Sample records for alcatel alenia space

  1. Alenia Spazio: Space Programs for Solar System Exploration .

    NASA Astrophysics Data System (ADS)

    Ferri, A.

    Alenia Spazio is the major Italian space industry and one of the largest in Europe, with 2,400 highly skilled employees and 16,000 square meters of clean rooms and laboratories for advanced technological research that are among the most modern and well-equipped in Europe. The company has wide experience in the design, development, assembly, integration, verification and testing of complete space systems: satellites for telecommunications and navigation, remote sensing, meteorology and scientific applications; manned systems and space infrastructures; launch, transport and re-entry systems, and control centres. Alenia Spazio has contributed to the construction of over 200 satellites and taken part in the most important national and international space programmes, from the International Space Station to the new European global navigation system Galileo. Focusing on Solar System exploration, in the last 10 years the Company took part, with different roles, to the major European and also NASA missions in the field: Rosetta, Mars Express, Cassini; will soon take part in Venus Express, and is planning the future with Bepi Colombo, Solar Orbiter, GAIA and Exomars. In this paper, as in the presentation, a very important Earth Observation mission is also presented: GOCE. All in all, the Earth is by all means part of the Solar system as well and we like to see it as a planet to be explored.

  2. Alcatel Telecom Transforms Technicians into Managers

    ERIC Educational Resources Information Center

    Education & Training, 2002

    2002-01-01

    Investigates the ways in which Alcatel Telecom attempts to smooth the transition of its employees from technical to business manager. Focuses on the Alcatel centre at Antwerp University, Belgium, which provides training in entrepreneurship, leadership, teamwork, the Alcatel culture and strategy, the dynamics of the telecommunications market,…

  3. CeSiCò - a new technology for lightweight and cost effective space instruments structures and mirrors

    NASA Astrophysics Data System (ADS)

    Devilliers, Christophe; Krödel, Matthias

    2017-11-01

    Alcatel Alenia Space and ECM have jointly developed a new ceramic material to produce lightweight, stiff, stable and cost effective structures and mirrors for space instrument the CesicÒ. Its intrinsic properties, added to ample manufacturing capabilities allow to manufacture stiff and lightweight cost effective mirrors and structure for space instruments. Different scale 1 flight representative CesicÒ optical structures have been manufactured and successfully tested under very strong dynamic environment and cryogenic condition down to 30K CesicÒ is also envisaged for large and lightweight space telescopes mirrors, a large CesicÒ 1 meter class mirror with an area mass of less than 25 Kg/m2 has been sized again launch loads and WFE performance and manufactured. CesicÒ applicability for large focal plane have been demonstrated through different scale 1 breadboards. Based on these successful results, AlcatelAleniaSpace and ECM are now in position to propose for space this technology with new innovative concepts thanks to the CesicÒ manufacturing capabilities. CesicÒ has therefore been selected for the structure and mirrors parts of a flight instrument payload and the manufacturing of the flight hardware is already underway. An high temperature high gain lightweight antenna breadboard is also under manufacturing for Bepi colombo mission. CesicÒ is therefore a good candidate for future challenging space instruments and is currently proposed for Japan and US space projects.

  4. Silicon nitride ceramic development in Thales Alenia Space : qualification achievement and further developments for future applications

    NASA Astrophysics Data System (ADS)

    Cornillon, L.; Devilliers, C.; Behar-Lafenetre, S.; Ait-Zaid, S.; Berroth, K.; Bravo, A. C.

    2017-11-01

    Dealing with ceramic materials for more than two decades, Thales Alenia Space - France has identified Silicon Nitride Si3N4 as a high potential material for the manufacturing of stiff, stable and lightweight truss structure for future large telescopes. Indeed, for earth observation or astronomic observation, space mission requires more and more telescopes with high spatial resolution, which leads to the use of large primary mirrors, and a long distance between primary and secondary mirrors. Therefore current and future large space telescopes require a huge truss structure to hold and locate precisely the mirrors. Such large structure requires very strong materials with high specific stiffness and a low coefficient of thermal expansion (CTE). Based on the silicon nitride performances and on the know how of FCT Ingenieurkeramik to manufacture complex parts, Thales Alenia Space (TAS) has engaged, in cooperation with FCT, activities to develop and qualify silicon nitride parts for other applications for space projects.

  5. Silicon nitride ceramic development in Thales Alenia Space: qualification achiement and further developments for future applications

    NASA Astrophysics Data System (ADS)

    Cornillon, L.; Devilliers, C.; Behar-Lafenetre, S.; Ait-Zaid, S.; Berroth, K.; Bravo, A. C.

    2017-11-01

    Dealing with ceramic materials for more than two decades, Thales Alenia Space - France has identified Silicon Nitride Si3N4 as a high potential material for the manufacturing of stiff, stable and lightweight truss structure for future large telescopes. Indeed, for earth observation or astronomic observation, space mission requires more and more telescopes with high spatial resolution, which leads to the use of large primary mirrors, and a long distance between primary and secondary mirrors. Therefore current and future large space telescopes require a huge truss structure to hold and locate precisely the mirrors. Such large structure requires very strong materials with high specific stiffness and a low coefficient of thermal expansion (CTE). Based on the silicon nitride performances and on the know how of FCT Ingenieurkeramik to manufacture complex parts, Thales Alenia Space (TAS) has engaged, in cooperation with FCT, activities to develop and qualify silicon nitride parts for other applications for space projects.

  6. The Science and Technology in Future Remote Sensing Space Missions of Alenia Aerospazio

    NASA Astrophysics Data System (ADS)

    Angino, G.; Borgarelli, L.

    1999-12-01

    The Space Division of Alenia Aerospazio, a Finmeccanica company, is the major Italian space industry. It has, in seven plants, design facilities and laboratories for advanced technological research that are amongst the most modern and well equipped in Europe. With the co-ordinated companies Alenia Aerospazio is one of Europe's largest space industries. In the field of Remote Sensing, i.e. the acquisition of information about objects without being in physical contact with them, the Space Division has proven their capability to manage all of the techniques from space (ranging from active instruments as Synthetic Aperture Radar, Radar Altimeter, Scatterometer, etc… to passive ones as radiometer) in different programs with the main international industries and agencies. Space techniques both for Monitoring/Observation (i.e. operational applications) and Exploration (i.e. research for science demonstration) according to the most recent indication from international committees constitute guidelines. The first is devoted to market for giving innovation, added-value to services and, globally, enhancement of quality of life. The second has the basic purpose of pursuing the scientific knowledge. Advanced technology allows to design for multi-functions instruments (easy in configuration, adaptable to impredictable environment), to synthesise, apparently, opposite concepts (see for instance different requirement from military and civil applications). Space Division of Alenia Aerospazio has knowledge and capability to face the challenge of new millennium in space missions sector. In this paper, it will be described main remote sensing missions in which Space Division is involved both in terms of science and technology definition. Two main segments can be defined: Earth and interplanetary missions. To the first belong: ENVISAT (Earth surface), LIGHTSAR (Earth imaging), CRYOSAT (Earth ice) and to the second: CASSINI (study of Titan and icy satellites), MARS EXPRESS (detection

  7. Preliminary performances measured on a CMOS long linear array for space application

    NASA Astrophysics Data System (ADS)

    Renard, Christophe; Artinian, Armand; Dantes, Didier; Lepage, Gérald; Diels, Wim

    2017-11-01

    This paper presents the design and the preliminary performances of a CMOS linear array, resulting from collaboration between Alcatel Alenia Space and Cypress Semiconductor BVBA, which takes advantage of emerging potentialities of CMOS technologies. The design of the sensor is presented: it includes 8000 panchromatic pixels with up to 25 rows used in TDI mode, and 4 lines of 2000 pixels for multispectral imaging. Main system requirements and detector tradeoffs are recalled, and the preliminary test results obtained with a first generation prototype are summarized and compared with predicted performances.

  8. The HSOB GAIA: a cryogenic high stability cesic optical bench for missions requiring sub-nanometric optical stability

    NASA Astrophysics Data System (ADS)

    Courteau, Pascal; Poupinet, Anne; Kroedel, Mathias; Sarri, Giuseppe

    2017-11-01

    Global astrometry, very demanding in term of stability, requires extremely stable material for optical bench. CeSiC developed by ECM and Alcatel Alenia Space for mirrors and high stability structures, offers the best compromise in term of structural strength, stability and very high lightweight capability, with characteristics leading to be insensitive to thermo-elastic at cryogenic T°. The HSOB GAIA study realised by Alcatel Alenia Space under ESA contract aimed to design, develop and test a full scale representative High Stability Optical Bench in CeSiC. The bench has been equipped with SAGEIS-CSO laser metrology system MOUSE1, Michelson interferometer composed of integrated optics with a nm resolution. The HSOB bench has been submitted to an homogeneous T° step under vacuum to characterise the homothetic behaviour of its two arms. The quite negligible inter-arms differential measured with a nm range reproducibility, demonstrates that a complete 3D structure in CeSiC has the same CTE homogeneity as characterisation samples, fully in line with the GAIA need (1pm at 120K). This participates to the demonstration that CeSiC properties at cryogenic T° is fully appropriate to the manufacturing of complex highly stable optical structures. This successful study confirms ECM and Alcatel Alenia Space ability to define and manufacture monolithic lightweight highly stable optical structures, based on inner cells triangular design made only possible by the unique CeSiC manufacturing process.

  9. The CALIPSO Integrated Thermal Control Subsystem

    NASA Technical Reports Server (NTRS)

    Gasbarre, Joseph F.; Ousley, Wes; Valentini, Marc; Thomas, Jason; Dejoie, Joel

    2007-01-01

    The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) is a joint NASA-CNES mission to study the Earth's cloud and aerosol layers. The satellite is composed of a primary payload (built by Ball Aerospace) and a spacecraft platform bus (PROTEUS, built by Alcatel Alenia Space). The thermal control subsystem (TCS) for the CALIPSO satellite is a passive design utilizing radiators, multi-layer insulation (MLI) blankets, and both operational and survival surface heaters. The most temperature sensitive component within the satellite is the laser system. During thermal vacuum testing of the integrated satellite, the laser system's operational heaters were found to be inadequate in maintaining the lasers required set point. In response, a solution utilizing the laser system's survival heaters to augment the operational heaters was developed with collaboration between NASA, CNES, Ball Aerospace, and Alcatel-Alenia. The CALIPSO satellite launched from Vandenberg Air Force Base in California on April 26th, 2006. Evaluation of both the platform and payload thermal control systems show they are performing as expected and maintaining the critical elements of the satellite within acceptable limits.

  10. The Calipso Thermal Control Subsystem

    NASA Technical Reports Server (NTRS)

    Gasbarre, Joseph F.; Ousley, Wes; Valentini, Marc; Thomas, Jason; Dejoie, Joel

    2007-01-01

    The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) is a joint NASA-CNES mission to study the Earth s cloud and aerosol layers. The satellite is composed of a primary payload (built by Ball Aerospace) and a spacecraft platform bus (PROTEUS, built by Alcatel Alenia Space). The thermal control subsystem (TCS) for the CALIPSO satellite is a passive design utilizing radiators, multi-layer insulation (MLI) blankets, and both operational and survival surface heaters. The most temperature sensitive component within the satellite is the laser system. During thermal vacuum testing of the integrated satellite, the laser system s operational heaters were found to be inadequate in maintaining the lasers required set point. In response, a solution utilizing the laser system s survival heaters to augment the operational heaters was developed with collaboration between NASA, CNES, Ball Aerospace, and Alcatel-Alenia. The CALIPSO satellite launched from Vandenberg Air Force Base in California on April 26th, 2006. Evaluation of both the platform and payload thermal control systems show they are performing as expected and maintaining the critical elements of the satellite within acceptable limits.

  11. Planck satellite to be presented to media

    NASA Astrophysics Data System (ADS)

    2007-01-01

    at Orsay (France) in the case of HFI, and by the Istituto di Astrofisica Spaziale e Fisica Cosmica (IASF) in Bologna (Italy) in that of LFI. There are also numerous subcontractors spread throughout Europe, with several more in the USA. For further information, please contact: ESA Media Relations Office Tel: +33(0)1.53.69.7155 Fax: +33(0)1.53.69.7690 Press event programme 1 February 2007, 10:00 am Alcatel Alenia Space 100 Boulevard du Midi, Cannes (France) 10:00 - 10:05 - Opening address, by Patrick Maute - Head of Optical Observation and Science Programmes - Alcatel Alenia Space, and by Jacques Louet - Head of Science Projects - ESA 10:05 - 10:15 - Herschel/Planck Mission overview, by Thomas Passvogel - Planck Project Manager - ESA 10:15 - 10:25 - Planck satellite, by Jean-Jacques Juillet - Programme Manager - Alcatel Alenia Space 10:25 - 10:35 - The scientific mission, by Jan Tauber - Planck Project Scientist - ESA 10:35 - 10:45 - The High-Frequency Instrument, by Jean-Loup Puget - HFI Principal Investigator 10:45 - 10:55 - The Low-Frequency Instrument, by Reno Mandolesi - LFI Principal Investigator 10:55 - 11:05 - Special guest - Nobel prize winner G.F. Smoot 11:05 - 11:25 - Questions and answers 11:25 - 12:35 - Visit of the integration room to see Planck spacecraft and face-to-face interviews 12:45 - 14:30 - Lunch hosted by Alcatel Alenia Space.

  12. Hazardous Waste Cleanup: Alcatel-Lucent USA Incorporated, in Murray Hill, New Jersey

    EPA Pesticide Factsheets

    Alcatel-Lucent, formerly known as Lucent Technologies Inc., or its predecessors including AT&T Bell Laboratories (Bell Lab), has occupied the Site since the 1940s. The site consists of approximately 200 acres and located at 600 Mountain Avenue, Murray

  13. Multi-axial interferometry: demonstration of deep nulling

    NASA Astrophysics Data System (ADS)

    Buisset, Christophe; Rejeaunier, Xavier; Rabbia, Yves; Ruilier, Cyril; Barillot, Marc; Lierstuen, Lars; Perdigués Armengol, Josep Maria

    2017-11-01

    The ESA-Darwin mission is devoted to direct detection and spectroscopic characterization of earthlike exoplanets. Starlight rejection is achieved by nulling interferometry from space so as to make detectable the faintly emitting planet in the neighborhood. In that context, Alcatel Alenia Space has developed a nulling breadboard for ESA in order to demonstrate in laboratory conditions the rejection of an on-axis source. This device, the Multi Aperture Imaging Interferometer (MAII) demonstrated high rejection capability at a relevant level for exoplanets, in singlepolarized and mono-chromatic conditions. In this paper we report on the new multi-axial configuration of MAII and we summarize our late nulling results.

  14. Experimental Galileo System Time (E-GST): One Year of Real-Time Experiment

    DTIC Science & Technology

    2004-12-01

    operations at the E-PTS in the current configuration. The frequency output of the H-maser is fed to a high-accuracy phase micro -stepper (namely an...turn, GaIn is a joint company consisting of Alenia Spazio, Alcatel Industries, Astrium GmbH, Astrium Ltd., and GSS (Galileo Sistemas y Servicios

  15. Fulfillment of HTTP Authentication Based on Alcatel OmniSwitch 9700

    NASA Astrophysics Data System (ADS)

    Liu, Hefu

    This paper provides a way of HTTP authentication On Alcatel OmniSwitch 9700. Authenticated VLANs control user access to network resources based on VLAN assignment and user authentication. The user can be authenticated through the switch via any standard Web browser software. Web browser client displays the username and password prompts. Then a way for HTML forms can be given to pass HTTP authentication data when it's submitted. A radius server will provide a database of user information that the switch checks whenever it tries to authenticate through the switch. Before or after authentication, the client can get an address from a Dhcp server.

  16. National Workshop on Astrobiology: The Life Science Involvement of AAS I Laben

    NASA Astrophysics Data System (ADS)

    Adami, Giorgio

    2006-12-01

    The search for traces of past and present life is a complex and multidisciplinary research activity involving several scientific heritages and a specific industrial ability for planetary exploration. Laben was established in 1958 to design and manufacture electronic instruments for research in nuclear physics. In the mid 2004 the company was merged with Alenia Spazio. It is now part of Alcatel Alenia Space, a French Italian joint venture. Alcatel Alenia Space Italia SpA is a Finmeccanica Company. Currently the plant of Vimodrone provides a wide heritage in life science oriented to space application. The experience in Space Life Science is consolidated in the following research areas: (1) Physiology: Mouse models related to studies on human physiology Human neuroscience research and dosimetry (2) Animal Adaptation and Behaviour: mice behaviour related to stabling stress (3) Developmental Biology: aquatic microorganisms cultivation (4) Cell culture & Biotechnology: Protein crystal growth General purpose Multiwell Next Biotechnology studies and development: Bio reactor, mainly oriented to tissue engineering Microsensor for tissue control (organ replacement) Multiwell for adherent cell culture or

  17. Italian aerospace company Alenia prepare TSS-1R in O&C

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Employees of the Italian aerospace company Alenia Spazio S.p.A. prepare the Tethered Satellite System-1R (TSS-1R) that is one of two primary payloads scheduled to fly aboard the Orbiter Columbia during the STS-75 mission in early 1996 for a series of tests in the Operations and Checkout (O&C) Building. The TSS program is a joint venture between NASA and the Agenzia Spaziale Italiana, or Italian Space Agency. The 'R' designation indicates a reflight. The TSS-1 flew aboard Atlantis during the STS-46 mission in July 1992 and achieved only a partial success when its tether reel mechanism became jammed after only approximately 840 feet of the 12-mile-long tether had been unwound as the satellite rose from its cradle in the orbiter's payload bay. Once deployed to the 12- mile height on the STS-75 mission, the satellite will be used to validate theories that such a system could possibly be used in the future to generate electrical power to power orbital systems, raise and lower spacecraft, study atmospheric conditions at several different heights and for many other applications.

  18. MOST: Modeling of SpaceWire & SpaceFibre Traffic- Applications and Operations: On-Board Segment

    NASA Astrophysics Data System (ADS)

    Dellandrea, Brice; Gouin, Baptiste; Parkes, Steve; Jameux, David

    2014-08-01

    MOST(Modeling of SpaceWire Traffic) is a representative and powerful SpaceWire traffic simulator designed to support conception, development and validation of SpaceWire networks. MOST is developed by Thales Alenia Space France (TAS-F) for the European Space Agency (ESA) and for the benefits of the SpaceWire communityThis tool was already presented in DASIA 2011 [6] and DASIA 2012 [7] as Thales Alenia Space was finishing its first step of development. Since then, the software has reached a TRL mature enough to start distributing MOST v2.2r2 to the SpaceWire community under ESA license. This released version will be presented in this paperMoreover, TAS-F is currently developing a major extension of the MOST library targeting the inclusion of S paceFibre [5] components under an University of Du ndee sub-contract. These new features will be also presented in this document.

  19. Corot telescope (COROTEL)

    NASA Astrophysics Data System (ADS)

    Viard, Thierry; Mathieu, Jean-Claude; Fer, Yann; Bouzou, Nathalie; Spalinger, Etienne; Chataigner, Bruno; Bodin, Pierre; Magnan, Alain; Baglin, Annie

    2017-11-01

    COROTEL is the telescope of the COROT Satellite which aims at measuring stellar flux variations very accurately. To perform this mission, COROTEL has to be very well protected against straylight (from Sun and Earth) and must be very stable with time. Thanks to its high experience in this field, Alcatel Alenia Space has proposed, manufactured and tested an original telescope concept associated with a high baffling performance. Since its delivery to LAM (Laboratoire d'Astrophysique de Marseille, CNRS) the telescope has passed successfully the qualification tests at instrument level performed by CNES. Now, the instrument is mounted on a Proteus platform and should be launched end of 2006. The satellite should bring to scientific community for the first time precious data coming from stars and their possible companions.

  20. The FLECS expandable module concept for future space missions and an overall description on the material validation

    NASA Astrophysics Data System (ADS)

    Mileti, Sandro; Guarrera, Giuseppe; Marchetti, Mario; Ferrari, Giorgio; Nebiolo, Marco; Augello, Gerlando; Bitetti, Grazia; Carnà, Emiliano; Marranzini, Andrea; Mazza, Fabio

    2006-07-01

    The future space exploration missions aim to reduce the costs associated with design, fabrication and launch for ISS, Moon and Mars modules, while simultaneously increasing the useful volume. Flexible and inflatable structures offer many advantages over conventional structures for space applications. Principal among the advantages is the ability to package these structures into small volumes for launch. Design maturation and the development of advanced materials and fabrication processes have made the concept of an inflatable module achievable in the near future. The Multipurpose Expandable Module (FLECS) Project sponsored by ASI (Italian Space Agency) whose prime contractor is Alcatel Alenia Space Italia, links the conventional and traditional technology of modules with the innovative solutions of inflatable technology. This project emphasizes on demonstrating the capability in using inflatable technology on space structures aiming to substitute the conventional modules in future manned missions. FLECS has been designed using advanced textiles and films in order to guarantee the structural reliability necessary for the deployment and packaging configurations. A non-linear structural analysis has been conducted using several numerical codes that simulate the deployed structural characteristics achieving also the damping resistance during the packaging. All the materials used for the flexible parts have been selected through a series of mechanical tests in order to validate the more appropriate ones for the mission. The multi-layer pneumatic retention bladder and the intermediate restraint layer are composed of polymer sheets, ortho-fabrics and elastomers like polyurethanes. The External protection shield is configured using several layers of impact absorption materials and also several layers of space environment (UV, IR, atomic oxygen) protection materials such as Kapton, Mylar and Nextel. The validation of the fabrics, the films and the final prototype assembly

  1. A Jupiter Ganymede Orbiter for the EJSM mission: the JGO assessment phase study by the Thales Alenia Space consortium

    NASA Astrophysics Data System (ADS)

    Poncy, Joel; Couzin, Patrice; Mercier, Manuel; Boschetti, Demis

    2010-05-01

    ESA and NASA have undertaken advanced studies of a common mission to Jupiter's system, EJSM (Europa Jupiter System Mission). This mission comprises two spacecrafts launched independently in 2020 and reaching the system in 2026. This is a one-in-a-generation opportunity for Europe to contribute significantly to the science of this part of the Solar System, and as such, all efforts shall subsequently be made to maximize the scientific return without jeopardizing the technical and programmatic feasibility of the mission. A sub-glacial ocean on Europa and potentially two others on Ganymede and Callisto, the monitoring of Io's volcanic activity, the upper atmosphere of Jupiter, its rings, its tens of irregular moons, the tides, the magnetic fields of Jupiter and Ganymede and the behaviour of the plasma, the list of science objectives is not only impressive but also generates enthusiasm in the mission. In this NASA-ESA joint mission, NASA will take charge of both Io and Europa with the Jupiter Europa Orbiter (JEO). Europe will get a fascinating share with the Jupiter Ganymede Orbiter (JGO), which will achieve the close study of the two largest and outermost Galilean moons Ganymede and Callisto and in addition, at-a-distance, the observation of the other targets mentioned above. ESA has awarded three industrial contracts for an assessment phase of JGO. As leader of one of the consortia, Thales Alenia Space is proud to present in this poster its achievements on this exciting mission. The requirements are discussed and the mission drivers identified. The main trades and the resulting architecture are recalled, along with the main selection drivers. The major system interrelated trades have covered the launcher and propulsion type, the number of regulated phases, the strategy for communications and science timeline, the need for HGA pointing, the sizing and configuration of the Solar Array, the accommodation of external appendages, the accommodation of the payload, the

  2. Classes Azur Astro Espace International Hands-on Space Experience

    NASA Astrophysics Data System (ADS)

    Jung, P.

    2002-01-01

    Created in 1994 in the wake of the closure of the Space Camp of Patrick Baudry in Cannes, Classes Azur Astro Espace (AAE) provide a world's unique combination of space and astronomy courses, as given by active and retired professionals of two of the best space and astronomical facilities extant: Alcatel Space in Cannes and Observatoire de la Côte d'Azur (OCA) in Nice, Grasse and Caussols. Fifteen space modules, of 30 to 60 minutes each, have been established, giving simple and clear explanations on launchers, satellites, their applications, their development, together with an historical background. Basic experiments are included, such as an unique small catapult to explain gravity, or more classical water rockets. The basic AAE sojourn extends over 3 days: one day for space (including a visit of Alcatel Space, the biggest satellite manufacturer outside the US and Russia), one day for astronomy (including a visit of the biggest observatory in Europe) and one day à-la-carte (Côte d'Azur offers much, such as the Oceanographic Museum in Monaco). More and more groups are adding a fourth day, with a visit to the nice old village of Perinaldo in Italy, where famous astronomer Cassini was born. Lycée de Cachan, near Paris, even takes 12-day sojourns every year. The public has been extremely wide, from age 5 to 70, from students to enthusiasts. Coming initially all over from France, participants now include since 2001 German and Italian pupils and teachers. In 2001 also, ESA came in the shape of a Space Camp. ISU's Master of Space Studies participates to a shortened version of AAE every even-year. Up to the end of 2001, 62 classes with 2,025 participants from 20 countries had thus come to enjoy space education on Côte d'Azur. Such success is due in no small part to the very attractive price and flexibility of these activities, notably thanks to the support of ESA, CNES, Rectorat d'Académie de Nice, Conseil Général des Alpes-Maritimes, Ville de Cannes, AAAF, TDF

  3. High resolution earth observation from geostationary orbit by optical aperture synthesys

    NASA Astrophysics Data System (ADS)

    Mesrine, M.; Thomas, E.; Garin, S.; Blanc, P.; Alis, C.; Cassaing, F.; Laubier, D.

    2017-11-01

    In this paper, we describe Optical Aperture Synthesis (OAS) imaging instrument concepts studied by Alcatel Alenia Space under a CNES R&T contract in term of technical feasibility. First, the methodology to select the aperture configuration is proposed, based on the definition and quantification of image quality criteria adapted to an OAS instrument for direct imaging of extended objects. The following section presents, for each interferometer type (Michelson and Fizeau), the corresponding optical configurations compatible with a large field of view from GEO orbit. These optical concepts take into account the constraints imposed by the foreseen resolution and the implementation of the co-phasing functions. The fourth section is dedicated to the analysis of the co-phasing methodologies, from the configuration deployment to the fine stabilization during observation. Finally, we present a trade-off analysis allowing to select the concept wrt mission specification and constraints related to instrument accommodation under launcher shroud and in-orbit deployment.

  4. ESO Signs Largest-Ever European Industrial Contract For Ground-Based Astronomy Project ALMA

    NASA Astrophysics Data System (ADS)

    2005-12-01

    ESO, the European Organisation for Astronomical Research in the Southern Hemisphere, announced today that it has signed a contract with the consortium led by Alcatel Alenia Space and composed also of European Industrial Engineering (Italy) and MT Aerospace (Germany), to supply 25 antennas for the Atacama Large Millimeter Array (ALMA) project, along with an option for another seven antennas. The contract, worth 147 million euros, covers the design, manufacture, transport and on-site integration of the antennas. It is the largest contract ever signed in ground-based astronomy in Europe. The ALMA antennas present difficult technical challenges, since the antenna surface accuracy must be within 25 microns, the pointing accuracy within 0.6 arc seconds, and the antennas must be able to be moved between various stations on the ALMA site. This is especially remarkable since the antennas will be located outdoor in all weather conditions, without any protection. Moreover, the ALMA antennas can be pointed directly at the Sun. ALMA will have a collecting area of more than 5,600 square meters, allowing for unprecedented measurements of extremely faint objects. The signing ceremony took place on December 6, 2005 at ESO Headquarters in Garching, Germany. "This contract represents a major milestone. It allows us to move forward, together with our American and Japanese colleagues, in this very ambitious and unique project," said ESO's Director General, Dr. Catherine Cesarsky. "By building ALMA, we are giving European astronomers access to the world's leading submillimetre facility at the beginning of the next decade, thereby fulfilling Europe's desire to play a major role in this field of fundamental research." Pascale Sourisse, Chairman and CEO of Alcatel Alenia Space, said: "We would like to thank ESO for trusting us to take on this new challenge. We are bringing to the table not only our recognized expertise in antenna development, but also our long-standing experience in

  5. Development of Fast NbN RSFQ Logic Gates in Sigma-Delta Converters for Space Telecommunications

    DTIC Science & Technology

    2005-07-13

    spatiales des circuits logiques supraconducteurs ” Internal Technical Reports, Alcatel Space & CEA, 2003. [3] P. Bunyk, K. Likharev and D. Zinoviev...films minces et de junctions Josephson en nitrures supraconducteurs (TiN et NbN), application à la logique RSFQ, PhD Thesis, Université J. Fourier

  6. The University of Arizona Nanosat Program: Making Space accessible to scientific and commercial packages.

    NASA Astrophysics Data System (ADS)

    Fink, U.; Fevig, R. A.

    2003-05-01

    For the last couple of years we have been engaged in building nanosatellites within a student-mentor framework. The satellites are 10x10x10cm cubes, have a maximum mass of 1 kg, and power of a few watts. The standardized "cube-sat" form factor was suggested by Bob Twiggs of Stanford University so that a common launch platform could be utilized and more Universities could participate. We have now built four "cube-sats': a launchable Engineering model, Rincon 1 & 2, (funded by Rincon corporation), and Alcatel funded by Alcatel Espace. The costs for the four satellites are \\250,000. Launch costs using a Russian SS-18 are typically \\10,000 per kg. The payload for Rincon 1 & 2 is a sophisticated telecommunications board using only 10 mw of transmitting power. The Alcatel payload consists of three communications IC's whose radiation exposure and annealing properties will be studied over a period of years. Future nanosatellites will have considerable value in providing low cost access to space for experiments in nanotechnology, space electronics, micropropulsion, radiation experiments, astrobionics and climate change studies. For the latter area we are considering experiments to monitor the solar constant, the solar UV spectrum, the chromospheric activity through the Mg II index, the Earth's Albedo, etc. For this purpose we are developing a slightly larger satellite, 20x20x20cm and 10 kg. We have built a C-MOS camera with a 1 ms exposure time for attitude determination, and we are working with Honeywell Industries to develop micro-reaction wheels for attitude control. We are also working on micro-propulsion units with the Air Force and several aerospace companies. Preliminary calculations show that we can develop delta-V's of 5km/s which will allow us to visit 5% (about 100) of the NEA population or possibly some comets. We firmly believe a vigorous nanosatellite program will allow useful space experiments for costs of millions of Dollars instead of the present tens of

  7. High resolution metric imaging payload

    NASA Astrophysics Data System (ADS)

    Delclaud, Y.

    2017-11-01

    Alcatel Space Industries has become Europe's leader in the field of high and very high resolution optical payloads, in the frame work of earth observation system able to provide military government with metric images from space. This leadership allowed ALCATEL to propose for the export market, within a French collaboration frame, a complete space based system for metric observation.

  8. DTFT-1: Analysis of the first USV flight test

    NASA Astrophysics Data System (ADS)

    Russo, G.

    2009-11-01

    The first dropped transonic flight test (DTFT) of the USV Program, performed with Castor, the first of the two spacecrafts developed within the USV Program, was performed on Saturday 24th February 2007, from Tortolì Airport in Sardinia. At 8:30 a.m. the 340 000 m 3 stratospheric balloon lifted off from the East coast of Sardinia, bringing the flying test bed (FTB) up to 20.2 km before release within the isolated sea polygon controlled by Italian air force test range in Salto di Quirra (PISQ). The mission ended at 10:30 a.m. with the splash-down of the space vehicle. The flight itself was very good, with a nose-up manoeuvre under transonic conditions, reaching a maximum Mach as high as 1.08. The mission target was completely achieved as some 2 million measures were taken related to flight data, housekeeping, as well as 500 aerodynamic and structural experimental sensors. Unfortunately, the vehicle has been damaged more than expected during splash-down. Many national and international institutions and industries contributed to the mission carrying out, under the supervision and technical guide of CIRA: Italian Space Agency, Italian Air Force, Italian Navy, Italian Civil Aviation Authority, Italian Company for Air Navigation Services, Port Authorities, European Space Agency, Techno System Dev., Vitrociset, Carlo Gavazzi Space, Space Software Italia, Alcatel Alenia Space Italy, ISL-Altran Group. The paper reports the actual status of post-flight data analysis.

  9. Highly light-weighted ZERODUR mirror and fixation for cryogenic applications

    NASA Astrophysics Data System (ADS)

    Behar-Lafenetre, Stephanie; Lasic, Thierry; Viale, Roger; Ruch, Eric

    2017-11-01

    Space telescopes require large primary mirrors within a demanding thermal environment: observatories at L2 orbit provide a stable environment with a drawback of very low temperature. Besides, it is necessary to limit as far as possible the mirrors mass while withstanding launch loads and keeping image quality within a cryogenic environment. ZERODUR is a well-known material extensively used for large telescope. Alcatel Alenia Space and Sagem/REOSC have combined their respective skills to go further in the lightweighting ratio of large mirror (36 kg/m2 on 1.5 m2) through a detailed design, performance assessment and technology demonstration with breadboards. Beyond on a large mirror detailed design supported by analysis, a ZERODUR mock-up has been manufacturing by Sagem/REOSC to demonstrate the achievability of the demanding parameters offering this high lightweighting ratio. Through the ISO experience on mirror attachments, a detailed design of the mirror fixation has been done as well. A full size mock-up has been manufactured and successfully tested under thermal cycling and static loading. Eventually, the ZERODUR stability behavior within this large temperature range has been verified through thermal cycling and image quality cryotest on a flat mirror breadboard. These developments demonstrate that ZERODUR is a good candidate for large space cryogenic mirrors offering outstanding optical performances associated to matured and proven technology and manufacturing process.

  10. CESIC: a new technology for lightweight and cost effective space instrument structures and mirrors

    NASA Astrophysics Data System (ADS)

    Devilliers, Christophe; Kroedel, Matthias R.

    2005-08-01

    For some years Alcatel Space has been interested in the development of a new material to produce lightweight, stiff, stable and cost effective structures and mirrors for space instrument. Cesic from ECM has been selected for its intrinsic properties (high specific modulus, high conductivity, quite low thermal expansion coefficient and high fracture toughness for a ceramic material), added to ample manufacturing capabilities. Under ESA responsibility, a flight representative optical bench of Cesic has been designed, manufactured and tested. The optical bench has been submitted with success to intensive vibration tests up to 80 g on shaker without problem and was tested down to 30 K showing very high stability. Cesic is also envisaged for large and lightweight space telescope mirrors. Coatings on the Cesic substrate have been developed and qualified for the most stringent optical needs. To prove the lightweight capability, a large Cesic mirror D=950 mm with an area mass of less than 25 kg/m2 has been designed, sized again launch loads and WFE performance, and then manufactured. Cesic is also envisaged for large future focal plane holding a large number of detectors assuring high stability thanks to its high thermal conductivity. A full size Cesic focal plane has been already successfully built and tested. Based on these successful results, Alcatel Space is now in position to propose for space projects this technology mastered in common with ECM both for mirrors and structures with new innovative concepts thanks to the manufacturing capabilities of this technology.

  11. SpaceX Jason-3 Live Launch Broadcast - Part 1 of 4

    NASA Image and Video Library

    2016-01-17

    At Space Launch Complex 4 at Vandenberg Air Force Base in California, a SpaceX Falcon 9 rocket launches the Jason-3 spacecraft into orbit for NOAA, the National Oceanic and Atmospheric Administration, and EUMETSAT, the European Organization for the Exploitation of Meteorological Satellites. Built by Thales Alenia of France, Jason-3 will measure the topography of the ocean surface for a four-agency international partnership consisting of NOAA, NASA, Centre National d’Etudes Spatiales, France’s space agency, and the European Organization for the Exploitation of Meteorological Satellites.

  12. SpaceX Jason-3 Live Launch Broadcast - Part 4 of 4

    NASA Image and Video Library

    2016-01-17

    At Space Launch Complex 4 at Vandenberg Air Force Base in California, a SpaceX Falcon 9 rocket launches the Jason-3 spacecraft into orbit for NOAA, the National Oceanic and Atmospheric Administration, and EUMETSAT, the European Organization for the Exploitation of Meteorological Satellites. Built by Thales Alenia of France, Jason-3 will measure the topography of the ocean surface for a four-agency international partnership consisting of NOAA, NASA, Centre National d’Etudes Spatiales, France’s space agency, and the European Organization for the Exploitation of Meteorological Satellites.

  13. SpaceX Jason-3 Live Launch Broadcast - Part 3 of 4

    NASA Image and Video Library

    2016-01-17

    At Space Launch Complex 4 at Vandenberg Air Force Base in California, a SpaceX Falcon 9 rocket launches the Jason-3 spacecraft into orbit for NOAA, the National Oceanic and Atmospheric Administration, and EUMETSAT, the European Organization for the Exploitation of Meteorological Satellites. Built by Thales Alenia of France, Jason-3 will measure the topography of the ocean surface for a four-agency international partnership consisting of NOAA, NASA, Centre National d’Etudes Spatiales, France’s space agency, and the European Organization for the Exploitation of Meteorological Satellites.

  14. SpaceX Jason-3 Live Launch Broadcast - Part 2 of 4

    NASA Image and Video Library

    2016-01-17

    At Space Launch Complex 4 at Vandenberg Air Force Base in California, a SpaceX Falcon 9 rocket launches the Jason-3 spacecraft into orbit for NOAA, the National Oceanic and Atmospheric Administration, and EUMETSAT, the European Organization for the Exploitation of Meteorological Satellites. Built by Thales Alenia of France, Jason-3 will measure the topography of the ocean surface for a four-agency international partnership consisting of NOAA, NASA, Centre National d’Etudes Spatiales, France’s space agency, and the European Organization for the Exploitation of Meteorological Satellites.

  15. SPIRALE: early warning optical space demonstrator

    NASA Astrophysics Data System (ADS)

    Galindo, D.; Carucci, A.

    2004-11-01

    Thanks to its global coverage, its peacetime capabilities and its availability, ballistic missiles Early Warning (EW) space systems are identified as a key node of a global missile defence system. Since the Gulf war in 1991, several feasibility studies of such an Early Warning system have been conducted in France. The main conclusions are first that the most appropriate concept is to use infra-red (IR) sensors on geo- stationary orbit satellites and second that the required satellite performances are achievable and accessible to European industries, even if technological developments are necessary. Besides that, it was recommended to prepare the development of the EW operational system, by demonstrating its achievable performances on the basis of collected background images and available target IR signatures. This is the objective of the "EW optical space demonstrator", also named SPIRALE (this a French acronym which stands for "Preparatory IR Program for EW"). A contract has been awarded early 2004, by DGA/SPOTI (French Armament Procurement Agency), to EADS Astrium France, with a significant participation of Alcatel Space, to perform this demonstration.

  16. KSC-01PP1701

    NASA Image and Video Library

    2001-11-14

    KENNEDY SPACE CENTER, Fla. -- In a special presentation, ISS International Partners donate funds to the Combined Federal Campaign and United Way at KSC to benefit the Sept. 11 recovery efforts. From left are Francesco Santoro of Alenia (Italian Space Agency contractor), Minako Holdrum of the Natinal Space Development Agency of Japan (NASDA), Michele Tripoli and Guiseppe Mancuso of Alenia, Todd Arnold, NASA KSC, Shimpei Takahashi of NASDA, Steve Mozes of the Canadian Space Agency, Agostino Verghini of the Italian Space Agency, Frank Ramsey of United Way/CFC, Center Director Roy D. Bridges Jr. and Director of International Space Station/Payload Processing Tip Talone

  17. A TT&C Performance Simulator for Space Exploration and Scientific Satellites - Architecture and Applications

    NASA Astrophysics Data System (ADS)

    Donà, G.; Faletra, M.

    2015-09-01

    This paper presents the TT&C performance simulator toolkit developed internally at Thales Alenia Space Italia (TAS-I) to support the design of TT&C subsystems for space exploration and scientific satellites. The simulator has a modular architecture and has been designed using a model-based approach using standard engineering tools such as MATLAB/SIMULINK and mission analysis tools (e.g. STK). The simulator is easily reconfigurable to fit different types of satellites, different mission requirements and different scenarios parameters. This paper provides a brief description of the simulator architecture together with two examples of applications used to demonstrate some of the simulator’s capabilities.

  18. Design Authority in the Test Programme Definition: The Alenia Spazio Experience

    NASA Astrophysics Data System (ADS)

    Messidoro, P.; Sacchi, E.; Beruto, E.; Fleming, P.; Marucchi Chierro, P.-P.

    2004-08-01

    In addition, being the Verification and Test Programme a significant part of the spacecraft development life cycle in terms of cost and time, very often the subject of the mentioned discussion has the objective to optimize the verification campaign by possible deletion or limitation of some testing activities. The increased market pressure to reduce the project's schedule and cost is originating a dialecting process inside the project teams, involving program management and design authorities, in order to optimize the verification and testing programme. The paper introduces the Alenia Spazio experience in this context, coming from the real project life on different products and missions (science, TLC, EO, manned, transportation, military, commercial, recurrent and one-of-a-kind). Usually the applicable verification and testing standards (e.g. ECSS-E-10 part 2 "Verification" and ECSS-E-10 part 3 "Testing" [1]) are tailored to the specific project on the basis of its peculiar mission constraints. The Model Philosophy and the associated verification and test programme are defined following an iterative process which suitably combines several aspects (including for examples test requirements and facilities) as shown in Fig. 1 (from ECSS-E-10). The considered cases are mainly oriented to the thermal and mechanical verification, where the benefits of possible test programme optimizations are more significant. Considering the thermal qualification and acceptance testing (i.e. Thermal Balance and Thermal Vacuum) the lessons learned originated by the development of several satellites are presented together with the corresponding recommended approaches. In particular the cases are indicated in which a proper Thermal Balance Test is mandatory and others, in presence of more recurrent design, where a qualification by analysis could be envisaged. The importance of a proper Thermal Vacuum exposure for workmanship verification is also highlighted. Similar considerations are

  19. Node 2 and Japanese Experimental Module (JEM) In Space Station Processing Facility

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Lining the walls of the Space Station Processing Facility at the Kennedy Space Center (KSC) are the launch awaiting U.S. Node 2 (lower left). and the first pressurized module of the Japanese Experimental Module (JEM) (upper right), named 'Kibo' (Hope). Node 2, the 'utility hub' and second of three connectors between International Space Station (ISS) modules, was built in the Torino, Italy facility of Alenia Spazio, an International contractor based in Rome. Japan's major contribution to the station, the JEM, was built by the Space Development Agency of Japan (NASDA) at the Tsukuba Space Center near Tokyo and will expand research capabilities aboard the station. Both were part of an agreement between NASA and the European Space Agency (ESA). The Node 2 will be the next pressurized module installed on the Station. Once the Japanese and European laboratories are attached to it, the resulting roomier Station will expand from the equivalent space of a 3-bedroom house to a 5-bedroom house. The Marshall Space Center in Huntsville, Alabama manages the Node program for NASA.

  20. Microbial biodiversity assessment of the European Space Agency's ExoMars 2016 mission.

    PubMed

    Koskinen, Kaisa; Rettberg, Petra; Pukall, Rüdiger; Auerbach, Anna; Wink, Lisa; Barczyk, Simon; Perras, Alexandra; Mahnert, Alexander; Margheritis, Diana; Kminek, Gerhard; Moissl-Eichinger, Christine

    2017-10-25

    The ExoMars 2016 mission, consisting of the Trace Gas Orbiter and the Schiaparelli lander, was launched on March 14 2016 from Baikonur, Kazakhstan and reached its destination in October 2016. The Schiaparelli lander was subject to strict requirements for microbial cleanliness according to the obligatory planetary protection policy. To reach the required cleanliness, the ExoMars 2016 flight hardware was assembled in a newly built, biocontrolled cleanroom complex at Thales Alenia Space in Turin, Italy. In this study, we performed microbiological surveys of the cleanroom facilities and the spacecraft hardware before and during the assembly, integration and testing (AIT) activities. Besides the European Space Agency (ESA) standard bioburden assay, that served as a proxy for the microbiological contamination in general, we performed various alternative cultivation assays and utilised molecular techniques, including quantitative PCR and next generation sequencing, to assess the absolute and relative abundance and broadest diversity of microorganisms and their signatures in the cleanroom and on the spacecraft hardware. Our results show that the bioburden, detected microbial contamination and microbial diversity decreased continuously after the cleanroom was decontaminated with more effective cleaning agents and during the ongoing AIT. The studied cleanrooms and change room were occupied by very distinct microbial communities: Overall, the change room harboured a higher number and diversity of microorganisms, including Propionibacterium, which was found to be significantly increased in the change room. In particular, the so called alternative cultivation assays proved important in detecting a broader cultivable diversity than covered by the standard bioburden assay and thus completed the picture on the cleanroom microbiota. During the whole project, the bioburden stayed at acceptable level and did not raise any concern for the ExoMars 2016 mission. The cleanroom complex at

  1. Optimised Environmental Test Approaches in the GOCE Project

    NASA Astrophysics Data System (ADS)

    Ancona, V.; Giordano, P.; Casagrande, C.

    2004-08-01

    The Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) is dedicated to measuring the Earth's gravity field and modelling the geoid with extremely high accuracy and spatial resolution. It is the first Earth Explorer Core mission to be developed as part of ESA's Living Planet Programme and is scheduled for launch in 2006. The program is managed by a consortium of European companies: Alenia Spazio, the prime contractor, Astrium GmbH, the platform responsible, Alcatel Space Industries and Laben, suppliers of the main payloads, respectively the Electrostatic Gravity Gradiometer (EGG) and the Satellite to Satellite Tracking Instrument (SSTI), actually a precise GPS receiver. The GOCE Assembly Integration and Verification (AIV) approach is established and implemented in order to demonstrate to the customer that the satellite design meets the applicable requirements and to qualify and accept from lower level up to system level. The driving keywords of "low cost" and "short schedule" program, call for minimizing the development effort by utilizing off-the-shelf equipment combined with a model philosophy lowering the number of models to be used. The paper will deal on the peculiarities of the optimized environmental test approach in the GOCE project. In particular it introduces the logic of the AIV approach and describe the foreseen tests at system level within the SM environmental test campaign, outlining the Quasi Static test performed in the frame of the SM sine vibration tests, and the PFM environmental test campaign pinpointing the deletion of the Sine Vibration test on PFM model. Furthermore the paper highlights how the Model and Test Effectiveness Database (MATD) can be utilized for the prediction of the new space projects like GOCE Satellite.

  2. Space simulation techniques and facilities for SAX STM test campaign

    NASA Technical Reports Server (NTRS)

    Giordano, Pietro; Raimondo, Giacomo; Messidoro, Piero

    1994-01-01

    SAX is a satellite for X-Ray astronomy. It is a major element of the overall basic Science Program of the Italian Space Agency (ASI) and is being developed with the contribution of the Netherlands Agency for Aerospace Programs (NIVR). The scientific objectives of SAX are to carry out systematic and comprehensive observations of celestial X-Ray sources over the 0.1 - 300 KeV energy range with special emphasis on spectral and timing measurements. The satellite will also monitor the X-Ray sky to investigate long-term source variability and to permit localization and study of X-Ray transients. Alenia Spazio is developing the satellite that is intended for launch in the second half of 1995 in a low, near-equatorial Earth orbit. At system level a Structural Thermal Model (STM) has been conceived to verify the environmental requirements by validating the mechanical and thermal analytical models and qualifying satellite structure and thermal control. In particular, the following tests have been carried out in Alenia Spazio, CEA/CESTA and ESTEC facilities: Modal Survey, Centrifuge, Acoustic, Sinusoidal/Random Vibration and Thermal Balance. The paper, after a short introduction of the SAX satellite, summarizes the environmental qualification program performed on the SAX STM. It presents test objectives, methodologies and relevant test configurations. Peculiar aspects of the test campaign are highlighted. Problems encountered and solutions adopted in performing the tests are described as well. Furthermore, test results are presented and assessed.

  3. Verification of International Space Station Component Leak Rates by Helium Accumulation Method

    NASA Technical Reports Server (NTRS)

    Underwood, Steve D.; Smith, Sherry L.

    2003-01-01

    Discovery of leakage on several International Space Station U.S. Laboratory Module ammonia system quick disconnects (QDs) led to the need for a process to quantify total leakage without removing the QDs from the system. An innovative solution was proposed allowing quantitative leak rate measurement at ambient external pressure without QD removal. The method utilizes a helium mass spectrometer configured in the detector probe mode to determine helium leak rates inside a containment hood installed on the test component. The method was validated through extensive developmental testing. Test results showed the method was viable, accurate and repeatable for a wide range of leak rates. The accumulation method has been accepted by NASA and is currently being used by Boeing Huntsville, Boeing Kennedy Space Center and Boeing Johnson Space Center to test welds and valves and will be used by Alenia to test the Cupola. The method has been used in place of more expensive vacuum chamber testing which requires removing the test component from the system.

  4. Evaluation of InGaAS array detector suitability to space environment

    NASA Astrophysics Data System (ADS)

    Tauziede, L.; Beulé, K.; Boutillier, M.; Bernard, F.; Reverchon, J.-L.; Buffaz, A.

    2017-11-01

    InGaAs material has a natural cutoff wavelength of 1.65µm so it is naturally suitable for detection in Short Wavelength InfraRed (SWIR) spectral range. Regarding Earth Observation Spacecraft missions this spectral range can be used for the CO2 concentration measurements in the atmosphere. CNES (French Space agency) is studying a new mission, Microcarb with a spectral band centered on 1.6µm wavelength. InGaAs detector looks attractive for space application because its low dark current allows high temperature operation, reducing by the way the needed instrument resources. The Alcatel Thales III-VLab group has developed InGaAs arrays technology (320x256 & 640x512) that has been studied by CNES, using internal facilities. Performance tests and technological evaluation were performed on a 320x256 pixels array with a pitch of 30µm. The aim of this evaluation was to assess this new technology suitability for space applications. The carried out test plan includes proton radiations with Random Telegraph Signal (RTS) study, operating lifetest and evolution of performances as a function of the operating temperature.

  5. WALES: water vapour lidar experiment in space

    NASA Astrophysics Data System (ADS)

    Guerin, F.; Pain, Th.; Palmade, J.-L.; Pailharey, E.; Giraud, D.; Jubineau, F.

    2017-11-01

    The WAter vapour Lidar Experiment in Space (WALES) mission aims at providing water vapour profiles with high accuracy and vertical resolution through the troposphere and the lower stratosphere on a global scale using an instrument based on Differential Absorption Lidar (DIAL) observation technique, and mounted on an Earth orbiting satellite. This active DIAL technique will also provide data on the cloud coverage by means of the signal reflection on the cloud layers. In DIAL operation, backscatter lidar signals at two wavelengths - at least - are detected. One wavelength (λ ON) is highly absorbed by the species of interest, while the other (λ OFF) is backscattered with minimal absorption. This difference in absorption at the two transmitted wavelengths leads to the determination of the concentration of the species of interest. The DIAL is therefore a dual-wavelength lidar in which the signals detected at the two wavelengths are processed to extract the absolute density of water vapour. The Phase A study performed by ALCATEL Space and their partners under contract of the European Space Agency has led to a credible and innovative concept of instrument, based on a mission performance modelling. The challenge is to foster the scientific return while minimising the development risks and costs of instrument development, in particular the laser transmitter. The paper describes the payload design and the implementation on a low Earth orbiting (LEO) satellite.

  6. WALES: WAter vapour Lidar Experiment in Space

    NASA Astrophysics Data System (ADS)

    Guerin, F.; Pain, Th.; Palmade, J. L.; Pailharey, E.; Giraud, D.; Jubineau, F.

    2004-06-01

    The WAter vapour Lidar Experiment in Space (WALES) mission aims at providing water vapour profiles with high accuracy and vertical resolution through the troposphere and the lower stratosphere on a global scale using an instrument based on Differential Absorption Lidar (DIAL) observation technique, and mounted on an Earth orbiting satellite. This active DIAL technique will also provide data on the cloud coverage by means of the signal reflection on the cloud layers. In DIAL operation, backscatter lidar signals at two wavelengths - at least - are detected. One wavelength (λ ON) is highly absorbed by the species of interest, while the other (λ OFF) is backscattered with minimal absorption. This difference in absorption at the two transmitted wavelengths leads to the determination of the concentration of the species of interest. The DIAL is therefore a dual-wavelength lidar in which the signals detected at the two wavelengths are processed to extract the absolute density of water vapour. The Phase A study performed by ALCATEL Space and their partners under contract of the European Space Agency has led to a credible and innovative concept of instrument, based on a mission performance modelling. The challenge is to foster the scientific return while minimising the development risks and costs of instrument development, in particular the laser transmitter. The paper describes the payload design and the implementation on a low Earth orbiting (LEO) satellite.

  7. Evaluation of MPLM Design and Mission 6A Coupled Loads Analyses

    NASA Technical Reports Server (NTRS)

    Bookout, Paul S.; Ricks, Ed

    1999-01-01

    Through the development of a space shuttle payload, there are usually several coupled loads analyses (CLA) performed: preliminary design, critical design, final design and verification loads analysis (VLA). A final design CLA is the last analysis conducted prior to model delivery to the shuttle program for the VLA. The finite element models used in the final design CLA and the VLA are test verified dynamic math models. Mission 6A is the first of many flights of the Multi-Purpose Logistics Module (MPLM). The MPLM was developed by Alenia Spazio S.p.A. (an Italian aerospace company) and houses the International Standard Payload Racks (ISPR) for transportation to the space station in the shuttle. Marshall Space Flight Center (MSFC), the payload integrator of the MPLM for Mission 6A, performed the final design CLA using the M6.OZC shuttle data for liftoff and landing conditions using the proper shuttle cargo manifest. Alenia performed the preliminary and critical design CLAs for the development of the MPLM. However, these CLAs did not use the current Mission 6A cargo manifest. An evaluation of the preliminary and critical design performed by Alenia and the final design performed by MSFC is presented.

  8. Payload Processing for Mice Drawer System

    NASA Technical Reports Server (NTRS)

    Brown, Judy

    2007-01-01

    Experimental payloads flown to the International Space Station provide us with valuable research conducted in a microgravity environment not attainable on earth. The Mice Drawer System is an experiment designed by Thales Alenia Space Italia to study the effects of microgravity on mice. It is designed to fly to orbit on the Space Shuttle Utilization Logistics Flight 2 in October 2008, remain onboard the International Space Station for approximately 100 days and then return to earth on a following Shuttle flight. The experiment apparatus will be housed inside a Double Payload Carrier. An engineering model of the Double Payload Carrier was sent to Kennedy Space Center for a fit check inside both Shuttles, and the rack that it will be installed in aboard the International Space Station. The Double Payload Carrier showed a good fit quality inside each vehicle, and Thales Alenia Space Italia will now construct the actual flight model and continue to prepare the Mice Drawer System experiment for launch.

  9. Design of the high resolution optical instrument for the Pleiades HR Earth observation satellites

    NASA Astrophysics Data System (ADS)

    Lamard, Jean-Luc; Gaudin-Delrieu, Catherine; Valentini, David; Renard, Christophe; Tournier, Thierry; Laherrere, Jean-Marc

    2017-11-01

    As part of its contribution to Earth observation from space, ALCATEL SPACE designed, built and tested the High Resolution cameras for the European intelligence satellites HELIOS I and II. Through these programmes, ALCATEL SPACE enjoys an international reputation. Its capability and experience in High Resolution instrumentation is recognised by the most customers. Coming after the SPOT program, it was decided to go ahead with the PLEIADES HR program. PLEIADES HR is the optical high resolution component of a larger optical and radar multi-sensors system : ORFEO, which is developed in cooperation between France and Italy for dual Civilian and Defense use. ALCATEL SPACE has been entrusted by CNES with the development of the high resolution camera of the Earth observation satellites PLEIADES HR. The first optical satellite of the PLEIADES HR constellation will be launched in mid-2008, the second will follow in 2009. To minimize the development costs, a mini satellite approach has been selected, leading to a compact concept for the camera design. The paper describes the design and performance budgets of this novel high resolution and large field of view optical instrument with emphasis on the technological features. This new generation of camera represents a breakthrough in comparison with the previous SPOT cameras owing to a significant step in on-ground resolution, which approaches the capabilities of aerial photography. Recent advances in detector technology, optical fabrication and electronics make it possible for the PLEIADES HR camera to achieve their image quality performance goals while staying within weight and size restrictions normally considered suitable only for much lower performance systems. This camera design delivers superior performance using an innovative low power, low mass, scalable architecture, which provides a versatile approach for a variety of imaging requirements and allows for a wide number of possibilities of accommodation with a mini

  10. Online Damage Detection on Metal and Composite Space Structures by Active and Passive Acoustic Methods

    NASA Astrophysics Data System (ADS)

    Scheerer, M.; Cardone, T.; Rapisarda, A.; Ottaviano, S.; Ftancesconi, D.

    2012-07-01

    In the frame of ESA funded programme Future Launcher Preparatory Programme Period 1 “Preparatory Activities on M&S”, Aerospace & Advanced Composites and Thales Alenia Space-Italia, have conceived and tested a structural health monitoring approach based on integrated Acoustic Emission - Active Ultrasound Damage Identification. The monitoring methods implemented in the study are both passive and active methods and the purpose is to cover large areas with a sufficient damage size detection capability. Two representative space sub-structures have been built and tested: a composite overwrapped pressure vessel (COPV) and a curved, stiffened Al-Li panel. In each structure, typical critical damages have been introduced: delaminations caused by impacts in the COPV and a crack in the stiffener of the Al-Li panel which was grown during a fatigue test campaign. The location and severity of both types of damages have been successfully assessed online using two commercially available systems: one 6 channel AE system from Vallen and one 64 channel AU system from Acellent.

  11. Highly light-weighted ZERODUR mirrors

    NASA Astrophysics Data System (ADS)

    Behar-Lafenetre, Stéphanie; Lasic, Thierry; Viale, Roger; Mathieu, Jean-Claude; Ruch, Eric; Tarreau, Michel; Etcheto, Pierre

    2017-11-01

    Due to more and more stringent requirements for observation missions, diameter of primary mirrors for space telescopes is increasing. Difficulty is then to have a design stiff enough to be able to withstand launch loads and keep a reasonable mass while providing high opto-mechanical performance. Among the possible solutions, Thales Alenia Space France has investigated optimization of ZERODUR mirrors. Indeed this material, although fragile, is very well mastered and its characteristics well known. Moreover, its thermo-elastic properties (almost null CTE) is unequalled yet, in particular at ambient temperature. Finally, this material can be polished down to very low roughness without any coating. Light-weighting can be achieved by two different means : either optimizing manufacturing parameters or optimizing design (or both). Manufacturing parameters such as walls and optical face thickness have been improved and tested on representative breadboards defined on the basis of SAGEM-REOSC and Thales Alenia Space France expertise and realized by SAGEM-REOSC. In the frame of CNES Research and Technology activities, specific mass has been decreased down to 36 kg/m2. Moreover SNAP study dealt with a 2 m diameter primary mirror. Design has been optimized by Thales Alenia Space France while using classical manufacturing parameters - thus ensuring feasibility and costs. Mass was decreased down to 60 kg/m2 for a gravity effect of 52 nm. It is thus demonstrated that high opto-mechanical performance can be guaranteed with large highly lightweighted ZERODUR mirrors.

  12. Investigations on Size Effects of Zerodur®

    NASA Astrophysics Data System (ADS)

    Behar-Lafenetre, S.; Cornillon, L.; Ait-Zaid, S.; Rancurel, M.

    2014-06-01

    Zerodur® is a well-known glass-ceramic used for optical components because of its unequalled stability under thermal environment (due to its extremely low Coefficient of Thermal Expansion). In particular it has been used since decades in Thales Alenia Space's optical payloads for space telescopes, especially for primary mirrors.The drawback of Zerodur® however is its quite low strength: 10 MPa is historically used as a rule of thumb. However, as performance of space telescopes is increasing, an optimization of the design is necessary and therefore an increase of the strength limit taken into account in the calculations.Thales Alenia Space is therefore currently investigating the so-called "size effect" on Zerodur® (see Weibull theory), under CNES funding, with the aim of re- estimating the lower bound of Zerodur® strength.For this, a complete test campaign has been defined with a high number of samples in order to reduce uncertainties. This article presents the first results obtained.

  13. SSMNG Software Service Manager: A Scalable Building Blocks Architecture for PUS Services & FDIR Management

    NASA Astrophysics Data System (ADS)

    Lisio, Giovanni; Candia, Sante; Campolo, Giovanni; Pascucci, Dario

    2011-08-01

    Thales Alenia Space Italy has carried out the definition of a configurable (on mission basis) PUS ECSS-E_70- 41A see [3] Centralised Services Layer, characterised by:- a mission-independent set of 'classes' implementing the services logic.- a mission-dependent set of configuration data and selection flags.The software components belonging to this layer implement the PUS standard services ECSS-E_70-41A and a set of mission-specific services. The design of this layer has been performed by separating the services mechanisms (mission-independent execution logic) from the services configuration information (mission-dependent data). Once instantiated for a specific mission, the PUS Centralised Services Layer offers a large set of capabilities available to the CSCI's Applications Layer. This paper describes the building blocks PUS architectural solution developed by Thales Alenia Space Italy, emphasizing the mechanisms which allow easy configuration of the Scalable PUS library to fulfill the requirements of different missions. This paper also focus the Thales Alenia Space solution to automatically generate the mission-specific "PUS Services" flight software based on mission specific requirements. Building the PUS services mechanisms, which are configurable on mission basis is part of the PRIMA (Multipurpose Spacecraft Bus ) 'missionisation' process improvement. PRIMA Platform Avionics Software (ASW) is continuously evolving to improve modularity and standardization of interfaces and of SW components (see references in [1]).

  14. Flexible photonic payload for broadband telecom satellites: from concepts to system demonstrators

    NASA Astrophysics Data System (ADS)

    Sotom, M.; Aveline, M.; Barbaste, R.; Benazet, B.; Le Kernec, A.; Magnaval, J.; Picq, M.

    2017-09-01

    In the last decade, Thales Alenia Space has put significant research effort in photonic technologies for satellite applications, with the objective to provide telecom payload systems with enhanced functionality, higher performance and lower costs.

  15. ATLID: atmospheric lidar for clouds and aerosol observation combined with radar sounding

    NASA Astrophysics Data System (ADS)

    Pain, Th.; Martimort, Ph.; Tanguy, Ph.; Leibrandt, W.; Heliere, A.

    2017-11-01

    The atmospheric lidar ATLID is part of the payload of the joint collaborative satellite mission Earth Cloud and Aerosol Explorer (EarthCARE) conducted by the European Space Agency (ESA) and the National Space Development Agency of Japan (JAXA). In December 2002, ESA granted Alcatel Space with a phase A study of the EarthCARE mission in which Alcatel Space is also in charge to define ATLID. The primary objective of ATLID at the horizon 2011 is to provide global observation of clouds in synergy with a cloud profiling radar (CPR) mounted on the same platform. The planned spaceborne mission also embarks an imager and a radiometer and shall fly for 3 years. The lidar design is based on a novel concept that maximises the scientific return and fosters a cost-effective approach. This improved capability results from a better understanding of the way optical characteristics of aerosol and clouds affect the performance budget. For that purpose, an end to end performance model has been developed utilising a versatile data retrieval method suitable for new and more conventional approaches. A synthesis of the achievable performance will be presented to illustrate the potential of the system together with a description of the design.

  16. Introduction to the novel verification concept of the instrument performances for the Meteosat third generation infrared sounder instrument (mtg-irs)

    NASA Astrophysics Data System (ADS)

    Freudling, M.; Egner, S.; Hering, M.; Carbó, F. L.; Thiele, H.

    2017-09-01

    The Meteosat Third Generation (MTG) Programme will ensure the future continuity and enhancement of meteorological data from geostationary orbit as currently provided by the Meteosat Second Generation (MSG) system. The industrial prime contractor for the space segment is Thales Alenia Space (France), with a core team consortium including OHB System AG (Germany).

  17. Cesic: optomechanical technology last development results and new HBCesic highly light weighted space mirror development including corrective function 7th international conference on space optics, october 2008

    NASA Astrophysics Data System (ADS)

    Devilliers, Christophe; Kroedel, Mathias

    2017-11-01

    Thales-Alenia-Space and ECM has developed a new SiC ceramic composite to produce very lightweight space mirrors and structure. Cesicmade by ECM has been selected for its own intrinsic properties ( high specific Young modulus, high conductivity , low CTE, high strength for a ceramics) and its large manufacturing capabilities. Recently a full monolithic space instrument for earth observation, with a monolithic Cesicstructure and with Cesicmirrors has been designed, manufactured and space qualified and is now ready for launch. The Cesictelescope assembly has been tested under shock environment, vibration loads, and full qualification thermal environment. All these qualification tests were done directly on the flight model. Extensive development has been also performed to design, size, manufacture and test a very light weight reflector shell made as a single part. This 1 meter reflective shell has an areal density of less than 10 Kg/m2 has been manufactured with its surface grounded to the bi parabolic shape. Such challenging areal density has requested a very thin skin associated with a ribs thickness of less than 2mm. In order to demonstrate the high stability and strength of Cesicthe reflector has been tested successfully under very aggressive environment up to 350°C and also an acoustic test with flight representative levels was successfully performed. To produce future very lightweight space mirrors ECM develop with the support of Thales-Alenia-Space since some years an improved version of Cesicceramic, called HB-Cesic©. HB-Cesicmade by ECM is developed for its higher intrinsic properties, Young modulus, strength and especially its direct polishing capabilities down to 3 nm micro-roughness. One of the major targets for this development was also to overcome size limitations of the C/C raw material of currently around 1x1 m to produce mirror up to 3,5 m diameter out of a single C/C raw material block. Under ESA study a 600 mm mirror with a surface density of only

  18. Utilisation of Wearable Computing for Space Programmes Test Activities Optimasation

    NASA Astrophysics Data System (ADS)

    Basso, V.; Lazzari, D.; Alemanni, M.

    2004-08-01

    New technologies are assuming a relevant importance in the Space business domain also in the Assembly Integration and Test (AIT) activities allowing process optimization and capability that were unthinkable only few years ago. This paper has the aim to describe Alenia Spazio (ALS) gained experience on the remote interaction techniques as a results of collaborations established both on European Communities (EC) initiatives, with Alenia Aeronautica (ALA) and Politecnico of Torino (POLITO). The H/W and S/W components performances increase and costs reduction due to the home computing massive utilization (especially demanded by the games business) together with the network technology possibility (offered by the web as well as the hi-speed links and the wireless communications) allow today to re-think the traditional AIT process activities in the light of the multimedia data exchange: graphical, voice video and by sure more in the future. Aerospace business confirm its innovation vocation which in the year '80 represents the cradle of the CAD systems and today is oriented to the 3D data visualization/ interaction technologies and remote visualisation/ interaction in collaborative way on a much more user friendly bases (i.e. not for specialists). Fig. 1 collects AIT extended scenario studied and adopted by ALS in these years. ALS experimented two possibilities of remote visualization/interaction: Portable [e.g. Fig.2 Personal Digital Assistant (PDA), Wearable] and walls (e.g.VR-Lab) screens as both 2D/3D visualisation and interaction devices which could support many types of traditional (mainly based on EGSE and PDM/CAD utilisation/reports) company internal AIT applications: 1. design review support 2. facility management 3. storage management 4. personnel training 5. integration sequences definition 6. assembly and test operations follow up 7. documentation review and external access to AIT activities for remote operations (e.g. tele-testing) EGSE Portable Clean room

  19. Space evaluation of optical modulators for microwave photonic on-board applications

    NASA Astrophysics Data System (ADS)

    Le Kernec, A.; Sotom, M.; Bénazet, B.; Barbero, J.; Peñate, L.; Maignan, M.; Esquivias, I.; Lopez, F.; Karafolas, N.

    2017-11-01

    Since several years, perspectives and assets offered by photonic technologies compared with their traditional RF counterparts (mass and volume reduction, transparency to RF frequency, RF isolation), make them particularly attractive for space applications [1] and, in particular, telecommunication satellites [2]. However, the development of photonic payload concepts have concurrently risen and made the problem of the ability of optoelectronic components to withstand space environment more and more pressing. Indeed, photonic components used in such photonic payloads architectures come from terrestrial networks applications in order to benefit from research and development in this field. This paper presents some results obtained in the frame of an ESA-funded project, carried out by Thales Alenia Space France, as prime contractor, and Alter Technology Group Spain (ATG) and Universidad Politecnica de Madrid (UPM), as subcontractors, one objective of which was to assess commercial high frequency optical intensity modulators for space use through a functional and environmental test campaign. Their potential applications in microwave photonic sub-systems of telecom satellite payloads are identified and related requirements are presented. Optical modulator technologies are reviewed and compared through, but not limited to, a specific figure of merit, taking into account two key features of these components : optical insertion loss and RF half-wave voltage. Some conclusions on these different technologies are given, on the basis of the test results, and their suitability for the targeted applications and environment is highlighted.

  20. Darwin : the technical challenges of an optical nulling interferometer in space

    NASA Astrophysics Data System (ADS)

    Viard, Thierry; Lund, Glenn; Thomas, Eric; Vacance, Michel

    2017-11-01

    Alcatel Space has been responsible for a feasibility study contract, awarded by the European Space Agency, and dedicated to the definition of preliminary interferometric concepts for the direct detection and characterisation of exo-planets associated with nearby stars. The retained concept is a six free-flyer-telescope interferometer, with a variable baseline ranging from 50 to 500 m. The collected wavefronts are combined on a 7th free-flying hub satellite at the centre of the array, and the observations are performed in the thermal Infra-Red spectral band. The latter choice is made for two reasons : firstly, the wavelength providing optimal contrast between the planetary and stellar (background) signals is approximately 10μm secondly, the spectral features of interest for the detection of life as we know it (CO2, H2O, O3 , CH4 ... ) lie in the band between 6 and 18 μm. The system requirements for such an instrument are very severe, owing to the physical nature of the mission concept; i.e. that of a coronographic stellar interferometer: in order to achieve satisfactory extinction of the unwanted flux generated by the central star, such a concept will impose the control of optical pathlength differences between telescopes to within a small fraction of a wavelength, milli-arcsec pointing stabilities, 10-3 amplitude equalisation, achromatic check-shifts of some beams with respect to the others, and the use of passively cooled cryogenic telescopes.

  1. KSC-2009-6514

    NASA Image and Video Library

    2009-11-20

    CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, from left, Michael Suffredini, program manager, International Space Station, NASA; Secondino Brondolo, head of the Space Infrastructure, Thales Alenia Space Italy; and Bernardo Patti, head of International Space Station, Program Department, ESA, are photographed in front of node 3 for the International Space Station following a ceremony transferring the ownership of the node from the European Space Agency, or ESA, to NASA. Node 3 is named "Tranquility" after the Sea of Tranquility, the lunar landing site of Apollo 11. The payload for the STS-130 mission, Tranquility is a pressurized module that will provide room for many of the International Space Station's life support systems. The module was built for ESA by Thales Alenia Space in Turin, Italy. Attached to one end of Tranquility is a cupola, a unique work station with six windows on its sides and one on top. The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. Just under 10 feet in diameter, the module will accommodate two crew members and portable workstations that can control station and robotic activities. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. Space shuttle Endeavour's STS-130 mission is targeted to launch Feb. 4, 2010. Photo credit: NASA/Kim Shiflett

  2. KSC-2009-6509

    NASA Image and Video Library

    2009-11-20

    CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Bernardo Patti, head of International Space Station, Program Department, ESA, addresses the invited guests at a ceremony transferring the ownership of node 3 for the International Space Station, looming in the background, from the European Space Agency, or ESA, to NASA. Seated, from left, are Bob Cabana, Kennedy Space Center director, and Secondino Brondolo, head of the Space Infrastructure, Thales Alenia Space Italy. Node 3 is named "Tranquility" after the Sea of Tranquility, the lunar landing site of Apollo 11. The payload for the STS-130 mission, Tranquility is a pressurized module that will provide room for many of the International Space Station's life support systems. The module was built for ESA by Thales Alenia Space in Turin, Italy. Attached to one end of Tranquility is a cupola, a unique work station with six windows on its sides and one on top. The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. Just under 10 feet in diameter, the module will accommodate two crew members and portable workstations that can control station and robotic activities. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. Space shuttle Endeavour's STS-130 mission is targeted to launch Feb. 4, 2010. Photo credit: NASA/Kim Shiflett

  3. The IASI cold box subsystem (CBS) a passive cryocooler for cryogenic detectors and optics

    NASA Astrophysics Data System (ADS)

    Bailly, B.; Courteau, P.; Maciaszek, T.

    2017-11-01

    In space, cooling down Infra Red detectors and optics to cryogenic temperature raises always the same issue : what is the best way to manage simultaneously thermal cooling, stability, mechanical discoupling and accurate focal plane components location, in a lightweight and compact solution? The passive cryocooler developed by Alcatel SPace Industries under CNES contract in the frame of the IASI instrument (Infrared Atmospheric Sounding Interferometer), offers an efficient solution for 90K to 100K temperature levels. We intend you to present the architecture and performance validation plan of the CBS.

  4. Tackling sun intrusion: a challenge of close collaboration of thermal, mechanical, structural and optical engineers

    NASA Astrophysics Data System (ADS)

    Kroneberger, Monika; Calleri, Andrea; Ulfers, Hendrik; Klossek, Andreas; Goepel, Michael

    2017-09-01

    The Meteosat Third Generation (MTG) program will ensure the continuity and enhancement of meteorological data from geostationary orbit as currently provided by the Meteosat Second Generation (MSG) system. OHB-Munich, as part of the core team consortium of the industrial prime contractor for the space segment Thales Alenia Space (France), is responsible for the Flexible Combined Imager - Telescope Assembly (FCI-TA) as well as the Infrared Sounder (IRS).

  5. International Project Management Committee: Overview and Activities

    NASA Technical Reports Server (NTRS)

    Hoffman, Edward

    2010-01-01

    This slide presentation discusses the purpose and composition of the International Project Management Committee (IMPC). The IMPC was established by members of 15 space agencies, companies and professional organizations. The goal of the committee is to establish a means to share experiences and best practices with space project/program management practitioners at the global level. The space agencies that are involved are: AEB, DLR, ESA, ISRO, JAXA, KARI, and NASA. The industrial and professional organizational members are Comau, COSPAR, PMI, and Thales Alenia Space.

  6. A Corporate Library's "Single Search Box" Solution

    ERIC Educational Resources Information Center

    Waldstein, Robert

    2013-01-01

    Alcatel-Lucent has had an internal library website called InfoView since 1993. They always had pages for the various diverse resources they maintained for Alcatel-Lucent employees, such as books, serials, artifacts, market reports, and discounts. Each page had two search boxes: one for a "site" search on all pages and one searching the…

  7. KSC-2009-6510

    NASA Image and Video Library

    2009-11-20

    CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Secondino Brondolo, head of the Space Infrastructure, Thales Alenia Space Italy, addresses the invited guests at a ceremony transferring the ownership of node 3 for the International Space Station from the European Space Agency, or ESA, to NASA. Seated, from left, are Bob Cabana, Kennedy Space Center director; Michael Suffredini, program manager, International Space Station, NASA; William Dowdell, deputy for Operations, International Space Station and Spacecraft Processing, Kennedy; and Bernardo Patti, head of International Space Station, Program Department, ESA. Node 3 is named "Tranquility" after the Sea of Tranquility, the lunar landing site of Apollo 11. The payload for the STS-130 mission, Tranquility is a pressurized module that will provide room for many of the International Space Station's life support systems. The module was built for ESA by Thales Alenia Space in Turin, Italy. Attached to one end of Tranquility is a cupola, a unique work station with six windows on its sides and one on top. The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. Just under 10 feet in diameter, the module will accommodate two crew members and portable workstations that can control station and robotic activities. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. Space shuttle Endeavour's STS-130 mission is targeted to launch Feb. 4, 2010. Photo credit: NASA/Kim Shiflett

  8. X-SAR: The X-band synthetic aperture radar on board the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Werner, Marian U.

    1993-01-01

    The X-band synthetic aperture radar (X-SAR) is the German/Italian contribution to the NASA/JPL Shuttle Radar Lab missions as part of the preparation for the Earth Observation System (EOS) program. The Shuttle Radar Lab is a combination of several radars: an L-band (1.2 GHz) and a C-band (5.3 GHz) multipolarization SAR known as SIR-C (Shuttle Imaging Radar); and an X-band (9.6 GHz) vertically polarized SAR which will be operated synchronously over the same target areas to deliver calibrated multifrequency and multipolarization SAR data at multiple incidence angles from space. A joint German/Italian project office at DARA (German Space Agency) is responsible for the management of the X-SAR project. The space hardware has been developed and manufactured under industrial contract by Dornier and Alenia Spazio. Besides supporting all the technical and scientific tasks, DLR, in cooperation with ASI (Agencia Spaziale Italiano) is responsible for mission operation, calibration, and high precision SAR processing. In addition, DLR developed an airborne X-band SAR to support the experimenters with campaigns to prepare for the missions. The main advantage of adding a shorter wavelength (3 cm) radar to the SIR-C radars is the X-band radar's weaker penetration into vegetation and soil and its high sensitivity to surface roughness and associated phenomena. The performance of each of the three radars is comparable with respect to radiometric and geometric resolution.

  9. KSC-2009-6508

    NASA Image and Video Library

    2009-11-20

    CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Michael Suffredini, program manager, International Space Station, NASA, addresses the invited guests at a ceremony transferring the ownership of node 3 for the International Space Station, looming in the background, from the European Space Agency, or ESA, to NASA. Seated, from left, are Bob Cabana, Kennedy Space Center director; Bernardo Patti, head of International Space Station, Program Department, ESA; and Secondino Brondolo, head of the Space Infrastructure, Thales Alenia Space Italy. Node 3 is named "Tranquility" after the Sea of Tranquility, the lunar landing site of Apollo 11. The payload for the STS-130 mission, Tranquility is a pressurized module that will provide room for many of the International Space Station's life support systems. The module was built for ESA by Thales Alenia Space in Turin, Italy. Attached to one end of Tranquility is a cupola, a unique work station with six windows on its sides and one on top. The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. Just under 10 feet in diameter, the module will accommodate two crew members and portable workstations that can control station and robotic activities. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. Space shuttle Endeavour's STS-130 mission is targeted to launch Feb. 4, 2010. Photo credit: NASA/Kim Shiflett

  10. KSC-2009-6505

    NASA Image and Video Library

    2009-11-20

    CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Kennedy Director Bob Cabana addresses the invited guests at a ceremony transferring the ownership of node 3 for the International Space Station, looming in the background, from the European Space Agency, or ESA, to NASA. Seated, from left, are William Dowdell, deputy for Operations, International Space Station and Spacecraft Processing, Kennedy; Bernardo Patti, head of International Space Station, Program Department, ESA; and Secondino Brondolo, head of the Space Infrastructure, Thales Alenia Space Italy. Node 3 is named "Tranquility" after the Sea of Tranquility, the lunar landing site of Apollo 11. The payload for the STS-130 mission, Tranquility is a pressurized module that will provide room for many of the International Space Station's life support systems. The module was built for ESA by Thales Alenia Space in Turin, Italy. Attached to one end of Tranquility is a cupola, a unique work station with six windows on its sides and one on top. The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. Just under 10 feet in diameter, the module will accommodate two crew members and portable workstations that can control station and robotic activities. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. Space shuttle Endeavour's STS-130 mission is targeted to launch Feb. 4, 2010. Photo credit: NASA/Kim Shiflett

  11. Reconfigurable microwave photonic repeater for broadband telecom missions: concepts and technologies

    NASA Astrophysics Data System (ADS)

    Aveline, M.; Sotom, M.; Barbaste, R.; Benazet, B.; Le Kernec, A.; Magnaval, J.; Ginestet, P.; Navasquillo, O.; Piqueras, M. A.

    2017-11-01

    Thales Alenia Space has elaborated innovative telecom payload concepts taking benefit from the capabilities of photonics and so-called microwave photonics. The latter consists in transferring RF/microwave signals on optical carriers and performing processing in the optical domain so as to benefit from specific attributes such as wavelength-division multiplexing or switching capabilities.

  12. Space Radar Image of Kilauea, Hawaii

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Data acquired on April 13, 1994 and on October 4, 1994 from the X-band Synthetic Aperture Radar on board the space shuttle Endeavour were used to generate interferometric fringes, which were overlaid on the X-SAR image of Kilauea. The volcano is centered in this image at 19.58 degrees north latitude and 155.55 degrees west longitude. The image covers about 9 kilometers by 13 kilometers (5.6 miles by 8 miles). The X-band fringes correspond clearly to the expected topographic image. The yellow line indicates the area below which was used for the three-dimensional image using altitude lines. The yellow rectangular frame fences the area for the final topographic image. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR. The Instituto Ricerca Elettromagnetismo Componenti Elettronici (IRECE) at the University of Naples was a partner in interferometry analysis.

  13. Prospects For Gamma-ray Focusing Telescopes Beyond 70/100 Kev

    NASA Astrophysics Data System (ADS)

    Frontera, F.

    2011-09-01

    I will report on the LAUE project, devoted to the development of a lens petal with 20 m focal length. The final goal is to develop a technology for building Laue lenses with a passband from 70/100 to 600 keV. The project is on the way in a synergic collaboration between scientific institutions (University of Ferrara; INAF/IASF, Bologna; CNR/IMEM, Parma; DTM, Modena; Thales-Alenia Space Italy). The LAUE project is supported by the Italian Space Agency ASI.

  14. Digital SPC Switching Technology--Foreign Technology Assessment

    DTIC Science & Technology

    1990-12-01

    India C DOT MAX C DOT DSS 0 TDX 1 Samsung , Goldstar Korea TDX 10 Daewoo, Otelco (ROK) System X Plessey/GEC U.K. (Siemens) Fetex 150 Fujitsu Japan HDX...x South Korea Alcatel ATT Malaysia Ericsson NEC New Zealand NEC Philippines DAEWOO Siemens Singapore Fujitsu (AU-, NEC Gateway Switches) Taiwan...Yes Israel Northern Telecom DMS 10 Telrad Yes OMS 100 * Malaysia Ericsson AXE Pewira Ericsson Future SDN BHD Mexico Alcatel System 12 Indetel No

  15. Space Radar Image of Kilauea Volcano, Hawaii

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This three-dimensional image of the volcano Kilauea was generated based on interferometric fringes derived from two X-band Synthetic Aperture Radar data takes on April 13, 1994 and October 4, 1994. The altitude lines are based on quantitative interpolation of the topographic fringes. The level difference between neighboring altitude lines is 20 meters (66 feet). The ground area covers 12 kilometers by 4 kilometers (7.5 miles by 2.5 miles). The altitude difference in the image is about 500 meters (1,640 feet). The volcano is located around 19.58 degrees north latitude and 155.55 degrees west longitude. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR. The Instituto Ricerca Elettromagnetismo Componenti Elettronici (IRECE) at the University of Naples was a partner in the interferometry analysis.

  16. KSC-08pd3760

    NASA Image and Video Library

    2008-11-19

    CAPE CANAVERAL, Fla. – Workers in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida oversee placement of the Cupola module onto a workstand. The module was delivered to Kennedy by the European Space Agency in 2004 from Alenia Spazio in Turin, Italy. Cupola will provide a 360-degree panoramic view of activities outside the station and spectacular views of the Earth. Cupola has the capability for command and control workstations to be installed to assist in space station remote manipulator system and extra vehicular activities. The final element of the space station core, Cupola is scheduled for launch on space shuttle Endeavour's STS-130 mission, targeted for Dec. 10, 2009. Photo credit: NASA/Cory Huston

  17. Deep anisotropic ICP plasma etching designed for high-volume MEMS manufacturing

    NASA Astrophysics Data System (ADS)

    Yu, Keven; Feldbaum, Michael; Pandhumsoporn, Tam; Gadgil, Prashant

    1999-08-01

    ICP plasma etching is gaining widespread acceptance as an enabling micromachining technology for advanced MEMS fabrication. Whereas this technology has shown a capability of delivering multiple novel applications for R and D, its acceptance by industry for high volume production has been limited. This acceptance into production will only occur when the plasma etching equipment with this technology offers the device performance, throughput, reliability, and uptime criteria required by a production facility. The design of the plasma etcher using this technology and the process capability it consequently delivers, has significant implications in making this a reality. Alcatel has been supplying such a technology to this MEMS industry for over 5 years and in the interim has evolved its product and process to make this technology production worthy. Alcatel's next generation etcher, the Alcatel 601E, offers multiple advantages to MEMS manufacturers in realizing their production goals.

  18. Space Radar Image of Kilauea, Hawaii - interferometry 1

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This X-band image of the volcano Kilauea was taken on October 4, 1994, by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar. The area shown is about 9 kilometers by 13 kilometers (5.5 miles by 8 miles) and is centered at about 19.58 degrees north latitude and 155.55 degrees west longitude. This image and a similar image taken during the first flight of the radar instrument on April 13, 1994 were combined to produce the topographic information by means of an interferometric process. This is a process by which radar data acquired on different passes of the space shuttle is overlaid to obtain elevation information. Three additional images are provided showing an overlay of radar data with interferometric fringes; a three-dimensional image based on altitude lines; and, finally, a topographic view of the region. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR. The Instituto Ricerca Elettromagnetismo

  19. KSC-04PD-2102

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. Inside the Space Station Processing Facility, a technician begins checking the Cupola after its delivery and uncrating. It was shipped from Alenia Spazio in Turin, Italy, for the European Space Agency. A dome-shaped module with seven windows, the Cupola will give astronauts a panoramic view for observing many operations on the outside of the orbiting complex. The view out of the Cupola windows will enhance an arm operator's situational awareness, supplementing television camera views and graphics. It will provide external observation capabilities during spacewalks, docking operations and hardware surveys and for Earth and celestial studies. The Cupola is the final element of the Space Station core.

  20. KSC-04PD-2103

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. Inside the Space Station Processing Facility, technicians begin checking the Cupola after its delivery and uncrating. It was shipped from Alenia Spazio in Turin, Italy, for the European Space Agency. A dome-shaped module with seven windows, the Cupola will give astronauts a panoramic view for observing many operations on the outside of the orbiting complex. The view out of the Cupola windows will enhance an arm operator's situational awareness, supplementing television camera views and graphics. It will provide external observation capabilities during spacewalks, docking operations and hardware surveys, and for Earth and celestial studies. The Cupola is the final element of the Space Station core.

  1. KSC-04PD-2099

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. At the Space Station Processing Facility, a trailer delivers the Cupola, an element scheduled to be installed on the International Space Station in early 2009. It was shipped from Alenia Spazio in Turin, Italy, for the European Space Agency. A dome-shaped module with seven windows, the Cupola will give astronauts a panoramic view for observing many operations on the outside of the orbiting complex. The view out of the Cupola windows will enhance an arm operator's situational awareness, supplementing television camera views and graphics. It will provide external observation capabilities during spacewalks, docking operations and hardware surveys and for Earth and celestial studies. The Cupola is the final element of the Space Station core.

  2. The Mice Drawer System (MDS) experiment and the space endurance record-breaking mice.

    PubMed

    Cancedda, Ranieri; Liu, Yi; Ruggiu, Alessandra; Tavella, Sara; Biticchi, Roberta; Santucci, Daniela; Schwartz, Silvia; Ciparelli, Paolo; Falcetti, Giancarlo; Tenconi, Chiara; Cotronei, Vittorio; Pignataro, Salvatore

    2012-01-01

    The Italian Space Agency, in line with its scientific strategies and the National Utilization Plan for the International Space Station (ISS), contracted Thales Alenia Space Italia to design and build a spaceflight payload for rodent research on ISS: the Mice Drawer System (MDS). The payload, to be integrated inside the Space Shuttle middeck during transportation and inside the Express Rack in the ISS during experiment execution, was designed to function autonomously for more than 3 months and to involve crew only for maintenance activities. In its first mission, three wild type (Wt) and three transgenic male mice over-expressing pleiotrophin under the control of a bone-specific promoter (PTN-Tg) were housed in the MDS. At the time of launch, animals were 2-months old. MDS reached the ISS on board of Shuttle Discovery Flight 17A/STS-128 on August 28(th), 2009. MDS returned to Earth on November 27(th), 2009 with Shuttle Atlantis Flight ULF3/STS-129 after 91 days, performing the longest permanence of mice in space. Unfortunately, during the MDS mission, one PTN-Tg and two Wt mice died due to health status or payload-related reasons. The remaining mice showed a normal behavior throughout the experiment and appeared in excellent health conditions at landing. During the experiment, the mice health conditions and their water and food consumption were daily checked. Upon landing mice were sacrificed, blood parameters measured and tissues dissected for subsequent analysis. To obtain as much information as possible on microgravity-induced tissue modifications, we organized a Tissue Sharing Program: 20 research groups from 6 countries participated. In order to distinguish between possible effects of the MDS housing conditions and effects due to the near-zero gravity environment, a ground replica of the flight experiment was performed at the University of Genova. Control tissues were collected also from mice maintained on Earth in standard vivarium cages.

  3. The Mice Drawer System (MDS) Experiment and the Space Endurance Record-Breaking Mice

    PubMed Central

    Cancedda, Ranieri; Liu, Yi; Ruggiu, Alessandra; Tavella, Sara; Biticchi, Roberta; Santucci, Daniela; Schwartz, Silvia; Ciparelli, Paolo; Falcetti, Giancarlo; Tenconi, Chiara; Cotronei, Vittorio; Pignataro, Salvatore

    2012-01-01

    The Italian Space Agency, in line with its scientific strategies and the National Utilization Plan for the International Space Station (ISS), contracted Thales Alenia Space Italia to design and build a spaceflight payload for rodent research on ISS: the Mice Drawer System (MDS). The payload, to be integrated inside the Space Shuttle middeck during transportation and inside the Express Rack in the ISS during experiment execution, was designed to function autonomously for more than 3 months and to involve crew only for maintenance activities. In its first mission, three wild type (Wt) and three transgenic male mice over-expressing pleiotrophin under the control of a bone-specific promoter (PTN-Tg) were housed in the MDS. At the time of launch, animals were 2-months old. MDS reached the ISS on board of Shuttle Discovery Flight 17A/STS-128 on August 28th, 2009. MDS returned to Earth on November 27th, 2009 with Shuttle Atlantis Flight ULF3/STS-129 after 91 days, performing the longest permanence of mice in space. Unfortunately, during the MDS mission, one PTN-Tg and two Wt mice died due to health status or payload-related reasons. The remaining mice showed a normal behavior throughout the experiment and appeared in excellent health conditions at landing. During the experiment, the mice health conditions and their water and food consumption were daily checked. Upon landing mice were sacrificed, blood parameters measured and tissues dissected for subsequent analysis. To obtain as much information as possible on microgravity-induced tissue modifications, we organized a Tissue Sharing Program: 20 research groups from 6 countries participated. In order to distinguish between possible effects of the MDS housing conditions and effects due to the near-zero gravity environment, a ground replica of the flight experiment was performed at the University of Genova. Control tissues were collected also from mice maintained on Earth in standard vivarium cages. PMID:22666312

  4. CANOPEN Controller IP Core

    NASA Astrophysics Data System (ADS)

    Caramia, Maurizio; Montagna, Mario; Furano, Gianluca; Winton, Alistair

    2010-08-01

    This paper will describe the activities performed by Thales Alenia Space Italia supported by the European Space Agency in the definition of a CAN bus interface to be used on Exomars. The final goal of this activity is the development of an IP core, to be used in a slave node, able to manage both the CAN bus Data Link and Application Layer totally in hardware. The activity has been focused on the needs of the EXOMARS mission where devices with different computational performances are all managed by the onboard computer through the CAN bus.

  5. Towards telecommunication payloads with photonic technologies

    NASA Astrophysics Data System (ADS)

    Vono, S.; Di Paolo, G.; Piccinni, M.; Pisano, A.; Sotom, M.; Aveline, M.; Ginestet, P.

    2017-11-01

    In the last decade, Thales Alenia Space has put a lot of its research effort on Photonic Technologies for Space Application with the aim to offer the market satellite telecommunication systems better performance and lower costs. This research effort has been concentrated on several activities, some of them sponsored by ESA. Most promising applications refer to Payload Systems. In particular, photonic payload applications have been investigated through the following two ESA studies: Artes-1 "Next Generation Telecommunication Payloads based on Photonic Technologies" and Artes-5 "OWR - Optical Wideband Receiver" activities.

  6. Impact: an Integrated Approach (Space and Ground) for Monitoring the Threat of Earth Orbit Corssing Celestial Bodies

    NASA Astrophysics Data System (ADS)

    Bussolino, L.; Somma, R.

    The threat of possible collision of asteroids and comets with our planet has reached an international stage since 1990 when U.S.A. Congress set up a dedicated committee for the analysis and the assessment of this problem.The U.N. organized a congress later on to summarize the current knowledge on this subject as well as the Europea Council recommended its member states to conduct studies to further deepen the understanding in terms of tackling and solving this kind of problem interesting the entire world. IMPACT is the acronym for " International Monitoring Program for Asteroids and Comets Threats " coming out as proposal from a study funded by the italian region PIEMONTE throughout the Civil Protection Bureau and performed by the Planetology Group of the Astronomical Observatory of Torino ( Italy ) and Alenia Spazio for the engineering part. They have carried out a series of analyses aimed at contributing in subsequent steps to the solution of the two fundamental problems associated to the potential impact threat : the assessment of the numbers of killers/terminators and the impact rates from one side and the development of the idea of considering space segments for supporting activities of discovery as well as the physical and mineralogical characterization using satellites in orbit around the Earth. other additional studies also funded by the European Space Agency where the space technology appears to offer a great contribution if conveniently integrated with the Earth networks for Potentially Hazardous Asteroids ( PHA ) detection. An international approach for monitoring this threat for the Earth is then proposed.

  7. KSC-08pd3757

    NASA Image and Video Library

    2008-11-19

    CAPE CANAVERAL, Fla. – Suspended by a crane in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the Cupola module is being moved to a workstand. The module was delivered to Kennedy by the European Space Agency in 2004 from Alenia Spazio in Turin, Italy. Cupola will provide a 360-degree panoramic view of activities outside the station and spectacular views of the Earth. Cupola has the capability for command and control workstations to be installed to assist in space station remote manipulator system and extra vehicular activities. The final element of the space station core, Cupola is scheduled for launch on space shuttle Endeavour's STS-130 mission, targeted for Dec. 10, 2009. Photo credit: NASA/Cory Huston

  8. KSC-08pd3759

    NASA Image and Video Library

    2008-11-19

    CAPE CANAVERAL, Fla. – Suspended by a crane in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the Cupola module is lowered toward the workstand. The module was delivered to Kennedy by the European Space Agency in 2004 from Alenia Spazio in Turin, Italy. Cupola will provide a 360-degree panoramic view of activities outside the station and spectacular views of the Earth. Cupola has the capability for command and control workstations to be installed to assist in space station remote manipulator system and extra vehicular activities. The final element of the space station core, Cupola is scheduled for launch on space shuttle Endeavour's STS-130 mission, targeted for Dec. 10, 2009. Photo credit: NASA/Cory Huston

  9. KSC-08pd3758

    NASA Image and Video Library

    2008-11-19

    CAPE CANAVERAL, Fla. – Suspended by a crane in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the Cupola module moves closer to the workstand at right. The module was delivered to Kennedy by the European Space Agency in 2004 from Alenia Spazio in Turin, Italy. Cupola will provide a 360-degree panoramic view of activities outside the station and spectacular views of the Earth. Cupola has the capability for command and control workstations to be installed to assist in space station remote manipulator system and extra vehicular activities. The final element of the space station core, Cupola is scheduled for launch on space shuttle Endeavour's STS-130 mission, targeted for Dec. 10, 2009. Photo credit: NASA/Cory Huston

  10. KSC-04PD-2098

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. The Cupola, an element scheduled to be installed on the International Space Station in early 2009, arrives at KSC on the flatbed of a trailer. It was shipped from Alenia Spazio in Turin, Italy, for the European Space Agency. A dome-shaped module with seven windows, the Cupola will give astronauts a panoramic view for observing many operations on the outside of the orbiting complex. The view out of the Cupola windows will enhance an arm operator's situational awareness, supplementing television camera views and graphics. It will provide external observation capabilities during spacewalks, docking operations and hardware surveys and for Earth and celestial studies. The Cupola is the final element of the Space Station core.

  11. Space Radar Image of Raco Biomass Map

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This biomass map of the Raco, Michigan, area was produced from data acquired by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard space shuttle Endeavour. Biomass is the amount of plant material on an area of Earth's surface. Radar can directly sense the quantity and organizational structure of the woody biomass in the forest. Science team members at the University of Michigan used the radar data to estimate the standing biomass for this Raco site in the Upper Peninsula of Michigan. Detailed surveys of 70 forest stands will be used to assess the accuracy of these techniques. The seasonal growth of terrestrial plants, and forests in particular, leads to the temporary storage of large amounts of carbon, which could directly affect changes in global climate. In order to accurately predict future global change, scientists need detailed information about current distribution of vegetation types and the amount of biomass present around the globe. Optical techniques to determine net biomass are frustrated by chronic cloud-cover. Imaging radar can penetrate through cloud-cover with negligible signal losses. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German

  12. Should PUS Standard Evolve?

    NASA Astrophysics Data System (ADS)

    Fourtier, Ph.; Nodet, J.; Garcia, G.

    2008-08-01

    Based on practical experience, the current paper presents position of Thales Alenia Space as a prime contractor, on the use of PUS standard. Questions have raised during past and present applications, which could be justifications for evolutions of the standard. This kind of reporting could be one of the entries for a reactivation of a working group on the PUS standard, taking into account significant experiences accumulated on diverse programs since early 2000.

  13. KSC-04PD-2100

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. Inside the Space Station Processing Facility, the Cupola is uncrated. It was shipped from Alenia Spazio in Turin, Italy, for the European Space Agency. The Cupola is an element scheduled to be installed on the International Space Station in early 2009. A dome-shaped module with seven windows, the Cupola will give astronauts a panoramic view for observing many operations on the outside of the orbiting complex. The view out of the Cupola windows will enhance an arm operator's situational awareness, supplementing television camera views and graphics. It will provide external observation capabilities during spacewalks, docking operations and hardware surveys and for Earth and celestial studies. The Cupola is the final element of the Space Station core.

  14. Strength of Zerodur® for mirror applications

    NASA Astrophysics Data System (ADS)

    Béhar-Lafenêtre, S.; Cornillon, Laurence; Ait-Zaid, Sonia

    2015-09-01

    Zerodur® is a well-known glass-ceramic used for optical components because of its unequalled dimensional stability under thermal environment. In particular it has been used since decades in Thales Alenia Space's optical payloads for space telescopes, especially for mirrors. The drawback of Zerodur® is however its quite low strength, but the relatively small size of mirrors in the past had made it unnecessary to further investigate this aspect, although elementary tests have always shown higher failure strength. As performance of space telescopes is increasing, the size of mirrors increases accordingly, and an optimization of the design is necessary, mainly for mass saving. Therefore the question of the effective strength of Zerodur® has become a real issue. Thales Alenia Space has investigated the application of the Weibull law and associated size effects on Zerodur® in 2014, under CNES funding, through a thorough test campaign with a high number of samples (300) of various types. The purpose was to accurately determine the parameters of the Weibull law for Zerodur® when machined in the same conditions as mirrors. The proposed paper will discuss the obtained results, in the light of the Weibull theory. The applicability of the 2-parameter and 3-parameter (with threshold strength) laws will be compared. The expected size effect has not been evidenced therefore some investigations are led to determine the reasons of this result, from the test implementation quality to the data post-processing methodology. However this test campaign has already provided enough data to safely increase the allowable value for mirrors sizing.

  15. Space Radar Image of Chernobyl

    NASA Technical Reports Server (NTRS)

    1994-01-01

    conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations and data processing of X-SAR.

  16. Space Radar Image of Colima Volcano, Jalisco, Mexico

    NASA Technical Reports Server (NTRS)

    1994-01-01

    and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  17. The Raffaello, a Multi-Purpose Logistics Module, arrives at KSC aboard a Beluga super transporter

    NASA Technical Reports Server (NTRS)

    1999-01-01

    An Airbus Industrie A300-600ST 'Beluga' Super Transporter touches down at the Shuttle Landing Facility to deliver its cargo, the second Multi-Purpose Logistics Module (MPLM) for the International Space Station (ISS). One of Italy's major contributions to the ISS program, the MPLM, named Raffaello, is a reusable logistics carrier and the primary delivery system used to resupply and return station cargo requiring a pressurized environment. Weighing nearly 4.5 tons, the module measures 21 feet long and 15 feet in diameter. Raffaello will join Leonardo, the first Italian-built MPLM, in the Space Station Processing Facility for testing. NASA, Boeing, the Italian Space Agency and Alenia Aerospazio will provide engineering support.

  18. The Raffaello, a Multi-Purpose Logistics Module, arrives at KSC aboard a Beluga super transporter

    NASA Technical Reports Server (NTRS)

    1999-01-01

    An Airbus Industrie A300-600ST 'Beluga' Super Transporter lands in the rain at the Shuttle Landing Facility to deliver its cargo, the second Multi-Purpose Logistics Module (MPLM) for the International Space Station (ISS). One of Italy's major contributions to the ISS program, the MPLM, named Raffaello, is a reusable logistics carrier and the primary delivery system used to resupply and return station cargo requiring a pressurized environment. Weighing nearly 4.5 tons, the module measures 21 feet long and 15 feet in diameter. Raffaello will join Leonardo, the first Italian-built MPLM, in the Space Station Processing Facility for testing. NASA, Boeing, the Italian Space Agency and Alenia Aerospazio will provide engineering support.

  19. From SED HI concept to Pleiades FM detection unit measurements

    NASA Astrophysics Data System (ADS)

    Renard, Christophe; Dantes, Didier; Neveu, Claude; Lamard, Jean-Luc; Oudinot, Matthieu; Materne, Alex

    2017-11-01

    The first flight model PLEIADES high resolution instrument under Thales Alenia Space development, on behalf of CNES, is currently in integration and test phases. Based on the SED HI detection unit concept, PLEIADES detection unit has been fully qualified before the integration at telescope level. The main radiometric performances have been measured on engineering and first flight models. This paper presents the results of performances obtained on the both models. After a recall of the SED HI concept, the design and performances of the main elements (charge coupled detectors, focal plane and video processing unit), detection unit radiometric performances are presented and compared to the instrument specifications for the panchromatic and multispectral bands. The performances treated are the following: - video signal characteristics, - dark signal level and dark signal non uniformity, - photo-response non uniformity, - non linearity and differential non linearity, - temporal and spatial noises regarding system definitions PLEIADES detection unit allows tuning of different functions: reference and sampling time positioning, anti-blooming level, gain value, TDI line number. These parameters are presented with their associated criteria of optimisation to achieve system radiometric performances and their sensitivities on radiometric performances. All the results of the measurements performed by Thales Alenia Space on the PLEIADES detection units demonstrate the high potential of the SED HI concept for Earth high resolution observation system allowing optimised performances at instrument and satellite levels.

  20. KSC-2009-3613

    NASA Image and Video Library

    2009-06-08

    CAPE CANAVERAL, Fla. – During a media event in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida to showcase the newest section of the International Space Station, the Tranquility node, astronauts who will deliver the node on the STS-130 mission were available for questions. From left are Pilot Terry Virts and Mission Specialists Stephen Robinson and Kathryn Hire. At right are other guests, Philippe Deloo, ISS Nodes project manager with the European Space Agency, and Rafael Garcia, ISS Nodes and Express Logistics Carrier project manager with NASA's Johnson Space Center. Managers from NASA, the European Space Agency, Thales Alenia Space and Boeing -- the organizations involved in building and processing the module for flight -- were available for a question-and-answer session during the event. Tranquility is a pressurized module that will provide room for many of the station's life support systems. Photo credit: NASA/Jim Grossmann

  1. Raffaello is offloaded from a Beluga super transporter

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the Shuttle Landing Facility, the one-piece, upward-hinged main cargo door of the Airbus Industrie A300-600ST 'Beluga' Super Transporter is open to offload its cargo, the second Multi-Purpose Logistics Module (MPLM) for the International Space Station (ISS). One of Italy's major contributions to the ISS program, the MPLM, named Raffaello, is a reusable logistics carrier and the primary delivery system used to resupply and return station cargo requiring a pressurized environment. Weighing nearly 4.5 tons, the module measures 21 feet long and 15 feet in diameter. Raffaello will join Leonardo, the first Italian-built MPLM, in the Space Station Processing Facility for testing. NASA, Boeing, the Italian Space Agency and Alenia Aerospazio will provide engineering support.

  2. The Raffaello, a Multi-Purpose Logistics Module, arrives at KSC aboard a Beluga super transporter

    NASA Technical Reports Server (NTRS)

    1999-01-01

    An Airbus Industrie A300-600ST 'Beluga' Super Transporter is reflected in the rain puddles as it comes to a stop at the Shuttle Landing Facility. The Beluga is carrying the Raffaello, the second Multi-Purpose Logistics Module (MPLM) for the International Space Station (ISS). One of Italy's major contributions to the ISS program, the MPLM is a reusable logistics carrier and the primary delivery system used to resupply and return station cargo requiring a pressurized environment. Weighing nearly 4.5 tons, the module measures 21 feet long and 15 feet in diameter. Raffaello will join Leonardo, the first Italian-built MPLM, in the Space Station Processing Facility for testing. NASA, Boeing, the Italian Space Agency and Alenia Aerospazio will provide engineering support.

  3. The Raffaello, a Multi-Purpose Logistics Module, arrives at KSC aboard a Beluga super transporter

    NASA Technical Reports Server (NTRS)

    1999-01-01

    An Airbus Industrie A300-600ST 'Beluga' Super Transporter is reflected in the rain puddles as it taxis toward the mate/demate tower at the Shuttle Landing Facility. The Beluga is carrying the Raffaello, the second Multi-Purpose Logistics Module (MPLM) for the International Space Station (ISS). One of Italy's major contributions to the ISS program, the MPLM is a reusable logistics carrier and the primary delivery system used to resupply and return station cargo requiring a pressurized environment. Weighing nearly 4.5 tons, the module measures 21 feet long and 15 feet in diameter. Raffaello will join Leonardo, the first Italian-built MPLM, in the Space Station Processing Facility for testing. NASA, Boeing, the Italian Space Agency and Alenia Aerospazio will provide engineering support.

  4. An Airbus arrives at KSC with third MPLM

    NASA Technical Reports Server (NTRS)

    2001-01-01

    An Airbus '''Beluga''' air cargo plane, The Super Transporter, lands at KSC's Shuttle Landing Facility. Its cargo, from the factory of Alenia Aerospazio in Turin, Italy, is the Italian Space Agency's Multi-Purpose Logistics Module Donatello, the third of three for the International Space Station. The module will be transported to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle's payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo.

  5. An Airbus arrives at KSC with third MPLM

    NASA Technical Reports Server (NTRS)

    2001-01-01

    An Airbus '''Beluga''' air cargo plane, The Super Transporter, arrives at KSC's Shuttle Landing Facility from the factory of Alenia Aerospazio in Turin, Italy. Its cargo is the Italian Space Agency's Multi-Purpose Logistics Module Donatello, the third of three for the International Space Station. The module will be transported to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle's payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo.

  6. Space Radar Image of Colombian Volcano

    NASA Technical Reports Server (NTRS)

    1999-01-01

    weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companiesfor the German space agency, Deutsche Agentur fuer Raumfahrtange-legenheiten (DARA), and the Italian space agency,Agenzia SpazialeItaliana (ASI), with the Deutsche Forschungsanstalt fuer Luft undRaumfahrt e.v.(DLR), the major partner in science,operations, and data processing of X-SAR.

  7. Space Radar Image of Niya ruins, Taklamakan desert

    NASA Technical Reports Server (NTRS)

    1999-01-01

    human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtange-legenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstaltfuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations and data processing of X-SAR.

  8. Space Radar Image of Manaus, Brazil

    NASA Technical Reports Server (NTRS)

    1999-01-01

    changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v. (DLR), the major partner in science, operations and data processing of X-SAR.

  9. Space Radar Image of Mammoth, California

    NASA Technical Reports Server (NTRS)

    1999-01-01

    environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI) with the Deutsche Forschungsanstalt fur Luft und Raumfahrt e.v. (DLR), the major partner in science, operation and data processing of X-SAR.

  10. The high resolution optical instruments for the Pleiades HR Earth observation satellites

    NASA Astrophysics Data System (ADS)

    Gaudin-Delrieu, Catherine; Lamard, Jean-Luc; Cheroutre, Philippe; Bailly, Bruno; Dhuicq, Pierre; Puig, Olivier

    2017-11-01

    Coming after the SPOT satellites series, PLEIADESHR is a CNES optical high resolution satellite dedicated to Earth observation, part of a larger optical and radar multi-sensors system, ORFEO, which is developed in cooperation between France and Italy for dual Civilian and Defense use. The development of the two PLEIADES-HR cameras was entrusted by CNES to Thales Alenia Space. This new generation of instrument represents a breakthrough in comparison with the previous SPOT instruments owing to a significant step in on-ground resolution, which approaches the capabilities of aerial photography. The PLEIADES-HR instrument program benefits from Thales Alenia Space long and successful heritage in Earth observation from space. The proposed solution benefits from an extensive use of existing products, Cannes Space Optics Centre facilities, unique in Europe, dedicated to High Resolution instruments. The optical camera provides wide field panchromatic images supplemented by 4 multispectral channels with narrow spectral bands. The optical concept is based on a four mirrors Korsch telescope. Crucial improvements in detector technology, optical fabrication and electronics make it possible for the PLEIADES-HR instrument to achieve the image quality requirements while respecting the drastic limitations of mass and volume imposed by the satellite agility needs and small launchers compatibility. The two flight telescopes were integrated, aligned and tested. After the integration phase, the alignment, mainly based on interferometric measurements in vacuum chamber, was successfully achieved within high accuracy requirements. The wave front measurements show outstanding performances, confirmed, after the integration of the PFM Detection Unit, by MTF measurements on the Proto-Flight Model Instrument. Delivery of the proto flight model occurred mi-2008. The FM2 Instrument delivery is planned Q2-2009. The first optical satellite launch of the PLEIADES-HR constellation is foreseen

  11. Comparative theoretical and experimental study of a Shack-Hartmann and a phase diversity sensor, for high-precision wavefront sensing dedicated to space active optics

    NASA Astrophysics Data System (ADS)

    Montmerle Bonnefois, A.; Fusco, T.; Meimon, S.; Michau, V.; Mugnier, L.; Sauvage, J.-F.; Engel, C.; Escolle, C.; Ferrari, M.; Hugot, E.; Liotard, A.; Bernot, M.; Carlavan, M.; Falzon, F.; Bret-Dibat, T.; Laubier, D.

    2017-11-01

    Earth-imaging or Universe Science satellites are always in need of higher spatial resolutions, in order to discern finer and finer details in images. This means that every new generation of satellites must have a larger main mirror than the previous one, because of the diffraction. Since it allows the use of larger mirrors, active optics is presently studied for the next generation of satellites. To measure the aberrations of such an active telescope, the Shack-Hartmann (SH), and the phase-diversity (PD) are the two wavefront sensors (WFS) considered preferentially because they are able to work with an extended source like the Earth's surface, as well as point sources like stars. The RASCASSE project was commissioned by the French spatial agency (CNES) to study the SH and PD sensors for high-performance wavefront sensing. It involved ONERA and Thales Alenia Space (TAS), and LAM. Papers by TAS and LAM on the same project are available in this conference, too [1,2]. The purpose of our work at ONERA was to explore what the best performance both wavefront sensors can achieve in a space optics context. So we first performed a theoretical study in order to identify the main sources of errors and quantify them - then we validated those results experimentally. The outline of this paper follows this approach: we first discuss phase diversity theoretical results, then Shack-Hartmann's, then experimental results - to finally conclude on each sensor's performance, and compare their weak and strong points.

  12. Powering the future - a new generation of high-performance solar arrays

    NASA Astrophysics Data System (ADS)

    Geyer, Freddy; Caswell, Doug; Signorini, Carla

    2007-08-01

    Funded by ESA's Advanced Research in Telecommunication (ARTES) programme, Thales Alenia Space has developed a new generation of high-power ultra-lightweight solar arrays for telecommunications satellites. Thanks to close cooperation with its industrial partners in Europe, the company has generically qualified a solar array io meet market needs. Indeed, three flight projects were already using the new design as qualification was completed. In addition, the excellent mechanical and thermal behaviour of the new panel structure are contributing to other missions such as Pleïades and LISA Pathfinder.

  13. Constellations Solar Array Design, Industrialization And In-Flight Results

    NASA Astrophysics Data System (ADS)

    Combet, Yannick; Clapper, Paul

    2011-10-01

    Constellations has become a recurring opportunities in Thales Alenia Space since 3 majors programs had been awarded: Globalstar was the pathfinder with 48 flight sets followed by O3b with 8 an the latest is Iridium Next with 81 models. For these 3 programs, the Solar Array is fully developed, validated and produced by Thales Alenia Space with major subcontractors. This new segment of the activity leads to new development, design and industrialization approaches. This paper describes the Solar Array design and the alternative to current approach build and applied with the following drivers: - the low recurring cost and mass of the flight hardware, with particular attention on the Solar Array, - high robustness for system integration and in-orbit operations, - a long mission duration (typically 15 years in LEO) leading to take into account high number of thermal cycles (60 to 72.000 cycles), - new production concept with strict schedule management, - design segmented in subassemblies to reduce the integration time as well as a improved trouble shooting management, - delivery rate up to 1 wing per week and after learning curve effect, a integration duration divided by 3 compared to current production, - a delivery of a qualified PFM solar array in 22 months including the design to producibility constrains, This demanding requirement for delivery scheme and cost target did not jeopardize the requirements and standards for space application. After a brief description of the way the main drivers have been considered, the paper presents the main features and performances of the subsystem and shows the main validation test results. The first launch was successful in October 2010 and the first in-orbit results are presented.

  14. An Airbus arrives at KSC with third MPLM

    NASA Technical Reports Server (NTRS)

    2001-01-01

    An Airbus '''Beluga''' air cargo plane, The Super Transporter, taxis onto the parking apron at KSC's Shuttle Landing Facility. Its cargo, from the factory of Alenia Aerospazio in Turin, Italy, is the Italian Space Agency's Multi-Purpose Logistics Module Donatello, the third of three for the International Space Station. The module will be transported to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle's payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo.

  15. MPLM Donatello is offloaded at the SLF

    NASA Technical Reports Server (NTRS)

    2001-01-01

    At the Shuttle Landing Facility, workers in cherry pickers (right) help guide offloading of the Italian Space Agency's Multi-Purpose Logistics Module Donatello from the Airbus '''Beluga''' air cargo plane that brought it from the factory of Alenia Aerospazio in Turin, Italy. The third of three for the International Space Station, the module will be transported to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle's payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo.

  16. KSC01pp0234

    NASA Image and Video Library

    2001-02-01

    An Airbus “Beluga” air cargo plane, The Super Transporter, taxis onto the parking apron at KSC’s Shuttle Landing Facility. Its cargo, from the factory of Alenia Aerospazio in Turin, Italy, is the Italian Space Agency’s Multi-Purpose Logistics Module Donatello, the third of three for the International Space Station. The module will be transported to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle’s payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo

  17. Analysis of the Thermo-Elastic Response of Space Reflectors to Simulated Space Environment

    NASA Astrophysics Data System (ADS)

    Allegri, G.; Ivagnes, M. M.; Marchetti, M.; Poscente, F.

    2002-01-01

    The evaluation of space environment effects on materials and structures is a key matter to develop a proper design of long duration missions: since a large part of satellites operating in the earth orbital environment are employed for telecommunications, the development of space antennas and reflectors featured by high dimensional stability versus space environment interactions represents a major challenge for designers. The structural layout of state of the art space antennas and reflectors is very complex, since several different sensible elements and materials are employed: particular care must be placed in evaluating the actual geometrical configuration of the reflectors operating in the space environment, since very limited distortions of the designed layout can produce severe effects on the quality of the signal both received and transmitted, especially for antennas operating at high frequencies. The effects of thermal loads due to direct sunlight exposition and to earth and moon albedo can be easily taken into account employing the standard methods of structural analysis: on the other hand the thermal cycling and the exposition to the vacuum environment produce a long term damage accumulation which affects the whole structure. The typical effects of the just mentioned exposition are the outgassing of polymeric materials and the contamination of the exposed surface, which can affect sensibly the thermo-mechanical properties of the materials themselves and, therefore, the structural global response. The main aim of the present paper is to evaluate the synergistic effects of thermal cycling and of the exposition to high vacuum environment on an innovative antenna developed by Alenia Spazio S.p.a.: to this purpose, both an experimental and numerical research activity has been developed. A complete prototype of the antenna has been exposed to the space environment simulated by the SAS facility: this latter is constituted by an high vacuum chamber, equipped by

  18. Enabling technologies for space exploration systems: The STEPS project results and perspectives

    NASA Astrophysics Data System (ADS)

    Messidoro, Piero; Perino, Maria Antonietta; Boggiatto, Dario

    2013-05-01

    The project STEPS (Sistemi e Tecnologie per l'EsPlorazione Spaziale) is a joint development of technologies and systems for Space Exploration supported by Regione Piemonte, the European Regional Development Fund (E.R.D.F.) 2007-2013, Thales Alenia Space Italia (TAS-I), SMEs, Universities and public Research Centres belonging to the network "Comitato Distretto Aerospaziale del Piemonte" the Piedmont Aerospace District (PAD) in Italy. The project first part terminated in May 2012 with a final demonstration event that summarizes the technological results of research activities carried-out during a period the three years and half. The project developed virtual and hardware demonstrators for a range of technologies for the descent, soft landing and surface mobility of robotic and manned equipment for Moon and Mars exploration. The two key hardware demonstrators—a Mars Lander and a Lunar Rover—fit in a context of international cooperation for the exploration of Moon and Mars, as envisaged by Space Agencies worldwide. The STEPS project included also the development and utilization of a system of laboratories equipped for technology validation, teleoperations, concurrent design environments, and virtual reality simulation of the Exploration Systems in typical Moon and Mars environments. This paper presents the reached results in several technology domains like: vision-based GNC for the last portion of Mars Entry, Descent and Landing sequence, Hazard avoidance and complete spacecraft autonomy; Autonomous Rover Navigation, based on the determination of the terrain morphology by a stereo camera; Mobility and Mechanisms providing an Integrated Ground Mobility System, Rendezvous and Docking equipment, and protection from Environment effects; innovative Structures such as Inflatable, Smart and Multifunction Structures, an Active Shock Absorber for safe landing, balance restoring and walking; Composite materials Modelling and Monitoring; Human-machine interface features of a

  19. Space Radar Image of San Francisco, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V. (DLR), the major partner in science, operations and data processing of X-SAR.

  20. Space Radar Image of Houston, Texas

    NASA Technical Reports Server (NTRS)

    1994-01-01

    -C/X-band Synthetic Aperture Radar(SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI) with the Deutsche Forschungsanstalt fuer luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  1. Photonic Integrated Circuits for Cost-Effective, High Port Density, and Higher Capacity Optical Communications Systems

    NASA Astrophysics Data System (ADS)

    Chiappa, Pierangelo

    Bandwidth-hungry services, such as higher speed Internet, voice over IP (VoIP), and IPTV, allow people to exchange and store huge amounts of data among worldwide locations. In the age of global communications, domestic users, companies, and organizations around the world generate new contents making bandwidth needs grow exponentially, along with the need for new services. These bandwidth and connectivity demands represent a concern for operators who require innovative technologies to be ready for scaling. To respond efficiently to these demands, Alcatel-Lucent is fast moving toward photonic integration circuits technologies as the key to address best performances at the lowest "bit per second" cost. This article describes Alcatel-Lucent's contribution in strategic directions or achievements, as well as possible new developments.

  2. Driving Innovation in Optical Networking

    NASA Astrophysics Data System (ADS)

    Colizzi, Ernesto

    Over the past 30 years, network applications have changed with the advent of innovative services spanning from high-speed broadband access to mobile data communications and to video signal distribution. To support this service evolution, optical transport infrastructures have changed their role. Innovations in optical networking have not only allowed the pure "bandwidth per fiber" increase, but also the realization of highly dependable and easy-to-manage networks. This article analyzes the innovations that have characterized the optical networking solutions from different perspectives, with a specific focus on the advancements introduced by Alcatel-Lucent's research and development laboratories located in Italy. The advancements of optical networking will be explored and discussed through Alcatel-Lucent's optical products to contextualize each innovation with the market evolution.

  3. KSC-98pc886

    NASA Image and Video Library

    1998-07-31

    KENNEDY SPACE CENTER, FLA. -- An Airbus Beluga transporter parks on the Shuttle Landing Facility to deliver the first of three Multi-Purpose Logistics Modules (MPLMs), designed to transport experiments and supplies in a pressurized environment to and from the International Space Station (ISS). The MPLMs will be carried in the payload bay of a Shuttle orbiter, and will provide storage and additional work space for up to two astronauts when docked to the ISS. The modules are being provided by Alenia Aerospazio, in Italy, and will be operated by NASA and supported by ASI, the Italian space agency. The first MPLM has been named Leonardo, and is scheduled to be launched on STS-100 in December 1999. The second, to be handed over in April 1999, is named Raffaello. A third module, to be named Donatello, is due to be delivered in October 2000 for launch in January 2001

  4. Space Radar Image of Moscow, Russia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  5. Space Radar Image of Kilauea, Hawaii

    NASA Technical Reports Server (NTRS)

    1999-01-01

    community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI).

  6. ExoMars Mission Analysis and Design - Launch, Cruise and Arrival Analyses

    NASA Technical Reports Server (NTRS)

    Cano, Juan L.; Cacciatore, Francesco

    2007-01-01

    ExoMars is ESA s next mission to planet Mars. The probe is aimed for launch either in 2013 or in 2016. The project is currently undergoing Phase B1 studies under ESA management and Thales Alenia Space Italia project leadership. In that context, DEIMOS Space is responsible for the Mission Analysis and Design for the interplanetary and the entry, descent and landing (EDL) activities. The present mission baseline is based on an Ariane 5 or Proton M launch in 2013 of a spacecraft Composite bearing a Carrier Module (CM) and a Descent Module (DM). A back-up option is proposed in 2016. This paper presents the current status of the interplanetary mission design from launch up to the start of the EDL phase.

  7. Magnetoresistive Current Sensors for High Accuracy, High Bandwidth Current Measurement in Spacecraft Power Electronics

    NASA Astrophysics Data System (ADS)

    Slatter, Rolf; Goffin, Benoit

    2014-08-01

    The usage of magnetoresistive (MR) current sensors is increasing steadily in the field of power electronics. Current sensors must not only be accurate and dynamic, but must also be compact and robust. The MR effect is the basis for current sensors with a unique combination of precision and bandwidth in a compact package. A space-qualifiable magnetoresistive current sensor with high accuracy and high bandwidth is being jointly developed by the sensor manufacturer Sensitec and the spacecraft power electronics supplier Thales Alenia Space (T AS) Belgium. Test results for breadboards incorporating commercial-off-the-shelf (COTS) sensors are presented as well as an application example in the electronic control and power unit for the thrust vector actuators of the Ariane5-ME launcher.

  8. Space Radar Image of Central African Gorilla Habitat

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v. (DLR), the major partner in science, operations and data processing of X-SAR.

  9. Space Radar Image Isla Isabela in 3-D

    NASA Technical Reports Server (NTRS)

    1999-01-01

    , complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI).

  10. Building the Qualification File of EGNOS with DOORS

    NASA Astrophysics Data System (ADS)

    Fabre, J.

    2008-08-01

    EGNOS, the European Satellite-Based Augmentation System (SBAS) to GPS, is getting to its final deployment and being initially operated towards qualification and certification to reach operational capability by 2008/2009. A very important milestone in the development process is the System Qualification Review (QR). As the verification phase aims at demonstrating that the EGNOS System design meets the applicable requirements, the QR declares the completion of verification activities. The main document to present at QR is a consolidated, consistent and complete Qualification file. The information included shall give confidence to the QR reviewers that the performed qualification activities are completed. Therefore, an important issue for the project team is to focus on synthetic and consistent information, and to make the presentation as clear as possible. Traceability to applicable requirements shall be systematically presented. Moreover, in order to support verification justification, reference to details shall be available, and the reviewer shall have the possibility to link automatically to the documents including this detailed information. In that frame, Thales Alenia Space has implemented a strong support in terms of methodology and tool, to provide to System Engineering and Verification teams a single reference technical database, in which all team members consult the applicable requirements, compliance, justification, design data and record the information necessary to build the final Qualification file. This paper presents the EGNOS context, the Qualification file contents, and the methodology implemented, based on Thales Alenia Space practices and in line with ECSS. Finally, it shows how the Qualification file is built in a DOORS environment.

  11. Managing EEE part standardisation and procurement

    NASA Astrophysics Data System (ADS)

    Serieys, C.; Bensoussan, A.; Petitmangin, A.; Rigaud, M.; Barbaresco, P.; Lyan, C.

    2002-12-01

    This paper presents the development activities in space components selection and procurement dealing with a new data base tool implemented at Alcatel Space using TransForm softwaa re configurator developed by Techform S.A. Based on TransForm, Access Ingenierie has devv eloped a software product named OLG@DOS which facilitate the part nomenclatures analyses for new equipment design and manufacturing in term of ACCESS data base implementation. Hi-Rel EEE part type technical, production and quality information are collected and compiled usingproduction data base issued from production tools implemented for equipment definition, description and production based on Manufacturing Resource Planning (MRP II Control Open) and Parametric Design Manager (PDM Work Manager). The analysis of any new equipment nomenclature may be conducted through this means for standardisation purpose, cost containment program and management procurement activities as well as preparation of Component reviews as Part Approval Document and Declared Part List validation.

  12. KSC-2009-3614

    NASA Image and Video Library

    2009-06-08

    CAPE CANAVERAL, Fla. – During a media event at NASA's Kennedy Space Center in Florida to showcase the newest section of the International Space Station, the Tranquility node, STS-130 Commander George Zamka speaks to the media and guests. Tranquility will be delivered to the station during space shuttle Endeavour's STS-130 mission, targeted for launch in February 2010. Others present at right of Zamka are Russ Romanella, director of the ISS and Payload Processing Directorate, STS-130 Pilot Terry Virts and Mission Specialists Stephen Robinson and Kathryn Hire, Philippe Deloo, ISS Nodes project manager with the European Space Agency, and Rafael Garcia, ISS Nodes and Express Logistics Carrier project manager with NASA's Johnson Space Center. Managers from NASA, the European Space Agency, Thales Alenia Space and Boeing -- the organizations involved in building and processing the module for flight -- were available for a question-and-answer session during the event. Tranquility will be delivered to the station during space shuttle Endeavour's STS-130 mission, targeted for launch in February 2010. Photo credit: NASA/Jim Grossmann

  13. The CANopen Controller IP Core: Implementation, Synthesis and Test Results

    NASA Astrophysics Data System (ADS)

    Caramia, Maurizio; Bolognino, Luca; Montagna, Mario; Tosi, Pietro; Errico, Walter; Bigongiari, Franco; Furano, Gianluca

    2011-08-01

    This paper will describe the implementation and test results of the CANopen Controller IP Core (CCIPC) implemented by Thales Alenia Space and SITAEL Aerospace with the support of ESA in the frame of the EXOMARS Project. The CCIPC is a configurable VHDL implementation of the CANOPEN protocol [1]; it is foreseen to be used as CAN bus slave controller within the EXOMARS Entry Descending and Landing Demonstrato Module (EDM) and Rover Module. The CCIPC features, configuration capability, synthesis and test results will be described and the evidence of the state of maturity of this innovative IP core will be demonstrated.

  14. G. Marconi: A Data Relay Satellite for Mars Communications

    NASA Astrophysics Data System (ADS)

    Dionisio, C.; Marcozzi, M.; Landriani, C.

    2002-01-01

    Ascent Vehicle launch and Orbiting Sample Canister detection for the Mars Sample Return mission. The GMO mission is a close collaboration between the Italian and American national space agencies and two implementing organizations: Alenia Spazio in Italy and JPL in the United States. As the Italian prime contractor, Alenia Spazio is to design and fabricate the spacecraft bus, integrate the Italian and JPL payloads, support integration of the spacecraft with the launch vehicle, support launch, and conduct mission operations. GMO will use Alenia' s PRIMA spacecraft bus in a deep space configuration. The PRIMA bus is a new design concept, developed under ASI funding, that combines flexibility, low cost and high efficiency. Its modular design makes it adaptable for several classes of missions, including interplanetary.

  15. NGST telescope aspects

    NASA Astrophysics Data System (ADS)

    Ghibaudo, J.-B.

    2017-11-01

    This paper is focused on the NGST telescope aspects and presents the main results of the ESA study "NGST Payload Suite and Telescope". The first part summarises the trade-off analyses on optical, mechanical and control telescope concepts, and eventually proposes a baseline design for the telescope. The second part describes the possible European contributions to the NGST telescope : invitations to tender based on the selected telescope design have been sent out to specialised European companies, and the results have been reported as well as the identified critical areas and needed associated developments. Alcatel is well known in the field of cryogenic optics through the realisation of the Infrared Space Observatory, and in the field of high resolution telescopes, notably in the framework of military programmes.

  16. The IASI detection chain

    NASA Astrophysics Data System (ADS)

    Nicol, Patrick; Fleury, Joel; Le Naour, Claire; Bernard, Frédéric

    2017-11-01

    IASI (Infrared Atmospheric Sounding Interferometer) is an infrared atmospheric sounder. It will provide meteorologist and scientific community with atmospheric spectra. The instrument is composed of a Fourier transform spectrometer and an associated infrared imager. The presentation will describe the spectrometer detection chain architecture, composed by three different detectors cooled in a passive cryo-cooler (so called CBS : Cold Box Subsystem) and associated analog electronics up to digital conversion. It will mainly focus on design choices with regards to environment constraints, implemented technologies, and associated performances. CNES is leading the IASI program in collaboration with EUMETSAT. The instrument Prime is ALCATEL SPACE responsible, notably, of the detection chain architecture. SAGEM SA provides the detector package (so called CAU : Cold Acquisition Unit).

  17. The IASI detection chain

    NASA Astrophysics Data System (ADS)

    Nicol, Patrick; Fleury, Joel; Bernard, Frédéric

    2004-06-01

    IASI (Infrared Atmospheric Sounding Interferometer) is an infrared atmospheric sounder. It will provide meteorologist and scientific community with atmospheric spectra. The instrument is composed of a Fourier transform spectrometer and an associated infrared imager. The presentation will describe the spectrometer detection chain architecture, composed by three different detectors cooled in a passive cryo-cooler (so called CBS : Cold Box Subsystem) and associated analog electronics up to digital conversion. It will mainly focus on design choices with regards to environment constraints, implemented technologies, and associated performances . CNES is leading the IASI program in collaboration with EUMETSAT. The instrument Prime is ALCATEL SPACE responsible, notably, of the detection chain architecture. SAGEM SA provides the detector package (so called CAU: Cold Acquisition Unit).

  18. The design of a breadboard cryogenic optical delay line for DARWIN

    NASA Astrophysics Data System (ADS)

    van den Dool, Teun; Kamphues, Fred; Fouss, B.; Henrioulle, K.; Kooijman, P. P.; Visser, Martijn; Velsink, G.; Fleury, K.

    2004-09-01

    TNO TPD, in cooperation with Micromega-Dynamics, SRON, Dutch Space and CSL, has designed a compact breadboard cryogenic delay line for use in future space interferometry missions. The work is performed under ESA contract in preparation for the DARWIN mission. The breadboard (BB) delay line is representative of a future flight mechanism, with all materials and processes used being flight representative. The delay line has a single stage voice coil actuator for Optical Path Difference (OPD) control, driving a two-mirror cat"s eye. Magnetic bearings provide frictionless and wear free operation with zero-hysteresis. Overall power consumption is below the ESA specification of 2.5 W. The power dissipated on the optical bench at 40 K is considerably less than the maximum allowable 25 mW. The BB delay line will be built in the second half of 2004. The manufacturing and assembly phase is followed by a comprehensive test program, including functional testing at 40 K in 2005. The tests will be carried out by Alcatel Space and SAGEIS-CSO.

  19. Developing the Cleanliness Requirements for an Organic-detection Instrument MOMA-MS

    NASA Technical Reports Server (NTRS)

    Perry, Radford; Canham, John; Lalime, Erin

    2015-01-01

    The cleanliness requirements for an organic-detection instrument, like the Mars Organic Molecule Analyzer Mass Spectrometer (MOMA-MS), on a Planetary Protection Class IVb mission can be extremely stringent. These include surface molecular and particulate, outgassing, and bioburden. The prime contractor for the European Space Agencys ExoMars 2018 project, Thales Alenia Space Italy, provided requirements based on a standard, conservative approach of defining limits which yielded levels that are unverifiable by standard cleanliness verification methods. Additionally, the conservative method for determining contamination surface area uses underestimation while conservative bioburden surface area relies on overestimation, which results in inconsistencies for the normalized reporting. This presentation will provide a survey of the challenge to define requirements that can be reasonably verified and still remain appropriate to the core science of the ExoMars mission.

  20. MPLM-1, Leonardo, arrives at the SLF at KSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    An Airbus Beluga transporter parks on the Shuttle Landing Facility to deliver the first of three Multi-Purpose Logistics Modules (MPLMs), designed to transport experiments and supplies in a pressurized environment to and from the International Space Station (ISS). The MPLMs will be carried in the payload bay of a Shuttle orbiter, and will provide storage and additional work space for up to two astronauts when docked to the ISS. The modules are being provided by Alenia Aerospazio, in Italy, and will be operated by NASA and supported by ASI, the Italian space agency. The first MPLM has been named Leonardo, and is scheduled to be launched on STS-100 in December 1999. The second, to be handed over in April 1999, is named Raffaello. A third module, to be named Donatello, is due to be delivered in October 2000 for launch in January 2001.

  1. Space Radar Image of Mississippi Delta

    NASA Technical Reports Server (NTRS)

    1999-01-01

    illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations, and data processing of X-SAR.

  2. Space Radar Image of Oetzal, Austria

    NASA Technical Reports Server (NTRS)

    1999-01-01

    microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI).

  3. Space Radar Image of Oberpfaffenhofen, Germany

    NASA Technical Reports Server (NTRS)

    1999-01-01

    -C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v. (DLR), the major partner in science, operations and data processing of X-SAR.

  4. Space Radar Image of Flevoland, Netherlands

    NASA Technical Reports Server (NTRS)

    1999-01-01

    used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrte.v. (DLR), the major partner in science, operations and data processing of X-SAR.

  5. Power System Simulations For The Globalstar2 Mission Using The PowerCap Software

    NASA Astrophysics Data System (ADS)

    Defoug, S.; Pin, R.

    2011-10-01

    The Globalstar system aims to enable customers to communicate all around the world thanks to its constellation of 48 LEO satellites. Thales Alenia Space is in charge of the design and manufacturing of the second generation of the Globalstar satellites. For such a long duration mission (15 years) and with a payload power consumption varying incessantly, the optimization of the solar arrays and battery has to be consolidated by an accurate power simulation tool. After a general overview of the Globalstar power system and of the PowerCap software, this paper presents the dedicated version elaborated for the GlobalStar2 mission, the simulations results and their correlation with the tests.

  6. Application of Peterson's stray light model to complex optical instruments

    NASA Astrophysics Data System (ADS)

    Fray, S.; Goepel, M.; Kroneberger, M.

    2016-07-01

    Gary L. Peterson (Breault Research Organization) presented a simple analytical model for in- field stray light evaluation of axial optical systems. We exploited this idea for more complex optical instruments of the Meteosat Third Generation (MTG) mission. For the Flexible Combined Imager (FCI) we evaluated the in-field stray light of its three-mirroranastigmat telescope, while for the Infrared Sounder (IRS) we performed an end-to-end analysis including the front telescope, interferometer and back telescope assembly and the cold optics. A comparison to simulations will be presented. The authors acknowledge the support by ESA and Thales Alenia Space through the MTG satellites program.

  7. Space Radar Image of Kilauea Volcano, Hawaii

    NASA Technical Reports Server (NTRS)

    1994-01-01

    radar missions to help in better understanding the processes responsible for volcanic eruptions and earthquakes. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  8. Space Radar Image of North Sea, Germany

    NASA Technical Reports Server (NTRS)

    1994-01-01

    swiftly than is currently possible. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  9. MPLM Donatello is offloaded at the SLF

    NASA Technical Reports Server (NTRS)

    2001-01-01

    At the KSC Shuttle Landing Facility, an Airbus '''Beluga''' air cargo plane opens to reveal its cargo, the Italian Space Agency's Multi- Purpose Logistics Module Donatello, from the factory of Alenia Aerospazio in Turin, Italy. The third of three for the International Space Station, the module will be transported to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle's payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo.

  10. Exomars orbiter science and data-relay mission / looking for trace gases on Mars

    NASA Astrophysics Data System (ADS)

    Fratacci, Olivier

    EXOMARS Orbiter Module: looking for trace gas on Mars and providing data relay support for future Mars Surface assets O.Fratacci, M.Mesrine, H.Renault, Thales Alenia Space France B.Musetti, M.Montagna, Thales Alenia Space Italy M.Kesselmann, M.Barczewski OHB P.Mitschdoerfer, D.Dellantonio Euro-pean Space Agency / ESTEC The European Space Agency (ESA) in a joint cooperation with NASA, will launch in 2016 the EXOMARS spacecraft composite to develop European landing technologies and provide a science orbiter with data-relay capability around Mars until end 2022. The spacecraft composite is composed of the Orbitr Module (OM), provided by TAS-France, an entry descent and landing demonstrator module (EDM) provided by TAS-Italy, and a set of six scientific payloads to be selected by the JPL during 2010. Recent observations of the planet Mars have indicated detection of methane as well as temporal, perhaps spatial variability in the detected signal while current photochemical models cannot explain the presence of methane in the atmosphere of Mars nor its reported rapid variations in space and time. The triple scientific objectives that drive the selection of these six instruments for the Exomars 2016 mission is to detect trace gases in Mars atmosphere, to characterise their spatial and temporal variation and to explore the source of the key trace gases (e.g. methane) on the surface. The launch is scheduled in January 2016 from Kennedy Space Center (KSC) using an ATLAS V 421 launcher with a total launch mass of 4.4 tons. After release of the EDM on Mars, the OM will perform the Mars Orbit Insertion manoeuvre and then reduce its elliptic orbit by implementing the first European Aerobraking around Mars for about 6 to 9 months, to finally end on a circular 400x400km orbit with an altitude in the range of 350km to 420km. From this orbit, a science phase will follow lasting 2 years in which the Mars atmosphere and surface is continuously observed. Science instruments composed of

  11. JPRS Report Science & Technology, Europe

    DTIC Science & Technology

    1991-08-22

    MHS has already been manu- facturing two other components developed by CNET which have proved to be indispensable companions of the CTA4 for...SSGRR Alcatel-Face Standard, Sistema , Telettra Network-related problem areas Feasibility study of an ATM system via satellite Participants

  12. Space Radar Image of Bebedauro, Brazil, seasonal

    NASA Technical Reports Server (NTRS)

    1994-01-01

    -C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V. (DLR), the major partner in science, operations and data processing of X-SAR.

  13. Space Radar Image of Kliuchevskoi Volcano, Russia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrte.v. (DLR), the major partner in science, operations and data processing of X-SAR.

  14. Space Radar Image of Taal Volcano, Philippines

    NASA Technical Reports Server (NTRS)

    1994-01-01

    with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations and data processing of X-SAR.

  15. Space Radar Image of West Texas - SAR scan

    NASA Technical Reports Server (NTRS)

    1999-01-01

    forthcoming Canadian RADARSAT satellite. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations, and data processing of X-SAR.

  16. Space Radar Image of Mammoth, California

    NASA Technical Reports Server (NTRS)

    1999-01-01

    . The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v. (DLR), the major partner in science, operations and data processing of X-SAR.

  17. MPLM Donatello is offloaded at the SLF

    NASA Technical Reports Server (NTRS)

    2001-01-01

    At the KSC Shuttle Landing Facility, the Italian Space Agency's Multi- Purpose Logistics Module Donatello begins rolling out of the Airbus '''Beluga''' air cargo plane that brought it from the factory of Alenia Aerospazio in Turin, Italy. The third of three for the International Space Station, the module will be transported to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle's payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo.

  18. MPLM Donatello is offloaded at the SLF

    NASA Technical Reports Server (NTRS)

    2001-01-01

    At the Shuttle Landing Facility, workers in cherry pickers (left and right) help direct the offloading of the Italian Space Agency's Multi- Purpose Logistics Module Donatello from the Airbus '''Beluga''' air cargo plane that brought it from the factory of Alenia Aerospazio in Turin, Italy. The third of three for the International Space Station, the module will be transported to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle's payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo.

  19. MPLM Donatello is offloaded at the SLF

    NASA Technical Reports Server (NTRS)

    2001-01-01

    At the KSC Shuttle Landing Facility, the Italian Space Agency's Multi- Purpose Logistics Module Donatello rolls out of the Airbus '''Beluga''' air cargo plane that brought it from the factory of Alenia Aerospazio in Turin, Italy. The third of three for the International Space Station, the module will be transported to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle's payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo.

  20. KSC-2009-6806

    NASA Image and Video Library

    2009-12-14

    CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the interior of the International Space Station's Node 3, named Tranquility, is seen for the last time on Earth before its hatch is shut. Hatch closure follows the completion of preparations for the node's transport to the pad and is a significant milestone in launch processing activities. The primary payload for the STS-130 mission, Tranquility is a pressurized module that will provide room for many of the space station's life support systems. Attached to one end of Tranquility is a cupola, a unique work area with six windows on its sides and one on top. The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. The module was built in Turin, Italy, by Thales Alenia Space for the European Space Agency. Space shuttle Endeavour's STS-130 mission is targeted for launch in early February 2010. For information on the STS-130 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts130/index.html. Photo credit: NASA/Jim Grossmann

  1. Space Radar Image of the Yucatan Impact Crater Site

    NASA Technical Reports Server (NTRS)

    1999-01-01

    to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtange-legenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations, and data processing of X-SAR. Research on the biological effects of the Chicxulub impact is supported by the NASA Exobiology Program.

  2. Space Radar Image of Oetzal, Austria

    NASA Technical Reports Server (NTRS)

    1994-01-01

    site is covered by glaciers. Corner reflectors are set up for calibration. Five corner reflectors can be seen on the Gepatschferner and two can be seen on the Vernagtferner. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  3. Space Radar Image of Kliuchevskoi, Russia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    mature in Kamchatka's 120-day growing season. The forest industry is managing these forests and practicing selective cutting to allow younger trees time to grow and reseed. X-SAR images will aid in mapping these deforested areas and in encouraging further recultivation efforts. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtange-legenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  4. Space Radar Image of Manaus, Brazil

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Estaciais, during the first and second flights of the SIR-C/X-SAR system have validated the interpretation of the radar images. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  5. KSC-2009-6512

    NASA Image and Video Library

    2009-11-20

    CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Bernardo Patti, at left, head of International Space Station, Program Department, European Space Agency, congratulates Michael Suffredini, program manager, International Space Station, NASA, upon transfer of the ownership of node 3 for the International Space Station from the European Space Agency, or ESA, to NASA. Node 3 is named "Tranquility" after the Sea of Tranquility, the lunar landing site of Apollo 11. The payload for the STS-130 mission, Tranquility is a pressurized module that will provide room for many of the International Space Station's life support systems. The module was built for ESA by Thales Alenia Space in Turin, Italy. Attached to one end of Tranquility is a cupola, a unique work station with six windows on its sides and one on top. The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. Just under 10 feet in diameter, the module will accommodate two crew members and portable workstations that can control station and robotic activities. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. Space shuttle Endeavour's STS-130 mission is targeted to launch Feb. 4, 2010. Photo credit: NASA/Kim Shiflett

  6. KSC-2009-6511

    NASA Image and Video Library

    2009-11-20

    CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Bernardo Patti, at left, head of International Space Station, Program Department, European Space Agency, and Michael Suffredini, program manager, International Space Station, NASA, sign documents transferring the ownership of node 3 for the International Space Station from the European Space Agency, or ESA, to NASA. Node 3 is named "Tranquility" after the Sea of Tranquility, the lunar landing site of Apollo 11. The payload for the STS-130 mission, Tranquility is a pressurized module that will provide room for many of the International Space Station's life support systems. The module was built for ESA by Thales Alenia Space in Turin, Italy. Attached to one end of Tranquility is a cupola, a unique work station with six windows on its sides and one on top. The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. Just under 10 feet in diameter, the module will accommodate two crew members and portable workstations that can control station and robotic activities. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. Space shuttle Endeavour's STS-130 mission is targeted to launch Feb. 4, 2010. Photo credit: NASA/Kim Shiflett

  7. A new space instrumental concept based on dispersive components for the measurement of CO2 concentration in the atmosphere

    NASA Astrophysics Data System (ADS)

    Pascal, Véronique; Buil, Christian; Cansot, Elodie; Loesel, Jacques; Tauziede, Laurie; Pierangelo, Clémence; Bermudo, François

    2017-11-01

    Measuring the concentration of greenhouse gases from space is a current challenge. This measurement is achieved via a precise analysis of the signature of chemical gaseous species (CO2, CH4, CO, etc.) in the spectrum of the reflected sunlight. First at all, two families of spectrometers have been studied for the MicroCarb mission. The first family is based on the phenomena of interference between two radiation waves (Michelson Interferometer). The second family is based on the use of dispersive optical components. The second family has been selected for the forthcoming studies in the MicroCarb project. These instruments must have high radiometric and spectral resolutions, in narrow spectral bands, in order to discriminate between absorption lines from various atmospheric chemical species, and to quantify their concentration. This is the case, for example, for the instrument onboard the OCO-2 satellite (NASA/JPL). Our analysis has led us to define a new instrumental concept, based on a dispersive grating spectrometer, with the aim of providing the same accuracy level as the OCO-2, but with a more compact design for accommodation on the Myriade Evolution microsatellite class. This compact design approach will allow us to offer a moderate-cost solution to fulfil mission objectives. Two other studies based on dispersive grating are in progress by CNES prime contractors (ASTRIUM and THALES ALENIA SPACE). A summary of the main specifications of this design will be described, in particular the approach with the so-called "merit function". After a description of such a space instrument, which uses a specific grating component, a preliminary assessment of performances will be presented, including the theoretical calculations and formula. A breadboard implementation of this specific grating has allowed us to show the practicality of this concept and its capabilities. Some results of this breadboard will be described. In addition, an instrument simulator is being developed to

  8. KSC-2009-6517

    NASA Image and Video Library

    2009-11-20

    CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Bernardo Patti, right, head of International Space Station, Program Department, European Space Agency, or ESA, has a lot to smile about as he is photographed in front of the node 3 for the International Space Station following a ceremony transferring the ownership of the node from ESA to NASA. Node 3 is named "Tranquility" after the Sea of Tranquility, the lunar landing site of Apollo 11. The payload for the STS-130 mission, Tranquility is a pressurized module that will provide room for many of the International Space Station's life support systems. The module was built for ESA by Thales Alenia Space in Turin, Italy. Attached to one end of Tranquility is a cupola, a unique work station with six windows on its sides and one on top. The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. Just under 10 feet in diameter, the module will accommodate two crew members and portable workstations that can control station and robotic activities. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. Space shuttle Endeavour's STS-130 mission is targeted to launch Feb. 4, 2010. Photo credit: NASA/Kim Shiflett

  9. KSC-2009-6515

    NASA Image and Video Library

    2009-11-20

    CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Bernardo Patti, head of International Space Station, Program Department, European Space Agency, or ESA, is photographed with invited guests of ESA in front of node 3 for the International Space Station following a ceremony transferring the ownership of the node from ESA to NASA. Node 3 is named "Tranquility" after the Sea of Tranquility, the lunar landing site of Apollo 11. The payload for the STS-130 mission, Tranquility is a pressurized module that will provide room for many of the International Space Station's life support systems. The module was built for ESA by Thales Alenia Space in Turin, Italy. Attached to one end of Tranquility is a cupola, a unique work station with six windows on its sides and one on top. The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. Just under 10 feet in diameter, the module will accommodate two crew members and portable workstations that can control station and robotic activities. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. Space shuttle Endeavour's STS-130 mission is targeted to launch Feb. 4, 2010. Photo credit: NASA/Kim Shiflett

  10. KSC-2009-6516

    NASA Image and Video Library

    2009-11-20

    CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Bernardo Patti, center, head of International Space Station, Program Department, European Space Agency, or ESA, admires the node 3 for the International Space Station, which his agency provided, following a ceremony transferring the ownership of the node from ESA to NASA. Node 3 is named "Tranquility" after the Sea of Tranquility, the lunar landing site of Apollo 11. The payload for the STS-130 mission, Tranquility is a pressurized module that will provide room for many of the International Space Station's life support systems. The module was built for ESA by Thales Alenia Space in Turin, Italy. Attached to one end of Tranquility is a cupola, a unique work station with six windows on its sides and one on top. The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. Just under 10 feet in diameter, the module will accommodate two crew members and portable workstations that can control station and robotic activities. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. Space shuttle Endeavour's STS-130 mission is targeted to launch Feb. 4, 2010. Photo credit: NASA/Kim Shiflett

  11. Space Radar Image of Altona, Manitoba, Canada

    NASA Technical Reports Server (NTRS)

    1994-01-01

    the magenta indicate differences in the degree of soil moisture change and differences in surface roughness. This seasonal composite demonstrates the sensitivity of radar to changes in agricultural surface conditions such as soil moisture, tillage, cropping and harvesting. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  12. Space Radar Image of Karisoke & Virunga Volcanoes

    NASA Technical Reports Server (NTRS)

    1994-01-01

    vegetation maps of the area to aid in their studies of the last 650 mountain gorillas in the world. The faint lines above the bamboo forest are the result of agricultural terracing by the people who live in the region. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V. (DLR), the major partner in science, operations and data processing of X-SAR.

  13. Space Radar Image of Death Valley, California

    NASA Technical Reports Server (NTRS)

    1999-01-01

    also one of the primary calibration sites for SIR-C/X-SAR. The bright dots near the center of the image are corner reflectors that have been set-up to calibrate the radar as the shuttle passes overhead. Thirty triangular-shaped reflectors (they look like aluminum pyramids) have been deployed by the calibration team from JPL over a 40- by 40-kilometer (25- by 25-mile) area in and around Death Valley. The calibration team will also deploy transponders (electronic reflectors) and receivers to measure the radar signals from SIR-C/X-SAR on the ground. SIR-C/X-SAR is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI).

  14. Space Radar Image of Kiluchevskoi, Volcano, Russia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    flanks of the volcano. Paths of these flows can be seen as thin lines in various shades of blue and green on the north flank in the center of the image. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations and data processing of X-SAR.

  15. MPLM Donatello is offloaded at the SLF

    NASA Technical Reports Server (NTRS)

    2001-01-01

    At the Shuttle Landing Facility, cranes are poised to help offload the Italian Space Agency's Multi- Purpose Logistics Module Donatello from the Airbus '''Beluga''' air cargo plane that brought it from the factory of Alenia Aerospazio in Turin, Italy. The third of three for the International Space Station, the module will be transported to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle's payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo.

  16. 76 FR 21917 - Sunshine Act Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-19

    ... CONTACT: Candi Bing, (202) 314-6403 or by e- mail at [email protected] . Dated: April 15, 2011. Candi R. Bing... Unstabilized Approach, Empire Airlines Flight 8284, Avions de Transport R[eacute]gional Aerospatiale Alenia ATR...

  17. 75 FR 37759 - Initiation of Antidumping and Countervailing Duty Administrative Reviews and Requests for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-30

    ...... 5/1/09-4/30/10 Alcatel Vacuum Technology Audi AG AVIAC Avio (formerly known as FiatAvio) Bosch... Audi AG Avio (formerly known as FiatAvio) BAUER Maschinen GmbH Bosch Rexroth AG BSH Bosch und Siemens... Bearings and Parts Thereof, A-475-201.... 5/1/09-4/30/10 Audi AG Avio, S.p.A. (formerly known as FiatAvio...

  18. An Approach for On-Board Software Building Blocks Cooperation and Interfaces Definition

    NASA Astrophysics Data System (ADS)

    Pascucci, Dario; Campolo, Giovanni; Candia, Sante; Lisio, Giovanni

    2010-08-01

    This paper provides an insight on the Avionic SW architecture developed by Thales Alenia Space Italy (TAS-I) to achieve structuring of the OBSW as a set of self-standing and re-usable building blocks. It is initially described the underlying framework for building blocks cooperation, which is based on ECSSE-70 packets forwarding (for services request to a building block) and standard parameters exchange for data communication. Subsequently it is discussed the high level of flexibility and scalability of the resulting architecture, reporting as example an implementation of the Failure Detection, Isolation and Recovery (FDIR) function which exploits the proposed architecture. The presented approach evolves from avionic SW architecture developed in the scope of the project PRIMA (Mult-Purpose Italian Re-configurable Platform) and has been adopted for the Sentinel-1 Avionic Software (ASW).

  19. Working Group 3 Infrared interferometry at Dome C

    NASA Astrophysics Data System (ADS)

    Coudé du Foresto, V.; Surdej, J.

    The goal of the working group was to define and realize a pre-feasibility study of an Antarctic interferometer dedicated to the characterization of exozodis with the sensitivity required (30 zodis 5 σ detection) to discriminate sources suitable for future exoearth spectroscopic analysis. The engineering study was carried out at AMOS, based on a concept by Thalès Alenia Space derived from the GENIE instrument studied for ESA. Particular emphasis was put on the compatibility with Concordia logistic and operational constraints, for which input was provided by IPEV through long visits by a system engineer student, Xavier Daudigeos. The preliminary results are encouraging enough so that we recommend to move forward with a proposal for full industrial feasibility study that could be submitted to FP7 and/or to ESA.

  20. ESA'S Biomass Mission System And Payload Overview

    NASA Astrophysics Data System (ADS)

    Arcioni, M.; Bensi, P.; Fois, F.; Gabriele, A.; Heliere, F.; Lin, C. C.; Massotti, L.; Scipal, K.

    2013-12-01

    Earth Explorers are the backbone of the science and research element of ESA's Living Planet Programme, providing an important contribution to the understanding of the Earth system. Following the User Consultation Meeting held in Graz, Austria on 5-6 March 2013, the Earth Science Advisory Committee (ESAC) has recommended implementing Biomass as the 7th Earth Explorer Mission within the frame of the ESA Earth Observation Envelope Programme. This paper will give an overview of the satellite system and its payload. The system technical description presented here is based on the results of the work performed during parallel Phase A system studies by two industrial consortia led by EADS Astrium Ltd. and Thales Alenia Space Italy. Two implementation concepts (respectively A and B) are described and provide viable options capable of meeting the mission requirements.

  1. Conservative Allowables Determined by a Tsai-Hill Equivalent Criterion for Design of Satellite Composite Parts

    NASA Astrophysics Data System (ADS)

    Pommatau, Gilles

    2014-06-01

    The present paper deals with the industrial application, via a software developed by Thales Alenia Space, of a new failure criterion named "Tsai-Hill equivalent criterion" for composite structural parts of satellites. The first part of the paper briefly describes the main hypothesis and the possibilities in terms of failure analysis of the software. The second parts reminds the quadratic and conservative nature of the new failure criterion, already presented in ESA conference in a previous paper. The third part presents the statistical calculation possibilities of the software, and the associated sensitivity analysis, via results obtained on different composites. Then a methodology, proposed to customers and agencies, is presented with its limitations and advantages. It is then conclude that this methodology is an efficient industrial way to perform mechanical analysis on quasi-isotropic composite parts.

  2. "Heart" of Herschel to be presented to media

    NASA Astrophysics Data System (ADS)

    2007-09-01

    The Herschel mission, equipped with the largest telescope ever launched in space (3.5 m diameter), will give astronomers their best capability yet to explore the universe at far-infrared and sub-millimetre wavelengths. By measuring the light at these wavelengths, scientists see the ‘cold’ universe. Herschel will give them an unprecedented view, allowing them to see deep into star forming regions, galactic centres and planetary systems. In order to achieve its objectives and to be able to detect the faint radiation coming from the coolest objects in the cosmos, otherwise ‘invisible’, Herschel’s detectors must operate at very low and stable temperatures. The spacecraft is equipped so as to cool them close to absolute zero (-273.15 ºC), ranging from -271 ºC to only a few tenths of a degree above absolute zero. To have achieved this particular feature alone is a remarkable accomplishment for European industry and science. The final integration of the various components of the Herschel spacecraft - payload module, cryostat, service module, telescope and solar arrays - will be completed in the next few months. This phase will be followed by a series of tests to get the spacecraft ready for launch at the end of July 2008. Herschel will be launched into space on an Ariane 5 ECA rocket. The launch is shared with Planck, ESA’s mission to study relic radiation from the Big Bang. Media interested to attend the press event are invited to fill in the reply form below. Note for editors The Prime Contractor for the Herschel spacecraft is Thales Alenia Space (Cannes, France). It leads a consortium of industrial partners with Astrium (Germany) responsible for the Extended Payload Module (EPLM, including the Herschel cryostat), Astrium (France) responsible for the telescope, and the Thales Alenia Space industry branch of Torino, Italy, responsible for the Service Module (SVM). There is also a host of subcontractors spread throughout Europe. The three Herschel

  3. SEDHI: development status of the Pléiades detection electronics

    NASA Astrophysics Data System (ADS)

    Dantes, Didier; Biffi, Jean-Marc; Neveu, Claude; Renard, Christophe

    2017-11-01

    In the framework of the Pléiades program, Alcatel Space is developping with CNES a new concept of Highly Integrated Detection Electronic Subsystem (SEDHI) which lead to very high gains in term of camera mass, volume and power consumption. This paper presents the design of this new concept and summarizes its main performances. The electrical, mechanical and thermal aspects of the SEDHI concept are described, including the basic technologies: panchromatic detector, multispectral detector, butting technology, ASIC for phase shift of detector clocks, ASIC for video processing, ASIC for phase trimming, hybrids, video modules... This concept and these technologies can be adapted to a large scale of missions and instruments. Design, performance and budgets of the subsystem are given for the Pléiades mission for which the SEDHI concept has been selected. The detailed performances of each critical component are provided, focusing on the most critical performances which have been obtained at this level of the Pléiades development.

  4. Space Radar Image of Rabaul Volcano, New Guinea

    NASA Technical Reports Server (NTRS)

    1994-01-01

    the image. Ashfall and subsequent rains caused the collapse of most buildings in the town of Rabaul. Mudflows and flooding continue to pose serious threats to the town and surrounding villages. Volcanologists and local authorities expect to use data such as this radar image to assist them in identifying the mechanisms of the eruption and future hazardous conditions that may be associated with the vigorously active volcano. Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations and data processing of X-SAR.

  5. Space Radar Image of Manaus region of Brazil

    NASA Technical Reports Server (NTRS)

    1994-01-01

    the first and second flights of the SIR-C/X-SAR system have validated the interpretation of the radar images. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  6. The Effects of China Entering the World Trade Organization on the United States’ Wireless Telecommunication Industry

    DTIC Science & Technology

    2003-12-01

    of the contracts awarded worldwide. Alcatel, Ericsson, Hauwei, NEC, Nokia, Nortel, Samsung , Siemens, and many other foreign companies have all...employs more than 12,000 employees in China. Motorola’s nine joint ventures in China include: Guangzhou Jinpeng Cellular Systems Company, Shanghai...Additionally, it currently employs more than 4,000 employees in China. Lucent’s six joint ventures in China include: Guoxin Lucent Technologies

  7. SONET Synchronization: What’s Happening

    DTIC Science & Technology

    1992-12-01

    SONET Synchronization : What’s Happening Robert W. Cubbage Alcatel Network Systems, Inc. Richardson, Texas Abstract Almost everyone that has...heard of SONETkwws that the acronym stands for Synchronous Opticd NETwork. There has been a host of manazine articles on SONET rinns. SONET features, ewn...SONET componmponbility w th digital radio. ~ jza t h& not been highlypnblicizedk the critical relationship between SONET. nehuork synchronization

  8. KSC-2009-6507

    NASA Image and Video Library

    2009-11-20

    CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Michael Suffredini, program manager, International Space Station, NASA, addresses the invited guests at a ceremony transferring the ownership of node 3 for the International Space Station, looming in the background, from the European Space Agency, or ESA, to NASA. Seated, from left, are Michael Suffredini, program manager, International Space Station, NASA; William Dowdell, deputy for Operations, International Space Station and Spacecraft Processing, Kennedy; and Bernardo Patti, head of International Space Station, Program Department, ESA. Node 3 is named "Tranquility" after the Sea of Tranquility, the lunar landing site of Apollo 11. The payload for the STS-130 mission, Tranquility is a pressurized module that will provide room for many of the International Space Station's life support systems. The module was built for ESA by Thales Alenia Space in Turin, Italy. Attached to one end of Tranquility is a cupola, a unique work station with six windows on its sides and one on top. The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. Just under 10 feet in diameter, the module will accommodate two crew members and portable workstations that can control station and robotic activities. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. Space shuttle Endeavour's STS-130 mission is targeted to launch Feb. 4, 2010. Photo credit: NASA/Kim Shiflett

  9. Space Radar Image of Raco, Michigan, ecological test site

    NASA Technical Reports Server (NTRS)

    1994-01-01

    global changes resulting from climatic warming. Baseline studies of vegetation are essential in monitoring these expected changes. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  10. Space Radar Image of the Lost City of Ubar

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Imaging Radar-C and X-Band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtange-legenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations, and data processing of X-SAR.

  11. KSC-2010-1287

    NASA Image and Video Library

    2010-01-18

    CAPE CANAVERAL, Fla. - The crew of space shuttle Endeavour's STS-130 mission poses for a group portrait following their arrival at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. From left are Mission Specialists Robert Behnken, Nicholas Patrick, Stephen Robinson and Kathryn Hire; Pilot Terry Virts; and Commander George Zamka. The crew is at Kennedy to participate in training and a dress rehearsal for their upcoming launch, known as the Terminal Countdown Demonstration Test. The primary payload for the STS-130 mission is the International Space Station's Node 3, Tranquility, a pressurized module that will provide room for many of the station's life support systems. Attached to one end of Tranquility is a cupola, a unique work area with six windows on its sides and one on top. The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. The module was built in Turin, Italy, by Thales Alenia Space for the European Space Agency. Launch of STS-130 is targeted for Feb. 7. For information on the STS-130 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts130/index.html. Photo credit: NASA/Kim Shiflett

  12. Space Radar Image of the Silk route in Niya, Taklamak, China

    NASA Technical Reports Server (NTRS)

    1999-01-01

    -C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: the L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations and data processing of X-SAR.

  13. Spacecraft Onboard Interface Services: Current Status and Roadmap

    NASA Astrophysics Data System (ADS)

    Prochazka, Marek; Lopez Trescastro, Jorge; Krueger, Sabine

    2016-08-01

    Spacecraft Onboard Interface Services (SOIS) is a set of CCSDS standards defining communication stack services to interact with hardware equipment onboard spacecraft. In 2014 ESA kicked off three parallel activities to critically review the SOIS standards, use legacy spacecraft flight software (FSW), make it compliant to a preselected subset of SOIS standards and make performance and architecture assessment. As a part of the three parallel activities, led by Airbus DS Toulouse, OHB Bremen and Thales Alenia Space Cannes respectively, it was to provide feedback back to ESA and CCSDS and also to propose a roadmap of transition towards an operational FSW system fully compliant to applicable SOIS standards. The objective of the paper is twofold: Firstly it is to summarise main results of the three parallel activities and secondly, based on the results, to propose a roadmap for the future.

  14. Space Radar Image of Prince Albert, Canada

    NASA Technical Reports Server (NTRS)

    1999-01-01

    -greenish areas are young jack pine trees, 3 to 5 meters (10 to 16 feet) in height and 11 to 16 years old. The green areas are due to the relative high intensity of the HV channel which is strongly correlated with the amount of biomass. L-band HV channel shows the biomass variations over the entire region. Most of the green areas, when compared to the forest cover maps are identified as black spruce trees. The dark blue and dark purple colors show recently harvested or regrowth areas respectively. SIR-C/X-SAR is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI).

  15. Space Radar Image of Mt. Rainer, Washington

    NASA Technical Reports Server (NTRS)

    1994-01-01

    White River, and the river leaving the mountain at the bottom right of the image (south) is the Nisqually River, which flows out of the Nisqually glacier on the mountain. The river leaving to the left of the mountain is the Carbon River, leading west and north toward heavily populated regions near Tacoma. The dark patch at the top right of the image is Bumping Lake. Other dark areas seen to the right of ridges throughout the image are radar shadow zones. Radar images can be used to study the volcanic structure and the surrounding regions with linear rock boundaries and faults. In addition, the recovery of forested lands from natural disasters and the success of reforestation programs can also be monitored. Ultimately this data may be used to study the advance and retreat of glaciers and other forces of global change. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: the L-band (24 cm), the C-band (6 cm) and the X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations and data processing of X-SAR.

  16. Making Space for Space.

    ERIC Educational Resources Information Center

    Flanagan, Sue

    2001-01-01

    Introduces some ideas for using space in classrooms. Provides a rationale for using space as part of the curriculum and focuses on the concept of a space mission as a vehicle for learning. Includes a list of some space-related web sites. (DDR)

  17. Space-to-Space Communications System

    NASA Technical Reports Server (NTRS)

    Tu, Kwei; Gaylor, Kent; Vitalpur, Sharada; Sham, Cathy

    1999-01-01

    The Space-to-Space Communications System (SSCS) is an Ultra High Frequency (UHF) Time-Division-Multiple Access (TDMA) system that is designed, developed, and deployed by the NASA Johnson Space Center (JSC) to provide voice, commands, telemetry and data services in close proximity among three space elements: International Space Station (ISS), Space Shuttle Orbiter, and Extravehicular Mobility Units (EMU). The SSCS consists of a family of three radios which are, Space-to-Space Station Radio (SSSR), Space-to-Space Orbiter Radio (SSOR), and Space-to-Space Extravehicular Mobility Radio (SSER). The SSCS can support up to five such radios at a time. Each user has its own time slot within which to transmit voice and data. Continuous Phase Frequency Shift Keying (CPFSK) carrier modulation with a burst data rate of 695 kbps and a frequency deviation of 486.5 kHz is employed by the system. Reed-Solomon (R-S) coding is also adopted to ensure data quality. In this paper, the SSCS system requirements, operational scenario, detailed system architecture and parameters, link acquisition strategy, and link performance analysis will be presented and discussed

  18. ALMA: the completion of the 25 Europeans antennas: focus on main performances, problems found during erection and lessons learned

    NASA Astrophysics Data System (ADS)

    Marchiori, Gianpietro; Rampini, Francesco; Giacomel, Luigino; Giacomel, Stefano; Marcuzzi, Enrico; Formentin, Federico

    2014-07-01

    The 2013 saw the completion of the Atacama Large Millimeter Array (ALMA). The array consists of 66 antennas and operates in Chile at the Chajnantor plateau at 5000 m altitude. 25 of the 12 meter diameter antennas have been delivered by the AEM consortium constituted by Thales Alenia Space France, Thales Alenia Space Italy, European Industrial Engineering (EIE GROUP), and MT Mechatronics. The purpose of this paper is to present a summary of the results obtained by the antennas during the different test campaign and a summary of the problems aroused during the erection and the assembly phases and the relative lesson learned. The results of the engineering performances and antenna systems, performed during the acceptance phases of the first antennas, have shown the full correspondence between what was expected during the design phase and what has been achieved in the final product, with a difference of less than 10% and the trend tends to be conservative. As for "on sky antennas performances", all the tests done in the 25 antennas showed excellent results. The antenna All Sky Pointing Error and Offset Pointing Error with and without metrology correction turned to be always excellent. The Fast Motion Capability with the tracking requirements after a step motion was better than an order of magnitude compared to the requests. Four years of on-site activities and the various phases of construction and assembly of 25 antennas have been a major challenge for the European Consortium. The problems encountered in this phase were many and varied: interfaces issues, design and foundation problems, manufacturing and assembly errors, electrical installation, shipment delays, human errors, adverse weather conditions, financial aspects, schedule, etc. The important is being prepared with an "a priori", that is a risk assessment which helps ensuring the best solution for the complete customer satisfaction of the scientific and technical requests. Despite the already excellent

  19. 46 CFR 108.205 - Wash spaces; toilet spaces; and shower spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Wash spaces; toilet spaces; and shower spaces. 108.205... DRILLING UNITS DESIGN AND EQUIPMENT Construction and Arrangement Accommodation Spaces § 108.205 Wash spaces; toilet spaces; and shower spaces. (a) For the purposes of this section— (1) “Private facility” means a...

  20. 46 CFR 108.205 - Wash spaces; toilet spaces; and shower spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Wash spaces; toilet spaces; and shower spaces. 108.205... DRILLING UNITS DESIGN AND EQUIPMENT Construction and Arrangement Accommodation Spaces § 108.205 Wash spaces; toilet spaces; and shower spaces. (a) For the purposes of this section— (1) “Private facility” means a...

  1. 46 CFR 108.205 - Wash spaces; toilet spaces; and shower spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Wash spaces; toilet spaces; and shower spaces. 108.205... DRILLING UNITS DESIGN AND EQUIPMENT Construction and Arrangement Accommodation Spaces § 108.205 Wash spaces; toilet spaces; and shower spaces. (a) For the purposes of this section— (1) “Private facility” means a...

  2. 46 CFR 108.205 - Wash spaces; toilet spaces; and shower spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Wash spaces; toilet spaces; and shower spaces. 108.205... DRILLING UNITS DESIGN AND EQUIPMENT Construction and Arrangement Accommodation Spaces § 108.205 Wash spaces; toilet spaces; and shower spaces. (a) For the purposes of this section— (1) “Private facility” means a...

  3. 46 CFR 108.205 - Wash spaces; toilet spaces; and shower spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Wash spaces; toilet spaces; and shower spaces. 108.205... DRILLING UNITS DESIGN AND EQUIPMENT Construction and Arrangement Accommodation Spaces § 108.205 Wash spaces; toilet spaces; and shower spaces. (a) For the purposes of this section— (1) “Private facility” means a...

  4. An assessment model for quality management

    NASA Astrophysics Data System (ADS)

    Völcker, Chr.; Cass, A.; Dorling, A.; Zilioli, P.; Secchi, P.

    2002-07-01

    SYNSPACE together with InterSPICE and Alenia Spazio is developing an assessment method to determine the capability of an organisation in the area of quality management. The method, sponsored by the European Space Agency (ESA), is called S9kS (SPiCE- 9000 for SPACE). S9kS is based on ISO 9001:2000 with additions from the quality standards issued by the European Committee for Space Standardization (ECSS) and ISO 15504 - Process Assessments. The result is a reference model that supports the expansion of the generic process assessment framework provided by ISO 15504 to nonsoftware areas. In order to be compliant with ISO 15504, requirements from ISO 9001 and ECSS-Q-20 and Q-20-09 have been turned into process definitions in terms of Purpose and Outcomes, supported by a list of detailed indicators such as Practices, Work Products and Work Product Characteristics. In coordination with this project, the capability dimension of ISO 15504 has been revised to be consistent with ISO 9001. As contributions from ISO 9001 and the space quality assurance standards are separable, the stripped down version S9k offers organisations in all industries an assessment model based solely on ISO 9001, and is therefore interesting to all organisations, which intend to improve their quality management system based on ISO 9001.

  5. Galileo IOV Electrical Power Subsystem Relies On Li-Ion Batter Charge Management Controlled By Hardware

    NASA Astrophysics Data System (ADS)

    Douay, N.

    2011-10-01

    In the frame of GALILEO In-Orbit Validation program which is composed of 4 satellites, Thales Alenia Space France has designed, developed and tested the Electrical Power Subsystem. Besides some classical design choices like: -50V regulated main power bus provided by the PCDU manufactured by Terma (DK), -Solar array, manufactured by Dutch-Space (NL), using Ga-As triple junction technology from Azur Space Power Solar GmbH, -SAFT (FR) Lithium-ion Battery for which cell package balancing function is required, -Solar Array Drive Mechanism, provided by RUAG Space Switzerland, to transfer the power. This subsystem features a fully autonomous, failure tolerant, battery charge management able to operate even after a complete unavailability of the on-board software. The battery charge management is implemented such that priority is always given to satisfy the satellite main bus needs in order to maintain the main bus regulation under MEA control. This battery charge management principle provides very high reliability and operational robustness. So, the paper describes : -the battery charge management concept using a combination of PCDU hardware and relevant battery lines monitoring, -the functional aspect of the single point failure free S4R (Sequential Switching Shunt Switch Regulator) and associated performances, -the failure modes isolated and passivated by this architecture. The paper will address as well the autonomous balancing function characteristics and performances.

  6. The esa earth explorer land surface processes and interactions mission

    NASA Astrophysics Data System (ADS)

    Labandibar, Jean-Yves; Jubineau, Franck; Silvestrin, Pierluigi; Del Bello, Umberto

    2017-11-01

    The European Space Agency (ESA) is defining candidate missions for Earth Observation. In the class of the Earth Explorer missions, dedicated to research and pre-operational demonstration, the Land Surface Processes and Interactions Mission (LSPIM) will acquire the accurate quantitative measurements needed to improve our understanding of the nature and evolution of biosphere-atmosphere interactions and to contribute significantly to a solution of the scaling problems for energy, water and carbon fluxes at the Earth's surface. The mission is intended to provide detailed observations of the surface of the Earth and to collect data related to ecosystem processes and radiation balance. It is also intended to address a range of issues important for environmental monitoring, renewable resources assessment and climate models. The mission involves a dedicated maneuvering satellite which provides multi-directional observations for systematic measurement of Land Surface BRDF (BiDirectional Reflectance Distribution Function) of selected sites on Earth. The satellite carries an optical payload : PRISM (Processes Research by an Imaging Space Mission), a multispectral imager providing reasonably high spatial resolution images (50 m over 50 km swath) in the whole optical spectral domain (from 450 nm to 2.35 μm with a resolution close to 10 nm, and two thermal bands from 8.1 to 9.1 μm). This paper presents the results of the Phase A study awarded by ESA, led by ALCATEL Space Industries and concerning the design of LSPIM.

  7. Design of a highly integrated video acquisition module for smart video flight unit development

    NASA Astrophysics Data System (ADS)

    Lebre, V.; Gasti, W.

    2017-11-01

    CCD and APS devices are widely used in space missions as instrument sensors and/or in Avionics units like star detectors/trackers. Therefore, various and numerous designs of video acquisition chains have been produced. Basically, a classical video acquisition chain is constituted of two main functional blocks: the Proximity Electronics (PEC), including detector drivers and the Analogue Processing Chain (APC) Electronics that embeds the ADC, a master sequencer and the host interface. Nowadays, low power technologies allow to improve the integration, radiometric performances and power budget optimisation of video units and to standardize video units design and development. To this end, ESA has initiated a development activity through a competitive process requesting the expertise of experienced actors in the field of high resolution electronics for earth observation and Scientific missions. THALES ALENIA SPACE has been granted this activity as a prime contractor through ESA contract called HIVAC that holds for Highly Integrated Video Acquisition Chain. This paper presents main objectives of the on going HIVAC project and focuses on the functionalities and performances offered by the usage of the under development HIVAC board for future optical instruments.

  8. The Space Transportation System. [Space Shuttle-Spacelab-Space Tug system

    NASA Technical Reports Server (NTRS)

    Donlan, C. J.; Brazill, E. J.

    1976-01-01

    The Space Transportation System, consisting of the Space Shuttle, Spacelab, and the Space Tug, is discussed from the viewpoint of reductions in the cost of space operations. Each of the three vehicles is described along with its mission capabilities, and the time table for system development activities is outlined. Basic attributes of the Space Transportation System are reviewed, all operational modes are considered, and the total cost picture of the system is examined from the standpoint of a mission economic analysis. It is concluded that as the features of the Space Transportation System, especially the Shuttle and the Tug, are put to more efficient use during the maturing-operation phase, the total cost of conducting space missions should be about half of what it would be if any other system were employed.

  9. Space prospects. [european space programs

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A strategy for keeping the Common Market's space effort independent of and competitive with NASA and the space shuttle is discussed. Limited financing is the chief obstacle to this. Proposals include an outer space materials processing project and further development of the Ariane rocket. A manned space program is excluded for the foreseeable future.

  10. NewSpace: The Emerging Commercial Space Industry

    NASA Technical Reports Server (NTRS)

    Martin, Gary

    2017-01-01

    We are at a turning point in the history of space exploration and development, where new industries are being born to use space in non-traditional ways. Established state-run industrial space sector is no longer the only game in town; commercial space is becoming competitive. Many new entrepreneurial companies, such as SpaceX, Deep Space Industries, etc. are developing new markets, such as Orbital, Suborbital, and Deep Space. Together, government and private industry can facilitate the birth of this new industry. The U.S. national policy on commercial space is to develop a robust and competitive U.S. commercial space sector and to energize competitive domestic industries to participate in global markets. NASA can do this by purchasing and using commercial space capabilities and services; exploring the use of nontraditional arrangements for acquiring space capabilities and services; refraining from activities that preclude, discourage, or compete with commercial space activities; and pursuing opportunities to transfer some functions to the commercial space sector, where beneficial. Commercial space must be competitive, while the government has other priorities such as safety, jobs, etc.

  11. High-productivity DRIE solutions for 3D-SiP and MEMS volume manufacturing

    NASA Astrophysics Data System (ADS)

    Puech, M.; Thevenoud, J. M.; Launay, N.; Arnal, N.; Godinat, P.; Andrieu, B.; Gruffat, J. M.

    2006-12-01

    Emerging 3D-SiP technologies and high volume MEMS applications require high productivity mass production DRIE systems. The Alcatel DRIE product range has recently been optimized to reach the highest process and hardware production performances. A study based on sub-micron high aspect ratio structures encountered in the most stringent 3D-SiP has been carried out. The optimization of the Bosch process parameters have shown ultra high silicon etch rate, with unrivaled uniformity and repeatability leading to excellent process yields. In parallel, most recent hardware and proprietary design optimization including vacuum pumping lines, process chamber, wafer chucks, pressure control system, gas delivery are discussed. A key factor for achieving the highest performances was the recognized expertise of Alcatel vacuum and plasma science technologies. These improvements have been monitored in a mass production environment for a mobile phone application. Field data analysis shows a significant reduction of cost of ownership thanks to increased throughput and much lower running costs. These benefits are now available for all 3D-SiP and high volume MEMS applications. The typical etched patterns include tapered trenches for CMOS imagers, through silicon via holes for die stacking, well controlled profile angle for 3D high precision inertial sensors, and large exposed area features for inkjet printer head and Silicon microphones.

  12. Space America's commercial space program

    NASA Technical Reports Server (NTRS)

    Macleod, N. H.

    1984-01-01

    Space America prepared a private sector land observing space system which includes a sensor system with eight spectral channels configured for stereoscopic data acquisition of four stereo pairs, a spacecraft bus with active three-axis stabilization, a ground station for data acquisition, preprocessing and retransmission. The land observing system is a component of Space America's end-to-end system for Earth resources management, monitoring and exploration. In the context of the Federal Government's program of commercialization of the US land remote sensing program, Space America's space system is characteristic of US industry's use of advanced technology and of commercial, entrepreneurial management. Well before the issuance of the Request for Proposals for Transfer of the United States Land Remote Sensing Program to the Private Sector by the US Department of Commerce, Space Services, Inc., the managing venturer of Space America, used private funds to develop and manage its sub-orbital launch of its Conestoga launch vehicle.

  13. ISS Phase One Activities and Manufacturing in Russia, France and Italy

    NASA Image and Video Library

    1996-10-07

    Photographs documenting International Space Station (ISS) Phase One activities at the Russian Space Agency's (RSA) Gagarin Cosmonaut Training Center, Korolov Mission Control Center and Zvezda; and ISS and Soyuz manufacturing at RSA's Khrunichev Design Center and RSC Energiya in Moscow, Russia, the French Space Agency's (CNES) INTESPACE facility in Toulouse, France, and the Italian Space Agency's (ASI) Alenia Spazio facility in Torino, Italy. Photographs were taken by Johnson Space Center Imagery and Publications Office contractors travelling from October 7 to November 4, 1996. Includes: VIEWS FROM RSC ENERGIYA'S SPACE MUSEUM: Room with a Buran model and photographic displays (17372-374). Salyut Space Station mock-up (17376). Russian propulsion engines on display (17377-378). Russian spacecraft on display (17375, 17387-398). Graphic displays (17399-405). VIEWS FROM RSC ENERGIYA MANUFACTURING FACILITIES: Unidentified facility (17379). Mir 24 crew member Michael C. Foale, suited in a Soyuz pressure suit, ingresses the Soyuz TM-26 flight article at RSC Energiya for a fit check (17380-381). Closeups of Foale inside the Soyuz during the fit check (17382-383, 17466-467). Overhead views of RSC Energiya's Building 444 manufacturing floor where docking modules and Soyuz TM spacecraft are built (17495-498). Technicians on the Building 444 manufacturing floor assembling probe and drogue docking modules (17499-500, 17504). Technicians assembling Soyuz spacecraft (17437-439). Views of other Soyuz spacecraft (17440-441). Androgynous Peripheral Docking System (APDS) mock-up (17501-503). Closeups of a control panel, possibly for the APDS mock-up (17519-528). VIEWS FROM ZVEZDA, RSA CONTRACTOR FOR SUIT DESIGN AND SOYUZ SEAT LINERS: Mir 24 crew member Foale dons a "penguin" flight suit for a fit check (17454-456). Zvezda personnel adjust Foale's Soyuz seat and seat liner (17442). Closeup of Foale, suited in a Soyuz pressure suit, sitting on a chair (17444). Zvezda personnel strap

  14. Space Biosciences, Space-X, and the International Space Station

    NASA Technical Reports Server (NTRS)

    Wigley, Cecilia

    2014-01-01

    Space Biosciences Research on the International Space Station uses living organisms to study a variety of research questions. To enhance our understanding of fundamental biological processes. To develop the fundations for a safe, productive human exploration of space. To improve the quality of life on earth.

  15. The partnership: Space shuttle, space science, and space station

    NASA Technical Reports Server (NTRS)

    Culbertson, Philip E.; Freitag, Robert F.

    1989-01-01

    An overview of the NASA Space Station Program functions, design, and planned implementation is presented. The discussed functions for the permanently manned space facility include: (1) development of new technologies and related commercial products; (2) observations of the Earth and the universe; (3) provision of service facilities for resupply, maintenance, upgrade and repair of payloads and spacecraft; (4) provision of a transportation node for stationing, processing and dispatching payloads and vehicles; (5) provision of manufacturing and assembly facilities; (6) provision of a storage depot for parts and payloads; and (7) provision of a staging base for future space endeavors. The fundamental concept for the Space Station, as given, is that it be designed, operated, and evolved in response to a broad variety of scientific, technological, and commercial user interests. The Space Shuttle's role as the principal transportation system for the construction and maintenance of the Space Station and the servicing and support of the station crew is also discussed.

  16. World Space Week: Linking Space and Humanity

    NASA Astrophysics Data System (ADS)

    Stone, D.

    2002-01-01

    World Space Week, October 4-10 annually, is an international celebration of the contribution that space science and technology makes to the betterment of the human condition. Since its official declaration in 1999 by the United Nation, World Space Week has rapidly grown to include over 40 nations. The dates of World Space Week commemorate key milestones in space. October 4, 1957 was the launch date of Sputnik I, the first artificial Earth satellite. The Outer Space Treaty took effect on October 10, 1967. During World Space Week, participants such as government agencies, companies, science museums, teachers, and individuals organize public events, school activities, and Web-based programs related to space. So many synchronized events attract media coverage which reaches a global audience about space. In this way, World Space Week truly links space and humanity. The global organization of World Space Week is discussed as well as the results to date. The benefits of participation and opportunities to do so also identified.

  17. Space Law and Weapons in Space

    NASA Astrophysics Data System (ADS)

    Mosteshar, Sa'id

    2017-07-01

    Although legal principles to govern space were discussed as early as the mid-1950s, they were not formalized until the Outer Space Treaty (OST) of 1967 was adopted and came into force. The Outer Space Treaty establishes a number of principles affecting the placement of weapons in outer space. In particular, it provides for the peaceful use of earth's moon along with other celestial bodies and prohibits the testing of any types of weapons on such bodies. More generally the OST forbids the placement of nuclear weapons or other weapons of mass destruction in outer space. In addition, there are a number of disarmament treaties and agreements emanating from the UN Office for Disarmament Affairs and the Conference on Disarmament that are relevant to weapons in space. One of the fundamental question that arises is what constitutes a weapon and does its placement in space breach the requirement that outer space be used exclusively for peaceful purposes. For example, does a satellite used to control and direct an armed drone breach the peaceful use provision of the OST? There may be risks that without international norms governments and sub-state groups may acquire and use armed drones in ways that threaten regional stability, laws of war, and the role of domestic rule of law in decisions to use force. The nature of weapons and other questions of laws affecting the placement of weapons in space, as well as the use of space assets for non-peaceful purposes, are thus of real significance when considering space law and weapons in space. Examining the characteristics that render a space object a weapon and the role of intent and perception in the issues that arise become essential aspects to consider. This also necessitates examining dual-use systems common to many space systems and operations.

  18. 46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam, and...

  19. 46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam, and...

  20. 46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam, and...

  1. 46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam, and...

  2. 46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam, and...

  3. National Space Agencies vs. Commercial Space: Towards Improved Space Safety

    NASA Astrophysics Data System (ADS)

    Pelton, J.

    2013-09-01

    Traditional space policies as developed at the national level includes many elements but they are most typically driven by economic and political objectives. Legislatively administered programs apportion limited public funds to achieve "gains" that can involve employment, stimulus to the economy, national defense or other advancements. Yet political advantage is seldom far from the picture.Within the context of traditional space policies, safety issues cannot truly be described as "afterthoughts", but they are usually, at best, a secondary or even tertiary consideration. "Space safety" is often simply assumed to be "in there" somewhere. The current key question is can "safety and risk minimization", within new commercial space programs actually be elevated in importance and effectively be "designed in" at the outset. This has long been the case with commercial aviation and there is at least reasonable hope that this could also be the case for the commercial space industry in coming years. The cooperative role that the insurance industry has now played for centuries in the shipping industry and for decades in aviation can perhaps now play a constructive role in risk minimization in the commercial space domain as well. This paper begins by examining two historical case studies in the context of traditional national space policy development to see how major space policy decisions involving "manned space programs" have given undue primacy to "political considerations" over "safety" and other factors. The specific case histories examined here include first the decision to undertake the Space Shuttle Program (i.e. 1970-1972) and the second is the International Space Station. In both cases the key and overarching decisions were driven by political, schedule and cost considerations, and safety seems absence as a prime consideration. In publicly funded space programs—whether in the United States, Europe, Russia, Japan, China, India or elsewhere—it seems realistic to

  4. Large size space construction for space exploitation

    NASA Astrophysics Data System (ADS)

    Kondyurin, Alexey

    2016-07-01

    Space exploitation is impossible without large space structures. We need to make sufficient large volume of pressurized protecting frames for crew, passengers, space processing equipment, & etc. We have to be unlimited in space. Now the size and mass of space constructions are limited by possibility of a launch vehicle. It limits our future in exploitation of space by humans and in development of space industry. Large-size space construction can be made with using of the curing technology of the fibers-filled composites and a reactionable matrix applied directly in free space. For curing the fabric impregnated with a liquid matrix (prepreg) is prepared in terrestrial conditions and shipped in a container to orbit. In due time the prepreg is unfolded by inflating. After polymerization reaction, the durable construction can be fitted out with air, apparatus and life support systems. Our experimental studies of the curing processes in the simulated free space environment showed that the curing of composite in free space is possible. The large-size space construction can be developed. A project of space station, Moon base, Mars base, mining station, interplanet space ship, telecommunication station, space observatory, space factory, antenna dish, radiation shield, solar sail is proposed and overviewed. The study was supported by Humboldt Foundation, ESA (contract 17083/03/NL/SFe), NASA program of the stratospheric balloons and RFBR grants (05-08-18277, 12-08-00970 and 14-08-96011).

  5. Space law and space resources

    NASA Technical Reports Server (NTRS)

    Goldman, Nathan C.

    1992-01-01

    Space industrialization is confronting space law with problems that are changing old and shaping new legal principles. The return to the Moon, the next logical step beyond the space station, will establish a permanent human presence there. Science and engineering, manufacturing and mining will involve the astronauts in the settlement of the solar system. These pioneers, from many nations, will need a legal, political, and social framework to structure their lives and interactions. International and even domestic space law are only the beginning of this framework. Dispute resolution and simple experience will be needed in order to develop, over time, a new social system for the new regime of space.

  6. Next Processor Module: A Hardware Accelerator of UT699 LEON3-FT System for On-Board Computer Software Simulation

    NASA Astrophysics Data System (ADS)

    Langlois, Serge; Fouquet, Olivier; Gouy, Yann; Riant, David

    2014-08-01

    On-Board Computers (OBC) are more and more using integrated systems on-chip (SOC) that embed processors running from 50MHz up to several hundreds of MHz, and around which are plugged some dedicated communication controllers together with other Input/Output channels.For ground testing and On-Board SoftWare (OBSW) validation purpose, a representative simulation of these systems, faster than real-time and with cycle-true timing of execution, is not achieved with current purely software simulators.Since a few years some hybrid solutions where put in place ([1], [2]), including hardware in the loop so as to add accuracy and performance in the computer software simulation.This paper presents the results of the works engaged by Thales Alenia Space (TAS-F) at the end of 2010, that led to a validated HW simulator of the UT699 by mid- 2012 and that is now qualified and fully used in operational contexts.

  7. ESA unveils Spanish antenna for unique space mission

    NASA Astrophysics Data System (ADS)

    2000-05-01

    The newly refurbished antenna, which is located at the Villafranca del Castillo Satellite Tracking Station site (VILSPA) near Madrid, has been selected as the prime communication link with the Cluster II spacecraft. The VIL-1 antenna will play a vital role in ESA's Cluster mission by monitoring and controlling the four spacecraft and by receiving the vast amounts of data that will be returned to Earth during two years of operations. Scheduled for launch in summer 2000, the Cluster quartet will complete the most detailed investigation ever made into the interaction between our pl0anet's magnetosphere - the region of space dominated by Earth's magnetic field - and the continuous stream of charged particles emitted by the Sun - the solar wind. This exciting venture is now well under way, following completion of the satellite assembly and test programme and two successful verification flights by the newly developed Soyuz-Fregat launch vehicle. The ESA Flight Acceptance Review Board has accordingly given the go-ahead for final launch preparations at the Baikonur Cosmodrome in Kazakhstan. VILSPA, ESA and Cluster II Built in 1975, after an international agreement between the European Space Agency and the Spanish government, VILSPA is part of the European Space Operations Centre (ESOC) Tracking Station Network (ESTRACK). In the last 25 years, VILSPA has supported many ESA and international satellite programmes, including the International Ultraviolet Explorer (IUE), EXOSAT and the Infrared Space Observatory (ISO). In addition to supporting the Cluster II mission, it has been designated as the Science Operations Centre for ESA's XMM Newton mission and for the Far-Infrared Space Telescope (FIRST), which is due to launch in 2007. There are now more than half a dozen large dish antennae installed at VILSPA. One of these is the VIL-1 antenna, a 15 metre diameter dish which operates in the S-band radio frequency (1.8 - 2.7 GHz). This antenna has been modernised recently in order

  8. SpaceTech—Postgraduate space education

    NASA Astrophysics Data System (ADS)

    de Bruijn, Ferdi J.; Ashford, Edward W.; Larson, Wiley J.

    2008-07-01

    SpaceTech is a postgraduate program geared primarily for mid-career space professionals seeking to gain or improve their expertise in space systems engineering and in business engineering. SpaceTech provides a lifelong impact on its participants by broadening their capabilities, encouraging systematic "end-to-end" thinking and preparing them for any technical or business-related engineering challenges they may encounter. This flexible 1-year program offers high competency gain and increased business skills. It is held in attractive locations in a flexible, multi-cultural environment. SpaceTech is a highly effective master's program certified by the esteemed Technical University of Delft (TUD), Netherlands. SpaceTech provides expert instructors who place no barriers between themselves and participants. The program combines innovative and flexible new approaches with time-tested methods to give participants the skills required for future missions and new business, while allowing participants to meet their work commitments at the same time as they study for their master's degree. The SpaceTech program is conducted in separate sessions, generally each of 2-week duration, separated by periods of some 6-8 weeks, during which time participants may return to their normal jobs. It also includes introductory online course material that the participants can study at their leisure. The first session is held at the TUD, with subsequent sessions held at strategic space agency locations. By participating at two or more of these sessions, attendees can earn certificates of satisfactory completion from TU Delft. By participating in all of the sessions, as well as taking part in the companion Central Case Project (CCP), participants earn an accredited and highly respected master's degree in Space Systems Engineering from the TUD. Seven distinct SpaceTech modules are provided during these sessions: Space Mission Analysis and Design, Systems Engineering, Business Engineering

  9. Space habitats. [prognosis for space colonization

    NASA Technical Reports Server (NTRS)

    Johnson, R. D.

    1978-01-01

    Differences between space industrialization and space colonization are outlined along with the physiological, psychological, and esthetic needs of the inhabitants of a space habitat. The detrimental effects of zero gravity on human physiology are reviewed, and the necessity of providing artificial gravity, an acceptable atmosphere, and comfortable relative humidity and temperature in a space habitat is discussed. Consideration is also given to social organization and governance, supply of food and water, and design criteria for space colonies.

  10. Space Radar Image of Yellowstone Park, Wyoming

    NASA Technical Reports Server (NTRS)

    1994-01-01

    indicates areas of canopy burn and mixed burn with a biomass of between 12 to 20 tons per hectare; light green is mixed burn and on-burn forest with a biomass of 20 to 35 tons per hectare; and green is non-burned forest with a biomass of greater than 35 tons per hectare. Forest recovery from the fire seems to depend on fire intensity and soil conditions. In areas of severe canopy burn and poor soil conditions, crown biomass was still low in 1994 (indicated by the brown areas at the center left), whereas in areas of mixed burn with nutrient-rich soils, seen west of Yellowstone Lake, crown biomass has increased significantly in six years (indicated by the yellow and light green areas). Imaging fire-affected regions with spaceborne radar illustrates SIR-C/X-SAR's keen abilities to monitor regrowth after a fire. Knowing the amount of carbon accumulated in the atmosphere by regenerating forest in the 20 to 50 years following a fire disturbance is also a significant factor in understanding the global carbon cycle. Measuring crown biomass is necessary to evaluate the effects of past and future fires in specific regions. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) are part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm), and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes that are caused by nature and those changes that are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche

  11. Space Radar Image of Safsaf, North Africa

    NASA Technical Reports Server (NTRS)

    1999-01-01

    ratio --or some combination of all three -- respond to the roughness of the radar backscattering surface. Using this coloring scheme, areas that appear bright at both L-band and C-band are colored yellow, while areas that appear brighter at L-band than C-band appear more blue. Detailed analysis of this scene indicates that the separate C-band and L-band images used to produce this color composite have a very similar overall appearance. This suggests that the C-band and the L-band signals are both easily penetrating the thin 1- to 12-centimeter (0.5- to 5-inch) 'average' surface cover of loose windblown sand, and are commonly 'seeing' similar interfaces just below that cover. This radar interface may be at the scattered rocky outcrops on the ground surface, but is more likely to be the shallow underlying surfaces of river gravel or bedrock, which are generally covered by only a few inches of windblown sand. Virtually everything visible on this radar composite image cannot be seen, either when standing on the ground or when viewing photographs or satellite images such as the United States' Landsat or the French SPOT satellite. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency

  12. Space data routers: Space networking for enhancing data exploitation for space weather applications

    NASA Astrophysics Data System (ADS)

    Daglis, I.; Anastasiadis, A.; Balasis, G.; Paronis, D.; Diamantopoulos, S.

    2013-09-01

    Data sharing and access are major issues in space sciences, as they influence the degree of data exploitation. The project “Space-Data Routers” relies on space internetworking and in particular on Delay Tolerant Networking (DTN), which marks the new era in space communications, unifies space and earth communication infrastructures and delivers a set of tools and protocols for space-data exploitation. The main goal is to allow space agencies, academic institutes and research centers to share space-data generated by single or multiple missions, in an efficient, secure and automated manner. Here we are presenting the architecture and basic functionality of a DTN-based application specifically designed in the framework of the SDR project, for data query, retrieval and administration that will enable to address outstanding science questions related to space weather, by providing simultaneous real- time sampling of space plasmas from multiple points with cost-effective means and measuring of phenomena with higher resolution and better coverage. This work has received funding from the European Community's Seventh Framework Programme (FP7-SPACE-2010-1, SP1 Cooperation, Collaborative project) under grant agreement No 263330 (project title: Space-Data Routers for Exploiting Space Data). This presentation reflects only the authors’ views and the Union is not liable for any use that may be made of the information contained therein.

  13. "Space, the Final Frontier"; Books on Space and Space Exploration.

    ERIC Educational Resources Information Center

    Jordan, Anne Devereaux

    1997-01-01

    Advocates play in a child's life. Describes how science fiction seizes the imaginations of young readers with its tales of the future and of outer space. Talks about various nonfiction books about space. Elaborates a workshop on books about space exploration. Gives 10 questions about stimulating student response. (PA)

  14. Analysis of the vibration environment induced on spacecraft components by hypervelocity impact

    NASA Astrophysics Data System (ADS)

    Pavarin, Daniele

    2009-06-01

    This paper reports the result achieved within the study ``Spacecraft Disturbances from Hypervelocity Impact'', performed by CISAS and Thales-Alenia Space Italia under European Space Agency contract. The research project investigated the perturbations produced on spacecraft internal components as a consequence of hypervelocity impacts of micrometeoroids and orbital debris on the external walls of the vehicle. Objective of the study was: (i) to set-up a general numerical /experimental procedure to investigate the vibration induced by hypervelocity impact, (ii) to analyze the GOCE mission in order to asses whether the vibration environment induce by the impact of orbital debris and micrometeoroids could jeopardize the mission. The research project was conducted both experimentally and numerically, performing a large number of impact tests on GOCE-like structural configurations and extrapolating the experimental results via numerical simulations based on hydrocode calculations, finite element and statistical energy analysis. As a result, a database was established which correlates the impact conditions in the experimental range (0.6 to 2.3 mm projectiles at 2.5 to 5 km/s) with the shock spectra on selected locations on various types of structural models.The main out coming of the study are: (i) a wide database reporting acceleration values on a wide range of impact condition, (ii) a general numerical methodology to investigate disturbances induced by space debris and micrometeoroids on general satellite structures.

  15. Second Symposium on Space Industrialization. [space commercialization

    NASA Technical Reports Server (NTRS)

    Jernigan, C. M. (Editor)

    1984-01-01

    The policy, legal, and economic aspects of space industrialization are considered along with satellite communications, material processing, remote sensing, and the role of space carriers and a space station in space industrialization.

  16. KSC-2010-1077

    NASA Image and Video Library

    2010-01-06

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, space shuttle Endeavour is reflected in the icy water standing inside the perimeter fence of Launch Pad 39A. The ambient air temperature during Endeavour's 3.4-mile trip from the Vehicle Assembly Building to the pad ranged from 30 to 40 degrees Fahrenheit. First motion for the move, known as rollout, was at 4:13 a.m. EST Jan. 6. Endeavour was secure or "hard down" on the pad at 10:37 a.m. Rollout is a significant milestone in launch processing activities. The primary payload for the STS-130 mission is the International Space Station's Node 3, Tranquility, a pressurized module that will provide room for many of the station's life support systems. Attached to one end of Tranquility is a cupola, a unique work area with six windows on its sides and one on top. The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. The module was built in Turin, Italy, by Thales Alenia Space for the European Space Agency. Endeavour's STS-130 launch is targeted for 4:39 a.m. EST Feb. 7. For information on the STS-130 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts130/index.html. Photo credit: NASA/Jim Grossmann

  17. KSC-2010-1078

    NASA Image and Video Library

    2010-01-06

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, space shuttle Endeavour arrives at Launch Pad 39A during uncustomary conditions -- ice floating in the standing water inside the perimeter fence. The ambient air temperature during Endeavour's 3.4-mile trip from the Vehicle Assembly Building to the pad ranged from 30 to 40 degrees Fahrenheit. First motion for the move, known as rollout, was at 4:13 a.m. EST Jan. 6. Endeavour was secure or "hard down" on the pad at 10:37 a.m. Rollout is a significant milestone in launch processing activities. The primary payload for the STS-130 mission is the International Space Station's Node 3, Tranquility, a pressurized module that will provide room for many of the station's life support systems. Attached to one end of Tranquility is a cupola, a unique work area with six windows on its sides and one on top. The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. The module was built in Turin, Italy, by Thales Alenia Space for the European Space Agency. Endeavour's STS-130 launch is targeted for 4:39 a.m. EST Feb. 7. For information on the STS-130 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts130/index.html. Photo credit: NASA/Jim Grossmann

  18. Space-Time Crystal and Space-Time Group

    NASA Astrophysics Data System (ADS)

    Xu, Shenglong; Wu, Congjun

    2018-03-01

    Crystal structures and the Bloch theorem play a fundamental role in condensed matter physics. We extend the static crystal to the dynamic "space-time" crystal characterized by the general intertwined space-time periodicities in D +1 dimensions, which include both the static crystal and the Floquet crystal as special cases. A new group structure dubbed a "space-time" group is constructed to describe the discrete symmetries of a space-time crystal. Compared to space and magnetic groups, the space-time group is augmented by "time-screw" rotations and "time-glide" reflections involving fractional translations along the time direction. A complete classification of the 13 space-time groups in one-plus-one dimensions (1 +1 D ) is performed. The Kramers-type degeneracy can arise from the glide time-reversal symmetry without the half-integer spinor structure, which constrains the winding number patterns of spectral dispersions. In 2 +1 D , nonsymmorphic space-time symmetries enforce spectral degeneracies, leading to protected Floquet semimetal states. We provide a general framework for further studying topological properties of the (D +1 )-dimensional space-time crystal.

  19. Space-Time Crystal and Space-Time Group.

    PubMed

    Xu, Shenglong; Wu, Congjun

    2018-03-02

    Crystal structures and the Bloch theorem play a fundamental role in condensed matter physics. We extend the static crystal to the dynamic "space-time" crystal characterized by the general intertwined space-time periodicities in D+1 dimensions, which include both the static crystal and the Floquet crystal as special cases. A new group structure dubbed a "space-time" group is constructed to describe the discrete symmetries of a space-time crystal. Compared to space and magnetic groups, the space-time group is augmented by "time-screw" rotations and "time-glide" reflections involving fractional translations along the time direction. A complete classification of the 13 space-time groups in one-plus-one dimensions (1+1D) is performed. The Kramers-type degeneracy can arise from the glide time-reversal symmetry without the half-integer spinor structure, which constrains the winding number patterns of spectral dispersions. In 2+1D, nonsymmorphic space-time symmetries enforce spectral degeneracies, leading to protected Floquet semimetal states. We provide a general framework for further studying topological properties of the (D+1)-dimensional space-time crystal.

  20. Space teleoperations technology for Space Station evolution

    NASA Technical Reports Server (NTRS)

    Reuter, Gerald J.

    1990-01-01

    Viewgraphs on space teleoperations technology for space station evolution are presented. Topics covered include: shuttle remote manipulator system; mobile servicing center functions; mobile servicing center technology; flight telerobotic servicer-telerobot; flight telerobotic servicer technology; technologies required for space station assembly; teleoperation applications; and technology needs for space station evolution.

  1. NewSpace: The Emerging Commercial Space Industry

    NASA Technical Reports Server (NTRS)

    Martin, Gary

    2016-01-01

    A lecture to students at the International Space University. Topics include: - We are at a turning point in the history of space exploration and development the cusp of a revolution, new industries are being born that use space in many non-traditional ways - The established military industrial space sector is no longer the only game in town - Increased competition and new capabilities will change the marketplace forever - Everyone interested in working in the space sector will be affected.

  2. Space Commercialization and the Development of Space Law

    NASA Astrophysics Data System (ADS)

    Yun, Zhao

    2017-05-01

    Shortly after the launch of the first manmade satellite in 1957, the United Nations (UN) took the lead in formulating international rules governing space activities. The five international conventions (i.e., the 1967 Outer Space Treaty, the 1968 Rescue Agreement, the 1972 Liability Convention, the 1975 Registration Convention, and the 1979 Moon Agreement) within the UN framework constitute the nucleus of space law; laying a solid legal foundation for securing the smooth development of space activities over the next few decades. Outer space was soon found to be a place with abundant opportunities for commercialization: with telecommunications services the first and most successful commercial application followed by remote sensing and global navigation services. In the last decade, the rapid development of space technologies brought space tourism and space mining to the forefront as well. With more and more commercial activities taking place on a daily basis from the 1980s on, existing space law faces severe challenges. The five conventions, which were enacted at a time when space was monopolized by two superpowers—the United States and the former Soviet Union—also failed to take into account the commercial aspect of space activities. Although there are urgent needs for new rules to deal with the ongoing trend of space commercialization, the international society faces difficulties in adopting new rules due to diversified national interests. As a result, it adjusts legislative strategies by enacting soft laws. In view of the difficulty in adopting binding rules at the international level, states are encouraged to enact their own national space legislation providing sufficient guidance for their domestic space commercial activities. It is expected that the development of soft laws and national space legislation will be the mainstream regulatory activities in the space field for the foreseeable future.

  3. Preparing future space leaders - International Space University

    NASA Technical Reports Server (NTRS)

    Stone, Barbara A.; Van Reeth, George P.

    1992-01-01

    The International Space University (ISU) concept of developing a cadre of space professionals that will lead the universities and industries into space is discussed. ISU is an innovative, permanent worldwide organization for training and academic instruction in all aspects of space studies. ISU's major goal is to provide the young professional academic instruction in technical and nontechnical areas of modern space exploration and research, and a forum to exchange ideas and develop both personal and professional ties at an international level.

  4. Space Science in Action: Space Exploration [Videotape].

    ERIC Educational Resources Information Center

    1999

    In this videotape recording, students learn about the human quest to discover what is out in space. Students see the challenges and benefits of space exploration including the development of rocket science, a look back at the space race, and a history of manned space travel. A special section on the Saturn V rocket gives students insight into the…

  5. Space market model space industry input-output model

    NASA Technical Reports Server (NTRS)

    Hodgin, Robert F.; Marchesini, Roberto

    1987-01-01

    The goal of the Space Market Model (SMM) is to develop an information resource for the space industry. The SMM is intended to contain information appropriate for decision making in the space industry. The objectives of the SMM are to: (1) assemble information related to the development of the space business; (2) construct an adequate description of the emerging space market; (3) disseminate the information on the space market to forecasts and planners in government agencies and private corporations; and (4) provide timely analyses and forecasts of critical elements of the space market. An Input-Output model of market activity is proposed which are capable of transforming raw data into useful information for decision makers and policy makers dealing with the space sector.

  6. Skylab, Space Shuttle, Space Benefits Today and Tomorrow.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The pamphlet "Skylab" describes very generally the kinds of activities to be conducted with the Skylab, America's first manned space station. "Space Shuttle" is a pamphlet which briefly states the benefits of the Space Shuttle, and a concise review of present and future benefits of space activities is presented in the pamphlet "Space Benefits…

  7. Space transportation alternatives for large space programs: The International Space University Summer Session, 1992

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    1993-01-01

    In 1992, the International Space University (ISU) held its Summer Session in Kitakyushu, Japan. This paper summarizes and expands upon some aspects of space solar power and space transportation that were considered during that session. The issues discussed in this paper are the result of a 10-week study by the Space Solar Power Program design project members and the Space Transportation Group to investigate new paradigms in space propulsion and how those paradigms might reduce the costs for large space programs. The program plan was to place a series of power satellites in Earth orbit. Several designs were studied where many kW, MW, or GW of power would be transmitted to Earth or to other spacecraft in orbit. During the summer session, a space solar power system was also detailed and analyzed. A high-cost space transportation program is potentially the most crippling barrier to such a space power program. At ISU, the focus of the study was to foster and develop some of the new paradigms that may eliminate the barriers to low cost for space exploration and exploitation. Many international and technical aspects of a large multinational program were studied. Environmental safety, space construction and maintenance, legal and policy issues of frequency allocation, technology transfer and control and many other areas were addressed. Over 120 students from 29 countries participated in this summer session. The results discussed in this paper, therefore, represent the efforts of many nations.

  8. Innovative Ideas for Coordinating International Space Activities: International Center for Space Medicine, International Space Authority, and other Global Youth Space Initiatives

    NASA Astrophysics Data System (ADS)

    Marshall, W.

    2002-01-01

    The Space Generation Forum SGF, at UNISPACE-III, as one of its ten formal recommendations to the United Nations in 1999, put forward the suggestion that the an international space authority should be created. Other recommendations were the establishment of an International Center for Space Medicine, creation of a global space exploration and development program, establishment of a global space (Nobel) prize, and a global space library. These projects are being further developed at the Space Generation Summit (SGS), an event at World Space Congress (WSC) which shall unite international students and young professionals to develop a youth vision and strategy for the peaceful uses of space. SGS, endorsed by the United Nations, will take place from October 11- 13th, during which the 200 delegates will discuss ongoing youth space activities, particularly those stemming from the UNISPACE-III/SGF and taken forward by the Space Generation Advisory Council. Delegates will address a variety of topics with the goal of devising new recommendations according to the theme, 'Accelerating Our Pace in Space'. The material presented here and in other technical sessions throughout WSC includes the findings of these discussions. In this paper, we present the International Space Authority idea together with recommendations on how that might be taken forward. The purpose of such an organization would be to allow: 1. Oversight and enforcement for the balanced regulation of multiple interests in space 2. Access for all peoples to the material benefits and knowledge and understanding enabled by the exploration and 3. Pooling of national and industry resources for the creation of space infrastructure, missions and enterprises for Operating principles: 1. The ISA regulatory regime would encourage commercialization and the harnessing of competitive market 2. Consistent with its charter to ensure access to all peoples, all UN member states and appropriate NGOs would 3. Close coordination with

  9. Human posture in microgravity: An experiment on EUROMIR '95 to verify and improve a simulation tool

    NASA Astrophysics Data System (ADS)

    Colford, Nicholas; Giorgi, Pier Luigi; Gaia, Enrico; Cotronei, Vittorio

    1995-10-01

    An anthropometric mannequin implemented in robotic modelling software has proved very useful in the simulation of static and semi-dynamic reachability envelopes. Its prediction of working postures has been verified to some extent during neutral buoyancy trials. While a robotic solution is useful for static analyses or rough estimates of simple movements, more realistic movement strategies need to be identified directly measuring astronauts' in-orbit behaviour. A set of experiments is to be performed as part of the EUROMIR '95 mission to the MIR orbiting station in which dynamic posture (i.e. posture and movement) measurements will be taken using the ELITE system. The data and analyses of the data will be used to animate the Alenia anthopometric mannequin and to develop movement algorithms more similar to those of a person in microgravity than the robotic solutions currently employed. This paper presents the experiments to be performed and the changes to Alenia's mannequin that will allow the model to effect movements according to the experimental results. It is aimed at expanding the dialog between the biomechanical and human factors disciplines started in this experiment to other potential end-users of the experimental results.

  10. Remarks on Sentinel-1 Avionic SW Qualification

    NASA Astrophysics Data System (ADS)

    Candia, Sante; Pascucci, Dario

    2013-08-01

    The GMES Sentinel-1 Earth Radar Observatory, a projects co-funded by the European Union and the European Space Agency (ESA), is a constellation of C-band radar satellites. The satellites have been conceived to be a continuous and reliable source of C-band SAR imagery for operational application such as mapping of global landmasses, coastal zones and monitoring of shipping routes. ESA is responsible for the development of the Sentinel-1 satellites that are built by an industrial consortium headed by Thales Alenia Space Italy (TASI) as Prime Contractor. TAS-I is also directly responsible for the production of the Spacecraft Bus and the Avionic S/S including the Avionic SW (ASW), which is characterized by: · The high performances of its attitude and orbit determination and control function; · Scheduling of the imaging activity on position basis with high geo-location performances; · High on board autonomy both in routine and contingency situations. This paper is focused on the Sentinel-1 Avionic SW, which has currently been qualified by TAS-I for Flight. It covers both the SW architecture and development process areas: · Avionic SW context; · Avionic SW architecture; · Flexibility of PUS-based on-board autonomy and FDIR; · Validation and Qualification activities;

  11. Columbus stowage optimization by cast (cargo accommodation support tool)

    NASA Astrophysics Data System (ADS)

    Fasano, G.; Saia, D.; Piras, A.

    2010-08-01

    A challenging issue related to the International Space Station utilization concerns the on-board stowage, implying a strong impact on habitability, safety and crew productivity. This holds in particular for the European Columbus laboratory, nowadays also utilized to provide the station with logistic support. The volume exploitation has to be maximized, in compliance with the given accommodation rules. At each upload step, the stowage problem must be solved quickly and efficiently. This leads to the comparison of different scenarios to select the most suitable one. Last minute upgrades, due to possible re-planning, may, moreover arise, imposing the further capability to rapidly readapt the current solution to the updated status. In this context, looking into satisfactory solutions represents a very demanding job, even for experienced designers. Thales Alenia Space Italia has achieved a remarkable expertise in the field of cargo accommodation and stowage. The company has recently developed CAST, a dedicated in-house software tool, to support the cargo accommodation of the European automated transfer vehicle. An ad hoc version, tailored to the Columbus stowage, has been further implemented and is going to be used from now on. This paper surveys the on-board stowage issue, pointing out the advantages of the proposed approach.

  12. The International Space Station in Space Exploration

    NASA Technical Reports Server (NTRS)

    Gerstenmaier, William H.; McKay, Meredith M.

    2006-01-01

    The International Space Station (ISS) Program has many lessons to offer for the future of space exploration. Among these lessons of the ISS Program, three stand out as instrumental for the next generation of explorers. These include: 1) resourcefulness and the value of a strong international partnership; 2) flexibility as illustrated by the evolution of the ISS Program and 3) designing with dissimilar redundancy and simplicity of sparing. These lessons graphically demonstrate that the ISS Program can serve as a test bed for future programs. As the ISS Program builds upon the strong foundation of previous space programs, it can provide insight into the prospects for continued growth and cooperation in space exploration. As the capacity for spacefaring increases worldwide and as more nations invest in space exploration and space sector development, the potential for advancement in space exploration is unlimited. By building on its engineering and research achievements and international cooperation, the ISS Program is inspiring tomorrow s explorers today.

  13. [Reflections on physical spaces and mental spaces].

    PubMed

    Chen, Hung-Yi

    2013-08-01

    This article analyzes certain reciprocal impacts from physical spaces to mental spaces. If the epistemological construction and the spatial imagination from the subject of cogito or the social collectivities are able to influence the construction and creation of the physical spaces of that subject, then the context of that physical space may also affect the cognitive or social subject's mental cognition. This article applies the methodology of iconology from art history (E. Panofsky) and sociology (P. Bourdieu) to explore correlations between the creation of imaginative and physical spaces from the collective consciousness and mental cognition. The author uses Gilles Deleuses's opinion regarding the 17th-century Baroque style and contemporary social collective symptoms as an explanation. From these theoretical studies, the author analyzes the differences of spatial epistemology generated by Taiwan's special geological text. Finally, the author applies Michel Foucault's studies on spatial context to assess the possible application of this thesis of reciprocal impacts from mental spaces to physical spaces in a nursing context.

  14. NASA Space Environments Technical Discipline Team Space Weather Activities

    NASA Astrophysics Data System (ADS)

    Minow, J. I.; Nicholas, A. C.; Parker, L. N.; Xapsos, M.; Walker, P. W.; Stauffer, C.

    2017-12-01

    The Space Environment Technical Discipline Team (TDT) is a technical organization led by NASA's Technical Fellow for Space Environments that supports NASA's Office of the Chief Engineer through the NASA Engineering and Safety Center. The Space Environments TDT conducts independent technical assessments related to the space environment and space weather impacts on spacecraft for NASA programs and provides technical expertise to NASA management and programs where required. This presentation will highlight the status of applied space weather activities within the Space Environment TDT that support development of operational space weather applications and a better understanding of the impacts of space weather on space systems. We will first discuss a tool that has been developed for evaluating space weather launch constraints that are used to protect launch vehicles from hazardous space weather. We then describe an effort to better characterize three-dimensional radiation transport for CubeSat spacecraft and processing of micro-dosimeter data from the International Space Station which the team plans to make available to the space science community. Finally, we will conclude with a quick description of an effort to maintain access to the real-time solar wind data provided by the Advanced Composition Explorer satellite at the Sun-Earth L1 point.

  15. Space Physiology and Operational Space Medicine

    NASA Technical Reports Server (NTRS)

    Scheuring, Richard A.

    2009-01-01

    The objectives of this slide presentation are to teach a level of familiarity with: the effects of short and long duration space flight on the human body, the major medical concerns regarding future long duration missions, the environmental issues that have potential medical impact on the crew, the role and capabilities of the Space Medicine Flight Surgeon and the environmental impacts experienced by the Apollo crews. The main physiological effects of space flight on the human body reviewed in this presentation are: space motion sickness (SMS), neurovestibular, cardiovascular, musculoskeletal, immune/hematopoietic system and behavioral/psycho-social. Some countermeasures are discussed to these effects.

  16. Space Station

    NASA Technical Reports Server (NTRS)

    Anderton, D. A.

    1985-01-01

    The official start of a bold new space program, essential to maintain the United States' leadership in space was signaled by a Presidential directive to move aggressively again into space by proceeding with the development of a space station. Development concepts for a permanently manned space station are discussed. Reasons for establishing an inhabited space station are given. Cost estimates and timetables are also cited.

  17. Space Discovery.

    ERIC Educational Resources Information Center

    Blackman, Joan

    1998-01-01

    Describes one teacher's experience taking Space Discovery courses that were sponsored by the United States Space Foundation (USSF). These courses examine the history of space science, theory of orbits and rocketry, the effects of living in outer space on humans, and space weather. (DDR)

  18. Test spaces and characterizations of quadratic spaces

    NASA Astrophysics Data System (ADS)

    Dvurečenskij, Anatolij

    1996-10-01

    We show that a test space consisting of nonzero vectors of a quadratic space E and of the set all maximal orthogonal systems in E is algebraic iff E is Dacey or, equivalently, iff E is orthomodular. In addition, we present another orthomodularity criteria of quadratic spaces, and using the result of Solèr, we show that they can imply that E is a real, complex, or quaternionic Hilbert space.

  19. Space Commercialization

    NASA Technical Reports Server (NTRS)

    Martin, Gary L.

    2011-01-01

    A robust and competitive commercial space sector is vital to continued progress in space. The United States is committed to encouraging and facilitating the growth of a U.S. commercial space sector that supports U.S. needs, is globally competitive, and advances U.S. leadership in the generation of new markets and innovation-driven entrepreneurship. Energize competitive domestic industries to participate in global markets and advance the development of: satellite manufacturing; satellite-based services; space launch; terrestrial applications; and increased entrepreneurship. Purchase and use commercial space capabilities and services to the maximum practical extent Actively explore the use of inventive, nontraditional arrangements for acquiring commercial space goods and services to meet United States Government requirements, including measures such as public-private partnerships, . Refrain from conducting United States Government space activities that preclude, discourage, or compete with U.S. commercial space activities. Pursue potential opportunities for transferring routine, operational space functions to the commercial space sector where beneficial and cost-effective.

  20. Operationally Responsive Space Launch for Space Situational Awareness Missions

    NASA Astrophysics Data System (ADS)

    Freeman, T.

    The United States Space Situational Awareness capability continues to be a key element in obtaining and maintaining the high ground in space. Space Situational Awareness satellites are critical enablers for integrated air, ground and sea operations, and play an essential role in fighting and winning conflicts. The United States leads the world space community in spacecraft payload systems from the component level into spacecraft and in the development of constellations of spacecraft. This position is founded upon continued government investment in research and development in space technology, which is clearly reflected in the Space Situational Awareness capabilities and the longevity of these missions. In the area of launch systems that support Space Situational Awareness, despite the recent development of small launch vehicles, the United States launch capability is dominated by unresponsive and relatively expensive launchers in the Expandable, Expendable Launch Vehicles (EELV). The EELV systems require an average of six to eight months from positioning on the launch table until liftoff. Access to space requires maintaining a robust space transportation capability, founded on a rigorous industrial and technology base. To assure access to space, the United States directed Air Force Space Command to develop the capability for operationally responsive access to space and use of space to support national security, including the ability to provide critical space capabilities in the event of a failure of launch or on-orbit capabilities. Under the Air Force Policy Directive, the Air Force will establish, organize, employ, and sustain space forces necessary to execute the mission and functions assigned including rapid response to the National Command Authorities and the conduct of military operations across the spectrum of conflict. Air Force Space Command executes the majority of spacelift operations for DoD satellites and other government and commercial agencies. The

  1. Space Colonization Using Space-Elevators from Phobos

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M.

    2003-01-01

    A novel approach is examined for creating an industrial civilization beyond Earth. The approach would take advantage of the unique configuration of Mars and its moon Phobos to make a transportation system capable of raising mass from the surface of Mars to space at a low cost. Mars would be used as the primary location for support personnel and infrastructure. Phobos would be used as a source of raw materials for space-based activity, and as an anchor for tethered carbon-nanotube-based space-elevators. One space-elevator would terminate at the upper edge of Mars' atmosphere. Small craft would be launched from Mars' surface to rendezvous with the moving elevator tip and their payloads detached and raised with solar powered loop elevators to Phobos. Another space-elevator would be extended outward from Phobos to launch craft toward the Earth/Moon system or the asteroid belt. The outward tip would also be used to catch arriving craft. This approach would allow Mars to be colonized, and allow transportation of people and supplies from Mars to support the space industry. In addition, large quantities of material obtained from Phobos could be used to construct space habitats and also supply propellant and material for space industry in the Earth/Moon system as well as around Mars.

  2. Space vehicle propulsion systems: Environmental space hazards

    NASA Technical Reports Server (NTRS)

    Disimile, P. J.; Bahr, G. K.

    1990-01-01

    The hazards that exist in geolunar space which may degrade, disrupt, or terminate the performance of space-based LOX/LH2 rocket engines are evaluated. Accordingly, a summary of the open literature pertaining to the geolunar space hazards is provided. Approximately 350 citations and about 200 documents and abstracts were reviewed; the documents selected give current and quantitative detail. The methodology was to categorize the various space hazards in relation to their importance in specified regions of geolunar space. Additionally, the effect of the various space hazards in relation to spacecraft and their systems were investigated. It was found that further investigation of the literature would be required to assess the effects of these hazards on propulsion systems per se; in particular, possible degrading effects on exterior nozzle structure, directional gimbals, and internal combustion chamber integrity and geometry.

  3. Affordable Space Tourism: SpaceStationSim

    NASA Technical Reports Server (NTRS)

    2006-01-01

    For over 5 years, people have been living and working in space on the International Space Station (ISS), a state-of-the-art laboratory complex orbiting high above the Earth. Offering a large, sustained microgravity environment that cannot be duplicated on Earth, the ISS furthers humankind s knowledge of science and how the body functions for extended periods of time in space all of which will prove vital on long-duration missions to Mars. On-orbit construction of the station began in November 1998, with the launch of the Russian Zarya Control Module, which provided battery power and fuel storage. This module was followed by additional components and supplies over the course of several months. In November 2000, the first ISS Expedition crew moved in. Since then, the ISS has continued to change and evolve. The space station is currently 240 feet wide, measured across the solar arrays, and 171 feet long, from the NASA Destiny Laboratory to the Russian Zvezda Habitation Module. It is 90 feet tall, and it weighs approximately 404,000 pounds. Crews inhabit a living space of about 15,000 cubic feet. To date, 90 scientific investigations have been conducted on the space station. New results from space station research, from basic science to exploration research, are being published each month, and more breakthroughs are likely to come. It is not all work on the space station, though. The orbiting home affords many of the comforts one finds on Earth. There is a weightless "weight room" and even a musical keyboard alongside research facilities. Holidays are observed, and with them, traditional foods such as turkey and cobbler are eaten, with lemonade to wash them down

  4. Space Ethics and Protection of the Space Environment

    NASA Astrophysics Data System (ADS)

    Williamson, Mark

    2002-01-01

    The construction of the International Space Station in low Earth orbit and the formulation of plans to search for life on Mars - one day by means of manned missions - indicate that mankind is intent on making the space environment part of its domain. Publicity surrounding space tourism, in-space `burials' and the sale of lunar `real estate' suggests that, some time in the 21st century, the space environment will become an extraterrestrial extension of our current business and domestic environment. This prompts the question of our collective attitude towards the space environment and the degree to which we should regulate its use and protect it for future generations. What, indeed, are the ethical considerations of space exploration and development? Ethics can be defined as "the philosophical study of the moral value of human conduct, and of the rules or principles that ought to govern it". More practically, it represents "an approved code of behaviour" adopted, for example, by a group or profession. If a set of ethics is to be developed for space, it is important that what we refer to as the `space community', or `space profession', is intimately involved. Indeed, if it is not, the profession risks having the job done for it, for example by politicians and members of the general public, who for their own reasons may wish to place restrictions on space development, or ban it altogether. The terrestrial nuclear power industry, for example, has already suffered this fate, while widespread ignorance of the subject has led to a moratorium on the use of RTGs in spacecraft. However, there is a danger in the discussion of ethics that consideration is confined to the philosophical aspects, thus excusing those involved from providing practical solutions to the problems that emerge. The fact that mankind has already affected, and arguably damaged, the space environment transports the discussion beyond the philosophical realm. This paper offers a pragmatic analysis of one

  5. Space transportation alternatives for large space programs - The International Space University summer session - 1992

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    1993-01-01

    The issues discussed in this paper are the result of a 10-week study by the Space Solar Power Program design project members and the Space Transportation Group at the International Space University (ISU) summer session of 1992 to investigate new paradigms in space propulsion and how those paradigms might reduce the costs for large space programs. The program plan was to place a series of power satellites in Earth orbit. Several designs were studied where many kW, MW or GW of power would be transmitted to Earth or to other spacecraft in orbit. During the summer session, a space solar power system was also detailed and analyzed. At ISU, the focus of the study was to foster and develop some of the new paradigms that may eliminate the barriers to low cost for space exploration and exploitation. Many international and technical aspects of a large multinational program were studied. Environmental safety, space construction and maintenance, legal and policy issues of frequency allocation, technology transfer and control and many other areas were addressed.

  6. Space program: Space debris a potential threat to Space Station and shuttle

    NASA Technical Reports Server (NTRS)

    Schwartz, Stephen A.; Beers, Ronald W.; Phillips, Colleen M.; Ramos, Yvette

    1990-01-01

    Experts estimate that more than 3.5 million man-made objects are orbiting the earth. These objects - space debris - include whole and fragmentary parts of rocket bodies and other discarded equipment from space missions. About 24,500 of these objects are 1 centimeter across or larger. A 1-centimeter man-made object travels in orbit at roughly 22,000 miles per hour. If it hit a spacecraft, it would do about the same damage as would a 400-pound safe traveling at 60 miles per hour. The Government Accounting Office (GAO) reviews NASA's plans for protecting the space station from debris, the extent and precision of current NASA and Defense Department (DOD) debris-tracking capabilities, and the extent to which debris has already affected shuttle operations. GAO recommends that the space debris model be updated, and that the findings be incorporated into the plans for protecting the space station from such debris. GAO further recommends that the increased risk from debris to the space shuttle operations be analyzed.

  7. Space Station technology testbed: 2010 deep space transport

    NASA Technical Reports Server (NTRS)

    Holt, Alan C.

    1993-01-01

    A space station in a crew-tended or permanently crewed configuration will provide major R&D opportunities for innovative, technology and materials development and advanced space systems testing. A space station should be designed with the basic infrastructure elements required to grow into a major systems technology testbed. This space-based technology testbed can and should be used to support the development of technologies required to expand our utilization of near-Earth space, the Moon and the Earth-to-Jupiter region of the Solar System. Space station support of advanced technology and materials development will result in new techniques for high priority scientific research and the knowledge and R&D base needed for the development of major, new commercial product thrusts. To illustrate the technology testbed potential of a space station and to point the way to a bold, innovative approach to advanced space systems' development, a hypothetical deep space transport development and test plan is described. Key deep space transport R&D activities are described would lead to the readiness certification of an advanced, reusable interplanetary transport capable of supporting eight crewmembers or more. With the support of a focused and highly motivated, multi-agency ground R&D program, a deep space transport of this type could be assembled and tested by 2010. Key R&D activities on a space station would include: (1) experimental research investigating the microgravity assisted, restructuring of micro-engineered, materials (to develop and verify the in-space and in-situ 'tuning' of materials for use in debris and radiation shielding and other protective systems), (2) exposure of microengineered materials to the space environment for passive and operational performance tests (to develop in-situ maintenance and repair techniques and to support the development, enhancement, and implementation of protective systems, data and bio-processing systems, and virtual reality and

  8. Space Toxicology: Human Health during Space Operations

    NASA Technical Reports Server (NTRS)

    Khan-Mayberry, Noreen; James, John T.; Tyl, ROchelle; Lam, Chiu-Wing

    2010-01-01

    Space Toxicology is a unique and targeted discipline for spaceflight, space habitation and occupation of celestial bodies including planets, moons and asteroids. Astronaut explorers face distinctive health challenges and limited resources for rescue and medical care during space operation. A central goal of space toxicology is to protect the health of the astronaut by assessing potential chemical exposures during spaceflight and setting safe limits that will protect the astronaut against chemical exposures, in a physiologically altered state. In order to maintain sustained occupation in space on the International Space Station (ISS), toxicological risks must be assessed and managed within the context of isolation continuous exposures, reuse of air and water, limited rescue options, and the need to use highly toxic compounds for propulsion. As we begin to explore other celestial bodies in situ toxicological risks, such as inhalation of reactive mineral dusts, must also be managed.

  9. Space Medicine

    NASA Technical Reports Server (NTRS)

    Pool, Sam L.

    2000-01-01

    The National Academy of Sciences Committee on Space Biology and Medicine points out that space medicine is unique among space sciences, because in addition to addressing questions of fundamental scientific interest, it must address clinical or human health and safety issues as well. Efforts to identify how microgravity affects human physiology began in earnest by the United States in 1960 with the establishment of the National Aeronautics and Space Administration (NASA's) Life Sciences program. Before the first human space missions, prediction about the physiological effects of microgravity in space ranged from extremely severe to none at all. The understanding that has developed from our experiences in space to date allows us to be guardedly optimistic about the ultimate accommodations of humans to space flight. Only by our travels into the microgravity environment of space have we begun to unravel the mysteries associated with gravity's role in shaping human physiology. Space medicine is still at its very earliest stages. Development of this field has been slow for several reasons, including the limited number of space flights, the small number of research subjects, and the competition within the life sciences community and other disciplines for flight opportunities. The physiological changes incurred during space flight may have a dramatic effect on the course of an injury or illness. These physiological changes present an exciting challenge for the field of space medicine: how to best preserve human health and safety while simultaneously deciphering the effects of microgravity on human performance. As the United States considers the future of humans in long-term space travel, it is essential that the many mysteries as to how microgravity affects human systems be addressed with vigor. Based on the current state of our knowledge, the justification is excellent indeed compelling- for NASA to develop a sophisticated capability in space medicine. Teams of physicians

  10. Space Station

    NASA Image and Video Library

    1991-01-01

    In 1982, the Space Station Task Force was formed, signaling the initiation of the Space Station Freedom Program, and eventually resulting in the Marshall Space Flight Center's responsibilities for Space Station Work Package 1.

  11. SpaceNet: Modeling and Simulating Space Logistics

    NASA Technical Reports Server (NTRS)

    Lee, Gene; Jordan, Elizabeth; Shishko, Robert; de Weck, Olivier; Armar, Nii; Siddiqi, Afreen

    2008-01-01

    This paper summarizes the current state of the art in interplanetary supply chain modeling and discusses SpaceNet as one particular method and tool to address space logistics modeling and simulation challenges. Fundamental upgrades to the interplanetary supply chain framework such as process groups, nested elements, and cargo sharing, enabled SpaceNet to model an integrated set of missions as a campaign. The capabilities and uses of SpaceNet are demonstrated by a step-by-step modeling and simulation of a lunar campaign.

  12. Space Shuttle orbiter modifications to support Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Segert, Randall; Lichtenfels, Allyson

    1992-01-01

    The Space Shuttle will be the primary vehicle to support the launch, assembly, and maintenance of the Space Station Freedom (SSF). In order to accommodate this function, the Space Shuttle orbiter will require significant modifications. These modifications are currently in development in the Space Shuttle Program. The requirements for the planned modifications to the Space Shuttle orbiter are dependent on the design of the SSF. Therefore, extensive coordination is required with the Space Station Freedom Program (SSFP) in order to identify requirements and resolve integration issues. This paper describes the modifications to the Space Shuttle orbiter required to support SSF assembly and operations.

  13. Space Radar Image of Bahia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    . The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI) with the Deutsche Forschungsanstalt fuer luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  14. Space Radar Image of Kilauea, Hawaii in 3-D

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a three-dimensional perspective view of a false-color image of the eastern part of the Big Island of Hawaii. It was produced using all three radar frequencies -- X-band, C-band and L-band -- from the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) flying on the space shuttle Endeavour, overlaid on a U.S. Geological Survey digital elevation map. Visible in the center of the image in blue are the summit crater (Kilauea Caldera) which contains the smaller Halemaumau Crater, and the line of collapse craters below them that form the Chain of Craters Road. The image was acquired on April 12, 1994 during orbit 52 of the space shuttle. The area shown is approximately 34 by 57 kilometers (21 by 35 miles) with the top of the image pointing toward northwest. The image is centered at about 155.25 degrees west longitude and 19.5 degrees north latitude. The false colors are created by displaying three radar channels of different frequency. Red areas correspond to high backscatter at L-HV polarization, while green areas exhibit high backscatter at C-HV polarization. Finally, blue shows high return at X-VV polarization. Using this color scheme, the rain forest appears bright on the image, while the green areas correspond to lower vegetation. The lava flows have different colors depending on their types and are easily recognizable due to their shapes. The flows at the top of the image originated from the Mauna Loa volcano. Kilauea volcano has been almost continuously active for more than the last 11 years. Field teams that were on the ground specifically to support these radar observations report that there was vigorous surface activity about 400 meters (one-quartermile) inland from the coast. A moving lava flow about 200 meters (650 feet) in length was observed at the time of the shuttle overflight, raising the possibility that subsequent images taken during this mission will show changes in the landscape. Currently, most of the lava that is

  15. Space migrations: Anthropology and the humanization of space

    NASA Technical Reports Server (NTRS)

    Finney, Ben R.

    1992-01-01

    Because of its broad evolutionary perspective and its focus on both technology and culture, anthropology offers a unique view of why we are going into space and what leaving Earth will mean for humanity. In addition, anthropology could help in the humanization of space through (1) overcoming socioculture barriers to working and living in space, (2) designing societies appropriate for permanent space settlement, (3) promoting understanding among differentiated branches of humankind scattered through space, (4) deciphering the cultural systems of any extraterrestrial civilizations contacted.

  16. NewSpace: The Emerging Commercial Space Industry

    NASA Technical Reports Server (NTRS)

    Martin, Gary L.

    2014-01-01

    Presenter will give a lecture on the emerging commercial space industry at International Space University's 2014 Space Studies Program (SSP) at McGill University in Montreal, Canada. The presentation consists of 38 Powerpoint slides and describes the emerging commercial space sector, key players and capabilities. The slides explain which areas that the commercial sector is taking hold, what new markets are attracting start up companies, and which companies are participating. A discussion of how governments can help with the new industry's development is offered.

  17. Commercial use of space - The space business era

    NASA Technical Reports Server (NTRS)

    Griffin, G. D.

    1985-01-01

    Progress and avenues being explored by NASA to hasten the commercialization of space are described. A task force has recommended that the effort begin at once, that bureaucratic barriers to commercial space activities be removed, and that a partnership between government and industry be seriously explored. The government role is to establish links with private industry, invest in high-leverage technologies and space facilities which will be attractive to commercial ventures, and contribute to commercial enterprises where risks are high and significant economic benefits can be foreseen. The government/industry relationship can be legally evinced by MOUs, joint endeavor agreements, technical exchange agreements and industrial guest investigator arrangements. The Space Station is the first step in that it allows Americans to live and work in space. It is expected that international participation in Space Station development and utilization will accelerate the space business era.

  18. The Space Shuttle - A future space transportation system

    NASA Technical Reports Server (NTRS)

    Thompson, R. F.

    1974-01-01

    The objective of the Space Shuttle Program is to achieve an economical space transportation system. This paper provides an introductory review of the considerations which led to the Government decisions to develop the Space Shuttle. The role of a space transportation system is then considered within the context of historical developments in the general field of transportation, followed by a review of the Shuttle system, mission profile, payload categories, and payload accommodations which the Shuttle system will provide, and concludes with a forecast of the systems utilization for space science research and payload planning activity.

  19. Space history, space policy, and executive leadership

    NASA Technical Reports Server (NTRS)

    Kraemer, Sylvia K.

    1993-01-01

    A lecture that attempts to establish the role of space historians in formulating space policy is presented. The discussion focusses on two adages and their relevance to space policy. The adages are as follows: 'write about what you know;' and 'good managers do things right; good executives do the right things.'

  20. Public choice economics and space policy: realising space tourism

    NASA Astrophysics Data System (ADS)

    Collins, Patrick

    2001-03-01

    Government space agencies have the statutory responsibility to suport the commercialisation of space activities. NASA's 1998 report "General Public Space Travel and Tourism" concluded that passenger space travel can start using already existing technology, and is likely to grow into the largest commercial activity in space: it is therefore greatly in taxpayers' economic interest that passenger space travel and accommodation industries should be developed. However, space agencies are doing nothing to help realise this — indeed, they are actively delaying it. This behaviour is predicted by 'public choice' economics, pioneered by Professors George Stigler and James Buchanan who received the 1982 and 1986 Nobel prizes for Economics, which views government organisations as primarily self-interested. The paper uses this viewpoint to discuss public and private roles in the coming development of a space tourism industry.

  1. Space Radar Image of Death Valley in 3-D

    NASA Technical Reports Server (NTRS)

    1999-01-01

    -SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fur Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI).

  2. Sacred Space.

    PubMed

    Adelstein, Pamela

    2018-01-01

    A space can be sacred, providing those who inhabit a particular space with sense of transcendence-being connected to something greater than oneself. The sacredness may be inherent in the space, as for a religious institution or a serene place outdoors. Alternatively, a space may be made sacred by the people within it and events that occur there. As medical providers, we have the opportunity to create sacred space in our examination rooms and with our patient interactions. This sacred space can be healing to our patients and can bring us providers opportunities for increased connection, joy, and gratitude in our daily work.

  3. Spaced Retrieval: Absolute Spacing Enhances Learning Regardless of Relative Spacing

    ERIC Educational Resources Information Center

    Karpicke, Jeffrey D.; Bauernschmidt, Althea

    2011-01-01

    Repeated retrieval enhances long-term retention, and spaced repetition also enhances retention. A question with practical and theoretical significance is whether there are particular schedules of spaced retrieval (e.g., gradually expanding the interval between tests) that produce the best learning. In the present experiment, subjects studied and…

  4. NOAA Photo Library - NOAA In Space Collection/Space Vehicles

    Science.gov Websites

    Collections page. Takes you to the search page. Takes you to the Links page. NOAA In Space space vehicles banner How do you get cameras, infra-red sensors, microwave sensors into space so they can observe the the above option to view ALL current images. NOAA In Space ~ Space Vehicles Album drawing of TIROS

  5. Space Industry

    DTIC Science & Technology

    2006-01-01

    invest in and support commercial efforts. In testimony before the House Committee on Space and Aeronautics in April of 2005, Elon Musk provided the...Response Launch Vehicle. Space Daily. Retrieved April 9, 2006 from www.spacedaily.com. 81 Musk , Elon (2005, April 20). Commercialization of Space...Space Transportation Policy. (2006, January 5). Retrieved May 30, 2006 from http://www.ostp.gov/html/SpaceTransFactSheetJan2005.pdf. 86 Musk , Elon

  6. Space Power

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Appropriate directions for the applied research and technology programs that will develop space power systems for U.S. future space missions beyond 1995 are explored. Spacecraft power supplies; space stations, space power reactors, solar arrays, thermoelectric generators, energy storage, and communication satellites are among the topics discussed.

  7. Esrange Space Center, a Gate to Space

    NASA Astrophysics Data System (ADS)

    Widell, Ola

    Swedish Space Corporation (SSC) is operating the Esrange Space Center in northern Sweden. Space operations have been performed for more than 40 years. We have a unique combination of maintaining balloon and rocket launch operations, and building payloads, providing space vehicles and service systems. Sub-orbital rocket flights with land recovery and short to long duration balloon flights up to weeks are offered. The geographical location, land recovery area and the long term experience makes Swedish Space Corporation and Esrange to an ideal gate for space activities. Stratospheric balloons are primarily used in supporting atmospheric research, validation of satellites and testing of space systems. Balloon operations have been carried out at Esrange since 1974. A large number of balloon flights are yearly launched in cooperation with CNES, France. Since 2005 NASA/CSBF and Esrange provide long duration balloon flights to North America. Flight durations up to 5 days with giant balloons (1.2 Million cubic metres) carrying heavy payload (up to 2500kg) with astronomical instruments has been performed. Balloons are also used as a crane for lifting space vehicles or parachute systems to be dropped and tested from high altitude. Many scientific groups both in US, Europe and Japan have indicated a great need of long duration balloon flights. Esrange will perform a technical polar circum balloon flight during the summer 2008 testing balloon systems and flight technique. We are also working on a permission giving us the opportunity on a circular stratospheric balloon flight around the North Pole.

  8. Space colonization.

    PubMed

    2002-12-01

    NASA interest in colonization encompasses space tourism; space exploration; space bases in orbit, at L1, on the Moon, or on Mars; in-situ resource utilization; and planetary terraforming. Activities progressed during 2002 in areas such as Mars colonies, hoppers, and biomass; space elevators and construction; and in-situ consumables.

  9. FDIR Strategy Validation with the B Method

    NASA Astrophysics Data System (ADS)

    Sabatier, D.; Dellandrea, B.; Chemouil, D.

    2008-08-01

    In a formation flying satellite system, the FDIR strategy (Failure Detection, Isolation and Recovery) is paramount. When a failure occurs, satellites should be able to take appropriate reconfiguration actions to obtain the best possible results given the failure, ranging from avoiding satellite-to-satellite collision to continuing the mission without disturbance if possible. To achieve this goal, each satellite in the formation has an implemented FDIR strategy that governs how it detects failures (from tests or by deduction) and how it reacts (reconfiguration using redundant equipments, avoidance manoeuvres, etc.). The goal is to protect the satellites first and the mission as much as possible. In a project initiated by the CNES, ClearSy experiments the B Method to validate the FDIR strategies developed by Thales Alenia Space, of the inter satellite positioning and communication devices that will be used for the SIMBOL-X (2 satellite configuration) and the PEGASE (3 satellite configuration) missions and potentially for other missions afterward. These radio frequency metrology sensor devices provide satellite positioning and inter satellite communication in formation flying. This article presents the results of this experience.

  10. Going Global? U.S. Government Policy and the Defense Aerospace Industry

    DTIC Science & Technology

    2002-01-01

    officials who provided the information and insights used in this report. In addition, we are especially grateful for the many constructive comments and...variable CALCM Conventional Air-Launched Cruise Missile CASA Construcciones Aeronauticas SA CCL Commerce Control List CEA Council of Economic Advisers... Construcciones Aeronauticas SA (CASA)—also owns a 46.5 percent share in Dassault Aviation and is forming a 50-50 joint venture with Alenia Aeronautica

  11. Space-to-Ground: Space Spinners:11/03/2017

    NASA Image and Video Library

    2017-11-02

    The crew spent this week enabling long term missions and long distance learning...and how long would a fidget spinner spin in space? Space to Ground is your weekly update on what's happening aboard the International Space Station.

  12. STEREO Space Weather and the Space Weather Beacon

    NASA Technical Reports Server (NTRS)

    Biesecker, D. A.; Webb, D F.; SaintCyr, O. C.

    2007-01-01

    The Solar Terrestrial Relations Observatory (STEREO) is first and foremost a solar and interplanetary research mission, with one of the natural applications being in the area of space weather. The obvious potential for space weather applications is so great that NOAA has worked to incorporate the real-time data into their forecast center as much as possible. A subset of the STEREO data will be continuously downlinked in a real-time broadcast mode, called the Space Weather Beacon. Within the research community there has been considerable interest in conducting space weather related research with STEREO. Some of this research is geared towards making an immediate impact while other work is still very much in the research domain. There are many areas where STEREO might contribute and we cannot predict where all the successes will come. Here we discuss how STEREO will contribute to space weather and many of the specific research projects proposed to address STEREO space weather issues. We also discuss some specific uses of the STEREO data in the NOAA Space Environment Center.

  13. The Space House TM : Space Technologies in Architectural Design

    NASA Astrophysics Data System (ADS)

    Gampe, F.; Raitt, D.

    2002-01-01

    The word "space" has always been associated with and had a profound impact upon architectural design. Until relatively recently, however, the term has been used in a different sense to that understood by the aerospace community - for them, space was less abstract, more concrete and used in the context of space flight and space exploration, rather than, say, an empty area or space requiring to be filled by furniture. However, the two senses of the word space have now converged to some extent. Interior designers and architects have been involved in designing the interior of Skylab, the structure of the International Space Station, and futuristic space hotels. Today, architects are designing, and builders are building, houses, offices and other structures which incorporate a plethora of new technologies, materials and production processes in an effort not only to introduce innovative and adventurous ideas but also in an attempt to address environmental and social issues. Foremost among these new technologies and materials being considered today are those that have been developed for and by the space industry. This paper examines some of these space technologies, such as energy efficient solar cells, durable plastics, air and water filtration techniques, which have been adapted to both provide power while reducing energy consumption, conserve resources and so on. Several of these technologies have now been employed by the European Space Agency to develop a Space House TM - the first of its kind, which will be deployed not so much on planets like Mars, but rather here on Earth. The Space House TM, which exhibits many innovative features such as high strength light-weight carbon composites, active noise-damped, (glass and plastic) windows, low-cost solar arrays and latent heat storage, air and water purification systems will be described.

  14. Supervised space robots are needed in space exploration

    NASA Technical Reports Server (NTRS)

    Erickson, Jon D.

    1994-01-01

    High level systems engineering models were developed to simulate and analyze the types, numbers, and roles of intelligent systems, including supervised autonomous robots, which will be required to support human space exploration. Conventional and intelligent systems were compared for two missions: (1) a 20-year option 5A space exploration; and (2) the First Lunar Outpost (FLO). These studies indicate that use of supervised intelligent systems on planet surfaces will 'enable' human space exploration. The author points out that space robotics can be considered a form of the emerging technology of field robotics and solutions to many space applications will apply to problems relative to operating in Earth-based hazardous environments.

  15. 46 CFR 154.300 - Segregation of hold spaces from other spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Segregation of hold spaces from other spaces. 154.300... Equipment Ship Arrangements § 154.300 Segregation of hold spaces from other spaces. Hold spaces must be segregated from machinery and boiler spaces, accommodation, service and control spaces, chain lockers...

  16. 46 CFR 154.300 - Segregation of hold spaces from other spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Segregation of hold spaces from other spaces. 154.300... Equipment Ship Arrangements § 154.300 Segregation of hold spaces from other spaces. Hold spaces must be segregated from machinery and boiler spaces, accommodation, service and control spaces, chain lockers...

  17. 46 CFR 154.300 - Segregation of hold spaces from other spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Segregation of hold spaces from other spaces. 154.300... Equipment Ship Arrangements § 154.300 Segregation of hold spaces from other spaces. Hold spaces must be segregated from machinery and boiler spaces, accommodation, service and control spaces, chain lockers...

  18. 46 CFR 154.300 - Segregation of hold spaces from other spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Segregation of hold spaces from other spaces. 154.300... Equipment Ship Arrangements § 154.300 Segregation of hold spaces from other spaces. Hold spaces must be segregated from machinery and boiler spaces, accommodation, service and control spaces, chain lockers...

  19. 46 CFR 154.300 - Segregation of hold spaces from other spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Segregation of hold spaces from other spaces. 154.300... Equipment Ship Arrangements § 154.300 Segregation of hold spaces from other spaces. Hold spaces must be segregated from machinery and boiler spaces, accommodation, service and control spaces, chain lockers...

  20. Toward large space systems. [Space Construction Base development from shuttles

    NASA Technical Reports Server (NTRS)

    Daros, C. J.; Freitag, R. F.; Kline, R. L.

    1977-01-01

    The design of the Space Transportation System, consisting of the Space Shuttle, Spacelab, and upper stages, provides experience for the development of more advanced space systems. The next stage will involve space stations in low earth orbit with limited self-sufficiency, characterized by closed ecological environments, space-generated power, and perhaps the first use of space materials. The third phase would include manned geosynchronous space-station activity and a return to lunar operations. Easier access to space will encourage the use of more complex, maintenance-requiring satellites than those currently used. More advanced space systems could perform a wide range of public services such as electronic mail, personal and police communication, disaster control, earthquake detection/prediction, water availability indication, vehicle speed control, and burglar alarm/intrusion detection. Certain products, including integrated-circuit chips and some enzymes, can be processed to a higher degree of purity in space and might eventually be manufactured there. Hardware including dishes, booms, and planar surfaces necessary for advanced space systems and their development are discussed.

  1. Space transfer services as a precursor to space business parks

    NASA Astrophysics Data System (ADS)

    Smitherman, David V.

    1998-01-01

    Boeing Defense and Space Group and NASA, Marshall Space Flight Center conducted a study in 1996-1997 on the topic of commercial space business parks under the sponsorship of the former Office of Advanced Concepts at NASA Headquarters (Marshall 1997). The findings of this 7-month study are used to present possible strategies for near-term commercial developments in space. Related data from NASA studies on public space travel, and commercial space transportation are included along with the author's observations. It is hoped that this analysis will assist future entrepreneurs in the development of commercial space business parks. In conclusion, it appears that a market could soon become viable for commercial space transfer services, and that this market could form the infrastructure to grow the first commercial space business park.

  2. Role of Space Station: The how of space industrialization

    NASA Technical Reports Server (NTRS)

    Marshall, W. R.

    1984-01-01

    The roles of the Space Station, as an R&D facility, as part of an industrial system which support space industralization, and as a transportation node for space operations are considered. Industrial opportunities relative to these roles are identified and space station concepts responsive to these roles are discussed.

  3. Space Jobs.

    ERIC Educational Resources Information Center

    Peters, Herman J.; And Others

    This booklet, intended for children in grades K-3 as "vocational guidance in a space age," should be read to the child in early school years at an appropriate time. The booklet is divided into five chapters and a summary. Topics discussed concern space workers, space travelers, jobs in space, spaceships, and preparing for a career in space…

  4. Themed Space

    ERIC Educational Resources Information Center

    Lynch, Christopher O.

    2010-01-01

    This article presents a classroom activity that introduces students to the concept of themed space. Students learn to think critically about the spaces they encounter on a regular basis by analyzing existing spaces and by working in groups to create their own themed space. This exercise gives students the chance to see the relevance of critical…

  5. Introduction to the Space Transportation System. [space shuttle cost effectiveness

    NASA Technical Reports Server (NTRS)

    Wilson, R. G.

    1973-01-01

    A new space transportation concept which is consistent with the need for more cost effective space operations has been developed. The major element of the Space Transportation System (STS) is the Space Shuttle. The rest of the system consists of a propulsive stage which can be carried within the space shuttle to obtain higher energy orbits. The final form of this propulsion stage will be called the Space Tug. A third important element, which is not actually a part of the STS since it has no propulsive capacity, is the Space Laboratory. The major element of the Space Shuttle is an aircraft-like orbiter which contains the crew, the cargo, and the liquid rocket engines in the rear.

  6. Space Station

    NASA Image and Video Library

    1972-01-01

    This is an artist's concept of a modular space station. In 1970 the Marshall Space Flight Center arnounced the completion of a study concerning a modular space station that could be launched by the planned-for reusable Space Shuttle. The study envisioned a space station composed of cylindrical sections 14 feet in diameter and of varying lengths joined to form any one of a number of possible shapes. The sections were restricted to 14 feet in diameter and 58 feet in length to be consistent with a shuttle cargo bay size of 15 by 60 feet. Center officials said that the first elements of the space station could be in orbit by about 1978 and could be manned by three or six men. This would be an interim space station with sections that could be added later to form a full 12-man station by the early 1980s.

  7. Space Resources

    NASA Technical Reports Server (NTRS)

    McKay, Mary Fae (Editor); McKay, David S. (Editor); Duke, Michael S. (Editor)

    1992-01-01

    Space resources must be used to support life on the Moon and exploration of Mars. Just as the pioneers applied the tools they brought with them to resources they found along the way rather than trying to haul all their needs over a long supply line, so too must space travelers apply their high technology tools to local resources. The pioneers refilled their water barrels at each river they forded; moonbase inhabitants may use chemical reactors to combine hydrogen brought from Earth with oxygen found in lunar soil to make their water. The pioneers sought temporary shelter under trees or in the lee of a cliff and built sod houses as their first homes on the new land; settlers of the Moon may seek out lava tubes for their shelter or cover space station modules with lunar regolith for radiation protection. The pioneers moved further west from their first settlements, using wagons they had built from local wood and pack animals they had raised; space explorers may use propellant made at a lunar base to take them on to Mars. The concept for this report was developed at a NASA-sponsored summer study in 1984. The program was held on the Scripps campus of the University of California at San Diego (UCSD), under the auspices of the American Society for Engineering Education (ASEE). It was jointly managed under the California Space Inst. and the NASA Johnson Space Center, under the direction of the Office of Aeronautics and Space Technology (OAST) at NASA Headquarters. The study participants (listed in the addendum) included a group of 18 university teachers and researchers (faculty fellows) who were present for the entire 10-week period and a larger group of attendees from universities, Government, and industry who came for a series of four 1-week workshops. The organization of this report follows that of the summer study. Space Resources consists of a brief overview and four detailed technical volumes: (1) Scenarios; (2) Energy, Power, and Transport; (3) Materials; (4

  8. Recent Applications of Space Weather Research to NASA Space Missions

    NASA Technical Reports Server (NTRS)

    Willis, Emily M.; Howard, James W., Jr.; Miller, J. Scott; Minow, Joseph I.; NeergardParker, L.; Suggs, Robert M.

    2013-01-01

    Marshall Space Flight Center s Space Environments Team is committed to applying the latest research in space weather to NASA programs. We analyze data from an extensive set of space weather satellites in order to define the space environments for some of NASA s highest profile programs. Our goal is to ensure that spacecraft are designed to be successful in all environments encountered during their missions. We also collaborate with universities, industry, and other federal agencies to provide analysis of anomalies and operational impacts to current missions. This presentation is a summary of some of our most recent applications of space weather data, including the definition of the space environments for the initial phases of the Space Launch System (SLS), acquisition of International Space Station (ISS) frame potential variations during geomagnetic storms, and Nascap-2K charging analyses.

  9. Space Station

    NASA Image and Video Library

    1991-01-01

    This artist's concept depicts the Space Station Freedom as it would look orbiting the Earth, illustrated by Marshall Space Flight Center artist, Tom Buzbee. Scheduled to be completed in late 1999, this smaller configuration of the Space Station featured a horizontal truss structure that supported U.S., European, and Japanese Laboratory Modules; the U.S. Habitation Module; and three sets of solar arrays. The Space Station Freedom was an international, permanently marned, orbiting base to be assembled in orbit by a series of Space Shuttle missions that were to begin in the mid-1990's.

  10. Space Station

    NASA Image and Video Library

    1991-01-01

    This artist's concept depicts the Space Station Freedom as it would look orbiting the Earth; illustrated by Marshall Space Flight Center artist, Tom Buzbee. Scheduled to be completed in late 1999, this smaller configuration of the Space Station features a horizontal truss structure that supported U.S., European, and Japanese Laboratory Modules; the U.S. Habitation Module; and three sets of solar arrays. The Space Station Freedom was an international, permanently marned, orbiting base to be assembled in orbit by a series of Space Shuttle missions that were to begin in the mid-1990's.

  11. Space Station

    NASA Image and Video Library

    1982-01-01

    McDornel Douglas performed an Evolutionary Space Platform Concept Study for the Marshall Space Flight Center in the early 1980's. The 10-month study was designed to define, evaluate, and compare approaches and concepts for evolving unmanned and manned capability platforms beyond the then current space platform concepts to an evolutionary goal of establishing a permanent-manned presence in space.

  12. Space Science

    NASA Image and Video Library

    2003-04-09

    The Eastman-Kodak mirror assembly is being tested for the James Webb Space Telescope (JWST) project at the X-Ray Calibration Facility at Marshall Space Flight Center (MSFC). In this photo, an MSFC employee is inspecting one of many segments of the mirror assembly for flaws. MSFC is supporting Goddard Space Flight Center (GSFC) in developing the JWST by taking numerous measurements to predict its future performance. The tests are conducted in a vacuum chamber cooled to approximate the super cold temperatures found in space. During its 27 years of operation, the facility has performed testing in support of a wide array of projects, including the Hubble Space Telescope (HST), Solar A, Chandra technology development, Chandra High Resolution Mirror Assembly and science instruments, Constellation X-Ray Mission, and Solar X-Ray Imager, currently operating on a Geostationary Operational Environment Satellite. The JWST is NASA's next generation space telescope, a successor to the Hubble Space Telescope, named in honor of NASA's second administrator, James E. Webb. It is scheduled for launch in 2010 aboard an expendable launch vehicle. It will take about 3 months for the spacecraft to reach its destination, an orbit of 940,000 miles in space.

  13. Space Science

    NASA Image and Video Library

    2002-01-01

    Pictured is the chosen artist's rendering of NASA's next generation space telescope, a successor to the Hubble Space Telescope, was named the James Webb Space Telescope (JWST) in honor of NASA's second administrator, James E. Webb. To further our understanding of the way our present universe formed following the the big bang, NASA is developing the JWST to observe the first stars and galaxies in the universe. This grand effort will help to answer the following fundamental questions: How galaxies form and evolve, how stars and planetary systems form and interact, how the universe builds up its present elemental/chemical composition, and what dark matter is. To see into the depths of space, the JWST is currently plarning to carry instruments that are sensitive to the infrared wavelengths of the electromagnetic spectrum. The new telescope will carry a near-infrared camera, a multi-object spectrometer, and a mid-infrared camera/spectrometer. The JWST is scheduled for launch in 2010 aboard an expendable launch vehicle. It will take about 3 months for the spacecraft to reach its destination, an orbit of 940,000 miles in space. Marshall Space Flight Center (MSFC) is supporting Goddard Space Flight Center (GSFC) in developing the JWST by creating an ultra-lightweight mirror for the telescope at MSFC's Space Optics Manufacturing Technology Center. GSFC, Greenbelt, Maryland, manages the JWST, and TRW will design and fabricate the observatory's primary mirror and spacecraft. The program has a number of industry, academic, and government partners, as well as the European Space Agency and the Canadian Space Agency. (Image: Courtesy of TRW)

  14. Kent in space: Cosmic dust to space debris

    NASA Astrophysics Data System (ADS)

    McDonnell, J. A. M.

    1994-10-01

    The dusty heritage of the University of Kent's Space Group commenced at Jodrell Bank, Cheshire, U.K., the home of the largest steerable radio telescope. While Professor Bernard Lovell's 250 ft. diameter telescope was used to command the U.S. deep space Pioneer spacecraft, Professor Tony McDonnell, as a research student in 1960, was developing a space dust detector for the US-UK Ariel program. It was successful. With a Ph.D. safely under the belt, it seemed an inevitable step to go for the next higher degree, a B.T.A.] Two years with NASA at Goddard Space Flight Center, Greenbelt, provided excellent qualifications for such a graduation ('Been to America'). A spirited return to the University of Kent at Canterbury followed, to one of the green field UK University sites springing from the Robbins Report on Higher Education. Swimming against the current of the brain drain, and taking a very considerable reduction in salary, it was with some disappointment that he found that the UK Premier Harold Wilson's 'white-hot technological revolution' never quite seemed to materialize in terms of research funding] Research expertise, centered initially on cosmic dust, enlarged to encompass planetology during the Apollo program, and rightly acquired international acclaim, notching up a history of space missions over 25 years. The group now comprises 38 people supported by four sources: the government's Research Councils, the University, the Space Agencies and Industry. This paper describes the thrust of the group's Research Plan in Space Science and Planetology; not so much based on existing international space missions, but more helping to shape the direction and selection of space missions ahead.

  15. Space Radar Image of San Rafael Glacier, Chile

    NASA Technical Reports Server (NTRS)

    1994-01-01

    means. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) are part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm), and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes that are caused by nature and those changes that are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations and data processing of X-SAR.

  16. Space Shuttle Project

    NASA Image and Video Library

    1981-01-01

    A Space Shuttle Main Engine undergoes test-firing at the National Space Technology Laboratories (now the Sternis Space Center) in Mississippi. The Marshall Space Flight Center had management responsibility of Space Shuttle propulsion elements, including the Main Engines.

  17. Space transfer vehicles and space basing

    NASA Technical Reports Server (NTRS)

    Kelley, Joe

    1991-01-01

    The topics covered include the following: (1) space basing agenda; (2) mission scenario 4E-5B, crew and Lunar Excursion Vehicle (LEV) delivery; (3) final concept candidate, crew concept 4E-2B; (4) space transfer vehicle (STV) concept 4E-5B; (5) configuration summary for crew concept 4E-5B; (6) configuration definition for crew concept 4E-5B; (7) low earth orbit node assembly and checkout operations; (8) criteria for operation objectives; (9) LTV and STV main engines; (10) Space Station Freedom impacts; (11) aerobrakes; and (12) on orbit operations. This document is presented in viewgraph form.

  18. The politics of space - Who owns what? Earth law for space

    NASA Technical Reports Server (NTRS)

    Hosenball, S. N.

    1983-01-01

    Topics of concern in developing space law, i.e., international disagreements, the present status of space law, and requirements for future space activities, are discussed. Factors inhibiting agreements include governments that wish to control specific regions of GEO, the refusal of several countries to permit international DBS television broadcasts over their boundaries, the possibility that weapons may be placed in space, and the lack of international laws governing humans and industries in space. It is noted that any state entering an international agreement has relinquished some of its sovereignty. The Outer Space Treaty has removed celestial bodies from claims of national appropriation. States retain sovereignty over their citizens who travel in space, a problematical concept once internationally-manned settlements in space or on the moon are established. It is recommended that space law develop mainly in reaction to the implementation of new space capabilities in order to avoid hindering space activities.

  19. Bioprocessing in Space

    NASA Technical Reports Server (NTRS)

    Morrison, D. R. (Compiler)

    1977-01-01

    Proceedings are presented of the 1976 NASA Colloquium on bioprocessing in space. The program included general sessions and formal presentations on the following topics: NASA's Space Shuttle, Spacelab, and space-processing programs; the known unusual behavior of materials in space; space-processing experiment results; cell biology, gravity sensors in cells, space electrophoresis of living cells, new approaches to biosynthesis of biologicals from cell culture in space, and zero-g fermentation concepts; and upcoming flight opportunities and industrial application planning studies already underway.

  20. X-37 Space Vehicle: Starting a New Age in Space Control?

    NASA Astrophysics Data System (ADS)

    Jameson, Austin D.

    2001-04-01

    The U.S. can no longer rely on the "space as a sanctuary" policy, initiated by the Eisenhower Administration, to continue to exploit space for economic and military advantages. The X-37 space maneuvering vehicle demonstrator is an opportunity for the U.S. to begin to develop methods to more strategically defend and control the space environment. The X-37 is the first of NASA's x-vehicles intended to demonstrate leading edge technologies in orbit. This prototype space maneuvering vehicle co-sponsored by NASA, the Air Force and the Boeing Company is being designed to achieve the goals of reducing the cost to access space from 10,000 to 1000 per pound while improving reliability. The current project is funded to build an autonomous space maneuvering vehicle with on-orbit testing scheduled in 2002, The X-37 is an unmanned space plane that can carry a payload, and can conduct missions while orbiting, loitering, or rendezvousing with objects in space and then autonomously return to earth by landing on a conventional runway. If the Air Force develops the X-37 to its full potential the system could strategically support each of the Air Force's four space mission areas of force enhancement, space support, space control, and force application. Transition of the space maneuvering demonstrator into a space control platform will require a change in national policy. Capitalizing on the lessons from NASA's x-vehicles and partnering with the commercial sector can potentially save costs and shorten the development of a viable space platform that could be used for space control. Strategic development and funded evolution of the X-37 space vehicle is an immediate, tangible step the United States can take to actively pursue a more aggressive program to respond to threats in the space arena.

  1. Space-to-Ground: Genes in Space: 04/13/2018

    NASA Image and Video Library

    2018-04-12

    Can the Polymerase Chain Reaction be used to study DNA alterations on the International Space Station? NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  2. Space-based detection of space debris by photometric and polarimetric characteristics

    NASA Astrophysics Data System (ADS)

    Pang, Shuxia; Wang, Hu; Lu, Xiaoyun; Shen, Yang; Pan, Yue

    2017-10-01

    The number of space debris has been increasing dramatically in the last few years, and is expected to increase as much in the future. As the orbital debris population grows, the risk of collision between debris and other orbital objects also grows. Therefore, space debris detection is a particularly important task for space environment security, and then supports for space debris modeling, protection and mitigation. This paper aims to review space debris detection systematically and completely. Firstly, the research status of space debris detection at home and abroad is presented. Then, three kinds of optical observation methods of space debris are summarized. Finally, we propose a space-based detection scheme for space debris by photometric and polarimetric characteristics.

  3. Nutrition in space

    NASA Technical Reports Server (NTRS)

    Smith, S. M.; Davis-Street, J.; Rice, B. L.; Lane, H. W.

    1997-01-01

    The authors review studies conducted to define nutritional requirements for astronauts during space flight and to assess nutrition before, during, and after space flight. Topics include space food systems, research and limitations on spacecraft, physiological adaptation to weightlessness, energy requirements, dietary intake during space flight, bone demineralization, gastrointestinal function, blood volume, and nutrition requirements for space flight. Benefits of space-related nutrition research are highlighted.

  4. Space Station

    NASA Image and Video Library

    1969-01-01

    This picture illustrates a concept of a 33-Foot-Diameter Space Station Leading to a Space Base. In-house work of the Marshall Space Flight Center, as well as a Phase B contract with the McDornel Douglas Astronautics Company, resulted in a preliminary design for a space station in 1969 and l970. The Marshall-McDonnel Douglas approach envisioned the use of two common modules as the core configuration of a 12-man space station. Each common module was 33 feet in diameter and 40 feet in length and provided the building blocks, not only for the space station, but also for a 50-man space base. Coupled together, the two modules would form a four-deck facility: two decks for laboratories and two decks for operations and living quarters. Zero-gravity would be the normal mode of operation, although the station would have an artificial gravity capability. This general-purpose orbital facility was to provide wide-ranging research capabilities. The design of the facility was driven by the need to accommodate a broad spectrum of activities in support of astronomy, astrophysics, aerospace medicine, biology, materials processing, space physics, and space manufacturing. To serve the needs of Earth observations, the station was to be placed in a 242-nautical-mile orbit at a 55-degree inclination. An Intermediate-21 vehicle (comprised of Saturn S-IC and S-II stages) would have launched the station in 1977.

  5. Space Science

    NASA Image and Video Library

    2003-04-09

    The Eastman-Kodak mirror assembly is being tested for the James Webb Space Telescope (JWST) project at the X-Ray Calibration Facility at Marshall Space Flight Center (MSFC). In this photo, one of many segments of the mirror assembly is being set up inside the 24-ft vacuum chamber where it will undergo x-ray calibration tests. MSFC is supporting Goddard Space Flight Center (GSFC) in developing the JWST by taking numerous measurements to predict its future performance. The tests are conducted in a vacuum chamber cooled to approximate the super cold temperatures found in space. During its 27 years of operation, the facility has performed testing in support of a wide array of projects, including the Hubble Space Telescope (HST), Solar A, Chandra technology development, Chandra High Resolution Mirror Assembly and science instruments, Constellation X-Ray Mission, and Solar X-Ray Imager, currently operating on a Geostationary Operational Environment Satellite. The JWST is NASA's next generation space telescope, a successor to the Hubble Space Telescope, named in honor of NASA's second administrator, James E. Webb. It is scheduled for launch in 2010 aboard an expendable launch vehicle. It will take about 3 months for the spacecraft to reach its destination, an orbit of 940,000 miles in space.

  6. Eighteenth Space Simulation Conference: Space Mission Success Through Testing

    NASA Technical Reports Server (NTRS)

    Stecher, Joseph L., III (Compiler)

    1994-01-01

    The Institute of Environmental Sciences' Eighteenth Space Simulation Conference, 'Space Mission Success Through Testing' provided participants with a forum to acquire and exchange information on the state-of-the-art in space simulation, test technology, atomic oxygen, program/system testing, dynamics testing, contamination, and materials. The papers presented at this conference and the resulting discussions carried out the conference theme 'Space Mission Success Through Testing.'

  7. Kennedy Space Center, Space Shuttle Processing, and International Space Station Program Overview

    NASA Technical Reports Server (NTRS)

    Higginbotham, Scott Alan

    2011-01-01

    Topics include: International Space Station assembly sequence; Electrical power substation; Thermal control substation; Guidance, navigation and control; Command data and handling; Robotics; Human and robotic integration; Additional modes of re-supply; NASA and International partner control centers; Space Shuttle ground operations.

  8. The NORSTAR Program: Space shuttle to space station

    NASA Technical Reports Server (NTRS)

    Fortunato, Ronald C.

    1988-01-01

    The development of G-325, the first high school student-run space flight project, is updated. An overview is presented of a new international program, which involves students from space station countries who will be utilizing Get Away Special technology to cooperatively develop a prototype experiment for controlling a space station research module environment.

  9. Space Science Curricula

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Johnson High School, Huntsville, Alabama started an international magnet program in 1987. One of the courses in the curriculum was in space science. They appealed to Marshall Space Flight Center (MSFC) when they couldn't find a suitable textbook, nor locate other classes in space science to provide a guideline. MSFC agreed to help and placed the school under an official 'Adopt-A-School' program. MSFC's chief scientist and others at the space center helped prepare a very comprehensive space science program. Examples of the subjects covered include problems of space travel, materials processing in space, technology utilization, robotics, space colonization, etc. MSFC followed up by working with Johnson High to determine if the curriculum is generally usable and workable. If it is, MSFC may make it available to other schools. MSFC not only developed the space science curriculum; they continue to support the program by sponsoring hands- on activities and tours of space research facilities.

  10. Space Resources and Space Settlements

    NASA Technical Reports Server (NTRS)

    Billingham, J. (Editor); Gilbreath, W. P. (Editor); Oleary, B. (Editor); Gosset, B. (Editor)

    1979-01-01

    The technical papers from the five tasks groups that took part in the 1977 Ames Summer Study on Space Settlements and Industrialization Using Nonterrestrial Materials are presented. The papers are presented under the following general topics: (1) research needs for regenerative life-support systems; (2) habitat design; (3) dynamics and design of electromagnetic mass drivers; (4) asteroids as resources for space manufacturing; and (5) processing of nonterrestrial materials.

  11. Space Station

    NASA Image and Video Library

    1971-01-01

    This is an artist's concept of the Research and Applications Modules (RAM). Evolutionary growth was an important consideration in space station plarning, and another project was undertaken in 1971 to facilitate such growth. The RAM study, conducted through a Marshall Space Flight Center contract with General Dynamics Convair Aerospace, resulted in the conceptualization of a series of RAM payload carrier-sortie laboratories, pallets, free-flyers, and payload and support modules. The study considered two basic manned systems. The first would use RAM hardware for sortie mission, where laboratories were carried into space and remained attached to the Shuttle for operational periods up to 7 days. The second envisioned a modular space station capability that could be evolved by mating RAM modules to the space station core configuration. The RAM hardware was to be built by Europeans, thus fostering international participation in the space program.

  12. Synopsis of the Review on Space Weather in Latin America: Space Science, Research Networks and Space Weather Center

    NASA Astrophysics Data System (ADS)

    Denardini, Clezio Marcos; Dasso, Sergio; Gonzalez-Esparza, Americo

    2016-07-01

    The present work is a synopsis of a three-part review on space weather in Latin America. The first paper (part 1) comprises the evolution of several Latin American institutions investing in space science since the 1960's, focusing on the solar-terrestrial interactions, which today is commonly called space weather. Despite recognizing advances in space research in all of Latin America, this part 1 is restricted to the development observed in three countries in particular (Argentina, Brazil and Mexico), due to the fact that these countries have recently developed operational centers for monitoring space weather. The review starts with a brief summary of the first groups to start working with space science in Latin America. This first part of the review closes with the current status and the research interests of these groups, which are described in relation to the most significant works and challenges of the next decade in order to aid in the solving of space weather open issues. The second paper (part 2) comprises a summary of scientific challenges in space weather research that are considered to be open scientific questions and how they are being addressed in terms of instrumentation by the international community, including the Latin American groups. We also provide an inventory of the networks and collaborations being constructed in Latin America, including details on the data processing, capabilities and a basic description of the resulting variables. These instrumental networks currently used for space science research are gradually being incorporated into the space weather monitoring data pipelines as their data provides key variables for monitoring and forecasting space weather, which allow these centers to monitor space weather and issue warnings and alerts. The third paper (part 3) presents the decision process for the spinning off of space weather prediction centers from space science groups with our interpretation of the reason/opportunities that leads to

  13. 33-Foot-Diameter Space Station Leading to Space Base

    NASA Technical Reports Server (NTRS)

    1969-01-01

    This picture illustrates a concept of a 33-Foot-Diameter Space Station Leading to a Space Base. In-house work of the Marshall Space Flight Center, as well as a Phase B contract with the McDornel Douglas Astronautics Company, resulted in a preliminary design for a space station in 1969 and l970. The Marshall-McDonnel Douglas approach envisioned the use of two common modules as the core configuration of a 12-man space station. Each common module was 33 feet in diameter and 40 feet in length and provided the building blocks, not only for the space station, but also for a 50-man space base. Coupled together, the two modules would form a four-deck facility: two decks for laboratories and two decks for operations and living quarters. Zero-gravity would be the normal mode of operation, although the station would have an artificial gravity capability. This general-purpose orbital facility was to provide wide-ranging research capabilities. The design of the facility was driven by the need to accommodate a broad spectrum of activities in support of astronomy, astrophysics, aerospace medicine, biology, materials processing, space physics, and space manufacturing. To serve the needs of Earth observations, the station was to be placed in a 242-nautical-mile orbit at a 55-degree inclination. An Intermediate-21 vehicle (comprised of Saturn S-IC and S-II stages) would have launched the station in 1977.

  14. Space Shuttle Program

    NASA Image and Video Library

    2012-09-12

    Ronnie Rigney (r), chief of the Propulsion Test Office in the Project Directorate at Stennis Space Center, stands with agency colleagues to receive the prestigious American Institute of Aeronautics and Astronautics George M. Low Space Transportation Award on Sept. 12. Rigney accepted the award on behalf of the NASA and contractor team at Stennis for their support of the Space Shuttle Program that ended last summer. From 1975 to 2009, Stennis Space Center tested every main engine used to power 135 space shuttle missions. Stennis continued to provide flight support services through the end of the Space Shuttle Program in July 2011. The center also supported transition and retirement of shuttle hardware and assets through September 2012. The 2012 award was presented to the space shuttle team 'for excellence in the conception, development, test, operation and retirement of the world's first and only reusable space transportation system.' Joining Rigney for the award ceremony at the 2012 AIAA Conference in Pasadena, Calif., were: (l to r) Allison Zuniga, NASA Headquarters; Michael Griffin, former NASA administrator; Don Noah, Johnson Space Center in Houston; Steve Cash, Marshall Space Flight Center in Huntsville, Ala.; and Pete Nickolenko, Kennedy Space Center in Florida.

  15. Space educators' handbook

    NASA Technical Reports Server (NTRS)

    Woodfill, Jerry

    1992-01-01

    The Space Educators' Handbook is a collection of space exploration information available on Hypercard as a space education reference book. Ranging from early dreams of space ships to current manned missions, the more than four thousand cards include entries of statistics, historical facts and anecdotes, technical articles, accounts of NASA missions from Mercury through the space shuttle, biographical information on women and men who have contributed to space exploration, scientific facts, and various other space-related data. The means of presenting the data range from cartoons and drawings to lists and narratives, some briefly quoted and some reproduced in full.

  16. The Space Station as a Construction Base for Large Space Structures

    NASA Technical Reports Server (NTRS)

    Gates, R. M.

    1985-01-01

    The feasibility of using the Space Station as a construction site for large space structures is examined. An overview is presented of the results of a program entitled Definition of Technology Development Missions (TDM's) for Early Space Stations - Large Space Structures. The definition of LSS technology development missions must be responsive to the needs of future space missions which require large space structures. Long range plans for space were assembled by reviewing Space System Technology Models (SSTM) and other published sources. Those missions which will use large space structures were reviewed to determine the objectives which must be demonstrated by technology development missions. The three TDM's defined during this study are: (1) a construction storage/hangar facility; (2) a passive microwave radiometer; and (3) a precision optical system.

  17. Space tourism risks: A space insurance perspective

    NASA Astrophysics Data System (ADS)

    Bensoussan, Denis

    2010-06-01

    Space transportation is inherently risky to humans, whether they are trained astronauts or paying tourists, given that spaceflight is still in its relative infancy. However, this is easy to forget when subjected to the hype often associated with space tourism and the ventures seeking to enter that market. The development of commercial spaceflight constitutes a challenge as much as a great opportunity to the insurance industry as new risks emerge and standards, policies and procedures to minimise/mitigate and cover them still to be engineered. Therefore the creation of a viable and affordable insurance regime for future space tourists is a critical step in the development of a real space tourism market to address burning risk management issues that may otherwise ultimately hamper this nascent industry before it has a chance to prove itself.

  18. Space Station

    NASA Image and Video Library

    1970-01-01

    This is an illustration of the Space Base concept. In-house work of the Marshall Space Flight Center, as well as a Phase B contract with the McDornel Douglas Astronautics Company, resulted in a preliminary design for a space station in 1969 and l970. The Marshall-McDonnel Douglas approach envisioned the use of two common modules as the core configuration of a 12-man space station. Each common module was 33 feet in diameter and 40 feet in length and provided the building blocks, not only for the space station, but also for a 50-man space base. Coupled together, the two modules would form a four-deck facility: two decks for laboratories and two decks for operations and living quarters. Zero-gravity would be the normal mode of operation, although the station would have an artificial-gravity capability. This general-purpose orbital facility was to provide wide-ranging research capabilities. The design of the facility was driven by the need to accommodate a broad spectrum of activities in support of astronomy, astrophysics, aerospace medicine, biology, materials processing, space physics, and space manufacturing. To serve the needs of Earth observations, the station was to be placed in a 242-nautical-mile orbit at a 55-degree inclination. An Intermediate-21 vehicle (comprised of Saturn S-IC and S-II stages) would have launched the station in 1977.

  19. Conception d'instrument pour une mission d'observation haute resolution et grand champ

    NASA Astrophysics Data System (ADS)

    Fayret, Jean-Philippe; Gaudin-Delrieu, Catherine; Lamard, Jean-Luc; Devilliers, Christophe; Costes, Vincent

    2017-11-01

    The future Earth observation missions aim at delivering images with a high resolution and a large field of view. The PLEIADES mission, coming after the SPOT satellites, lead to enhance the resolution to submetric values with a swath over 20km. Panchromatic and multispectral images will be proposed. Starting with the mission requirements elaborated by the CNES, Alcatel Space Industries has conducted a study to identify the instrument concepts most suited to comply with these performance. In addition, to minimise the development costs, a mini satellite approach has been selected, leading to a compact concept for the instrument design. During the study, various detection techniques and the associated detectors have been investigated from classical pushbroom to supermode acquisition modes. For each of these options, different optical lay-outs were proposed and evaluated with respect to performance as well as interfaces requirements. Optical performance, mechanical design constraints and manufacturing processes were taken into account to assess the performances of the various solutions. Eventually the most promising concept was selected and a preliminary design study performed. This concept, based on a Korsch optical scheme associated with TDI detectors, complies with the mission requirements and allows for a wide number of possibilities of accommodation with a minisatellite class platform.

  20. The COMPOSE Project

    NASA Astrophysics Data System (ADS)

    Balletta, P.; Biagini, M.; Gallinaro, G.; Vernucci, A.

    2003-07-01

    This paper provides an overview of the on-going project COMPOSE, an EC co-funded project aiming to define, specify and validate an innovative mobile-services scenario in support of travellers, and to demonstrate the effectiveness of the new proposed location-based value-added services. COMPOSE is supported by organisations belonging to numerous categories covering, as a whole, the entire value-chain of infomobility services provision to the final user. The project team comprises, in addition to the affiliations of the authors, also Teleatlas (NL), ARS T&TT (NL), Alcatel-Bell Space (B), Skysoft (P), Hitech Marketing (A) and MobileGis (IR). The paper describes the services that will be offered to users, encompassing both the pre-trip and the on-trip framework, presents the overall hybrid system architecture also including a via-satellite component based upon the Wideband-CDMA (W-CDMA) technique adopted in UMTS, discusses the access solutions envisaged for that component permitting multiple feeder-link stations to share the CDMA multiplex capacity by directly transmitting their codes to the satellite, and illustrates the results of some computer simulations intended to assess the performance of said access solutions, with regard to the effects of the inevitable up- link frequency errors and transponder non-linearity.

  1. Space Station

    NASA Image and Video Library

    1985-12-01

    Skylab's success proved that scientific experimentation in a low gravity environment was essential to scientific progress. A more permanent structure was needed to provide this space laboratory. President Ronald Reagan, on January 25, 1984, during his State of the Union address, claimed that the United States should exploit the new frontier of space, and directed NASA to build a permanent marned space station within a decade. The idea was that the space station would not only be used as a laboratory for the advancement of science and medicine, but would also provide a staging area for building a lunar base and manned expeditions to Mars and elsewhere in the solar system. President Reagan invited the international community to join with the United States in this endeavour. NASA and several countries moved forward with this concept. By December 1985, the first phase of the space station was well underway with the design concept for the crew compartments and laboratories. Pictured are two NASA astronauts, at Marshall Space Flight Center's (MSFC) Neutral Buoyancy Simulator (NBS), practicing construction techniques they later used to construct the space station after it was deployed.

  2. Space Station

    NASA Image and Video Library

    1981-12-01

    During 1980 and the first half of 1981, the Marshall Space Flight Center conducted studies concerned with a relatively low-cost, near-term, manned space platform to satisfy current user needs, yet capable of evolutionary growth to meet future needs. The Science and Application Manned Space Platform (SAMSP) studies were to serve as a test bed for developing scientific and operational capabilities required by later, more advanced manned platforms while accomplishing early science and operations. This concept illustrates a manned space platform.

  3. Comprehensive report of aeropropulsion, space propulsion, space power, and space science applications of the Lewis Research Center

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The research activities of the Lewis Research Center for 1988 are summarized. The projects included are within basic and applied technical disciplines essential to aeropropulsion, space propulsion, space power, and space science/applications. These disciplines are materials science and technology, structural mechanics, life prediction, internal computational fluid mechanics, heat transfer, instruments and controls, and space electronics.

  4. Hubble Space Telescope

    NASA Image and Video Library

    2017-12-08

    The Hubble Space Telescope in a picture snapped by a Servicing Mission 4 crewmember just after the Space Shuttle Atlantis captured Hubble with its robotic arm on May 13, 2009, beginning the mission to upgrade and repair the telescope. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute conducts Hubble science operations. Goddard is responsible for HST project management, including mission and science operations, servicing missions, and all associated development activities. To learn more about the Hubble Space Telescope go here: www.nasa.gov/mission_pages/hubble/main/index.html

  5. The Space Shuttle

    NASA Technical Reports Server (NTRS)

    Moffitt, William L.

    2003-01-01

    As missions have become increasingly more challenging over the years, the most adaptable and capable element of space shuttle operations has proven time and again to be human beings. Human space flight provides unique aspects of observation. interaction and intervention that can reduce risk and improve mission success. No other launch vehicle - in development or in operation today - can match the space shuttle's human space flight capabilities. Preserving U.S. leadership in human space flight requires a strategy to meet those challenges. The ongoing development of next generation vehicles, along with upgrades to the space shuttle, is the most effective means for assuring our access to space.

  6. Emerging US Space Launch, Trends and Space Solar Power

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar

    2015-01-01

    Reviews the state of the art of emerging US space launch and spacecraft. Reviews the NASA budget ascontext, while providing example scenarios. Connects what has been learned in space systems commercial partnershipsto a potential path for consideration by the space solar power community.

  7. Achievable space elevators for space transportation and starship acceleration

    NASA Technical Reports Server (NTRS)

    Pearson, Jerome

    1990-01-01

    Space elevator concepts for low-cost space launches are reviewed. Previous concepts suffered from requirements for ultra-high-strength materials, dynamically unstable systems, or from danger of collision with space debris. The use of magnetic grain streams solves these problems. Magnetic grain streams can support short space elevators for lifting payloads cheaply into Earth orbit, overcoming the material strength problem in building space elevators. Alternatively, the stream could support an international spaceport circling the Earth daily tens of miles above the equator, accessible to advanced aircraft. Mars could be equipped with a similar grain stream, using material from its moons Phobos and Deimos. Grain-stream arcs about the sun could be used for fast launches to the outer planets and for accelerating starships to near lightspeed for interstellar reconnaisance. Grain streams are essentially impervious to collisions, and could reduce the cost of space transportation by an order of magnitude.

  8. Space Situational Awareness in the Joint Space Operations Center

    NASA Astrophysics Data System (ADS)

    Wasson, M.

    2011-09-01

    Flight safety of orbiting resident space objects is critical to our national interest and defense. United States Strategic Command has assigned the responsibility for Space Situational Awareness (SSA) to its Joint Functional Component Command - Space (JFCC SPACE) at Vandenberg Air Force Base. This paper will describe current SSA imperatives, new developments in SSA tools and developments in Defensive Operations. Current SSA processes are being examined to capture, and possibly improve, tasking of SSN sensors and "new" space-based sensors, "common" conjunction assessment methodology, and SSA sharing due to the growth seen over the last two years. The stand-up of a Defensive Ops Branch will highlight the need for advanced analysis and collaboration across space, weather, intelligence, and cyber specialties. New developments in SSA tools will be a description of computing hardware/software upgrades planned as well as the use of User-Defined Operating Pictures and visualization applications.

  9. Software-Defined Radio for Space-to-Space Communications

    NASA Technical Reports Server (NTRS)

    Fisher, Ken; Jih, Cindy; Moore, Michael S.; Price, Jeremy C.; Abbott, Ben A.; Fritz, Justin A.

    2011-01-01

    A paper describes the Space- to-Space Communications System (SSCS) Software- Defined Radio (SDR) research project to determine the most appropriate method for creating flexible and reconfigurable radios to implement wireless communications channels for space vehicles so that fewer radios are required, and commonality in hardware and software architecture can be leveraged for future missions. The ability to reconfigure the SDR through software enables one radio platform to be reconfigured to interoperate with many different waveforms. This means a reduction in the number of physical radio platforms necessary to support a space mission s communication requirements, thus decreasing the total size, weight, and power needed for a mission.

  10. Space and energy. [space systems for energy generation, distribution and control

    NASA Technical Reports Server (NTRS)

    Bekey, I.

    1976-01-01

    Potential contributions of space to energy-related activities are discussed. Advanced concepts presented include worldwide energy distribution to substation-sized users using low-altitude space reflectors; powering large numbers of large aircraft worldwide using laser beams reflected from space mirror complexes; providing night illumination via sunlight-reflecting space mirrors; fine-scale power programming and monitoring in transmission networks by monitoring millions of network points from space; prevention of undetected hijacking of nuclear reactor fuels by space tracking of signals from tagging transmitters on all such materials; and disposal of nuclear power plant radioactive wastes in space.

  11. Space Station-based deep-space optical communication experiments

    NASA Technical Reports Server (NTRS)

    Chen, Chien-Chung; Schwartz, Jon A.

    1988-01-01

    A series of three experiments proposed for advanced optical deep-space communications is described. These proposed experiments would be carried out aboard the Space Station to test and evaluate the capability of optical instruments to conduct data communication and spacecraft navigation for deep-space missions. Techniques for effective data communication, precision spacecraft ranging, and accurate angular measurements will be developed and evaluated in a spaceborne environment.

  12. Space transportation, satellite services, and space platforms

    NASA Technical Reports Server (NTRS)

    Disher, J. H.

    1979-01-01

    The paper takes a preview of the progressive development of vehicles for space transportation, satellite services, and orbital platforms. A low-thrust upper stage of either the ion engine or chemical type will be developed to transport large spacecraft and space platforms to and from GEO. The multimission spacecraft, space telescope, and other scientific platforms will require orbital serves going beyond that provided by the Shuttle's remote manipulator system, and plans call for extravehicular activity tools, improved remote manipulators, and a remote manned work station (the cherry picker).

  13. An overview on the Space Weather in Latin America: from Space Research to Space Weather and its Forecast

    NASA Astrophysics Data System (ADS)

    De Nardin, C. M.; Gonzalez-Esparza, A.; Dasso, S.

    2015-12-01

    We present an overview on the Space Weather in Latin America, highlighting the main findings from our review the recent advances in the space science investigations in Latin America focusing in the solar-terrestrial interactions, modernly named space weather, which leaded to the creation of forecast centers. Despite recognizing advances in the space research over the whole Latin America, this review is restricted to the evolution observed in three countries (Argentina, Brazil and Mexico) only, due to the fact that these countries have recently developed operational center for monitoring the space weather. The work starts with briefly mentioning the first groups that started the space science in Latin America. The current status and research interest of such groups are then described together with the most referenced works and the challenges for the next decade to solve space weather puzzles. A small inventory of the networks and collaborations being built is also described. Finally, the decision process for spinning off the space weather prediction centers from the space science groups is reported with an interpretation of the reason/opportunities that lead to it. Lastly, the constraints for the progress in the space weather monitoring, research, and forecast are listed with recommendations to overcome them.

  14. 29 CFR 1915.76 - Access to cargo spaces and confined spaces.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Access to cargo spaces and confined spaces. 1915.76 Section..., Ladders and Other Working Surfaces § 1915.76 Access to cargo spaces and confined spaces. The provisions of... this section applies to ship repairing only. (a) Cargo spaces. (1) There shall be at least one safe and...

  15. 29 CFR 1915.76 - Access to cargo spaces and confined spaces.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Access to cargo spaces and confined spaces. 1915.76 Section..., Ladders and Other Working Surfaces § 1915.76 Access to cargo spaces and confined spaces. The provisions of... this section applies to ship repairing only. (a) Cargo spaces. (1) There shall be at least one safe and...

  16. 29 CFR 1915.76 - Access to cargo spaces and confined spaces.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Access to cargo spaces and confined spaces. 1915.76 Section..., Ladders and Other Working Surfaces § 1915.76 Access to cargo spaces and confined spaces. The provisions of... this section applies to ship repairing only. (a) Cargo spaces. (1) There shall be at least one safe and...

  17. 29 CFR 1915.76 - Access to cargo spaces and confined spaces.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Access to cargo spaces and confined spaces. 1915.76 Section..., Ladders and Other Working Surfaces § 1915.76 Access to cargo spaces and confined spaces. The provisions of... this section applies to ship repairing only. (a) Cargo spaces. (1) There shall be at least one safe and...

  18. 29 CFR 1915.76 - Access to cargo spaces and confined spaces.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Access to cargo spaces and confined spaces. 1915.76 Section..., Ladders and Other Working Surfaces § 1915.76 Access to cargo spaces and confined spaces. The provisions of... this section applies to ship repairing only. (a) Cargo spaces. (1) There shall be at least one safe and...

  19. Space-Data Routers: Enhancing Deep Space communications for scientific data transmission and exploitation from Mars through Space Internetworking

    NASA Astrophysics Data System (ADS)

    Sykioti, Olga; Daglis, Ioannis; Rontogiannis, Athanasios; Tsaoussidis, Vassilis; Diamantopoulos, Sotirios

    2014-05-01

    Dissemination and exploitation of data from Deep Space missions, such as planetary missions, face two major impediments: limited access capabilities due to narrow connectivity window via satellites (thus, resulting to confined scientific capacity) and lack of sufficient communication and dissemination mechanisms between deep space missions such the current missions to Mars, space data receiving centers, space-data collection centers and the end-user community. Although large quantities of data have to be transferred from deep space to the operation centers and then to the academic foundations and research centers, due to the aforementioned impediments more and more stored space data volumes remain unexploited, until they become obsolete or useless and are consequently removed. In the near future, these constraints on space and ground segment resources will rapidly increase due to the launch of new missions. The Space-Data Routers (SDR) project aims into boosting collaboration and competitiveness between the European Space Agency, the European Space Industry and the European Academic Institutions towards meeting these new challenges through Space Internetworking. Space internetworking gradually replaces or assists traditional telecommunication protocols. Future deep space operations, such as those to Mars, are scheduled to be more dynamic and flexible; many of the procedures, which are now human-operated, will become automated, interoperable and collaborative. As a consequence, space internetworking will bring a revolution in space communications. For this purpose, one of the main scientific objectives of the project is, through the examination of a specific scenario, the enhanced transmission and dissemination of Deep Space data from Mars, through unified communication channels. Specifically, the scenario involves enhanced data transmission acquired by the OMEGA sensor on-board ESA's Mars Express satellite. We consider two separate issues considering the

  20. Space shuttle. [a transportation system for low orbit space missions

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The space shuttle is discussed as a reusable space vehicle operated as a transportation system for space missions in low earth orbit. Space shuttle studies and operational capabilities are reported for potential missions indicating that about 38 percent are likely to be spacelab missions with the remainder being the replacement, revisit, or retrieval of automated spacecraft.

  1. "Lomonosov" Satellite—Space Observatory to Study Extreme Phenomena in Space

    NASA Astrophysics Data System (ADS)

    Sadovnichii, V. A.; Panasyuk, M. I.; Amelyushkin, A. M.; Bogomolov, V. V.; Benghin, V. V.; Garipov, G. K.; Kalegaev, V. V.; Klimov, P. A.; Khrenov, B. A.; Petrov, V. L.; Sharakin, S. A.; Shirokov, A. V.; Svertilov, S. I.; Zotov, M. Y.; Yashin, I. V.; Gorbovskoy, E. S.; Lipunov, V. M.; Park, I. H.; Lee, J.; Jeong, S.; Kim, M. B.; Jeong, H. M.; Shprits, Y. Y.; Angelopoulos, V.; Russell, C. T.; Runov, A.; Turner, D.; Strangeway, R. J.; Caron, R.; Biktemerova, S.; Grinyuk, A.; Lavrova, M.; Tkachev, L.; Tkachenko, A.; Martinez, O.; Salazar, H.; Ponce, E.

    2017-11-01

    The "Lomonosov" space project is lead by Lomonosov Moscow State University in collaboration with the following key partners: Joint Institute for Nuclear Research, Russia, University of California, Los Angeles (USA), University of Pueblo (Mexico), Sungkyunkwan University (Republic of Korea) and with Russian space industry organizations to study some of extreme phenomena in space related to astrophysics, astroparticle physics, space physics, and space biology. The primary goals of this experiment are to study: Ultra-high energy cosmic rays (UHECR) in the energy range of the Greizen-Zatsepin-Kuzmin (GZK) cutoff; Ultraviolet (UV) transient luminous events in the upper atmosphere; Multi-wavelength study of gamma-ray bursts in visible, UV, gamma, and X-rays; Energetic trapped and precipitated radiation (electrons and protons) at low-Earth orbit (LEO) in connection with global geomagnetic disturbances; Multicomponent radiation doses along the orbit of spacecraft under different geomagnetic conditions and testing of space segments of optical observations of space-debris and other space objects; Instrumental vestibular-sensor conflict of zero-gravity phenomena during space flight. This paper is directed towards the general description of both scientific goals of the project and scientific equipment on board the satellite. The following papers of this issue are devoted to detailed descriptions of scientific instruments.

  2. A new marketplace in space: the International Space Station

    NASA Astrophysics Data System (ADS)

    Belingheri, M.

    2001-08-01

    This article discusses the potential markets for the Station, the potential customers, why they might want to be in space and what they need from the Agency in order to get there. It also outlines ESA's strategy for making the Space Station a new marketplace in space.

  3. Welding in Space: Lessons Learned for Future In Space Repair Development

    NASA Technical Reports Server (NTRS)

    Russell, C. K.; Nunes, A. C.; Zimmerman, F. R.

    2005-01-01

    Welds have been made in the harsh environment of space only twice in the history of manned space flight. The United States conducted the M5 12 experiment on Skylab and the former Soviet Union conducted an Extravehicular Activity. Both experiments demonstrated electron beam welding. A third attempt to demonstrate and advance space welding was made by the Marshall Space Flight Center in the 90's but the experiment was demanifested as a Space Shuttle payload. This presentation summarizes the lessons learned from these three historical experiences in the areas of safety, design, operations and implementation so that welding in space can become an option for in space repair applications.

  4. Space Security Law

    NASA Astrophysics Data System (ADS)

    Blount, P. J.

    2017-06-01

    Since the very beginning of the space age, security has been the critical, overriding concern at the heart of both international and domestic space law regimes. While these regimes certainly encompass broader interests, such as commercial uses of outer space, they are built on a legal foundation that is largely intended to regularize interactions among space actors to ensure security, safety, and sustainability in the space environment. Space security law, as a result, has central goals of both maintaining peace and providing security as a public good for the benefit of humankind. The idea of security is a technical and political construct. The law is a tool that is used to articulate that construct as concept and operationalize it as a value. As such, space security law is a network of law and regulation that governs a wide variety of space activities. There are four broad categories that typify the various manifestations of space security law: international peace and security; national security; human security; and space safety and sustainability. International peace and security, the first category, is directly concerned with the international law and norms that have been adopted to decrease the risk of conflict between states. National security, category two, consists of domestic law that implements, at the national level, the obligations found in the first category as well as law that promotes other national security goals. Human security, the third category, is the loose set of law and policy directed at the use of space for the protection of human populations, such as disaster response and planetary protection. Finally, the fourth category, space safety and security, represents the emerging body of law and policy that seeks to protect the space environment through measures that address space debris and harmful contamination. Obviously, these categories overlap and laws can serve duplicative purposes, but this compartmentalization reveals much about the legal

  5. The Japanese and Indian space programmes : two roads into space

    NASA Astrophysics Data System (ADS)

    Harvey, Brian

    The development of the space industry in the Asian and Pacific Rim region provides the context for this book. The two major countries hoping for leadership in the area (apart from China) are Japan and India, both of whom have significant launcher capabilities.There is a general introductory chapter which places the space programmes of the region in the comparative context of the other space-faring nations of the world. The author reviews the main space programmes of Japan and India in turn, concentrating on their origins, the development of launcher and space facilities, scientific and engineering programmes, and future prospects.The book concludes with a chapter comparing how similarly/differently Japan and India are developing their space programmes, how they are likely to proceed in the future, and what impact the programmes have had in their own region and what they have contributed so far to global space research.

  6. q-Space Upsampling Using x-q Space Regularization.

    PubMed

    Chen, Geng; Dong, Bin; Zhang, Yong; Shen, Dinggang; Yap, Pew-Thian

    2017-09-01

    Acquisition time in diffusion MRI increases with the number of diffusion-weighted images that need to be acquired. Particularly in clinical settings, scan time is limited and only a sparse coverage of the vast q -space is possible. In this paper, we show how non-local self-similar information in the x - q space of diffusion MRI data can be harnessed for q -space upsampling. More specifically, we establish the relationships between signal measurements in x - q space using a patch matching mechanism that caters to unstructured data. We then encode these relationships in a graph and use it to regularize an inverse problem associated with recovering a high q -space resolution dataset from its low-resolution counterpart. Experimental results indicate that the high-resolution datasets reconstructed using the proposed method exhibit greater quality, both quantitatively and qualitatively, than those obtained using conventional methods, such as interpolation using spherical radial basis functions (SRBFs).

  7. Multipurpose Spaces

    ERIC Educational Resources Information Center

    Gordon, Douglas

    2010-01-01

    The concept of multipurpose spaces in schools is certainly not new. Especially in elementary schools, the combination of cafeteria and auditorium (and sometimes indoor physical activity space as well) is a well-established approach to maximizing the use of school space and a school district's budget. Nonetheless, there continue to be refinements…

  8. U.S. Space Policy and Space Industry Strangulation

    DTIC Science & Technology

    2010-03-01

    protecting U.S. national security, and creating an environment in which non-U.S. citizens can participate fully in the U.S. space industry. 14...still protecting U.S. national security, and creating an environment in which non-U.S. citizens can participate fully in the U.S. space industry...security, and creating and sustaining a globally competitive space industry. These realms are not mutually exclusive. If technologies are overly guarded

  9. Near Sun Free-Space Optical Communications from Space

    NASA Technical Reports Server (NTRS)

    Biswas, Abhijit; Khatri, F.; Boroson, D.

    2006-01-01

    Free-space optical communications offers expanded data return capacity, from probes distributed throughout the solar system and beyond. Space-borne and Earth-based optical transceivers used for communicating optically, will periodically encounter near Sun pointing. This will result in an increase in the scattered background light flux, often contributing to degraded link performance. The varying duration of near Sun pointing link operations relative to the location of space-probes, is discussed in this paper. The impact of near Sun pointing on link performance for a direct detection photon-counting communications system is analyzed for both ground- and space-based Earth receivers. Finally, impact of near Sun pointing on spaceborne optical transceivers is discussed.

  10. The future of space - Space tomorrow: The Antarctica model

    NASA Technical Reports Server (NTRS)

    Beggs, J.

    1983-01-01

    The exploration and settling of Antarctica with permanent bases are used as illustrative points for establishing a permanent human presence in near-earth space. NASA activities since 1958 have spawned the computer science, solid-state electronics, medical electronics, and communications satellites industries, which are also rapidly expanding in other countries, as are space-faring capabilities. Antarctica is a paradigm for space exploration in that it is hard to reach, hostile to human life, and a great amount of planning is necessary to arrive at the destination and survive. Aircraft made permanent settlements possible on Antarctica, just as the Shuttle does for space. A space station would provide the remote base from which exploration of other planets and settling on the moon could proceed.

  11. SPACE TODAY ONLINE - Space Today Online covering Space from Earth to the

    Science.gov Websites

    Space Rockets 300 Flights Delta Proton Search for Meteorites American Weather Satellites Artist concept Rockets: Spaceports Plowshares 21st Century Experimental Europe's Vega Brazil's Difficulties U.S. Delta 4 , Atlas 5 America's 300th Delta Russia's 300th Proton Spaceflight Museum Space Station: Jules Verne Cargo

  12. The Seventeenth Space Simulation Conference. Terrestrial Test for Space Success

    NASA Technical Reports Server (NTRS)

    Stecher, Joseph L., III (Compiler)

    1992-01-01

    The Institute of Environmental Sciences' Seventeenth Space Simulation Conference, 'Terrestrial Test for Space Success' provided participants with a forum to acquire and exchange information on the state of the art in space simulation, test technology, atomic oxygen, dynamics testing, contamination, and materials. The papers presented at this conference and the resulting discussions carried out the conference theme of 'terrestrial test for space success.'

  13. Life in space

    NASA Technical Reports Server (NTRS)

    West, John B.

    1992-01-01

    The scope of space life sciences and current research on the physiology of man in space are reviewed by examining Spacelab SLS-1. Milestones of space life sciences are discussed, with emphasis on the Skylab facility, the Space Shuttle program, and the Soviet Mir space station. Attention is given to the topic of the origins of life as it relates to space life sciences. The discovery of amino acids in meteorites and the question of whether the earth was seeded with life from space are discussed. A brief overview of efforts in the search for extraterrestrial intelligence is presented. Consideration is also given to the effects of gravity on cells, the effects of radiation, plant biology, CELSS, and the effects of gravity on humans.

  14. The Austrian Space Plan

    NASA Astrophysics Data System (ADS)

    Pseiner, K.; Balogh, W.

    2002-01-01

    After several years of preparation and discussion among the involved players, the Austrian Space Plan was approved for implementation in November 2001. Based on careful benchmarking and analysis of the capabilities of the Austrian space sector it aims to create excellent conditions for the sector's further development. The new space strategy embraces Austria's participation in the mandatory and optional programmes of the European Space Agency and establishes a National Space Programme supported by separate funding opportunities. A set of clearly-defined indicators ensures that the progress in implementing the Space Plan can be objectively judged through independent, annual reviews. The National Space Programme promotes international cooperation in space research and space activities with the aim to strengthen the role of space science and to better prepare Austrian space industry for the commercial space market. In the framework of the Space Plan the Austrian Space Agency has been tasked with integrating the industry's growing involvement in aeronautics activities to better utilize synergies with the space sector. This paper reviews the various steps leading to the approval of the new space strategy and discusses the hurdles mastered in this process. It reports on the Space Plan's first results, specifically taking into account projects involving international cooperation. For the first the Austria aerospace-sector can rely on an integrated strategy for aeronautics- and space activities which is firmly rooted in the efforts to enhance the country's R&D activities. It may also act as a useful example for other small space- using countries planning to enhance their involvement in space activities.

  15. An outline of the review on space weather in Latin America: space science, research networks and space weather center

    NASA Astrophysics Data System (ADS)

    De Nardin, C. M.; Dasso, S.; Gonzalez-Esparza, A.

    2016-12-01

    The present work is an outline of a three-part review on space weather in Latin America. The first paper (part 1) comprises the evolution of several Latin American institutions investing in space science since the 1960's, focusing on the solar-terrestrial interactions, which today is commonly called space weather. Despite recognizing advances in space research in all of Latin America, this part 1 is restricted to the development observed in three countries in particular (Argentina, Brazil and Mexico), due to the fact that these countries have recently developed operational centers for monitoring space weather. The review starts with a brief summary of the first groups to start working with space science in Latin America. This first part of the review closes with the current status and the research interests of these groups, which are described in relation to the most significant works and challenges of the next decade in order to aid in the solving of space weather open issues. The second paper (part 2) comprises a summary of scientific challenges in space weather research that are considered to be open scientific questions and how they are being addressed in terms of instrumentation by the international community, including the Latin American groups. We also provide an inventory of the networks and collaborations being constructed in Latin America, including details on the data processing, capabilities and a basic description of the resulting variables. These instrumental networks currently used for space science research are gradually being incorporated into the space weather monitoring data pipelines as their data provides key variables for monitoring and forecasting space weather, which allow these centers to monitor space weather and issue warnings and alerts. The third paper (part 3) presents the decision process for the spinning off of space weather prediction centers from space science groups with our interpretation of the reason/opportunities that leads to

  16. Space station astronauts discuss life in space during AGU interview

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-07-01

    Just one day after China's Shenzhou-9 capsule, carrying three Chinese astronauts, docked with the Tiangong-1 space lab on 18 June, Donald Pettit, a NASA astronaut on the International Space Station (ISS), said it is “a step in the right direction” that more people are in space. “Before they launched, there were six people in space,” he said, referring to those on ISS, “and there are 7 billion people on Earth.” The astronauts were “like one in a billion. Now there are nine people in space,” Pettit said during a 19 June interview that he and two other astronauts onboard ISS had with AGU. Pettit continued, “So the gradient of human beings going into space is moving in the right direction. We need to change these numbers so that more and more human beings can call space their home so we can expand off of planet Earth and move out into our solar system.”

  17. Space Microbiology

    PubMed Central

    Horneck, Gerda; Klaus, David M.; Mancinelli, Rocco L.

    2010-01-01

    Summary: The responses of microorganisms (viruses, bacterial cells, bacterial and fungal spores, and lichens) to selected factors of space (microgravity, galactic cosmic radiation, solar UV radiation, and space vacuum) were determined in space and laboratory simulation experiments. In general, microorganisms tend to thrive in the space flight environment in terms of enhanced growth parameters and a demonstrated ability to proliferate in the presence of normally inhibitory levels of antibiotics. The mechanisms responsible for the observed biological responses, however, are not yet fully understood. A hypothesized interaction of microgravity with radiation-induced DNA repair processes was experimentally refuted. The survival of microorganisms in outer space was investigated to tackle questions on the upper boundary of the biosphere and on the likelihood of interplanetary transport of microorganisms. It was found that extraterrestrial solar UV radiation was the most deleterious factor of space. Among all organisms tested, only lichens (Rhizocarpon geographicum and Xanthoria elegans) maintained full viability after 2 weeks in outer space, whereas all other test systems were inactivated by orders of magnitude. Using optical filters and spores of Bacillus subtilis as a biological UV dosimeter, it was found that the current ozone layer reduces the biological effectiveness of solar UV by 3 orders of magnitude. If shielded against solar UV, spores of B. subtilis were capable of surviving in space for up to 6 years, especially if embedded in clay or meteorite powder (artificial meteorites). The data support the likelihood of interplanetary transfer of microorganisms within meteorites, the so-called lithopanspermia hypothesis. PMID:20197502

  18. Theory of Space Charge Limited Current in Fractional Dimensional Space

    NASA Astrophysics Data System (ADS)

    Zubair, Muhammad; Ang, L. K.

    The concept of fractional dimensional space has been effectively applied in many areas of physics to describe the fractional effects on the physical systems. We will present some recent developments of space charge limited (SCL) current in free space and solid in the framework of fractional dimensional space which may account for the effect of imperfectness or roughness of the electrode surface. For SCL current in free space, the governing law is known as the Child-Langmuir (CL) law. Its analogy in a trap-free solid (or dielectric) is known as Mott-Gurney (MG) law. This work extends the one-dimensional CL Law and MG Law for the case of a D-dimensional fractional space with 0 < D <= 1 where parameter D defines the degree of roughness of the electrode surface. Such a fractional dimensional space generalization of SCL current theory can be used to characterize the charge injection by the imperfectness or roughness of the surface in applications related to high current cathode (CL law), and organic electronics (MG law). In terms of operating regime, the model has included the quantum effects when the spacing between the electrodes is small.

  19. Organics in Space: Results from Space Exposure Platforms and Nanosatellites

    NASA Technical Reports Server (NTRS)

    Foing, B. H.; Ehrenfreund, P.; Salama, Farid; Contreras, Cesar Sanchez; Sciamma O'Brien, Ella; Bejaoui, Salma

    2015-01-01

    A series of successful laboratory astrophysics experiments performed on International Space Station(ISS) external platforms such as EXPOSE have provided insights into the evolution of organic and biological materials in space and planetary environments. The study of the reactions, destruction, and longevity of organics in the space environment is of fundamental interest. To provide an accurate outer space environment for extended durations, exposure experiments in low Earth orbit have been conducted in the last decades in order to examine the consequences of actual space conditions including combinations of solar and cosmic radiation, space vacuum, and microgravity. The OOREOS (OrganismORganic Exposure to Orbital Stresses) nanosatellite studied in situ during the 6-month primary and 1-year extended mission the photochemical processing of selected PAHs in low Earth orbit (650 km altitude); results were autonomously telemetered to Earth. We report on the methods and flight preparation of samples for space exposure platforms and results on the stability of organic thin-films. The UV-vis degradation process of thin-films was recorded over time, which revealed intriguing and counter-intuitive photolytic kinetics that will be re-investigated on the ISS in a space environment.

  20. Man in Space, Space in the Seventies.

    ERIC Educational Resources Information Center

    Froehlich, Walter

    Included is a summary of the Apollo lunar program to date. Projected future NASA programs planned for the 1970's are discussed under the headings Skylab, Space Shuttle, and Space Station. Possibilities for the 1980's are outlined in the final section. (Author/AL)

  1. Maintaining Space Superiority

    DTIC Science & Technology

    2014-02-01

    object that may present a threat to his or h er satellites must still provide direction that responds to that threat This article discusses a dilemma...space-based threats .ŕ The Air Force achieves space superiority by conducting operations that support the war fighter (space force enhancement); by...the space era, threats and issues have arisen to chal- lenge US operations in these areas. Indeed, as declared in the National Security Space Strategy

  2. Space Shuttle Familiarization

    NASA Technical Reports Server (NTRS)

    Mellett, Kevin

    2006-01-01

    This slide presentation visualizes the NASA space center and research facility sites, as well as the geography, launching sites, launching pads, rocket launching, pre-flight activities, and space shuttle ground operations located at NASA Kennedy Space Center. Additionally, highlights the international involvement behind the International Space Station and the space station mobile servicing system. Extraterrestrial landings, surface habitats and habitation systems, outposts, extravehicular activity, and spacecraft rendezvous with the Earth return vehicle are also covered.

  3. Space Debris and Space Safety - Looking Forward

    NASA Astrophysics Data System (ADS)

    Ailor, W.; Krag, H.

    Man's activities in space are creating a shell of space debris around planet Earth which provides a growing risk of collision with operating satellites and manned systems. Including both the larger tracked objects and the small, untracked debris, more than 98% of the estimated 600,000 objects larger than 1 cm currently in orbit are “space junk”--dead satellites, expended rocket stages, debris from normal operations, fragments from explosions and collisions, and other material. Recognizing the problem, space faring nations have joined together to develop three basic principles for minimizing the growth of the debris population: prevent on-orbit breakups, remove spacecraft and orbital stages that have reached the end of their mission operations from the useful densely populated orbit regions, and limit the objects released during normal operations. This paper provides an overview of what is being done to support these three principles and describes proposals that an active space traffic control service to warn satellite operators of pending collisions with large objects combined with a program to actively remove large objects may reduce the rate of future collisions. The paper notes that cost and cost effectiveness are important considerations that will affect the evolution of such systems.

  4. Space spider crane

    NASA Technical Reports Server (NTRS)

    Macconochie, Ian O. (Inventor); Mikulas, Martin M., Jr. (Inventor); Pennington, Jack E. (Inventor); Kinkead, Rebecca L. (Inventor); Bryan, Charles F., Jr. (Inventor)

    1988-01-01

    A space spider crane for the movement, placement, and or assembly of various components on or in the vicinity of a space structure is described. As permanent space structures are utilized by the space program, a means will be required to transport cargo and perform various repair tasks. A space spider crane comprising a small central body with attached manipulators and legs fulfills this requirement. The manipulators may be equipped with constant pressure gripping end effectors or tools to accomplish various repair tasks. The legs are also equipped with constant pressure gripping end effectors to grip the space structure. Control of the space spider crane may be achieved either by computer software or a remotely situated human operator, who maintains visual contact via television cameras mounted on the space spider crane. One possible walking program consists of a parallel motion walking program whereby the small central body alternatively leans forward and backward relative to end effectors.

  5. Space development and space science together, an historic opportunity

    NASA Astrophysics Data System (ADS)

    Metzger, P. T.

    2016-11-01

    The national space programs have an historic opportunity to help solve the global-scale economic and environmental problems of Earth while becoming more effective at science through the use of space resources. Space programs will be more cost-effective when they work to establish a supply chain in space, mining and manufacturing then replicating the assets of the supply chain so it grows to larger capacity. This has become achievable because of advances in robotics and artificial intelligence. It is roughly estimated that developing a lunar outpost that relies upon and also develops the supply chain will cost about 1/3 or less of the existing annual budgets of the national space programs. It will require a sustained commitment of several decades to complete, during which time science and exploration become increasingly effective. At the end, this space industry will capable of addressing global-scale challenges including limited resources, clean energy, economic development, and preservation of the environment. Other potential solutions, including nuclear fusion and terrestrial renewable energy sources, do not address the root problem of our limited globe and there are real questions whether they will be inadequate or too late. While industry in space likewise cannot provide perfect assurance, it is uniquely able to solve the root problem, and it gives us an important chance that we should grasp. What makes this such an historic opportunity is that the space-based solution is obtainable as a side-benefit of doing space science and exploration within their existing budgets. Thinking pragmatically, it may take some time for policymakers to agree that setting up a complete supply chain is an achievable goal, so this paper describes a strategy of incremental progress. The most crucial part of this strategy is establishing a water economy by mining on the Moon and asteroids to manufacture rocket propellant. Technologies that support a water economy will play an

  6. Model-Based Trade Space Exploration for Near-Earth Space Missions

    NASA Technical Reports Server (NTRS)

    Cohen, Ronald H.; Boncyk, Wayne; Brutocao, James; Beveridge, Iain

    2005-01-01

    We developed a capability for model-based trade space exploration to be used in the conceptual design of Earth-orbiting space missions. We have created a set of reusable software components to model various subsystems and aspects of space missions. Several example mission models were created to test the tools and process. This technique and toolset has demonstrated itself to be valuable for space mission architectural design.

  7. Space Science

    NASA Image and Video Library

    1999-04-21

    NASA's Space Optics Manufacturing Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century - including the long-term goal of imaging Earth-like planets in distant solar systems. To reduce the cost of mirror fabrication, Marshall Space Flight Center (MSFC) has developed replication techniques, the machinery, and materials to replicate electro-formed nickel mirrors. The process allows fabricating precisely shaped mandrels to be used and reused as masters for replicating high-quality mirrors. Dr. Joe Ritter examines a replicated electro-formed nickel-alloy mirror which exemplifies the improvements in mirror fabrication techniques, with benefits such as dramtic weight reduction that have been achieved at the Marshall Space Flight Center's Space Optics Manufacturing Technology Center (SOMTC).

  8. ESA SSA Space Weather Services Supporting Space Surveillance and Tracking

    NASA Astrophysics Data System (ADS)

    Luntama, Juha-Pekka; Glover, Alexi; Hilgers, Alain; Fletcher, Emmet

    2012-07-01

    ESA Space Situational Awareness (SSA) Preparatory Programme was started in 2009. The objective of the programme is to support the European independent utilisation of and access to space research or services. This will be performed through providing timely and quality data, information, services and knowledge regarding the environment, the threats and the sustainable exploitation of the outer space surrounding the planet Earth. SSA serves the implementation of the strategic missions of the European Space Policy based on the peaceful uses of the outer space by all states, by supporting the autonomous capacity to securely and safely operate the critical European space infrastructures. The Space Weather (SWE) Segment of the SSA will provide user services related to the monitoring of the Sun, the solar wind, the radiation belts, the magnetosphere and the ionosphere. These services will include near real time information and forecasts about the characteristics of the space environment and predictions of space weather impacts on sensitive spaceborne and ground based infrastructure. The SSA SWE system will also include establishment of a permanent database for analysis, model development and scientific research. These services are will support a wide variety of user domains including spacecraft designers, spacecraft operators, human space flights, users and operators of transionospheric radio links, and space weather research community. The precursor SWE services to be established starting in 2010. This presentation provides an overview of the ESA SSA SWE services focused on supporting the Space Surveillance and Tracking users. This services include estimates of the atmospheric drag and archive and forecasts of the geomagnetic and solar indices. In addition, the SSA SWE system will provide nowcasts of the ionospheric group delay to support mitigation of the ionospheric impact on radar signals. The paper will discuss the user requirements for the services, the data

  9. The Second Space Race

    NASA Astrophysics Data System (ADS)

    Fawkes, S.

    This paper compares and contrasts the characteristics of the first space race, which ran from the late 1950s to the late 1990s, and the second space race that began with the successful space flight of SpaceShipOne in 2004. The first space race was between superpowers seeking to establish geo-political dominance in the Cold War. The second space race will be between competing companies seeking to establish low cost access to space for ordinary people. The first space race achieved its geo- political objectives but did not open up low cost access to space but rather restricted access to a select few, highly trained astronauts and cosmonauts. The second space race, driven by the size and growth of the travel and tourism industry, promises to open up access to space to millions of space tourists.

  10. Paradigm shift regarding the transversalis fascia, preperitoneal space, and Retzius' space.

    PubMed

    Asakage, N

    2018-06-01

    There has been confusion in the anatomical recognition when performing inguinal hernia operations in Japan. From now on, a paradigm shift from the concept of two-dimensional layer structure to the three-dimensional space recognition is necessary to promote an understanding of anatomy. Along with the formation of the abdominal wall, the extraperitoneal space is formed by the transversalis fascia and preperitoneal space. The transversalis fascia is a somatic vascular fascia originating from an arteriovenous fascia. It is a dense areolar tissue layer at the outermost of the extraperitoneal space that runs under the diaphragm and widely lines the body wall muscle. The umbilical funiculus is taken into the abdominal wall and transformed into the preperitoneal space that is a local three-dimensional cavity enveloping preperitoneal fasciae composed of the renal fascia, vesicohypogastric fascia, and testiculoeferential fascia. The Retzius' space is an artificial cavity formed at the boundary between the transversalis fascia and preperitoneal space. In the underlay mesh repair, the mesh expands in the range spanning across the Retzius' space and preperitoneal space.

  11. Space-Hotel Early Bird - Visions for a Commercial Space Hotel

    NASA Astrophysics Data System (ADS)

    Amekrane, R.; Holze, C.; Apel, U.

    2002-01-01

    rachid.amekrane@astrium-space.com/Fax: +49 421 539-24801, cholze@zarm.uni-bremen.de/Fax: +49 421 218-7473, The International Space Station was planed for research purposes. In 2001 the first private man, Denis Tito,visited the ISS and the second private man, Mark Shuttleworth is following him. The gate towards the commercial utilization of manned space flight has been pushed open. Space pioneers as Wernher von Braun and Sir Arthur C. Clarke had the dream that one day a space station in earth orbit will host tourists. It is evident that the ISS is not designed to host tourists. Therefore the dream of the pioneers is still open. By asking the question "how should a space station should look like to host tourists?", the German Aerospace Society DGLR e.V. organized a contest under the patronage of Mr. Joerg Feustel-Buechl, the Director of Manned Spaceflight and Microgravity, European Space Agency (ESA) in April 2001. Because the definition and design of living space is the content of architecture the approach was to gather new ideas from young architects in cooperation with space experts. This contest was directed at students of architecture and the task set was to design a hotel for the earth orbit and to accommodate 220 guests. The contest got the name "Early Bird - Visions of a Space Hotel". The results and models of the student's work were shown in an exhibition in Hamburg/Germany, which was open to the public from September 19th till October 20th 2001. During the summer term of 2001 seventeen designs were completed. Having specialists, as volunteers, in the field of space in charge meant that it could be ensured that the designs reflected a certain possibility of being able to be realized. Within this interdisciplinary project both parties learned from each other. The 17 different designs were focused on the expectations and needs of a future space tourist. The designs are for sure not feasible today, but the designs are in that sense realistic that they could be

  12. Budgeting Academic Space

    ERIC Educational Resources Information Center

    Harris, Watson

    2011-01-01

    There are many articles about space management, including those that discuss space calculations, metrics, and categories. Fewer articles discuss the space budgeting processes used by administrators to allocate space. The author attempts to fill this void by discussing her administrative experiences with Middle Tennessee State University's (MTSU)…

  13. Space Shuttle Projects

    NASA Image and Video Library

    1996-04-01

    STS-79 was the fourth in a series of NASA docking missions to the Russian Mir Space Station, leading up to the construction and operation of the International Space Station (ISS). As the first flight of the Spacehab Double Module, STS-79 encompassed research, test and evaluation of ISS, as well as logistics resupply for the Mir Space Station. STS-79 was also the first NASA-Mir American crew member exchange mission, with John E. Blaha (NASA-Mir-3) replacing Shannon W. Lucid (NASA-Mir-2) aboard the Mir Space Station. The lettering of their names either up or down denotes transport up to the Mir Space Station or return to Earth on STS-79. The patch is in the shape of the Space Shuttle’s airlock hatch, symbolizing the gateway to international cooperation in space. The patch illustrates the historic cooperation between the United States and Russia in space. With the flags of Russia and the United States as a backdrop, the handshake of Extravehicular Mobility Unit (EMU) which are suited crew members symbolizes mission teamwork, not only of the crew members but also the teamwork between both countries space personnel in science, engineering, medicine and logistics.

  14. A generalization of Cesàro sequence spaces in the Orlicz space

    NASA Astrophysics Data System (ADS)

    Haryadi; Supama; Zulijanto, A.

    2018-04-01

    In this paper, we generalize the Cesàro sequence spaces in the classic Banach space Lp to the generalized Orlicz space Lφ . We construct the space by replacing the norm {\\Vert \\cdot \\Vert }p in Lp with modular ρφ in Lφ . This generalization has lead to the use of the Luxemburg norm to discuss some topological properties of the spaces. We prove results regarding to modular and norm convergence. We also describe some properties of the spaces and a closed subspaces of the space.

  15. Johnson Space Center

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Johnson Space Center (JSC) in Houston is NASA's lead center for the space shuttle and the International Space Station programs and for biomedical research. Areas of study include Earth sciences and solar system exploration, astromaterials and space medicine. About 14 000 people, including 3000 civil servants, work at JSC....

  16. Models Required to Mitigate Impacts of Space Weather on Space Systems

    NASA Technical Reports Server (NTRS)

    Barth, Janet L.

    2003-01-01

    This viewgraph presentation attempts to develop a model of factors which need to be considered in the design and construction of spacecraft to lessen the effects of space weather on these vehicles. Topics considered include: space environments and effects, radiation environments and effects, space weather drivers, space weather models, climate models, solar proton activity and mission design for the GOES mission. The authors conclude that space environment models need to address issues from mission planning through operations and a program to develop and validate authoritative space environment models for application to spacecraft design does not exist at this time.

  17. Man-made space debris - Does it restrict free access to space

    NASA Technical Reports Server (NTRS)

    Wolfe, M.; Chobotov, V.; Kessler, D.; Reynolds, R.

    1981-01-01

    Consideration is given to the hazards posed by existing and future man-made space debris to spacecraft operations. The components of the hazard are identified as those fragments resulting from spacecraft explosions and spent stages which can be tracked, those fragments which are too small to be tracked at their present distances, and future debris, which, if present trends in spacecraft design and operation continue, may lead to an unacceptably high probability of collision with operational spacecraft within a decade. It is argued that a coordinated effort must be undertaken by all space users to evaluate means of space debris control in order to allow for the future unrestricted use of near-earth space. A plan for immediate action to forestall the space debris problem by activities in the areas of education, debris monitoring and collection technology, space vehicle design, space operational procedures and practices and space policies and treaties is proposed.

  18. Space Livability of Street Vendors in Simpang Lima Public Space, Semarang

    NASA Astrophysics Data System (ADS)

    Widjajanti, R.; Wahyono, H.

    2018-02-01

    Street vendors in Semarang have been growing rapidly and uncontrolled. They always use public space such as public roads, sidewalks, parks and fields as trading locations. The street vendors’ activities in the public space are considered as the cause of declining on environmental quality and aesthetics of the city. All these years, the government often evicted the street vendors than organized and provides adequate space for them. As one of the actual urban activities, the street vendors’ activities should be accommodated by the government and the location for them is managed in the urban spatial plan. Street vendors need spaces which livable and suitable to their activities’ requirements, has a relationship with users (street vendors’ doers and consumers) and the activities of street vendors themselves. Research on the aspect of space for street vendors is still less in quantity, whereas space for them is an urgent matter for the government in managing their activities. This study aims to identify the livability of space based on the street vendors’ behavior in their location. This research used descriptive quantitative method with questionnaires and GIS as the mapping tool for street vendors’ location. The result of the research shows that the livability of street vendor space is based on the activity of street vendors (type of merchandise, trading places’ size, trade place assessment, space dimension, trading time, duration and period) and space conditions (access, natural elements, safety and parking space).

  19. EOS production on the Space Station. [Electrophoresis Operations/Space

    NASA Technical Reports Server (NTRS)

    Runge, F. C.; Gleason, M.

    1986-01-01

    The paper discusses a conceptual integration of the equipment for EOS (Electrophoresis Operations/Space) on the Space Station in the early 1990s. Electrophoresis is a fluid-constituent separation technique which uses forces created by an electrical field. Aspects covered include EOS equipment and operations, and Space Station installations involving a pressurized module, a resupply module, utility provisions and umbilicals and crew involvement. Accommodation feasibility is generally established, and interfaces are defined. Space Station production of EOS-derived pharmaceuticals will constitute a significant increase in capability compared to precursor flights on the Shuttle in the 1980s.

  20. Space Station

    NASA Image and Video Library

    1952-01-01

    This is a von Braun 1952 space station concept. In a 1952 series of articles written in Collier's, Dr. Wernher von Braun, then Technical Director of the Army Ordnance Guided Missiles Development Group at Redstone Arsenal, wrote of a large wheel-like space station in a 1,075-mile orbit. This station, made of flexible nylon, would be carried into space by a fully reusable three-stage launch vehicle. Once in space, the station's collapsible nylon body would be inflated much like an automobile tire. The 250-foot-wide wheel would rotate to provide artificial gravity, an important consideration at the time because little was known about the effects of prolonged zero-gravity on humans. Von Braun's wheel was slated for a number of important missions: a way station for space exploration, a meteorological observatory and a navigation aid. This concept was illustrated by artist Chesley Bonestell.

  1. Space Weather

    NASA Astrophysics Data System (ADS)

    Hapgood, Mike

    2017-01-01

    Space weather-changes in the Earth's environment that can often be traced to physical processes in the Sun-can have a profound impact on critical Earth-based infrastructures such as power grids and civil aviation. Violent eruptions on the solar surface can eject huge clouds of magnetized plasma and particle radiation, which then propagate across interplanetary space and envelop the Earth. These space weather events can drive major changes in a variety of terrestrial environments, which can disrupt, or even damage, many of the technological systems that underpin modern societies. The aim of this book is to offer an insight into our current scientific understanding of space weather, and how we can use that knowledge to mitigate the risks it poses for Earth-based technologies. It also identifies some key challenges for future space-weather research, and considers how emerging technological developments may introduce new risks that will drive continuing investigation.

  2. Legal Consequences of the Pollution of Outer Space with Space Debris

    NASA Astrophysics Data System (ADS)

    Stubbe, Peter

    2017-07-01

    Space debris has grown to be a significant problem for outer space activities. The remnants of human activities in space are very diverse; they can be tiny paint flakes, all sorts of fragments, or entirely intact—but otherwise nonfunctional spacecraft and rocket bodies. The amount of debris is increasing at a growing pace, thus raising the risk of collision with operational satellites. Due to the relative high velocities involved in on-orbit collisions, their consequences are severe; collisions lead to significant damage or the complete destruction of the affected spacecraft. Protective measures and collision avoidance have thus become a major concern for spacecraft operators. The pollution of space with debris must, however, not only be seen as an unfavorable circumstance that accompanies space activities and increases the costs and complexity of outer space activities. Beyond this rather technical perspective, the presence of man-made, nonfunctional objects in space represents a global environmental concern. Similar to the patterns of other environmental problems on Earth, debris generation appears to have surpassed the absorption capacity of the space environment. Studies indicate that the evolution of the space object environment has crossed the tipping point to a runaway situation in which an increasing number of collisions―mostly among debris―leads to an uncontrolled population growth. It is thus in the interest of all mankind to address the debris problem in order to preserve the space environment for future generations. International space law protects the space environment. Article IX of the Outer Space Treaty obligates States to avoid the harmful contamination of outer space. The provision corresponds to the obligation to protect the environment in areas beyond national jurisdiction under the customary "no harm" rule of general environmental law. These norms are applicable to space debris and establish the duty not to pollute outer space by limiting

  3. Space suit

    NASA Technical Reports Server (NTRS)

    Shepard, L. F.; Durney, G. P.; Case, M. C.; Kenneway, A. J., III; Wise, R. C.; Rinehart, D.; Bessette, R. J.; Pulling, R. C. (Inventor)

    1973-01-01

    A pressure suit for high altitude flights, particularly space missions is reported. The suit is designed for astronauts in the Apollo space program and may be worn both inside and outside a space vehicle, as well as on the lunar surface. It comprises an integrated assembly of inner comfort liner, intermediate pressure garment, and outer thermal protective garment with removable helmet, and gloves. The pressure garment comprises an inner convoluted sealing bladder and outer fabric restraint to which are attached a plurality of cable restraint assemblies. It provides versitility in combination with improved sealing and increased mobility for internal pressures suitable for life support in the near vacuum of outer space.

  4. Global design of satellite constellations: a multi-criteria performance comparison of classical walker patterns and new design patterns

    NASA Astrophysics Data System (ADS)

    Lansard, Erick; Frayssinhes, Eric; Palmade, Jean-Luc

    Basically, the problem of designing a multisatellite constellation exhibits a lot of parameters with many possible combinations: total number of satellites, orbital parameters of each individual satellite, number of orbital planes, number of satellites in each plane, spacings between satellites of each plane, spacings between orbital planes, relative phasings between consecutive orbital planes. Hopefully, some authors have theoretically solved this complex problem under simplified assumptions: the permanent (or continuous) coverage by a single and multiple satellites of the whole Earth and zonal areas has been entirely solved from a pure geometrical point of view. These solutions exhibit strong symmetry properties (e.g. Walker, Ballard, Rider, Draim constellations): altitude and inclination are identical, orbital planes and satellites are regularly spaced, etc. The problem with such constellations is their oversimplified and restricted geometrical assumption. In fact, the evaluation function which is used implicitly only takes into account the point-to-point visibility between users and satellites and does not deal with very important constraints and considerations that become mandatory when designing a real satellite system (e.g. robustness to satellite failures, total system cost, common view between satellites and ground stations, service availability and satellite reliability, launch and early operations phase, production constraints, etc.). An original and global methodology relying on a powerful optimization tool based on genetic algorithms has been developed at ALCATEL ESPACE. In this approach, symmetrical constellations can be used as initial conditions of the optimization process together with specific evaluation functions. A multi-criteria performance analysis is conducted and presented here in a parametric way in order to identify and evaluate the main sensitive parameters. Quantitative results are given for three examples in the fields of navigation

  5. Space Research, Education, and Related Activities in the Space Sciences

    NASA Technical Reports Server (NTRS)

    Black, David; Marshall, Frank (Technical Monitor)

    2002-01-01

    The Universities Space Research Association received an award of Cooperative Agreement NCC5-356 on September 29, 1998. The mission of this activity, known as the Cooperative Program in Space Sciences (CPSS), is to conduct space science research and leading-edge instrumentation and technology development, enable research by the space sciences communities, and to expedite the effective dissemination of space science research, technology, data, and information to the educational community and the general public. To fulfill this mission, USRA recruits and maintains a staff of scientific researchers, operates a series of guest investigator facilities, organizes scientific meetings and workshops, and encourages various interactions with students and university faculty members.

  6. Space industrialization. [space flight and environment for commercial/utilitarian purposes

    NASA Technical Reports Server (NTRS)

    Disher, J. H.

    1977-01-01

    Space industrialization is defined as the use of space flight and the space environment for commercial or utilitarian purposes in contrast to other uses such as gains in basic scientific knowledge, national defense, or exploration. Some unique attributes of space that make it amenable to industrial use include overview of the earth, the 'zero gravity' effect, potential for near perfect vacuum, unlimited reservoir for disposal of waste products, availability of essentially uninterrupted flow of solar energy, and the 'perpetual motion' characteristic of orbital mechanics. The role of human participation in assembling and maintaining the large sophisticated systems that will be required for future space industrialization needs is considered.

  7. Space Research, Education, and Related Activities In the Space Sciences

    NASA Technical Reports Server (NTRS)

    Black, David

    2002-01-01

    The mission of this activity, known as the Cooperative Program in Space Sciences (CPSS), is to conduct space science research and leading-edge instrumentation and technology development, enable research by the space sciences communities, and to expedite the effective dissemination of space science research, technology, data, and information to the educational community and the general public. To fulfill this mission, the Universities Space Research Association (USRA) recruits and maintains a staff of scientific researchers, operates a series of guest investigator facilities, organizes scientific meetings and workshops, and encourages various interactions with students and university faculty members. This paper is the final report from this now completed Cooperative Agreement.

  8. Space Research, Education, and Related Activities in the Space Sciences

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Universities Space Research Association received an award of Cooperative Agreement #NCC5-356 on September 29, 1998. The mission of this activity, know as the Cooperative Program in Space Sciences (CPSS), is to conduct space science research and leading-edge instrumentation and technology development, enable research by the space sciences communities, and to expedite the effective dissemination of space science research, technology, data, and information to the educational community and the general public. To fulfill this mission, USRA recruits and maintains a staff of scientific researchers, operates a series of guest investigator facilities, organizes scientific meetings and workshops, and encourages various interactions with students and university faculty members.

  9. A Strategy for Thailand's Space Technology Development: National Space Program (NSP)

    NASA Astrophysics Data System (ADS)

    Pimnoo, Ammarin; Purivigraipong, Somphop

    2016-07-01

    The Royal Thai Government has established the National Space Policy Committee (NSPC) with mandates for setting policy and strategy. The NSPC is considering plans and budget allocation for Thai space development. NSPC's goal is to promote the utilization of space technology in a manner that is congruent with the current situation and useful for the economy, society, science, technology, educational development and national security. The first proposed initiative of the National Space Program (NSP) is co-development of THEOS-2, a next-generation satellite system that includes Thailand's second and third earth observation satellite (THAICHOTE-2 and THAICHOTE-3). THEOS-1 or THAICHOTE-1 was the first Earth Observation Satellite of Thailand launched in 2008. At present, the THAICHOTE-1 is over the lifetime, therefore the THEOS-2 project has been established. THEOS-2 is a complete Earth Observation System comprising THAICHOTE-2&3 as well as ground control segment and capacity building. Thus, NSPC has considered that Thailand should manage the space system. Geo-Informatics and Space Technology Development Agency (GISTDA) has been assigned to propose the initiative National Space Program (NSP). This paper describes the strategy of Thailand's National Space Program (NSP) which will be driven by GISTDA. First, NSP focuses on different aspects of the utilization of space on the basis of technology, innovation, knowledge and manpower. It contains driving mechanisms related to policy, implementation and use in order to promote further development. The Program aims to increase economic competitiveness, reduce social disparity, and improve social security, natural resource management and environmental sustainability. The NSP conceptual framework includes five aspects: communications satellites, earth observation satellite systems, space economy, space exploration and research, and NSP administration. THEOS-2 is considered a part of NSP with relevance to the earth observation

  10. Space Communications

    DTIC Science & Technology

    1977-03-15

    Current capabilities of solid-state power devices (IMPATTs, bipolar, and field- effect tran- sistors) have been reviewed with regard to use in space ...Quarterly Technical Summary CO CD > -n_ or CJ> Space Communications Prepared for the Department of the Air Force under Electronic Systems...document when it is no longer needed. mm .■ ■■■ ■ ■ MASSACHUSETTS INSTITUTE OF TECHNOLOGY LINCOLN LABORATORY SPACE COMMUNICATIONS

  11. A Milestone in Commercial Space Weather: USTAR Center for Space Weather

    NASA Astrophysics Data System (ADS)

    Tobiska, W.; Schunk, R. W.; Sojka, J. J.; Thompson, D. C.; Scherliess, L.; Zhu, L.; Gardner, L. C.

    2009-12-01

    As of 2009, Utah State University (USU) hosts a new organization to develop commercial space weather applications using funding that has been provided by the State of Utah’s Utah Science Technology and Research (USTAR) initiative. The USTAR Center for Space Weather (UCSW) is located on the USU campus in Logan, Utah and is developing innovative applications for mitigating adverse space weather effects in technological systems. Space weather’s effects upon the near-Earth environment are due to dynamic changes in the Sun’s photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere is the key region that affects communication and navigation systems. The UCSW has developed products for users of systems that are affected by space weather-driven ionospheric changes. For example, on September 1, 2009 USCW released, in conjunction with Space Environment Technologies, the world’s first real-time space weather via an iPhone app. Space WX displays the real-time, current global ionosphere total electron content along with its space weather drivers; it is available through the Apple iTunes store and is used around the planet. The Global Assimilation of Ionospheric Measurements (GAIM) system is now being run operationally in real-time at UCSW with the continuous ingestion of hundreds of global data streams to dramatically improve the ionosphere’s characterization. We discuss not only funding and technical advances that have led to current products but also describe the direction for UCSW that includes partnering opportunities for moving commercial space weather into fully automated specification and forecasting over the next half decade.

  12. Space Weather Forecasting at the Joint Space Operations Center (JSpOC)

    NASA Astrophysics Data System (ADS)

    Nava, O.

    2012-12-01

    The Joint Space Operations Center (JSpOC) at Vandenberg Air Force Base is the command and control focal point for the operational employment of worldwide joint space forces. The JSpOC focuses on planning and executing US Strategic Command's Joint Functional Component Command for Space (JFCC SPACE) mission. Through the JSpOC, the Weather Specialty Team (WST) monitors space and terrestrial weather effects, plans and assesses weather impacts on military operations, and provides reach-back support for deployed theater solar and terrestrial needs. This presentation will detail how space weather affects the JSpOC mission set and how the scientific community can enhance the WST's capabilities and effectiveness.

  13. Space in Space: Designing for Privacy in the Workplace

    NASA Technical Reports Server (NTRS)

    Akin, Jonie

    2015-01-01

    Privacy is cultural, socially embedded in the spatial, temporal, and material aspects of the lived experience. Definitions of privacy are as varied among scholars as they are among those who fight for their personal rights in the home and the workplace. Privacy in the workplace has become a topic of interest in recent years, as evident in discussions on Big Data as well as the shrinking office spaces in which people work. An article in The New York Times published in February of this year noted that "many companies are looking to cut costs, and one way to do that is by trimming personal space". Increasingly, organizations ranging from tech start-ups to large corporations are downsizing square footage and opting for open-office floorplans hoping to trim the budget and spark creative, productive communication among their employees. The question of how much is too much to trim when it comes to privacy, is one that is being actively addressed by the National Aeronautics and Space Administration (NASA) as they explore habitat designs for future space missions. NASA recognizes privacy as a design-related stressor impacting human health and performance. Given the challenges of sustaining life in an isolated, confined, and extreme environment such as Mars, NASA deems it necessary to determine the acceptable minimal amount for habitable volume for activities requiring at least some level of privacy in order to support optimal crew performance. Ethnographic research was conducted in 2013 to explore perceptions of privacy and privacy needs among astronauts living and working in space as part of a long-distance, long-duration mission. The allocation of space, or habitable volume, becomes an increasingly complex issue in outer space due to the costs associated with maintaining an artificial, confined environment bounded by limitations of mass while located in an extreme environment. Privacy in space, or space in space, provides a unique case study of the complex notions of

  14. Using space resources

    NASA Technical Reports Server (NTRS)

    Sullivan, Thomas A.; Mckay, David S.

    1991-01-01

    The topics covered include the following: reducing the cost of space exploration; the high cost of shipping; lunar raw materials; some useful space products; energy from the moon; ceramic, glass, and concrete construction materials; mars atmosphere resources; relationship to the Space Exploration Initiative (SEI); an evolutionary approach to using space resources; technology development; and oxygen and metal coproduction.

  15. SpaceX Spacesuit

    NASA Image and Video Library

    2017-08-22

    The SpaceX spacesuit that will be worn by astronauts aboard its Crew Dragon spacecraft (in the background) during missions to and from the International Space Station. SpaceX is developing its Crew Dragon spacecraft and Falcon 9 rocket in partnership with NASA’s Commercial Crew Program to carry astronauts to and from the space station.

  16. The Orbital Space Environment and Space Situational Awareness Domain Ontology - Toward an International Information System for Space Data

    NASA Astrophysics Data System (ADS)

    Rovetto, R.

    2016-09-01

    The orbital space environment is home to natural and artificial satellites, debris, and space weather phenomena. As the population of orbital objects grows so do the potential hazards to astronauts, space infrastructure and spaceflight capability. Orbital debris, in particular, is a universal concern. This and other hazards can be minimized by improving global space situational awareness (SSA). By sharing more data and increasing observational coverage of the space environment we stand to achieve that goal, thereby making spaceflight safer and expanding our knowledge of near-Earth space. To facilitate data-sharing interoperability among distinct orbital debris and space object catalogs, and SSA information systems, I proposed ontology in (Rovetto, 2015) and (Rovetto and Kelso, 2016). I continue this effort toward formal representations and models of the overall domain that may serve to improve peaceful SSA and increase our scientific knowledge. This paper explains the project concept introduced in those publications, summarizing efforts to date as well as the research field of ontology development and engineering. I describe concepts for an ontological framework for the orbital space environment, near-Earth space environment and SSA domain. An ontological framework is conceived as a part of a potential international information system. The purpose of such a system is to consolidate, analyze and reason over various sources and types of orbital and SSA data toward the mutually beneficial goals of safer space navigation and scientific research. Recent internationals findings on the limitations of orbital data, in addition to existing publications on collaborative SSA, demonstrate both the overlap with this project and the need for datasharing and integration.

  17. Space polypropulsion

    NASA Astrophysics Data System (ADS)

    Kellett, B. J.; Griffin, D. K.; Bingham, R.; Campbell, R. N.; Forbes, A.; Michaelis, M. M.

    2008-05-01

    Hybrid space propulsion has been a feature of most space missions. Only the very early rocket propulsion experiments like the V2, employed a single form of propulsion. By the late fifties multi-staging was routine and the Space Shuttle employs three different kinds of fuel and rocket engines. During the development of chemical rockets, other forms of propulsion were being slowly tested, both theoretically and, relatively slowly, in practice. Rail and gas guns, ion engines, "slingshot" gravity assist, nuclear and solar power, tethers, solar sails have all seen some real applications. Yet the earliest type of non-chemical space propulsion to be thought of has never been attempted in space: laser and photon propulsion. The ideas of Eugen Saenger, Georgii Marx, Arthur Kantrowitz, Leik Myrabo, Claude Phipps and Robert Forward remain Earth-bound. In this paper we summarize the various forms of nonchemical propulsion and their results. We point out that missions beyond Saturn would benefit from a change of attitude to laser-propulsion as well as consideration of hybrid "polypropulsion" - which is to say using all the rocket "tools" available rather than possibly not the most appropriate. We conclude with three practical examples, two for the next decades and one for the next century; disposal of nuclear waste in space; a grand tour of the Jovian and Saturnian moons - with Huygens or Lunoxod type, landers; and eventually mankind's greatest space dream: robotic exploration of neighbouring planetary systems.

  18. Delimitation of air space and outer space - Is such a boundary needed now?

    NASA Technical Reports Server (NTRS)

    Hosenball, S. N.

    1983-01-01

    A discussion is presented of the question of establishing a boundary between air space and outer space. Four theories and approaches for establishing a delimitation between air space and outer space are examined. Spatial approaches include demarcation based on the division of the atmosphere into layers, demarcation based on aerodynamic characteristics of flight instrumentalities (von Karman Line), demarcation according to the lowest perigee of an orbiting satellite, and demarcation based upon the earth's gravitational effects. The functionalist approach is based on the delimitation or definition of the air space/outer space regime by the purpose and activities for which an object is designed in air space or outer space. The arbitrarist approach is supported by those who wish to draw an arbitrary line between air space and outer space. It is proposed that a pragmatist approach will be more useful than the other three approaches. The pragmatist approach advocates not establishing a boundary between air space and outer space at the present time or in the immediate future. It is argued that there are at present no serious problems that can be resolved by the definition/delimitation of air space and outer space.

  19. Space Commerce 1994 Forum: The 10th National Space Symposium. Proceedings report

    NASA Astrophysics Data System (ADS)

    Lipskin, Beth Ann; Patterson, Sara; Aragon, Larry; Brescia, David A.; Flannery, Jack; Mossey, Roberty; Regan, Christopher; Steeby, Kurt; Suhr, Stacy; Zimkas, Chuck

    1994-04-01

    The theme of the 10th National Space Symposium was 'New Windows of Opportunity'. These proceedings cover the following: Business Trends in High Tech Commercialization; How to Succeed in Space Technology Business -- Making Dollars and Sense; Obstacles and Opportunities to Success in Technology Commercialization NASA's Commercial Technology Mission -- a New Way of Doing Business: Policy and Practices; Field Center Practices; Practices in Action -- A New Way: Implementation and Business Opportunities; Space Commerce Review; Windows of Opportunity; the International Space Station; Space Support Forum; Spacelift Update; Competitive Launch Capabilities; Supporting Life on Planet Earth; National Security Space Issues; NASA in the Balance; Earth and Space Observations -- Did We Have Cousins on Mars?; NASA: A New Vision for Science; and Space Technology Hall of Fame.

  20. Space Commerce 1994 Forum: The 10th National Space Symposium. Proceedings report

    NASA Technical Reports Server (NTRS)

    Lipskin, Beth Ann (Editor); Patterson, Sara (Editor); Aragon, Larry (Editor); Brescia, David A. (Editor); Flannery, Jack (Editor); Mossey, Roberty (Editor); Regan, Christopher (Editor); Steeby, Kurt (Editor); Suhr, Stacy (Editor); Zimkas, Chuck (Editor)

    1994-01-01

    The theme of the 10th National Space Symposium was 'New Windows of Opportunity'. These proceedings cover the following: Business Trends in High Tech Commercialization; How to Succeed in Space Technology Business -- Making Dollars and Sense; Obstacles and Opportunities to Success in Technology Commercialization NASA's Commercial Technology Mission -- a New Way of Doing Business: Policy and Practices; Field Center Practices; Practices in Action -- A New Way: Implementation and Business Opportunities; Space Commerce Review; Windows of Opportunity; the International Space Station; Space Support Forum; Spacelift Update; Competitive Launch Capabilities; Supporting Life on Planet Earth; National Security Space Issues; NASA in the Balance; Earth and Space Observations -- Did We Have Cousins on Mars?; NASA: A New Vision for Science; and Space Technology Hall of Fame.

  1. Biotechnological experiments in space flights on board of space stations

    NASA Astrophysics Data System (ADS)

    Nechitailo, Galina S.

    2012-07-01

    Space flight conditions are stressful for any plant and cause structural-functional transition due to mobiliation of adaptivity. In space flight experiments with pea tissue, wheat and arabidopsis we found anatomical-morphological transformations and biochemistry of plants. In following experiments, tissue of stevia (Stevia rebaudiana), potato (Solanum tuberosum), callus culture and culture and bulbs of suffron (Crocus sativus), callus culture of ginseng (Panax ginseng) were investigated. Experiments with stevia carried out in special chambers. The duration of experiment was 8-14 days. Board lamp was used for illumination of the plants. After experiment the plants grew in the same chamber and after 50 days the plants were moved into artificial ionexchange soil. The biochemical analysis of plants was done. The total concentration of glycozides and ratio of stevioside and rebauside were found different in space and ground plants. In following generations of stevia after flight the total concentration of stevioside and rebauside remains higher than in ground plants. Experiments with callus culture of suffron carried out in tubes. Duration of space flight experiment was 8-167 days. Board lamp was used for illumination of the plants. We found picrocitina pigment in the space plants but not in ground plants. Tissue culture of ginseng was grown in special container in thermostate under stable temperature of 22 ± 0,5 C. Duration of space experiment was from 8 to 167 days. Biological activity of space flight culutre was in 5 times higher than the ground culture. This difference was observed after recultivation of space flight samples on Earth during year after flight. Callus tissue of potato was grown in tubes in thermostate under stable temperature of 22 ± 0,5 C. Duration of space experiment was from 8 to 14 days. Concentration of regenerates in flight samples was in 5 times higher than in ground samples. The space flight experiments show, that microgravity and other

  2. Space Shuttle and Space Station Radio Frequency (RF) Exposure Analysis

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.; Loh, Yin-Chung; Sham, Catherine C.; Kroll, Quin D.

    2005-01-01

    This paper outlines the modeling techniques and important parameters to define a rigorous but practical procedure that can verify the compliance of RF exposure to the NASA standards for astronauts and electronic equipment. The electromagnetic modeling techniques are applied to analyze RF exposure in Space Shuttle and Space Station environments with reasonable computing time and resources. The modeling techniques are capable of taking into account the field interactions with Space Shuttle and Space Station structures. The obtained results illustrate the multipath effects due to the presence of the space vehicle structures. It's necessary to include the field interactions with the space vehicle in the analysis for an accurate assessment of the RF exposure. Based on the obtained results, the RF keep out zones are identified for appropriate operational scenarios, flight rules and necessary RF transmitter constraints to ensure a safe operating environment and mission success.

  3. Space engineering

    NASA Technical Reports Server (NTRS)

    Alexander, Harold L.

    1991-01-01

    Human productivity was studied for extravehicular tasks performed in microgravity, particularly including in-space assembly of truss structures and other large objects. Human factors research probed the anthropometric constraints imposed on microgravity task performance and the associated workstation design requirements. Anthropometric experiments included reach envelope tests conducted using the 3-D Acoustic Positioning System (3DAPS), which permitted measuring the range of reach possible for persons using foot restraints in neutral buoyancy, both with and without space suits. Much neutral buoyancy research was conducted using the support of water to simulate the weightlessness environment of space. It became clear over time that the anticipated EVA requirement associated with the Space Station and with in-space construction of interplanetary probes would heavily burden astronauts, and remotely operated robots (teleoperators) were increasingly considered to absorb the workload. Experience in human EVA productivity led naturally to teleoperation research into the remote performance of tasks through human controlled robots.

  4. Storms in Space

    NASA Astrophysics Data System (ADS)

    Freeman, John W.

    2012-11-01

    Introduction; The cast of characters; Vignettes of the storm; 1. Two kinds of weather; 2. The saga of the storm; 3. Weather stations in space; 4. Lights in the night: the signature of the storm; 5. A walking tour of the magnetosphere; 6. The sun: where it all begins; 7. Nowcasting and forecasting storms in space; 8. Technology and the risks from storms in space; 9. A conversation with Joe Allen; 10. Manned exploration and space weather hazards; 11. The present and future of space weather forecasting; Mathematical appendix. A closer look; Glossary; Figure captions.

  5. Madrid space station

    NASA Technical Reports Server (NTRS)

    Fahnestock, R. J.; Renzetti, N. A.

    1975-01-01

    The Madrid space station, operated under bilateral agreements between the governments of the United States and Spain, is described in both Spanish and English. The space station utilizes two tracking and data acquisition networks: the Deep Space Network (DSN) of the National Aeronautics and Space Administration and the Spaceflight Tracking and Data Network (STDN) operated under the direction of the Goddard Space Flight Center. The station, which is staffed by Spanish employees, comprises four facilities: Robledo 1, Cebreros, and Fresnedillas-Navalagamella, all with 26-meter-diameter antennas, and Robledo 2, with a 64-meter antenna.

  6. Space Shuttle Projects

    NASA Image and Video Library

    2002-08-10

    Space Shuttle Orbiter Discovery lifted off for the STS-105 mission on August 10, 2001. The main purpose of the mission was the rotation of the International Space Station (ISS) Expedition Two crew with the Expedition Three crew, and the delivery of supplies utilizing the Italian-built Multipurpose Logistics Module (MPLM) Leonardo. Another payload was the Materials International Space Station Experiment (MISSE). The MISSE experiment was to fly materials and other types of space exposure experiments on the Space Station and was the first externally mounted experiment conducted on the ISS.

  7. Space Shuttle Projects

    NASA Image and Video Library

    2001-08-19

    Space Shuttle Orbiter Discovery lifted off for the STS-105 mission on August 10, 2001. The main purpose of the mission was the rotation of the International Space Station (ISS) Expedition Two crew with the Expedition Three crew and the delivery of supplies utilizing the Italian-built Multipurpose Logistics Module (MPLM) Leonardo. Another payload was the Materials International Space Station Experiment (MISSE). The MISSE experiment was to fly materials and other types of space exposure experiments on the Space Station and was the first externally mounted experiment conducted on the ISS.

  8. Finite spaces and schemes

    NASA Astrophysics Data System (ADS)

    Sancho de Salas, Fernando

    2017-12-01

    A ringed finite space is a ringed space whose underlying topological space is finite. The category of ringed finite spaces contains, fully faithfully, the category of finite topological spaces and the category of affine schemes. Any ringed space, endowed with a finite open covering, produces a ringed finite space. We introduce the notions of schematic finite space and schematic morphism, showing that they behave, with respect to quasi-coherence, like schemes and morphisms of schemes do. Finally, we construct a fully faithful and essentially surjective functor from a localization of a full subcategory of the category of schematic finite spaces and schematic morphisms to the category of quasi-compact and quasi-separated schemes.

  9. In-Space Transportation for GEO Space Solar Power Satellites

    NASA Technical Reports Server (NTRS)

    Martin, James A.; Donnahue, Benjamin B.; Henley, Mark W.

    1999-01-01

    This report summarizes results of study tasks to evaluate design options for in-space transportation of geostationary Space Solar Power Satellites. Referring to the end-to-end architecture studies performed in 1988, this current activity focuses on transportation of Sun Tower satellite segments from an initial low Earth orbit altitude to a final position in geostationary orbit (GEO; i.e., 35,786 km altitude, circular, equatorial orbit). This report encompasses study activity for In-Space Transportation of GEO Space Solar Power (SSP) Satellites including: 1) assessment of requirements, 2) design of system concepts, 3) comparison of alternative system options, and 4) assessment of potential derivatives.

  10. Green space, health and wellbeing: making space for individual agency.

    PubMed

    Bell, Sarah L; Phoenix, Cassandra; Lovell, Rebecca; Wheeler, Benedict W

    2014-11-01

    This essay examines the assumptions of green space use underpinning much existing green space and health research. It considers opportunities to move the field forward through exploring two often overlooked aspects of individual agency: the influence of shifting life circumstances on personal wellbeing priorities and place practices, and the role of personal orientations to nature in shaping how green space wellbeing opportunities are perceived and experienced. It suggests such efforts could provide more nuanced insights into the complex, personal factors that define and drive individual choices regarding the use of green spaces for wellbeing over time, thereby strengthening our understanding of the salutogenic potential (and limits) of green spaces. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Space-weather assets developed by the French space-physics community

    NASA Astrophysics Data System (ADS)

    Rouillard, A. P.; Pinto, R. F.; Brun, A. S.; Briand, C.; Bourdarie, S.; Dudok De Wit, T.; Amari, T.; Blelly, P.-L.; Buchlin, E.; Chambodut, A.; Claret, A.; Corbard, T.; Génot, V.; Guennou, C.; Klein, K. L.; Koechlin, L.; Lavarra, M.; Lavraud, B.; Leblanc, F.; Lemorton, J.; Lilensten, J.; Lopez-Ariste, A.; Marchaudon, A.; Masson, S.; Pariat, E.; Reville, V.; Turc, L.; Vilmer, N.; Zucarello, F. P.

    2016-12-01

    We present a short review of space-weather tools and services developed and maintained by the French space-physics community. They include unique data from ground-based observatories, advanced numerical models, automated identification and tracking tools, a range of space instrumentation and interconnected virtual observatories. The aim of the article is to highlight some advances achieved in this field of research at the national level over the last decade and how certain assets could be combined to produce better space-weather tools exploitable by space-weather centres and customers worldwide. This review illustrates the wide range of expertise developed nationally but is not a systematic review of all assets developed in France.

  12. Space Shuttle Projects

    NASA Image and Video Library

    1996-04-01

    The crew assigned to the STS-78 mission included (seated left to right) Terrence T. (Tom) Henricks, commander; and Kevin R. Kregel, pilot. Standing, left to right, are Jean-Jacques Favier (CNES), payload specialist; Richard M. Linneham, mission specialist; Susan J. Helms, payload commander; Charles E. Brady, mission specialist; and Robert Brent Thirsk (CSA). Launched aboard the Space Shuttle Columbia on June 20, 1996 at 10:49:00 am (EDT), the STS-78 mission’s primary payloads was the Life and Microgravity Spacelab (LMS). Five space agencies (NASA/USA, European Space Agency/Europe (ESA), French Space Agency/France, Canadian Space Agency /Canada, and Italian Space Agency/Italy) along with research scientists from 10 countries worked together on the design, development and construction of the LMS.

  13. The biological effects of space radiation during long stays in space.

    PubMed

    Ohnishi, Ken; Ohnishi, Takeo

    2004-12-01

    Many space experiments are scheduled for the International Space Station (ISS). Completion of the ISS will soon become a reality. Astronauts will be exposed to low-level background components from space radiation including heavy ions and other high-linear energy transfer (LET) radiation. For long-term stay in space, we have to protect human health from space radiation. At the same time, we should recognize the maximum permissible doses of space radiation. In recent years, physical monitoring of space radiation has detected about 1 mSv per day. This value is almost 150 times higher than that on the surface of the Earth. However, the direct effects of space radiation on human health are currently unknown. Therefore, it is important to measure biological dosimetry to calculate relative biological effectiveness (RBE) for human health during long-term flight. The RBE is possibly modified by microgravity. In order to understand the exact RBE and any interaction with microgravity, the ISS centrifugation system will be a critical tool, and it is hoped that this system will be in operation as soon as possible.

  14. Definition of technology development missions for early space stations: Large space structures

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The testbed role of an early (1990-95) manned space station in large space structures technology development is defined and conceptual designs for large space structures development missions to be conducted at the space station are developed. Emphasis is placed on defining requirements and benefits of development testing on a space station in concert with ground and shuttle tests.

  15. Space Shuttle Projects

    NASA Image and Video Library

    1995-06-07

    Designed by the mission crew members, the patch for STS-69 symbolizes the multifaceted nature of the flight's mission. The primary payload, the Wake Shield Facility (WSF), is represented in the center by the astronaut emblem against a flat disk. The astronaut emblem also signifies the importance of human beings in space exploration, reflected by the planned space walk to practice for International Space Station (ISS) activities and to evaluate space suit design modifications. The two stylized Space Shuttles highlight the ascent and entry phases of the mission. Along with the two spiral plumes, the stylized Space Shuttles symbolize a NASA first, the deployment and recovery on the same mission of two spacecraft (both the Wake Shield Facility and the Spartan). The constellations Canis Major and Canis Minor represent the astronomy objectives of the Spartan and International Extreme Ultraviolet Hitchhiker (IEH) payload. The two constellations also symbolize the talents and dedication of the support personnel who make Space Shuttle missions possible.

  16. The transition of ground-based space environmental effects testing to the space environment

    NASA Technical Reports Server (NTRS)

    Zaat, Stephen V.; Schaefer, Glen A.; Wallace, John F.

    1991-01-01

    The goal of the space flight program at the Center for Commercial Development of Space (CCDS)--Materials for Space Structures is to provide environmentally stable structural materials to support the continued humanization and commercialization of the space frontier. Information on environmental stability will be obtained through space exposure, evaluation, documentation, and subsequent return to the supplier of the candidate material for internal investigation. This program provides engineering and scientific service to space systems development firms and also exposes CCDS development candidate materials to space environments representative of in-flight conditions. The maintenance of a technological edge in space for NASA suggests the immediate search for space materials that maintain their structural integrity and remain environmentally stable. The materials being considered for long-lived space structures are complex, high strength/weight ratio composites. In order for these new candidate materials to qualify for use in space structures, they must undergo strenuous testing to determine their reliability and stability when subjected to the space environment. Ultraviolet radiation, atomic oxygen, debris/micrometeoroids, charged particles radiation, and thermal fatigue all influence the design of space structural materials. The investigation of these environmental interactions is the key purpose of this center. Some of the topics discussed with respect to the above information include: the Space Transportation System, mission planning, spaceborne experiments, and space flight payloads.

  17. Characterizing Space Environments with Long-Term Space Plasma Archive Resources

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Miller, J. Scott; Diekmann, Anne M.; Parker, Linda N.

    2009-01-01

    A significant scientific benefit of establishing and maintaining long-term space plasma data archives is the ready access the archives afford to resources required for characterizing spacecraft design environments. Space systems must be capable of operating in the mean environments driven by climatology as well as the extremes that occur during individual space weather events. Long- term time series are necessary to obtain quantitative information on environment variability and extremes that characterize the mean and worst case environments that may be encountered during a mission. In addition, analysis of large data sets are important to scientific studies of flux limiting processes that provide a basis for establishing upper limits to environment specifications used in radiation or charging analyses. We present applications using data from existing archives and highlight their contributions to space environment models developed at Marshall Space Flight Center including the Chandra Radiation Model, ionospheric plasma variability models, and plasma models of the L2 space environment.

  18. Space vehicle chassis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judd, Stephen; Dallmann, Nicholas; Seitz, Daniel

    A modular space vehicle chassis may facilitate convenient access to internal components of the space vehicle. Each module may be removable from the others such that each module may be worked on individually. Multiple panels of at least one of the modules may swing open or otherwise be removable, exposing large portions of the internal components of the space vehicle. Such chassis architectures may reduce the time required for and difficulty of performing maintenance or modifications, may allow multiple space vehicles to take advantage of a common chassis design, and may further allow for highly customizable space vehicles.

  19. SOAR 89: Space Station. Space suit test program

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph J.; West, Philip; Rouen, Michael

    1990-01-01

    The elements of the test program for the space suit to be used on Space Station Freedom are noted in viewgraph form. Information is given on evaluation objectives, zero gravity evaluation, mobility evaluation, extravehicular activity task evaluation, and shoulder joint evaluation.

  20. Canadian Space Agency Space Station Freedom utilization plans

    NASA Technical Reports Server (NTRS)

    Faulkner, James; Wilkinson, Ron

    1992-01-01

    Under the terms of the NASA/CSA Memorandum of Understanding, Canada will contribute the Mobile Servicing System and be entitled to use 3 percent of all Space Station utilization resources and user accommodations over the 30 year life of the Station. Equally importantly Canada, like NASA, can begin to exploit these benefits as soon as the Man-Tended Capability (MTC) phase begins, in early 1997. Canada has been preparing its scientific community to fully utilize the Space Station for the past five years; most specifically by encouraging, and providing funding, in the area of Materials Science and Applications, and in the area of Space Life Sciences. The goal has been to develop potential applications and an experienced and proficient Canadian community able to effectively utilize microgravity environment facilities such as Space Station Freedom. In addition, CSA is currently supporting four facilities; a Laser Test System, a Large Motion Isolation Mount, a Canadian Float Zone Furnace, and a Canadian Protein Crystallization Apparatus. In late April of this year CSA sent out a Solicitation of Interest (SOI) to potential Canadian user from universities, industry, and government. The intent of the SOI was to determine who was interested, and the type of payloads which the community at large intended to propose. The SOI will be followed by the release of an Announcement of Opportunity (AO) following governmental approval of the Long Term Space plan later this year, or early next year. Responses to the AO will be evaluated and prioritized in a fair and impartial payload selection process, within the guidelines set by our international partners and the Canadian Government. Payload selection is relatively simple compared to the development and qualification process. An end-to-end user support program is therefore also being defined. Much of this support will be provided at the new headquarters currently being built in St. Hubert, Quebec. It is recognized that utilizing the

  1. Canadian Space Agency Space Station Freedom utilization plans

    NASA Astrophysics Data System (ADS)

    Faulkner, James; Wilkinson, Ron

    Under the terms of the NASA/CSA Memorandum of Understanding, Canada will contribute the Mobile Servicing System and be entitled to use 3 percent of all Space Station utilization resources and user accommodations over the 30 year life of the Station. Equally importantly Canada, like NASA, can begin to exploit these benefits as soon as the Man-Tended Capability (MTC) phase begins, in early 1997. Canada has been preparing its scientific community to fully utilize the Space Station for the past five years; most specifically by encouraging, and providing funding, in the area of Materials Science and Applications, and in the area of Space Life Sciences. The goal has been to develop potential applications and an experienced and proficient Canadian community able to effectively utilize microgravity environment facilities such as Space Station Freedom. In addition, CSA is currently supporting four facilities; a Laser Test System, a Large Motion Isolation Mount, a Canadian Float Zone Furnace, and a Canadian Protein Crystallization Apparatus. In late April of this year CSA sent out a Solicitation of Interest (SOI) to potential Canadian user from universities, industry, and government. The intent of the SOI was to determine who was interested, and the type of payloads which the community at large intended to propose. The SOI will be followed by the release of an Announcement of Opportunity (AO) following governmental approval of the Long Term Space plan later this year, or early next year. Responses to the AO will be evaluated and prioritized in a fair and impartial payload selection process, within the guidelines set by our international partners and the Canadian Government. Payload selection is relatively simple compared to the development and qualification process. An end-to-end user support program is therefore also being defined. Much of this support will be provided at the new headquarters currently being built in St. Hubert, Quebec. It is recognized that utilizing the

  2. Chemical space visualization: transforming multidimensional chemical spaces into similarity-based molecular networks.

    PubMed

    de la Vega de León, Antonio; Bajorath, Jürgen

    2016-09-01

    The concept of chemical space is of fundamental relevance for medicinal chemistry and chemical informatics. Multidimensional chemical space representations are coordinate-based. Chemical space networks (CSNs) have been introduced as a coordinate-free representation. A computational approach is presented for the transformation of multidimensional chemical space into CSNs. The design of transformation CSNs (TRANS-CSNs) is based upon a similarity function that directly reflects distance relationships in original multidimensional space. TRANS-CSNs provide an immediate visualization of coordinate-based chemical space and do not require the use of dimensionality reduction techniques. At low network density, TRANS-CSNs are readily interpretable and make it possible to evaluate structure-activity relationship information originating from multidimensional chemical space.

  3. Development of an Experimental Board in the Nanaosatellite CUBESAT3

    NASA Astrophysics Data System (ADS)

    Cresciucci, Laetitia

    realize a satellite platform designed based on the following requirement: CUBESAT is a cube, its size is 10x10x10 centimeters, its weight must be under 1kg and the power consumption of the whole satellite is limited to 1 Watt. The University of Arizona makes such satellites. Each side of the cube is covered with solar panels which supply the power by recharging NiCad batteries. This satellite platform is provided with a power board, witch managed the power of the solar panels, the level of the batteries and the power needed by the others boards of the satellite. In addition to this power board, the CUBESAT platform includes a controller board. The controller used is the Microchip PIC 16C77. It acquires the data for the different sensors of the satellite (temperature, battery current level, power supplied by the solar panel) and manages the communication between the different boards. This communication uses a serial bus based on the I2C communication protocol. The last board on the CUBESAT platform is the transmission board. CUBESAT can be remote controlled by a ground station, and it have to send its data to this station periodically. The transmission board includes an emitter/receiver part designed by Motorola. The wavelength used for this transmission is the amature radio band, so anyone can listen to the satellite, but a key is necessary to decode the data. a non-expensive satellite which is very interesting for experimental missions. Alcatel Space Industries bought a CUBESAT to launch a radiation experiment in orbit, and turned to the Center of Micro-opto-electronics of Montpellier (CEM2) to define and realize this experience. I, Laetitia Cresciucci, and my partner, Didier Campillo, have been contacted by the CEM2 during our final year at the Engineers Science Institute of Montpellier (ISIM), in order to work on this project. The mission chosen for the CUBESAT's payload is to measure the degradation of three components in space. is a multi-goal mission. The

  4. Space station needs, attributes, and architectural options: Commercial opportunities in space

    NASA Technical Reports Server (NTRS)

    Wolbers, H. L., Jr.

    1983-01-01

    The roles of government and industry in the commercialization of space are examined and an approach for stimulating the interests of potential users is described. Several illustrative examples of potential commercial developments are presented. The role of manned space systems in space commercialization is discussed as well as some of the issues and opportunities that are likely to be encountered in the commercial exploitation of the unique characteristics of space. Results suggest that interest in space facilities can be found among a number of commercially oriented users. In order to develop and maintain the involvement of these potential users, however, space demonstrations are required, and commercial growth or evolution depends on the results of the initial in situ experience. Manned facilities are required for the conceptual research and development phases and for maintenance and servicing operations during production or operational missions. Space facilities must be easily accessible by dependable and regularly scheduled means.

  5. Space and Atmospheric Environments: From Low Earth Orbits to Deep Space

    NASA Technical Reports Server (NTRS)

    Barth, Janet L.

    2003-01-01

    Natural space and atmospheric environments pose a difficult challenge for designers of technological systems in space. The deleterious effects of environment interactions with the systems include degradation of materials, thermal changes, contamination, excitation, spacecraft glow, charging, radiation damage, and induced background interference. Design accommodations must be realistic with minimum impact on performance while maintaining a balance between cost and risk. The goal of applied research in space environments and effects is to limit environmental impacts at low cost relative to spacecraft cost and to infuse enabling and commercial off-the-shelf technologies into space programs. The need to perform applied research to understand the space environment in a practical sense and to develop methods to mitigate these environment effects is frequently underestimated by space agencies and industry. Applied science research in this area is critical because the complexity of spacecraft systems is increasing, and they are exposed simultaneously to a multitude of space environments.

  6. Humans in space.

    PubMed

    White, R J; Averner, M

    2001-02-22

    Many successful space missions over the past 40 years have highlighted the advantages and necessity of humans in the exploration of space. But as space travel becomes ever more feasible in the twenty-first century, the health and safety of future space explorers will be paramount. In particular, understanding the risks posed by exposure to radiation and extended weightlessness will be crucial if humans are to travel far from Earth.

  7. Animals in space

    NASA Technical Reports Server (NTRS)

    White, Angela

    1988-01-01

    Animals are indispensable to the space program. Their continued use could have many significant results. Those who are opposed to using animals in space should remember that space animals are treated humanely; they are necessary because results can be obtained from them that would be unobtainable from humans; and results from animal experiments can be applied to human systems. Therefore, NASA should continue to use animals in space research.

  8. National Space Council

    NASA Image and Video Library

    2018-06-18

    President Donald Trump holds up Space Policy Directive - 3 after signing it during a meeting of the National Space Council in the East Room of the White House, Monday, June 18, 2018, in Washington. Chaired by the Vice President, the council's role is to advise the President regarding national space policy and strategy, and review the nation's long-range goals for space activities. Photo Credit: (NASA/Bill Ingalls)

  9. Space Among Us. Some Effects of Space Research on Society.

    ERIC Educational Resources Information Center

    Boyle, Charles P.

    A summary of existing and possible effects of the space program on society is presented in this book to illustrate the second-order consequences of space exploration in the world community. Discussions are included concerning influences on human attitudes toward technology and space, life styles, man's outlook, relationships among fellowmen,…

  10. In-Space Propulsion: Connectivity to In-Space Fabrication and Repair

    NASA Technical Reports Server (NTRS)

    Johnson, L.; Harris, D.; Trausch, A.; Matloff, G. L.; Taylor, T.; Cutting, K.

    2005-01-01

    The connectivity between new in-space propulsion technologies and the ultimate development of an in-space fabrication and repair infrastructure are described in this Technical Memorandum. A number of advanced in-space propulsion technologies are being developed by NASA, many of which are directly relevant to the establishment of such an in-space infrastructure. These include aerocapture, advanced solar-electric propulsion, solar-thermal propulsion, advanced chemical propulsion, tethers, and solar photon sails. Other, further-term technologies have also been studied to assess their utility to the development of such an infrastructure.

  11. Teacher in Space Participants testing space food in orientation session

    NASA Image and Video Library

    1985-09-25

    S85-39978 (10 Sept. 1985) --- Sharon Christa McAuliffe, left, appears to be deciding what she thinks of a piece of space food she tastes during a session of interfacing with space shuttle life sciences. Barbara R. Morgan samples an apricot. The two are in early training at the Johnson Space Center (JSC) in preparation for the STS-51L spaceflight early next year. McAuliffe is prime payload specialist representing the Teacher in Space Project, and Morgan is her backup. Dr. C.T. Bourland, a dietitian specialist, assists the two. Photo credit: NASA

  12. Coupling gravity, electromagnetism and space-time for space propulsion breakthroughs

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.

    1994-01-01

    spaceflight would be revolutionized if it were possible to propel a spacecraft without rockets using the coupling between gravity, electromagnetism, and space-time (hence called 'space coupling propulsion'). New theories and observations about the properties of space are emerging which offer new approaches to consider this breakthrough possibility. To guide the search, evaluation, and application of these emerging possibilities, a variety of hypothetical space coupling propulsion mechanisms are presented to highlight the issues that would have to be satisfied to enable such breakthroughs. A brief introduction of the emerging opportunities is also presented.

  13. Space Product Development: Bringing the Benefits of Space Down to Earth

    NASA Technical Reports Server (NTRS)

    Allen, Rosalie W.; Tygielski, Andrew; Gabris, Edward A.

    1997-01-01

    The newly developed microgravity Research Program Office was created to consolidate and integrate NASA's microgravity research efforts, comprised of the microgravity Science and Applications Program and Space Product Development Program. This resulted in an integrated agency program serving the science and industrial research communities, providing leadership, management, direction and overview of all agency microgravity research activities. This paper provides an overview of NASA's microgravity Research Program, with particular emphasis on the Space Product Development Program activities, the potential economic impact and quality of life improvements resulting from this research, and future plans for commercial microgravity research in space. The goal of the Space Product Development Program is to facilitate the use of space for commercial products and services. The unique attributes of space are exploited to conduct industry driven research in the areas of crystallography, bio-systems, agriculture, electronic and non-electronic materials. Industry uses the knowledge gained from focused space research to create new products and processes, to gain economic competitive advantages, to create new jobs and improve the quality of life on earth. The objectives of the program are implemented through NASA's Commercial Space Centers, non-profit consortia of industry, academia and government, that provide the mechanism for communication and technical expert exchange between NASA and industry. Over 200 commercial research activities have been conducted by the Commercial Space Centers and their industrial affiliates over the last four and one-half years during Space Shuttle mission, as well as sounding rocket flights. The results of this research will have a significant impact on competitive products, jobs and quality of life improvements.

  14. Space Science

    NASA Image and Video Library

    1999-04-20

    NASA's Space Optics Manufacturing Technology Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century, including the long-term goal of imaging Earth-like planets in distant solar systems. A segmented array of mirrors was designed by the Space Optics Manufacturing Technology Center for the solar concentrator test stand at the Marshall Space Flight Center (MSFC) for powering solar thermal propulsion engines. Each hexagon mirror has a spherical surface to approximate a parabolic concentrator when combined into the entire 18-foot diameter array. The aluminum mirrors were polished with a diamond turning machine that creates a glass-like reflective finish on metal. The precision fabrication machinery at the Space Optics Manufacturing Technology Center at MSFC can polish specialized optical elements to a world class quality of smoothness. This image shows optics physicist, Vince Huegele, examining one of the 144-segment hexagonal mirrors of the 18-foot diameter array at the MSFC solar concentrator test stand.

  15. Space Science

    NASA Image and Video Library

    1999-04-20

    NASA's Space Optics Manufacturing Technology Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century, including the long-term goal of imaging Earth-like planets in distant solar systems. A segmented array of mirrors was designed by the Space Optics Manufacturing Technology Center for solar the concentrator test stand at the Marshall Space Flight Center (MSFC) for powering solar thermal propulsion engines. Each hexagon mirror has a spherical surface to approximate a parabolic concentrator when combined into the entire 18-foot diameter array. The aluminum mirrors were polished with a diamond turning machine, that creates a glass-like reflective finish on metal. The precision fabrication machinery at the Space Optics Manufacturing Technology Center at MSFC can polish specialized optical elements to a world class quality of smoothness. This image shows optics physicist, Vince Huegele, examining one of the 144-segment hexagonal mirrors of the 18-foot diameter array at the MSFC solar concentrator test stand.

  16. Free-space optical communications in support of future manned space flight

    NASA Technical Reports Server (NTRS)

    Stephens, Elaine M.

    1990-01-01

    Four areas of research in optical communications in support of future manned space missions being carried out at Johnson Space Center are discussed. These are the Space Station Freedom proximity operations, direct LEO-to-ground communications, IR voice communications inside manned spacecraft, and deep space and lunar satellite operations. The background, requirements, and scenario for each of these areas of research are briefly described.

  17. Space Shuttle Projects

    NASA Image and Video Library

    1995-11-12

    The STS-76 crew patch depicts the Space Shuttle Atlantis and Russia's Mir Space Station as the space ships prepare for a rendezvous and docking. The Spirit of 76, an era of new beginnings, is represented by the Space Shuttle rising through the circle of 13 stars in the Betsy Ross flag. STS-76 begins a new period of international cooperation in space exploration with the first Shuttle transport of a United States astronaut, Shannon W. Lucid, to the Mir Space Station for extended joint space research. Frontiers for future exploration are represented by stars and the planets. The three gold trails and the ring of stars in union form the astronaut logo. Two suited extravehicular activity (EVA) crew members in the outer ring represent the first EVA during Shuttle-Mir docked operations. The EVA objectives were to install science experiments on the Mir exterior and to develop procedures for future EVA's on the International Space Station. The surnames of the crew members encircle the patch: Kevin P. Chilton, mission commander; Richard A. Searfoss, pilot; Ronald M. Sega, Michael R. ( Rich) Clifford, Linda M. Godwin and Lucid, all mission specialists. This patch was designed by Brandon Clifford, age 12, and the crew members of STS-76.

  18. United Nations/European Space Agency Workshops on Basic Space Science

    NASA Technical Reports Server (NTRS)

    Haubold, H. J.; Ocampo, A.; Torres, S.; Wamsteker, W.

    1995-01-01

    In 1958, the United Nations (UN) formally recognized a new potential for international cooperation by establishing an ad hoc Committee on the Peaceful Uses of Outer Space (COPUOS). A year later the Committee became a permanent body, and by 1983 membership had expanded to 53 states, with more than half of the members coming from the developing world. In 1970, COPUOS established the UN Program on Space Applications in order to strengthen cooperation in space science and technology between non-industrialized and industrialized countries. In the last few years, the UN and its COPUOS have paid increasing attention to education and research in space science and technology, including basic space science. In 1991 the UN, in cooperation with ESA, initiated the organization of annual Workshops in Basic Space Science for developing countries. These Workshops are designed to be held in one of the following major regions: Asia and the Pacific, Latin America and the Caribbean, Africa, Western Asia, and Europe. Accordingly, Basic Space Science Workshops have already been held in India (1991), Costa Rica andColombia (1992), and Nigeria (1993). The fourth Workshop was held from 27 June to 1 July 1994 at the Cairo University, in Egypt, for Western Asia.

  19. The potential impact of the space shuttle on space benefits to mankind

    NASA Technical Reports Server (NTRS)

    Rattinger, I.

    1972-01-01

    The potential impact of the space shuttle on space benefits to mankind is discussed. The space shuttle mission profile is presented and the capabilities of the spacecraft to perform various maneuvers and operations are described. The cost effectiveness of the space shuttle operation is analyzed. The effects upon technological superiority and national economics are examined. Line drawings and artist concepts of space shuttle configurations are included to clarify the discussion.

  20. Space The New Medical Frontier / NASA Spinoffs Milestones in Space Research

    MedlinePlus

    ... occasion. Photo courtesy of NIH Long-Term Space Research Until the advent of the ISS, research missions ... improving human health." NASA Spinoffs Milestones in Space Research Inspired by the space suits Apollo astronauts wore ...

  1. A path to in-space welding and to other in-space metal processing technologies using Space Shuttle small payloads

    NASA Technical Reports Server (NTRS)

    Tamir, David

    1992-01-01

    As we venture into space, it becomes necessary to assemble, expand, and repair space-based structures for our housing, research, and manufacturing. The zero gravity-vacuum of space challenges us to employ construction options which are commonplace on Earth. Rockwell International (RI) has begun to undertake the challenge of space-based construction via numerous options, of which one is welding. As of today, RI divisions have developed appropriate resources and technologies to bring space-based welding within our grasp. Further work, specifically in the area of developing space experiments to test RI technology, is required. RI Space Welding Project's achievements to date, from research and development (R&E) efforts in the areas of microgravity, vacuum, intra- / extra- vehicular activity and spinoff technologies, are reviewed. Special emphasis is given to results for G-169's (Get Away Special) microgravity flights aboard a NASA KC-135. Based on these achievements, a path to actual development of a space welding system is proposed with options to explore spinoff in-space metal processing technologies. This path is constructed by following a series of milestone experiments, of which several are to utilize NASA's Shuttle Small Payload Programs. Conceptual designs of the proposed shuttle payload experiments are discussed with application of lessons learned from G-169's design, development, integration, testing, safety approval process, and KC-135 flights.

  2. The Ninth National Space Symposium

    NASA Astrophysics Data System (ADS)

    Lipskin, Beth Ann; Patterson, Sara; Brescia, David A.; Burk, Donna; Flannery, Jack; St. John, Pat; Zimkas, Chuck

    Proceedings of the Ninth National Space Symposium held 13-16 April 1993 by the United States Space Foundation are presented. Presentations made at the symposium are included. Topics discussed include: Change, Challenge and Opportunity; Washington Insiders: National Space Policy and Budget Issues; Civil Space: a Vision for the Future; Space Power for an Expanded Vision; Unparalled Launch Vehicle Propulsion Capabilities; National Security Space Issues; Perspectives on the Air Force in Space; Future Technology: Space Propulsion, Earth Observation and International Cooperation; Achieving Efficient Space Transportation; the Future in Space Exploration; Kids, Parents and Teachers are into Space; and Public Congressional Forum on Space - International Space Issues.

  3. Science in space with the Space Station

    NASA Technical Reports Server (NTRS)

    Banks, Peter M.

    1987-01-01

    The potential of the Space Station as a versatile scientific laboratory is discussed, reviewing plans under consideration by the NASA Task Force on Scientific Uses of the Space Station. The special advantages offered by the Station for expanding the scope of 'space science' beyond astrophysics, geophysics, and terrestrial remote sensing are stressed. Topics examined include the advantages of a manned presence, the scientific value and cost effectiveness of smaller, more quickly performable experiments, improved communications for ground control of Station experiments, the international nature of the Station, the need for more scientist astronauts for the Station crew, Station on-orbit maintenance and repair services for coorbiting platforms, and the need for Shuttle testing of proposed Station laboratory equipment and procedures.

  4. Space acquired photography

    USGS Publications Warehouse

    ,

    2008-01-01

    Interested in a photograph of the first space walk by an American astronaut, or the first photograph from space of a solar eclipse? Or maybe your interest is in a specific geologic, oceanic, or meteorological phenomenon? The U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center is making photographs of the Earth taken from space available for search, download, and ordering. These photographs were taken by Gemini mission astronauts with handheld cameras or by the Large Format Camera that flew on space shuttle Challenger in October 1984. Space photographs are distributed by EROS only as high-resolution scanned or medium-resolution digital products.

  5. International Space Station

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This artist's digital concept depicts the completely assembled International Space Station (ISS) passing over Florida. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.

  6. Suited for Space

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph J.

    2006-01-01

    This viewgraph presentation describes the basic functions of space suits for EVA astronauts. Space suits are also described from the past, present and future space missions. The contents include: 1) Why Do You Need A Space Suit?; 2) Generic EVA System Requirements; 3) Apollo Lunar Surface Cycling Certification; 4) EVA Operating Cycles for Mars Surface Missions; 5) Mars Surface EVA Mission Cycle Requirements; 6) Robustness Durability Requirements Comparison; 7) Carry-Weight Capabilities; 8) EVA System Challenges (Mars); 9) Human Planetary Surface Exploration Experience; 10) NASA Johnson Space Center Planetary Analog Activities; 11) Why Perform Remote Field Tests; and 12) Other Reasons Why We Perform Remote Field Tests.

  7. Robotic space construction

    NASA Technical Reports Server (NTRS)

    Mixon, Randolph W.; Hankins, Walter W., III; Wise, Marion A.

    1988-01-01

    Research at Langley AFB concerning automated space assembly is reviewed, including a Space Shuttle experiment to test astronaut ability to assemble a repetitive truss structure, testing the use of teleoperated manipulators to construct the Assembly Concept for Construction of Erectable Space Structures I truss, and assessment of the basic characteristics of manipulator assembly operations. Other research topics include the simultaneous coordinated control of dual-arm manipulators and the automated assembly of candidate Space Station trusses. Consideration is given to the construction of an Automated Space Assembly Laboratory to study and develop the algorithms, procedures, special purpose hardware, and processes needed for automated truss assembly.

  8. Austrian National Space Law

    NASA Astrophysics Data System (ADS)

    Steinkogler, Cordula

    2017-08-01

    The Austrian Outer Space Act, which entered into force in December 2011; and the Austrian Outer Space Regulation, which has been in force since February 2015, form the legal framework for Austrian national space activities. The elaboration of national space legislation became necessary to ensure compliance with Austria's obligations as State Party to the five United Nations Space Treaties when the first two Austrian satellites were launched in 2012 and Austria became a launching state on its own. The legislation comprehensively regulates legal aspects related to space activities, such as authorization, supervision, and termination of space activities; registration and transfer of space objects; recourse of the government against the operator; as well as implementation of the law and sanctions for its infringement. One of the main purposes of the law is to ensure the authorization of national space activities. The Outer Space Act sets forth the main conditions for authorization, which inter alia refer to the expertise of the operator; requirements for orbital positions and frequency assignments; space debris mitigation, insurance requirements, and the safeguard of public order; public health; national security as well as Austrian foreign policy interests; and international law obligations. The Austrian Outer Space Regulation complements these provisions by specifying the documents the operator must submit as evidence of the fulfillment of the authorization conditions, which include the results of safety tests, emergency plans, and information on the collection and use of Earth observation data. Particular importance is attached to the mitigation of space debris. Operators are required to take measures in accordance with international space debris mitigation guidelines for the avoidance of operational debris, the prevention of on-orbit break-ups and collisions, and the removal of space objects from Earth orbit after the end of the mission. Another specificity of the

  9. Space Rescue

    NASA Technical Reports Server (NTRS)

    Muratore, John F.

    2007-01-01

    Space Rescue has been a topic of speculation for a wide community of people for decades. Astronauts, aerospace engineers, diplomats, medical and rescue professionals, inventors and science fiction writers have all speculated on this problem. Martin Caidin's 1964 novel Marooned dealt with the problems of rescuing a crew stranded in low earth orbit. Legend at the Johnson Space Center says that Caidin's portrayal of a Russian attempt to save the American crew played a pivotal role in convincing the Russians to join the real joint Apollo-Soyuz mission. Space Rescue has been a staple in science fiction television and movies portrayed in programs such as Star Trek, Stargate-SG1 and Space 1999 and movies such as Mission To Mars and Red Planet. As dramatic and as difficult as rescue appears in fictional accounts, in the real world it has even greater drama and greater difficulty. Space rescue is still in its infancy as a discipline and the purpose of this chapter is to describe the issues associated with space rescue and the work done so far in this field. For the purposes of this chapter, the term space rescue will refer to any system which allows for rescue or escape of personnel from situations which endanger human life in a spaceflight operation. This will span the period from crew ingress prior to flight through crew egress postlanding. For the purposes of this chapter, the term primary system will refer to the spacecraft system that a crew is either attempting to escape from or from which an attempt is being made to rescue the crew.

  10. Center for Space Construction

    NASA Technical Reports Server (NTRS)

    Su, Renjeng

    1998-01-01

    The Center for Space Construction (CSC) at University of Colorado at Boulder is one of eight University Space Engineering Research Centers established by NASA in 1988. The mission of the Center is to conduct research into space technology and to directly contribute to space engineering education. The Center reports to the Department of Aerospace Engineering Sciences and resides in the College of Engineering and Applied Sciences. The College has a long and successful track record of cultivating multi-disciplinary research and education programs. The Center for Space Construction represents prominent evidence of this record. The basic concept on which the Center was founded is the in-space construction of large space systems, such as space stations, interplanetary space vehicles, and extraterrestrial space structures. Since 1993, the scope of CSC research has evolved to include the design and construction of all spacecraft, large and small. With the broadened scope our research projects seek to impact the technological basis for spacecraft such as remote sensing satellites, communication satellites and other special-purpose spacecraft, as well as large space platforms. A summary of accomplishments, including student participation and degrees awarded, during the contract period is presented.

  11. Space Guiding Us

    NASA Astrophysics Data System (ADS)

    Primikiri, Athina

    2016-04-01

    Taking into consideration the fact that general education provides the passport for a successful career the charting of Space consists of a constructive instrument available to every single teacher. Activities touching directly upon Space comprise a source of inspiration that encourages pupils to get acquainted with natural sciences and technology while consolidating their cross-curriculum knowledge. The applications and endeavors arising out of Space play a vital role for the further development and growth of our societies. Moreover, the prosperity of people is inextricably bound up with the implementation of Space policies adapted to different sectors such as the Environment, the phenomenon of climate change, matters affecting public or private safety, humanitarian aid and other technological issues. Therefore, the thorough analysis of Space endows us with insights about new products and innovative forms of industrial collaboration. As a teacher, I have consciously chosen to utilize the topic of Space in class as an instructive tool during the last 4 years. The lure of Space combined with the fascination provided by Space flights contributes to the enrichment of children's knowledge in the field of STEM. Space consists of the perfect cross-curriculum tool for the teaching of distinct subjects such as History, Geography, Science, Environment, Literature, Music, Religion and Physical Education. Following the Curriculum for pupils aged 9-10 I opted to teach the topic of Space under the title 'Space Guiding Us' as well as its subunits: • International Space Station • Cassini/Huygens, Mission to Titan • Rosetta & Philae • European Union and Space • Mission X: Train like an Astronaut The main purpose of choosing the module of 'Space' is to stimulate the scientific and critical thought of the pupils, to foster the co-operative spirit among them and to make them aware of how the application of Science affects their everyday lives. Aims • To incite pupils

  12. The Cauchy problem for space-time monopole equations in Sobolev spaces

    NASA Astrophysics Data System (ADS)

    Huh, Hyungjin; Yim, Jihyun

    2018-04-01

    We consider the initial value problem of space-time monopole equations in one space dimension with initial data in Sobolev space Hs. Observing null structures of the system, we prove local well-posedness in almost critical space. Unconditional uniqueness and global existence are proved for s ≥ 0. Moreover, we show that the H1 Sobolev norm grows at a rate of at most c exp(ct2).

  13. Space power systems technology enablement study. [for the space transportation system

    NASA Technical Reports Server (NTRS)

    Smith, L. D.; Stearns, J. W.

    1978-01-01

    The power system technologies which enable or enhance future space missions requiring a few kilowatts or less and using the space shuttle were assessed. The advances in space power systems necessary for supporting the capabilities of the space transportation system were systematically determined and benefit/cost/risk analyses were used to identify high payoff technologies and technological priorities. The missions that are enhanced by each development are discussed.

  14. Space Weather Monitoring for ISS Space Environments Engineering and Crew Auroral Observations

    NASA Technical Reports Server (NTRS)

    Minow, Joseph; Pettit, Donald R.; Hartman, William A.

    2012-01-01

    Today s presentation describes how real time space weather data is used by the International Space Station (ISS) space environments team to obtain data on auroral charging of the ISS vehicle and support ISS crew efforts to obtain auroral images from orbit. Topics covered include: Floating Potential Measurement Unit (FPMU), . Auroral charging of ISS, . Real ]time space weather monitoring resources, . Examples of ISS auroral charging captured from space weather events, . ISS crew observations of aurora.

  15. Space Science

    NASA Image and Video Library

    1999-04-01

    NASA's Space Optics Manufacturing Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century - including the long-term goal of imaging Earth-like planets in distant solar systems. To reduce the cost of mirror fabrication, Marshall Space Flight Center (MSFC) has developed replication techniques, the machinery, and materials to replicate electro-formed nickel mirrors. The process allows fabricating precisely shaped mandrels to be used and reused as masters for replicating high-quality mirrors. Image shows Dr. Alan Shapiro cleaning mirror mandrel to be applied with highly reflective and high-density coating in the Large Aperture Coating Chamber, MFSC Space Optics Manufacturing Technology Center (SOMTC).

  16. Space Elevators: Building a Permanent Bridge for Space Exploration and Economic Development

    NASA Technical Reports Server (NTRS)

    Smitherman, David V., Jr.; Howell, Joe T. (Technical Monitor)

    2000-01-01

    A space elevator is a physical connection from the surface of the Earth to a geo-stationary orbit above the Earth approximately 35,786 km in altitude. Its center of mass is at the geo-stationary point such that it has a 24-hour orbit, and stays over the same point above the equator as the Earth rotates on its axis. The structure is utilized as a transportation and utility system for moving payloads, power, and gases between the surface of the Earth and space. It makes the physical connection from Earth to space in the same way a bridge connects two cities across a body of' water. The space elevator may be an important concept for the future development of space in the latter part of the 21th century. It has the potential to provide mass-transportation to space in the same way highways, railroads, power lines, and pipelines provide mass-transportation across the Earth's surface. The low energy requirements for moving payloads up and down the elevator make it one of only a few concepts that has the potential of lowering the cost to orbit to less than $10 per kilogram. This paper will summarize the findings from a 1999 NASA workshop on Space Elevators held at the NASA Marshall Space Flight Center (MSFC). The workshop was sponsored by the Advanced Projects Office in the Flight Projects Directorate at MSFC, and was organized in cooperation with the Advanced Space Transportation Program at MSFC and the Advanced Concepts Office in the Office of Space Flight at NASA Headquarters. New concepts will be examined for space elevator construction and a number of issues will be discussed that has helped to bring the space elevator concept out of the realm of science fiction and into the realm of possibility. In conclusion, it appears that the space elevator concept may well he possible in the latter part of the 21st century if proper planning and technology development is emphasized to resolve key issues in the development of this advanced space infrastructure concept.

  17. Space Shuttle Placement Announcement

    NASA Image and Video Library

    2011-04-12

    From left, Pilot of the first space shuttle mission, STS-1, Bob Crippen, NASA Administrator Charles Bolden, NASA Johnson Space Center Director of Flight Crew Operations, and Astronaut, Janet Kavandi, NASA Kennedy Space Center Director and former astronaut Bob Cabana, and Endeavour Vehicle Manager for United Space Alliance Mike Parrish pose for a photograph outside of the an Orbiter Processing Facility with the space shuttle Atlantis shortly after Bolden announced where four space shuttle orbiters will be permanently displayed at the conclusion of the Space Shuttle Program, Tuesday, April 12, 2011, at Kennedy Space Center in Cape Canaveral, Fla. The four orbiters, Enterprise, which currently is on display at the Smithsonian's Steven F. Udvar-Hazy Center near Washington Dulles International Airport, will move to the Intrepid Sea, Air & Space Museum in New York, Discovery will move to Udvar-Hazy, Endeavour will be displayed at the California Science Center in Los Angeles and Atlantis, in background, will be displayed at the Kennedy Space Center Visitor’s Complex. Photo Credit: (NASA/Bill Ingalls)

  18. U.S. space strategy

    NASA Astrophysics Data System (ADS)

    Robb, David W.

    1984-04-01

    Following the formal announcement of a national space strategy in August, President Ronald Reagan is moving ahead on many of his administration's declared objectives for strengthening the U.S. role in space-based research and space exploration.Possibly the most significant long-term aspect of the administration's national space strategy is its emphasis on international cooperation. While the U.S. space program in the 1960s and 1970s was fueled by intense competition in the race to be the first to put a man on the moon, it may very well be characterized through the beginning of the next century by the spirit of international collaboration. The national space strategy calls for “increased international cooperation in civil space activities,” particularly in the “development and utilization” of the space station. In addition, in late October, President Reagan announced the possibility of a joint U.S.-Soviet simulated space rescue mission. In his statement, Reagan said that the U.S. “is prepared to work with the Soviets on cooperation in space in programs which are mutually beneficial and productive.”

  19. Space Shuttle Project

    NASA Image and Video Library

    1992-09-12

    A smooth countdown culminated in a picture-perfect launch as the Space Shuttle Endeavour (STS-47) climbed skyward atop a ladder of billowing smoke. Primary payload for the plarned seven-day flight was Spacelab-J science laboratory. The second flight of Endeavour marks a number of historic firsts: the first space flight of an African-American woman, the first Japanese citizen to fly on a Space Shuttle, and the first married couple to fly in space.

  20. Ultrasound in space

    NASA Technical Reports Server (NTRS)

    Martin, David S.; South, Donna A.; Garcia, Kathleen M.; Arbeille, Philippe

    2003-01-01

    Physiology of the human body in space has been a major concern for space-faring nations since the beginning of the space era. Ultrasound (US) is one of the most cost effective and versatile forms of medical imaging. As such, its use in characterizing microgravity-induced changes in physiology is being realized. In addition to the use of US in related ground-based studies, equipment has also been modified to fly in space. This involves alteration to handle the stresses of launch and different power and cooling requirements. Study protocols also have been altered to accommodate the microgravity environment. Ultrasound studies to date have shown a pattern of adaptation to microgravity that includes changes in cardiac chamber sizes and vertebral spacing. Ultrasound has been and will continue to be an important component in the investigation of physiological and, possibly, pathologic changes occurring in space or as a result of spaceflight.

  1. Space power for space

    NASA Technical Reports Server (NTRS)

    Mullin, J. P.

    1978-01-01

    The total energy demanded by space missions of the future is expected to exceed past needs by orders of magnitude. The unit costs of this energy must be reduced from present levels if these missions are to be carried out at projected budget levels. The broad employment of electric propulsion and the capability to utilize novel high power sensors hinge on the availability of systems lighter by factors of ten or more than have flown to date. The NASA program aimed at providing the technological basis to meet these demands is described in this paper. Research and technology efforts in areas of energy conversion, storage and management are covered. In addition, work aimed at evolving the understanding necessary to cope with space environment interactions and at advanced concepts is described.

  2. Marshall Space Flight Center Technology Capabilities for Use in Space Situational Awareness Activities

    NASA Technical Reports Server (NTRS)

    Gagliano, Larry; McLeod, Todd; Hovater, Mary A.

    2017-01-01

    Marshall performs research, integrates information, matures technologies, and enhances science to bring together a diverse portfolio of products and services of interest for Space Situational Awareness (SSA) and Space Asset Management (SAM), all of which can be accessed through partnerships with Marshall. Integrated Space Situational Awareness and Asset Management (ISSAAM) is an initiative of NASA's Marshall Space Flight Center to improve space situational awareness and space asset management through technical innovation, collaboration, and cooperation with U.S. Government agencies and the global space community. Marshall Space Flight Center provides solutions for complex issues with in-depth capabilities, a broad range of experience, and expertise unique in the world, and all available in one convenient location. NASA has longstanding guidelines that are used to assess space objects. Specifically, Marshall Space Flight Center has the capabilities, facilities and expertise to address the challenges that space objects, such as near-Earth objects (NEO) or Orbital Debris pose. ISSAAM's three pronged approach brings together vital information and in-depth tools working simultaneously toward examining the complex problems encountered in space situational awareness. Marshall's role in managing, understanding and planning includes many projects grouped under each prong area: Database/Analyses/Visualization; Detection/Tracking/ Mitigation/Removal. These are not limited to those listed below.

  3. Space 2000 Symposium

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The purpose of the Space 2000 Symposium is to present the creativity and achievements of key figures of the 20th century. It offers a retrospective discussion on space exploration. It considers the future of the enterprise, and the legacy that will be left for future generations. The symposium includes panel discussions, smaller session meetings with some panelists, exhibits, and displays. The first session entitled "From Science Fiction to Science Facts" commences after a brief overview of the symposium. The panel discussions include talks on space exploration over many decades, and the missions of the millennium to search for life on Mars. The second session, "Risks and Rewards of Human Space Exploration," focuses on the training and health risks that astronauts face on their exploratory mission to space. Session three, "Messages and Messengers Informing and Inspire Space Exploration and the Public," focuses on the use of TV medium by educators and actors to inform and inspire a wide variety of audiences with adventures of space exploration. Session four, "The Legacy of Carl Sagan," discusses the influences made by Sagan to scientific research and the general public. In session five, "Space Exploration for a new Generation," two student speakers and the NASA Administrator Daniel S. Goldin address the group. Session six, "Destiny or Delusion? -- Humankind's Place in the Cosmos," ends the symposium with issues of space exploration and some thought provoking questions. Some of these issues and questions are: what will be the societal implications if we discover the origin of the universe, stars, or life; what will be the impact if scientists find clear evidence of life outside the domains of the Earth; should there be limits to what humans can or should learn; and what visionary steps should space-faring people take now for future generations.

  4. FDIR: To Increase the Reuse of the Design

    NASA Astrophysics Data System (ADS)

    Alison, Bernard; Parent, Loic; Provost-Grellier, Antoine; De-Ferluc, Regis

    2012-08-01

    The Failure Detection, Isolation and Recovery (FDIR) is a key function for the safety and the availability of a spacecraft in orbit. This function involves the totality of the avionics and the recovery efficiency directly depends on the software embedded on the On Board Computer and the Reconfiguration Module (hardware only) which is the ultimate barrier to avoid the loss of the spacecraft in case of serious failure.The design of the FDIR becomes more and more complex to fit the always more stringent requirements: to preserve the mission as long as possible to maximise the availability or to perform critical phases.In parallel with the increase of the complexity of the avionics, the failure cases and the feared events become more and more numerous. This trend leads to increase the cost and the delay of the FDIR validation.Thales Alenia Space, as satellite Prime, is aware of the problematic of the FDIR and has searched for several years solutions to formalize the design of the FDIR which is a way to enhance the reuse of the design from one mission to an other and to facilitate the validation phase.

  5. Alphabus Mechanical Validation Plan and Test Campaign

    NASA Astrophysics Data System (ADS)

    Calvisi, G.; Bonnet, D.; Belliol, P.; Lodereau, P.; Redoundo, R.

    2012-07-01

    A joint team of the two leading European satellite companies (Astrium and Thales Alenia Space) worked with the support of ESA and CNES to define a product line able to efficiently address the upper segment of communications satellites : Alphabus Starting in 2009 and up to 2011 the mechanical validation of the Alphabus platform has been obtained thanks to static tests performed on dedicated static model and to environmental test performed on the first satellite based on Alphabus: Alphasat I-XL. The mechanical validation of the Alphabus platform presented an excellent opportunity to improve the validation and qualification process, with respect to static, sine vibrations, acoustic and L/V shock environment, minimizing recurrent cost of manufacturing, integration and testing. A main driver on mechanical testing is that mechanical acceptance testing at satellite level will be performed with empty tanks due to technical constraints (limitation of existing vibration devices) and programmatic advantages (test risk reduction, test schedule minimization). In this paper the impacts that such testing logic have on validation plan are briefly recalled and its actual application for Alphasat PFM mechanical test campaign is detailed.

  6. Using space for technology development - Planning for the Space Station era

    NASA Technical Reports Server (NTRS)

    Ambrus, Judith H.; Couch, Lana M.; Rosen, Robert R.; Gartrell, Charles F.

    1989-01-01

    Experience with the Shuttle and free-flying satellites as technology test-beds has shown the feasibility and desirability of using space assets as a facility for technology development. Thus, by the time the Space Station era will have arrived, the technologist will be ready for an accessible engineering facility in space. As the 21st century is approached, it is expected that virtually every flight to the Space Station Freedom will be required to carry one or more research, technology, and engineering experiments. The experiments planned will utilize both the pressurized volume, and the external payload attachment facilities. A unique, but extremely important, class of experiments will use the Space Station itself as an experimental vehicle. Based upon recent examination of possible Space Station Freedom assembly sequences, technology payloads may well utilize 20-30 percent of available resources.

  7. Highlights of Space Weather Services/Capabilities at NASA/GSFC Space Weather Center

    NASA Technical Reports Server (NTRS)

    Fok, Mei-Ching; Zheng, Yihua; Hesse, Michael; Kuznetsova, Maria; Pulkkinen, Antti; Taktakishvili, Aleksandre; Mays, Leila; Chulaki, Anna; Lee, Hyesook

    2012-01-01

    The importance of space weather has been recognized world-wide. Our society depends increasingly on technological infrastructure, including the power grid as well as satellites used for communication and navigation. Such technologies, however, are vulnerable to space weather effects caused by the Sun's variability. NASA GSFC's Space Weather Center (SWC) (http://science.gsfc.nasa.gov//674/swx services/swx services.html) has developed space weather products/capabilities/services that not only respond to NASA's needs but also address broader interests by leveraging the latest scientific research results and state-of-the-art models hosted at the Community Coordinated Modeling Center (CCMC: http://ccmc.gsfc.nasa.gov). By combining forefront space weather science and models, employing an innovative and configurable dissemination system (iSWA.gsfc.nasa.gov), taking advantage of scientific expertise both in-house and from the broader community as well as fostering and actively participating in multilateral collaborations both nationally and internationally, NASA/GSFC space weather Center, as a sibling organization to CCMC, is poised to address NASA's space weather needs (and needs of various partners) and to help enhancing space weather forecasting capabilities collaboratively. With a large number of state-of-the-art physics-based models running in real-time covering the whole space weather domain, it offers predictive capabilities and a comprehensive view of space weather events throughout the solar system. In this paper, we will provide some highlights of our service products/capabilities. In particular, we will take the 23 January and the 27 January space weather events as examples to illustrate how we can use the iSWA system to track them in the interplanetary space and forecast their impacts.

  8. Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Griffin, Amanda

    2012-01-01

    Among 2011's many accomplishments, we safely retired the Space Shuttle Program after 30 incredible years; completed the International Space Station and are taking steps to enable it to reach its full potential as a multi-purpose laboratory; and helped to expand scientific knowledge with missions like Aquarius, GRAIL, and the Mars Science Laboratory. Responding to national budget challenges, we are prioritizing critical capabilities and divesting ourselves of assets no longer needed for NASA's future exploration programs. Since these facilities do not have to be maintained or demolished, the government saves money. At the same time, our commercial partners save money because they do not have to build new facilities. It is a win-win for everyone. Moving forward, 2012 will be even more historically significant as we celebrate the 50th Anniversary of Kennedy Space Center. In the coming year, KSC will facilitate commercial transportation to low-Earth orbit and support the evolution of the Space Launch System and Orion crew vehicle as they ready for exploration missions, which will shape how human beings view the universe. While NASA's Vision is to lead scientific and technological advances in aeronautics and space for a Nation on the frontier of discovery KSC's vision is to be the world's preeminent launch complex for government and commercial space access, enabling the world to explore and work in space. KSC's Mission is to safely manage, develop, integrate, and sustain space systems through partnerships that enable innovative, diverse access to space and inspires the Nation's future explorers.

  9. Legacy of Operational Space Medicine During the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Stepaniakm, P.; Gilmore, S.; Johnston, S.; Chandler, M.; Beven, G.

    2011-01-01

    The Johnson Space Center s Medical Science Division branches were involved in preparing astronauts for space flight during the 30 year period of the Space Shuttle Program. These branches included the Flight Medicine Clinic, Medical Operations and the Behavioral Health Program. The components of each facet of these support services were: the Flight Medicine Clinic s medical selection process and medical care; the Medical Operations equipment, training, procedures and emergency medical services; and the Behavioral Health and Performance operations. Each presenter will discuss the evolution of its operations, implementations, lessons learned and recommendations for future vehicles and short duration space missions.

  10. International Space Station

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This artist's concept depicts the completely assembled International Space Station (ISS) passing over the Straits of Gibraltar and the Mediterranean Sea. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.

  11. International Space Station

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This artist's concept depicts the completely assembled International Space Station (ISS) passing over Florida and the Bahamas. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating in the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.

  12. Trends in space activities in 2014: The significance of the space activities of governments

    NASA Astrophysics Data System (ADS)

    Paikowsky, Deganit; Baram, Gil; Ben-Israel, Isaac

    2016-01-01

    This article addresses the principal events of 2014 in the field of space activities, and extrapolates from them the primary trends that can be identified in governmental space activities. In 2014, global space activities centered on two vectors. The first was geopolitical, and the second relates to the matrix between increasing commercial space activities and traditional governmental space activities. In light of these two vectors, the article outlines and analyzes trends of space exploration, human spaceflights, industry and technology, cooperation versus self-reliance, and space security and sustainability. It also reviews the space activities of the leading space-faring nations.

  13. Space Science

    NASA Image and Video Library

    2003-06-01

    NASA’s Virtual Glovebox (VGX) was developed to allow astronauts on Earth to train for complex biology research tasks in space. The astronauts may reach into the virtual environment, naturally manipulating specimens, tools, equipment, and accessories in a simulated microgravity environment as they would do in space. Such virtual reality technology also provides engineers and space operations staff with rapid prototyping, planning, and human performance modeling capabilities. Other Earth based applications being explored for this technology include biomedical procedural training and training for disarming bio-terrorism weapons.

  14. Space Shuttle

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A general description of the space shuttle program is presented, with emphasis on its application to the use of space for commercial, scientific, and defense needs. The following aspects of the program are discussed: description of the flight system (orbiter, external tank, solid rocket boosters) and mission profile, direct benefits related to life on earth (both present and expected), description of the space shuttle vehicle and its associated supporting systems, economic impacts (including indirect benefits such as lower inflation rates), listing of participating organizations.

  15. Space Base Concept

    NASA Technical Reports Server (NTRS)

    1970-01-01

    This is an illustration of the Space Base concept. In-house work of the Marshall Space Flight Center, as well as a Phase B contract with the McDornel Douglas Astronautics Company, resulted in a preliminary design for a space station in 1969 and l970. The Marshall-McDonnel Douglas approach envisioned the use of two common modules as the core configuration of a 12-man space station. Each common module was 33 feet in diameter and 40 feet in length and provided the building blocks, not only for the space station, but also for a 50-man space base. Coupled together, the two modules would form a four-deck facility: two decks for laboratories and two decks for operations and living quarters. Zero-gravity would be the normal mode of operation, although the station would have an artificial-gravity capability. This general-purpose orbital facility was to provide wide-ranging research capabilities. The design of the facility was driven by the need to accommodate a broad spectrum of activities in support of astronomy, astrophysics, aerospace medicine, biology, materials processing, space physics, and space manufacturing. To serve the needs of Earth observations, the station was to be placed in a 242-nautical-mile orbit at a 55-degree inclination. An Intermediate-21 vehicle (comprised of Saturn S-IC and S-II stages) would have launched the station in 1977.

  16. Sacred space, analytic space, the self, and god.

    PubMed

    Rizzuto, Ana-María

    2009-01-01

    Parental figures influence the type of religious experiences a person may have. Clinical material from the analysis of a young woman documents the importance of having an actual sacred space in which one can be oneself in religious life and a psychoanalytic space during treatment to progressively experience oneself.

  17. Management of outer space

    NASA Astrophysics Data System (ADS)

    Perek, Lubos

    1993-10-01

    Various aspects of space-environment management are discussed. Attention is called to the fact that, while space radio communications are already under an adequate management by the International Communications Union, the use of nuclear power sources is regulated by the recently adopted set of principles, and space debris will be discussed in the near future at the UN COPUOS, other aspects of management of outer space received little or no attention of the international community. These include the competency of crews and technical equipment of spacecraft launched by newcomers to space exploration; monitoring of locations and motions of space objects (now in national hands), with relevant data made accessible through a computer network; and the requirement to use space only for beneficial purposes and not for promoting narrow and debatable interests damaging the outer space environment and impeding on astronomical observations. It is suggested that some of these tasks would be best performed by an international space agency within the UN system of organizations.

  18. Start of space tourism

    NASA Astrophysics Data System (ADS)

    Nagatomo, Makoto

    1993-03-01

    Space tourism means commercialization of manned space flight. From the early stage of space development, space commercialization is a profound theme in multidisciplinary fields, on the basis of a principle that the outcomes of advanced technique developed by tax should be returned to citizens. In these days, space satellite system in which users pay a fee for utilization has succeeded commercially in business such as communication network or broadcasting, and an attempt has been made to observe the earth from outer space to resolve global problems, such as environmental destruction. There is also an increasing interest in space tourism, however, many obstacles should be overcome for the realization, especially the medical problems such as effect of acceleration, cosmic ray, noise or weightless condition. In addition, the space flight business should be managed on the commercial base so that reasonable cost and large number of passengers are essential. It is necessary to design rockets suitable for tourism. For attractive design, the policy of space tourism should be clarified.

  19. Just in Time in Space or Space Based JIT

    NASA Technical Reports Server (NTRS)

    VanOrsdel, Kathleen G.

    1995-01-01

    Our satellite systems are mega-buck items. In today's cost conscious world, we need to reduce the overall costs of satellites if our space program is to survive. One way to accomplish this would be through on-orbit maintenance of parts on the orbiting craft. In order to accomplish maintenance at a low cost I advance the hypothesis of having parts and pieces (spares) waiting. Waiting in the sense of having something when you need it, or just-in-time. The JIT concept can actually be applied to space processes. Its definition has to be changed just enough to encompass the needs of space. Our space engineers tell us which parts and pieces the satellite systems might be needing once in orbit. These items are stored in space for the time of need and can be ready when they are needed -- or Space Based JIT. When a system has a problem, the repair facility is near by and through human or robotics intervention, it can be brought back into service. Through a JIT process, overall system costs could be reduced as standardization of parts is built into satellite systems to facilitate reduced numbers of parts being stored. Launch costs will be contained as fewer spare pieces need to be included in the launch vehicle and the space program will continue to thrive even in this era of reduced budgets. The concept of using an orbiting parts servicer and human or robotics maintenance/repair capabilities would extend satellite life-cycle and reduce system replacement launches. Reductions of this nature throughout the satellite program result in cost savings.

  20. Space Shuttle Projects

    NASA Image and Video Library

    1995-11-01

    This image of the Russian Mir Space Station was photographed by a crewmember of the STS-74 mission when the Orbiter Atlantis was approaching the Mir Space Station. STS-74 was the second Space Shuttle/Mir docking mission. The Docking Module was delivered and installed, making it possible for the Space Shuttle to dock easily with Mir. The Orbiter Atlantis delivered water, supplies, and equipment, including two new solar arrays to upgrade the Mir, and returned to Earth with experiment samples, equipment for repair and analysis, and products manufactured on the Station. Mir was constructed in orbit by cornecting different modules, seperately launched from 1986 to 1996, providing a large and livable scientific laboratory in space. The 100-ton Mir was as big as six school buses and commonly housed three crewmembers. Mir was continuously occupied, except for two short periods, and hosted international scientists and American astronauts until August 1999. The journey of the 15-year-old Russian Mir Space Station ended March 23, 2001, as Mir re-entered the Earth's atmosphere and fell into the south Pacific ocean . STS-74 was launched on November 12, 1995, and landed at the Kennedy Space Center on November 20, 1995.