations were vascular ulcer infection and surgical site infection. The clinical outcome was uniformly good after treatment, except in 1 patient. In conclusion, A. faecalis should be considered a potential pathogen of SSTI, particularly in patients with vascular diseases or after surgery. The history of contact with water or aqueous solutions should be investigated in all cases. The clinical outcome is usually good, but treatment can be difficult in some cases due to the high level of resistance to commonly used antibiotics. PMID:25420652

  3. Potential application of Alcaligenes faecalis strain No. 4 in mitigating ammonia emissions from dairy wastewater.

    PubMed

    Neerackal, George M; Ndegwa, Pius M; Joo, Hung-Soo; Wang, Xiang; Frear, Craig S; Harrison, Joseph H; Beutel, Marc W

    2016-04-01

    This research examined the potential mitigation of NH3 emissions from dairy manure via an enhanced aerobic bio-treatment with bacterium Alcaligenes faecalis strain No. 4. The studies were conducted in aerated batch reactors using air and pure oxygen. Aeration with air and oxygen removed approximately 40% and 100% total ammoniacal nitrogen (TAN), respectively. Intermittent oxygenation (every 2 or 4 h) reduced oxygen consumption by 95%, while attaining nearly identical TAN removal to continuous aeration. The results revealed that adequate oxygen supply and supplementing dairy wastewater with carbon are essential for this bioprocess. Based on the nitrogen mass balance, only 4% of TAN was released as NH3 gas, while the majority was retained in either the microbial biomass (58%) or converted to nitrogen gas (36%). The mass balance results reveal high potential for environmentally friendly bio-treatment of dairy wastewater using A. faecalis strain No. 4 with respect to NH3 emissions. PMID:26845217

  4. Characterization of Alcaligenes faecalis strain AD15 indicating biocontrol activity against plant pathogens.

    PubMed

    Yokoyama, Shin-ichiro; Adachi, Yoshitomi; Asakura, Shuichi; Kohyama, Erina

    2013-01-01

    Bacterial strain possessing both bacteriostatic and fungistatic activity (biocontrol activity) against pathogens of cyclamen (Cyclamen sp.) was isolated from the soil in Gifu Prefecture, Japan, and characterized with respect to its taxonomic and biocontrol properties. The sequence of its 16S rRNA gene, morphology, biochemistry, and fatty acid composition demonstrated that it is a strain most closely related to Alcaligenes faecalis subsp. faecalis LMG 1229(T). The isolate was named A. faecalis strain AD15. A. faecalis AD15 produced hydroxylamine at maximum yields of 33.3±1.7 mg/L after 16 h cultivation in LB medium and 19.0±0.44 mg/L after 19 h cultivation in synthetic medium. Moreover, minimum inhibitory concentrations of hydroxylamine against the cyclamen pathogens Pantoea agglomerans and Colletotrichum gloeosporioides were 4.20±0.98 and 16.5±0.67 mg/L. These results indicated that the biocontrol activity of strain AD15 might be attributed to hydroxylamine, a metabolite in the culture medium, and it had the potential for biopesticide application. PMID:23759862

  5. Inhibition of Serratia marcescens Smj-11 biofilm formation by Alcaligenes faecalis STN17 crude extract

    NASA Astrophysics Data System (ADS)

    Lutfi, Zainal; Usup, Gires; Ahmad, Asmat

    2014-09-01

    Serratia marcescens biofilms are formed when they are bound to surfaces in aqueous environments. S. marcescens utilizes N-acylhomoserine lactone (AHL) as its quorum sensing signal molecule. The accumulation of AHL indicates the bacteria to produce matrices to form biofilms. Prodigiosin (2-methyl-3-pentyl-6-methoxyprodigiosin), which causes red pigmentation in the colonies, are also produced when the AHL reaches a certain threshold. The Alcaligenes faecalis STN17 crude extract is believed to inhibit quorum sensing in the S. marcescens Smj-11 and, thus, impedes its biofilm formation ability. A. faecalis STN17 was grown in marine broth, and ethyl acetate extraction was carried out. The crude compound of A. faecalis STN17 was diluted at high concentration (0.2-6.4 mg/mL) and was taken to confirm anti-biofilm activity through the crystal violet method in 96-wells plate. Then, the crude extract underwent purification using simple solvents partitioning test to discern the respective compounds that had the anti-biofilm activity under the crystal violet method. The crystal violet test showed that the crude did have anti-biofilm activity on S. marcescens Smj-11, but did not kill the cells. This finding signifies that the suppression of biofilm formation in S. marcescens by A. faecalis STN17 has a strong correlation. The partitioning test showed that A. faecalis STN17 crude extract has several compounds and only the compound(s) in chloroform showed activities. In conclusion, the crude extract of A. faecalis STN17 has the ability to inhibit S. marcescens Smj-11 biofilm formation.

  6. Inhibition of Serratia marcescens Smj-11 biofilm formation by Alcaligenes faecalis STN17 crude extract

    SciTech Connect

    Lutfi, Zainal; Ahmad, Asmat; Usup, Gires

    2014-09-03

    Serratia marcescens biofilms are formed when they are bound to surfaces in aqueous environments. S. marcescens utilizes N-acylhomoserine lactone (AHL) as its quorum sensing signal molecule. The accumulation of AHL indicates the bacteria to produce matrices to form biofilms. Prodigiosin (2-methyl-3-pentyl-6-methoxyprodigiosin), which causes red pigmentation in the colonies, are also produced when the AHL reaches a certain threshold. The Alcaligenes faecalis STN17 crude extract is believed to inhibit quorum sensing in the S. marcescens Smj-11 and, thus, impedes its biofilm formation ability. A. faecalis STN17 was grown in marine broth, and ethyl acetate extraction was carried out. The crude compound of A. faecalis STN17 was diluted at high concentration (0.2-6.4 mg/mL) and was taken to confirm anti-biofilm activity through the crystal violet method in 96-wells plate. Then, the crude extract underwent purification using simple solvents partitioning test to discern the respective compounds that had the anti-biofilm activity under the crystal violet method. The crystal violet test showed that the crude did have anti-biofilm activity on S. marcescens Smj-11, but did not kill the cells. This finding signifies that the suppression of biofilm formation in S. marcescens by A. faecalis STN17 has a strong correlation. The partitioning test showed that A. faecalis STN17 crude extract has several compounds and only the compound(s) in chloroform showed activities. In conclusion, the crude extract of A. faecalis STN17 has the ability to inhibit S. marcescens Smj-11 biofilm formation.

  7. The Genome Sequence of Alcaligenes faecalis NBIB-017 Contains Genes with Potentially High Activities against Erwinia carotovora.

    PubMed

    Liu, Xiaoyan; Huang, Daye; Wu, Jinping; Yu, Cui; Zhou, Ronghua; Liu, Cuijun; Zhang, Wei; Yao, Jingwu; Cheng, Meng; Guo, Suxia

    2016-01-01

    Alcaligenes faecalisNBIB-017, a Gram-negative bacterium, was isolated from soil in China. Here, we provide the complete genome sequence of this bacterium, which possesses a high number of genes encoding antibacterial factors, including proteins and small molecular peptides. PMID:27056227

  8. The Genome Sequence of Alcaligenes faecalis NBIB-017 Contains Genes with Potentially High Activities against Erwinia carotovora

    PubMed Central

    Liu, Xiaoyan; Huang, Daye; Wu, Jinping; Yu, Cui; Zhou, Ronghua; Liu, Cuijun; Zhang, Wei; Yao, Jingwu; Cheng, Meng

    2016-01-01

    Alcaligenes faecalis NBIB-017, a Gram-negative bacterium, was isolated from soil in China. Here, we provide the complete genome sequence of this bacterium, which possesses a high number of genes encoding antibacterial factors, including proteins and small molecular peptides. PMID:27056227

  9. Fluorescence in situ hybridization for rapid identification of Achromobacter xylosoxidans and Alcaligenes faecalis recovered from cystic fibrosis patients.

    PubMed

    Wellinghausen, Nele; Wirths, Beate; Poppert, Sven

    2006-09-01

    Achromobacter xylosoxidans is frequently isolated from the respiratory secretions of cystic fibrosis (CF) patients, but identification with biochemical tests is unreliable. We describe fluorescence in situ hybridization assays for the rapid identification of Achromobacter xylosoxidans and Alcaligenes faecalis. Both assays showed high sensitivities and high specificities with a collection of 155 nonfermenters from CF patients. PMID:16954289

  10. Development and use of amicroagglutination test to detect antibodies to Alcaligenes faecalis in turkeys.

    PubMed

    Jackwood, D J; Saif, Y M

    1980-01-01

    A neotetrazolium-chloride-stained Alcaligenes faecalis antigen was developed for use in the microagglutination (MA) test. The test was used to detect serum antibodies in naturally and experimentally infected turkeys. The highest titer observed in naturally infected birds was 1:320. In one commercial flock, antibodies were detected at 12 and 15 weeks after the initial disease outbreak. Four experiments were conducted to study the serologic responses of turkeys to A. faecalis. Antibodies were first detected at 2 weeks postexposure (PE) in poults that were exposed to the organism at 1 week of age. Peak antibody titers were detected at 3 weeks PE; isolations of the organism then declined. No antibodies were detected at 7 weeks PE in these birds. Birds infected at 5 weeks of age via various routes developed maximum antibody titers 2 weeks PE. Birds inoculated subcutaneously had the highest titers, whereas those inoculated intramuscularly had the lowest titers. Antibodies were still detected at 56 days PE in some birds. Hens vaccinated with an inactivated A. faecalis bacterin developed antibody titers. Titers not higher than 1:40 were detected at hatching in progeny of these hens. However, these poults were not protected from disease after challenge. There was some evidence that birds exposed to live or inactivated A. faecalis develop some protection against challenge. Antigens were prepared using 4 Ohio A. faecalis isolates (A, B, C, and D) and 1 North Carolina isolate for use in the MA test. The results indicated that the 5 isolates were antigenically similar. Antigens prepared using isolate B reacted best in the MA test. PMID:7447837

  11. Alcaligenes faecalis subsp. phenolicus subsp. nov. a phenol-degrading, denitrifying bacterium isolated from a graywater bioprocessor.

    PubMed

    Rehfuss, Marc; Urban, James

    2005-07-01

    A Gram (-) coccobacillary bacterium, J(T), was isolated from a graywater bioprocessor. 16S rRNA and biochemical analysis has revealed strain J(T) closely resembles Alcaligenes faecalis ATCC 8750T and A. faecalis subsp. parafaecalis DSM 13975T, but is a distinct, previously uncharacterized isolate. Strain J(T), along with the type strain of A. faecalis and its previously described subspecies share the ability to aerobically degrade phenol. The degradation rates of phenol for strain J(T) and reference phenol degrading bacteria were determined by photometrically measuring the change in optical density when grown on 0.1% phenol as the sole carbon source, followed by addition of Gibb's reagent to measure depletion of substrate. The phenol degradation rates of strain J(T) was found to exceed that of the phenol hydroxylase group III bacterium Pseudomonas pseudoalcaligenes, with isolate J(T) exhibiting a doubling time of 4.5 h. The presence of the large subunit of the multicomponent phenol hydroxylase gene in strain J(T) was confirmed by PCR. The presence of the nirK nitrite reductase gene as demonstrated by PCR as well as results obtained from nitrite media indicated denitrification at least to N2O. Based on phenotypic, phylogenetic, fatty acid analysis and results from DNA DNA hybridization, we propose assigning a novel subspecies of Alcaligenes faecalis, to be named Alcaligenes faecalis subsp. phenolicus with the type strain J(T) (= DSM 16503) (= NRRL B-41076). PMID:16094869

  12. Exogenous cofactors for the improvement of bioremoval and biotransformation of sulfamethoxazole by Alcaligenes faecalis.

    PubMed

    Zhang, Yi-Bi; Zhou, Jiao; Xu, Qiu-Man; Cheng, Jing-Sheng; Luo, Yu-Lu; Yuan, Ying-Jin

    2016-09-15

    Sulfamethoxazole (SMX), an extensively prescribed or administered antibiotic pharmaceutical product, is usually detected in aquatic environments, because of its incomplete metabolism and elimination. This study investigated the effects of exogenous cofactors on the bioremoval and biotransformation of SMX by Alcaligenes faecalis. High concentration (100mg·L(-1)) of exogenous vitamin C (VC), vitamin B6 (VB6) and oxidized glutathione (GSSG) enhanced SMX bioremoval, while the additions of vitamin B2 (VB2) and vitamin B12 (VB12) did not significantly alter the SMX removal efficiency. Globally, cellular growth of A. faecalis and SMX removal both initially increased and then gradually decreased, indicating that SMX bioremoval is likely dependent on the primary biomass activity of A. faecalis. The decreases in the SMX removal efficiency indicated that some metabolites of SMX might be transformed into parent compound at the last stage of incubation. Two transformation products of SMX, N-hydroxy sulfamethoxazole (HO-SMX) and N4-acetyl sulfamethoxazole (Ac-SMX), were identified by a high-performance liquid chromatograph coupled with mass spectrometer. High concentrations of VC, nicotinamide adenine dinucleotide hydrogen (NADH, 7.1mg·L(-1)), and nicotinamide adenine dinucleotide (NAD(+), 6.6mg·L(-1)), and low concentrations of reduced glutathione (GSH, 0.1 and 10mg·L(-1)) and VB2 (1mg·L(-1)) remarkably increased the formation of HO-SMX, while VB12 showed opposite effects on HO-SMX formation. In addition, low concentrations of GSH and NADH enhanced Ac-SMX formation by the addition of A. faecalis, whereas cofactors (VC, VB2, VB12, NAD(+), and GSSG) had no obvious impact on the formation of Ac-SMX compared with the controls. The levels of Ac-SMX were stable when biomass of A. faecalis gradually decreased, indicating the direct effect of biomass on the formation of Ac-SMX by A. faecalis. In sum, these results help us understand the roles played by exogenous cofactors in

  13. Tributyltin chloride (TBTCl)-enhanced exopolysaccharide and siderophore production in an estuarine Alcaligenes faecalis strain.

    PubMed

    Khanolkar, Dnyanada; Dubey, S K; Naik, Milind Mohan

    2015-05-01

    Tributyltin chloride (TBTCl) has been used extensively as an antifouling agent in ship paints, which results in the contamination of aquatic sites. These contaminated sites serve as enrichment areas for TBTCl-resistant bacterial strains. One TBTCl-resistant bacterial strain was isolated from the sediments of Zuari estuary, Goa, India, which is a major hub of various ship-building activities. Based on biochemical characteristics and 16S rDNA sequence analysis, this bacterial strain was identified as Alcaligenes faecalis and designated as strain SD5. It could degrade ≥3 mM TBTCl by using it as a sole carbon source and transform it into the less toxic dibutyltin chloride, which was confirmed by nuclear magnetic resonance and mass spectroscopy. Interestingly, this bacterial strain also showed enhanced exopolysaccharide and siderophore production when cells were exposed to toxic levels of TBTCl, suggesting their involvement in conferring resistance to this antifouling biocide as well as degradative capability respectively. PMID:25612551

  14. Purification and properties of inducible penicillin beta-lactamase isolated from Alcaligenes faecalis.

    PubMed

    Fujii, T; Sato, K; Inoue, M; Mitsuhashi, S

    1985-04-01

    An inducible penicillin beta-lactamase was purified from a strain of Alcaligenes faecalis resistant to beta-lactam antibiotics. The purified enzyme preparation gave a single protein band on polyacrylamide gel electrophoresis, and its molecular weight was 29,000 based on sodium dodecyl sulfate-acrylamide gel electrophoresis. Its isoelectric point was 5.9. The enzyme more rapidly hydrolyzed penicillins, such as penicillin G, ampicillin, carbenicillin, piperacillin, and cloxacillin, than it hydrolyzed cephalosporins. For the hydrolysis of penicillin G, the optimal pH was 5.5, and the optimal temperature was 35 degrees C. The enzyme activity was inhibited by iodine, Cu2+, Hg2+, and EDTA but was not inhibited by clavulanic acid and sulbactam. PMID:3873902

  15. Degradation of poly(3-hydroxybutyrate) by poly(3-hydroxybutyrate) depolymerase from Alcaligenes faecalis T1.

    PubMed

    Shirakura, Y; Fukui, T; Saito, T; Okamoto, Y; Narikawa, T; Koide, K; Tomita, K; Takemasa, T; Masamune, S

    1986-01-15

    The extracellular poly(3-hydroxybutyrate) depolymerase purified from Alcaligenes faecalis T1 has two disulfide bonds, one of which appears to be necessary for the full enzyme activity. This depolymerase hydrolyzed not only hydrophobic poly(3-hydroxybutyrate) but also water-soluble trimer and larger oligomers of D-(-)-3-hydroxybutyrate, regardless of their solubilities in water. Kinetic analyses with oligomers of various sizes indicated that the substrate cleaving site of the enzyme consisted of four subsites with individual affinities for monomer units of the substrate. Analyses of the hydrolytic products of oligomers, which had labeled D-(-)-3-hydroxybutyrate at the hydroxy terminus, showed that the enzyme cleaved only the second ester linkage from the hydroxy terminus of the trimer and tetramer, and acted as an endo-type hydrolase toward the pentamer and higher oligomers. The enzyme appeared to have a hydrophobic site which interacted with poly(3-hydroxybutyrate) and determined the affinity of the enzyme toward the hydrophobic substrate. PMID:3942778

  16. Colonization of Alcaligenes faecalis strain JBW4 in natural soils and its detoxification of endosulfan.

    PubMed

    Kong, Lingfen; Zhu, Shaoyuan; Zhu, Lusheng; Xie, Hui; Wei, Kai; Yan, Tongxiang; Wang, Jun; Wang, Jinhua; Wang, Fenghua; Sun, Fengxia

    2014-02-01

    Alcaligenes faecalis strain JBW4, a strain of bacteria that is capable of degrading endosulfan, was inoculated into sterilized and natural soils spiked with endosulfan. JBW4 degraded 75.8 and 87.0 % of α-endosulfan and 58.5 and 69.5 % of β-endosulfan in sterilized and natural soils, respectively, after 77 days. Endosulfan ether and endosulfan lactone were the major metabolites that were detected by gas chromatography-mass spectrometry. This result suggested that A. faecalis strain JBW4 degrades endosulfan using a non-oxidative pathway in soils. The ability of strain JBW4 to colonize endosulfan-contaminated soils was confirmed by polymerase chain reaction-denaturing gradient gel electrophoresis. This result suggested that strain JBW4 competed with the original inhabitants in the soil to establish a balance and successfully colonize the soils. In addition, the detoxification of endosulfan by strain JBW4 was evaluated using single-cell gel electrophoresis and by determining the soil microbial biomass carbon and enzymatic activities. The results showed that the genotoxicity and ecotoxicity of endosulfan in soil were reduced after degradation. The natural degradation of endosulfan in soil is inadequate; therefore, JBW4 shows potential for the bioremediation of industrial soils that are contaminated with endosulfan residues. PMID:23812277

  17. Kinetic characteristics and modelling of growth and substrate removal by Alcaligenes faecalis strain NR.

    PubMed

    Chen, Jie; Zhao, Bin; An, Qiang; Wang, Xia; Zhang, Yi Xin

    2016-04-01

    Alcaligenes faecalis strain NR has the capability of simultaneous ammonium and organic carbon removal under sole aerobic conditions. The growth and substrate removal characteristics of A. faecalis strain NR were studied and appropriate kinetic models were developed. The maximum substrate removal rate of NH4 (+)-N and TOC were determined as 2.27 mg NH4 (+)-N/L/h and 30.00 mg TOC/L/h, respectively with initial NH4 (+)-N = 80 mg/L and TOC = 800 mg/L. Single-substrate models and double-substrate models based on Monod, Contois, Moser and Teissier were employed to describe the bioprocess kinetic coefficients. As a result, two double-substrate models, Teissier-Contois and Contois-Contois, were considered to be appropriate to model growth kinetics with both NH4 (+)-N and TOC as limiting substrates. The kinetic constants of maximum growth rate (μ max) and half-saturation constant (K S and B S) were obtained by solving multiple equations with regression. This work can be used to further understand and predict the performance of heterotrophic nitrifiers, and thus provides specific guidance of these functional strains in practical wastewater treatment process. PMID:26796583

  18. Enhanced Alcaligenes faecalis Denitrification Rate with Electrodes as the Electron Donor

    PubMed Central

    Wang, Xin; Yu, Ping; Zeng, Cuiping; Ding, Hongrui; Wang, Changqiu

    2015-01-01

    The utilization by Alcaligenes faecalis of electrodes as the electron donor for denitrification was investigated in this study. The denitrification rate of A. faecalis with a poised potential was greatly enhanced compared with that of the controls without poised potentials. For nitrate reduction, although A. faecalis could not reduce nitrate, at three poised potentials of +0.06, −0.06, and −0.15 V (versus normal hydrogen electrode [NHE]), the nitrate was partially reduced with −0.15- and −0.06-V potentials at rates of 17.3 and 28.5 mg/liter/day, respectively. The percentages of reduction for −0.15 and −0.06 V were 52.4 and 30.4%, respectively. Meanwhile, for nitrite reduction, the poised potentials greatly enhanced the nitrite reduction. The nitrite reduction rates for three poised potentials (−0.06, −0.15, and −0.30 V) were 1.98, 4.37, and 3.91 mg/liter/h, respectively. When the potentials were cut off, the nitrite reduction rate was maintained for 1.5 h (from 2.3 to 2.25 mg/liter/h) and then greatly decreased, and the reduction rate (0.38 mg/liter/h) was about 1/6 compared with the rate (2.3 mg/liter/h) when potential was on. Then the potentials resumed, but the reduction rate did not resume and was only 2 times higher than the rate when the potential was off. PMID:26048940

  19. Enhanced Alcaligenes faecalis Denitrification Rate with Electrodes as the Electron Donor.

    PubMed

    Wang, Xin; Yu, Ping; Zeng, Cuiping; Ding, Hongrui; Li, Yan; Wang, Changqiu; Lu, Anhuai

    2015-08-15

    The utilization by Alcaligenes faecalis of electrodes as the electron donor for denitrification was investigated in this study. The denitrification rate of A. faecalis with a poised potential was greatly enhanced compared with that of the controls without poised potentials. For nitrate reduction, although A. faecalis could not reduce nitrate, at three poised potentials of +0.06, -0.06, and -0.15 V (versus normal hydrogen electrode [NHE]), the nitrate was partially reduced with -0.15- and -0.06-V potentials at rates of 17.3 and 28.5 mg/liter/day, respectively. The percentages of reduction for -0.15 and -0.06 V were 52.4 and 30.4%, respectively. Meanwhile, for nitrite reduction, the poised potentials greatly enhanced the nitrite reduction. The nitrite reduction rates for three poised potentials (-0.06, -0.15, and -0.30 V) were 1.98, 4.37, and 3.91 mg/liter/h, respectively. When the potentials were cut off, the nitrite reduction rate was maintained for 1.5 h (from 2.3 to 2.25 mg/liter/h) and then greatly decreased, and the reduction rate (0.38 mg/liter/h) was about 1/6 compared with the rate (2.3 mg/liter/h) when potential was on. Then the potentials resumed, but the reduction rate did not resume and was only 2 times higher than the rate when the potential was off. PMID:26048940

  20. Aspartate beta-decarboxylase from Alcaligenes faecalis: carbon-13 kinetic isotope effect and deuterium exchange experiments

    SciTech Connect

    Rosenberg, R.M.; O'Leary, M.H.

    1985-03-26

    The authors have measured the /sup 13/C kinetic isotope effect at pH 4.0, 5.0, 6.0, and 6.5 and in D/sub 2/O at pH 5.0 and the rate of D-H exchange of the alpha and beta protons of aspartic acid in D/sub 2/O at pH 5.0 for the reaction catalyzed by the enzyme aspartate beta-decarboxylase from Alcaligenes faecalis. The /sup 13/C kinetic isotope effect, with a value of 1.0099 +/- 0.0002 at pH 5.0, is less than the intrinsic isotope effect for the decarboxylation step, indicating that the decarboxylation step is not entirely rate limiting. The authors have been able to estimate probable values of the relative free energies of the transition states of the enzymatic reaction up to and including the decarboxylation step from the /sup 13/C kinetic isotope effect and the rate of D-H exchange of alpha-H. The pH dependence of the kinetic isotope effect reflects the pKa of the pyridine nitrogen of the coenzyme pyridoxal 5'-phosphate but not that of the imine nitrogen. A mechanism is proposed for the exchange of aspartate beta-H that is consistent with the stereochemistry suggested earlier.

  1. Enzymatic properties of immobilized Alcaligenes faecalis cells with cell-associated beta-glucosidase activity

    SciTech Connect

    Wheatly, M.A.; Phillips, C.R.

    1984-06-01

    Enzymatic properties of Alcaligenes faecalis cells immobilized in polyacrylamide were characterized and compared with those reported for the extracted enzyme, and with those measured for free cells. Many of the properties reflected those of the extracted enzyme rather than those measured in the free whole cells prior to immobilization, suggesting cell disruption during immobilization. These properties included the pH activity profile, a slightly broader pH stability profile, and the activation energy. Electron micrographs showed evidence of cell debris among the polymer matrix. The immobilized cells were not viable, and did not consume glucose. Thermal stability was less after immobilization with a half-line of 16 h at 45 degrees C, and 3.5 h at 50 degrees C. The immobilized preparation was more stable when stored lyophilized rather than in buffer, losing 23 and 52% activity, respectively, after six months. The enzyme was irreversibly inhibited by both acetate and citrate buffers. If the immobilized enzyme is to be used in conjunction with cellulases from Trichoderma reesei for cellulase saccharification, the optimal conditions would be pH 5.5 and 45 degrees C in a buffer containing no carboxylic acid groups.

  2. Efficient enzymatic synthesis of ampicillin by mutant Alcaligenes faecalis penicillin G acylase.

    PubMed

    Deng, Senwen; Su, Erzheng; Ma, Xiaoqiang; Yang, Shengli; Wei, Dongzhi

    2015-04-10

    Semi-synthetic β-lactam antibiotics (SSBAs) are one of the most important antibiotic families in the world market. Their enzymatic synthesis can be catalyzed by penicillin G acylases (PGAs). In this study, to improve enzymatic synthesis of ampicillin, site-saturating mutagenesis was performed on three conserved amino acid residues: βF24, αR146, and αF147 of thermo-stable penicillin G acylase from Alcaligenes faecalis (Af PGA). Four mutants βF24G, βF24A, βF24S, and βF24P were recovered by screening the mutant bank. Kinetic analysis of them showed up to 800-fold increased kcat/Km value for activated acyl donor D-phenylglycine methyl ester (D-PGME). When βF24G was used for ampicillin synthesis under kinetic control at industrially relevant conditions, 95% of nucleophile 6-aminopenicillanic acid (6-APA) was converted to ampicillin in aqueous medium at room temperature while 12% process time is needed to reach maximum product accumulation at 25% enzyme concentration compared with the wild-type Af PGA. Consequently, process productivity of enzymatic synthesis of ampicillin catalyzed by Af PGA was improved by more than 130 times, which indicated an enzyme viable for efficient SSBAs synthesis. PMID:25681630

  3. Biodegradation of nicosulfuron by a novel Alcaligenes faecalis strain ZWS11.

    PubMed

    Zhao, Weisong; Wang, Chen; Xu, Li; Zhao, Chunqing; Liang, Hongwu; Qiu, Lihong

    2015-09-01

    A bacterial strain ZWS11 was isolated from sulfonylurea herbicide-contaminated farmland soil and identified as a potential nicosulfuron-degrading bacterium. Based on morphological and physicochemical characterization of the bacterium and phylogenetic analysis of the 16S rRNA sequence, strain ZWS11 was identified as Alcaligenes faecalis. The effects of the initial concentration of nicosulfuron, inoculation volume, and medium pH on degradation of nicosulfuron were investigated. Strain ZWS11 could degrade 80.56% of the initial nicosulfuron supplemented at 500.0mg/L under the conditions of pH7.0, 180r/min and 30°C after incubation for 6days. Strain ZWS11 was also capable of degrading rimsulfuron, tribenuron-methyl and thifensulfuron-methyl. Four metabolites from biodegradation of nicosulfuron were identified, which were 2-aminosulfonyl-N, N-dimethylnicotinamide (M1), 4, 6-dihydroxypyrimidine (M2), 2-amino-4, 6-dimethoxypyrimidine (M3) and 2-(1-(4,6-dimethoxy-pyrimidin-2-yl)-ureido)-N,N-dimethyl-nicotinamide (M4). Among the metabolites detected, M2 was reported for the first time. Possible biodegradation pathways of nicosulfuron by strain ZWS11 were proposed. The degradation proceeded mainly via cleavage of the sulfonylurea bridge, O-dealkylation, and contraction of the sulfonylurea bridge by elimination of a sulfur dioxide group. The results provide valuable information for degradation of nicosulfuron in contaminated environments. PMID:26354704

  4. Crystallization and X-ray structure analysis of a thermostable penicillin G acylase from Alcaligenes faecalis.

    PubMed

    Varshney, Nishant Kumar; Kumar, R Suresh; Ignatova, Zoya; Prabhune, Asmita; Pundle, Archana; Dodson, Eleanor; Suresh, C G

    2012-03-01

    The enzyme penicillin G acylase (EC 3.5.1.11) catalyzes amide-bond cleavage in benzylpenicillin (penicillin G) to yield 6-aminopenicillanic acid, an intermediate chemical used in the production of semisynthetic penicillins. A thermostable penicillin G acylase from Alcaligenes faecalis (AfPGA) has been crystallized using the hanging-drop vapour-diffusion method in two different space groups: C222(1), with unit-cell parameters a = 72.9, b = 86.0, c = 260.2 , and P4(1)2(1)2, with unit-cell parameters a = b = 85.6, c = 298.8 . Data were collected at 293 and the structure was determined using the molecular-replacement method. Like other penicillin acylases, AfPGA belongs to the N-terminal nucleophilic hydrolase superfamily, has undergone post-translational processing and has a serine as the N-terminal residue of the β-chain. A disulfide bridge has been identified in the structure that was not found in the other two known penicillin G cylase structures. The presence of the disulfide bridge is perceived to be one factor that confers higher stability to this enzyme. PMID:22442220

  5. Optimization of nitrilase production from Alcaligenes faecalis MTCC 10757 (IICT-A3): effect of inducers on substrate specificity.

    PubMed

    Nageshwar, Y V D; Sheelu, Gurrala; Shambhu, Rekha Rao; Muluka, Hemalatha; Mehdi, Nooreen; Malik, M Shaheer; Kamal, Ahmed

    2011-06-01

    Microbial nitrilases are biocatalysts of interest and the enzyme produced using various inducers exhibits altered substrate specificity, which is of great interest in bioprocess development. The aim of the present study is to investigate the nitrilase-producing Alcaligenes faecalis MTCC 10757 (IICT-A3) for its ability to transform various nitriles in the presence of different inducers after optimization of various parameters for maximum enzyme production and activity. The production of A. faecalis MTCC 10757 (IICT-A3) nitrilase was optimum with glucose (1.0%), acrylonitrile (0.1%) at pH 7.0. The nitrilase activity of A. faecalis MTCC 10757 (IICT-A3) was optimum at 35 °C, pH 8.0 and the enzyme was stable up to 6 h at 50 °C. The nitrilase enzyme produced using different inducers was investigated for substrate specificity. The enzyme hydrolyzed aliphatic, heterocyclic and aromatic nitriles with different substitutions. Acrylonitrile was the most preferred substrate (~40 U) as well as inducer. Benzonitrile was hydrolyzed with almost twofold higher relative activity than acrylonitrile when it was used as an inducer. The versatile nitrilase-producing A. faecalis MTCC 10757 (IICT-A3) exhibits efficient conversion of both aliphatic and aromatic nitriles. The aromatic nitriles, which show not much or no affinity towards nitrilase from A. faecalis, are hydrolyzed effectively with this nitrilase-producing organism. Studies are in progress to exploit this organism for synthesis of industrially important compounds. PMID:21188422

  6. Immunostimulatory activities of a decapeptide derived from Alcaligenes faecalis FY-3 to crucian carp.

    PubMed

    Wang, G-X; Li, F-Y; Cui, J; Wang, Y; Liu, Y-T; Han, J; Lei, Y

    2011-07-01

    A strain was isolated from a soil sample collected from Weihe river in Shaanxi province (108°03'E 34°14'N), which was identified as Alcaligenes faecalis by 16S rRNA analysis. A compound M showing potent immune activity was isolated from secondary metabolites of the strain through bioassay-guided isolation techniques. The structure of the compound M was elucidated using FT-IR, EI-MS, 1H NMR and 13C NMR spectra and identified as cyclo-(L-Pro-Gly)5 which was first time reported as a natural product. We evaluated the immune effects of the cyclo-(L-Pro-Gly)5 on the basis of serum lysozyme activity, bacterial agglutination titre assay, superoxide anion production and phagocytic activity assay, and they were found to be significantly increased by cyclo-(L-Pro-Gly)5. The effects of cyclo-(L-Pro-Gly)5 on immune-related gene expression were further investigated. The outcomes of real-time quantitative polymerase chain reaction (RQ-PCR) proved that the transcribing level of interleukin 6β (IL-6β) and inducible nitric oxide synthase 1β (iNOS-1β) mRNA in the blood leucocytes have been augmented by cyclo-(L-Pro-Gly)5. The challenge experiment showed that crucian carp injected the cyclo-(L-Pro-Gly)5 had significantly (P < 0.05) lower cumulative mortality (13.0%) compared with the control (45.4%) after infection with live Aeromonas hydrophila. These results suggested that cyclo-(L-Pro-Gly)5 is a possible immunostimulant and may strengthen the immune response and protect the heath status of crucian carp against A. hydrophila. PMID:21332568

  7. Structural-based mutational analysis of d-aminoacylase from Alcaligenes faecalis DA1

    PubMed Central

    Hsu, Cheng-Sheng; Lai, Wen-Lin; Chang, Wei-Wei; Liaw, Shwu-Huey; Tsai, Ying-Chieh

    2002-01-01

    d-Aminoacylase is an attractive candidate for commercial production of d-amino acids through its catalysis in the zinc-assistant hydrolysis of N-acyl-d-amino acids. We report here the cloning, expression, and structural-based mutation of the d-aminoacylase from Alcaligenes faecalis DA1. A 1,007-bp PCR product amplified with degenerate primers, was used to isolate a 4-kb genomic fragment, encoding a 484-residue d-aminoacylase. The enzyme amino-terminal segment shared significant homology within a variety of enzymes including urease. The structural fold was predicted by 3D-PSSM to be similar to urease and dihydroorotase, which have grouped into a novel α/β-barrel amidohydrolase superfamily with a virtually indistinguishable binuclear metal centers containing six ligands, four histidines, one aspartate, and one carboxylated lysine. Three histidines, His-67, His-69, and His-250, putative metal ligands in d-aminoacylase, have been mutated previously, the remaining histidine (His-220) and aspartate (Asp-366) Asp-65, and four cysteines were then characterized. Substitution of Asp-65, Cys-96, His-220, and Asp-366 with alanine abolished the enzyme activity. The H220A mutant bound approximately half the normal complement of zinc ion as did H250N. However, the C96A mutant showed little zinc-binding ability, revealing that Cys-96 may replace the carboxylated lysine to serve as a bridging ligand. According to the urease structure, the conserved amino-terminal segment including Asp-65 may be responsible for structural stabilization. PMID:12381838

  8. Classification of Alcaligenes faecalis-like isolates from the environment and human clinical samples as Ralstonia gilardii sp. nov.

    PubMed

    Coenye, T; Falsen, E; Vancanneyt, M; Hoste, B; Govan, J R; Kersters, K; Vandamme, P

    1999-04-01

    A polyphasic taxonomic study that included DNA-DNA hybridizations, DNA base ratio determinations, 16S rDNA sequence analysis, whole-cell protein and fatty acid analyses, AFLP (amplified fragment length polymorphism) fingerprinting and an extensive biochemical characterization was performed on 10 strains provisionally identified as Alcaligenes faecalis-like bacteria. The six environmental and four human isolates belonged to the genus Ralstonia and were assigned to a new species for which the name Ralstonia gilardii sp. nov. is proposed. The type strain is LMG 5886T. PMID:10319461

  9. Identification of a new Alcaligenes faecalis strain MOR02 and assessment of its toxicity and pathogenicity to insects.

    PubMed

    Quiroz-Castañeda, Rosa Estela; Mendoza-Mejía, Ared; Obregón-Barboza, Verónica; Martínez-Ocampo, Fernando; Hernández-Mendoza, Armando; Martínez-Garduño, Felipe; Guillén-Solís, Gabriel; Sánchez-Rodríguez, Federico; Peña-Chora, Guadalupe; Ortíz-Hernández, Laura; Gaytán-Colín, Paul; Dantán-González, Edgar

    2015-01-01

    We report the isolation of a bacterium from Galleria mellonella larva and its identification using genome sequencing and phylogenomic analysis. This bacterium was named Alcaligenes faecalis strain MOR02. Microscopic analyses revealed that the bacteria are located in the esophagus and intestine of the nematodes Steinernema feltiae, S. carpocapsae, and H. bacteriophora. Using G. mellonella larvae as a model, when the larvae were injected with 24,000 CFU in their hemocoel, more than 96% mortality was achieved after 24 h. Additionally, toxicity assays determined that 1 μg of supernatant extract from A. faecalis MOR02 killed more than 70% G. mellonella larvae 96 h after injection. A correlation of experimental data with sequence genome analyses was also performed. We discovered genes that encode proteins and enzymes that are related to pathogenicity, toxicity, and host/environment interactions that may be responsible for the observed phenotypic characteristics. Our data demonstrates that the bacteria are able to use different strategies to colonize nematodes and kill insects to their own benefit. However, there remains an extensive group of unidentified microorganisms that could be participating in the infection process. Additionally, a nematode-bacterium association could be established probably as a strategy of dispersion and colonization. PMID:25667924

  10. Purification and characterization of chitinase from Alcaligenes faecalis AU02 by utilizing marine wastes and its antioxidant activity.

    PubMed

    Annamalai, Neelamegam; Veeramuthu Rajeswari, Mayavan; Vijayalakshmi, Shanmugam; Balasubramanian, Thangavel

    2011-12-01

    Marine waste is an abundant renewable source for the recovery of several value added metabolites with potential industrial applications. This study describes the production of chitinase on marine waste, with the subsequent use of the same marine waste for the extraction of antioxidants. A chitinase-producing bacterium isolated from seafood effluent was identified as Alcaligenes faecalis AU02. Optimal chitinase production was obtained in culture conditions of 37°C for 72 h in 100 ml medium containing 1% shrimp and crab shell powder (1:1) (w/v), 0.1% K(2)HPO(4), and 0.05% MgSO(4)·7H(2)O. The molecular weight of chitinase was determined by SDS-PAGE to be 36 kDa. The optimum pH, temperature, pH stability, and thermal stability of chitinase were about 8, 37°C, 5-12, and 40-80°C, respectively. The antioxidant activity of A. faecalis AU02 culture supernatant was determined through scavenging ability on 1,1-diphenyl-2-picrylhydrazyl (DPPH) as 84%, and the antioxidant compound was characterized by TLC and its FT-IR spectrum. The present study proposed that marine wastes can be utilized to generate a high-value-added product and that pharmacological studies can extend its use to the field of medicine. PMID:22131949

  11. Heterotrophic nitrification and aerobic denitrification of high-strength ammonium in anaerobically digested sludge by Alcaligenes faecalis strain No. 4.

    PubMed

    Shoda, Makoto; Ishikawa, Yoichi

    2014-06-01

    Alcaligenes faecalis strain No. 4 which is capable of heterogeneous nitrification and aerobic denitrification, was used to remove high-strength ammonium (approximately 1 g NH4(+)-N/l) from digested sludge, the product of an anaerobic digestion reactor, in which methane was produced from excess municipal sewage sludge. Repeated batch operations were conducted at 20°C and 30°C for 550 h, using a jar fermentor. The removal ratios of high-strength ammonium reached 90-100% within 24 h, and the average ammonium removal rate was 2.9 kg-N/m(3)/day, more than 200 times higher than that in conventional nitrification-denitrification processes. During these operations, the cell density was maintained at 10(8)-10(9) cells of A. faecalis strain No. 4/ml. At 3% NaCl in the digested sludge, strain No. 4 exhibited an ammonium removal rate of 3 kg-N/m(3)/day. PMID:24411668

  12. Identification of a New Alcaligenes faecalis Strain MOR02 and Assessment of Its Toxicity and Pathogenicity to Insects

    PubMed Central

    Mendoza-Mejía, Ared; Obregón-Barboza, Verónica; Martínez-Ocampo, Fernando; Hernández-Mendoza, Armando; Martínez-Garduño, Felipe; Guillén-Solís, Gabriel; Sánchez-Rodríguez, Federico; Peña-Chora, Guadalupe; Ortíz-Hernández, Laura; Gaytán-Colín, Paul; Dantán-González, Edgar

    2015-01-01

    We report the isolation of a bacterium from Galleria mellonella larva and its identification using genome sequencing and phylogenomic analysis. This bacterium was named Alcaligenes faecalis strain MOR02. Microscopic analyses revealed that the bacteria are located in the esophagus and intestine of the nematodes Steinernema feltiae, S. carpocapsae, and H. bacteriophora. Using G. mellonella larvae as a model, when the larvae were injected with 24,000 CFU in their hemocoel, more than 96% mortality was achieved after 24 h. Additionally, toxicity assays determined that 1 μg of supernatant extract from A. faecalis MOR02 killed more than 70% G. mellonella larvae 96 h after injection. A correlation of experimental data with sequence genome analyses was also performed. We discovered genes that encode proteins and enzymes that are related to pathogenicity, toxicity, and host/environment interactions that may be responsible for the observed phenotypic characteristics. Our data demonstrates that the bacteria are able to use different strategies to colonize nematodes and kill insects to their own benefit. However, there remains an extensive group of unidentified microorganisms that could be participating in the infection process. Additionally, a nematode-bacterium association could be established probably as a strategy of dispersion and colonization. PMID:25667924

  13. [Evaluation of occurrence of Alcaligenes faecalis in clinical samples of patients of the university hospital in Bydgoszcz].

    PubMed

    Jachna-Sawicka, Katarzyna; Gospodarek, Eugenia

    2009-01-01

    Alcaligenes faecalis is an aerobic Gram-negative, non-fermentative rod. It's saprophyte of water and soil. It may be recovered from wet places of hospital environment. It is considered as an opportunistic pathogen. The aim of this review was evaluation of occurrence in clinical samples and susceptibility to antibiotics of 72 A. faecalis strains isolated in years 2003-2008. Over 30% of strains were isolated from patients in surgical ward, 19.6% from patients in outpatient clinic and almost 14% from patients in Department of Dermatology. 70.8% of strains were isolated from purulent material samples, whereas from urine--16.7% of strains. Nearly 88% out of examined strains were grown in mixed culture together with one (26.4%), two (32.0%), three (23.6%) or four (5.6%) microorganisms. All out of strains were sensitive to piperacyline, piperacyline/tazobactam and carbapenems. Sensitivity to aztreonam was observed at 22.2% of strains and to co-trimoxazole at 57.1% of strains. PMID:19517818

  14. Genetic Diversity and Horizontal Transfer of Genes Involved in Oxidation of Reduced Phosphorus Compounds by Alcaligenes faecalis WM2072

    PubMed Central

    Wilson, Marlena M.; Metcalf, William W.

    2005-01-01

    Enrichment was performed to isolate organisms that could utilize reduced phosphorus compounds as their sole phosphorus sources. One isolate that grew well with either hypophosphite or phosphite was identified by 16S rRNA gene analysis as a strain of Alcaligenes faecalis. The genes required for oxidation of hypophosphite and phosphite by this organism were identified by using transposon mutagenesis and include homologs of the ptxD and htxA genes of Pseudomonas stutzeri WM88, which encode an NAD-dependent phosphite dehydrogenase (PtxD) and 2-oxoglutarate-dependent hypophosphite dioxygenase (HtxA). This organism also has the htxB, htxC, and htxD genes that comprise an ABC-type transporter, presumably for hypophosphite and phosphite transport. The role of these genes in reduced phosphorus metabolism was confirmed by analyzing the growth of mutants in which these genes were deleted. Sequencing data showed that htxA, htxB, htxC, and htxD are virtually identical to their homologs in P. stutzeri at the DNA level, indicating that horizontal gene transfer occurred. However, A. faecalis ptxD is very different from its P. stutzeri homolog and represents a new ptxD lineage. Therefore, this gene has ancient evolutionary roots in bacteria. These data suggest that there is strong evolutionary selection for the ability of microorganisms to oxidize hypophosphite and phosphite. PMID:15640200

  15. Efficient cascade synthesis of ampicillin from penicillin G potassium salt using wild and mutant penicillin G acylase from Alcaligenes faecalis.

    PubMed

    Deng, Senwen; Ma, Xiaoqiang; Su, Erzheng; Wei, Dongzhi

    2016-02-10

    To avoid isolation and purification of the intermediate 6-aminopenicillanic acid (6-APA), a two-enzyme two-step cascade synthesis of ampicillin from penicillin G was established. In purely aqueous medium, penicillin G hydrolysis and ampicillin synthesis were catalyzed by immobilized wild-type and mutagenized penicillin G acylases from Alcaligenes faecalis (Af PGA), respectively (Fig. 1). The βF24 G mutant Af PGA (the 24th Phenylalanine of the β-subunit was replaced by Glycine) was employed for its superior performance in enzymatic synthesis of ampicillin. By optimizing the reaction conditions, including enzyme loading, temperature, initial pH and D-PGME/6-APA ratio, the conversion of the second step of ampicillin synthesis reached approximately 90% in 240 min and less than 1.7 mole D-PGME were required to produce 1 mole ampicillin. Overall, in a 285 min continuous two-step procedure, an ampicillin yield of 87% was achieved, demonstrating the possibility of improving the cascade synthesis of ampicillin by mutagenized PGA, providing an economically efficient and environmentally benign procedure for semi-synthetic penicillins antibiotics synthesis. PMID:26732414

  16. Enantioselective acylation of β-phenylalanine acid and its derivatives catalyzed by penicillin G acylase from Alcaligenes faecalis.

    PubMed

    Li, Dengchao; Ji, Lilian; Wang, Xinfeng; Wei, Dongzhi

    2013-01-01

    This study developed a simple, efficient method for producing racemic β-phenylalanine acid (BPA) and its derivatives via the enantioselective acylation catalyzed by the penicillin G acylase from Alcaligenes faecalis (Af-PGA). When the reaction was run at 25°C and pH 10 in an aqueous medium containing phenylacetamide and BPA in a molar ratio of 2:1, 8 U/mL enzyme and 0.1 M BPA, the maximum BPA conversion efficiency at 40 min only reached 36.1%, which, however, increased to 42.9% as the pH value and the molar ratio of phenylacetamide to BPA were elevated to 11 and 3:1, respectively. Under the relatively optimum reaction conditions, the maximum conversion efficiencies of BPA derivatives all reached about 50% in a relatively short reaction time (45-90 min). The enantiomeric excess value of product (ee(p)) and enantiomeric excess value of substrate (ee(s)) were all above 98% and 95%, respectively. These results suggest that the method established in this study is practical, effective, and environmentally benign and may be applied to industrial production of enantiomerically pure BPA and its derivatives. PMID:23302108

  17. Gene cloning, expression, and characterization of a nitrilase from Alcaligenes faecalis ZJUTB10.

    PubMed

    Liu, Zhi-Qiang; Dong, Li-Zhu; Cheng, Feng; Xue, Ya-Ping; Wang, Yuan-Shan; Ding, Jie-Nv; Zheng, Yu-Guo; Shen, Yin-Chu

    2011-11-01

    Nitrilases are important industrial enzymes that convert nitriles directly into the corresponding carboxylic acids. In the current work, the fragment with a length of 1068 bp that encodes the A. faecalis ZJUTB10 nitrilase was obtained. Moreover, a catalytic triad was proposed and verified by site-directed mutagenesis, and the detailed mechanism of this nitrilase was clarified. The substrate specificity study demonstrated that the A. faecalis ZJUTB10 nitrilase belongs to the family of arylacetonitrilases. The optimum pH and temperature for the purified nitrilase was 7-8 and 40 °C, respectively. Mg(2+) stimulated hydrolytic activity, whereas Cu(2+), Co(2+), Ni(2+), Ag(+), and Hg(2+) showed a strong inhibitory effect. The K(m) and v(max) for mandelonitrile were 4.74 mM and 15.85 μmol min(-1) mg(-1) protein, respectively. After 30 min reaction using the nitrilase, mandelonitrile at the concentration of 20 mM was completely hydrolyzed and the enantiomeric excess against (R)-(-)-mandelic acid was >99%. Characteristics investigation indicates that this nitrilase is promising in catalysis applications. PMID:21913706

  18. Biodegradation of organochlorine pesticide endosulfan by bacterial strain Alcaligenes faecalis JBW4.

    PubMed

    Kong, Lingfen; Zhu, Shaoyuan; Zhu, Lusheng; Xie, Hui; Su, Kunchang; Yan, Tongxiang; Wang, Jun; Wang, Jinhua; Wang, Fenghua; Sun, Fengxia

    2013-11-01

    The recently discovered endosulfan-degrading bacterial strain Alcaligenesfaecalis JBW4 was isolated from activated sludge. This strain is able to use endosulfan as a carbon and energy source. The optimal conditions for the growth of strain JBW4 and for biodegradation by this strain were identified, and the metabolic products of endosulfan degradation were studied in detail. The maximum level of endosulfan biodegradation by strain JBW4 was obtained using broth at an initial pH of 7.0, an incubation temperature of 40 degreeC and an endosulfan concentration of 100 mg/L. The concentration of endosulfan was determined by gas chromatography. Strain JBW4 was able to degrade 87.5% of alpha-endosulfan and 83.9% of beta-endosulfan within 5 days. These degradation rates are much higher than the previously reported bacterial strains. Endosulfan diol and endosulfan lactone were the major metabolites detected by gas chromatography-mass spectrometry; endosulfan sulfate, which is a persistent and toxic metabolite, was not detected. These results suggested that A. faecalis JBW4 degrades endosulfan via a non-oxidative pathway. The biodegradation of endosulfan by A. faecalis is reported for the first time. Additionally, the present study indicates that strain JBW4 may have potential for the biodegradation of endosulfan residues. PMID:24552054

  19. The effect of combined and separate infection by Alcaligenes faecalis and paramyxovirus (Yucaipa) on the surface morphology of the trachea in turkey poults.

    PubMed

    Yegana, Y; Weismen, Y; Herz, A; Schapira, R; Hod, I

    1985-10-01

    Sixty-seven 1-day-old turkey poults were inoculated in the infra orbital sinus with 3 x 10(8) Alcaligenes faecalis bacteria and/or by 10(5.8)EID 50/ ml of Yucaipa virus. Twenty-five similar birds served as controls. Identification of the agents inoculated was made during the development of disease by means of isolation and serological tests. During the development of the disease, the surface morphology of the trachea in the affected animals revealed cellular oedema associated with a mucus coating of the cilia. PMID:18766948

  20. Heterotrophic nitrification by Alcaligenes faecalis: NO sub 2 sup minus , NO sub 3 sup minus , N sub 2 O, and NO production in exponentially growing cultures

    SciTech Connect

    Papen, H.; von Berg, R.; Hinkel, I.; Thoene, B.; Rennenberg, H. )

    1989-08-01

    Heterotrophic nitrification by Alcaligenes faecalis DSM 30030 was not restricted to media containing organic forms of nitrogen. In both peptone-meat extract and defined media with ammonium and citrate as the sole nitrogen and carbon sources, respectively, NO{sub 2}{sup {minus}}, NO{sub 3}{sup {minus}}, NO, and N{sub 2}O were produced under aerobic growth conditions. Heterotrophic nitrification was not attributable to old or dying cell populations. Production of NO{sub 2}{sup {minus}}, NO{sub 3}{sup {minus}}, NO, and N{sub 2}O was detectable shortly after cultures started growth and proceeded exponentially during the logarithmic growth phase. NO{sub 2}{sup {minus}} and NO{sub 3}{sup {minus}} production rates were higher for cultures inoculated in media with pH values below 7 than for those in media at alkaline pH. Neither assimilatory nor dissimilatory nitrate or nitrite reductase activities were detectable in aerobic cultures.

  1. Contribution of permeability and sensitivity to inhibition of DNA synthesis in determining susceptibilities of Escherichia coli, Pseudomonas aeruginosa, and Alcaligenes faecalis to ciprofloxacin.

    PubMed

    Bedard, J; Chamberland, S; Wong, S; Schollaardt, T; Bryan, L E

    1989-09-01

    To examine the correlation between bacterial cell susceptibility to ciprofloxacin and the magnitude of uptake and cell target sensitivity, the relative contribution of ciprofloxacin accumulation in intact cells and its ability to inhibit DNA synthesis were investigated among strains of Escherichia coli, Pseudomonas aeruginosa, and Alcaligenes faecalis. Uptake studies of [14C]ciprofloxacin demonstrated diffusion kinetics for P. aeruginosa and E. coli. Ciprofloxacin was more readily removed from E. coli J53 and A. faecalis ATCC 19018 by washing than from P. aeruginosa PAO503. These results indicate that the process of cell accumulation is different for P. aeruginosa in that the drug is firmly bound at an extracellular site. Whatever the washing conditions, A. faecalis accumulated less drug than either of the other two bacteria. Magnesium chloride (10 mM) caused a substantial decrease of ciprofloxacin accumulated and an increase in the MIC, depending upon the nature of the medium. The addition of carbonyl cyanide m-chlorophenylhydrazone caused a variable increase in drug accumulated, depending on the medium and the bacterial strain. The concentration of ciprofloxacin required to obtain 50% inhibition (ID50) of DNA synthesis for P. aeruginosa PAO503 and A. faecalis ATCC 19018 did not correlate with their corresponding MICs but did for E. coli J53. Treatment with EDTA decreased the ID50 of ciprofloxacin for P. aeruginosa PAO503 and its gyrA derivative by 5- and 2-fold, respectively, and decreased the ID50 for E. coli JB5R, a strain with a known decrease in OmpF, by 1.4-fold but did not decrease the ID50 for the normally susceptible E. coli J53. The ID(50) for P. aeruginosa obtained after EDTA treatment or in ether-permeabilized cells was higher than that obtained for the other two strains. The protonophore carbonyl cyanide m-chlorophenylhydrazone prevented killing by low ciprofloxacin concentrtaions, but sodium azide did not. The latter compound did not enhance killing

  2. Induction of immune-related gene expression in Ctenopharyngodon idella kidney cells by secondary metabolites from immunostimulatory Alcaligenes faecalis FY-3.

    PubMed

    Wu, Z-F; Liu, G-L; Zhou, Z; Wang, G-X; Xia, L; Liu, J-L

    2012-08-01

    This study was undertaken to isolate active secondary metabolites from immunostimulatory Alcaligenes faecalis FY-3 and evaluate their activities using grass carp Ctenopharyngodon idella kidney (CIK) cells. By applying chromatography techniques and successive recrystallization, three purified metabolites were obtained and identified by spectral data (mass spectrometry and nuclear magnetic resonance) as: (1) phenylacetic acid, (2) p-hydroxyphenylacetylamide and (3) cyclo-(Gly-(L)-Pro). CIK cells were stimulated by different concentrations (1, 10 and 100 μg/ml) of the isolated compounds, and expression of MyD88, IL-1β, TNF-α, type I-IFN and IL-8 genes at different time points (2, 8 and 24 h) post-stimulation was quantified by real-time PCR. The known immunostimulatory agent lipopolysaccharide (LPS) was used as a positive control. To analyse whether these compounds are toxic to the cells, the methyl tetrazolium assay was employed to measure changes in cell viability. The obtained results revealed that transcribing level of MyD88, an important adaptor molecule in toll-like receptor signalling pathway, was augmented remarkably by all the three isolated compounds and LPS as early as 2-h exposure. These compounds also induced gene expression of cytokines such as IL-1β, TNF-α and type I-IFN. Under the experimental conditions, none of the test compounds is toxic to the CIK cells. These findings demonstrate that the immunostimulatory properties of the three metabolites [phenylacetic acid, p-hydroxyphenylacetylamide and cyclo-(Gly-(L)-Pro)] from A. faecalis FY-3 in CIK cells and highlight the potential of using these metabolites as immunostimulants in fish aquaculture. PMID:22606987

  3. Improvement of Alcaligenes faecalis nitrilase by gene site saturation mutagenesis and its application in stereospecific biosynthesis of (R)-(-)-mandelic acid.

    PubMed

    Liu, Zhi-Qiang; Zhang, Xin-Hong; Xue, Ya-Ping; Xu, Ming; Zheng, Yu-Guo

    2014-05-21

    Nitrilases have recently received considerable attention as the biocatalysts for stereospecific production of carboxylic acids. To improve the activity, the nitrilase from Alcaligenes faecalis was selected for further modification by the gene site saturation mutagenesis method (GSSM), based on homology modeling and previous reports about mutations. After mutagenesis, the positive mutants were selected using a convenient two-step high-throughput screening method based on product formation and pH indicator combined with the HPLC method. After three rounds of GSSM, Mut3 (Gln196Ser/Ala284Ile) with the highest activity and ability of tolerance to the substrate was selected. As compared to the wild-type A. faecalis nitrilase, Mut3 showed 154% higher specific activity. Mut3 could retain 91.6% of its residual activity after incubation at pH 6.5 for 6 h. In a fed-batch reaction with 800 mM mandelonitrile as the substrate, the cumulative production of (R)-(-)-mandelic acid after 7.5 h of conversion reached 693 mM with an enantiomeric excess of 99%, and the space-time productivity of Mut3 was 21.50-fold higher than that of wild-type nitrilase. The Km, Vmax, and k(cat) of wild-type and Mut3 for mandelonitrile were 20.64 mM, 33.74 μmol mg(-1) min(-1), 24.45 s(-1), and 9.24 mM, 47.68 μmol mg(-1) min(-1), and 34.55 s(-1), respectively. A homology modeling and molecular docking study showed that the diameter of the catalytic tunnel of Mut3 became longer and that the tunnel volume was smaller. These structural changes are proposed to improve the hydrolytic activity and pH stability of Mut3. Mut3 has the potential for industrial applications in the upscale production of (R)-(-)-mandelic acid. PMID:24766313

  4. Relative rates of nitric oxide and nitrous oxide production by nitrifiers, denitrifiers, and nitrate respirers. [Pseudomonas fluorescens; Serratia marcescens; Alcaligenes faecalis

    SciTech Connect

    Anderson, I.C.; Levine, J.S.

    1986-05-01

    The authors investigated the effect of the partial pressure of oxygen (pO/sub 2/) on the production of NO and N/sub 2/O by a wide variety of common soil nitrifying, denitrifying, and nitrate-respiring bacteria under laboratory conditions. The production of NO per cell was highest by autotrophic nitrifiers and was independent of pO/sub 2/ in the range tested (0.5 to 10%), whereas N/sub 2/O production was inversely proportional to pO/sub 2/. Nitrous oxide production was highest in the denitrifier Pseudomonas fluorescens, but only under anaerobic conditions. The molar ratio of NO/N/sub 2/O produced was usually greater than unity for nitrifiers and much less than unity for denitrifiers. Chemodenitrification was the major source of both the NO and N/sub 2/O produced by the nitrate respirer Serratia marcescens. Chemodenitrification was also a possible source of NO and N/sub 2/O produced by the nitrate respirer Serratia marcescens. Chemodenitrification was also a possible source of No and N/sub 2/O in nitrifier cultures but only when high concentrations of nitrite had accumulated or were added to the medium. Although most of the denitrifiers produced NO and N/sub 2/O only under anaerobic conditions, chemostat cultures of Alcaligenes faecalis continued to emit these gases even when the cultures were sprayed with air. Based upon these results, we predict that aerobic soils are primary sources of NO and that N/sub 2/O is produced only when there is sufficient soil moisture to provide the anaerobic microsites necessary for denitrification by either denitrifiers or nitrifiers.

  5. Molecular weight-dependent degradation of D-lactate-containing polyesters by polyhydroxyalkanoate depolymerases from Variovorax sp. C34 and Alcaligenes faecalis T1.

    PubMed

    Sun, Jian; Matsumoto, Ken'ichiro; Tabata, Yuta; Kadoya, Ryosuke; Ooi, Toshihiko; Abe, Hideki; Taguchi, Seiichi

    2015-11-01

    Polyhydroxyalkanoate depolymerase derived from Variovorax sp. C34 (PhaZVs) was identified as the first enzyme that is capable of degrading isotactic P[67 mol% (R)-lactate(LA)-co-(R)-3-hydroxybutyrate(3HB)] [P(D-LA-co-D-3HB)]. This study aimed at analyzing the monomer sequence specificity of PhaZVs for hydrolyzing P(LA-co-3HB) in comparison with a P(3HB) depolymerase from Alcaligenes faecalis T1 (PhaZAf) that did not degrade the same copolymer. Degradation of P(LA-co-3HB) by action of PhaZVs generated dimers, 3HB-3HB, 3HB-LA, LA-3HB, and LA-LA, and the monomers, suggesting that PhaZVs cleaved the linkages between LA and 3HB units and between LA units. To provide a direct evidence for the hydrolysis of these sequences, the synthetic methyl trimers, 3HB-3HB-3HB, LA-LA-3HB, LA-3HB-LA, and 3HB-LA-LA, were treated with the PhaZs. Unexpectedly, not only PhaZVs but also PhaZAf hydrolyzed all of these substrates, namely PhaZAf also cleaved LA-LA linkage. Considering the fact that both PhaZs did not degrade P[(R)-LA] (PDLA) homopolymer, the cleavage capability of LA-LA linkage by PhaZs was supposed to depend on the length of the LA-clustering region in the polymer chain. To test this hypothesis, PDLA oligomers (6 to 40 mer) were subjected to the PhaZ assay, revealing that there was an inverse relationship between molecular weight of the substrates and their hydrolysis efficiency. Moreover, PhaZVs exhibited the degrading activity toward significantly longer PDLA oligomers compared to PhaZAf. Therefore, the cleaving capability of PhaZs used here toward the D-LA-based polymers containing the LA-clustering region was strongly associated with the substrate length, rather than the monomer sequence specificity of the enzyme. PMID:26109003

  6. Characterization of an Indole-3-Acetamide Hydrolase from Alcaligenes faecalis subsp. parafaecalis and Its Application in Efficient Preparation of Both Enantiomers of Chiral Building Block 2,3-Dihydro-1,4-Benzodioxin-2-Carboxylic Acid.

    PubMed

    Mishra, Pradeep; Kaur, Suneet; Sharma, Amar Nath; Jolly, Ravinder S

    2016-01-01

    Both the enantiomers of 2,3-dihydro-1,4-benzodioxin-2-carboxylic acid are valuable chiral synthons for enantiospecific synthesis of therapeutic agents such as (S)-doxazosin mesylate, WB 4101, MKC 242, 2,3-dihydro-2-hydroxymethyl-1,4-benzodioxin, and N-[2,4-oxo-1,3-thiazolidin-3-yl]-2,3-dihydro-1,4-benzodioxin-2-carboxamide. Pharmaceutical applications require these enantiomers in optically pure form. However, currently available methods suffer from one drawback or other, such as low efficiency, uncommon and not so easily accessible chiral resolving agent and less than optimal enantiomeric purity. Our interest in finding a biocatalyst for efficient production of enantiomerically pure 2,3-dihydro-1,4-benzodioxin-2-carboxylic acid lead us to discover an amidase activity from Alcaligenes faecalis subsp. parafaecalis, which was able to kinetically resolve 2,3-dihydro-1,4-benzodioxin-2-carboxyamide with E value of >200. Thus, at about 50% conversion, (R)-2,3-dihydro-1,4-benzodioxin-2-carboxylic acid was produced in >99% e.e. The remaining amide had (S)-configuration and 99% e.e. The amide and acid were easily separated by aqueous (alkaline)-organic two phase extraction method. The same amidase was able to catalyse, albeit at much lower rate the hydrolysis of (S)-amide to (S)-acid without loss of e.e. The amidase activity was identified as indole-3-acetamide hydrolase (IaaH). IaaH is known to catalyse conversion of indole-3-acetamide (IAM) to indole-3-acetic acid (IAA), which is phytohormone of auxin class and is widespread among plants and bacteria that inhabit plant rhizosphere. IaaH exhibited high activity for 2,3-dihydro-1,4-benzodioxin-2-carboxamide, which was about 65% compared to its natural substrate, indole-3-acetamide. The natural substrate for IaaH indole-3-acetamide shared, at least in part a similar bicyclic structure with 2,3-dihydro-1,4-benzodioxin-2-carboxamide, which may account for high activity of enzyme towards this un-natural substrate. To the best of

  7. Characterization of an Indole-3-Acetamide Hydrolase from Alcaligenes faecalis subsp. parafaecalis and Its Application in Efficient Preparation of Both Enantiomers of Chiral Building Block 2,3-Dihydro-1,4-Benzodioxin-2-Carboxylic Acid

    PubMed Central

    Mishra, Pradeep; Kaur, Suneet; Sharma, Amar Nath; Jolly, Ravinder S.

    2016-01-01

    Both the enantiomers of 2,3-dihydro-1,4-benzodioxin-2-carboxylic acid are valuable chiral synthons for enantiospecific synthesis of therapeutic agents such as (S)-doxazosin mesylate, WB 4101, MKC 242, 2,3-dihydro-2-hydroxymethyl-1,4-benzodioxin, and N-[2,4-oxo-1,3-thiazolidin-3-yl]-2,3-dihydro-1,4-benzodioxin-2-carboxamide. Pharmaceutical applications require these enantiomers in optically pure form. However, currently available methods suffer from one drawback or other, such as low efficiency, uncommon and not so easily accessible chiral resolving agent and less than optimal enantiomeric purity. Our interest in finding a biocatalyst for efficient production of enantiomerically pure 2,3-dihydro-1,4-benzodioxin-2-carboxylic acid lead us to discover an amidase activity from Alcaligenes faecalis subsp. parafaecalis, which was able to kinetically resolve 2,3-dihydro-1,4-benzodioxin-2-carboxyamide with E value of >200. Thus, at about 50% conversion, (R)-2,3-dihydro-1,4-benzodioxin-2-carboxylic acid was produced in >99% e.e. The remaining amide had (S)-configuration and 99% e.e. The amide and acid were easily separated by aqueous (alkaline)-organic two phase extraction method. The same amidase was able to catalyse, albeit at much lower rate the hydrolysis of (S)-amide to (S)-acid without loss of e.e. The amidase activity was identified as indole-3-acetamide hydrolase (IaaH). IaaH is known to catalyse conversion of indole-3-acetamide (IAM) to indole-3-acetic acid (IAA), which is phytohormone of auxin class and is widespread among plants and bacteria that inhabit plant rhizosphere. IaaH exhibited high activity for 2,3-dihydro-1,4-benzodioxin-2-carboxamide, which was about 65% compared to its natural substrate, indole-3-acetamide. The natural substrate for IaaH indole-3-acetamide shared, at least in part a similar bicyclic structure with 2,3-dihydro-1,4-benzodioxin-2-carboxamide, which may account for high activity of enzyme towards this un-natural substrate. To the best of

  8. Specific and sensitive detection of Alcaligenes species from an agricultural environment.

    PubMed

    Nakano, Miyo; Niwa, Masumi; Nishimura, Norihiro

    2013-03-01

    A quantitative real-time PCR assay to specifically detect and quantify the genus Alcaligenes in samples from the agricultural environment, such as vegetables and farming soils, was developed. The minimum detection sensitivity was 106 fg of pure culture DNA, corresponding to DNA extracted from two cells of Alcaligenes faecalis. To evaluate the detection limit of A. faecalis, serially diluted genomic DNA from this organism was mixed with DNA extracted from soil and vegetables and then a standard curve was constructed. It was found that Alcaligenes species are present in the plant phytosphere at levels 10(2)-10(4) times lower than those in soil. The approach presented here will be useful for tracking or quantifying species of the genus Alcaligenes in the agricultural environment. PMID:23489084

  9. PER-1 extended-spectrum beta-lactamase production in an Alcaligenes faecalis clinical isolate resistant to expanded-spectrum cephalosporins and monobactams from a hospital in Northern Italy.

    PubMed

    Pereira, M; Perilli, M; Mantengoli, E; Luzzaro, F; Toniolo, A; Rossolini, G M; Amicosante, G

    2000-01-01

    An Alicaligenes faecalis (FL-424/98) resistant to expanded-spectrum cephalosporins and aztreonam was isolated from the urine of an inpatient at the Intensive Care Unit of the Varese Hospital (Northern Italy) after antimicrobial chemotherapy with cefazolin, vancomycin, and amikacin. Clavulanic acid restored the activity of expanded-spectrum cephalosporins, suggesting the production of an extended-spectrum beta-lactamase (ESbetaL). A crude extract of FL-424/98 showed the presence of two beta-lactamase activities focusing at pH 5.3 and 7.6, respectively. The ESbetaL activity, purified by means of three chromatographic steps, was found to correspond to the pI 5.3 enzyme. Determination of kinetic parameters confirmed that the enzyme efficiently hydrolyzed expanded-spectrum cephalosporins and aztreonam. A colony-blot hybridization revealed the presence of blaPER-related sequences in FL-424/98, and sequencing confirmed the identity of this determinant with blaPER-1, previously detected in Pseudomonas aeruginosa, Acinetobacter, and Salmonella clinical isolates from Turkey. Finding of blaPER-1 in a species that can be part of the resident human microbiota raises the possibility that it could be an efficient shuttle for spreading of this resistance gene among other opportunistic pathogens that are normally members of the resident microbiota. Kinetic parameters determined for the PER-1 enzyme with some cephalosporin substrates were somewhat different from those previously reported. PMID:10868812

  10. The characterisation of Bordetella/Alcaligenes-like organisms and their effects on turkey poults and chicks.

    PubMed

    Varley, J

    1986-01-01

    Eight isolates of the Bordetella or Alcaligenes-like organisms associated with turkey rhino-tracheitis were examined. Five of these isolates had been recovered from the United Kingdom and three were foreign isolates. Four of the UK isolates came from flocks with mild respiratory disease. The fifth isolate came from birds with no respiratory signs and this appears to be the first report of the recovery of Bordetella/Alcaligenes from apparently normal turkeys. The field isolates and type strains Alcaligenes faecalis NCTC 415 and Bordetella bronchiseptica NCTC 452 were characterised by biochemical tests, but these did not include any electrophoresis or nucleic acid studies. Cluster analysis using the group average method and the similarly coefficient of Sokal and Sneath indicated that all the strains were distinct from Alcaligenes faecalis but were quite closely related to Bordetella bronchiseptica. Each field isolate was used to infect separate groups of day-old turkey poults and chicks, and each group contained birds which were experimentally infected and others which were in-contact. Observations were made over a 32-day period. In turkey poults, some of the isolates induced severe respiratory disease and mortality, and others very little or none. The UK isolates were less pathogenic than the foreign isolates. It was not possible to correlate the pathogenicity of the isolates for turkey poults with their biochemical characteristics. Chicks infected with two of the eight isolates showed slight respiratory signs, but there was no significant mortality. PMID:18766500

  11. Development of a PCR-based method for monitoring the status of Alcaligenes species in the agricultural environment.

    PubMed

    Nakano, Miyo; Niwa, Masumi; Nishimura, Norihiro

    2014-01-01

    To analyze the status of the genus Alcaligenes in the agricultural environment, we developed a PCR method for detection of these species from vegetables and farming soil. The selected PCR primers amplified a 107-bp fragment of the 16S rRNA gene in a specific PCR assay with a detection limit of 1.06 pg of pure culture DNA, corresponding to DNA extracted from approximately 23 cells of Alcaligenes faecalis. Meanwhile, PCR primers generated a detectable amount of the amplicon from 2.2×10(2) CFU/ml cell suspensions from the soil. Analysis of vegetable phylloepiphytic and farming soil microbes showed that bacterial species belonging to the genus Alcaligenes were present in the range from 0.9×10(0) CFU per gram (or cm(2)) (Japanese radish: Raphanus sativus var. longipinnatus) to more than 1.1×10(4) CFU/g (broccoli flowers: Brassica oleracea var. italic), while 2.4×10(2) to 4.4×10(3) CFU/g were detected from all soil samples. These results indicated that Alcaligenes species are present in the phytosphere at levels 10-1000 times lower than those in soil. Our approach may be useful for tracking or quantifying species of the genus Alcaligenes in the agricultural environment. PMID:24670615

  12. Septic arthritis caused by a gram-negative bacterium representing a new species related to the Bordetella-Alcaligenes complex.

    PubMed

    Kronvall, G; Hanson, H S; von Stedingk, L V; Törnqvist, E; Falsen, E

    2000-03-01

    A knee-joint exudate culture yielded on two occasions a gram-negative bacterium. Regular methods for speciation did not provide an identification. The infection was successfully treated with ciprofloxacin. The unknown isolate, CCUG 36768, was subjected to further investigation, including 16S rDNA sequencing, protein profiling, cellular fatty acid analysis, and various biochemical tests, in order to produce a species identification. The 1469 bp-long 16S rDNA sequence did not reveal identity with any known species sequence. CCUG 36768 clustered in a group of species, including Alcaligenes defragrans, Denitrobacter permanens, Taylorella equigenitalis, Alcaligenes faecalis, and four strains of Alcaligenes species without a specific species name. Bordetella species also showed a high degree of similarity with CCUG 36768. Protein profiling, cellular fatty acid analysis and computer-assisted analysis of biochemical profiles indicated similarity with Bordetella-Alcaligenes species, often close to B. holmesii and B. avium. API 20 NE indicated the profile of Moraxella species of poor identity. It is concluded that CCUG 36768 represents a new bacterial species of pathogenic potential in humans. It is related to the Bordetella-Alcaligenes group. Powerful new methods for speciation are available and it is recommended that unknown isolates from normally sterile sites be submitted for further analysis. Several isolates are required for the definition of new species. PMID:10752687

  13. Differentiation of Alcaligenes-like bacteria of avian origin and comparison with Alcaligenes spp. reference strains.

    PubMed

    Berkhoff, H A; Riddle, G D

    1984-04-01

    Although standard biochemical tests used for the identification of Alcaligenes spp. revealed only minor differences, the oxidative low-peptone technique clearly differentiated between Alcaligenes-like bacteria of avian origin and Alcaligenes spp. reference strains. Based on their colonial morphology, biochemical profiles, and hemagglutination, the Alcaligenes-like bacteria of avian origin were further divided into two subgroups, C1-T1 and C2-T2. Colonies of subgroup C1-T1 were nondescript, round, raised, glistening, translucent, greyish, and about 2 mm in diameter. Colonies of subgroup C2-T2 were off-white, flat, dry and wrinkled, generally round, and resembled tiny lily pads. Biochemical profiles by the oxidative low-peptone method showed the C1-T1 subgroup alkalinizing only three substrates (citrate, acetate, and succinate), whereas the C2-T2 subgroup alkalinized eight substrates (citrate, acetate, butyrate, itaconate, malonate, saccharate, succinate, and M-tartrate). Subgroup C1-T1 agglutinated human, chicken, and turkey erythrocytes, whereas subgroup C2-T2 did not. The recognition of these two subgroups within the Alcaligenes-like bacteria of avian origin is important, since it may explain the differences seen in pathogenicity among isolates. PMID:6715517

  14. Degradation of indole by Alcaligenes spec.

    PubMed

    Claus, G; Kutzner, H J

    1983-01-01

    Alcaligenes spec. strain In 3 was isolated from an enrichment culture with indole inoculated with activated sludge. The organism was able to grow with indole as sole source of carbon and nitrogen. During growth with this substrate indigo and anthranilate accumulated in the culture broth. By measurement of the oxidation of intermediates (O(2)-uptake) and determination of the activity of enzymes responsible for ring cleavage the following pathway for indole degradation could be established: indole → indoxyl → isatin → anthranilate → gentisate → maleyl pyruvate → fumaryl pyruvate → fumarate + pyruvate. - Alcaligenes spec. strain In 3 was also able to grow with various aromatic compounds; these were degraded by ortho- or meta-cleavage or via the gentisinic acid pathway. PMID:23194589

  15. Denitrification by Alcaligenes eutrophus is plasmid dependent.

    PubMed Central

    Römermann, D; Friedrich, B

    1985-01-01

    Curing of the hydrogenase-specifying megaplasmid pHG indigenous to strains of the facultative lithoautotrophic bacterium Alcaligenes eutrophus was correlated with a loss of denitrifying ability (Nitd). The retransfer of plasmid pHG1 reconstituted the Nitd phenotype. Plasmid-free mutants were still capable of converting some nitrate to nitrite, but they did not metabolize nitrite under anaerobic conditions. PMID:3886640

  16. Phospholipids of Streptococcus faecalis

    PubMed Central

    Mota, J. M. dos Santos; Den Kamp, J. A. F. Op; Verheij, H. M.; Van Deenen, L. L. M.

    1970-01-01

    Autoradiograms of total lipid extracts from Streptococcus faecalis ATCC 9790, harvested in the stationary phase from a medium containing 32P-orthophosphate, showed six major spots. The corresponding compounds were identified as diphosphatidylglycerol (possibly with a penta acyl structure); phosphatidylglycerol; a provisionally identified mixture of alanylphosphatidylglycerol and of the 2′-lysyl-derivative of phosphatidylglycerol; the 3′-lysyl-derivative of phosphatidylglycerol, probably together with some arginylphosphatidylglycerol; a diglucosyl derivative of phosphatidylglycerol; and a compound which was tentatively identified as the 2′,3′-dilysyl derivative of phosphatidylglycerol. Images PMID:4321329

  17. Effect of Tween 80 on the production of curdlan by Alcaligenes faecalis ATCC 31749.

    PubMed

    Xia, Zhenqiang

    2013-10-15

    This study aims to investigate the effects of Tween 80 on curdlan production, cell growth, and glucosyltransferase activity. The addition of Tween 80 to the culture medium increased curdlan production. However, curdlan production did not increase further when excessive Tween 80 (>0.3% Tween 80) was added to the culture medium. The addition of Tween 80 to the culture medium did not affect cell growth. The glucosyltransferase activity involved in the curdlan synthesis increased with the increase of Tween 80 concentration. The glucosyltransferase activity did not increase further when excessive Tween 80 (>0.3% Tween 80) was added to the culture medium. Maximum curdlan was observed at day 5 and then levelled off. The biomass continued to increase until the end of the experimental period (6d). Maximum glucosyltransferase activity was also observed at day 5 and decreased thereafter. The results indicate that the enhanced curdlan production by Tween 80 is highly correlated with glucosyltransferase activity. PMID:23987333

  18. Genetic Diversity among Enterococcus faecalis

    PubMed Central

    McBride, Shonna M.; Fischetti, Vincent A.; LeBlanc, Donald J.; Moellering, Robert C.; Gilmore, Michael S.

    2007-01-01

    Enterococcus faecalis, a ubiquitous member of mammalian gastrointestinal flora, is a leading cause of nosocomial infections and a growing public health concern. The enterococci responsible for these infections are often resistant to multiple antibiotics and have become notorious for their ability to acquire and disseminate antibiotic resistances. In the current study, we examined genetic relationships among 106 strains of E. faecalis isolated over the past 100 years, including strains identified for their diversity and used historically for serotyping, strains that have been adapted for laboratory use, and isolates from previously described E. faecalis infection outbreaks. This collection also includes isolates first characterized as having novel plasmids, virulence traits, antibiotic resistances, and pathogenicity island (PAI) components. We evaluated variation in factors contributing to pathogenicity, including toxin production, antibiotic resistance, polymorphism in the capsule (cps) operon, pathogenicity island (PAI) gene content, and other accessory factors. This information was correlated with multi-locus sequence typing (MLST) data, which was used to define genetic lineages. Our findings show that virulence and antibiotic resistance traits can be found within many diverse lineages of E. faecalis. However, lineages have emerged that have caused infection outbreaks globally, in which several new antibiotic resistances have entered the species, and in which virulence traits have converged. Comparing genomic hybridization profiles, using a microarray, of strains identified by MLST as spanning the diversity of the species, allowed us to identify the core E. faecalis genome as consisting of an estimated 2057 unique genes. PMID:17611618

  19. Bile acid transformations by Alcaligenes recti.

    PubMed

    Mazumder, I; Mahato, S B

    1993-02-01

    Metabolism of cholic acid, chenodeoxycholic acid, ursodeoxycholic acid, and deoxycholic acid by the grown cells of the bacterium Alcaligenes recti suspended in water was studied. Each isolated metabolite was characterized by the application of various spectroscopic methods. Cholic acid, chenodeoxycholic acid, ursodeoxycholic acid, and deoxycholic acid yielded methylated derivatives 3 alpha-methoxy-7 alpha, 12 alpha-dihydroxy-5 beta-cholanoic acid, 3 alpha-methoxy-7 alpha-hydroxy-5 beta-cholanoic acid, 3 alpha-methoxy-7 beta-hydroxy-5 beta-cholanoic acid, and 3 alpha-methoxy-12 alpha-hydroxy-5 beta-cholanoic acid, respectively. In addition, cholic acid furnished 7 alpha, 12 alpha-dihydroxy-3-oxochol-4-en-24-oic acid; chenodeoxycholic acid gave 7 alpha-hydroxy-3-oxo-5 beta-cholanoic acid and 7 alpha-hydroxy-3-oxochol-4-en-24-oic acid while ursodeoxycholic acid yielded 7 beta-hydroxy-3-oxochol-4-en-24-oic acid and 3-oxochola-4,6-dien-24-oic acid. The formation of various metabolites showed that two competitive enzymic reactions, i.e., selective methylation of the 3 alpha-hydroxy group and dehydrogenation in the A/B rings, were operative. The methylation process was found to be enzymic involving an S-adenosyl-L-methionine (AdoMet)-dependent methyl transferase, and this reaction appeared to be inhibitory to the process of degradation of the ring system. In the other reaction sequence, degradation of the ring system was initiated by dehydrogenation of the 3 alpha-hydroxy group. A 7 beta-dehydratase activity producing the delta 6 double bond was also noticeable in the metabolism of ursodeoxycholic acid. PMID:8484188

  20. POSSIBLE USE OF 'ALCALIGENES PARADOXUS' AS A BIOLOGICAL MONITOR

    EPA Science Inventory

    A tritium (3H2)-oxidizing soil isolate was identified as Alcaligenes paradoxus, a gram-negative, rod-shaped bacterium. This organism belongs to a group of facultative autotrophs referred to as the 'hydrogen bacteria' due to their unique ability to utilize hydrogen as a sole sourc...

  1. Targeting Enterococcus faecalis biofilms with phage therapy.

    PubMed

    Khalifa, Leron; Brosh, Yair; Gelman, Daniel; Coppenhagen-Glazer, Shunit; Beyth, Shaul; Poradosu-Cohen, Ronit; Que, Yok-Ai; Beyth, Nurit; Hazan, Ronen

    2015-04-01

    Phage therapy has been proven to be more effective, in some cases, than conventional antibiotics, especially regarding multidrug-resistant biofilm infections. The objective here was to isolate an anti-Enterococcus faecalis bacteriophage and to evaluate its efficacy against planktonic and biofilm cultures. E. faecalis is an important pathogen found in many infections, including endocarditis and persistent infections associated with root canal treatment failure. The difficulty in E. faecalis treatment has been attributed to the lack of anti-infective strategies to eradicate its biofilm and to the frequent emergence of multidrug-resistant strains. To this end, an anti-E. faecalis and E. faecium phage, termed EFDG1, was isolated from sewage effluents. The phage was visualized by electron microscopy. EFDG1 coding sequences and phylogeny were determined by whole genome sequencing (GenBank accession number KP339049), revealing it belongs to the Spounavirinae subfamily of the Myoviridae phages, which includes promising candidates for therapy against Gram-positive pathogens. This analysis also showed that the EFDG1 genome does not contain apparent harmful genes. EFDG1 antibacterial efficacy was evaluated in vitro against planktonic and biofilm cultures, showing effective lytic activity against various E. faecalis and E. faecium isolates, regardless of their antibiotic resistance profile. In addition, EFDG1 efficiently prevented ex vivo E. faecalis root canal infection. These findings suggest that phage therapy using EFDG1 might be efficacious to prevent E. faecalis infection after root canal treatment. PMID:25662974

  2. Targeting Enterococcus faecalis Biofilms with Phage Therapy

    PubMed Central

    Khalifa, Leron; Brosh, Yair; Gelman, Daniel; Coppenhagen-Glazer, Shunit; Beyth, Shaul; Poradosu-Cohen, Ronit; Que, Yok-Ai; Beyth, Nurit

    2015-01-01

    Phage therapy has been proven to be more effective, in some cases, than conventional antibiotics, especially regarding multidrug-resistant biofilm infections. The objective here was to isolate an anti-Enterococcus faecalis bacteriophage and to evaluate its efficacy against planktonic and biofilm cultures. E. faecalis is an important pathogen found in many infections, including endocarditis and persistent infections associated with root canal treatment failure. The difficulty in E. faecalis treatment has been attributed to the lack of anti-infective strategies to eradicate its biofilm and to the frequent emergence of multidrug-resistant strains. To this end, an anti-E. faecalis and E. faecium phage, termed EFDG1, was isolated from sewage effluents. The phage was visualized by electron microscopy. EFDG1 coding sequences and phylogeny were determined by whole genome sequencing (GenBank accession number KP339049), revealing it belongs to the Spounavirinae subfamily of the Myoviridae phages, which includes promising candidates for therapy against Gram-positive pathogens. This analysis also showed that the EFDG1 genome does not contain apparent harmful genes. EFDG1 antibacterial efficacy was evaluated in vitro against planktonic and biofilm cultures, showing effective lytic activity against various E. faecalis and E. faecium isolates, regardless of their antibiotic resistance profile. In addition, EFDG1 efficiently prevented ex vivo E. faecalis root canal infection. These findings suggest that phage therapy using EFDG1 might be efficacious to prevent E. faecalis infection after root canal treatment. PMID:25662974

  3. Biodegradation and detoxification of melanoidin from distillery effluent using an aerobic bacterial strain SAG5 of Alcaligenes faecalis.

    PubMed

    Santal, Anita Rani; Singh, N P; Saharan, Baljeet Singh

    2011-10-15

    Distillery effluent retains very dark brown color even after anaerobic treatment due to presence of various water soluble, recalcitrant and coloring compounds mainly melanoidins. In laboratory conditions, melanoidin decolorizing bacteria was isolated and optimized the cultural conditions at various incubation temperatures, pH, carbon sources, nitrogen sources and combined effect of both carbon and nitrogen sources. The optimum decolorization (72.6 ± 0.56%) of melanoidins was achieved at pH 7.5 and temperature 37 °C on 5th day of cultivation. The toxicity evaluation with mung bean (Vigna radiata) revealed that the raw distillery effluent was environmentally highly toxic as compared to biologically treated distillery effluent, which indicated that the effluent after bacterial treatment is environmentally safe. This proves to be novel biological treatment technique for biodegradation and detoxification of melanoidin from distillery effluent using the bacterial strain SAG(5). PMID:21880418

  4. Recombination-deficient mutant of Streptococcus faecalis

    SciTech Connect

    Yagi, Y.; Clewell, D.B.

    1980-08-01

    An ultraviolet radiation-sensitive derivative of Streptococcus faecalis strain JH2-2 was isolated and found to be deficient in recombination, using a plasmid-plasmid recombination system. The strain was sensitive to chemical agents which interact with deoxyribonucleic acid and also underwent deoxyribonucleic acid degradation after ultraviolet irradiation. Thus, the mutant has properties similar to those of recA strains of Escherichia coli.

  5. Biochemical and genetic analyses of acetoin catabolism in Alcaligenes eutrophus.

    PubMed Central

    Fründ, C; Priefert, H; Steinbüchel, A; Schlegel, H G

    1989-01-01

    In genetic studies on the catabolism of acetoin in Alcaligenes eutrophus, we used Tn5::mob-induced mutants which were impaired in the utilization of acetoin as the sole carbon source for growth. The transposon-harboring EcoRI restriction fragments from 17 acetoin-negative and slow-growing mutants (class 2a) and from six pleiotropic mutants of A. eutorphus, which were acetoin-negative and did not grow chemolithoautotrophically (class 2b), were cloned from pHC79 gene banks. The insertions of Tn5 were mapped on four different chromosomal EcoRI restriction fragments (A, C, D, and E) in class 2a mutants. The native DNA fragments were cloned from a lambda L47 or from a cosmid gene bank. Evidence is provided that fragments A (21 kilobase pairs [kb]) and C (7.7 kb) are closely linked in the genome; the insertions of Tn5 covered a region of approximately 5 kb. Physiological experiments revealed that this region encodes for acetoin:dichlorophenol-indophenol oxidoreductase, a fast-migrating protein, and probably for one additional protein that is as yet unknown. In mutants which were not completely impaired in growth on acetoin but which grew much slower and after a prolonged lag phase, fragments D (7.2 kb) and E (8.1 kb) were inactivated by insertion of Tn5::mob. No structural gene could be assigned to the D or E fragments. In class 2b mutants, insertions of Tn5 were mapped on fragment B (11.3 kb). This fragment complemented pleiotropic hno mutants in trans; these mutants were impaired in the formation of a rpoN-like protein. The expression of the gene cluster on fragments A and C seemed to be rpoN dependent. PMID:2556366

  6. Degradation of dexamethasone by acclimated strain of Pseudomonas Alcaligenes

    PubMed Central

    Zhu, Lili; Yang, Zhibang; Yang, Qian; Tu, Zeng; Ma, Lianju; Shi, Zhongquan; Li, Xiaoyu

    2015-01-01

    This study is to investigate the use of microbial remediation technology for degradation of dexamethasone in polluted water. A strain of Pseudomonas Alcaligenes with the ability of dexamethasone degradation was isolated from hospital polluted water. This strain was further acclimated into a bacterial strain that could highly degrade dexamethasone. Domesticated bacterial proteins were separated by osmotic shock method and were analyzed using SDS-PAGE. Enzyme activity of dexamethasone degradation was detected by high performance liquid chromatography. Protein bands with different molecular weight were found in all regions of the bacteria and a band with molecular weight of about 100 kDa was most obvious. In intracellular and periplasmic liquid, there was a band with molecular weight of about 41 kDa. Enzyme activity mainly existed in intracellular liquid. The 41 kDa protease was purified using ammonium sulfate precipitation, DEAE-52 ion exchange column and Sephadex G-100 column. Dexamethasone and dexamethasone sodium phosphate degrading rates of the purified enzyme were 36% and 95%, respectively. The 100 kDa protein had a 19% coverage rate to TonB receptor dependent protein, with 11 peptides matching. The 41 kDa protein had a 56% coverage rate to isovaleryl coenzyme A dehydrogenase, with 5 peptides matching. The 41 kDa protein had good degradation between the temperature of 25-40°C and PH value of 6.5-8.5. The enzyme kinetics equation was Ct = C0 e-0.1769t, in accordance with the first-order kinetic equation. This study laid the foundation for further preparation of bioremediation agents for clearance of dexamethasone pollution in water. PMID:26379892

  7. Metabolism of Cyclohexane Carboxylic Acid by Alcaligenes Strain W1

    PubMed Central

    Taylor, David G.; Trudgill, Peter W.

    1978-01-01

    Thirty-three microorganisms capable of growth with cyclohexane carboxylate as the sole source of carbon were isolated from mud, water, and soil samples from the Aberystwyth area. Preliminary screening and whole-cell oxidation studies suggested that, with one exception, all of the strains metabolized the growth substrate by beta-oxidation of the coenzyme A ester. This single distinctive strain, able to oxidize rapidly trans-4-hydroxycyclohexane carboxylate, 4-ketocyclohexane carboxylate, p-hydroxybenzoate, and protocatechuate when grown with cyclohexane carboxylate, was classified as a strain of Alcaligenes and given the number W1. Enzymes capable of converting cyclohexane carboxylate to p-hydroxybenzoate were induced by growth with the alicyclic acid and included the first unambiguous specimen of a cyclohexane carboxylate hydroxylase. Because it is a very fragile protein, attempts to stabilize the cyclohexane carboxylate hydroxylase so that a purification procedure could be developed have consistently failed. In limited studies with crude cell extracts, we found that hydroxylation occurred at the 4 position, probably yielding the trans isomer of 4-hydroxycyclohexane carboxylate. Simultaneous measurement of oxygen consumption and reduced nicotinamide adenine dinucleotide oxidation, coupled with an assessment of reactant stoichiometry, showed the enzyme to be a mixed-function oxygenase. Mass spectral analysis enabled the conversion of cyclohexane carboxylate to p-hydroxybenzoate by cell extracts to be established unequivocally, and all of our data were consistent with the pathway: cyclohexane carboxylate → trans-4-hydroxycyclohexane carboxylate → 4-ketocyclohexane carboxylate → p-hydroxybenzoate. The further metabolism of p-hydroxybenzoate proceeded by meta fission and by the oxidative branch of the 2-hydroxy-4-carboxymuconic semialde-hyde-cleaving pathway. PMID:207665

  8. Beta-lactamase-free penicillin amidase from Alcaligenes sp.: isolation strategy, strain characteristics, and enzyme immobilization.

    PubMed

    Pal, A; Samanta, T B

    1999-11-01

    Isolation and characterization of a beta-lactamase (EC 3.5.2.6)-free, penicillin amidase (penicillin amidohydrolase, EC 3.5.1. 11)-producing organism is reported. The test strain was isolated by an enrichment technique with a substrate other than penicillins. The isolated strain belongs to the genus Alcaligenes. Phenylacetic acid was found to be the inducer of penicillin amidase. The amidase has a broad substrate spectrum. It is very active against penicillin G and semisynthetic cephalosporins, whereas penicillin V and semisynthetic penicillins acted moderately as a substrate. Immobilized cells of Alcaligenes sp. were shown to act as a reversible enzyme. PMID:10489431

  9. Divergent evolution of the M3A family of metallopeptidases in plants.

    PubMed

    Kmiec, Beata; Teixeira, Pedro F; Murcha, Monika W; Glaser, Elzbieta

    2016-07-01

    Plants, as stationary organisms, have developed mechanisms allowing them efficient resource reallocation and a response to changing environmental conditions. One of these mechanisms is proteome remodeling via a broad peptidase network present in various cellular compartments including mitochondria and chloroplasts. The genome of the model plant Arabidopsis thaliana encodes as many as 616 putative peptidase-coding genes organized in 55 peptidase families. In this study, we describe the M3A family of peptidases, which comprises four members: mitochondrial and chloroplastic oligopeptidase (OOP), cytosolic oligopeptidase (CyOP), mitochondrial octapeptidyl aminopeptidase 1 (Oct1) and plant-specific protein of M3 family (PSPM3) of unknown function. We have analyzed the evolutionary conservation of M3A peptidases across plant species and the functional specialization of the three distinct subfamilies. We found that the subfamily-containing OOP and CyOP-like peptidases, responsible for oligopeptide degradation in the endosymbiotic organelles (OOP) or in the cytosol (CyOP), are highly conserved in all kingdoms of life. The Oct1-like peptidase subfamily involved in pre-protein maturation in mitochondria is conserved in all eukaryotes, whereas the PSPM3-like protein subfamily is strictly conserved in higher plants only and is of unknown function. Specific characteristics within PSPM3 sequences, i.e. occurrence of a N-terminal transmembrane domain and amino acid changes in distal substrate-binding motif, distinguish PSPM3 proteins from other members of M3A family. We performed peptidase activity measurements to analyze the role of substrate-binding residues in the different Arabidopsis M3A paralogs. PMID:27100569

  10. The stress proteome of Enterococcus faecalis.

    PubMed

    Giard, J C; Laplace, J M; Rincé, A; Pichereau, V; Benachour, A; Leboeuf, C; Flahaut, S; Auffray, Y; Hartke, A

    2001-08-01

    Enterococcus faecalis is a resident bacterium of the intestinal tract of humans and animals. This bacterium can be responsible for serious diseases and is one of the largest causes of hospital-based infections. This hardy organism resists many kinds of stresses and is used as a major indicator of the hygienic quality of food, milk, and drinking water. On the other side, enterococci seem to have beneficial role in the development of cheese aroma and are added in certain starter cultures. Since ten years, our laboratory has used the two-dimensional electrophoresis (2-DE) technique to study the response of E. faecalis to physical or chemical stresses as well as to glucose and total starvation. Twenty-seven protein spots on 2-D gels have been identified by N-terminal sequencing or Western blotting which make up the first proteome database of this species. The proteins were classified in four different groups according to their function and their regulation. The first group comprises well-characterized proteins with known protective functions towards stresses. The second group contains enzymes of catabolic pathways. Their implication in stress resistance seems not obvious. A third group are proteins induced in glucose-starved cells belonging to the CcpA regulon. Induction of these enzymes under starvation may serve to increase the scavenging capacity of the cells for nutrients or may be important to mobilize endogenous energetic reserves. Lastly, nine N-terminal amino acid sequences or open reading frames (ORF) showed no homologies with sequences in databases. A comprehensive description of stress proteins of E. faecalis and analysis of their patterns of expression under different environmental conditions would greatly increase our understanding of the molecular mechanisms underlying the extraordinary capacity of this bacterium to survive under hostile conditions. PMID:11565789

  11. Antigenic determinants of the membrane-bound hydrogenase in Alcaligenes eutrophus are exposed toward the periplasm.

    PubMed Central

    Eismann, K; Mlejnek, K; Zipprich, D; Hoppert, M; Gerberding, H; Mayer, F

    1995-01-01

    Electron microscopic immunogold labeling experiments were performed with ultrathin sections of plasmolyzed cells of Alcaligenes eutrophus and "whole-mount" samples of spheroplasts and protoplasts. They demonstrated that antigenic determinants of the membrane-bound hydrogenase are exposed, at the outside of the cytoplasmic membrane, to the periplasm. PMID:7592402

  12. Isolation and characterization of the pesticide-degrading plasmid pJP1 from Alcaligenes paradoxus.

    PubMed Central

    Fisher, P R; Appleton, J; Pemberton, J M

    1978-01-01

    A strain of Alcaligenes paradoxus, unable to degrade phenoxyacetic acid, was shown to degrade two synthetic derivatives of this molecule, the herbicides 2,4-dichlorophenoxyacetic acid and 2-methyl-4-chlorophenoxyacetic acid. The ability to degrade these pesticides is encoded by a 58-megadalton conjugal plasmid, pJP1. PMID:690076

  13. Plasmid mediated enhancement of uv resistance in Streptococcus faecalis

    SciTech Connect

    Miehl, R.; Miller, M.; Yasbin, R.E.

    1980-01-01

    A 38.5-Mdal plasmid of Streptococcus faecalis subdp. zymogenes has been shown to enhance survival following uv irradiation. In addition, the presence of this plasmid increases the mutation frequencies following uv irradiation and enhanced W-reactivation. The data presented indicate that S. faecalis has an inducible error-prone repair system and that the plasmid enhances these repair functions.

  14. Transcriptome analysis of Enterococcus faecalis in response to alkaline stress

    PubMed Central

    Ran, Shujun; Liu, Bin; Jiang, Wei; Sun, Zhe; Liang, Jingping

    2015-01-01

    Enterococcus faecalis is the most commonly isolated species from endodontic failure root canals; its persistence in treated root canals has been attributed to its ability to resist high pH stress. The goal of this study was to characterize the E. faecalis transcriptome and to identify candidate genes for response and resistance to alkaline stress using Illumina HiSeq 2000 sequencing. We found that E. faecalis could survive and form biofilms in a pH 10 environment and that alkaline stress had a great impact on the transcription of many genes in the E. faecalis genome. The transcriptome sequencing results revealed that 613 genes were differentially expressed (DEGs) for E. faecalis grown in pH 10 medium; 211 genes were found to be differentially up-regulated and 402 genes differentially down-regulated. Many of the down-regulated genes found are involved in cell energy production and metabolism and carbohydrate and amino acid metabolism, and the up-regulated genes are mostly related to nucleotide transport and metabolism. The results presented here reveal that cultivation of E. faecalis in alkaline stress has a profound impact on its transcriptome. The observed regulation of genes and pathways revealed that E. faecalis reduced its carbohydrate and amino acid metabolism and increased nucleotide synthesis to adapt and grow in alkaline stress. A number of the regulated genes may be useful candidates for the development of new therapeutic approaches for the treatment of E. faecalis infections. PMID:26300863

  15. Comparative genomics of Enterococcus faecalis from healthy Norwegian infants

    PubMed Central

    Solheim, Margrete; Aakra, Ågot; Snipen, Lars G; Brede, Dag A; Nes, Ingolf F

    2009-01-01

    Background Enterococcus faecalis, traditionally considered a harmless commensal of the intestinal tract, is now ranked among the leading causes of nosocomial infections. In an attempt to gain insight into the genetic make-up of commensal E. faecalis, we have studied genomic variation in a collection of community-derived E. faecalis isolated from the feces of Norwegian infants. Results The E. faecalis isolates were first sequence typed by multilocus sequence typing (MLST) and characterized with respect to antibiotic resistance and properties associated with virulence. A subset of the isolates was compared to the vancomycin resistant strain E. faecalis V583 (V583) by whole genome microarray comparison (comparative genomic hybridization (CGH)). Several of the putative enterococcal virulence factors were found to be highly prevalent among the commensal baby isolates. The genomic variation as observed by CGH was less between isolates displaying the same MLST sequence type than between isolates belonging to different evolutionary lineages. Conclusion The variations in gene content observed among the investigated commensal E. faecalis is comparable to the genetic variation previously reported among strains of various origins thought to be representative of the major E. faecalis lineages. Previous MLST analysis of E. faecalis have identified so-called high-risk enterococcal clonal complexes (HiRECC), defined as genetically distinct subpopulations, epidemiologically associated with enterococcal infections. The observed correlation between CGH and MLST presented here, may offer a method for the identification of lineage-specific genes, and may therefore add clues on how to distinguish pathogenic from commensal E. faecalis. In this work, information on the core genome of E. faecalis is also substantially extended. PMID:19393078

  16. Identification of Enterococcus faecalis antigens specifically expressed in vivo

    PubMed Central

    Shet, Uttom K.; Park, Sang-Won; Lim, Hyun-Pil; Yun, Kwi-Dug; Kang, Seong Soo; Kim, Se Eun

    2015-01-01

    Objectives Molecular mechanism of the pathogenicity of Enterococcus faecalis (E. faecalis), a suspected endodontic pathogen, has not yet been adequately elucidated due to limited information on its virulence factors. Here we report the identification of in vivo expressed antigens of E. faecalis by using a novel immunoscreening technique called change-mediated antigen technology (CMAT) and an experimental animal model of endodontic infection. Materials and Methods Among 4,500 E. coli recombinant clones screened, 19 positive clones reacted reproducibly with hyperimmune sera obtained from rabbits immunized with E. faecalis cells isolated from an experimental endodontic infection. DNA sequences from 16 of these in vivo-induced (IVI) genes were determined. Results Identified protein antigens of E. faecalis included enzymes involved in housekeeping functions, copper resistance protein, putative outer membrane proteins, and proteins of unknown function. Conclusions In vivo expressed antigens of E. faecalis could be identified by using a novel immune-screening technique CMAT and an experimental animal model of endodontic infection. Detailed analysis of these IVI genes will lead to a better understanding of the molecular mechanisms involved in the endodontic infection of E. faecalis. PMID:26587417

  17. Lipase Expression in Pseudomonas alcaligenes Is Under the Control of a Two-Component Regulatory System▿

    PubMed Central

    Krzeslak, Joanna; Gerritse, Gijs; van Merkerk, Ronald; Cool, Robbert H.; Quax, Wim J.

    2008-01-01

    Preliminary observations in a large-scale fermentation process suggested that the lipase expression of Pseudomonas alcaligenes can be switched on by the addition of certain medium components, such as soybean oil. In an attempt to elucidate the mechanism of induction of lipase expression, we have set up a search method for genes controlling lipase expression by use of a cosmid library containing fragments of P. alcaligenes genomic DNA. A screen for lipase hyperproduction resulted in the selection of multiple transformants, of which the best-producing strains comprised cosmids that shared an overlapping genomic fragment. Within this fragment, two previously unidentified genes were found and named lipQ and lipR. Their encoded proteins belong to the NtrBC family of regulators that regulate gene expression via binding to a specific upstream activator sequence (UAS). Such an NtrC-like UAS was identified in a previous study in the P. alcaligenes lipase promoter, strongly suggesting that LipR acts as a positive regulator of lipase expression. The regulating role could be confirmed by down-regulated lipase expression in a strain with an inactivated lipR gene and a threefold increase in lipase yield in a large-scale fermentation when expressing the lipQR operon from the multicopy plasmid pLAFR3. Finally, cell extracts of a LipR-overexpressing strain caused a retardation of the lipase promoter fragment in a band shift assay. Our results indicate that lipase expression in Pseudomonas alcaligenes is under the control of the LipQR two-component system. PMID:18192420

  18. Arsenic Methylation and Volatilization by Arsenite S-Adenosylmethionine Methyltransferase in Pseudomonas alcaligenes NBRC14159

    PubMed Central

    Zhang, Jun; Cao, Tingting; Tang, Zhu; Shen, Qirong; Rosen, Barry P.

    2015-01-01

    Inorganic arsenic (As) is highly toxic and ubiquitous in the environment. Inorganic As can be transformed by microbial methylation, which constitutes an important part of the As biogeochemical cycle. In this study, we investigated As biotransformation by Pseudomonas alcaligenes NBRC14159. P. alcaligenes was able to methylate arsenite [As(III)] rapidly to dimethylarsenate and small amounts of trimethylarsenic oxide. An arsenite S-adenosylmethionine methyltransferase, PaArsM, was identified and functionally characterized. PaArsM shares low similarities with other reported ArsM enzymes (<55%). When P. alcaligenes arsM gene (PaarsM) was disrupted, the mutant lost As methylation ability and became more sensitive to As(III). PaarsM was expressed in the absence of As(III) and the expression was further enhanced by As(III) exposure. Heterologous expression of PaarsM in an As-hypersensitive strain of Escherichia coli conferred As(III) resistance. Purified PaArsM protein methylated As(III) to dimethylarsenate as the main product in the medium and also produced dimethylarsine and trimethylarsine gases. We propose that PaArsM plays a role in As methylation and detoxification of As(III) and could be exploited in bioremediation of As-contaminated environments. PMID:25681184

  19. Production, purification, and characterization of D-aminoacylase from Alcaligenes xylosoxydans subsp. xylosoxydans A-6.

    PubMed

    Moriguchi, M; Sakai, K; Miyamoto, Y; Wakayama, M

    1993-07-01

    The best inducers for D-aminoacylase from Alcaligenes xylosoxydans subsp. xylosoxydans A-6 (Alcaligenes A-6) were a poor substrate, N-acetyl-gamma-methyl-D-leucine, and an inhibitor, N-acetyl-D-alloisoleucine. The enzyme has been homogeneously purified. The molecular weight of the native enzyme was estimated to be 58,000 by gel filtration. A subunit molecular weight of 52,000 was measured by SDS-PAGE, indicating that the native protein is a monomer. The isoelectric point was 5.2. The enzyme was specific to the D-isomer and hydrolyzed N-acetyl derivatives of D-leucine, D-phenylalanine, D-norleucine, D-methionine, and D-valine, and also N-formyl, N-butyryl, and N-propionyl derivatives of D-leucine. The Km for N-acetyl-D-leucine was 9.8 mM. The optimum pH and temperature were 7.0 and 50 degrees C, respectively. The stabilities of pH and temperature were 8.1 and 40 degrees C. D-Aminoacylases from three species of the genus Alcaligenes differ in inducer and substrate specificities, but are similar with respect to molecular weight and N-terminal amino acid sequence. PMID:7763986

  20. Isolation of Indole Utilizing Bacteria Arthrobacter sp. and Alcaligenes sp. From Livestock Waste.

    PubMed

    Kim, Minsu; Lee, Jin-Hyung; Kim, Eonmi; Choi, Hyukjae; Kim, Younghoon; Lee, Jintae

    2016-06-01

    Indole is an interspecies and interkingdom signaling molecule widespread in different environmental compartment. Although multifaceted roles of indole in different biological systems have been established, little information is available on the microbial utilization of indole in the context of combating odor emissions from different types of waste. The present study was aimed at identifying novel bacteria capable of utilizing indole as the sole carbon and energy source. From the selective enrichment of swine waste and cattle feces, we identified Gram-positive and Gram-negative bacteria belonging to the genera Arthrobacter and Alcaligenes. Bacteria belonging to the genus Alcaligenes showed higher rates of indole utilization than Arthrobacter. Indole at 1.0 mM for growth was completely utilized by Alcaligenes sp. in 16 h. Both strains produced two intermediates, anthranilic acid and isatin, during aerobic indole metabolism. These isolates were also able to grow on several indole derivatives. Interestingly, an adaptive response in terms of a decrease in cell size was observed in both strains in the presence of indole. The present study will help to explain the degradation of indole by different bacteria and also the pathways through which it is catabolized. Furthermore, these novel bacterial isolates could be potentially useful for the in situ attenuation of odorant indole and its derivatives emitted from different types of livestock waste. PMID:27570307

  1. Combined nickel-cobalt-cadmium resistance encoded by the ncc locus of Alcaligenes xylosoxidans 31A.

    PubMed Central

    Schmidt, T; Schlegel, H G

    1994-01-01

    The nickel-cobalt-cadmium resistance genes carried by plasmid pTOM9 of Alcaligenes xylosoxidans 31A are located on a 14.5-kb BamHI fragment. By random Tn5 insertion mutagenesis, the fragment was shown to contain two distinct nickel resistance loci, ncc and nre. The ncc locus causes a high-level combined nickel, cobalt, and cadmium resistance in strain AE104, which is a cured derivative of the metal-resistant bacterium Alcaligenes eutrophus CH34. ncc is not expressed in Escherichia coli. The nre locus causes low-level nickel resistance in both Alcaligenes and E. coli strains. The nucleotide sequence of the ncc locus revealed seven open reading frames designated nccYXHCBAN. The corresponding predicted proteins share strong similarities with proteins encoded by the metal resistance loci cnr (cnrYXHCBA) and czc (czcRCBAD) of A. eutrophus CH34. When different DNA fragments carrying ncc genes were heterologously expressed under the control of the bacteriophage T7 promoter, five protein bands representing NccA (116 kDa), NccB (40 kDa), NccC (46 kDa), NccN (23.5 kDa), and NccX (16.5 kDa) were detected. Images PMID:7961470

  2. Endocarditis and biofilm-associated pili of Enterococcus faecalis

    PubMed Central

    Nallapareddy, Sreedhar R.; Singh, Kavindra V.; Sillanpää, Jouko; Garsin, Danielle A.; Höök, Magnus; Erlandsen, Stanley L.; Murray, Barbara E.

    2006-01-01

    Increasing multidrug resistance in Enterococcus faecalis, a nosocomial opportunist and common cause of bacterial endocarditis, emphasizes the need for alternative therapeutic approaches such as immunotherapy or immunoprophylaxis. In an earlier study, we demonstrated the presence of antibodies in E. faecalis endocarditis patient sera to recombinant forms of 9 E. faecalis cell wall–anchored proteins; of these, we have now characterized an in vivo–expressed locus of 3 genes and an associated sortase gene (encoding sortase C; SrtC). Here, using mutation analyses and complementation, we demonstrated that both the ebp (encoding endocarditis and biofilm-associated pili) operon and srtC are important for biofilm production of E. faecalis strain OG1RF. In addition, immunogold electron microscopy using antisera against EbpA–EbpC proteins as well as patient serum demonstrated that E. faecalis produces pleomorphic surface pili. Assembly of pili and their cell wall attachment appeared to occur via a mechanism of cross-linking of the Ebp proteins by the designated SrtC. Importantly, a nonpiliated, allelic replacement mutant was significantly attenuated in an endocarditis model. These biologically important surface pili, which are antigenic in humans during endocarditis and encoded by a ubiquitous E. faecalis operon, may be a useful immunotarget for studies aimed at prevention and/or treatment of this pathogen. PMID:17016560

  3. The effect of berberine hydrochloride on Enterococcus faecalis biofilm formation and dispersion in vitro.

    PubMed

    Chen, Lihua; Bu, Qianqian; Xu, Huan; Liu, Yuan; She, Pengfei; Tan, Ruichen; Wu, Yong

    2016-01-01

    Enterococcus faecalis (E. faecalis) is one of the major causes of biofilm infections. Berberine hydrochloride (BBH) has diverse pharmacological effects; however, the effects and mechanisms of BBH on E. faecalis biofilm formation and dispersion have not been reported. In this study, 99 clinical isolates from the urine samples of patients with urinary tract infections (UTIs) were collected and identified. Ten strains of E. faecalis with biofilm formation ability were studied. BBH inhibited E. faecalis biofilm formation and promoted the biofilm dispersion of E. faecalis. In addition, sortase A and esp expression levels were elevated during early E. faecalis biofilm development, whereas BBH significantly reduced their expression levels. The results of this study indicated that BBH effectively prevents biofilm formation and promotes biofilm dispersion in E. faecalis, most likely by inhibiting the expressions of sortase A and esp. PMID:27242142

  4. Growth kinetics of Pseudomonas alcaligenes C-0 relative to inoculation and 3-chlorobenzoate metabolism in soil.

    PubMed

    Focht, D D; Shelton, D

    1987-08-01

    Pseudomonas alcaligenes C-0 was isolated from activated sewage sludge by enrichment with 3-chlorobenzoate (3CB) as the sole carbon source. The carbon balance from [14C]3CB in pure culture could be accounted for in substrate, biomass, and CO2 from all sampling periods and inoculum densities (0.012, 0.092, 0.20, and 0.92 micrograms of dry cells X ml-1), and inorganic chloride was produced stoichiometrically. Monod parameters as determined in culture were compared with the kinetics of 3CB metabolism in soil with decreasing inoculum densities (1.9 X 10(-1), 1.9 X 10(-3), and 1.9 X 10(-5) micrograms of cells X g-1). 3CB was refractile to attack in soil by indigenous microflora, but it was completely metabolized upon inoculation with P. alcaligenes C-0. The saturation constant KS was much higher in soil than in culture, but the yield coefficient Y and the growth rate constant were the same in both systems: mu max = 0.32 h-1; Y = 34 micrograms cells X mumol-1; KS = 0.18 mM in culture and 6.0 mM in soil solution (1.1 mumol X g-1 of soil). The parameter estimates obtained from the highest inoculum density could be used for the lower inoculum densities with reasonable agreement between predicted and observed 3CB concentrations in soil, although the residual sum of squares was progressively higher. Since the growth rate of P. alcaligenes C-0 in soil was comparable to its growth rate in culture, inoculation should be a viable strategy for biodegradation of 3CB in soil if indigenous microflora are unable to exploit this metabolic niche. PMID:3662518

  5. Physiology and molecular genetics of poly(beta-hydroxy-alkanoic acid) synthesis in Alcaligenes eutrophus.

    PubMed

    Steinbüchel, A; Schlegel, H G

    1991-03-01

    The Alcaligenes eutrophus genes for beta-ketothiolase, NADPH-dependent acetoacetyl-CoA reductase and poly(beta-hydroxybutyric acid) synthase (PHB synthase) which comprise the three-step PHB-biosynthetic pathway, were cloned. Molecular studies revealed that these genes are organized in a single operon. The A. eutrophus PHB-biosynthetic genes are readily expressed in other bacteria, and DNA fragments harbouring the operon can be used as a cartridge to confer to other bacteria the ability to synthesize PHB from acetyl-CoA. The biochemical and physiological capabilities of A. eutrophus for the synthesis of a wide variety of polyhydroxyalkanoates are discussed. PMID:2046547

  6. Proton translocation during denitrification by a nitrifying--denitrifying Alcaligenes sp.

    PubMed

    Castignetti, D; Hollocher, T C

    1983-04-01

    A heterotrophic nitrifying Alcaligenes sp. from soil was grown as a denitrifier on nitrate and subjected to oxidant pulse experiments to ascertain the apparent efficiencies of proton translocations during O2 and nitrogen-oxide respirations. With endogenous substrate as the reducing agent the leads to H+/2e- ratios, extrapolated to zero amount of oxidant per pulse, were 9.4, 3.7, 4.3 and 3.5 for O2, nitrate, nitrite and N2O, respectively. The value for O2 and those for the N-oxides are, respectively, somewhat larger and smaller than corresponding values for Paracoccus denitrificans. None of the three permeant ions employed with the Alcaligenes sp. (valinomycin-K+, thiocyanate and triphenylmethylphosphonium) was ideal for all purposes. Thiocyanate provided highest ratios for O2 but abolished the oxidant pulse response for nitrate and N2O. Valinomycin was slow to penetrate to the cytoplasmic membrane and relatively high concentrations were required for optimal performance. Triphenylmethylphosphonium enhanced passive proton permeability and diminished proton translocation at concentrations required to realize the maximal oxidant pulse response. PMID:6311094

  7. Degradation of h-acid by free and immobilized cells of Alcaligenes latus

    PubMed Central

    Usha, M.S.; Sanjay, M.K.; Gaddad, S.M.; Shivannavar, C.T.

    2010-01-01

    Alcaligenes latus, isolated from industrial effluent, was able to grow in mineral salts medium with 50 ppm (0.15 mM) of H-acid as a sole source of carbon. Immobilization of Alcaligenes latus in Ca-alginate and polyurethane foam resulted in cells embedded in the matrices. When free cells and immobilized cells were used for biodegradation studies at concentration ranging from 100 ppm (0.3 mM) to 500 ppm (1.15 mM) degradation rate was enhanced with immobilized cells. Cells immobilized in polyurethane foam showed 100% degradation up to 350 ppm (1.05 mM) and 57% degradation at 500 ppm (1.5 mM). Degradation rate of Ca-alginate immobilized cells was less as compared to that of polyurethane foam immobilized cells. With Ca-alginate immobilized cells 100% degradation was recorded up to 200 ppm (0.6 mM) of H-acid and only 33% degradation was recorded at 500 ppm (1.5 mM) of H-acid. Spectral analysis of the products after H-acid utilization showed that the spent medium did not contain any aromatic compounds indicating H-acid degradation by A. latus. PMID:24031573

  8. Studies of the polysaccharide fraction from the lipopolysaccharide of Pseudomonas alcaligenes

    PubMed Central

    Lomax, James A.; Gray, George W.; Wilkinson, Stephen G.

    1974-01-01

    Studies of the lipopolysaccharide of Pseudomonas alcaligenes strain BR 1/2 were extended to the polysaccharide moiety. The crude polysaccharide, obtained by mild acid hydrolysis of the lipopolysaccharide, was fractionated by gel filtration. The major fraction was the phosphorylated polysaccharide, for which the approximate proportions of residues were; glucose (2), rhamnose (0.7), heptose (2–3), galactosamine (1), alanine (1), 3-deoxy-2-octulonic acid (1), phosphorus (5–6). The heptose was l-glycero-d-manno-heptose. The minor fractions from gel filtration contained free 3-deoxy-2-octulonic acid, Pi and PPi. The purified polysaccharide was studied by periodate oxidation, methylation analysis, partial hydrolysis, and dephosphorylation. All the rhamnose and part of the glucose and heptose occur as non-reducing terminal residues. Other glucose residues are 3-substituted, and most heptose residues are esterified with condensed phosphate residues, possibly in the C-4 position. Free heptose and a heptosylglucose were isolated from a partial hydrolysate of the polysaccharide. The location of galactosamine in the polysaccharide was not established, but either the C-3 or C-4 position appears to be substituted and a linkage to alanine was indicated. In its composition, the polysaccharide from Ps. alcaligenes resembles core polysaccharides from other pseudomonads: no possible side-chain polysaccharide was detected. PMID:4369226

  9. Antibacterial Effect of Diclofenac Sodium on Enterococcus faecalis

    PubMed Central

    Salem-Milani, Amin; Balaei-Gajan, Esrafil; Rahimi, Saeed; Moosavi, Zohreh; Abdollahi, Ardalan; Zakeri-Milani, Parvin; Bolourian, Mehrdad

    2013-01-01

    Objective: Non-steroidal anti-inflammatory drugs (NSAIDs) have shown antibacterial activity in some recent studies. The aim of this study was to evaluate the antibacterial effect of diclofenac against Enterococcus faecalis (E. faecalis) as a resistant endodontic bacterium in comparison with ibuprofen, calcium hydroxide and amoxicillin. Materials and Methods: The antibacterial activity of materials was evaluated using agar diffusion test and tube dilution method. Mixtures of 400 mg/ml of materials were prepared. The bacteria were seeded on 10 Muller-Hinton agar culture plates. Thirty microliter of each test material was placed in each well punched in agar plates. After incubation, the zone of bacterial inhibition was measured. Minimum inhibitory concentration (MIC) of the test materials was determined by agar dilution method. One-way Analysis of Variance (ANOVA) followed by Sidak post hoc test was used to compare the mean zone of microbial growth in the groups. Results: There were significant differences between the two groups (p< 0.05). Results of the agar diffusion test showed that antibiotics (amoxicillin, gentamycin) had the greatest antibacterial activity followed by NSAIDs (ibuprofen, diclofenac). Ca(OH)2 failed to show antibacterial activity. Diclofenac and ibuprofen showed distinct antibacterial activity against E. faecalis in 50 μg/ml and above concentrations. Conclusion: Within the limitations of this in vitro study, it is concluded that diclofenac and ibuprofen have significantly more pronounced antibacterial activity against E. faecalis in comparison with Ca(OH)2. PMID:23724199

  10. Characterization of Enterococcus faecalis and Enterococcus faecium from wild flowers.

    PubMed

    Sánchez Valenzuela, Antonio; Benomar, Nabil; Abriouel, Hikmate; Pérez Pulido, Rubén; Martínez Cañamero, Magdalena; Gálvez, Antonio

    2012-05-01

    Wild flowers in the South of Spain were screened for Enterococcus faecalis and Enterococcus faecium. Enterococci were frequently associated with prickypear and fieldpoppy flowers. Forty-six isolates, from 8 different flower species, were identified as E. faecalis (28 isolates) or E. faecium (18 isolates) and clustered in well-defined groups by ERIC-PCR fingerprinting. A high incidence of antibiotic resistance was detected among the E. faecalis isolates, especially to quinupristin/dalfopristin (75%), rifampicin (68%) and ciprofloxacin (57%), and to a lesser extent to levofloxacin (35.7%), erythromycin (28.5%), tetracycline (3.5%), chloramphenicol (3.5%) and streptomycin (3.5%). Similar results were observed for E. faecium isolates, except for a higher incidence of resistance to tetracycline (17%) and lower to erythromycin (11%) or quinupristin/dalfopristin (22%). Vancomycin or teicoplanin resistances were not detected. Most isolates (especially E. faecalis) were proteolytic and carried the gelatinase gene gelE. Genes encoding other potential virulence factors (ace, efaA (fs), ccf and cpd) were frequently detected. Cytolysin genes were mainly detected in a few haemolytic E. faecium isolates, three of which also carried the collagen adhesin acm gene. Hyaluronidase gene (hyl ( Efm )) was detected in two isolates. Many isolates produced bacteriocins and carried genes for enterocins A, B, and L50 mainly. The similarities found between enterococci from wild flowers and those from animal and food sources raise new questions about the puzzling lifestyle of these commensals and opportunistic pathogens. PMID:22183298

  11. An antimicrobial peptidoglycan hydrolase for treating Enterococcus faecalis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enterococcus faecalis is an intestinal bacteria species that can become an opportunistic pathogen in humans and farm animals with antibiotic resistant strains becoming increasingly common. In farm animals, strong antimicrobials, such as Vancomycin, should not be used due to the risk of propagation ...

  12. New intracanal formulations containing doxycycline or chlorhexidine against Enterococcus faecalis.

    PubMed

    Silva, Ana Rita Marques da; Pinto, Shelon Cristina Souza; Santos, Elizabete Brasil dos; Santos, Fábio André dos; Farago, Paulo Vitor; Gomes, João Carlos; Pina-Vaz, Irene; Carvalho, Manuel Fontes

    2014-01-01

    The present study aims to evaluate the antimicrobial effect of two new intracanal preparations against E. faecalis. Thirty single-rooted human canine teeth were used. The crowns were removed and the roots were instrumented using a conventional technique. Three groups of ten teeth each were infected with 108 CFU/ ml of E. faecalis for 21 days. The root canals were flled with new intracanal medications containing 3% doxycycline hydrochloride (DX) or 2% chlorhexidine digluconate (CHX). Ten teeth received no medication (NM)-negative control. Microbial samples were obtained 21 days after contamination: 14 days under the effect of the intracanal medications and 7 days after replacing the medications by BHI broth. The samples were homogenized, diluted, seeded on BHI agar and incubated for 48h/36°C. The number of colony forming units (CFU/ml) was obtained and analyzed statistically. All intracanal dressings significantly reduced the number of bacterial cells in the root canal after 14 days with medication. After the period with 7 days with BHI broth, the CFU counts of E. faecalis remained at low values. However, the NM group showed a significant increase of CFU in this period to similar values of the initial contamination. 3% doxycycline hydrochloride gel and 2% CHX gel were effective to eliminate E. faecalis from the root canal system. PMID:24939266

  13. Genes Important for Catalase Activity in Enterococcus faecalis

    PubMed Central

    Baureder, Michael; Hederstedt, Lars

    2012-01-01

    Little in general is known about how heme proteins are assembled from their constituents in cells. The Gram-positive bacterium Enterococcus faecalis cannot synthesize heme and does not depend on it for growth. However, when supplied with heme in the growth medium the cells can synthesize two heme proteins; catalase (KatA) and cytochrome bd (CydAB). To identify novel factors important for catalase biogenesis libraries of E. faecalis gene insertion mutants were generated using two different types of transposons. The libraries of mutants were screened for clones deficient in catalase activity using a colony zymogram staining procedure. Analysis of obtained clones identified, in addition to katA (encoding the catalase enzyme protein), nine genes distributed over five different chromosomal loci. No factors with a dedicated essential role in catalase biogenesis or heme trafficking were revealed, but the results indicate the RNA degradosome (srmB, rnjA), an ABC-type oligopeptide transporter (oppBC), a two-component signal transducer (etaR), and NADH peroxidase (npr) as being important for expression of catalase activity in E. faecalis. It is demonstrated that catalase biogenesis in E. faecalis is independent of the CydABCD proteins and that a conserved proline residue in the N-terminal region of KatA is important for catalase assembly. PMID:22590595

  14. SEQUENCE SIMILARITIES IN THE GENES ENCODING POLY- CHLORINATED BIPHENYL DEGRADATION BY PSEUDOMONAS STRAIN LB400 AND ALCALIGENES EUTROPHUS H850

    EPA Science Inventory

    DNA-DNA hybridization was used to compare the Pseudomonas strain LB400 genes for polychlorinated biphenyl (PCB) degradation with those from seven other PCB-degrading strains. Significant hybridization was detected to the genome of Alcaligenes eutrophus H850, a strain similar to L...

  15. Enterococcus faecalis Prophage Dynamics and Contributions to Pathogenic Traits

    PubMed Central

    Matos, Renata C.; Lapaque, Nicolas; Rigottier-Gois, Lionel; Debarbieux, Laurent; Meylheuc, Thierry; Gonzalez-Zorn, Bruno; Repoila, Francis; Lopes, Maria de Fatima; Serror, Pascale

    2013-01-01

    Polylysogeny is frequently considered to be the result of an adaptive evolutionary process in which prophages confer fitness and/or virulence factors, thus making them important for evolution of both bacterial populations and infectious diseases. The Enterococcus faecalis V583 isolate belongs to the high-risk clonal complex 2 that is particularly well adapted to the hospital environment. Its genome carries 7 prophage-like elements (V583-pp1 to -pp7), one of which is ubiquitous in the species. In this study, we investigated the activity of the V583 prophages and their contribution to E. faecalis biological traits. We systematically analyzed the ability of each prophage to excise from the bacterial chromosome, to replicate and to package its DNA. We also created a set of E. faecalis isogenic strains that lack from one to all six non-ubiquitous prophages by mimicking natural excision. Our work reveals that prophages of E. faecalis V583 excise from the bacterial chromosome in the presence of a fluoroquinolone, and are able to produce active phage progeny. Intricate interactions between V583 prophages were also unveiled: i) pp7, coined EfCIV583 for E. faecalis chromosomal island of V583, hijacks capsids from helper phage 1, leading to the formation of distinct virions, and ii) pp1, pp3 and pp5 inhibit excision of pp4 and pp6. The hijacking exerted by EfCIV583 on helper phage 1 capsids is the first example of molecular piracy in Gram positive bacteria other than staphylococci. Furthermore, prophages encoding platelet-binding-like proteins were found to be involved in adhesion to human platelets, considered as a first step towards the development of infective endocarditis. Our findings reveal not only a role of E. faecalis V583 prophages in pathogenicity, but also provide an explanation for the correlation between antibiotic usage and E. faecalis success as a nosocomial pathogen, as fluoriquinolone may provoke release of prophages and promote gene dissemination among

  16. Enterococcus faecalis prophage dynamics and contributions to pathogenic traits.

    PubMed

    Matos, Renata C; Lapaque, Nicolas; Rigottier-Gois, Lionel; Debarbieux, Laurent; Meylheuc, Thierry; Gonzalez-Zorn, Bruno; Repoila, Francis; Lopes, Maria de Fatima; Serror, Pascale

    2013-06-01

    Polylysogeny is frequently considered to be the result of an adaptive evolutionary process in which prophages confer fitness and/or virulence factors, thus making them important for evolution of both bacterial populations and infectious diseases. The Enterococcus faecalis V583 isolate belongs to the high-risk clonal complex 2 that is particularly well adapted to the hospital environment. Its genome carries 7 prophage-like elements (V583-pp1 to -pp7), one of which is ubiquitous in the species. In this study, we investigated the activity of the V583 prophages and their contribution to E. faecalis biological traits. We systematically analyzed the ability of each prophage to excise from the bacterial chromosome, to replicate and to package its DNA. We also created a set of E. faecalis isogenic strains that lack from one to all six non-ubiquitous prophages by mimicking natural excision. Our work reveals that prophages of E. faecalis V583 excise from the bacterial chromosome in the presence of a fluoroquinolone, and are able to produce active phage progeny. Intricate interactions between V583 prophages were also unveiled: i) pp7, coined EfCIV583 for E. faecalis chromosomal island of V583, hijacks capsids from helper phage 1, leading to the formation of distinct virions, and ii) pp1, pp3 and pp5 inhibit excision of pp4 and pp6. The hijacking exerted by EfCIV583 on helper phage 1 capsids is the first example of molecular piracy in Gram positive bacteria other than staphylococci. Furthermore, prophages encoding platelet-binding-like proteins were found to be involved in adhesion to human platelets, considered as a first step towards the development of infective endocarditis. Our findings reveal not only a role of E. faecalis V583 prophages in pathogenicity, but also provide an explanation for the correlation between antibiotic usage and E. faecalis success as a nosocomial pathogen, as fluoriquinolone may provoke release of prophages and promote gene dissemination among

  17. Strain of alcaligenes latus bacteria used for the decomposition of polychlorinated biphenyls

    DOEpatents

    Dyadischev, Nikolai Romanovich; Zharikov, Gennady Alekseevich; Kapranov, Vladimir Vladimirovich

    2001-09-11

    Alcaligenes latus bacterial strain TXD-13 VKPM B 75-05 is capable of degrading polychlorinated biphenyls (PCBs). The strain may be employed to detoxicate environment media and PCB-containing industrial waste. To produce biomass, the strain is incubated on media which contain carbon sources, nitrogen sources and mineral salts. The strain is cultivated by a subsurface method up to a titer from 6.0.multidot.10.sup.8 to 2.0.times.10.sup.9 cells per cu cm. The produced biomass is used for degrading PCBs in concentrations from 10.sup.7 to 10.sup.8 cells per cu cm. The strain ensures from 35 to 50% reduction in PCB content in soil and water.

  18. Benzoate degradation via the ortho pathway in Alcaligenes eutrophus is perturbed by succinate.

    PubMed Central

    Ampe, F; Uribelarrea, J L; Aragao, G M; Lindley, N D

    1997-01-01

    During batch growth of Alcaligenes eutrophus on benzoate-plus-succinate mixtures, substrates were simultaneously metabolized, leading to a higher specific growth rate (mu = 0.56 h-1) than when a single substrate was used (mu = 0.51 h-1 for benzoate alone and 0.44 h-1 for succinate alone), without adversely affecting the growth yield (0.57 Cmol/Cmol). Flux distribution analysis revealed that succinate dehydrogenase most probably controls the rate of total succinate consumption (the maximum flux being 9.7 mmol.g-1.h-1). It is postulated that the relative consumption rate of each substrate is in part related to modified levels of gene expression but to a large extent is dependent upon the presence of succinate, end product of the beta-ketoadipate pathway. Indeed, the in vitro beta-ketoadipate-succinyl coenzyme A transferase activity was seen to be inhibited by succinate, a coproduct of the reaction. PMID:9212423

  19. Production optimization of cyanophycinase ChpEal from Pseudomonas alcaligenes DIP1

    PubMed Central

    2011-01-01

    Pseudomonas alcaligenes DIP1 produces an extracellular cyanophycinase (CphEal). The corresponding gene (cphEal) was identified from subclones of a genomic DNA gene library by heterologously expressing the functionally active enzyme in Escherichia coli. The nucleotide sequence of the gene (1260 base pairs) was determined indicating a theoretical mass of 43.6 kDa (mature CphEal) plus a leader peptide of 2,6 kDa which corresponds well to the apparent molecular mass of 45 kDa as revealed by SDS-PAGE. The enzyme exhibited a high sequence identity of 91% with the extracellular cyanophycinase from P. anguilliseptica strain BI and carried an N-terminal Sec secretion signal peptide. Analysis of the amino acid sequence of cphE revealed a putative catalytic triad consisting of the serine motif GXSXG plus a histidine and a glutamate residue, suggesting a catalytic mechanism similar to serine-type proteases. The cyanophycinase (CphEal) was heterologously produced in two different E. coli strains (Top10 and BL21(DE3)) from two plasmid vectors (pBBR1MCS-4 and pET-23a(+)). The signal peptide of CphEal was cleaved in E. coli, suggesting active export of the protein at least to the periplasm. Substantial enzyme activity was also present in the culture supernatants. The extracellular cyanophycinase activities in E. coli were higher than activities in the wild type P. alcaligenes DIP1 in complex LB medium. Highest extracellular enzyme production was achieved with E. coli BL21(DE3) expressing CphEal from pBBR1MCS-4. Using M9 minimal medium was less effective, but the relatively low cost of mineral salt media makes these results important for the industrial-scale production of dipeptides from cyanophycin. PMID:22060187

  20. Candida albicans and Enterococcus faecalis in the gut

    PubMed Central

    Garsin, Danielle A; Lorenz, Michael C

    2013-01-01

    The fungus Candida albicans and the gram-positive bacterium Enterococcus faecalis are both normal residents of the human gut microbiome and cause opportunistic disseminated infections in immunocompromised individuals. Using a nematode infection model, we recently showed that co-infection resulted in less pathology and less mortality than infection with either species alone and this was partly explained by an interkingdom signaling event in which a bacterial-derived product inhibits hyphal morphogenesis of C. albicans. In this addendum we discuss these findings in the contest of other described bacterial-fungal interactions and recent data suggesting a potentially synergistic relationship between these two species in the mouse gut as well. We suggest that E. faecalis and C. albicans promote a mutually beneficial association with the host, in effect choosing a commensal lifestyle over a pathogenic one. PMID:23941906

  1. A heavy-metal tolerant novel bacterium, Alcaligenes pakistanensis sp. nov., isolated from industrial effluent in Pakistan.

    PubMed

    Abbas, Saira; Ahmed, Iftikhar; Iida, Toshiya; Lee, Yong-Jae; Busse, Hans-Jürgen; Fujiwara, Toru; Ohkuma, Moriya

    2015-10-01

    Two strains, NCCP-650(T) and NCCP-667, were isolated from industrial effluent and their taxonomic positions were investigated using a polyphasic taxonomic approach. The strains were found to be Gram-stain negative, strictly aerobic, motile short rods, which are tolerant to heavy-metals (Cr(+2), As(+2), Pb(+2) and Cu(+2)). Cells were observed to grow at a temperature range of 10-37 °C (optimal 25-33 °C), pH range of 5.5-10.0 (optimal 6.5-7.5) and can tolerate 0-7 % NaCl (w/v) (optimum 0-1 %) in tryptic soya agar medium. Sequencing of the 16S rRNA gene and two housekeeping genes, gyrB and nirK, of the isolated strains revealed that both strains belong to the Betaproteobacteria showing highest sequence similarities with members of the genus Alcaligenes. The chemotaxonomic data [major quinones as Q-8; predominant cellular fatty acids as summed features 3 (C16 :1 ω7c/iso-C15 :0 2OH) and C16:0 followed by Summed features 2 (iso-C16 :1 I/C14 :0 3OH), C17:0 Cyclo and C18:1 ω7c; major polar lipids as diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and one unidentified aminolipid] also supported the affiliation of the isolated strains with the genus Alcaligenes. DNA-DNA hybridizations between the two strains and with closely related type strains of species of the genus Alcaligenes confirmed that both isolates belong to a single novel species within the genus Alcaligenes. On the basis of phylogenetic analyses, physiological, biochemical characteristics and DNA-DNA hybridization, the isolated strains can be differentiated from established Alcaligenes species and thus represent a novel species, for which the name Alcaligenes pakistanensis sp. nov. is proposed with the type strain NCCP-650(T) (=LMG 28368(T) = KCTC42083(T) = JCM 30216(T)). PMID:26238381

  2. In vitro effectiveness of Brazilian brown propolis against Enterococcus faecalis.

    PubMed

    Pimenta, Hévelin Couto; Violante, Ivana Maria Povoa; Musis, Carlo Ralph de; Borges, Álvaro Henrique; Aranha, Andreza Maria Fábio

    2015-01-01

    The aim of this study was to evaluate the in vitro antimicrobial activity of Brazilian brown propolis as an intracanal medication against Enterococcus faecalis. Thirty dentin discs prepared from intact freshly extracted bovine maxillary central incisors were infected with E. faecalis for 21 days. The specimens were distributed into six groups according to the medicament used as follows: G1- calcium hydroxide paste; G2- Carbowax 400 (control group); G3- 20% brown propolis paste; G4- 40% brown propolis paste; G5- 20% brown propolis paste + calcium hydroxide paste; and G6- 40% brown propolis paste + calcium hydroxide paste. The experimental pastes were placed into the canal lumen and left for 14 days. After each period, irrigation was performed with sterile saline to remove the medicament, and the canals were dried with sterile paper points. The dentin chips were removed from the canals with sequential sterile round burs at low speed and were immediately collected in separate test tubes containing BHI broth. The tubes were incubated at 37°C, and microbial growth was analyzed by spectrophotometry after 15 days. All the experimental medications significantly reduced the number of viable bacteria. The G4 and G5 pastes were more effective than the G1 paste, with 35.8%, 41%, and 21.3% antibacterial activity, respectively. Brazilian brown propolis shows antibacterial capacity against E. faecalis. PMID:25992787

  3. The opportunistic pathogen Enterococcus faecalis resists phagosome acidification and autophagy to promote intracellular survival in macrophages.

    PubMed

    Zou, Jun; Shankar, Nathan

    2016-06-01

    While many strains of Enterococcus faecalis have been reported to be capable of surviving within macrophages for extended periods, the exact mechanisms involved are largely unknown. In this study, we found that after phagocytosis by macrophages, enterococci-containing vacuoles resist acidification, and E. faecalis is resistant to low pH. Ultrastructural examination of the enterococci-containing vacuole by transmission electron microscopy revealed a single membrane envelope, with no evidence of the classical double-membraned autophagosomes. Western blot analysis further confirmed that E. faecalis could trigger inhibition of the production of LC3-II during infection. By employing cells transfected with RFP-LC3 plasmid and infected with GFP-labelled E. faecalis, we also observed that E. faecalis was not delivered into autophagosomes during macrophage infection. While these observations indicated no role for autophagy in elimination of intracellular E. faecalis, enhanced production of reactive oxygen species and nitric oxide were keys to this process. Stimulation of autophagy suppressed the intracellular survival of E. faecalis in macrophages in vitro and decreased the burden of E. faecalis in vivo. In summary, the results from this study offer new insights into the interaction of E. faecalis with host cells and may provide a new approach to treatment of enterococcal infections. PMID:26663775

  4. Characterization of the novel dimethyl sulfide-degrading bacterium Alcaligenes sp. SY1 and its biochemical degradation pathway.

    PubMed

    Sun, Yiming; Qiu, Jiguo; Chen, Dongzhi; Ye, Jiexu; Chen, Jianmeng

    2016-03-01

    Recently, the biodegradation of volatile organic sulfur compounds (VOSCs) has become a burgeoning field, with a growing focus on the reduction of VOSCs. The reduction of VOSCs encompasses both organic emission control and odor control. Herein, Alcaligenes sp. SY1 was isolated from active sludge and found to utilize dimethyl sulfide (DMS) as a growth substrate in a mineral salt medium. Response surface methodology (RSM) analysis was applied to optimize the incubation conditions. The following conditions for optimal degradation were identified: temperature 27.03°C; pH 7.80; inoculum salinity 0.84%; and initial DMS concentration 1585.39 μM. Under these conditions, approximately 99% of the DMS was degraded within 30 h of incubation. Two metabolic compounds were detected and identified by gas chromatography-mass spectrometry (GC-MS): dimethyl disulfide (DMDS) and dimethyl trisulfide (DMTS). The DMS degradation kinetics for different concentrations were evaluated using the Haldane-Andrews model and the pseudo first-order model. The maximum specific growth rate and degradation rate of Alcaligenes sp. SY1 were 0.17 h(-1) and 0.63 gs gx(-1)h(-1). A possible degradation pathway is proposed, and the results suggest that Alcaligenes sp. SY1 has the potential to control odor emissions under aerobic conditions. PMID:26623933

  5. Structure of the 2, 4′-dihydroxyacetophenone dioxygenase from Alcaligenes sp. 4HAP

    SciTech Connect

    Keegan, R.; Lebedev, A.; Erskine, P.; Guo, J.; Wood, S. P.; Hopper, D. J.; Rigby, S. E. J.; Cooper, J. B.

    2014-09-01

    The first X-ray structure of a 2, 4′-dihydroxyacetophenone dioxygenase from Alcaligenes sp. 4HAP at a resolution of 2.2 Å is reported. This structure establishes that the enzyme adopts the cupin-fold, forming compact dimers with a pronounced hydrophobic interface between the monomers. Each monomer possesses a catalytic ferrous iron that is coordinated by three histidines (76, 78 and 114) and an additional ligand which has been putatively assigned as a carbonate, although formate and acetate are possibilities. The enzyme 2, 4′-dihydroxyacetophenone dioxygenase (DAD) catalyses the conversion of 2, 4′-dihydroxyacetophenone to 4-hydroxybenzoic acid and formic acid with the incorporation of molecular oxygen. Whilst the vast majority of dioxygenases cleave within the aromatic ring of the substrate, DAD is very unusual in that it is involved in C—C bond cleavage in a substituent of the aromatic ring. There is evidence that the enzyme is a homotetramer of 20.3 kDa subunits, each containing nonhaem iron, and its sequence suggests that it belongs to the cupin family of dioxygenases. In this paper, the first X-ray structure of a DAD enzyme from the Gram-negative bacterium Alcaligenes sp. 4HAP is reported, at a resolution of 2.2 Å. The structure establishes that the enzyme adopts a cupin fold, forming dimers with a pronounced hydrophobic interface between the monomers. The catalytic iron is coordinated by three histidine residues (76, 78 and 114) within a buried active-site cavity. The iron also appears to be tightly coordinated by an additional ligand which was putatively assigned as a carbonate dianion since this fits the electron density optimally, although it might also be the product formate. The modelled carbonate is located in a position which is highly likely to be occupied by the α-hydroxyketone group of the bound substrate during catalysis. Modelling of a substrate molecule in this position indicates that it will interact with many conserved amino acids in

  6. In vitro inactivation of Enterococcus faecalis with a led device.

    PubMed

    D'Ercole, S; Spoto, G; Trentini, P; Tripodi, D; Petrini, M

    2016-07-01

    Non-coherent light-emitting diodes (LEDs) are effective in a large variety of clinical indications; however, the bactericidal activity of LEDs is unclear, although the effectiveness of such lights is well known. Currently, no studies have examined the effects of NIR-LED on bacteria. The aims of this study were to verify the antibacterial activity of 880-nm LED irradiation on a bacterial suspension of Enterococcus faecalis and to compare it with the actions of sodium hypochlorite (NaOCl) and the concurrent use of both treatments. Before we proceeded with the main experiment, we first performed preliminary tests to evaluate the influence of such parameters as the distance of irradiation, the energy density, the irradiation time and the presence of photosensitizers on the antimicrobial effects of LEDs. After treatment, the colony forming units per milliliter (CFU/mL) was recorded and the data were submitted to ANOVA and Bonferroni post hoc tests at a level of significance of 5%. The results showed that LED irradiation, at the parameters used, is able to significantly decrease E. faecalis viability in vitro. The total inhibition of E. faecalis was obtained throughout concurrent treatment of LED and NaOCl (1%) for 5min. The same antimicrobial activity was confirmed in all of the experiments (p<0.05), but no statistically significant differences were found by varying such parameters as the distance of irradiation (from 0.5mm to 10mm), energy density (from 2.37 to 8.15mJ/s), irradiation time (from 5min to 20min) or by adding toluidine blue O (TBO). PMID:27107704

  7. In vitro alkaline pH resistance of Enterococcus faecalis.

    PubMed

    Weckwerth, Paulo Henrique; Zapata, Ronald Ordinola; Vivan, Rodrigo Ricci; Tanomaru Filho, Mário; Maliza, Amanda Garcia Alves; Duarte, Marco Antonio Hungaro

    2013-01-01

    Enterococcus faecalis is a bacterial species often found in root canals with failed endodontic treatment. Alkaline pastes are widely used in Endodontics because of their biocompatibility and antimicrobial activity, but this microorganism can resist alkalinity. The purpose of this study was to evaluate in vitro the alkaline pH resistance of E. faecalis for different periods up to 14 days. Samples were obtained from the oral cavity of 150 patients from the Endodontic clinic. The pH of the experimental tubes (n=84) was first adjusted with 6M NaOH to pH values of 9.5, 10.5, 11.5 and 12.5 (21 tubes per pH). Twenty clinical isolates and the ATCC 29212 strain were tested. The 5 positive controls and experimental tubes of each pH were inoculated with 10 µL of bacterial suspension and incubated at 36 °C for 24, 48 and 72 h, 7 and 14 days. For each period, the turbidity of the medium was visually compared with a 0.5 McFarland standard. The presence of the microorganism was confirmed by seeding on M-Enterococcus agar. Four tubes containing BHI broth adjusted to the tested pHs were incubated for 14 days to verify if pH changes occurred. The pH of inoculated BHI broth was also measured on day 14 to determine if the microorganism acidified the medium. The growth of all E. faecalis strains occurred at pH 9.5 to 11.5 in all periods. Although turbidity was not observed at pH 12.5, there was growth of 13 and 2 strains at 24 and 48 h, respectively, on M-Enterococcus agar. No tube showed growth at pH 12.5 after 72 h. It was concluded that E. faecalis can survive in highly alkaline pH, and some clinical isolates require 72 h at pH 12.5 to be killed. PMID:24474287

  8. Efficacy of Atmospheric Pressure Plasma as an Antibacterial Agent Against Enterococcus Faecalis in Vitro

    NASA Astrophysics Data System (ADS)

    Cao, Yingguang; Yang, Ping; Lu, Xinpei; Xiong, Zilan; Ye, Tao; Xiong, Qing; Sun, Ziyong

    2011-02-01

    Enterococcus faecalis (E. faecalis) is a microorganism that can survive extreme challenges in obturated root canals. The aim of this study was to evaluate the efficacy of a non-thermal atmospheric pressure plasma plume against E. faecalis in vitro. A non-thermal atmospheric pressure plasma jet device which could generate a cold plasma plume carrying a peak current of 300 mA was used. The antibacterial efficacy of this device against E. faecalis and its biofilm under different conditions was detected. The antibacterial efficacy of the plasma against E. faecalis and Staphylococcus aureus (S. aureus) was also evaluated. After plasma treatment, the average diameter of inhibition zone on S. aureus and E. faecalis was 2.62±0.26 cm and 1.06±0.30 cm, respectively (P < 0.05). The diameter was increased with prolongation of the treatment duration. The diameters of inhibition zone of the sealed Petri dishes were larger than those of the uncovered Petri dishes. There was significant difference in colony-forming units between plasma group and control group on E. faecalis biofilm (P < 0.01). The transmission electron microscopy revealed that the ultrastructural changes cytoderm of E. faecalis were observed after treatment for 2 min. It is concluded that the non-thermal atmospheric pressure plasma could serve as an effective adjunct to standard endodontic microbial treatment.

  9. Complete Genome Assembly of Enterococcus faecalis 29212, a Laboratory Reference Strain.

    PubMed

    Minogue, T D; Daligault, H E; Davenport, K W; Broomall, S M; Bruce, D C; Chain, P S; Coyne, S R; Chertkov, O; Freitas, T; Gibbons, H S; Jaissle, J; Koroleva, G I; Ladner, J T; Palacios, G F; Rosenzweig, C N; Xu, Y; Johnson, S L

    2014-01-01

    Enterococcus faecalis is a nonmotile Gram-positive coccus, found both as a commensal organism in healthy humans and animals and as a causative agent of multiple diseases, in particular endocarditis. We sequenced the genome of E. faecalis ATCC 29212, a commonly used reference strain in laboratory studies, to complete "finished" annotated assembly (3 Mb). PMID:25291775

  10. Complete Genome Assembly of Enterococcus faecalis 29212, a Laboratory Reference Strain

    PubMed Central

    Minogue, T. D.; Daligault, H. E.; Davenport, K. W.; Broomall, S. M.; Bruce, D. C.; Chain, P. S.; Coyne, S. R.; Chertkov, O.; Freitas, T.; Gibbons, H. S.; Jaissle, J.; Koroleva, G. I.; Ladner, J. T.; Palacios, G. F.; Rosenzweig, C. N.; Xu, Y.

    2014-01-01

    Enterococcus faecalis is a nonmotile Gram-positive coccus, found both as a commensal organism in healthy humans and animals and as a causative agent of multiple diseases, in particular endocarditis. We sequenced the genome of E. faecalis ATCC 29212, a commonly used reference strain in laboratory studies, to complete “finished” annotated assembly (3 Mb). PMID:25291775

  11. The Enterococcus faecalis cytolysin determinant and its relationship to those encoding lantibiotics.

    PubMed

    Bogie, C P; Hancock, L E; Gilmore, M S

    1995-01-01

    The E. faecalis cytolysin represents a new class of cytolytic agents which are related to a family of antibacterial peptides termed lantibiotics. Despite considerable similarity at the genetic level, the E. faecalis cytolysin differs from the lantibiotics in several respects. First, the E. faecalis cytolysin consists of two dissimilar precursors, both of which are required to effect target cell lysis. A second important difference is that the E. faecalis cytolysin is active against eukaryotic as well as Gram-positive prokaryotic cells. Originally identified as a haemolysin [32], the E. faecalis cytolysin has been shown to make a contribution to bacterial virulence in endocarditis [8, 33] and endophthalmitis [7] models, and the cytolytic phenotype is enriched among clinical isolates of the organism [2, 3]. Similarities between the E. faecalis cytolysin and lantibiotics such as nisin (which is used as a food preservative in several countries [34] and is the subject of continuing attempts at rational design of lantibiotic-based food preservatives [25]), and the observation of an association between the E. faecalis cytolysin and bacterial virulence indicate that it may be possible to engineer lantibiotics to a point where undesired toxic or cytolytic activities will arise. Further comparison of the chemical, structural and biological properties of the E. faecalis cytolysin and classical lantibiotics will define these limits. PMID:8586241

  12. REAL-TIME PCR METHOD TO DETECT ENTEROCOCCUS FAECALIS IN WATER

    EPA Science Inventory

    A 16S rDNA real-time PCR method was developed to detect Enterococcus faecalis in water samples. The dynamic range for cell detection spanned five logs and the detection limit was determined to be 6 cfu/reaction. The assay was capable of detecting E. faecalis cells added to biof...

  13. Postneurosurgical Central Nervous System Infection Due to Enterococcus faecalis Successfully Treated With Intraventricular Vancomycin

    PubMed Central

    Patel, Trisha; Lewis, Mark E.; Niesley, Michelle L.; Chowdhury, Mashiul

    2016-01-01

    Abstract Infections from Enterococcus faecalis and Enterococcus faecium are uncommon in the post-neurosurgical intervention setting., [1, 2, 3, 4] Intraventricular antibiotics are recommended when standard intravenous therapy fails. [5] Here we present a case of post-neurosurgical ventriculitis, meningitis, and cerebritis in an oncology patient caused by refractory Enterococcus faecalis successfully treated with intraventricular vancomycin. PMID:27226704

  14. Evidence for novel mechanisms of polychlorinated biphenyl metabolism in Alcaligenes eutrophus H850

    SciTech Connect

    Bedard, D.L.; Haberl, M.L.; May, R.J.; Brennan, M.J.

    1987-05-01

    Previous studies indicated that Alcaligenes eutrophus H850 attacks a different spectrum of polychlorinated biphenyl (PCB) congeners than do most PCB-degrading bacteria and that novel mechanisms of PCB degradation might be involved. To delineate this, the authors have investigated the differences in congener selectivity and metabolite production between H850 and Corynebacterium sp. strain MB1, an organism that apparently degrades PCBs via a 2,3-dioxygenase. H850 exhibited a superior ability to degrade congeners via attack on 2-, 2,4-, 2,5-, or 2,4,5-chlorophenyl rings in PCBs but an inferior ability to degrade congeners via attack on a 4-chlorophenyl ring. Reactivity preferences were also reflected in the products formed from unsymmetrical PCBs; thus, MB1 attacked the 2,3-chlorophenyl ring of 2,3,2',5'-tetrachlorobiphenyl to yield 2,5-dichlorobenzoic acid, while H850 attacked the 2,5-chlorophenyl ring to yield 2,3-dichlorobenzoic acid and a novel metabolite, 2',3'-dichloroacetophenone. Furthermore, H850 oxidized 2,4,5,2',4',5'-hexachlorobiphenyl, a congener with no adjacent unsubstituted carbons, to 2',4',5'-trichloroacetophenone. The atypical congener selectivity pattern and novel metabolites produced suggest that A. eutrophus H850 may degrade certain PCB congeners by a new route beginning with attack by some enzyme other than the usual 2,3-dioxygenase.

  15. Influence of Ammonium Salts and Cane Molasses on Growth of Alcaligenes eutrophus and Production of Polyhydroxybutyrate

    PubMed Central

    Beaulieu, M.; Beaulieu, Y.; Melinard, J.; Pandian, S.; Goulet, J.

    1995-01-01

    The production of polyhydroxybutyrate (PHB) by Alcaligenes eutrophus DSM 545 was studied in a synthetic medium with 3% glucose at pH 7.0 supplemented with several ammonium substrates and cane molasses. Growth was measured by dry cell weight, and the PHB content was measured by gas chromatography. The effects of ammonium sources such as sulfate, nitrate, phosphate, and chloride salts and those of different ammonium sulfate concentrations were evaluated. The best growth and PHB production were obtained with ammonium sulfate; however, NH(inf4)(sup+) concentrations between 0.5 and 1.5 g/liter showed no significant difference. Ammonium sulfate was therefore used as the sole source of NH(inf4)(sup+) for experiments with cane molasses as the growth activator. Optimal growth and PHB production were obtained with 0.3% molasses. However, the yields of biomass (39 to 48%) and PHB (17 to 26%) varied significantly among the different ammonium substrates and cane molasses concentrations. PMID:16534900

  16. Reversible and irreversible effects of nitric oxide on the soluble hydrogenase from Alcaligenes eutrophus H16.

    PubMed Central

    Hyman, M R; Arp, D J

    1988-01-01

    The effects of NO on the H2-oxidizing and diaphorase activities of the soluble hydrogenase from Alcaligenes eutrophus H16 were investigated. With fully activated enzyme, NO (8-150 nM in solution) inhibited H2 oxidation in a time- and NO-concentration-dependent process. Neither H2 nor NAD+ appeared to protect the enzyme against the inhibition. Loss of activity in the absence of an electron acceptor was about 10 times slower than under turnover conditions. The inhibition was partially reversible; approx. 50% of full activity was recoverable after removal of the NO. Recovery was slower in the absence of an electron acceptor than in the presence of H2 plus an electron acceptor. The diaphorase activity of the unactivated hydrogenase was not affected by NO concentrations of up to 200 microM in solution. Exposure of the unactivated hydrogenase to NO irreversibly inhibited the ability of the enzyme to be fully activated for H2-oxidizing activity. The enzyme also lost its ability to respond to H2 during activation in the presence of NADH. The results are interpreted in terms of a complex inhibition that displays elements of (1) a reversible slow-binding inhibition of H2-oxidizing activity, (2) an irreversible effect on H2-oxidizing activity and (30 an irreversible inhibition of a regulatory component of the enzyme. Possible sites of action for NO are discussed. PMID:3052436

  17. Extensive degradation of aroclors and environmentally transformed polychlorinated biphenyls by Alcaligenes eutrophus H850

    SciTech Connect

    Bedard, D.L.; Wagner, R.E.; Brennan, M.J.; Haberl, M.L.; Brown, J.F. Jr.

    1987-05-01

    The authors have isolated and characterized a strain of Alcaligenes eutrophus, designated H850, that rapidly degrades a broad and unusual spectrum of polychlorinated biphenyls (PCBs) including many tetra- and pentachlorobiphenyls and several hexachlorobiphenyls. This strains, which was isolated from PCB-containing dredge spoils by enrichment on biphenyl, grows well on biphenyl and 2-chlorobiphenyl but poorly on 3- and 4-chlorobiphenyl. Capillary gas-chromatographic analysis showed that biphenyl-grown resting cells of H850 degraded the components of 38 of the 41 largest peaks of Aroclor 1242 and 15 of the 44 largest peaks of Aroclor 1254, resulting in an overall reduction of PCBs by 81% for Aroclor 1242 (10 ppm) and 35% for the Aroclor 1254 (10 ppm) in 2 days. Furthermore, H850 metabolized the predominantly ortho-substituted PCB congeners that the resulted from the environmental transformation of the more highly chlorinated congeners of Aroclor 1242 by the upper Hudson River anaerobic meta-, and para-dechlorination agent system. The congener selectivity patterns indicate that a two-step process consisting of anaerobic dechlorination followed by oxidation by H850 can effectively degrade all to congeners in Aroclor 1242 and possibly all those in Aroclor 1254.

  18. Wheat Bran Enhances the Cytotoxicity of Immobilized Alcaligenes aquatilis F8 against Microcystis aeruginosa

    PubMed Central

    Sun, Pengfei; Lin, Hui; Wang, Guan; Zhang, Ximing; Zhang, Qichun; Zhao, Yuhua

    2015-01-01

    Algicidal bacteria offer a promising option for killing cyanobacteria. Therefore, a new Alcaligenes aquatilis strain F8 was isolated to control Microcystis aeruginosa in this study. The algicidal activity of strain F8 was dependent on the cell density of M. aeruginosa, and the maximal algicidal rate of the free bacterium reached 88.45% within 72 h. With a view to its application to the control of M. aeruginosa in the natural environment, strain F8 was immobilized in sodium alginate beads, but immobilization of the strain decreased its algicidal rate compared to that of the free bacterium. However, addition of wheat bran to the sodium alginate matrix used to immobilize strain F8 not only eliminated the adverse effects of immobilization on the bacteria but also resulted in an 8.83% higher algicidal rate of the immobilized than free bacteria. Exclusion and recovery methods were used to identify key ingredients of wheat bran and gain insight into the mechanism underlying the observed enhancement of algicidal activity. This analysis indicated that certain factors in wheat bran, including vitamins B1, B2, B9, and E were responsible for promoting bacterial growth and thereby improving the algicidal rate of immobilized strain F8. Our findings indicate that wheat bran is able to improve the algicidal efficiency of A. aquatilis strain F8 for killing M. aeruginosa and is a good source of not only carbon and nitrogen but also vitamins for bacteria. PMID:26295573

  19. Effect of phosphoglycerate mutase deficiency on heterotrophic and autotrophic carbon metabolism of Alcaligenes eutrophus.

    PubMed Central

    Reutz, I; Schobert, P; Bowien, B

    1982-01-01

    Mutants of Alcaligenes eutrophus were isolated on the basis of their inability to grow on succinate as the sole source of carbon and energy. The mutants also failed to grow on other gluconeogenic substrates, including pyruvate, acetate, and citrate. Simultaneously, they had lost their capability for autotrophic growth. The mutants grew, but slower than the wild type, on fructose or gluconate. Growth retardation on gluconate was more pronounced. The mutants lacked phosphoglycerate mutase activity, and spontaneous revertants of normal growth phenotype had regained the activity. The physiological characteristics of the mutants indicate the role of phosphoglycerate mutase in heterotrophic and autotrophic carbon metabolism of A. eutrophus. Although the enzyme is necessary for gluconeogenesis during heterotrophic growth on three- or four-carbon substrates, its glycolytic function is not essential for the catabolism of fructose or gluconate via the Entner-Doudoroff pathway. The enzyme is required during autotrophic growth as a catalyst in the biosynthetic route leading from glycerate 3-phosphate to pyruvate. It is suggested that the mutants accomplish the complete degradation of fructose and gluconate mutase lesion. The catabolically produced triose phosphates are converted to fructose 6-phosphate which is rechanneled into the Entner-Doudoroff pathway. This carbon recycling mechanism operates less effectively in mutant cells growing on gluconate. PMID:6282814

  20. Fluoride, hydrogen, and formate activate ribulosebisphosphate carboxylase formation in Alcaligenes eutrophus.

    PubMed Central

    Im, D S; Friedrich, C G

    1983-01-01

    Alcaligenes eutrophus formed ribulosebisphosphate carboxylase (RuBPCase; EC 4.1.1.39) when grown on fructose. Addition of sodium fluoride (NaF) to fructose minimal medium resulted in a slightly decreased growth rate and a rapid fivefold increase in RuBPCase specific activity. With citrate, a glucogenic carbon source, RuBPCase was also formed, However, addition of NaF to cells growing on citrate resulted in a 50% decrease in RuBPCase specific activity. Among the enzymes of fructose catabolism, NaF (10 mM) inhibited enolase in vitro by 98% and gluconate 6-phosphate dehydratase by 87%. Inhibition of the dehydratase by NaF was insignificant in vivo, as determined with a mutant defective in phosphoglycerate mutase activity. Growth of this mutant on fructose was not inhibited by NaF, and only a minor increase in RuBPCase activity was observed. From these results, we concluded that the product of the enolase reaction, phosphoenolpyruvate, played a role in RuBPCase formation. Addition of H2 or formate to the wild type growing on fructose or citrate did not affect the growth rate but resulted in rapid formation of RuBPCase activity. Mutants impaired in H2 metabolism formed RuBPCase at a low rate during growth on fructose plus H2 but at a high rate on formate. Apparently, additional reductant from H2 or formate metabolism induced RuBPCase formation in A. eutrophus. PMID:6841316

  1. Improved welan gum production by Alcaligenes sp. ATCC31555 from pretreated cane molasses.

    PubMed

    Ai, Hongxia; Liu, Min; Yu, Pingru; Zhang, Shaozhi; Suo, Yukai; Luo, Ping; Li, Shuang; Wang, Jufang

    2015-09-20

    Welan gum production by Alcaligenes sp. ATCC31555 from cane molasses was studied in batch fermentation to reduce production costs and enhance gum production. The pretreatment of cane molasses, agitation speed and the addition of supplements were investigated to optimize the process. Sulfuric acid hydrolysis was found to be the optimal pretreatment, resulting in a maximum gum concentration of 33.5 g/L, which is 50.0% higher than those obtained from the molasses' mother liquor. Agitation at 600 rpm at 30°C and addition of 10% n-dodecane following fermentation for 36 h increased the maximum gum production up to 41.0 ± 1.41 g/L, which is 49.1% higher than the greatest welan gum concentration in the literature so far. The welan gum product showed an acceptable molecular weight, similar rheological properties and better thermal stability to that obtained from glucose. These results indicate that cane molasses may be a suitable and inexpensive substrate for cost-effective industrial-scale welan gum production. PMID:26050885

  2. Outbreak of mastitis in sheep caused by multi-drug resistant Enterococcus faecalis in Sardinia, Italy.

    PubMed

    Sanciu, G; Marogna, G; Paglietti, B; Cappuccinelli, P; Leori, G; Rappelli, P

    2013-03-01

    An outbreak of infective mastitis due to Enterococcus faecalis occurred in an intensive sheep farm in north Sardinia (Italy). E. faecalis, which is only rarely isolated from sheep milk, was unexpectedly found in 22·3% of positive samples at microbiological examination. Forty-five out of the 48 E. faecalis isolates showed the same multi-drug resistance pattern (cloxacillin, streptomycin, kanamycin, clindamycin, oxytetracycline). E. faecalis isolates were analysed by pulsed-field gel electrophoresis, and all 45 multi-drug resistant strains showed an indistinguishable macrorestiction profile, indicating their clonal origin. To our knowledge, this is the first report of an outbreak of mastitis in sheep caused by E. faecalis. PMID:22595402

  3. Effect of Nitric Oxide on the Oxygen Metabolism and Growth of E. faecalis

    PubMed Central

    Nishikawa, Tomoko; F. Sato, Eisuke; Choudhury, Tina; Nagata, Kumiko; Kasahara, Emiko; Matsui, Hiroshi; Watanabe, Kunihiko; Inoue, Masayasu

    2009-01-01

    Gastro-intestinal mucosal cells have a potent mechanism to eliminate a variety of pathogens using enzymes that generate reactive oxygen species and/or nitric oxide (NO). However, a large number of bacteria survive in the intestine of human subjects. Enterococcus faecalis (E. faecalis) is a Gram-positive bacterium that survives not only in the intestinal lumen but also within macrophages generating NO. It has been reported that E. faecalis generated the superoxide radical (O2−). To elucidate the role of O2− and NO in the mechanism for the pathogen surviving in the intestine and macrophages, we studied the role and metabolism of O2− and NO in and around E. faecalis. Kinetic analysis revealed that E. faecalis generated 0.5 µmol O2−/min/108 cells in a glucose-dependent manner as determined using the cytochrome c reduction method. The presence of NOC12, an NO donor, strongly inhibited the growth of E. faecalis without affecting in the oxygen consumption. However, the growth rate of NOC12-pretreated E. faecalis in NO-free medium was similar to that of untreated cells. Western blotting analysis revealed that the NOC12-treated E. faecalis revealed a large amount of nitrotyrosine-posititive proteins; the amounts of the modified proteins were higher in cytosol than in membranes. These observations suggested that O2− generated by E. faecalis reacted with NO to form peroxinitrite (ONOO−) that preferentially nitrated tyrosyl residues in cytosolic proteins, thereby reversibly inhibited cellular growth. Since E. faecalis survives even within macrophages expressing NO synthase, similar metabolism of O2− and NO may occur in and around phagocytized macrophages. PMID:19308272

  4. Effects of photodynamic therapy on Enterococcus faecalis biofilms.

    PubMed

    López-Jiménez, L; Fusté, E; Martínez-Garriga, B; Arnabat-Domínguez, J; Vinuesa, T; Viñas, M

    2015-07-01

    Microbial biofilms are involved in almost all infectious pathologies of the oral cavity. This has led to the search for novel therapies specifically aimed at biofilm elimination. In this study, we used atomic force microscopy (AFM) to visualize injuries and to determine surface roughness, as well as confocal laser scanning microscopy (CLSM) to enumerate live and dead bacterial cells, to determine the effects of photodynamic therapy (PDT) on Enterococcus faecalis biofilms. The AFM images showed that PDT consisting of methylene blue and a 670-nm diode laser (output power 280 mW during 30 s) or toluidine blue and a 628-nm LED light (output power 1000 mW during 30 s) induced severe damage, including cell lysis, to E. faecalis biofilms, with the former also causing an important increase in surface roughness. These observations were confirmed by the increase in dead cells determined using CLSM. Our results highlight the potential of PDT as a promising method to achieve successful oral disinfection. PMID:25917515

  5. Maintenance and induction of naphthalene degradation activity in Pseudomonas putida and an Alcaligenes sp. under different culture conditions

    SciTech Connect

    Guerin, W.F.; Boyd, S.A.

    1995-11-01

    The expression of xenobiotic-degradative genes in indigenous bacteria or in bacteria introduced into an ecosystem is essential for the successful bioremediation of contaminated environments. The maintenance of naphthalene utilization activity is studied in Pseudomonas putida (ATCC 17484) and an Alcaligenes sp. (strain NP-Alk) under different batch culture conditions. Levels of activity decreased exponentially in stationary phase with half-lives of 43 and 13 h for strains ATCC 17484 nad NP-Alk, respectively. Activity half-lives were 2.7 and 5.3 times longer, respectively, in starved cultures than in stationary-phase cultures following growth on naphthalene. The treatment of starved cultures with chloramphenicol caused a loss of activity more rapid than that measured in untreated starved cultures, suggesting a continued enzyme synthesis in starved cultures in the absence of a substrate. Following growth in nutrient medium, activity decreased to undetectable levels in the Alcaligenes sp. but remained at measureable levels int he pseudomonad even after 9 months. The induction of naphthalene degradation activities in these cultures, when followed by radiorespirometry with {sup 14}C-labeled naphthalene as the substrate, was consistent with activity maintenance data. In the pseudomonad, naphthalene degradation activity was present constitutively at low levels under all growth conditions and was rapidly (in approximately 15 min) induced to high levels upon exposure to naphthalene. Adaptation in the uninduced Alcaligenes sp. occurred after many hours of exposure to naphthalene. In vivo labeling with {sup 35}S, to monitor the extent of de novo enzyme synthesis by naphthalene-challenged cells, provided an independent confirmation of the results. 43 refs., 9 figs., 1 tab.

  6. Sulphoacetaldehyde acetyltransferase yields acetyl phosphate: purification from Alcaligenes defragrans and gene clusters in taurine degradation.

    PubMed

    Ruff, Jürgen; Denger, Karin; Cook, Alasdair M

    2003-01-15

    The facultatively anaerobic bacterium Alcaligenes defragrans NKNTAU was found to oxidize taurine (2-aminoethanesulphonate) with nitrate as the terminal electron acceptor. Taurine was transaminated to 2-sulphoacetaldehyde. This was not converted into sulphite and acetate by a "sulphoacetaldehyde sulpho-lyase" (EC 4.4.1.12), but into sulphite and acetyl phosphate, which was identified by three methods. The enzyme, which required the addition of phosphate, thiamin diphosphate and Mg(2+) ions for activity, was renamed sulphoacetaldehyde acetyltransferase (Xsc; EC 2.3.1.-). Inducible Xsc was expressed at high levels, and a three-step 11-fold purification yielded an essentially homogeneous soluble protein, which was a homotetramer in its native form; the molecular mass of the subunit was found to be between about 63 kDa (SDS/PAGE) and 65.3 kDa (matrix-assisted laser-desorption ionization-time-of-flight MS). The N-terminal and two internal amino acid sequences were determined, and PCR primers were generated. The xsc gene was amplified and sequenced; the derived molecular mass of the processed protein was 65.0 kDa. The downstream gene presumably encoded the inducible phosphate acetyltransferase (Pta) found in crude extracts. The desulphonative enzymes ("EC 4.4.1.12") from Achromobacter xylosoxidans NCIMB 10751 and Desulfonispora thiosulfatigenes GKNTAU were shown to be Xscs. We detected at least three subclasses of xsc in Proteobacteria and in Gram-positive bacteria, and they comprised a distinct group within the acetohydroxyacid synthase supergene family. Genome sequencing data revealed xsc genes in Burkholderia fungorum (80% sequence identity) and Sinorhizobium meliloti (61%) with closely linked pta genes. Different patterns of regulation for the transport and dissimilation of taurine were hypothesized for S. meliloti and B. fungorum. PMID:12358600

  7. Sulphoacetaldehyde acetyltransferase yields acetyl phosphate: purification from Alcaligenes defragrans and gene clusters in taurine degradation.

    PubMed Central

    Ruff, Jürgen; Denger, Karin; Cook, Alasdair M

    2003-01-01

    The facultatively anaerobic bacterium Alcaligenes defragrans NKNTAU was found to oxidize taurine (2-aminoethanesulphonate) with nitrate as the terminal electron acceptor. Taurine was transaminated to 2-sulphoacetaldehyde. This was not converted into sulphite and acetate by a "sulphoacetaldehyde sulpho-lyase" (EC 4.4.1.12), but into sulphite and acetyl phosphate, which was identified by three methods. The enzyme, which required the addition of phosphate, thiamin diphosphate and Mg(2+) ions for activity, was renamed sulphoacetaldehyde acetyltransferase (Xsc; EC 2.3.1.-). Inducible Xsc was expressed at high levels, and a three-step 11-fold purification yielded an essentially homogeneous soluble protein, which was a homotetramer in its native form; the molecular mass of the subunit was found to be between about 63 kDa (SDS/PAGE) and 65.3 kDa (matrix-assisted laser-desorption ionization-time-of-flight MS). The N-terminal and two internal amino acid sequences were determined, and PCR primers were generated. The xsc gene was amplified and sequenced; the derived molecular mass of the processed protein was 65.0 kDa. The downstream gene presumably encoded the inducible phosphate acetyltransferase (Pta) found in crude extracts. The desulphonative enzymes ("EC 4.4.1.12") from Achromobacter xylosoxidans NCIMB 10751 and Desulfonispora thiosulfatigenes GKNTAU were shown to be Xscs. We detected at least three subclasses of xsc in Proteobacteria and in Gram-positive bacteria, and they comprised a distinct group within the acetohydroxyacid synthase supergene family. Genome sequencing data revealed xsc genes in Burkholderia fungorum (80% sequence identity) and Sinorhizobium meliloti (61%) with closely linked pta genes. Different patterns of regulation for the transport and dissimilation of taurine were hypothesized for S. meliloti and B. fungorum. PMID:12358600

  8. Structure of the 2,4′-dihydroxyacetophenone dioxygenase from Alcaligenes sp. 4HAP

    PubMed Central

    Keegan, R.; Lebedev, A.; Erskine, P.; Guo, J.; Wood, S. P.; Hopper, D. J.; Rigby, S. E. J.; Cooper, J. B.

    2014-01-01

    The enzyme 2,4′-dihydroxyacetophenone dioxygenase (DAD) catalyses the conversion of 2,4′-dihydroxyacetophenone to 4-hydroxybenzoic acid and formic acid with the incorporation of molecular oxygen. Whilst the vast majority of dioxygenases cleave within the aromatic ring of the substrate, DAD is very unusual in that it is involved in C—C bond cleavage in a substituent of the aromatic ring. There is evidence that the enzyme is a homotetramer of 20.3 kDa subunits, each containing nonhaem iron, and its sequence suggests that it belongs to the cupin family of dioxygenases. In this paper, the first X-ray structure of a DAD enzyme from the Gram-negative bacterium Alcaligenes sp. 4HAP is reported, at a resolution of 2.2 Å. The structure establishes that the enzyme adopts a cupin fold, forming dimers with a pronounced hydrophobic interface between the monomers. The catalytic iron is coordinated by three histidine residues (76, 78 and 114) within a buried active-site cavity. The iron also appears to be tightly coordinated by an additional ligand which was putatively assigned as a carbonate dianion since this fits the electron density optimally, although it might also be the product formate. The modelled carbonate is located in a position which is highly likely to be occupied by the α-hydroxyketone group of the bound substrate during catalysis. Modelling of a substrate molecule in this position indicates that it will interact with many conserved amino acids in the predominantly hydrophobic active-site pocket where it undergoes peroxide radical-mediated heterolysis. PMID:25195757

  9. Influence of different chemical treatments on transport of Alcaligenes paradoxus in porous media.

    PubMed Central

    Gross, M J; Logan, B E

    1995-01-01

    Seven chemicals, three buffers, and a salt solution known to affect bacterial attachment were tested to quantify their abilities to enhance the penetration of Alcaligenes paradoxus in porous media. Chemical treatments included Tween 20 (a nonionic surfactant that affects hydrophobic interactions), sodium dodecyl sulfate (an anionic surfactant), EDTA (a cell membrane permeabilizer that removes outer membrane lipopolysaccharides), sodium PPi (a surface charge modifier), sodium periodate (an oxidizer that cleaves surface polysaccharides), lysozyme (an enzyme that cleaves cell wall components), and proteinase K (a nonspecific protease that cleaves peptide bonds). Buffers included MOPS [3-(N-morpholino)propanesulfonic acid], Tris, phosphate, and an unbuffered solution containing only NaCl. Transport characteristics in the porous media were compared by using a sticking coefficient, alpha, defined as the rate at which particles stick to a grain of medium divided by the rate at which they strike the grain. Tween 20 reduced alpha by 2.5 orders of magnitude, to alpha = 0.0016, and was the most effective chemical treatment for decreasing bacterial attachment to glass beads in buffered solutions. Similar reductions in alpha were achieved in unbuffered solutions by reducing the solution ionic strength to 0.01 mM. EDTA, protease, and other treatments designed to alter cell structures did not reduce alpha by more than an order of magnitude. The number of bacteria retained by the porous media was decreased by treatments that made A. paradoxus more hydrophobic and less electrostatically charged, although alpha was poorly correlated with electrophoretic mobility and hydrophobicity index measurements at lower alpha values.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7646012

  10. Identification of a novel gene, aut, involved in autotrophic growth of Alcaligenes eutrophus.

    PubMed Central

    Freter, A; Bowien, B

    1994-01-01

    The aerobic facultative chemoautotroph Alcaligenes eutrophus was found to possess a novel gene, designated aut, required for both lithoautotrophic (hydrogen plus carbon dioxide) and organoautotrophic (formate) growth (Aut+ phenotype). Insertional mutagenesis by transposon Tn5-Mob localized the gene on a chromosomal 13-kbp EcoRI fragment. Physiological characterization of various Aut- mutants revealed pleiotropic effects caused by the transposon insertion. Heterotrophic growth of the mutants on substrates catabolized via the glycolytic pathway was slower than that of the parent strains, and the colony morphology of the mutants was altered when grown on nutrient agar. The heterotrophic derepression of the cbb operons encoding Calvin cycle enzymes was abolished, although their expression was still inducible in the presence of formate. Apparently, the mutation did not affect the cbb genes directly but impaired the autotrophic growth in a more general manner. The conjugally transferred wild-type EcoRI fragment allowed phenotypic in trans complementation of the mutants. Further subcloning and sequencing identified a single open reading frame (aut) of 495 bp that was sufficient for complementation. The monocistronic aut gene was constitutively transcribed into a 0.65-kb mRNA. However, its expression appeared to be low. Heterologous expression of aut was achieved in Escherichia coli, resulting in overproduction of an 18-kDa protein. Database searches yielded weak partial sequence similarities of the deduced Aut protein sequence to some cytidylyltransferases, but no indication for the exact function of the aut gene was obtained. Hybridizing DNA sequences that might be similar to the aut gene were detected by Southern hybridization in the genome of two other autotrophic bacteria. Images PMID:8071217

  11. The cbb operons of the facultative chemoautotroph Alcaligenes eutrophus encode phosphoglycolate phosphatase.

    PubMed Central

    Schäferjohann, J; Yoo, J G; Kusian, B; Bowien, B

    1993-01-01

    The two highly homologous cbb operons of Alcaligenes eutrophus H16 that are located on the chromosome and on megaplasmid pHG1 contain genes encoding several enzymes of the Calvin carbon reduction cycle. Sequence analysis of a region from the promoter-distal part revealed two open reading frames, designated cbbT and cbbZ, at equivalent positions within the operons. Comparisons with known sequences suggested cbbT to encode transketolase (TK; EC 2.2.1.1) as an additional enzyme of the cycle. No significant overall sequence similarities were observed for cbbZ. Although both regions exhibited very high nucleotide identities, 93% (cbbZ) and 96% (cbbT), only the chromosomally encoded genes were heterologously expressed to high levels in Escherichia coli. The molecular masses of the observed gene products, CbbT (74 kDa) and CbbZ (24 kDa), correlated well with the values calculated on the basis of the sequence information. TK activities were strongly elevated in E. coli clones expressing cbbT, confirming the identity of the gene. Strains of E. coli harboring the chromosomal cbbZ gene showed high levels of activity of 2-phosphoglycolate phosphatase (PGP; EC 3.1.3.18), a key enzyme of glycolate metabolism in autotrophic organisms that is not present in wild-type E. coli. Derepression of the cbb operons during autotrophic growth resulted in considerably increased levels of TK activity and the appearance of PGP activity in A. eutrophus, although the pHG1-encoded cbbZ gene was apparently not expressed. To our knowledge, this study represents the first cloning and sequencing of a PGP gene from any organism. Images PMID:8226680

  12. Dichotomous Metabolism of Enterococcus faecalis Induced by Hematin Starvation Modulates Colonic Gene Expression

    PubMed Central

    Allen, Toby D.; Moore, Danny R.; Wang, Xingmin; Casu, Viviana; May, Randal; Lerner, Megan R.; Houchen, Courtney; Brackett, Daniel J.; Huycke, Mark M.

    2009-01-01

    Summary Enterococcus faecalis is an intestinal commensal that cannot synthesize porphyrins and only expresses a functional respiratory chain when provided exogenous hematin. In the absence of hematin, E. faecalis reverts to fermentative metabolism and produces extracellular superoxide that can damage epithelial cell DNA. The acute response of the colonic mucosa to hematin-starved E. faecalis was identified by gene array. E. faecalis was inoculated into murine colons using a surgical ligation model that preserved tissue architecture and homeostasis. The mucosa was exposed to hematin-starved E. faecalis and compared to a control consisting of the same strain grown with hematin. At 1 hour post-inoculation six mucosal genes were differentially regulated and this increased to 42 genes at 6 hours. At 6 hours a highly significant biological interaction network was identified with functions that included NF-κB signaling, apoptosis, and cell cycle regulation. Colon biopsies showed no histological abnormalities by hematoxylin and eosin staining. Immunohistochemical staining, however, detected NF-κB activation in tissue macrophages using antibodies to the nuclear localization sequence for p65 and the F4/80 marker for murine macrophages. Similarly, hematin-starved E. faecalis strongly activated NF-κB in murine macrophages in vitro. Furthermore, primary and transformed colonic epithelial cells activated the G2/M checkpoint in vitro following exposure to hematin-starved E. faecalis. Modulation of this cell cycle checkpoint was due to extracellular superoxide produced as a result of the respiratory block in hematin-starved E. faecalis. These results demonstrate that the uniquely dichotomous metabolism of E. faecalis can significantly modulate gene expression in the colonic mucosa for pathways associated with inflammation, apoptosis, and cell cycle regulation. PMID:18809545

  13. Different extracts of Zingiber officinale decrease Enterococcus faecalis infection in Galleria mellonella.

    PubMed

    Maekawa, Lilian Eiko; Rossoni, Rodnei Dennis; Barbosa, Júnia Oliveira; Jorge, Antonio Olavo Cardoso; Junqueira, Juliana Campos; Valera, Marcia Carneiro

    2015-01-01

    Dried, fresh and glycolic extracts of Zingiber officinale were obtained to evaluate the action against G. mellonella survival assay against Enterococcus faecalis infection. Eighty larvae were divided into: 1) E. faecalis suspension (control); 2) E. faecalis + fresh extract of Z. officinale (FEO); 3) E. faecalis + dried extract of Z. officinale (DEO); 4) E. faecalis + glycolic extract of Z. officinale (GEO); 5) Phosphate buffered saline (PBS). For control group, a 5 μL inoculum of standardized suspension (107 cells/mL) of E. faecalis (ATCC 29212) was injected into the last left proleg of each larva. For the treatment groups, after E. faecalis inoculation, the extracts were also injected, but into the last right proleg. The larvae were stored at 37 °C and the number of dead larvae was recorded daily for 168 h (7 days) to analyze the survival curve. The larvae were considered dead when they did not show any movement after touching. E. faecalis infection led to the death of 85% of the larvae after 168 h. Notwithstanding, in treatment groups with association of extracts, there was an increase in the survival rates of 50% (GEO), 61% (FEO) and 66% (DEO) of the larvae. In all treatment groups, the larvae exhibited a survival increase with statistically significant difference in relation to control group (p=0.0029). There were no statistically significant differences among treatment groups with different extracts (p=0.3859). It may be concluded that the tested extracts showed antimicrobial activity against E. faecalis infection by increasing the survival of Galleria mellonella larvae. PMID:25831098

  14. Riboflavin-shuttled extracellular electron transfer from Enterococcus faecalis to electrodes in microbial fuel cells.

    PubMed

    Zhang, Enren; Cai, Yamin; Luo, Yue; Piao, Zhe

    2014-11-01

    Great attention has been focused on Gram-negative bacteria in the application of microbial fuel cells. In this study, the Gram-positive bacterium Enterococcus faecalis was employed in microbial fuel cells. Bacterial biofilms formed by E. faecalis ZER6 were investigated with respect to electricity production through the riboflavin-shuttled extracellular electron transfer. Trace riboflavin was shown to be essential for transferring electrons derived from the oxidation of glucose outside the peptidoglycan layer in the cell wall of E. faecalis biofilms formed on the surface of electrodes, in the absence of other potential electron mediators (e.g., yeast extract). PMID:25345758

  15. Specificity of induction of glycopeptide resistance genes in Enterococcus faecalis.

    PubMed Central

    Baptista, M; Depardieu, F; Courvalin, P; Arthur, M

    1996-01-01

    Regulation of VanA- and VanB-type glycopeptide resistance in enterococci is mediated by related two-component regulatory systems (VanR-VanS and VanRB-VanSB). The transglycosylase inhibitors vancomycin, teicoplanin, and moenomycin induced synthesis of the VanX D,D-dipeptidase in a VanA-type Enterococcus faecalis harboring transposon Tn1546. Inhibitors of reactions immediately preceding (ramoplanin) or following (penicillin G and bacitracin) transglycosylation were not inducers. These results identify accumulation of membrane-bound lipid intermediate II as a potential signal for induction of VanA-type resistance. In E.faecalis BM4281 harboring a wild vanB genetic element, D,D-dipeptidase synthesis was only inducible by vancomycin. Induction of the production of the VanB ligase by vancomycin was required for growth of a vancomycin-dependent derivative of BM4281, since introduction of a plasmid coding for constitutive synthesis of the VanA ligase eliminated the requirement of glycopeptide for growth. Both vancomycin and teicoplanin were able to induce D,D-dipeptidase synthesis in BM4281 derivatives that were vancomycin and teicoplanin resistant or vancomycin and teicoplanin dependent. Acquisition of teicoplanin resistance in the latter types of strains was due to alteration in induction specificity associated with an increase in the sensitivity of the regulatory system to vancomycin. Thus, the wild VanRB-VanSB system is unable or not sensitive enough to sense teicoplanin, although mutations can lead to recognition of this antibiotic. PMID:8891132

  16. Optimization of biodemulsifier production from Alcaligenes sp. S-XJ-1 and its application in breaking crude oil emulsion.

    PubMed

    Liu, Jia; Huang, Xiang-Feng; Lu, Li-Jun; Xu, Jing-Cheng; Wen, Yue; Yang, Dian-Hai; Zhou, Qi

    2010-11-15

    A biodemulsifier-producing strain of Alcaligenes sp. S-XJ-1, isolated from petroleum-contaminated soil of the Karamay Oilfield, exhibited excellent demulsifying ability. The application of this biodemulsifier significantly improved the quality of separated water compared with the chemical demulsifier, polyether, which clearly indicates that it has potential applications in the crude oil extraction industry. To optimize its biosynthesis, the impacts of carbon sources, nitrogen sources and pH were studied in detail. Paraffin, a hydrophobic carbon source, favored the synthesis of this cell wall associated biodemulsifier. The nitrogen source ammonium citrate stimulated the production and demulsifying performance of the biodemulsifier. An alkaline environment (pH 9.5) of the initial culture medium favored the strain's growth and improved its demulsifying ability. The results showed paraffin, ammonium citrate and pH had significant effects on the production of the biodemulsifier. These three variables were further investigated using a response surface methodology based on a central composite design to optimize the biodemulsifier yield. The optimal yield conditions were found at a paraffin concentration of 4.01%, an ammonium citrate concentration of 8.08 g/L and a pH of 9.35. Under optimal conditions, the biodemulsifier yield from Alcaligenes sp. S-XJ-1 was increased to 3.42 g/L. PMID:20702035

  17. Survival and activity of Streptococcus faecalis and escherichia coli in tropical freshwater

    SciTech Connect

    Muniz, I; Toranzos, G.A. ); Jimenez, L.; Hazen, T.C.

    1989-01-01

    The survival of Streptococcus faecalis and Escherichia coli was studied in situ in a tropical rain forest watershed using membrane diffusion chambers. Densities were determined by acridine orange direct count and Coulter Counter. Population activity was determined by microautoradiography, cell respiration, and by nucleic acid composition. Densities of S. faecalis and E. coli decreased less than 1 log unit after 105 hours as measured by direct count methods. Activity as measured by respiration, acridine orange activity, and microautoradiography indicated that both bacteria remained moderately active during the entire study. After 12 hours, E. coli was more active than S. faecalis as measured by nucleic acid composition. In this tropical rain forest watershed, E. coli and S. faecalis survived and remained active for more than 5 days; consequently, both would seem to be unsuitable as indicators of recent fecal contamination in tropical waters.

  18. Antimicrobial resistance and virulence of Enterococcus faecalis isolated from retail food

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although enterococci are considered opportunistic nosocomial pathogens, their contribution to food-borne illnesses via dissemination through retail food remains undefined. In this study, prevalence and association of antimicrobial resistance and virulence factors of 80 Enterococcus faecalis isolate...

  19. Draft Genome Sequence of an Enterococcus faecalis Strain Isolated from a Neonatal Blood Sepsis Patient.

    PubMed

    Kropp, K A; Lucid, A; Carroll, J; Belgrudov, V; Walsh, P; Kelly, B; Smith, C; Dickinson, P; O'Driscoll, A; Templeton, K; Ghazal, P; Sleator, R D

    2014-01-01

    Herein, we report the draft genome sequence of Enterococcus faecalis ED-NGS-1009, cultivated from a blood sample taken from a neonatal sepsis patient at the Royal Infirmary in Edinburgh, Scotland, United Kingdom. PMID:25212626

  20. Role of (p)ppGpp in Biofilm Formation by Enterococcus faecalis

    PubMed Central

    Lemos, José A.; Wickström, Claes; Sedgley, Christine M.

    2012-01-01

    Enterococcus faecalis strain OG1RF and its (p)ppGpp-deficient ΔrelA, ΔrelQ, and ΔrelA ΔrelQ mutants were grown in biofilms and evaluated for growth profiles, biofilm morphology, cell viability, and proteolytic activity. E. faecalis lacking (p)ppGpp had a diminished capacity to sustain biofilm formation over an extended period of time and expressed abundant proteolytic activity. PMID:22179256

  1. Antagonistic action of Streptococcus salivarius and Streptococcus faecalis to Mycobacterium tuberculosis.

    PubMed Central

    Darling, C L; Hart, G D

    1976-01-01

    Streptococcus salivarius and Streptococcus faecalis were found to inhibit the growth of Mycobacterium tuberculosis on Löwenstein-Jensen and Middlebrook 7H11 agars, but not on the latter medium when antibacterial drugs were added. S. faecalis was found to be more inhibitory than S. salivarius to 15 strains of M. tuberculosis. S. salivarius produced little or no inhibition of growth of Runyon group III organisms but was very antagonistic to Runyon group I mycobacteria. Images PMID:824304

  2. Efflux pump inhibitor potentiates antimicrobial photodynamic inactivation of Enterococcus faecalis biofilm.

    PubMed

    Kishen, Anil; Upadya, Megha; Tegos, George P; Hamblin, Michael R

    2010-01-01

    Microbial biofilm architecture contains numerous protective features, including extracellular polymeric material that render biofilms impermeable to conventional antimicrobial agents. This study evaluated the efficacy of antimicrobial photodynamic inactivation (aPDI) of Enterococcus faecalis biofilms. The ability of a cationic, phenothiazinium photosensitizer, methylene blue (MB) and an anionic, xanthene photosensitizer, rose bengal (RB) to inactivate biofilms of E. faecalis (OG1RF and FA 2-2) and disrupt the biofilm structure was evaluated. Bacterial cells were tested as planktonic suspensions, intact biofilms and biofilm-derived suspensions obtained by the mechanical disruption of biofilms. The role of a specific microbial efflux pump inhibitor (EPI), verapamil hydrochloride in the MB-mediated aPDI of E. faecalis biofilms was also investigated. The results showed that E. faecalis biofilms exhibited significantly higher resistance to aPDI when compared with E. faecalis in suspension (P < 0.001). aPDI with cationic MB produced superior inactivation of E. faecalis strains in a biofilm along with significant destruction of biofilm structure when compared with anionic RB (P < 0.05). The ability to inactivate biofilm bacteria was further enhanced when the EPI was used with MB (P < 0.001). These experiments demonstrated the advantage of a cationic phenothiazinium photosensitizer combined with an EPI to inactivate biofilm bacteria and disrupt biofilm structure. PMID:20860692

  3. Antimicrobial Effects of Four Intracanal Medicaments on Enterococcus Faecalis: An in Vitro Study

    PubMed Central

    Mozayeni, Mohammad Ali; Haeri, Ali; Dianat, Omid; Jafari, Ali Reza

    2014-01-01

    Introduction: The aim of this in vitro study was to evaluate the antimicrobial activity of four intracanal medicaments on Enterococcus Faecalis (E. Faecalis). Methods and Materials: Fifty extracted single-rooted human teeth were prepared with standard method. After contaminating the canals with E. Faecalis, the samples were divided into one control and four experimental groups (n=10). The teeth in each group were treated with one of the experimental medicaments, including calcium hydroxide (CH), 2% chlorhexidine gel (CHX), triple antibiotic paste (TAP) and nanosilver (NS). In control group, canals were filled with a neutral gel. Microbial samples were obtained from the roots after 7 days and optical density of the cultures was determined after 24 h of incubation. Optical density values were analyzed with one-way analysis of variance and Tukey’s post hoc tests. Results: CHX gel and TAP were significantly more effective against E. Faecalis than CH, which was also significantly more efficient than NS and normal saline. In the paper cone samples, CHX gel was more effective than TAP; however, samples obtained with sizes 2 and 4 Gate Glidden drills, indicated that TAP was much more efficient than CHX. Normal saline and NS had similar effects on E. Faecalis. Conclusion: NS gel was not efficient enough against E. Faecalis; however, TAP and CHX gel showed better antibacterial efficacy than CH and can be used as an alternative intracanal medicaments in root canal therapies. PMID:25031593

  4. Detection of Enterococcus faecalis in Necrotic Teeth Root Canals by Culture and Polymerase Chain Reaction Methods

    PubMed Central

    Cogulu, Dilsah; Uzel, Atac; Oncag, Ozant; Aksoy, Semiha C.; Eronat, Cemal

    2007-01-01

    Objectives The aim of this study was to investigate the presence of Enterococcus faecalis in endodontic infections in both deciduous and permanent teeth by culture and polymerase chain reaction (PCR) methods. Methods A total of 145 children aged 5–13 years old were involved in this study. The presence of E. faecalis in necrotic deciduous and permanent teeth root canals was studied using culture and polymerase chain reaction methods. Results Among 145 molar teeth, 57% (n=83) presented necrotic asymptomatic pulp tissues and were included in this study. Culture and PCR methods detected the test species in 18 and 22 of 83 teeth involved, respectively. E. faecalis was cultured from 8 (18%) of 45 necrotic deciduous teeth and from 10 (26%) of 38 necrotic permanent teeth. PCR detection identified the target species in 10 (22%) and 12 (32%) of necrotic deciduous and permanent teeth respectively. Statistically significant difference in the presence of E. faecalis in deciduous and permanent teeth was found by culture and PCR methods (P=0.03 and 0.02, respectively). The difference in the presence of E. faecalis between two different methods was not statistically significant (P>.05). Conclusions The results of the present study confirm that both culture and PCR methods are sensitive to detect E. faecalis in root canals. PMID:19212470

  5. Enterococcus faecalis 6-Phosphogluconolactonase Is Required for Both Commensal and Pathogenic Interactions with Manduca sexta

    PubMed Central

    Holt, Jonathan F.; Frank, Kristi L.; Du, Jing; Guan, Changhui; Handelsman, Jo

    2014-01-01

    Enterococcus faecalis is a commensal and pathogen of humans and insects. In Manduca sexta, E. faecalis is an infrequent member of the commensal gut community, but its translocation to the hemocoel results in a commensal-to-pathogen switch. To investigate E. faecalis factors required for commensalism, we identified E. faecalis genes that are upregulated in the gut of M. sexta using recombinase-based in vivo expression technology (RIVET). The RIVET screen produced 113 clones, from which we identified 50 genes that are more highly expressed in the insect gut than in culture. The most frequently recovered gene was locus OG1RF_11582, which encodes a 6-phosphogluconolactonase that we designated pglA. A pglA deletion mutant was impaired in both pathogenesis and gut persistence in M. sexta and produced enhanced biofilms compared with the wild type in an in vitro polystyrene plate assay. Mutation of four other genes identified by RIVET did not affect persistence in caterpillar guts but led to impaired pathogenesis. This is the first identification of genetic determinants for E. faecalis commensal and pathogenic interactions with M. sexta. Bacterial factors identified in this model system may provide insight into colonization or persistence in other host-associated microbial communities and represent potential targets for interventions to prevent E. faecalis infections. PMID:25385794

  6. Microbiologic Evaluation of Matricaria and Chlorhexidine against E. faecalis and C. albicans

    PubMed Central

    Rahman, Hena; Chandra, Anil

    2015-01-01

    Objective: To evaluate the antimicrobial activity of different concentrations of Matricaria chamomilla and Chlorhexidine gel against Candida albicans and Enterococcus faecalis. Materials and Methods: The agar diffusion test was used to evaluate the antimicrobial activity of 15%, 25% Matricaria chamomilla in aq. base and 2% chlorhexidine gel against C. albicans (ATCC 24433) and E. faecalis (ATCC 24212) strains. Vancomycin was used as the positive control for E. faecalis and fluconazole for C. albicans . The agar plates were incubated at 37°C for 48 h after which the zone of inhibition were measured separately for each material. Data thus obtained were statistically analyzed using the Wilcoxon rank–order test. Results: 2% chlorhexidine showed maximum inhibitory zone for C. albicans (33.26 mm) and E. faecalis (24.54 mm). 25% Matricaria showed zones of 24.16 mm and 20.62 mm for C. albicans and E. faecalis, respectively. 15% Matricaria did not show any antimicrobial activity (0 mm). Conclusion: The results of the current in vitro study suggest that 25% Matricaria can be used as an antimicrobial agent, but it is less effective than 2% chlorhexidine gluconate gel against C. albicans and E. faecalis. Matricaria at a lesser concentration of 15% aq. base is ineffective against both the microorganisms. PMID:26097333

  7. Ampicillin in Combination with Ceftaroline, Cefepime, or Ceftriaxone Demonstrates Equivalent Activities in a High-Inoculum Enterococcus faecalis Infection Model.

    PubMed

    Luther, Megan K; Rice, Louis B; LaPlante, Kerry L

    2016-05-01

    Ampicillin-ceftriaxone combination therapy has become a predominant treatment for serious Enterococcus faecalis infections, such as endocarditis. Unfortunately, ceftriaxone use is associated with future vancomycin-resistant enterococcus colonization. We evaluated E. faecalis in an in vitro pharmacodynamic model against simulated human concentration-time profiles of ampicillin plus ceftaroline, cefepime, ceftriaxone, or gentamicin. Ampicillin-cefepime and ampicillin-ceftaroline demonstrated activities similar to those of ampicillin-ceftriaxone against E. faecalis. PMID:26926624

  8. Rapid kill-novel endodontic sealer and Enterococcus faecalis.

    PubMed

    Beyth, Nurit; Kesler Shvero, Dana; Zaltsman, Nathan; Houri-Haddad, Yael; Abramovitz, Itzhak; Davidi, Michael Perez; Weiss, Ervin I

    2013-01-01

    With growing concern over bacterial resistance, the identification of new antimicrobial means is paramount. In the oral cavity microorganisms are essential to the development of periradicular diseases and are the major causative factors associated with endodontic treatment failure. As quaternary ammonium compounds have the ability to kill a wide array of bacteria through electrostatic interactions with multiple anionic targets on the bacterial surface, it is likely that they can overcome bacterial resistance. Melding these ideas, we investigated the potency of a novel endodontic sealer in limiting Enterococcus faecalis growth. We used a polyethyleneimine scaffold to synthesize nano-sized particles, optimized for incorporation into an epoxy-based endodontic sealer. The novel endodontic sealer was tested for its antimicrobial efficacy and evaluated for biocompatibility and physical eligibility. Our results show that the novel sealer foundation affixes the nanoparticles, achieving surface bactericidal properties, but at the same time impeding nanoparticle penetration into eukaryotic cells and thereby mitigating a possible toxic effect. Moreover, adequate physical properties are maintained. The nanosized quaternary amine particles interact within minutes with bacteria, triggering cell death across wide pH values. Throughout this study we demonstrate a new antibacterial perspective for endodontic sealers; a novel antibacterial, effective and safe antimicrobial means. PMID:24223159

  9. Reclassification of Acetomicrobium faecale as Caldicoprobacter faecalis comb. nov.

    PubMed

    Bouanane-Darenfed, Amel; Ben Hania, Wajdi; Cayol, Jean-Luc; Ollivier, Bernard; Fardeau, Marie-Laure

    2015-10-01

    Taking into account its phenotypical and genetic characteristics, Acetomicrobium faecale was first recognized as a member of the genus Acetomicrobium, family Bacteroidaceae, order Bacteroidales, phylum Bacteroidetes, with Acetomicrobium flavidum the type species of the genus. However, it was found that A. faecale had 95.8 %, 97.6 % and 98.4 % similarity, respectively, with Caldicoprobacter guelmensis, Caldicoprobacter algeriensis and Caldicoprobacter oshimai and only 82 % similarity with A. flavidum. The DNA G+C content of A. faecale is 45 mol , which is of the same order as the DNA G+C content of the three strains of species of the genus Caldicoprobacter and its main fatty acid is C16 : 0, with its second most prominent fatty acid, iso-C17 : 0, also common to strains of species of the genus Caldicoprobacter. On the basis of further phylogenetic, genetic and chemotaxonomic studies, we propose that A. faecale (type strain DSM 20678T = JCM 30420T) be reclassified as Caldicoprobacter faecalis comb. nov. PMID:26297233

  10. Characterization of Enterococcus faecalis Phage IME-EF1 and Its Endolysin

    PubMed Central

    Fan, Hang; An, Xiaoping; Zhang, Zhiyi; Chen, Jiankui; Tong, Yigang

    2013-01-01

    Enterococcus faecalis is increasingly becoming an important nosocomial infection opportunistic pathogen. E. faecalis can easily obtain drug resistance, making it difficult to be controlled in clinical settings. Using bacteriophage as an alternative treatment to drug-resistant bacteria has been revitalized recently, especially for fighting drug-resistant bacteria. In this research, an E. faecalis bacteriophage named IME-EF1 was isolated from hospital sewage. Whole genomic sequence analysis demonstrated that the isolated IME-EF1 belong to the Siphoviridae family, and has a linear double-stranded DNA genome consisting of 57,081 nucleotides. The IME-EF1 genome has a 40.04% G+C content and contains 98 putative coding sequences. In addition, IME-EF1 has an isometric head with a width of 35 nm to 60 nm and length of 75 nm to 90 nm, as well as morphology resembling a tadpole. IME-EF1 can adsorb to its host cells within 9 min, with an absorbance rate more than 99% and a latent period time of 25 min. The endolysin of IME-EF1 contains a CHAP domain in its N-terminal and has a wider bactericidal spectrum than its parental bacteriophage, including 2 strains of vancomycin-resistant E. faecalis. When administrated intraperitoneally, one dose of IME-EF1 or its endolysin can reduce bacterial count in the blood and protected the mice from a lethal challenge of E. faecalis, with a survival rate of 60% or 80%, respectively. Although bacteriophage could rescue mice from bacterial challenge, to the best of our knowledge, this study further supports the potential function of bacteriophage in dealing with E. faecalis infection in vivo. The results also indicated that the newly isolated bacteriophage IME-EF1 enriched the arsenal library of lytic E. faecalis bacteriophages and presented another choice for phage therapy in the future. PMID:24236180

  11. Role of house flies in the ecology of Enterococcus faecalis from wastewater treatment facilities.

    PubMed

    Doud, C W; Scott, H M; Zurek, L

    2014-02-01

    Enterococci are important nosocomial pathogens, with Enterococcus faecalis most commonly responsible for human infections. In this study, we used several measures to test the hypothesis that house flies, Musca domestica (L.), acquire and disseminate antibiotic-resistant and potentially virulent E. faecalis from wastewater treatment facilities (WWTF) to the surrounding urban environment. House flies and sludge from four WWTF (1-4) as well as house flies from three urban sites close to WWTF-1 were collected and cultured for enterococci. Enterococci were identified, quantified, screened for antibiotic resistance and virulence traits, and assessed for clonality. Of the 11 antibiotics tested, E. faecalis was most commonly resistant to tetracycline, doxycycline, streptomycin, gentamicin, and erythromycin, and these traits were intra-species horizontally transferrable by in vitro conjugation. Profiles of E. faecalis (prevalence, antibiotic resistance, and virulence traits) from each of WWTF sludge and associated house flies were similar, indicating that flies successfully acquired these bacteria from this substrate. The greatest number of E. faecalis with antibiotic resistance and virulence factors (i.e., gelatinase, cytolysin, enterococcus surface protein, and aggregation substance) originated from WWTF-1 that processed meat waste from a nearby commercial meat-processing plant, suggesting an agricultural rather than human clinical source of these isolates. E. faecalis from house flies collected from three sites 0.7-1.5 km away from WWTF-1 were also similar in their antibiotic resistance profiles; however, antibiotic resistance was significantly less frequent. Clonal diversity assessment using pulsed-field gel electrophoresis revealed the same clones of E. faecalis from sludge and house flies from WWTF-1 but not from the three urban sites close to WWTF-1. This study demonstrates that house flies acquire antibiotic-resistant enterococci from WWTF and potentially

  12. Transmission and genetic diversity of Enterococcus faecalis among layer chickens during hatch

    PubMed Central

    2011-01-01

    Background Studies on transmission of Enterococcus faecalis among chickens during hatch have not been carried out so far. Information about vertical transmission and subsequent spreading and colonization of the cloacal mucosa through cloacal 'drinking' during hatch are important to understand the epidemiology of E. faecalis infections. In the present investigation vertical transmission and subsequent spreading and colonization of the cloacal mucosa of chickens by E. faecalis through cloacal 'drinking' were examined. Methods Two different batches of layer chickens originating from 45 weeks old Brown and White Lohmann parents, respectively from the same farm were sampled in the hatcher. Isolates were confirmed to be E. faecalis by polymerase chain reaction (PCR) and further by multilocus sequence typing (MLST) to state their population structure and comparison made to sequence types previously obtained from chicken. Results A total of 480 chickens were swabbed from the cloacae just after hatch and after 24 hours. A total of 101 isolates were confirmed as E. faecalis by a species specific PCR. The prevalence of E. faecalis increased from 14% at 0 h to 97% after 24 h for the Brown Lohmann chickens and from 0.5% to 23% for the White Lohmann flock. The 84 isolates analysed by MLST were distributed on 14 sequence types (ST). Three ST (401, 82 and 249) accounted for 64% of all isolates analysed by MLST after 24 h. ST 82 has previously been reported from amyloid arthropathy and other lesions in poultry. Conclusions The present findings demonstrated a high potential of a few contaminated eggs or embryos to rapidly facilitate the spread of E. faecalis to almost all chickens during hatch. PMID:22017822

  13. Draft Genome Sequence of Aeribacillus pallidus Strain 8m3, a Thermophilic Hydrocarbon-Oxidizing Bacterium Isolated from the Dagang Oil Field (China)

    PubMed Central

    Poltaraus, Andrey B.; Sokolova, Diyana S.; Grouzdev, Denis S.; Ivanov, Timophey M.; Malakho, Sophia G.; Korshunova, Alena V.; Rozanov, Aleksey S.; Tourova, Tatiyana P.

    2016-01-01

    The draft genome sequence of Aeribacillus pallidus strain 8m3, a thermophilic aerobic oil-oxidizing bacterium isolated from production water from the Dagang high-temperature oil field, China, is presented here. The genome is annotated to provide insights into the genomic and phenotypic diversity of the genus Aeribacillus. PMID:27284131

  14. Confocal microscopy evaluation of the effect of irrigants on Enterococcus faecalis biofilm: An in vitro study.

    PubMed

    Flach, Nicole; Böttcher, Daiana Elisabeth; Parolo, Clarissa Cavalcanti Fatturi; Firmino, Luciana Bitello; Malt, Marisa; Lammers, Marcelo Lazzaron; Grecca, Fabiana Soares

    2016-01-01

    The purpose of this study was to evaluate in vitro the effectiveness of two endodontic irrigants and their association against Enterococcus faecalis (E. faecalis) by confocal laser scanning microscope (CLSM). Twenty-four bovine incisors were inoculated in a monoculture of E. faecalis for 21 days. After this period, the teeth were divided into three test groups (n = 5) according to the chemical used. Group 1: 2.5% sodium hypochlorite (NaOCl), group 2: 2% chlorhexidine gel (CHX), group 3: 2.5% NaOCl + 2% CHX gel, and two control groups (n = 3): negative control group (NCG)-sterile and without root canals preparation and positive control group (PCG)-saline. Then, the samples were stained with SYTO9 and propidium iodide and subjected to analysis by CLSM. Bacterial viability was quantitatively analyzed by the proportions of dead and live bacteria in the biofilm remnants. Statistical analysis was performed by the One-way ANOVA test (p = 0.05). No statistical differences were observed to bacterial viability. According to CLSM analysis, none of the tested substances could completely eliminate E. faecalis from the root canal space. Until now, there are no irrigant solutions able to completely eliminate E. faecalis from the root canal. In this regard, the search for irrigants able to intensify the antimicrobial action is of paramount importance. SCANNING 38:57-62, 2016. © 2015 Wiley Periodicals, Inc. PMID:26153228

  15. The in vitro Effect of Irrigants with Low Surface Tension on Enterococcus faecalis

    PubMed Central

    Giardino, Luciano; Estrela, Carlos; Generali, Luigi; Mohammadi, Zahed; Asgary, Saeed

    2015-01-01

    Introduction: Due to the complex anatomy of the root canal system and high surface tension of common root canal irrigants (RCI), conducting an investigation on RCIs containing surfactants is a priority. The aim of this in vitro study was to verify the antibacterial potential of RCI with low surface tension in root canals infected with Enterococcus faecalis (E. faecalis). Methods and Materials: Thirty-five extracted human maxillary anterior teeth were prepared and inoculated with E. faecalis for 60 days. After root canal preparation, the teeth were randomly divided to one positive and one negative control groups and 5 experimental groups: Hypoclean/Tetraclean NA, Hypoclean, Tetraclean, NaOCl/Tetraclean and NaOCl. Bacterial growth was observed by turbidity of culture medium and then measured using a UV spectrophotometer. Data were analyzed in three time intervals (pre-instrumentation and, 20 min and 72 h after canal preparation) using the ANOVA and post hoc Tukey’s tests. The level of significance was set at 0.05. Results: The results indicated the presence of E. faecalis in all post-irrigation samples irrespective of the RCI. However, the optical densities in both post-irrigation periods showed bacterial reduction and significant differences between groups. Conclusion: RCI with low surface tension showed antibacterial potential in E. faecalis infected roots. PMID:26229541

  16. Screening of Bacteriocin-producing Enterococcus faecalis Strains for Antagonistic Activities against Clostridium perfringens

    PubMed Central

    Kim, So-Young

    2014-01-01

    This study was conducted to isolate and characterize bacteriocin-producing bacteria against Clostridium perfringens (C. perfringens) from domestic animals to determine their usefulness as probiotics. Bacteriocin-producing bacteria were isolated from pig feces by the spot-on-lawn method. A total of 1,370 bacterial stains were isolated, and six were tentatively selected after identifying the inhibitory activity against the pathogenic indicator C. perfringens KCTC 3269 and KCTC 5100. The selected strains were identified as Enterococcus faecalis (E. faecalis) by 16s rRNA sequencing. Most of the isolated bacterial strains were resistant to 0.5% bile salts for 48 h and remained viable after 2 h at pH 3.0. Some E. faecalis also showed strong inhibitory activity against Listeria monocytogenes KCTC 3569, KCTC 3586 and KCTC 3710. In the present study, we finally selected E. faecalis AP 216 and AP 45 strain based on probiotic selection criteria such as antimicrobial activity against C. perfringens and tolerance to acid and bile salts. The bacteriocins of E. faecalis AP 216 and AP 45 strains were highly thermostable, showing anticlostridial activities even after incubation at 121℃ for 15 min. These bacteriocinproducing bacteria and/or bacteriocins could be used in feed manufacturing as probiotics as an alternative to antibiotics in the livestock industry. PMID:26761495

  17. Genetic relationships among Enterococcus faecalis isolates from different sources as revealed by multilocus sequence typing.

    PubMed

    Chen, X; Song, Y Q; Xu, H Y; Menghe, B L G; Zhang, H P; Sun, Z H

    2015-08-01

    Enterococcus faecalis is part of the natural gut flora of humans and other mammals; some isolates are also used in food production. So, it is important to evaluate the genetic diversity and phylogenetic relationships among E. faecalis isolates from different sources. Multilocus sequence typing protocol was used to compare 39 E. faecalis isolates from Chinese traditional food products (including dairy products, acidic gruel) and 4 published E. faecalis isolates from other sources including human-derived isolates employing 5 housekeeping genes (groEL, clpX, recA, rpoB, and pepC). A total of 23 unique sequence types were identified, which were grouped into 5 clonal complexes and 10 singletons. The value of standardized index of association of the alleles (IA(S)=0.1465) and network structure indicated a high frequency of intraspecies recombination across these isolates. Enterococcus faecalis lineages also exhibited clearly source-clustered distributions. The isolates from dairy source were clustered together. However, the relationship between isolates from acidic gruel and one isolate from a human source was close. The MLST scheme presented in this study provides a sharable and continuously growing sequence database enabling global comparison of strains from different sources, and will further advance our understanding of the microbial ecology of this important species. PMID:26074239

  18. Monoclonal antibodies recognizing the Enterococcus faecalis collagen-binding MSCRAMM Ace: conditional expression and binding analysis.

    PubMed

    Hall, Andrea E; Gorovits, Elena L; Syribeys, Peter J; Domanski, Paul J; Ames, Brenda R; Chang, Cathy Y; Vernachio, John H; Patti, Joseph M; Hutchins, Jeff T

    2007-01-01

    Enterococci are opportunistic pathogens known to cause numerous clinical infections and complications in humans. Adhesin-mediated binding to extracellular matrix (ECM) proteins of the host is thought to be a crucial step in the pathogenesis of these bacterial infections. Adhesin of collagen from Enterococcus faecalis (Ace) is a cell-wall anchored protein of E. faecalis that has been shown to be important for bacterial binding to the ECM. In this report, we characterize the conditions for Ace expression and demonstrate Ace binding to mammalian epithelial and endothelial cells as well as to collagens found in the ECM. To further characterize Ace expression and function, we report the generation of a panel of monoclonal antibodies (mAbs) directed against this important E. faecalis virulence factor. Through the use of multiple in vitro assays, surface plasmon resonance and flow cytometry, we have characterized this panel of mAbs which may prove to be not only beneficial in studies that address the precise biological role of adhesion of E. faecalis, but may also serve as beneficial therapeutic agents against E. faecalis infections. PMID:17521860

  19. A Rex Family Transcriptional Repressor Influences H2O2 Accumulation by Enterococcus faecalis

    PubMed Central

    Vesić, Dušanka

    2013-01-01

    Rex factors are bacterial transcription factors thought to respond to the cellular NAD+/NADH ratio in order to modulate gene expression by differentially binding DNA. To date, Rex factors have been implicated in regulating genes of central metabolism, oxidative stress response, and biofilm formation. The genome of Enterococcus faecalis, a low-GC Gram-positive opportunistic pathogen, encodes EF2638, a putative Rex factor. To study the role of E. faecalis Rex, we purified EF2638 and evaluated its DNA binding activity in vitro. EF2638 was able to bind putative promoter segments of several E. faecalis genes in an NADH-responsive manner, indicating that it represents an authentic Rex factor. Transcriptome analysis of a ΔEF2638 mutant revealed that genes likely to be involved in anaerobic metabolism were upregulated during aerobic growth, and the mutant exhibited an altered NAD+/NADH ratio. The ΔEF2638 mutant also exhibited a growth defect when grown with aeration on several carbon sources, suggesting an impaired ability to cope with oxidative stress. Inclusion of catalase in the medium alleviated the growth defect. H2O2 measurements revealed that the mutant accumulates significantly more H2O2 than wild-type E. faecalis. In summary, EF2638 represents an authentic Rex factor in E. faecalis that influences the production or detoxification of H2O2 in addition to its more familiar role as a regulator of anaerobic gene expression. PMID:23417491

  20. Synergistic Antibacterial Effect of the Combination of ε-Polylysine and Nisin against Enterococcus faecalis.

    PubMed

    Liu, Fang; Liu, Mei; Du, Lihui; Wang, Daoying; Geng, Zhiming; Zhang, Muhan; Sun, Chong; Xu, Xiaoxi; Zhu, Yongzhi; Xu, Weimin

    2015-12-01

    This study evaluated the antibacterial effect of the combination of ε-polylysine (ε-PL) and nisin against Enterococcus faecalis strains. The combination of ε-PL and nisin showed synergistic antibacterial activity against three Enterococcus strains. Scanning electron microscopy and a membrane permeability assay revealed that the combined treatment with ε-PL and nisin synergistically damaged the cell morphology of E. faecalis strain R612Z1 cells. Both ε-PL and nisin can dissipate the transmembrane electric potential of E. faecalis R612Z1 cells, but these peptides did not affect the transmembrane pH gradient. The combination of ε-PL and nisin can produce a high reactive oxygen species level in E. faecalis R612Z1 cells. The results indicated that the uptake of ε-PL into cells was promoted through nisin and that the combination of ε-PL and nisin could produce a high reactive oxygen species level in E. faecalis R612Z1 cells, leading to cell growth inhibition. PMID:26613915

  1. Proteolytic activity of Enterococcus faecalis VB63F for reduction of allergenicity of bovine milk proteins.

    PubMed

    Biscola, V; Tulini, F L; Choiset, Y; Rabesona, H; Ivanova, I; Chobert, J-M; Todorov, S D; Haertlé, T; Franco, B D G M

    2016-07-01

    With the aim of screening proteolytic strains of lactic acid bacteria to evaluate their potential for the reduction of allergenicity of the major bovine milk proteins, we isolated a new proteolytic strain of Enterococcus faecalis (Ent. faecalis VB63F) from raw bovine milk. The proteases produced by this strain had strong activity against caseins (αS1-, αS2-, and β-casein), in both skim milk and sodium caseinate. However, only partial hydrolysis of whey proteins was observed. Proteolysis of Na-caseinate and whey proteins, observed after sodium dodecyl sulfate-PAGE, was confirmed by analysis of peptide profiles by reversed-phase HPLC. Inhibition of proteolysis with EDTA indicated that the proteases produced by Ent. faecalis VB63F belonged to the group of metalloproteases. The optimal conditions for their activity were 42°C and pH 6.5. The majority of assessed virulence genes were absent in Ent. faecalis VB63F. The obtained results suggest that Ent. faecalis VB63F could be efficient in reducing the immunoreactivity of bovine milk proteins. PMID:27179865

  2. Identification of Polyketide Inhibitors Targeting 3-Dehydroquinate Dehydratase in the Shikimate Pathway of Enterococcus faecalis

    PubMed Central

    Hernandez-Valladares, Maria; Go, Maybelle Kho; Tung, Alvin; Aguda, Adeleke H.; Robinson, Robert C.; Yew, Wen Shan

    2014-01-01

    Due to the emergence of resistance toward current antibiotics, there is a pressing need to develop the next generation of antibiotics as therapeutics against infectious and opportunistic diseases of microbial origins. The shikimate pathway is exclusive to microbes, plants and fungi, and hence is an attractive and logical target for development of antimicrobial therapeutics. The Gram-positive commensal microbe, Enterococcus faecalis, is a major human pathogen associated with nosocomial infections and resistance to vancomycin, the “drug of last resort”. Here, we report the identification of several polyketide-based inhibitors against the E. faecalis shikimate pathway enzyme, 3-dehydroquinate dehydratase (DHQase). In particular, marein, a flavonoid polyketide, both inhibited DHQase and retarded the growth of Enterococcus faecalis. The purification, crystallization and structural resolution of recombinant DHQase from E. faecalis (at 2.2 Å resolution) are also reported. This study provides a route in the development of polyketide-based antimicrobial inhibitors targeting the shikimate pathway of the human pathogen E. faecalis. PMID:25072253

  3. In vitro activity of Amazon plant extracts against Enterococcus faecalis

    PubMed Central

    de Castilho, Adriana Lígia; da Silva, Juliana Paola Correa; Saraceni, Cintia Helena Coury; Díaz, Ingrit Elida Collantes; Paciencia, Mateus Luís Barradas; Varella, Antonio Drauzio; Suffredini, Ivana Barbosa

    2014-01-01

    Previous studies analyzing 2,200 plant extracts indicated anti-enterococcal activity in 25 extracts obtained from Brazilian forests’ plants. In the present study, these extracts were subjected to microdilution broth assay (MDBA) and disk diffusion assay (DDA) using planktonic Enterococcus faecalis ATCC® 29212™ and were submitted to phytochemical analysis in TLC and HPLC. Three extracts obtained from Ipomoea alba (MIC < 40 μg/mL), Diclinanona calycina (MIC ≤ 40 μg/mL) and Moronobea coccinea (40 < MIC < 80 μg/mL; MBC = 80 μg/mL) showed significant bactericidal activity in the MDBA and four extracts obtained from I. alba (14.04 ± 0.55 mm diameter) S. globulifera (14.43 ± 0.33 mm and 12.18 ± 0.28 mm diameter) and Connarus ruber var. ruber (13.13 ± 0.18 mm diameter) were active in DDA. Residues H2O obtained from Psidium densicomum (mean of 16.78 mm diameter) and from Stryphnodendron pulcherrimum (mean of 15.97 mm diameter) have shown an improved antibacterial activity after fractionation if compared to that obtained from the respective crude extracts. Antioxidant activity was observed in some residues of the active extracts. TLC analysis showed that phenolic compounds are likely to be found in active extracts. Three molecules were isolated from S. globulifera and were identified by 13C NMR lupeol, α-amyrin and 3β-hydroxyglutin-5-ene. The present chemical and biological findings suggest that these extracts are a potential source of new anti-Enterococcus compounds to be introduced in endodontic therapy. PMID:25477906

  4. Bactericidal Effects of Diode Laser Irradiation on Enterococcus faecalis Using Periapical Lesion Defect Model

    PubMed Central

    Nagayoshi, Masato; Nishihara, Tatsuji; Nakashima, Keisuke; Iwaki, Shigetsugu; Chen, Ker-Kong; Terashita, Masamichi; Kitamura, Chiaki

    2011-01-01

    Objective. Photodynamic therapy has been expanded for use in endodontic treatment. The aim of this study was to investigate the antimicrobial effects of diode laser irradiation on endodontic pathogens in periapical lesions using an in vitro apical lesion model. Study Design. Enterococcus faecalis in 0.5% semisolid agar with a photosensitizer was injected into apical lesion area of in vitro apical lesion model. The direct effects of irradiation with a diode laser as well as heat produced by irradiation on the viability of microorganisms in the lesions were analyzed. Results. The viability of E. faecalis was significantly reduced by the combination of a photosensitizer and laser irradiation. The temperature caused by irradiation rose, however, there were no cytotoxic effects of heat on the viability of E. faecalis. Conclusion. Our results suggest that utilization of a diode laser in combination with a photosensitizer may be useful for clinical treatment of periapical lesions. PMID:21991489

  5. Interference in Pheromone-Responsive Conjugation of a High-Level Bacitracin Resistant Enterococcus faecalis Plasmid of Poultry Origin

    PubMed Central

    Tremblay, Cindy-Love; Archambault, Marie

    2013-01-01

    The current study reports on contact interference of a high-level bacitracin- resistant pheromone-responsive plasmid of Enterococcus faecalis strain 543 of poultry origin during conjugative transfer of bcr antimicrobial resistance genes using a polyclonal antiserum aggregation substance44–560 (AS). After induction with pheromones produced by the recipient strain E. faecalis JH2-2, clumping of the donor E. faecalis strain 543 was observed as well as high transfer frequencies of bcr in short time broth mating. Filter mating assays from donor strain E. faecalis 543 to the recipient strain E. faecalis JH2-2 revealed conjugative transfer of asa1 (AS), bcrRAB and traB (negative regulator pheromone response) genes. The presence of these genes in transconjugants was confirmed by antimicrobial susceptibility testing, PCR, Southern hybridization and sequencing. A significant reduction in formation of aggregates was observed when the polyclonal anti-AS44–560 was added in the pheromone-responsive conjugation experiments as compared to the induced state. Moreover, interference of anti-AS44–560 antibodies in pheromone-responsive conjugation was demonstrated by a reduction in horizontal transfer of asa1 and bcr genes between E. faecalis strain 543 and E. faecalis JH2-2. Reducing the pheromone-responsive conjugation of E. faecalis is of interest because of its clinical importance in the horizontal transfer of antimicrobial resistance. PMID:24030654

  6. Effects of ionophores on Enterococcus faecalis and E. faecium growth in pure and mixed ruminal culture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enterococcus faecalis and faecium are Gram-positive human pathogens that can live in the gastrointestinal tract of food animals. Vancomycin-resistant enterococci (VRE) are an increasing threat to humans as a nosocomial infection, as well as a reservoir of antibiotic resistance genes. Ionophores ar...

  7. Antimicrobial Activity of Calcium Hydroxide and Betamethasone on Enterococcus faecalis; An in vitro Assessment

    PubMed Central

    Tabrizizadeh, Mahdi; Rasti, Mojtaba; Ayatollahi, Fatemeh; Mossadegh, Mohammad Hossein; Zandi, Hengameh; Dehghan, Farzad; Mousavi, Zohreh

    2015-01-01

    Introduction: Calcium hydroxide (CH) is one of the most common intracanal medications. Corticosteroids (CS) are used in endodontics because of their anti-inflammatory activity. This study aimed to evaluate the antimicrobial effect of CH+betamethasone and CH+saline against Enterococcus faecalis (E. faecalis) using agar diffusion test and measuring the microbial zone of inhibition (ZOI). Methods and Materials: Four plates containing Mueller-Hinton broth and E. faecalis culture media, were prepared. In each plate, 5 holes (5×3 mm) were created and a creamy mixture of CH+betamethasone was inserted into the holes (10 holes for each material). Two holes with ampicillin disks and two empty holes were used as negative and positive controls, respectively. Plates were incubated for 24 h and then the diameter of microbial ZOI was measured. The pH of each mixture was measured by pH meter. Data were analyzed using the Mann-Whitney U test. Results: The mean diameter of ZOI for CH+betamethasone and CH+saline was 3.4 and 3 mm, respectively. The difference was not significant (P=0.143). The pH was 12.5 for CH+saline and 12.3 CH+betamethasone, respectively. Conclusion: The mixture of CH+betamethasone had good antimicrobial effects against E. faecalis. Further studies are needed to confirm the value of this mixture in clinical settings. PMID:26213541

  8. An indigenous gut bacterium, Enterococcus faecalis (Lactobacillales: Enterococcaceae), increases seed consumption by Harpalus pensylvanicus (Coleoptera: Carabidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Harpalus pensylvanicus is a beneficial beetle contributing to insect control and seed predation in North American cropland. The bacterial endosymbiont Enterococcus faecalis is found in the intestinal tract of H. pensylvanicus and is thought to contribute to the digestion of the insect's seed diet. W...

  9. Study of invasion and colonization of E. faecalis in microtubes by a novel device.

    PubMed

    Sun, Xiaoqiang; Wang, Shujing; Yang, Yue; Luo, Chunxiong; Hou, Benxiang

    2016-10-01

    Enterococcus faecalis (E. faecalis) is a species that has frequently been isolated from root canal of patients suffering from persistent periodontitis. To a great degree, the resistance of E. faecalis to irrigating solutions and intracanal medicaments is due to its invasion into the dentinal tubules. In this study, we developed a device to observe the dynamic process of the bacterial invasion into microtubes. According to the diameter of the dentinal tubules and other microstructures in the root canals, we designed four different size microtubes with different lengths in this device. As expected, E. faecalis is able to steadily grow in this device and penetrate into the microtubes, and a continuous observation is achieved. We found that the depth and speed of bacterial penetration, the extent of colonization and the arrangement of the bacteria in the microtubes are strongly influenced by the size of the microtube. The length of the microtube also influences the speed and depth of the bacterial invasion. Bacteria in microtubes with a similar diameter to the real dentinal tubules showed a discontinuous distribution, which is consistent with the final bacterial distribution in the native dentinal tubules. Considering the device's advantages such as its ability to provide real-time observations, its ability to be modified as necessary, and its standardized operation, it has great potential to be widely used as a platform for the observation of the interaction of different bacteria during an invasion course and to test the efficacy of new antibacterial agents in dentistry. PMID:27540728

  10. Evaluation of the presence of Enterococcus Faecalis in root cementum: A confocal laser scanning microscope analysis

    PubMed Central

    Halkai, Rahul; Hegde, Mithra N; Halkai, Kiran

    2014-01-01

    Aim: The aim of this study is to address the cause of persistent infection of root cementum by Enterococcus faecalis. Materials and Methods: A sample of 60 human single-rooted teeth were divided into three groups. Group I (control group) had no access opening and one-third of the apical root cementum was sealed using varnish. Group II had no preparation of teeth samples. In group III, apical root cementum was exposed to organic acid and roughened using diamond point to mimic apical resorption. After access opening in groups II and III, all teeth samples were sterilized using gamma irradiation (25 kGy). E. faecalis broth was placed in the root canal and apical one-third of the tooth was immersed in the broth for 8 weeks with alternate day refreshment followed by biomechanical preparation, obturation and coronal seal. Apical one-third of all teeth samples were again immersed in the broth for 8 weeks with alternate day refreshment to mimic secondary infection. The samples were observed under a confocal microscope after splitting the teeth into two halves. Results: E. faecalis penetrated 160 μm deep into the root cementum in group III samples and only showed adhesion in group II samples. Conclusion: Penetration and survival of E. faecalis deep inside the cementum in extreme conditions could be the reason for persistent infection. PMID:24778505

  11. Antibacterial Effect of All-in-one Self-etch Adhesives on Enterococcus faecalis

    PubMed Central

    Ebrahimi Chaharom, Mohammad Esmaeel; Ajami, Amir Ahmad; Abed Kahnamouei, Mehdi; Jafari Navimipour, Elmira; Tehranchi, Pardis; Zand, Vahid; Sadeghi, Mohammad Reza; Sohrabi, Aydin

    2014-01-01

    Background and aims. The aim of this study was to evaluate the antibacterial activity of one-step self-etch adhesives on Enterococcus faecalis on days 1, 7 and 14 with the use of modified direct contact test. Materials and methods. The modified directcontact test was used to evaluate the antibacterial effect of Adper Easy One, Bond Force, Clearfil S3 Bond, Futurabond M, G-Bond, iBond and OptiBond All-in-one adhesives on Enterococcus faecalis after aging the samples in phosphate-buffered saline for one, seven and fourteen days. Data were analyzed using one-way ANOVA and post hoc Tukey tests. Aging effect of each adhesive was evaluated by paired-sample test. In this study, P<0.05 was considered significant. Results. All the tested adhesives exhibited antibacterial activity after one day and had significant differences with the positive control group (P<0.05). After one week, OptiBond All-in-one, iBond and Futurabond M exhibited significant differences in bacterial growth from other groups (P<0.05). There were no significant differences between the groups in two weeks (P>0.05). Conclusion. iBond exhibited the highest antibacterial effect on E. faecalis after one week. Futurabond and OptiBond All-in-one exhibited antibacterial effects against E. faecalis for one week. PMID:25587384

  12. Comparative Evaluation of Antimicrobial Efficacy of MTAD, 3% NaOCI and Propolis Against E Faecalis

    PubMed Central

    Dhanu; Chandra, Prakash; Anandakrishna, Latha; Dhananjaya

    2010-01-01

    Aim The present study sought to compare the antimicrobial efficacy of 3% NaOCl, Biopure MTAD (Tulsa Dentsply, Tulsa, OK) and Brazilian ethanolic extract of propolis (EEP) against Enterococcus faecalis (E. faecalis). Methodology The study utilized 55 extracted human permanent teeth with single root canal. The samples were decoronated, instrumented and sterilized. The teeth were infected with E faecalis for 48 hours. The teeth were divided randomly into 3 groups according to the irrigants used and kept in contact with the respective irrigant for 5 minutes. All the samples were incubated in brain heart infusion (BHI) broth for 96 hours. Disinfection of the samples was determined based on presence or absence of turbidity in the BHI broth 96 hours later. Statistical analysis was done using Chi-square test. Results All the samples treated with MTAD showed complete absence of turbidity, while all the 15 teeth treated with propolis showed presence of turbidity, 8 out of 15 teeth treated with NaOCl showed presence of turbidity. Statistical analysis of the data using chi-square test showed significant difference between the groups (P < 0.05). Conclusion The study concluded that MTAD was more effective than 3% NaOCl and propolis against E. faecalis.

  13. Survival and activity of Streptococcus faecalis and Escherichia coli in petroleum-contaminated tropical marine waters

    SciTech Connect

    Santo Domingo, J.W.; Fuentes, F.A.; Hazen, T.C.

    1987-12-31

    The in situ survival and activity of Streptococcus faecalis and Escherichia coli were studied using membrane diffusion chambers in tropical marine waters receiving oil refinery effluents. Protein synthesis, DNA synthesis, respiration or fermentation, INT reduced per cell, and ATP per cell were used to measure physiological activity. Cell densities decreased significantly over time at both sites for both S. faecalis and E. coli; however, no significant differences in survival pattern were observed between S. faecalis and E.coli. Differences in protein synthesis between the two were only observed at a study site which was not heavily oiled. Although fecal streptococci have been suggested as a better indicator of fecal contamination than fecal coliforms in marine waters, in this study both E. coli and S. faecalis survived and remained physiologically active for extended periods of time. These results suggest that the fecal streptococci group is not a better indicator of fecal contamination in tropical marine waters than the fecal coliform group, especially when that environment is high in long-chained hydrocarbons.

  14. Enterococcus faecalis sufCDSUB complements Escherichia coli sufABCDSE.

    PubMed

    Riboldi, Gustavo P; Larson, Timothy J; Frazzon, Jeverson

    2011-07-01

    Iron-sulfur [Fe-S] clusters are inorganic prosthetic groups that play essential roles in all living organisms. Iron and sulfur mobilization, formation of [Fe-S] clusters, and delivery to its final protein targets involves a complex set of specific protein machinery. Proteobacteria has three systems of [Fe-S] biogenesis, designated NIF, ISC, and SUF. In contrast, the Firmicutes system is not well characterized and has only one system, formed mostly by SUF homologs. The Firmicutes phylum corresponds to a group of pathological bacteria, of which Enterococcus faecalis is a clinically relevant representative. Recently, the E. faecalis sufCDSUB [Fe-S] cluster biosynthetic machinery has been identified, although there is no further information available about the similarities and/or variations of Proteobacteria and Firmicutes systems. The aim of the present work was to compare the ability of the different Proteobacteria and Firmicutes systems to complement the Azotobacter vinelandii and Escherichia coli ISC and SUF systems. Indeed, E. faecalis sufCDSUB is able to complement the E. coli SUF system, allowing viable mutants of both sufABCDSE and iscRSU-hscBA-fdx systems. The presence of all E. faecalis SUF factors enables proper functional interactions, which would not otherwise occur in proteins from different systems. PMID:21480963

  15. Genetic analysis of faropenem-resistant Enterococcus faecalis in urinary isolates.

    PubMed

    Hiraga, Noriyuki; Muratani, Tetsuro; Naito, Seiji; Matsumoto, Tetsuro

    2008-04-01

    We isolated faropenem-resistant Enterococcus faecalis in urine specimens and studied the mechanisms of resistance to faropenem in these isolates. Three mechanisms of penicillin resistance have been reported in E. faecalis; (1) beta-lactamase production, (2) overproduction of penicillin-binding protein (PBP) 4 or PBP5, and (3) decreasing affinities of penicillins for PBP4 by the occurrence of point mutations of the penicillin-binding domain. None of the E. faecalis isolates examined produced beta-lactamase or overproduced any PBPs, but the affinities of faropenem for PBP4 were decreased in faropenem-insensitive and -resistant strains. We found single amino acid substitutions at positions 475, 520 or 605 in PBP4 in the insensitive strains and two amino acid substitutions at positions 520 and 605 in PBP4 in the resistant strains by sequencing the entire pbp4 gene from each isolate. We conclude that development of resistance to faropenem in E. faecalis is due to decreasing affinities for PBP4 that are the result of the occurrence of one or two point mutations. PMID:18503200

  16. Effect of the quorum-sensing luxS gene on biofilm formation by Enterococcus faecalis.

    PubMed

    He, Zhiyan; Liang, Jingping; Zhou, Wei; Xie, Qian; Tang, Zisheng; Ma, Rui; Huang, Zhengwei

    2016-06-01

    Enterococcus faecalis is the species of bacterium most frequently isolated from the root canals of teeth that exhibit chronic apical periodontitis refractory to endodontic treatment. In this study, we evaluated the effect of the S-ribosylhomocysteine lyase (luxS) quorum-sensing gene on E. faecalis biofilm formation by constructing a knockout mutant. The biofilms formed by both E. faecalis and its luxS mutant strain were evaluated using the MTT method. Important parameters that influence biofilm formation, including cell-surface hydrophobicity and the nutrient content of the growth medium, were also studied. Biofilm structures were observed using confocal laser scanning microscopy (CLSM), and expression of biofilm-related genes was investigated using RT-PCR. The results showed that the luxS gene can affect biofilm formation, whereas it does not affect the bacterial growth rate. Deletion of the luxS gene also increased cell-surface hydrophobicity. Biofilm formation was accelerated by the addition of increasing concentrations of glucose. The CLSM images revealed that the luxS mutant strain tends to aggregate into distinct clusters and relatively dense structures, whereas the wild-type strain appears confluent and more evenly distributed. All genes examined were up-regulated in the biofilms formed by the luxS mutant strain. The quorum-sensing luxS gene can affect E. faecalis biofilm formation. PMID:27080421

  17. Antimicrobial activity of essential oils and chloroform alone and combinated with cetrimide against Enterococcus faecalis biofilm

    PubMed Central

    Ferrer Luque, Carmen Maria; González-Rodríguez, Maria Paloma; Arias-Moliz, Maria Teresa; Baca, Pilar

    2013-01-01

    Abstract The Enterococcus faecalis bacteria have been identified as the most commonly recovered species from teeth with persistent endodontic infections. The antimicrobial activity of essential oils and chloroform (CHL), alone and in association with various concentrations of cetrimide (CTR), against biofilm of Enterococcus faecalis was investigated. Solutions of CHL, eucalyptus oil (EO) and orange oil (OO) associated with CTR at 0.3%, 0.2%, 0.1%, and 0.05% were used to determine antimicrobial activity by exposing treated bovine dentine blocks to E. faecalis. Biofilms grown in the dentine blocks for 7 days were exposed to solutions for 2 and 5 min. Biofilm reduction between OO and EO at 2 min did not show any significant differences; however, OO had a higher kill percentage of biofilms than did the eucalyptus oil at 5 min (p < 0.01). Combinations with CTR at all concentrations achieved a 100% kill rate at 2 and 5 min. The association of CTR with solvent agents achieved the maximum antimicrobial activity against E. faecalis biofilms in dentine. PMID:24265917

  18. Antimicrobial Susceptibility Patterns of Enterococcus faecalis and Enterococcus faecium Isolated from Poultry Flocks in Germany.

    PubMed

    Maasjost, J; Mühldorfer, K; Cortez de Jäckel S; Hafez, H M

    2015-03-01

    Between 2010 and 2011, 145 Enterococcus isolates (Enterococcus faecalis, n = 127; Enterococcus faecium, n = 18) were collected during routine bacteriologic diagnostics from broilers, layers, and fattening turkeys in Germany showing various clinical signs. The susceptibility to 24 antimicrobial agents was investigated by broth microdilution test to determine minimum inhibitory concentrations (MICs). All E. faecalis isolates (n = 127) were susceptible to the beta-lactam antibiotics ampicillin, amoxicillin-clavulanic acid, and penicillin. Corresponding MIC with 50% inhibition (MIC50) and MIC with 90% inhibition (MIC90) values of these antimicrobial agents were at the lower end of the test range (≤ 4 μg/ml). In addition, no vancomycin-resistant enterococci (VRE) were found. High resistance rates were identified in both Enterococcus species for lincomycin (72%-99%) and tetracycline (67%-82%). Half or more than half of Enterococcus isolates were resistant to gentamicin (54%-72%) and the macrolide antibiotics erythromycin (44%-61%) and tylosin-tartate (44%-56%). Enterococcus faecalis isolated from fattening turkeys showed the highest prevalence of antimicrobial resistance compared to other poultry production systems. Eighty-nine out of 145 Enterococcus isolates were resistant to three or more antimicrobial classes. Again, turkeys stood out with 42 (8 1%) multiresistant isolates. The most-frequent resistance patterns of E. faecalis were gentamicin, lincomycin, and tetracycline in all poultry production systems. PMID:26292548

  19. Effectiveness of a high purity chlorine dioxide solution in eliminating intracanal Enterococcus faecalis biofilm.

    PubMed

    Herczegh, Anna; Ghidan, Agoston; Friedreich, Dóra; Gyurkovics, Milán; Bendő, Zsolt; Lohinai, Zsolt

    2013-03-01

    We investigated the effectiveness of chlorine dioxide (ClO2) solution in comparison to sodium hypochlorite (NaOCl) and chlorhexidine gluconate (CHX) in the elimination of intracanal Enterococcus faecalis biofilm. Extracted human teeth were inoculated with E. faecalis. After preparation the canals were irrigated with ClO2, NaOCl, CHX or physiologic saline for control. Two and five days later bacterial samples were collected and streaked onto Columbia agar. CFU/mL were counted. The canal walls were investigated by scanning electron microscopy (SEM). The gas phase was investigated in an upside down Petri dish where E. faecalis was inoculated onto blood agar. The irrigants were placed on absorbent paper into the cover. Bacteria were detectable in the control group, but not in any of the irrigants groups. There was a massive reinfection 2 or 5 days after irrigation in the control group. The lowest reinfection was found after the ClO2 treatment. These findings were confirmed by SEM images. We observed an antibacterial effect of ClO2 and NaOCl gas phases on E. faecalis growth, but not of CHX. ClO2 eliminates intracanal biofilm and keeps canal nearly free from bacteria. We suggest the use of high purity ClO2 as a root canal irrigant in clinical practice. PMID:23529300

  20. The Antibacterial Efficacy of Biopure MTAD in Root Canal Contaminated with Enterococcus faecalis

    PubMed Central

    Kamberi, Blerim; Bajrami, Donika; Stavileci, Miranda; Omeragiq, Shuhreta; Dragidella, Fatmir; Koçani, Ferit

    2012-01-01

    Aim. The purpose of this in vitro study was to assess the antimicrobial efficacy of Biopure MTAD against E. faecalis in contaminated root canals. Materials and Methods. Forty-two single rooted extracted human teeth were inoculated with E. faecalis and incubated for four weeks. The samples were divided in two control and five experimental groups irrigated with 1.5% sodium hypochlorite solution (NaOCl); 3% NaOCl; BioPure MTAD; 1.5% NaOCl/17% EDTA; or 3% NaOCl/17% EDTA. After a one-week incubation, complete disinfection was confirmed by the absence of turbidity in the incubation media. Dentin shavings were taken from samples with no turbidity to verify whether E. faecalis was present in dentin tubules. Results were analyzed statistically using Fisher's exact test, with the level of significance set at P < 0.05. Results. Statistical analysis of the data obtained at Day 7 and after dentin shaving analysis showed that BioPure MTAD had significantly greater antibacterial activity than 1.5% NaOCl, 1.5% NaOCl/17% EDTA and 3% NaOCl/17% EDTA. No significant difference was detected between MTAD and 3% NaOCl. Conclusions. These findings suggest that BioPure MTAD possesses superior bactericidal activity compared with NaOCl and EDTA against E. faecalis. PMID:22991671

  1. The Antibacterial Efficacy of Biopure MTAD in Root Canal Contaminated with Enterococcus faecalis.

    PubMed

    Kamberi, Blerim; Bajrami, Donika; Stavileci, Miranda; Omeragiq, Shuhreta; Dragidella, Fatmir; Koçani, Ferit

    2012-01-01

    Aim. The purpose of this in vitro study was to assess the antimicrobial efficacy of Biopure MTAD against E. faecalis in contaminated root canals. Materials and Methods. Forty-two single rooted extracted human teeth were inoculated with E. faecalis and incubated for four weeks. The samples were divided in two control and five experimental groups irrigated with 1.5% sodium hypochlorite solution (NaOCl); 3% NaOCl; BioPure MTAD; 1.5% NaOCl/17% EDTA; or 3% NaOCl/17% EDTA. After a one-week incubation, complete disinfection was confirmed by the absence of turbidity in the incubation media. Dentin shavings were taken from samples with no turbidity to verify whether E. faecalis was present in dentin tubules. Results were analyzed statistically using Fisher's exact test, with the level of significance set at P < 0.05. Results. Statistical analysis of the data obtained at Day 7 and after dentin shaving analysis showed that BioPure MTAD had significantly greater antibacterial activity than 1.5% NaOCl, 1.5% NaOCl/17% EDTA and 3% NaOCl/17% EDTA. No significant difference was detected between MTAD and 3% NaOCl. Conclusions. These findings suggest that BioPure MTAD possesses superior bactericidal activity compared with NaOCl and EDTA against E. faecalis. PMID:22991671

  2. Draft Genome Sequence for a Clinical Isolate of Vancomycin-Resistant Enterococcus faecalis.

    PubMed

    Erickson, Keesha E; Madinger, Nancy E; Chatterjee, Anushree

    2016-01-01

    We report here the draft genome sequence of a multidrug-resistant Enterococcus faecalis strain, isolated from a patient at the University of Colorado Hospital. The genome assembly is 3,040,186 bp in length with 37.6% GC content. This isolate encodes eleven resistance genes, including those for glycopeptide, aminoglycoside, macrolide-lincosamide-streptogramin, and tetracycline resistance. PMID:27340066

  3. Draft Genome Sequence for a Clinical Isolate of Vancomycin-Resistant Enterococcus faecalis

    PubMed Central

    Erickson, Keesha E.; Madinger, Nancy E.

    2016-01-01

    We report here the draft genome sequence of a multidrug-resistant Enterococcus faecalis strain, isolated from a patient at the University of Colorado Hospital. The genome assembly is 3,040,186 bp in length with 37.6% GC content. This isolate encodes eleven resistance genes, including those for glycopeptide, aminoglycoside, macrolide-lincosamide-streptogramin, and tetracycline resistance. PMID:27340066

  4. Prevalence of putative virulence factors and antimicrobial susceptibility of Enterococcus faecalis isolates from patients with dental Diseases

    PubMed Central

    Salah, Randa; Dar-Odeh, Najla; Abu Hammad, Osama; Shehabi, Asem A

    2008-01-01

    Background This study investigated the prevalence of Enterococcus faecalis, its putative virulence factors and antimicrobial susceptibility in individuals with and without dental diseases. A total of 159 oral rinse specimens were collected from patients (n = 109) suffering from dental diseases and healthy controls (n = 50). Results E. faecalis was detected using only culture in 8/109 (7.3%) of the patients with various types of dental diseases, whereas no E. faecalis was found in the healthy controls weather using both culture and PCR. Phenotype characterizations of the 8 E. faecalis isolates indicated that 25% of the isolates produced haemolysin and 37.5% produced gelatinase. Most important virulence genes; collagen binding protein (ace) and endocarditis antigen (efaA) were present in all 8 E. faecalis isolates, while haemolysin activator gene (cylA) was detected only in 25% of isolates, and all isolates were negative for esp gene. All E. faecalis isolates were 100% susceptible to ampicillin, chloramphenicol, ciprofloxacin, vancomycin, and teicoplanin, and to less extent to erythromycin (62.5%). Conclusion This study shows that all E. faecalis isolates were recovered only from patients with dental diseases especially necrotic pulps, and all isolates carried both collagen binding protein and endocarditis antigen genes and highly susceptible to frequently used antimicrobial drugs in Jordan. PMID:18513445

  5. Bacteriocin Protein BacL1 of Enterococcus faecalis Is a Peptidoglycan d-Isoglutamyl-l-lysine Endopeptidase*

    PubMed Central

    Kurushima, Jun; Hayashi, Ikue; Sugai, Motoyuki; Tomita, Haruyoshi

    2013-01-01

    Enterococcus faecalis strains are commensal bacteria in humans and other animals, and they are also the causative agent of opportunistic infectious diseases. Bacteriocin 41 (Bac41) is produced by certain E. faecalis clinical isolates, and it is active against other E. faecalis strains. Our genetic analyses demonstrated that the extracellular products of the bacL1 and bacA genes, which are encoded in the Bac41 operon, coordinately express the bacteriocin activity against E. faecalis. In this study, we investigated the molecular functions of the BacL1 and BacA proteins. Immunoblotting and N-terminal amino acid sequence analysis revealed that BacL1 and BacA are secreted without any processing. The coincidental treatment with the recombinant BacL1 and BacA showed complete bacteriocin activity against E. faecalis, but neither BacL1 nor BacA protein alone showed the bacteriocin activity. Interestingly, BacL1 alone demonstrated substantial degrading activity against the cell wall fraction of E. faecalis in the absence of BacA. Furthermore, MALDI-TOF MS analysis revealed that BacL1 has a peptidoglycan d-isoglutamyl-l-lysine endopeptidase activity via a NlpC/P60 homology domain. These results collectively suggest that BacL1 serves as a peptidoglycan hydrolase and, when BacA is present, results in the lysis of viable E. faecalis cells. PMID:24235140

  6. Application of waste frying oils in the biosynthesis of biodemulsifier by a demulsifying strain Alcaligenes sp. S-XJ-1.

    PubMed

    Liu, Jia; Peng, Kaiming; Huang, Xiangfeng; Lu, Lijun; Cheng, Hang; Yang, Dianhai; Zhou, Qi; Deng, Huiping

    2011-01-01

    Exploration of biodemulsifiers has become a new research aspect. Using waste frying oils (WFOs) as carbon source to synthesize biodemulsifiers has a potential prospect to decrease production cost and to improve the application of biodemulsifiers in the oilfield. In this study, a demulsifying strain, Alcaligenes sp. S-XJ-1, was investigated to synthesize a biodemulsifier using waste frying oils as carbon source. It was found that the increase of initial pH of culture medium could increase the biodemulsifier yield but decrease the demulsification ratio compared to that using paraffin as carbon source. In addition, a biodemulsifier produced by waste frying oils and paraffin as mixed carbon source had a lower demulsification capability compared with that produced by paraffin or waste frying oil as sole carbon source. Fed-batch fermentation of biodemulsifier using waste frying oils as supplementary carbon source was found to be a suitable method. Mechanism of waste frying oils utilization was studied by using tripalmitin, olein and tristearin as sole carbon sources to synthesize biodemulsifier. The results showed saturated long-chain fatty acid was difficult for S-XJ-1 to utilize but could effectively enhance the demulsification ability of the produced biodemulsifier. Moreover, FT-IR result showed that the demulsification capability of biodemulsifiers was associated with the content of C=O group and nitrogen element. PMID:22066226

  7. Phenazine-1-carboxylic acid mediated anti-oomycete activity of the endophytic Alcaligenes sp. EIL-2 against Phytophthora meadii.

    PubMed

    Abraham, Amith; Philip, Shaji; Jacob, Manoj Kurian; Narayanan, Sunilkumar Puthenpurackel; Jacob, C Kuruvilla; Kochupurackal, Jayachandran

    2015-01-01

    The oomycete pathogen, Phytophthora meadii, causes various diseases in Hevea brasiliensis at different stages of its life cycle. The study reports the structural characterization of the active principle from the culture filtrate of Alcaligenes sp. EIL-2 (GenBank ID: HQ641257) offering antagonistic activity against P. meadii. Gas Chromatography Mass Spectroscopy (GC-MS) analysis showed the similarity of the compound with phenazine derivatives. The specific representations of FT-IR spectrum such as 3200 cm(-1) (OH stretching, NH stretching and presence of aromatic ring), 1737 cm(-1) (carboxylic acid), 2200-2400 cm(-1) (conjugated dienes) and 1467 cm(-1), and 1422 cm(-1) (CN bonds) were an indicative of phenazine-1-carboxylic acid (PCA). The structure of the compound was further confirmed by (1)H NMR/(13)C NMR spectroscopy, DEPT experiments, and two-dimensional NMR spectral studies, including (1)H-(1)H COSY and (1)H-(13)C HSQC as PCA with the molecular formula of C₁₃H₈N₂O₂. P. meadii was sensitive to purified PCA extract from the endophyte and a concentration of 5 μg/ml completely inhibited the mycelia growth. PCA also showed zoosporicidal activity against P. meadii zoospores. This is the first study of this kind where PCA from an endophyte of H. brasiliensis is being confirmed to carry antagonistic activity against P. meadii. PMID:24985092

  8. Production and characterization of poly(3-hydroxybutyrate) generated by Alcaligenes latus using lactose and whey after acid protein precipitation process.

    PubMed

    Berwig, Karina Hammel; Baldasso, Camila; Dettmer, Aline

    2016-10-01

    Whey after acid protein precipitation was used as substrate for PHB production in orbital shaker using Alcaligenes latus. Statistical analysis determined the most appropriate hydroxide for pH neutralization of whey after protein precipitation among NH4OH, KOH and NaOH 10%w/v. The results were compared to those of commercial lactose. A scale-up test in a 4L bioreactor was done at 35°C, 750rpm, 7L/min air flow, and 6.5 pH. The PHB was characterized through Fourier Transform Infrared Spectroscopy, thermogravimetry and differential scanning calorimetry. NH4OH provided the best results for productivity (p), 0.11g/L.h, and for polymer yield, (YP/S), 1.08g/g. The bioreactor experiment resulted in lower p and YP/S. PHB showed maximum degradation temperature (291°C), melting temperature (169°C), and chemical properties similar to those of standard PHB. The use of whey as a substrate for PHB production did not affect significantly the final product quality. PMID:27347795

  9. Evaluation of screening methods for demulsifying bacteria and characterization of lipopeptide bio-demulsifier produced by Alcaligenes sp.

    PubMed

    Huang, Xiang-Feng; Liu, Jia; Lu, Li-Jun; Wen, Yue; Xu, Jing-Cheng; Yang, Dian-Hai; Zhou, Qi

    2009-02-01

    In this paper, surface tension measurement, oil-spreading test and blood-plate hemolysis test were attempted in the screening of demulsifying bacteria. After the comparison to the screening results obtained in demulsification test, 50 mN/m of surface tension of culture was proposed as a preliminary screening standard for potential demulsifying bacteria. For the identification of efficient demulsifying strains, surface tension level was set at 40 mN/m. The detected strains were further verified in demulsification test. Compared to using demulsification test alone as screening method, the proposed screening protocol would be more efficient. From the screening, a highly efficient demulsifying stain, S-XJ-1, was isolated from petroleum-contaminated soil and identified as Alcaligenes sp. by 16S rRNA gene and physiological test. It achieved 96.5% and 49.8% of emulsion breaking ratio in W/O and O/W kerosene emulsion within 24h, respectively, and also showed 95% of water separation ratio in oilfield petroleum emulsion within 2h. The bio-demulsifier was found to be cell-wall combined. After soxhlet extraction and purification through silicon-gel column, the bio-demulsifier was then identified as lipopeptide biosurfactant by TLC and FT-IR. PMID:18799309

  10. Recombination of a 3-chlorobenzoate catabolic plasmid from Alcaligenes eutrophus NH9 mediated by direct repeat elements.

    PubMed

    Ogawa, N; Miyashita, K

    1995-11-01

    Alcaligenes eutrophus NH9 was isolated from soil. This strain can utilize 3-chlorobenzoate (3-CB) as a sole source of carbon and energy. Most of the 3-CB-negative segregants had lost one of the plasmids present in the parent strain. The genes for catabolism of 3-CB were located within a 9.2-kb SacI fragment of this plasmid (pENH91). The genes were found to hybridize with genes for components of the modified ortho cleavage pathway from Pseudomonas putida. In one of the 3-CB-negative segregants, the plasmid had undergone the deletion of a segment with a size of about 12.5 kb that covered the catabolic genes. The deletion event seemed to be the result of reciprocal recombination between two highly homologous sequences with sizes of 2.5 kb that were present as a direct repeat at the two ends of the region that included the catabolic genes. Nucleotide sequence analysis of homologous fragments revealed a structure that resembled an insertion sequence and relatedness to IS21. During repeated subculturing of NH9 on liquid media with 3-CB, the culture was taken over by a derivative strain (designated NH9A) in which the degradative plasmid carried a duplicate copy of the 12.5-kb region that contained the catabolic genes. The duplication of these genes seemed again to have been mediated by recombination between the direct repeat sequences. PMID:8526487

  11. Construction and use of a gene bank of Alcaligenes eutrophus in the analysis of ribulose bisphosphate carboxylase genes.

    PubMed Central

    Andersen, K; Wilke-Douglas, M

    1984-01-01

    A gene bank of the DNA from the hydrogen bacterium Alcaligenes eutrophus ATCC 17707 was constructed in the broad host range cosmid vector pVK102 and established in Escherichia coli. A triparental replica plating procedure was developed to allow rapid screening of large numbers of isolated E. coli gene bank clones for complementation of A. eutrophus mutants. This procedure was used to identify hybrid cosmids that complemented CO2 fixation-negative (Cfx-), H2 uptake-negative (Hup-), and auxotrophic A. eutrophus mutants. The average insert DNA size in these hybrid cosmids was 22 kilobases. Nine hybrid cosmids that complemented ribulose bisphosphate carboxylase-negative (RuBPCase-) mutants were characterized. They fell into two distinct groups with respect to their restriction patterns. Complementing subclones from the two groups contained no common restriction fragments, but hybridization experiments indicated a high degree of sequence homology. Restriction fragments corresponding to one of the subclones were absent in total DNA from a cured strain that had lost plasmid pAE7, indigenous to the wild type. It is concluded that functional CO2 fixation genes in the A. eutrophus ATCC 17707 chromosome are reiterated on plasmid pAE7. Images PMID:6090401

  12. Sub-lethal stress effects on virulence gene expression in Enterococcus faecalis.

    PubMed

    Lenz, Christian A; Hew Ferstl, Carrie M; Vogel, Rudi F

    2010-05-01

    Enterococci are ubiquitous lactic acid bacteria commonly associated with the human digestive tract as commensal organisms. Additionally, these organisms have a long history of use in foods improving flavor as well as providing protective mechanisms as either a probiotic or antimicrobial additive. However, Enterococcus faecalis accounts for up to 10% of all nosocomial infections of the bloodstream, wounds, urinary tract and heart. Knowledge about the regulation of virulence factors is limited and the involvement of environmental signals contributing to E. faecalis pathogenicity is poorly documented. In this study, two clinical E. faecalis isolates, TMW 2.63 and OG1RF, as well as one food isolate, TMW 2.629, were subjected to six sub-lethal food- and host-related stresses including 6.8% NaCl, 200 ppm nitrite, 51 degrees C, 80 MPa, pH 4.1 and 0.08% bile salts (cholic acid:chenodeoxycholic acid 1:1), respectively, reducing their growth rate to 10%. Relative gene expression of 15 stress and virulence-associated genes including dnaK, groEL, ctsR, clpPBCEX, gls24, efaAfs, ace, fsrB, gelE, sprE and cylB, was quantified by using real time PCR and Lightcycler((R)) technology (reference conditions: BHI broth, 37 degrees C, pH = 7.4). Apart from strain-dependent differences, sub-lethal environmental stress was capable of provoking significant alterations in the expression of virulence-associated genes in E. faecalis from clinical as well as food origins of isolation. These results help to avoid preconditioning enterococci in food production processes and to understand the complex mechanisms in E. faecalis' switch to pathogenicity. PMID:20227595

  13. Enterococcus faecalis Glycolipids Modulate Lipoprotein-Content of the Bacterial Cell Membrane and Host Immune Response

    PubMed Central

    Otto, Andreas; Sava, Irina G.; Wobser, Dominique; Bao, Yinyin; Hese, Katrin; Broszat, Melanie; Henneke, Philipp; Becher, Dörte; Huebner, Johannes

    2015-01-01

    In this study, we investigated the impact of the cell membrane composition of E. faecalis on its recognition by the host immune system. To this end, we employed an E. faecalis deletion mutant (ΔbgsA) that does not synthesize the major cell membrane glycolipid diglycosyl-diacylglycerol (DGlcDAG). Proteomic analysis revealed that 13 of a total of 21 upregulated surface-associated proteins of E. faecalis ΔbgsA were lipoproteins. This led to a total lipoprotein content in the cell membrane of 35.8% in ΔbgsA compared to only 9.4% in wild-type bacteria. Increased lipoprotein content strongly affected the recognition of ΔbgsA by mouse macrophages in vitro with an increased stimulation of TNF-α production by heat-fixed bacteria and secreted antigens. Inactivation of the prolipoprotein diacylglycerol transferase (lgt) in ΔbgsA abrogated TNF-α induction by a ΔbgsA_lgt double mutant indicating that lipoproteins mediate increased activation of mouse macrophages by ΔbgsA. Heat-fixed ΔbgsA bacteria, culture supernatant, or cell membrane lipid extract activated transfected HEK cells in a TLR2-dependent fashion; the same was not true of wild-type bacteria. In mice infected intraperitoneally with a sublethal dose of E. faecalis we observed a 70% greater mortality in mice infected with ΔbgsA compared with wild-type-infected mice. Increased mortality due to ΔbgsA infection was associated with elevated plasma levels of the inflammatory cytokines TNF-α, IL-6 and MIP-2. In summary, our results provide evidence that an E. faecalis mutant lacking its major bilayer forming glycolipid DGlcDAG upregulates lipoprotein expression leading to increased activation of the host innate immune system and virulence in vivo. PMID:26172831

  14. Characterisation of the Plasmidome within Enterococcus faecalis Isolated from Marginal Periodontitis Patients in Norway

    PubMed Central

    Mikalsen, Theresa; Roberts, Adam P.; Sundsfjord, Arnfinn

    2013-01-01

    The present study aimed to identify and characterize plasmids in a national collection of oral Enterococcus faecalis (n = 106) isolated from patients with marginal periodontitis. Plasmid replicon typing was performed by multiplex-PCR and sequencing with specific primers for 18 rep-families and 1 unique sequence. Additional plasmid analysis by S1-PFGE was performed for comparison. Totally 120 plasmid replicon amplicons of seven rep-families were identified in 93 E. faecalis strains, e.g. rep9 (prototype pCF10), rep6 (prototype pS86), rep2 (prototype pRE25/pEF1), and rep8 (prototype pAM373). Rep9 was the most predominant rep-family being detected in 81 (76.4%) strains. Forty of these strains were tetracycline resistant and three were erythromycin resistant. Rep6 was the second predominant rep-family being detected in 22 (20.8%) strains. Rep2 was detected in eight (7.5%) strains. All rep2-positive strains were resistant to tetracycline and/or erythromycin and six of them contained Tn916/Tn1545 genes. The rep-positive E. faecalis exhibited divergence in multilocus sequence types (STs). There was a significant correlation between rep9 and ST21, while multiple rep-families appeared in ST40. Totally 145 plasmid bands were identified in 95 E. faecalis strains by S1-PFGE, 59 strains carrying one plasmid, 27 carrying two, five carrying three, three carrying four, and one strain carrying five plasmids. Plasmid sizes varied between 5–150 kbp. There was a significant correlation between the number of plasmids identified by PCR rep-typing and by S1-PFGE. The results indicate that the majority of E. faecalis of marginal periodontitis are likely to be a reservoir for diverse mobile genetic elements and associated antimicrobial resistance determinants. PMID:23646122

  15. Enterococcus faecalis subverts and invades the host urothelium in patients with chronic urinary tract infection.

    PubMed

    Horsley, Harry; Malone-Lee, James; Holland, David; Tuz, Madeleine; Hibbert, Andrew; Kelsey, Michael; Kupelian, Anthony; Rohn, Jennifer L

    2013-01-01

    Bacterial urinary tract infections (UTI) are a major growing concern worldwide. Uropathogenic Escherichia coli has been shown to invade the urothelium during acute UTI in mice and humans, forming intracellular reservoirs that can evade antibiotics and the immune response, allowing recurrence at a later date. Other bacterial species, such as Staphylococcus saprophyticus, Klebsiella pneumonia and Salmonella enterica have also been shown to be invasive in acute UTI. However, the role of intracellular infection in chronic UTI causing more subtle lower urinary tract symptoms (LUTS), a particular problem in the elderly population, is poorly understood. Moreover, the species of bacteria involved remains largely unknown. A previous study of a large cohort of non-acute LUTS patients found that Enterococcus faecalis was frequently found in urine specimens. E. faecalis accounts for a significant proportion of chronic bladder infections worldwide, although the invasive lifestyle of this uropathogen has yet to be reported. Here, we wanted to explore this question in more detail. We harvested urothelial cells shed in response to inflammation and, using advanced imaging techniques, inspected them for signs of bacterial pathology and invasion. We found strong evidence of intracellular E. faecalis harboured within urothelial cells shed from the bladder of LUTS patients. Furthermore, using a culture model system, these patient-isolated strains of E. faecalis were able to invade a transitional carcinoma cell line. In contrast, we found no evidence of cellular invasion by E. coli in the patient cells or the culture model system. Our data show that E. faecalis is highly competent to invade in this context; therefore, these results have implications for both the diagnosis and treatment of chronic LUTS. PMID:24363814

  16. Antimicrobial activity of herbal medicines (tulsi extract, neem extract) and chlorhexidine against Enterococcus faecalis in Endodontics: An in vitro study

    PubMed Central

    Chandrappa, Pradeep Muttagadur; Dupper, Akash; Tripathi, Pragya; Arroju, Ramakrishna; Sharma, Preeti; Sulochana, Konthoujam

    2015-01-01

    Background: Successful endodontic treatment depends on effective disinfection and complete sealing of root canal. Various medicaments are advised for disinfecting root canal, such as herbal and non-herbal medicaments. This study was done to assess the antimicrobial activity of herbal medicines (neem extract, tulsi extract) and chlorhexidine against Enterococcus faecalis in Endodontics. Materials and Methods: Agar diffusion method was used to evaluate the antimicrobial action of different medicines. Sixty samples were segregated into four groups with 15 samples in each: Group I: chlorhexidine 2%, Group II: neem extract, Group III: tulsi extract, and Group IV: distilled water. The inhibition zones against E. faecalis were recorded and statistically assessed using one-way analysis of variance (ANOVA) test (P < 0.05). Results: Significant antibacterial effect against E. faecalis was observed with chlorhexidine followed by neem extract and tulsi extract. Conclusion: Herbal medicines seemed to be effective against E. faecalis compared to 2% chlorhexidine gluconate. PMID:26942123

  17. An isobutyronitrile-induced bienzymatic system of Alcaligenes sp. MTCC 10674 and its application in the synthesis of α-hydroxyisobutyric acid.

    PubMed

    Bhatia, S K; Mehta, P K; Bhatia, R K; Bhalla, T C

    2013-05-01

    Alcaligenes sp. MTCC 10674 was isolated as acetone cyanohydrin hydrolyzing bacterium from soil of orchid gardens of Himachal Pradesh. Acetone cyanohydrin hydrolyzing activity of this organism comprised nitrile hydratase and amidase activities. It exhibited higher substrate specificity towards aliphatic hydroxynitrile (acetone cyanohydrin) in comparison to arylaliphatic hydroxynitrile. Isobutyronitrile (40 mM) acted as a carbon source as well as inducer for growth of Alcaligenes sp. MTCC 10674 and expression of acetone cyanohydrin hydrolyzing activity. Optimization of culture condition using response surface methodology increased acetone cyanohydrin hydrolyzing activity by 1.3-fold, while inducer mediation approach increased the activity by 1.2-fold. The half life of this enzyme was 25 h at 15 °C. V max and K m value for acetone cyanohydrin hydrolyzing enzyme was 0.71 μmol mg(-1) min(-1) and 14.3 mM, when acetone cyanohydrin was used as substrate. Acetone cyanohydrin hydrolyzing enzyme encountered product inhibition and IC50 and K i value were calculated to be 28 and 10.2 mM, respectively, when product α-hydroxyisobutyric acid was added in the reaction. Under optimized reaction conditions at 40 ml fed batch scale, 3 mg dcw ml (-) resting cells of Alcaligenes sp. MTCC 10674 fully converted 0.33 M acetone cyanohydrin into α-hydroxyisobutyric acid (1.02 g) in 6 h 40 min. The characterization of acetone cyanohydrins hydrolyzing activity revealed that it comprises bienzymatic nitrile hydrolyzing system, i.e. nitrile hydratase and amidase for the production of α-hydroxyisobutyric acid from acetone cyanohydrin and maximum 70 % yield is being reported for the first time. PMID:22945851

  18. Biofilm formation on polystyrene under different temperatures by antibiotic resistant Enterococcus faecalis and Enterococcus faecium isolated from food

    PubMed Central

    Marinho, A.R.; Martins, P.D.; Ditmer, E.M.; d’Azevedo, P.A.; Frazzon, J.; Van Der Sand, S.T.; Frazzon, A.P.G.

    2013-01-01

    The ability of antibiotic resistant E. faecalis and E. faecium isolated from food to form biofilm at different temperatures in the absence or presence of 0.75% glucose was evaluated. A synergistic effect on biofilm at 10 °C, 28 °C, 37 °C and 45 °C and glucose was observed for E. faecalis and E. faecium. PMID:24294231

  19. The Transcriptome of the Nosocomial Pathogen Enterococcus faecalis V583 Reveals Adaptive Responses to Growth in Blood

    PubMed Central

    Vebø, Heidi C.; Snipen, Lars; Nes, Ingolf F.; Brede, Dag A.

    2009-01-01

    Background Enterococcus faecalis plays a dual role in human ecology, predominantly existing as a commensal in the alimentary canal, but also as an opportunistic pathogen that frequently causes nosocomial infections like bacteremia. A number of virulence factors that contribute to the pathogenic potential of E. faecalis have been established. However, the process in which E. faecalis gains access to the bloodstream and establishes a persistent infection is not well understood. Methodology/Principal Findings To enhance our understanding of how this commensal bacterium adapts during a bloodstream infection and to examine the interplay between genes we designed an in vitro experiment using genome-wide microarrays to investigate what effects the presence of and growth in blood have on the transcriptome of E. faecalis strain V583. We showed that growth in both 2xYT supplemented with 10% blood and in 100% blood had a great impact on the transcription of many genes in the V583 genome. We identified several immediate changes signifying cellular processes that might contribute to adaptation and growth in blood. These include modulation of membrane fatty acid composition, oxidative and lytic stress protection, acquisition of new available substrates, transport functions including heme/iron transporters and genes associated with virulence in E. faecalis. Conclusions/Significance The results presented here reveal that cultivation of E. faecalis in blood in vitro has a profound impact on its transcriptome, which includes a number of virulence traits. Observed regulation of genes and pathways revealed new insight into physiological features and metabolic capacities which enable E. faecalis to adapt and grow in blood. A number of the regulated genes might potentially be useful candidates for development of new therapeutic approaches for treatment of E. faecalis infections. PMID:19888459

  20. Expression of the Escherichia coli pfkA gene in Alcaligenes eutrophus and in other gram-negative bacteria.

    PubMed

    Steinbüchel, A

    1986-04-01

    The Escherichia coli pfkA gene has been cloned in the non-self-transmissible vector pVK101 from hybrid plasmids obtained from the Clarke and Carbon clone bank, resulting in the plasmids pAS300 and pAS100; the latter plasmid also encoded the E. coli tpi gene. These plasmids were transferred by conjugation to mutants of Alcaligenes eutrophus which are unable to grow on fructose and gluconate due to lack of 2-keto-3-deoxy-6-phosphogluconate aldolase activity. These transconjugants recovered the ability to grow on fructose and harbored pAS100 or pAS300. After growth on fructose, the transconjugants contained phosphofructokinase at specific activities between 0.73 and 1.83 U/mg of protein, indicating that the E. coli pfkA gene is readily expressed in A. eutrophus and that the utilization of fructose occurs via the Embden-Meyerhof pathway instead of the Entner-Doudoroff pathway. In contrast, transconjugants of the wild type of A. eutrophus, which are potentially able to catabolize fructose via both pathways, grew at a decreased rate on fructose and during growth on fructose did not stably maintain pAS100 or pAS300. Indications for a glycolytic futile cycling of fructose 6-phosphate and fructose 1,6-bisphosphate are discussed. Plasmid pA 100 was also transferred to 14 different species of gram-negative bacteria. The pfkA gene was expressed in most of these species. In addition, most transconjugants of these strains and of A. eutrophus exhibited higher specific activities of triosephosphate isomerase than did the corresponding parent strains. PMID:2937774

  1. Identification and Imaging of Peptides and Proteins on Enterococcus faecalis Biofilms by Matrix Assisted Laser Desorption Ionization Mass Spectrometry

    PubMed Central

    Melvin Blaze, M. T.; Aydin, Berdan; Carlson, Ross; Hanley, Luke

    2013-01-01

    The heptapeptide ARHPHPH was identified from biofilms and planktonic cultures of two different strains of Enterococcus faecalis, V583 and ATCC 29212, using matrix assisted laser desorption ionization mass spectrometry (MALDI-MS). ARHPHPH was also imaged at the boundary of cocultured, adjacent E. faecalis and Escherichia coli (ATCC 25922) biofilms, appearing only on the E. faecalis side. ARHPHPH was proteolyzed from κ-casein, a component in the growth media, by E. faecalis microbes. Additionally, top down and bottom up proteomic approaches were combined to identify and spatially locate multiple proteins within intact E. faecalis V583 biofilms by MALDI-MS. The resultant tandem MS data were searched against the NCBInr E. faecalis V583 database to identify thirteen cytosolic and membrane proteins which have functional association with the cell surface. Two of these proteins, enolase and GAPDH, are glycolytic enzymes known to display multiple functions in bacterial virulence in related bacterial strains. This work illustrates a powerful approach for discovering and localizing multiple peptides and proteins within intact biofilms. PMID:22962657

  2. Cloning, purification, crystallization and preliminary crystallographic analysis of SecA from Enterococcus faecalis

    SciTech Connect

    Meining, Winfried; Scheuring, Johannes; Fischer, Markus; Weinkauf, Sevil

    2006-06-01

    SecA ATPase from E. faecalis has been cloned, overexpressed, purified and crystallized. Crystals belong to space group C2 and diffract to 2.4 Å resolution. The gene coding for SecA from Enterococcus faecalis was cloned and overexpressed in Escherichia coli. In this protein, the lysine at position 6 was replaced by an asparagine in order to reduce sensitivity towards proteases. The modified protein was purified and crystallized. Crystals diffracting to 2.4 Å resolution were obtained using the vapour-diffusion technique. The crystals belong to the monoclinic space group C2, with unit-cell parameters a = 203.4, b = 49.8, c = 100.8 Å, α = γ = 90.0, β = 119.1°. A selenomethionine derivative was prepared and is currently being tested in crystallization trials.

  3. Survival and activity of Streptococcus faecalis and Escherichia coli in tropical freshwater

    SciTech Connect

    Muniz, I.; Jimenez, L.; Toranzos, G.A.; Hazen, T.C.

    1988-12-31

    The survival of Streptococcus facecalis and Escherichia coli was studied in situ in a tropical rain forest watershed using membrane diffusion chambers. Densities were determined by acridine orange direct count and Coulter Counter. Population activity was determined by microautoradiography, cell respiration, and by nucleic acid composition. Densities of S. facecalis and E. coli decreased less than 1 log unit after 105 h as measured by direct count methods. Activity as measured by respiration, acridine orange activity, and microautoradiography indicated that both bacteria remained moderately active during the entire study. After 12 h, E. coli was more active than S. faecalis as measured by nucleic acid composition. E. coli and S. faecalis survived and remained active for more than 5 days. Consequently, both would seem to be unsuitable as indicators of recent fecal contamination in tropical waters.

  4. Epidemiology of Enterococcus faecalis urinary tract infection in a teaching hospital in London, United Kingdom.

    PubMed Central

    Hall, L M; Duke, B; Urwin, G; Guiney, M

    1992-01-01

    Enterococcus faecalis is a frequent cause of urinary tract infection in hospitalized patients. Recent reports have suggested that the organism may frequently be acquired by cross-infection from other patients. In this study, we used total DNA restriction patterns to type 135 urine isolates of E. faecalis from four sets of patients. Isolates were placed into types (all bands identical) and into groups (most bands identical). Most isolates were discriminated by the typing method, and the results suggested that direct cross-infection occurred rarely if at all. However, two groups of clonally related isolates occurred frequently in the urine specimens and also in feces from hospital-associated patients and were often associated with antibiotic resistance. Isolates from these two groups were found less frequently in feces from people not associated with the hospital. Images PMID:1500498

  5. Survival of Enterococcus faecalis in seawater microcosms is limited in the presence of bacterivorous zooflagellates.

    PubMed

    Hartke, A; Lemarinier, S; Pichereau, V; Auffray, Y

    2002-05-01

    The survival and persistence of growing and starved cells of Enterococcus faecalis in untreated and differentially filtered (20 microm, 5 microm, 3 microm, 1.2 microm, and 0.1 microm) seawater was analyzed in samples taken at different times over a 1-year period by plate counts and scanning electron microscopy. Whereas seawater filtered through a 0.1-microm mesh was not at all or only slightly bactericidal during incubation at 16 degrees C in the dark, culturability of E. faecalis in the other systems decreased as a function of increasing pore size of the filters. Recovery of culturable, glucose pre-starved cells was always higher than that of cells harvested from the exponential growth phase. Electron microscopic analysis showed that the disappearance of enterococci appeared related to the presence and multiplication of various zooflagellates. PMID:11927983

  6. Enterococcus faecalis cytolysin without effect on the intestinal growth of susceptible enterococci in mice.

    PubMed

    Huycke, M M; Joyce, W A; Gilmore, M S

    1995-07-01

    A murine model was developed to determine whether the Enterococcus faecalis cytolysin, through its bacteriolytic action on gram-positive bacteria, could promote intestinal overgrowth of cytolytic strains. Sets of E. faecalis strains with varying cytolytic production and susceptibility to cytolytic activity were mixed 1:1 and allowed to compete in vitro in broth or in vivo after orogastric administration in mice pretreated with antibiotics. In general, cytolytic strains outgrew, by as much as 2000-fold, competing cytolysin-susceptible or -hypersusceptible strains in vitro. In contrast, no growth advantage was observed in vivo, despite similar transient colonization of the murine intestinal tract by both cytolytic and cytolysin-susceptible strains. These data suggest that cytolysin plays little role in promoting intestinal overgrowth of enterococci through bacteriolytic activity. PMID:7797930

  7. Antibacterial Activity of Diode Laser and Sodium Hypochlorite in Enterococcus Faecalis-Contaminated Root Canals

    PubMed Central

    Sohrabi, Khosrow; Sooratgar, Aidin; Zolfagharnasab, Kaveh; Kharazifard, Mohammad Javad; Afkhami, Farzaneh

    2016-01-01

    Introduction: The aim of the present in vitro study was to evaluate the disinfection ability of 980-nm diode laser in comparison with sodium hypochlorite (NaOCl) as a common root canal irrigant in canals infected with Enterococcus faecalis (E. faecalis). Methods and Materials: The root canals of 18 extracted single-rooted premolars were prepared by rotary system. After decoronation, the roots were autoclaved. One specimen was chosen for the negative control, and the remaining teeth were incubated with E. faecalis suspension for two weeks. Subsequently, one specimen was selected as the positive control and the remaining samples were divided into two groups (n=8). The samples of the first group were irrigated with 5.25% NaOCl and the second group were treated with a 980-nm diode laser. Microbial samples were taken from the root canals and bacterial cultivation was carried out. The average value and the standard deviation of colony-forming units (CFU) of each specimen were measured using descriptive statistics. The student’s t-test was used to compare the reduction in CFU in each group. The equality of variance of CFU was measured by the Levene’s test. Results: NaOCl resulted in 99.87% removal of the bacteria and showed significantly more antibacterial effect compared to the 980-nm diode laser which led to 96.56% bacterial reduction (P<0.05). Conclusion: Although 5.25% NaOCl seems to reduce E. faecalis more effectively, the diode laser also reduced the bacterial count. Therefore a 980-nm diode laser could be considered as a complementary disinfection method in root canal treatment. PMID:26843870

  8. Global Regulation of Gene Expression by the MafR Protein of Enterococcus faecalis.

    PubMed

    Ruiz-Cruz, Sofía; Espinosa, Manuel; Goldmann, Oliver; Bravo, Alicia

    2015-01-01

    Enterococcus faecalis is a natural inhabitant of the human gastrointestinal tract. However, as an opportunistic pathogen, it is able to colonize other host niches and cause life-threatening infections. Its adaptation to new environments involves global changes in gene expression. The EF3013 gene (here named mafR) of E. faecalis strain V583 encodes a protein (MafR, 482 residues) that has sequence similarity to global response regulators of the Mga/AtxA family. The enterococcal OG1RF genome also encodes the MafR protein (gene OG1RF_12293). In this work, we have identified the promoter of the mafR gene using several in vivo approaches. Moreover, we show that MafR influences positively the transcription of many genes on a genome-wide scale. The most significant target genes encode components of PTS-type membrane transporters, components of ABC-type membrane transporters, and proteins involved in the metabolism of carbon sources. Some of these genes were previously reported to be up-regulated during the growth of E. faecalis in blood and/or in human urine. Furthermore, we show that a mafR deletion mutant strain induces a significant lower degree of inflammation in the peritoneal cavity of mice, suggesting that enterococcal cells deficient in MafR are less virulent. Our work indicates that MafR is a global transcriptional regulator. It might facilitate the adaptation of E. faecalis to particular host niches and, therefore, contribute to its potential virulence. PMID:26793169

  9. Global Regulation of Gene Expression by the MafR Protein of Enterococcus faecalis

    PubMed Central

    Ruiz-Cruz, Sofía; Espinosa, Manuel; Goldmann, Oliver; Bravo, Alicia

    2016-01-01

    Enterococcus faecalis is a natural inhabitant of the human gastrointestinal tract. However, as an opportunistic pathogen, it is able to colonize other host niches and cause life-threatening infections. Its adaptation to new environments involves global changes in gene expression. The EF3013 gene (here named mafR) of E. faecalis strain V583 encodes a protein (MafR, 482 residues) that has sequence similarity to global response regulators of the Mga/AtxA family. The enterococcal OG1RF genome also encodes the MafR protein (gene OG1RF_12293). In this work, we have identified the promoter of the mafR gene using several in vivo approaches. Moreover, we show that MafR influences positively the transcription of many genes on a genome-wide scale. The most significant target genes encode components of PTS-type membrane transporters, components of ABC-type membrane transporters, and proteins involved in the metabolism of carbon sources. Some of these genes were previously reported to be up-regulated during the growth of E. faecalis in blood and/or in human urine. Furthermore, we show that a mafR deletion mutant strain induces a significant lower degree of inflammation in the peritoneal cavity of mice, suggesting that enterococcal cells deficient in MafR are less virulent. Our work indicates that MafR is a global transcriptional regulator. It might facilitate the adaptation of E. faecalis to particular host niches and, therefore, contribute to its potential virulence. PMID:26793169

  10. Enterococcus faecalis Gene Transfer under Natural Conditions in Municipal Sewage Water Treatment Plants†

    PubMed Central

    Marcinek, Herbert; Wirth, Reinhard; Muscholl-Silberhorn, Albrecht; Gauer, Matthias

    1998-01-01

    The ability of Enterococcus faecalis to transfer various genetic elements under natural conditions was tested in two municipal sewage water treatment plants. Experiments in activated sludge basins of the plants were performed in a microcosm which allowed us to work under sterile conditions; experiments in anoxic sludge digestors were performed in dialysis bags. We used the following naturally occurring genetic elements: pAD1 and pIP1017 (two so-called sex pheromone plasmids with restricted host ranges, which are transferred at high rates under laboratory conditions); pIP501 (a resistance plasmid possessing a broad host range for gram-positive bacteria, which is transferred at low rates under laboratory conditions); and Tn916 (a conjugative transposon which is transferred under laboratory conditions at low rates to gram-positive bacteria and at very low rates to gram-negative bacteria). The transfer rate between different strains of E. faecalis under natural conditions was, compared to that under laboratory conditions, at least 105-fold lower for the sex pheromone plasmids, at least 100-fold lower for pIP501, and at least 10-fold lower for Tn916. In no case was transfer from E. faecalis to another bacterial species detected. By determining the dependence of transfer rates for pIP1017 on bacterial concentration and extrapolating to actual concentrations in the sewage water treatment plant, we calculated that the maximum number of transfer events for the sex pheromone plasmids between different strains of E. faecalis in the municipal sewage water treatment plant of the city of Regensburg ranged from 105 to 108 events per 4 h, indicating that gene transfer should take place under natural conditions. PMID:9464401

  11. Deactivation of Enterococcus Faecalis Bacteria by an Atmospheric Cold Plasma Brush

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Huang, Jun; Du, Ning; Liu, Xiao-Di; Lv, Guo-Hua; Wang, Xing-Quan; Zhang, Guo-Ping; Guo, Li-Hong; Yang, Si-Ze

    2012-07-01

    An atmospheric cold plasma brush suitable for large area and low-temperature plasma-based sterilization is designed and used to treat enterococcus faecalis bacteria. The results show that the efficiency of the inactivation process by helium plasma is dependent on applied power and exposure time. After plasma treatments, the cell structure and morphology changes can be observed by scanning electron microscopy. Optical emission measurements indicate that reactive species such as O and OH play a significant role in the sterilization process.

  12. Serum as a Factor Influencing Adhesion of Enterococcus faecalis to Glass and Silicone

    PubMed Central

    Gallardo-Moreno, Amparo M.; González-Martín, M. Luisa; Pérez-Giraldo, Ciro; Bruque, José M.; Gómez-García, Antonio C.

    2002-01-01

    The purpose of this work was to analyze the effect of serum on the physicochemical surface properties and adhesion to glass and silicone of Enterococcus faecalis ATCC 29212 at 37°C. As is presented using thermodynamics analysis, serum minimizes the interaction of cells with water, which correlates well with the increase in hydrophobicity and in bacterial adhesion to glass and silicone. PMID:12406782

  13. A comparison of monomicrobial versus polymicrobial Enterococcus faecalis bacteriuria in a French University Hospital.

    PubMed

    Fourcade, C; Canini, L; Lavigne, J-P; Sotto, A

    2015-08-01

    Enterococci are of considerable relevance in the hospital setting. Their most common location is the urinary tract, where they may be responsible for both colonization and infections. They are often associated with the presence of other microorganisms. The aim was to compare monomicrobial and polymicrobial Enterococcus faecalis bacteriuria. A retrospective study was performed on the demographic, clinical, and laboratory data of 299 patients who had presented with E. faecalis bacteriuria in 2012 at a University Hospital. The bacteriuria was polymicrobial in 46.1 % of cases and in 36.4 % of cases was responsible for a urinary tract infection. Infections appeared to be more prevalent in the polymicrobial than the monomicrobial group (42 % vs 32 %, p = 0.06). Half of the patients who presented with urinary tract colonization received antibiotic treatment (54/ out of 10). A multivariate analysis adjusted for age (adjusted odds ratio [AOR] = 1.02 per year, p = 0.006), gender (AOR = 2.2, p = 0.007), and clinical classification (colonization or infection, AOR = 1.6, p = 0.091), showed that diabetes mellitus (AOR = 2.0, p = 0.04), hospital length of stay exceeding 28 days (AOR = 2.0, p = 0.03), and presence of a urinary catheter (AOR = 2.4, p = 0.001) were all factors associated with polymicrobial E. faecalis bacteriuria. A reduction in the length of hospital stay and the use of urinary catheters would appear to be required to decrease the incidence of urinary tract colonization and infections by polymicrobial E. faecalis. Improper use of antibiotics to treat urinary tract colonization remains a major concern. PMID:25987245

  14. The Heterodimeric ABC Transporter EfrCD Mediates Multidrug Efflux in Enterococcus faecalis

    PubMed Central

    Hürlimann, Lea M.; Corradi, Valentina; Hohl, Michael; Bloemberg, Guido V.; Tieleman, D. Peter

    2016-01-01

    Nosocomial infections with Enterococcus faecalis are an emerging health problem. However, drug efflux pumps contributing to intrinsic drug resistance are poorly studied in this Gram-positive pathogen. In this study, we functionally investigated seven heterodimeric ABC transporters of E. faecalis that are annotated as drug efflux pumps. Deletion of ef0789-ef0790 on the chromosome of E. faecalis resulted in increased susceptibility to daunorubicin, doxorubicin, ethidium, and Hoechst 33342, and the corresponding transporter was named EfrCD. Unexpectedly, the previously described heterodimeric multidrug ABC transporter EfrAB contributes marginally to drug efflux in the endogenous context of E. faecalis. In contrast, heterologous expression in Lactococcus lactis revealed that EfrAB, EfrCD, and the product of ef2226-ef2227 (EfrEF) mediate the efflux of fluorescent substrates and confer resistance to multiple dyes and drugs, including fluoroquinolones. Four of seven transporters failed to exhibit drug efflux activity for the set of drugs and dyes tested, even upon overexpression in L. lactis. Since all seven transporters were purified as heterodimers after overexpression in L. lactis, a lack of drug efflux activity is not attributed to poor expression or protein aggregation. Reconstitution of the purified multidrug transporters EfrAB, EfrCD, and EfrEF in proteoliposomes revealed functional coupling between ATP hydrolysis and drug binding. Our analysis creates an experimental basis for the accurate prediction of drug efflux transporters and indicates that many annotated multidrug efflux pumps might be incapable of drug transport and thus might fulfill other physiological functions in the cell. PMID:27381387

  15. Antimicrobial Action of Oleanolic Acid on Listeria monocytogenes, Enterococcus faecium, and Enterococcus faecalis

    PubMed Central

    Kim, Sejeong; Lee, Heeyoung; Lee, Soomin; Yoon, Yohan; Choi, Kyoung-Hee

    2015-01-01

    This study investigated the antimicrobial action of oleanolic acid against Listeria monocytogenes, Enterococcus faecium, and Enterococcus faecalis. To determine the cytotoxicity of oleanolic acid, HEp-2 cells were incubated with oleanolic acid at 37oC. MICs (minimal inhibition concentrations) for L. monocytogenes, E. faecium, and E. faecalis were determined using two-fold microdilutions of oleanolic acid, and bacterial cell viability was then assessed by exposing the bacteria to oleanolic acid at 2 × MIC. To investigate the mode of antimicrobial action of oleanolic acid, we measured leakage of compounds absorbing at 280 nm, along with propidium iodide uptake. Scanning electron microscope (SEM) images were also analysed. The viability of HEp-2 cells decreased (P < 0.05) at oleanolic acid concentrations greater than 128 μg mL-1. The MICs were 16-32 μg mL-1 for L. monocytogenes and 32-64 μg mL-1 for E. faecium and E. faecalis, and bacterial cell viability decreased (P < 0.05) about 3-4 log CFU mL-1 after exposure to 2 × MIC of oleanolic acid. Leakage of 280 nm absorbing materials and propidium iodide uptake was higher in oleanolic acid –treated cells than in the control. The cell membrane was damaged in oleanolic acid-treated cells, but the control group had intact cell membrane in SEM images. The results indicate that oleanolic acid can kill L. monocytogenes, E. faecium, and E. faecalis by destroying the bacterial cell membrane. PMID:25756202

  16. Could β-hemolytic, group B Enterococcus faecalis be mistaken for Streptococcus agalactiae?

    PubMed

    Savini, Vincenzo; Gherardi, Giovanni; Marrollo, Roberta; Franco, Alessia; Pimentel De Araujo, Fernanda; Dottarelli, Samuele; Fazii, Paolo; Battisti, Antonio; Carretto, Edoardo

    2015-05-01

    A β-hemolytic Enterococcus faecalis strain agglutinating Lancefield group A, B, C, D, F, and G antisera was observed from a rectovaginal swab, in the context of antenatal screening for Streptococcus agalactiae (group B Streptococcus [GBS]). This is the first multi-Lancefield antisera-agglutinating isolate of this species, and it raised particular concern, as it may mimic GBS, leading to false reporting and useless receipt of intrapartum antibiotics. PMID:25766004

  17. Complete genome sequence of Enterococcus faecalis LD33, a bacteriocin-producing strain.

    PubMed

    Yuehua, Jiao; Lanwei, Zhang; Fei, Liu; Huaxi, Yi; Xue, Han

    2016-06-10

    Enterococcus faecalis LD33 strain was originally isolated from traditional naturally fermented cream in Inner Mongolia of China. Its complete genome sequence was carried out using the Illumina Hiseq and the PacBio RSII platform. The genome only has a circular chromosome and a GC content of 37.58%. Other core information shown in the genome sequencing results further insight on this bacterium's genetic elements for bacteriocin production and the genes related to respiratory chain. PMID:27090021

  18. The Heterodimeric ABC Transporter EfrCD Mediates Multidrug Efflux in Enterococcus faecalis.

    PubMed

    Hürlimann, Lea M; Corradi, Valentina; Hohl, Michael; Bloemberg, Guido V; Tieleman, D Peter; Seeger, Markus A

    2016-09-01

    Nosocomial infections with Enterococcus faecalis are an emerging health problem. However, drug efflux pumps contributing to intrinsic drug resistance are poorly studied in this Gram-positive pathogen. In this study, we functionally investigated seven heterodimeric ABC transporters of E. faecalis that are annotated as drug efflux pumps. Deletion of ef0789-ef0790 on the chromosome of E. faecalis resulted in increased susceptibility to daunorubicin, doxorubicin, ethidium, and Hoechst 33342, and the corresponding transporter was named EfrCD. Unexpectedly, the previously described heterodimeric multidrug ABC transporter EfrAB contributes marginally to drug efflux in the endogenous context of E. faecalis In contrast, heterologous expression in Lactococcus lactis revealed that EfrAB, EfrCD, and the product of ef2226-ef2227 (EfrEF) mediate the efflux of fluorescent substrates and confer resistance to multiple dyes and drugs, including fluoroquinolones. Four of seven transporters failed to exhibit drug efflux activity for the set of drugs and dyes tested, even upon overexpression in L. lactis Since all seven transporters were purified as heterodimers after overexpression in L. lactis, a lack of drug efflux activity is not attributed to poor expression or protein aggregation. Reconstitution of the purified multidrug transporters EfrAB, EfrCD, and EfrEF in proteoliposomes revealed functional coupling between ATP hydrolysis and drug binding. Our analysis creates an experimental basis for the accurate prediction of drug efflux transporters and indicates that many annotated multidrug efflux pumps might be incapable of drug transport and thus might fulfill other physiological functions in the cell. PMID:27381387

  19. The effect of different root canal medicaments on the elimination of Enterococcus faecalis ex vivo

    PubMed Central

    Dammaschke, Till; Jung, Nina; Harks, Inga; Schafer, Edgar

    2013-01-01

    Objective: The aim of this study was to evaluate the antimicrobial effect of chlorhexidine gel (CHX-G) 2%, chlorhexidine powder (CHX-P) 1%, povidone-iodine (PVP-I), polyhexanide and camphorated-and-mentholated chlorophenol (ChKM) ex vivo. Materials and Methods: For every medicament group 10 root segments (15 mm long) of extracted human teeth were prepared to ISO-size 45 and sterilized (n = 50). The root segments were then inoculated with Enterococcus faecalis and aerobically incubated at 37°C. After 1 week, ten root canals were filled with one of the medicaments, respectively and aerobically incubated at 37°C for another week. Ten teeth served as positive controls and were filled with sterile saline solution. After 7 days, the medicaments were inactivated and all root canals were instrumented to ISO-size 50. The obtained dentin samples were dispersed in Ringer solution followed by the preparation of serial dilutions. 10 μl per sample were applied to an agar plate and incubated at 37°C for 48 h. The colony forming units were counted and the reduction factors (RFs) were calculated and statistically analyzed. Results: Compared with the positive controls all medicaments exhibited an antibacterial effect against E. faecalis. The RFs for CHX-G, CHX-P and ChKM were significantly higher compared to PVP-I and polyhexanide (P < 0.05). In contrast to PVP-I and polyhexanide, CHX-G, CHX-P and ChKM were able to eliminate E. faecalis from all dentin samples. Conclusions: Within the limitations of this ex vivo investigation, 2% CHX-G and CHX-P were as effective as ChKM against E. faecalis. Thus, when choosing a root canal medicament the better biocompatibility of CHX compared with ChKM should be taken in consideration. PMID:24932119

  20. CRISPR-Cas and Restriction-Modification Act Additively against Conjugative Antibiotic Resistance Plasmid Transfer in Enterococcus faecalis

    PubMed Central

    Price, Valerie J.; Huo, Wenwen; Sharifi, Ardalan

    2016-01-01

    ABSTRACT Enterococcus faecalis is an opportunistic pathogen and a leading cause of nosocomial infections. Conjugative pheromone-responsive plasmids are narrow-host-range mobile genetic elements (MGEs) that are rapid disseminators of antibiotic resistance in the faecalis species. Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas and restriction-modification confer acquired and innate immunity, respectively, against MGE acquisition in bacteria. Most multidrug-resistant E. faecalis isolates lack CRISPR-Cas and possess an orphan locus lacking cas genes, CRISPR2, that is of unknown function. Little is known about restriction-modification defense in E. faecalis. Here, we explore the hypothesis that multidrug-resistant E. faecalis strains are immunocompromised. We assessed MGE acquisition by E. faecalis T11, a strain closely related to the multidrug-resistant hospital isolate V583 but which lacks the ~620 kb of horizontally acquired genome content that characterizes V583. T11 possesses the E. faecalis CRISPR3-cas locus and a predicted restriction-modification system, neither of which occurs in V583. We demonstrate that CRISPR-Cas and restriction-modification together confer a 4-log reduction in acquisition of the pheromone-responsive plasmid pAM714 in biofilm matings. Additionally, we show that the orphan CRISPR2 locus is functional for genome defense against another pheromone-responsive plasmid, pCF10, only in the presence of cas9 derived from the E. faecalis CRISPR1-cas locus, which most multidrug-resistant E. faecalis isolates lack. Overall, our work demonstrated that the loss of only two loci led to a dramatic reduction in genome defense against a clinically relevant MGE, highlighting the critical importance of the E. faecalis accessory genome in modulating horizontal gene transfer. Our results rationalize the development of antimicrobial strategies that capitalize upon the immunocompromised status of multidrug-resistant E. faecalis

  1. CRISPR-Cas and Restriction-Modification Act Additively against Conjugative Antibiotic Resistance Plasmid Transfer in Enterococcus faecalis.

    PubMed

    Price, Valerie J; Huo, Wenwen; Sharifi, Ardalan; Palmer, Kelli L

    2016-01-01

    Enterococcus faecalis is an opportunistic pathogen and a leading cause of nosocomial infections. Conjugative pheromone-responsive plasmids are narrow-host-range mobile genetic elements (MGEs) that are rapid disseminators of antibiotic resistance in the faecalis species. Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas and restriction-modification confer acquired and innate immunity, respectively, against MGE acquisition in bacteria. Most multidrug-resistant E. faecalis isolates lack CRISPR-Cas and possess an orphan locus lacking cas genes, CRISPR2, that is of unknown function. Little is known about restriction-modification defense in E. faecalis. Here, we explore the hypothesis that multidrug-resistant E. faecalis strains are immunocompromised. We assessed MGE acquisition by E. faecalis T11, a strain closely related to the multidrug-resistant hospital isolate V583 but which lacks the ~620 kb of horizontally acquired genome content that characterizes V583. T11 possesses the E. faecalis CRISPR3-cas locus and a predicted restriction-modification system, neither of which occurs in V583. We demonstrate that CRISPR-Cas and restriction-modification together confer a 4-log reduction in acquisition of the pheromone-responsive plasmid pAM714 in biofilm matings. Additionally, we show that the orphan CRISPR2 locus is functional for genome defense against another pheromone-responsive plasmid, pCF10, only in the presence of cas9 derived from the E. faecalis CRISPR1-cas locus, which most multidrug-resistant E. faecalis isolates lack. Overall, our work demonstrated that the loss of only two loci led to a dramatic reduction in genome defense against a clinically relevant MGE, highlighting the critical importance of the E. faecalis accessory genome in modulating horizontal gene transfer. Our results rationalize the development of antimicrobial strategies that capitalize upon the immunocompromised status of multidrug-resistant E. faecalis. IMPORTANCE

  2. Enterococcus faecalis Ebp pili are important for cell-cell aggregation and intraspecies gene transfer.

    PubMed

    La Rosa, Sabina Leanti; Montealegre, Maria Camila; Singh, Kavindra V; Murray, Barbara E

    2016-05-01

    Enterococcus faecalis is an opportunistic pathogen that ranks among the leading causes of biofilm-associated infections. We previously demonstrated that the endocarditis- and biofilm-associated pili (Ebp) of E. faecalis play a major role in biofilm formation, adherence to abiotic surfaces and experimental infections. In this study, derivatives of E. faecalis strain OG1 were engineered to further characterize functions of Ebp pili. Loss of pili resulted in a 36-fold decrease in the number of closely associated cells when OG1RFΔebpABC was mixed with OG1SSpΔebpABC, compared with mixing the Ebp+ parental strains. In addition, using the Ebp+ parental strains as donor and recipient, we found a statistically significant increase (280-360 %, P < 0.05) in the frequency of plasmid transfer versus using Ebp-  mutants in the conjugation experiments. These results demonstrate a previously unrecognized role of Ebp pili, namely, as important contributors to microscale cell aggregation and horizontal spread of genetic material. PMID:26967674

  3. Genome-based characterization of hospital-adapted Enterococcus faecalis lineages.

    PubMed

    Raven, Kathy E; Reuter, Sandra; Gouliouris, Theodore; Reynolds, Rosy; Russell, Julie E; Brown, Nicholas M; Török, M Estée; Parkhill, Julian; Peacock, Sharon J

    2016-01-01

    Vancomycin-resistant Enterococcus faecalis (VREfs) is an important nosocomial pathogen(1,2). We undertook whole genome sequencing of E. faecalis associated with bloodstream infection in the UK and Ireland over more than a decade to determine the population structure and genetic associations with hospital adaptation. Three lineages predominated in the population, two of which (L1 and L2) were nationally distributed, and one (L3) geographically restricted. Genome comparison with a global collection identified that L1 and L3 were also present in the USA, but were genetically distinct. Over 90% of VREfs belonged to L1-L3, with resistance acquired and lost multiple times in L1 and L2, but only once followed by clonal expansion in L3. Putative virulence and antibiotic resistance genes were over-represented in L1, L2 and L3 isolates combined, versus the remainder. Each of the three main lineages contained a mixture of vancomycin-resistant and -susceptible E. faecalis (VSEfs), which has important implications for infection control and antibiotic stewardship. PMID:27572164

  4. Enterococcus faecalis reconfigures its gene regulatory network activation under copper exposure

    PubMed Central

    Latorre, Mauricio; Galloway-Peña, Jessica; Roh, Jung Hyeob; Budinich, Marko; Reyes-Jara, Angélica; Murray, Barbara E.; Maass, Alejandro; González, Mauricio

    2014-01-01

    A gene regulatory network was generated in the bacterium Enterococcus faecalis in order to understand how this organism can activate its expression under different copper concentrations. The topological evaluation of the network showed common patterns described in other organisms. Integrating microarray experiments allowed the identification of sub-networks activated under low (0.05 mM CuSO4) and high (0.5 mM CuSO4) copper concentrations. The analysis indicates the presence of specific functionally activated modules induced by copper, highlighting the regulons LysR, ArgR as global regulators and CopY, Fur and LexA as local regulators. Taking advantage of the fact that E. faecalis presented a homeostatic module isolated, we produced an in vivo intervention removing this system from the cell without affecting the connectivity of the global transcriptional network. This strategy led us to find that this bacterium can reconfigure its gene expression to maintain cellular homeostasis, activating new modules principally related to glucose metabolism and transcriptional processes. Finally, these results position E. faecalis as the organism having the most complete and controllable systemic model of copper homeostasis available to date. PMID:24382465

  5. Antimicrobial activity of tetraacetylethylenediamine-sodium perborate versus sodium hypochlorite against Enterococcus faecalis

    PubMed Central

    Shakouie, Sahar; Salem Milani, Amin; Eskandarnejad, Mahsa; Rahimi, Saeed; Froughreyhani, Mohammad; Galedar, Saeede; Ranjbar, Ehsan

    2016-01-01

    Background. This study evaluated the antimicrobial activity of Tetraacetylethylenediamine-sodium perborate (TAED-SP) in comparison to 2.5% and 5% sodium hypochlorite (NaOCl) against Enterococcus faecalis. Methods. A standard suspension of E. faecalis was inoculated on 60 plates containing Mueller-Hinton agar culture medium. Four sterile disks of Beckman filtration paper were placed on each plate. TAED-SP, 5% and 2.5% NaOCl were placed on three disks. Sterile physiologic saline was placed on the fourth disk as negative control. After 24-hour incubation, the diameter of the inhibition zone around the disks was measured using a transparent ruler. One-way Analysis of Variance (ANOVA) was used to compare the mean zone of microbial growth in the groups. P-values less than 0.05 were considered statistically significant. Results. There was a significant difference in the diameter of the inhibition zones between groups (P < 0.05). The Tukey post hoc test showed a higher diameter of the inhibitory zone with TAED-SP than that of 2.5% NaOCl. However, there were no significant differences between the inhibitory zones of TAED-SP and 5% NaOCl. Conclusion. TAED-SP and 5% NaOCl have similar antibacterial activity against E. faecalis; however, TAED-SP has a greater antibacterial effect compared to 2.5% NaOCl. PMID:27092214

  6. In Vitro Antimicrobial Effect of a Cold Plasma Jet against Enterococcus faecalis Biofilms

    PubMed Central

    Jiang, Chunqi; Schaudinn, Christoph; Jaramillo, David E.; Webster, Paul; Costerton, J. William

    2012-01-01

    The hypothesis that a cold plasma jet has the antimicrobial effect against Enterococcus faecalis biofilms was tested in vitro. 27 hydroxyapatite discs were incubated with E. faecalis for six days to form a monoculture biofilm on the disc surface. The prepared substrata were divided into three groups: the negative control, the positive control (5.25% NaOCl solution), and the plasma treatment group. Resultant colony-forming unit counts were associated with observations of bacterial cell morphology changes using scanning electron microscopy (SEM). Treatment of E. faecalis biofilm with the plasma and 5.25% NaOCl for 5 min resulted in 93.1% and 90.0% kill (P < 0.0001), respectively. SEM detected that nearly no intact bacteria were discernible for the plasma-exposed HA disc surfaces. The demonstrated bactericidal effect of the plasma with direct surface contact may be due to the enhanced oxidation by the locally produced reactive plasma species. PMID:22461988

  7. Transcriptome profiling of TDC cluster deletion mutant of Enterococcus faecalis V583.

    PubMed

    Perez, Marta; Ladero, Victor; Del Rio, Beatriz; Redruello, Begoña; de Jong, Anne; Kuipers, Oscar P; Kok, Jan; Martin, M Cruz; Fernandez, Maria; Alvarez, Miguel A

    2016-09-01

    The species Enterococcus faecalis is able to catabolise the amino acid tyrosine into the biogenic amine tyramine by the tyrosine decarboxilase (TDC) pathway Ladero et al. (2012) [1]. The TDC cluster comprises four genes: tyrS, an aminoacyl-tRNA synthetase-like gene; tdcA, which encodes the tyrosine decarboxylase; tyrP, a tyrosine/tyramine exchanger gene and nhaC-2, which encodes an Na(+)/H(+) antiporter and whose role in the tyramine biosynthesis remains unknown [2]. In E. faecalis V583 the last three genes are co-transcribed as a single polycistronic mRNA forming the catabolic operon, while tyrS is transcribed independently of the catabolic genes as a monocistronic mRNA [2]. The catabolic operon is transcriptionally induced by tyrosine and acidic pH. On the opposite, the tyrS expression is repressed by tyrosine concentrations [2]. In this work we report the transcriptional profiling of the TDC cluster deletion mutant (E. faecalis V583 ΔTDC) [2] compared to the wild-type strain, both grown in M17 medium supplemented with tyrosine. The transcriptional profile data of TDC cluster-regulated genes were deposited in the Gene Expression Omnibus (GEO) database under accession no. GSE77864. PMID:27408815

  8. Involvement of PhoP-PhoS homologs in Enterococcus faecalis virulence.

    PubMed

    Teng, Fang; Wang, Ling; Singh, Kavindra V; Murray, Barbara E; Weinstock, George M

    2002-04-01

    Eleven PhoP-PhoS homolog pairs were identified by searching the Enterococcus faecalis V583 genome sequence database at The Institute for Genomic Research with the Bacillus subtilis PhoP-PhoS sequences. Each pair appears to be a potential two-component system composed of a response regulator and a sensor kinase. Seven of the homologs were disrupted in E. faecalis strain OG1RF. TX10293, a mutant disrupted in one of these genes (etaR, the first gene of the gene pair designated etaRS), showed delayed killing and a higher 50% lethal dose in a mouse peritonitis model. The predicted EtaR protein sequence showed greatest similarity to LisR of Listeria monocytogenes (77%) and CsrR of Streptococcus pyogenes (70%); EtaS is 53% similar to LisK and 54% similar to CsrS. When grown in vitro, the TX10293 mutant was more sensitive to low pH (pH 3.4) and more resistant to high temperature (55 degrees C) than wild-type OG1RF. In conclusion, many potential two-component systems are identified for E. faecalis, one of which, EtaRS, was shown to be involved in stress response and virulence. PMID:11895963

  9. Characterization of Small-Colony Variants of Enterococcus faecalis Isolated from Chickens with Amyloid Arthropathy▿

    PubMed Central

    Petersen, Andreas; Chadfield, Mark S.; Christensen, Jens P.; Christensen, Henrik; Bisgaard, Magne

    2008-01-01

    In this study we report the isolation and characterization of normal-sized and small-colony variants of Enterococcus faecalis from outbreaks of amyloid arthropathy in chickens. Postmortem examinations of 59 chickens revealed orange deposits in the knee joints, typical for amyloid arthropathy. Bacterial cultures from 102 joints and 43 spleens exhibited pure (n = 88) and mixed (n = 11) cultures of normal (n = 60) and pinpoint (n = 28) colonies of E. faecalis. Pulsed-field gel electrophoresis of 62 isolates demonstrated seven different band patterns with at most two band size variations, and multilocus sequence typing demonstrated two different sequence types, sharing six out of seven alleles, suggesting a close evolutionary relationship between isolates obtained from four outbreaks. In addition, all isolates were clonally related to an amyloid arthropathy reference strain from The Netherlands, previously shown to be globally dispersed. Initial investigation of the isolated small-colony variant phenotype revealed no difference in whole-cell protein profiling between normal and pinpoint colonies. However, the pinpoint colony isolates appeared to be more virulent in an in vivo challenge model in chickens than their normal-sized-colony counterparts. In addition, pinpoint morphology and associated slow growth were expressed without reversion after in vitro and in vivo passage, suggesting a genuine altered phenotype, and in some instances normal colonies converted to pinpoint morphology postinfection. In conclusion, small-colony variants of E. faecalis are described for the first time from veterinary clinical sources and in relation to amyloid arthropathy in chickens. PMID:18579713

  10. Inhibition of initial adhesion of uropathogenic Enterococcus faecalis by biosurfactants from Lactobacillus isolates.

    PubMed Central

    Velraeds, M M; van der Mei, H C; Reid, G; Busscher, H J

    1996-01-01

    In this study, 15 Lactobacillus isolates were found to produce biosurfactants in the mid-exponential and stationary growth phases. The stationary-phase biosurfactants from lactobacillus casei subsp. rhamnosus 36 and ATCC 7469, Lactobacillus fermentum B54, and Lactobacillus acidophilus RC14 were investigated further to determine their capacity to inhibit the initial adhesion of uropathogenic Enterococcus faecalis 1131 to glass in a parallel-plate flow chamber. The initial deposition rate of E. faecalis to glass with an adsorbed biosurfactant layer from L. acidophilus RC14 or L. fermentum B54 was significantly decreased by approximately 70%, while the number of adhering enterococci after 4 h of adhesion was reduced by an average of 77%. The surface activity of the biosurfactants and their activity inhibiting the initial adhesion of E. faecalis 1131 were retained after dialysis (molecular weight cutoff, 6,000 to 8,000) and freeze-drying. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy revealed that the freeze-dried biosurfactants from L. acidophilus RC14 and L. fermentum B54 were richest in protein, while those from L. casei subsp. rhamnosus 36 and ATCC 7469 had relatively high polysaccharide and phosphate contents. PMID:8787394

  11. Transcriptome Analysis of Enterococcus faecalis during Mammalian Infection Shows Cells Undergo Adaptation and Exist in a Stringent Response State

    PubMed Central

    Frank, Kristi L.; Colomer-Winter, Cristina; Grindle, Suzanne M.; Lemos, José A.; Schlievert, Patrick M.; Dunny, Gary M.

    2014-01-01

    As both a commensal and a major cause of healthcare-associated infections in humans, Enterococcus faecalis is a remarkably adaptable organism. We investigated how E. faecalis adapts in a mammalian host as a pathogen by characterizing changes in the transcriptome during infection in a rabbit model of subdermal abscess formation using transcriptional microarrays. The microarray experiments detected 222 and 291 differentially regulated genes in E. faecalis OG1RF at two and eight hours after subdermal chamber inoculation, respectively. The profile of significantly regulated genes at two hours post-inoculation included genes involved in stress response, metabolism, nutrient acquisition, and cell surface components, suggesting genome-wide adaptation to growth in an altered environment. At eight hours post-inoculation, 88% of the differentially expressed genes were down-regulated and matched a transcriptional profile consistent with a (p)ppGpp-mediated stringent response. Subsequent subdermal abscess infections with E. faecalis mutants lacking the (p)ppGpp synthetase/hydrolase RSH, the small synthetase RelQ, or both enzymes, suggest that intracellular (p)ppGpp levels, but not stringent response activation, influence persistence in the model. The ability of cells to synthesize (p)ppGpp was also found to be important for growth in human serum and whole blood. The data presented in this report provide the first genome-wide insights on E. faecalis in vivo gene expression and regulation measured by transcriptional profiling during infection in a mammalian host and show that (p)ppGpp levels affect viability of E. faecalis in multiple conditions relevant to mammalian infection. The subdermal abscess model can serve as a novel experimental system for studying the E. faecalis stringent response in the context of the mammalian immune system. PMID:25545155

  12. Uptake of benzoic acid and chloro-substituted benzoic acids by alcaligenes denitrificans BRI 3010 and BRI 6011

    SciTech Connect

    Miguez, C.B.; Ingram, J.M.; MacLeod, R.A.

    1995-12-01

    The mechanism of uptake of benzoic and 2,4-dichlorobenzoic acid (2,4-DCBA) by Alcaligenes denitrificans BRI 3010 and BRI 6011 and Pseudomonas sp. strain B13, three organisms capable of degrading isomers of chlorinated benzoic acids, was investigated. In all three organisms, uptake of benzoic acid was inducible. For benzoic acid uptake into BRI 3010, monophasic saturation kinetics with apparent K{sub m} and V{sub max} values of 1.4 {mu}M and 3.2 nmol/min/mg of cell dry weight, respectively, were obtained. For BRI 6011, biphasic saturation kinetics were observed, suggesting presence of two uptake systems for benzoic acid with distinct K{sub m} (0.72 and 5.3 {mu}M) and V{sub max} (3.3 and 4.6 nmol/min/mg of cell dry weight) values. BRI 3010 and BRI 6011 accumulated benzoic acid against a concentration gradient by a factor of 8 and 10, respectively. A wide range of structural analogs, at 50-fold excess concentrations, inhibited benzoic acid uptake by BRI 3010 and BRI 6011, whereas with B13, only 3-chlorobenzoic acid was an effective inhibitor. For BRI 3010 and BRI 6011, the inhibition by the structural analogs was not of a competitive nature. Uptake of benzoic acid by BRI 3010 and BRI 6011 was inhibited by KCN, by the protonophore 3,5,3`, 4`-tetrachlorosalicylanilide (TCS), and, for BRI 6011, by anaerobiosis unless nitrate was present, thus indicating that energy was required for the uptake process. Uptake of 2,4-DCBA by BRI 6011 was constitutive and saturation uptake kinetics were not observed. Uptake of 2,4-DCBA by BRI 6011 was inhibited by KCN, TCS, and anaerobiosis even if nitrate was present, but the compound was not accumulated intracellularly against a concentration gradient. Uptake of 2,4-DCBA by BRI 6011 appears to occur by passive diffusion into the cell down its concentration gradient, which is maintained by the intracellular metabolism of the compound. This process could play an important role in the degradation of xenobiotic compounds by microorganisms.

  13. Efficacy of polysaccharide from Alcaligenes xylosoxidans MSA3 administration as protection against γ-radiation in female rats.

    PubMed

    Hassan, Amal I; Ghoneim, Mona A M; Mahmoud, Manal G; Asker, Mohsen M S; Mohamed, Saher S

    2016-03-01

    Damage to normal tissues is a consequence of both therapeutic and accidental exposures to ionizing radiation. A water-soluble heteropolysaccharide called AXEPS, composed of glucose, galactose, rhamnose and glucouronic acid in a molar ratio of nearly 1.0:1.6:0.4:2.3, respectively, was isolated from culture medium of strain Alcaligenes xylosoxidans MSA3 by ethanol precipitation followed by freeze-drying. Chemical analysis, Fourier-transform infrared (FTIR) and chromatographic studies revealed that the molecular weight was 1.6 × 10(4) g mol(-1). This study was designed to investigate the radioprotective and biological effects of AXEPS in alleviating the toxicity of ionizing radiation in female albino rats. A total of 32 female albino rats were divided into four groups. In the control group, rats were administered vehicle by tube for four weeks. The second group was administered AXEPS (100 mg/kg) orally by gavage for four weeks. Animals in the third group were exposed to whole-body γ-rays (5 Gy) and remained for 2 weeks without treatment. The fourth group received AXEPS (100 mg/kg) orally by gavage for two weeks before being exposed to whole-body γ-rays (5 Gy), then 24 h post γ-rays, they received AXEPS (100 mg/kg) in a treatment continuing till the end of the experiment (15 days after the whole-body γ-irradiation). Oral administration of AXEPS (100 mg/kg) significantly reversed the oxidative stress effects of radiation, as evidenced by the decrease in DNA damage in the bone marrow. Assessment of apoptosis and cell proliferation markers revealed that caspase-3 significantly increased in the irradiated group. Moreover, a significant decrease in the hematological constituents of peripheral blood, the chemotactic index and CD8+ T cells were observed in animals in the irradiation-only group, whereas an increase in the lymphocyte index was observed in animals in that group. In contrast, AXEPS treatment prevented these alterations. From our results, we conclude that

  14. Metabolic pathway for biosynthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from 4-hydroxybutyrate by Alcaligenes eutrophus.

    PubMed

    Valentin, H E; Zwingmann, G; Schönebaum, A; Steinbüchel, A

    1995-01-15

    Various aerobic Gram-negative bacteria have been examined for their ability to use 4-hydroxybutyrate and 1,4-butanediol as carbon source for growth. Alcaligenes eutrophus strains H16, HF39, PHB-4 and Pseudomonas denitrificans 'Morris' were not able to grow with 1,4-butanediol or 4-hydroxybutyrate. From A. eutrophus HF39 spontaneous primary mutants (e.g. SK4040) were isolated which grew on 4-hydroxybutyrate with doubling times of approximately 3 h. Tn5::mob mutagenesis of mutant SK4040 led to the isolation of two phenotypically different classes of secondary mutants which were affected in the utilization of 4-hydroxybutyrate. Mutants exhibiting the phenotype 4-hydroxybutyrate-negative did not grow with 4-hydroxybutyrate, and mutants exhibiting the phenotype 4-hydroxybutyrate-leaky grew at a significantly lower rate with 4-hydroxybutyrate. Hybridization experiments led to the identification of a 10-kbp genomic EcoRI fragment of A. eutrophus SK4040, which was altered in mutants with the phenotype 4-hydroxybutyrate-negative, and of two 1-kbp and 4.5-kbp genomic EcoRI fragments, which were altered in mutants with the phenotype 4-hydroxybutyrate-leaky. This 10-kbp EcoRI fragment was cloned from A. eutrophus SK4040, and conjugative transfer of a pVDZ'2 hybrid plasmid to A. eutrophus H16 conferred the ability to grow with 4-hydroxybutyrate to the wild type. DNA-sequence analysis of this fragment, enzymic analysis of the wild type and of mutants of A. eutrophus as well as of recombinant strains of Escherichia coli led to the identification of a structural gene encoding for a 4-hydroxybutyrate dehydrogenase which was affected by transposon mutagenesis in five of six available 4-hydroxybutyrate-negative mutants. Enzymic studies also provided evidence for the presence of an active succinate-semialdehyde dehydrogenase in 4-hydroxybutyrate-grown cells. This indicated that degradation of 4-hydroxybutyrate occurs via succinate semialdehyde and succinate and that the latter is

  15. Efficacy of polysaccharide from Alcaligenes xylosoxidans MSA3 administration as protection against γ-radiation in female rats

    PubMed Central

    Hassan, Amal I.; Ghoneim, Mona A. M.; Mahmoud, Manal G.; Asker, Mohsen M. S.; Mohamed, Saher S.

    2016-01-01

    Damage to normal tissues is a consequence of both therapeutic and accidental exposures to ionizing radiation. A water-soluble heteropolysaccharide called AXEPS, composed of glucose, galactose, rhamnose and glucouronic acid in a molar ratio of nearly 1.0:1.6:0.4:2.3, respectively, was isolated from culture medium of strain Alcaligenes xylosoxidans MSA3 by ethanol precipitation followed by freeze-drying. Chemical analysis, Fourier-transform infrared (FTIR) and chromatographic studies revealed that the molecular weight was 1.6 × 104 g mol−1. This study was designed to investigate the radioprotective and biological effects of AXEPS in alleviating the toxicity of ionizing radiation in female albino rats. A total of 32 female albino rats were divided into four groups. In the control group, rats were administered vehicle by tube for four weeks. The second group was administered AXEPS (100 mg/kg) orally by gavage for four weeks. Animals in the third group were exposed to whole-body γ-rays (5 Gy) and remained for 2 weeks without treatment. The fourth group received AXEPS (100 mg/kg) orally by gavage for two weeks before being exposed to whole-body γ-rays (5 Gy), then 24 h post γ-rays, they received AXEPS (100 mg/kg) in a treatment continuing till the end of the experiment (15 days after the whole–body γ-irradiation). Oral administration of AXEPS (100 mg/kg) significantly reversed the oxidative stress effects of radiation, as evidenced by the decrease in DNA damage in the bone marrow. Assessment of apoptosis and cell proliferation markers revealed that caspase-3 significantly increased in the irradiated group. Moreover, a significant decrease in the hematological constituents of peripheral blood, the chemotactic index and CD8+ T cells were observed in animals in the irradiation-only group, whereas an increase in the lymphocyte index was observed in animals in that group. In contrast, AXEPS treatment prevented these alterations. From our results, we conclude that

  16. Identification and molecular characterization of the acetyl coenzyme A synthetase gene (acoE) of Alcaligenes eutrophus.

    PubMed Central

    Priefert, H; Steinbüchel, A

    1992-01-01

    The gene locus acoE, which is involved in the utilization of acetoin in Alcaligenes eutrophus, was identified as the structural gene of an acetyl coenzyme A synthetase (acetate:coenzyme A ligase [AMP forming]; EC 6.2.1.1). This gene was localized on a 3.8-kbp SmaI-EcoRI subfragment of an 8.1-kbp EcoRI restriction fragment (fragment E) that was cloned recently (C. Fründ, H. Priefert, A. Steinbüchel, and H. G. Schlegel, J. Bacteriol. 171:6539-6548, 1989). The 1,983 bp acoE gene encoded a protein with a relative molecular weight of 72,519, and it was preceded by a putative Shine-Dalgarno sequence. A comparison analysis of the amino acid sequence deduced from acoE revealed a high degree of homology to primary structures of acetyl coenzyme A synthetases from other sources (amounting to up to 50.5% identical amino acids). Tn5 insertions in two transposon-induced mutants of A. eutrophus, that were impaired in the catabolism of acetoin were mapped 481 and 1,159 bp downstream from the translational start codon of acoE. The expression of acoE in Escherichia coli led to the formation of an acyl coenzyme A synthetase that accepted acetate as the preferred substrate (100% relative activity) but also reacted with propionate (46%) and hydroxypropionate (87%); fatty acids consisting of four or more carbon atoms were not accepted. In addition, evidence for the presence of a second acyl coenzyme A synthetase was obtained; this enzyme exhibited a different substrate specificity. The latter enzyme is obviously required for the activation of propionate, e.g., during the formation of the storage compound poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) when propionate is provided as the sole carbon source. An analysis of mutants provided evidence that the expression of the uptake protein for propionate depends on the presence of alternate sigma factor sigma 54. Images PMID:1356967

  17. Phenotypic and molecular antibiotic resistance profile of Enterococcus faecalis and Enterococcus faecium isolated from different traditional fermented foods.

    PubMed

    Sánchez Valenzuela, Antonio; Lavilla Lerma, Leyre; Benomar, Nabil; Gálvez, Antonio; Pérez Pulido, Rubén; Abriouel, Hikmate

    2013-02-01

    A collection of 55 enterococci (41 Enterococcus faecium and 14 E. faecalis strains) isolated from various traditional fermented foodstuffs of both animal and vegetable origins, and water was evaluated for resistance against 15 antibiotics. Lower incidence of resistance was observed with gentamicin, ampicillin, penicillin and teicoplanin. However, a high incidence of antibiotic resistance was detected for rifampicin (12 out of 14 of isolates), ciprofloxacin (9/14), and quinupristin/dalfopristin (8/14) in E. faecalis strains. Enterococcus faecium isolates were resistant to rifampicin (25/41), ciprofloxacin (23/41), erythromycin (18/41), levofloxacin (16/41), and nitrofurantoin (15/41). One Enterococcus faecalis and two E. faecium strains were resistant to vancomycin (MIC>16 μg/mL). Among 55 isolates, 27 (19 E. faecium and eight E. faecalis) were resistant to at least three antibiotics. High level of multidrug resistance to clinically important antibiotics was detected in E. faecalis strains (57% of E. faecalis versus 46% of E. faecium), which showed resistance to six to seven antibiotics, especially those isolated from foods of animal origin. So, it is necessary to re-evaluate the use of therapeutic antibiotics in stock farms at both regional and international levels due to the high number of multiple resistant (MR) bacteria. Fifty-six MR E. faecalis and E. faecium strains selected from this and previous studies (Valenzuela et al., 2008, 2010) were screened by polymerase chain reaction for antibiotic resistance genes, revealing the presence of tet(L), tet(M), ermB, cat, efrA, efrB, mphA, or msrA/B genes. The ABC Multidrug Efflux Pump EfrAB was detected in 96% of E. faecalis strains and also in 13% of E. faecium strains; this is the first report describing EfrAB in this enterococcal species. The efflux pump-associated msrA/B gene was detected in 66.66% of E. faecium strains, but not in E. faecalis strains. PMID:23259502

  18. Antibacterial and residual antimicrobial activities against Enterococcus faecalis biofilm: A comparison between EDTA, chlorhexidine, cetrimide, MTAD and QMix.

    PubMed

    Zhang, Rui; Chen, Min; Lu, Yan; Guo, Xiangjun; Qiao, Feng; Wu, Ligeng

    2015-01-01

    We compared the antibacterial and residual antimicrobial activities of five root canal irrigants (17% EDTA,2% chlorhexidine,0.2% cetrimide, MTAD, and QMix) in a model of Enterococcus faecalis biofilm formation. Sixty dentin blocks with 3-week E. faecalis biofilm were divided into six equal groups and flushed with irrigant for 2 min or left untreated. A blank control group was also established. Antibacterial activities of the irrigants were evaluated by counting colony forming units. To test residual antimicrobial activities, 280 dentin blocks were divided into seven equal groups and flushed with irrigant for 2 min or left untreated and then incubated with E. faecalis suspension for 48 h, or used as a blank. No bacteria were observed in the blank control group. The number of viable E. faecalis was significantly fewer in the irrigant-treated groups compared with the untreated control (P < 0.05). Among the five irrigants, QMix had the strongest antibacterial activity. Residual antimicrobial activities of CHX were significantly higher at 12 h, 24 h and 36 h compared to untreated control (P < 0.05). All five root canal irrigants were effective to some extent against E. faecalis, but QMix and CHX had the strongest, and CHX the longest (up to 36 h), antimicrobial activity. PMID:26245711

  19. Characterization of lead-resistant river isolate Enterococcus faecalis and assessment of its multiple metal and antibiotic resistance.

    PubMed

    Aktan, Yasin; Tan, Sema; Icgen, Bulent

    2013-06-01

    Contamination of surface waters has a direct impact on the public health of entire communities. Microorganisms inhabiting contaminated surface waters have developed mechanisms of coping with a variety of toxic metals and drugs. Investigations were carried out to isolate and identify lead-resistant bacteria from the river Kızılırmak along the city of Kırıkkale, Turkey. Of the 33 lead-resistant isolates, one isolate with a minimal inhibitory concentration of 1,200 mg L(-1) was isolated and identified as Enterococcus faecalis by using biochemical tests and 16S rRNA sequencing. Lead-resistant E. faecalis isolate was found out to be resistant to other heavy metals like aluminum, lithium, barium, chromium, iron, silver, tin, nickel, zinc, and strontium and to drugs like amikacin, aztreonam, and gentamicin. E. faecalis harbored four plasmids with the molecular sizes of 1.58, 3.06, 22.76, and 28.95 kb. Plasmid profile analyses of cured derivatives revealed that the lead resistance ability of E. faecalis was still existing despite the elimination of all the plasmids. Moreover, the antibiotic resistance pattern of the cured derivatives did not demonstrate any change from the parental strain. Our findings indicated that the lead resistance genes of E. faecalis were located on the chromosomal DNA rather than the plasmid. PMID:23079796

  20. Antimicrobial activity of some essential oils against oral multidrug-resistant Enterococcus faecalis in both planktonic and biofilm state

    PubMed Central

    Benbelaïd, Fethi; Khadir, Abdelmounaïm; Abdoune, Mohamed Amine; Bendahou, Mourad; Muselli, Alain; Costa, Jean

    2014-01-01

    Objective To evaluate some essential oils in treatment of intractable oral infections, principally caused by biofilm of multidrug-resistant Enterococcus faecalis (E. faecalis), such as persistent endodontic infections in which their treatment exhibits a real challenge for dentists. Methods Ten chemically analyzed essential oils by gas chromatography-mass spectrometry were evaluated for antimicrobial activity against sensitive and resistant clinical strains of E. faecalis in both planktonic and biofilm state using two methods, disk diffusion and broth micro-dilution. Results Studied essential oils showed a good antimicrobial activity and high ability in E. faecalis biofilm eradication, whether for sensitive or multidrug-resistant strains, especially those of Origanum glandulosum and Thymbra capitata with interesting minimum inhibitory concentration, biofilm inhibitory concentration, and biofilm eradication concentration values which doesn't exceed 0.063%, 0.75%, and 1.5%, respectively. Conclusions Findings of this study indicate that essential oils extracted from aromatic plants can be used in treatment of intractable oral infections, especially caused by biofilm of multidrug-resistant E. faecalis. PMID:25182948

  1. The polyamine N-acetyltransferase-like enzyme PmvE plays a role in the virulence of Enterococcus faecalis.

    PubMed

    Martini, Cecilia; Michaux, Charlotte; Bugli, Francesca; Arcovito, Alessandro; Iavarone, Federica; Cacaci, Margherita; Paroni Sterbini, Francesco; Hartke, Axel; Sauvageot, Nicolas; Sanguinetti, Maurizio; Posteraro, Brunella; Giard, Jean-Christophe

    2015-01-01

    We previously showed that the mutant strain of Enterococcus faecalis lacking the transcriptional regulator SlyA is more virulent than the parental strain. We hypothesized that this phenotype was due to overexpression of the second gene of the slyA operon, ef_3001, renamed pmvE (for polyamine metabolism and virulence of E. faecalis). PmvE shares strong homologies with N(1)-spermidine/spermine acetyltransferase enzymes involved in the metabolism of polyamines. In this study, we used an E. faecalis strain carrying the recombinant plasmid pMSP3535-pmvE (V19/p3535-pmvE), which allows the induction of pmvE by addition of nisin. Thereby, we showed that the overexpression of PmvE increased the virulence of E. faecalis in the Galleria mellonella infection model, as well as the persistence within peritoneal macrophages. We were also able to show a direct interaction between the His-tagged recombinant PmvE (rPmvE) protein and putrescine by the surface plasmon resonance (SPR) technique on a Biacore instrument. Moreover, biochemical assays showed that PmvE possesses an N-acetyltransferase activity toward polyamine substrates. Our results suggest that PmvE contributes to the virulence of E. faecalis, likely through its involvement in the polyamine metabolism. PMID:25385793

  2. Differences in Antibiotic Resistance Patterns of Enterococcus faecalis and Enterococcus faecium Strains Isolated from Farm and Pet Animals

    PubMed Central

    Butaye, Patrick; Devriese, Luc A.; Haesebrouck, Freddy

    2001-01-01

    The prevalence of acquired resistance in 146 Enterococcus faecium and 166 Enterococcus faecalis strains from farm and pet animals, isolated in 1998 and 1999 in Belgium, against antibiotics used for growth promotion and for therapy was determined. Acquired resistance against flavomycin and monensin, two antibiotics used solely for growth promotion, was not detected. Avoparcin (glycopeptide) resistance was found sporadically in E. faecium only. Avilamycin resistance was almost exclusively seen in strains from farm animals. Resistance rates were higher in E. faecium strains from broiler chickens than in strains from other animal groups with tylosin and virginiamycin and in E. faecalis as well as in E. faecium strains with narasin and bacitracin. Resistance against ampicillin was mainly found among E. faecium strains from pets and was absent in E. faecalis. Tetracycline resistance occurred most often in strains from farm animals, while enrofloxacin resistance, only found in E. faecalis, occurred equally among strains from all origins. Resistance against gentamicin was very rare in broiler strains, whereas resistance rates were high in strains from other origins. It can be concluded that resistance against antibiotics used solely for growth promotion was more prevalent in E. faecium strains than in E. faecalis strains. With few exceptions, resistance against the different categories of antibiotics was more prevalent in strains from farm animals than in those from pets. PMID:11302798

  3. Differences in antibiotic resistance patterns of Enterococcus faecalis and Enterococcus faecium strains isolated from farm and pet animals.

    PubMed

    Butaye, P; Devriese, L A; Haesebrouck, F

    2001-05-01

    The prevalence of acquired resistance in 146 Enterococcus faecium and 166 Enterococcus faecalis strains from farm and pet animals, isolated in 1998 and 1999 in Belgium, against antibiotics used for growth promotion and for therapy was determined. Acquired resistance against flavomycin and monensin, two antibiotics used solely for growth promotion, was not detected. Avoparcin (glycopeptide) resistance was found sporadically in E. faecium only. Avilamycin resistance was almost exclusively seen in strains from farm animals. Resistance rates were higher in E. faecium strains from broiler chickens than in strains from other animal groups with tylosin and virginiamycin and in E. faecalis as well as in E. faecium strains with narasin and bacitracin. Resistance against ampicillin was mainly found among E. faecium strains from pets and was absent in E. faecalis. Tetracycline resistance occurred most often in strains from farm animals, while enrofloxacin resistance, only found in E. faecalis, occurred equally among strains from all origins. Resistance against gentamicin was very rare in broiler strains, whereas resistance rates were high in strains from other origins. It can be concluded that resistance against antibiotics used solely for growth promotion was more prevalent in E. faecium strains than in E. faecalis strains. With few exceptions, resistance against the different categories of antibiotics was more prevalent in strains from farm animals than in those from pets. PMID:11302798

  4. Antibacterial and residual antimicrobial activities against Enterococcus faecalis biofilm: A comparison between EDTA, chlorhexidine, cetrimide, MTAD and QMix

    PubMed Central

    Zhang, Rui; Chen, Min; Lu, Yan; Guo, Xiangjun; Qiao, Feng; Wu, Ligeng

    2015-01-01

    We compared the antibacterial and residual antimicrobial activities of five root canal irrigants (17% EDTA,2% chlorhexidine,0.2% cetrimide, MTAD, and QMix) in a model of Enterococcus faecalis biofilm formation. Sixty dentin blocks with 3-week E. faecalis biofilm were divided into six equal groups and flushed with irrigant for 2 min or left untreated. A blank control group was also established. Antibacterial activities of the irrigants were evaluated by counting colony forming units. To test residual antimicrobial activities, 280 dentin blocks were divided into seven equal groups and flushed with irrigant for 2 min or left untreated and then incubated with E. faecalis suspension for 48 h, or used as a blank. No bacteria were observed in the blank control group. The number of viable E. faecalis was significantly fewer in the irrigant-treated groups compared with the untreated control (P < 0.05). Among the five irrigants, QMix had the strongest antibacterial activity. Residual antimicrobial activities of CHX were significantly higher at 12 h, 24 h and 36 h compared to untreated control (P < 0.05). All five root canal irrigants were effective to some extent against E. faecalis, but QMix and CHX had the strongest, and CHX the longest (up to 36 h), antimicrobial activity. PMID:26245711

  5. An in vitro study on the effects of nisin on the antibacterial activities of 18 antibiotics against Enterococcus faecalis.

    PubMed

    Tong, Zhongchun; Zhang, Yuejiao; Ling, Junqi; Ma, Jinglei; Huang, Lijia; Zhang, Luodan

    2014-01-01

    Enterococcus faecalis rank among the leading causes of nosocomial infections worldwide and possesses both intrinsic and acquired resistance to a variety of antibiotics. Development of new antibiotics is limited, and pathogens continually generate new antibiotic resistance. Many researchers aim to identify strategies to effectively kill this drug-resistant pathogen. Here, we evaluated the effect of the antimicrobial peptide nisin on the antibacterial activities of 18 antibiotics against E. faecalis. The MIC and MBC results showed that the antibacterial activities of 18 antibiotics against E. faecalis OG1RF, ATCC 29212, and strain E were significantly improved in the presence of 200 U/ml nisin. Statistically significant differences were observed between the results with and without 200 U/ml nisin at the same concentrations of penicillin or chloramphenicol (p<0.05). The checkerboard assay showed that the combination of nisin and penicillin or chloramphenicol had a synergetic effect against the three tested E. faecalis strains. The transmission electron microscope images showed that E. faecalis was not obviously destroyed by penicillin or chloramphenicol alone but was severely disrupted by either antibiotic in combination with nisin. Furthermore, assessing biofilms by a confocal laser scanning microscope showed that penicillin, ciprofloxacin, and chloramphenicol all showed stronger antibiofilm actions in combination with nisin than when these antibiotics were administered alone. Therefore, nisin can significantly improve the antibacterial and antibiofilm activities of many antibiotics, and certain antibiotics in combination with nisin have considerable potential for use as inhibitors of this drug-resistant pathogen. PMID:24586598

  6. Isolation and identification of Enterococcus faecalis membrane proteins using membrane shaving, 1D SDS/PAGE, and mass spectrometry.

    PubMed

    Cathro, Peter; McCarthy, Peter; Hoffmann, Peter; Zilm, Peter

    2016-06-01

    Enterococcus faecalis is a significant nosocomial pathogen, which is able to survive in diverse environments and resist killing with antimicrobial therapies. The expression of cell membrane proteins play an important role in how bacteria respond to environmental stress. As such, the capacity to identify and study membrane protein expression is critical to our understanding of how specific proteins influence bacterial survival. Here, we describe a combined approach to identify membrane proteins of E. faecalis ATCC V583 using membranes fractionated by either 1D SDS/PAGE or membrane shaving, coupled with LC-ESI mass spectrometry. We identified 222 membrane-associated proteins, which represent approximately 24% of the predicted membrane-associated proteome: 170 were isolated using 1D SDS/PAGE and 68 with membrane shaving, with 36 proteins being common to both the techniques. Of the proteins identified by membrane shaving, 97% were membrane-associated with the majority being integral membrane proteins (89%). Most of the proteins identified with known physiology are involved with transportation across the membrane. The combined 1D SDS/PAGE and membrane shaving approach has produced the greatest number of membrane proteins identified from E. faecalis to date. These protocols will aid future researchers investigating changes in the membrane proteome of E. faecalis by improving our understanding of how E. faecalis adapts and responds to its environment. PMID:27419061

  7. Combined effect of a mixture of tetracycline, acid, and detergent, and Nisin against Enterococcus faecalis and Actinomyces viscosus biofilms

    PubMed Central

    Balto, Hanan A.; Shakoor, Zahid A.; Kanfar, Maha A.

    2015-01-01

    Objectives: To evaluate the combined effect of a mixture of tetracycline, acid, and detergent (MTAD) and Nisin against Enterococcus faecalis (E. faecalis) and Actinomyces viscosus (A. viscosus) biofilms. Methods: This study was conducted between June and December 2013 in collaboration with Dental Caries Research Chair, College of Dentistry, King Saud University, Riyadh, Saudi Arabia. Single-species biofilms (n=9/species/observation period) were generated on membrane filter discs and subjected to 5, 10, or 15 minute incubation with MTADN (MTAD with 3% Nisin), 5.25% sodium hypochlorite (NaOCl), or normal saline. The colony forming units were counted using the Dark field colony counter. Results: A 100% bactericidal effect of 5.25% NaOCl was noted during the 3 observation periods; a significant reduction (p=0.000) in mean survival rates of E. faecalis (77.3+13.6) and A. viscosus (39.6+12.6) was noted after 5 minutes exposure to MTADN compared with normal saline (78000000+5291503) declining to almost no growth after 10 and 15 minutes. The survival rates of the E. faecalis and A. viscosus biofilm were no different after treatment with MTADN and 5.25% NaOCl at the 3 observation periods (p=1.000). Conclusion: A combination of MTAD and Nisin was as effective as NaOCl against E. faecalis and A. viscosus biofilms. PMID:25719587

  8. Expression of Alzheimer-Type Neurofibrillary Epitopes in Primary Rat Cortical Neurons Following Infection with Enterococcus faecalis

    PubMed Central

    Underly, Robert; Song, Mee-Sook; Dunbar, Gary L.; Weaver, Charles L.

    2016-01-01

    The neurofibrillary tau pathology and amyloid deposits seen in Alzheimer’s disease (AD) also have been seen in bacteria-infected brains. However, few studies have examined the role of these bacteria in the generation of tau pathology. One suggested link between infection and AD is edentulism, the complete loss of teeth. Edentulism can result from chronic periodontal disease due to infection by Enterococcus faecalis. The current study assessed the ability to generate early Alzheimer-like neurofibrillary epitopes in primary rat cortical neurons through bacterial infection by E. faecalis. Seven-day old cultured neurons were infected with E. faecalis for 24 and 48 h. An upward molecular weight shift in tau by Western blotting (WB) and increased appearance of tau reactivity in cell bodies and degenerating neurites was found in the 48 h infection group for the antibody CP13 (phospho-Serine 202). A substantial increase in reactivity of Alz-50 was seen at 24 and 48 h after infection. Furthermore, extensive microtubule-associated protein 2 (MAP2) reactivity also was seen at 24 and 48 h post-infection. Our preliminary findings suggest a potential link between E. faecalis infection and intracellular changes that may help facilitate early AD-like neurofibrillary pathology. HighlightsEnterococcus faecalis used in the generation of AD neurofibrillary epitopes in rat.Infection increases Alz-50, phospho-Serine 202 tau, and MAP2 expression.Infection by Enterococcus may play a role in early Alzheimer neurofibrillary changes. PMID:26834627

  9. Antibacterial and residual antimicrobial activities against Enterococcus faecalis biofilm: A comparison between EDTA, chlorhexidine, cetrimide, MTAD and QMix

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Chen, Min; Lu, Yan; Guo, Xiangjun; Qiao, Feng; Wu, Ligeng

    2015-08-01

    We compared the antibacterial and residual antimicrobial activities of five root canal irrigants (17% EDTA,2% chlorhexidine,0.2% cetrimide, MTAD, and QMix) in a model of Enterococcus faecalis biofilm formation. Sixty dentin blocks with 3-week E. faecalis biofilm were divided into six equal groups and flushed with irrigant for 2 min or left untreated. A blank control group was also established. Antibacterial activities of the irrigants were evaluated by counting colony forming units. To test residual antimicrobial activities, 280 dentin blocks were divided into seven equal groups and flushed with irrigant for 2 min or left untreated and then incubated with E. faecalis suspension for 48 h, or used as a blank. No bacteria were observed in the blank control group. The number of viable E. faecalis was significantly fewer in the irrigant-treated groups compared with the untreated control (P < 0.05). Among the five irrigants, QMix had the strongest antibacterial activity. Residual antimicrobial activities of CHX were significantly higher at 12 h, 24 h and 36 h compared to untreated control (P < 0.05). All five root canal irrigants were effective to some extent against E. faecalis, but QMix and CHX had the strongest, and CHX the longest (up to 36 h), antimicrobial activity.

  10. Ex vivo evaluation of three instrumentation techniques on E. faecalis biofilm within oval shaped root canals.

    PubMed

    Nakamura, Vitor Cesar; Candeiro, George Taccio de Miranda; Cai, Silvana; Gavini, Giulio

    2015-01-01

    The objective of the present study was to assess the effectiveness of reciprocating instrumentation in disinfecting oval-shaped root canals infected with Enterococcus faecalis. Forty-five human lower premolars were infected with a culture of E. faecalis (ATCC 29212) for 28 days. Five other teeth that were neither contaminated nor instrumented were used as controls. The 45 specimens were divided into three experimental groups (n = 15) based on the root canal preparation technique used: manual (K-type, Dentsply Maillefer, Ballaigues, Switzerland); rotary (MTwo, VDW GmbH, Munich, Germany); and reciprocating (Reciproc R50, VDW GmbH, Munich, Germany) instruments. During chemomechanical preparation, 21 mL of 2.5% NaOCl was used as the irrigating solution. Microbiological sampling was performed before (S1) and immediately after (S2) the chemomechanical preparation using sterilized paper points. Specimens were then cleaved, and 0.02 g of dentine chips was collected from the root thirds to verify the presence of microorganisms in dentinal tubules. All three preparation techniques reduced the number of microorganisms in the root canal lumen and dentine chips from the root thirds, but no significant differences were observed between the three groups (p > 0.05). Reciprocating instrumentation with Reciproc R50 was effective in reducing the number of microorganisms within the root canal system. Although this technique involves the use of only one file to perform the root canal therapy, it is as effective as conventional rotary instrumentation in reducing the E. faecalis biofilm from the root canal system. However, further clinical investigations are warranted in order to ratify these results. PMID:25627890

  11. New trends in dentistry: plant extracts against Enterococcus faecalis. The efficacy compared to chlorhexidine.

    PubMed

    Castilho, Adriana Lígia de; Saraceni, Cintia Helena Coury; Díaz, Ingrit Elida Collantes; Paciencia, Mateus Luís Barradas; Suffredini, Ivana Barbosa

    2013-01-01

    Enterococcus faecalis is an important pathogen associated with endodontic diseases, and its elimination and control are of paramount importance, as it represents one of the major causes of failure in the treatment of endodontic disease. Twenty-five plant extracts obtained from Brazilian forests were found to be effective against planktonic E. faecalis and were subjected to two traditional antibacterial assays, the microdilution broth assay (MDBA) and the disk diffusion assay (DDA), using chlorhexidine (CHX) as a control. Seven out of 25 extracts showed significant antibacterial activity and were tested in a biofilm assay, and three of these extracts were subjected to chemical fractionation. Residues were tested for their antibacterial activity, and the first chemical findings were described based on thin layer chromatography (TLC). Extracts obtained from Ipomoea alba, Symphonia globulifera and Moronobea coccinea showed significant bactericidal activity in the MDBA. The same I. alba and S. globulifera extracts, as well as the extract obtained from Connarus ruber var. ruber, showed significant activity in the DDA. RH2O obtained from Psidium densicomum and Stryphnodendron pulcherrimum showed better antibacterial activity compared to the respective crude extracts and CHX. TLC analysis showed that phenolic compounds and triterpenes represent the first findings of chemical groups that may occur in all species. The results of the present study include the discovery of six active extracts against planktonic E. faecalis and support further testing via assays involving biofilm formation, as well as the determination of the compounds' chemical profiles, as their activity was significantly better than that observed for CHX. PMID:23538423

  12. Molecular detection of virulence factors among food and clinical Enterococcus faecalis strains in South Brazil

    PubMed Central

    Medeiros, A.W.; Pereira, R.I.; Oliveira, D.V.; Martins, P.D.; d’Azevedo, P.A.; Van der Sand, S.; Frazzon, J.; Frazzon, A.P.G

    2014-01-01

    The present report aimed to perform a molecular epidemiological survey by investigating the presence of virulence factors in E. faecalis isolated from different human clinical (n = 57) and food samples (n = 55) in Porto Alegre, Brazil, collected from 2006 to 2009. In addition, the ability to form biofilm in vitro on polystyrene and the β-haemolytic and gelatinase activities were determined. Clinical strains presented a higher prevalence of aggregation substance (agg), enterococcal surface protein (esp) and cytolysin (cylA) genes when compared with food isolates. The esp gene was found only in clinical strains. On the other hand, the gelatinase (gelE) and adherence factor (ace) genes had similar prevalence among the strains, showing the widespread occurrence of these virulence factors among food and clinical E. faecalis strains in South Brazil. More than three virulence factor genes were detected in 77.2% and 18.2% of clinical and food strains, respectively. Gelatinase and β-haemolysin activities were not associated with the presence of gelE and cylA genes. The ability to produce biofilm was detected in 100% of clinical and 94.6% of food isolates, and clinical strains were more able to form biofilm than the food isolates (Student’s t-test, p < 0.01). Results from the statistical analysis showed significant associations between strong biofilm formation and ace (p = 0.015) and gelE (p = 0.007) genes in clinical strains. In conclusion, our data indicate that E. faecalis strains isolated from clinical and food samples possess distinctive patterns of virulence factors, with a larger number of genes that encode virulence factors detected in clinical strains. PMID:24948952

  13. Antibacterial Efficacy of Aqueous Ozone in Root Canals Infected by Enterococcus faecalis

    PubMed Central

    Hubbezoglu, Ihsan; Zan, Recai; Tunc, Tutku; Sumer, Zeynep

    2014-01-01

    Background: In endodontics, the elimination of resistant bacteria such as Enterococcus faecalis plays an important role for treatment success in root canals. Therefore, new alternative irrigants (instead of sodium hypochlorite) have been researched to achieve ideal endodontic treatment. Objectives: The aim of the present study was to evaluate and to compare the antibacterial effect of aqueous ozone with different concentrations and techniques of application (manual and ultrasonic) against E. faecalis in human root canals. Patients and Methods: Eighty single-root mandibular premolar teeth were selected, prepared and sterilized. E. faecalis was incubated in the root canals and kept at 37°C for 24 h. The teeth were divided into four main groups each has 20 members: NaOCl (positive control) group; 8 ppm aqueous ozone group; 12 ppm aqueous ozone group; and 16 ppm aqueous ozone group. While half of the specimens were disinfected with aqueous ozone by manual technique, the other half was disinfected with the aqueous ozone by ultrasonic technique. Conventional irrigation technique was simultaneously applied with ultrasonic vibration that was produced by VDW.ULTRA device. The disinfection procedures were performed for 180 s to ensure standardization of all the working groups. Paper points (placed in the root canals before and after the disinfection procedures) were transferred to Eppendorf tubes containing 0.5 mL of brain heart infusion broth. Then, 50 μL of the suspension was inoculated onto broth agar media. Microbial colonies were counted, and the data were evaluated statistically using 2-way analysis of variance (ANOVA) and Tukey tests. Results: Although the antibacterial effect of 16 ppm aqueous ozone using a manual technique had an insufficient effect, its ultrasonic application technique resulted in complete disinfection in the root canals. Conclusions: The bactericidal activity of high concentration of aqueous ozone combined with ultrasonic application technique

  14. Estradiol protects female rats against sepsis induced by Enterococcus faecalis improving leukocyte bactericidal activity.

    PubMed

    Saia, Rafael Simone; Garcia, Fabíola Morales; Cárnio, Evelin Capellari

    2015-10-01

    Enterococcus faecalis is a Gram-positive bacteria described as an important causative agent of sepsis. The contact between host leukocytes and bacteria activates the innate immunity, participating as the first defense mechanism against infection. Pro-inflammatory cytokines [including tumor necrosis factor (TNF)-α and interleukin-1β] and nitric oxide (NO) are essential to recruitment of leukocytes into the infectious focus as well as their activation for phagocytosis. Beyond the bacteria species, gender has been considered another factor to predict outcome in septic patients. Studies suggest that females exhibit a protective advantage during sepsis models, being gonadal hormones possible modulators of functions of immune cells. Nevertheless, the role of estradiol during Gram-positive infection remains a literature gap. Our aims were to investigate whether estradiol protects rats against bacterial dissemination during E. faecalis-induced sepsis. We determined whether estradiol modulates the local and systemic inflammatory response, as well as the cell migration into the infectious focus and the bactericidal capacity of leukocytes. Our findings demonstrated that estradiol pre-treated rats showed a dose-dependent reduction in bacterial counts in peritoneal lavage fluid (PLF) and in liver. Moreover, TNF-α and nitrate levels were increased in plasma, while only TNF-α was increased in the PLF in estradiol-treated rats. The prevention of bacterial dissemination may be related to the enhanced neutrophil and macrophage migration into the peritoneal cavity. Furthermore, estradiol improved the phagocytic and bactericidal ability of these both inflammatory cells. Taken together, the present study clearly demonstrates an important protective role of estradiol against sepsis induced by E. faecalis in female rats. PMID:26143494

  15. Pilin and Sortase Residues Critical for Endocarditis- and Biofilm-Associated Pilus Biogenesis in Enterococcus faecalis

    PubMed Central

    Nielsen, Hailyn V.; Flores-Mireles, Ana L.; Kau, Andrew L.; Kline, Kimberly A.; Pinkner, Jerome S.; Neiers, Fabrice; Normark, Staffan; Henriques-Normark, Birgitta

    2013-01-01

    Enterococci commonly cause hospital-acquired infections, such as infective endocarditis and catheter-associated urinary tract infections. In animal models of these infections, a long hairlike extracellular protein fiber known as the endocarditis- and biofilm-associated (Ebp) pilus is an important virulence factor for Enterococcus faecalis. For Ebp and other sortase-assembled pili, the pilus-associated sortases are essential for fiber formation as they create covalent isopeptide bonds between the sortase recognition motif and the pilin-like motif of the pilus subunits. However, the molecular requirements governing the incorporation of the three pilus subunits (EbpA, EbpB, and EbpC) have not been investigated in E. faecalis. Here, we show that a Lys residue within the pilin-like motif of the EbpC subunit was necessary for EbpC polymerization. However, incorporation of EbpA into the pilus fiber only required its sortase recognition motif (LPXTG), while incorporation of EbpB only required its pilin-like motif. Only the sortase recognition motif would be required for incorporation of the pilus tip subunit, while incorporation of the base subunit would only require the pilin recognition motif. Thus, these data support a model with EbpA at the tip and EbpB at the base of an EbpC polymer. In addition, the housekeeping sortase, SrtA, was found to process EbpB and its predicted catalytic Cys residue was required for efficient cell wall anchoring of mature Ebp pili. Thus, we have defined molecular interactions involved in fiber polymerization, minor subunit organization, and pilus subcellular compartmentalization in the E. faecalis Ebp pilus system. These studies advance our understanding of unique molecular mechanisms of sortase-assembled pilus biogenesis. PMID:23913319

  16. Photodynamic therapy in root canals contaminated with Enterococcus faecalis using curcumin as photosensitizer.

    PubMed

    da Frota, Matheus Franco; Guerreiro-Tanomaru, Juliane Maria; Tanomaru-Filho, Mario; Bagnato, Vanderlei Salvador; Espir, Camila Galetti; Berbert, Fabio Luis Camargo Villela

    2015-09-01

    The aim of the study was to evaluate the photodynamic therapy (PDT) effect on root canals contaminated with Enterococcus faecalis using a light emitting diode (LED) light and a curcumin solution (CUR) as photosensitizer (PS). Eighty root canals from uniradicular human teeth were prepared with Protaper Universal rotary system and contaminated with E. faecalis for 21 days. They were divided as: GIa-PDT (CUR, pre-irradiation for 5 + 5 min of irradiation); GIb-PDT (CUR, pre-irradiation for 5 + 10 min of irradiation); GIIa-(CUR, pre-irradiation for 5 + 5 min without irradiation); GIIb-(CUR pre-irradiation for 5 + 10 min of irradiation); GIIIa-(physiological solution and irradiation for 5 min); and GIIIb-(physiological solution and irradiation for 10 min); positive and negative control groups. Collections from root canals were made at time intervals of 21 days after contamination, immediately after treatment, and 7 days after treatment, and submitted to colony forming units per milliter (CFU mL(-1)) counts. The data were submitted to ANOVA and Tukey multiple comparison tests, at a level of significance of 5 %. In the immediate post-treatment collection, group GIa showed greater bacterial reduction in comparison with GIIa, GIIb, GIIIa, GIIIb, and positive control (P < 0.05). At 7 days post-treatment, GIa showed significant bacterial reduction only in comparison with GIIIa (P < 0.05). Curcumin as sensitizer was effective by 5 min LED irradiation but not by 10 min irradiation PDT using LED light, and curcumin as PS was not effective in eliminating E. faecalis. No difference was observed for periods of irradiation. PMID:25502831

  17. Human salivary proteins with affinity to lipoteichoic acid of Enterococcus faecalis.

    PubMed

    Baik, Jung Eun; Choe, Hyuk-Il; Hong, Sun Woong; Kang, Seok-Seong; Ahn, Ki Bum; Cho, Kun; Yun, Cheol-Heui; Han, Seung Hyun

    2016-09-01

    Enterococcus faecalis is associated with refractory apical periodontitis and its lipoteichoic acid (Ef.LTA) is considered as a major virulence factor. Although the binding proteins of Ef.LTA may play an important role for mediating infection and immunity in the oral cavity, little is known about Ef.LTA-binding proteins (Ef.LTA-BPs) in saliva. In this study, we identified salivary Ef.LTA-BPs with biotinylated Ef.LTA (Ef.LTA-biotin) through mass spectrometry. The biotinylation of Ef.LTA was confirmed by binding capacity with streptavidin-FITC on CHO/CD14/TLR2 cells. The biological activity of Ef.LTA-biotin was determined based on the induction of nitric oxide and macrophage inflammatory protein-1α in a macrophage cell-line, RAW 264.7. To identify salivary Ef.LTA-BPs, the Ef.LTA-biotin was mixed with a pool of human saliva obtained from nine healthy subjects followed by precipitation with a streptavidin-coated bead. Ef.LTA-BPs were then separated with 12% SDS-PAGE and subjected to the mass spectrometry. Six human salivary Ef.LTA-BPs including short palate lung and nasal epithelium carcinoma-associated protein 2, zymogen granule protein 16 homolog B, hemoglobin subunit α and β, apolipoprotein A-I, and lipocalin-1 were identified with statistical significance (P<0.05). Ef.LTA-BPs were validated with lipocalin-1 using pull-down assay. Hemoglobin inhibited the biofilm formation of E. faecalis whereas lipocalin-1 did not show such effect. Collectively, the identified Ef.LTA-BPs could provide clues for our understanding of the pathogenesis of E. faecalis and host immunity in oral cavity. PMID:27474971

  18. Erythromycin resistance and virulence genes in Enterococcus faecalis from swine in China.

    PubMed

    Zou, Li-Kou; Wang, Hong-Ning; Zeng, Bo; Li, Jin-Niang; Li, Xu-Ting; Zhang, An-Yun; Zhou, Ying-Shun; Yang, Xin; Xu, Chang-Wen; Xia, Qing-Qing

    2011-01-01

    This study aims to describe the erythromycin resistance phenotypes and genotypes, and the prevalence of virulence genes of Enterococcus faecalis isolated from swine in China. A total of 117 nonreplicate E. faecalis isolates, obtained from 502 clinical samples taken from different pig farms between 2007 and 2009 were included in the study. Minimum inhibitory concentrations were determined using the broth microdilution method. All of the isolates were screened for the presence of seven virulence genes (ace, asa1, cylA, efaA, esp, gelE, and hyl). In addition, the DNA from rythromycin-resistant isolates were amplified with primers specific for erythromycin resistance erm(A), erm(B), erm(C), mef(A/E), and msr(C) genes. Results show that erythromycin, tylosin, and ciprofloxacin resistance rates in E. faecalis were 66.67% (n=78), 66.67% (n=78), and 64.10% (n=75), respectively. About 69.23% of isolates (n=81) were positive for gelE, 48.72% (n=57) for ace, 15.38% (n=18) for efa, 7.69% (n=9) for asa1, and 6.84% (n=8) for esp. Among the erythromycin-resistant isolates, erm(B) (n=54) was the most prevalent resistance gene, followed by erm(A) (n=37). A significant correlation was found between the presence of the gelE virulence gene and erythromycin resistance (P<0.05). These findings suggest that enterococci from swine should be regarded with caution because they can be reservoirs for antimicrobial resistance and virulence genes. PMID:21344149

  19. Biochemical characterization of an anti-Candida factor produced by Enterococcus faecalis

    PubMed Central

    2012-01-01

    Background Because Candida albicans is resistant to several antifungal antibiotics, there is a need to identify other less toxic natural products, particularly antimicrobial proteins, peptides or bacteriocin like inhibitory substances. An attempt has been made to purify and characterise an anti-Candida compound produced by Enterococcus faecalis. Results An anti-Candida protein (ACP) produced by E. faecalis active against 8 C. albicans strains was characterised and partially purified. The ACP showed a broad-spectrum activity against multidrug resistant C. albicans MTCC 183, MTCC 7315, MTCC 3958, NCIM 3557, NCIM 3471 and DI. It was completely inactivated by treatment with proteinase K and partially by pronase E. The ACP retained biological stability after heat-treatment at 90°C for 20 min, maintained activity over a pH range 6–10, and remained active after treatment with α-amylase, lipase, organic solvents, and detergents. The antimicrobial activity of the E. faecalis strain was found exclusively in the extracellular filtrate produced in the late logarithmic growth phase. The highest activity (1600 AU mL-1) against C. albicans MTCC 183 was recorded at 48 h of incubation, and activity decreased thereafter. The peptide showed very low haemagglutination and haemolytic activities against human red blood cells. The antimicrobial substance was purified by salt-fractionation and chromatography. Partially purified ACP had a molecular weight of approximately 43 KDa in Tricine-PAGE analysis. The 12 amino acid N terminal sequence was obtained by Edman degradation. The peptide was de novo sequenced by ESI-MS, and the deduced combined sequence when compared to other bacteriocins and antimicrobial peptide had no significant sequence similarity. Conclusions The inhibitory activity of the test strain is due to the synthesis of an antimicrobial protein. To our knowledge, this is the first report on the isolation of a promising non-haemolytic anti-Candida protein from E

  20. Evaluation of the Antibacterial Efficacy of Azadirachta Indica, Commiphora Myrrha, Glycyrrhiza Glabra Against Enterococcus Faecalis using Real Time PCR

    PubMed Central

    Anand, Suresh; Rajan, Mathan; Venkateshbabu, Nagendrababu; Kandaswamy, Deivanayagam; Shravya, Yarramreddy; Rajeswari, Kalaiselvam

    2016-01-01

    Aim: To compare the antibacterial efficacy of Azadirachta indica (Neem), Commiphora myrrha (Myrrh), Glycyrrhiza glabra (Liquorice) with 2% Chlorhexidine (CHX) against E. faecalis by using Real Time PCR Materials and Methods: A total of fifty teeth specimens (n=50) were inoculated with E. faecalis for 21 days. Specimens were divided into five groups (Group 1: Myrrh, Group 2: Neem, Group 3: Liquorice, Group 4: 2% CHX and Group 5: Saline (negative control)). The intracanal medicaments were packed inside the tooth. After 5 days, the remaining microbial load was determined by using real time PCR Results: Threshold cycle (Ct) values of Myrrh extract, Neem extract, Liquorice Extract, 2% CHX and saline were found to be 30.94, 23.85, 21.38, 30.93 and 17.8 respectively Conclusion: Myrrh extract showed inhibition of E.faecalis equal to that of 2% CHX followed by Neem, Liquorice and Saline PMID:27386000

  1. Complete Genome Sequence of Enterococcus faecalis Strain P8-1 Isolated from Wild Magellanic Penguin (Spheniscus magellanicus) Feces on the South Coast of Brazil.

    PubMed

    Prichula, Janira; Campos, Fabricio Souza; Pereira, Rebeca Inhoque; Cardoso, Leonardo Almansa; Wachholz, Guilherme Raffo; Pieta, Luiza; Mariot, Roberta Fogliatto; de Moura, Tiane Martin; Tavares, Maurício; d'Azevedo, Pedro Alves; Frazzon, Jeverson; Frazzon, Ana Paula Guedes

    2016-01-01

    Enterococcus faecalis strains have a ubiquitous nature that allows them to survive in different niches. Studies involving enterococci isolated from marine animals are scarce. Therefore, in this study, we report the complete genome sequence of E. faecalis strain P8-1 isolated from feces of a Magellanic penguin on the south coast of Brazil. PMID:26769928

  2. Complete Genome Sequence of Enterococcus faecalis Strain P8-1 Isolated from Wild Magellanic Penguin (Spheniscus magellanicus) Feces on the South Coast of Brazil

    PubMed Central

    Prichula, Janira; Campos, Fabricio Souza; Pereira, Rebeca Inhoque; Cardoso, Leonardo Almansa; Wachholz, Guilherme Raffo; Pieta, Luiza; Mariot, Roberta Fogliatto; de Moura, Tiane Martin; Tavares, Maurício; d’Azevedo, Pedro Alves; Frazzon, Ana Paula Guedes

    2016-01-01

    Enterococcus faecalis strains have a ubiquitous nature that allows them to survive in different niches. Studies involving enterococci isolated from marine animals are scarce. Therefore, in this study, we report the complete genome sequence of E. faecalis strain P8-1 isolated from feces of a Magellanic penguin on the south coast of Brazil. PMID:26769928

  3. Cyclooxygenase-2 Generates the Endogenous Mutagen trans-4-Hydroxy-2-nonenal in Enterococcus faecalis-infected Macrophages

    PubMed Central

    Wang, Xingmin; Allen, Toby D.; Yang, Yonghong; Moore, Danny R.; Huycke, Mark M.

    2013-01-01

    Infection of macrophages by the human intestinal commensal Enterococcus faecalis generates DNA damage and chromosomal instability in mammalian cells through bystander effects. These effects are characterized by clastogenesis and damage to mitotic spindles in target cells and are mediated, in part, by trans-4-hydroxy-2-nonenal (4-HNE). In this study we investigated the role of cyclooxygenase (COX) and lipoxygenase (LOX) in producing this reactive aldehyde using E. faecalis-infected macrophages and interleukin-10 knockout mice colonized with this commensal. 4-HNE production by E. faecalis-infected macrophages was significantly reduced by COX and LOX inhibitors. The infection of macrophages led to decreased Cox1 and Alox5 expression while COX-2 and 4-HNE increased. Silencing Alox5 and Cox1 with gene-specific siRNAs had no effect on 4-HNE production. In contrast, silencing Cox2 significantly decreased 4-HNE production by E. faecalis-infected macrophages. Depleting intracellular glutathione increased 4-HNE production by these cells. Next, to confirm COX-2 as a source for 4-HNE, we assayed the products generated by recombinant human COX-2 and found 4-HNE in a concentration-dependent manner using arachidonic acid as a substrate. Finally, tissue macrophages in colon biopsies from interleukin-10 knockout mice colonized with E. faecalis were positive for COX-2 by immunohistochemical staining. This was associated with increased staining for 4-HNE-protein adducts in surrounding stroma. These data show that E. faecalis, a human intestinal commensal, can trigger macrophages to produce 4-HNE through COX-2. Importantly, it reinforces the concept of COX-2 as a procarcinogenic enzyme capable of damaging DNA in target cells through bystander effects that contribute to colorectal carcinogenesis. PMID:23321929

  4. Surface-Associated Lipoproteins Link Enterococcus faecalis Virulence to Colitogenic Activity in IL-10-Deficient Mice Independent of Their Expression Levels

    PubMed Central

    Lengfelder, Isabella; Lagkouvardos, Ilias; Steck, Natalie; Roh, Jung H.; Tchaptchet, Sandrine; Bao, Yinyin; Hansen, Jonathan J.; Huebner, Johannes; Carroll, Ian M.; Murray, Barbara E.; Sartor, R. Balfour; Haller, Dirk

    2015-01-01

    The commensal Enterococcus faecalis is among the most common causes of nosocomial infections. Recent findings regarding increased abundance of enterococci in the intestinal microbiota of patients with inflammatory bowel diseases and induction of colitis in IL-10-deficient (IL-10-/-) mice put a new perspective on the contribution of E. faecalis to chronic intestinal inflammation. Based on the expression of virulence-related genes in the inflammatory milieu of IL-10-/- mice using RNA-sequencing analysis, we characterized the colitogenic role of two bacterial structures that substantially impact on E. faecalis virulence by different mechanisms: the enterococcal polysaccharide antigen and cell surface-associated lipoproteins. Germ-free wild type and IL-10-/- mice were monoassociated with E. faecalis wild type OG1RF or the respective isogenic mutants for 16 weeks. Intestinal tissue and mesenteric lymph nodes (MLN) were collected to characterize tissue pathology, loss of intestinal barrier function, bacterial adhesion to intestinal epithelium and immune cell activation. Bone marrow-derived dendritic cells (BMDC) were stimulated with bacterial lysates and E. faecalis virulence was additionally investigated in three invertebrate models. Colitogenic activity of wild type E. faecalis (OG1RF score: 7.2±1.2) in monoassociated IL-10-/- mice was partially impaired in E. faecalis lacking enterococcal polysaccharide antigen (ΔepaB score: 4.7±2.3; p<0.05) and was almost completely abrogated in E. faecalis deficient for lipoproteins (Δlgt score: 2.3±2.3; p<0.0001). Consistently both E. faecalis mutants showed significantly impaired virulence in Galleria mellonella and Caenorhabditis elegans. Loss of E-cadherin in the epithelium was shown for all bacterial strains in inflamed IL-10-/- but not wild type mice. Inactivation of epaB in E. faecalis reduced microcolony and biofilm formation in vitro, altered bacterial adhesion to intestinal epithelium of germ-free Manduca sexta larvae

  5. Crystallization and preliminary X-ray characterization of the 2,4′-dihydroxyaceto­phenone dioxygenase from Alcaligenes sp. 4HAP

    PubMed Central

    Beaven, G.; Bowyer, A.; Erskine, P.; Wood, S. P.; McCoy, A.; Coates, L.; Keegan, R.; Lebedev, A.; Hopper, D. J.; Kaderbhai, M. A.; Cooper, J. B.

    2014-01-01

    The enzyme 2,4′-dihydroxyacetophenone dioxygenase (or DAD) catalyses the conversion of 2,4′-dihydroxyacetophenone to 4-hydroxybenzoic acid and formic acid with the incorporation of molecular oxygen. Whilst the vast majority of dioxygenases cleave within the aromatic ring of the substrate, DAD is very unusual in that it is involved in C—C bond cleavage in a substituent of the aromatic ring. There is evidence that the enzyme is a homotetramer of 20.3 kDa subunits each containing nonhaem iron and its sequence suggests that it belongs to the cupin family of dioxygenases. By the use of limited chymotrypsinolysis, the DAD enzyme from Alcaligenes sp. 4HAP has been crystallized in a form that diffracts synchrotron radiation to a resolution of 2.2 Å. PMID:24915102

  6. Reductive dechlorination of 2,4-dichlorobenzoate to 4-chlorobenzoate and hydrolytic dehalogenation of 4-chloro-, 4-bromo-, and 4-iodobenzoate by Alcaligenes denitrificans NTB-1.

    PubMed Central

    van den Tweel, W J; Kok, J B; de Bont, J A

    1987-01-01

    Alcaligenes denitrificans NTB-1, previously isolated on 4-chlorobenzoate, also utilized 4-bromo-, 4-iodo-, and 2,4-dichlorobenzoate but not 4-fluorobenzoate as a sole carbon and energy source. During growth, stoichiometric amounts of halide were released. Experiments with whole cells and cell extracts revealed that 4-bromo- and 4-iodobenzoate were metabolized like 4-chlorobenzoate, involving an initial hydrolytic dehalogenation yielding 4-hydroxybenzoate, which in turn was hydroxylated to 3,4-dihydroxybenzoate. The initial step in the metabolism of 2,4-dichlorobenzoate was catalyzed by a novel type of reaction for aerobic organisms, involving inducible reductive dechlorination to 4-chlorobenzoate. Under conditions of low and controlled oxygen concentrations, A. denitrificans NTB-1 converted all 4-halobenzoates and 2,4-dichlorobenzoate almost quantitatively to 4-hydroxybenzoate. PMID:3579283

  7. ATP-driven calcium transport in membrane vesicles of Streptococcus sanguis. [Streptococcus sanguis; Streptococcus faecalis; Escherichia coli

    SciTech Connect

    Houng, H.; Lynn, A.R.; Rosen, B.P.

    1986-11-01

    Calcium transport was investigated in membrane vesicles prepared from the oral bacterium Streptococcus sanguis. Procedures were devised for the preparation of membrane vesicles capable of accumulation /sup 45/Ca/sup 2 +/. Uptake was ATP dependent and did not require a proton motive force. Calcium transport in these vesicles was compared with /sup 45/Ca/sup 2 +/ accumulation in membrane vesicles from Streptococcus faecalis and Escherichia coli. The data support the existence of an ATP-driven calcium pump in S. sanguis similar to that in S. faecalis. This pump, which catalyzes uptake into membrane vesicles, would be responsible for extrusion of calcium from intact cells.

  8. RNA of Enterococcus faecalis Strain EC-12 Is a Major Component Inducing Interleukin-12 Production from Human Monocytic Cells

    PubMed Central

    Nishibayashi, Ryoichiro; Inoue, Ryo; Harada, Yuri; Watanabe, Takumi; Makioka, Yuko; Ushida, Kazunari

    2015-01-01

    Interleukin-12 (IL-12) is an important cytokine for the immunomodulatory effects of lactic acid bacteria (LAB). Using murine immune cells, we previously reported that the RNA of Enterococcus faecalis EC-12, a LAB strain exerting probiotic-like beneficial effects, is the major IL-12-inducing immunogenic component. However, it was recently revealed that bacterial RNA can be a ligand for Toll-like receptor (TLR) 13, which is only expressed in mice. Because TLR13 is not expressed in humans, the immuno-stimulatory and -modulatory effects of LAB RNA in human cells should be augmented excluding TLR13 contribution. In experiment 1 of this study, the role of LAB RNA in IL-12 induction in human immune cells was studied using three LAB strains, E.faecalis EC-12, Lactobacillus gasseri JCM5344, and Bifidobacterium breve JCM1192. RNase A treatment of heat-killed LAB significantly decreased the IL-12 production of human peripheral blood mononuclear cells on stimulation, while RNase III treatment revealed virtually no effects. Further, IL-12 production against heat-killed E. faecalis EC-12 was abolished by depleting monocytes. These results demonstrated that single stranded RNA (ssRNA) of LAB is a strong inducer of IL-12 production from human monocytes. In experiment 2, major receptor for ssRNA of E. faecalis EC-12 was identified using THP-1 cells, a human monocytic cell line. The type of RNA molecules of E. faecalis EC-12 responsible for IL-12 induction was also identified. IL-12 production induced by the total RNA of E. faecalis EC-12 was significantly reduced by the treatment of siRNA for TLR8 but not for TLR7. Furthermore, both 23S and 16S rRNA, but not mRNA, of E. faecalis EC-12 markedly induced IL-12 production from THP-1 cells. These results suggested that the recognition of ssRNA of E. faecalis EC-12 was mediated by TLR8 and that rRNA was the RNA molecule that exhibited IL-12-inducing ability in human cells. PMID:26083838

  9. RNA of Enterococcus faecalis Strain EC-12 Is a Major Component Inducing Interleukin-12 Production from Human Monocytic Cells.

    PubMed

    Nishibayashi, Ryoichiro; Inoue, Ryo; Harada, Yuri; Watanabe, Takumi; Makioka, Yuko; Ushida, Kazunari

    2015-01-01

    Interleukin-12 (IL-12) is an important cytokine for the immunomodulatory effects of lactic acid bacteria (LAB). Using murine immune cells, we previously reported that the RNA of Enterococcus faecalis EC-12, a LAB strain exerting probiotic-like beneficial effects, is the major IL-12-inducing immunogenic component. However, it was recently revealed that bacterial RNA can be a ligand for Toll-like receptor (TLR) 13, which is only expressed in mice. Because TLR13 is not expressed in humans, the immuno-stimulatory and -modulatory effects of LAB RNA in human cells should be augmented excluding TLR13 contribution. In experiment 1 of this study, the role of LAB RNA in IL-12 induction in human immune cells was studied using three LAB strains, E.faecalis EC-12, Lactobacillus gasseri JCM5344, and Bifidobacterium breve JCM1192. RNase A treatment of heat-killed LAB significantly decreased the IL-12 production of human peripheral blood mononuclear cells on stimulation, while RNase III treatment revealed virtually no effects. Further, IL-12 production against heat-killed E. faecalis EC-12 was abolished by depleting monocytes. These results demonstrated that single stranded RNA (ssRNA) of LAB is a strong inducer of IL-12 production from human monocytes. In experiment 2, major receptor for ssRNA of E. faecalis EC-12 was identified using THP-1 cells, a human monocytic cell line. The type of RNA molecules of E. faecalis EC-12 responsible for IL-12 induction was also identified. IL-12 production induced by the total RNA of E. faecalis EC-12 was significantly reduced by the treatment of siRNA for TLR8 but not for TLR7. Furthermore, both 23S and 16S rRNA, but not mRNA, of E. faecalis EC-12 markedly induced IL-12 production from THP-1 cells. These results suggested that the recognition of ssRNA of E. faecalis EC-12 was mediated by TLR8 and that rRNA was the RNA molecule that exhibited IL-12-inducing ability in human cells. PMID:26083838

  10. The Presence and Origin of Enterococcus faecalis in Cabo Rojo, Puerto Rico

    NASA Astrophysics Data System (ADS)

    Zachman, A. J.; Sturm, P.; Viqueira Ríos, R.

    2015-12-01

    Currently, a watershed management plan is being developed for Cabo Rojo region in Southwest Puerto Rico. This project fills in major gaps for water quality data on the Rio Viejo, a tributary on the Guanajibio River. The Rio Viejo flows through the town of Cabo Rojo, a town of 51,245 people. The project has identified 5 sites along the river to track bacterial loads. In the tropics, Enterococcus faecalis is an important indicator for fecal contamination in surface waters as it does not reproduce as quickly soils as E. coli. A combination of EPA 1600 and 9230B from Standard Methods for the Examination of Water and Wastewater for identification of E. faecalis were utilized. The assay is a four step procedure that identifies the four criteria of bacteria in the group D Streptococcus system. The criteria require that the bacteria are Gram-positive cocci and Esculin-positive. There also must be growth in Brain Heart Infusion Broth at 35C and 45C as well as growth in Brain Heart Infusion broth + 6.5% NaCl. Further research will be conducted at North Carolina State University to ascertain the vertebrate species that is the source of the contamination through the use of qPCR.

  11. Overexpression, crystallization and preliminary X-ray crystallographic analysis of phosphopantetheine adenylyltransferase from Enterococcus faecalis

    SciTech Connect

    Kang, Ji Yong; Lee, Hyung Ho; Yoon, Hye Jin; Kim, Hyoun Sook; Suh, Se Won

    2006-11-01

    Phosphopantetheine adenylyltransferase from En. faecalis was crystallized and X-ray diffraction data were collected to 2.70 Å resolution. Phosphopantetheine adenylyltransferase, an essential enzyme in the coenzyme A biosynthetic pathway, catalyzes the reversible transfer of an adenylyl group from ATP to 4′-phosphopantetheine, yielding 3′-dephospho-CoA and pyrophosphate. Enterococcus faecalis PPAT has been overexpressed in Escherichia coli as a fusion with a C-terminal purification tag and crystallized at 297 K using a reservoir solution consisting of 0.1 M sodium HEPES pH 7.5, 0.8 M sodium dihydrogen phosphate and 0.8 M potassium dihydrogen phosphate. X-ray diffraction data were collected to 2.70 Å at 100 K. The crystals belong to the primitive tetragonal space group P4{sub 1} (or P4{sub 3}), with unit-cell parameters a = b = 160.81, c = 225.68 Å. Four copies of the hexameric molecule are likely to be present in the asymmetric unit, giving a crystal volume per protein weight (V{sub M}) of 3.08 Å{sup 3} Da{sup −1} and a solvent content of 60.1%.

  12. Bactericial effect of a non-thermal plasma needle against Enterococcus faecalis biofilms

    NASA Astrophysics Data System (ADS)

    Jiang, Chunqi; Schaudinn, C.; Jaramillo, D. E.; Sedghizadeh, P. P.; Webster, P.; Costerton, J. W.

    2011-10-01

    Up to 3 cm long submillimeter-in-scale plasma needle was generated in ambient atmosphere for root canal disinfection. Powered with 1-2 kHz, multi-kilovolt nanosecond electric pulses, this He/(1%)O2 plasma jet consists of ionization fronts propagating at speeds of the order of 107 cm/s. Plasma treatment of Enterococcus faecalis biofilms on hydroxyapatite (HA) discs for 5 min resulted in severe damage of the bacterial cells and sterilized HA surfaces of more than 3 mm in diameter, observed by the scanning electron microscopy. With a curing dielectric microtube placed 1 cm or less below the nozzle, the plasma jet entered even at a sharp angle and followed the curvature of the tube, and reached the bottom of the tube. The bactericidal effect of the plasma needle against E. faecalis biofilm grown on the inner surfaces of the tube was demonstrated. However, the bactericidal effect weakens or diminishes for the bacteria grown deeper in the tube, indicating improvement of the plasma treatment scheme is needed. Mechanisms of the plasma bactericidal effects are discussed. Supported by the National Institute of Dental and Craniofacial Research and the Air Force Office of Scientific Research.

  13. Structural Studies on Cytosolic Domain of Magnesium Transporter MgtE from Enterococcus faecalis

    SciTech Connect

    Ragumani, S.; Sauder, J; Burley, S; Swaminathan, S

    2009-01-01

    Magnesium (Mg{sup 2+}) is an essential element for growth and maintenance of living cells. It acts as a cofactor for many enzymes and is also essential for stability of the plasma membrane. There are two distinct classes of magnesium transporters identified in bacteria that convey Mg{sup 2+} from periplasm to cytoplasm [ATPase-dependent (MgtA and MgtB) and constitutively active (CorA and MgtE)]. Previously published work on Mg{sup 2+} transporters yielded structures of full length MgtE from Thermus thermophilus, determined at 3.5 {angstrom} resolution, and its cytoplasmic domain with and without bond Mg{sup 2+} determined at 2.3 and 3.9 {angstrom} resolution, respectively. Here, they report the crystal structure of the Mg{sup 2+} bound form of the cytosolic portion of MgtE (residues 6-262) from Enterococcus faecalis at 2.2 {angstrom} resolution. The present structure and magnesium bound cytosolic domain structure from T. thermophilus (PDB ID: 2YVY) are structurally similar. Three magnesium binding sites are common to both MgtE full length and the present structure. Their work revealed an additional Mg{sup 2+} binding site in the E. faecalis structure. In this report, they discuss the functional significance of Mg{sup 2+} binding sites in the cytosolic domains of MgtE transporters.

  14. [Emergence of linezolid-resistant Enterococcus faecalis strains from two inpatients in a pediatric ward].

    PubMed

    Nihonyanagi, Shin; Adachi, Yuzuru; Onuki, Tomoyo; Nakazaki, Nobuhiko; Hirata, Yasuyosi; Fujiki, Kuniko; Takayama, Yoko; Kanoh, Yuhsaku; Bandoh, Yuki; Dantsuji, Yurika; Hanaki, Hideaki; Sunakawa, Keisuke

    2012-09-01

    We report herein on the isolation of three linezolid-resistant Enterococcus faecalis strains in 2011 from two pediatric inpatients at Kitasato University Hospital, Japan. Three linezolid resistant strains were isolated from two patients who shared the same room of a pediatric inpatient ward. Two linezolid resistant strains were isolated from patient A who had been treated with a total of 17,600mg of linezolid during 60 days of hospitalization (strains 1 and 2). The linezolid resistant E. faecalis persisted through the time that the patient had been discharged from the hospital. Another linezolid resistant strain was isolated from patient B who had no history of linezolid administration. The resistant strain in patient B phased out spontaneously. The minimum inhibitory concentration of linezolid in these strains ranged from 8.0 to 16.0 microg/mL. PCR amplification of the chromosomal gene encoding domain V of the 23S rRNA and subsequent nucleotide sequencing revealed that all the strains had at least one G2576T mutation. The pulse-field-gel electrophoretograms of the DNA treated with the SmaI restriction enzyme showed an identical profile suggesting that they were derived from a single resistant strain. These results suggested that the resistant strain occurred in patient A and was transmitted to patient B within the inpatient ward. PMID:23198574

  15. Effect of high-intensity focused ultrasound on Enterococcus faecalis planktonic suspensions and biofilms.

    PubMed

    Iqbal, Kulsum; Ohl, Siew-Wan; Khoo, Boo-Cheong; Neo, Jennifer; Fawzy, Amr S

    2013-05-01

    In this study, the effect of high-intensity focused ultrasound (HIFU) on Enterococcus faecalis on both planktonic suspensions and biofilms was investigated. E. faecalis persist in secondary dental infections as biofilms. Glass-bottom Petri dishes with biofilms were centered at the focal point of the HIFU wave generated by a 250-kHz transducer. Specimens were subjected to HIFU exposure at different periods of 30, 60 and 120 s. The viable bacteria, removal effect and bacterial viability of biofilms attached to the Petri dish surface were studied by colony-forming units (CFUs), scanning electron microscopy and confocal microscopy, respectively. The removal and bactericidal effects of HIFU are dependent on the exposure time. A significant reduction in biofilm thickness and CFU was found with the increase in HIFU exposure. The removal or bactericidal effect of HIFU was more significant starting from 60 s of exposure. This study highlighted the potential application of HIFU as a novel method for root canal disinfection. PMID:23453374

  16. Involvement of Enterococcus faecalis Small RNAs in Stress Response and Virulence

    PubMed Central

    Michaux, Charlotte; Hartke, Axel; Martini, Cecilia; Reiss, Swantje; Albrecht, Dirk; Budin-Verneuil, Aurélie; Sanguinetti, Maurizio; Engelmann, Susanne; Hain, Torsten; Verneuil, Nicolas

    2014-01-01

    Candidate small RNAs (sRNAs) have recently been identified in Enterococcus faecalis, a Gram-positive opportunistic pathogen, and six of these candidate sRNAs with unknown functions were selected for a functional study. Deletion mutants and complemented strains were constructed, and their virulence was tested. We were unable to obtain the ef0869-0870 mutant, likely due to an essential role, and the ef0820-0821 sRNA seemed not to be involved in virulence. In contrast, the mutant lacking ef0408-0409 sRNA, homologous to the RNAII component of the toxin-antitoxin system, appeared more virulent and more able to colonize mouse organs. The three other mutants showed reduced virulence. In addition, we checked the responses of these mutant strains to several stresses encountered in the gastrointestinal tract or during the infection process. In parallel, the activities of the sRNA promoters were measured using transcriptional fusion constructions. To attempt to identify the regulons of these candidate sRNAs, proteomics profiles of the mutant strains were compared with that of the wild type. This showed that the selected sRNAs controlled the expression of proteins involved in diverse cellular processes and the stress response. The combined data highlight the roles of certain candidate sRNAs in the adaptation of E. faecalis to environmental changes and in the complex transition process from a commensal to a pathogen. PMID:24914223

  17. The Intraperitoneal Transcriptome of the Opportunistic Pathogen Enterococcus faecalis in Mice

    PubMed Central

    Muller, Cécile; Cacaci, Margherita; Sauvageot, Nicolas; Sanguinetti, Maurizio; Rattei, Thomas; Eder, Thomas; Giard, Jean-Christophe; Kalinowski, Jörn; Hain, Torsten; Hartke, Axel

    2015-01-01

    Enterococcus faecalis is a Gram-positive lactic acid intestinal opportunistic bacterium with virulence potential. For a better understanding of the adapation of this bacterium to the host conditions, we performed a transcriptome analysis of bacteria isolated from an infection site (mouse peritonitis) by RNA-sequencing. We identified a total of 211 genes with significantly higher transcript levels and 157 repressed genes. Our in vivo gene expression database reflects well the infection process since genes encoding important virulence factors like cytolysin, gelatinase or aggregation substance as well as stress response proteins, are significantly induced. Genes encoding metabolic activities are the second most abundant in vivo induced genes demonstrating that the bacteria are metabolically active and adapt to the special nutrient conditions of the host. α- and β- glucosides seem to be important substrates for E. faecalis inside the host. Compared to laboratory conditions, the flux through the upper part of glycolysis seems to be reduced and more carbon may enter the pentose phosphate pathway. This may reflect the need of the bacteria under infection conditions to produce more reducing power for biosynthesis. Another important substrate is certainly glycerol since both pathways of glycerol catabolism are strongly induced. Strongly in vivo induced genes should be important for the infection process. This assumption has been verified in a virulence test using well characterized mutants affected in glycerol metabolism. This showed indeed that mutants unable to metabolize this sugar alcohol are affected in organ colonisation in a mouse model. PMID:25978463

  18. Endophthalmitis Caused by Enterococcus faecalis: Clinical Features, Antibiotic Sensitivities, and Outcomes

    PubMed Central

    Kuriyan, Ajay E.; Sridhar, Jayanth; Flynn, Harry W.; Smiddy, William E.; Albini, Thomas A.; Berrocal, Audina M.; Forster, Richard K.; Belin, Peter J.; Miller, Darlene

    2014-01-01

    Purpose To report the clinical features, antibiotic sensitivities, and visual acuity (VA) outcomes of endophthalmitis caused by Enterococcus faecalis. Study Design Retrospective, observational case series. Methods A consecutive case series of patients with culture-positive endophthalmitis caused by E. faecalis between January 1, 2002 and December 31, 2012 at an academic referral center. Results Of 14 patients identified, clinical settings included bleb-associated (n=8), post-cataract surgery (n=4), and post-penetrating keratoplasty (n=2). All isolates were vancomycin sensitive. When comparing isolates in the current study to isolates from 1990–2001, the minimal inhibitory concentration required to inhibit 90% of isolates (MIC 90, μg/ml) increased for ciprofloxacin (4 from 1), erythromycin (256 from 4), and penicillin (8 from 4), indicating higher levels of resistance. The MIC 90 remained the same for vancomycin (2) and linezolid (2). Presenting VA ranged from hand motion to no light perception. Initial treatment strategies were vitreous tap and intravitreal antibiotic injection (n=12) and pars plana vitrectomy with intravitreal antibiotic injection (n=2). VA outcomes were ≤ 20/400 in 13 (93%) of 14 patients. Conclusions Although all isolates were sensitive to vancomycin and linezolid, higher MIC 90s for isolates in the current study, compared to isolates from 1990 to 2001, occurred with ciprofloxacin, erythromycin, and penicillin. Despite prompt treatment, most patients had poor outcomes. PMID:25089354

  19. Identification and Characterization of a Bacitracin Resistance Network in Enterococcus faecalis

    PubMed Central

    Fang, Chong; Shaaly, Aishath; Leslie, David J.; Weimar, Marion R.; Kalamorz, Falk; Carne, Alan; Cook, Gregory M.

    2014-01-01

    Resistance of Enterococcus faecalis against antimicrobial peptides, both of host origin and produced by other bacteria of the gut microflora, is likely to be an important factor in the bacterium's success as an intestinal commensal. The aim of this study was to identify proteins with a role in resistance against the model antimicrobial peptide bacitracin. Proteome analysis of bacitracin-treated and untreated cells showed that bacitracin stress induced the expression of cell wall-biosynthetic proteins and caused metabolic rearrangements. Among the proteins with increased production, an ATP-binding cassette (ABC) transporter with similarity to known peptide antibiotic resistance systems was identified and shown to mediate resistance against bacitracin. Expression of the transporter was dependent on a two-component regulatory system and a second ABC transporter, which were identified by genome analysis. Both resistance and the regulatory pathway could be functionally transferred to Bacillus subtilis, proving the function and sufficiency of these components for bacitracin resistance. Our data therefore show that the two ABC transporters and the two-component system form a resistance network against antimicrobial peptides in E. faecalis, where one transporter acts as the sensor that activates the TCS to induce production of the second transporter, which mediates the actual resistance. PMID:24342648

  20. Biodegradation of C.I. Reactive Red 195 by Enterococcus faecalis strain YZ66.

    PubMed

    Mate, Madhuri Sahasrabudhe; Pathade, Girish

    2012-03-01

    Synthetic dyes are extensively used in textile dyeing, paper, printing, colour photography, pharmaceutics, cosmetics and other industries. Among these, azodyes represents the largest and most versatile class of synthetic dyes. As high as 50% of the dyes are released into the environment during manufacture and usage. Traditional methods of treatment are found to be expensive and have operational problems. Biological decolourization has been investigated as a method to transform, degrade or mineralize azo dyes. In the present studies bacteria from soil from dye waste area, dye waste, sewage and dung were subjected to acclimatization with C.I. Reactive Red 195 an azo dye, in the basal nutrient media. The most promising bacterial isolate was used for further dye degradation studies. The 16s rRNA gene sequencing and biochemical characteristics revealed the isolated organism as Enterococcus faecalis strain YZ66. The strain showed 99.5% decolourization of the selected dye (Reactive Red 195-50 mg/l) within one and half hour in static anoxic condition. The optimum pH and temperature for the decolourization was 5.0 and 40°C respectively. The biodegradation was monitored by UV-Vis, FTIR, TLC and HPLC. The final products were characterized by Gas chromatography and Mass Spectrophotometry. Toxicity study demonstrated no toxicity of the biodegradation product. The results suggest that the isolated organism E. faecalis strain YZ 66 can be used as a useful tool to treat waste water containing reactive dyes. PMID:22805800

  1. Enterococcus faecalis Clones in Poultry and in Humans with Urinary Tract Infections, Vietnam

    PubMed Central

    Poulsen, Louise Ladefoged; Bisgaard, Magne; Son, Nguyen Thai; Trung, Nguyen Vu; An, Hoang Manh

    2012-01-01

    Enterococcus spp. as pathogens have increased, but the sources of infection often remain unclear. To investigate whether poultry might be a reservoir for E. faecalis–associated urinary tract infections (UTIs) in humans, we characterized E. faecalis isolates from patients in Vietnam with UTIs during January 2008–January 2010 and poultry living in close contact with them by multilocus sequence typing (MLST), pulsed-field gel electrophoresis, analysis of antimicrobial drug susceptibility patterns, and sequencing of virulence genes. In 7 (23%) of 31 UTI cases, we detected identical MLST, indistinguishable or closely related pulsed-field gel electrophoresis patterns, and similar antimicrobial drug susceptibility patterns. Isolates from urine and poultry showed identical virulence gene profiles, except for 1 variation, and individual genes showed identical sequences. The homology of isolates from urine and poultry further indicates the zoonotic potential and global spread of E. faecalis sequence type 16, which recently was reported in humans with endocarditis and in pigs in Denmark. PMID:22709904

  2. First detection of the antiseptic resistance gene qacA/B in Enterococcus faecalis.

    PubMed

    Bischoff, Meike; Bauer, Johann; Preikschat, Petra; Schwaiger, Karin; Mölle, Gabriele; Hölzel, Christina

    2012-02-01

    Resistance to disinfectants is well investigated in staphylococci and pseudomonads but nearly unexplored in bacteria of the genus Enterococcus, despite their rising significance as nosocomial pathogens. In this study, Enterococcus faecalis (n=585) from blood (n=42) and stool (n=109) of hospitalized humans, from faeces of farm animals (n=226), and from food (milk and dairy products, n=96; meat and meat products, n=112) were screened for the presence of qac-genes (qacA, qacB, qacC, smr [qacC+qacD], qacEΔ1, qacG, qacH, qacJ) via PCR. The isolates' susceptibility to a quaternary ammonium compound (didecyldimethylammoniumchloride, DDAC) and antibiotics was assessed by microdilution. Four E. faecalis strains were positive for qac-genes: qacA/B was found in one isolate from cattle and one isolate from human blood; smr (qacC+qacD) was detected in one isolate from human stool and in one isolate from cheese ("Camembert"). The sequences of the qacA/B-amplicons differed in two basepairs. DDAC had an elevated minimum inhibitory concentration (MIC) of 2.45-3.5 mg/L in one qacA/B-positive strain from human blood, whereas the other qac-gene carriers had wild-type MIC-values for DDAC (1.05 mg/L). This is the first detection of qacA/B in the genus Enterococcus. PMID:22017402

  3. Identification of an N-terminal formylated, two-peptide bacteriocin from Enterococcus faecalis 710C.

    PubMed

    Liu, Xiaoji; Vederas, John C; Whittal, Randy M; Zheng, Jing; Stiles, Michael E; Carlson, Denise; Franz, Charles M A P; McMullen, Lynn M; van Belkum, Marco J

    2011-05-25

    Enterococcus faecalis 710C, isolated from beef product, has a broad antimicrobial activity spectrum against foodborne pathogens. Two bacteriocins, enterocin 7A (Ent7A) and enterocin 7B (Ent7B), were purified from the culture supernatant of E. faecalis 710C and characterized using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry and electrospray infusion tandem mass spectrometry analyses. These data and subsequent genetic analysis showed that Ent7A and Ent7B are produced without N-terminal leader sequences and have amino acid sequences that are identical to those of enterocins MR10A and MR10B, respectively. However, the observed masses for Ent7A and Ent7B are 5200.80 and 5206.65 Da (monoisotopic mass), respectively, which are higher than the theoretical molecular masses of MR10A and MR10B, respectively. This study provides evidence that both Ent7A and Ent7B are formylated on the N-terminal methionine residue. Purified Ent7A and Ent7B are active against spoilage microorganisms and foodborne pathogens, including Clostridium sporogenes , Listeria monocytogenes , and Staphylococcus aureus as well as Brevundimonas diminuta , which has been associated with infections among immune-suppressed cancer patients. PMID:21469734

  4. Antibiotic Resistance and Biofilm Formation of Enterococcus faecalis in Patient and Environmental Samples

    PubMed Central

    Talebi, Malihe; Asghari Moghadam, Nastaran; Mamooii, Zeynab; Enayati, Mohsen; Saifi, Mahnaz; Pourshafie, Mohammad Reza

    2015-01-01

    Background: Enterococci are opportunistic pathogens and are a major factor in nosocomial infections. They may contain ebp operon, which upon expression makes them highly prone to biofilm formation on biotic and abiotic surfaces. Objectives: The aim of the current study was to detect the polymorphism of ebp genes in Enterococcus faecalis. Materials and Methods: Samples were isolated from patients (n = 58) and hospital environments (n = 32) of two hospitals in Tehran, Iran. All enterococcal species were identified by species-specific polymerase chain reaction (PCR); the antibiotic resistance pattern against nine antibiotics was determined. The ebp A, ebp B, ebp C and srt C genes were detected by PCR and the biofilm formation by the isolates was evaluated using the microtiter plate method. The genetic diversity of ebp genes was analyzed by restriction fragment length polymorphism (RFLP). Results: The results indicated that, 86% of patient and 29% of environmental isolates carried ebp genes. The ability of the isolates to strongly attach was 62% and 71% for patient and environmental samples, respectively. The RFLP of the ebp showed no genetic variations amongst the isolates. Conclusions: The results of the antibiotic resistance and other data suggest that there is a possible common clone of E. faecalis, which could rapidly disseminate in patients and the environment. PMID:26587208

  5. In vitro evaluation of the antimicrobial efficacy of chitosan and other endodontic irrigants against Enterococcus faecalis.

    PubMed

    Shenoi, Pratima R; Morey, Elakshi S; Makade, Chetana S; Gunwal, Mohit K; Khode, Rajiv T; Wanmali, Sunay S

    2016-01-01

    The success of endodontic treatment is directly enhanced by elimination of microorganisms in infected root canals. Recently, chitosan, a natural, nontoxic biopolymer, has been introduced as an irrigant that has the capacity to remove the smear layer. The antimicrobial properties of chitosan as an endodontic irrigant have not yet been explored. The purpose of this study was to compare the antimicrobial efficacy of BioPure MTAD, 0.2% chitosan, 1% chitosan, 2% chlorhexidine gluconate, and 3% sodium hypochlorite (NaOCl) against Enterococcus faecalis, which is frequently isolated from persistent root canal infections. The agar well diffusion method was used to measure the antimicrobial activities of these irrigants. Saline was used as a negative control. The order of effectiveness was determined by the measurement of inhibition zones. Data were analyzed using 1-way analysis of variance and the Duncan multiple range test. BioPure MTAD had a significantly larger mean inhibition zone against E faecalis than the other irrigants (P < 0.001). Although 0.2% chitosan did not show any inhibition zones, 1% chitosan was as effective as 3% NaOCl (P = 0.352), and both irrigants showed significantly greater effectivity than 2% chlorhexidine (P < 0.001). Thus, 1% chitosan can be an effective natural antimicrobial substitute for synthetic irrigants. PMID:27599284

  6. Sunlight mediated inactivation mechanisms of Enterococcus faecalis and Escherichia coli in clear water versus waste stabilization pond water.

    PubMed

    Kadir, Khalid; Nelson, Kara L

    2014-03-01

    Escherichia coli and enterococci have been previously reported to differ in the mechanisms and conditions that affect their sunlight-mediated inactivation in waste stabilization ponds. This study was undertaken to further characterize these mechanisms, using simulated sunlight and single strains of laboratory-grown E. coli and Enterococcus faecalis, with a focus on characterizing the contribution of exogenous reactive oxygen species to the inactivation process. We found that direct damage by UVB light (280-320 nm) was not a significant inactivation mechanism for either organism. E. coli inactivation was strongly dependent on dissolved oxygen concentrations and the presence of UVB wavelengths but E. coli were not susceptible to inactivation by exogenous sensitizers present in waste stabilization pond water. In contrast, E. faecalis inactivation in pond water occurred primarily through exogenous mechanisms, with strong evidence that singlet oxygen is an important transient reactive species. The exogenous mechanism could utilize wavelengths into the visible spectrum and sensitizers were mainly colloidal, distributed between 0.2 and ∼1 μm in size. Singlet oxygen is likely an important endogenous species in both E. faecalis and E. coli inactivation due to sunlight. Although the two organisms had similar inactivation rates in buffered, clear water, the inactivation rate of E. faecalis was 7 times greater than that of E. coli in air-saturated pond water at circumneutral pH due to its susceptibility to exogenous sensitizers and longer wavelengths. PMID:24188579

  7. Atomic force microscopy visualization of injuries in Enterococcus faecalis surface caused by Er,Cr:YSGG and diode lasers

    PubMed Central

    López-Jiménez, Lidia; Viñas, Miguel; Vinuesa, Teresa

    2015-01-01

    Aim: To visualize by Atomic Force Microscopy the alterations induced on Enterococcus. faecalis surface after treatment with 2 types of laser: Erbium chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser and Diode laser. Material and Methods: Bacterial suspensions from overnight cultures of E. faecalis were irradiated during 30 seconds with the laser-lights at 1 W and 2 W of power, leaving one untreated sample as control. Surface alterations on treated E. faecalis were visualized by Atomic Force Microscopy (AFM) and its surface roughness determined. Results: AFM imaging showed that at high potency of laser both cell morphology and surface roughness resulted altered, and that several cell lysis signs were easily visualized. Surface roughness clearly increase after the treatment with Er,Cr:YSGG at 2W of power, while the other treatments gave similar values of surface roughness. The effect of lasers on bacterial surfaces visualized by AFM revealed drastic alterations. Conclusions: AFM is a good tool to evaluate surface injuries after laser treatment; and could constitute a measure of antimicrobial effect that can complete data obtained by determination of microbial viability. Key words:Atomic force microscopy, Er,Cr:YSGG laser, diode laser, Enterococcus faecalis, surface roughness. PMID:25475770

  8. Immunostimulatory Effects Triggered by Enterococcus faecalis CECT7121 Probiotic Strain Involve Activation of Dendritic Cells and Interferon-Gamma Production.

    PubMed

    Molina, Matías Alejandro; Díaz, Ailén Magalí; Hesse, Christina; Ginter, Wiebke; Gentilini, María Virginia; Nuñez, Guillermo Gabriel; Canellada, Andrea Mercedes; Sparwasser, Tim; Berod, Luciana; Castro, Marisa Silvia; Manghi, Marcela Alejandra

    2015-01-01

    Probiotics can modulate the immune system, conferring beneficial effects on the host. Understanding how these microorganisms contribute to improve the health status is still a challenge. Previously, we have demonstrated that Enterococcus faecalis CECT7121 implants itself and persists in the murine gastrointestinal tract, and enhances and skews the profile of cytokines towards the Th1 phenotype in several biological models. Given the importance of dendritic cells (DCs) in the orchestration of immunity, the aim of this work was to elucidate the influence of E. faecalis CECT7121 on DCs and the outcome of the immune responses. In this work we show that E. faecalis CECT7121 induces a strong dose-dependent activation of DCs and secretion of high levels of IL-12, IL-6, TNFα, and IL-10. This stimulation is dependent on TLR signaling, and skews the activation of T cells towards the production of IFNγ. The influence of this activation in the establishment of Th responses in vivo shows the accumulation of specific IFNγ-producing cells. Our findings indicate that the activation exerted by E. faecalis CECT7121 on DCs and its consequence on the cellular adaptive immune response may have broad therapeutic implications in immunomodulation. PMID:25978357

  9. Tyramine biosynthesis is transcriptionally induced at low pH and improves the fitness of Enterococcus faecalis in acidic environments.

    PubMed

    Perez, Marta; Calles-Enríquez, Marina; Nes, Ingolf; Martin, Maria Cruz; Fernandez, Maria; Ladero, Victor; Alvarez, Miguel A

    2015-04-01

    Enterococcus faecalis is a commensal bacterium of the human gut that requires the ability to pass through the stomach and therefore cope with low pH. E. faecalis has also been identified as one of the major tyramine producers in fermented food products, where they also encounter acidic environments. In the present work, we have constructed a non-tyramine-producing mutant to study the role of the tyramine biosynthetic pathway, which converts tyrosine to tyramine via amino acid decarboxylation. Wild-type strain showed higher survival in a system that mimics gastrointestinal stress, indicating that the tyramine biosynthetic pathway has a role in acid resistance. Transcriptional analyses of the E. faecalis V583 tyrosine decarboxylase cluster showed that an acidic pH, together with substrate availability, induces its expression and therefore the production of tyramine. The protective role of the tyramine pathway under acidic conditions appears to be exerted through the maintenance of the cytosolic pH. Tyramine production should be considered important in the adaptability of E. faecalis to acidic environments, such as fermented dairy foods, and to survive passage through the human gastrointestinal tract. PMID:25529314

  10. IS256 abolishes gelatinase activity and biofilm formation in a mutant of the nosocomial pathogen Enterococcus faecalis V583.

    PubMed

    Perez, Marta; Calles-Enríquez, Marina; del Rio, Beatriz; Ladero, Victor; Martín, María Cruz; Fernández, María; Alvarez, Miguel A

    2015-07-01

    Enterococcus faecalis is one of the most controversial species of lactic acid bacteria. Some strains are used as probiotics, while others are associated with severe and life-threatening nosocomial infections. Their pathogenicity depends on the acquisition of multidrug resistance and virulence factors. Gelatinase, which is required in the first steps of biofilm formation, is an important virulence determinant involved in E. faecalis pathogenesis, including endocarditis and peritonitis. The gene that codes for gelatinase (gelE) is controlled by the Fsr quorum-sensing system, whose encoding genes (fsrA, fsrB, fsrC, and fsrD) are located immediately upstream of gelE. The integration of a DNA fragment into the fsr locus of a derived mutant of E. faecalis V583 suppressed the gelatinase activity and prevented biofilm formation. Sequence analysis indicated the presence of IS256 integrated into the fsrC gene at nucleotide position 321. Interestingly, IS256 is also associated with biofilm formation in Staphylococcus epidermidis and Staphylococcus aureus. This is the first description of an insertion sequence that prevents biofilm formation in E. faecalis. PMID:25966618

  11. Antibacterial Efficacy of Calcium Hypochlorite with Vibringe Sonic Irrigation System on Enterococcus faecalis: An In Vitro Study

    PubMed Central

    Dumani, Aysin; Guvenmez, Hatice Korkmaz; Yilmaz, Sehnaz; Yoldas, Oguz; Kurklu, Zeliha Gonca Bek

    2016-01-01

    Aim. The purpose of this study was to compare the in vitro efficacy of calcium hypochlorite (Ca[OCl]2) and sodium hypochlorite (NaOCl) associated with sonic (Vibringe) irrigation system in root canals which were contaminated with Enterococcus faecalis. Material and Methods. The root canals of 84 single-rooted premolars were enlarged up to a file 40, autoclaved, inoculated with Enterococcus faecalis, and incubated for 21 days. The samples were divided into 7 groups according to the irrigation protocol: G0: no treatment; G1: distilled water; G2: 2.5% NaOCl; G3: 2.5% Ca(OCl)2; G4: distilled water with sonic activation; G5: 2.5% NaOCl with sonic activation; and G6: 2.5% Ca(OCl)2 with sonic activation. Before and after decontamination procedures microbiological samples were collected and the colony-forming units were counted and the percentages of reduction were calculated. Results. Distilled water with syringe irrigation and sonic activation groups demonstrated poor antibacterial effect on Enterococcus faecalis compared to other experimental groups (p < 0.05). There was no statistically significant difference between syringe and sonic irrigation systems with Ca(OCl)2 and NaOCl. Conclusion. The antimicrobial property of Ca(OCl)2 has been investigated and compared with that of NaOCl. Both conventional syringe irrigation and sonic irrigation were found effective at removing E. faecalis from the root canal of extracted human teeth. PMID:27218106

  12. Enterococcus faecalis inhibits superantigen toxic shock syndrome toxin-1-induced interleukin-8 from human vaginal epithelial cells through tetramic acids.

    PubMed

    Brosnahan, Amanda J; Merriman, Joseph A; Salgado-Pabón, Wilmara; Ford, Bradley; Schlievert, Patrick M

    2013-01-01

    The vaginal mucosa can be colonized by many bacteria including commensal organisms and potential pathogens, such as Staphylococcus aureus. Some strains of S. aureus produce the superantigen toxic shock syndrome toxin-1, which can penetrate the vaginal epithelium to cause toxic shock syndrome. We have observed that a female was mono-colonized with Enterococcus faecalis vaginally as tested in aerobic culture, even upon repeated culture for six months, suggesting this organism was negatively influencing colonization by other bacteria. In recent studies, we demonstrated an "outside-in" mechanism of cytokine signaling and consequent inflammation that facilitates the ability of potential pathogens to initiate infection from mucosal surfaces. Thus, we hypothesized that this strain of E. faecalis may make anti-inflammatory factors which block disease progression of more pathogenic organisms. E. faecalis MN1 inhibited interleukin-8 production from human vaginal epithelial cells in response to the vaginal pathogens Candida albicans, Gardnerella vaginalis, and Neisseria gonorrhoeae, as well as to toxic shock syndrome toxin-1. We further demonstrated that this organism secretes two tetramic acid compounds which appear responsible for inhibition of interleukin-8 production, as well as inhibition of T cell proliferation due to toxic shock syndrome toxin-1. Microbicides that include anti-inflammatory molecules, such as these tetramic acid compounds naturally produced by E. faecalis MN1, may be useful in prevention of diseases that develop from vaginal infections. PMID:23613823

  13. Antibacterial Efficacy of Calcium Hypochlorite with Vibringe Sonic Irrigation System on Enterococcus faecalis: An In Vitro Study.

    PubMed

    Dumani, Aysin; Guvenmez, Hatice Korkmaz; Yilmaz, Sehnaz; Yoldas, Oguz; Kurklu, Zeliha Gonca Bek

    2016-01-01

    Aim. The purpose of this study was to compare the in vitro efficacy of calcium hypochlorite (Ca[OCl]2) and sodium hypochlorite (NaOCl) associated with sonic (Vibringe) irrigation system in root canals which were contaminated with Enterococcus faecalis. Material and Methods. The root canals of 84 single-rooted premolars were enlarged up to a file 40, autoclaved, inoculated with Enterococcus faecalis, and incubated for 21 days. The samples were divided into 7 groups according to the irrigation protocol: G0: no treatment; G1: distilled water; G2: 2.5% NaOCl; G3: 2.5% Ca(OCl)2; G4: distilled water with sonic activation; G5: 2.5% NaOCl with sonic activation; and G6: 2.5% Ca(OCl)2 with sonic activation. Before and after decontamination procedures microbiological samples were collected and the colony-forming units were counted and the percentages of reduction were calculated. Results. Distilled water with syringe irrigation and sonic activation groups demonstrated poor antibacterial effect on Enterococcus faecalis compared to other experimental groups (p < 0.05). There was no statistically significant difference between syringe and sonic irrigation systems with Ca(OCl)2 and NaOCl. Conclusion. The antimicrobial property of Ca(OCl)2 has been investigated and compared with that of NaOCl. Both conventional syringe irrigation and sonic irrigation were found effective at removing E. faecalis from the root canal of extracted human teeth. PMID:27218106

  14. Ecology of Enterococcus faecalis and niche adapted or non-niche-adapted Enterococcus faecium in continuous-flow anaerobic cultures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objectives: To study the survivability of niche adapted Enterococcus faecium I.3rif (I.3rif) vs. non-niche adapted Enterococcus faecium (GRE47) in cultures that contain Enterococcus faecalis I.2. Methods: An anaerobic continuous-flow culture of chicken microflora (CCF) that models the chicken gastr...

  15. Antimicrobial Effect of Lippia sidoides and Thymol on Enterococcus faecalis Biofilm of the Bacterium Isolated from Root Canals

    PubMed Central

    Veras, H. N. H.; Rodrigues, F. F. G.; Botelho, M. A.; Menezes, I. R. A.; Coutinho, H. D. M.; da Costa, J. G. M.

    2014-01-01

    The species Lippia sidoides Cham. (Verbenaceae) is utilized in popular medicine as a local antiseptic on the skin and mucosal tissues. Enterococcus faecalis is the bacterium isolated from root canals of teeth with persistent periapical lesions and has the ability to form biofilm, where it is responsible for the failure of endodontic treatments. Essential oil of L. sidoides (EOLS) and its major component, thymol, were evaluated for reducing the CFU in biofilms of E. faecalis in vitro. The essential oil was obtained by hydrodistillation and examined with respect to the chemical composition, by gas chromatography-mass spectrometry (GC-MS). The GC-MS analysis has led to the identification of thymol (84.9%) and p-cymene (5.33%). EOLS and thymol reduced CFU in biofilms of E. faecalis in vitro (time of maturation, 72 h), with an exposure time of 30 and 60 min at concentrations of 2.5 and 10%. There was no statistical difference in effect between EOLS and thymol, demonstrating that this phenolic monoterpene was the possible compound responsible for the antimicrobial activity of EOLS. This study provides a basis for the possible utilization of EOLS as an adjuvant in the treatment of root canals that show colonization by E. faecalis. PMID:24683344

  16. Comparative evaluation of antimicrobial efficacy of three herbal irrigants in reducing intracanal E. faecalis populations: An in vitro study

    PubMed Central

    Wadhwa, Jitesh; Duhan, Jigyasa

    2016-01-01

    Background The present study aimed to evaluate the intracanal bacterial reduction promoted by chemomechanical preparation using three different herbal extracts named Ocimum sanctum (OS), Cinnamomum zeylanicum (CZ), Syzygium aromaticum (SA) against Enterococcus faecalis. Material and Methods Root canals from extracted teeth were contaminated with Enterococcus faecalis ATCC 29212 for 7 days and then randomly distributed into 3 experimental groups of 10 teeth each: which includes conventional irrigation with OS, CZ and SA. The control groups included 5 teeth each consisting of NaOCl (positive control) and distilled water (negative control). Samples taken before and after chemomechanical procedures were cultured, and the colony-forming units (CFUs) were counted. Bacterial identification was performed using Polymerase chain reaction technique. The statistical analyses were performed with various tests. Results Reduction in the intracanal bacterial populations was highly significant for all the experimental groups. CZ and SA showed 80 to 85% intracanal bacterial reduction while O. Sanctum revealed only 70 to 75 % reduction. NaOCl showed 96 to 100 % bacterial reduction on the other hand distilled water showed very minimal bacterial reduction i.e 10 to 16%. Conclusions Cinnamomum zeylanicum, Syzygium aromaticum and Ocimum sanctum showed intracanal bacterial reduction against Enterococcus faecalis. The 3 experimental groups were less effective in terms of intracanal bacterial reduction as compare to NaOCl but more effective than distilled water. Key words:Antimicrobial activity, Cinnamomum zeylanicum, Enterococcus faecalis, Ocimum sanctum, Syzygium aromaticum, herbal extracts. PMID:27398170

  17. Draft Genome Sequence of the Bacteriocinogenic Strain Enterococcus faecalis DBH18, Isolated from Mallard Ducks (Anas platyrhynchos)

    PubMed Central

    Arbulu, Sara; Jimenez, Juan J.; Borrero, Juan; Sánchez, Jorge; Frantzen, Cyril; Herranz, Carmen; Nes, Ingolf F.; Cintas, Luis M.; Diep, Dzung B.

    2016-01-01

    Here, we report the draft genome sequence of Enterococcus faecalis DBH18, a bacteriocinogenic lactic acid bacterium (LAB) isolated from mallard ducks (Anas platyrhynchos). The assembly contains 2,836,724 bp, with a G+C content of 37.6%. The genome is predicted to contain 2,654 coding DNA sequences (CDSs) and 50 RNAs. PMID:27417838

  18. Draft Genome Sequence of the Bacteriocinogenic Strain Enterococcus faecalis DBH18, Isolated from Mallard Ducks (Anas platyrhynchos).

    PubMed

    Arbulu, Sara; Jimenez, Juan J; Borrero, Juan; Sánchez, Jorge; Frantzen, Cyril; Herranz, Carmen; Nes, Ingolf F; Cintas, Luis M; Diep, Dzung B; Hernández, Pablo E

    2016-01-01

    Here, we report the draft genome sequence of Enterococcus faecalis DBH18, a bacteriocinogenic lactic acid bacterium (LAB) isolated from mallard ducks (Anas platyrhynchos). The assembly contains 2,836,724 bp, with a G+C content of 37.6%. The genome is predicted to contain 2,654 coding DNA sequences (CDSs) and 50 RNAs. PMID:27417838

  19. Comparative evaluation of antimicrobial efficacy of QMix™ 2 in 1, sodium hypochlorite, and chlorhexidine against Enterococcus faecalis and Candida albicans

    PubMed Central

    Elakanti, Soujanya; Cherukuri, Gayathri; Rao, Venkateswara G; Chandrasekhar, Veeramachaneni; Rao, Anitha S; Tummala, Muralidhar

    2015-01-01

    Aim/Objective: The aim of this study is to compare the antimicrobial efficacy of QMix™ 2 in 1, sodium hypochlorite (NaOCl), and chlorhexidine (CHX) against Enterococcus faecalis and Candida albicans. Materials and Methods: Eighty freshly extracted, single-rooted human mandibular premolar teeth were instrumented and autoclaved. Samples were divided into two groups of 40 teeth each based on the type of microorganism used. Group I was inoculated with E. faecalis and Group II with C. albicans and incubated for 3 days. Each group was subdivided into four subgroups based on the type of irrigant used. Group IA, IIA, 5.25% NaOCl; Group IB, IIB, 2% CHX; Group IC, IIC, QMix™ 2 in 1; and Group ID, IID, 0.9% saline (the control group). Ten microliters of the sample from each canal was taken and was placed on Brain Heart Infusion agar and Sabouraud dextrose agar. The plates were incubated at 37°C for 24 h and colony forming units (CFUs) that were grown were counted. Data was analyzed with analysis of variance (ANOVA) followed by post-hoc Games-Howell test. Results: The greatest antimicrobial effects were observed in samples treated with QMix™ 2 in 1 (P < 0.001). No statistical significant difference was found between 5.25% NaOCl and 2% CHX (P > 0.001) against E. faecalis and C. albicans. Conclusion: QMix™ 2 in 1 demonstrated significant antimicrobial efficacy against E. faecalis and C. albicans. PMID:25829691

  20. Immunostimulatory Effects Triggered by Enterococcus faecalis CECT7121 Probiotic Strain Involve Activation of Dendritic Cells and Interferon-Gamma Production

    PubMed Central

    Molina, Matías Alejandro; Díaz, Ailén Magalí; Hesse, Christina; Ginter, Wiebke; Gentilini, María Virginia; Nuñez, Guillermo Gabriel; Canellada, Andrea Mercedes; Sparwasser, Tim; Berod, Luciana; Castro, Marisa Silvia; Manghi, Marcela Alejandra

    2015-01-01

    Probiotics can modulate the immune system, conferring beneficial effects on the host. Understanding how these microorganisms contribute to improve the health status is still a challenge. Previously, we have demonstrated that Enterococcus faecalis CECT7121 implants itself and persists in the murine gastrointestinal tract, and enhances and skews the profile of cytokines towards the Th1 phenotype in several biological models. Given the importance of dendritic cells (DCs) in the orchestration of immunity, the aim of this work was to elucidate the influence of E. faecalis CECT7121 on DCs and the outcome of the immune responses. In this work we show that E. faecalis CECT7121 induces a strong dose-dependent activation of DCs and secretion of high levels of IL-12, IL-6, TNFα, and IL-10. This stimulation is dependent on TLR signaling, and skews the activation of T cells towards the production of IFNγ. The influence of this activation in the establishment of Th responses in vivo shows the accumulation of specific IFNγ-producing cells. Our findings indicate that the activation exerted by E. faecalis CECT7121 on DCs and its consequence on the cellular adaptive immune response may have broad therapeutic implications in immunomodulation. PMID:25978357

  1. Molecular Epidemiologic Analysis of Enterococcus faecalis Isolates in Cuba by Multilocus Sequence Typing

    PubMed Central

    Kobayashi, Nobumichi; Nagashima, Shigeo

    2009-01-01

    We carried out the first study of Enterococcus faecalis clinical isolates in Cuba by multilocus sequence typing linking the molecular typing data with the presence of virulence determinants and the antibiotic resistance genes. A total of 23 E. faecalis isolates recovered from several clinic sources and geographic areas of Cuba during a period between 2000 and 2005 were typed by multilocus sequence typing. Thirteen sequence types (STs) including five novel STs were identified, and the ST 64 (clonal complex [CC] 8), ST 6 (CC2), ST 21(CC21), and ST 16 (CC58) were found in more than one strain. Sixty-seven percent of STs corresponded to STs reported previously in Spain, Poland, and The Netherlands, and other STs (ST115, ST64, ST6, and ST40) were genetically close to those detected in the United States. Prevalence of both antimicrobial resistance genes [aac(6′)-aph(2″), aph(3′), ant(6), ant(3″)(9), aph(2″)-Id, aph(2″)-Ic, erm(B), erm(A), erm(C), mef(A), tet(M), and tet(L)] and virulence genes (agg, gelE, cylA, esp, ccf, and efaAfs) were examined by polymerase chain reaction. Aminoglycoside resistance genes aac(6′)-Ie-aph(2″)-Ia, aph(3′), ant(6), ant(3″)(9) were more frequently detected in ST6, ST16, ST23, ST64, and ST115. The multidrug resistance was distributed to all STs detected, except for ST117 and singleton ST225. The presence of cyl gene was specifically linked to the ST64 and ST16. Presence of the esp, gel, and agg genes was not specific to any particular ST. This research provided the first insight into the population structure of E. faecalis in Cuba, that is, most Cuban strains were related to European strains, whereas others to U.S. strains. The CC2, CC21, and CC8, three of the biggest CCs in the world, were evidently circulating in Cuba, associated with multidrug resistance and virulence traits. PMID:19857135

  2. Partial purification and characterization of bacteriocin produced by Enterococcus faecalis DU10 and its probiotic attributes.

    PubMed

    Perumal, Venkatesh; Repally, Ayyanna; Dasari, Ankaiah; Venkatesan, Arul

    2016-10-01

    A novel bacteriocin produced by avian duck isolated lactic acid bacterium Enterococcus faecalis DU10 was isolated. This bacteriocin showed a broad spectrum of antibacterial activity against important food-borne pathogens and was purified by size exclusion chromatography followed by reverse-phase high-performance liquid chromatography in a C-18 column. Tricine-SDS PAGE revealed the presence of a band with an estimated molecular mass of 6.3 kDa. The zymogram clearly linked the antimicrobial activity with this band. This result was further confirmed by mass-assisted laser desorption ionization time-of-flight mass spectrometry, since a sharp peak corresponding to 6.313 kDa was detected and the functional groups were revealed by Fourier transform infrared spectroscopy. Bacteriocin DU10 activity was found sensitive to proteinase-K and pepsin and partially affected by trypsin and α-chymotrypsin. The activity of bacteriocin DU10 was partially resistant to heat treatments ranging from 30 to 90°C for 30 min. It also withstood a treatment at 121°C for 10 min. Cytotoxicity of bacteriocin DU10 by methyl-thiazolyl-diphenyl-tetrazolium bromide assay showed that the viability of HT-29 and HeLa cells decreased 60 ± 0.7% and 43 ± 4.8%, respectively, in the presence of 3,200 AU/mL of bacteriocin. The strain withstood 0.3% w/v of bile oxgall and pH 2 affected the bacterial growth between 2 and 4 hr of incubation. Adhesion properties examined with HT-29 cell line showed 69.85% initial population of strain E. faecalis DU10, which was found to be strongly adhered to this cell line. These results conclude bacteriocin DU10 may be used as a potential biopreservative and E. faecalis DU10 may be used as a potential probiont to control Salmonella infections. PMID:26786752

  3. Virulence Genes among Enterococcus faecalis and Enterococcus faecium Isolated from Coastal Beaches and Human and Nonhuman Sources in Southern California and Puerto Rico

    PubMed Central

    Talavera, Ginamary Negrón; Hernández, Luis A. Ríos; Ambrose, Richard F.; Jay, Jennifer A.

    2016-01-01

    Most Enterococcus faecalis and E. faecium are harmless to humans; however, strains harboring virulence genes, including esp, gelE, cylA, asa1, and hyl, have been associated with human infections. E. faecalis and E. faecium are present in beach waters worldwide, yet little is known about their virulence potential. Here, multiplex PCR was used to compare the distribution of virulence genes among E. faecalis and E. faecium isolated from beaches in Southern California and Puerto Rico to isolates from potential sources including humans, animals, birds, and plants. All five virulence genes were found in E. faecalis and E. faecium from beach water, mostly among E. faecalis. gelE was the most common among isolates from all source types. There was a lower incidence of asa1, esp, cylA, and hyl genes among isolates from beach water, sewage, septage, urban runoff, sea wrack, and eelgrass as compared to human isolates, indicating that virulent strains of E. faecalis and E. faecium may not be widely disseminated at beaches. A higher frequency of asa1 and esp among E. faecalis from dogs and of asa1 among birds (mostly seagull) suggests that further studies on the distribution and virulence potential of strains carrying these genes may be warranted. PMID:27144029

  4. Virulence Genes among Enterococcus faecalis and Enterococcus faecium Isolated from Coastal Beaches and Human and Nonhuman Sources in Southern California and Puerto Rico.

    PubMed

    Ferguson, Donna M; Talavera, Ginamary Negrón; Hernández, Luis A Ríos; Weisberg, Stephen B; Ambrose, Richard F; Jay, Jennifer A

    2016-01-01

    Most Enterococcus faecalis and E. faecium are harmless to humans; however, strains harboring virulence genes, including esp, gelE, cylA, asa1, and hyl, have been associated with human infections. E. faecalis and E. faecium are present in beach waters worldwide, yet little is known about their virulence potential. Here, multiplex PCR was used to compare the distribution of virulence genes among E. faecalis and E. faecium isolated from beaches in Southern California and Puerto Rico to isolates from potential sources including humans, animals, birds, and plants. All five virulence genes were found in E. faecalis and E. faecium from beach water, mostly among E. faecalis. gelE was the most common among isolates from all source types. There was a lower incidence of asa1, esp, cylA, and hyl genes among isolates from beach water, sewage, septage, urban runoff, sea wrack, and eelgrass as compared to human isolates, indicating that virulent strains of E. faecalis and E. faecium may not be widely disseminated at beaches. A higher frequency of asa1 and esp among E. faecalis from dogs and of asa1 among birds (mostly seagull) suggests that further studies on the distribution and virulence potential of strains carrying these genes may be warranted. PMID:27144029

  5. Incongruence between the cps type 2 genotype and host-related phenotypes of an Enterococcus faecalis food isolate.

    PubMed

    Gaspar, Frédéric Bustos; Montero, Natalia; Akary, Elodie; Teixeira, Neuza; Matos, Renata; Gonzalez-Zorn, Bruno; Barreto Crespo, Maria Teresa; Serror, Pascale; Silva Lopes, Maria de Fátima

    2012-08-17

    Enterococcus faecalis is a nosocomial opportunistic pathogen, but is also found in fermented food products where it plays a fundamental role in the fermentation process. Previously, we have described the non-starter E. faecalis cheese isolate QA29b as harboring virulence genes and proven to be virulent in Galleria mellonella virulence model. In this study, we further characterized this food strain concerning traits relevant for the host-pathogen relationship. QA29b was found to belong to sequence type (ST) 72, a common ST among food isolates, and thus we consider it as a good representative of food E. faecalis strains. It demonstrated high ability to form biofilms, to adhere to epithelial cells and was readily eliminated by J774.A1 macrophage cells. Despite carrying the cps locus associated with the capsular polysaccharide CPS 2 type, cps genes were not expressed, likely due to an IS6770 inserted in the cpsC-cpsK promoter region. This work constitutes the first study of traits important for interaction, colonization and infection in the host performed on a good representative of E. faecalis food isolates. Reported results stress the need for a reliable serotyping assay of E. faecalis, as cps genotyping may not be reliable. Overall, QA29b characterization shows that despite its virulence potential in an insect model, this food strain is readily eliminated by mammalian macrophages. Thus, fine tuned approaches combining cellular and mammalian models are needed to address and elucidate the multifactorial aspect of virulence potential associated with food isolates. PMID:22831818

  6. Multiple Roles for Enterococcus faecalis Glycosyltransferases in Biofilm-Associated Antibiotic Resistance, Cell Envelope Integrity, and Conjugative Transfer

    PubMed Central

    Dale, Jennifer L.; Cagnazzo, Julian; Phan, Chi Q.; Barnes, Aaron M. T.

    2015-01-01

    The emergence of multidrug-resistant bacteria and the limited availability of new antibiotics are of increasing clinical concern. A compounding factor is the ability of microorganisms to form biofilms (communities of cells encased in a protective extracellular matrix) that are intrinsically resistant to antibiotics. Enterococcus faecalis is an opportunistic pathogen that readily forms biofilms and also has the propensity to acquire resistance determinants via horizontal gene transfer. There is intense interest in the genetic basis for intrinsic and acquired antibiotic resistance in E. faecalis, since clinical isolates exhibiting resistance to multiple antibiotics are not uncommon. We performed a genetic screen using a library of transposon (Tn) mutants to identify E. faecalis biofilm-associated antibiotic resistance determinants. Five Tn mutants formed wild-type biofilms in the absence of antibiotics but produced decreased biofilm biomass in the presence of antibiotic concentrations that were subinhibitory to the parent strain. Genetic determinants responsible for biofilm-associated antibiotic resistance include components of the quorum-sensing system (fsrA, fsrC, and gelE) and two glycosyltransferase (GTF) genes (epaI and epaOX). We also found that the GTFs play additional roles in E. faecalis resistance to detergent and bile salts, maintenance of cell envelope integrity, determination of cell shape, polysaccharide composition, and conjugative transfer of the pheromone-inducible plasmid pCF10. The epaOX gene is located in a variable extended region of the enterococcal polysaccharide antigen (epa) locus. These data illustrate the importance of GTFs in E. faecalis adaptation to diverse growth conditions and suggest new targets for antimicrobial design. PMID:25918141

  7. Inductive effects of environmental concentration of atrazine on Escherichia coli and Enterococcus faecalis.

    PubMed

    Koutsotoli, A D; Dimou, D S; Alamanos, Y P; Maipa, V E

    2005-01-01

    Atrazine solutions (0.1, 1, 10 and 100 microg/L) inoculated with Escherichia coli and Enterococcus faecalis under natural conditions significantly increased (p < or = 0.05) the population levels of both test bacteria; it indicates the ability of bacterial cells to degrade atrazine and to use the original compound or its degradation products as nutrient(s). In some cases, alterations in the morphology of the colonies were also observed on selective solid media. Biochemical differentiation was also found and, on the other hand, a loss of culturability was recorded; this suggests that bacteria have entered in a viable but nonculturable state. A re-appearance of the colonies occurred after inoculation on tryptone-soy agar with atrazine. PMID:16408845

  8. Treatment of enterococcus faecalis bacteria by a helium atmospheric cold plasma brush with oxygen addition

    SciTech Connect

    Chen Wei; Huang Jun; Wang Xingquan; Lv Guohua; Zhang Guoping; Du Ning; Liu Xiaodi; Guo Lihong; Yang Size

    2012-07-01

    An atmospheric cold plasma brush suitable for large area and low-temperature plasma-based sterilization is designed. Results demonstrate that the He/O{sub 2} plasma more effectively kills Enterococcus faecalis than the pure He plasma. In addition, the sterilization efficiency values of the He/O{sub 2} plasma depend on the oxygen fraction in Helium gas. The atmospheric cold plasma brush using a proper ratio of He/O{sub 2} (2.5%) reaches the optimum sterilization efficiency. After plasma treatment, the cell structure and morphology changes can be observed by the scanning electron microscopy. Optical emission measurements indicate that reactive species such as O and OH play a significant role in the sterilization process.

  9. Treatment of enterococcus faecalis bacteria by a helium atmospheric cold plasma brush with oxygen addition

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Huang, Jun; Du, Ning; Liu, Xiao-Di; Wang, Xing-Quan; Lv, Guo-Hua; Zhang, Guo-Ping; Guo, Li-Hong; Yang, Si-Ze

    2012-07-01

    An atmospheric cold plasma brush suitable for large area and low-temperature plasma-based sterilization is designed. Results demonstrate that the He/O2 plasma more effectively kills Enterococcus faecalis than the pure He plasma. In addition, the sterilization efficiency values of the He/O2 plasma depend on the oxygen fraction in Helium gas. The atmospheric cold plasma brush using a proper ratio of He/O2 (2.5%) reaches the optimum sterilization efficiency. After plasma treatment, the cell structure and morphology changes can be observed by the scanning electron microscopy. Optical emission measurements indicate that reactive species such as O and OH play a significant role in the sterilization process.

  10. Effects of Enterococcus faecalis CECT 7121 on Cryptosporidium parvum infection in mice.

    PubMed

    Del Coco, Valeria F; Sparo, Mónica D; Sidoti, Alicia; Santín, Mónica; Basualdo, Juan Angel; Córdoba, María Alejandra

    2016-08-01

    Cryptosporidium is an opportunistic protozoan parasite of humans and animals worldwide and causes diarrheal disease that is typically self-limiting in immunocompetent hosts but often life threatening to immunocompromised individuals. However, there is a lack of completely efficient therapy available. Probiotics have attracted the attention as potential antiparasite compounds against protozoa involved in intestinal infections. This study investigated the effects of administration of probiotic Enterococcus faecalis CECT 7121 on Cryptosporidium parvum infection in immunosuppressed mice. Effects on C. parvum infection at the intestinal mucosa were studied and scored at each portion of the gut. It was demonstrated that Ef CECT 7121 interfered with C. parvum infection when both probiotic and parasite were present in the same intestinal location suggesting that Ef CECT 7121 supplementation can alleviate the negative effects of C. parvum infection. PMID:27193238

  11. Enterococcus faecalis 3-hydroxy-3-methylglutaryl coenzyme A synthase, an enzyme of isopentenyl diphosphate biosynthesis.

    PubMed

    Sutherlin, Autumn; Hedl, Matija; Sanchez-Neri, Barbara; Burgner, John W; Stauffacher, Cynthia V; Rodwell, Victor W

    2002-08-01

    Biosynthesis of the isoprenoid precursor isopentenyl diphosphate (IPP) proceeds via two distinct pathways. Sequence comparisons and microbiological data suggest that multidrug-resistant strains of gram-positive cocci employ exclusively the mevalonate pathway for IPP biosynthesis. Bacterial mevalonate pathway enzymes therefore offer potential targets for development of active site-directed inhibitors for use as antibiotics. We used the PCR and Enterococcus faecalis genomic DNA to isolate the mvaS gene that encodes 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase, the second enzyme of the mevalonate pathway. mvaS was expressed in Escherichia coli from a pET28 vector with an attached N-terminal histidine tag. The expressed enzyme was purified by affinity chromatography on Ni(2+)-agarose to apparent homogeneity and a specific activity of 10 micromol/min/mg. Analytical ultracentrifugation showed that the enzyme is a dimer (mass, 83.9 kDa; s(20,w), 5.3). Optimal activity occurred in 2.0 mM MgCl(2) at 37(o)C. The DeltaH(a) was 6,000 cal. The pH activity profile, optimum activity at pH 9.8, yielded a pK(a) of 8.8 for a dissociating group, presumably Glu78. The stoichiometry per monomer of acetyl-CoA binding was 1.2 +/- 0.2 and that of covalent acetylation was 0.60 +/- 0.02. The K(m) for the hydrolysis of acetyl-CoA was 10 microM. Coupled conversion of acetyl-CoA to mevalonate was demonstrated by using HMG-CoA synthase and acetoacetyl-CoA thiolase/HMG-CoA reductase from E. faecalis. PMID:12107122

  12. Biocide and antibiotic resistance of Enterococcus faecalis and Enterococcus faecium isolated from the swine meat chain.

    PubMed

    Rizzotti, Lucia; Rossi, Franca; Torriani, Sandra

    2016-12-01

    In this study nine strains of Enterococcus faecalis and 12 strains of Enterococcus faecium, isolated from different sample types in the swine meat chain and previously characterized for the presence of antibiotic resistance genes, were examined for phenotypic tolerance to seven biocides (chlorexidine, benzalkonium chloride, triclosan, sodium hypochlorite, 2-propanol, formaldehyde and hydrogen peroxide) and resistance to nine antibiotics (ampicillin, vancomycin, gentamicin, kanamycin, streptomycin, erythromycin, clindamycin, tetracycline and chloramphenicol). Moreover, the presence of efflux system encoding genes qacA/B, qacC, qacE, qacEΔ1, emeA, and stress response genes, sigV and gsp65, involved in the tolerance to biocides, was analysed. Most strains were not tolerant to the biocides, but showed minimum inhibitory concentrations (MICs) higher than the recommended cut-off values for all the antibiotics tested, except for vancomycin and chloramphenicol. Only weak correlations, if any, were found between biocide and antibiotic resistance data. One E. faecalis strain was tolerant to triclosan and one E. faecium strain, with higher tolerance to chlorexidine than the other strains tested, was found to carry a qacA/B gene. Our results indicated that phenotypic resistance to antibiotics is very frequent in enterococcal isolates from the swine meat chain, but phenotypic tolerance to biocides is not common. On the other hand, the gene qacA/B was found for the first time in the species E. faecium, an indication of the necessity to adopt measures suitable to control the spread of biocide resistance determinants among enterococci. PMID:27554158

  13. Antimicrobial action of calcium hydroxide-based endodontic sealers after setting, against E. faecalis biofilm.

    PubMed

    Rezende, Gabriely Cristinni; Massunari, Loiane; Queiroz, India Olinta de Azevedo; Gomes Filho, João Eduardo; Jacinto, Rogério Castilho; Lodi, Carolina Simonetti; Dezan Junior, Elói

    2016-01-01

    Enterococcus faecalis are gram positive bacteria that can mostly resist endodontic therapy, inducing persistent infection in the root canal system. Endodontic sealers with antimicrobial activity may help eliminate residual microorganisms that survive endodontic treatment. The present study aimed at comparing the antimicrobial activity of Acroseal, Sealapex and AH Plus endodontic sealers in an in vitro biofilm model. Bovine dentin specimens (144) were prepared, and twelve blocks for each sealer and each experimental time point (2, 7 and 14 days) were placed and left in contact with plates containing inoculum of E. faecalis (ATCC 51299), to induce biofilm formation. After 14 days, the samples were transferred to another plate with test sealers and kept at 37°C and 5% CO2 for 2, 7 and 14 days. The specimens without sealers were used as a control for each period. The samples were agitated in a sonicator after each experiment. The suspensions were agitated in a vortex mixer, serially diluted in saline, and triple plated onto m-Enterococcus agar. Colonyforming units were counted, and the data were statistically analyzed using ANOVA, Shapiro-Wilk and Kruskal-Wallis one-way tests (p < 0.05) to determine antimicrobial potential. Sealapex showed significant differences at all the experimental time points, in comparison with all the other groups. AH Plus and Acroseal showed antimicrobial activity only on the 14th experimental day. Neither of the sealers tested were able to completely eliminate the biofilm. Sealapex showed the highest antimicrobial activity in all the experimental periods. The antimicrobial activity of all the sealers analyzed increased over time. PMID:26981759

  14. Antibacterial effect of calcium hydroxide combined with chlorhexidine on Enterococcus faecalis: a systematic review and meta-analysis

    PubMed Central

    SAATCHI, Masoud; SHOKRANEH, Ali; NAVAEI, Hooman; MARACY, Mohammad Reza; SHOJAEI, Hasan

    2014-01-01

    Objective Enterococcus faecalis (E. faecalis) is the most frequently isolated strain in failed endodontic therapy cases since it is resistant to calcium hydroxide (CH). Whether a combination of CH and chlorhexidine (CHX) is more effective than CH alone against E. faecalis is a matter of controversy. Thus, the aim of this study was to conduct a systematic review and meta-analysis of the literature. Material and Methods A comprehensive search in PubMed, EMbase, EBSCOhost, The Cochrane Library, SciELO, and BBO databases, Clinical trials registers, Open Grey, and conference proceedings from the earliest available date to February 1, 2013 was carried out and the relevant articles were identified by two independent reviewers. Backward and forward search was performed and then inclusion and exclusion criteria were applied. The included studies were divided into "comparisons" according to the depth of sampling and dressing period of each medicament. Meta-analysis was performed using Stata software 10.0. The level of significance was set at 0.05. Results Eighty-five studies were retrieved from databases and backward/forward searches. Fortyfive studies were considered as relevant (5 in vivo, 18 in vitro, 18 ex vivo, and 4 review articles). Nine studies were included for meta-analysis. Inter-observer agreement (Cohen kappa) was 0.93. The included studies were divided into 21 comparisons for meta-analysis. Chi-square test showed the comparisons were heterogeneous (p<0.001). Random effect model demonstrated no significant difference between CH/CHX mixture and CH alone in their effect on E. faecalis (p=0.115). Conclusions According to the evidence available now, mixing CH with CHX does not significantly increase the antimicrobial activity of CH against E. faecalis. It appears that mixing CH with CHX does not improve its ex vivo antibacterial property as an intracanal medicament against E. faecalis. Further in vivo studies are necessary to confirm and correlate the findings of

  15. Acetate utilization is inhibited by benzoate in Alcaligenes eutrophus: evidence for transcriptional control of the expression of acoE coding for acetyl coenzyme A synthetase.

    PubMed Central

    Ampe, F; Lindley, N D

    1995-01-01

    During batch growth of Alcaligenes eutrophus on benzoate-acetate mixtures, benzoate was the preferred substrate, with acetate consumption being delayed until the rate of benzoate consumption had diminished. This effect was attributed to a transcriptional control of the synthesis of acetyl coenzyme A (acetyl-CoA) synthetase, an enzyme necessary for the entry of acetate into the central metabolic pathways, rather than to a biochemical modulation of the activity of this enzyme. Analysis of a 2.4-kb mRNA transcript hybridizing with the A. eutrophus acoE gene confirmed this repression effect. In a benzoate-limited chemostat culture, derepression was observed, with no increase in the level of expression following an acetate pulse. Benzoate itself was not the signal triggering the repression of acetyl-CoA synthetase. This role was played by catechol, which transiently accumulated in the medium when high specific rates of benzoate consumption were reached. The lack of rapid inactivation of the functional acetyl-CoA synthetase after synthesis has been stopped enables A. eutrophus to retain the capacity to metabolize acetate for prolonged periods while conserving minimal protein expenditure. PMID:7592330

  16. Effect of bacterial inoculation of strains of Pseudomonas aeruginosa, Alcaligenes feacalis and Bacillus subtilis on germination, growth and heavy metal (Cd, Cr, and Ni) uptake of Brassica juncea.

    PubMed

    Ndeddy Aka, Robinson Junior; Babalola, Olubukola Oluranti

    2016-01-01

    Bacterial inoculation may influence Brassica juncea growth and heavy metal (Ni, Cr, and Cd) accumulation. Three metal tolerant bacterial isolates (BCr3, BCd33, and BNi11) recovered from mine tailings, identified as Pseudomonas aeruginosa KP717554, Alcaligenes feacalis KP717561, and Bacillus subtilis KP717559 were used. The isolates exhibited multiple plant growth beneficial characteristics including the production of indole-3-acetic acid, hydrogen cyanide, ammonia, insoluble phosphate solubilization together with the potential to protect plants against fungal pathogens. Bacterial inoculation improved seeds germination of B. juncea plant in the presence of 0.1 mM Cr, Cd, and Ni, as compared to the control treatment. Compared with control treatment, soil inoculation with bacterial isolates significantly increased the amount of soluble heavy metals in soil by 51% (Cr), 50% (Cd), and 44% (Ni) respectively. Pot experiment of B. juncea grown in soil spiked with 100 mg kg(-1) of NiCl2, 100 mg kg(-1) of CdCl2, and 150 mg kg(-1) of K2Cr2O7, revealed that inoculation with metal tolerant bacteria not only protected plants against the toxic effects of heavy metals, but also increased growth and metal accumulation of plants significantly. These findings suggest that such metal tolerant, plant growth promoting bacteria are valuable tools which could be used to develop bio-inoculants for enhancing the efficiency of phytoextraction. PMID:26503637

  17. Catechol dioxygenases from Escherichia coli (MhpB) and Alcaligenes eutrophus (MpcI): sequence analysis and biochemical properties of a third family of extradiol dioxygenases.

    PubMed Central

    Spence, E L; Kawamukai, M; Sanvoisin, J; Braven, H; Bugg, T D

    1996-01-01

    The nucleotide sequence of the Escherichia coli mhpB gene, encoding 2,3-dihydroxyphenylpropionate 1,2-dioxygenase, was determined by sequencing of a 3.1-kb fragment of DNA from Kohara phage 139. The inferred amino acid sequence showed 58% sequence identity with the sequence of an extradiol dioxygenase, MpcI, from Alcaligenes eutrophus and 10 to 20% sequence identity with protocatechuate 4,5-dioxygenase from Pseudomonas paucimobilis, with 3,4-dihydroxyphenylacetate 2,3-dioxygenase from E. coli, and with human 3-hydroxyanthranilate dioxygenase. Sequence similarity between the N- and C-terminal halves of this new family of dioxygenases was detected, with conserved histidine residues in the N-terminal domain. A model is proposed to account for the relationship between this family of enzymes and other extradiol dioxygenases. The A. eutrophus MpcI enzyme was expressed in E. coli, purified, and characterized as a protein with a subunit size of 33.8 kDa. Purified MhpB and MpcI showed similar substrate specificities for a range of 3-substituted catechols, and evidence for essential histidine and cysteine residues in both enzymes was obtained. PMID:8752345

  18. CzcR and CzcD, gene products affecting regulation of resistance to cobalt, zinc, and cadmium (czc system) in Alcaligenes eutrophus.

    PubMed

    Nies, D H

    1992-12-01

    The czcR gene, one of the two control genes responsible for induction of resistance to Co2+, Zn2+, and Cd2+ (czc system) in the Alcaligenes eutrophus plasmid pMOL30, was cloned and characterized. The 1,376-bp sequence upstream of the czcCBAD structural genes encodes a 41.4-kDa protein, the czcR gene product, transcribed in the opposite direction of that of the czcCBAD genes. The putative CzcR polypeptide (355 amino acid residues) contains 11 cysteine and 14 histidine residues which might form metal cation-binding sites. A czcC::lacZ reporter gene translational fusion was constructed, inserted into plasmid pMOL30 in A. eutrophus, and expressed under the control of CzcR. Zn2+, Co2+, and Cd2+, as well as Ni2+, Cu2+, Hg2+, and Mn2+ and even Al3+, served as inducers of beta-galactosidase activity. Besides the CzcR protein, the membrane-bound CzcD protein was essential for induction of czc. The CzcR and CzcD proteins display no sequence similarity to two-component regulatory systems of a sensor and a response activator type; however, CzcD has 34% identity with the ZRC-1 protein, which mediates zinc resistance in Saccharomyces cerevisiae (A. Kamizomo, M. Nishizawa, Y. Teranishi, K. Murata, and A. Kimura, Mol. Gen. Genet. 219:161-167, 1989). PMID:1459958

  19. ANALYSIS OF ENTEROCOCCUS FAECALIS IN SAMPLES FROM TURKISH PATIENTS WITH PRIMARY ENDODONTIC INFECTIONS AND FAILED ENDODONTIC TREATMENT BY REAL-TIME PCR SYBR GREEN METHOD

    PubMed Central

    Ozbek, Selcuk M.; Ozbek, Ahmet; Erdogan, Aziz S.

    2009-01-01

    Objective: The aims of this study were to investigate the presence of Enterococcus faecalis in primary endodontic infections and failed endodontic treatments using real-time PCR and to determine the statistical importance of the presence of E. faecalis in a Turkish population with endodontic infections. Material and Methods: E. faecalis was investigated from 79 microbial samples collected from patients who were treated at the Endodontic Clinic of the Dental School of Atatürk University (Erzurum, Turkey). Microbial samples were taken from 43 patients (Group 1) with failed endodontic treatments and 36 patients (Group 2) with chronic apical periodontitis (primary endodontic infections). DNA was extracted from the samples by using a QIAamp® DNA mini-kit and analyzed with real-time PCR SYBR Green. Results: E. faecalis was detected in 41 out of 79 patients, suggesting that it exists in not less than 61% of all endodontic infections when the proportion test (z= -1.645, faecalis in 32 out of 43 (74.4%) in Group 1, and in 9 out of 36 (25%) in Group 2. Conclusions: These results suggest that E. faecalis is a frequent isolate for endodontic infections in Turkish patients, and is more often associated with failed endodontic treatments than primary endodontic infections. PMID:19936510

  20. Genome sequences of copper resistant and sensitive Enterococcus faecalis strains isolated from copper-fed pigs in Denmark

    PubMed Central

    2015-01-01

    Six strains of Enterococcus faecalis (S1, S12, S17, S18, S19 and S32) were isolated from copper fed pigs in Denmark. These Gram-positive bacteria within the genus Enterococcus are able to survive a variety of physical and chemical challenges by the acquisition of diverse genetic elements. The genome of strains S1, S12, S17, S18, S19 and S32 contained 2,615, 2,769, 2,625, 2,804, 2,853 and 2,935 protein-coding genes, with 41, 42, 27, 42, 32 and 44 genes encoding antibiotic and metal resistance, respectively. Differences between Cu resistant and sensitive E. faecalis strains, and possible co-transfer of Cu and antibiotic resistance determinants were detected through comparative genome analysis. PMID:26203344

  1. Transferable plasmid-mediated resistance to linezolid due to cfr in a human clinical isolate of Enterococcus faecalis.

    PubMed

    Diaz, Lorena; Kiratisin, Pattarachai; Mendes, Rodrigo E; Panesso, Diana; Singh, Kavindra V; Arias, Cesar A

    2012-07-01

    Nonmutational resistance to linezolid is due to the presence of cfr, which encodes a methyltransferase responsible for methylation of A2503 in the 23S rRNA. The cfr gene was first described in animal isolates of staphylococci, and more recently, it has been identified in Staphylococcus aureus from human clinical infections, including in an outbreak of methicillin-resistant S. aureus. In enterococci, cfr has been described in an animal isolate of Enterococcus faecalis from China. Here, we report an isolate of linezolid-resistant E. faecalis (603-50427X) recovered from a patient in Thailand who received prolonged therapy with the antibiotic for the treatment of atypical mycobacterial disease. The isolate lacked mutations in the genes coding for 23S rRNA and L3 and L4 ribosomal proteins and belonged to the multilocus sequence type (MLST) 16 (ST16), which is commonly found in enterococcal isolates from animal sources. Resistance to linezolid was associated with the presence of cfr on an ~97-kb transferable plasmid. The cfr gene environment exhibited DNA sequences similar to those of other cfr-carrying plasmids previously identified in staphylococci (nucleotide identity, 99 to 100%). The cfr-carrying plasmid was transferable by conjugation to a laboratory strain of E. faecalis (OG1RF) but not to Enterococcus faecium or S. aureus. The cfr gene was flanked by IS256-like sequences both upstream and downstream. This is the first characterization of the potential horizontal transferability of the cfr gene from a human linezolid-resistant isolate of E. faecalis. PMID:22491691

  2. Dietary Enterococcus faecalis LAB31 Improves Growth Performance, Reduces Diarrhea, and Increases Fecal Lactobacillus Number of Weaned Piglets

    PubMed Central

    Hu, Yuanliang; Dun, Yaohao; Li, Shenao; Zhang, Dongxiao; Peng, Nan; Zhao, Shumiao; Liang, Yunxiang

    2015-01-01

    Lactic acid bacteria (LAB) have been shown to enhance performance of weaned piglets. However, few studies have reported the addition of LAB Enterococcus faecalis as alternatives to growth promoting antibiotics for weaned piglets. This study evaluated the effects of dietary E. faecalis LAB31 on the growth performance, diarrhea incidence, blood parameters, fecal bacterial and Lactobacillus communities in weaned piglets. A total of 360 piglets weaned at 26 ± 2 days of age were randomly allotted to 5 groups (20 pens, with 4 pens for each group) for a trial of 28 days: group N (negative control, without antibiotics or probiotics); group P (Neomycin sulfate, 100 mg/kg feed); groups L, M and H (supplemented with E. faecalis LAB31 0.5×109, 1.0×109, and 2.5×109 CFU/kg feed, respectively). Average daily gain and feed conversion efficiency were found to be higher in group H than in group N, and showed significant differences between group H and group P (P0 < 0.05). Furthermore, groups H and P had a lower diarrhea index than the other three groups (P0 < 0.05). Denaturing gradient gel electrophoresis (DGGE) showed that the application of probiotics to the diet changed the bacterial community, with a higher bacterial diversity in group M than in the other four groups. Real-time PCR revealed that the relative number of Lactobacillus increased by addition of probiotics, and was higher in group H than in group N (P0 < 0.05). However, group-specific PCR-DGGE showed no obvious difference among the five groups in Lactobacillus composition and diversity. Therefore, the dietary addition of E. faecalis LAB31 can improve growth performance, reduce diarrhea, and increase the relative number of Lactobacillus in feces of weaned piglets. PMID:25617897

  3. The Lysozyme-Induced Peptidoglycan N-Acetylglucosamine Deacetylase PgdA (EF1843) Is Required for Enterococcus faecalis Virulence

    PubMed Central

    Ladjouzi, Rabia; Le Jeune, André; Hébert, Laurent; Thorpe, Simon; Courtin, Pascal; Chapot-Chartier, Marie-Pierre; Prajsnar, Tomasz K.; Foster, Simon J.

    2012-01-01

    Lysozyme is a key component of the innate immune response in humans that provides a first line of defense against microbes. The bactericidal effect of lysozyme relies both on the cell wall lytic activity of this enzyme and on a cationic antimicrobial peptide activity that leads to membrane permeabilization. Among Gram-positive bacteria, the opportunistic pathogen Enterococcus faecalis has been shown to be extremely resistant to lysozyme. This unusual resistance is explained partly by peptidoglycan O-acetylation, which inhibits the enzymatic activity of lysozyme, and partly by d-alanylation of teichoic acids, which is likely to inhibit binding of lysozyme to the bacterial cell wall. Surprisingly, combined mutations abolishing both peptidoglycan O-acetylation and teichoic acid alanylation are not sufficient to confer lysozyme susceptibility. In this work, we identify another mechanism involved in E. faecalis lysozyme resistance. We show that exposure to lysozyme triggers the expression of EF1843, a protein that is not detected under normal growth conditions. Analysis of peptidoglycan structure from strains with EF1843 loss- and gain-of-function mutations, together with in vitro assays using recombinant protein, showed that EF1843 is a peptidoglycan N-acetylglucosamine deacetylase. EF1843-mediated peptidoglycan deacetylation was shown to contribute to lysozyme resistance by inhibiting both lysozyme enzymatic activity and, to a lesser extent, lysozyme cationic antimicrobial activity. Finally, EF1843 mutation was shown to reduce the ability of E. faecalis to cause lethality in the Galleria mellonella infection model. Taken together, our results reveal that peptidoglycan deacetylation is a component of the arsenal that enables E. faecalis to thrive inside mammalian hosts, as both a commensal and a pathogen. PMID:22961856

  4. High-level plasmid-mediated gentamicin resistance and pheromone response of plasmids present in clinical isolates of Enterococcus faecalis.

    PubMed Central

    Shiojima, M; Tomita, H; Tanimoto, K; Fujimoto, S; Ike, Y

    1997-01-01

    Eleven pheromone-responding plasmids encoding erythromycin or gentamicin resistance were isolated from multiresistant clinical Enterococcus faecalis isolates. The plasmids were classified into six types with respect to their pheromone responses. The three erythromycin resistance plasmids responded to different pheromones. Of the eight gentamicin resistance plasmids, four plasmids responded to same pheromone. Southern hybridization studies showed that the genes involved in regulation of the pheromone response were conserved in the drug resistance plasmids. PMID:9056018

  5. Evaluation of Antimicrobial Effects of Different Concentrations of Triple Antibiotic Paste on Mature Biofilm of Enterococcus faecalis

    PubMed Central

    Frough Reyhani, Mohammad; Rahimi, Saeed; Fathi, Zahra; Shakouie, Sahar; Salem Milani, Amin; Soroush Barhaghi, Mohammad Hossein; Shokri, Javad

    2015-01-01

    Background and aims. Triple antibiotic paste (TAP) is widely used in endodontics for root canal disinfection, particularly in regenerative procedures. The aim of this in vitro study was to evaluate the antimicrobial effects of different concentrations of TAP at 1-, 2-, 3-, and 4-week intervals on mature Enterococcus faecalis biofilm. Materials and methods. A total of 287 extracted one-rooted human central incisors were infected with E. faecalis ATCC 29212 after removing the crown and preparation. The root canal space was filled with one of the 0.01-, 0.1-, 1-, 10-, 100-, and 1000-mg/mL concentrations of TAP or normal saline (control). The root canal dentin was sampled after 1, 2, 3, and 4 weeks. The dentinal shavings were cultured on Mueller-Hinton agar plates after serial dilutions. The classic colony-forming unit (CFU) counting technique was used to determine remaining bacterial counts. Data were analyzed by using the two-way ANOVA, post hoc Tukey tests and one-way ANOVA (P<0.05). Results. TAP completely eliminated E. faecalis biofilms at all the intervals at concentrations of 1000, 100, and 10 mg/mL, whereas 1-, 0.1-, and 0.01-mg/mL TAP resulted in significant reduction of CFU means compared with the control group. There were no statistically significant differences between the four time intervals. Conclusion. Use of lower concentrations of TAP at short term could eradicate E. faecalis biofilm and decrease high-concentration side effects. PMID:26697145

  6. Ex situ study of Enterococcus faecalis survival in the recreational waters of the southern coast of the Caspian Sea

    PubMed Central

    Irankhah, Sahar; Soudi, Mohammad Reza; Gharavi, Sara

    2016-01-01

    Background and Objectives: The US Environmental Protection Agency has suggested faecal enterococci as the primary bacterial indicators. Of more importance is their direct correlation with swimmer-associated gastroenteritis in recreation water quality monitoring. In contrast to other seawater bodies with 3.5% salinity, the recreational waters in the southern coast of the Caspian Sea possess its own salinity (about 1% w/v) and thus require further investigations to determine the capacity of Enterococcus faecalis as the sole primary microbial index in this unique aquatic environment. Materials and Methods: The survey of the presence and survival of E. faecalis as a microbial index in the recreational waters of the southern Caspian Sea was carried out using a microcosm as an experimental model. The concentration of E. faecalis cells in samples of seawater were estimated by a standard membrane filtration method using m-Enterococcus agar as the selective culture medium. As the current standard culture-based methods are not reliable enough for the detection of non-growing, damaged and under-tension bacteria, PCR was used to identify the possible VBNC form of the bacterium after disappearance of the culturable cells. Results and Conclusion: A continuous decline in the number of culturable E. faecalis cells resulted in apparent elimination of the bacteria from seawater in a defined period. Detection of intact DNA was possible in the following 60 days. The salinity of about 1% and the self-purification properties of the Caspian Sea make the conditions feasible for the use of this microorganism as a measure of water quality throughout the region. The results confirmed the presence of damaged bacterial cells, namely VBNC forms, indicating the necessity of examining of the sea water samples by using molecular approaches or repair procedures. PMID:27307975

  7. Evaluation of Antimicrobial Effects of Different Concentrations of Triple Antibiotic Paste on Mature Biofilm of Enterococcus faecalis.

    PubMed

    Frough Reyhani, Mohammad; Rahimi, Saeed; Fathi, Zahra; Shakouie, Sahar; Salem Milani, Amin; Soroush Barhaghi, Mohammad Hossein; Shokri, Javad

    2015-01-01

    Background and aims. Triple antibiotic paste (TAP) is widely used in endodontics for root canal disinfection, particularly in regenerative procedures. The aim of this in vitro study was to evaluate the antimicrobial effects of different concentrations of TAP at 1-, 2-, 3-, and 4-week intervals on mature Enterococcus faecalis biofilm. Materials and methods. A total of 287 extracted one-rooted human central incisors were infected with E. faecalis ATCC 29212 after removing the crown and preparation. The root canal space was filled with one of the 0.01-, 0.1-, 1-, 10-, 100-, and 1000-mg/mL concentrations of TAP or normal saline (control). The root canal dentin was sampled after 1, 2, 3, and 4 weeks. The dentinal shavings were cultured on Mueller-Hinton agar plates after serial dilutions. The classic colony-forming unit (CFU) counting technique was used to determine remaining bacterial counts. Data were analyzed by using the two-way ANOVA, post hoc Tukey tests and one-way ANOVA (P<0.05). Results. TAP completely eliminated E. faecalis biofilms at all the intervals at concentrations of 1000, 100, and 10 mg/mL, whereas 1-, 0.1-, and 0.01-mg/mL TAP resulted in significant reduction of CFU means compared with the control group. There were no statistically significant differences between the four time intervals. Conclusion. Use of lower concentrations of TAP at short term could eradicate E. faecalis biofilm and decrease high-concentration side effects. PMID:26697145

  8. Influence of the length of remaining root canal filling and post space preparation on the coronal leakage of Enterococcus faecalis

    PubMed Central

    Mozini, Alexandra Conca Alves; Vansan, Luis P.; Sousa Neto, Manoel D.; Pietro, Rosimeire

    2009-01-01

    This study evaluated the sealing ability of different lengths of remaining root canal filling and post space preparation against coronal leakage of Enterococcus faecalis. Forty-one roots of maxillary incisors were biomechanically prepared, maintaining standardized canal diameter at the middle and coronal thirds. The roots were autoclaved and all subsequent steps were undertaken in a laminar flow chamber. The canals of 33 roots were obturated with AH Plus sealer and gutta-percha. The root canal fillings were reduced to 3 predetermined lengths (n=11): G1=6 mm, G2=4 mm and G3=2 mm. The remaining roots served as positive and negative controls. Bacterial leakage test apparatuses were fabricated with the roots attached to Eppendorf tubes keeping 2 mm of apex submerged in BHI in glass flasks. The specimens received an E. faecalis inoculum of 1 x 107 cfu/mL every 3 days and were observed for bacterial leakage daily during 60 days. Data were submitted to ANOVA, Tukey’s test and Fisher’s test. At 60 days, G1 (6 mm) and G2 (4 mm) presented statistically similar results (p>0.05) (54.4% of specimens with bacterial leakage) and both groups differed significantly (p<0.01) from G3 (2 mm), which presented 100% of specimens with E. faecalis leakage. It may be concluded that the shortest endodontic obturation remnant leaked considerably more than the other lengths, although none of the tested conditions avoids coronal leakage of E. faecalis. PMID:24031339

  9. Conjugal Transfer of Plasmid-Borne Multiple Antibiotic Resistance in Streptococcus faecalis var. zymogenes

    PubMed Central

    Jacob, Alan E.; Hobbs, Susan J.

    1974-01-01

    A strain of Streptococcus faecalis var. zymogenes, designated JH1, had high-level resistance to the antibiotics streptomycin, kanamycin, neomycin, erythromycin, and tetracycline. These resistances were lost en bloc from approximately 0.1% of cells grown in nutrient broth at 45 C. The frequency of resistance loss was not increased by growth in the presence of the “curing” agents acriflavine or acridine orange, but after prolonged storage in nutrient agar 17% of cells became antibiotic sensitive. Covalently closed circular deoxyribonucleic acid (DNA) molecules were isolated from the parental strain and from antibiotic-sensitive segregants by using cesium chloride-ethidium bromide gradients. DNA molecular species were identified by using neutral sucrose gradients. Strain JH1 contained two covalently closed circular DNA species of molecular weights 50 × 106 and 38 × 106. An antibiotic-sensitive segregant, strain JH1-9, had lost the larger molecular species. A second sensitive segregant, strain JH1-5, had also lost the larger molecular species but a new molecular species of approximate molecular weight 6 × 106 was present. The antibiotic resistances that were curable from the parental strain were transferred to antibiotic-sensitive strains of S. faecalis and to strain JH1-9, during mixed incubation in nutrient broth at 37 C. Data to be described are interpreted to suggest that the transfer is by a conjugal mechanism. Analysis of the plasmid species in recipient clones showed that all had received the plasmid of molecular weight 50 × 106. Strain JH1-5 was not a good recipient. Analysis of one successful recipient clone of JH1-5 revealed that it had gained the 50 × 106 molecular weight plasmid but lost the 6 × 106 molecular weight species. These data are interpreted to mean that the multiple antibiotic resistance is borne by a transferable plasmid of 50 × 106 molecular weight, and that in clone JH1-5 this plasmid suffered a large deletion leaving only a 6

  10. Enterococcus faecalis from Food, Clinical Specimens, and Oral Sites: Prevalence of Virulence Factors in Association with Biofilm Formation

    PubMed Central

    Anderson, Annette C.; Jonas, Daniel; Huber, Ingrid; Karygianni, Lamprini; Wölber, Johan; Hellwig, Elmar; Arweiler, Nicole; Vach, Kirstin; Wittmer, Annette; Al-Ahmad, Ali

    2016-01-01

    Enterococci have gained significance as the cause of nosocomial infections; they occur as food contaminants and have also been linked to dental diseases. E. faecalis has a great potential to spread virulence as well as antibiotic resistance genes via horizontal gene transfer. The integration of food-borne enterococci into the oral biofilm in-vivo has been observed. Therefore, we investigated the virulence determinants and antibiotic resistance of 97 E. faecalis isolates from the oral cavity, food, and clinical specimens. In addition, phenotypic expression of gelatinase and cytolysin were tested, in-vitro biofilm formation was quantified and isolates were compared for strain relatedness via pulsed field gel electrophoresis (PFGE). Each isolate was found to possess two or more virulence genes, most frequently gelE, efaA, and asa1. Notably, plaque/saliva isolates possessed the highest abundance of virulence genes, the highest levels of phenotypic gelatinase and hemolysin activity and concurrently a high ability to form biofilm. The presence of asa1 was associated with biofilm formation. The biofilm formation capacity of clinical and plaque/saliva isolates was considerably higher than that of food isolates and they also showed similar antibiotic resistance patterns. These results indicate that the oral cavity can constitute a reservoir for virulent E. faecalis strains possessing antibiotic resistance traits and at the same time distinct biofilm formation capabilities facilitating exchange of genetic material. PMID:26793174

  11. The Fibronectin-Binding Protein EfbA Contributes to Pathogenesis and Protects against Infective Endocarditis Caused by Enterococcus faecalis

    PubMed Central

    Singh, Kavindra V.; La Rosa, Sabina Leanti; Somarajan, Sudha R.; Roh, Jung Hyeob

    2015-01-01

    EfbA is a PavA-like fibronectin adhesin of Enterococcus faecalis previously shown to be important in experimental urinary tract infection. Here, we expressed and purified the E. faecalis OG1RF EfbA and confirmed that this protein binds with high affinity to immobilized fibronectin, collagen I, and collagen V. We constructed an efbA deletion mutant and demonstrated that its virulence was significantly attenuated (P < 0.0006) versus the wild type in a mixed inoculum rat endocarditis model. Furthermore, efbA deletion resulted in diminished ability to bind fibronectin (P < 0.0001) and reduced biofilm (P < 0.001). Reintroduction of efbA into the original chromosomal location restored virulence, adherence to fibronectin, and biofilm formation to wild-type levels. Finally, vaccination of rats with purified recombinant EfbA protein protected against OG1RF endocarditis (P = 0.008 versus control). Taken together, our results demonstrate that EfbA is an important factor involved in E. faecalis endocarditis and that rEfbA immunization is effective in preventing such infection, likely by interfering with bacterial adherence. PMID:26351286

  12. Biochemical and Structural Basis for Inhibition of Enterococcus faecalis Hydroxymethylglutaryl-CoA Synthase, mvaS, by Hymeglusin

    SciTech Connect

    Skaff, D. Andrew; Ramyar, Kasra X.; McWhorter, William J.; Barta, Michael L.; Geisbrecht, Brian V.; Miziorko, Henry M.

    2012-07-25

    Hymeglusin (1233A, F244, L-659-699) is established as a specific {beta}-lactone inhibitor of eukaryotic hydroxymethylglutaryl-CoA synthase (HMGCS). Inhibition results from formation of a thioester adduct to the active site cysteine. In contrast, the effects of hymeglusin on bacterial HMG-CoA synthase, mvaS, have been minimally characterized. Hymeglusin blocks growth of Enterococcus faecalis. After removal of the inhibitor from culture media, a growth curve inflection point at 3.1 h is observed (vs 0.7 h for the uninhibited control). Upon hymeglusin inactivation of purified E. faecalis mvaS, the thioester adduct is more stable than that measured for human HMGCS. Hydroxylamine cleaves the thioester adduct; substantial enzyme activity is restored at a rate that is 8-fold faster for human HMGCS than for mvaS. Structural results explain these differences in enzyme-inhibitor thioester adduct stability and solvent accessibility. The E. faecalis mvaS-hymeglusin cocrystal structure (1.95 {angstrom}) reveals virtually complete occlusion of the bound inhibitor in a narrow tunnel that is largely sequestered from bulk solvent. In contrast, eukaryotic (Brassica juncea) HMGCS binds hymeglusin in a more solvent-exposed cavity.

  13. Inhibitory effect of gels loaded with a low concentration of antibiotics against biofilm formation by Enterococcus faecalis and Porphyromonas gingivalis.

    PubMed

    A Algarni, Amnah; H Yassen, Ghaeth; L Gregory, Richard

    2015-09-01

    We explored longitudinally the inhibitory effect of gels loaded with 1 mg/mL modified triple antibiotic paste (MTAP) or double antibiotic paste (DAP) against biofilm formation by Enterococcus faecalis and Porphyromonas gingivalis. Methylcellulose-based antibiotic gels of MTAP (ciprofloxacin, metronidazole and clindamycin) and DAP (ciprofloxacin and metronidazole) were prepared at a concentration of 1 mg/mL. Individually cultured E. faecalis and P. gingivalis bacterial suspensions were treated with MTAP, DAP, or placebo (vehicle only) gels at different dilutions and allowed to grow in 96-well microtiter plates. Untreated bacterial suspensions served as a negative control. Crystal violet assays were used to evaluate biofilm formation after 48 h. The ability of the gels to inhibit biofilm formation was determined immediately, and at 1 month and 3 months after the gels had been prepared. Data were analyzed using a mixed-model ANOVA. The MTAP and DAP gels significantly reduced biofilm formation by both bacterial species at all time points, regardless of the tested dilution. No-significant differences in biofilm-inhibitory effects between MTAP and DAP gels were observed at the majority of the tested dilutions through various time points. Gels loaded with 1 mg/mL MTAP and DAP demonstrated a significant antibiofilm effect against E.faecalis and P. gingivalis. PMID:26369485

  14. Gold nanoshell-decorated silicone surfaces for the near-infrared (NIR) photothermal destruction of the pathogenic bacterium E. faecalis.

    PubMed

    Khantamat, Orawan; Li, Chien-Hung; Yu, Fei; Jamison, Andrew C; Shih, Wei-Chuan; Cai, Chengzhi; Lee, T Randall

    2015-02-25

    Catheter-related infections (CRIs) are associated with the formation of pathogenic biofilms on the surfaces of silicone catheters, which are ubiquitous in medicine. These biofilms provide protection against antimicrobial agents and facilitate the development of bacterial resistance to antibiotics. The application of photothermal agents on catheter surfaces is an innovative approach to overcoming biofilm-generated CRIs. Gold nanoshells (AuNSs) represent a promising photothermal tool, because they can be used to generate heat upon exposure to near-infrared (NIR) radiation, are biologically inert at physiological temperatures, and can be engineered for the photothermal ablation of cells and tissue. In this study, AuNSs functionalized with carboxylate-terminated organosulfur ligands were attached to model catheter surfaces and tested for their effectiveness at killing adhered Enterococcus faecalis (E. faecalis) bacteria. The morphology of the AuNSs was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), while the elemental composition was characterized by energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). Furthermore, optical and photothermal properties were acquired by ultraviolet-visible (UV-vis) spectroscopy and thermographic imaging with an infrared camera, respectively. Bacterial survival studies on AuNS-modified surfaces irradiated with and without NIR light were evaluated using a colony-formation assay. These studies demonstrated that AuNS-modified surfaces, when illuminated with NIR light, can effectively kill E. faecalis on silicone surfaces. PMID:25611157

  15. Focal targeting by human β-defensin 2 disrupts localized virulence factor assembly sites in Enterococcus faecalis.

    PubMed

    Kandaswamy, Kumaravel; Liew, Tze Horng; Wang, Charles Y; Huston-Warren, Emily; Meyer-Hoffert, Ulf; Hultenby, Kjell; Schröder, Jens M; Caparon, Michael G; Normark, Staffan; Henriques-Normark, Birgitta; Hultgren, Scott J; Kline, Kimberly A

    2013-12-10

    Virulence factor secretion and assembly occurs at spatially restricted foci in some Gram-positive bacteria. Given the essentiality of the general secretion pathway in bacteria and the contribution of virulence factors to disease progression, the foci that coordinate these processes are attractive antimicrobial targets. In this study, we show in Enterococcus faecalis that SecA and Sortase A, required for the attachment of virulence factors to the cell wall, localize to discrete domains near the septum or nascent septal site as the bacteria proceed through the cell cycle. We also demonstrate that cationic human β-defensins interact with E. faecalis at discrete septal foci, and this exposure disrupts sites of localized secretion and sorting. Modification of anionic lipids by multiple peptide resistance factor, a protein that confers antimicrobial peptide resistance by electrostatic repulsion, renders E. faecalis more resistant to killing by defensins and less susceptible to focal targeting by the cationic antimicrobial peptides. These data suggest a paradigm in which focal targeting by antimicrobial peptides is linked to their killing efficiency and to disruption of virulence factor assembly. PMID:24191013

  16. Effects Of Myrcia Ovata Cambess. Essential Oil On Planktonic Growth Of Gastrointestinal Microorganisms and Biofilm Formation Of Enterococcus Faecalis

    PubMed Central

    Cândido, Cinthya S.; Portella, Cadmo Silton A.; Laranjeira, Bruno J.; da Silva, Sérgio S.; Arriaga, Angela M.C.; Santiago, Gilvandete M. P.; Gomes, Geovany A.; Almeida, Paulo César; Carvalho, Cibele B. M.

    2010-01-01

    The essential oil from the leaves of Myrcia ovata Cambess., commonly used in Brazil for the treatment of gastric illnesses, was screened for antimicrobial activity and action in the formation of microbial biofilms by Enterococcus faecalis. The oil was obtained by hydrodistillation using a clevenger-type system. Its chemical composition was analyzed using GC and GC-MS. Both MIC and MBC of the essential oil were determined by broth microdilution techniques and agar dilution method. The essential oil showed antimicrobial activity against E. faecalis, Escherichia coli, Pseudomonas aeruginosa, Salmonella choleraesuis, Staphylococcus aureus, Streptococcus pneumoniae and Candida parapsilosis. The results showed that the essential oil of M. ovata Cambess. was effective against the formation of biofilm by E. faecalis when compared with the control. Four volatile compounds, representing 92.1 % of the oil, were identified and geranial was the major component (50.4 %). At the best of our knowledge, this is the first report of the chemical composition and antimicrobial activity of the essential oil from leaves of M. ovata. PMID:24031537

  17. In Vitro Evaluation of the Antimicrobial Efficacy of Four Endodontic Biomaterials against Enterococcus faecalis, Candida albicans, and Staphylococcus aureus

    PubMed Central

    Nirupama, Duddi Narendra; Nainan, Mohan Thomas; Muralidharan, Sethumadhavan; Usha, Hulimangala Hosakote Lingareddy; Sharma, Roshni

    2014-01-01

    Root canal sealers that possess good antimicrobial property can prevent residual and recurrent infection and contribute to successful endodontic therapy. This study evaluated the antimicrobial activity of four endodontic sealers, AH Plus, Tubliseal EWT, EndoRez, and iRoot SP, against three different microorganisms, E. faecalis, C. albicans, and S. aureus, by direct contact test. 10 μL microbial suspensions were allowed to directly contact the four endodontic sealers for 1 hr at 37°C. Subsequently microbial growth was measured spectrophotometrically every 30 min for 18 hours. The microbial suspensions were simultaneously tested to determine the antimicrobial effect of components which are capable of diffusing into the medium. The results revealed that AH Plus and iRootSP had significantly higher antimicrobial activity against E. faecalis. AH Plus and Tubliseal EWT showed significantly higher antimicrobial activity against C. albicans and S. aureus compared to iRoot SP and EndoRez. EndoRez showed the least antimicrobial activity against all the three microorganisms. Inhibition of microbial growth is related to the direct contact of microorganisms with the sealers. In conclusion AH Plus had significantly higher antimicrobial activity against E. faecalis, C. albicans, and S. aureus. PMID:25371678

  18. Heat-Killed Enterococcus faecalis EF-2001 Ameliorates Atopic Dermatitis in a Murine Model.

    PubMed

    Choi, Eun-Ju; Iwasa, Masahiro; Han, Kwon-Il; Kim, Wan-Jae; Tang, Yujiao; Hwang, Young Joung; Chae, Jeong Ryong; Han, Weon Cheol; Shin, Yu-Su; Kim, Eun-Kyung

    2016-03-01

    Recent reports have shown the immunomodulatory effect of heat-killed lactic acid bacteria. Atopic dermatitis (AD) is an allergic skin disease, caused by immune dysregulation among other factors. The aim of this study was to assess the effect of heat-killed Enterococcus faecalis EF-2001 (EF-2001) on AD. We established an in vivo AD model by repeated local exposure of Dermatophagoides farinae extract (DFE; house dust mite extract) and 2,4-dinitrochlorobenzene (DNCB) to the ears of mice. After oral administration of EF-2001 for four weeks, the epidermal and dermal ear thickness, mast cell infiltration, and serum immunoglobulin levels were measured. In addition, the gene expression levels of pathogenic cytokines in the ears, lymph nodes, and splenocytes were assayed. EF-2001 attenuated AD symptoms based on the ear thickness, histopathological analysis, and serum immunoglobulin levels. Moreover, EF-2001 decreased the DFE/DNCB-induced expression of various pathogenic cytokines in the ears, lymph nodes, and splenocytes. These results suggest that EF-2001 has therapeutic potential in the treatment of AD owing to its immunomodulatory effects. PMID:26959058

  19. Alterations in peptidoglycan precursors and vancomycin susceptibility in Tn917 insertion mutants of Enterococcus faecalis 221.

    PubMed Central

    Handwerger, S

    1994-01-01

    Derivatives of the highly vancomycin-resistant Enterococcus faecalis strain 221 (MIC, 1,024 micrograms/ml) harboring Tn917 insertions in vanR, vanH, and vanA were compared with the parent strain and the susceptible plasmid-free strain JH2-2 (MIC, 2 micrograms/ml). Cytoplasmic pools of UDP-N-acetyl-muramyl-peptide precursors of strain 221 contained the depsipeptide-terminating precursor as well as elevated levels of both the tripeptide and tetrapeptide precursors. Insertional inactivation of vanR resulted in the loss of carboxypeptidase activity, full susceptibility to vancomycin, and precursor pools similar to those of JH2-2. For the vanA insertional mutant the MBC of vancomycin was fourfold higher than that for JH2-2, and the mutant had increased levels of tripeptide and tetrapeptide precursors compared with those for JH2-2. The vanH insertional mutant showed elevated levels of these precursors, as well as a small amount of depsipeptide, and both the MIC and the MBC of vancomycin were increased compared with those for JH2-2. These findings suggest that DD-carboxypeptidase activity, under the control of vanR, results in increased pools of both tripeptide and tetrapeptide precursors, which may contribute to survival in the presence of vancomycin. PMID:8203839

  20. Molecular cloning, expression, and characterization of a novel endo-alpha-N-acetylgalactosaminidase from Enterococcus faecalis.

    PubMed

    Goda, Hatsumi M; Ushigusa, Kota; Ito, Hiromi; Okino, Nozomu; Narimatsu, Hisashi; Ito, Makoto

    2008-10-31

    We report here the molecular cloning, expression and characterization of a novel endo-alpha-N-acetylgalactosaminidase, classified into the GH101 family, from Enterococcus faecalis (endo-EF). The recombinant endo-EF was found to catalyze the liberation of core1-disaccharides (Galbeta1-3GalNAc) from core1-pNP (Galbeta1-3GalNAcalpha-pNP) like other GH101 family enzymes. However, endo-EF seems to differ in specificity from the GH101 enzymes reported to date, because it was able to release trisaccharides from core2-pNP (Galbeta1-3[GlcNAcbeta1-6]GalNAcalpha-pNP) and tetrasaccharides from Gal-core2-pNP (Galbeta1-3[Galbeta1-3GlcNAcbeta1-6]GalNAcalpha-pNP). Interestingly, the enzyme could transfer not only core1-disaccharides but also core2-trisaccharides to alkanols generating alkyl-oligosaccharides. Endo-EF should facilitate O-glycoprotein research. PMID:18725192

  1. Heat-Killed Enterococcus faecalis EF-2001 Ameliorates Atopic Dermatitis in a Murine Model

    PubMed Central

    Choi, Eun-Ju; Iwasa, Masahiro; Han, Kwon-Il; Kim, Wan-Jae; Tang, Yujiao; Hwang, Young Joung; Chae, Jeong Ryong; Han, Weon Cheol; Shin, Yu-Su; Kim, Eun-Kyung

    2016-01-01

    Recent reports have shown the immunomodulatory effect of heat-killed lactic acid bacteria. Atopic dermatitis (AD) is an allergic skin disease, caused by immune dysregulation among other factors. The aim of this study was to assess the effect of heat-killed Enterococcus faecalis EF-2001 (EF-2001) on AD. We established an in vivo AD model by repeated local exposure of Dermatophagoides farinae extract (DFE; house dust mite extract) and 2,4-dinitrochlorobenzene (DNCB) to the ears of mice. After oral administration of EF-2001 for four weeks, the epidermal and dermal ear thickness, mast cell infiltration, and serum immunoglobulin levels were measured. In addition, the gene expression levels of pathogenic cytokines in the ears, lymph nodes, and splenocytes were assayed. EF-2001 attenuated AD symptoms based on the ear thickness, histopathological analysis, and serum immunoglobulin levels. Moreover, EF-2001 decreased the DFE/DNCB-induced expression of various pathogenic cytokines in the ears, lymph nodes, and splenocytes. These results suggest that EF-2001 has therapeutic potential in the treatment of AD owing to its immunomodulatory effects. PMID:26959058

  2. Crystal structure of enterococcus faecalis sly A-like transcriptional factor.

    SciTech Connect

    Wu, R.; Zhang, R.; Zagnitko, O.; Dementieva, I.; Maltsev, N.; Watson, J. D.; Laskowski, R.; Gornicki, P.; Joachimiak, A.; Univ. of Chicago; European Bioinformatics Inst.

    2003-05-30

    The crystal structure of a SlyA transcriptional regulator at 1.6 {angstrom} resolution is presented, and structural relationships between members of the MarR/SlyA family are discussed. The SlyA family, which includes SlyA, Rap, Hor, and RovA proteins, is widely distributed in bacterial and archaeal genomes. Current evidence suggests that SlyA-like factors act as repressors, activators, and modulators of gene transcription. These proteins have been shown to up-regulate the expression of molecular chaperones, acid-resistance proteins, and cytolysin, and down-regulate several biosynthetic enzymes. The structure of SlyA from Enterococcus faecalis, determined as a part of an ongoing structural genomics initiative (www.mcsg.anl.gov), revealed the same winged helix DNA-binding motif that was recently found in the MarR repressor from Escherichia coli and the MexR repressor from Pseudomonas aeruginosa, a sequence homologue of MarR. Phylogenetic analysis of the MarR/SlyA family suggests that Sly is placed between the SlyA and MarR subfamilies and shows significant sequence similarity to members of both subfamilies.

  3. Insidious Onset of Tetraparesis due to Cervical Epidural Abscess from Enterococcus faecalis.

    PubMed

    Soultanis, Konstantinos Chr; Sakellariou, Vasileios I; Starantzis, Konstantinos A; Stavropoulos, Nikolaos A; Papagelopoulos, Panayiotis J

    2013-01-01

    We report a case of cervical epidural abscess from Enterococcus faecalis, which caused an insidious onset of tetraparesis. This 53-year-old female with a history of diabetes mellitus and chronic renal failure under hemodialysis presented with pain and progressive weakness of upper and lower extremities without fever. Although a recent MRI she did at the beginning of symptoms showed no significant pathologies, except for a cervical disc herniation and adjacent spinal degeneration, and stenosis that confused the diagnostic procedure, newer imaging with CT and MRI, which was performed due to progression of tetraparesis, revealed the formation of a cervical epidural abscess. Surgical drainage was done after a complete infection workup. The patient showed immediate neurological improvement after surgery. She received antibiotics intravenously for 3 weeks and orally for another 6 weeks. The patient was free from complications 24 months after surgery. A high index of suspicion is most important in making a rapid and correct diagnosis of spinal epidural abscess. The classic clinical triad (fever, local pain, and neurologic deficits) is not sensitive enough for early detection. Continuous clinical, laboratory, and imaging monitoring are of paramount importance. Early diagnosis and surgical intervention could optimize the final functional outcome. PMID:23573096

  4. Spread of multidrug-resistant Enterococcus faecalis within the household setting.

    PubMed

    Leite-Martins, Liliana; Meireles, Diana; Bessa, Lucinda J; Mendes, Ângelo; de Matos, Augusto J; da Costa, Paulo Martins

    2014-10-01

    Advances in veterinary medicine have resulted in the survival of many animals with severe illness or infectious diseases. In addition, increased usage of antimicrobial agents for veterinary purposes has contributed to the worldwide problem of increasing antimicrobial resistance. The objective of this study was to contribute to better understand the potential and implications for the spread of antimicrobial-resistant enterococci between pets receiving antimicrobial treatments and their owners. Three household aggregates (HA A, B, and C) were selected for this study. Information was collected on individual and clinical parameters of both humans and animals that cohabit. For this study, samples of feces, oral secretions, skin and fur of pets, as well as owners' feces and hands and exposed household surfaces and objects were also collected. All enterococci isolates were analyzed for antimicrobial susceptibility. Based on the antimicrobial resistance patterns and origin of isolates, ERIC-PCR analysis was performed on selected isolates to evaluate phylogenetic relationships. In all three HA, Enterococcus faecalis clonal spread was detected between pets and the respective owners, confirming the in-home interanimal species dissemination. Additionally, fecal enterococci colonization of other body parts of the same animal and dissemination of those same enterococci to household surfaces and objects were also observed. Our results demonstrate that enterococcal clones were found in pets in multiple body sites, their human cohabitants, and shared domestic objects. PMID:24617521

  5. Structural analysis and proteolytic activation of Enterococcus faecalis cytolysin, a novel lantibiotic.

    PubMed

    Booth, M C; Bogie, C P; Sahl, H G; Siezen, R J; Hatter, K L; Gilmore, M S

    1996-09-01

    Clinical isolates of Enterococcus faecalis more commonly produce a cytolysin than do commensal isolates. Epidemiologic evidence and animal-model studies have established a role for the cytolysin in the pathogenesis of enterococcal disease. The cytolysin consists of two structural subunits, CylLL and CylLS, that are activated by a third component, CylA. Genetic and biochemical characterization of CylA indicate that it is a serine protease, and that activation putatively results from cleavage of one or both cytolysin subunits. Genetic evidence also suggests that the cytolysin subunits are related to the rapidly growing class of bacteriocins termed lantibiotics. However, unlike lantibiotics, the cytolysin is lytic for eukaryotic as well as prokaryotic cells, and it consists of two structural subunits. This report describes the purification and characterization of the cytolysin subunits and detection of lanthionine-type post-translational modifications within their structures. Furthermore, the cleavage specificity of the CylA activator is reported and it is shown that proteolytic activation of both subunits is essential for activity. PMID:8898386

  6. In Vitro Comparison of the Effectiveness of Chlorhexidine and Two Calcium Hydroxide Formulations on Enterococcus Faecalis

    PubMed Central

    Sharifian, Mohammad Reza; Shokouhinejad, Noushin; Aligholi, Marzieh; Emaneini, Mohammad; Katebi, Arash; Assadian, Hadi

    2008-01-01

    INTRODUCTION: The aim of this in vitro study was to compare the effectiveness of three intracanal medicaments in disinfecting the root canal and dentin of experimentally infected human teeth with Enterococcus faecalis (EF). MATERIALS AND METHODS: One hundred extracted human single-rooted teeth were used. After root canal preparation, teeth were mounted in epoxy resin. Following sterilization, the teeth were infected for 28 days with EF. Then root canals were filled with one of three different disinfectants: viscous 2% Chlorhexidine (CHX), calcium hydroxide paste (CH) or a mixture of CH and CHX (n=30 in each group). Antimicrobial assessments were performed at 1, 3 and 7 days (n=10 in each time period). Microbial samples were obtained from root canals before and after the experiment. Also dentin samples were examined. The data was analyzed using Two- Way ANOVA test. RESULTS: The findings showed that there was no difference between experimental groups at different time periods. The mixture of CH/CHX in 7 days was able to eliminate EF completely from root canal system. The most elimination of EF was from dentinal tubules. CONCLUSION: According to the results of this in vitro study, viscous 2% CHX, mixture of CH with distilled water and 2% CHX are all effective disinfectants. PMID:24146671

  7. Genetic and physiological studies of antibiotic resistance in a clinical isolate of Streptococcus faecalis

    SciTech Connect

    Sharma, V.K.

    1987-01-01

    An erythromycin-sensitive clinical isolate of Streptococcus faecalis (CS-4B) generated intermediate-level erythromycin-resistant isolates ((CS-4B(S)) at a frequency of 4 x 10/sup -8/ per cell. CS-4B(S) produces high-level erythromycin-resistant isolates (CS-4B(L)) at a very high frequency. The erythromycin-resistance is non-transferable, chromosomally located, and distinct from the well described erythromycin-resistance of the MLS type. The erythromycin-resistance of CS-4B(S) and CS-4B(L) is not due to an in vitro or in vivo alteration or inactivation of erythromycin. /sup 14/C-erythromycin binds in vitro, as evaluated with sucrose gradients, to 70S ribosomes and 50S ribosomal subunits in CS-4B. Binding to CS-4B(L) ribosomes was barely detectable whereas CS-4B(S) ribosomes retained binding capacity. The binding studies on filter membranes revealed a substantial reduction of /sup 14/C-erythromycin binding to CS-4B(S) ribosomes when compared to CS-4B ribosomes. The in vivo accumulation of /sup 14/C-erythromycin in CS-4B and CS-4B(S) parallel the in vitro binding capacity of ribosomes indicating the apparent absence of a permeability barrier to erythromycin in CS-4B.

  8. Taxonomic characterisation of ceftazidime-resistant Brevundimonas isolates and description of Brevundimonas faecalis sp. nov.

    PubMed

    Scotta, Claudia; Bennasar, A; Moore, E R B; Lalucat, J; Gomila, M

    2011-09-01

    Three ceftazidime-resistant strains isolated from the sewage water of a municipal hospital in Palma de Mallorca, Spain, were analysed phenotypically and genotypically to clarify their taxonomic positions. Sequence determinations and phylogenetic analyses of the 16S rRNA genes indicated that strains CS20.3(T), CS39 and CS41 were affiliated with the species of the alphaproteobacterial genus Brevundimonas, most closely related to B. bullata, B. diminuta, B. naejangsanensis and B. terrae. Additional sequences analyses of the ITS1 region of the rRNA operon and the genes for the housekeeping enzymes DNA gyrase β-subunit and RNA polymerase β-subunit, genomic DNA-DNA hybridisation similarities, cell fatty acid profiles and physiological and biochemical characterizations supported the recognition of CS20.3(T) (CCUG 58127(T)=CECT 7729(T)) as a distinct and novel species, for which the name Brevundimonas faecalis sp. nov. is proposed. Strains CS39 and CS41 were ascribed to the species B. diminuta. PMID:21782367

  9. Adaptation of Enterococcus faecalis to Daptomycin Reveals an Ordered Progression to Resistance

    PubMed Central

    Miller, Corwin; Kong, Jiayi; Tran, Truc T.; Arias, Cesar A.; Saxer, Gerda

    2013-01-01

    With increasing numbers of hospital-acquired antibiotic resistant infections each year and staggering health care costs, there is a clear need for new antimicrobial agents, as well as novel strategies to extend their clinical efficacy. While genomic studies have provided a wealth of information about the alleles associated with adaptation to antibiotics, they do not provide essential information about the relative importance of genomic changes, their order of appearance, or potential epistatic relationships between adaptive changes. Here we used quantitative experimental evolution of a single polymorphic population in continuous culture with whole-genome sequencing and allelic frequency measurements to study daptomycin (DAP) resistance in the vancomycin-resistant clinical pathogen Enterococcus faecalis S613. Importantly, we sustained both planktonic and nonplanktonic (i.e., biofilm) populations in coculture as the concentration of antibiotic was raised, facilitating the development of more ecological complexity than is typically observed in laboratory evolution. Quantitative experimental evolution revealed a clear order and hierarchy of genetic changes leading to resistance, the signaling and metabolic pathways responsible, and the relative importance of these mutations to the evolution of DAP resistance. Despite the relative simplicity of this ex vivo approach compared to the ecological complexity of the human body, we showed that experimental evolution allows for rapid identification of clinically relevant adaptive molecular pathways and new targets for drug design in pathogens. PMID:23959318

  10. Analysis, cloning, and high-level expression of 2,4-dichlorophenoxyacetate monooxygenase gene tfdA of Alcaligenes eutrophus JMP134.

    PubMed Central

    Streber, W R; Timmis, K N; Zenk, M H

    1987-01-01

    Plasmid pJP4 of Alcaligenes eutrophus JMP134 contains all genes for the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D). Five of these genes, tfdB, tfdC, tfdD, tfdE, and tfdF, have recently been localized and cloned (R. H. Don, A. J. Weightman, H.-J. Knackmuss, and K. N. Timmis, J. Bacteriol. 161:85-90, 1985). Gene tfdA, which codes for the 2,4-D monooxygenase, has now been found by mutagenesis with transposon Tn5. A 3-kilobase fragment of pJP4 cloned in a broad-host-range vector could complement the 2,4-D-negative phenotype of two mutants which lacked 2,4-D monooxygenase activity. The cloned tfdA gene was also transferred to A. eutrophus JMP222, which is a cured derivative of JMP134. The recombinant strain could utilize phenoxyacetic acid as a sole source of carbon and energy. Pseudomonas sp. strain B13, containing the cloned tfdA, was able to degrade phenoxyacetic acid and 4-chlorophenoxyacetic acid. Gene tfdA was subcloned and analyzed by deletions. Expression of 2,4-D monooxygenase in Escherichia coli containing a 1.4-kilobase subfragment was demonstrated by radioisotopic enzyme assay, and a protein of 32,000-dalton molecular mass was detected by labeling experiments. A 2-kilobase subfragment containing tfdA has been sequenced. Sequence analysis revealed an open reading frame of 861 bases which was identified as the coding region of tfdA by insertion mutagenesis. Images PMID:3036764

  11. Antibacterial and toxicological evaluation of beta-lactams synthesized by immobilized beta-lactamase-free penicillin amidase produced by Alcaligenes sp.

    PubMed

    Gayen, Jiaur R; Majee, Sutapa B; Das, Shuvendu; Samanta, Timir B

    2007-12-01

    Search for anti-beta-lactamase and synthesis of newer penicillin were suggested to overcome resistance to penicillin in chemotherapy. It was found that clavulanic acid, an ant-beta-lactamase was ineffective due to its structural modification by bacteria. Thus, there is a need for the synthesis of newer pencillins. Retro-synthesis was inspired by the success of forward reaction i.e.conversion of penicillin G to 6-aminopenicillanic acid (6-APA) by biological process. In the present study a better enzymatic method of synthesis of newer pencillin by a beta-lactamase-free penicillin amidase produced by Alcaligenes sp. is attempted. Antibacterial and toxicological evaluation of the enzymatically synthesized beta-lactams are reported. Condensation of 6-APA with acyl donor was found to be effective when the reaction is run in dimethyl formamide (DMF 50% v/v) in acetate buffer (25 mM pH 5.0) at 37 degrees C. Periplasm entrapped in calcium alginate exihibited the highest yield (approximately 34%) in synthesis. The minimum inhibitory concentration of the synthetic products against Staphylococcus aureus and Salmonella typhi varied between 20-80 microg/ml. Some of the products exhibited antibacterial activity against enteric pathogens. It was interesting to note that product A was potent like penicillin G. LD50 value of three products (product A, B and C) was more than 12 mg/kg. Furthermore, these synthetic beta-lactams did not exihibit any adverse effect on house keeping enzymes viz., serum glutamate oxalacetate-trans-aminase, serum glutamate pyruvate -trans-aminase, acid phosphatase, alkaline phosphatase of the test animals. The hematological profile (RBC and WBC) of the test animals also remained unaffected. PMID:18254214

  12. The Crystal Structure of D-Threonine Aldolase from Alcaligenes xylosoxidans Provides Insight into a Metal Ion Assisted PLP-Dependent Mechanism

    PubMed Central

    Uhl, Michael K.; Oberdorfer, Gustav; Steinkellner, Georg; Riegler-Berket, Lina; Mink, Daniel; van Assema, Friso; Schürmann, Martin; Gruber, Karl

    2015-01-01

    Threonine aldolases catalyze the pyridoxal phosphate (PLP) dependent cleavage of threonine into glycine and acetaldehyde and play a major role in the degradation of this amino acid. In nature, L- as well as D-specific enzymes have been identified, but the exact physiological function of D-threonine aldolases (DTAs) is still largely unknown. Both types of enantio-complementary enzymes have a considerable potential in biocatalysis for the stereospecific synthesis of various β-hydroxy amino acids, which are valuable building blocks for the production of pharmaceuticals. While several structures of L-threonine aldolases (LTAs) have already been determined, no structure of a DTA is available to date. Here, we report on the determination of the crystal structure of the DTA from Alcaligenes xylosoxidans (AxDTA) at 1.5 Å resolution. Our results underline the close relationship of DTAs and alanine racemases and allow the identification of a metal binding site close to the PLP-cofactor in the active site of the enzyme which is consistent with the previous observation that divalent cations are essential for DTA activity. Modeling of AxDTA substrate complexes provides a rationale for this metal dependence and indicates that binding of the β-hydroxy group of the substrate to the metal ion very likely activates this group and facilitates its deprotonation by His193. An equivalent involvement of a metal ion has been implicated in the mechanism of a serine dehydratase, which harbors a metal ion binding site in the vicinity of the PLP cofactor at the same position as in DTA. The structure of AxDTA is completely different to available structures of LTAs. The enantio-complementarity of DTAs and LTAs can be explained by an approximate mirror symmetry of crucial active site residues relative to the PLP-cofactor. PMID:25884707

  13. Fate of Enterobacter cloacae JP120 and Alcaligenes eutrophus AEO106(pRO101) in soil during water stress: effects on culturability and viability.

    PubMed

    Pedersen, J C; Jacobsen, C S

    1993-05-01

    A sandy loam soil near field capacity moisture content (psi = -0.050 MPa) or air dried (psi = -300 MPa) was inoculated with about 3 x 10(7) CFU of Enterobacter cloacae JP120 and Alcaligenes eutrophus AEO106(pRO101) per g and incubated in 40-g portions at 17 degrees C in closed or open Erlenmeyer flasks. In the field-moist soil, selective plating, direct viable counts, and DNA hybridization showed only minor changes in the numbers of E. cloacae and A. eutrophus cells with time (14 days), and the results obtained with the three detection methods generally agreed. In the air-dried soil, the majority of both bacteria were found as intact DNA-carrying cells that were neither culturable nor viable by the methods employed in this study. The numbers of culturable E. cloacae and A. eutrophus cells dropped to 10(5) and 10(2) CFU/g, respectively, 2 h after inoculation. Direct viable counts showed that only about 1% of the cells detected by immunofluorescence microscopy were viable, but a fraction of viable nonculturable cells of both bacteria was present. A. eutrophus did not tolerate desiccation as well as E. cloacae. Only a minor fraction of the two test organisms regained their culturability or viability after rewetting of the air-dried soil; the number of total heterotrophic culturable bacteria, however, increased more than 10-fold and reached 73% of the level found in the field-moist soil at day 14. PMID:8517752

  14. Growth kinetics, nutrient uptake, and expression of the Alcaligenes eutrophus poly(beta-hydroxybutyrate) synthesis pathway in transgenic maize cell suspension cultures.

    PubMed

    Hahn, J J; Eschenlauer, A C; Narrol, M H; Somers, D A; Srienc, F

    1997-01-01

    Transgenic suspension cultures of Black Mexican Sweet maize (Zea mays L.) expressing the Alcaligenes eutrophus genes encoding enzymes of the pathway for biosynthesis of the biodegradable polymer poly(beta-hydroxybutyrate) (PHB) were established as a tool for investigating metabolic regulation of the PHB pathway in plant cells. Cultures were grown in a 2 L modified mammalian cell bioreactor and in shake flasks. Biomass doubling times for transgenic bioreactor cultures (3.42 +/- 0.76 days) were significantly higher than those for untransformed cultures (2.01 +/- 0.33 days). Transgenic expression of the bacterial enzymes beta-ketothiolase (0.140 units/mg protein) and acetoacetyl-CoA reductase (0.636 units/mg protein) was detected by enzyme assays and immunoblots. However, over the first 2 years of cultivation, reductase activity decreased to 0.120 units/mg proteins. Furthermore, the PHB synthase gene, although initially present, was not detectable after 1.5 years of cultivation in suspension culture. These facts suggest that transgenic expression of PHB pathway genes in plant cells may not be stable. A hydroxybutyrate derivative was detected via gas chromatography even after 4 years of cultivation. Although the method used to prepare samples for gas chromatography cannot directly distinguish among PHB polymer, hydroxybutyryl-CoA (HB-CoA), and hydroxybutyric acid, solvent washing experiments indicated that most or all of the signal was non-polymeric, presumably H-CoA. The synthesis of HB-CoA appeared to be linked to substrate growth limitation, with HB-CoA accumulation increasing dramatically and cell growth ceasing upon depletion of ammonium. This suggests that the PHB synthesis pathway in plants is subject to regulatory mechanisms similar to those in prokaryotic cells. PMID:9265773

  15. Library Screen Identifies Enterococcus faecalis CcpA, the Catabolite Control Protein A, as an Effector of Ace, a Collagen Adhesion Protein Linked to Virulence

    PubMed Central

    Gao, Peng; Pinkston, Kenneth L.; Bourgogne, Agathe; Cruz, Melissa R.; Garsin, Danielle A.; Murray, Barbara E.

    2013-01-01

    The Enterococcus faecalis cell wall-anchored protein Ace is an important virulence factor involved in cell adhesion and infection. Expression of Ace on the cell surface is affected by many factors, including stage of growth, culture temperature, and environmental components, such as serum, urine, and collagen. However, the mechanisms that regulate or modulate Ace display are not well understood. With interest in identifying genes associated with Ace expression, we utilized a whole-cell enzyme-linked immunosorbent assay (ELISA)-based screening method to identify mutants from a transposon insertion mutant library which exhibited distinct Ace surface expression profiles. We identified a ccpA insertion mutant which showed significantly decreased levels of Ace surface expression at early growth phase versus those of wild-type OG1RF. Confirmation of the observation was achieved through flow cytometry and complementation analysis. Compared to the wild type, the E. faecalis ccpA mutant had an impaired ability to adhere to collagen when grown to early exponential phase, consistent with the lack of Ace expression in the early growth phase. As a key component of carbon catabolite regulation, CcpA has been previously reported to play a critical role in regulating expression of proteins involved in E. faecalis carbohydrate uptake and utilization. Our discovery is the first to associate CcpA with the production of a major E. faecalis virulence factor, providing new insights into the regulation of E. faecalis pathogenesis. PMID:23974022

  16. Systems biology approach for mapping the response of human urothelial cells to infection by Enterococcus faecalis

    PubMed Central

    Dozmorov, Mikhail G; Kyker, Kimberly D; Saban, Ricardo; Shankar, Nathan; Baghdayan, Arto S; Centola, Michael B; Hurst, Robert E

    2007-01-01

    Background To better understand the response of urinary epithelial (urothelial) cells to Enterococcus faecalis, a uropathogen that exhibits resistance to multiple antibiotics, a genome-wide scan of gene expression was obtained as a time series from urothelial cells growing as a layered 3-dimensional culture similar to normal urothelium. We herein describe a novel means of analysis that is based on deconvolution of gene variability into technical and biological components. Results Analysis of the expression of 21,521 genes from 30 minutes to 10 hours post infection, showed 9553 genes were expressed 3 standard deviations (SD) above the system zero-point noise in at least 1 time point. The asymmetric distribution of relative variances of the expressed genes was deconvoluted into technical variation (with a 6.5% relative SD) and biological variation components (>3 SD above the mode technical variability). These 1409 hypervariable (HV) genes encapsulated the effect of infection on gene expression. Pathway analysis of the HV genes revealed an orchestrated response to infection in which early events included initiation of immune response, cytoskeletal rearrangement and cell signaling followed at the end by apoptosis and shutting down cell metabolism. The number of poorly annotated genes in the earliest time points suggests heretofore unknown processes likely also are involved. Conclusion Enterococcus infection produced an orchestrated response by the host cells involving several pathways and transcription factors that potentially drive these pathways. The early time points potentially identify novel targets for enhancing the host response. These approaches combine rigorous statistical principles with a biological context and are readily applied by biologists. PMID:18047719

  17. Eep confers lysozyme resistance to enterococcus faecalis via the activation of the extracytoplasmic function sigma factor SigV.

    PubMed

    Varahan, Sriram; Iyer, Vijayalakshmi S; Moore, William T; Hancock, Lynn E

    2013-07-01

    Enterococcus faecalis is a commensal bacterium found in the gastrointestinal tract of most mammals, including humans, and is one of the leading causes of nosocomial infections. One of the hallmarks of E. faecalis pathogenesis is its unusual ability to tolerate high concentrations of lysozyme, which is an important innate immune component of the host. Previous studies have shown that the presence of lysozyme leads to the activation of SigV, an extracytoplasmic function (ECF) sigma factor in E. faecalis, and that the deletion of sigV increases the susceptibility of the bacterium toward lysozyme. Here, we describe the contribution of Eep, a membrane-bound zinc metalloprotease, to the activation of SigV under lysozyme stress by its effects on the stability of the anti-sigma factor RsiV. We demonstrate that the Δeep mutant phenocopies the ΔsigV mutant in lysozyme, heat, ethanol, and acid stress susceptibility. We also show, using an immunoblot analysis, that in an eep deletion mutant, the anti-sigma factor RsiV is only partially degraded after lysozyme exposure, suggesting that RsiV is processed by unknown protease(s) prior to the action of Eep. An additional observation is that the deletion of rsiV, which results in constitutive SigV expression, leads to chaining of cells, suggesting that SigV might be involved in regulating cell wall-modifying enzymes important in cell wall turnover. We also demonstrate that, in the absence of eep or sigV, enterococci bind significantly more lysozyme, providing a plausible explanation for the increased sensitivity of these mutants toward lysozyme. PMID:23645601

  18. Escherichia coli and Enterococcus faecalis are able to incorporate and enhance a pre-formed Gardnerella vaginalis biofilm.

    PubMed

    Castro, Joana; Machado, Daniela; Cerca, Nuno

    2016-04-01

    Gardnerella vaginalis is the most frequent microorganism found in bacterial vaginosis (BV), while Escherichia coli and Enterococcus faecalis are amongst the most frequent pathogens found in urinary tract infections (UTIs). This study aimed to evaluate possible interactions between UTIs pathogens and G. vaginalis using an in vitro dual-species biofilm model. Our results showed that dual-species biofilms reached significantly higher bacterial concentration than monospecies biofilms. Moreover, visualization of dual-populations species in the biofilms, using the epifluorescence microscopy, revealed that all of the urogenital pathogens coexisted with G. vaginalis. In conclusion, our work demonstrates that uropathogens can incorporate into mature BV biofilms. PMID:26782142

  19. In Vitro Activities of Telavancin and Vancomycin against Biofilm-Producing Staphylococcus aureus, S. epidermidis, and Enterococcus faecalis Strains▿

    PubMed Central

    LaPlante, Kerry L.; Mermel, Leonard A.

    2009-01-01

    We investigated the activities of telavancin and vancomycin against biofilm-producing Staphylococcus and Enterococcus strains. At clinically attainable concentrations, telavancin was active against bacteria embedded in biofilm (minimal biofilm eradication concentration [MBEC], 0.125 to 2 μg/ml) and inhibited biofilm formation at concentrations below the MIC. Vancomycin did not demonstrate the same activity (MBEC, ≥512 μg/ml) against Staphylococcus aureus and Enterococcus faecalis. Telavancin may have a unique role in biofilm-associated infections. PMID:19451302

  20. Effects of Intracanal Irrigant MTAD Combined with Nisin at Sub-Minimum Inhibitory Concentration Levels on Enterococcus faecalis Growth and the Expression of Pathogenic Genes

    PubMed Central

    Ling, Junqi; Mao, Xueli; Ning, Yang; Deng, Dongmei

    2014-01-01

    Exposure to antibiotics is considered to be the major driver in the selection of antibiotic-resistant bacteria and may induce diverse biological responses in bacteria. MTAD is a common intracanal irrigant, but its bactericidal activity remains to be improved. Previous studies have indicated that the antimicrobial peptide nisin can significantly improve the bactericidal activity of MTAD against Enterococcus faecalis. However, the effects of MTAD and its modification at sub-minimum inhibitory concentration (sub-MIC) levels on Enterococcus faecalis growth and the expression of pathogenic genes still need to be explored. In this study, the results of post-antibiotic effects (PAE) and post-antibiotic sub-MIC effects (PASME) showed that MTADN (nisin in combination with MTAD) had the best post-antibiotic effect. E. faecalis after challenge with MTAD was less sensitive to alkaline solutions compared with MTAN (nisin in place of doxycycline in MTAD) and MTADN. E. faecalis induced with sub-MIC of MTAD generated resistance to the higher concentration, but induction of E. faecalis with MTAN did not cause resistance to higher concentrations. Furthermore, real-time polymerase chain reaction (RT-PCR) showed that the stress caused by sub-MIC exposure to MTAD, MTAN, or MTADN resulted in up- or down-regulation of nine stress genes and four virulence-associated genes in E. faecalis and resulted in different stress states. These findings suggested that nisin improved the post-antibacterial effect of MTAD at sub-MIC levels and has considerable potential for use as a modification of MTAD. PMID:24603760

  1. In vitro susceptibility of e.faecalis and c.albicans isolates from apical periodontitis to common antimicrobial agents, antibiotics and antifungal medicaments

    PubMed Central

    Yoldas, Oguz; Yilmaz, Sehnaz; Akcimen, Beril; Seydaoglu, Gulsah; Kipalev, Arzu; Koksal, Fatih

    2012-01-01

    The aim of this study was to evaluate in vitro antimicrobial activity of 4 antibiotic agents (for E.faecalis) and 4 antifungal agents (for C.albicans) by agar dilution method. Additionally, modified strip diffusion method was used for detection of in vitro antimicrobial activities of 5% NaOCl, 2.5% NaOCl, 17% EDTA and 2% CHX and agar diffusion method for detection of in vitro susceptibilities of three intracanal medicaments for 18 E.faecalis and 18 C.albicans isolates from primary and secondary root canal infection. Isolates were recovered from 231 endodontic samples of patients, with the need of root canal treatment and retreatment. All tested E.faecalis isolates showed resistance to antibiotics. For irrigation solutions, 2% CHX was more effective in eliminating E.faecalis but 5% NaOCl showed larger inhibition zone than 2.5% NaOCl, 17% EDTA and 2% CHX. For intracanal medication, Ca(OH)2-CHX worked efficiently in killing E.faecalis isolates compared to Ca(OH)2-Steril saline solution, Ca(OH)2-Glycerin. For C.albicans, 18 isolates were susceptible to amphotericin B, nistatin, fluconazole but showed resistance to ketoconazole. 5% NaOCl was more effective in eliminating and produced larger inhibition zone compared to 2.5% NaOCl, 17% EDTA and 2% CHX. Ca(OH)2-Glycerin intracanal medication was better in eliminating C.albicans isolates and produced larger inhibition zone compared to other Ca(OH)2 medicaments. Key words:E.faecalis, C.albicans, antimicrobial, antibiotic, antifungal. PMID:24558517

  2. The Effect of Addition of an EPS Degrading Enzyme with and without Detergent to 2% Chlorhexidine on Disruption of Enterococcus faecalis Biofilm: A Confocal Laser Scanning Microscopic Study

    PubMed Central

    Nagendrababu, Venkateshbabu; John, Aby; Deivanayagam, Kandaswamy

    2015-01-01

    Background Enterococcus faecalis is one of the most commonly occurring organisms retrieved from root canal treated teeth that show refractory apical periodontitis. Though it is well known that the ability of E. faecalis to form a matrix-encased biofilm contributes to its pathogenicity, the role of extracellular dextran and DNA in biofilm formation and its effect on the susceptibility of the biofilm to chlorhexidine remains poorly understood. It was hypothesized that the addition of an Extracellular Polymeric Substance (EPS) degrading enzyme along with a detergent to chlorhexidine may increase the susceptibility of the E. faecalis biofilm. Aim To evaluate the sensitivity of Enterococcus faecalis biofilms treated with DNase enzyme and their susceptibility to 2% chlorhexidine used alone or in conjunction with a detergent in a dentin disinfection model and examine under confocal laser scanning microscopy (CLSM). Materials and Methods Semi cylindrical shaped dentin specimens were infected with E. faecalis and incubated for 24 hours. Following incubation, the infected dentin specimens were exposed for 3 minutes to the four disinfecting solutions and grouped accordingly. {Group I- Sterile saline, Group II- 2% Chlorhexidine (CHX), Group III– Dnase1 Enzyme + 2% CHX, Group IV- DNase1 Enzyme + 2% CHX & Tween 80. Bacterial viability was then assessed by staining the specimens and examining under CLSM to analyse the proportion of dead and live bacteria within the dentinal tubules. Results The Groups II, III and IV showed statistically significant (p<0.05) percentage of dead bacteria compared to the control (Group I). However there was no significant difference in the killing effectiveness within the experimental groups (II-IV) at (p<0.05). Conclusion EPS degrading enzyme (DNase I) disrupts the biofilm and increases the susceptibility of E.faecalis when exposed to 2% Chlorhexidine and the use of a surfactant with this combination significantly contributes to improving the

  3. Effects of intracanal irrigant MTAD Combined with nisin at sub-minimum inhibitory concentration levels on Enterococcus faecalis growth and the expression of pathogenic genes.

    PubMed

    Tong, Zhongchun; Huang, Lijia; Ling, Junqi; Mao, Xueli; Ning, Yang; Deng, Dongmei

    2014-01-01

    Exposure to antibiotics is considered to be the major driver in the selection of antibiotic-resistant bacteria and may induce diverse biological responses in bacteria. MTAD is a common intracanal irrigant, but its bactericidal activity remains to be improved. Previous studies have indicated that the antimicrobial peptide nisin can significantly improve the bactericidal activity of MTAD against Enterococcus faecalis. However, the effects of MTAD and its modification at sub-minimum inhibitory concentration (sub-MIC) levels on Enterococcus faecalis growth and the expression of pathogenic genes still need to be explored. In this study, the results of post-antibiotic effects (PAE) and post-antibiotic sub-MIC effects (PASME) showed that MTADN (nisin in combination with MTAD) had the best post-antibiotic effect. E. faecalis after challenge with MTAD was less sensitive to alkaline solutions compared with MTAN (nisin in place of doxycycline in MTAD) and MTADN. E. faecalis induced with sub-MIC of MTAD generated resistance to the higher concentration, but induction of E. faecalis with MTAN did not cause resistance to higher concentrations. Furthermore, real-time polymerase chain reaction (RT-PCR) showed that the stress caused by sub-MIC exposure to MTAD, MTAN, or MTADN resulted in up- or down-regulation of nine stress genes and four virulence-associated genes in E. faecalis and resulted in different stress states. These findings suggested that nisin improved the post-antibacterial effect of MTAD at sub-MIC levels and has considerable potential for use as a modification of MTAD. PMID:24603760

  4. Genetic modifications to temperate Enterococcus faecalis phage Ef11 that abolish the establishment of lysogeny and sensitivity to repressor, and increase host range and productivity of lytic infection.

    PubMed

    Zhang, H; Fouts, D E; DePew, J; Stevens, R H

    2013-06-01

    Ef11 is a temperate bacteriophage originally isolated by induction from a lysogenic Enterococcus faecalis strain recovered from an infected root canal, and the Ef11 prophage is widely disseminated among strains of E. faecalis. Because E. faecalis has emerged as a significant opportunistic human pathogen, we were interested in examining the genes and regulatory sequences predicted to be critical in the establishment/maintenance of lysogeny by Ef11 as a first step in the construction of the genome of a virulent, highly lytic phage that could be used in treating serious E. faecalis infections. Passage of Ef11 in E. faecalis JH2-2 yielded a variant that produced large, extensively spreading plaques in lawns of indicator cells, and elevated phage titres in broth cultures. Genetic analysis of the cloned virus producing the large plaques revealed that the variant was a recombinant between Ef11 and a defective FL1C-like prophage located in the E. faecalis JH2-2 chromosome. The recombinant possessed five ORFs of the defective FL1C-like prophage in place of six ORFs of the Ef11 genome. Deletion of the putative lysogeny gene module (ORFs 31-36) and replacement of the putative cro promoter from the recombinant phage genome with a nisin-inducible promoter resulted in no loss of virus infectivity. The genetic construct incorporating all the aforementioned Ef11 genomic modifications resulted in the generation of a variant that was incapable of lysogeny and insensitive to repressor, rendering it virulent and highly lytic, with a notably extended host range. PMID:23579685

  5. Measurement of Growth at Very Low Rates ((mu) >= 0), an Approach To Study the Energy Requirement for the Survival of Alcaligenes eutrophus JMP 134

    PubMed Central

    Muller, R. H.; Babel, W.

    1996-01-01

    Alcaligenes eutrophus JMP 134 was grown in a recycling-mode fermenter with 100% biomass retention on 2,4-dichlorophenoxyacetic acid (2,4-D), phenol, and fructose. The growth pattern obtained given a constant supply of substrates exhibited three phases of linear growth on all three substrates. The transition from phase 1 to phase 2, considered to correspond to the onset of stringent (growth) control as indicated by a significant increase in guanosine 5(prm1)-bisphosphate 3(prm1)-bisphosphate (ppGpp), took place at 0.016 h(sup-1) with 2,4-D and at about 0.02 h(sup-1) with phenol and fructose. In the final phase, phase 4, which was achieved after the growth rate on the respective substrates fell below 0.003 to 0.001 h(sup-1), a constant level of biomass was obtained irrespective of further feeding of substrate at the same rate. The yield coefficients decreased by 70 to 80% from phase 1 to phase 3 and were 0 in phase 4. The stationary substrate concentrations s(infmin) in phase 4, calculated from the kinetic constants of the strain, were 1.23, 0.34, and 0.23 (mu)M for 2,4-D, phenol, and fructose, respectively. These figures characterize the minimum stationary substrate concentrations required in a dynamic system to keep A. eutrophus alive. This is caused by a substrate flux which enables growth at a rate >=0 due to the provision of energy to an extent at least satisfying maintenance requirements. According to the constant feed rates of the substrates and the final and stable biomass concentrations, this maintenance energy amounts to 14.4, 4.0, and 2.4 (mu)mol of ATP (middot) mg of dry mass(sup-1) h(sup-1) for 2,4-D, phenol, and fructose, respectively, after correction for the fraction of living cells. The increased energy expenditure in the case of 2,4-D is discussed with respect to uncoupling. PMID:16535205

  6. Planococcus faecalis sp. nov., a carotenoid-producing species isolated from stools of Antarctic penguins.

    PubMed

    Kim, Jin Ho; Kang, Hyung Jun; Yu, Byung Jo; Kim, Sun Chang; Lee, Pyung Cheon

    2015-10-01

    Taxonomic studies were performed on a novel carotenoid-producing strain, designated AJ003T, isolated from faeces of Antarctic penguins. Cells of strain AJ003T were aerobic, Gram-stain-positive, cocci-shaped and orange. Strain AJ003T was capable of growing in a broad temperature range, including sub-zero growth (below − 20 to 30 °C). 16S rRNA gene sequence analysis revealed that strain AJ003T was closely related to Planococcus halocryophilus Or1T (97.4 % similarity), Planococcus antarcticus DSM 14505T (97.3 %), Planococcus kocurii NCIMB 629T (97.3 %), and Planococcus donghaensis JH1T (97.1 %). The predominant cellular fatty acids were anteiso-C15 : 0, and iso-C16 : 0.MK-7 and MK-8 were the quinones identified, and the major pigment was glycosyl-4,4′-diaponeurosporen-4′-ol-4-oic acid. The major polar lipid was phosphatidylglycerol. DNA–DNA relatedness of strain AJ003T with respect to its closest phylogenetic neighbours was 38.2 ± 0.5 % for Planococcus halocryophilus DSM 24743T, 32.2 ± 0.2 % for Planococcus antarcticus DSM 14505T, 21.0 ± 0.3 % for Planococcus kocurii DSM 20747T and 18.6 ± 1.4 % for Planococcus donghaensis KCTC 13050T. The DNA G+C content of strain AJ003T was 40.0 ± 0.6 mol%. Based on the phenotypic, chemotaxonomic and phylogenetic data, strain AJ003T is concluded to represent a novel species of the genus Planococcus, for which the name Planococcus faecalis sp. nov. is proposed. The type strain is AJ003T ( = KCTC 33580T = CECT 8759T). PMID:26297353

  7. Aggregation and Binding Substances Enhance Pathogenicity in Rabbit Models of Enterococcus faecalis Endocarditis

    PubMed Central

    Schlievert, Patrick M.; Gahr, Pamala J.; Assimacopoulos, Aris P.; Dinges, Martin M.; Stoehr, Jennifer A.; Harmala, John W.; Hirt, Helmut; Dunny, Gary M.

    1998-01-01

    We investigated the importance of enterococcal aggregation substance (AS) and enterococcal binding substance (EBS) in rabbit models of Enterococcus faecalis cardiac infections. First, American Dutch belted rabbits were injected intraventricularly with 108 CFU and observed for 2 days. No clinical signs of illness developed in animals given AS− EBS− organisms, and all survived. All rabbits given AS− EBS+ organisms developed signs of illness, including significant pericardial inflammation, but only one of six died. All animals given AS+ EBS− organisms developed signs of illness, including pericardial inflammation, and survived. All rabbits given AS+ EBS+ organisms developed signs of illness and died. None of the rabbits receiving AS+ EBS+ organisms showed gross pericardial inflammation. The lethality and lack of inflammation are consistent with the presence of a superantigen. Rabbit and human lymphocytes were highly stimulated in vitro by cell extracts, but not cell-free culture fluids, of AS+ EBS+ organisms. In contrast, cell extracts from AS− EBS− organisms weakly stimulated lymphocyte proliferation. Culture fluids from human lymphocytes stimulated with AS+/EBS+ enterococci contained high levels of gamma interferon and tumor necrosis factor alpha (TNF-α) and TNF-β, which is consistent with functional stimulation of T-lymphocyte proliferation and macrophage activation. Subsequent experiments examined the abilities of the same strains to cause endocarditis in a catheterization model. New Zealand White rabbits underwent transaortic catheterization for 2 h, at which time catheters were removed and animals were injected with 2 × 109 CFU of test organisms. None of the animals given AS− EBS− organisms developed vegetations or showed autopsy evidence of tissue damage. Rabbits given AS− EBS+ or AS+ EBS− organisms developed small vegetations and had splenomegaly at autopsy. All rabbits given AS+ EBS+ organisms developed large vegetations and had

  8. Defining Daptomycin Resistance Prevention Exposures in Vancomycin-Resistant Enterococcus faecium and E. faecalis

    PubMed Central

    Werth, B. J.; Steed, M. E.; Ireland, C. E.; Tran, T. T.; Nonejuie, P.; Murray, B. E.; Rose, W. E.; Sakoulas, G.; Pogliano, J.; Arias, C. A.

    2014-01-01

    Daptomycin is used off-label for enterococcal infections; however, dosing targets for resistance prevention remain undefined. Doses of 4 to 6 mg/kg of body weight/day approved for staphylococci are likely inadequate against enterococci due to reduced susceptibility. We modeled daptomycin regimens in vitro to determine the minimum exposure to prevent daptomycin resistance (Dapr) in enterococci. Daptomycin simulations of 4 to 12 mg/kg/day (maximum concentration of drug in serum [Cmax] of 57.8, 93.9, 123.3, 141.1, and 183.7 mg/liter; half-life [t1/2] of 8 h) were tested against one Enterococcus faecium strain (S447) and one Enterococcus faecalis strain (S613) in a simulated endocardial vegetation pharmacokinetic/pharmacodynamic model over 14 days. Samples were plated on media containing 3× the MIC of daptomycin to detect Dapr. Mutations in genes encoding proteins associated with cell envelope homeostasis (yycFG and liaFSR) and phospholipid metabolism (cardiolipin synthase [cls] and cyclopropane fatty acid synthetase [cfa]) were investigated in Dapr derivatives. Dapr derivatives were assessed for changes in susceptibility, surface charge, membrane depolarization, cell wall thickness (CWT), and growth rate. Strains S447 and S613 developed Dapr after simulations of 4 to 8 mg/kg/day but not 10 to 12 mg/kg/day. MICs for Dapr strains ranged from 8 to 256 mg/liter. Some S613 derivatives developed mutations in liaF or cls. S447 derivatives lacked mutations in these genes. Dapr derivatives from both strains exhibited lowered growth rates, up to a 72% reduction in daptomycin-induced depolarization and up to 6-nm increases in CWT (P < 0.01). Peak/MIC and AUC0–24/MIC ratios (AUC0–24 is the area under the concentration-time curve from 0 to 24 h) associated with Dapr prevention were 72.1 and 780 for S447 and 144 and 1561 for S613, respectively. Daptomycin doses of 10 mg/kg/day may be required to prevent Dapr in serious enterococcal infections. PMID:24957825

  9. The effects of solution chemistry on the sticking efficiencies of viable Enterococcus faecalis: An atomic force microscopy and modeling study

    NASA Astrophysics Data System (ADS)

    Cail, Tracy L.; Hochella, Michael F.

    2005-06-01

    Atomic force microscopy (AFM) and Derjaguin-Landau-Verwey-Overbeek (DLVO) theory in combination with the interaction force boundary layer (IFBL) model have been used to empirically and theoretically calculate sticking efficiencies (α) of Enterococcus faecalis cells against a silica glass surface. Sticking efficiencies were calculated in solutions of varying pH and ionic strength and related to maximum distances of transport through a hypothetical soil block using colloid filtration theory. AFM measurements show that the repulsive and attractive forces between E. faecalis cells and a glass surface are a function of ionic strength but are less sensitive to changes in solution pH. Zeta (ζ)-potential measurements of the cells and glass surfaces correlate with these trends. Calculated DLVO energy profiles predict much greater sensitivity to changing solution chemistry. Sticking efficiencies derived from AFM measurements range from 9.6 × 10 -17 to 1 in solutions of low ionic strength (IS) and from 2.6 × 10 -33 to 1 at higher IS. Corresponding α values determined from DLVO theory are essentially zero in all tested solutions. Sticking efficiencies calculated in this study are smaller than values determined from column and field studies in similar systems; however, α derived from AFM data and the IFBL model more closely represent field data than do values calculated from DLVO energy values. A comparison with different methods of calculating α suggests that reversible adhesion may be significant in column-scale transport studies.

  10. Identification of vancomycin interaction with Enterococcus faecalis within 30 min of interaction time using Raman spectroscopy.

    PubMed

    Assmann, Cora; Kirchhoff, Johanna; Beleites, Claudia; Hey, Jessica; Kostudis, Sophia; Pfister, Wolfgang; Schlattmann, Peter; Popp, Jürgen; Neugebauer, Ute

    2015-11-01

    Vancomycin is an important glycopeptide antibiotic which is used to treat serious infections caused by Gram-positive bacteria. However, during the last years, a tremendous rise in vancomycin resistances, especially among Enterococci, was reported, making fast diagnostic methods inevitable. In this contribution, we apply Raman spectroscopy to systematically characterize vancomycin-enterococci interactions over a time span of 90 min using a sensitive Enterococcus faecalis strain and two different vancomycin concentrations above the minimal inhibitory concentration (MIC). Successful action of the drug on the pathogen could be observed already after 30 min of interaction time. Characteristic spectral changes are visualized with the help of multivariate statistical analysis (linear discriminant analysis and partial least squares regressions). Those changes were employed to train a statistical model to predict vancomycin treatment based on the Raman spectra. The robustness of the model was tested using data recorded by an independent operator. Classification accuracies of >90 % were obtained for vancomycin concentrations in the lower range of a typical trough serum concentration recommended for most patients during appropriate vancomycin therapy. Characterization of drug-pathogen interactions by means of label-free spectroscopic methods, such as Raman spectroscopy, can provide the knowledge base for innovative and fast susceptibility tests which could speed up microbiological analysis as well as finding applications in novel antibiotic screenings assays. Graphical Abstract E. faecalis is incubated with vancomycin and characterized by means of Raman spectroscopy after different time points. Characteristic spectral changes reveal efficient vancomycin-enterococci-interaction. PMID:26231687

  11. Decolorization and detoxification of sulfonated toxic diazo dye C.I. Direct Red 81 by Enterococcus faecalis YZ 66.

    PubMed

    Sahasrabudhe, Madhuri M; Saratale, Rijuta G; Saratale, Ganesh D; Pathade, Girish R

    2014-01-01

    Isolated Enterococcus faecalis YZ 66 strain shows ability to decolorize various industrial dyes among which, it showed complete decolorization and degradation of toxic, sulfonated recalcitrant diazo dye Direct Red 81 (50 mg/L) within 1.5 h of incubation under static anoxic condition. The optimum pH and temperature for decolorization was 7.0 and 40°C, respectively. Significant induction in the activity of intracellular oxidoreductive enzymes suggested its involvement in the decolorization of Direct Red 81. The biodegradation of Direct Red 81 was monitored by UV-Visible, FT-IR spectroscopy and HPLC. The final products were characterized by GC-MS and possible pathway of the degradation of the dye was proposed. The phytotoxicity assay (with respect to plants Sorghum vulgare and Phaseolus mungo) revealed that the degradation of Direct Red 81 produced nontoxic metabolites. Finally E. faecalis was employed to decolorize actual industrial effluent showing decolorization (in terms of ADMI value) with moderate COD and BOD reduction. Moreover the result increases the applicability of the strain for the treatment of industrial wastewaters containing dye pollutants. PMID:25649265

  12. The Two-Component System GrvRS (EtaRS) Regulates ace Expression in Enterococcus faecalis OG1RF

    PubMed Central

    Singh, Kavindra V.; La Rosa, Sabina Leanti; Cohen, Ana Luisa V.; Murray, Barbara E.

    2014-01-01

    Expression of ace (adhesin to collagen of Enterococcus faecalis), encoding a virulence factor in endocarditis and urinary tract infection models, has been shown to increase under certain conditions, such as in the presence of serum, bile salts, urine, and collagen and at 46°C. However, the mechanism of ace/Ace regulation under different conditions is still unknown. In this study, we identified a two-component regulatory system GrvRS as the main regulator of ace expression under these stress conditions. Using Northern hybridization and β-galactosidase assays of an ace promoter-lacZ fusion, we found transcription of ace to be virtually absent in a grvR deletion mutant under the conditions that increase ace expression in wild-type OG1RF and in the complemented strain. Moreover, a grvR mutant revealed decreased collagen binding and biofilm formation as well as attenuation in a murine urinary tract infection model. Here we show that GrvR plays a major role in control of ace expression and E. faecalis virulence. PMID:25385790

  13. Antibacterial Activity of Synthetic Peptides Derived from Lactoferricin against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212

    PubMed Central

    León-Calvijo, María A.; Leal-Castro, Aura L.; Almanzar-Reina, Giovanni A.; Rosas-Pérez, Jaiver E.; García-Castañeda, Javier E.; Rivera-Monroy, Zuly J.

    2015-01-01

    Peptides derived from human and bovine lactoferricin were designed, synthesized, purified, and characterized using RP-HPLC and MALDI-TOF-MS. Specific changes in the sequences were designed as (i) the incorporation of unnatural amino acids in the sequence, the (ii) reduction or (iii) elongation of the peptide chain length, and (iv) synthesis of molecules with different number of branches containing the same sequence. For each peptide, the antibacterial activity against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212 was evaluated. Our results showed that Peptides I.2 (RWQWRWQWR) and I.4 ((RRWQWR)4K2Ahx2C2) exhibit bigger or similar activity against E. coli (MIC 4–33 μM) and E. faecalis (MIC 10–33 μM) when they were compared with lactoferricin protein (LF) and some of its derivate peptides as II.1 (FKCRRWQWRMKKLGA) and IV.1 (FKCRRWQWRMKKLGAPSITCVRRAE). It should be pointed out that Peptides I.2 and I.4, containing the RWQWR motif, are short and easy to synthesize; our results demonstrate that it is possible to design and obtain synthetic peptides that exhibit enhanced antibacterial activity using a methodology that is fast and low-cost and that allows obtaining products with a high degree of purity and high yield. PMID:25815317

  14. Protein translation machinery holds a key for transition of planktonic cells to biofilm state in Enterococcus faecalis: A proteomic approach.

    PubMed

    Qayyum, Shariq; Sharma, Divakar; Bisht, Deepa; Khan, Asad U

    2016-06-10

    Enterococcus faecalis is a member of human gut microflora causing nosocomial infection involving biofilm formation. Ethyl methyl sulfonate induced mutants were analysed using crystal violet assay, SEM and CLSM microscopy which confirmed AK-E12 as biofilm efficient and AK-F6 as biofilm deficient mutants. Growth curve pattern revealed AK-E12 was fast growing whereas, AK-F6 was found slow growing mutant. 2D-Electrophorosis and MALDI-TOF analysis revealed over and underexpression of many translation-elongation associated proteins in mutants compared to wild type. Protein translation elongation factor G, translation elongation factor Tu and ribosomal subunit interface proteins were underexpressed and UTP-glucose-1-phosphate uridylyl transferase and cell division protein divIVA were overexpressed in AK-E12 as compared to wild type. In AK-F6, except 10 kDa chaperonin which was over-expressed other selected proteins were found to be suppressed. RT-PCR confirmed proteomic data except for the translation elongation factor G which showed contradictory data of proteome expression in AK-E12. Protein-protein interaction networks were constructed using STRING 10.0 which demonstrated strong connection of translation-elongation proteins with other proteins. Hence, it concludes from the data that translation elongation factors are important in transition of planktonic cells to biofilm cells in Enterococcus faecalis. PMID:27144316

  15. Antibacterial activity of synthetic peptides derived from lactoferricin against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212.

    PubMed

    León-Calvijo, María A; Leal-Castro, Aura L; Almanzar-Reina, Giovanni A; Rosas-Pérez, Jaiver E; García-Castañeda, Javier E; Rivera-Monroy, Zuly J

    2015-01-01

    Peptides derived from human and bovine lactoferricin were designed, synthesized, purified, and characterized using RP-HPLC and MALDI-TOF-MS. Specific changes in the sequences were designed as (i) the incorporation of unnatural amino acids in the sequence, the (ii) reduction or (iii) elongation of the peptide chain length, and (iv) synthesis of molecules with different number of branches containing the same sequence. For each peptide, the antibacterial activity against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212 was evaluated. Our results showed that Peptides I.2 (RWQWRWQWR) and I.4 ((RRWQWR)4K2Ahx2C2) exhibit bigger or similar activity against E. coli (MIC 4-33 μM) and E. faecalis (MIC 10-33 μM) when they were compared with lactoferricin protein (LF) and some of its derivate peptides as II.1 (FKCRRWQWRMKKLGA) and IV.1 (FKCRRWQWRMKKLGAPSITCVRRAE). It should be pointed out that Peptides I.2 and I.4, containing the RWQWR motif, are short and easy to synthesize; our results demonstrate that it is possible to design and obtain synthetic peptides that exhibit enhanced antibacterial activity using a methodology that is fast and low-cost and that allows obtaining products with a high degree of purity and high yield. PMID:25815317

  16. Development of an intracanal mature Enterococcus faecalis biofilm and its susceptibility to some antimicrobial intracanal medications; an in vitro study

    PubMed Central

    Saber, Shehab El-Din Mohamed; El-Hady, Soha A.

    2012-01-01

    Objectives: To develop a mature biofilm of Enterococcus faecalis inside the root canal system and to test its susceptibility to some antimicrobial medications in vitro. Methods: Single rooted premolars were mechanically enlarged, sterilized, and then infected with a clinical isolate of E. faecalis. Biofilm formation and maturation was monitored using SEM. Biofilm bacteria were exposed to Amoxicillin+clavulanate, Ciprofloxacin, Clindamycin, Doxycycline, and calcium hydroxide as intracanal medications for 1 week. Finally bacterial samples were collected, and colony-forming units were enumerated. Results: SEM examination confirmed the formation of a mature biofilm at the end of the incubation period. All the chemotherapeutic agents used were significantly better than Calcium hydroxide in elimination of biofilm bacteria. The antimicrobial effect of Amoxicillin + clavulanate, Ciprofloxacin and Clindamycin was significantly better than Doxycycline (P=.05). However the difference in the antimicrobial effectiveness among them was statistically non-significant (P=.05). Conclusions: The method used for bacterial biofilm development and maturation is reliable and can be used to assess the anti bacterial potential of endodontic materials. Also, the local application of antibacterial agents can be beneficial in resistant cases of apical periodontitis but only after careful culture and sensitivity testing to choose the appropriate agent for the existing flora. PMID:22229006

  17. Reduction of Bacillus subtilis, Bacillus stearothermophilus and Streptococcus faecalis in meat batters by temperature-high hydrostatic pressure pasteurization.

    PubMed

    Moerman, F; Mertens, B; Demey, L; Huyghebaert, A

    2001-10-01

    People have a growing preference for fresh, healthy, palatable and nutritious meals and drinks. However, as food deterioration is a constant threat along the entire food chain, food preservation remains as necessary now as in the past. High pressure processing is one of the emerging technologies being studied as an alternative to the classical pasteurization and sterilization treatments of food. Samples of fried minced pork meat were inoculated with strains of Streptococcus faecalis and with sporulating microorganisms like Bacillus subtilis and stearothermophilus. The samples were subjected to several combined temperature-high pressure treatments predicted by the mathematical model applied in Response Surface Methodology. Using the "Box-Behnken" concept, the number of tests for a whole area of pressure-temperature-time-combinations (pressure variation: 50-400 MPa, temperature variation 20-80°C, time variation 1-60 min) could be limited to 15. In the center point of the model, the experimental combination was performed in triple to estimate the experimental variance. All the tests were executed in a randomized order to exclude the disturbing effect of environmental factors. Microbial analysis revealed for each microorganism an important reduction in total plate count, demonstrating a superior pressure resistance of the sporulating microorganisms in comparison with the most pressure resistant vegetative species Streptococcus faecalis. The effect of the medium composition could be neglected, showing little protective effect of, e.g. the fat fraction as seen in heat preservation techniques. PMID:22062669

  18. Inactivation of Staphylococcus aureus and Enterococcus faecalis by a direct-current, cold atmospheric-pressure air plasma microjet☆

    PubMed Central

    Tian, Ye; Sun, Peng; Wu, Haiyan; Bai, Na; Wang, Ruixue; Zhu, Weidong; Zhang, Jue; Liu, Fuxiang

    2010-01-01

    Objective A direct-current, cold atmospheric-pressure air plasma microjet (PMJ) was performed to inactivate Staphylococcus aureus (S. aureus) and Enterococcus faecalis (E. faecalis) in air. The process of sterilization and morphology of bacteria was observed. We wish to know the possible inactivation mechanisms of PMJ and explore a potential application in dental and other temperature sensitive treatment. Methods In this study, we employed a direct current, atmospheric pressure, cold air PMJ to inactivate bacterias. Scanning electron microscopy was employed to evaluate the morphology of S. aureus and showed rupture of cell walls after the plasma treatment and Optical emission spectrum (OES) were used to understand the possible inactivation mechanisms of PMJ. Results The inactivation rates could reach 100% in 5 min. When the distance between the exit nozzle of the PMJ device and Petri dish was extended from 1 cm to 3 cm, effective inactivation was also observed with a similar inactivation curve. Conclusion The inactivation of bacteria is attributed to the abundant reactive oxygen and nitrogen species, as well as ultroviolet radiation in the plasma. Different life spans and defensibilities of these killing agents may hold the key to understanding the different inactivation curves at different treatment distances. PMID:23554639

  19. Role of the mannose receptor in phagocytosis of Enterococcus faecalis strain EC-12 by antigen-presenting cells

    PubMed Central

    Tsuruta, Takeshi; Inoue, Ryo; Nagino, Takayuki; Nishibayashi, Ryoichiro; Makioka, Yuko; Ushida, Kazunari

    2013-01-01

    Abstract The aim of this study was to clarify the phagocytic mechanisms of a heat-killed cell preparation of Enterococcus faecalis strain EC-12 (EC-12) by antigen-presenting cells (APCs). Fluorescein isothiocyanate (FITC)-labeled EC-12 was cocultured with peritoneal macrophage and the amount of EC-12 phagocytosed by peritoneal macrophages was measured using a microplate fluorometer. Peritoneal macrophages from toll-like receptor (TLR)2-, TLR7-, and MyD88-deficient knockout (KO) mice exhibited similar levels of EC-12 phagocytosis to those from wild-type mice. Similarly, dectin-1 neutralization of peritoneal macrophages had no effect on EC-12 phagocytosis. However, blockade of the mannose receptor (MR) significantly decreased the amount of EC-12 phagocytosed by peritoneal macrophages; the same effect was observed in bone marrow-derived macrophages and dendritic cells. Our findings suggest that MR plays a major role in EC-12 phagocytosis by the APCs. This aim of this study was to clarify the phagocytic mechanisms of a heat-killed cell preparation of Enterococcus faecalis strain EC-12 (EC-12) by antigen-presenting cells (APCs). Our findings suggest that mannose receptor (MR) plays a major role in EC-12 phagocytosis by the APCs. PMID:23801521

  20. Dentinal tubule disinfection with 2% chlorhexidine, garlic extract, and calcium hydroxide against Enterococcus faecalis by using real-time polymerase chain reaction: In vitro study

    PubMed Central

    Eswar, Kandaswamy; Venkateshbabu, Nagendrababu; Rajeswari, Kalaiselvam; Kandaswamy, Deivanayagam

    2013-01-01

    Aim: To compare the efficacy of garlic extract with 2% chlorhexidine (CHX) and calcium hydroxide Ca(OH)2 in disinfection of dentinal tubules contaminated with Enterococcus faecalis by using real-time polymerase chain reaction (PCR). Materials and Methods: Agar diffusion test was done to evaluate the minimum inhibitory concentration of garlic extract against E. faecalis. Forty human extracted mandibular premolar teeth were selected for this study, access cavity was prepared and cleaning and shaping was done. Middle third of the root was cut using a rotary diamond disc. The teeth specimens were inoculated with E. faecalis for 21 days. Specimens were divided into four groups---Group 1: 2% CHX, Group 2: Garlic extract, Group 3: Ca(OH)2, and Group 4: Saline (negative control). The intracanal medicaments were packed inside the tooth specimens and incubated for 5 days. The dentinal chips were collected at 400 μm depth using a Gates-Glidden drill, following which DNA isolation was done. The specimens were analyzed using real-time PCR. The results were then statistically analyzed using one-way analysis of variance, followed by post hoc Tukey's honestly significant difference (HSD) multiple comparison of means. Results: Threshold cycle (Ct) values of 2% CHX was found to be 32.4, garlic extract to be 27.5, and Ca(OH)2 to be 25.6. Conclusion: A total of 2% CHX showed the maximum efficacy against E. faecalis, followed by garlic extract and Ca(OH)2. PMID:23833449

  1. Biofilm forming capacity of Enterococcus faecalis on Gutta-percha points treated with four disinfectants using confocal scanning laser microscope: An in vitro study

    PubMed Central

    Ravi Chandra, Polavarapu Venkata; Kumar, Vemisetty Hari; Reddy, Surakanti Jayaprada; Kiran, Dandolu Ram; Krishna, Muppala Nagendra; Kumar, Golla Vinay

    2015-01-01

    Background: The aim of this study was to evaluate and compare the in vitro biofilm forming capacity of Enterococcus faecalis on Gutta-percha points disinfected with four disinfectants. Materials and Methods: A total of 50 Gutta-percha points used in this study were divided into four test groups based on disinfectant (5.25% sodium hypochlorite, 2% chlorhexidine gluconate, 20% neem, 13% benzalkonium chloride [BAK]), and one control group. The Gutta-percha points were initially treated with corresponding disinfectants followed by anaerobic incubation in Brain Heart Infusion broth suspended with human serum and E. faecalis strain for 14 days. After incubation, these Gutta-percha points were stained with Acridine Orange (Sigma – Aldrich Co., St. Louis, MO, USA) and 0.5 mm thick cross section samples were prepared. The biofilm thickness of E. faecalis was analyzed quantitatively using a confocal scanning laser microscope. Results statistically analyzed using analysis of variance. P < 0.05 was considered to be significant. Results: Confocal scanning laser microscope showed reduced amount of E. faecalis biofilm on Gutta-percha points treated with BAK and sodium hypochlorite. Post-hoc (least square differences) test revealed that there is no statistically significant difference between BAK and sodium hypochlorite groups (P > 0.05). Conclusion: This study illustrates that the Gutta-percha points disinfected with sodium hypochlorite and BAK showed minimal biofilm growth on its surface. PMID:26288622

  2. Comparison of the Antimicrobial Efficacy of Two Antibiotics Sparfloxacin and Augmentin as Experimental Root Canal Irrigating Solutions against Enterococcus faecalis - An Invitro Study

    PubMed Central

    Venigalla, Bhuvan Shome; Surakanti, Jayaprada Reddy; Thumu, Jayaprakash; Chennamaneni, Krishna Chaitanya; Kalluru, Rama S.

    2016-01-01

    Introduction One of the main goals of endodontic treatment is root canal disinfection and to prevent subsequent chances of reinfection. Adjuvant to instrumentation, root canal irrigants are required to eliminate the bacteria found on the root canal walls and lateral canals within the dentinal tubules. Aim To measure and compare the antibacterial efficacy of two antibiotics as experimental root canal irrigating solutions against Enterococcus faecalis (E. faecalis). Materials and Methods Fifteen Brain Heart Infusion agar plates were inoculated with Enterococcus faecalis-American Type Culture Collection (ATCC) 29212. 5 micrograms (mcg) Sparfloxacin discs, 30mcg Augmentin discs, and sterile paper test discs saturated with 2% Chlorhexidine (CHX), 3% Sodium Hypochlorite (NaOCl) and 5% NaOCl solutions were placed on agar plates. Sodium Chloride 0.9% (NaCl) paper discs were used as controls. Fifteen plates were incubated aerobically at 37°C. Results were expressed as per the terms of the diameter of the inhibition zone. Results Results suggested a statistically significant difference in the zones of inhibition between five irrigating solutions (p < 0.001). Conclusion Although, zones of inhibition were found in all the groups, 5mcg Sparfloxacin and 30mcg Augmentin showed maximum antimicrobial activity against E.faecalis. PMID:27135003

  3. An amino-terminal domain of Enterococcus faecalis aggregation substance is required for aggregation, bacterial internalization by epithelial cells and binding to lipoteichoic acid.

    PubMed

    Waters, Christopher M; Hirt, Helmut; McCormick, John K; Schlievert, Patrick M; Wells, Carol L; Dunny, G M

    2004-05-01

    Aggregation substance (AS), a plasmid-encoded surface protein of Enterococcus faecalis, plays important roles in virulence and antibiotic resistance transfer. Previous studies have suggested that AS-mediated aggregation of enterococcal cells could involve the binding of this protein to cell wall lipoteichoic acid (LTA). Here, a method to purify an undegraded form of Asc10, the AS of the plasmid pCF10, is described. Using this purified protein, direct binding of Asc10 to purified E. faecalis LTA was demonstrated. Equivalent binding of Asc10 to LTA purified from INY3000, an E. faecalis strain that is incapable of aggregation, was also observed. Surprisingly, mutations in a previously identified aggregation domain from amino acids 473 to 683 that abolished aggregation had no effect on LTA binding. In frame deletion analysis of Asc10 was used to identify a second aggregation domain located in the N-terminus of the protein from amino acids 156 to 358. A purified Asc10 mutant protein lacking this domain showed reduced LTA binding, while a purified N-terminal fragment from amino acids 44-331 had high LTA binding. Like the previously described aggregation domain, the newly identified Asc10((156-358)) aggregation domain was also required for efficient internalization of E. faecalis into HT-29 enterocytes. Thus, Asc10 possess two distinct domains required for aggregation and eukaryotic cell internalization: an N-terminal domain that promotes binding to LTA and a second domain located near the middle of the protein. PMID:15130132

  4. Expression of the agmatine deiminase pathway in Enterococcus faecalis is activated by the AguR regulator and repressed by CcpA and PTS(Man) systems.

    PubMed

    Suárez, Cristian; Espariz, Martín; Blancato, Víctor S; Magni, Christian

    2013-01-01

    Although the agmatine deiminase system (AgDI) has been investigated in Enterococcus faecalis, little information is available with respect to its gene regulation. In this study we demonstrate that the presence of exogenous agmatine induces the expression of agu genes in this bacterium. In contrast to the homologous and extensively characterized AgDI system of S. mutants, the aguBDAC operon in E. faecalis is not induced in response to low pH. In spite of this, agmatine catabolism in this bacterium contributes by neutralizing the external medium while enhancing bacterial growth. Our results indicate that carbon catabolic repression (CCR) operates on the AgDI system via a mechanism that involves interaction of CcpA and P-Ser-HPr with a cre site found in an unusual position considering the aguB promoter (55 nt upstream the +1 position). In addition, we found that components of the mannose phosphotransferase (PTS(Man)) system also contributed to CCR in E. faecalis since a complete relief of the PTS-sugars repressive effect was observed only in a PTS(Man) and CcpA double defective strain. Our gene context analysis revealed that aguR is present in oral and gastrointestinal microorganisms. Thus, regulation of the aguBDAC operon in E. faecalis seems to have evolved to obtain energy and resist low pH conditions in order to persist and colonize gastrointestinal niches. PMID:24155893

  5. Expression of the Agmatine Deiminase Pathway in Enterococcus faecalis Is Activated by the AguR Regulator and Repressed by CcpA and PTSMan Systems

    PubMed Central

    Blancato, Víctor S.; Magni, Christian

    2013-01-01

    Although the agmatine deiminase system (AgDI) has been investigated in Enterococcus faecalis, little information is available with respect to its gene regulation. In this study we demonstrate that the presence of exogenous agmatine induces the expression of agu genes in this bacterium. In contrast to the homologous and extensively characterized AgDI system of S. mutants, the aguBDAC operon in E. faecalis is not induced in response to low pH. In spite of this, agmatine catabolism in this bacterium contributes by neutralizing the external medium while enhancing bacterial growth. Our results indicate that carbon catabolic repression (CCR) operates on the AgDI system via a mechanism that involves interaction of CcpA and P-Ser-HPr with a cre site found in an unusual position considering the aguB promoter (55 nt upstream the +1 position). In addition, we found that components of the mannose phosphotransferase (PTSMan) system also contributed to CCR in E. faecalis since a complete relief of the PTS-sugars repressive effect was observed only in a PTSMan and CcpA double defective strain. Our gene context analysis revealed that aguR is present in oral and gastrointestinal microorganisms. Thus, regulation of the aguBDAC operon in E. faecalis seems to have evolved to obtain energy and resist low pH conditions in order to persist and colonize gastrointestinal niches. PMID:24155893

  6. The mazEF toxin–antitoxin system as an attractive target in clinical isolates of Enterococcus faecium and Enterococcus faecalis

    PubMed Central

    Soheili, Sara; Ghafourian, Sobhan; Sekawi, Zamberi; Neela, Vasantha Kumari; Sadeghifard, Nourkhoda; Taherikalani, Morovat; Khosravi, Afra; Ramli, Ramliza; Hamat, Rukman Awang

    2015-01-01

    The toxin–antitoxin (TA) system is a regulatory system where two sets of genes encode the toxin and its corresponding antitoxin. In this study, the prevalence of TA systems in independently isolated clinical isolates of Enterococcus faecium and Enterococcus faecalis was determined, the dominant TA system was identified, different virulence genes in E. faecium and E. faecalis were surveyed, the level of expression of the virulence and TA genes in normal and stress conditions was determined, and finally their associations with the TA genes were defined. Remarkably, the analysis demonstrated higBA and mazEF in all clinical isolates, and their locations were on chromosomes and plasmids, respectively. On the other hand, a quantitative analysis of TA and virulence genes revealed that the expression level in both genes is different under normal and stress conditions. The results obtained by anti-mazF peptide nucleic acids demonstrated that the expression level of virulence genes had decreased. These findings demonstrate an association between TA systems and virulence factors. The mazEF on the plasmids and the higBA TA genes on the chromosomes of all E. faecium and E. faecalis strains were dominant. Additionally, there was a decrease in the expression of virulence genes in the presence of anti-mazF peptide nucleic acids. Therefore, it is suggested that mazEF TA systems are potent and sensitive targets in all E. faecium and E. faecalis strains. PMID:26005332

  7. Genetic structure of the Enterococcus faecalis plasmid pAD1-encoded cytolytic toxin system and its relationship to lantibiotic determinants.

    PubMed Central

    Gilmore, M S; Segarra, R A; Booth, M C; Bogie, C P; Hall, L R; Clewell, D B

    1994-01-01

    Pheromone-responsive conjugative plasmids are unique to the species Enterococcus faecalis. Many pheromone-responsive plasmids, including those frequently isolated from sites of infection, express a novel cytolysin that possesses both hemolytic and bacteriocin activities. Further, this cytolysin has been shown to be a toxin in several disease models. In the present study, nucleotide sequence determination, mutagenesis, and complementation analysis were used to determine the organization of the E. faecalis plasmid pAD1 cytolysin determinant. Four open reading frames are required for expression of the cytolysin precursor (cylLL, cylLS, cylM, and cylB). The inferred products of two of these open reading frames, CyILL and CyILS, constitute the cytolysin precursor and bear structural resemblance to posttranslationally modified bacteriocins termed lantibiotics. Similarities between the organization of the E. faecalis cytolysin determinant and expression units for lantibiotics exist, indicating that the E. faecalis cytolysin represents a new branch of this class and is the first known to possess toxin activity. Images PMID:7961506

  8. Genetic structure of the Enterococcus faecalis plasmid pAD1-encoded cytolytic toxin system and its relationship to lantibiotic determinants.

    PubMed

    Gilmore, M S; Segarra, R A; Booth, M C; Bogie, C P; Hall, L R; Clewell, D B

    1994-12-01

    Pheromone-responsive conjugative plasmids are unique to the species Enterococcus faecalis. Many pheromone-responsive plasmids, including those frequently isolated from sites of infection, express a novel cytolysin that possesses both hemolytic and bacteriocin activities. Further, this cytolysin has been shown to be a toxin in several disease models. In the present study, nucleotide sequence determination, mutagenesis, and complementation analysis were used to determine the organization of the E. faecalis plasmid pAD1 cytolysin determinant. Four open reading frames are required for expression of the cytolysin precursor (cylLL, cylLS, cylM, and cylB). The inferred products of two of these open reading frames, CyILL and CyILS, constitute the cytolysin precursor and bear structural resemblance to posttranslationally modified bacteriocins termed lantibiotics. Similarities between the organization of the E. faecalis cytolysin determinant and expression units for lantibiotics exist, indicating that the E. faecalis cytolysin represents a new branch of this class and is the first known to possess toxin activity. PMID:7961506

  9. Construction and Application of a luxABCDE Reporter System for Real-Time Monitoring of Enterococcus faecalis Gene Expression and Growth

    PubMed Central

    Diep, Dzung B.; Nes, Ingolf F.

    2012-01-01

    The present work describes the construction of a novel molecular tool for luciferase-based bioluminescence (BL) tagging of Enterococcus faecalis. To this end, a vector (pSL101) and its derivatives conferring a genetically encoded bioluminescent phenotype on all tested strains of E. faecalis were constructed. pSL101 harbors the luxABCDE operon from pPL2lux and the pREG696 broad-host-range replicon and axe-txe toxin-antitoxin cassette, providing segregational stability for long-term plasmid persistence in the absence of antibiotic selection. The bioluminescent signals obtained from three highly expressed promoters correlated linearly (R2 > 0.98) with the viable-cell count. We employed lux-tagged E. faecalis strains to monitor growth in real time in milk and urine in vitro. Furthermore, bioluminescence imaging (BLI) was used to visualize the magnitude of the bacterial burden during infection in the Galleria mellonella model system. To our knowledge, pSL101 is the first substrate addition-independent reporter system developed for BLI of E. faecalis and an efficient tool for spatiotemporal tracking of bacterial growth and quantitative determination of promoter activity in real time, noninvasively, in infection model systems. PMID:22843522

  10. Comparative antimicrobial efficacy of herbal alternatives (Emblica officinalis, Psidium guajava), MTAD, and 2.5% sodium hypochlorite against Enterococcus faecalis: An in vitro study

    PubMed Central

    Dubey, Sandeep

    2016-01-01

    Aim The objective of this study was to evaluate the antimicrobial efficacy of herbal alternatives (Emblica officinalis, Psidium guajava), BioPure MTAD, and 2.5% sodium hypochlorite against Enterococcus faecalis. Materials and method The testing of the antimicrobial efficacy of selected medicaments against E. faecalis was done by the agar disk-diffusion method. Whatman paper discs of 6 mm diameter were prepared and soaked with the test solution. These discs were then placed onto the previously seeded agar Petri plates. Later, these plates were incubated for 48 h at 37 °C under the appropriate gaseous conditions in a CO2 incubator. A zone of inhibition was recorded in millimeter for each plate and the results were analyzed statistically. Result MTAD was found to be superior in its antibacterial abilities against E. faecalis compared with the other irrigants used. All the other tested irrigants showed significant zone of inhibition. Conclusions BioPure MTAD offers better antibacterial efficacy than NaOCl. E. officinalis and P. guajava are effective antibacterial agents against E. faecalis and can be used to reduce root canal microflora and root canal failures. PMID:26937369

  11. Effectiveness of N-acetyl cysteine, 2% chlorhexidine, and their combination as intracanal medicaments on Enterococcus faecalis biofilm

    PubMed Central

    Palaniswamy, Udayakumar; Lakkam, Surender Ram; Arya, Shikha; Aravelli, Swathi

    2016-01-01

    Aim: The purpose of this study was to evaluate the antibacterial efficacies of 2% chlorhexidine (CHX), N-acetyl cysteine (NAC) and assess their synergistic or antagonist action as intracanal medicament. Materials and Methods: Agar diffusion test was performed with 2% CHX, NAC, and their combination against E. faecalis planktonic cells. The diameters of the zones of bacterial inhibition were measured and recorded for each solution. The assay was further extended to 2 weeks old E. faecalis dentinal biofilm. Sixteen freshly extracted teeth were vertically sectioned into two halves resulting in a total of 32 samples. The samples were inoculated with bacterial suspension and incubated at 37°C for 2 weeks for biofilm formation. The samples were then divided into four experimental groups with 8 samples in each group. The samples were gently washed in saline and placed in culture wells containing the test solutions, i.e., 2% CHX, NAC, a combination of 2% CHX and NAC in 1:1 ratio, and a control group containing saline. The biofilm formed on the root canal surface were removed with a sterile scalpel and inoculated on blood agar plates to check for the formation of E. faecalis colonies. Statistical Analysis: For agar diffusion test, data were analyzed statistically using one-way analysis of variance and then by post-hoc Scheffe's test to compare the antimicrobial efficacy between the groups. Statistical analysis was not done for the cultures obtained from the biofilm as there was no growth in all the three test groups except the control group, i.e., saline. Results: In agar diffusion test, among the three groups tested, 2% CHX and NAC showed almost equal zones of inhibition whereas maximum inhibition was shown by a combination of NAC and 2% CHX suggesting a synergistic action. The results obtained were highly significant (P < 0.001) for the combination of medicament when compared to individual test group. In culture analysis, which was done for the biofilm, no growth was

  12. Evaluation of the Enterococcus faecalis Biofilm-Associated Virulence Factors AhrC and Eep in Rat Foreign Body Osteomyelitis and In Vitro Biofilm-Associated Antimicrobial Resistance

    PubMed Central

    Frank, Kristi L.; Vergidis, Paschalis; Brinkman, Cassandra L.; Greenwood Quaintance, Kerryl E.; Barnes, Aaron M. T.; Mandrekar, Jayawant N.; Schlievert, Patrick M.; Dunny, Gary M.; Patel, Robin

    2015-01-01

    Enterococcus faecalis can cause healthcare-associated biofilm infections, including those of orthopedic devices. Treatment of enterococcal prosthetic joint infection is difficult, in part, due to biofilm-associated antimicrobial resistance. We previously showed that the E. faecalis OG1RF genes ahrC and eep are in vitro biofilm determinants and virulence factors in animal models of endocarditis and catheter-associated urinary tract infection. In this study, we evaluated the role of these genes in a rat acute foreign body osteomyelitis model and in in vitro biofilm-associated antimicrobial resistance. Osteomyelitis was established for one week following the implantation of stainless steel orthopedic wires inoculated with E. faecalis strains OG1RF, ΩahrC, and ∆eep into the proximal tibiae of rats. The median bacterial loads recovered from bones and wires did not differ significantly between the strains at multiple inoculum concentrations. We hypothesize that factors present at the infection site that affect biofilm formation, such as the presence or absence of shear force, may account for the differences in attenuation in the various animal models we have used to study the ΩahrC and ∆eep strains. No differences among the three strains were observed in the planktonic and biofilm antimicrobial susceptibilities to ampicillin, vancomycin, daptomycin, linezolid, and tetracycline. These findings suggest that neither ahrC nor eep directly contribute to E. faecalis biofilm-associated antimicrobial resistance. Notably, the experimental evidence that the biofilm attachment mutant ΩahrC displays biofilm-associated antimicrobial resistance suggests that surface colonization alone is sufficient for E. faecalis cells to acquire the biofilm antimicrobial resistance phenotype. PMID:26076451

  13. Evaluation of the Enterococcus faecalis Biofilm-Associated Virulence Factors AhrC and Eep in Rat Foreign Body Osteomyelitis and In Vitro Biofilm-Associated Antimicrobial Resistance.

    PubMed

    Frank, Kristi L; Vergidis, Paschalis; Brinkman, Cassandra L; Greenwood Quaintance, Kerryl E; Barnes, Aaron M T; Mandrekar, Jayawant N; Schlievert, Patrick M; Dunny, Gary M; Patel, Robin

    2015-01-01

    Enterococcus faecalis can cause healthcare-associated biofilm infections, including those of orthopedic devices. Treatment of enterococcal prosthetic joint infection is difficult, in part, due to biofilm-associated antimicrobial resistance. We previously showed that the E. faecalis OG1RF genes ahrC and eep are in vitro biofilm determinants and virulence factors in animal models of endocarditis and catheter-associated urinary tract infection. In this study, we evaluated the role of these genes in a rat acute foreign body osteomyelitis model and in in vitro biofilm-associated antimicrobial resistance. Osteomyelitis was established for one week following the implantation of stainless steel orthopedic wires inoculated with E. faecalis strains OG1RF, ΩahrC, and ∆eep into the proximal tibiae of rats. The median bacterial loads recovered from bones and wires did not differ significantly between the strains at multiple inoculum concentrations. We hypothesize that factors present at the infection site that affect biofilm formation, such as the presence or absence of shear force, may account for the differences in attenuation in the various animal models we have used to study the ΩahrC and ∆eep strains. No differences among the three strains were observed in the planktonic and biofilm antimicrobial susceptibilities to ampicillin, vancomycin, daptomycin, linezolid, and tetracycline. These findings suggest that neither ahrC nor eep directly contribute to E. faecalis biofilm-associated antimicrobial resistance. Notably, the experimental evidence that the biofilm attachment mutant ΩahrC displays biofilm-associated antimicrobial resistance suggests that surface colonization alone is sufficient for E. faecalis cells to acquire the biofilm antimicrobial resistance phenotype. PMID:26076451

  14. Activity of linezolid in an in vitro pharmacokinetic-pharmacodynamic model using different dosages and Staphylococcus aureus and Enterococcus faecalis strains with and without a hypermutator phenotype.

    PubMed

    Ba, Boubakar B; Arpin, Corinne; Bikie Bi Nso, Branly; Dubois, Véronique; Saux, Marie-Claude; Quentin, Claudine

    2010-04-01

    The influence of antibiotic dosages and bacterial mutator phenotypes on the emergence of linezolid-resistant mutants was evaluated in an in vitro pharmacokinetic-pharmacodynamic model. A twice-daily 0.5-h infusion of a 200-, 600-, or 800-mg dose for 48 h was simulated against four strains (MIC, 2 microg/ml): Staphylococcus aureus RN4220 and its mutator derivative MutS2, Enterococcus faecalis ATCC 29212, and a mutator clinical strain of E. faecalis, Ef1497. The peak concentrations (4.38 to 4.79, 13.4 to 14.6, and 19.2 to 19.5 microg/ml) and half-lives at beta-phase (5.01 to 6.72 h) fit human plasma linezolid pharmacokinetics. Due to its bacteriostatic property, the cumulative percentages of the dosing interval during which the drug concentration exceeded the MIC (T > MIC), 66.6 and 69.1% of the dosing interval, were not significant, except for Ef1497, with an 800-mg dose and a T > MIC of 80.9%. At the standard 600-mg dosage, resistant mutants (2- to 8-fold MIC increases) were selected only with Ef1497. A lower, 200-mg dosage did not select resistant mutants of E. faecalis ATCC 29212, but a higher, 800-mg dosage against Ef1497 did not prevent their emergence. For the most resistant mutant (MIC, 16 microg/ml), characterization of 23S rRNA genes revealed the substitution A2453G in two of the four operons, which was previously described only in in vitro mutants of archaebacteria. Nevertheless, this mutant did not yield further mutants under 600- or 200-mg treatment. In conclusion, linezolid was consistently efficient against S. aureus strains. The emergence of resistant E. faecalis mutants was probably favored by the rapid decline of linezolid concentrations against a strong mutator, a phenotype less exceptional in E. faecalis than in S. aureus. PMID:20100878

  15. Driving forces of vancomycin-resistant E. faecium and E. faecalis blood-stream infections in children

    PubMed Central

    2014-01-01

    Background Rates of invasive vancomycin-resistant Enterococcus (VRE) in the USA remains on the rise. Efforts to control vancomycin use and nosocomial transmission have had limited success in halting the spread of this pathogen. The role of antibiotic exposure remains a topic of controversy. We evaluated the association between emergence of VRE-blood-stream infections (BSI), aggregate and individual-patient vancomycin- exposure, and clonal transmission of VRE at an academic pediatric tertiary care hospital. Methods E. faecium and E. faecalis isolates recovered from blood specimens from hospitalized children from 2003–2010 were retrieved from the microbiology database. Aggregate vancomycin use and individual-patient vancomycin exposure 6 months preceding each event of bacteremia were recorded. Pulse-field electrophoresis was performed on selected VRE isolates. Results Of 151 episodes of E. faecium and E. faecalis BSI among hospitalized children <18 years of age, 9% (14) were due to VRE. Of these, 5 (36%) were due to nosocomial transmission. Aggregate (r .19, P = 0.3) and individual-patient vancomycin-exposure (X 2  = .26; P = .87) were not associated with VRE-BSI. On bivariate analysis, OR for developing VRE-BSI among patients infected with clonal isolates was 36 (P < .0001). Infection control interventions, rather than antimicrobial stewardship interventions to decrease vancomycin use, proved to be effective in reducing the rates of VRE-BSI. Conclusions In our experience, VRE-BSI was associated with nosocomial transmission and was independent of aggregate and individual-patient vancomycin-exposure. Molecular epidemiology is a crucial tool to differentiate the role of nosocomial transmission and antibiotic exposure in the emergence of invasive VRE infections among hospitalized children. PMID:25206975

  16. Unraveling antimicrobial resistance genes and phenotype patterns among Enterococcus faecalis isolated from retail chicken products in Japan.

    PubMed

    Hidano, Arata; Yamamoto, Takehisa; Hayama, Yoko; Muroga, Norihiko; Kobayashi, Sota; Nishida, Takeshi; Tsutsui, Toshiyuki

    2015-01-01

    Multidrug-resistant enterococci are considered crucial drivers for the dissemination of antimicrobial resistance determinants within and beyond a genus. These organisms may pass numerous resistance determinants to other harmful pathogens, whose multiple resistances would cause adverse consequences. Therefore, an understanding of the coexistence epidemiology of resistance genes is critical, but such information remains limited. In this study, our first objective was to determine the prevalence of principal resistance phenotypes and genes among Enterococcus faecalis isolated from retail chicken domestic products collected throughout Japan. Subsequent analysis of these data by using an additive Bayesian network (ABN) model revealed the co-appearance patterns of resistance genes and identified the associations between resistance genes and phenotypes. The common phenotypes observed among E. faecalis isolated from the domestic products were the resistances to oxytetracycline (58.4%), dihydrostreptomycin (50.4%), and erythromycin (37.2%), and the gene tet(L) was detected in 46.0% of the isolates. The ABN model identified statistically significant associations between tet(L) and erm(B), tet(L) and ant(6)-Ia, ant(6)-Ia and aph(3')-IIIa, and aph(3')-IIIa and erm(B), which indicated that a multiple-resistance profile of tetracycline, erythromycin, streptomycin, and kanamycin is systematic rather than random. Conversely, the presence of tet(O) was only negatively associated with that of erm(B) and tet(M), which suggested that in the presence of tet(O), the aforementioned multiple resistance is unlikely to be observed. Such heterogeneity in linkages among genes that confer the same phenotypic resistance highlights the importance of incorporating genetic information when investigating the risk factors for the spread of resistance. The epidemiological factors that underlie the persistence of systematic multiple-resistance patterns warrant further investigations with appropriate

  17. Enterococcus faecalis lipoteichoic acid suppresses Aggregatibacter actinomycetemcomitans lipopolysaccharide-induced IL-8 expression in human periodontal ligament cells.

    PubMed

    Im, Jintaek; Baik, Jung Eun; Kim, Kyoung Whun; Kang, Seok-Seong; Jeon, Jun Ho; Park, Ok-Jin; Kim, Hyun Young; Kum, Kee-Yeon; Yun, Cheol-Heui; Han, Seung Hyun

    2015-08-01

    Periodontitis is caused by multi-bacterial infection and Aggregatibacter actinomycetemcomitans and Enterococcus faecalis are closely associated with inflammatory periodontal diseases. Although lipopolysaccharide (LPS) of A. actinomycetemcomitans (Aa.LPS) and lipoteichoic acid of E. faecalis (Ef.LTA) are considered to be major virulence factors evoking inflammatory responses, their combinatorial effect on the induction of chemokines has not been investigated. In this study, we investigated the interaction between Aa.LPS and Ef.LTA on IL-8 expression in human periodontal ligament (PDL) cells. Aa.LPS, but not Ef.LTA, substantially induced IL-8 expression at the protein and mRNA levels. Interestingly, Ef.LTA suppressed Aa.LPS-induced IL-8 expression without affecting the binding of Aa.LPS to Toll-like receptor (TLR) 4. Ef.LTA reduced Aa.LPS-induced phosphorylation of mitogen-activated protein kinases, including ERK, JNK and p38 kinase. Furthermore, Ef.LTA inhibited the Aa.LPS-induced transcriptional activities of the activating protein 1, CCAAT/enhancer-binding protein and nuclear factor-kappa B transcription factors, all of which are known to regulate IL-8 gene expression. Ef.LTA augmented the expression of IL-1 receptor-associated kinase-M (IRAK-M), a negative regulator of TLR intracellular signaling pathways, in the presence of Aa.LPS at both the mRNA and protein levels. Small interfering RNA silencing IRAK-M reversed the attenuation of Aa.LPS-induced IL-8 expression by Ef.LTA. Collectively, these results suggest that Ef.LTA down-regulates Aa.LPS-induced IL-8 expression in human PDL cells through up-regulation of the negative regulator IRAK-M. PMID:25840438

  18. Pyruvate formate-lyase is essential for fumarate-independent anaerobic glycerol utilization in the Enterococcus faecalis strain W11.

    PubMed

    Doi, Yuki; Ikegami, Yuki

    2014-07-01

    Although anaerobic glycerol metabolism in Enterococcus faecalis requires exogenous fumarate for NADH oxidation, E. faecalis strain W11 can metabolize glycerol in the absence of oxygen without exogenous fumarate. In this study, metabolic end product analyses and reporter assays probing the expression of enzymes involved in pyruvate metabolism were performed to investigate this fumarate-independent anaerobic metabolism of glycerol in W11. Under aerobic conditions, the metabolic end products of W11 cultured with glycerol were similar to those of W11 cultured with glucose. However, when W11 was cultured anaerobically, most of the glucose was converted to l-lactate, but glycerol was converted to ethanol and formate. During anaerobic culture with glycerol, the expression of the l-lactate dehydrogenase and pyruvate dehydrogenase E1αβ genes in W11 was downregulated, whereas the expression of the pyruvate formate-lyase (Pfl) and aldehyde/alcohol dehydrogenase genes was upregulated. These changes in the expression levels caused the change in the composition of end products. A pflB gene disruptant (Δpfl mutant) of W11 could barely utilize glycerol under anaerobic conditions, but the growth of the Δpfl mutant cultured with either glucose or dihydroxyacetone (DHA) under anaerobic conditions was the same as that of W11. Glucose metabolism and DHA generates one NADH molecule per pyruvate molecule, whereas glycerol metabolism in the dehydrogenation pathway generates two NADH molecules per pyruvate molecule. These findings demonstrate that NADH generated from anaerobic glycerol metabolism in the absence of fumarate is oxidized through the Pfl-ethanol fermentation pathway. Thus, Pfl is essential to avoid the accumulation of excess NADH during fumarate-independent anaerobic glycerol metabolism. PMID:24769696

  19. Pyruvate Formate-Lyase Is Essential for Fumarate-Independent Anaerobic Glycerol Utilization in the Enterococcus faecalis Strain W11

    PubMed Central

    Ikegami, Yuki

    2014-01-01

    Although anaerobic glycerol metabolism in Enterococcus faecalis requires exogenous fumarate for NADH oxidation, E. faecalis strain W11 can metabolize glycerol in the absence of oxygen without exogenous fumarate. In this study, metabolic end product analyses and reporter assays probing the expression of enzymes involved in pyruvate metabolism were performed to investigate this fumarate-independent anaerobic metabolism of glycerol in W11. Under aerobic conditions, the metabolic end products of W11 cultured with glycerol were similar to those of W11 cultured with glucose. However, when W11 was cultured anaerobically, most of the glucose was converted to l-lactate, but glycerol was converted to ethanol and formate. During anaerobic culture with glycerol, the expression of the l-lactate dehydrogenase and pyruvate dehydrogenase E1αβ genes in W11 was downregulated, whereas the expression of the pyruvate formate-lyase (Pfl) and aldehyde/alcohol dehydrogenase genes was upregulated. These changes in the expression levels caused the change in the composition of end products. A pflB gene disruptant (Δpfl mutant) of W11 could barely utilize glycerol under anaerobic conditions, but the growth of the Δpfl mutant cultured with either glucose or dihydroxyacetone (DHA) under anaerobic conditions was the same as that of W11. Glucose metabolism and DHA generates one NADH molecule per pyruvate molecule, whereas glycerol metabolism in the dehydrogenation pathway generates two NADH molecules per pyruvate molecule. These findings demonstrate that NADH generated from anaerobic glycerol metabolism in the absence of fumarate is oxidized through the Pfl-ethanol fermentation pathway. Thus, Pfl is essential to avoid the accumulation of excess NADH during fumarate-independent anaerobic glycerol metabolism. PMID:24769696

  20. The influence of different peritoneal dialysis fluids on the in vitro activity of ampicillin, daptomycin, and linezolid against Enterococcus faecalis.

    PubMed

    Kussmann, M; Schuster, L; Zeitlinger, M; Pichler, P; Reznicek, G; Wiesholzer, M; Burgmann, H; Poeppl, W

    2015-11-01

    Intraperitoneal administration of antibiotics is recommended for the treatment of peritoneal dialysis-related peritonitis. However, little data are available on a possible interference between peritoneal dialysis fluids and the activity of antimicrobial agents. Thus, the present in vitro study set out to investigate the influence of different peritoneal dialysis fluids on the antimicrobial activity of ampicillin, linezolid, and daptomycin against Enterococcus faecalis. Time-kill curves in four different peritoneal dialysis fluids were performed over 24 h with four different concentrations (1 × MIC, 4 × MIC, 8 × MIC, 30 × MIC) of each antibiotic evaluated. Cation-adjusted Mueller-Hinton broth was used as the comparator solution. All four peritoneal dialysis fluids evaluated had a bacteriostatic effect on the growth of Enterococcus faecalis. Compared to the cation-adjusted Mueller-Hinton broth comparator solution, the antimicrobial activity of all antibiotics tested was reduced. For ampicillin and linezolid, no activity was found in any peritoneal dialysis fluid, regardless of the concentration. Daptomycin demonstrated dose-dependent activity in all peritoneal dialysis fluids. Bactericidal activity was observed at the highest concentrations evaluated in Dianeal® PDG4 and Extraneal®, but not in concentrations lower than 30 × MIC and not in Nutrineal® PD4 and Physioneal® 40. The antimicrobial activity of ampicillin and linezolid is limited in peritoneal dialysis fluids in vitro. Daptomycin is highly effective in peritoneal dialysis fluids and might, thus, serve as an important treatment option in peritoneal dialysis-related peritonitis. Further studies are needed to evaluate the clinical impact of the present findings. PMID:26337433

  1. Evaluation of Enterococcus faecalis clinical isolates with 'penicillin-resistant, ampicillin-susceptible' phenotype as reported by Vitek-2 Compact system.

    PubMed

    Tan, Yen Ee; Ng, Lily S Y; Tan, Thean Yen

    2014-10-01

    It has been recently reported that ampicillin susceptibility cannot accurately predict piperacillin and imipenem susceptibilities in penicillin-resistant, ampicillin-susceptible (Pen-R, Amp-S) Enterococcus faecalis isolates, contrary to the current Clinical and Laboratory Standards Institute (CLSI) recommendations. This has important therapeutic implications. Such isolates were noted after the use of Vitek-2 Compact system AST-GP67 susceptibility cards in a Singapore general hospital and they were increasing in numbers. The primary aim of this study was to evaluate these clinical isolates against microbroth dilution (MBD) technique and other commonly used antimicrobial susceptibility test (AST) methods for penicillin and ampicillin. The secondary aim was to evaluate whether ampicillin susceptibility could indeed be a reliable surrogate marker for piperacillin and imipenem susceptibilities in E. faecalis isolates that were confirmed Pen-R, Amp-S.From 2009 to 2013, a total of 49 isolates (5%) of 983 non-duplicate E. faecalis tested by Vitek-2 displayed the 'Pen-R, Amp-S' phenotype in a general hospital in Singapore. These were tested against MBD which was the reference method, Etest and disc diffusion for penicillin and ampicillin. Susceptibilities to piperacillin and imipenem were also tested using MBD. In addition, β-lactamase production test was performed. Forty E. faecalis isolates with penicillin-susceptible, ampicillin-susceptible (Pen-S, Amp-S) phenotype were included for comparative purposes.The categorical agreement rate was 100% for all AST methods in ampicillin reporting for the 'Pen-R, Amp-S' group of E. faecalis isolates. However, a large number of isolates (46 isolates, 93.9%) fell into the major error category for penicillin testing by the Vitek-2 system. Penicillin minimum inhibitory concentrations (MICs) generated by the Vitek-2 system for the majority of these isolates were two doubling dilutions higher compared to those obtained by the reference

  2. In vitro antimicrobial activity of ceftizoxime against glucose-nonfermentative gram-negative rods.

    PubMed

    Yabuuchi, E; Ito, T; Tanimura, E; Yamamoto, N; Ohyama, A

    1981-07-01

    Ceftizoxime, a new cephalosporin, was active against Pseudomonas cepacia, Flavobacterium meningosepticum, Alcaligenes faecalis, and Acinetobacter calcoaceticus and was more potent against Pseudomonas aeruginosa and Pseudomonas putida than was carbenicillin. PMID:6269480

  3. Diversity of ace, a gene encoding a microbial surface component recognizing adhesive matrix molecules, from different strains of Enterococcus faecalis and evidence for production of ace during human infections.

    PubMed

    Nallapareddy, S R; Singh, K V; Duh, R W; Weinstock, G M; Murray, B E

    2000-09-01

    Our previous work reported that most Enterococcus faecalis strains adhered to the extracellular matrix proteins collagen types I and IV and laminin after growth at 46 degrees C, but not 37 degrees C, and we subsequently identified an E. faecalis sequence, ace, that encodes a bacterial adhesin similar to the collagen binding protein Cna of Staphylococcus aureus. In this study, we examined the diversity of E. faecalis-specific ace gene sequences among different isolates obtained from various geographic regions as well as from various clinical sources. A comparison of nucleotide and deduced amino acid sequences of Ace from nine E. faecalis strains identified a highly conserved N-terminal A domain, followed by a variable B domain which contains two to five repeats of 47 amino acids in tandem array, preceded by a 20-amino-acid partial repeat. Using 17 other strains collected worldwide, the 5' region of ace that encodes the A domain was sequenced, and these sequences showed > or =97.5% identity. Among the previously reported five amino acids critical for collagen binding by Cna of S. aureus, four were found to be identical in Ace from all strains tested. Polyclonal immune rabbit serum prepared against recombinant Ace A derived from E. faecalis strain OG1RF detected Ace in mutanolysin extracts of seven of nine E. faecalis strains after growth at 46 degrees C; Ace was detected in four different molecular sizes that correspond to the variation in the B repeat region. To determine if there was any evidence to indicate that Ace might be produced under physiological conditions, we quantitatively assayed sera collected from patients with enterococcal infections for the presence of anti-Ace A antibodies. Ninety percent of sera (19 of 21) from patients with E. faecalis endocarditis showed reactivity with titers from 1:32 to >1:1,024; the only 2 sera which lacked antibodies to Ace A had considerably lower titers of antibodies to other E. faecalis antigens as well. Human

  4. Influence of various herbal irrigants as a final rinse on the adherence of Enterococcus faecalis by fluorescence confocal laser scanning microscope

    PubMed Central

    Rosaline, Hannah; Kandaswamy, D; Gogulnath, D; Rubin, MI

    2013-01-01

    Aim: The aim of this study was to assess the antibacterial efficacy of three different herbal irrigants against Enterococcus faecalis. Materials and Methods: Single rooted teeth were extracted due to orthodontic and periodontal reasons. The teeth were then inoculated with E. faecalis. The teeth were randomly divided into three experimental groups and two control groups of six samples each. Group 1 specimens were treated with 5.2% sodium hypochlorite (NaOCL) for 30 min followed by 5 mmol/L Ethylenediaminetetraacetic acid (EDTA) for 5 min and saline as final irrigant. Group 2 specimens were treated with and 5.2% NaOCl for 30 min as final irrigant. Group 3 were treated with Morinda citrifolia (MC) for 30 min as final irrigant. Group 4 were treated with Azadiracta indica (AI) as final irrigant. Group 5 were treated with green tea (GT) for 30 min as final irrigant. The dentin specimens were carefully spread onto a microscope slide and stained with BacLight and examined in a confocal laser scanning microscope set to monitor fluorescein isothiocyanate and propidium iodide. A total of nine fields were examined for each treatment and the bacteria presented were counted. Statistical Analysis: Using the one-way ANOVA with multiple comparison, significantly less bacteria were found adhering to the samples treated with Neem followed by NaOCL, GT, MC, Saline. Results: AI treatment produced the maximum reduction in adherence of E. faecalis to dentin (9.30%) followed by NaOCl (12.50%), GT (27.30%), MC (44.20%) and saline (86.70%). Conclusion: Neem is effective in preventing adhesion of E. faecalis to dentin. PMID:23956540

  5. Increasing Prevalence of Aminoglycoside-Resistant Enterococcus faecalis Isolates Due to the aac(6’)-aph(2”) Gene: A Therapeutic Problem in Kermanshah, Iran

    PubMed Central

    Khani, Mitra; Fatollahzade, Mahdie; Pajavand, Hamid; Bakhtiari, Somaye; Abiri, Ramin

    2016-01-01

    Background: Enterococci are important pathogens in nosocomial infections. Various types of antibiotics, such as aminoglycosides, are used for treatment of these infections. Enterococci can acquire resistant traits, which can lead to therapeutic problems with aminoglycosides. Objectives: This study was designed to identify the prevalence of, and to compare, the aac(6’)-aph(2”) and aph(3)-IIIa genes and their antimicrobial resistance patterns among Enterococcus faecalis and E. faecium isolates from patients at Imam Reza hospital in Kermanshah in 2011 - 2012. Patients and Methods: One hundred thirty-eight clinical specimens collected from different wards of Imam Reza hospital were identified to the species level by biochemical tests. Antimicrobial susceptibility tests against kanamycin, teicoplanin, streptomycin, imipenem, ciprofloxacin, and ampicillin were performed by the disk diffusion method. The minimum inhibitory concentrations of gentamicin, streptomycin, kanamycin, and amikacin were evaluated with the microbroth dilution method. The aminoglycoside resistance genes aac(6’)-aph(2”) and aph(3”)-IIIa were analyzed with multiplex PCR. Results: The prevalence of isolates was 33 (24.1%) for E. faecium and 63 (46%) for E. faecalis. Eighty-nine percent of the isolates were high-level gentamicin resistant (HLGR), and 32.8% of E. faecium isolates and 67.2% of E. faecalis isolates carried aac(6’)-aph(2”). The prevalence of aph(3”)-IIIa among the E. faecalis and E. faecium isolates was 22.7% and 77.3%, respectively. Conclusions: Remarkably increased incidence of aac(6’)-aph(2”) among HLGR isolates explains the relationship between this gene and the high level of resistance to aminoglycosides. As the resistant gene among enterococci can be transferred, the use of new-generation antibiotics is necessary. PMID:27217920

  6. The Capability of Tyramine Production and Correlation between Phenotypic and Genetic Characteristics of Enterococcus faecium and Enterococcus faecalis Strains

    PubMed Central

    Bargossi, Eleonora; Gardini, Fausto; Gatto, Veronica; Montanari, Chiara; Torriani, Sandra; Tabanelli, Giulia

    2015-01-01

    The aim of this study was to investigate the diversity of tyramine production capability of four Enterococcus strains in buffered systems in relation to their genetic characteristics and environmental conditions. Cells of the strains Enterococcus faecalis EF37 and ATCC 29212, and E. faecium FC12 and FC643 were re-suspended in phosphate/citrate buffers with different pH, NaCl concentration and incubation temperature. At intervals, cell viability and tyramine production were assessed by plate counting and HPLC analysis, respectively. The activity of a purified tyrosine decarboxylase (TDC) was determined under the same conditions, as a reference. Reduced loss in cell viability was observed in all the tested conditions, except for pH 4 after 24 h. The TDC activity was greatly heterogeneous within the enterococci: EF37 and FC12 produced the higher tyramine concentrations, ATCC 29212 showed a reduced decarboxylase activity, while EF643 did not accumulate detectable amounts of tyramine in all the conditions assayed. Among the considerate variables, temperature was the most influencing factor on tyramine accumulation for enterococcal cells. To further correlate the phenotypic and genetic characteristics of the enterococci, the TDC operon region carrying the genes tyrosine decarboxylase (tyrDC), tyrosine/tyramine permease (tyrP), and Na+/H+ antiporter (nhaC-2) was amplified and sequenced. The genetic organization and nucleotide sequence of this operon region were highly conserved in the enterococcal strains of the same species. The heterogeneity in tyramine production found between the two E. faecalis strains could be ascribed to different regulation mechanisms not yet elucidated. On the contrary, a codon stop was identified in the translated tyrDC sequence of E. faecium FC643, supporting its inability to accumulate tyramine in the tested conditions. In addition, the presence of an additional putative tyrosine decarboxylase with different substrate specificity and genetic

  7. A TIR Domain Protein from E. faecalis Attenuates MyD88-Mediated Signaling and NF-κB Activation

    PubMed Central

    Zou, Jun; Baghdayan, Arto S.; Payne, Sarah J.; Shankar, Nathan

    2014-01-01

    Toll-like receptor signaling, mediated by functional Toll/interleukin-1 receptor (TIR) domains, plays a critical role in activating the innate immune response responsible for controlling and clearing infection. Bacterial protein mimics of components of this signaling pathway have been identified and function through inhibition of interactions between Toll-like receptors (TLRs) and their adaptor proteins, mediated by TIR domains. A previously uncharacterized gene, which we have named tcpF (for TIR domain-containing protein in E. faecalis) was identified in the genome of Enterococcus faecalis V583, and predicted to encode a protein resembling mammalian and bacterial TIR proteins. We overexpressed and purified TcpF from E. coli and found that the recombinant protein could bind to phosphatidylinositol phosphates in vitro, suggesting a mechanism by which TcpF may be anchored to the plasma membrane in close proximity to TIR domains of TLRs and adaptor proteins. Purified TcpF was also found to interact specifically with the TIR adaptor protein MyD88, and this interaction was dependent on the BB loop domain in the Box 2 region of TcpF. Despite no evidence of TcpF being a secreted protein, recombinant TcpF was effectively able to enter RAW264.7 cells in vitro although the mechanism by which this occurs remains to be determined. Overexpression of TcpF in mammalian cells suppressed the NF-κB activation induced by bacterial lipoteichoic acid. A mutant lacking the tcpF gene was attenuated for survival in macrophages, with increased ability to activate NF-κB compared to the wild type strain. Complementation in trans restored growth, and inhibition of NF-κB, to that of wild type levels. No appreciable difference in bacterial persistence, dissemination or pathogenesis was observed between the wild type and mutant in a mouse peritonitis model however, which suggested either a subtle role for TcpF or functional overlap with other redundant factor(s) in this virulence model. PMID

  8. Enterococcus faecalis endophthalmitis as a metastatic complication of hemodialysis vascular access-related sepsis: A case report and review of the literature.

    PubMed

    Sahin, Osman Zikrullah; Kara, Ekrem; Belice, Tahir; Ayaz, Teslime; Baydur Sahin, Serap; Ozturk, Cinar; Yildirim, Safak; Metin, Yavuz; Sahutoglu, Tuncay

    2016-07-01

    Catheter and/or arteriovenous (A-V) graft-related bacteremia is an important cause of morbidity and mortality among hemodialysis (HD) patients. Endocarditis, septic arthritis, epidural abscess, septic embolism, and osteomyelitis are the most common complications of catheter and/or A-V graft-related bacteremia; however, endogenous endophthalmitis is rarely seen. To the best of our knowledge, Enterococcus faecalis is the first case report in this population. We hereby report a case of endogenous endophthalmitis caused by E. faecalis as a complication of catheter and/or A-V graft-related bacteremia in a diabetic patient, who was undergoing HD for 5 years. We also discuss the etiology, clinical features, and outcomes of endogenous endophthalmitis in HD patients with a brief review of the literature. Although broad-spectrum parenteral (intravenous and intravitreal) antibiotics were used for 4 weeks, evisceration of the left eye could not be avoided. Endogenous endophthalmitis is a rare but rapidly blinding complication of catheter and/or A-V graft-related bacteremia in HD patients. It can develop as a result of silent catheter and/or A-V graft infections, which may lead to recurrent bacteremia. E. faecalis should be considered as a pathogen in this population who had recent history of catheter or A-V graft procedure. PMID:26346615

  9. Detection of Enterococcus faecalis and Candida albicans in previously root-filled teeth in a population of Gujarat with polymerase chain reaction

    PubMed Central

    Poptani, Bruhvi; Sharaff, Murali; Archana, G.; Parekh, Vaishali

    2013-01-01

    Background: Micro-organisms are the primary causative agents of endodontic infections. Phenotype based procedures for bacterial identification has certain drawbacks especially, when investigating the microbiota of root-filled teeth. Thus, more sensitive methods like Polymerase chain reaction (PCR) can provide results that are more accurate and reliable for the microbial prevalence in the root filled teeth. Aim: In this study, we have investigated twenty symptomatic root-filled teeth with chronic apical periodontitis for the prevalence of Enterococcus faecalis and Candida albicans in the root filled teeth associated with symptomatic cases with or without periradicular lesions. Materials and Methods: Microbiological samples were taken from the canals immediately after removal of previous gutta percha cones using aseptic techniques. After removal of root canal filling, samples were obtained with paper points placed in the canal. Paper points were transferred to a cryotube containing “Tris EDTA” buffer and immediately frozen at −20°C. Results: By PCR amplification of the samples using taxon specific primers, E. faecalis was found to be prevalent species, detected in 65% of the cases and C. albicans was detected in 35% of cases. Conclusion: The results of the study shows that geographical influence and dietary factors might have some role to play in the prevalence of the species like C. albicans and presence of E. faecalis confirming the assertion of previous culture-dependent and independent approaches for the microbiological survey of root filled teeth. PMID:23853454

  10. Evaluation of a PCR Assay to Detect Enterococcus faecalis in Blood and Determine Glycopeptides Resistance Genes: Van A and Van B

    PubMed Central

    Honarm, Hamidreza; Falah Ghavidel, Mahsome; Nikokar, Iraj; Rahbar Taromsari, Morteza

    2012-01-01

    Background: Bacteremia due to Enterococcus faecalis is usually caused by strains resistant to most antibiotics. Effective management of the disease is dependent on rapid detection and characterization of the bacteria, and determination its sensitivity pattern to antimicrobial drugs. The aim of this study was to investigate a more rapid and reliable assay for simultaneous diagnosis of enterococcal bacteremia and its sensitivity pattern to antimicrobial drugs. Methods: Several bacterial suspensions with different content of two standard strains of Enterococcus faecalis resistant to vancomycin were used for inoculation to defibrinated sheep blood samples. PCR and routine assay was performed on all blood samples with different bacterial content. Results: Routine assay and PCR for all inoculated blood samples with ≥5 cfu/ml was positive. Mean time for PCR and routine assays was 10 hours and 5 days, respectively. Conclusion: PCR is a more rapid and sensitive assay for simultaneous detection and characterization for Enterococcus faecalis, and determination of its sensitivity pattern to vancomycin. PMID:23115452

  11. Biofilms of Enterococcus faecalis and Enterococcus faecium isolated from the processing of ricotta and the control of these pathogens through cleaning and sanitization procedures.

    PubMed

    da Silva Fernandes, Meg; Kabuki, Dirce Yorika; Kuaye, Arnaldo Yoshiteru

    2015-05-01

    The biofilm formation of Enterococcus faecalis and Enterococcus faecium isolated from the processing of ricotta on stainless steel coupons was evaluated, and the effect of cleaning and sanitization procedures in the control of these biofilms was determined. The formation of biofilms was observed while varying the incubation temperature (7, 25 and 39°C) and time (0, 1, 2, 4, 6 and 8 days). At 7°C, the counts of E. faecalis and E. faecium were below 2 log10 CFU/cm(2). For the temperatures of 25 and 39°C, after 1 day, the counts of E. faecalis and E. faecium were 5.75 and 6.07 log10 CFU/cm(2), respectively, which is characteristic of biofilm formation. The tested sanitation procedures a) acid-anionic tensioactive cleaning, b) anionic tensioactive cleaning+sanitizer and c) acid-anionic tensioactive cleaning+sanitizer were effective in removing the biofilms, reducing the counts to levels below 0.4 log10 CFU/cm(2). The sanitizer biguanide was the least effective, and peracetic acid was the most effective. These studies revealed the ability of enterococci to form biofilms and the importance of the cleaning step and the type of sanitizer used in sanitation processes for the effective removal of biofilms. PMID:25702883

  12. An in Vitro Evaluation of Antimicrobial Efficacy of 2% Chlorhexidine Gel, Propolis and Calcium Hydroxide Against Enterococcus faecalis in Human Root Dentin

    PubMed Central

    T S, Ashwini; Patil, Chetan R

    2014-01-01

    Aim: To evaluate in vitro the antimicrobial efficacy of 2% Chlorhexidine gel, Propolis and Calcium hydroxide against Enterococcus faecalis in human root dentin. Methodology: One hundred and twenty human extracted anterior teeth were decoronated below CEJ and the apical part of root was removed to obtain 6mm of middle of the root. GG no 3 was used to standardize the internal diameter of root canal. Dentin blocks were infected with E faecalis for 21 d. They were assigned into four groups (n = 30).Group 1, Saline (negative control); Group 2, Propolis; Group 3, 2% CHX; Group 4, Calcium hydroxide, At the end of 1, 3, and 5 days an assessment of microbial cells was carried out at a depth of 400 μm and colony counts were calculated.The data were analysed statistically with one-way analysis of variance followed by Scheffe multiple comparison test (p < 0.05). Results: The number of colony-forming units was significantly lower in all experimental groups compared to the control group – Saline. 2% Chlorhexidinegluconate produced better antimicrobial efficacy (100%) on day 1, 3 and 5. Propolis (66.37%) had greater antimicrobial activity than Calcium hydroxide (50.89%) on day 1 but there was no significant difference in their antimicrobial activities on day 3 and day 5. Conclusion: 2% Chlorhexidine gel showed the maximum antimicrobial activity against E faecalis and Calcium hydroxide the least. Propolis can be used as an effective alternative intracanal medicament. PMID:25584319

  13. Activity of Linezolid in an In Vitro Pharmacokinetic-Pharmacodynamic Model Using Different Dosages and Staphylococcus aureus and Enterococcus faecalis Strains with and without a Hypermutator Phenotype▿

    PubMed Central

    Ba, Boubakar B.; Arpin, Corinne; Bikie Bi Nso, Branly; Dubois, Véronique; Saux, Marie-Claude; Quentin, Claudine

    2010-01-01

    The influence of antibiotic dosages and bacterial mutator phenotypes on the emergence of linezolid-resistant mutants was evaluated in an in vitro pharmacokinetic-pharmacodynamic model. A twice-daily 0.5-h infusion of a 200-, 600-, or 800-mg dose for 48 h was simulated against four strains (MIC, 2 μg/ml): Staphylococcus aureus RN4220 and its mutator derivative MutS2, Enterococcus faecalis ATCC 29212, and a mutator clinical strain of E. faecalis, Ef1497. The peak concentrations (4.38 to 4.79, 13.4 to 14.6, and 19.2 to 19.5 μg/ml) and half-lives at β-phase (5.01 to 6.72 h) fit human plasma linezolid pharmacokinetics. Due to its bacteriostatic property, the cumulative percentages of the dosing interval during which the drug concentration exceeded the MIC (T > MIC), 66.6 and 69.1% of the dosing interval, were not significant, except for Ef1497, with an 800-mg dose and a T > MIC of 80.9%. At the standard 600-mg dosage, resistant mutants (2- to 8-fold MIC increases) were selected only with Ef1497. A lower, 200-mg dosage did not select resistant mutants of E. faecalis ATCC 29212, but a higher, 800-mg dosage against Ef1497 did not prevent their emergence. For the most resistant mutant (MIC, 16 μg/ml), characterization of 23S rRNA genes revealed the substitution A2453G in two of the four operons, which was previously described only in in vitro mutants of archaebacteria. Nevertheless, this mutant did not yield further mutants under 600- or 200-mg treatment. In conclusion, linezolid was consistently efficient against S. aureus strains. The emergence of resistant E. faecalis mutants was probably favored by the rapid decline of linezolid concentrations against a strong mutator, a phenotype less exceptional in E. faecalis than in S. aureus. PMID:20100878

  14. Enterococcus faecalis adhesin, ace, mediates attachment to extracellular matrix proteins collagen type IV and laminin as well as collagen type I.

    PubMed

    Nallapareddy, S R; Qin, X; Weinstock, G M; Höök, M; Murray, B E

    2000-09-01

    Adhesin-mediated binding to extracellular matrix (ECM) proteins is thought to be a crucial step in the pathogenic process of many bacterial infections. We have previously reported conditional adherence of most Enterococcus faecalis isolates, after growth at 46 degrees C, to ECM proteins collagen types I and IV and laminin; identified an E. faecalis-specific gene, ace, whose encoded protein has characteristics of a bacterial adhesin; and implicated Ace in binding to collagen type I. In this study, we constructed an ace disruption mutant from E. faecalis strain OG1RF that showed marked reduction in adherence to collagen types I and IV and laminin when compared to the parental OG1RF strain after growth at 46 degrees C. Polyclonal immune serum raised against the OG1RF-derived recombinant Ace A domain reacted with a single approximately 105-kDa band of mutanolysin extracts from OG1RF grown at 46 degrees C, while no band was detected in extracts from OG1RF grown at 37 degrees C, nor from the OG1RF ace mutant grown at 37 or 46 degrees C. IgGs purified from the anti-Ace A immune serum inhibited adherence of 46 degrees C-grown E. faecalis OG1RF to immobilized collagen type IV and laminin as well as collagen type I, at a concentration as low as 1 microg/ml, and also inhibited the 46 degrees C-evoked adherence of two clinical isolates tested. We also showed in vitro interaction of collagen type IV with Ace from OG1RF mutanolysin extracts on a far-Western blot. Binding of recombinant Ace A to immobilized collagen types I and IV and laminin was demonstrated in an enzyme-linked immunosorbent assay and was shown to be concentration dependent. These results indicate that Ace A mediates the conditional binding of E. faecalis OG1RF to collagen type IV and laminin in addition to collagen type I. PMID:10948147

  15. Comparative evaluation of effect of different irrigation solutions against Enterococcus faecalis: A polymerase chain reaction-based study

    PubMed Central

    Seelan, R. Gnana; Kumar, Arvind; Jonathan, R.; Maheswari, Uma; Raja, Jacob; Chelliah, P.

    2015-01-01

    Enterococcus faecalis is the most isolated or detected species from oral infections including marginal periodontitis, infected root canals, periradicular abscesses and also detected in cases of failed endodontic therapy. To prevent endodontic treatment failure irrigation is mandatory for the effective removal of smear layer, pulp tissue, and microorganisms. Cultivation and other traditional identification methods have been demonstrated to have several limitations when it comes to microbiological identification. Polymerase chain reaction was selected because it has an added advantage over traditional microbiological methods. Materials and Methods: Twenty single rooted premolars were taken were taken stored in 0.1% thymol solution at 4°C decoronated to obtain 12 mm length, teeth were autoclaved at 121°C, canals were instrumented up to 35k file (International Organization for Standardization). The samples were randomly divided into three groups Group I - 5.25% sodium hypochlorite (NaOCL) and 17% ethylenediaminetetraacetic acid (EDTA), Group - II 5.25% NaOCL and 2% chlorhexidine (CHX), Group III - 5.25% NaOCL and 17% EDTA and 2% CHX. Results: The results showed that Group III which is 5% NaOCl followed by 17% EDTA and followed by 2% CHX showed maximum antimicrobial activity in all the three different time intervals. PMID:26538921

  16. Inhibition of Membrane Transport in Streptococcus faecalis by Uncouplers of Oxidative Phosphorylation and Its Relationship to Proton Conduction

    PubMed Central

    Harold, F. M.; Baarda, J. R.

    1968-01-01

    We studied the effect of compounds that uncouple oxidative phosphorylation on membrane function in Streptoccocus faecalis, an organism which relies upon glycolysis for the generation of metabolic energy. At low concentrations (ranging from 10−7 to 10−4m), tetrachlorosalicylanilide, tetramethyldipicrylamine, carbonylcyanide m-chlorophenylhydrazone, pentachlorophenol, and dicoumarol strongly inhibited energy-dependent transport of rubidium, phosphate, and certain amino acids. However, these compounds had little effect on the generation of adenosine triphosphate via glycolysis or on its utilization for the synthesis of macromolecules. They also did not seriously inhibit uptake of those monosaccharides and amino acids which do not require concurrent metabolism. It is proposed that the uncouplers interfere with the utilization of metabolic energy for membrane transport. The uncouplers accelerated the translocation of protons across the cytoplasmic membrane. It appears that a proton-impermeable membrane is required for transport, perhaps, because a proton gradient is involved in the coupling of metabolic energy to the translocation of substrates across the membrane. PMID:4177737

  17. VirB8-like protein TraH is crucial for DNA transfer in Enterococcus faecalis

    PubMed Central

    Fercher, Christian; Probst, Ines; Kohler, Verena; Goessweiner-Mohr, Nikolaus; Arends, Karsten; Grohmann, Elisabeth; Zangger, Klaus; Meyer, N. Helge; Keller, Walter

    2016-01-01

    Untreatable bacterial infections caused by a perpetual increase of antibiotic resistant strains represent a serious threat to human healthcare in the 21st century. Conjugative DNA transfer is the most important mechanism for antibiotic resistance and virulence gene dissemination among bacteria and is mediated by a protein complex, known as type IV secretion system (T4SS). The core of the T4SS is a multiprotein complex that spans the bacterial envelope as a channel for macromolecular secretion. We report the NMR structure and functional characterization of the transfer protein TraH encoded by the conjugative Gram-positive broad-host range plasmid pIP501. The structure exhibits a striking similarity to VirB8 proteins of Gram-negative secretion systems where they play an essential role in the scaffold of the secretion machinery. Considering TraM as the first VirB8-like protein discovered in pIP501, TraH represents the second protein affiliated with this family in the respective transfer operon. A markerless traH deletion in pIP501 resulted in a total loss of transfer in Enterococcus faecalis as compared with the pIP501 wild type (wt) plasmid, demonstrating that TraH is essential for pIP501 mediated conjugation. Moreover, oligomerization state and topology of TraH in the native membrane were determined providing insights in molecular organization of a Gram-positive T4SS. PMID:27103580

  18. Inhibition of membrane transport in Streptococcus faecalis by uncouplers of oxidative phosphorylation and its relationship to proton conduction.

    PubMed

    Harold, F M; Baarda, J R

    1968-12-01

    We studied the effect of compounds that uncouple oxidative phosphorylation on membrane function in Streptoccocus faecalis, an organism which relies upon glycolysis for the generation of metabolic energy. At low concentrations (ranging from 10(-7) to 10(-4)m), tetrachlorosalicylanilide, tetramethyldipicrylamine, carbonylcyanide m-chlorophenylhydrazone, pentachlorophenol, and dicoumarol strongly inhibited energy-dependent transport of rubidium, phosphate, and certain amino acids. However, these compounds had little effect on the generation of adenosine triphosphate via glycolysis or on its utilization for the synthesis of macromolecules. They also did not seriously inhibit uptake of those monosaccharides and amino acids which do not require concurrent metabolism. It is proposed that the uncouplers interfere with the utilization of metabolic energy for membrane transport. The uncouplers accelerated the translocation of protons across the cytoplasmic membrane. It appears that a proton-impermeable membrane is required for transport, perhaps, because a proton gradient is involved in the coupling of metabolic energy to the translocation of substrates across the membrane. PMID:4177737

  19. VirB8-like protein TraH is crucial for DNA transfer in Enterococcus faecalis.

    PubMed

    Fercher, Christian; Probst, Ines; Kohler, Verena; Goessweiner-Mohr, Nikolaus; Arends, Karsten; Grohmann, Elisabeth; Zangger, Klaus; Meyer, N Helge; Keller, Walter

    2016-01-01

    Untreatable bacterial infections caused by a perpetual increase of antibiotic resistant strains represent a serious threat to human healthcare in the 21(st) century. Conjugative DNA transfer is the most important mechanism for antibiotic resistance and virulence gene dissemination among bacteria and is mediated by a protein complex, known as type IV secretion system (T4SS). The core of the T4SS is a multiprotein complex that spans the bacterial envelope as a channel for macromolecular secretion. We report the NMR structure and functional characterization of the transfer protein TraH encoded by the conjugative Gram-positive broad-host range plasmid pIP501. The structure exhibits a striking similarity to VirB8 proteins of Gram-negative secretion systems where they play an essential role in the scaffold of the secretion machinery. Considering TraM as the first VirB8-like protein discovered in pIP501, TraH represents the second protein affiliated with this family in the respective transfer operon. A markerless traH deletion in pIP501 resulted in a total loss of transfer in Enterococcus faecalis as compared with the pIP501 wild type (wt) plasmid, demonstrating that TraH is essential for pIP501 mediated conjugation. Moreover, oligomerization state and topology of TraH in the native membrane were determined providing insights in molecular organization of a Gram-positive T4SS. PMID:27103580

  20. Effects of microgravity on the virulence of Listeria monocytogenes, Enterococcus faecalis, Candida albicans, and methicillin-resistant Staphylococcus aureus.

    PubMed

    Hammond, Timothy G; Stodieck, Louis; Birdsall, Holly H; Becker, Jeanne L; Koenig, Paul; Hammond, Jeffrey S; Gunter, Margaret A; Allen, Patricia L

    2013-11-01

    To evaluate effects of microgravity on virulence, we studied the ability of four common clinical pathogens--Listeria monocytogenes, methicillin-resistant Staphylococcus aureus (MRSA), Enterococcus faecalis, and Candida albicans--to kill wild type Caenorhabditis elegans (C. elegans) nematodes at the larval and adult stages. Simultaneous studies were performed utilizing spaceflight, clinorotation in a 2-D clinorotation device, and static ground controls. The feeding rate of worms for killed E. coli was unaffected by spaceflight or clinorotation. Nematodes, microbes, and growth media were separated until exposed to true or modeled microgravity, then mixed and grown for 48 h. Experiments were terminated by paraformaldehyde fixation, and optical density measurements were used to assay residual microorganisms. Spaceflight was associated with reduced virulence for Listeria, Enterococcus, MRSA, and Candida for both larval and adult C. elegans. These are the first data acquired with a direct in vivo assay system in space to demonstrate virulence. Clinorotation reproduced the effects of spaceflight in some, but not all, virulence assays: Candida and Enterococcus were less virulent for larval worms but not adult worms, whereas virulence of MRSA and Listeria were unaffected by clinorotation in tests with both adult and larval worms. We conclude that four common clinical microorganisms are all less virulent in space. PMID:24283929

  1. Isolation and Characterization of a Purple Non-Sulfur Photosynthetic Bacterium Rhodopseudomonas faecalis Strain A from Swine Sewage Wastewater.

    PubMed

    Wei, Hongyi; Okunishi, Suguru; Yoshikawa, Takeshi; Kamei, Yuto; Maeda, Hiroto

    2016-01-01

    A purple non-sulfur photosynthetic bacterium (PNSB), PSB Strain A was isolated from swine sewage wastewater. Phylogenetic analysis revealed that PSB Strain A was most closely related to Rhodopseudomonas faecalis. Growth of the isolate under anaerobic-light conditions with a variety of carbon sources was investigated. Both PSB Strain A and the standard strain showed good growth with acetic acid, propionic acid, and n-butyric acid at a concentration of 20 mM. At the high concentration of 200 mM, PSB Strain A showed better growth in pyruvate, acetate, propionate, succinate and malate. By applying PSB Strain A to treat swine sewage wastewater, the concentration of VFAs, which were acetic acid and propionic acid, decreased from 158.0 mM to 120.2±2.9 mM, and 14.9 mM to 9.3±0.9 mM, respectively, after 216-h incubation. After 330-h incubation, the concentrations of TOC and ammonia nitrogen dropped from 4508.0 mg/L to 3104.0±451.5 mg/L, and 629.7 mg/L to 424.1±7.4 mg/L, respectively. The isolated PSB Strain A showed almost the same efficiency compared with the standard strain on the removal of VFAs and TOC. The results suggest the possibility of using the isolated strain to treat swine sewage wastewater. PMID:27009507

  2. Q69 (an E. faecalis-Infecting Bacteriophage) As a Biocontrol Agent for Reducing Tyramine in Dairy Products.

    PubMed

    Ladero, Victor; Gómez-Sordo, Carolina; Sánchez-Llana, Esther; Del Rio, Beatriz; Redruello, Begoña; Fernández, María; Martín, M Cruz; Alvarez, Miguel A

    2016-01-01

    Biogenic amines (BAs) are low molecular weight nitrogenous compounds with biological activity, formed from amino acids by decarboxylation. BAs are naturally present in all living organisms playing essential roles. However, their accumulation in food through the metabolic activity of certain microorganisms constitutes a toxicological hazard. Among foods, cheeses accumulate some of the highest concentrations of BAs since they provide an ideal environment for their accumulation. Most of the methods proposed for reducing BAs in cheese, such as milk pasteurization, have not only failed to completely solve the problem, they also affect non-BA producing lactic acid bacteria, i.e., the bacteria that participate in the development of the organoleptic characteristics of cheese. Novel technologies specifically targeted against BA producers are therefore needed to control BA accumulation. Bacteriophages have been proposed as agents for specifically controlling the presence of foodborne pathogens in food. Due to its specificity, they could be used as a biotechnological tool targeted to reduce the population of BA-producing bacteria. The present work reports the isolation, from cheese, and the characterization of bacteriophage Q69, which infects specifically Enterococcus faecalis, the species mainly responsible of the accumulation of the BA tyramine in foods. Furthermore, its capacity to reduce the accumulation of tyramine in different conditions -including a model cheese- was proven. The obtained results open up the possibility of use bacteriophages to prevent BA accumulation in fermented foods. PMID:27092117

  3. Native Microbial Colonization of Drosophila melanogaster and Its Use as a Model of Enterococcus faecalis Pathogenesis▿ †

    PubMed Central

    Cox, Christopher R.; Gilmore, Michael S.

    2007-01-01

    Enterococci are commensal organisms of the gastrointestinal (GI) tracts of a broad range of mammalian and insect hosts, but they are also leading causes of nosocomial infection. Little is known about the ecological role of enterococci in the GI tract consortia. To develop a tractable model for studying the roles of these organisms as commensals and pathogens, we characterized the Drosophila melanogaster microflora and examined the occurrence of enterococci in the gastrointestinal consortium of Drosophila. In a survey of laboratory-reared Drosophila and wild-captured flies, we found that Drosophila was naturally colonized by representatives of five bacterial phyla. Among these organisms were several species of enterococci, including Enterococcus faecalis, Enterococcus faecium, Enterococcus gallinaraum, and Enterococcus durans, as well as a previously detected but uncultured Enterococcus species. Drosophila could be cured of enterococcal carriage by antibiotic treatment and could be reassociated with laboratory strains. High-level colonization by a well-characterized strain expressing the enterococcal cytolysin was found to be detrimental to Drosophila compared to the effect of an isogenic, noncytolytic control. The anatomical distribution of enterococci in the Drosophila GI tract was determined by immunohistochemical staining of thin sections of naturally colonized and reassociated flies. PMID:17220307

  4. SalB inactivation modulates culture supernatant exoproteins and affects autolysis and viability in Enterococcus faecalis OG1RF.

    PubMed

    Shankar, Jayendra; Walker, Rachel G; Wilkinson, Mark C; Ward, Deborah; Horsburgh, Malcolm J

    2012-07-01

    The culture supernatant fraction of an Enterococcus faecalis gelE mutant of strain OG1RF contained elevated levels of the secreted antigen SalB. Using differential fluorescence gel electrophoresis (DIGE) the salB mutant was shown to possess a unique complement of exoproteins. Differentially abundant exoproteins were identified using matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. Stress-related proteins including DnaK, Dps family protein, SOD, and NADH peroxidase were present in greater quantity in the OG1RF salB mutant culture supernatant. Moreover, several proteins involved in cell wall synthesis and cell division, including d-Ala-d-Lac ligase and EzrA, were present in reduced quantity in OG1RF salB relative to the parent strain. The salB mutant displayed reduced viability and anomalous cell division, and these phenotypes were exacerbated in a gelE salB double mutant. An epistatic relationship between gelE and salB was not identified with respect to increased autolysis and cell morphological changes observed in the salB mutant. SalB was purified as a six-histidine-tagged protein to investigate peptidoglycan hydrolytic activity; however, activity was not evident. High-pressure liquid chromatography (HPLC) analysis of reduced muropeptides from peptidoglycan digested with mutanolysin revealed that the salB mutant and OG1RF were indistinguishable. PMID:22563054

  5. Immune evasion of Enterococcus faecalis by an extracellular gelatinase that cleaves C3 and iC3b.

    PubMed

    Park, Shin Yong; Shin, Yong Pyo; Kim, Chong Han; Park, Ho Jin; Seong, Yeon Sun; Kim, Byung Sam; Seo, Sook Jae; Lee, In Hee

    2008-11-01

    Enterococcus faecalis (Ef) accounts for most cases of enterococcal bacteremia, which is one of the principal causes of nosocomial bloodstream infections (BSI). Among several virulence factors associated with the pathogenesis of Ef, an extracellular gelatinase (GelE) has been known to be the most common factor, although its virulence mechanisms, especially in association with human BSI, have yet to be demonstrated. In this study, we describe the complement resistance mechanism of Ef mediated by GelE. Using purified GelE, we determined that it cleaved the C3 occurring in human serum into a C3b-like molecule, which was inactivated rapidly via reaction with water. This C3 convertase-like activity of GelE was shown to result in a consumption of C3 and thus inhibited the activation of the complement system. Also, GelE was confirmed to degrade an iC3b that was deposited on the Ag surfaces without affecting the bound C3b. This proteolytic effect of GelE against the major complement opsonin resulted in a substantial reduction in Ef phagocytosis by human polymorphonuclear leukocytes. In addition, we verified that the action of GelE against C3, which is a central component of the complement cascade, was human specific. Taken together, it was suggested that GelE may represent a promising molecule for targeting human BSI associated with Ef. PMID:18941224

  6. Q69 (an E. faecalis-Infecting Bacteriophage) As a Biocontrol Agent for Reducing Tyramine in Dairy Products

    PubMed Central

    Ladero, Victor; Gómez-Sordo, Carolina; Sánchez-Llana, Esther; del Rio, Beatriz; Redruello, Begoña; Fernández, María; Martín, M. Cruz; Alvarez, Miguel A.

    2016-01-01

    Biogenic amines (BAs) are low molecular weight nitrogenous compounds with biological activity, formed from amino acids by decarboxylation. BAs are naturally present in all living organisms playing essential roles. However, their accumulation in food through the metabolic activity of certain microorganisms constitutes a toxicological hazard. Among foods, cheeses accumulate some of the highest concentrations of BAs since they provide an ideal environment for their accumulation. Most of the methods proposed for reducing BAs in cheese, such as milk pasteurization, have not only failed to completely solve the problem, they also affect non-BA producing lactic acid bacteria, i.e., the bacteria that participate in the development of the organoleptic characteristics of cheese. Novel technologies specifically targeted against BA producers are therefore needed to control BA accumulation. Bacteriophages have been proposed as agents for specifically controlling the presence of foodborne pathogens in food. Due to its specificity, they could be used as a biotechnological tool targeted to reduce the population of BA-producing bacteria. The present work reports the isolation, from cheese, and the characterization of bacteriophage Q69, which infects specifically Enterococcus faecalis, the species mainly responsible of the accumulation of the BA tyramine in foods. Furthermore, its capacity to reduce the accumulation of tyramine in different conditions –including a model cheese- was proven. The obtained results open up the possibility of use bacteriophages to prevent BA accumulation in fermented foods. PMID:27092117

  7. A liaR deletion restores susceptibility to daptomycin and antimicrobial peptides in multidrug-resistant Enterococcus faecalis.

    PubMed

    Reyes, Jinnethe; Panesso, Diana; Tran, Truc T; Mishra, Nagendra N; Cruz, Melissa R; Munita, Jose M; Singh, Kavindra V; Yeaman, Michael R; Murray, Barbara E; Shamoo, Yousif; Garsin, Danielle; Bayer, Arnold S; Arias, Cesar A

    2015-04-15

    Daptomycin is a lipopeptide antibiotic that is used clinically against many gram-positive bacterial pathogens and is considered a key frontline bactericidal antibiotic to treat multidrug-resistant enterococci. Emergence of daptomycin resistance during therapy of serious enterococcal infections is a major clinical issue. In this work, we show that deletion of the gene encoding the response regulator, LiaR (a member of the LiaFSR system that controls cell envelope homeostasis), from daptomycin-resistant Enterococcus faecalis not only reversed resistance to 2 clinically available cell membrane-targeting antimicrobials (daptomycin and telavancin), but also resulted in hypersusceptibility to these antibiotics and to a variety of antimicrobial peptides of diverse origin and with different mechanisms of action. The changes in susceptibility to these antibiotics and antimicrobial peptides correlated with in vivo attenuation in a Caenorhabditis elegans model. Mechanistically, deletion of liaR altered the localization of cardiolipin microdomains in the cell membrane. Our findings suggest that LiaR is a master regulator of the enterococcal cell membrane response to diverse antimicrobial agents and peptides; as such, LiaR represents a novel target to restore the activity of clinically useful antimicrobials against these organisms and, potentially, increase susceptibility to endogenous antimicrobial peptides. PMID:25362197

  8. Activity of Daptomycin or Linezolid in Combination with Rifampin or Gentamicin against Biofilm-Forming Enterococcus faecalis or E. faecium in an In Vitro Pharmacodynamic Model Using Simulated Endocardial Vegetations and an In Vivo Survival Assay Using Galleria mellonella Larvae

    PubMed Central

    Luther, Megan K.; Arvanitis, Marios; Mylonakis, Eleftherios

    2014-01-01

    Enterococci are the third most frequent cause of infective endocarditis. A high-inoculum stationary-phase in vitro pharmacodynamic model with simulated endocardial vegetations was used to simulate the human pharmacokinetics of daptomycin at 6 or 10 mg/kg of body weight/day or linezolid at 600 mg every 12 h (q12h), alone or in combination with gentamicin at 1.3 mg/kg q12h or rifampin at 300 mg q8h or 900 mg q24h. Biofilm-forming, vancomycin-susceptible Enterococcus faecalis and vancomycin-resistant Enterococcus faecium (vancomycin-resistant enterococcus [VRE]) strains were tested. At 24, 48, and 72 h, all daptomycin-containing regimens demonstrated significantly more activity (decline in CFU/g) than any linezolid-containing regimen against biofilm-forming E. faecalis. The addition of gentamicin to daptomycin (at 6 or 10 mg/kg) in the first 24 h significantly improved bactericidal activity. In contrast, the addition of rifampin delayed the bactericidal activity of daptomycin against E. faecalis, and the addition of rifampin antagonized the activities of all regimens against VRE at 24 h. Also, against VRE, the addition of gentamicin to linezolid at 72 h improved activity and was bactericidal. Rifampin significantly antagonized the activity of linezolid against VRE at 72 h. In in vivo Galleria mellonella survival assays, linezolid and daptomycin improved survival. Daptomycin at 10 mg/kg improved survival significantly over that with linezolid against E. faecalis. The addition of gentamicin improved the efficacy of daptomycin against E. faecalis and those of linezolid and daptomycin against VRE. We conclude that in enterococcal infection models, daptomycin has more activity than linezolid alone. Against biofilm-forming E. faecalis, the addition of gentamicin in the first 24 h causes the most rapid decline in CFU/g. Of interest, the addition of rifampin decreased the activity of daptomycin against both E. faecalis and VRE. PMID:24867993

  9. Prevalence and risk factors of early fecal carriage of Enterococcus faecalis and Staphylococcus spp and their antimicrobial resistant patterns among healthy neonates born in a hospital setting in central Saudi Arabia

    PubMed Central

    El-Kersh, Talat A.; Marie, Mohammed A.; Al-Sheikh, Yazeed A.; Al-Agamy, Mohamed H.; Al-Bloushy, Ahmad A.

    2016-01-01

    Objectives: To investigate the prevalence, antibiotic resistant profiles, and risk factors of early fecal carriage of Enterococcus faecalis (E. faecalis) and staphylococci among 150 healthy Saudi neonates born in a hospital setting in central Saudi Arabia. Methods: This prospective study was conducted in Al-Bukayriyah General Hospital, Qassim, Saudi Arabia, between June 2012 and January 2013. The E. faecalis and Staphylococcus spp. isolates were identified manually, and Vitek2 system was used for identity confirmation at the species level and minimum inhibitory concentration-susceptibility testing. Results: Enterococcus faecalis (n=73) and Staphylococcus spp. (n=18) were recovered. Unlike staphylococci, E. faecalis colonization did not significantly vary from day one up to 7 days of life, regardless of the type of feeding, but it was relatively higher among vaginally versus cesarean delivery. Both Staphylococcus epidermidis (S. epidermidis) and Staphylococcus aureus carriage increase as the body weight increases, and this difference was significant (p=0.025) for S. epidermidis. High-level resistance in Gentamycin among E. faecalis isolates was 25% and 11% to Streptomycin. Thirty percent of S. epidermidis were resistant to oxacillin and exhibited multidrug-resistant (MDR) patterns of 5 resistant markers, which were also observed among 2/5 (40%) of Methicillin-resistant Staphylococcus aureus isolates. Conclusion: Enterococcus faecalis did not significantly vary in relation to type of delivery, age up to 7 days, and type of feeding. The neonatal fecal carriage of MDR isolates should be considered as a crucial reservoir to the further spread of antimicrobial resistance genes among hospitals, cross infections, and the community. PMID:26905350

  10. Functional Analysis of the Citrate Activator CitO from Enterococcus faecalis Implicates a Divalent Metal in Ligand Binding.

    PubMed

    Blancato, Víctor S; Pagliai, Fernando A; Magni, Christian; Gonzalez, Claudio F; Lorca, Graciela L

    2016-01-01

    The regulator of citrate metabolism, CitO, from Enterococcus faecalis belongs to the FCD family within the GntR superfamily. In the presence of citrate, CitO binds to cis-acting sequences located upstream of the cit promoters inducing the expression of genes involved in citrate utilization. The quantification of the molecular binding affinities, performed by isothermal titration calorimetry (ITC), indicated that CitO has a high affinity for citrate (K D = 1.2 ± 0.2 μM), while it did not recognize other metabolic intermediates. Based on a structural model of CitO where a putative small molecule and a metal binding site were identified, it was hypothesized that the metal ion is required for citrate binding. In agreement with this model, citrate binding to CitO sharply decreased when the protein was incubated with EDTA. This effect was reverted by the addition of Ni(2+), and Zn(2+) to a lesser extent. Structure-based site-directed mutagenesis was conducted and it was found that changes to alanine in residues Arg97 and His191 resulted in decreased binding affinities for citrate, as determined by EMSA and ITC. Further assays using lacZ fusions confirmed that these residues in CitO are involved in sensing citrate in vivo. These results indicate that the molecular modifications induced by a ligand and a metal binding in the C-terminal domain of CitO are required for optimal DNA binding activity, and consequently, transcriptional activation. PMID:26903980

  11. Functional Analysis of the Citrate Activator CitO from Enterococcus faecalis Implicates a Divalent Metal in Ligand Binding

    PubMed Central

    Blancato, Víctor S.; Pagliai, Fernando A.; Magni, Christian; Gonzalez, Claudio F.; Lorca, Graciela L.

    2016-01-01

    The regulator of citrate metabolism, CitO, from Enterococcus faecalis belongs to the FCD family within the GntR superfamily. In the presence of citrate, CitO binds to cis-acting sequences located upstream of the cit promoters inducing the expression of genes involved in citrate utilization. The quantification of the molecular binding affinities, performed by isothermal titration calorimetry (ITC), indicated that CitO has a high affinity for citrate (KD = 1.2 ± 0.2 μM), while it did not recognize other metabolic intermediates. Based on a structural model of CitO where a putative small molecule and a metal binding site were identified, it was hypothesized that the metal ion is required for citrate binding. In agreement with this model, citrate binding to CitO sharply decreased when the protein was incubated with EDTA. This effect was reverted by the addition of Ni2+, and Zn2+ to a lesser extent. Structure-based site-directed mutagenesis was conducted and it was found that changes to alanine in residues Arg97 and His191 resulted in decreased binding affinities for citrate, as determined by EMSA and ITC. Further assays using lacZ fusions confirmed that these residues in CitO are involved in sensing citrate in vivo. These results indicate that the molecular modifications induced by a ligand and a metal binding in the C-terminal domain of CitO are required for optimal DNA binding activity, and consequently, transcriptional activation. PMID:26903980

  12. β-Lactam combinations with daptomycin provide synergy against vancomycin-resistant Enterococcus faecalis and Enterococcus faecium

    PubMed Central

    Smith, Jordan R.; Barber, Katie E.; Raut, Animesh; Aboutaleb, Mostafa; Sakoulas, George; Rybak, Michael J.

    2015-01-01

    Objectives Enterococcus faecalis (Efc) and Enterococcus faecium (Efm) are frequently resistant to vancomycin and β-lactams (BLs). In vitro data suggest synergy between several BLs and glycopeptides or lipopeptides against resistant pathogens. Our objective was to conduct combination MIC and time–kill experiments to evaluate BL synergy with daptomycin against enterococci. Methods Fifteen Efc and 20 Efm strains were evaluated for daptomycin enhancement via combination MICs. Daptomycin MICs were obtained by microdilution in the absence and presence of ceftaroline, ertapenem, cefepime, ceftriaxone, cefotaxime, cefazolin and ampicillin. Two Efc strains (R6981 and R7808) and one isogenic daptomycin-susceptible/daptomycin-non-susceptible Efm pair (8019/5938) were evaluated in time–kill experiments. Daptomycin at 0.5 × MIC was used in combination with BL at biological free concentration. Strain 5938 was evaluated for enhancement of daptomycin binding in fluorescently labelled daptomycin (BoDipy) experiments. Results Ceftaroline reduced daptomycin MIC values the most against all strains. In time–kill experiments, ceftaroline, ertapenem, cefepime, ceftriaxone and ampicillin demonstrated synergy with daptomycin against all strains, cefazolin demonstrated none and cefotaxime demonstrated synergy against only R7808. Bacterial reduction at 24 h was greater for daptomycin + ceftaroline, ertapenem, cefepime, ceftriaxone or ampicillin for all strains compared with any single agent or daptomycin + cefazolin or cefotaxime (P < 0.001). In BoDipy daptomycin experiments, ceftaroline enhanced daptomycin binding most compared with all other agents (P < 0.001). Conclusions The data support the potential use of daptomycin/BL combination therapy in infections caused by VRE. Combination regimens, other than those involving cefazolin and cefotaxime, provide better kill compared with daptomycin alone. Further clinical research involving daptomycin combinations is

  13. Evaluation of the antimicrobial effect of super-oxidized water (Sterilox®) and sodium hypochlorite against Enterococcus faecalis in a bovine root canal model

    PubMed Central

    ROSSI-FEDELE, Giampiero; de FIGUEIREDO, José Antonio Poli; STEIER, Liviu; CANULLO, Luigi; STEIER, Gabriela; ROBERTS, Adam P.

    2010-01-01

    Ideally root canal irrigants should have, amongst other properties, antimicrobial action associated with a lack of toxicity against periapical tissues. Sodium hypochlorite (NaOCl) is a widely used root canal irrigant, however it has been shown to have a cytotoxic effect on vital tissue and therefore it is prudent to investigate alternative irrigants. Sterilox's Aquatine Alpha Electrolyte® belongs to the group of the super-oxidized waters; it consists of a mixture of oxidizing substances, and has been suggested to be used as root canal irrigant. Super-oxidized waters have been shown to provide efficient cleaning of root canal walls, and have been proposed to be used for the disinfection of medical equipment. Objective To compare the antimicrobial action against Enterococcus faecalis of NaOCl, Optident Sterilox Electrolyte Solution® and Sterilox's Aquatine Alpha Electrolyte® when used as irrigating solutions in a bovine root canal model. Methodology Root sections were prepared and inoculated with E. faecalis JH2-2. After 10 days of incubation the root canals were irrigated using one of three solutions (NaOCl, Optident Sterilox Electrolyte Solution® and Sterilox's Aquatine Alpha Electrolyte®) and subsequently sampled by grinding dentin using drills. The debris was placed in BHI broth and dilutions were plated onto fresh agar plates to quantify growth. Results Sodium hypochlorite was the only irrigant to eliminate all bacteria. When the dilutions were made, although NaOCl was still statistically superior, Sterilox's Aquatine Alpha Electrolyte® solution was superior to Optident Sterilox Electrolyte Solution®. Conclusion Under the conditions of this study Sterilox's Aquatine Alpha Electrolyte® appeared to have significantly more antimicrobial action compared to the Optident Sterilox Electrolyte Solution® alone, however NaOCl was the only solution able to consistently eradicate E. faecalis in the model. PMID:21085808

  14. Histopathological changes induced in an animal model by potentially pathogenic Enterococcus faecalis strains recovered from ready-to-eat food outlets in Osun State, Nigeria

    PubMed Central

    Olawale, Adetunji Kola; David, Oluwole Moses; Oluyege, Adekemi Olubukunola; Osuntoyinbo, Richard Temitope; Laleye, Solomon Anjuwon; Famurewa, Oladiran

    2015-01-01

    Enterococci have been implicated as an emerging important cause of several diseases and multiple antibiotic resistance. However, there is little information about the prevalence of pathogenic and/or antibiotic-resistant Enterococcus faecalis in ready-to-eat foods in Nigeria. Here we report the pathogenic potential of three selected antibiotic-resistant E. faecalis strains isolated from food canteens and food outlets with different virulence determinant genes, including EFC 12 (with gel+, esp+, cylA+, and asa1+), EFT 148 (with gel+, ace+, and asa1+), and EFS 18 (with esp+ and cylA+) in an animal model. Enterococcemia, hematological parameters, and histopathological changes in organ tissues were examined in experimental animals. The results showed differences in enterococcemia and hematological parameters between the control group and experimental animal group. Enterococcemia was observed for 7 days, and the animal group infected with EFC 12 showed the highest growth rate, followed by EFT 148, with the lowest growth rate seen in the EFS 18-infected group. White blood cell count, packed cell volume, and platelets were significantly reduced (P<0.05) in the experimental animals compared with the controls. White blood cells decreased drastically during the study period in rats challenged with EFC 12 (from 7,800 to 6,120 per mm3) but levels remained higher in the control group (from 9,228 to 9,306 per mm3). Histopathological changes included areas of pronounced hemorrhage, necrosis, and distortion in liver tissues, which were more marked in rats infected with EFC 12, followed by EFT 148, then EFS 18. The results of this study suggest the presence of potentially pathogenic E. faecalis strains in food canteens and food outlets; hence, there is a need for strict adherence to good hygiene practices in the study area owing to the epidemiological significance of foods. PMID:26170700

  15. Quantitative detection of Staphylococcus aureus, Enterococcus faecalis and Pseudomonas aeruginosa in human oral epithelial cells from subjects with periodontitis and periodontal health.

    PubMed

    Colombo, Andrea V; Barbosa, Graziela M; Higashi, Daniela; di Micheli, Giorgio; Rodrigues, Paulo H; Simionato, Maria Regina L

    2013-10-01

    Epithelial cells in oral cavities can be considered reservoirs for a variety of bacterial species. A polymicrobial intracellular flora associated with periodontal disease has been demonstrated in buccal cells. Important aetiological agents of systemic and nosocomial infections have been detected in the microbiota of subgingival biofilm, especially in individuals with periodontal disease. However, non-oral pathogens internalized in oral epithelial cells and their relationship with periodontal status are poorly understood. The purpose of this study was to detect opportunistic species within buccal and gingival crevice epithelial cells collected from subjects with periodontitis or individuals with good periodontal health, and to associate their prevalence with periodontal clinical status. Quantitative detection of total bacteria and Staphylococcus aureus, Pseudomonas aeruginosa and Enterococcus faecalis in oral epithelial cells was determined by quantitative real-time PCR using universal and species-specific primer sets. Intracellular bacteria were visualized by confocal microscopy and fluorescence in situ hybridization. Overall, 33% of cell samples from patients with periodontitis contained at least one opportunistic species, compared with 15% of samples from healthy individuals. E. faecalis was the most prevalent species found in oral epithelial cells (detected in 20.6% of patients with periodontitis, P = 0.03 versus healthy individuals) and was detected only in cells from patients with periodontitis. Quantitative real-time PCR showed that high levels of P. aeruginosa and S. aureus were present in both the periodontitis and healthy groups. However, the proportion of these species was significantly higher in epithelial cells of subjects with periodontitis compared with healthy individuals (P = 0.016 for P. aeruginosa and P = 0.047 for S. aureus). Although E. faecalis and P. aeruginosa were detected in 57% and 50% of patients, respectively, with probing depth and

  16. Nosocomial infection caused by vancomycin-susceptible multidrug-resistant Enterococcus faecalis over a long period in a university hospital in Japan.

    PubMed

    Kudo, Michiaki; Nomura, Takahiro; Yomoda, Sachie; Tanimoto, Koichi; Tomita, Haruyoshi

    2014-11-01

    Compared with other developed countries, vancomycin-resistant enterococci (VRE) are not widespread in clinical environments in Japan. There have been no VRE outbreaks and only a few VRE strains have sporadically been isolated in our university hospital in Gunma, Japan. To examine the drug susceptibility of Enterococcus faecalis and nosocomial infection caused by non-VRE strains, a retrospective surveillance was conducted in our university hospital. Molecular epidemiological analyses were performed on 1711 E. faecalis clinical isolates collected in our hospital over a 6-year period [1998-2003]. Of these isolates, 1241 (72.5%) were antibiotic resistant and 881 (51.5%) were resistant to two or more drugs. The incidence of multidrug resistant E. faecalis (MDR-Ef) isolates in the intensive care unit increased after enlargement and restructuring of the hospital. The major group of MDR-Ef strains consisted of 209 isolates (12.2%) resistant to the five drug combination tetracycline/erythromycin/kanamycin/streptomycin/gentamicin. Pulsed-field gel electrophoresis analysis of the major MDR-Ef isolates showed that nosocomial infections have been caused by MDR-Ef over a long period (more than 3 years). Multilocus sequence typing showed that these strains were mainly grouped into ST16 (CC58) or ST64 (CC8). Mating experiments suggested that the drug resistances were encoded on two conjugative transposons (integrative conjugative elements), one encoded tetracycline-resistance and the other erythromycin/kanamycin/streptomycin/gentamicin-resistance. To our knowledge, this is the first report of nosocomial infection caused by vancomycin-susceptible MDR-Ef strains over a long period in Japan. PMID:25145983

  17. Inactivation of a 25.5 µm Enterococcus faecalis biofilm by a room-temperature, battery-operated, handheld air plasma jet

    NASA Astrophysics Data System (ADS)

    Pei, X.; Lu, X.; Liu, J.; Liu, D.; Yang, Y.; Ostrikov, K.; Chu, Paul K.; Pan, Y.

    2012-04-01

    Effective biofilm inactivation using a handheld, mobile plasma jet powered by a 12 V dc battery and operated in open air without any external gas supply is reported. This cold, room-temperature plasma is produced in self-repetitive nanosecond discharges with current pulses of ˜100 ns duration, current peak amplitude of ˜6 mA and repetition rate of ˜20 kHz. It is shown that the reactive plasma species penetrate to the bottom layer of a 25.5 µm-thick Enterococcus faecalis biofilm and produce a strong bactericidal effect. This is the thickest reported biofilm inactivated using room-temperature air plasmas.

  18. Cloning and genetic analysis of the UV resistance determinant (uvr) encoded on the Enterococcus faecalis pheromone-responsive conjugative plasmid pAD1.

    PubMed Central

    Ozawa, Y; Tanimoto, K; Fujimoto, S; Tomita, H; Ike, Y

    1997-01-01

    The conjugative pheromone-responsive plasmid pAD1 (59.6 kb) of Enterococcus faecalis encodes a UV resistance determinant (uvr) in addition to the hemolysin-bacteriocin determinant. pAD1 enhances the UV resistance of wild-type E. faecalis FA2-2 and E. faecalis UV202, which is a UV-sensitive derivative of E. faecalis JH2-2. A 2.972-kb fragment cloned from between 27.7 and 30.6 kb of the pAD1 map conferred UV resistance function on UV202. Sequence analysis showed that the cloned fragment contained three open reading frames designated uvrA, uvrB, and uvrC. The uvrA gene is located on the pAD1 map between 28.1 and 29.4 kb. uvrB is located between 30.1 and 30.3 kb, and uvrC is located between 30.4 and 30.6 kb on the pAD1 map. The uvrA, uvrB, and uvrC genes encode sequences of 442, 60, and 74 amino acids, respectively. The deduced amino acid sequence of the uvrA-encoded protein showed 20% homology of the identical residues with the E. coli UmuC protein. Tn917 insertion mutagenesis and deletion mutant analysis of the cloned fragment showed that uvrA conferred UV resistance. A palindromic sequence, 5'-GAACNGTTC-3', which is identical to the consensus sequence found within the putative promoter region of the Bacillus subtilis DNA damage-inducible genes, was located within the promoter region of uvrA. Two uvrA transcripts of different lengths (i.e., 1.54 and 2.14 kb) which terminate at different points downstream of uvrA were detected in UV202 carrying the deletion mutant containing uvrA. The longer transcript, 2.14 kb, was not detected in UV202 carrying the deletion mutant containing both uvrA and uvrB, which suggests that uvrB encodes a terminator for the uvrA transcript. The uvrA transcript was not detected in any significant quantity in UV202 carrying the cloned fragment containing uvrA, uvrB, and uvrC; on the other hand, the 1.54-kb uvrA transcript was detected in the strain exposed to mitomycin C, which suggests that the UvrC protein functions as a regulator of uvr

  19. Genetic modifications to temperate Enterococcus faecalis phage ϕEf11 that abolish the establishment of lysogeny and sensitivity to repressor, and increase host range and productivity of lytic infection

    PubMed Central

    Zhang, H.; Fouts, D. E.; DePew, J.

    2013-01-01

    ϕEf11 is a temperate bacteriophage originally isolated by induction from a lysogenic Enterococcus faecalis strain recovered from an infected root canal, and the ϕEf11 prophage is widely disseminated among strains of E. faecalis. Because E. faecalis has emerged as a significant opportunistic human pathogen, we were interested in examining the genes and regulatory sequences predicted to be critical in the establishment/maintenance of lysogeny by ϕEf11 as a first step in the construction of the genome of a virulent, highly lytic phage that could be used in treating serious E. faecalis infections. Passage of ϕEf11 in E. faecalis JH2-2 yielded a variant that produced large, extensively spreading plaques in lawns of indicator cells, and elevated phage titres in broth cultures. Genetic analysis of the cloned virus producing the large plaques revealed that the variant was a recombinant between ϕEf11 and a defective ϕFL1C-like prophage located in the E. faecalis JH2-2 chromosome. The recombinant possessed five ORFs of the defective ϕFL1C-like prophage in place of six ORFs of the ϕEf11 genome. Deletion of the putative lysogeny gene module (ORFs 31–36) and replacement of the putative cro promoter from the recombinant phage genome with a nisin-inducible promoter resulted in no loss of virus infectivity. The genetic construct incorporating all the aforementioned ϕEf11 genomic modifications resulted in the generation of a variant that was incapable of lysogeny and insensitive to repressor, rendering it virulent and highly lytic, with a notably extended host range. PMID:23579685

  20. L-Lactic acid production by combined utilization of agricultural bioresources as renewable and economical substrates through batch and repeated-batch fermentation of Enterococcus faecalis RKY1.

    PubMed

    Reddy, Lebaka Veeranjaneya; Kim, Young-Min; Yun, Jong-Sun; Ryu, Hwa-Won; Wee, Young-Jung

    2016-06-01

    Enterococcus faecalis RKY1 was used to produce l-lactic acid from hydrol, soybean curd residues (SCR), and malt. Hydrol was efficiently metabolized to l-lactic acid with optical purity of >97.5%, though hydrol contained mixed sugars such as glucose, maltose, maltotriose, and maltodextrin. Combined utilization of hydrol, SCR, and malt was enough to sustain lactic acid fermentation by E. faecalis RKY1. In order to reduce the amount of nitrogen sources and product inhibition, cell-recycle repeated-batch fermentation was employed, where a high cell mass (26.3g/L) was obtained. Lactic acid productivity was improved by removal of lactic acid from fermentation broth by membrane filtration and by linearly increased cell density. When the total of 10 repeated-batch fermentations were carried out using 100g/L hydrol, 150g/L SCR hydrolyzate, and 20g/L malt hydrolyzate as the main nutrients, lactic acid productivity was increased significantly from 3.20g/L/h to 6.37g/L/h. PMID:26970921

  1. Oxidative stress enhances the expression of sulfur assimilation genes: preliminary insights on the Enterococcus faecalis iron-sulfur cluster machinery regulation

    PubMed Central

    Riboldi, Gustavo Pelicioli; Bierhals, Christine Garcia; de Mattos, Eduardo Preusser; Frazzon, Ana Paula Guedes; d‘Azevedo, Pedro Alves; Frazzon, Jeverson

    2014-01-01

    The Firmicutes bacteria participate extensively in virulence and pathological processes. Enterococcus faecalis is a commensal microorganism; however, it is also a pathogenic bacterium mainly associated with nosocomial infections in immunocompromised patients. Iron-sulfur [Fe-S] clusters are inorganic prosthetic groups involved in diverse biological processes, whose in vivo formation requires several specific protein machineries. Escherichia coli is one of the most frequently studied microorganisms regarding [Fe-S] cluster biogenesis and encodes the iron-sulfur cluster and sulfur assimilation systems. In Firmicutes species, a unique operon composed of the sufCDSUB genes is responsible for [Fe-S] cluster biogenesis. The aim of this study was to investigate the potential of the E. faecalis sufCDSUB system in the [Fe-S] cluster assembly using oxidative stress and iron depletion as adverse growth conditions. Quantitative real-time polymerase chain reaction demonstrated, for the first time, that Gram-positive bacteria possess an OxyR component responsive to oxidative stress conditions, as fully described for E. coli models. Likewise, strong expression of the sufCDSUB genes was observed in low concentrations of hydrogen peroxide, indicating that the lowest concentration of oxygen free radicals inside cells, known to be highly damaging to [Fe-S] clusters, is sufficient to trigger the transcriptional machinery for prompt replacement of [Fe-S] clusters. PMID:24936909

  2. Initiation of Protein Synthesis by Folate-Sufficient and Folate-Deficient Streptococcus faecalis R: Partial Purification and Properties of Methionyl-Transfer Ribonucleic Acid Synthetase and Methionyl-Transfer Ribonucleic Acid Formyltransferase

    PubMed Central

    Samuel, Charles E.; Rabinowitz, Jesse C.

    1974-01-01

    The initiation of protein synthesis by Streptococcus faecalis R grown in folate-free culture occurs without N-formylation or N-acylation of methionyl-tRNAfMet. Methionyl-tRNA synthetase and methionyl-tRNA formyltransferase were partially purified from S. faecalis grown under normal culture conditions in the presence of folate (plus-folate); the general properties of the enzymes were determined and compared with the properties of the enzymes purified from wild-type cells grown in the absence of folate (minus-folate). S. faecalis methionyl-tRNA synthetase displays optimal activity at pH values between 7.2 and 7.8, requires Mg2+, and has an apparent molecular weight of 106,000, as determined by gel filtration, and 127,000, as determined by sucrose density gradient centrifugation. The Km values of plus-folate methionyl-tRNA synthetase for each of the three substrates in the aminoacylation reaction (l-methionine, adenosine triphosphate, and tRNA) are nearly identical to the respective substrate Michaelis constants of minus-folate methionyl-tRNA synthetase. Furthermore, both plus- and minus-folate S. faecalis methionyl-tRNA synthetases catalyze, at equal rates, the aminoacylation of tRNAfMet and tRNAmMet isolated from either plus-folate or minus-folate cells. S. faecalis methionyl-tRNA formyltransferase displays optimal activity at pH values near 7.0, is stimulated by Mg2+, and has an apparent molecular weight of approximately 29,900 when estimated by sucrose density gradient centrifugation. The Km value of plus-folate formyltransferase for plus-folate Met-tRNAfMet does not differ significantly from that of minus-folate formyltransferase for minus-folate Met-tRNAfMet. Both enzymes can utilize either 10-formyltetrahydrofolate or 10-formyltetrahydropteroyltriglutamate as the formyl donor; the Michaelis constant for the monoglutamyl pteroyl coenzyme is slightly less than that of the triglutamyl pteroyl coenzyme for both transformylases. Tetrahydrofolate and uncharged t

  3. The efficacy of photon-initiated photoacoustic streaming and sonic-activated irrigation combined with QMiX solution or sodium hypochlorite against intracanal E. faecalis biofilm.

    PubMed

    Balić, M; Lucić, R; Mehadžić, K; Bago, I; Anić, I; Jakovljević, S; Plečko, V

    2016-02-01

    The aim of the study was to assess the antibacterial efficacy of photon-initiated photoacoustic streaming (PIPS) using an Er:YAG laser and sonic-activated irrigation combined with QMiX irrigant or sodium hypochlorite against Enterococcus faecalis intracanal biofilm. Root canals of 91 human extracted single-canal teeth were instrumented, sterilized, contaminated with E. faecalis and incubated for 15 days. The infected teeth were then randomly distributed into six experimental groups: G1: PIPS/Er:YAG laser (wavelength 2940 nm, pulse energy 20 mJ, 15 Hz, pulse duration 50 μs, energy density 2.06 J/cm(2), 3 × 20 s) with the QMiX irrigant; G2: PIPS/Er:YAG laser-activated 2.5 % NaOCl; G3 sonic-activated irrigation (EndoActivator system) for 60 s with the QMiX irrigant; G4 sonic-activated irrigation for 60 s with 2.5 % NaOCl; G5 30-gauge needle irrigation with the QMiX irrigant; G6 30-gauge needle irrigation with 2.5 % NaOCl. The positive control group was rinsed with sterile saline solution. The root canals were sampled by flushing with saline solution at baseline and after the treatments, serially diluted and cultured. The number of bacteria in each canal was determined by plate count. The presence and the absence of E. faecalis in root canals were demonstrated by polymerase chain reaction (PCR), and the pattern of the bacteria colonization was visualized by scanning electron microscopy. There was significant reduction in the bacterial population for all groups (p < 0.001). The best antibacterial efficacy was recorded after sonic-activated irrigation with both NaOCl (99.999 %) and QMiX (99.999 %) and after PIPS with QMiX (99.999 %), which were more effective than conventional irrigation with NaOCl (99.998 %) and the PIPS with the NaOCl (99.966 %). Also, the PIPS with QMiX solution provided the highest number of sterile samples (five). There was no difference in the bacteria reduction between the active irrigation techniques, regardless of the irrigant used

  4. Crystallization and preliminary crystallographic analysis of an Enterococcus faecalis repressor protein, CylR2, involved in regulating cytolysin production through quorum-sensing

    SciTech Connect

    Ni, Shuisong; McAteer, Kathleen; Bussiere, Dirksen E.; Kennedy, Michael A.

    2004-06-01

    CylR2 is one of the two regulatory proteins associated with the quorum-sensing-dependent synthesis of cytolysin for the common pathogen Enterococcus faecalis. The protein was expressed with a C-terminal 6-histidine tag and purified to homogeneity with a cobalt affinity column followed by another size exclusion column. Both native and SeMet proteins were crystallized. A complete X-ray diffraction data set from the native crystal was collected to 2.3 resolution. The crystal was tetragonal, belonging to space group P41/43, with unit-cell dimensions a=b=66.2 , c=40.9 and a=b=g=90. The asymmetric unit contained two molecules of CylR2.

  5. Structure of Peptide Sex Pheromone Receptor PrgX and PrgX/Pheromone Complexes and Regulation of Conjugation in Enterococcus faecalis

    SciTech Connect

    Shi,K.; Brown, C.; Gu, Z.; Kozlowicz, B.; Dunny, G.; Ohlendorf, D.; Earhart, C.

    2005-01-01

    Many bacterial activities, including expression of virulence factors, horizontal genetic transfer, and production of antibiotics, are controlled by intercellular signaling using small molecules. To date, understanding of the molecular mechanisms of peptide-mediated cell-cell signaling has been limited by a dearth of published information about the molecular structures of the signaling components. Here, we present the molecular structure of PrgX, a DNA- and peptide-binding protein that regulates expression of the conjugative transfer genes of the Enterococcus faecalis plasmid pCF10 in response to an intercellular peptide pheromone signal. Comparison of the structures of PrgX and the PrgX/pheromone complex suggests that pheromone binding destabilizes PrgX tetramers, opening a 70-bp pCF10 DNA loop required for conjugation repression.

  6. Killing of VRE Enterococcus faecalis by commensal strains: Evidence for evolution and accumulation of mobile elements in the absence of competition.

    PubMed

    Gaca, Anthony O; Gilmore, Michael S

    2016-01-01

    Enterococci are members of the gastrointestinal tract of humans and most animals that, over the past 3 decades, have emerged as leading causes of multidrug resistant hospital acquired infection (HAI). In addition to their general hardiness, many traits have entered enterococcal lineages through horizontal gene transfer, which has led to the evolution of pathogenic hospital-associated lineages uniquely adapted for survival and proliferation in the antibiotic perturbed ecology of the gastrointestinal tract. We recently observed that the accretion of mobile genetic elements in the prototype vancomycin resistant E. faecalis, clinical isolate V583, renders it unable to co-exist with native enterococci in healthy human fecal flora. In this addendum, we discuss how these findings inform our understanding of how multidrug resistant enterococci evolve, and the implications for the development of treatments that limit colonization and spread of highly antibiotic refractory microbes of this type. PMID:26939857

  7. An assessment of antibacterial activity of three pulp capping materials on Enterococcus faecalis by a direct contact test: An in vitro study

    PubMed Central

    Koruyucu, Mine; Topcuoglu, Nursen; Tuna, E. Bahar; Ozel, Sevda; Gencay, Koray; Kulekci, Guven; Seymen, Figen

    2015-01-01

    Objective: The aim of this in vitro study was to evaluate antimicrobial activities of three different pulp capping materials; Biodentine, mineral trioxide aggregate (MTA) Angelus, and Dycal against Enterococcus faecalis and their durability with time. Materials and Methods: Direct contact test was used for the assessment. Three sets of sealers were mixed and placed on microtiter plate wells: One set was used within 20 min of recommended setting time while others were used after 24-h and 1-week. E. faecalis suspension was placed directly on the materials for 1 h and then transferred to another plate with fresh media. Nine wells of bacteria without the tested cements served as the positive control. One well of the tested cements without bacteria served as the negative control. Bacterial growth was evaluated by a temperature-controlled microplate spectrophotometer for 1-h intervals among 24 h. Data were analyzed using Kruskal–Wallis test. Results: All tested materials showed less bacterial density than the control group. MTA, Biodentine, and Dycal showed significantly higher bacterial density than the control group in freshly mixed samples (P < 0.05). And MTA showed significantly higher antibacterial activity than Dycal (P < 0.05). In 24 h, materials did not show any differences (P > 0.05). MTA and Biodentine samples showed significant differences than Dycal; MTA also showed higher antibacterial activity than control in 1-week samples (P < 0.05). Conclusion: While freshly mixed MTA showed the best antibacterial activity over time, Biodentine had shown similar antibacterial activity to MTA. PMID:26038657

  8. Enterococcus faecalis utilizes maltose by connecting two incompatible metabolic routes via a novel maltose-6’-phosphate phosphatase (MapP)

    PubMed Central

    Mokhtari, Abdelhamid; Blancato, Víctor S.; Repizo, Guillermo; Henry, Céline; Pikis, Andreas; Bourand, Alexa; de Fátima Álvarez, María; Immel, Stefan; Mechakra-Maza, Aicha; Hartke, Axel; Thompson, John; Magni, Christian; Deutscher, Josef

    2013-01-01

    Summary Similar to Bacillus subtilis, Enterococcus faecalis transports and phosphorylates maltose via a phosphoenolpyruvate (PEP):maltose phosphotransferase system (PTS). The maltose-specific PTS permease is encoded by the malT gene. However, E. faecalis lacks a malA gene encoding a 6-phospho-α-glucosidase which in B. subtilis hydrolyses maltose-6’-P into glucose and glucose-6-P. Instead, an operon encoding a maltose phosphorylase (MalP), a phosphoglucomutase and a mutarotase starts upstream from malT. MalP was suggested to split maltose-6-P into glucose-1-P and glucose-6-P. However, purified MalP phosphorolyses maltose but not maltose-6’-P. We discovered that the gene downstream from malT encodes a novel enzyme (MapP) that dephosphorylates maltose-6’-P formed by the PTS. The resulting intracellular maltose is cleaved by MalP into glucose and glucose-1-P. Slow uptake of maltose probably via a maltodextrin ABC transporter allows poor growth for the mapP but not the malP mutant. Synthesis of MapP in a B. subtilis mutant accumulating maltose-6’-P restored growth on maltose. MapP catalyzes the dephosphorylation of intracellular maltose-6’-P, and the resulting maltose is converted by the B. subtilis maltose phosphorylase into glucose and glucose-1-P. MapP therefore connects PTS-mediated maltose uptake to maltose phosphorylase-catalyzed metabolism. Dephosphorylation assays with a wide variety of phospho-substrates revealed that MapP preferably dephosphorylates disaccharides containing an O-α-glycosyl linkage. PMID:23490043

  9. Mortality in kittens is associated with a shift in ileum mucosa-associated enterococci from Enterococcus hirae to biofilm-forming Enterococcus faecalis and adherent Escherichia coli.

    PubMed

    Ghosh, Anuradha; Borst, Luke; Stauffer, Stephen H; Suyemoto, Mitsu; Moisan, Peter; Zurek, Ludek; Gookin, Jody L

    2013-11-01

    Approximately 15% of foster kittens die before 8 weeks of age, with most of these kittens demonstrating clinical signs or postmortem evidence of enteritis. While a specific cause of enteritis is not determined in most cases, these kittens are often empirically administered probiotics that contain enterococci. The enterococci are members of the commensal intestinal microbiota but also can function as opportunistic pathogens. Given the complicated role of enterococci in health and disease, it would be valuable to better understand what constitutes a "healthy" enterococcal community in these kittens and how this microbiota is impacted by severe illness. In this study, we characterized the ileum mucosa-associated enterococcal community of 50 apparently healthy and 50 terminally ill foster kittens. In healthy kittens, Enterococcus hirae was the most common species of ileum mucosa-associated enterococci and was often observed to adhere extensively to the small intestinal epithelium. These E. hirae isolates generally lacked virulence traits. In contrast, non-E. hirae enterococci, notably Enterococcus faecalis, were more commonly isolated from the ileum mucosa of kittens with terminal illness. Isolates of E. faecalis had numerous virulence traits and multiple antimicrobial resistances. Moreover, the attachment of Escherichia coli to the intestinal epithelium was significantly associated with terminal illness and was not observed in any kitten with adherent E. hirae. These findings identify a significant difference in the species of enterococci cultured from the ileum mucosa of kittens with terminal illness compared to the species cultured from healthy kittens. In contrast to prior case studies that associated enteroadherent E. hirae with diarrhea in young animals, these controlled studies identified E. hirae as more often isolated from healthy kittens and adherence of E. hirae as more common and extensive in healthy kittens than in sick kittens. PMID:23966487

  10. Using a Genome-Scale Metabolic Model of Enterococcus faecalis V583 To Assess Amino Acid Uptake and Its Impact on Central Metabolism

    PubMed Central

    Solheim, Margrete; van Grinsven, Koen W. A.; Olivier, Brett G.; Levering, Jennifer; Grosseholz, Ruth; Hugenholtz, Jeroen; Holo, Helge; Nes, Ingolf; Teusink, Bas; Kummer, Ursula

    2014-01-01

    Increasing antibiotic resistance in pathogenic bacteria necessitates the development of new medication strategies. Interfering with the metabolic network of the pathogen can provide novel drug targets but simultaneously requires a deeper and more detailed organism-specific understanding of the metabolism, which is often surprisingly sparse. In light of this, we reconstructed a genome-scale metabolic model of the pathogen Enterococcus faecalis V583. The manually curated metabolic network comprises 642 metabolites and 706 reactions. We experimentally determined metabolic profiles of E. faecalis grown in chemically defined medium in an anaerobic chemostat setup at different dilution rates and calculated the net uptake and product fluxes to constrain the model. We computed growth-associated energy and maintenance parameters and studied flux distributions through the metabolic network. Amino acid auxotrophies were identified experimentally for model validation and revealed seven essential amino acids. In addition, the important metabolic hub of glutamine/glutamate was altered by constructing a glutamine synthetase knockout mutant. The metabolic profile showed a slight shift in the fermentation pattern toward ethanol production and increased uptake rates of multiple amino acids, especially l-glutamine and l-glutamate. The model was used to understand the altered flux distributions in the mutant and provided an explanation for the experimentally observed redirection of the metabolic flux. We further highlighted the importance of gene-regulatory effects on the redirection of the metabolic fluxes upon perturbation. The genome-scale metabolic model presented here includes gene-protein-reaction associations, allowing a further use for biotechnological applications, for studying essential genes, proteins, or reactions, and the search for novel drug targets. PMID:25527553

  11. Contribution of Individual Ebp Pilus Subunits of Enterococcus faecalis OG1RF to Pilus Biogenesis, Biofilm Formation and Urinary Tract Infection

    PubMed Central

    Sillanpää, Jouko; Chang, Chungyu; Singh, Kavindra V.; Montealegre, Maria Camila; Nallapareddy, Sreedhar R.; Harvey, Barrett R.; Ton-That, Hung; Murray, Barbara E.

    2013-01-01

    The endocarditis and biofilm-associated pilus (Ebp) operon is a component of the core genome of Enterococcus faecalis that has been shown to be important for biofilm formation, adherence to host fibrinogen, collagen and platelets, and in experimental endocarditis and urinary tract infection models. Here, we created single and double deletion mutants of the pilus subunits and sortases; next, by combining western blotting, immunoelectron microscopy, and using ebpR in trans to increase pilus production, we identified EbpA as the tip pilin and EbpB as anchor at the pilus base, the latter attached to cell wall by the housekeeping sortase, SrtA. We also confirmed EbpC and Bps as the major pilin and pilin-specific sortase, respectively, both required for pilus polymerization. Interestingly, pilus length was increased and the number of pili decreased by deleting ebpA, while control overexpression of ebpA in trans restored wild-type levels, suggesting a dual role for EbpA in both initiation and termination of pilus polymerization. We next investigated the contribution of each pilin subunit to biofilm formation and UTI. Significant reduction in biofilm formation was observed with deletion of ebpA or ebpC (P<0.001) while ebpB was found to be dispensable; a similar result was seen in kidney CFUs in experimental UTI (ΔebpA, ΔebpC, P≤0.0093; ΔebpB, non-significant, each vs. OG1RF). Hence, our data provide important structural and functional information about these ubiquitous E. faecalis pili and, based on their demonstrated importance in biofilm and infection, suggest EbpA and EbpC as potential targets for antibody-based therapeutic approaches. PMID:23874774

  12. β-Lactams Enhance Daptomycin Activity against Vancomycin-Resistant Enterococcus faecalis and Enterococcus faecium in In Vitro Pharmacokinetic/Pharmacodynamic Models

    PubMed Central

    Smith, Jordan R.; Barber, Katie E.; Raut, Animesh

    2015-01-01

    Enterococcus faecalis and Enterococcus faecium are frequently resistant to vancomycin and β-lactams. In enterococcal infections with reduced glycopeptide susceptibility, combination therapy is often administered. Our objective was to conduct pharmacokinetic/pharmacodynamic (PK/PD) models to evaluate β-lactam synergy with daptomycin (DAP) against resistant enterococci. One E. faecalis strain (R6981) and two E. faecium strains (R6370 and 8019) were evaluated. DAP MICs were obtained. All strains were evaluated for response to LL37, an antimicrobial peptide, in the presence and absence of ceftaroline (CPT), ertapenem (ERT), and ampicillin (AMP). After 96 h, in vitro models were run simulating 10 mg DAP/kg body weight/day, 600 mg CPT every 8 h (q8h), 2 g AMP q4h, and 1 g ERT q24h, both alone and in combination against all strains. DAP MICs were 2, 4, and 4 μg/ml for strains R6981, R6370, and 8019, respectively. PK/PD models demonstrated bactericidal activity with DAP-CPT, DAP-AMP, and DAP-ERT combinations against strain 8019 (P < 0.001 and log10 CFU/ml reduction of >2 compared to any single agent). Against strains R6981 and R6370, the DAP-AMP combination demonstrated enhancement against R6370 but not R6981, while the combinations of DAP-CPT and DAP-ERT were bactericidal, demonstrated enhancement, and were statistically superior to all other regimens at 96 h (P < 0.001) against both strains. CPT, ERT, and AMP similarly augmented LL37 killing against strain 8019. In strains R6981 and R6370, CPT and ERT aided LL37 more than AMP (P < 0.001). Compared to DAP alone, combination regimens provide better killing and prevent resistance. Clinical research involving DAP combinations is warranted. PMID:25753639

  13. Cloning and genetic organization of the bacteriocin 31 determinant encoded on the Enterococcus faecalis pheromone-responsive conjugative plasmid pYI17.

    PubMed Central

    Tomita, H; Fujimoto, S; Tanimoto, K; Ike, Y

    1996-01-01

    The conjugative plasmid pYI17 (57.5 kb) isolated from Enterococcus faecalis YI717 confers a pheromone response on the host and encodes the bacteriocin 31 gene. Bacteriocin 31 is active against E. hirae 9790, E. faecium, and Listeria monocytogenes. pYI17 was mapped physically by restriction enzyme analysis and the relational clone method. Deletion mutant and sequence analyses of the EcoRI fragment B cloned from pYl17 revealed that a 1.0-kb fragment contained the bacteriocin gene (bacA) and an immunity gene (bacB). This fragment induced bacteriocin activity in E. faecalis OG1X and E. hirae 9790. The bacA gene is located on the pYI17 physical map between 3.37 and 3.57 kb, and bacB is located between 3.59 kb and 3.87 kb, bacA encodes 67 amino acids, and bacB encodes 94 amino acids. The deduced amino acid sequence of the bacA protein contained a series of hydrophobic residues typical of a signal sequence at its amino terminus. The predicted mature bacA protein (43 amino acids) showed sequence homology with the membrane-active class II bacteriocins of lactic acid bacteria. Analysis of Tn5 insertion mutants and the resulting transcripts indicated that these genes are transcribed as an operon composed of bacA, bacB, and an open reading frame located downstream of bacB designated ORF3. PMID:8655558

  14. Mortality in Kittens Is Associated with a Shift in Ileum Mucosa-Associated Enterococci from Enterococcus hirae to Biofilm-Forming Enterococcus faecalis and Adherent Escherichia coli

    PubMed Central

    Ghosh, Anuradha; Borst, Luke; Stauffer, Stephen H.; Suyemoto, Mitsu; Moisan, Peter; Zurek, Ludek

    2013-01-01

    Approximately 15% of foster kittens die before 8 weeks of age, with most of these kittens demonstrating clinical signs or postmortem evidence of enteritis. While a specific cause of enteritis is not determined in most cases, these kittens are often empirically administered probiotics that contain enterococci. The enterococci are members of the commensal intestinal microbiota but also can function as opportunistic pathogens. Given the complicated role of enterococci in health and disease, it would be valuable to better understand what constitutes a “healthy” enterococcal community in these kittens and how this microbiota is impacted by severe illness. In this study, we characterized the ileum mucosa-associated enterococcal community of 50 apparently healthy and 50 terminally ill foster kittens. In healthy kittens, Enterococcus hirae was the most common species of ileum mucosa-associated enterococci and was often observed to adhere extensively to the small intestinal epithelium. These E. hirae isolates generally lacked virulence traits. In contrast, non-E. hirae enterococci, notably Enterococcus faecalis, were more commonly isolated from the ileum mucosa of kittens with terminal illness. Isolates of E. faecalis had numerous virulence traits and multiple antimicrobial resistances. Moreover, the attachment of Escherichia coli to the intestinal epithelium was significantly associated with terminal illness and was not observed in any kitten with adherent E. hirae. These findings identify a significant difference in the species of enterococci cultured from the ileum mucosa of kittens with terminal illness compared to the species cultured from healthy kittens. In contrast to prior case studies that associated enteroadherent E. hirae with diarrhea in young animals, these controlled studies identified E. hirae as more often isolated from healthy kittens and adherence of E. hirae as more common and extensive in healthy kittens than in sick kittens. PMID:23966487

  15. L-lactate production from biodiesel-derived crude glycerol by metabolically engineered Enterococcus faecalis: cytotoxic evaluation of biodiesel waste and development of a glycerol-inducible gene expression system.

    PubMed

    Doi, Yuki

    2015-03-01

    Biodiesel waste is a by-product of the biodiesel production process that contains a large amount of crude glycerol. To reuse the crude glycerol, a novel bioconversion process using Enterococcus faecalis was developed through physiological studies. The E. faecalis strain W11 could use biodiesel waste as a carbon source, although cell growth was significantly inhibited by the oil component in the biodiesel waste, which decreased the cellular NADH/NAD(+) ratio and then induced oxidative stress to cells. When W11 was cultured with glycerol, the maximum culture density (optical density at 600 nm [OD600]) under anaerobic conditions was decreased 8-fold by the oil component compared with that under aerobic conditions. Furthermore, W11 cultured with dihydroxyacetone (DHA) could show slight or no growth in the presence of the oil component with or without oxygen. These results indicated that the DHA kinase reaction in the glycerol metabolic pathway was sensitive to the oil component as an oxidant. The lactate dehydrogenase (Ldh) activity of W11 during anaerobic glycerol metabolism was 4.1-fold lower than that during aerobic glycerol metabolism, which was one of the causes of low l-lactate productivity. The E. faecalis pflB gene disruptant (Δpfl mutant) expressing the ldhL1LP gene produced 300 mM l-lactate from glycerol/crude glycerol with a yield of >99% within 48 h and reached a maximum productivity of 18 mM h(-1) (1.6 g liter(-1) h(-1)). Thus, our study demonstrates that metabolically engineered E. faecalis can convert crude glycerol to l-lactate at high conversion efficiency and provides critical information on the recycling process for biodiesel waste. PMID:25576618

  16. l-Lactate Production from Biodiesel-Derived Crude Glycerol by Metabolically Engineered Enterococcus faecalis: Cytotoxic Evaluation of Biodiesel Waste and Development of a Glycerol-Inducible Gene Expression System

    PubMed Central

    2015-01-01

    Biodiesel waste is a by-product of the biodiesel production process that contains a large amount of crude glycerol. To reuse the crude glycerol, a novel bioconversion process using Enterococcus faecalis was developed through physiological studies. The E. faecalis strain W11 could use biodiesel waste as a carbon source, although cell growth was significantly inhibited by the oil component in the biodiesel waste, which decreased the cellular NADH/NAD+ ratio and then induced oxidative stress to cells. When W11 was cultured with glycerol, the maximum culture density (optical density at 600 nm [OD600]) under anaerobic conditions was decreased 8-fold by the oil component compared with that under aerobic conditions. Furthermore, W11 cultured with dihydroxyacetone (DHA) could show slight or no growth in the presence of the oil component with or without oxygen. These results indicated that the DHA kinase reaction in the glycerol metabolic pathway was sensitive to the oil component as an oxidant. The lactate dehydrogenase (Ldh) activity of W11 during anaerobic glycerol metabolism was 4.1-fold lower than that during aerobic glycerol metabolism, which was one of the causes of low l-lactate productivity. The E. faecalis pflB gene disruptant (Δpfl mutant) expressing the ldhL1LP gene produced 300 mM l-lactate from glycerol/crude glycerol with a yield of >99% within 48 h and reached a maximum productivity of 18 mM h−1 (1.6 g liter−1 h−1). Thus, our study demonstrates that metabolically engineered E. faecalis can convert crude glycerol to l-lactate at high conversion efficiency and provides critical information on the recycling process for biodiesel waste. PMID:25576618

  17. In Vivo Assessment of Growth and Virulence Gene Expression during Commensal and Pathogenic Lifestyles of luxABCDE-Tagged Enterococcus faecalis Strains in Murine Gastrointestinal and Intravenous Infection Models

    PubMed Central

    Casey, Pat G.; Hill, Colin; Diep, Dzung B.; Nes, Ingolf F.

    2013-01-01

    Cytolysin and gelatinase are prominent pathogenicity determinants associated with highly virulent Enterococcus faecalis strains. In an effort to explore the expression profiles of these virulence traits in vivo, we have employed E. faecalis variants expressing the luxABCDE cassette under the control of either the P16S, cytolysin, or gelatinase promoter for infections of Galleria mellonella caterpillars and mice. Systemic infection of G. mellonella with bioluminescence-tagged E. faecalis MMH594 revealed temporal regulation of both gelatinase and cytolysin promoters and demonstrated that these traits were induced in response to the host environment. Gavage of mice pretreated perorally with antibiotics resulted in efficient colonization of the murine gastrointestinal tract (GIT) in a strain-dependent manner, where the commensal baby isolate EF62 was more persistent than the nosocomial isolate MMH594. A highly significant correlation (R2 > 0.94) was found between bioluminescence and the CFU counts in mouse fecal samples. Both strains showed similar preferences for growth and persistence in the ileum, cecum, and colon. Cytolysin expression was uniform in these compartments of the intestinal lumen. In spite of high numbers (109 CFU/g of intestinal matter) in the ileum, cecum, and colon, no evidence of translocation or systemic infection could be observed. In the murine intravenous infection model, cytolysin expression was readily detected in the liver, kidneys, and bladder. At 72 h postinfection, the highest bacterial loads were found in the liver, kidneys, and spleen, with organ-specific expression levels of cytolysin ∼400- and ∼900-fold higher in the spleen and heart, respectively, than in the liver and kidneys. Taken together, this system based on the bioluminescence imaging technology is established as a new, powerful method to monitor the differential regulation of E. faecalis virulence determinants and to study the spatiotemporal course of infection in living

  18. Use of Recombinase-Based In Vivo Expression Technology To Characterize Enterococcus faecalis Gene Expression during Infection Identifies In Vivo-Expressed Antisense RNAs and Implicates the Protease Eep in Pathogenesis

    PubMed Central

    Barnes, Aaron M. T.; Grindle, Suzanne M.; Manias, Dawn A.; Schlievert, Patrick M.; Dunny, Gary M.

    2012-01-01

    Enterococcus faecalis is a member of the mammalian gastrointestinal microflora that has become a leading cause of nosocomial infections over the past several decades. E. faecalis must be able to adapt its physiology based on its surroundings in order to thrive in a mammalian host as both a commensal and a pathogen. We employed recombinase-based in vivo expression technology (RIVET) to identify promoters on the E. faecalis OG1RF chromosome that were specifically activated during the course of infection in a rabbit subdermal abscess model. The RIVET screen identified 249 putative in vivo-activated loci, over one-third of which are predicted to generate antisense transcripts. Three predicted antisense transcripts were detected in in vitro- and in vivo-grown cells, providing the first evidence of in vivo-expressed antisense RNAs in E. faecalis. Deletions in the in vivo-activated genes that encode glutamate 5-kinase (proB [EF0038]), the transcriptional regulator EbrA (ebrA [EF1809]), and the membrane metalloprotease Eep (eep [EF2380]) did not hinder biofilm formation in in vitro assays. In a rabbit model of endocarditis, the ΔebrA strain was fully virulent, the ΔproB strain was slightly attenuated, and the Δeep strain was severely attenuated. The Δeep virulence defect could be complemented by the expression of the wild-type gene in trans. Microscopic analysis of early Δeep biofilms revealed an abundance of small cellular aggregates that were not observed in wild-type biofilms. This work illustrates the use of a RIVET screen to provide information about the temporal activation of genes during infection, resulting in the identification and confirmation of a new virulence determinant in an important pathogen. PMID:22144481

  19. Cloning and genetic and sequence analyses of the bacteriocin 21 determinant encoded on the Enterococcus faecalis pheromone-responsive conjugative plasmid pPD1.

    PubMed Central

    Tomita, H; Fujimoto, S; Tanimoto, K; Ike, Y

    1997-01-01

    The pheromone-responsive conjugative plasmid pPD1 (59 kb) of Enterococcus faecalis encodes the bacteriocin 21 (bac21) determinant. Cloning, transposon insertion mutagenesis and sequence analysis of the bac21 determinant showed that an 8.5-kb fragment lying between kb 27.1 and 35.6 of the pPD1 map is required for complete expression of the bacteriocin. The 8.5-kb fragment contained nine open reading frames (ORFs), bacA to bac1, which were oriented in the same (upstream-to-downstream) direction. Transposon insertions into the bacA to bacE ORFs, which are located in the proximal half of bac21, resulted in defective bacteriocin expression. Insertions into the bacF to bac1 ORFs, which are located in the distal half of bac21, resulted in reduced bacteriocin expression. Deletion mutant analysis of the cloned 8.5-kb fragment revealed that the deletion of segments between kb 31.6 and 35.6 of the pPD1 map, which contained the distal region of the determinant encoding bacF to bac1, resulted in reduced bacteriocin expression. The smallest fragment (4.5 kb) retaining some degree of bacteriocin expression contained the bacA to bacE sequences located in the proximal half of the determinant. The cloned fragment encoding the 4.5-kb proximal region and a Tn916 insertion mutant into pPD1 bacB trans-complemented intracellularly to give complete expression of the bacteriocin. bacA encoded a 105-residue sequence with a molecular mass of 11.1 kDa. The deduced BacA protein showed 100% homology to the broad-spectrum antibiotic peptide AS-48, which is encoded on the E. faecalis conjugative plasmid pMB2 (58 kb). bacH encoded a 195-residue sequence with a molecular mass of 21.9 kDa. The deduced amino acid sequence showed significant homology to the C-terminal region of HlyB (31.1% identical residues), a protein located in the Escherichia coli alpha-hemolysin operon that is a representative bacterial ATP-binding cassette export protein. PMID:9401046

  20. Comparative Evaluation of Antimicrobial Activity of QMiX, 2.5% Sodium Hypochlorite, 2% Chlorhexidine, Guava Leaf Extract and Aloevera Extract Against Enterococcus faecalis and Candida albicans – An in-vitro Study

    PubMed Central

    Krishnamma,