Science.gov

Sample records for alcohol acetyl transferase

  1. Characterization and Prediction of Lysine (K)-Acetyl-Transferase Specific Acetylation Sites*

    PubMed Central

    Li, Tingting; Du, Yipeng; Wang, Likun; Huang, Lei; Li, Wenlin; Lu, Ming; Zhang, Xuegong; Zhu, Wei-Guo

    2012-01-01

    Lysine acetylation is a well-studied post-translational modification on both histone and nonhistone proteins. More than 2000 acetylated proteins and 4000 lysine acetylation sites have been identified by large scale mass spectrometry or traditional experimental methods. Although over 20 lysine (K)-acetyl-transferases (KATs) have been characterized, which KAT is responsible for a given protein or lysine site acetylation is mostly unknown. In this work, we collected KAT-specific acetylation sites manually and analyzed sequence features surrounding the acetylated lysine of substrates from three main KAT families (CBP/p300, GCN5/PCAF, and the MYST family). We found that each of the three KAT families acetylates lysines with different sequence features. Based on these differences, we developed a computer program, Acetylation Set Enrichment Based method to predict which KAT-families are responsible for acetylation of a given protein or lysine site. Finally, we evaluated the efficiency of our method, and experimentally detected four proteins that were predicted to be acetylated by two KAT families when one representative member of the KAT family is over expressed. We conclude that our approach, combined with more traditional experimental methods, may be useful for identifying KAT families responsible for acetylated substrates proteome-wide. PMID:21964354

  2. MOF Acetyl Transferase Regulates Transcription and Respiration in Mitochondria.

    PubMed

    Chatterjee, Aindrila; Seyfferth, Janine; Lucci, Jacopo; Gilsbach, Ralf; Preissl, Sebastian; Böttinger, Lena; Mårtensson, Christoph U; Panhale, Amol; Stehle, Thomas; Kretz, Oliver; Sahyoun, Abdullah H; Avilov, Sergiy; Eimer, Stefan; Hein, Lutz; Pfanner, Nikolaus; Becker, Thomas; Akhtar, Asifa

    2016-10-20

    A functional crosstalk between epigenetic regulators and metabolic control could provide a mechanism to adapt cellular responses to environmental cues. We report that the well-known nuclear MYST family acetyl transferase MOF and a subset of its non-specific lethal complex partners reside in mitochondria. MOF regulates oxidative phosphorylation by controlling expression of respiratory genes from both nuclear and mtDNA in aerobically respiring cells. MOF binds mtDNA, and this binding is dependent on KANSL3. The mitochondrial pool of MOF, but not a catalytically deficient mutant, rescues respiratory and mtDNA transcriptional defects triggered by the absence of MOF. Mof conditional knockout has catastrophic consequences for tissues with high-energy consumption, triggering hypertrophic cardiomyopathy and cardiac failure in murine hearts; cardiomyocytes show severe mitochondrial degeneration and deregulation of mitochondrial nutrient metabolism and oxidative phosphorylation pathways. Thus, MOF is a dual-transcriptional regulator of nuclear and mitochondrial genomes connecting epigenetics and metabolism.

  3. Aerobic production of isoamyl acetate by overexpression of the yeast alcohol acetyl-transferases AFT1 and AFT2 in Escherichia coli and using low-cost fermentation ingredients.

    PubMed

    Singh, R; Vadlani, P V; Harrison, M L; Bennett, G N; San, K-Y

    2008-06-01

    Isoamyl acetate, produced via fermentation, is a natural flavor chemical with applications in the food industry. Two alcohol acetyltransferases from Saccharomyces cerevisiae (ATF1 and ATF2) can catalyze the esterification of isoamyl alcohol with acetyl coenzyme A. The respective genes were cloned and expressed in an appropriate ack-pta(-) strain of Escherichia coli. The engineered strains produce isoamyl acetate when isoamyl alcohol is added to the culture medium. Aerobic shake flask experiments examined isoamyl acetate production over various growth times, temperatures, and initial optical densities. The strain carrying the pBAD-ATF1 plasmid exhibited a high molar ester yield from glucose (1.13) after 48 h of aerobic growth at 25 degrees C. Low-cost media components, such as fusel oil, sorghum glucose and corn steep liquor, were found to give a high yield of isoamyl acetate. High-cell-density gave an increased isoamyl acetate yield of 0.18 g/g of glucose consumed.

  4. Purification and properties of an O-acetyl-transferase from Escherichia coli that can O-acetylate polysialic acid sequences

    SciTech Connect

    Higa, H.; Varki, A.

    1986-05-01

    Certain strains of bacteria synthesize an outer polysialic acid (K1) capsule. Some strains of K1/sup +/ E.coli are also capable of adding O-acetyl-esters to the exocyclic hydroxyl groups of the sialic acid residues. Both the capsule and the O-acetyl modification have been correlated with differences in antigenicity and pathogenicity. The authors have developed an assay for an O-acetyl-transferase in E.coli that transfers O-(/sup 3/H)acetyl groups from (/sup 3/H)acetyl-Coenzyme A to colominic acid (fragments of the polysialic acid capsule). Using this assay, the enzyme was solubilized, and purified approx. 600-fold using a single affinity chromatography step with Procion Red-A Agarose. The enzyme also binds to Coenzyme A Sepharose, and can be eluted with high salt or Coenzyme A. The partially purified enzyme has a pH optimum of 7.0 - 7.5, is unaffected by divalent cations, is inhibited by high salt concentrations, is inhibited by Coenzyme A (50% inhibition at 100 ..mu..M), and shows an apparent Km for colominic acid of 3.7 mM (sialic acid concentration). This enzyme could be involved in the O-acetyl +/- form variation seen in some strains of K1/sup +/ E.coli.

  5. p300/CBP acetyl transferases interact with and acetylate the nucleotide excision repair factor XPG.

    PubMed

    Tillhon, Micol; Cazzalini, Ornella; Nardo, Tiziana; Necchi, Daniela; Sommatis, Sabrina; Stivala, Lucia A; Scovassi, A Ivana; Prosperi, Ennio

    2012-10-01

    Nucleotide excision repair (NER) is an important DNA repair mechanism through which cells remove bulky DNA lesions. Following DNA damage, the histone acetyltransferase (HAT) p300 (also referred to as lysine acetyltransferase or KAT) is known to associate with proliferating cell nuclear antigen (PCNA), a master regulator of DNA replication and repair processes. This interaction, which results in HAT inhibition, may be dissociated by the cell cycle inhibitor p21(CDKN1A), thereby restoring p300 activity; however, the role of this protein interplay is still unclear. Here, we report that silencing p300 or its homolog CREB-binding protein (CBP) by RNA interference (RNAi) significantly reduces DNA repair synthesis in human fibroblasts. In addition, we determined whether p300 and CBP may associate with and acetylate specific NER factors such as XPG, the 3'-endonuclease that is involved in the incision/excision step and is known to interact with PCNA. Our results show that p300 and CBP interact with XPG, which has been found to be acetylated in vivo. XPG is acetylated by p300 in vitro, and this reaction is inhibited by PCNA. Knocking down both p300/CBP by RNAi or by chemical inhibition with curcumin greatly reduced XPG acetylation, and a concomitant accumulation of the protein at DNA damage sites was observed. The ability of p21 to bind PCNA was found to regulate the interaction between p300 and XPG, and an abnormal accumulation of XPG at DNA damage sites was also found in p21(-/-) fibroblasts. These results indicate an additional function of p300/CBP in NER through the acetylation of XPG protein in a PCNA-p21 dependent manner.

  6. Riboswitch control of induction of aminoglycoside resistance acetyl and adenyl-transferases.

    PubMed

    He, Weizhi; Zhang, Xuhui; Zhang, Jun; Jia, Xu; Zhang, Jing; Sun, Wenxia; Jiang, Hengyi; Chen, Dongrong; Murchie, Alastair I H

    2013-08-01

    The acquisition of antibiotic resistance by human pathogens poses a significant threat to public health. The mechanisms that control the proliferation and expression of antibiotic resistance genes are not yet completely understood. The aminoglycosides are a historically important class of antibiotics that were introduced in the 1940s. Aminoglycoside resistance is conferred most commonly through enzymatic modification of the drug or enzymatic modification of the target rRNA through methylation or through the overexpression of efflux pumps. In our recent paper, we reported that expression of the aminoglycoside resistance genes encoding the aminoglycoside acetyl transferase (AAC) and aminoglycoside adenyl transferase (AAD) enzymes was controlled by an aminoglycoside-sensing riboswitch RNA. This riboswitch is embedded in the leader RNA of the aac/aad genes and is associated with the integron cassette system. The leader RNA can sense and bind specific aminoglycosides such that the binding causes a structural transition in the leader RNA, which leads to the induction of aminoglycoside antibiotic resistance. Specific aminoglycosides induce reporter gene expression mediated by the leader RNA. Aminoglycoside RNA binding was measured directly and, aminoglycoside-induced changes in RNA structure monitored by chemical probing. UV cross-linking and mutational analysis identified potential aminoglycoside binding sites on the RNA.

  7. Role of Carnitine Acetyl Transferase in Regulation of Nitric Oxide Signaling in Pulmonary Arterial Endothelial Cells

    PubMed Central

    Sharma, Shruti; Sun, Xutong; Agarwal, Saurabh; Rafikov, Ruslan; Dasarathy, Sridevi; Kumar, Sanjiv; Black, Stephen M.

    2013-01-01

    Congenital heart defects with increased pulmonary blood flow (PBF) result in pulmonary endothelial dysfunction that is dependent, at least in part, on decreases in nitric oxide (NO) signaling. Utilizing a lamb model with left-to-right shunting of blood and increased PBF that mimics the human disease, we have recently shown that a disruption in carnitine homeostasis, due to a decreased carnitine acetyl transferase (CrAT) activity, correlates with decreased bioavailable NO. Thus, we undertook this study to test the hypothesis that the CrAT enzyme plays a major role in regulating NO signaling through its effect on mitochondrial function. We utilized the siRNA gene knockdown approach to mimic the effect of decreased CrAT activity in pulmonary arterial endothelial cells (PAEC). Our data indicate that silencing the CrAT gene disrupted cellular carnitine homeostasis, reduced the expression of mitochondrial superoxide dismutase-and resulted in an increase in oxidative stress within the mitochondrion. CrAT gene silencing also disrupted mitochondrial bioenergetics resulting in reduced ATP generation and decreased NO signaling secondary to a reduction in eNOS/Hsp90 interactions. Thus, this study links the disruption of carnitine homeostasis to the loss of NO signaling observed in children with CHD. Preserving carnitine homeostasis may have important clinical implications that warrant further investigation. PMID:23344032

  8. Behavioral Neuroadaptation to Alcohol: From Glucocorticoids to Histone Acetylation

    PubMed Central

    Mons, Nicole; Beracochea, Daniel

    2016-01-01

    neuroadaptive changes during withdrawal from chronic alcohol intake. It then highlights the role of cAMP–PKA–CREB signaling cascade and histone acetylation within the PFC and limbic structures in alcohol-induced anxiety and behavioral impairments, and how an understanding of functional alterations of these pathways might lead to better treatments for neuropsychiatric disorders. PMID:27766083

  9. Alcohol-Induced Histone Acetylation Reveals a Gene Network Involved in Alcohol Tolerance

    PubMed Central

    Ghezzi, Alfredo; Krishnan, Harish R.; Lew, Linda; Prado, Francisco J.; Ong, Darryl S.; Atkinson, Nigel S.

    2013-01-01

    Sustained or repeated exposure to sedating drugs, such as alcohol, triggers homeostatic adaptations in the brain that lead to the development of drug tolerance and dependence. These adaptations involve long-term changes in the transcription of drug-responsive genes as well as an epigenetic restructuring of chromosomal regions that is thought to signal and maintain the altered transcriptional state. Alcohol-induced epigenetic changes have been shown to be important in the long-term adaptation that leads to alcohol tolerance and dependence endophenotypes. A major constraint impeding progress is that alcohol produces a surfeit of changes in gene expression, most of which may not make any meaningful contribution to the ethanol response under study. Here we used a novel genomic epigenetic approach to find genes relevant for functional alcohol tolerance by exploiting the commonalities of two chemically distinct alcohols. In Drosophila melanogaster, ethanol and benzyl alcohol induce mutual cross-tolerance, indicating that they share a common mechanism for producing tolerance. We surveyed the genome-wide changes in histone acetylation that occur in response to these drugs. Each drug induces modifications in a large number of genes. The genes that respond similarly to either treatment, however, represent a subgroup enriched for genes important for the common tolerance response. Genes were functionally tested for behavioral tolerance to the sedative effects of ethanol and benzyl alcohol using mutant and inducible RNAi stocks. We identified a network of genes that are essential for the development of tolerance to sedation by alcohol. PMID:24348266

  10. [Transferase activity of horse blood serum cholinesterase at hydrolysis of 1-methyl-8-acetoxychinolium iodide in the presence of aliphatic alcohols].

    PubMed

    Basova, N E; Kormilitsyn, B N; Perchenok, A Yu; Rozengart, E V; Saakov, V S; Suvorov, A A

    2014-01-01

    To check whether the horse blood serum butyrylcholinesterase expresses transferase activity at the complex ester hydrolysis in the presense of several low-molecular aliphatic alcohols, a study was performed with aid of the chromogenic substrate 1-methyl-8-acetoxychinolium whose phenolic hydrolysis product absorbs intensively at 445 nm, whereas the initial ester in this specter area practically does not absorb. This allowed measuring simultaneously the products of accumulation of both products of enzymatic hydrolysis: of acetic acid by the potentiometric, while of phenol--by the photometric method. Rates of formation of both products of enzymatic hydrolysis are practically equal in experiments with all studied alcohols. This indicates that horse blood serum butyrylcholinesterase under these experimental conditions does not catalize transfer of acetyl residue to the studied aliphatic alcohols, i. e. does not have transefase activity.

  11. N-Heterocyclic Carbene-Catalyzed Alcohol Acetylation: An Organic Experiment Using Organocatalysis

    ERIC Educational Resources Information Center

    Morgan, John P.; Shrimp, Jonathan H.

    2014-01-01

    Undergraduate students in the teaching laboratory have successfully used N-heterocyclic carbenes (NHCs) as organocatalysts for the acetylation of primary alcohols, despite the high water sensitivity of uncomplexed ("free") NHCs. The free NHC readily reacted with chloroform, resulting in an air- and moisture-stable adduct that liberates…

  12. Molecular cloning and heterologous expression of a 10-deacetylbaccatin III-10-O-acetyl transferase cDNA from Taxus x media.

    PubMed

    Guo, Binhui; Kai, Guoyin; Gong, Yifu; Jin, Hongbin; Wang, Yechun; Miao, Zhiqi; Sun, Xiaofen; Tang, Kexuan

    2007-06-01

    A full-length cDNA encoding 10-deacetylbaccatin III-10-O-acetyl transferase (designated as TmDBAT), which catalyzes the acetylation of the C-10 hydroxyl group of the advanced metabolite 10-deacetylbaccatin III (10-DAB) to yield baccatin III, the immediate diterpenoid precursor of Taxol, was isolated from Taxus x media. Heterologous expression of TmDBAT in E. coli demonstrated that TmDBAT was a functional gene. Tissue expression pattern analysis revealed that TmDBAT expressed strongly in leaves, weak in stems and no expression could be detected in fruits, implying that TmDBAT was tissue-specific. Expression profiling analysis of TmDBAT under different elicitor treatments including silver nitrate, ammonium ceric sulphate and methyl jasmonate indicated that TmDBAT was an elicitor-responsive gene. Southern blot analysis suggested that TmDBAT belonged to a small multigene family.

  13. Arylamine N-acetyl Transferase (NAT) in the blue secretion of Telescopium telescopium: xenobiotic metabolizing enzyme as a biomarker for detection of environmental pollution.

    PubMed

    Gorain, Bapi; Chakraborty, Sumon; Pal, Murari Mohan; Sarkar, Ratul; Samanta, Samir Kumar; Karmakar, Sanmoy; Sen, Tuhinadri

    2014-01-01

    Telescopium telescopium, a marine mollusc collected from Sundarban mangrove, belongs to the largest mollusca phylum in the world and exudes a blue secretion when stimulated mechanically. The blue secretion was found to metabolize (preferentially) para-amino benzoic acid, a substrate for N-acetyl transferase (NAT), thereby indicating acetyl transferase like activity of the secretion. Attempts were also made to characterise bioactive fraction of the blue secretion and to further use this as a biomarker for monitoring of marine pollution. NAT like enzyme from marine mollusc is a potential candidate for detoxification of different harmful chemicals. A partially purified extract of blue secretion was obtained by fractional precipitation with (NH4)2SO4. From different fractions obtained by precipitation, the 0-30% fraction (30S) displayed NAT like activity (using para amino benzoic acid as a substrate with para nitrophenyl phosphate or acetyl coenzyme A as acetyl group donors). Maximum NAT like enzyme activity was attained at 25°C and at a pH of 6. The enzyme activity was found to be inhibited by 5 mM phenyl methyl sulfonyl fluoride. The divalent metal ions reduced NAT like activity of 30S. Moreover, Cu(2+) and Zn(2+) (at concentration of 1 mM) completely inhibited NAT activity. The thermal stability and bench-top stability studies were performed and it was found that the enzyme was stable at room temperature for more than 24 hours. Results from the present study further indicate that heavy metal content in blue secretion gradually decreased from pre-monsoon to post-monsoon season, which also corresponded to the change in NAT like activity. Therefore, this article stresses the importance of biomarker research for monitoring pollution.

  14. Crystal Structure of TDP-Fucosamine Acetyl Transferase (WECD) from Escherichia Coli, an Enzyme Required for Enterobacterial Common Antigen Synthesis

    SciTech Connect

    Hung,M.; Rangarajan, E.; Munger, C.; Nadeau, G.; Sulea, T.; Matte, A.

    2006-01-01

    Enterobacterial common antigen (ECA) is a polysaccharide found on the outer membrane of virtually all gram-negative enteric bacteria and consists of three sugars, N-acetyl-D-glucosamine, N-acetyl-D-mannosaminuronic acid, and 4-acetamido-4,6-dideoxy-D-galactose, organized into trisaccharide repeating units having the sequence {yields}(3)-{alpha}-D-Fuc4NAc-(1{yields}4)-{beta}-D-ManNAcA-(1{yields}4)-{alpha}-D-GlcNAc-(1{yields}). While the precise function of ECA is unknown, it has been linked to the resistance of Shiga-toxin-producing Escherichia coli (STEC) O157:H7 to organic acids and the resistance of Salmonella enterica to bile salts. The final step in the synthesis of 4-acetamido-4,6-dideoxy-D-galactose, the acetyl-coenzyme A (CoA)-dependent acetylation of the 4-amino group, is carried out by TDP-fucosamine acetyltransferase (WecD). We have determined the crystal structure of WecD in apo form at a 1.95-Angstroms resolution and bound to acetyl-CoA at a 1.66-Angstroms resolution. WecD is a dimeric enzyme, with each monomer adopting the GNAT N-acetyltransferase fold, common to a number of enzymes involved in acetylation of histones, aminoglycoside antibiotics, serotonin, and sugars. The crystal structure of WecD, however, represents the first structure of a GNAT family member that acts on nucleotide sugars. Based on this cocrystal structure, we have used flexible docking to generate a WecD-bound model of the acetyl-CoA-TDP-fucosamine tetrahedral intermediate, representing the structure during acetyl transfer. Our structural data show that WecD does not possess a residue that directly functions as a catalytic base, although Tyr208 is well positioned to function as a general acid by protonating the thiolate anion of coenzyme A.

  15. ATP Synthesis-coupled and -uncoupled Acetate Production from Acetyl-CoA by Mitochondrial Acetate:Succinate CoA-transferase and Acetyl-CoA Thioesterase in Trypanosoma*

    PubMed Central

    Millerioux, Yoann; Morand, Pauline; Biran, Marc; Mazet, Muriel; Moreau, Patrick; Wargnies, Marion; Ebikeme, Charles; Deramchia, Kamel; Gales, Lara; Portais, Jean-Charles; Boshart, Michael; Franconi, Jean-Michel; Bringaud, Frédéric

    2012-01-01

    Insect stage trypanosomes use an “acetate shuttle” to transfer mitochondrial acetyl-CoA to the cytosol for the essential fatty acid biosynthesis. The mitochondrial acetate sources are acetate:succinate CoA-transferase (ASCT) and an unknown enzymatic activity. We have identified a gene encoding acetyl-CoA thioesterase (ACH) activity, which is shown to be the second acetate source. First, RNAi-mediated repression of ASCT in the ACH null background abolishes acetate production from glucose, as opposed to both single ASCT and ACH mutants. Second, incorporation of radiolabeled glucose into fatty acids is also abolished in this ACH/ASCT double mutant. ASCT is involved in ATP production, whereas ACH is not, because the ASCT null mutant is ∼1000 times more sensitive to oligomycin, a specific inhibitor of the mitochondrial F0/F1-ATP synthase, than wild-type cells or the ACH null mutant. This was confirmed by RNAi repression of the F0/F1-ATP synthase F1β subunit, which is lethal when performed in the ASCT null background but not in the wild-type cells or the ACH null background. We concluded that acetate is produced from both ASCT and ACH; however, only ASCT is responsible, together with the F0/F1-ATP synthase, for ATP production in the mitochondrion. PMID:22474284

  16. N-acetyl-cysteine prevents age-related hearing loss and the progressive loss of inner hair cells in γ-glutamyl transferase 1 deficient mice

    PubMed Central

    Ding, Dalian; Jiang, Haiyan; Chen, Guang-Di; Longo-Guess, Chantal; Muthaiah, Vijaya Prakash Krishnan; Tian, Cong; Sheppard, Adam; Salvi, Richard; Johnson, Kenneth R.

    2016-01-01

    Genetic factors combined with oxidative stress are major determinants of age-related hearing loss (ARHL), one of the most prevalent disorders of the elderly. Dwarf grey mice, Ggt1dwg/dwg, are homozygous for a loss of function mutation of the γ-glutamyl transferase 1 gene, which encodes an important antioxidant enzyme critical for the resynthesis of glutathione (GSH). Since GSH reduces oxidative damage, we hypothesized that Ggt1dwg/dwg mice would be susceptible to ARHL. Surprisingly, otoacoustic emissions and cochlear microphonic potentials, which reflect cochlear outer hair cell (OHC) function, were largely unaffected in mutant mice, whereas auditory brainstem responses and the compound action potential were grossly abnormal. These functional deficits were associated with an unusual and selective loss of inner hair cells (IHC), but retention of OHC and auditory nerve fibers. Remarkably, hearing deficits and IHC loss were completely prevented by N-acetyl-L-cysteine, which induces de novo synthesis of GSH; however, hearing deficits and IHC loss reappeared when treatment was discontinued. Ggt1dwg/dwgmice represent an important new model for investigating ARHL, therapeutic interventions, and understanding the perceptual and electrophysiological consequences of sensory deprivation caused by the loss of sensory input exclusively from IHC. PMID:26977590

  17. N-acetyl-cysteine prevents age-related hearing loss and the progressive loss of inner hair cells in γ-glutamyl transferase 1 deficient mice.

    PubMed

    Ding, Dalian; Jiang, Haiyan; Chen, Guang-Di; Longo-Guess, Chantal; Muthaiah, Vijaya Prakash Krishnan; Tian, Cong; Sheppard, Adam; Salvi, Richard; Johnson, Kenneth R

    2016-04-01

    Genetic factors combined with oxidative stress are major determinants of age-related hearing loss (ARHL), one of the most prevalent disorders of the elderly. Dwarf grey mice, Ggt1dwg/dwg, are homozygous for a loss of function mutation of the g-glutamyl transferase 1 gene, which encodes an important antioxidant enzyme critical for the resynthesis of glutathione (GSH). Since GSH reduces oxidative damage, we hypothesized that Ggt1dwg/dwg mice would be susceptible to ARHL. Surprisingly, otoacoustic emissions and cochlear microphonic potentials, which reflect cochlear outer hair cell (OHC) function, were largely unaffected in mutant mice, whereas auditory brainstem responses and the compound action potential were grossly abnormal. These functional deficits were associated with an unusual and selective loss of inner hair cells (IHC), but retention of OHC and auditory nerve fibers. Remarkably, hearing deficits and IHC loss were completely prevented by N-acetyl-L-cysteine, which induces de novo synthesis of GSH; however, hearing deficits and IHC loss reappeared when treatment was discontinued. Ggt1dwg/dwg mice represent an important new model for investigating ARHL, therapeutic interventions, and understanding the perceptual and electrophysiological consequences of sensory deprivation caused by the loss of sensory input exclusively from IHC.

  18. Metabolic engineering of Escherichia coli for production of biodiesel from fatty alcohols and acetyl-CoA.

    PubMed

    Guo, Daoyi; Pan, Hong; Li, Xun

    2015-09-01

    Microbial production of biodiesel from renewable feedstock has attracted intensive attention. Biodiesel is known to be produced from short-chain alcohols and fatty acyl-CoAs through the expression of wax ester synthase/fatty acyl-CoA: diacylglycerol acyltransferase that catalyzes the esterification of short-chain alcohols and fatty acyl-CoAs. Here, we engineered Escherichia coli to produce various fatty alcohol acetate esters, which depend on the expression of Saccharomyces cerevisiae alcohol acetyltransferase ATF1 that catalyzes the esterification of fatty alcohols and acetyl-CoA. The fatty acid biosynthetic pathways generate fatty acyl-ACPs, fatty acyl-CoAs, or fatty acids, which can be converted to fatty alcohols by fatty acyl-CoA reductase, fatty acyl-ACP reductase, or carboxylic acid reductase, respectively. This study showed the biosynthesis of biodiesel from three fatty acid biosynthetic pathway intermediates.

  19. The Yeast ATF1 Acetyltransferase Efficiently Acetylates Insect Pheromone Alcohols: Implications for the Biological Production of Moth Pheromones.

    PubMed

    Ding, Bao-Jian; Lager, Ida; Bansal, Sunil; Durrett, Timothy P; Stymne, Sten; Löfstedt, Christer

    2016-04-01

    Many moth pheromones are composed of mixtures of acetates of long-chain (≥10 carbon) fatty alcohols. Moth pheromone precursors such as fatty acids and fatty alcohols can be produced in yeast by the heterologous expression of genes involved in insect pheromone production. Acetyltransferases that subsequently catalyze the formation of acetates by transfer of the acetate unit from acetyl-CoA to a fatty alcohol have been postulated in pheromone biosynthesis. However, so far no fatty alcohol acetyltransferases responsible for the production of straight chain alkyl acetate pheromone components in insects have been identified. In search for a non-insect acetyltransferase alternative, we expressed a plant-derived diacylglycerol acetyltransferase (EaDAcT) (EC 2.3.1.20) cloned from the seed of the burning bush (Euonymus alatus) in a yeast system. EaDAcT transformed various fatty alcohol insect pheromone precursors into acetates but we also found high background acetylation activities. Only one enzyme in yeast was shown to be responsible for the majority of that background activity, the acetyltransferase ATF1 (EC 2.3.1.84). We further investigated the usefulness of ATF1 for the conversion of moth pheromone alcohols into acetates in comparison with Ea DAcT. Overexpression of ATF1 revealed that it was capable of acetylating these fatty alcohols with chain lengths from 10 to 18 carbons with up to 27- and 10-fold higher in vivo and in vitro efficiency, respectively, compared to Ea DAcT. The ATF1 enzyme thus has the potential to serve as the missing enzyme in the reconstruction of the biosynthetic pathway of insect acetate pheromones from precursor fatty acids in yeast.

  20. [Effect of carnosine and its N-acetyl derivative on the stability of erythrocytes in patients with alcoholism during abstinence].

    PubMed

    Prokop'eva, V D; Bohan, N A; Johnson, P; Boldyrev, A A

    1998-01-01

    The effects of carnosine, a natural dipeptide, and its derivative, N- acetyl-carnosine (Ac-carnosine), on the stability and shape of red blood cells obtained from abstinent alcoholics was studied. In the presence of both carnosine and Ac-carnosine, the erythrocytes of abstinent alcoholics show a statistically significant increase in their ability to resist acidic hemolysis. Investigations of microscope pictures also show that carnosine and Ac-carnosine have beneficial effects on the pathological state of abstinent alcoholic erythrocytes. The addition of carnosine and Ac-carnosine resulted in the normalization of cell morphology (in 12 and 17 out of 30 cases, respectively). These results may be due to the stabilizing and regenerating ability of these compounds on alcoholic erythrocytes.

  1. Identification and suppression of the p-coumaroyl CoA:hydroxycinnamyl alcohol transferase in Zea mays L.

    PubMed

    Marita, Jane M; Hatfield, Ronald D; Rancour, David M; Frost, Kenneth E

    2014-06-01

    Grasses, such as Zea mays L. (maize), contain relatively high levels of p-coumarates (pCA) within their cell walls. Incorporation of pCA into cell walls is believed to be due to a hydroxycinnamyl transferase that couples pCA to monolignols. To understand the role of pCA in maize development, the p-coumaroyl CoA:hydroxycinnamyl alcohol transferase (pCAT) was isolated and purified from maize stems. Purified pCAT was subjected to partial trypsin digestion, and peptides were sequenced by tandem mass spectrometry. TBLASTN analysis of the acquired peptide sequences identified a single full-length maize cDNA clone encoding all the peptide sequences obtained from the purified enzyme. The cDNA clone was obtained and used to generate an RNAi construct for suppressing pCAT expression in maize. Here we describe the effects of suppression of pCAT in maize. Primary screening of transgenic maize seedling leaves using a new rapid analytical platform was used to identify plants with decreased amounts of pCA. Using this screening method, mature leaves from fully developed plants were analyzed, confirming reduced pCA levels throughout plant development. Complete analysis of isolated cell walls from mature transgenic stems and leaves revealed that lignin levels did not change, but pCA levels decreased and the lignin composition was altered. Transgenic plants with the lowest levels of pCA had decreased levels of syringyl units in the lignin. Thus, altering the levels of pCAT expression in maize leads to altered lignin composition, but does not appear to alter the total amount of lignin present in the cell walls.

  2. Identification and suppression of the p-coumaroyl CoA:hydroxycinnamyl alcohol transferase in Zea mays L.

    PubMed Central

    Marita, Jane M; Hatfield, Ronald D; Rancour, David M; Frost, Kenneth E

    2014-01-01

    Grasses, such as Zea mays L. (maize), contain relatively high levels of p-coumarates (pCA) within their cell walls. Incorporation of pCA into cell walls is believed to be due to a hydroxycinnamyl transferase that couples pCA to monolignols. To understand the role of pCA in maize development, the p-coumaroyl CoA:hydroxycinnamyl alcohol transferase (pCAT) was isolated and purified from maize stems. Purified pCAT was subjected to partial trypsin digestion, and peptides were sequenced by tandem mass spectrometry. TBLASTN analysis of the acquired peptide sequences identified a single full-length maize cDNA clone encoding all the peptide sequences obtained from the purified enzyme. The cDNA clone was obtained and used to generate an RNAi construct for suppressing pCAT expression in maize. Here we describe the effects of suppression of pCAT in maize. Primary screening of transgenic maize seedling leaves using a new rapid analytical platform was used to identify plants with decreased amounts of pCA. Using this screening method, mature leaves from fully developed plants were analyzed, confirming reduced pCA levels throughout plant development. Complete analysis of isolated cell walls from mature transgenic stems and leaves revealed that lignin levels did not change, but pCA levels decreased and the lignin composition was altered. Transgenic plants with the lowest levels of pCA had decreased levels of syringyl units in the lignin. Thus, altering the levels of pCAT expression in maize leads to altered lignin composition, but does not appear to alter the total amount of lignin present in the cell walls. PMID:24654730

  3. The synergy of tobacco and alcohol and glutathione S-transferase θ 1 gene deletion and oral squamous cell carcinoma

    PubMed Central

    D’ Mello, Sarah; Bavle, Radhika Manoj; Paremala, K; Makarla, Soumya; Sudhakara, M; Bhatt, Madhura

    2016-01-01

    Background: Oral squamous cell carcinoma (OSCC) is the leading cancer among males in India. It is related to tobacco habits and alcohol consumption as well as the individual susceptibility for xenobiotic metabolizing enzyme polymorphisms. Glutathione S-transferase θ 1 (GSTT1) is a Phase II metabolic enzyme which is directly involved in catalyzing chemicals to mutagenic intermediates. This gene is characterized by genetic polymorphism resulting in complete gene deletion and subsequent absence of the enzyme, which ultimately dictates the risk of cancer development. Scraping buccal mucosa to obtain DNA from the cells is a simple, readily acceptable and rapid method to detect and assess the gene. Aim: To assess GSTT1 gene deletion in individuals giving a history of tobacco smoking and/or chewing and alcohol consumption and absence of clinically detectable lesions; and in OSCC cases to gauge if GSTT1 gene deletion confers protection to an individual and whether it can be used as a “single” marker to arrive at this conclusion. To validate the use of buccal scrape for determining the genotype of an individual by assessing the polymorphism at GSTT1 gene locus (22q11.2). Materials and Methods: Fifty-two cases were evaluated using buccal mucosal scrapes of tobacco habituates for 8 or more years, without clinically evident lesion (Group I) and from mucosa of tobacco habituates with clinically evident and histopathologically confirmed OSCC (Group II). DNA extraction and genotype at GSTT1 gene locus was determined by polymerase chain reaction assay. Statistical Analysis: The results were statistically analyzed using Chi-square test. Results: 90.66% of subjects had GSTT1 null genotype in Group I subjects. In Group II, subjects with both clinically and histopathologically diagnosed oral cancer, about 76.96% had GSTT1 null genotype. Conclusion: GSTT1 null genotype confers protection to individuals with tobacco habits and alcohol consumption, predominantly to those who used

  4. Effects of histone deacetylase inhibitors on amygdaloid histone acetylation and neuropeptide Y expression: a role in anxiety-like and alcohol-drinking behaviours.

    PubMed

    Sakharkar, Amul J; Zhang, Huaibo; Tang, Lei; Baxstrom, Kathryn; Shi, Guangbin; Moonat, Sachin; Pandey, Subhash C

    2014-08-01

    Recent studies have demonstrated the involvement of epigenetic mechanisms in psychiatric disorders, including alcoholism. Here, we investigated the effects of histone deacetylase (HDAC) inhibitor, trichostatin A (TSA) on amygdaloid HDAC-induced histone deacetylation and neuropeptide Y (NPY) expression and on anxiety-like and alcohol-drinking behaviours in alcohol-preferring (P) and -non-preferring (NP) rats. It was found that P rats displayed higher anxiety-like and alcohol-drinking behaviours, higher amygdaloid nuclear, but not cytosolic, HDAC activity, which was associated with increased HDAC2 protein levels and deficits in histone acetylation and NPY expression in the central (CeA) and medial nucleus of amygdala (MeA), as compared to NP rats. TSA treatment attenuated the anxiety-like and alcohol-drinking behaviours, with concomitant reductions in amygdaloid nuclear, but not cytosolic HDAC activity, and HDAC2, but not HDAC4, protein levels in the CeA and MeA of P rats, without effect in NP rats. TSA treatment also increased global histone acetylation (H3-K9 and H4-K8) and NPY expression in the CeA and MeA of P, but not in NP rats. Histone H3 acetylation within the NPY promoter was also innately lower in the amygdala of P rats compared with NP rats; which was normalized by TSA treatment. Voluntary ethanol intake in P, but not NP rats, produced anxiolytic effects and decreased the HDAC2 levels and increased histone acetylation in the CeA and MeA. These results suggest that higher HDAC2 expression-related deficits in histone acetylation may be involved in lower NPY expression in the amygdala of P rats, and operative in controlling anxiety-like and alcohol-drinking behaviours.

  5. Synthesis and characterization of ionic liquid immobilized on magnetic nanoparticles: A recyclable heterogeneous organocatalyst for the acetylation of alcohols

    NASA Astrophysics Data System (ADS)

    Ghorbani-Choghamarani, Arash; Norouzi, Masoomeh

    2016-03-01

    Herein, we describe a simple and efficient procedure for the preparation of 3-((3-(trisilyloxy)propyl)propionamide)-1-methylimidazolium chloride ionic liquid supported on magnetic nanoparticle (TPPA-IL-Fe3O4). The structure of this magnetic ionic liquid is fully characterized by FT-IR, TGA, XRD, VSM, SEM, EDX and DLS techniques. TPPA-IL-Fe3O4 is employed as a catalyst for the acetylation of alcohols with acetic anhydride under mild and heterogeneous conditions at room temperature with good to excellent yields. The magnetic catalyst could be readily separate from the reaction media by simple magnetic decantation, and reused several times without significant loss of its catalytic activity.

  6. Histone acetyl transferase 1 is essential for mammalian development, genome stability, and the processing of newly synthesized histones H3 and H4.

    PubMed

    Nagarajan, Prabakaran; Ge, Zhongqi; Sirbu, Bianca; Doughty, Cheryl; Agudelo Garcia, Paula A; Schlederer, Michaela; Annunziato, Anthony T; Cortez, David; Kenner, Lukas; Parthun, Mark R

    2013-06-01

    Histone acetyltransferase 1 is an evolutionarily conserved type B histone acetyltransferase that is thought to be responsible for the diacetylation of newly synthesized histone H4 on lysines 5 and 12 during chromatin assembly. To understand the function of this enzyme in a complex organism, we have constructed a conditional mouse knockout model of Hat1. Murine Hat1 is essential for viability, as homozygous deletion of Hat1 results in neonatal lethality. The lungs of embryos and pups genetically deficient in Hat1 were much less mature upon histological evaluation. The neonatal lethality is due to severe defects in lung development that result in less aeration and respiratory distress. Many of the Hat1(-/-) neonates also display significant craniofacial defects with abnormalities in the bones of the skull and jaw. Hat1(-/-) mouse embryonic fibroblasts (MEFs) are defective in cell proliferation and are sensitive to DNA damaging agents. In addition, the Hat1(-/-) MEFs display a marked increase in genome instability. Analysis of histone dynamics at sites of replication-coupled chromatin assembly demonstrates that Hat1 is not only responsible for the acetylation of newly synthesized histone H4 but is also required to maintain the acetylation of histone H3 on lysines 9, 18, and 27 during replication-coupled chromatin assembly.

  7. Purification of acetaldehyde dehydrogenase and alcohol dehydrogenases from Thermoanaerobacter ethanolicus 39E and characterization of the secondary-alcohol dehydrogenase (2 degrees Adh) as a bifunctional alcohol dehydrogenase--acetyl-CoA reductive thioesterase.

    PubMed

    Burdette, D; Zeikus, J G

    1994-08-15

    The purification and characterization of three enzymes involved in ethanol formation from acetyl-CoA in Thermoanaerobacter ethanolicus 39E (formerly Clostridium thermohydrosulfuricum 39E) is described. The secondary-alcohol dehydrogenase (2 degrees Adh) was determined to be a homotetramer of 40 kDa subunits (SDS/PAGE) with a molecular mass of 160 kDa. The 2 degrees Adh had a lower catalytic efficiency for the oxidation of 1 degree alcohols, including ethanol, than for the oxidation of secondary (2 degrees) alcohols or the reduction of ketones or aldehydes. This enzyme possesses a significant acetyl-CoA reductive thioesterase activity as determined by NADPH oxidation, thiol formation and ethanol production. The primary-alcohol dehydrogenase (1 degree Adh) was determined to be a homotetramer of 41.5 kDa (SDS/PAGE) subunits with a molecular mass of 170 kDa. The 1 degree Adh used both NAD(H) and NADP(H) and displayed higher catalytic efficiencies for NADP(+)-dependent ethanol oxidation and NADH-dependent acetaldehyde (identical to ethanal) reduction than for NADPH-dependent acetaldehyde reduction or NAD(+)-dependent ethanol oxidation. The NAD(H)-linked acetaldehyde dehydrogenase was a homotetramer (360 kDa) of identical subunits (100 kDa) that readily catalysed thioester cleavage and condensation. The 1 degree Adh was expressed at 5-20% of the level of the 2 degrees Adh throughout the growth cycle on glucose. The results suggest that the 2 degrees Adh primarily functions in ethanol production from acetyl-CoA and acetaldehyde, whereas the 1 degree Adh functions in ethanol consumption for nicotinamide-cofactor recycling.

  8. Purification of acetaldehyde dehydrogenase and alcohol dehydrogenases from Thermoanaerobacter ethanolicus 39E and characterization of the secondary-alcohol dehydrogenase (2 degrees Adh) as a bifunctional alcohol dehydrogenase--acetyl-CoA reductive thioesterase.

    PubMed Central

    Burdette, D; Zeikus, J G

    1994-01-01

    The purification and characterization of three enzymes involved in ethanol formation from acetyl-CoA in Thermoanaerobacter ethanolicus 39E (formerly Clostridium thermohydrosulfuricum 39E) is described. The secondary-alcohol dehydrogenase (2 degrees Adh) was determined to be a homotetramer of 40 kDa subunits (SDS/PAGE) with a molecular mass of 160 kDa. The 2 degrees Adh had a lower catalytic efficiency for the oxidation of 1 degree alcohols, including ethanol, than for the oxidation of secondary (2 degrees) alcohols or the reduction of ketones or aldehydes. This enzyme possesses a significant acetyl-CoA reductive thioesterase activity as determined by NADPH oxidation, thiol formation and ethanol production. The primary-alcohol dehydrogenase (1 degree Adh) was determined to be a homotetramer of 41.5 kDa (SDS/PAGE) subunits with a molecular mass of 170 kDa. The 1 degree Adh used both NAD(H) and NADP(H) and displayed higher catalytic efficiencies for NADP(+)-dependent ethanol oxidation and NADH-dependent acetaldehyde (identical to ethanal) reduction than for NADPH-dependent acetaldehyde reduction or NAD(+)-dependent ethanol oxidation. The NAD(H)-linked acetaldehyde dehydrogenase was a homotetramer (360 kDa) of identical subunits (100 kDa) that readily catalysed thioester cleavage and condensation. The 1 degree Adh was expressed at 5-20% of the level of the 2 degrees Adh throughout the growth cycle on glucose. The results suggest that the 2 degrees Adh primarily functions in ethanol production from acetyl-CoA and acetaldehyde, whereas the 1 degree Adh functions in ethanol consumption for nicotinamide-cofactor recycling. Images Figure 1 PMID:8068002

  9. A novel one-pot and one-step microwave-assisted cyclization-methylation reaction of amino alcohols and acetylated derivatives with dimethyl carbonate and TBAC.

    PubMed

    Ochoa-Terán, Adrián; Guerrero, Leticia; Rivero, Ignacio A

    2014-01-01

    A simple and efficient microwave-assisted methodology for the synthesis of 4-substituted-3-methyl-1,3-oxazolidin-2-ones from amino alcohols catalyzed by a ionic liquid was developed. This novel one-pot and one-step cyclization-methylation reaction represents an easier and faster method than any other reported protocols that can be used to obtain the desired products in good yields and high purity. Applying microwave irradiation at 130°C in the presence of TBAC, dimethyl carbonate acts simultaneously as carbonylating and methylating agent and surprisingly promotes an in situ basic trans esterification when a N-acetylated amino alcohol is used as starting material. Furthermore, dimethyl carbonate worked better than diethyl carbonate in performing this reaction.

  10. A Novel One-Pot and One-Step Microwave-Assisted Cyclization-Methylation Reaction of Amino Alcohols and Acetylated Derivatives with Dimethyl Carbonate and TBAC

    PubMed Central

    Ochoa-Terán, Adrián; Guerrero, Leticia; Rivero, Ignacio A.

    2014-01-01

    A simple and efficient microwave-assisted methodology for the synthesis of 4-substituted-3-methyl-1,3-oxazolidin-2-ones from amino alcohols catalyzed by a ionic liquid was developed. This novel one-pot and one-step cyclization-methylation reaction represents an easier and faster method than any other reported protocols that can be used to obtain the desired products in good yields and high purity. Applying microwave irradiation at 130°C in the presence of TBAC, dimethyl carbonate acts simultaneously as carbonylating and methylating agent and surprisingly promotes an in situ basic trans esterification when a N-acetylated amino alcohol is used as starting material. Furthermore, dimethyl carbonate worked better than diethyl carbonate in performing this reaction. PMID:25692177

  11. Berberine reverses abnormal expression of L-type pyruvate kinase by DNA demethylation and histone acetylation in the livers of the non-alcoholic fatty disease rat

    PubMed Central

    Zhang, Yuhao; Chang, Xinxia; Song, Xiao; Chen, Chen; Chen, Hongyan; Lu, Zhiqiang; Gao, Xin; Lu, Daru

    2015-01-01

    Berberine (BBR) can potentially be used as a drug against non-alcoholic fatty liver disease (NAFLD) and diabetes. Our previous study found that BBR could change the pattern of DNA methylation. But the mechanisms underlying berberine are still far from completely understood. In this study, the function of L-PK in cell metabolism was explored, and high-fat-diet induced SD rats NAFLD models were created. The NAFLD rats were randomly grouped to be oral administration with BBR at a dosage of 200 mg/kg daily. Then DNA methylation and histone acetylation around the L-type Pyruvate Kinase (L-PK) gene were examined. In the results, we found that L-PK had a positive effect on cell proliferation, glucose utilization and triglyceride metabolism. However, the expression of L-PK was reduced in the livers of NAFLD rats, in accord with the decrease of DNA hypermethylation and histone deacetylation in the regulatory regions of L-PK. Notably, BBR treatment can restore the expression of L-PK by the demethylation of L-PK promoter and the increase in acetylation levels of histone H3 and H4 around L-PK, which indicated that BBR may be a potential drug for epigenetic-included diseases. PMID:26221297

  12. Glutathione Transferases

    PubMed Central

    Dixon, David P.; Edwards, Robert

    2010-01-01

    The 55 Arabidopsis glutathione transferases (GSTs) are, with one microsomal exception, a monophyletic group of soluble enzymes that can be divided into phi, tau, theta, zeta, lambda, dehydroascorbate reductase (DHAR) and TCHQD classes. The populous phi and tau classes are often highly stress inducible and regularly crop up in proteomic and transcriptomic studies. Despite much study on their xenobiotic-detoxifying activities their natural roles are unclear, although roles in defence-related secondary metabolism are likely. The smaller DHAR and lambda classes are likely glutathione-dependent reductases, the zeta class functions in tyrosine catabolism and the theta class has a putative role in detoxifying oxidised lipids. This review describes the evidence for the functional roles of GSTs and the potential for these enzymes to perform diverse functions that in many cases are not “glutathione transferase” activities. As well as biochemical data, expression data from proteomic and transcriptomic studies are included, along with subcellular localisation experiments and the results of functional genomic studies. PMID:22303257

  13. Acetyl chloride

    Integrated Risk Information System (IRIS)

    Acetyl chloride ; CASRN 75 - 36 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  14. Alcohol

    MedlinePlus

    ... that's how many accidents occur. continue What Is Alcoholism? What can be confusing about alcohol is that ... develop a problem with it. Sometimes, that's called alcoholism (say: al-kuh-HOL - ism) or being an ...

  15. Alcohol

    MedlinePlus

    If you are like many Americans, you drink alcohol at least occasionally. For many people, moderate drinking ... risky. Heavy drinking can lead to alcoholism and alcohol abuse, as well as injuries, liver disease, heart ...

  16. Alcohol

    MedlinePlus

    ... de los dientes Video: Getting an X-ray Alcohol KidsHealth > For Kids > Alcohol Print A A A What's in this article? ... What Is Alcoholism? Say No en español El alcohol Getting the Right Message "Hey, who wants a ...

  17. Alcohol

    MedlinePlus

    ... parents and other adults use alcohol socially — having beer or wine with dinner, for example — alcohol seems ... besides just hanging out in someone's basement drinking beer all night. Plan a trip to the movies, ...

  18. Enzymatic Glycosylation by Transferases

    NASA Astrophysics Data System (ADS)

    Blixt, Ola; Razi, Nahid

    Glycosyltransferases are important biological catalysts in cellular systems generating complex cell surface glycans involved in adhesion and signaling processes. Recent advances in glycoscience have increased the demands to access significant amount of glycans representing the glycome. Glycosyltransferases are now playing a key role for in vitro synthesis of oligosaccharides and the bacterial genome are increasingly utilized for cloning and over expression of active transferases in glycosylation reactions. This chapter highlights the recent progress towards preparative synthesis of oligosaccharides representing terminal sequences of glycoproteins and glycolipids using recombinant transferases. Transferases are also being explored in the context of solid-phase synthesis, immobilized on resins and over expression in vivo by engineered bacteria.

  19. Alcoholism.

    ERIC Educational Resources Information Center

    Caliguri, Joseph P., Ed.

    This extensive annotated bibliography provides a compilation of documents retreived from a computerized search of the ERIC, Social Science Citation Index, and Med-Line databases on the topic of alcoholism. The materials address the following areas of concern: (1) attitudes toward alcohol users and abusers; (2) characteristics of alcoholics and…

  20. A role for histone acetylation mechanisms in adolescent alcohol exposure-induced deficits in hippocampal brain-derived neurotrophic factor expression and neurogenesis markers in adulthood.

    PubMed

    Sakharkar, Amul J; Vetreno, Ryan P; Zhang, Huaibo; Kokare, Dadasaheb M; Crews, Fulton T; Pandey, Subhash C

    2016-12-01

    Binge drinking during adolescence is a risk factor for neuropsychiatric disorders that can develop later in life. Histone acetylation is an important epigenetic mechanism that contributes to neurodevelopment. We investigated the effects of adolescent intermittent ethanol (AIE) exposure, as opposed to normal saline (AIS) exposure, on histone acetylation-mediated regulation of brain-derived neurotrophic factor (BDNF) expression and developmental stages of neurogenesis (proliferating and immature neurons) in the hippocampus in adulthood. AIE exposure increased whole hippocampal histone deacetylase (HDAC) activity and decreased binding protein of cyclic adenosine monophosphate response element binding protein (CBP) and histone H3-K9 acetylation levels in the CA1, CA2, and CA3 regions of the hippocampus. BDNF protein and exon IV mRNA levels in the CA1 and CA3 regions of the hippocampus of AIE-exposed adult rats were decreased as compared to AIS-exposed adult rats. AIE-induced anxiety-like behaviors and deficits in histone H3 acetylation at BDNF exon IV promoter in the hippocampus during adulthood, which were reversed by treatment with the HDAC inhibitor, trichostatin A (TSA). Similarly, neurogenesis was inhibited by AIE in adulthood as demonstrated by the decrease in Ki-67 and doublecortin (DCX)-positive cells in the dentate gyrus, which was normalized by TSA treatment. These results indicate that AIE exposure increases HDACs and decreases CBP levels that may be associated with a decrease in histone H3 acetylation in the hippocampus. These epigenetic changes potentially decrease BDNF expression and inhibit neurogenesis in the hippocampus that may be involved in AIE-induced behavioral abnormalities, including anxiety, in adulthood.

  1. Alcohol

    MedlinePlus

    ... created when grains, fruits, or vegetables are fermented . Fermentation is a process that uses yeast or bacteria ... change the sugars in the food into alcohol. Fermentation is used to produce many necessary items — everything ...

  2. Alcohol.

    ERIC Educational Resources Information Center

    Schibeci, Renato

    1996-01-01

    Describes the manufacturing of ethanol, the effects of ethanol on the body, the composition of alcoholic drinks, and some properties of ethanol. Presents some classroom experiments using ethanol. (JRH)

  3. Inhibition of Different Histone Acetyltransferases (HATs) Uncovers Transcription-Dependent and -Independent Acetylation-Mediated Mechanisms in Memory Formation

    ERIC Educational Resources Information Center

    Merschbaecher, Katja; Hatko, Lucyna; Folz, Jennifer; Mueller, Uli

    2016-01-01

    Acetylation of histones changes the efficiency of the transcription processes and thus contributes to the formation of long-term memory (LTM). In our comparative study, we used two inhibitors to characterize the contribution of different histone acetyl transferases (HATs) to appetitive associative learning in the honeybee. For one we applied…

  4. Protein kinase C coordinates histone H3 phosphorylation and acetylation

    PubMed Central

    Darieva, Zoulfia; Webber, Aaron; Warwood, Stacey; Sharrocks, Andrew D

    2015-01-01

    The re-assembly of chromatin following DNA replication is a critical event in the maintenance of genome integrity. Histone H3 acetylation at K56 and phosphorylation at T45 are two important chromatin modifications that accompany chromatin assembly. Here we have identified the protein kinase Pkc1 as a key regulator that coordinates the deposition of these modifications in S. cerevisiae under conditions of replicative stress. Pkc1 phosphorylates the histone acetyl transferase Rtt109 and promotes its ability to acetylate H3K56. Our data also reveal novel cross-talk between two different histone modifications as Pkc1 also enhances H3T45 phosphorylation and this modification is required for H3K56 acetylation. Our data therefore uncover an important role for Pkc1 in coordinating the deposition of two different histone modifications that are important for chromatin assembly. DOI: http://dx.doi.org/10.7554/eLife.09886.001 PMID:26468616

  5. Sonochemical synthesis of silica and silica sulfuric acid nanoparticles from rice husk ash: a new and recyclable catalyst for the acetylation of alcohols and phenols under heterogeneous conditions.

    PubMed

    Salavati-Niasari, Masoud; Javidi, Jaber

    2012-11-01

    Silica nanoparticles were synthesized from rice husk ash at room temperature by sonochemical method. The feeding rate of percipiteting agent and time of sonication were investigated. The nanostructure of the synthesized powder was realized by the FE-SEM photomicrograph, FT-IR spectroscopy, XRD and XRF analyses. These analytical observations have revealed that the nano-sized amorphous silica particles are formed and they are spheroidal in shape. The average particle size of the silica powders is found to be around 50 nm. The as-synthesized silica nanoparticles were subsequently modified with chlorosulfonic acid and prepared silica sulfuric acid nanoparticles, which were employed as an efficient catalyst for the acylation of alcohols and phenols with acetic anhydride in excellent yields under solvent-free conditions at room temperature. This reported method is simple, mild, and environmentally viable and catalyst can be simply recovered and reused over 9 times without any significant loss of its catalytic activity.

  6. Comparative specificities of Calreticulin Transacetylase to O-acetyl, N-acetyl and S-acetyl derivative of 4-methylcoumarins and their inhibitory effect on AFB1-induced genotoxicity in vitro and in vivo.

    PubMed

    Kumar, Ajit; Ponnan, Prija; Raj, Hanumantharao G; Parmar, Virinder S; Saso, Luciano

    2013-02-01

    We have earlier conclusively established the Calreticulin Transacetylase (CRTAase) catalyzed modifications of functional proteins such as cytochrome-P450-linked mixed function oxidases (Cyt-P450-linked MFOs), NADPH cytochrome c reductase, and glutathione S-transferase by acetoxy derivatives of polyphenols. In this study, we have investigated the comparative specificities of CRTAase to N-acetyl derivative, 7-acetamido-4-methylcoumarin (7-N-AMC), O-acetyl derivative, 7-acetoxy-4-methylcoumarin (7-AMC), S-acetyl derivative, 7-thioacetyl-4-methycoumarin (7-S-AMC) and their parent compounds in the modulation of catalytic activities of aforesaid proteins. Special attention concentrated on the comparative inhibitory effect of aforesaid acetyl moiety on Cyt-P450-linked MFOs such as 7-ethoxyresorufin O-deethylase (EROD), pentoxyresorufin O-dealkylase (PROD) and aflatoxin B(1) (AFB(1))-induced genotoxicity in vitro and in vivo. The results clearly indicated that N-acetyl and O-acetyl derivatives were better substrates for CRTAase while the S-acetyl was found to be a poorer substrate. Our study involving atomic charge, charge density and molecular electrostatic potential (MEP) calculations indicated the pivotal role of electronegativity and charge distribution values of O, N and S atoms of the acetyl group at C-7 position of the 4-methylcoumarins in CRTAase activity. These facts reinforce our hypothesis that the CRTAase catalyzed modifications of the catalytic activities of aforesaid proteins by acetyl derivative of 4-methylcoumarins is probably due to acetylation of these proteins.

  7. Histone Acetylation Inhibitors Promote Axon Growth in Adult DRG neurons

    PubMed Central

    Lin, Shen; Nazif, Kutaiba; Smith, Alexander; Baas, Peter W; Smith, George M

    2015-01-01

    Intrinsic mechanisms that guide damaged axons to regenerate following spinal cord injury remain poorly understood. Manipulation of posttranslational modifications of key proteins in mature neurons could re-invigorate growth machinery after injury. One such modification is acetylation, a reversible process controlled by two enzyme families acting in opposition, the Histone Deacetylases (HDACs) and the Histone Acetyl Transferases (HATs). While acetylated histones in the nucleus is associated with upregulation of growth promoting genes, de-acetylated tubulin in the axoplasm is associated with more labile microtubules, conducive to axon growth. In this study we investigated the effects of HAT inhibitors and HDAC inhibitors on cultured adult dorsal root ganglia (DRG) neurons. We found that inhibition of HATs, using Anacardic Acid or CPTH2, improved axon outgrowth, while inhibition of HDACs using TSA or Tubacin, inhibited axon growth. Furthermore, Anacardic Acid increased the number of axons able to cross an inhibitory chondroitin sulfate proteoglycan (CSPG) border. Histone acetylation, but not tubulin acetylation levels, was affected by HAT inhibitors, whereas tubulin acetylation levels were increased in the presence of HDAC inhibitor Tubacin. Although microtubule stabilizing drug taxol did not have an effect on the lengths of DRG axons, nocodazole decreased axon lengths. While the mechanistic basis will require future studies, our data show that inhibitors of HAT can augment axon growth in adult DRG neurons, with the potential of aiding axon growth over inhibitory substrates produced by the glial scar. PMID:25702820

  8. αTAT1 controls longitudinal spreading of acetylation marks from open microtubules extremities

    PubMed Central

    Ly, Nathalie; Elkhatib, Nadia; Bresteau, Enzo; Piétrement, Olivier; Khaled, Mehdi; Magiera, Maria M.; Janke, Carsten; Le Cam, Eric; Rutenberg, Andrew D.; Montagnac, Guillaume

    2016-01-01

    Acetylation of the lysine 40 of α-tubulin (K40) is a post-translational modification occurring in the lumen of microtubules (MTs) and is controlled by the α-tubulin acetyl-transferase αTAT1. How αTAT1 accesses the lumen and acetylates α-tubulin there has been an open question. Here, we report that acetylation starts at open ends of MTs and progressively spreads longitudinally from there. We observed acetylation marks at the open ends of in vivo MTs re-growing after a Nocodazole block, and acetylated segments growing in length with time. Bias for MTs extremities was even more pronounced when using non-dynamic MTs extracted from HeLa cells. In contrast, K40 acetylation was mostly uniform along the length of MTs reconstituted from purified tubulin in vitro. Quantitative modelling of luminal diffusion of αTAT1 suggested that the uniform acetylation pattern observed in vitro is consistent with defects in the MT lattice providing lateral access to the lumen. Indeed, we observed that in vitro MTs are permeable to macromolecules along their shaft while cellular MTs are not. Our results demonstrate αTAT1 enters the lumen from open extremities and spreads K40 acetylation marks longitudinally along cellular MTs. This mode of tip-directed microtubule acetylation may allow for selective acetylation of subsets of microtubules. PMID:27752143

  9. Plant glutathione transferases

    PubMed Central

    Dixon, David P; Lapthorn, Adrian; Edwards, Robert

    2002-01-01

    The soluble glutathione transferases (GSTs, EC 2.5.1.18) are encoded by a large and diverse gene family in plants, which can be divided on the basis of sequence identity into the phi, tau, theta, zeta and lambda classes. The theta and zeta GSTs have counterparts in animals but the other classes are plant-specific and form the focus of this article. The genome of Arabidopsis thaliana contains 48 GST genes, with the tau and phi classes being the most numerous. The GST proteins have evolved by gene duplication to perform a range of functional roles using the tripeptide glutathione (GSH) as a cosubstrate or coenzyme. GSTs are predominantly expressed in the cytosol, where their GSH-dependent catalytic functions include the conjugation and resulting detoxification of herbicides, the reduction of organic hydroperoxides formed during oxidative stress and the isomerization of maleylacetoacetate to fumarylacetoacetate, a key step in the catabolism of tyrosine. GSTs also have non-catalytic roles, binding flavonoid natural products in the cytosol prior to their deposition in the vacuole. Recent studies have also implicated GSTs as components of ultraviolet-inducible cell signaling pathways and as potential regulators of apoptosis. Although sequence diversification has produced GSTs with multiple functions, the structure of these proteins has been highly conserved. The GSTs thus represent an excellent example of how protein families can diversify to fulfill multiple functions while conserving form and structure. PMID:11897031

  10. Molecular Cloning of Adenosinediphosphoribosyl Transferase.

    DTIC Science & Technology

    1987-09-08

    ACCESSION NO.D,. 03261102F 2312 A~5 11. TITLE (include Securqt Classification) 0 Molecular Cloning of Adenosinediphosphoribosyl Transferase 12. PERSONAL...I’:- AFOSR.Tlt. 8 7 - 0 9 8,2 0IL * pi AFOSR- 85 -0377 PROGRESS REPORT Molecular Cloning of Adenosinediphosphoribosyl Transferase 5." Period of...Pharmacology and the Cardiovascular Research Institute September 8, 1987 .’, 5.’- "’S ". -f, AFOSR - 85 -0377 PROGRESS REPORT Molecular Cloning of

  11. THE EXCHANGE REACTION OF ACETYL FLUORIDE AND ACETYL HEXAFLUOROARSENATE,

    DTIC Science & Technology

    From the temperature dependence of the exchange rate of the methyl protons between acetyl fluoride and acetyl hexafluoroarsenate an Arrhenius...the reaction was found to be one-half order in acetyl hexafluoroarsenate and zero order in acetyl fluoride. (Author)

  12. Glutathione transferases and neurodegenerative diseases.

    PubMed

    Mazzetti, Anna Paola; Fiorile, Maria Carmela; Primavera, Alessandra; Lo Bello, Mario

    2015-03-01

    There is substantial agreement that the unbalance between oxidant and antioxidant species may affect the onset and/or the course of a number of common diseases including Parkinson's and Alzheimer's diseases. Many studies suggest a crucial role for oxidative stress in the first phase of aging, or in the pathogenesis of various diseases including neurological ones. Particularly, the role exerted by glutathione and glutathione-related enzymes (Glutathione Transferases) in the nervous system appears more relevant, this latter tissue being much more vulnerable to toxins and oxidative stress than other tissues such as liver, kidney or muscle. The present review addresses the question by focusing on the results obtained by specimens from patients or by in vitro studies using cells or animal models related to Parkinson's and Alzheimer's diseases. In general, there is an association between glutathione depletion and Parkinson's or Alzheimer's disease. In addition, a significant decrease of glutathione transferase activity in selected areas of brain and in ventricular cerebrospinal fluid was found. For some glutathione transferase genes there is also a correlation between polymorphisms and onset/outcome of neurodegenerative diseases. Thus, there is a general agreement about the protective effect exerted by glutathione and glutathione transferases but no clear answer about the mechanisms underlying this crucial role in the insurgence of neurodegenerative diseases.

  13. Histone acetylation in neurodevelopment.

    PubMed

    Contestabile, Antonio; Sintoni, Silvia

    2013-01-01

    Post-translational modification of histones is a primary mechanism through which epigenetic regulation of DNA transcription does occur. Among these modifications, regulation of histone acetylation state is an important tool to influence gene expression. Epigenetic regulation of neurodevelopment contributes to the structural and functional shaping of the brain during neurogenesis and continues to impact on neural plasticity lifelong. Alterations of these mechanisms during neurodevelopment may result in later occurrence of neuropsychatric disorders. The present paper reviews and discusses available data on histone modifications, in particular histone acetylation, in neurogenesis considering results obtained in culture systems of neural progenitors as well as in in vivo studies. Possible teratogenic effects of altered histone acetylation state during development are also considered. The use during pregnancy of drugs such as valproic acid, which acts as a histone deacetylase inhibitor, may result during postnatal development in autistic-like symptoms. The effect of gestational administration of the drug has been, therefore, tested on adult hippocampal neurogenesis in animals showing behavioral impairment as a consequence of the drug administration at a specific stage of pregnancy. These experimental results show that adult neurogenesis in the hippocampal dentate gyrus is not quantitatively altered by gestational valproic acid administration. Future steps and goals of research on the role and mechanisms of histone acetylation in neurodevelopment are briefly discussed.

  14. Final report on the safety assessment of acetyl triethyl citrate, acetyl tributyl citrate, acetyl trihexyl citrate, and acetyl trioctyl citrate.

    PubMed

    Johnson, Wilbur

    2002-01-01

    Acetyl Triethyl Citrate, Acetyl Tributyl Citrate, Acetyl Trihexyl Citrate, and Acetyl Trioctyl Citrate all function as plasticizers in cosmetics. Additionally, the Trihexyl and Trioctyl forms are described as skin-conditioning agents-emollients, although there are currently no reported uses of Acetyl Trihexyl Citrate or Acetyl Trioctyl Citrate. Acetyl Triethyl Citrate and Acetyl Tributyl Citrate are used in nail products at concentrations up to 7%. Recognizing that there are no reported uses of Acetyl Trihexyl or Trioctyl Citrate, if they were to be used in the future, their concentration of use is expected to be no higher than that reported for Acetyl Triethyl and Tributyl Citrate. These ingredients were sufficiently similar in structure that safety test data on one were considered applicable to all. Approximately 99% of orally administered Acetyl Tributyl Citrate is excreted-intermediate metabolites include acetyl citrate, monobutyl citrate, acetyl monobutyl citrate, dibutyl citrate, and acetyl dibutyl citrate. In acute, short-term, subchronic, and chronic feeding studies, these ingredients were relatively nontoxic. Differences from controls were either not statistically significant or not related to any organ toxicity. Ocular exposures produced moderate reactions that cleared by 48 hours after instillation. Dermal application was not toxic in rabbits. In a guinea pig maximization test, Acetyl Triethyl Citrate was a sensitizer whereas Acetyl Tributyl Citrate was not. Limited clinical testing of Acetyl Triethyl Citrate and Acetyl Tributyl Citrate was negative for both skin irritation and sensitization. These clinical data were considered more relevant than the guinea pig maximization data, suggesting to the Cosmetic Ingredient Review Expert Panel that none of these ingredients would be a sensitizer. Physiologic effects noted with intravenous delivery of Acetyl Triethyl Citrate or Acetyl Tributyl Citrate include dose-related decreases in blood pressure and

  15. Alcoholism and Alcohol Abuse

    MedlinePlus

    ... their drinking causes distress and harm. It includes alcoholism and alcohol abuse. Alcoholism, or alcohol dependence, is a disease that causes ... groups. NIH: National Institute on Alcohol Abuse and Alcoholism

  16. Purification and properties of 4-hydroxybutyrate coenzyme A transferase from Clostridium aminobutyricum.

    PubMed Central

    Scherf, U; Buckel, W

    1991-01-01

    A new coenzyme A (CoA)-transferase from the anaerobe Clostridium aminobutyricum catalyzing the formation of 4-hydroxybutyryl-CoA from 4-hydroxybutyrate and acetyl-CoA is described. The enzyme was purified to homogeneity by standard techniques, including fast protein liquid chromatography under aerobic conditions. Its molecular mass was determined to be 110 kDa, and that of the only subunit was determined to be 54 kDa, indicating a homodimeric structure. Besides acetate and acetyl-CoA, the following substrates were detected (in order of decreasing kcat/Km): 4-hydroxybutyryl-CoA, butyryl-CoA and propionyl-CoA, vinyl-acetyl-CoA (3-butenoyl-CoA), and 5-hydroxyvaleryl-CoA. In an indirect assay the corresponding acids were also found to be substrates; however, DL-lactate, DL-2-hydroxybutyrate, DL-3-hydroxybutyrate, crotonate, and various dicarboxylates were not. PMID:1768145

  17. ASEB: a web server for KAT-specific acetylation site prediction.

    PubMed

    Wang, Likun; Du, Yipeng; Lu, Ming; Li, Tingting

    2012-07-01

    Protein lysine acetylation plays an important role in the normal functioning of cells, including gene expression regulation, protein stability and metabolism regulation. Although large amounts of lysine acetylation sites have been identified via large-scale mass spectrometry or traditional experimental methods, the lysine (K)-acetyl-transferase (KAT) responsible for the acetylation of a given protein or lysine site remains largely unknown due to the experimental limitations of KAT substrate identification. Hence, the in silico prediction of KAT-specific acetylation sites may provide direction for further experiments. In our previous study, we developed the acetylation set enrichment based (ASEB) computer program to predict which KAT-families are responsible for the acetylation of a given protein or lysine site. In this article, we provide KAT-specific acetylation site prediction as a web service. This web server not only provides the online tool and R package for the method in our previous study, but several useful services are also included, such as the integration of protein-protein interaction information to enhance prediction accuracy. This web server can be freely accessed at http://cmbi.bjmu.edu.cn/huac.

  18. Gamma-glutamyl transferase and cardiovascular disease

    PubMed Central

    Kastrati, Adnan

    2016-01-01

    Gamma-glutamyl transferase (GGT) is an enzyme located on the external surface of cellular membranes. GGT contributes in maintaining the physiological concentrations of cytoplasmic glutathione and cellular defense against oxidative stress via cleavage of extracellular glutathione and increased availability of amino acids for its intracellular synthesis. Increased GGT activity is a marker of antioxidant inadequacy and increased oxidative stress. Ample evidence suggests that elevated GGT activity is associated with increased risk of cardiovascular disease (CVD) such as coronary heart disease (CHD), stroke, arterial hypertension, heart failure, cardiac arrhythmias and all-cause and CVD-related mortality. The evidence is weaker for an association between elevated GGT activity and acute ischemic events and myocardial infarction. The risk for CVD or CVD-related mortality mediated by GGT may be explained by the close correlation of GGT with conventional CVD risk factors and various comorbidities, particularly non-alcoholic fatty liver disease, alcohol consumption, oxidative stress, metabolic syndrome, insulin resistance and systemic inflammation. The finding of GGT activity in atherosclerotic plaques and correlation of intra-plaque GGT activity with histological indexes of plaque instability may suggest a participation of GGT in the pathophysiology of CVD, particularly atherosclerosis. However, whether GGT has a direct role in the pathophysiology of CVD or it is an epiphenomenon of coexisting CVD risk factors or comorbidities remains unknown and Hill’s criteria of causality relationship between GGT and CVD are not fulfilled. The exploration whether GGT provides prognostic information on top of the information provided by known cardiovascular risk factors regarding the CVD or CVD-related outcome and exploration of molecular mechanisms of GGT involvement in the pathophysiology of CVD and eventual use of interventions to reduce circulating GGT activity remain a duty of

  19. Nucleosome acetylation sequencing to study the establishment of chromatin acetylation.

    PubMed

    Mittal, Chitvan; Blacketer, Melissa J; Shogren-Knaak, Michael A

    2014-07-15

    The establishment of posttranslational chromatin modifications is a major mechanism for regulating how genomic DNA is utilized. However, current in vitro chromatin assays do not monitor histone modifications at individual nucleosomes. Here we describe a strategy, nucleosome acetylation sequencing, that allows us to read the amount of modification at each nucleosome. In this approach, a bead-bound trinucleosome substrate is enzymatically acetylated with radiolabeled acetyl CoA by the SAGA complex from Saccharomyces cerevisae. The product is digested by restriction enzymes that cut at unique sites between the nucleosomes and then counted to quantify the extent of acetylation at each nucleosomal site. We find that we can sensitively, specifically, and reproducibly follow enzyme-mediated nucleosome acetylation. Applying this strategy, when acetylation proceeds extensively, its distribution across nucleosomes is relatively uniform. However, when substrates are used that contain nucleosomes mutated at the major sites of SAGA-mediated acetylation, or that are studied under initial rate conditions, changes in the acetylation distribution can be observed. Nucleosome acetylation sequencing should be applicable to analyzing a wide range of modifications. Additionally, because our trinucleosomes synthesis strategy is highly modular and efficient, it can be used to generate nucleosomal systems in which nucleosome composition differs across the array.

  20. Histone acetylation in insect chromosomes.

    PubMed

    Allfrey, V G; Pogo, B G; Littau, V C; Gershey, E L; Mirsky, A E

    1968-01-19

    Acetylation of histones takes place along the salivary gland chromosomes of Chironomus thummi when RNA synthesis is active. It can be observed but not measured quantitatively by autoradiography of chromosome squashes. The "fixatives" commonly used in preparing squashes of insect chromosomes preferentially extract the highly acetylated "arginine-rich" histone fractions; the use of such fixatives may explain the reported absence of histone acetylation in Drosophila melanogaster.

  1. STAT5 acetylation

    PubMed Central

    Kosan, Christian; Ginter, Torsten; Heinzel, Thorsten; Krämer, Oliver H

    2013-01-01

    The cytokine-inducible transcription factors signal transducer and activator of transcription 5A and 5B (STAT5A and STAT5B) are important for the proper development of multicellular eukaryotes. Disturbed signaling cascades evoking uncontrolled expression of STAT5 target genes are associated with cancer and immunological failure. Here, we summarize how STAT5 acetylation is integrated into posttranslational modification networks within cells. Moreover, we focus on how inhibitors of deacetylases and tyrosine kinases can correct leukemogenic signaling nodes involving STAT5. Such small molecules can be exploited in the fight against neoplastic diseases and immunological disorders. PMID:24416653

  2. Hibiscus cannabinus feruloyl-coa:monolignol transferase

    SciTech Connect

    Wilkerson, Curtis; Ralph, John; Withers, Saunia; Mansfield, Shawn D.

    2016-11-15

    The invention relates to isolated nucleic acids encoding a feruloyl-CoA:monolignol transferase and feruloyl-CoA:monolignol transferase enzymes. The isolated nucleic acids and/or the enzymes enable incorporation of monolignol ferulates into the lignin of plants, where such monolignol ferulates include, for example, p-coumaryl ferulate, coniferyl ferulate, and/or sinapyl ferulate. The invention also includes methods and plants that include nucleic acids encoding a feruloyl-CoA:monolignol transferase enzyme and/or feruloyl-CoA:monolignol transferase enzymes.

  3. Feruloyl-CoA:monolignol transferase

    DOEpatents

    Wilkerson, Curtis; Ralph, John; Withers, Saunia; Mansfield, Shawn D.

    2016-09-13

    The invention relates to nucleic acids encoding a feruloyl-CoA:monolignol transferase and the feruloyl-CoA:monolignol transferase enzyme that enables incorporation of monolignol ferulates, for example, including p-coumaryl ferulate, coniferyl ferulate, and sinapyl ferulate, into the lignin of plants.

  4. Feruloyl-CoA:monolignol transferase

    DOEpatents

    Wilkerson, Curtis; Ralph, John; Withers, Saunia; Mansfield, Shawn D.

    2016-11-08

    The invention relates to nucleic acids encoding a feruloyl-CoA:monolignol transferase and the feruloyl-CoA:monolignol transferase enzyme that enables incorporation of monolignol ferulates, for example, including p-coumaryl ferulate, coniferyl ferulate, and sinapyl ferulate, into the lignin of plants.

  5. [Nourseothricin (streptothricin) inactivated by plasmid pIE 636-encoded acetyltransferase: detection of N-acetyl-beta-lysine in the inactivated product].

    PubMed

    Seltmann, G

    1985-12-01

    Nourseothricin (streptothricin) can be inactivated by an acetyl transferase synthesized by E. coli strains containing plasmid pIE 636. Nourseothricin inactivated in the presence of 14C-acetyl-coenzyme A was purified and submitted to partial acidic hydrolysis. By electrophoresis of the hydrolysate a 14C-containing substance moving only slowly towards the cathode could be isolated. This substance after complete hydrolysis yields only unlabelled beta-lysine.

  6. 21 CFR 862.1535 - Ornithine carbamyl transferase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... carbamyl transferase (OCT) in serum. Ornithine carbamyl transferase measurements are used in the diagnosis and treatment of liver diseases, such as infectious hepatitis, acute cholecystitis (inflammation...

  7. Histone acetylation in heterochromatin assembly

    PubMed Central

    Kim, Jeong-Hoon; Workman, Jerry L.

    2010-01-01

    Histone acetylation is generally considered a mark involved in activating gene expression by making chromatin structures less compact. In the April 1, 2010, issue of Genes & Development, Xhemalce and Kouzarides (pp. 647–652) demonstrate that the acetylation of histone H3 at Lys 4 (H3K4) plays a role in the formation of repressive heterochromatin in Schizosaccharomyces pombe. H3K4 acetylation mediates a switch of chromodomain proteins associated with methylated H3K9 during heterochromatin assembly. PMID:20395362

  8. Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae.

    PubMed

    Weinert, Brian T; Iesmantavicius, Vytautas; Moustafa, Tarek; Schölz, Christian; Wagner, Sebastian A; Magnes, Christoph; Zechner, Rudolf; Choudhary, Chunaram

    2014-01-01

    Lysine acetylation is a frequently occurring posttranslational modification; however, little is known about the origin and regulation of most sites. Here we used quantitative mass spectrometry to analyze acetylation dynamics and stoichiometry in Saccharomyces cerevisiae. We found that acetylation accumulated in growth-arrested cells in a manner that depended on acetyl-CoA generation in distinct subcellular compartments. Mitochondrial acetylation levels correlated with acetyl-CoA concentration in vivo and acetyl-CoA acetylated lysine residues nonenzymatically in vitro. We developed a method to estimate acetylation stoichiometry and found that the vast majority of mitochondrial and cytoplasmic acetylation had a very low stoichiometry. However, mitochondrial acetylation occurred at a significantly higher basal level than cytoplasmic acetylation, consistent with the distinct acetylation dynamics and higher acetyl-CoA concentration in mitochondria. High stoichiometry acetylation occurred mostly on histones, proteins present in histone acetyltransferase and deacetylase complexes, and on transcription factors. These data show that a majority of acetylation occurs at very low levels in exponentially growing yeast and is uniformly affected by exposure to acetyl-CoA.

  9. Urinary mutagenicity and N-acetylation phenotype in textile industry workers exposed to arylamines

    SciTech Connect

    Sinues, B.; Perez, J.; Bernal, M.L.; Saenz, M.A.; Lanuza, J.; Bartolome, M. )

    1992-09-15

    Primary aromatic amines have been identified epidemiologically as human carcinogens. It has been suggested that the target organ affected by aromatic amines is dependent on the rate of metabolic activation. Epidemiological studies have shown an association between low acetyl transferase activity and bladder cancer risk. On this basis, our working hypothesis was that the slow acetylators could follow in a higher extent the metabolic pathway independent of N-acetylation, leading to the excretion of conjugates of electrophyles with glucuronic acid. The instability of these glucuronides could be responsible for the association between arylamine-induced bladder cancer and slow acetylator phenotype. A total of 153 individuals were included in this study: 70 exposed to arylamines (working in textile industry) and 83 nonexposed. The following parameters were determined in urine: mutagenic index in the absence of metabolic activation, S9; mutagenic index in the presence of S9; and the mutagenic index after incubation of the urine with beta-glucuronidase. All individuals were phenotyped according to their capacity of N-acetylation by using isoniazid as drug test. The results show that the mutagenic index after incubation of the urine with beta-glucuronidase is statistically higher in exposed subjects when compared with nonexposed individuals (P less than 0.001), this parameter being statistically higher among exposed subjects who were slow acetylators than among rapid metabolizers, independent of the fact that they were smokers or nonsmokers. There were no significant differences between groups for the mutagenicity in urine not incubated with beta-glucuronidase.

  10. Functional Dissection of the Bipartite Active Site of the Class I Coenzyme A (CoA)-Transferase Succinyl-CoA:Acetate CoA-Transferase

    PubMed Central

    Murphy, Jesse R.; Mullins, Elwood A.; Kappock, T. Joseph

    2016-01-01

    Coenzyme A (CoA)-transferases catalyze the reversible transfer of CoA from acyl-CoA thioesters to free carboxylates. Class I CoA-transferases produce acylglutamyl anhydride intermediates that undergo attack by CoA thiolate on either the internal or external carbonyl carbon atoms, forming distinct tetrahedral intermediates <3 Å apart. In this study, crystal structures of succinyl-CoA:acetate CoA-transferase (AarC) from Acetobacter aceti are used to examine how the Asn347 carboxamide stabilizes the internal oxyanion intermediate. A structure of the active mutant AarC-N347A bound to CoA revealed both solvent replacement of the missing contact and displacement of the adjacent Glu294, indicating that Asn347 both polarizes and orients the essential glutamate. AarC was crystallized with the nonhydrolyzable acetyl-CoA (AcCoA) analog dethiaacetyl-CoA (1a) in an attempt to trap a closed enzyme complex containing a stable analog of the external oxyanion intermediate. One active site contained an acetylglutamyl anhydride adduct and truncated 1a, an unexpected result hinting at an unprecedented cleavage of the ketone moiety in 1a. Solution studies confirmed that 1a decomposition is accompanied by production of near-stoichiometric acetate, in a process that seems to depend on microbial contamination but not AarC. A crystal structure of AarC bound to the postulated 1a truncation product (2a) showed complete closure of one active site per dimer but no acetylglutamyl anhydride, even with acetate added. These findings suggest that an activated acetyl donor forms during 1a decomposition; a working hypothesis involving ketone oxidation is offered. The ability of 2a to induce full active site closure furthermore suggests that it subverts a system used to impede inappropriate active site closure on unacylated CoA. PMID:27242998

  11. Functional dissection of the bipartite active site of the class I coenzyme A (CoA)-transferase succinyl-CoA:acetate CoA-transferase

    NASA Astrophysics Data System (ADS)

    Murphy, Jesse; Mullins, Elwood; Kappock, T.

    2016-05-01

    Coenzyme A (CoA)-transferases catalyze the reversible transfer of CoA from acyl-CoA thioesters to free carboxylates. Class I CoA-transferases produce acylglutamyl anhydride intermediates that undergo attack by CoA thiolate on either the internal or external carbonyl carbon atoms, forming distinct tetrahedral intermediates less than 3 Å apart. In this study, crystal structures of succinyl-CoA:acetate CoA-transferase (AarC) from Acetobacter aceti are used to examine how the Asn347 carboxamide stabilizes the internal oxyanion intermediate. A structure of the active mutant AarC-N347A bound to CoA revealed both solvent replacement of the missing contact and displacement of the adjacent Glu294, indicating that Asn347 both polarizes and orients the essential glutamate. AarC was crystallized with the nonhydrolyzable acetyl-CoA (AcCoA) analogue dethiaacetyl-CoA (1a) in an attempt to trap a closed enzyme complex containing a stable analogue of the external oxyanion intermediate. One active site contained an acetylglutamyl anhydride adduct and truncated 1a, an unexpected result hinting at an unprecedented cleavage of the ketone moiety in 1a. Solution studies confirmed that 1a decomposition is accompanied by production of near-stoichiometric acetate, in a process that seems to depend on microbial contamination but not AarC. A crystal structure of AarC bound to the postulated 1a truncation product (2a) showed complete closure of one active site per dimer but no acetylglutamyl anhydride, even with acetate added. These findings suggest that an activated acetyl donor forms during 1a decomposition; a working hypothesis involving ketone oxidation is offered. The ability of 2a to induce full active site closure furthermore suggests that it subverts a system used to impede inappropriate active site closure on unacylated CoA.

  12. Functional dissection of the bipartite active site of the class I coenzyme A (CoA)-transferase succinyl-CoA:acetate CoA-transferase

    DOE PAGES

    Murphy, Jesse R.; Mullins, Elwood A.; Kappock, T. Joseph

    2016-05-23

    Coenzyme A (CoA)-transferases catalyze the reversible transfer of CoA from acyl-CoA thioesters to free carboxylates. Class I CoA-transferases produce acylglutamyl anhydride intermediates that undergo attack by CoA thiolate on either the internal or external carbonyl carbon atoms, forming distinct tetrahedral intermediates <3 Å apart. Here in this study, crystal structures of succinyl-CoA:acetate CoA-transferase (AarC) from Acetobacter aceti are used to examine how the Asn347 carboxamide stabilizes the internal oxyanion intermediate. A structure of the active mutant AarC-N347A bound to CoA revealed both solvent replacement of the missing contact and displacement of the adjacent Glu294, indicating that Asn347 both polarizes andmore » orients the essential glutamate. AarC was crystallized with the nonhydrolyzable acetyl-CoA (AcCoA) analog dethiaacetyl-CoA (1a) in an attempt to trap a closed enzyme complex containing a stable analog of the external oxyanion intermediate. One active site contained an acetylglutamyl anhydride adduct and truncated 1a, an unexpected result hinting at an unprecedented cleavage of the ketone moiety in 1a. Solution studies confirmed that 1a decomposition is accompanied by production of near-stoichiometric acetate, in a process that seems to depend on microbial contamination but not AarC. A crystal structure of AarC bound to the postulated 1a truncation product (2a) showed complete closure of one active site per dimer but no acetylglutamyl anhydride, even with acetate added. These findings suggest that an activated acetyl donor forms during 1a decomposition; a working hypothesis involving ketone oxidation is offered. Finally, the ability of 2a to induce full active site closure furthermore suggests that it subverts a system used to impede inappropriate active site closure on unacylated CoA.« less

  13. Functional dissection of the bipartite active site of the class I coenzyme A (CoA)-transferase succinyl-CoA:acetate CoA-transferase

    SciTech Connect

    Murphy, Jesse R.; Mullins, Elwood A.; Kappock, T. Joseph

    2016-05-23

    Coenzyme A (CoA)-transferases catalyze the reversible transfer of CoA from acyl-CoA thioesters to free carboxylates. Class I CoA-transferases produce acylglutamyl anhydride intermediates that undergo attack by CoA thiolate on either the internal or external carbonyl carbon atoms, forming distinct tetrahedral intermediates <3 Å apart. Here in this study, crystal structures of succinyl-CoA:acetate CoA-transferase (AarC) from Acetobacter aceti are used to examine how the Asn347 carboxamide stabilizes the internal oxyanion intermediate. A structure of the active mutant AarC-N347A bound to CoA revealed both solvent replacement of the missing contact and displacement of the adjacent Glu294, indicating that Asn347 both polarizes and orients the essential glutamate. AarC was crystallized with the nonhydrolyzable acetyl-CoA (AcCoA) analog dethiaacetyl-CoA (1a) in an attempt to trap a closed enzyme complex containing a stable analog of the external oxyanion intermediate. One active site contained an acetylglutamyl anhydride adduct and truncated 1a, an unexpected result hinting at an unprecedented cleavage of the ketone moiety in 1a. Solution studies confirmed that 1a decomposition is accompanied by production of near-stoichiometric acetate, in a process that seems to depend on microbial contamination but not AarC. A crystal structure of AarC bound to the postulated 1a truncation product (2a) showed complete closure of one active site per dimer but no acetylglutamyl anhydride, even with acetate added. These findings suggest that an activated acetyl donor forms during 1a decomposition; a working hypothesis involving ketone oxidation is offered. Finally, the ability of 2a to induce full active site closure furthermore suggests that it subverts a system used to impede inappropriate active site closure on unacylated CoA.

  14. Properties of Succinyl-Coenzyme A:d-Citramalate Coenzyme A Transferase and Its Role in the Autotrophic 3-Hydroxypropionate Cycle of Chloroflexus aurantiacus

    PubMed Central

    Friedmann, Silke; Alber, Birgit E.; Fuchs, Georg

    2006-01-01

    The phototrophic bacterium Chloroflexus aurantiacus uses the 3-hydroxypropionate cycle for autotrophic CO2 fixation. This cycle starts with acetyl-coenzyme A (CoA) and produces glyoxylate. Glyoxylate is an unconventional cell carbon precursor that needs special enzymes for assimilation. Glyoxylate is combined with propionyl-CoA to β-methylmalyl-CoA, which is converted to citramalate. Cell extracts catalyzed the succinyl-CoA-dependent conversion of citramalate to acetyl-CoA and pyruvate, the central cell carbon precursor. This reaction is due to the combined action of enzymes that were upregulated during autotrophic growth, a coenzyme A transferase with the use of succinyl-CoA as the CoA donor and a lyase cleaving citramalyl-CoA to acetyl-CoA and pyruvate. Genomic analysis identified a gene coding for a putative coenzyme A transferase. The gene was heterologously expressed in Escherichia coli and shown to code for succinyl-CoA:d-citramalate coenzyme A transferase. This enzyme, which catalyzes the reaction d-citramalate + succinyl-CoA → d-citramalyl-CoA + succinate, was purified and studied. It belongs to class III of the coenzyme A transferase enzyme family, with an aspartate residue in the active site. The homodimeric enzyme composed of 44-kDa subunits was specific for succinyl-CoA as a CoA donor but also accepted d-malate and itaconate instead of d-citramalate. The CoA transferase gene is part of a cluster of genes which are cotranscribed, including the gene for d-citramalyl-CoA lyase. It is proposed that the CoA transferase and the lyase catalyze the last two steps in the glyoxylate assimilation route. PMID:16952935

  15. Three CoA Transferases Involved in the Production of Short Chain Fatty Acids in Porphyromonas gingivalis

    PubMed Central

    Sato, Mitsunari; Yoshida, Yasuo; Nagano, Keiji; Hasegawa, Yoshiaki; Takebe, Jun; Yoshimura, Fuminobu

    2016-01-01

    Butyryl-CoA:acetate CoA transferase, which produces butyrate and acetyl-CoA from butyryl-CoA and acetate, is responsible for the final step of butyrate production in bacteria. This study demonstrates that in the periodontopathogenic bacterium Porphyromonas gingivalis this reaction is not catalyzed by PGN_1171, previously annotated as butyryl-CoA:acetate CoA transferase, but by three distinct CoA transferases, PGN_0725, PGN_1341, and PGN_1888. Gas chromatography/mass spectrometry (GC-MS) and spectrophotometric analyses were performed using crude enzyme extracts from deletion mutant strains and purified recombinant proteins. The experiments revealed that, in the presence of acetate, PGN_0725 preferentially utilized butyryl-CoA rather than propionyl-CoA. By contrast, this preference was reversed in PGN_1888. The only butyryl-CoA:acetate CoA transferase activity was observed in PGN_1341. Double reciprocal plots revealed that all the reactions catalyzed by these enzymes follow a ternary-complex mechanism, in contrast to previously characterized CoA transferases. GC-MS analysis to determine the concentrations of short chain fatty acids (SCFAs) in culture supernatants of P. gingivalis wild type and mutant strains revealed that PGN_0725 and PGN_1888 play a major role in the production of butyrate and propionate, respectively. Interestingly, a triple deletion mutant lacking PGN_0725, PGN_1341, and PGN_1888 produced low levels of SCFAs, suggesting that the microorganism contains CoA transferase(s) in addition to these three enzymes. Growth rates of the mutant strains were mostly slower than that of the wild type, indicating that many carbon compounds produced in the SCFA synthesis appear to be important for the biological activity of this microorganism. PMID:27486457

  16. Rat liver nucleotide pyrophosphatase/phosphodiesterase is an efficient adenylyl transferase.

    PubMed Central

    Ribeiro, J M; López-Gómez, J; Vergeles, J M; Costas, M J; García-Díaz, M; Fernández, A; Flores, A; Cameselle, J C

    2000-01-01

    Rat liver nucleotide pyrophosphatase/phosphodiesterase I (NPP/PDE) catalysed efficiently the transfer of adenylate from ATP to alcohols (methanol, ethanol, propanol, ethylene glycol, glycerol, 2, 2-dichloroethanol and glycerol 2-phosphate), which acted as adenylate acceptors competing with water with different efficiencies. NPP/PDE kinetics in alcohol/water mixtures were accounted for by rate equations for competitive substrates, modified to include alcohol negative co-operativity and, depending on the nature of the alcohol, enzyme denaturation by high alcohol concentrations or activation by low alcohol concentrations. The correlation of alcohol efficiencies with alcohol acidities, the comparison of rat liver with snake venom NPP/PDE, and the different effects of ionic additives on the efficiencies of glycerol 2-phosphate and glycerol provided evidence for interaction of the alcohols with a base catalyst, a non-polar and a cationic subsite in the active centre of rat liver NPP/PDE. The enzyme thus appears to be well suited to act as transferase, and we propose that NPP/PDE could be an adenylylating agent in the membrane. PMID:10657235

  17. Sirt1 physically interacts with Tip60 and negatively regulates Tip60-mediated acetylation of H2AX

    SciTech Connect

    Yamagata, Kazutsune; Kitabayashi, Issay

    2009-12-25

    Sirt1 appear to be NAD(+)-dependent deacetylase that deacetylates histones and several non-histone proteins. In this study, we identified Sirt1 as a physical interaction partner of Tip60, which is a mammalian MYST-type histone acetyl-transferase that specifically acetylates histones H2A and H4. Although Tip60 also acetylates DNA damage-specific histone H2A variant H2AX in response to DNA damage, which is a process required for appropriate DNA damage response, overexpression of Sirt1 represses Tip60-mediated acetylation of H2AX. Furthermore, Sirt1 depletion by RNAi causes excessive acetylation of H2AX, and enhances accumulation of {gamma}-ray irradiation-induced MDC1, BRCA1, and Rad51 foci in nuclei. These findings suggest that Sirt1 functions as negative regulator of Tip60-mediated acetylation of H2AX. Moreover, Sirt1 deacetylates an acetylated Tip60 in response to DNA damage and stimulates proteasome-dependent Tip60 degradation in vivo, suggesting that Sirt1 negatively regulates the protein level of Tip60 in vivo. Sirt1 may thus repress excessive activation of the DNA damage response and Rad51-homologous recombination repair by suppressing the function of Tip60.

  18. Oxygen-dependent acetylation and dimerization of the corepressor CtBP2 in neural stem cells

    SciTech Connect

    Karaca, Esra; Lewicki, Jakub; Hermanson, Ola

    2015-03-01

    The transcriptional corepressor CtBP2 is essential for proper development of the nervous system. The factor exerts its repression by interacting in complexes with chromatin-modifying factors such as histone deacetylases (HDAC) 1/2 and the histone demethylase LSD1/KDM1. Notably, the histone acetyl transferase p300 acetylates CtBP2 and this is an important regulatory event of the activity and subcellular localization of the protein. We recently demonstrated an essential role for CtBPs as sensors of microenvironmental oxygen levels influencing the differentiation potential of neural stem cells (NSCs), but it is not known whether oxygen levels influence the acetylation levels of CtBP factors. Here we show by using proximity ligation assay (PLA) that CtBP2 acetylation levels increased significantly in undifferentiated, proliferating NSCs under hypoxic conditions. CtBP2 interacted with the class III HDAC Sirt1 but this interaction was unaltered in hypoxic conditions, and treatment with the Sirt1 inhibitor Ex527 did not result in any significant change in total CtBP2 acetylation levels. Instead, we revealed a significant decrease in PLA signal representing CtBP2 dimerization in NSCs under hypoxic conditions, negatively correlating with the acetylation levels. Our results suggest that microenvironmental oxygen levels influence the dimerization and acetylation levels, and thereby the activity, of CtBP2 in proliferating NSCs.

  19. N-ACETYL GROUPS IN VITELLENIN,

    DTIC Science & Technology

    The presence of acetyl groups in vitellenin was confirmed by hydrazinolysis according to the DNP method of Phillips. After hydrazinolysis of 10-30...hydrazinolysis at room temperature for 1 hour, vitellenin contains N- acetyl , but no Oacetyl, groups. (Author)

  20. Acetylated α-Tubulin Regulated by N-Acetyl-Seryl-Aspartyl-Lysyl-Proline(Ac-SDKP) Exerts the Anti-fibrotic Effect in Rat Lung Fibrosis Induced by Silica

    PubMed Central

    Xiaojun, Wang; Yan, Liu; Hong, Xu; Xianghong, Zhang; Shifeng, Li; Dingjie, Xu; Xuemin, Gao; Lijuan, Zhang; Bonan, Zhang; Zhongqiu, Wei; Ruimin, Wang; Brann, Darrell; Fang, Yang

    2016-01-01

    Silicosis is the most serious occupational disease in China. The objective of this study was to screen various proteins related to mechanisms of the pathogenesis of silicosis underlying the anti-fibrotic effect of N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) using proteomic profile analysis. We also aimed to explore a potential mechanism of acetylated α-tubulin (α-Ac-Tub) regulation by Ac-SDKP. Two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) were used to assess the different protein expression profiles between control and silicosis rats treated with or without Ac-SDKP. Twenty-nine proteins were identified to be potentially involved in the progression of silicosis and the anti-fibrotic effect of Ac-SDKP. Our current study finds that 1) the lost expression of Ac-Tub-α may be a new mechanism in rat silicosis; 2) treatment of silicotic rats with N-acetyl-Seryl-Aspartyl-Lysyl-Proline (Ac-SDKP) inhibits myofibroblast differentiation and collagen deposition accompanied by stabilizing the expression of α-Ac-Tub in vivo and in vitro, which is related with deacetylase family member 6 (HDAC6) and α-tubulin acetyl transferase (α-TAT1). Our data suggest that α-Ac-Tub regulation by Ac-SDKP may potentially be a new anti-fibrosis mechanism. PMID:27577858

  1. Roles for glutathione transferases in antioxidant recycling

    PubMed Central

    Dixon, David P; Steel, Patrick G

    2011-01-01

    Uniquely among the plant glutathione transferases, two classes possess a catalytic cysteine capable of performing glutathione-dependent reductions. These are the dehydroascorbate reductases (DHARs) and the lambda-class glutathione transferases (GSTLs). Using immobilized GSTLs probed with crude plant extracts we have identified flavonols as high affinity ligands and subsequently demonstrated a novel glutathione-dependent role for these enzymes in recycling oxidized quercetin. By comparing the activities of DHARs and GSTLs we now propose a unified catalytic mechanism that suggests oxidized anthocyanidins and tocopherols may be alternative polyphenolic substrates of GSTLs. PMID:21778824

  2. Bacterial protein acetylation: new discoveries unanswered questions.

    PubMed

    Wolfe, Alan J

    2016-05-01

    Nε-acetylation is emerging as an abundant post-translational modification of bacterial proteins. Two mechanisms have been identified: one is enzymatic, dependent on an acetyltransferase and acetyl-coenzyme A; the other is non-enzymatic and depends on the reactivity of acetyl phosphate. Some, but not most, of those acetylations are reversed by deacetylases. This review will briefly describe the current status of the field and raise questions that need answering.

  3. Protein acetylation in archaea, bacteria, and eukaryotes.

    PubMed

    Soppa, Jörg

    2010-09-16

    Proteins can be acetylated at the alpha-amino group of the N-terminal amino acid (methionine or the penultimate amino acid after methionine removal) or at the epsilon-amino group of internal lysines. In eukaryotes the majority of proteins are N-terminally acetylated, while this is extremely rare in bacteria. A variety of studies about N-terminal acetylation in archaea have been reported recently, and it was revealed that a considerable fraction of proteins is N-terminally acetylated in haloarchaea and Sulfolobus, while this does not seem to apply for methanogenic archaea. Many eukaryotic proteins are modified by differential internal acetylation, which is important for a variety of processes. Until very recently, only two bacterial proteins were known to be acetylation targets, but now 125 acetylation sites are known for E. coli. Knowledge about internal acetylation in archaea is extremely limited; only two target proteins are known, only one of which--Alba--was used to study differential acetylation. However, indications accumulate that the degree of internal acetylation of archaeal proteins might be underestimated, and differential acetylation has been shown to be essential for the viability of haloarchaea. Focused proteomic approaches are needed to get an overview of the extent of internal protein acetylation in archaea.

  4. Farnesyl transferase inhibitors as anticancer agents.

    PubMed

    Haluska, P; Dy, G K; Adjei, A A

    2002-09-01

    Protein farnesylation catalysed by the enzyme farnesyl protein transferase involves the addition of a 15-carbon farnesyl group to conserved amino acid residues at the carboxyl terminus of certain proteins. Protein substrates of farnesyl transferase include several G-proteins, which are critical intermediates of cell signalling and cytoskeletal organisation such as Ras, Rho, PxF and lamins A and B. Activated Ras proteins trigger a cascade of phosphorylation events through sequential activation of the PI3 kinase/AKT pathway, which is critical for cell survival, and the Raf/Mek/Erk kinase pathway that has been implicated in cell proliferation. Ras mutations which encode for constitutively activated proteins are found in 30% of human cancers. Because farnesylation of Ras is required for its transforming and proliferative activity, the farnesyl protein transferase inhibitors were designed as anticancer agents to abrogate Ras function. However, current evidence suggests that the anticancer activity of the farnesyl transferase inhibitors may not be simply due to Ras inhibition. This review will discuss available clinical data on three of these agents that are currently undergoing clinical trials.

  5. Properties of Succinyl-Coenzyme A:l-Malate Coenzyme A Transferase and Its Role in the Autotrophic 3-Hydroxypropionate Cycle of Chloroflexus aurantiacus

    PubMed Central

    Friedmann, Silke; Steindorf, Astrid; Alber, Birgit E.; Fuchs, Georg

    2006-01-01

    The 3-hydroxypropionate cycle has been proposed to operate as the autotrophic CO2 fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus. In this pathway, acetyl coenzyme A (acetyl-CoA) and two bicarbonate molecules are converted to malate. Acetyl-CoA is regenerated from malyl-CoA by l-malyl-CoA lyase. The enzyme forming malyl-CoA, succinyl-CoA:l-malate coenzyme A transferase, was purified. Based on the N-terminal amino acid sequence of its two subunits, the corresponding genes were identified on a gene cluster which also contains the gene for l-malyl-CoA lyase, the subsequent enzyme in the pathway. Both enzymes were severalfold up-regulated under autotrophic conditions, which is in line with their proposed function in CO2 fixation. The two CoA transferase genes were cloned and heterologously expressed in Escherichia coli, and the recombinant enzyme was purified and studied. Succinyl-CoA:l-malate CoA transferase forms a large (αβ)n complex consisting of 46- and 44-kDa subunits and catalyzes the reversible reaction succinyl-CoA + l-malate → succinate + l-malyl-CoA. It is specific for succinyl-CoA as the CoA donor but accepts l-citramalate instead of l-malate as the CoA acceptor; the corresponding d-stereoisomers are not accepted. The enzyme is a member of the class III of the CoA transferase family. The demonstration of the missing CoA transferase closes the last gap in the proposed 3-hydroxypropionate cycle. PMID:16547052

  6. Cloning, expression and properties of porcine trachea UDP-galnac: polypeptide N-acetylgalactosaminyl transferase.

    PubMed

    Sangadala, Sreedhara; Swain, Ja Baris; McNear, Adrian; Mendicino, Joseph

    2004-11-01

    A UDP-GalNAc:polypeptide N-acetyl-galactosaminyl transferase which catalyses the transfer of GalNAc from UDP-GalNAc to serine and threonine residues in mucin polypeptide chains was purified to homogeneity from swine trachea epithelium (Mendicino J, Sangadala S: Mol Cell Biochem 185: 135-145, 1998). Peptides obtained by proteolysis of the purified enzyme were isolated, sequenced and used to prepare degenerate oligonucleotide primers. Amplified segments of a gene encoding GalNAc transferase were synthesised using the primers and a swine trachea epithelial cDNA library. Selected cDNA fragments were then used to screen the cDNA library, and a clone containing an open reading frame encoding 559 amino acids was isolated. The predicted amino acid sequence contains type II transmembrane region, three potential N-glycosylation sites as well as all of the isolated peptide sequences. The nucleotide sequence and predicted primary protein structure of the transferase were very similar to those of type T-1 GalNAc transferases. The isolated clone was transiently expressed in COS 7 cells and the recombinant enzyme, which contained an N-terminal hexa-histidine tag, was purified to homogeneity and its enzymatic properties were examined. The Vmax of the recombinant enzyme, 2.08 micromol/(min mg), was nearly the same as the native enzyme, 2.12 micromol/(min mg), when assayed with partially deglycosylated mucins as glycosyl acceptors. Both enzymes showed much higher activities when assayed with peptides prepared by limited acid hydrolysis of incompletely deglycosylated Cowper's gland, swine, and human respiratory mucins and tryptic peptides isolated from deglycosylated mucin polypeptide chains. However, as noted earlier (Mendicino J, Sangadala S: Mol Cell Biochem 185: 135-145, 1998), these enzymes showed very little activity with completely deglycosylated mucin polypeptide chains. When completely deglycosylated polypeptide chains were partially glycosylated by incubation with microsome

  7. Alcoholism, Alcohol, and Drugs

    ERIC Educational Resources Information Center

    Rubin, Emanuel; Lieber, Charles S.

    1971-01-01

    Describes research on synergistic effects of alcohol and other drugs, particularly barbiturates. Proposes biochemical mechanisms to explain alcoholics' tolerance of other drugs when sober, and increased sensitivity when drunk. (AL)

  8. Purification and characterization of the Oligosaccharyl transferase

    SciTech Connect

    Kapoor, T.M.

    1990-11-01

    Oligosaccharyl transferase was characterized to be a glycoprotein with at least one saccharide unit that had a D-manno or D- glucopyranose configuration with unmodified hydroxy groups at C-3, C-4 and C-6, using a Concanavalin A affinity column. This afforded a 100 fold increase in the transferase purity in the solubilized microsomal sample and also removed over 90% of the microsomal proteins (the cytosolic ones being removed before solubilization). The detergent, N,N-Dimethyldodecylamine N-oxide (LDAO) was used for solubilization and it yielded a system compatible with the assay and the purification steps. An efficient method for detergent extraction without dilution of sample or protein precipitation was also developed.

  9. Rubber transferase in guayule plants. [Parthenium argentatum

    SciTech Connect

    Rosenfield, C.L.; Foster, M.A.; Benedict, C.R.

    1986-04-01

    Rubber transferase catalyzes the transfer of cis-1,4-polyprenyl-PP to isopentenyl-PP (IPP) with the elimination of PP/sub i/. Rubber transferase activity in guayule (Parthenium argentatum Gray) stems was localized in the lipid fraction of the homogenate following centrifugation in buffer and 0.4M Mannitol. Washed rubber particles were obtained by the chromatography of the lipid fraction on Ultrogel columns with an exclusion limit of 750,000 daltons by the procedure of B.G. Audley (private communication). The rubber particles catalyzed the incorporation of /sup 14/C-IPP into cis-polyisoprene. The radioactive cis-polyisoprene was identified by ozonolysis and chromatography of the resulting /sup 14/C-levulinic acid. The synthesis of cis-polyisoprene in the rubber particles required Mg/sup 2 +/ and IPP and was stimulated 2-fold with the addition of DMAPP. Rubber synthesis in guayule plants growing in the Permian Basin of West Texas does not occur during summer months but is induced by the cold night temperatures of the fall and winter. From August to December individual plants (which were transplanted in May) accumulated from 66mg to 11,800mg or rubber. During this period there was a 4-fold increase in rubber transferase activity in stem homogenates induced by the low temperatures.

  10. Analysis of acetylation stoichiometry suggests that SIRT3 repairs nonenzymatic acetylation lesions.

    PubMed

    Weinert, Brian T; Moustafa, Tarek; Iesmantavicius, Vytautas; Zechner, Rudolf; Choudhary, Chunaram

    2015-11-03

    Acetylation is frequently detected on mitochondrial enzymes, and the sirtuin deacetylase SIRT3 is thought to regulate metabolism by deacetylating mitochondrial proteins. However, the stoichiometry of acetylation has not been studied and is important for understanding whether SIRT3 regulates or suppresses acetylation. Using quantitative mass spectrometry, we measured acetylation stoichiometry in mouse liver tissue and found that SIRT3 suppressed acetylation to a very low stoichiometry at its target sites. By examining acetylation changes in the liver, heart, brain, and brown adipose tissue of fasted mice, we found that SIRT3-targeted sites were mostly unaffected by fasting, a dietary manipulation that is thought to regulate metabolism through SIRT3-dependent deacetylation. Globally increased mitochondrial acetylation in fasted liver tissue, higher stoichiometry at mitochondrial acetylation sites, and greater sensitivity of SIRT3-targeted sites to chemical acetylation in vitro and fasting-induced acetylation in vivo, suggest a nonenzymatic mechanism of acetylation. Our data indicate that most mitochondrial acetylation occurs as a low-level nonenzymatic protein lesion and that SIRT3 functions as a protein repair factor that removes acetylation lesions from lysine residues.

  11. A Method to determine lysine acetylation stoichiometries

    SciTech Connect

    Nakayasu, Ernesto S.; Wu, Si; Sydor, Michael A.; Shukla, Anil K.; Weitz, Karl K.; Moore, Ronald J.; Hixson, Kim K.; Kim, Jong Seo; Petyuk, Vladislav A.; Monroe, Matthew E.; Pasa-Tolic, Ljiljana; Qian, Weijun; Smith, Richard D.; Adkins, Joshua N.; Ansong, Charles

    2014-07-21

    A major bottleneck to fully understanding the functional aspects of lysine acetylation is the lack of stoichiometry information. Here we describe a mass spectrometry method using a combination of isotope labeling and detection of a diagnostic fragment ion to determine the stoichiometry of lysine acetylation on proteins globally. Using this technique, we determined the modification occupancy on hundreds of acetylated peptides from cell lysates and cross-validated the measurements via immunoblotting.

  12. Acetylation of prostaglandin synthase by aspirin.

    PubMed Central

    Roth, G J; Stanford, N; Majerus, P W

    1975-01-01

    When microsomes of sheep or bovine seminal vesicles are incubated with [acetyl-3H]aspirin (acetyl salicylic acid), 200 Ci/mol, we observe acetylation of a single protein, as measured by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The protein has a molecular weight of 85,000 and corresponds to a similar acetylated protein found in the particulate fraction of aspirin-treated human platelets. The aspirin-mediated acetylation reaction proceeds with the same time course and at the same concentration as does the inhibition of prostaglandin synthase (cyclo-oxygenase) (EC 1.14.99.1; 8,11,14-eicosatrienoate, hydrogen-donor:oxygen oxidoreductase) by the drug. At 100 muM aspirin, 50% inhibition of prostaglandin synthase and 50% of maximal acetylation are observed after 15 min at 37 degrees. Furthermore, the substrate for cyclo-oxygenase, arachidonic acid, inhibits protein acetylation by aspirin at concentrations (50% inhibition at 10-30 muM) which correlate with the Michaelis constant of arachidonic acid as a substrate for cyclooxygenase. Arachidonic acid analogues and indomethacin inhibit the acetylation reaction in proportion to their effectiveness as cyclo-oxygenase inhibitors. The results suggest that aspirin acts as an active-site acetylating agent for the enzyme cyclo-oxygenase. This action of aspirin may account for its anti-inflammatory and anti-platelet action. PMID:810797

  13. Acetylation of woody lignocellulose: significance and regulation

    PubMed Central

    Pawar, Prashant Mohan-Anupama; Koutaniemi, Sanna; Tenkanen, Maija; Mellerowicz, Ewa J.

    2013-01-01

    Non-cellulosic cell wall polysaccharides constitute approximately one quarter of usable biomass for human exploitation. In contrast to cellulose, these components are usually substituted by O-acetyl groups, which affect their properties and interactions with other polymers, thus affecting their solubility and extractability. However, details of these interactions are still largely obscure. Moreover, polysaccharide hydrolysis to constituent monosaccharides is hampered by the presence of O-acetyl groups, necessitating either enzymatic (esterase) or chemical de-acetylation, increasing the costs and chemical consumption. Reduction of polysaccharide acetyl content in planta is a way to modify lignocellulose toward improved saccharification. In this review we: (1) summarize literature on lignocellulose acetylation in different tree species, (2) present data and current hypotheses concerning the role of O-acetylation in determining woody lignocellulose properties, (3) describe plant proteins involved in lignocellulose O-acetylation, (4) give examples of microbial enzymes capable to de-acetylate lignocellulose, and (5) discuss prospects for exploiting these enzymes in planta to modify xylan acetylation. PMID:23734153

  14. Alcohol Alert

    MedlinePlus

    ... Us You are here Home » Alcohol Alert Alcohol Alert The NIAAA Alcohol Alert is a quarterly bulletin that disseminates important research ... text. To order single copies of select Alcohol Alerts, see ordering Information . To view publications in PDF ...

  15. Alcoholic neuropathy

    MedlinePlus

    Neuropathy - alcoholic; Alcoholic polyneuropathy ... The exact cause of alcoholic neuropathy is unknown. It likely includes both a direct poisoning of the nerve by the alcohol and the effect of poor nutrition ...

  16. Alcoholism - resources

    MedlinePlus

    Resources - alcoholism ... The following organizations are good resources for information on alcoholism : Alcoholics Anonymous -- www.aa.org Al-Anon Family Groups www.al-anon.org National Institute on Alcohol ...

  17. The interaction between acetylation and serine-574 phosphorylation regulates the apoptotic function of FOXO3

    PubMed Central

    Li, Z; Bridges, B; Olson, J; Weinman, SA

    2017-01-01

    The multispecific transcription factor and tumor suppressor FOXO3 is an important mediator of apoptosis, but the mechanisms that control its proapoptotic function are poorly understood. There has long been evidence that acetylation promotes FOXO3-driven apoptosis and recently a specific JNK (c-Jun N-terminal kinase)-dependent S574 phosphorylated form (p-FOXO3) has been shown to be specifically apoptotic. This study examined whether acetylation and S574 phosphorylation act independently or in concert to regulate the apoptotic function of FOXO3. We observed that both sirtuins 1 and 7 (SIRT1 and SIRT7) are able to deacetylate FOXO3 in vitro and in vivo, and that lipopolysaccharide (LPS) treatment of THP-1 monocytes induced a rapid increase of FOXO3 acetylation, partly by suppression of SIRT1 and SIRT7. Acetylation was required for S574 phosphorylation and cellular apoptosis. Deacetylation of FOXO3 by SIRT activation or SIRT1 or SIRT7 overexpression prevented its S574 phosphorylation and blocked apoptosis in response to LPS. We also found that acetylated FOXO3 preferentially bound JNK1, and a mutant FOXO3 lacking four known acetylation sites (K242, 259, 290 and 569R) abolished JNK1 binding and failed to induce apoptosis. This interplay of acetylation and phosphorylation also regulated cell death in primary human peripheral blood monocytes (PBMs). PBMs isolated from alcoholic hepatitis patients had high expression of SIRT1 and SIRT7 and failed to induce p-FOXO3 and apoptosis in response to LPS. PBMs from healthy controls had lower SIRT1 and SIRT7 and readily formed p-FOXO3 and underwent apoptosis when similarly treated. These results reveal that acetylation is permissive for generation of the apoptotic form of FOXO3 and the activity of SIRT1 and particularly SIRT7 regulate this process in vivo, allowing control of monocyte apoptosis in response to LPS. PMID:27669435

  18. The interaction between acetylation and serine-574 phosphorylation regulates the apoptotic function of FOXO3.

    PubMed

    Li, Z; Bridges, B; Olson, J; Weinman, S A

    2017-03-30

    The multispecific transcription factor and tumor suppressor FOXO3 is an important mediator of apoptosis, but the mechanisms that control its proapoptotic function are poorly understood. There has long been evidence that acetylation promotes FOXO3-driven apoptosis and recently a specific JNK (c-Jun N-terminal kinase)-dependent S574 phosphorylated form (p-FOXO3) has been shown to be specifically apoptotic. This study examined whether acetylation and S574 phosphorylation act independently or in concert to regulate the apoptotic function of FOXO3. We observed that both sirtuins 1 and 7 (SIRT1 and SIRT7) are able to deacetylate FOXO3 in vitro and in vivo, and that lipopolysaccharide (LPS) treatment of THP-1 monocytes induced a rapid increase of FOXO3 acetylation, partly by suppression of SIRT1 and SIRT7. Acetylation was required for S574 phosphorylation and cellular apoptosis. Deacetylation of FOXO3 by SIRT activation or SIRT1 or SIRT7 overexpression prevented its S574 phosphorylation and blocked apoptosis in response to LPS. We also found that acetylated FOXO3 preferentially bound JNK1, and a mutant FOXO3 lacking four known acetylation sites (K242, 259, 290 and 569R) abolished JNK1 binding and failed to induce apoptosis. This interplay of acetylation and phosphorylation also regulated cell death in primary human peripheral blood monocytes (PBMs). PBMs isolated from alcoholic hepatitis patients had high expression of SIRT1 and SIRT7 and failed to induce p-FOXO3 and apoptosis in response to LPS. PBMs from healthy controls had lower SIRT1 and SIRT7 and readily formed p-FOXO3 and underwent apoptosis when similarly treated. These results reveal that acetylation is permissive for generation of the apoptotic form of FOXO3 and the activity of SIRT1 and particularly SIRT7 regulate this process in vivo, allowing control of monocyte apoptosis in response to LPS.

  19. Alcohol Alert: Genetics of Alcoholism

    MedlinePlus

    ... 84 Alcohol Alert Number 84 Print Version The Genetics of Alcoholism Why can some people have a ... to an increased risk of alcoholism. Cutting-Edge Genetic Research in Alcoholism Although researchers already have made ...

  20. A Method to Determine Lysine Acetylation Stoichiometries

    DOE PAGES

    Nakayasu, Ernesto S.; Wu, Si; Sydor, Michael A.; ...

    2014-01-01

    Lysine acetylation is a common protein posttranslational modification that regulates a variety of biological processes. A major bottleneck to fully understanding the functional aspects of lysine acetylation is the difficulty in measuring the proportion of lysine residues that are acetylated. Here we describe a mass spectrometry method using a combination of isotope labeling and detection of a diagnostic fragment ion to determine the stoichiometry of protein lysine acetylation. Using this technique, we determined the modification occupancy for ~750 acetylated peptides from mammalian cell lysates. Furthermore, the acetylation on N-terminal tail of histone H4 was cross-validated by treating cells with sodiummore » butyrate, a potent deacetylase inhibitor, and comparing changes in stoichiometry levels measured by our method with immunoblotting measurements. Of note we observe that acetylation stoichiometry is high in nuclear proteins, but very low in mitochondrial and cytosolic proteins. In summary, our method opens new opportunities to study in detail the relationship of lysine acetylation levels of proteins with their biological functions.« less

  1. Lysine acetylation and cancer: A proteomics perspective.

    PubMed

    Gil, Jeovanis; Ramírez-Torres, Alberto; Encarnación-Guevara, Sergio

    2017-01-06

    Lysine acetylation is a reversible modification controlled by two groups of enzymes: lysine acetyltransferases (KATs) and lysine deacetylases (KDACs). Acetylated lysine residues are recognized by bromodomains, a family of evolutionarily conserved domains. The use of high-resolution mass spectrometry-based proteomics, in combination with the enrichment of acetylated peptides through immunoprecipitation with anti-acetyl-lysine antibodies, has expanded the number of acetylated proteins from histones and a few nuclear proteins to more than 2000 human proteins. Because acetylation targets almost all cellular processes, this modification has been associated with cancer. Several KATs, KDACs and bromodomain-containing proteins have been linked to cancer development. Many small molecules targeting some of these proteins have been or are being tested as potential cancer therapies. The stoichiometry of lysine acetylation has not been explored in cancer, representing a promising field in which to increase our knowledge of how this modification is affected in cancer. In this review, we will focus on the strategies that can be used to go deeper in the characterization of the protein lysine acetylation emphasizing in cancer research.

  2. Metabolic control of methylation and acetylation

    PubMed Central

    Su, Xiaoyang; Wellen, Kathryn E.; Rabinowitz, Joshua D

    2015-01-01

    Methylation and acetylation of DNA and histone proteins are the chemical basis for epigenetics. From bacteria to humans, methylation and acetylation are sensitive to cellular metabolic status. Modification rates depend on the availability of one-carbon and two-carbon substrates (S-adenosylmethionine, acetyl-CoA, and in bacteria also acetyl-phosphate). In addition, they are sensitive to demodification enzyme cofactors (α-ketoglutarate, NAD+) and structural analog metabolites that function as epigenetic enzyme inhibitors (e.g., S-adenosylhomocysteine, 2-hydroxyglutarate). Methylation and acetylation likely initially evolved to tailor protein activities in microbes to their metabolic milieu. While the extracellular environment of mammals is more tightly controlled, the combined impact of nutrient abundance and metabolic enzyme expression impacts epigenetics in mammals sufficiently to drive important biological outcomes such as stem cell fate and cancer. PMID:26629854

  3. SPOTing Acetyl-Lysine Dependent Interactions

    PubMed Central

    Picaud, Sarah; Filippakopoulos, Panagis

    2015-01-01

    Post translational modifications have been recognized as chemical signals that create docking sites for evolutionary conserved effector modules, allowing for signal integration within large networks of interactions. Lysine acetylation in particular has attracted attention as a regulatory modification, affecting chromatin structure and linking to transcriptional activation. Advances in peptide array technologies have facilitated the study of acetyl-lysine-containing linear motifs interacting with the evolutionary conserved bromodomain module, which specifically recognizes and binds to acetylated sequences in histones and other proteins. Here we summarize recent work employing SPOT peptide technology to identify acetyl-lysine dependent interactions and document the protocols adapted in our lab, as well as our efforts to characterize such bromodomain-histone interactions. Our results highlight the versatility of SPOT methods and establish an affordable tool for rapid access to potential protein/modified-peptide interactions involving lysine acetylation. PMID:27600229

  4. Metabolic control of methylation and acetylation.

    PubMed

    Su, Xiaoyang; Wellen, Kathryn E; Rabinowitz, Joshua D

    2016-02-01

    Methylation and acetylation of DNA and histone proteins are the chemical basis for epigenetics. From bacteria to humans, methylation and acetylation are sensitive to cellular metabolic status. Modification rates depend on the availability of one-carbon and two-carbon substrates (S-adenosylmethionine, acetyl-CoA, and in bacteria also acetyl-phosphate). In addition, they are sensitive to demodification enzyme cofactors (α-ketoglutarate, NAD(+)) and structural analog metabolites that function as epigenetic enzyme inhibitors (e.g., S-adenosylhomocysteine, 2-hydroxyglutarate). Methylation and acetylation likely initially evolved to tailor protein activities in microbes to their metabolic milieu. While the extracellular environment of mammals is more tightly controlled, the combined impact of nutrient abundance and metabolic enzyme expression impacts epigenetics in mammals sufficiently to drive important biological outcomes such as stem cell fate and cancer.

  5. Chemo-enzymatic synthesis of rac 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine and its analogues.

    PubMed

    Vijeeta, Tadla; Balakrishna, Marrapu; Lakshmi Karuna, Mallampalli Sri; Surya Koppeswara Rao, Bhamidipati Venkata; Narayana Prasad, Rachapudi Badari

    2014-01-01

    The synthesis of rac 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholines (6a-c), blood platelet activating ether lipid analogues has been achieved in a four-step sequence from epichlorohydrin (1). Etherification of epichlorohydrin with different alcohols namely tetradecyl (2a), hexadecyl (2b) and octadecyl (2c) alcohols gave glycidyl ethers (3a-c) with 78-80% yields. The second step involved opening of the epoxide by acetic anhydride to give acetylated products (4a-c, 76-78% yield), which were subsequently hydrolyzed selectively, a key step of the method employing a 1,3 specific lipase to obtain rac 1-O-alkyl-2- acetylglycerol (5a-c) with 45-50% yields. The hydrolyzed products (5a-c) were phosphorylated to obtain rac 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholines (6a-c) in 80-85% yields.

  6. Acetylation modulates the STAT signaling code.

    PubMed

    Wieczorek, Martin; Ginter, Torsten; Brand, Peter; Heinzel, Thorsten; Krämer, Oliver H

    2012-12-01

    A fascinating question of modern biology is how a limited number of signaling pathways generate biological diversity and crosstalk phenomena in vivo. Well-defined posttranslational modification patterns dictate the functions and interactions of proteins. The signal transducers and activators of transcription (STATs) are physiologically important cytokine-induced transcription factors. They are targeted by a multitude of posttranslational modifications that control and modulate signaling responses and gene expression. Beyond phosphorylation of serine and tyrosine residues, lysine acetylation has recently emerged as a critical modification regulating STAT functions. Interestingly, acetylation can determine STAT signaling codes by various molecular mechanisms, including the modulation of other posttranslational modifications. Here, we provide an overview on the acetylation of STATs and how this protein modification shapes cellular cytokine responses. We summarize recent advances in understanding the impact of STAT acetylation on cell growth, apoptosis, innate immunity, inflammation, and tumorigenesis. Furthermore, we discuss how STAT acetylation can be targeted by small molecules and we consider the possibility that additional molecules controlling STAT signaling are regulated by acetylation. Our review also summarizes evolutionary aspects and we show similarities between the acetylation-dependent control of STATs and other important molecules. We propose the concept that, similar to the 'histone code', distinct posttranslational modifications and their crosstalk orchestrate the functions and interactions of STAT proteins.

  7. Acetylation of rice straw for thermoplastic applications.

    PubMed

    Zhang, Guangzhi; Huang, Kai; Jiang, Xue; Huang, Dan; Yang, Yiqi

    2013-07-01

    An inexpensive and biodegradable thermoplastic was developed through acetylation of rice straw (RS) with acetic anhydride. Acetylation conditions were optimized. The structure and properties of acetylated RS were characterized by fourier transform infrared (FTIR), solid-state (13)C NMR spectroscopy, X-ray diffractometer (XRD), scanning electron microscope (SEM), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The results showed that acetylation of RS has successfully taken place, and comparing with raw RS, the degree of crystallinity decreased and the decomposition rate was slow. The acetylated RS has got thermoplasticity when weight ratio of RS and acetic anhydride was 1:3, using sulphuric acid (9% to RS) as catalyst in glacial acetic acid 35°C for 12h, and the dosage of solvent was 9 times RS, in which weight percent gain (WPG) of the modified RS powder was 35.5% and its percent acetyl content was 36.1%. The acetylated RS could be formed into transparent thin films with different amount of plasticizer diethyl phthalate (DEP) using tape casting technology.

  8. Nonhistone protein acetylation as cancer therapy targets

    PubMed Central

    Singh, Brahma N; Zhang, Guanghua; Hwa, Yi L; Li, Jinping; Dowdy, Sean C; Jiang, Shi-Wen

    2012-01-01

    Acetylation and deacetylation are counteracting, post-translational modifications that affect a large number of histone and nonhistone proteins. The significance of histone acetylation in the modification of chromatin structure and dynamics, and thereby gene transcription regulation, has been well recognized. A steadily growing number of nonhistone proteins have been identified as acetylation targets and reversible lysine acetylation in these proteins plays an important role(s) in the regulation of mRNA stability, protein localization and degradation, and protein–protein and protein–DNA interactions. The recruitment of histone acetyltransferases (HATs) and histone deacetylases (HDACs) to the transcriptional machinery is a key element in the dynamic regulation of genes controlling cellular proliferation, differentiation and apoptosis. Many nonhistone proteins targeted by acetylation are the products of oncogenes or tumor-suppressor genes and are directly involved in tumorigenesis, tumor progression and metastasis. Aberrant activity of HDACs has been documented in several types of cancers and HDAC inhibitors (HDACi) have been employed for therapeutic purposes. Here we review the published literature in this field and provide updated information on the regulation and function of nonhistone protein acetylation. While concentrating on the molecular mechanism and pathways involved in the addition and removal of the acetyl moiety, therapeutic modalities of HDACi are also discussed. PMID:20553216

  9. Acetyl-phosphate is a critical determinant of lysine acetylation in E. coli.

    PubMed

    Weinert, Brian T; Iesmantavicius, Vytautas; Wagner, Sebastian A; Schölz, Christian; Gummesson, Bertil; Beli, Petra; Nyström, Thomas; Choudhary, Chunaram

    2013-07-25

    Lysine acetylation is a frequently occurring posttranslational modification in bacteria; however, little is known about its origin and regulation. Using the model bacterium Escherichia coli (E. coli), we found that most acetylation occurred at a low level and accumulated in growth-arrested cells in a manner that depended on the formation of acetyl-phosphate (AcP) through glycolysis. Mutant cells unable to produce AcP had significantly reduced acetylation levels, while mutant cells unable to convert AcP to acetate had significantly elevated acetylation levels. We showed that AcP can chemically acetylate lysine residues in vitro and that AcP levels are correlated with acetylation levels in vivo, suggesting that AcP may acetylate proteins nonenzymatically in cells. These results uncover a critical role for AcP in bacterial acetylation and indicate that most acetylation in E. coli occurs at a low level and is dynamically affected by metabolism and cell proliferation in a global, uniform manner.

  10. Identification of lysine-acetylated mitochondrial proteins and their acetylation sites.

    PubMed

    Hartl, Markus; König, Ann-Christine; Finkemeier, Iris

    2015-01-01

    The (ε)N-acetylation of lysine side chains is a highly conserved posttranslational modification of both prokaryotic and eukaryotic proteins. Lysine acetylation not only occurs on histones in the nucleus but also on many mitochondrial proteins in plants and animals. As the transfer of the acetyl group to lysine eliminates its positive charge, lysine acetylation can affect the biological function of proteins. This chapter describes two methods for the identification of lysine-acetylated proteins in plant mitochondria using an anti-acetyllysine antibody. We describe the Western blot analysis of a two-dimensional blue native-polyacrylamide gel electrophoresis with an anti-acetyllysine antibody as well as the immuno-enrichment of lysine-acetylated peptides followed by liquid chromatography-tandem mass spectrometry data acquisition and analysis.

  11. Qualitative Differences in the N-Acetyl-D-galactosaminyltransferases Produced by Human A1 and A2 Genes

    PubMed Central

    Schachter, H.; Michaels, M. A.; Tilley, Christine A.; Crookston, Marie C.; Crookston, J. H.

    1973-01-01

    This study describes the kinetic properties of N-acetyl-D-galactosaminyltransferase in serum from subjects with blood groups A1 and A2. When the A1 and A2 enzymes were compared, with lacto-N-fucopentaose I and 2′-fucosyllactose as acceptors, the enzymes differed in their cation requirements, pH optima, and Km values. The two acceptors competed for the same transferase. Mixing experiments showed that the lower activity of the A2 enzyme could not be attributed to a modifier or inhibitor in serum. It was concluded that the A1 and A2 enzymes differ qualitatively. PMID:4509655

  12. Acetylation Reader Proteins: Linking Acetylation Signaling to Genome Maintenance and Cancer.

    PubMed

    Gong, Fade; Chiu, Li-Ya; Miller, Kyle M

    2016-09-01

    Chromatin-based DNA damage response (DDR) pathways are fundamental for preventing genome and epigenome instability, which are prevalent in cancer. Histone acetyltransferases (HATs) and histone deacetylases (HDACs) catalyze the addition and removal of acetyl groups on lysine residues, a post-translational modification important for the DDR. Acetylation can alter chromatin structure as well as function by providing binding signals for reader proteins containing acetyl-lysine recognition domains, including the bromodomain (BRD). Acetylation dynamics occur upon DNA damage in part to regulate chromatin and BRD protein interactions that mediate key DDR activities. In cancer, DDR and acetylation pathways are often mutated or abnormally expressed. DNA damaging agents and drugs targeting epigenetic regulators, including HATs, HDACs, and BRD proteins, are used or are being developed to treat cancer. Here, we discuss how histone acetylation pathways, with a focus on acetylation reader proteins, promote genome stability and the DDR. We analyze how acetylation signaling impacts the DDR in the context of cancer and its treatments. Understanding the relationship between epigenetic regulators, the DDR, and chromatin is integral for obtaining a mechanistic understanding of genome and epigenome maintenance pathways, information that can be leveraged for targeting acetylation signaling, and/or the DDR to treat diseases, including cancer.

  13. Acetylation Reader Proteins: Linking Acetylation Signaling to Genome Maintenance and Cancer

    PubMed Central

    Miller, Kyle M.

    2016-01-01

    Chromatin-based DNA damage response (DDR) pathways are fundamental for preventing genome and epigenome instability, which are prevalent in cancer. Histone acetyltransferases (HATs) and histone deacetylases (HDACs) catalyze the addition and removal of acetyl groups on lysine residues, a post-translational modification important for the DDR. Acetylation can alter chromatin structure as well as function by providing binding signals for reader proteins containing acetyl-lysine recognition domains, including the bromodomain (BRD). Acetylation dynamics occur upon DNA damage in part to regulate chromatin and BRD protein interactions that mediate key DDR activities. In cancer, DDR and acetylation pathways are often mutated or abnormally expressed. DNA damaging agents and drugs targeting epigenetic regulators, including HATs, HDACs, and BRD proteins, are used or are being developed to treat cancer. Here, we discuss how histone acetylation pathways, with a focus on acetylation reader proteins, promote genome stability and the DDR. We analyze how acetylation signaling impacts the DDR in the context of cancer and its treatments. Understanding the relationship between epigenetic regulators, the DDR, and chromatin is integral for obtaining a mechanistic understanding of genome and epigenome maintenance pathways, information that can be leveraged for targeting acetylation signaling, and/or the DDR to treat diseases, including cancer. PMID:27631103

  14. p53 Acetylation: Regulation and Consequences

    PubMed Central

    Reed, Sara M.; Quelle, Dawn E.

    2014-01-01

    Post-translational modifications of p53 are critical in modulating its tumor suppressive functions. Ubiquitylation, for example, plays a major role in dictating p53 stability, subcellular localization and transcriptional vs. non-transcriptional activities. Less is known about p53 acetylation. It has been shown to govern p53 transcriptional activity, selection of growth inhibitory vs. apoptotic gene targets, and biological outcomes in response to diverse cellular insults. Yet recent in vivo evidence from mouse models questions the importance of p53 acetylation (at least at certain sites) as well as canonical p53 functions (cell cycle arrest, senescence and apoptosis) to tumor suppression. This review discusses the cumulative findings regarding p53 acetylation, with a focus on the acetyltransferases that modify p53 and the mechanisms regulating their activity. We also evaluate what is known regarding the influence of other post-translational modifications of p53 on its acetylation, and conclude with the current outlook on how p53 acetylation affects tumor suppression. Due to redundancies in p53 control and growing understanding that individual modifications largely fine-tune p53 activity rather than switch it on or off, many questions still remain about the physiological importance of p53 acetylation to its role in preventing cancer. PMID:25545885

  15. Biological activity of acetylated phenolic compounds.

    PubMed

    Fragopoulou, Elizabeth; Nomikos, Tzortzis; Karantonis, Haralabos C; Apostolakis, Constantinos; Pliakis, Emmanuel; Samiotaki, Martina; Panayotou, George; Antonopoulou, Smaragdi

    2007-01-10

    In recent years an effort has been made to isolate and identify biologically active compounds that are included in the Mediterranean diet. The existence of naturally occurring acetylated phenolics, as well as studies with synthetic ones, provide evidence that acetyl groups could be correlated with their biological activity. Platelet activating factor (PAF) is implicated in atherosclerosis, whereas its inhibitors seem to play a protective role against cardiovascular disease. The aim of this study was to examine the biological activity of resveratrol and tyrosol and their acetylated derivatives as inhibitors of PAF-induced washed rabbit platelet aggregation. Acetylation of resveratrol and tyrosol was performed, and separation was achieved by HPLC. Acetylated derivatives were identified by negative mass spectrometry. The data showed that tyrosol and its monoacetylated derivatives act as PAF inhibitors, whereas diacetylated derivatives induce platelet aggregation. Resveratrol and its mono- and triacetylated derivatives exert similar inhibitory activity, whereas the diacetylated ones are more potent inhibitors. In conclusion, acetylated phenolics exert the same or even higher antithrombotic activity compared to the biological activity of the initial one.

  16. Restoration of DNA-Binding and Growth-Suppressive Activity of Mutant Forms of p53 Via a PCAF-Mediated Acetylation Pathway

    PubMed Central

    PEREZ, RICARDO E.; KNIGHTS, CHAD D.; SAHU, GEETARAM; CATANIA, JASON; KOLUKULA, VAMSI K.; STOLER, DANIEL; GRAESSMANN, ADOLF; OGRYZKO, VASILY; PISHVAIAN, MICHAEL; ALBANESE, CHRISTOPHER; AVANTAGGIATI, MARIA LAURA

    2013-01-01

    Tumor-derived mutant forms of p53 compromise its DNA binding, transcriptional, and growth regulatory activity in a manner that is dependent upon the cell-type and the type of mutation. Given the high frequency of p53 mutations in human tumors, reactivation of the p53 pathway has been widely proposed as beneficial for cancer therapy. In support of this possibility p53 mutants possess a certain degree of conformational flexibility that allows for re-induction of function by a number of structurally different artificial compounds or by short peptides. This raises the question of whether physiological pathways for p53 mutant reactivation also exist and can be exploited therapeutically. The activity of wild-type p53 is modulated by various acetyl-transferases and deacetylases, but whether acetylation influences signaling by p53 mutant is still unknown. Here, we show that the PCAF acetyl-transferase is down-regulated in tumors harboring p53 mutants, where its re-expression leads to p53 acetylation and to cell death. Furthermore, acetylation restores the DNA-binding ability of p53 mutants in vitro and expression of PCAF, or treatment with deacetylase inhibitors, promotes their binding to p53-regulated promoters and transcriptional activity in vivo. These data suggest that PCAF-mediated acetylation rescues activity of at least a set of p53 mutations. Therefore, we propose that dis-regulation of PCAF activity is a pre-requisite for p53 mutant loss of function and for the oncogenic potential acquired by neoplastic cells expressing these proteins. Our findings offer a new rationale for therapeutic targeting of PCAF activity in tumors harboring oncogenic versions of p53. PMID:20589832

  17. Mechanisms and Dynamics of Protein Acetylation in Mitochondria

    PubMed Central

    Baeza, Josue; Smallegan, Michael J.; Denu, John M.

    2016-01-01

    Reversible protein acetylation is a major regulatory mechanism for controlling protein function. Through genetic manipulations, dietary perturbations, and new proteomic technologies, the diverse functions of protein acetylation are coming into focus. Protein acetylation in mitochondria has taken center stage, revealing that 63% of mitochondrially localized proteins contain lysine acetylation sites. Here we summarize the field, and discuss salient topics that cover spurious versus targeted acetylation, the role of SIRT3 deacetylation, nonenzymatic acetylation, and molecular models for regulatory acetylations that display high and low stoichiometry. PMID:26822488

  18. The Genetic Architecture of Murine Glutathione Transferases

    PubMed Central

    Lu, Lu; Pandey, Ashutosh K.; Houseal, M. Trevor; Mulligan, Megan K.

    2016-01-01

    Glutathione S-transferase (GST) genes play a protective role against oxidative stress and may influence disease risk and drug pharmacokinetics. In this study, massive multiscalar trait profiling across a large population of mice derived from a cross between C57BL/6J (B6) and DBA2/J (D2)—the BXD family—was combined with linkage and bioinformatic analyses to characterize mechanisms controlling GST expression and to identify downstream consequences of this variation. Similar to humans, mice show a wide range in expression of GST family members. Variation in the expression of Gsta4, Gstt2, Gstz1, Gsto1, and Mgst3 is modulated by local expression QTLs (eQTLs) in several tissues. Higher expression of Gsto1 in brain and liver of BXD strains is strongly associated (P < 0.01) with inheritance of the B6 parental allele whereas higher expression of Gsta4 and Mgst3 in brain and liver, and Gstt2 and Gstz1 in brain is strongly associated with inheritance of the D2 parental allele. Allele-specific assays confirmed that expression of Gsto1, Gsta4, and Mgst3 are modulated by sequence variants within or near each gene locus. We exploited this endogenous variation to identify coexpression networks and downstream targets in mouse and human. Through a combined systems genetics approach, we provide new insight into the biological role of naturally occurring variants in GST genes. PMID:26829228

  19. Homocysteine, Alcoholism, and Its Potential Epigenetic Mechanism.

    PubMed

    Kamat, Pradip K; Mallonee, Carissa J; George, Akash K; Tyagi, Suresh C; Tyagi, Neetu

    2016-12-01

    Alcohol is the most socially accepted addictive drug. Alcohol consumption is associated with some health problems such as neurological, cognitive, behavioral deficits, cancer, heart, and liver disease. Mechanisms of alcohol-induced toxicity are presently not yet clear. One of the mechanisms underlying alcohol toxicity has to do with its interaction with amino acid homocysteine (Hcy), which has been linked with brain neurotoxicity. Elevated Hcy impairs with various physiological mechanisms in the body, especially metabolic pathways. Hcy metabolism is predominantly controlled by epigenetic regulation such as DNA methylation, histone modifications, and acetylation. An alteration in these processes leads to epigenetic modification. Therefore, in this review, we summarize the role of Hcy metabolism abnormalities in alcohol-induced toxicity with epigenetic adaptation and their influences on cerebrovascular pathology.

  20. Acetyl-L-carnitine in hepatic encephalopathy.

    PubMed

    Malaguarnera, Michele

    2013-06-01

    Hepatic encephalopathy is a common complication of hepatic cirrhosis. The clinical diagnosis is based on two concurrent types of symptoms: impaired mental status and impaired neuromotor function. Impaired mental status is characterized by deterioration in mental status with psychomotor dysfunction, impaired memory, and increased reaction time, sensory abnormalities, poor concentration, disorientation and coma. Impaired neuromotor function include hyperreflexia, rigidity, myoclonus and asterixis. The pathogenesis of hepatic encephalopathy has not been clearly defined. The general consensus is that elevated levels of ammonia and an inflammatory response work in synergy to cause astrocyte to swell and fluid to accumulate in the brain which is thought to explain the symptoms of hepatic encephalopathy. Acetyl-L-carnitine, the short-chain ester of carnitine is endogenously produced within mitochondria and peroxisomes and is involved in the transport of acetyl-moieties across the membranes of these organelles. Acetyl-L-carnitine administration has shown the recovery of neuropsychological activities related to attention/concentration, visual scanning and tracking, psychomotor speed and mental flexibility, language short-term memory, attention, and computing ability. In fact, Acetyl-L-carnitine induces ureagenesis leading to decreased blood and brain ammonia levels. Acetyl-L-carnitine treatment decreases the severity of mental and physical fatigue, depression cognitive impairment and improves health-related quality of life. The aim of this review was to provide an explanation on the possible toxic effects of ammonia in HE and evaluate the potential clinical benefits of ALC.

  1. Alcohol Calorie Calculator

    MedlinePlus

    ... Alcohol Calorie Calculator Weekly Total 0 Calories Alcohol Calorie Calculator Find out the number of beer and ... Calories College Alcohol Policies Interactive Body Calculators Alcohol Calorie Calculator Alcohol Cost Calculator Alcohol BAC Calculator Alcohol ...

  2. Preliminary toxicological study of ferric acetyl acetonate

    SciTech Connect

    London, J.E.; Smith, D.M.

    1983-01-01

    The calculated acute oral LD/sub 50//sup 30/ (lethal does for 50% of the animals occuring with 30 days after compound administration) values for ferric acetyl acetonate were 584 mg/kg in mice and 995 mg/kg in rats. According to classical guidelines, this compound would be considered slightly toxic in both species. Skin application studies in the rabbit demonstrated the compound to be irritating. The eye irritation study disclosed the compound to be a severe irritant causing permanent damage to the cornea (inflammation and scarring resulting in blindness). The sensitization study in the guinea pig did not show ferric acetyl acetonate to be deleterious in this regard.

  3. `Up-regulation of histone acetylation induced by social defeat mediates the conditioned rewarding effects of cocaine.

    PubMed

    Montagud-Romero, S; Montesinos, J; Pascual, M; Aguilar, M A; Roger-Sanchez, C; Guerri, C; Miñarro, J; Rodríguez-Arias, M

    2016-10-03

    Social defeat (SD) induces a long-lasting increase in the rewarding effects of psychostimulants measured using the self-administration and conditioned place procedures (CPP). However, little is known about the epigenetic changes induced by social stress and about their role in the increased response to the rewarding effects of psychostimulants. Considering that histone acetylation regulates transcriptional activity and contributes to drug-induced behavioral changes, we addressed the hypothesis that SD induces transcriptional changes by histone modifications associated with the acquisition of place conditioning. After a fourth defeat, H3(K9) acetylation was decreased in the hippocampus, while there was an increase of HAT and a decrease of HDAC levels in the cortex. Three weeks after the last defeat, mice displayed an increase in histone H4(K12) acetylation and an upregulation of histone acetyl transferase (HAT) activity in the hippocampus. In addition, H3(K4)me3, which is closely associated with transcriptional initiation, was also augmented in the hippocampus three weeks after the last defeat. Inhibition of HAT by curcumin (100mg/kg) before each SD blocked the increase in the conditioned reinforcing effects of 1mg/kg of cocaine, while inhibition of HDAC by valproic acid (500mg/kg) before social stress potentiated cocaine-induced CPP. Preference was reinstated when animals received a priming dose of 0.5mg/kg of cocaine, an effect that was absent in untreated defeated mice. These results suggest that the experience of SD induces chromatin remodeling, alters histone acetylation and methylation, and modifies the effects of cocaine on place conditioning. They also point to epigenetic mechanisms as potential avenues leading to new treatments for the long-term effects of social stress on drug addiction.

  4. Gene encoding acetyl-coenzyme A carboxylase

    DOEpatents

    Roessler, P.G.; Ohlrogge, J.B.

    1996-09-24

    A DNA encoding an acetyl-coenzyme A carboxylase (ACCase) from a photosynthetic organism and functional derivatives are disclosed which are resistant to inhibition from certain herbicides. This gene can be placed in organisms to increase their fatty acid content or to render them resistant to certain herbicides. 5 figs.

  5. 21 CFR 172.828 - Acetylated monoglycerides.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... molecular distillation or by steam stripping; or (2) The direct acetylation of edible monoglycerides with acetic anhydride without the use of catalyst or molecular distillation, and with the removal by vacuum distillation, if necessary, of the acetic acid, acetic anhydride, and triacetin. (b) The food additive has...

  6. 21 CFR 172.828 - Acetylated monoglycerides.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... molecular distillation or by steam stripping; or (2) The direct acetylation of edible monoglycerides with acetic anhydride without the use of catalyst or molecular distillation, and with the removal by vacuum distillation, if necessary, of the acetic acid, acetic anhydride, and triacetin. (b) The food additive has...

  7. 21 CFR 172.828 - Acetylated monoglycerides.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... molecular distillation or by steam stripping; or (2) The direct acetylation of edible monoglycerides with acetic anhydride without the use of catalyst or molecular distillation, and with the removal by vacuum distillation, if necessary, of the acetic acid, acetic anhydride, and triacetin. (b) The food additive has...

  8. 21 CFR 172.828 - Acetylated monoglycerides.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... molecular distillation or by steam stripping; or (2) The direct acetylation of edible monoglycerides with acetic anhydride without the use of catalyst or molecular distillation, and with the removal by vacuum distillation, if necessary, of the acetic acid, acetic anhydride, and triacetin. (b) The food additive has...

  9. Gene encoding acetyl-coenzyme A carboxylase

    DOEpatents

    Roessler, Paul G.; Ohlrogge, John B.

    1996-01-01

    A DNA encoding an acetyl-coenzyme A carboxylase (ACCase) from a photosynthetic organism and functional derivatives thereof which are resistant to inhibition from certain herbicides. This gene can be placed in organisms to increase their fatty acid content or to render them resistant to certain herbicides.

  10. National Institute on Alcohol Abuse and Alcoholism

    MedlinePlus

    ... Alcohol Awareness Month April is Alcohol Awareness Month Biosensor Challenge Learn more College Drinking Learn More Alcohol Dependence Get the facts Alcohol Awareness Month Biosensor Challenge College Drinking Alcohol Dependence Latest News New & ...

  11. Acetyl-L-carnitine ameliorates caerulein-induced acute pancreatitis in rats.

    PubMed

    Arafa, Hossam M M; Hemeida, Ramadan A M; Hassan, Mohamed I A; Abdel-Wahab, Mohammed H; Badary, Osama A; Hamada, Farid M A

    2009-07-01

    In the present study, we have addressed the possible protective role of acetyl-L-carnitine in caerulein-induced acute pancreatitis in male Swiss albino rats. Acute pancreatitis paradigm was developed by challenging animals with a supramaximal dose of caerulein (20 microg/kg, SC) four times at hourly intervals. Caerulein induced acute pancreatitis that was well-characterized morphologically and biochemically. Severe oedema with marked increased relative pancreatic weight, marked atrophy of acini with increased interacinar spaces, vacuolization, and extensive leucocytic infiltration were diagnostic fingerprints of the pancreatitis phenotype. A biochemical test battery that confirmed the model comprised increased plasma amylase and lipase activities, calcium levels as well as increased pancreatic enzymatic myeloperoxidase and glutathione-S-transferase activities, beside increased pancreatic contents of nitric oxide and malondialdehyde and reduced pancreatic glutathione level. Prior administration of acetyl-L-carnitine (200 mg/kg, IP) for seven consecutive days ahead of caerulein challenge alleviated all the histological and biochemical manifestations of acute pancreatitis. These results suggest a possible protective role of the carnitine ester in such a murine acute pancreatitis model probably via regulation of the oxidant/antioxidant balance, beside modulation of the myeloperoxidase and nitric oxide systems, which are involved in the inflammatory cascade that most often associate the disease.

  12. Changes in hepatic lipogenic and oxidative enzymes and glucose homeostasis induced by an acetyl-L-carnitine and nicotinamide treatment in dyslipidaemic insulin-resistant rats.

    PubMed

    Ferreira, Maria R; Camberos, Maria del C; Selenscig, Dante; Martucci, Lucía C; Chicco, Adriana; Lombardo, Yolanda B; Cresto, Juan C

    2013-03-01

    Normal rats fed a sucrose-rich diet (SRD) develop dyslipidaemia and insulin resistance. The present study examined whether administration of the mitochondrial nutrients nicotinamide and acetyl-L-carnitine reversed or improved these metabolic abnormalities. Male Wistar rats were fed an SRD for 90 days. Half the rats then received daily injections of nicotinamide (25 mg/kg, i.p.) and acetyl-L-carnitine (50 mg/kg, i.p.) for a further 90 days. The remaining rats in the SRD-fed group and those in a normal chow-fed control group were injected with an equal volume of saline solution for the same period. The following parameters were determined in all groups: (i) liver activity of fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC) and carnitine-palmitoyl transferase-1 (CPT-1); (ii) hepatic and skeletal muscle triacylglycerol content, plasma glucose, insulin, free fatty acid (FFA) and triacylglycerol levels and pancreatic insulin content; and (iii) glucose tolerance. Administration of nicotinamide and acetyl-L-carnitine to the SRD-fed rats reduced dyslipidaemia, liver steatosis, muscle triacylglycerol content and hepatic FAS and ACC activities and increased CPT-1 activity. In addition nicotinamide and acetyl-L-carnitine improved the glucose disappearance rate (K(g)), normalized plasma glucose levels and moderately increased insulinaemia without altering pancreatic insulin content. Finally, nicotinamide and acetyl-l-carnitine administration reduced bodyweight gain and visceral adiposity. The results of the present study suggest that altering key hepatic lipogenic and fatty acid oxidative enzymatic activity could improve dyslipidaemia, liver steatosis and visceral adiposity. Indeed, administration of nicotinamide and acetyl-l-carnitine improved glucose intolerance and normalized plasma glucose levels.

  13. Identification and quantification of N alpha-acetylated Y. pestis fusion protein F1-V expressed in Escherichia coli using LCMS E.

    PubMed

    Bariola, Pauline A; Russell, Brett A; Monahan, Steven J; Stroop, Steven D

    2007-05-31

    N-terminal acetylation in E coli is a rare event catalyzed by three known N-acetyl-transferases (NATs), each having a specific ribosomal protein substrate. Multiple, gram-scale lots of recombinant F1-V, a fusion protein constructed from Y. Pestis antigens, were expressed and purified from a single stably transformed E. coli cell bank. A variant form of F1-V with mass increased by 42-43 Da was detected in all purified lots by electrospray orthogonal acceleration time-of-flight mass spectrometry (MS). Peptide mapping LCMS localized the increased mass to an N-terminal Lys-C peptide, residues 1-24, and defined it as +42.0308+/-0.0231 Da using a LockSpray exact mass feature and a leucine enkaphalin mass standard. Sequencing of the variant 1-24 peptide by LCMS and high-energy collision induced dissociation (LCMS(E)) further localized the modification to the amino terminal tri-peptide ADL and identified the modification as N(alpha)-acetylation. The average content of N(alpha)-acetylated F1-V in five lots was 24.7+/-2.6% indicating that a stable acetylation activity for F1-V was established in the E. coli expression system. Alignment of the F1-V N-terminal sequence with those of other known N(alpha)-acetylated ectopic proteins expressed in E. coli reveals a substrate motif analogous to the eukaryote NatA' acetylation pathway and distinct from endogenous E. coli NAT substrates.

  14. The Fusarium oxysporum gnt2, encoding a putative N-acetylglucosamine transferase, is involved in cell wall architecture and virulence.

    PubMed

    López-Fernández, Loida; Ruiz-Roldán, Carmen; Pareja-Jaime, Yolanda; Prieto, Alicia; Khraiwesh, Husam; Roncero, M Isabel G

    2013-01-01

    With the aim to decipher the molecular dialogue and cross talk between Fusarium oxysporum f.sp. lycopersci and its host during infection and to understand the molecular bases that govern fungal pathogenicity, we analysed genes presumably encoding N-acetylglucosaminyl transferases, involved in glycosylation of glycoproteins, glycolipids, proteoglycans or small molecule acceptors in other microorganisms. In silico analysis revealed the existence of seven putative N-glycosyl transferase encoding genes (named gnt) in F. oxysporum f.sp. lycopersici genome. gnt2 deletion mutants showed a dramatic reduction in virulence on both plant and animal hosts. Δgnt2 mutants had αalterations in cell wall properties related to terminal αor β-linked N-acetyl glucosamine. Mutant conidia and germlings also showed differences in structure and physicochemical surface properties. Conidial and hyphal aggregation differed between the mutant and wild type strains, in a pH independent manner. Transmission electron micrographs of germlings showed strong cell-to-cell adherence and the presence of an extracellular chemical matrix. Δgnt2 cell walls presented a significant reduction in N-linked oligosaccharides, suggesting the involvement of Gnt2 in N-glycosylation of cell wall proteins. Gnt2 was localized in Golgi-like sub-cellular compartments as determined by fluorescence microscopy of GFP::Gnt2 fusion protein after treatment with the antibiotic brefeldin A or by staining with fluorescent sphingolipid BODIPY-TR ceramide. Furthermore, density gradient ultracentrifugation allowed co-localization of GFP::Gnt2 fusion protein and Vps10p in subcellular fractions enriched in Golgi specific enzymatic activities. Our results suggest that N-acetylglucosaminyl transferases are key components for cell wall structure and influence interactions of F. oxysporum with both plant and animal hosts during pathogenicity.

  15. Alcohols toxicology

    SciTech Connect

    Wimer, W.W.; Russell, J.A.; Kaplan, H.L.

    1984-01-01

    A comprehensive reference volume which summarizes literature reports of the known consequences of human and animal contact with alcohols and alcohol-derived substances is presented. Following a discussion of alcohol nomenclature and a brief history of alcohols, the authors have provided detailed chapters on the toxicology of methanol, ethanol, normal and isopropanol, and the butanols. Properties of these alcohols are compared; industrial hygiene and exposure limits are discussed. Additional sections are included covering processing and production technology and exhaust emissions studies. Of particular interest are the section containing abstracts and synopses of principal works and the extensive bibliography of studies dating from the 1800s. 331 references, 26 figures, 56 tables

  16. Phospho-N-Acetyl-Muramyl-Pentapeptide Translocase from Escherichia coli: Catalytic Role of Conserved Aspartic Acid Residues

    PubMed Central

    Lloyd, Adrian J.; Brandish, Philip E.; Gilbey, Andrea M.; Bugg, Timothy D. H.

    2004-01-01

    Phospho-N-acetyl-muramyl-pentapeptide translocase (translocase 1) catalyzes the first of a sequence of lipid-linked steps that ultimately assemble the peptidoglycan layer of the bacterial cell wall. This essential enzyme is the target of several natural product antibiotics and has recently been the focus of antimicrobial drug discovery programs. The catalytic mechanism of translocase 1 is believed to proceed via a covalent intermediate formed between phospho-N-acetyl-muramyl-pentapeptide and a nucleophilic amino acid residue. Amino acid sequence alignments of the translocase 1 family and members of the related transmembrane phosphosugar transferase superfamily revealed only three conserved residues that possess nucleophilic side chains: the aspartic acid residues D115, D116, and D267. Here we report the expression and partial purification of Escherichia coli translocase 1 as a C-terminal hexahistidine (C-His6) fusion protein. Three enzymes with the site-directed mutations D115N, D116N, and D267N were constructed, expressed, and purified as C-His6 fusions. Enzymatic analysis established that all three mutations eliminated translocase 1 activity, and this finding verified the essential role of these residues. By analogy with the structural environment of the double aspartate motif found in prenyl transferases, we propose a model whereby D115 and D116 chelate a magnesium ion that coordinates with the pyrophosphate bridge of the UDP-N-acetyl-muramyl-pentapeptide substrate and in which D267 therefore fulfills the role of the translocase 1 active-site nucleophile. PMID:14996806

  17. Functional analysis of N-linking oligosaccharyl transferase enzymes encoded by deep-sea vent proteobacteria

    PubMed Central

    Mills, Dominic C.; Jervis, Adrian J.; Abouelhadid, Sherif; Yates, Laura E.; Cuccui, Jon; Linton, Dennis; Wren, Brendan W.

    2016-01-01

    Bacterial N-linking oligosaccharyl transferases (OTase enzymes) transfer lipid-linked glycans to selected proteins in the periplasm and were first described in the intestinal pathogen Campylobacter jejuni, a member of the ε-proteobacteria-subdivision of bacteria. More recently, orthologues from other ε-proteobacterial Campylobacter and Helicobacter species and a δ-proteobacterium, Desulfovibrio desulfuricans, have been described, suggesting that these two subdivisions of bacteria may be a source of further N-linked protein glycosylation systems. Whole-genome sequencing of both ε- and δ-proteobacteria from deep-sea vent habitats, a rich source of species from these subdivisions, revealed putative ORFs encoding OTase enzymes and associated adjacent glycosyltransferases similar to the C. jejuni N-linked glycosylation locus. We expressed putative OTase ORFs from the deep-sea vent species Nitratiruptor tergarcus, Sulfurovum lithotrophicum and Deferribacter desulfuricans in Escherichia coli and showed they were able to functionally complement the C. jejuni OTase, CjPglB . The enzymes were shown to possess relaxed glycan specificity, transferring diverse glycan structures and demonstrated different glycosylation sequon specificities. Additionally a permissive D. desulfuricans acceptor protein was identified, and we provide evidence that the N-linked glycan synthesised by N. tergarcus and S. lithotrophicum contains an acetylated sugar at the reducing end. This work demonstrates that deep-sea vent bacteria encode functional N-glycosylation machineries and are a potential source of biotechnologically important OTase enzymes. PMID:26610891

  18. Functional analysis of N-linking oligosaccharyl transferase enzymes encoded by deep-sea vent proteobacteria.

    PubMed

    Mills, Dominic C; Jervis, Adrian J; Abouelhadid, Sherif; Yates, Laura E; Cuccui, Jon; Linton, Dennis; Wren, Brendan W

    2016-04-01

    Bacterial N-linking oligosaccharyl transferases (OTase enzymes) transfer lipid-linked glycans to selected proteins in the periplasm and were first described in the intestinal pathogen Campylobacter jejuni, a member of the ε-proteobacteria-subdivision of bacteria. More recently, orthologues from other ε-proteobacterial Campylobacter and Helicobacter species and a δ-proteobacterium, Desulfovibrio desulfuricans, have been described, suggesting that these two subdivisions of bacteria may be a source of further N-linked protein glycosylation systems. Whole-genome sequencing of both ε- and δ-proteobacteria from deep-sea vent habitats, a rich source of species from these subdivisions, revealed putative ORFs encoding OTase enzymes and associated adjacent glycosyltransferases similar to the C. jejuni N-linked glycosylation locus. We expressed putative OTase ORFs from the deep-sea vent species Nitratiruptor tergarcus, Sulfurovum lithotrophicum and Deferribacter desulfuricans in Escherichia coli and showed that they were able to functionally complement the C. jejuni OTase, CjPglB. The enzymes were shown to possess relaxed glycan specificity, transferring diverse glycan structures and demonstrated different glycosylation sequon specificities. Additionally, a permissive D. desulfuricans acceptor protein was identified, and we provide evidence that the N-linked glycan synthesized by N. tergarcus and S. lithotrophicum contains an acetylated sugar at the reducing end. This work demonstrates that deep-sea vent bacteria encode functional N-glycosylation machineries and are a potential source of biotechnologically important OTase enzymes.

  19. 40 CFR 721.10520 - Acetylated fatty acid glycerides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acetylated fatty acid glycerides... Specific Chemical Substances § 721.10520 Acetylated fatty acid glycerides (generic). (a) Chemical substance... acetylated fatty acid glycerides (PMN P-11-160) is subject to reporting under this section for...

  20. 40 CFR 721.10520 - Acetylated fatty acid glycerides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acetylated fatty acid glycerides... Specific Chemical Substances § 721.10520 Acetylated fatty acid glycerides (generic). (a) Chemical substance... acetylated fatty acid glycerides (PMN P-11-160) is subject to reporting under this section for...

  1. Crx activates opsin transcription by recruiting HAT-containing co-activators and promoting histone acetylation

    PubMed Central

    Peng, Guang-Hua; Chen, Shiming

    2008-01-01

    The homeodomain transcription factor Crx is required for expression of many photoreceptor genes in the mammalian retina. The mechanism by which Crx activates transcription remains to be determined. Using protein–protein interaction assays, Crx was found to interact with three co-activator proteins (complexes): STAGA, Cbp and p300, all of which possess histone acetyl-transferase (HAT) activity. To determine the role of Crx–HAT interactions in target gene chromatin modification and transcriptional activation, quantitative RT–PCR and chromatin immunoprecipitation were performed on Crx target genes, rod and cone opsins, in developing mouse retina. Although cone opsins are transcribed earlier than rhodopsin during development, the transcription of each gene is preceded by the same sequence of events in their promoter and enhancer regions: (i) binding of Crx, followed by (ii) binding of HATs, (iii) the acetylation of histone H3, then (iv) binding of other photoreceptor transcription factors (Nrl and Nr2e3) and RNA polymerase II. In Crx knockout mice (Crx−/−), the association of HATs and AcH3 with target promoter/enhancer regions was significantly decreased, which correlates with aberrant opsin transcription and photoreceptor dysfunction in these mice. Similar changes to the opsin chromatin were seen in Y79 retinoblastoma cells, where opsin genes are barely transcribed. These defects in Y79 cells can be reversed by expressing a recombinant Crx or applying histone deacetylase inhibitors. Altogether, these results suggest that one mechanism for Crx-mediated transcriptional activation is to recruit HATs to photoreceptor gene chromatin for histone acetylation, thereby inducing and maintaining appropriate chromatin configurations for transcription. PMID:17656371

  2. [3H]Indole-3-acetyl-myo-inositol hydrolysis by extracts of Zea mays L. vegetative tissue

    NASA Technical Reports Server (NTRS)

    Hall, P. J.; Bandurski, R. S.

    1986-01-01

    [3H]Indole-3-acetyl-myo-inositol was hydrolyzed by buffered extracts of acetone powders prepared from 4 day shoots of dark grown Zea mays L. seedlings. The hydrolytic activity was proportional to the amount of extract added and was linear for up to 6 hours at 37 degrees C. Boiled or alcohol denatured extracts were inactive. Analysis of reaction mixtures by high performance liquid chromatography demonstrated that not all isomers of indole-3-acetyl-myo-inositol were hydrolyzed at the same rate. Buffered extracts of acetone powders were prepared from coleoptiles and mesocotyls. The rates of hydrolysis observed with coleoptile extracts were greater than those observed with mesocotyl extracts. Active extracts also catalyzed the hydrolysis of esterase substrates such as alpha-naphthyl acetate and the methyl esters of indoleacetic acid and naphthyleneacetic acid. Attempts to purify the indole-3-acetyl-myo-inositol hydrolyzing activity by chromatographic procedures resulted in only slight purification with large losses of activity. Chromatography over hydroxylapatite allowed separation of two enzymically active fractions, one of which catalyzed the hydrolysis of both indole-3-acetyl-myo-inositol and esterase substrates. With the other enzymic hydrolysis of esterase substrates was readily demonstrated, but no hydrolysis of indole-3-acetyl-myo-inositol was ever detected.

  3. Alcohol Use Disorders

    MedlinePlus

    ... Search Alcohol & Your Health Overview of Alcohol Consumption Alcohol's Effects on the Body Alcohol Use Disorder Fetal Alcohol ... less effect than before? Found that when the effects of alcohol were wearing off, you had withdrawal symptoms, such ...

  4. Dynamic Protein Acetylation in Plant–Pathogen Interactions

    PubMed Central

    Song, Gaoyuan; Walley, Justin W.

    2016-01-01

    Pathogen infection triggers complex molecular perturbations within host cells that results in either resistance or susceptibility. Protein acetylation is an emerging biochemical modification that appears to play central roles during host–pathogen interactions. To date, research in this area has focused on two main themes linking protein acetylation to plant immune signaling. Firstly, it has been established that proper gene expression during defense responses requires modulation of histone acetylation within target gene promoter regions. Second, some pathogens can deliver effector molecules that encode acetyltransferases directly within the host cell to modify acetylation of specific host proteins. Collectively these findings suggest that the acetylation level for a range of host proteins may be modulated to alter the outcome of pathogen infection. This review will focus on summarizing our current understanding of the roles of protein acetylation in plant defense and highlight the utility of proteomics approaches to uncover the complete repertoire of acetylation changes triggered by pathogen infection. PMID:27066055

  5. Acetylation and characterization of banana (Musa paradisiaca) starch.

    PubMed

    Bello-Pérez, L A; Contreras-Ramos, S M; Jìmenez-Aparicio, A; Paredes-López, O

    2000-01-01

    Banana native starch was acetylated and some of its functional properties were evaluated and compared to corn starch. In general, acetylated banana starch presented higher values in ash, protein and fat than corn acetylated starch. The modified starches had minor tendency to retrogradation assessed as % transmittance of starch pastes. At high temperature acetylated starches presented a water retention capacity similar to their native counterpart. The acetylation considerably increased the solubility of starches, and a similar behavior was found for swelling power. When freeze-thaw stability was studied, acetyl banana starch drained approximately 60% of water in the first and second cycles, but in the third and fourth cycles the percentage of separated water was low. However, acetyl corn starch showed lower freeze-thaw stability than the untreated sample. The modification increased the viscosity of banana starch pastes.

  6. Acetylation of prostaglandin synthetase by aspirin. Purification and properties of the acetylated protein from sheep vesicular gland.

    PubMed

    Roth, G J; Stanford, N; Jacobs, J W; Majerus, P W

    1977-09-20

    We previously presented evidence that aspirin (acetylsalicylic acid) inhibits prostaglandin synthetase by acetylating and active site of the enzyme. In the current work, we have labeled the enzyme from an aceton-pentane powder of sheep vesicular gland using [acetyl-3H]aspirin and purified the [3H]acetyl-protein to near homogeneity. The final preparation contains protein of a single molecular weight (85 000) and an amino-terminal sequence of Asp-Ala-Gly-Arg-Ala. The [3H]acetyl-protein contained 0.5 mol of acetyl residues per mol of protein based on amino acid composition but only a single sequence was found.

  7. The neurobiology of acetyl-L-carnitine.

    PubMed

    Traina, Giovanna

    2016-06-01

    A large body of evidence points to the positive effects of dietary supplementation of acetyl-L-carnitine (ALC). Its use has shown health benefits in neuroinflammation, which is a common denominator in a host of neurodegenerative diseases. ALC is the principal acetyl ester of L-Carnitine (LC), and it plays an essential role in intermediary metabolism, acting as a donor of acetyl groups and facilitating the transfer of fatty acids from cytosol to mitochondria during beta-oxidation. Dietary supplementation of ALC exerts neuroprotective, neurotrophic, antidepressive and analgesic effects in painful neuropathies. ALC also has antioxidant and anti-apoptotic activity. Moreover, ALC exhibits positive effects on mitochondrial metabolism, and shows promise in the treatment of aging and neurodegenerative pathologies by slowing the progression of mental deterioration. In addition, ALC plays neuromodulatory effects on both synaptic morphology and synaptic transmission. These effects are likely due to affects of ALC through modulation of gene expression on several targets in the central nervous system. Here, we review the current state of knowledge on effects of ALC in the nervous system.

  8. Epigenetic basis of the dark side of alcohol addiction.

    PubMed

    Pandey, Subhash C; Kyzar, Evan; Zhang, Huaibo

    2017-02-04

    Alcoholism is a complex brain disease characterized by three distinct stages of the addiction cycle that manifest as neuroadaptive changes in the brain. One such stage of the addiction cycle is alcohol withdrawal and the negative affective states that promote drinking and maintain addiction. Repeated alcohol use, genetic predisposition to alcoholism and anxiety, and alcohol exposure during crucial developmental periods all contribute to the development of alcohol-induced withdrawal and negative affective symptoms. Epigenetic modifications within the amygdala have provided a molecular basis of these negative affective symptoms, also known as the dark side of addiction. Here, we propose that allostatic change within the epigenome in the amygdala is a prime mechanism of the biological basis of negative affective states resulting from, and contributing to, alcoholism. Acute alcohol exposure produces an anxiolytic response which is associated with the opening of chromatin due to increased histone acetylation, increased CREB binding protein (CBP) levels, and histone deacetylase (HDAC) inhibition. After chronic ethanol exposure, these changes return to baseline along with anxiety-like behaviors. However, during withdrawal, histone acetylation decreases due to increased HDAC activity and decreased CBP levels in the amygdala circuitry leading to the development of anxiety-like behaviors. Additionally, innately higher expression of the HDAC2 isoform leads to a deficit in global and gene-specific histone acetylation in the amygdala that is associated with a decrease in the expression of several synaptic plasticity-associated genes and maintaining heightened anxiety-like behavior and excessive alcohol intake. Adolescent alcohol exposure also leads to higher expression of HDAC2 and a deficit in histone acetylation leading to decreased expression of synaptic plasticity-associated genes and high anxiety and drinking behavior in adulthood. All these studies indicate that the

  9. Antibodies specific to acetylated histones document the existence of deposition- and transcription-related histone acetylation in Tetrahymena

    PubMed Central

    1989-01-01

    In this study, we have constructed synthetic peptides which are identical to hyperacetylated amino termini of two Tetrahymena core histones (tetra-acetylated H4 and penta-acetylated hv1) and used them to generate polyclonal antibodies specific for acetylated forms (mono-, di-, tri-, etc.) of these histones. Neither of these antisera recognizes histone that is unacetylated. Immunoblotting analyses demonstrate that both transcription-related and deposition-related acetate groups on H4 are recognized by both antisera. In addition, the antiserum raised against penta-acetylated hv1 also recognizes acetylated forms of this variant. Immunofluorescent analyses with both antisera demonstrate that, as expected, histone acetylation is specific to macronuclei (or new macronuclei) at all stages of the life cycle except when micronuclei undergo periods of rapid replication and chromatin assembly. During this time micronuclear staining is also detected. Our results also suggest that transcription-related acetylation begins selectively in new macronuclei immediately after the second postzygotic division. Acetylated histone is not observed in new micronuclei during stages corresponding to anlagen development and, therefore, histone acetylation can be distributed asymmetrically in development. Equally striking is the rapid turnover of acetylated histone in parental macronuclei during the time of their inactivation and elimination from the cell. Taken together, these data lend strong support to the idea that modulation of histone acetylation plays an important role in gene activation and in chromatin assembly. PMID:2654136

  10. Poly-acetylated chromatin signatures are preferred epitopes for site-specific histone H4 acetyl antibodies.

    PubMed

    Rothbart, Scott B; Lin, Shu; Britton, Laura-Mae; Krajewski, Krzysztof; Keogh, Michael-C; Garcia, Benjamin A; Strahl, Brian D

    2012-01-01

    Antibodies specific for histone post-translational modifications (PTMs) have been central to our understanding of chromatin biology. Here, we describe an unexpected and novel property of histone H4 site-specific acetyl antibodies in that they prefer poly-acetylated histone substrates. By all current criteria, these antibodies have passed specificity standards. However, we find these site-specific histone antibodies preferentially recognize chromatin signatures containing two or more adjacent acetylated lysines. Significantly, we find that the poly-acetylated epitopes these antibodies prefer are evolutionarily conserved and are present at levels that compete for these antibodies over the intended individual acetylation sites. This alarming property of acetyl-specific antibodies has far-reaching implications for data interpretation and may present a challenge for the future study of acetylated histone and non-histone proteins.

  11. Biosynthesis and turnover of O-acetyl and N-acetyl groups in the gangliosides of human melanoma cells

    SciTech Connect

    Manzi, A.E.; Sjoberg, E.R.; Diaz, S.; Varki, A.

    1990-08-05

    We and others previously described the melanoma-associated oncofetal glycosphingolipid antigen 9-O-acetyl-GD3, a disialoganglioside O-acetylated at the 9-position of the outer sialic acid residue. We have now developed methods to examine the biosynthesis and turnover of disialogangliosides in cultured melanoma cells and in Golgi-enriched vesicles from these cells. O-Acetylation was selectively expressed on di- and trisialogangliosides, but not on monosialogangliosides, nor on glycoprotein-bound sialic acids. Double-labeling of cells with (3H)acetate and (14C)glucosamine introduced easily detectable labels into each of the components of the ganglioside molecules. Pulse-chase studies of such doubly labeled molecules indicated that the O-acetyl groups turn over faster than the parent molecule. When Golgi-enriched vesicles from these cells were incubated with (acetyl-3H)acetyl-coenzyme A, the major labeled products were disialogangliosides. (Acetyl-3H)O-acetyl groups were found at both the 7- and the 9-positions, indicating that both 7-O-acetyl GD3 and 9-O-acetyl GD3 were synthesized by the action of O-acetyltransferase(s) on endogenous GD3. Analysis of the metabolically labeled molecules confirmed the existence of both 7- and 9-O-acetylated GD3 in the intact cells. Surprisingly, the major 3H-labeled product of the in vitro labeling reaction was not O-acetyl-GD3, but GD3, with the label exclusively in the sialic acid residues. Fragmentation of the labeled sialic acids by enzymatic and chemical methods showed that the 3H-label was exclusively in (3H)N-acetyl groups. Analyses of the double-labeled sialic acids from intact cells also showed that the 3H-label from (3H)acetate was exclusively in the form of (3H)N-acetyl groups, whereas the 14C-label was at the 4-position.

  12. Late onset ornithine carbamoyl transferase deficiency in males.

    PubMed Central

    Drogari, E; Leonard, J V

    1988-01-01

    Six boys with ornithine carbamoyl transferase deficiency presenting in infancy or later childhood are described. There was wide variation in both the time of presentation and the symptoms, which may initially suggest a neurological, behavioural, or gastroenterological problem. Two patients died, as did two male siblings who were probably affected, but with early recognition of the hyperammonaemia the outlook is good. PMID:3202644

  13. Histamine N-methyl transferase: inhibition by drugs.

    PubMed Central

    Pacifici, G M; Donatelli, P; Giuliani, L

    1992-01-01

    1. Histamine N-methyl transferase activity was measured in samples of human liver, brain, kidney, lung and intestinal mucosa. The mean (+/- s.d.) rate (nmol min-1 mg-1 protein) of histamine N-methylation was 1.78 +/- 0.59 (liver, n = 60), 1.15 +/- 0.38 (renal cortex, n = 8), 0.79 +/- 0.14 (renal medulla, n = 8), 0.35 +/- 0.08 (lung, n = 20), 0.47 +/- 0.18 (human intestine, n = 30) and 0.29 +/- 0.14 (brain, n = 13). 2. Inhibition of histamine N-methyl transferase by 15 drugs was investigated in human liver. The IC50 for the various drugs ranged over three orders of magnitude; chloroquine was the most potent inhibitor. 3. The average IC50 values for chloroquine were 12.6, 22.0, 19.0, 21.6 microM in liver, renal cortex, brain and colon, respectively. These values are lower than the Michaelis-Menten constant for histamine N-methyltransferase in liver (43.8 microM) and kidney (45.5 microM). Chloroquine carried a mixed non-competitive inhibition of hepatic histamine N-methyl transferase. Some side-effects of chloroquine may be explained by inhibition of histamine N-methyl transferase. PMID:1457266

  14. Rational design of an organometallic glutathione transferase inhibitor

    SciTech Connect

    Ang, W.H.; Parker, L.J.; De Luca, A.; Juillerat-Jeanneret, L.; Morton, C.J.; LoBello, M.; Parker, M.W.; Dyson, P.J.

    2010-08-17

    A hybrid organic-inorganic (organometallic) inhibitor was designed to target glutathione transferases. The metal center is used to direct protein binding, while the organic moiety acts as the active-site inhibitor. The mechanism of inhibition was studied using a range of biophysical and biochemical methods.

  15. Homogentisate solanesyl transferase (HST) cDNA’s in maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize white seedling 3 (w3) has served as a model albino-seedling mutant since its discovery in 1923. We show that the w3 phenotype is caused by disruptions in homogentisate solanesyl transferase (HST), an enzyme that catalyzes the committed step in plastoquinone-9 (PQ9) biosynthesis. This reaction ...

  16. GLUTATHIONE S-TRANSFERASE-MEDIATED METABOLISM OF BROMODICHLOROMETHANE

    EPA Science Inventory

    GLUTATHIONE s-TRANSFERASE-MEDIATED METABOLISM OF BROMODICHLOROMETHANE. M K Ross1 and R A Pegram2. 1Curriculum in Toxicology, University of North Carolina at Chapel Hill; 2Experimental Toxicology Division, NHEERL/ORD, United States Environmental Protection Agency, Research Triangl...

  17. Histone H3K56 Acetylation, Rad52, and Non-DNA Repair Factors Control Double-Strand Break Repair Choice with the Sister Chromatid

    PubMed Central

    Rothstein, Rodney; Aguilera, Andrés

    2013-01-01

    DNA double-strand breaks (DSBs) are harmful lesions that arise mainly during replication. The choice of the sister chromatid as the preferential repair template is critical for genome integrity, but the mechanisms that guarantee this choice are unknown. Here we identify new genes with a specific role in assuring the sister chromatid as the preferred repair template. Physical analyses of sister chromatid recombination (SCR) in 28 selected mutants that increase Rad52 foci and inter-homolog recombination uncovered 8 new genes required for SCR. These include the SUMO/Ub-SUMO protease Wss1, the stress-response proteins Bud27 and Pdr10, the ADA histone acetyl-transferase complex proteins Ahc1 and Ada2, as well as the Hst3 and Hst4 histone deacetylase and the Rtt109 histone acetyl-transferase genes, whose target is histone H3 Lysine 56 (H3K56). Importantly, we use mutations in H3K56 residue to A, R, and Q to reveal that H3K56 acetylation/deacetylation is critical to promote SCR as the major repair mechanism for replication-born DSBs. The same phenotype is observed for a particular class of rad52 alleles, represented by rad52-C180A, with a DSB repair defect but a spontaneous hyper-recombination phenotype. We propose that specific Rad52 residues, as well as the histone H3 acetylation/deacetylation state of chromatin and other specific factors, play an important role in identifying the sister as the choice template for the repair of replication-born DSBs. Our work demonstrates the existence of specific functions to guarantee SCR as the main repair event for replication-born DSBs that can occur by two pathways, one Rad51-dependent and the other Pol32-dependent. A dysfunction can lead to genome instability as manifested by high levels of homolog recombination and DSB accumulation. PMID:23357952

  18. Alcohol project

    SciTech Connect

    Not Available

    1980-12-01

    It is reported that Savannah Foods and Industries, in a joint venture with United States Sugar Corporation have applied for a loan guarantee for the production of alcohol from agricultural commodities. The two phase program calls for research and development, before a prototype plant will be built for the conversion of cellulosic compounds found in bagasse into alcohol for use as a fuel.

  19. Alcohol Facts

    MedlinePlus

    ... Families? Why Is It So Hard to Quit Drugs? Effects of Drugs Drug Use Hurts Other People Drug Use Hurts ... This Section Signs of Alcohol Abuse and Addiction Effects of Alcohol on Brains and Bodies Previous ... Treatment Work? Treatment and Rehab Resources About the ...

  20. Alcoholism & depression.

    PubMed

    Hall, Mellisa

    2012-10-01

    One out of 2 Americans report drinking on a routine basis, making the excessive consumption of alcohol the third leading cause of preventable death in America (). Alcoholism and depression are common comorbidities that home healthcare professionals frequently encounter. To achieve the best patient outcomes, alcoholism should be addressed initially. Although all age groups are at risk, alcoholism and depression occur in more than 8 percent of older adults. Prevention through identifying alcohol use early in adolescence is vital to reduce the likelihood of alcohol dependence. This article provides an overview of the long-term effects of alcohol abuse, including alcoholic cirrhosis and hepatic encephalopathy. The diagnostic criteria for substance dependence and ideas for nonthreatening screening questions to use with patients who are adolescent or older are discussed. While providing patient care, home healthcare nurses share the patient's intimate home environment. This environment is perceived as a safe haven by the patient and home care nurses can take advantage of counseling and treatment opportunities in this nonthreatening environment.

  1. A Dual Pathogenic Mechanism Links Tau Acetylation to Sporadic Tauopathy

    PubMed Central

    Trzeciakiewicz, Hanna; Tseng, Jui-Heng; Wander, Connor M.; Madden, Victoria; Tripathy, Ashutosh; Yuan, Chao-Xing; Cohen, Todd J.

    2017-01-01

    Tau acetylation has recently emerged as a dominant post-translational modification (PTM) in Alzheimer’s disease (AD) and related tauopathies. Mass spectrometry studies indicate that tau acetylation sites cluster within the microtubule (MT)-binding region (MTBR), suggesting acetylation could regulate both normal and pathological tau functions. Here, we combined biochemical and cell-based approaches to uncover a dual pathogenic mechanism mediated by tau acetylation. We show that acetylation specifically at residues K280/K281 impairs tau-mediated MT stabilization, and enhances the formation of fibrillar tau aggregates, highlighting both loss and gain of tau function. Full-length acetylation-mimic tau showed increased propensity to undergo seed-dependent aggregation, revealing a potential role for tau acetylation in the propagation of tau pathology. We also demonstrate that methylene blue, a reported tau aggregation inhibitor, modulates tau acetylation, a novel mechanism of action for this class of compounds. Our study identifies a potential “two-hit” mechanism in which tau acetylation disengages tau from MTs and also promotes tau aggregation. Thus, therapeutic approaches to limit tau K280/K281 acetylation could simultaneously restore MT stability and ameliorate tau pathology in AD and related tauopathies. PMID:28287136

  2. SWI/SNF Displaces SAGA-Acetylated Nucleosomes

    PubMed Central

    Chandy, Mark; Gutiérrez, José L.; Prochasson, Philippe; Workman, Jerry L.

    2006-01-01

    SWI/SNF is a well-characterized chromatin remodeling complex that remodels chromatin by sliding nucleosomes in cis and/or displacing nucleosomes in trans. The latter mechanism has the potential to remove promoter nucleosomes, allowing access to transcription factors and RNA polymerase. In vivo, histone acetylation often precedes apparent nucleosome loss; therefore, we sought to determine whether nucleosomes containing acetylated histones could be displaced by the SWI/SNF chromatin remodeling complex. We found that SAGA-acetylated histones were lost from an immobilized nucleosome array when treated with the SWI/SNF complex. When the nucleosome array was acetylated by SAGA in the presence of bound transcription activators, it generated a peak of acetylation surrounding the activator binding sites. Subsequent SWI/SNF treatment suppressed this acetylation peak. Immunoblots indicated that SWI/SNF preferentially displaced acetylated histones from the array relative to total histones. Moreover, the Swi2/Snf2 bromodomain, an acetyl-lysine binding domain, played a role in the displacement of acetylated histones. These data indicate that targeted histone acetylation by the SAGA complex predisposes promoter nucleosomes for displacement by the SWI/SNF complex. PMID:17030999

  3. Importance of acetylator phenotype in the identity of Asian populations.

    PubMed

    Zaid, R B; Nargis, M; Neelotpol, S; Sayeed, M A; Banu, A; Shurovi, S; Hassan, K N; Salimullah, M; Ali, L; Azad Khan, A K

    2007-06-01

    The Marma, Tripura, and Chakma are tribal populations of South Asian countries such as Bangladesh. The populations are thought to be immigrants who started moving from their original home in the Far East toward the west and south. We randomly selected 80 Marma, 53 Tripura, and 43 Chakma to determine acetylation capacity and acetylator phenotype. The mean acetylation capacities were 63% in the Marma, 65% in the Tripura, and 70% in the Chakma. The acetylator phenotype was bimodally distributed as fast and slow acetylator. The frequencies of fast acetylator were 83% in the Marma, 89% in the Tripura, and 88% in the Chakma. According to acetylation capacity, the tribes are different from the founder nontribal populations of Bangladesh. They identify themselves as having a separate single population origin. The frequency of fast acetylator predicted served as the acetylator status of the Far East Asian population. The segregation of populations by acetylator phenotype on geographic longitude might be appropriate for geonational identification of Asian populations.

  4. 21 CFR 862.1315 - Galactose-1-phosphate uridyl transferase test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Galactose-1-phosphate uridyl transferase test... Chemistry Test Systems § 862.1315 Galactose-1-phosphate uridyl transferase test system. (a) Identification. A galactose-1-phosphate uridyl transferase test system is a device intended to measure the...

  5. Global Analysis of Lysine Acetylation Suggests the Involvement of Protein Acetylation in Diverse Biological Processes in Rice (Oryza sativa)

    PubMed Central

    Zhong, Xiaoxian; Tan, Feng; Mujahid, Hana; Zhang, Jian; Nanduri, Bindu; Peng, Zhaohua

    2014-01-01

    Lysine acetylation is a reversible, dynamic protein modification regulated by lysine acetyltransferases and deacetylases. Recent advances in high-throughput proteomics have greatly contributed to the success of global analysis of lysine acetylation. A large number of proteins of diverse biological functions have been shown to be acetylated in several reports in human cells, E.coli, and dicot plants. However, the extent of lysine acetylation in non-histone proteins remains largely unknown in monocots, particularly in the cereal crops. Here we report the mass spectrometric examination of lysine acetylation in rice (Oryza sativa). We identified 60 lysine acetylated sites on 44 proteins of diverse biological functions. Immunoblot studies further validated the presence of a large number of acetylated non-histone proteins. Examination of the amino acid composition revealed substantial amino acid bias around the acetylation sites and the amino acid preference is conserved among different organisms. Gene ontology analysis demonstrates that lysine acetylation occurs in diverse cytoplasmic, chloroplast and mitochondrial proteins in addition to the histone modifications. Our results suggest that lysine acetylation might constitute a regulatory mechanism for many proteins, including both histones and non-histone proteins of diverse biological functions. PMID:24586658

  6. Introduction of a bacterial acetyl-CoA synthesis pathway improves lactic acid production in Saccharomyces cerevisiae.

    PubMed

    Song, Ji-Yoon; Park, Joon-Song; Kang, Chang Duk; Cho, Hwa-Young; Yang, Dongsik; Lee, Seunghyun; Cho, Kwang Myung

    2016-05-01

    Acid-tolerant Saccharomyces cerevisiae was engineered to produce lactic acid by expressing heterologous lactate dehydrogenase (LDH) genes, while attenuating several key pathway genes, including glycerol-3-phosphate dehydrogenase1 (GPD1) and cytochrome-c oxidoreductase2 (CYB2). In order to increase the yield of lactic acid further, the ethanol production pathway was attenuated by disrupting the pyruvate decarboxylase1 (PDC1) and alcohol dehydrogenase1 (ADH1) genes. Despite an increase in lactic acid yield, severe reduction of the growth rate and glucose consumption rate owing to the absence of ADH1 caused a considerable decrease in the overall productivity. In Δadh1 cells, the levels of acetyl-CoA, a key precursor for biologically applicable components, could be insufficient for normal cell growth. To increase the cellular supply of acetyl-CoA, we introduced bacterial acetylating acetaldehyde dehydrogenase (A-ALD) enzyme (EC 1.2.1.10) genes into the lactic acid-producing S. cerevisiae. Escherichia coli-derived A-ALD genes, mhpF and eutE, were expressed and effectively complemented the attenuated acetaldehyde dehydrogenase (ALD)/acetyl-CoA synthetase (ACS) pathway in the yeast. The engineered strain, possessing a heterologous acetyl-CoA synthetic pathway, showed an increased glucose consumption rate and higher productivity of lactic acid fermentation. The production of lactic acid was reached at 142g/L with production yield of 0.89g/g and productivity of 3.55gL(-1)h(-1) under fed-batch fermentation in bioreactor. This study demonstrates a novel approach that improves productivity of lactic acid by metabolic engineering of the acetyl-CoA biosynthetic pathway in yeast.

  7. Alcohol Energy Drinks

    MedlinePlus

    ... Home / About Addiction / Alcohol / Alcohol Energy Drinks Alcohol Energy Drinks Read 24059 times font size decrease font size increase font size Print Email Alcohol energy drinks (AEDs) or Caffeinated alcoholic beverages (CABs) are ...

  8. Alcohol during Pregnancy

    MedlinePlus

    ... Home > Pregnancy > Is it safe? > Alcohol during pregnancy Alcohol during pregnancy E-mail to a friend Please ... and fetal alcohol spectrum disorders. How does drinking alcohol during pregnancy affect your baby's health? Drinking alcohol ...

  9. Coordination of a transcriptional switch by HMGI(Y) acetylation.

    PubMed

    Munshi, N; Agalioti, T; Lomvardas, S; Merika, M; Chen, G; Thanos, D

    2001-08-10

    Dynamic control of interferon-beta (IFN-beta) gene expression requires the regulated assembly and disassembly of the enhanceosome, a higher-order nucleoprotein complex formed in response to virus infection. The enhanceosome activates transcription by recruiting the histone acetyltransferase proteins CREB binding protein (CBP) and p300/CBP-associated factors (PCAF)/GCN5, which, in addition to modifying histones, acetylate HMGI(Y), the architectural component required for enhanceosome assembly. We show that the accurate execution of the IFN-beta transcriptional switch depends on the ordered acetylation of the high-mobility group I protein HMGI(Y) by PCAF/GCN5 and CBP, which acetylate HMGI(Y) at distinct lysine residues on endogenous promoters. Whereas acetylation of HMGI(Y) by CBP at lysine-65 destabilizes the enhanceosome, acetylation of HMGI(Y) by PCAF/GCN5 at lysine-71 potentiates transcription by stabilizing the enhanceosome and preventing acetylation by CBP.

  10. Non-enzymatic dynamic kinetic resolution of secondary aryl alcohols: planar chiral ferrocene and ruthenium catalysts in cooperation.

    PubMed

    Díaz-Álvarez, Alba E; Mesas-Sánchez, Laura; Dinér, Peter

    2013-01-07

    "Ruth" helps iron! A novel method for the non-enzymatic dynamic kinetic resolution (DKR) of secondary aryl alcohols by the use of the planar chiral ferrocene derivative (+)-1 in combination with the ruthenium racemization catalyst 2 yields acetylated alcohols in high enantioselectivity and yield. This development opens opportunities for new developments in the field of non-enzymatic dynamic kinetic resolution.

  11. Survey of the human acetylator polymorphism in spontaneous disorders.

    PubMed Central

    Evans, D A

    1984-01-01

    There is ample evidence that the human acetylator phenotypes are associated with drug induced phenomena. It is principally the slow acetylators who exhibit toxic adverse effects because of their relative inability to detoxify the original drug compounds. In rare instances, however, it is the rapid acetylators who are at a disadvantage. In the matter of association of spontaneous disease with either acetylator phenotype, there are two groups of disorders to consider. First, disorders in which carcinogenic amines are known to be an aetiological factor. This is because these amines are substrates for the polymorphic N-acetyltransferase activity and hence there is a possible rational basis for searching for an association. Secondly, other disorders where searches for associations are based more on hunches. In the first group there is a definite statistical association between cancer of the bladder and the slow acetylator phenotype. In prevalence studies the slow phenotype is 39% more associated with bladder cancer than is the rapid phenotype. On the basis of the evidence now available it is not possible to say whether this association is because slow acetylators develop the disease more frequently or whether they survive longer. In the second group the relevant studies show (1) a greatly increased prevalence of slow acetylators in Gilbert's disease; (2) a confirmed association between the rapid acetylator phenotype and diabetes; (3) a possible association between the rapid acetylator phenotype and breast cancer; (4) a possible association between the slow acetylator phenotype and leprosy in Chinese patients; (5) an earlier age of onset of thyrotoxicosis (Graves' disease) in slow acetylators than in rapid acetylators; (6) no evidence of an association between either phenotype and spontaneous systemic lupus erythematosus. PMID:6387123

  12. Alcohol conversion

    DOEpatents

    Wachs, Israel E.; Cai, Yeping

    2002-01-01

    Preparing an aldehyde from an alcohol by contacting the alcohol in the presence of oxygen with a catalyst prepared by contacting an intimate mixture containing metal oxide support particles and particles of a catalytically active metal oxide from Groups VA, VIA, or VIIA, with a gaseous stream containing an alcohol to cause metal oxide from the discrete catalytically active metal oxide particles to migrate to the metal oxide support particles and to form a monolayer of catalytically active metal oxide on said metal oxide support particles.

  13. Lipase-catalyzed synthesis of acetylated EGCG and antioxidant properties of the acetylated derivatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    (-)-Epigallocatechin-3-O-gallate (EGCG) acetylated derivatives were prepared by lipase catalyzed acylation of EGCG with vinyl acetate to improve its lipophilicity and expand its application in lipophilic media. The immobilized lipase, Lipozyme RM IM, was found to be the optimum catalyst. The optimiz...

  14. Tubulin acetylation protects long-lived microtubules against mechanical ageing.

    PubMed

    Portran, Didier; Schaedel, Laura; Xu, Zhenjie; Théry, Manuel; Nachury, Maxence V

    2017-04-01

    Long-lived microtubules endow the eukaryotic cell with long-range transport abilities. While long-lived microtubules are acetylated on Lys40 of α-tubulin (αK40), acetylation takes place after stabilization and does not protect against depolymerization. Instead, αK40 acetylation has been proposed to mechanically stabilize microtubules. Yet how modification of αK40, a residue exposed to the microtubule lumen and inaccessible to microtubule-associated proteins and motors, could affect microtubule mechanics remains an open question. Here we develop FRET-based assays that report on the lateral interactions between protofilaments and find that αK40 acetylation directly weakens inter-protofilament interactions. Congruently, αK40 acetylation affects two processes largely governed by inter-protofilament interactions, reducing the nucleation frequency and accelerating the shrinkage rate. Most relevant to the biological function of acetylation, microfluidics manipulations demonstrate that αK40 acetylation enhances flexibility and confers resilience against repeated mechanical stresses. Thus, unlike deacetylated microtubules that accumulate damage when subjected to repeated stresses, long-lived microtubules are protected from mechanical ageing through their acquisition of αK40 acetylation. In contrast to other tubulin post-translational modifications that act through microtubule-associated proteins, motors and severing enzymes, intraluminal acetylation directly tunes the compliance and resilience of microtubules.

  15. Interindividual and intraindividual variability in acetylation: characterization with caffeine.

    PubMed

    Hardy, B G; Lemieux, C; Walker, S E; Bartle, W R

    1988-08-01

    The degree of interindividual and intraindividual variability in acetylator activity was investigated with caffeine used as a probe of enzyme activity. Acetylator phenotype and relative N-acetyltransferase activity were estimated in 46 subjects by measuring the urinary ratio of two metabolites, AFMU/1-MX, after a single 300 mg oral dose of caffeine on five separate occasions. Thirty homozygous slow (rr) and 15 heterozygous rapid (Rr) acetylators were identified. The degree of interindividual variability in acetylator activity was observed to be a mean of 32% (range 27% to 36%) and 20% (range 11% to 29%) in the rr and Rr groups, respectively. The mean intraindividual variation on repetitive measurement was 19% (range 6% to 49%) in the rr and 14% (range 7% to 24%) in the Rr acetylator group. Four subjects had apparent changes in acetylator activity with time such that they were unable to be assigned to any one acetylator group. Two of these four subjects exhibited apparent homozygous rapid acetylator activity intermittently during the 5-week trial. This variability may explain, in part, some of the high degree of patient variability observed in the toxicity, efficacy, and drug-related disease associated with acetylated drugs and environmental toxins.

  16. Structure, morphology and functionality of acetylated and oxidised barley starches.

    PubMed

    El Halal, Shanise Lisie Mello; Colussi, Rosana; Pinto, Vânia Zanella; Bartz, Josiane; Radunz, Marjana; Carreño, Neftali Lenin Villarreal; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2015-02-01

    Acetylation and oxidation are chemical modifications which alter the properties of starch. The degree of modification of acetylated and oxidized starches is dependent on the catalyst and active chlorine concentrations, respectively. The objective of this study was to evaluate the effect of acetylation and oxidation on the structural, morphological, physical-chemical, thermal and pasting properties of barley starch. Barley starches were acetylated at different catalyst levels (11%, 17%, and 23% of NaOH solution) and oxidized at different sodium hypochlorite concentrations (1.0%, 1.5%, and 2.0% of active chlorine). Fourier-transformed infrared spectroscopy (FTIR), X-ray diffractograms, thermal, morphological, and pasting properties, swelling power and solubility of starches were evaluated. The degree of substitution (DS) of the acetylated starches increased with the rise in catalyst concentration. The percentage of carbonyl (CO) and carboxyl (COOH) groups in oxidized starches also increased with the rise of active chlorine level. The presence of hydrophobic acetyl groups, carbonyl and carboxyl groups caused a partial disorganization and depolymerization of starch granules. The structural, morphological and functional changes in acetylated and oxidized starches varied according to reaction conditions. Acetylation makes barley starch more hydrophobic by the insertion of acetyl groups. Also the oxidation promotes low retrogradation and viscosity. All these characteristics are important for biodegradable film production.

  17. N-ACETYL-β-GLUCOSAMINIDASE ACTIVITY IN SERUM DURING PREGNANCY

    PubMed Central

    Walker, P. G.; Woollen, Mary E.; Pugh, Doreen

    1960-01-01

    A spectrophotometric method for the estimation of N-acetyl-β-glucosaminidase in serum has been devised. Sera from normal adult males and females showed similar levels of activity. The activity in serum rose progressively during pregnancy and fell rapidly after parturition to normal levels. This change resembled closely that which occurs in serum β-glucuronidase. Placenta showed a moderate and chorion a high level of N-acetyl-β-glucosaminidase. High N-acetyl-β-glucosaminidase activity was demonstrated histochemically in decidual cells. The functions of N-acetyl-β-glucosaminidase and β-glucuronidase and factors influencing their activity are discussed. Images PMID:13782743

  18. Alcoholics Anonymous

    MedlinePlus

    ... Help What's New Read Daily Reflections Make a Contribution Go to Online Bookstore Welcome to Alcoholics Anonymous ® ... and Twelve & Twelve | 75th Anniversary Edition | Make a contribution | Self-Support Press/Media | Archives & History | A.A. ...

  19. Alcohol Intolerance

    MedlinePlus

    ... or other preservatives Chemicals, grains or other ingredients Histamine, a byproduct of fermentation or brewing In some ... in some people, possibly as a result of histamines contained in some alcoholic beverages. Your immune system ...

  20. Alcoholic ketoacidosis

    MedlinePlus

    Tests may include: Arterial blood gases (measure the acid/base balance and oxygen level in blood) Blood alcohol ... PA: Elsevier Saunders; 2013:chap 161. Seifter JL. Acid-Base disorders. In: Goldman L, Schafer AI, eds. Goldman's ...

  1. Alcohol withdrawal

    MedlinePlus

    ... Seeing or feeling things that aren't there (hallucinations) Seizures Severe confusion ... alcohol withdrawal. You will be watched closely for hallucinations and other signs of delirium tremens. Treatment may ...

  2. Alcohol abuse and liver enzymes (AALE): results of an intercompany study of mortality.

    PubMed

    Titcomb, C; Braun, R; Roudebush, B; Mast, J; Woodman, H

    2001-01-01

    Evaluation of applicants for life insurance who have elevations of their liver function tests or an increased probability of alcohol abuse has always been difficult for underwriters. This paper reports the results of an intercompany study in which the pooled mortality experience of a group of insureds with evidence of alcohol abuse, an adverse driving record or elevations of the liver transaminases or gamma-glutamyl transferase is summarized.

  3. Overexpression of GalNAc-transferase GalNAc-T3 Promotes Pancreatic Cancer Cell Growth

    PubMed Central

    Taniuchi, Keisuke; Cerny, Ronald L.; Tanouchi, Aki; Kohno, Kimitoshi; Kotani, Norihiro; Honke, Koichi; Saibara, Toshiji; Hollingsworth, Michael A.

    2011-01-01

    O-linked glycans of secreted and membrane bound proteins play an important role in the pathogenesis of pancreatic cancer by modulating immune responses, inflammation, and tumorigenesis. A critical aspect of O-glycosylation, the position at which proteins are glycosylated with N-acetyl-galactosamine on serine and threonine residues, is regulated by the substrate specificity of UDP-GalNAc: polypeptide N-acetylgalactosaminyl-transferases (GalNAc-Ts). Thus, GalNAc-Ts regulate the first committed step in O-glycosylated protein biosynthesis, determine sites of O-glycosylation on proteins, and are important for understanding normal and carcinoma-associated O-glycosylation. We have found that one of these enzymes, GalNAc-T3, is overexpressed in human pancreatic cancer tissues, and suppression of GalNAc-T3 significantly attenuates growth of pancreatic cancer cells in vitro and in vivo. In addition, suppression of GalNAc-T3 induces apoptosis of pancreatic cancer cells. Our results indicate that GalNAc-T3 is likely to be involved in pancreatic carcinogenesis. Modification of cellular glycosylation occurs in nearly all types of cancer as a result of alterations in the expression levels of glycosyltransferases. We report guanine nucleotide binding protein, alpha transducing activity polypeptide 1 (GNAT1) as a possible substrate protein of GalNAc-T3. GalNAc-T3 is associated with O-glycosylation of GNAT1, and affects the subcellular distribution of GNAT1. Knocking down endogenous GNAT1 significantly suppresses the growth/survival of PDAC cells. Our results imply that GalNAc-T3 contributes to the function of O-glycosylated proteins and thereby affects the growth and survival of pancreatic cancer cells. Thus, substrate proteins of GalNAc-T3 should serve as important therapeutic targets for pancreatic cancers. PMID:21625220

  4. Overexpression of GalNAc-transferase GalNAc-T3 promotes pancreatic cancer cell growth.

    PubMed

    Taniuchi, K; Cerny, R L; Tanouchi, A; Kohno, K; Kotani, N; Honke, K; Saibara, T; Hollingsworth, M A

    2011-12-08

    O-linked glycans of secreted and membrane-bound proteins have an important role in the pathogenesis of pancreatic cancer by modulating immune responses, inflammation and tumorigenesis. A critical aspect of O-glycosylation, the position at which proteins are glycosylated with N-acetyl-galactosamine on serine and threonine residues, is regulated by the substrate specificity of UDP-GalNAc:polypeptide N-acetylgalactosaminyl-transferases (GalNAc-Ts). Thus, GalNAc-Ts regulate the first committed step in O-glycosylated protein biosynthesis, determine sites of O-glycosylation on proteins and are important for understanding normal and carcinoma-associated O-glycosylation. We have found that one of these enzymes, GalNAc-T3, is overexpressed in human pancreatic cancer tissues and suppression of GalNAc-T3 significantly attenuates the growth of pancreatic cancer cells in vitro and in vivo. In addition, suppression of GalNAc-T3 induces apoptosis of pancreatic cancer cells. Our results indicate that GalNAc-T3 is likely involved in pancreatic carcinogenesis. Modification of cellular glycosylation occurs in nearly all types of cancer as a result of alterations in the expression levels of glycosyltransferases. We report guanine the nucleotide-binding protein, α-transducing activity polypeptide-1 (GNAT1) as a possible substrate protein of GalNAc-T3. GalNAc-T3 is associated with O-glycosylation of GNAT1 and affects the subcellular distribution of GNAT1. Knocking down endogenous GNAT1 significantly suppresses the growth/survival of PDAC cells. Our results imply that GalNAc-T3 contributes to the function of O-glycosylated proteins and thereby affects the growth and survival of pancreatic cancer cells. Thus, substrate proteins of GalNAc-T3 should serve as important therapeutic targets for pancreatic cancers.

  5. Interaction of antimicrobial peptide with mycolyl transferase in Mycobacterium tuberculosis.

    PubMed

    Banerjee, Devjani I; Gohil, Tejas P

    2016-03-01

    It is estimated that about 40% of the Indian population are infected with tuberculosis (TB) and that ∼3,000,000 people die as a result of TB annually. TB is caused by Mycobacterium tuberculosis. In 2011, the World Health Organization declared India as having the highest TB burden worldwide. An important criteria for pathogenicity is the presence of mycolic acid linked to the protective outer membrane of bacteria. Mycolyl transferase catalyzes the transfer of mycolic acid and promotes cell wall synthesis. This is also considered as a novel target for drug-mediated intervention strategies. Here, we have attempted to understand the interaction between the antimicrobial peptide (AMP), dermcidin, and mycolyl transferase in M. tuberculosis using a computational approach. The present study was undertaken in order to elucidate the capability of AMPs to treat this bacteria, which is less sensitive to available antibiotics, and to design a novel method for new therapies.

  6. [Glutathione S-transferase of alpha class from pike liver].

    PubMed

    Borvinskaia, E V; Smirnov, L P; Nemova, N N

    2013-01-01

    In this study, glutathione S-transferase (GST) was isolated from the liver of pike Esox lucius, which was homogenous according to SDS-PAGE and isoelectrofocusing. It is a homodimer with subunits mass 25235.36 Da (according to HPLC-MS/MS) and pI about 6.4. Substrate specificity, thermostability, some kinetic characteristics and optimum pH were determined. The enzyme was identified as Alpha class GST.

  7. Evidence of genotoxicity in lymphocytes of non-smoking alcoholics.

    PubMed

    Santovito, Alfredo; Cervella, Piero; Delpero, Massimiliano

    2015-01-01

    Alcohol abuse is a significant public health issue. Epidemiological studies conducted on different populations consistently showed that consumption of alcoholic beverages is associated with cytogenetic damages and higher risk for several types of cancer. However, the interpretation of many cytogenetic studies resulted complicated because some confounding factors, such as smoking habit, are not always taken into account. In the present study, the frequency of sister chromatid exchanges (SCEs), chromosome aberrations (CAs) and micronuclei (MNs) in cultured human lymphocytes was assessed on 15 alcoholic and 15 non-alcoholic control male subjects. Moreover, considering the implication of the Glutathione S-transferases gene polymorphisms in the genetic susceptibility to alcoholic liver diseases, we considered an important issue to evaluate the relationship between these gene polymorphisms and the cytogenetic damage. In our sample we exclusively considered individuals that did not smoke nor consume drugs for a period of at least 2 years prior to the analysis. Statistically significant differences were found between alcoholics and controls in the frequency of SCEs/cell (P = 0.001), RI value (P = 0.001), CAs (P = 0.002) and CAB (P = 0.002). Vice versa, no significant differences were found between alcoholics and controls in terms of MNs frequency and CBPI value. In both samples, no statistically significant association was found between the analysed GSTs gene polymorphisms and the frequencies of MNs, SCEs and CAs. Finally, among alcoholics we found a positive correlation between SCEs and CAs frequencies and the duration of alcohol abuse.

  8. An Alternative Strategy for Pan-acetyl-lysine Antibody Generation.

    PubMed

    Kim, Sun-Yee; Sim, Choon Kiat; Zhang, Qiongyi; Tang, Hui; Brunmeir, Reinhard; Pan, Hong; Karnani, Neerja; Han, Weiping; Zhang, Kangling; Xu, Feng

    2016-01-01

    Lysine acetylation is an important post-translational modification in cell signaling. In acetylome studies, a high-quality pan-acetyl-lysine antibody is key to successful enrichment of acetylated peptides for subsequent mass spectrometry analysis. Here we show an alternative method to generate polyclonal pan-acetyl-lysine antibodies using a synthesized random library of acetylated peptides as the antigen. Our antibodies are tested to be specific for acetyl-lysine peptides/proteins via ELISA and dot blot. When pooled, five of our antibodies show broad reactivity to acetyl-lysine peptides, complementing a commercial antibody in terms of peptide coverage. The consensus sequence of peptides bound by our antibody cocktail differs slightly from that of the commercial antibody. Lastly, our antibodies are tested in a proof-of-concept to analyze the acetylome of HEK293 cells. In total we identified 1557 acetylated peptides from 416 proteins. We thus demonstrated that our antibodies are well-qualified for acetylome studies and can complement existing commercial antibodies.

  9. Global analysis of lysine acetylation in strawberry leaves

    PubMed Central

    Fang, Xianping; Chen, Wenyue; Zhao, Yun; Ruan, Songlin; Zhang, Hengmu; Yan, Chengqi; Jin, Liang; Cao, Lingling; Zhu, Jun; Ma, Huasheng; Cheng, Zhongyi

    2015-01-01

    Protein lysine acetylation is a reversible and dynamic post-translational modification. It plays an important role in regulating diverse cellular processes including chromatin dynamic, metabolic pathways, and transcription in both prokaryotes and eukaryotes. Although studies of lysine acetylome in plants have been reported, the throughput was not high enough, hindering the deep understanding of lysine acetylation in plant physiology and pathology. In this study, taking advantages of anti-acetyllysine-based enrichment and high-sensitive-mass spectrometer, we applied an integrated proteomic approach to comprehensively investigate lysine acetylome in strawberry. In total, we identified 1392 acetylation sites in 684 proteins, representing the largest dataset of acetylome in plants to date. To reveal the functional impacts of lysine acetylation in strawberry, intensive bioinformatic analysis was performed. The results significantly expanded our current understanding of plant acetylome and demonstrated that lysine acetylation is involved in multiple cellular metabolism and cellular processes. More interestingly, nearly 50% of all acetylated proteins identified in this work were localized in chloroplast and the vital role of lysine acetylation in photosynthesis was also revealed. Taken together, this study not only established the most extensive lysine acetylome in plants to date, but also systematically suggests the significant and unique roles of lysine acetylation in plants. PMID:26442052

  10. Effect of acetaminophen on sulfamethazine acetylation in male volunteers.

    PubMed

    Tahir, I M; Iqbal, T; Saleem, S; Mehboob, H; Akhter, N; Riaz, M

    2016-03-01

    The effect of acetaminophen on sulfamethazine N-acetylation by human N-acetyltrasferase-2 (NAT2) was studied in 19 (n=19) healthy male volunteers in two different phases. In the first phase of the study the volunteers were given an oral dose of sulfamethazine 500 mg alone and blood and urine samples were collected. After the 10-day washout period the same selected volunteers were again administered sulfamethazine 500 mg along with 1000 mg acetaminophen. The acetylation of sulfamethazine by human NAT2 in both phases with and without acetaminophen was determined by HPLC to establish their respective phenotypes. In conclusion obtained statistics of present study revealed that acetaminophen significantly (P<0.0001) decreased sulfamethazine acetylation in plasma of both slow and fast acetylator male volunteers. A highly significant (P<0.0001) decrease in plasma-free and total sulfamethazine concentration was also observed when acetaminophen was co-administered. Urine acetylation status in both phases of the study was found not to be in complete concordance with that of plasma. Acetaminophen significantly (P<0.0001) increased the acetyl, free and total sulfamethazine concentration in urine of both slow and fast acetylators. Urine acetylation analysis has not been found to be a suitable approach for phenotypic studies.

  11. Histone H4 lysine 16 acetylation breaks the genome's silence

    PubMed Central

    Shia, Wei-Jong; Pattenden, Samantha G; Workman, Jerry L

    2006-01-01

    Acetylation at histone H4 lysine 16 is involved in many cellular processes in organisms as diverse as yeast and humans. A recent biochemical study pinpoints this particular acetylation mark as a switch for changing chromatin from a repressive to a transcriptionally active state. PMID:16689998

  12. Detecting alcohol abuse: traditional blood alcohol markers compared to ethyl glucuronide (EtG) and fatty acid ethyl esters (FAEEs) measurement in hair.

    PubMed

    Hastedt, Martin; Büchner, Mara; Rothe, Michael; Gapert, René; Herre, Sieglinde; Krumbiegel, Franziska; Tsokos, Michael; Kienast, Thorsten; Heinz, Andreas; Hartwig, Sven

    2013-12-01

    Alcohol abuse is a common problem in society; however, the technical capabilities of evaluating individual alcohol consumption using objective biomarkers are rather limited at present. In recent years research has focused on alcohol markers using hair analysis but data on performance and reliable cut-off values are still lacking. In this study 169 candidates were tested to compare traditional biomarkers, such as carbohydrate-deficient-transferrin (CDT), gamma glutamyl transferase (GGT), aspartate amino transferase, alanine amino transferase and the mean corpuscular volume of the erythrocytes, with alcohol markers detectable in hair such as ethyl glucuronide (EtG) and fatty acid ethyl esters (FAEEs). This study revealed that EtG, GGT and CDT showed the best results, demonstrating areas under the curve calculated from receiver operating characteristics of 0.941, 0.943 and 0.899 respectively. The lowest false-negative and false-positive rates were obtained by using a combined interpretation system for hair EtG and FAEEs. All markers demonstrated only low to moderate correlations. Optimum cut-off values for differentiation between social and chronic excessive drinking calculated for hair EtG and FAEEs were 28 pg/mg and 0.675 ng/mg, respectively. The critical values published in the "Consensus on Alcohol Markers 2012" by the Society of Hair Testing were confirmed.

  13. Deciding to quit drinking alcohol

    MedlinePlus

    ... Alcohol abuse - quitting drinking; Quitting drinking; Quitting alcohol; Alcoholism - deciding to quit ... pubmed/23698791 . National Institute on Alcohol Abuse and Alcoholism. Alcohol and health. www.niaaa.nih.gov/alcohol- ...

  14. Antemortem stress regulates protein acetylation and glycolysis in postmortem muscle.

    PubMed

    Li, Zhongwen; Li, Xin; Wang, Zhenyu; Shen, Qingwu W; Zhang, Dequan

    2016-07-01

    Although exhaustive research has established that preslaughter stress is a major factor contributing to pale, soft, exudative (PSE) meat, questions remain regarding the biochemistry of postmortem glycolysis. In this study, the influence of preslaughter stress on protein acetylation in relationship to glycolysis was studied. The data show that antemortem swimming significantly enhanced glycolysis and the total acetylated proteins in postmortem longissimus dorsi (LD) muscle of mice. Inhibition of protein acetylation by histone acetyltransferase (HAT) inhibitors eliminated stress induced increase in glycolysis. Inversely, antemortem injection of histone deacetylase (HDAC) inhibitors, trichostatin A (TSA) and nicotinamide (NAM), further increased protein acetylation early postmortem and the glycolysis. These data provide new insight into the biochemistry of postmortem glycolysis by showing that protein acetylation regulates glycolysis, which may participate in the regulation of preslaughter stress on glycolysis in postmortem muscle.

  15. Acetylated triterpene saponins from the Thai medicinal plant, Sapindus emarginatus.

    PubMed

    Kanchanapoom, T; Kasai, R; Yamasaki, K

    2001-09-01

    From the pericarps of Sapindus emarginatus (Sapindaceae), three new acetylated triterpene saponins were isolated together with hederagenin and five known triterpene saponins, as well as one known sweet acyclic sesquiterpene glycoside, mukurozioside IIb. The structures of new compounds were elucidated as hederagenin 3-O-(2-O-acetyl-beta-D-xylopyranosyl)-(1-->3)-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranoside, 23-O-acetyl-hederagenin 3-O-(4-O-acetyl-beta-D-xylopyranosyl)-(1-->3)-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranoside and oleanolic acid 3-O-(4-O-acetyl-beta-D-xylopyranosyl)-(1-->3)-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranoside by chemical and spectroscopic data.

  16. Acetylated histone H3 increases nucleosome dissociation

    NASA Astrophysics Data System (ADS)

    Simon, Marek; Manohar, Mridula; Ottesen, Jennifer; Poirier, Michael

    2009-03-01

    Chromatin's basic unit structure is the nucleosome, i.e. genomic DNA wrapped around a particular class of proteins -- histones -- which due to their physical hindrance, block vital biological processes, such as DNA repair, DNA replication, and RNA transcription. Histone post-translational modifications, which are known to exist in vivo, are hypothesized to regulate these biological processes by directly altering DNA-histone interactions and thus nucleosome structure and stability. Using magnetic tweezers technique we studied the acetylation of histone H3 in the dyad region, i.e. at K115 and K122, on reconstituted arrays of nucleosomes under constant external force. Based on the measured increase in the probability of dissociation of modified nucleosomes, we infer that this double modification could facilitate histone chaperone mediated nucleosome disassembly in vivo.

  17. Comprehensive profiling of lysine acetylation suggests the widespread function is regulated by protein acetylation in the silkworm, Bombyx mori.

    PubMed

    Nie, Zuoming; Zhu, Honglin; Zhou, Yong; Wu, Chengcheng; Liu, Yue; Sheng, Qing; Lv, Zhengbing; Zhang, Wenping; Yu, Wei; Jiang, Caiying; Xie, Longfei; Zhang, Yaozhou; Yao, Juming

    2015-09-01

    Lysine acetylation in proteins is a dynamic and reversible PTM and plays an important role in diverse cellular processes. In this study, using lysine-acetylation (Kac) peptide enrichment coupled with nano HPLC/MS/MS, we initially identified the acetylome in the silkworms. Overall, a total of 342 acetylated proteins with 667 Kac sites were identified in silkworm. Sequence motifs analysis around Kac sites revealed an enrichment of Y, F, and H in the +1 position, and F was also enriched in the +2 and -2 positions, indicating the presences of preferred amino acids around Kac sites in the silkworm. Functional analysis showed the acetylated proteins were primarily involved in some specific biological processes. Furthermore, lots of nutrient-storage proteins, such as apolipophorin, vitellogenin, storage proteins, and 30 K proteins, were highly acetylated, indicating lysine acetylation may represent a common regulatory mechanism of nutrient utilization in the silkworm. Interestingly, Ser2 proteins, the coating proteins of larval silk, were found to contain many Kac sites, suggesting lysine acetylation may be involved in the regulation of larval silk synthesis. This study is the first to identify the acetylome in a lepidoptera insect, and expands greatly the catalog of lysine acetylation substrates and sites in insects.

  18. Alcoholic sialosis.

    PubMed

    Kastin, B; Mandel, L

    2000-01-01

    Sialosis (sialadenosis) is a term used to describe a disorder that involves both secretory and parenchymal changes of the major salivary glands, most commonly the parotid. Seen often in a dental office, it is recognized as an indolent, bilateral, non-inflammatory, non-neoplastic, soft, symmetrical, painless and persistent enlargement of the parotid glands. Four major entities have commonly been associated with this disorder. They are alcoholism, endocrinopathy (particularly diabetes mellitus), maLnutrition and idiopathic. We are reporting a case of alcoholic sialosis with its clinical and diagnostic aspects. It is important for the dental practitioner to recognize sialosis, because it often indicates the existence of an unsuspected systemic disease.

  19. Development of pyrethroid-like fluorescent substrates for glutathione S-transferase

    PubMed Central

    Huang, Huazhang; Yao, Hongwei; Liu, Jun-Yan; Samra, Aman I.; Kamita, Shizuo G.; Cornel, Anthony J.; Hammock, Bruce D.

    2012-01-01

    The availability of highly sensitive substrates is critical for the development of precise and rapid assays for detecting changes in glutathione S-transferase (GST) activity that are associated with GST-mediated metabolism of insecticides. In this study, six pyrethroid-like compounds were synthesized and characterized as substrates for insect and mammalian GSTs. All of the substrates were esters composed of the same alcohol moiety, 7-hydroxy-4-methylcoumarin, and acid moieties that structurally mimic some commonly used pyrethroid insecticides including cypermethrin and cyhalothrin. CpGSTD1, a recombinant Delta class GST from the mosquito Culex pipiens, metabolized our pyrethroid-like substrates with both chemical and geometric (i.e., the cis-isomers were metabolized at 2- to 5-fold higher rates than the corresponding trans-isomers) preference. A GST preparation from mouse liver also metabolized most of our pyrethroid-like substrates with both chemical and geometric preference but at 10- to 170-fold lower rates. CpGSTD1 and mouse GSTs metabolized CDNB, a general GST substrate, at more than 200-fold higher rates than our novel pyrethroid-like substrates. There was a 10-fold difference in the specificity constant (kcat/KM ratio) of CpGSTD1 for CDNB and those of CpGSTD1 for cis-DCVC and cis-TFMCVC suggesting that cis-DCVC and cis-TFMCVC may be useful for the detection of GST-based metabolism of pyrethroids in mosquitoes. PMID:23000005

  20. Alcohol and pregnancy

    MedlinePlus

    Drinking alcohol during pregnancy; Fetal alcohol syndrome - pregnancy; FAS - fetal alcohol syndrome ... group of defects in the baby known as fetal alcohol syndrome. Symptoms can include: Behavior and attention problems Heart ...

  1. Alcohol and Hepatitis

    MedlinePlus

    ... Home » Living with Hepatitis » Daily Living: Alcohol Viral Hepatitis Menu Menu Viral Hepatitis Viral Hepatitis Home For ... Alcohol for Veterans and the Public Alcohol and Hepatitis: Entire Lesson Overview Alcohol is one of the ...

  2. Alcohol and Hepatitis

    MedlinePlus

    ... code here Enter ZIP code here Daily Living: Alcohol for Veterans and the Public Alcohol and Hepatitis: Entire Lesson Overview Alcohol is one ... related to choices you make about your lifestyle . Alcohol and fibrosis Fibrosis is the medical term for ...

  3. Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis.

    PubMed

    Kozak, Barbara U; van Rossum, Harmen M; Benjamin, Kirsten R; Wu, Liang; Daran, Jean-Marc G; Pronk, Jack T; van Maris, Antonius J A

    2014-01-01

    Cytosolic acetyl-coenzyme A is a precursor for many biotechnologically relevant compounds produced by Saccharomyces cerevisiae. In this yeast, cytosolic acetyl-CoA synthesis and growth strictly depend on expression of either the Acs1 or Acs2 isoenzyme of acetyl-CoA synthetase (ACS). Since hydrolysis of ATP to AMP and pyrophosphate in the ACS reaction constrains maximum yields of acetyl-CoA-derived products, this study explores replacement of ACS by two ATP-independent pathways for acetyl-CoA synthesis. After evaluating expression of different bacterial genes encoding acetylating acetaldehyde dehydrogenase (A-ALD) and pyruvate-formate lyase (PFL), acs1Δ acs2Δ S. cerevisiae strains were constructed in which A-ALD or PFL successfully replaced ACS. In A-ALD-dependent strains, aerobic growth rates of up to 0.27 h(-1) were observed, while anaerobic growth rates of PFL-dependent S. cerevisiae (0.20 h(-1)) were stoichiometrically coupled to formate production. In glucose-limited chemostat cultures, intracellular metabolite analysis did not reveal major differences between A-ALD-dependent and reference strains. However, biomass yields on glucose of A-ALD- and PFL-dependent strains were lower than those of the reference strain. Transcriptome analysis suggested that reduced biomass yields were caused by acetaldehyde and formate in A-ALD- and PFL-dependent strains, respectively. Transcript profiles also indicated that a previously proposed role of Acs2 in histone acetylation is probably linked to cytosolic acetyl-CoA levels rather than to direct involvement of Acs2 in histone acetylation. While demonstrating that yeast ACS can be fully replaced, this study demonstrates that further modifications are needed to achieve optimal in vivo performance of the alternative reactions for supply of cytosolic acetyl-CoA as a product precursor.

  4. Alcoholism and Minority Populations.

    ERIC Educational Resources Information Center

    Watts, Thomas D.; Wright, Roosevelt, Jr.

    1991-01-01

    Briefly discusses some aspects of the role of the state and the position of minorities in respect to alcoholism policies and services. Includes case study of a Black alcoholic. Refers readers to studies on Black alcoholism, Native American alcoholism, Hispanic alcoholism, and Asian-American alcoholism. (Author/NB)

  5. Propargyl alcohol

    Integrated Risk Information System (IRIS)

    Propargyl alcohol ; CASRN 107 - 19 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  6. Allyl alcohol

    Integrated Risk Information System (IRIS)

    Allyl alcohol ; CASRN 107 - 18 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  7. Isobutyl alcohol

    Integrated Risk Information System (IRIS)

    Isobutyl alcohol ; CASRN 78 - 83 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  8. Chitosan Molecular Structure as a Function of N-Acetylation

    SciTech Connect

    Franca, Eduardo F.; Freitas, Luiz C.; Lins, Roberto D.

    2011-07-01

    Molecular dynamics simulations have been carried out to characterize the structure and solubility of chitosan nanoparticle-like structures as a function of the deacetylation level (0, 40, 60, and 100%) and the spatial distribution of the N-acetyl groups in the particles. The polysaccharide chains of highly N-deacetylated particles where the N-acetyl groups are uniformly distributed present a high flexibility and preference for the relaxed two-fold helix and five-fold helix motifs. When these groups are confined to a given region of the particle, the chains adopt preferentially a two-fold helix with f and w values close to crystalline chitin. Nanoparticles with up to 40% acetylation are moderately soluble, forming stable aggregates when the N-acetyl groups are unevenly distributed. Systems with 60% or higher N-acetylation levels are insoluble and present similar degrees of swelling regardless the distribution of their N-acetyl groups. Overall particle solvation is highly affected by electrostatic forces resulting from the degree of acetylation. The water mobility and orientation around the polysaccharide chains affects the stability of the intramolecular O3- HO3(n) ... O5(n+ 1) hydrogen bond, which in turn controls particle aggregation.

  9. Regulation of Autophagy and Mitophagy by Nutrient Availability and Acetylation

    PubMed Central

    Webster, Bradley R.; Scott, Iain; Traba, Javier; Han, Kim; Sack, Michael N.

    2014-01-01

    Normal cellular function is dependent on a number of highly regulated homeostatic mechanisms, which act in concert to maintain conditions suitable for life. During periods of nutritional deficit, cells initiate a number of recycling programs which break down complex intracellular structures, thus allowing them to utilize the energy stored within. These recycling systems, broadly named “autophagy”, enable the cell to maintain the flow of nutritional substrates until they can be replenished from external sources. Recent research has shown that a number of regulatory components of the autophagy program are controlled by lysine acetylation. Lysine acetylation is a reversible post-translational modification that can alter the activity of enzymes in a number of cellular compartments. Strikingly, the main substrate for this modification is a product of cellular energy metabolism: acetyl-CoA. This suggests a direct and intricate link between fuel metabolites and the systems which regulate nutritional homeostasis. In this review, we examine how acetylation regulates the systems that control cellular autophagy, and how global protein acetylation status may act as a trigger for recycling of cellular components in a nutrient-dependent fashion. In particular, we focus on how acetylation may control the degradation and turnover of mitochondria, the major source of fuel-derived acetyl-CoA. PMID:24525425

  10. Serine/threonine acetylation of TGFβ-activated kinase (TAK1) by Yersinia pestis YopJ inhibits innate immune signaling

    PubMed Central

    Paquette, Nicholas; Conlon, Joseph; Sweet, Charles; Rus, Florentina; Wilson, Lindsay; Pereira, Andrea; Rosadini, Charles V.; Goutagny, Nadege; Weber, Alexander N. R.; Lane, William S.; Shaffer, Scott A.; Maniatis, Stephanie; Fitzgerald, Katherine A.; Stuart, Lynda; Silverman, Neal

    2012-01-01

    The Gram-negative bacteria Yersinia pestis, causative agent of plague, is extremely virulent. One mechanism contributing to Y. pestis virulence is the presence of a type-three secretion system, which injects effector proteins, Yops, directly into immune cells of the infected host. One of these Yop proteins, YopJ, is proapoptotic and inhibits mammalian NF-κB and MAP-kinase signal transduction pathways. Although the molecular mechanism remained elusive for some time, recent work has shown that YopJ acts as a serine/threonine acetyl-transferase targeting MAP2 kinases. Using Drosophila as a model system, we find that YopJ inhibits one innate immune NF-κB signaling pathway (IMD) but not the other (Toll). In fact, we show YopJ mediated serine/threonine acetylation and inhibition of dTAK1, the critical MAP3 kinase in the IMD pathway. Acetylation of critical serine/threonine residues in the activation loop of Drosophila TAK1 blocks phosphorylation of the protein and subsequent kinase activation. In addition, studies in mammalian cells show similar modification and inhibition of hTAK1. These data present evidence that TAK1 is a target for YopJ-mediated inhibition. PMID:22802624

  11. Histone Acetylation Facilitates Rapid and Robust Memory CD8 T Cell Response through Differential Expression of Effector Molecules (Eomesodermin and Its Targets: Perforin and Granzyme B)1

    PubMed Central

    Araki, Yasuto; Fann, Monchou; Wersto, Robert; Weng, Nan-ping

    2008-01-01

    To understand the mechanism regulating the effector function of memory CD8 T cells, we examined expression and chromatin state of a key transcription factor (eomesodermin, EOMES) and two of its targets: perforin (PRF1) and granzyme B (GZMB). Accessible chromatin associated histone 3 lysine 9 acetylation (H3K9Ac) was found significantly higher at the proximal promoter and the first exon region of all three genes in memory CD8 T cells than in naive CD8 T cells. Correspondingly, EOMES and PRF1 were constitutively higher expressed in memory CD8 T cells than in naive CD8 T cells at resting and activated states. In contrast, higher expression of GZMB was induced in memory CD8 T cells than in naive CD8 T cells only after activation. Regardless of their constitutive or inducible expression, decreased H3K9Ac levels after treatment with a histone acetyl-transferase inhibitor (Curcumin) led to decreased expression of all three genes in activated memory CD8 T cells. These findings suggest that H3K9Ac associated accessible chromatin state serves as a corner stone for the differentially high expression of these effector genes in memory CD8 T cells. Thus, epigenetic changes mediated via histone acetylation may provide a chromatin “memory” for the rapid and robust transcriptional response of memory CD8 T cells. PMID:18523274

  12. Non-oxidative ethanol metabolites as a measure of alcohol intake.

    PubMed

    Maenhout, Thomas M; De Buyzere, Marc L; Delanghe, Joris R

    2013-01-16

    Recent alcohol intake can be monitored by the measurement of indirect biomarkers. Elevated levels of liver enzymes (i.e. gamma-glutamyl transferase (GGT), alanine amino transferase (ALT) and aspartate amino transferase (AST)) in blood are commonly used in clinical practice as an indicator of alcohol-induced liver damage. With the exception of carbohydrate-deficient transferrin (CDT), the specificity of indirect markers is only moderate because many cases of elevated levels are unrelated to alcohol consumption. Because of their intermediate half-life and tendency to accumulate in hair, non-oxidative ethanol metabolites can be used as markers with an intermediate timeframe between ethanol measurements and GGT and CDT with regard to recent alcohol consumption occurring between hours to 1 week. Additionally, these biomarkers offer a high ethanol-specificity in combination with approximately a two-fold higher sensitivity in comparison with indirect alcohol markers. In case of forensic use of direct ethanol metabolites, caution has to be taken in interpretation and pre-analytical pitfalls should be considered.

  13. Erasers of Histone Acetylation: The Histone Deacetylase Enzymes

    PubMed Central

    Seto, Edward; Yoshida, Minoru

    2014-01-01

    Histone deacetylases (HDACs) are enzymes that catalyze the removal of acetyl functional groups from the lysine residues of both histone and nonhistone proteins. In humans, there are 18 HDAC enzymes that use either zinc- or NAD+-dependent mechanisms to deacetylate acetyl lysine substrates. Although removal of histone acetyl epigenetic modification by HDACs regulates chromatin structure and transcription, deacetylation of nonhistones controls diverse cellular processes. HDAC inhibitors are already known potential anticancer agents and show promise for the treatment of many diseases. PMID:24691964

  14. Acetylation of cellulose nanowhiskers with vinyl acetate under moderate conditions.

    PubMed

    Cetin, Nihat Sami; Tingaut, Philippe; Ozmen, Nilgül; Henry, Nathan; Harper, David; Dadmun, Mark; Sèbe, Gilles

    2009-10-08

    A novel and straightforward method for the surface acetylation of cellulose nanowhiskers by transesterification of vinyl acetate is proposed. The reaction of vinyl acetate with the hydroxyl groups of cellulose nanowhiskers obtained from cotton linters was examined with potassium carbonate as catalyst. Results indicate that during the first stage of the reaction, only the surface of the nanowhiskers was modified, while their dimensions and crystallinity remained unchanged. With increasing reaction time, diffusion mechanisms controlled the rate, leading to nanowhiskers with higher levels of acetylation, smaller dimensions, and lower crystallinity. In THF, a solvent of low polarity, the suspensions from modified nanowhiskers showed improved stability with increased acetylation.

  15. Structural Basis of Eco1-Mediated Cohesin Acetylation

    PubMed Central

    Chao, William C. H.; Wade, Benjamin O.; Bouchoux, Céline; Jones, Andrew W.; Purkiss, Andrew G.; Federico, Stefania; O’Reilly, Nicola; Snijders, Ambrosius P.; Uhlmann, Frank; Singleton, Martin R.

    2017-01-01

    Sister-chromatid cohesion is established by Eco1-mediated acetylation on two conserved tandem lysines in the cohesin Smc3 subunit. However, the molecular basis of Eco1 substrate recognition and acetylation in cohesion is not fully understood. Here, we discover and rationalize the substrate specificity of Eco1 using mass spectrometry coupled with in-vitro acetylation assays and crystallography. Our structures of the X. laevis Eco2 (xEco2) bound to its primary and secondary Smc3 substrates demonstrate the plasticity of the substrate-binding site, which confers substrate specificity by concerted conformational changes of the central β hairpin and the C-terminal extension. PMID:28290497

  16. Preparation of Biofuel Using Acetylatation of Jojoba Fatty Alcohols and Assessment as a Blend Component in Ultra Low Sulfur Diesel Fuel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The majority of biodiesel fuels are produced from vegetable oils or animal fats by transesterification of oil with alcohol in the presence of a catalyst. In this study, a new class of biofuel is explored by acetylation of fatty alcohols from Jojoba oil. Recently, we reported Jojoba oil methyl este...

  17. 21 CFR 862.1315 - Galactose-1-phosphate uridyl transferase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... of the enzyme galactose-1-phosphate uridyl transferase in erythrocytes (red blood cells... hereditary disease galactosemia (disorder of galactose metabolism) in infants. (b) Classification. Class II....

  18. 21 CFR 862.1315 - Galactose-1-phosphate uridyl transferase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... of the enzyme galactose-1-phosphate uridyl transferase in erythrocytes (red blood cells... hereditary disease galactosemia (disorder of galactose metabolism) in infants. (b) Classification. Class II....

  19. 21 CFR 862.1315 - Galactose-1-phosphate uridyl transferase test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1315 Galactose-1-phosphate uridyl transferase test system. (a)...

  20. 21 CFR 862.1315 - Galactose-1-phosphate uridyl transferase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1315 Galactose-1-phosphate uridyl transferase test system. (a)...

  1. 9-O-Acetylation of sialic acids is catalysed by CASD1 via a covalent acetyl-enzyme intermediate

    PubMed Central

    Baumann, Anna-Maria T.; Bakkers, Mark J. G.; Buettner, Falk F. R.; Hartmann, Maike; Grove, Melanie; Langereis, Martijn A.; de Groot, Raoul J.; Mühlenhoff, Martina

    2015-01-01

    Sialic acids, terminal sugars of glycoproteins and glycolipids, play important roles in development, cellular recognition processes and host–pathogen interactions. A common modification of sialic acids is 9-O-acetylation, which has been implicated in sialoglycan recognition, ganglioside biology, and the survival and drug resistance of acute lymphoblastic leukaemia cells. Despite many functional implications, the molecular basis of 9-O-acetylation has remained elusive thus far. Following cellular approaches, including selective gene knockout by CRISPR/Cas genome editing, we here show that CASD1—a previously identified human candidate gene—is essential for sialic acid 9-O-acetylation. In vitro assays with the purified N-terminal luminal domain of CASD1 demonstrate transfer of acetyl groups from acetyl-coenzyme A to CMP-activated sialic acid and formation of a covalent acetyl-enzyme intermediate. Our study provides direct evidence that CASD1 is a sialate O-acetyltransferase and serves as key enzyme in the biosynthesis of 9-O-acetylated sialoglycans. PMID:26169044

  2. Acetylation of Mammalian ADA3 Is Required for Its Functional Roles in Histone Acetylation and Cell Proliferation

    PubMed Central

    Mohibi, Shakur; Srivastava, Shashank; Bele, Aditya; Mirza, Sameer; Band, Hamid

    2016-01-01

    Alteration/deficiency in activation 3 (ADA3) is an essential component of specific histone acetyltransferase (HAT) complexes. We have previously shown that ADA3 is required for establishing global histone acetylation patterns and for normal cell cycle progression (S. Mohibi et al., J Biol Chem 287:29442–29456, 2012, http://dx.doi.org/10.1074/jbc.M112.378901). Here, we report that these functional roles of ADA3 require its acetylation. We show that ADA3 acetylation, which is dynamically regulated in a cell cycle-dependent manner, reflects a balance of coordinated actions of its associated HATs, GCN5, PCAF, and p300, and a new partner that we define, the deacetylase SIRT1. We use mass spectrometry and site-directed mutagenesis to identify major sites of ADA3 acetylated by GCN5 and p300. Acetylation-defective mutants are capable of interacting with HATs and other components of HAT complexes but are deficient in their ability to restore ADA3-dependent global or locus-specific histone acetylation marks and cell proliferation in Ada3-deleted murine embryonic fibroblasts (MEFs). Given the key importance of ADA3-containing HAT complexes in the regulation of various biological processes, including the cell cycle, our study presents a novel mechanism to regulate the function of these complexes through dynamic ADA3 acetylation. PMID:27402865

  3. Acetylation of Mammalian ADA3 Is Required for Its Functional Roles in Histone Acetylation and Cell Proliferation.

    PubMed

    Mohibi, Shakur; Srivastava, Shashank; Bele, Aditya; Mirza, Sameer; Band, Hamid; Band, Vimla

    2016-10-01

    Alteration/deficiency in activation 3 (ADA3) is an essential component of specific histone acetyltransferase (HAT) complexes. We have previously shown that ADA3 is required for establishing global histone acetylation patterns and for normal cell cycle progression (S. Mohibi et al., J Biol Chem 287:29442-29456, 2012, http://dx.doi.org/10.1074/jbc.M112.378901). Here, we report that these functional roles of ADA3 require its acetylation. We show that ADA3 acetylation, which is dynamically regulated in a cell cycle-dependent manner, reflects a balance of coordinated actions of its associated HATs, GCN5, PCAF, and p300, and a new partner that we define, the deacetylase SIRT1. We use mass spectrometry and site-directed mutagenesis to identify major sites of ADA3 acetylated by GCN5 and p300. Acetylation-defective mutants are capable of interacting with HATs and other components of HAT complexes but are deficient in their ability to restore ADA3-dependent global or locus-specific histone acetylation marks and cell proliferation in Ada3-deleted murine embryonic fibroblasts (MEFs). Given the key importance of ADA3-containing HAT complexes in the regulation of various biological processes, including the cell cycle, our study presents a novel mechanism to regulate the function of these complexes through dynamic ADA3 acetylation.

  4. Lipase-catalyzed highly enantioselective kinetic resolution of boron-containing chiral alcohols.

    PubMed

    Andrade, Leandro H; Barcellos, Thiago

    2009-07-16

    The first application of enzymes as catalysts to obtain optically pure boron compounds is described. The kinetic resolution of boron-containing chiral alcohols via enantioselective transesterification catalyzed by lipases was studied. Aromatic, allylic, and aliphatic secondary alcohols containing a boronate ester or boronic acid group were resolved by lipase from Candida antartica (CALB), and excellent E values (E > 200) and high enantiomeric excesses (up to >99%) of both remaining substrates and acetylated product were obtained.

  5. Nucleotidyl transferase assisted DNA labeling with different click chemistries.

    PubMed

    Winz, Marie-Luise; Linder, Eva Christina; André, Timon; Becker, Juliane; Jäschke, Andres

    2015-09-30

    Here, we present a simple, modular and efficient strategy that allows the 3'-terminal labeling of DNA, regardless of whether it has been chemically or enzymatically synthesized or isolated from natural sources. We first incorporate a range of modified nucleotides at the 3'-terminus, using terminal deoxynucleotidyl transferase. In the second step, we convert the incorporated nucleotides, using either of four highly efficient click chemistry-type reactions, namely copper-catalyzed azide-alkyne cycloaddition, strain-promoted azide-alkyne cycloaddition, Staudinger ligation or Diels-Alder reaction with inverse electron demand. Moreover, we create internal modifications, making use of either ligation or primer extension, after the nucleotidyl transferase step, prior to the click reaction. We further study the influence of linker variants on the reactivity of azides in different click reactions. We find that different click reactions exhibit distinct substrate preferences, a fact that is often overlooked, but should be considered when labeling oligonucleotides or other biomolecules with click chemistry. Finally, our findings allowed us to extend our previously published RNA labeling strategy to the use of a different copper-free click chemistry, namely the Staudinger ligation.

  6. Characterization of glutathione S-transferase of Taenia solium.

    PubMed

    Vibanco-Pérez, N; Jiménez, L; Merchant, M T; Landa, A

    1999-06-01

    A Taenia solium glutathione-S-transferase fraction (SGSTF) was isolated from a metacestode crude extract by affinity chromatography on reduced glutathione (GSH)-sepharose. The purified fraction displayed a specific glutathione S-transferase (GST) activity of 2.8 micromol/min/mg and glutathione peroxidase selenium-independent activity of 0.22 micromol/min/mg. Enzymatic characterization of the fraction suggested that the activity was closer to the mammalian mu-class GSTs. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis, gel filtration, and enzyme activity analysis showed that the fraction was composed of a major band of Mr = 26 kd and that the active enzyme was dimeric. Immunohistochemical studies using specific antibodies against the major 26-kd band of the SGSTF indicated that GST protein was present in the tegument, parenchyma, protonephridial, and tegumentary cytons of the T. solium metacestode. Antibodies generated against the SGSTF tested in western blot showed cross-reactivity against GSTs purified from Taenia saginata, T. taeniaeformis, and T. crassiceps, but did not react with GSTs from Schistosoma mansoni, or mice, rabbit, and pig liver tissue. Furthermore, immunization of mice with SGSTF reduced the metacestode burden up to 74.2%. Our findings argue in favor of GST having an important role in the survival of T. solium in its hosts.

  7. Characterization of two Arabidopsis thaliana glutathione S-transferases.

    PubMed

    Nutricati, Eliana; Miceli, Antonio; Blando, Federica; De Bellis, Luigi

    2006-09-01

    Glutathione S-transferases (GST) are multifunctional proteins encoded by a large gene family, divided on the basis of sequence identity into phi, tau, theta, zeta and lambda classes. The phi and tau classes are present only in plants. GSTs appear to be ubiquitous in plants and are involved in herbicide detoxification and stress response, but little is known about the precise role of GSTs in normal plant physiology and during biotic and abiotic stress response. Two cDNAs representing the two plant classes tau and phi, AtGSTF9 and AtGSTU26, were expressed in vitro and the corresponding proteins were analysed. Both GSTs were able to catalyse a glutathione conjugation to 1-chloro-2,4-dinitrobenzene (CDNB), but they were inactive as transferases towards p-nitrobenzylchloride (pNBC). AtGSTF9 showed activity towards benzyl isothiocyanate (BITC) and an activity as glutathione peroxidase with cumene hydroperoxide (CumHPO). AtGSTU26 was not active as glutathione peroxidase and towards BITC. RT-PCR analysis was used to evaluate the expression of the two genes in response to treatment with herbicides and safeners, chemicals, low and high temperature. Our results reveal that AtGSTU26 is induced by the chloroacetanilide herbicides alachlor and metolachlor and the safener benoxacor, and after exposure to low temperatures. In contrast, AtGSTF9 seems not to be influenced by the treatments employed.

  8. Nucleotidyl transferase assisted DNA labeling with different click chemistries

    PubMed Central

    Winz, Marie-Luise; Linder, Eva Christina; André, Timon; Becker, Juliane; Jäschke, Andres

    2015-01-01

    Here, we present a simple, modular and efficient strategy that allows the 3′-terminal labeling of DNA, regardless of whether it has been chemically or enzymatically synthesized or isolated from natural sources. We first incorporate a range of modified nucleotides at the 3′-terminus, using terminal deoxynucleotidyl transferase. In the second step, we convert the incorporated nucleotides, using either of four highly efficient click chemistry-type reactions, namely copper-catalyzed azide-alkyne cycloaddition, strain-promoted azide-alkyne cycloaddition, Staudinger ligation or Diels-Alder reaction with inverse electron demand. Moreover, we create internal modifications, making use of either ligation or primer extension, after the nucleotidyl transferase step, prior to the click reaction. We further study the influence of linker variants on the reactivity of azides in different click reactions. We find that different click reactions exhibit distinct substrate preferences, a fact that is often overlooked, but should be considered when labeling oligonucleotides or other biomolecules with click chemistry. Finally, our findings allowed us to extend our previously published RNA labeling strategy to the use of a different copper-free click chemistry, namely the Staudinger ligation. PMID:26013812

  9. Alcohol use and safe drinking

    MedlinePlus

    ... to alcohol use Get into trouble with the law, family members, friends, school, or dates because of alcohol THE EFFECTS OF ALCOHOL Alcoholic drinks have different amounts of alcohol in them. Beer is about 5% alcohol, although some beers can ...

  10. Interstellar Alcohols

    NASA Technical Reports Server (NTRS)

    Charnley, S. B.; Kress, M. E.; Tielens, A. G. G. M.; Millar, T. J.

    1995-01-01

    We have investigated the gas-phase chemistry in dense cores where ice mantles containing ethanol and other alcohols have been evaporated. Model calculations show that methanol, ethanol, propanol, and butanol drive a chemistry leading to the formation of several large ethers and esters. Of these molecules, methyl ethyl ether (CH3OC2H5) and diethyl ether (C2H5)2O attain the highest abundances and should be present in detectable quantities within cores rich in ethanol and methanol. Gas-phase reactions act to destroy evaporated ethanol and a low observed abundance of gas-phase C,H,OH does not rule out a high solid-phase abundance. Grain surface formation mechanisms and other possible gas-phase reactions driven by alcohols are discussed, as are observing strategies for the detection of these large interstellar molecules.

  11. Alcohol-induced protein hyperacetylation: Mechanisms and consequences

    PubMed Central

    Shepard, Blythe D; Tuma, Pamela L

    2009-01-01

    Although the clinical manifestations of alcoholic liver disease are well-described, little is known about the molecular basis of liver injury. Recent studies have indicated that ethanol exposure induces global protein hyperacetylation. This reversible, post-translational modification on the epsilon-amino groups of lysine residues has been shown to modulate multiple, diverse cellular processes ranging from transcriptional activation to microtubule stability. Thus, alcohol-induced protein hyperacetylation likely leads to major physiological consequences that contribute to alcohol-induced hepatotoxicity. Lysine acetylation is controlled by the activities of two opposing enzymes, histone acetyltransferases and histone deacetylases. Currently, efforts are aimed at determining which enzymes are responsible for the increased acetylation of specific substrates. However, the greater challenge will be to determine the physiological ramifications of protein hyperacetylation and how they might contribute to the progression of liver disease. In this review, we will first list and discuss the proteins known to be hyperacetylated in the presence of ethanol. We will then describe what is known about the mechanisms leading to increased protein acetylation and how hyperacetylation may perturb hepatic function. PMID:19291822

  12. Partially Acetylated Sugarcane Bagasse For Wicking Oil From Contaminated Wetlands

    EPA Science Inventory

    Sugarcane bagasse was partially acetylated to enhance its oil-wicking ability in saturated environments while holding moisture for hydrocarbon biodegradation. The water sorption capacity of raw bagasse was reduced fourfold after treatment, which indicated considerably increased ...

  13. Data detailing the platelet acetyl-lysine proteome.

    PubMed

    Aslan, Joseph E; David, Larry L; McCarty, Owen J T

    2015-12-01

    Here we detail proteomics data that describe the acetyl-lysine proteome of blood platelets (Aslan et al., 2015 [1]). An affinity purification - mass spectrometry (AP-MS) approach was used to identify proteins modified by Nε-lysine acetylation in quiescent, washed human platelets. The data provide insights into potential regulatory mechanisms of platelet function mediated by protein lysine acetylation. Additionally, as platelets are anucleate and lack histone proteins, they offer a unique and valuable system to study the regulation of cytosolic proteins by lysine acetylation. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (Vizcaino et al., 2014 [2]) via with PRIDE partner repository with the dataset identifier PXD002332.

  14. Acetylation of C/EBPα inhibits its granulopoietic function

    PubMed Central

    Bararia, Deepak; Kwok, Hui Si; Welner, Robert S.; Numata, Akihiko; Sárosi, Menyhárt B.; Yang, Henry; Wee, Sheena; Tschuri, Sebastian; Ray, Debleena; Weigert, Oliver; Levantini, Elena; Ebralidze, Alexander K.; Gunaratne, Jayantha; Tenen, Daniel G.

    2016-01-01

    CCAAT/enhancer-binding protein alpha (C/EBPα) is an essential transcription factor for myeloid lineage commitment. Here we demonstrate that acetylation of C/EBPα at lysine residues K298 and K302, mediated at least in part by general control non-derepressible 5 (GCN5), impairs C/EBPα DNA-binding ability and modulates C/EBPα transcriptional activity. Acetylated C/EBPα is enriched in human myeloid leukaemia cell lines and acute myeloid leukaemia (AML) samples, and downregulated upon granulocyte-colony stimulating factor (G-CSF)- mediated granulocytic differentiation of 32Dcl3 cells. C/EBPα mutants that mimic acetylation failed to induce granulocytic differentiation in C/EBPα-dependent assays, in both cell lines and in primary hematopoietic cells. Our data uncover GCN5 as a negative regulator of C/EBPα and demonstrate the importance of C/EBPα acetylation in myeloid differentiation. PMID:27005833

  15. Olig1 Acetylation and Nuclear Export Mediate Oligodendrocyte Development

    PubMed Central

    Dai, Jinxiang; Bercury, Kathryn K.; Jin, Weilin

    2015-01-01

    The oligodendrocyte transcription factor Olig1 is critical for both oligodendrocyte development and remyelination in mice. Nuclear to cytoplasmic translocation of Olig1 protein occurs during brain development and in multiple sclerosis, but the detailed molecular mechanism of this translocation remains elusive. Here, we report that Olig1 acetylation and deacetylation drive its active translocation between the nucleus and the cytoplasm in both mouse and rat oligodendrocytes. We identified three functional nuclear export sequences (NES) localized in the basic helix-loop-helix domain and one specific acetylation site at Lys 150 (human Olig1) in NES1. Olig1 acetylation and deacetylation are regulated by the acetyltransferase CREB-binding protein and the histone deacetylases HDAC1, HDAC3, and HDAC10. Acetylation of Olig1 decreased its chromatin association, increased its interaction with inhibitor of DNA binding 2 and facilitated its retention in the cytoplasm of mature oligodendrocytes. These studies establish that acetylation of Olig1 regulates its chromatin dissociation and subsequent translocation to the cytoplasm and is required for its function in oligodendrocyte maturation. SIGNIFICANCE STATEMENT The nuclear to cytoplasmic translocation of Olig1 protein has been observed during mouse and human brain development and in multiple sclerosis in several studies, but the detailed molecular mechanism of this translocation remains elusive. Here, we provide insight into the mechanism by which acetylation of Olig1 regulates its unique nuclear-cytoplasmic shuttling during oligodendrocyte development and how the acetylation status of Olig1 modulates its distinct function in the nucleus versus the cytoplasm. The current study provides a unique example of a lineage-specific transcription factor that is actively translocated from the nucleus to the cytoplasm as the cell differentiates. Importantly, we demonstrate that this process is tightly controlled by acetylation at a single

  16. Effects of carnosine and related compounds on the stability and morphology of erythrocytes from alcoholics.

    PubMed

    Prokopieva, V D; Bohan, N A; Johnson, P; Abe, H; Boldyrev, A A

    2000-01-01

    The effects of carnosine and related compounds on erythrocytes from alcoholics were studied. In their presence, erythrocytes showed an increased ability to resist haemolysis and showed a more normal morphology, with carnosine and N-acetyl-carnosine being the most effective compounds. These beneficial properties of the dipeptides do not appear to be directly related to their antioxidant or buffering properties.

  17. A colorimetric assay for the determination of acetyl xylan esterase or cephalosporin C acetyl esterase activities using 7-amino cephalosporanic acid, cephalosporin C, or acetylated xylan as substrate.

    PubMed

    Martínez-Martínez, Irene; Montoro-García, Silvia; Lozada-Ramírez, José Daniel; Sánchez-Ferrer, Alvaro; García-Carmona, Francisco

    2007-10-15

    A bromothymol blue-based colorimetric assay has been devised to screen for acetyl xylan esterase or cephalosporin C (CPC) deacetylase activities using 7-amino cephalosporanic acid (7-ACA), CPC, or acetylated xylan as substrate. These enzymes are not screened with their natural substrates because of the tedious procedures available previously. Acetyl xylan esterase from Bacillus pumilus CECT 5072 was cloned, expressed in Escherichia coli Rosetta (DE3), and characterized using this assay. Similar K(M) values for 7-ACA and CPC were obtained when compared with those described using HPLC methods. The assay is easy to perform and can be carried out in robotic high-throughput colorimetric devices normally used in directed evolution experiments. The assay allowed us to detect improvements in activity at a minimum of twofold with a very low coefficient of variance in 96-well plates. This method is significantly faster and more convenient to use than are known HPLC and pH-stat procedures.

  18. Alcohol Metabolism and Epigenetics Changes

    PubMed Central

    Zakhari, Samir

    2013-01-01

    Metabolites, including those generated during ethanol metabolism, can impact disease states by binding to transcription factors and/or modifying chromatin structure, thereby altering gene expression patterns. For example, the activities of enzymes involved in epigenetic modifications such as DNA and histone methylation and histone acetylation, are influenced by the levels of metabolites such as nicotinamide adenine dinucleotide (NAD), adenosine triphosphate (ATP), and S-adenosylmethionine (SAM). Chronic alcohol consumption leads to significant reductions in SAM levels, thereby contributing to DNA hypomethylation. Similarly, ethanol metabolism alters the ratio of NAD+ to reduced NAD (NADH) and promotes the formation of reactive oxygen species and acetate, all of which impact epigenetic regulatory mechanisms. In addition to altered carbohydrate metabolism, induction of cell death, and changes in mitochondrial permeability transition, these metabolism-related changes can lead to modulation of epigenetic regulation of gene expression. Understanding the nature of these epigenetic changes will help researchers design novel medications to treat or at least ameliorate alcohol-induced organ damage. PMID:24313160

  19. Regulation of S-Adenosylhomocysteine Hydrolase by Lysine Acetylation*

    PubMed Central

    Wang, Yun; Kavran, Jennifer M.; Chen, Zan; Karukurichi, Kannan R.; Leahy, Daniel J.; Cole, Philip A.

    2014-01-01

    S-Adenosylhomocysteine hydrolase (SAHH) is an NAD+-dependent tetrameric enzyme that catalyzes the breakdown of S-adenosylhomocysteine to adenosine and homocysteine and is important in cell growth and the regulation of gene expression. Loss of SAHH function can result in global inhibition of cellular methyltransferase enzymes because of high levels of S-adenosylhomocysteine. Prior proteomics studies have identified two SAHH acetylation sites at Lys401 and Lys408 but the impact of these post-translational modifications has not yet been determined. Here we use expressed protein ligation to produce semisynthetic SAHH acetylated at Lys401 and Lys408 and show that modification of either position negatively impacts the catalytic activity of SAHH. X-ray crystal structures of 408-acetylated SAHH and dually acetylated SAHH have been determined and reveal perturbations in the C-terminal hydrogen bonding patterns, a region of the protein important for NAD+ binding. These crystal structures along with mutagenesis data suggest that such hydrogen bond perturbations are responsible for SAHH catalytic inhibition by acetylation. These results suggest how increased acetylation of SAHH may globally influence cellular methylation patterns. PMID:25248746

  20. Acetyl radical generation in cigarette smoke: Quantification and simulations

    NASA Astrophysics Data System (ADS)

    Hu, Na; Green, Sarah A.

    2014-10-01

    Free radicals are present in cigarette smoke and can have a negative effect on human health. However, little is known about their formation mechanisms. Acetyl radicals were quantified in tobacco smoke and mechanisms for their generation were investigated by computer simulations. Acetyl radicals were trapped from the gas phase using 3-amino-2, 2, 5, 5-tetramethyl-proxyl (3AP) on solid support to form stable 3AP adducts for later analysis by high-performance liquid chromatography (HPLC), mass spectrometry/tandem mass spectrometry (MS-MS/MS) and liquid chromatography-mass spectrometry (LC-MS). Simulations were performed using the Master Chemical Mechanism (MCM). A range of 10-150 nmol/cigarette of acetyl radical was measured from gas phase tobacco smoke of both commercial and research cigarettes under several different smoking conditions. More radicals were detected from the puff smoking method compared to continuous flow sampling. Approximately twice as many acetyl radicals were trapped when a glass fiber particle filter (GF/F specifications) was placed before the trapping zone. Simulations showed that NO/NO2 reacts with isoprene, initiating chain reactions to produce hydroxyl radical, which abstracts hydrogen from acetaldehyde to generate acetyl radical. These mechanisms can account for the full amount of acetyl radical detected experimentally from cigarette smoke. Similar mechanisms may generate radicals in second hand smoke.

  1. Kinetic studies on enzymatic acetylation of chloramphenicol in Streptococcus faecalis.

    PubMed Central

    Nakagawa, Y; Nitahara, Y; Miyamura, S

    1979-01-01

    The kinetics of chloramphenicol (CP) acetylation by CP acetyltransferase from Streptococcus faecalis was studied. CP was shown to be acetylated enzymatically to its 3-O-acetyl derivative (3-AcCP) in the presence of acetyl coenzyme A, after which 3-AcCP was converted nonenzymatically to its 1-O-acetyl isomer, 1-O-acetyl CP (1-AcCP). At equilibrium, the 1-AcCP and 3-AcCP were present in a 1:4 ratio. Subsequently the diacetylated product, 1,3-O-O-diacetyl CP [1,3-(Ac)2CP], was enzymatically produced from 1-AcCP by the same enzyme. Theoretical calculation of rate constants (k1, k2, k3) for each successive reaction is as follows: (Formula: see text). This calculation gave k1 = 0.4 min-1, k2 = 0.002 min-1, and k3 = 0.016 min-1. Experimental results agreed closely with these calculated values. Images PMID:119483

  2. [Out of addictions: Alcohol, or alcohol to alcohol].

    PubMed

    Simmat-Durand, L; Vellut, N; Lejeune, C; Jauffret-Roustide, M; Mougel, S; Michel, L; Planche, M

    2016-06-29

    Pathways from alcoholism to recovery are documented; less often are those from drug addiction to alcoholism. Biographical approaches allow analyzing how people change their uses and talk about their trajectories of recovery.

  3. Maintenance of Glucose Homeostasis through Acetylation of the Metabolic Transcriptional Coactivator PGC1-alpha

    DTIC Science & Technology

    2009-02-01

    highlight that PGC-1α chemical acetylation is directly controlled by two enzymes: GCN5 and SIRT1 ; this strengths the possibility to use small...acetylated through GCN5 acetyltransferase activity, however under low nutrient conditions Sirt1 deacetylase will keep PGC-1α de-acetylated in an active form...acetylated by GCN5, we decided to use R13 because it did not respond to low glucose levels or Sirt1 activators. We think that the additional acetylation

  4. Glutathione S-transferase class {pi} polymorphism in baboons

    SciTech Connect

    Aivaliotis, M.J.; Cantu, T.; Gilligan, R.

    1995-02-01

    Glutathione S-transferase (GST) comprises a family of isozymes with broad substrate specificities. One or more GST isozymes are present in most animal tissues and function in several detoxification pathways through the conjugation of reduced glutathione with various electrophiles, thereby reducing their potential toxicity. Four soluble GST isozymes encoded by genes on different chromosomes have been identified in humans. The acidic class pi GST, GSTP (previously designated GST-3), is widely distributed in adult tissues and appears to be the only GST isozyme present in leukocytes and placenta. Previously reported electrophoretic analyses of erythrocyte and leukocyte extracts revealed single bands of activity, which differed slightly in mobility between the two cell types, or under other conditions, a two-banded pattern. To our knowledge, no genetically determined polymorphisms have previously been reported in GSTP from any species. We now report a polymorphism of GSTP in baboon leukocytes, and present family data that verifies autosomal codominant inheritance. 14 refs., 2 figs., 1 tab.

  5. Thermodynamics of Enzyme-Catalyzed Reactions: Part 2. Transferases

    NASA Astrophysics Data System (ADS)

    Goldberg, Robert N.; Tewari, Yadu B.

    1994-07-01

    Equilibrium constants and enthalpy changes for reactions catalyzed by the transferase class of enzymes have been compiled. For each reaction the following information is given: the reference for the data; the reaction studied; the name of the enzyme used and its Enzyme Commission number; the method of measurement; the conditions of measurement [temperature, pH, ionic strength, and the buffer(s) and cofactor(s) used]; the data and an evaluation of it; and, sometimes, commentary on the data and on any corrections which have been applied to it or any calculations for which the data have been used. The data from 285 references have been examined and evaluated. Chemical Abstract Service registry numbers are given for the substances involved in these various reactions. There is a cross reference between the substances and the Enzyme Commission numbers of the enzymes used to catalyze the reactions in which the substances participate.

  6. Individual susceptibility to Wernicke-Korsakoff syndrome and alcoholism-induced cognitive deficit: impaired thiamine utilization found in alcoholics and alcohol abusers.

    PubMed

    Heap, Laura C; Pratt, Oliver E; Ward, Roberta J; Waller, Seta; Thomson, Allan D; Shaw, G Ken; Peters, Timothy J

    2002-12-01

    To investigate mechanisms predisposing to alcoholic brain damage, thiamine (vitamin B1 ), riboflavin (vitamin B2 ) and pyridoxine (vitamin B6 ) status was compared in persistent alcohol misusers (PAM) admitted for detoxification without evidence of significant brain damage, in alcoholics known to have severe chronic brain damage (BDAM), and in age, gender and ethnicity matched controls. Thus, activities of thiamine-dependent transketolase (ETK), riboflavin-dependent glutathione reductase, and pyridoxine-dependent aspartate amino transferase were assayed, together with the enzyme activities following addition of the appropriate co-factor. Twenty per cent of the PAM group had an abnormally low ETK activity and an abnormally high activation ratio, while 45% were abnormal in either one or both parameters. An additional 10% of the PAM group had an abnormally high activation ratio but normal ETK activity, as did 30% of the BDAM group. These subgroups of alcohol misusers may have increased requirements for thiamine secondary to an abnormality of the transketolase protein that may predispose such patients to alcoholic brain damage. There was no evidence of riboflavin or pyridoxine deficiency in either of the patient groups. We conclude that thiamine deficiency was commonly present in the alcoholic patients, and that a subgroup of patients may be predisposed to more severe brain damage as a consequence of abnormalities in the transketolase protein.

  7. Modification of oil palm wood using acetylation and impregnation process

    NASA Astrophysics Data System (ADS)

    Subagiyo, Lambang; Rosamah, Enih; Hesim

    2017-03-01

    The purpose of this study is chemical modification by process of acetylation and impregnation of oil palm wood to improve the dimensional stability. Acetylation process aimed at substituting the hydroxyl groups in a timber with an acetyl group. By increasing the acetyl groups in wood is expected to reduce the ability of wood to absorb water vapor which lead to the dimensions of the wood becomes more stable. Studies conducted on oil palm wood (Elaeis guineensis Jacq) by acetylation and impregnation method. The results showed that acetylated and impregnated wood oil palm (E. guineensis Jacq) were changed in their physical properties. Impregnation with coal ashfly provide the greatest response to changes in weight (in wet conditions) and after conditioning (dry) with the average percentage of weight gain of 198.16% and 66.41% respectively. Changes in volume indicates an increase of volume in the wet condition (imbibition) with the coal ashfly treatment gave highest value of 23.04 %, whereas after conditioning (dry) the highest value obtained in the treatment of gum rosin:ethanol with a volume increase of 13:44%. The highest changes of the density with the coal ashfly impregnation in wet condition (imbibition) in value of 142.32% and after conditioning (dry) of 57.87%. The result of reduction in water absorption (RWA) test showed that in the palm oil wood samples most stable by using of gum rosin : ethanol of 0.97%, whereas the increase in oil palm wood dimensional stability (ASE) is the best of 59.42% after acetylation with Acetic Anhydride: Xylene.

  8. Older Adults and Alcohol

    MedlinePlus

    ... Alcohol Exposure Support & Treatment Alcohol Policy Special Populations & Co-occurring Disorders Publications & Multimedia Brochures & Fact Sheets NIAAA ... are here Home » Alcohol & Your Health » Special Populations & Co-occurring Disorders » Older Adults In this Section Underage ...

  9. Fetal Alcohol Syndrome

    MedlinePlus

    ... The diagnosis of fetal alcohol syndrome. Deutsches Arztebaltt International. 2013;110:703. Ungerer M, et al. In utero alcohol exposure, epigenetic changes and their consequences. Alcohol Research: Current Reviews. 2013;35:37. Coriale G, et al. ...

  10. Fetal Alcohol Syndrome

    MedlinePlus

    ... Conditions Frequently Asked Questions Español Condiciones Chinese Conditions Fetal Alcohol Syndrome Read in Chinese What is Fetal Alcohol Syndrome (FAS)? Fetal Alcohol Syndrome (FAS) describes changes in ...

  11. Alcoholic liver disease

    MedlinePlus

    Liver disease due to alcohol; Cirrhosis or hepatitis - alcoholic; Laennec's cirrhosis ... Alcoholic liver disease occurs after years of heavy drinking. Over time, scarring and cirrhosis can occur. Cirrhosis is the ...

  12. Exploiting the Substrate Promiscuity of Hydroxycinnamoyl-CoA:Shikimate Hydroxycinnamoyl Transferase to Reduce Lignin

    PubMed Central

    Eudes, Aymerick; Pereira, Jose H.; Yogiswara, Sasha; Wang, George; Teixeira Benites, Veronica; Baidoo, Edward E.K.; Lee, Taek Soon; Adams, Paul D.; Keasling, Jay D.; Loqué, Dominique

    2016-01-01

    Lignin poses a major challenge in the processing of plant biomass for agro-industrial applications. For bioengineering purposes, there is a pressing interest in identifying and characterizing the enzymes responsible for the biosynthesis of lignin. Hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyl transferase (HCT; EC 2.3.1.133) is a key metabolic entry point for the synthesis of the most important lignin monomers: coniferyl and sinapyl alcohols. In this study, we investigated the substrate promiscuity of HCT from a bryophyte (Physcomitrella) and from five representatives of vascular plants (Arabidopsis, poplar, switchgrass, pine and Selaginella) using a yeast expression system. We demonstrate for these HCTs a conserved capacity to acylate with p-coumaroyl-CoA several phenolic compounds in addition to the canonical acceptor shikimate normally used during lignin biosynthesis. Using either recombinant HCT from switchgrass (PvHCT2a) or an Arabidopsis stem protein extract, we show evidence of the inhibitory effect of these phenolics on the synthesis of p-coumaroyl shikimate in vitro, which presumably occurs via a mechanism of competitive inhibition. A structural study of PvHCT2a confirmed the binding of a non-canonical acceptor in a similar manner to shikimate in the active site of the enzyme. Finally, we exploited in Arabidopsis the substrate flexibility of HCT to reduce lignin content and improve biomass saccharification by engineering transgenic lines that overproduce one of the HCT non-canonical acceptors. Our results demonstrate conservation of HCT substrate promiscuity and provide support for a new strategy for lignin reduction in the effort to improve the quality of plant biomass for forage and cellulosic biofuels. PMID:26858288

  13. Exploiting the Substrate Promiscuity of Hydroxycinnamoyl-CoA:Shikimate Hydroxycinnamoyl Transferase to Reduce Lignin.

    PubMed

    Eudes, Aymerick; Pereira, Jose H; Yogiswara, Sasha; Wang, George; Teixeira Benites, Veronica; Baidoo, Edward E K; Lee, Taek Soon; Adams, Paul D; Keasling, Jay D; Loqué, Dominique

    2016-03-01

    Lignin poses a major challenge in the processing of plant biomass for agro-industrial applications. For bioengineering purposes, there is a pressing interest in identifying and characterizing the enzymes responsible for the biosynthesis of lignin. Hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyl transferase (HCT; EC 2.3.1.133) is a key metabolic entry point for the synthesis of the most important lignin monomers: coniferyl and sinapyl alcohols. In this study, we investigated the substrate promiscuity of HCT from a bryophyte (Physcomitrella) and from five representatives of vascular plants (Arabidopsis, poplar, switchgrass, pine and Selaginella) using a yeast expression system. We demonstrate for these HCTs a conserved capacity to acylate with p-coumaroyl-CoA several phenolic compounds in addition to the canonical acceptor shikimate normally used during lignin biosynthesis. Using either recombinant HCT from switchgrass (PvHCT2a) or an Arabidopsis stem protein extract, we show evidence of the inhibitory effect of these phenolics on the synthesis of p-coumaroyl shikimate in vitro, which presumably occurs via a mechanism of competitive inhibition. A structural study of PvHCT2a confirmed the binding of a non-canonical acceptor in a similar manner to shikimate in the active site of the enzyme. Finally, we exploited in Arabidopsis the substrate flexibility of HCT to reduce lignin content and improve biomass saccharification by engineering transgenic lines that overproduce one of the HCT non-canonical acceptors. Our results demonstrate conservation of HCT substrate promiscuity and provide support for a new strategy for lignin reduction in the effort to improve the quality of plant biomass for forage and cellulosic biofuels.

  14. Degradation of aromatics and chloroaromatics by Pseudomonas sp. strain B13: purification and characterization of 3-oxoadipate:succinyl-coenzyme A (CoA) transferase and 3-oxoadipyl-CoA thiolase.

    PubMed

    Kaschabek, Stefan R; Kuhn, Bernd; Müller, Dagmar; Schmidt, Eberhard; Reineke, Walter

    2002-01-01

    The degradation of 3-oxoadipate in Pseudomonas sp. strain B13 was investigated and was shown to proceed through 3-oxoadipyl-coenzyme A (CoA) to give acetyl-CoA and succinyl-CoA. 3-Oxoadipate:succinyl-CoA transferase of strain B13 was purified by heat treatment and chromatography on phenyl-Sepharose, Mono-Q, and Superose 6 gels. Estimation of the native molecular mass gave a value of 115,000 +/- 5,000 Da with a Superose 12 column. Polyacrylamide gel electrophoresis under denaturing conditions resulted in two distinct bands of equal intensities. The subunit A and B values were 32,900 and 27,000 Da. Therefore it can be assumed that the enzyme is a heterotetramer of the type A2B2 with a molecular mass of 120,000 Da. The N-terminal amino acid sequences of both subunits are as follows: subunit A, AELLTLREAVERFVNDGTVALEGFTHLIPT; subunit B, SAYSTNEMMTVAAARRLKNGAVVFV. The pH optimum was 8.4. Km values were 0.4 and 0.2 mM for 3-oxoadipate and succinyl-CoA, respectively. Reversibility of the reaction with succinate was shown. The transferase of strain B13 failed to convert 2-chloro- and 2-methyl-3-oxoadipate. Some activity was observed with 4-methyl-3-oxoadipate. Even 2-oxoadipate and 3-oxoglutarate were shown to function as poor substrates of the transferase. 3-oxoadipyl-CoA thiolase was purified by chromatography on DEAE-Sepharose, blue 3GA, and reactive brown-agarose. Estimation of the native molecular mass gave 162,000 +/- 5,000 Da with a Superose 6 column. The molecular mass of the subunit of the denatured protein, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was 42 kDa. On the basis of these results, 3-oxoadipyl-CoA thiolase should be a tetramer of the type A4. The N-terminal amino acid sequence of 3-oxoadipyl-CoA thiolase was determined to be SREVYI-DAVRTPIGRFG. The pH optimum was 7.8. Km values were 0.15 and 0.01 mM for 3-oxoadipyl-CoA and CoA, respectively. Sequence analysis of the thiolase terminus revealed high percentages of identity

  15. Targeting O-Acetyl-GD2 Ganglioside for Cancer Immunotherapy.

    PubMed

    Fleurence, Julien; Fougeray, Sophie; Bahri, Meriem; Cochonneau, Denis; Clémenceau, Béatrice; Paris, François; Heczey, Andras; Birklé, Stéphane

    2017-01-01

    Target selection is a key feature in cancer immunotherapy, a promising field in cancer research. In this respect, gangliosides, a broad family of structurally related glycolipids, were suggested as potential targets for cancer immunotherapy based on their higher abundance in tumors when compared with the matched normal tissues. GD2 is the first ganglioside proven to be an effective target antigen for cancer immunotherapy with the regulatory approval of dinutuximab, a chimeric anti-GD2 therapeutic antibody. Although the therapeutic efficacy of anti-GD2 monoclonal antibodies is well documented, neuropathic pain may limit its application. O-Acetyl-GD2, the O-acetylated-derivative of GD2, has recently received attention as novel antigen to target GD2-positive cancers. The present paper examines the role of O-acetyl-GD2 in tumor biology as well as the available preclinical data of anti-O-acetyl-GD2 monoclonal antibodies. A discussion on the relevance of O-acetyl-GD2 in chimeric antigen receptor T cell therapy development is also included.

  16. Targeting O-Acetyl-GD2 Ganglioside for Cancer Immunotherapy

    PubMed Central

    Fleurence, Julien; Fougeray, Sophie; Bahri, Meriem; Cochonneau, Denis; Clémenceau, Béatrice; Paris, François; Heczey, Andras

    2017-01-01

    Target selection is a key feature in cancer immunotherapy, a promising field in cancer research. In this respect, gangliosides, a broad family of structurally related glycolipids, were suggested as potential targets for cancer immunotherapy based on their higher abundance in tumors when compared with the matched normal tissues. GD2 is the first ganglioside proven to be an effective target antigen for cancer immunotherapy with the regulatory approval of dinutuximab, a chimeric anti-GD2 therapeutic antibody. Although the therapeutic efficacy of anti-GD2 monoclonal antibodies is well documented, neuropathic pain may limit its application. O-Acetyl-GD2, the O-acetylated-derivative of GD2, has recently received attention as novel antigen to target GD2-positive cancers. The present paper examines the role of O-acetyl-GD2 in tumor biology as well as the available preclinical data of anti-O-acetyl-GD2 monoclonal antibodies. A discussion on the relevance of O-acetyl-GD2 in chimeric antigen receptor T cell therapy development is also included. PMID:28154831

  17. N-Acetylation of Glucosamine-6-Phosphate in Leuconostoc mesenteroides

    PubMed Central

    DeMoss, R. D.; Moser, K.

    1969-01-01

    A partially purified enzyme (120-fold) from Leuconostoc mesenteroides catalyzed the reversible N-acetylation of d-glucosamine-6-phosphate. Coenzyme A was not required and inhibited the reaction rate. Neither d-glucosamine nor N-acetyl-d-glucosamine served as a substrate for the reversible reaction. The enzyme preparation retained 50% of its original activity after 5 min at 100 C. The Km for acetate was 7.7 × 10−2m in the presence of 2 × 10−2md-glucosamine-6-phosphate. The Km for d-glucosamine-6-phosphate was 5.0 × 10−3m in the presence of 0.64 m acetate. The product of the reaction was characterized by comparison with N-acetyl-d-glucosamine-6-phosphate prepared by enzymatic phosphorylation of N-acetyl-d-glusamine. The characterization tests were: chromatographic migration, acid hydrolysis, enzymatic dephosphorylation, sodium borohydride reduction, and periodate oxidation. The equilibrium constant for the reaction was about 7.5 m for the expression K = (d-glucosamine-6-phosphate)(acetate)/N-acetyl-d-glucosamine-6-phosphate. The standard free energy of the reaction was approximately 1,200 cal per mole. PMID:5781575

  18. Establishment of the tree shrew as an alcohol-induced Fatty liver model for the study of alcoholic liver diseases.

    PubMed

    Xing, Huijie; Jia, Kun; He, Jun; Shi, Changzheng; Fang, Meixia; Song, Linliang; Zhang, Pu; Zhao, Yue; Fu, Jiangnan; Li, Shoujun

    2015-01-01

    Currently, the pathogenesis of alcoholic liver diseases (ALDs) is not clear. As a result, there is no effective treatment for ALDs. One limitation is the lack of a suitable animal model for use in studying ALDs. The tree shrew is a lower primate animal, characterized by a high-alcohol diet. This work aimed to establish a fatty liver model using tree shrews and to assess the animals' suitability for the study of ALDs. Tree shrews were treated with alcohol solutions (10% and 20%) for two weeks. Hemophysiology, blood alcohol concentrations (BACs), oxidative stress factors, alcohol metabolic enzymes and hepatic pathology were checked and assayed with an automatic biochemical analyzer, enzyme-linked immunosorbent assay (ELISA), western blot, hematoxylin-eosin (HE) staining and oil red O staining, and magnetic resonance imaging (MRI). Compared with the normal group, the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transpeptidase (GGT), total cholesterol (TC), triglyceride (TG), reactive oxygen species (ROS), and malondialdehyde (MDA) were significantly enhanced in alcohol-treated tree shrews. However, the activity of reduced glutathione hormone (GSH) and superoxide dismutase (SOD) declined. Notable changes in alcohol dehydrogenase(ADH1), aldehyde dehydrogenase(ALDH2), CYP2E1, UDP-glucuronosyl transferase 1A1 (UGT1A1) and nuclear factor erythroid-related factor 2 (Nrf2) were observed. HE and oil red O staining showed that hepatocyte swelling, hydropic degeneration, and adipohepatic syndrome occurred in the tree shrews. Alcohol can induce fatty liver-like pathological changes and result in alterations in liver function, oxidative stress factors, alcohol metabolism enzymes and Nrf2. Therefore, the established fatty liver model of tree shrews induced by alcohol should be a promising tool for the study of ALDs.

  19. Genetic polymorphisms in glutathione-S-transferases are associated with anxiety and mood disorders in nicotine dependence

    PubMed Central

    Pizzo de Castro, Márcia Regina; Ehara Watanabe, Maria Angelica; Losi Guembarovski, Roberta; Odebrecht Vargas, Heber; Vissoci Reiche, Edna Maria; Kaminami Morimoto, Helena; Dodd, Seetal; Berk, Michael

    2014-01-01

    Background Nicotine dependence is associated with an increased risk of mood and anxiety disorders and suicide. The primary hypothesis of this study was to identify whether the polymorphisms of two glutathione-S-transferase enzymes (GSTM1 and GSTT1 genes) predict an increased risk of mood and anxiety disorders in smokers with nicotine dependence. Materials and methods Smokers were recruited at the Centre of Treatment for Smokers. The instruments were a sociodemographic questionnaire, Fagerström Test for Nicotine Dependence, diagnoses of mood disorder and nicotine dependence according to DSM-IV (SCID-IV), and the Alcohol, Smoking and Substance Involvement Screening Test. Anxiety disorder was assessed based on the treatment report. Laboratory assessment included glutathione-S-transferases M1 (GSTM1) and T1 (GSTT1), which were detected by a multiplex-PCR protocol. Results Compared with individuals who had both GSTM1 and GSTT1 genes, a higher frequency of at least one deletion of the GSTM1 and GSTT1 genes was identified in anxious smokers [odds ratio (OR)=2.21, 95% confidence interval (CI)=1.05–4.65, P=0.034], but there was no association with bipolar and unipolar depression (P=0.943). Compared with nonanxious smokers, anxious smokers had a greater risk for mood disorders (OR=4.67; 95% CI=2.24–9.92, P<0.001), lung disease (OR=6.78, 95% CI=1.95–23.58, P<0.003), and suicide attempts (OR=17.01, 95% CI=2.23–129.91, P<0.006). Conclusion This study suggests that at least one deletion of the GSTM1 and GSTT1 genes represents a risk factor for anxious smokers. These two genes may modify the capacity for the detoxification potential against oxidative stress. PMID:24637631

  20. Enzymic synthesis of indole-3-acetyl-1-O-beta-d-glucose. I. Partial purification and characterization of the enzyme from Zea mays

    NASA Technical Reports Server (NTRS)

    Leznicki, A. J.; Bandurski, R. S.

    1988-01-01

    The first enzyme-catalyzed reaction leading from indole-3-acetic acid (IAA) to the myo-inositol esters of IAA is the synthesis of indole-3-acetyl-1-O-beta-D-glucose from uridine-5'-diphosphoglucose (UDPG) and IAA. The reaction is catalyzed by the enzyme, UDPG-indol-3-ylacetyl glucosyl transferase (IAA-glucose-synthase). This work reports methods for the assay of the enzyme and for the extraction and partial purification of the enzyme from kernels of Zea mays sweet corn. The enzyme has an apparent molecular weight of 46,500 an isoelectric point of 5.5, and its pH optimum lies between 7.3 and 7.6. The enzyme is stable to storage at zero degrees but loses activity during column chromatographic procedures which can be restored only fractionally by addition of column eluates. The data suggest either multiple unknown cofactors or conformational changes leading to activity loss.

  1. Synthetic Biology for Engineering Acetyl Coenzyme A Metabolism in Yeast

    PubMed Central

    2014-01-01

    ABSTRACT The yeast Saccharomyces cerevisiae is a widely used cell factory for the production of fuels, chemicals, and pharmaceuticals. The use of this cell factory for cost-efficient production of novel fuels and chemicals requires high yields and low by-product production. Many industrially interesting chemicals are biosynthesized from acetyl coenzyme A (acetyl-CoA), which serves as a central precursor metabolite in yeast. To ensure high yields in production of these chemicals, it is necessary to engineer the central carbon metabolism so that ethanol production is minimized (or eliminated) and acetyl-CoA can be formed from glucose in high yield. Here the perspective of generating yeast platform strains that have such properties is discussed in the context of a major breakthrough with expression of a functional pyruvate dehydrogenase complex in the cytosol. PMID:25370498

  2. H4K44 Acetylation Facilitates Chromatin Accessibility during Meiosis.

    PubMed

    Hu, Jialei; Donahue, Greg; Dorsey, Jean; Govin, Jérôme; Yuan, Zuofei; Garcia, Benjamin A; Shah, Parisha P; Berger, Shelley L

    2015-12-01

    Meiotic recombination hotspots are associated with histone post-translational modifications and open chromatin. However, it remains unclear how histone modifications and chromatin structure regulate meiotic recombination. Here, we identify acetylation of histone H4 at Lys44 (H4K44ac) occurring on the nucleosomal lateral surface. We show that H4K44 is acetylated at pre-meiosis and meiosis and displays genome-wide enrichment at recombination hotspots in meiosis. Acetylation at H4K44 is required for normal meiotic recombination, normal levels of double-strand breaks (DSBs) during meiosis, and optimal sporulation. Non-modifiable H4K44R results in increased nucleosomal occupancy around DSB hotspots. Our results indicate that H4K44ac functions to facilitate chromatin accessibility favorable for normal DSB formation and meiotic recombination.

  3. Histone Deacetylase Inhibitors Globally Enhance H3/H4 Tail Acetylation Without Affecting H3 Lysine 56 Acetylation

    PubMed Central

    Drogaris, Paul; Villeneuve, Valérie; Pomiès, Christelle; Lee, Eun-Hye; Bourdeau, Véronique; Bonneil, Éric; Ferbeyre, Gerardo; Verreault, Alain; Thibault, Pierre

    2012-01-01

    Histone deacetylase inhibitors (HDACi) represent a promising avenue for cancer therapy. We applied mass spectrometry (MS) to determine the impact of clinically relevant HDACi on global levels of histone acetylation. Intact histone profiling revealed that the HDACi SAHA and MS-275 globally increased histone H3 and H4 acetylation in both normal diploid fibroblasts and transformed human cells. Histone H3 lysine 56 acetylation (H3K56ac) recently elicited much interest and controversy due to its potential as a diagnostic and prognostic marker for a broad diversity of cancers. Using quantitative MS, we demonstrate that H3K56ac is much less abundant than previously reported in human cells. Unexpectedly, in contrast to H3/H4 N-terminal tail acetylation, H3K56ac did not increase in response to inhibitors of each class of HDACs. In addition, we demonstrate that antibodies raised against H3K56ac peptides cross-react against H3 N-terminal tail acetylation sites that carry sequence similarity to residues flanking H3K56. PMID:22355734

  4. Toxicology of deoxynivalenol and its acetylated and modified forms.

    PubMed

    Payros, Delphine; Alassane-Kpembi, Imourana; Pierron, Alix; Loiseau, Nicolas; Pinton, Philippe; Oswald, Isabelle P

    2016-12-01

    Mycotoxins are the most frequently occurring natural contaminants in human and animal diet. Among them, deoxynivalenol (DON), produced by Fusarium, is one of the most prevalent and thus represents an important health risk. Recent detection methods revealed new mycotoxins and new molecules derivated from the "native" mycotoxins. The main derivates of DON are the acetylated forms produced by the fungi (3- and 15-acetyl-DON), the biologically "modified" forms produced by the plant (deoxynivalenol-3-β-D-glucopyranoside), or after bacteria transformation (de-epoxy DON, 3-epi-DON and 3-keto-DON) as well as the chemically "modified" forms (norDON A-C and DON-sulfonates). High proportions of acetylated and modified forms of DON co-occur with DON, increasing the exposure and the health risk. DON and its acetylated and modified forms are rapidly absorbed following ingestion. At the molecular level, DON binds to the ribosome, induces a ribotoxic stress leading to the activation of MAP kinases, cellular cell-cycle arrest and apoptosis. The toxic effects of DON include emesis and anorexia, alteration of intestinal and immune functions, reduced absorption of the nutrients as well as increased susceptibility to infection and chronic diseases. In contrast to DON, very little information exists concerning the acetylated and modified forms; some can be converted back to DON, their ability to bind to the ribosome and to induce cellular effects varies according to the toxin. Except for the acetylated forms, their toxicity and impact on human and animal health are poorly documented.

  5. MATERNAL SMOKING DURING PREGNANCY, GENETIC VARIATION OF ACETYL-N-TRANSFERASES NAT1 AND NAT2, AND RISK FOR OROFACIAL CLEFTS. (R828292)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  6. Alcoholic metabolic emergencies.

    PubMed

    Allison, Michael G; McCurdy, Michael T

    2014-05-01

    Ethanol intoxication and ethanol use are associated with a variety of metabolic derangements encountered in the Emergency Department. In this article, the authors discuss alcohol intoxication and its treatment, dispel the myth that alcohol intoxication is associated with hypoglycemia, comment on electrolyte derangements and their management, review alcoholic ketoacidosis, and end with a section on alcoholic encephalopathy.

  7. Fetal Alcohol Exposure

    MedlinePlus

    ... of the National Academies (IOM) diagnostic categories: 4 » Fetal Alcohol Syndrome (FAS) » Partial FAS (pFAS) » Alcohol-Related Neurodevelopmental Disorder ( ... 301.443.3860 Relevant Clinical Diagnoses IOM Diagnoses Fetal Alcohol Syndrome (FAS) Fetal Alcohol Syndrome (FAS) was the first ...

  8. Nurses' Attitudes towards Alcoholics.

    ERIC Educational Resources Information Center

    Speer, Rita D.

    Nurses' attitudes toward the alcoholic can have a profound impact on the person suffering from alcoholism. These attitudes can affect the alcoholic's care and even whether the alcoholic chooses to recover. This study investigated attitudes of approximately 68 nurses employed in hospitals, 49 nurses in treatment facilities, 58 nursing students, and…

  9. Children of Alcoholics.

    ERIC Educational Resources Information Center

    Krois, Deborah Helen

    Although alcoholism has long been considered a serious problem, the impact of parental alcoholism on children has only recently begun to receive attention from researchers and clinicians. A review of the empirical literature on children of alcoholics was conducted and it was concluded that children raised in an alcoholic family are at increased…

  10. Overview of Alcohol Consumption

    MedlinePlus

    ... Work Our Funding Our Staff Jobs & Training Our Location Contact Us You are here Home » Alcohol & Your Health » Overview of Alcohol Consumption In this Section Alcohol Facts & Statistics What Is A Standard Drink? Drinking Levels Defined Overview of Alcohol Consumption ...

  11. Crystal structure of E. coli lipoprotein diacylglyceryl transferase.

    PubMed

    Mao, Guotao; Zhao, Yan; Kang, Xusheng; Li, Zhijie; Zhang, Yan; Wang, Xianping; Sun, Fei; Sankaran, Krishnan; Zhang, Xuejun C

    2016-01-05

    Lipoprotein biogenesis is essential for bacterial survival. Phosphatidylglycerol:prolipoprotein diacylglyceryl transferase (Lgt) is an integral membrane enzyme that catalyses the first reaction of the three-step post-translational lipid modification. Deletion of the lgt gene is lethal to most Gram-negative bacteria. Here we present the crystal structures of Escherichia coli Lgt in complex with phosphatidylglycerol and the inhibitor palmitic acid at 1.9 and 1.6 Å resolution, respectively. The structures reveal the presence of two binding sites and support the previously reported structure-function relationships of Lgt. Complementation results of lgt-knockout cells with different mutant Lgt variants revealed critical residues, including Arg143 and Arg239, that are essential for diacylglyceryl transfer. Using a GFP-based in vitro assay, we correlated the activities of Lgt with structural observations. Together, the structural and biochemical data support a mechanism whereby substrate and product, lipid-modified lipobox-containing peptide, enter and leave the enzyme laterally relative to the lipid bilayer.

  12. Inactivation of Anopheles gambiae Glutathione Transferase ε2 by Epiphyllocoumarin

    PubMed Central

    Marimo, Patience; Hayeshi, Rose; Mukanganyama, Stanley

    2016-01-01

    Glutathione transferases (GSTs) are part of a major family of detoxifying enzymes that can catalyze the reductive dehydrochlorination of dichlorodiphenyltrichloroethane (DDT). The delta and epsilon classes of insect GSTs have been implicated in conferring resistance to this insecticide. In this study, the inactivation of Anopheles gambiae GSTε2 by epiphyllocoumarin (Tral 1) was investigated. Recombinant AgGSTε2 was expressed in Escherichia coli cells containing a pET3a-AGSTε2 plasmid and purified by affinity chromatography. Tral 1 was shown to inactivate GSTε2 both in a time-dependent manner and in a concentration-dependent manner. The half-life of GSTε2 in the presence of 25 μM ethacrynic acid (ETA) was 22 minutes and with Tral 1 was 30 minutes, indicating that Tral 1 was not as efficient as ETA as an inactivator. The inactivation parameters kinact and KI were found to be 0.020 ± 0.001 min−1 and 7.5 ± 2.1 μM, respectively, after 90 minutes of incubation. Inactivation of GSTε2 by Tral 1 implies that Tral 1 covalently binds to this enzyme in vitro and would be expected to exhibit time-dependent effects on the enzyme in vivo. Tral 1, therefore, would produce irreversible effects when used together with dichlorodiphenyltrichloroethane (DDT) in malaria control programmes where resistance is mediated by GSTs. PMID:26925266

  13. Glutathione S-transferase polymorphisms in thyroid cancer patients.

    PubMed

    Hernández, Alba; Céspedes, Walkiria; Xamena, Noel; Surrallés, Jordi; Creus, Amadeu; Galofré, Pere; Marcos, Ricardo

    2003-02-10

    Glutathione S-transferases (GST) are enzymes involved in the metabolism of many carcinogens and mutagens, also acting as important free-radical scavengers. The existence of different genetic polymorphisms in human populations has proven to be a susceptibility factor for different tumours. Nevertheless, as far as we know, for thyroid cancer no study has been conducted until now linking its incidence to genetic susceptibility biomarkers. The present investigation has been conducted to detect the possible association between polymorphism at the GSTM1, GSTT1 and GSTP1 genes and thyroid cancer incidence. Thus, 134 thyroid cancer patients and 116 controls, all from the urban district of Barcelona (Spain), have been included in this study. The results indicate that, according to the calculated odds ratio, the frequencies of the different genotypes found in the group of cancer patients do not significantly differ from those values obtained in the controls. This is true for the overall data as well as for the tumour characterization as follicular and papillar types. In addition, none of the possible combinations of mutant genotypes were shown to be risk factors. Finally, when the sex of the patients, the age of tumour onset, and life-style habits were also taken into account, no influence was observed related to the different genotypes. In conclusion, the results obtained in this study clearly suggest that those susceptibility factors related to the different GST polymorphic enzymes are not a predisposing factor in thyroid cancer disease.

  14. Internet Alcohol Marketing and Underage Alcohol Use

    PubMed Central

    McClure, Auden C.; Tanski, Susanne E.; Li, Zhigang; Jackson, Kristina; Morgenstern, Matthis; Li, Zhongze; Sargent, James D.

    2016-01-01

    BACKGROUND AND OBJECTIVE Internet alcohol marketing is not well studied despite its prevalence and potential accessibility and attractiveness to youth. The objective was to examine longitudinal associations between self-reported engagement with Internet alcohol marketing and alcohol use transitions in youth. METHODS A US sample of 2012 youths aged 15 to 20 was surveyed in 2011. An Internet alcohol marketing receptivity score was developed, based on number of positive responses to seeing alcohol advertising on the Internet, visiting alcohol brand Web sites, being an online alcohol brand fan, and cued recall of alcohol brand home page images. We assessed the association between baseline marketing receptivity and both ever drinking and binge drinking (≥6 drinks per occasion) at 1-year follow-up with multiple logistic regression, controlling for baseline drinking status, Internet use, sociodemographics, personality characteristics, and peer or parent drinking. RESULTS At baseline, ever-drinking and binge-drinking prevalence was 55% and 27%, respectively. Many (59%) reported seeing Internet alcohol advertising, but few reported going to an alcohol Web site (6%) or being an online fan (3%). Higher Internet use, sensation seeking, having family or peers who drank, and past alcohol use were associated with Internet alcohol marketing receptivity, and a score of 1 or 2 was independently associated with greater adjusted odds of initiating binge drinking (odds ratio 1.77; 95% confidence interval, 1.13–2.78 and odds ratio 2.15; 95% confidence interval, 1.06–4.37 respectively) but not with initiation of ever drinking. CONCLUSIONS Although high levels of engagement with Internet alcohol marketing were uncommon, most underage youths reported seeing it, and we found a prospective association between receptivity to this type of alcohol marketing and future problem drinking, making additional research and ongoing surveillance important. PMID:26738886

  15. Alcohol and bone.

    PubMed

    Mikosch, Peter

    2014-01-01

    Alcohol is widely consumed across the world in different cultural and social settings. Types of alcohol consumption differ between (a) light, only occasional consumption, (b) heavy chronic alcohol consumption, and (c) binge drinking as seen as a new pattern of alcohol consumption among teenagers and young adults. Heavy alcohol consumption is detrimental to many organs and tissues, including bones. Osteoporosis is regularly mentioned as a secondary consequence of alcoholism, and chronic alcohol abuse is established as an independent risk factor for osteoporosis. The review will present the different mechanisms and effects of alcohol intake on bone mass, bone metabolism, and bone strength, including alcoholism-related "life-style factors" such as malnutrition, lack of exercise, and hormonal changes as additional causative factors, which also contribute to the development of osteoporosis due to alcohol abuse.

  16. Potential role of adolescent alcohol exposure-induced amygdaloid histone modifications in anxiety and alcohol intake during adulthood.

    PubMed

    Pandey, Subhash C; Sakharkar, Amul J; Tang, Lei; Zhang, Huaibo

    2015-10-01

    Binge drinking is common during adolescence and can lead to the development of psychiatric disorders, including alcoholism in adulthood. Here, the role and persistent effects of histone modifications during adolescent intermittent ethanol (AIE) exposure in the development of anxiety and alcoholism in adulthood were investigated. Rats received intermittent ethanol exposure during post-natal days 28-41, and anxiety-like behaviors were measured after 1 and 24 h of the last AIE. The effects of AIE on anxiety-like and alcohol-drinking behaviors in adulthood were measured with or without treatment with the histone deacetylase (HDAC) inhibitor, trichostatin A (TSA). Amygdaloid brain regions were collected to measure HDAC activity, global and gene-specific histone H3 acetylation, expression of brain-derived neurotrophic factor (BDNF) and activity-regulated cytoskeleton-associated (Arc) protein and dendritic spine density (DSD). Adolescent rats displayed anxiety-like behaviors after 24 h, but not 1 h, of last AIE with a concomitant increase in nuclear and cytosolic amygdaloid HDAC activity and HDAC2 and HDAC4 levels leading to deficits in histone (H3-K9) acetylation in the central (CeA) and medial (MeA), but not in basolateral nucleus of amygdala (BLA). Interestingly, some of AIE-induced epigenetic changes such as, increased nuclear HDAC activity, HDAC2 expression, and decreased global histone acetylation persisted in adulthood. In addition, AIE decreased BDNF exons I and IV and Arc promoter specific histone H3 acetylation that was associated with decreased BDNF, Arc expression and DSD in the CeA and MeA during adulthood. AIE also induced anxiety-like behaviors and enhanced ethanol intake in adulthood, which was attenuated by TSA treatment via normalization of deficits in histone H3 acetylation of BDNF and Arc genes. These novel results indicate that AIE induces long-lasting effects on histone modifications and deficits in synaptic events in the amygdala, which are

  17. Alcohol fuels

    SciTech Connect

    Not Available

    1990-07-01

    Ethanol is an alcohol made from grain that can be blended with gasoline to extend petroleum supplies and to increase gasoline octane levels. Congressional proposals to encourage greater use of alternative fuels could increase the demand for ethanol. This report evaluates the growth potential of the ethanol industry to meet future demand increases and the impacts increased production would have on American agriculture and the federal budget. It is found that ethanol production could double or triple in the next eight years, and that American farmers could provide the corn for this production increase. While corn growers would benefit, other agricultural segments would not; soybean producers, for example could suffer for increased corn oil production (an ethanol byproduct) and cattle ranchers would be faced with higher feed costs because of higher corn prices. Poultry farmers might benefit from lower priced feed. Overall, net farm cash income should increase, and consumers would see slightly higher food prices. Federal budget impacts would include a reduction in federal farm program outlays by an annual average of between $930 million (for double current production of ethanol) to $1.421 billion (for triple production) during the eight-year growth period. However, due to an partial tax exemption for ethanol blended fuels, federal fuel tax revenues could decrease by between $442 million and $813 million.

  18. Carnitine palmitoyl transferase deficiency with an atypical presentation and ultrastructural mitochondrial abnormalities.

    PubMed Central

    Carey, M P; Poulton, K; Hawkins, C; Murphy, R P

    1987-01-01

    A case of carnitine palmitoyl transferase deficiency presenting in a 72 year old woman with the clinical picture of ophthalmoplegia plus other muscle weakness is reported. Histological and ultrastructural examination showed the features of a mitochondrial myopathy. Images PMID:3655814

  19. Isolation of a mutant Arabidopsis plant that lacks N-aetyl glucosaminyl transferase I and is unable to synthesize Golgi-modified complex N-linked glycans

    SciTech Connect

    Schaewen, A. von; O'Neill, J.; Chrispeels, M.J. ); Sturm, A. )

    1993-08-01

    The complex asparagine-linked glycans of plant glycoproteins, characterized by the presence of [beta]1[yields]2 xylose and [alpha]1[yields]3 fucose residues, are derived from typical mannose[sub 9](N-acetylglucosamine)[sub 2] (Man[sub 9]GlcNAc[sub 2]) N-linked glycans through the activity of a series of glycosidases and glycosyl transferases in the Golgi apparatus. By screening leaf extracts with an antiserum against complex glycans, we isolated a mutant of Arbidopsis thaliana that is blocked in the conversion of high-manne to complex glycans. In callus tissues derived from the mutant plants, all glycans bind to concanavalin A. These glycans can be released by treatment with endoglycosidase H, and the majority has the same size as Man[sub 5]GlcNAc[sub 1] glycans. In the presence of deoxymannojirimycin, an inhibitor of mannosidase I, the mutant cells synthesize Man[sub 9]GlcNAc[sub 2] and Man[sub 8]GlcNAc[sub 2] glycans, suggesting that the biochemical lesion in the mutant is not in the biosynthesis of high-mannose glycans in the endoplasmic reticulum but in their modification in the Golgi. Direct enzyme assays of cell extracts show that the mutant cells lack N-acetyl glucosaminyl transferase I, the first enzyme in the pathway of complex glycan biosynthesis. The mutant plants are able to complete their development normally under several environmental conditions, suggesting that complex glycans are not essential for normal developmental processes. By crossing the complex-glycan-deficient strain of A. thaliana with a transgenic strain that expresses the glycoprotein phytohemagglutinin, a unique strain was obtained that synthesizes phytohemagglutinin with two high-mannose glycans, instead of one high-mannose and one complex glycan. 42 refs., 8 figs., 1 tab.

  20. Causal role of histone acetylations in enhancer function

    PubMed Central

    Pradeepa, Madapura M.

    2017-01-01

    ABSTRACT Enhancers control development and cellular function by spatiotemporal regulation of gene expression. Co-occurrence of acetylation of histone H3 at lysine 27 (H3K27ac) and mono methylation of histone H3 at lysine 4 (H3K4me1) has been widely used for identification of active enhancers. However, increasing evidence suggests that using this combination of marks alone for enhancer identification gives an incomplete picture of the active enhancer repertoire. We have shown that the H3 globular domain acetylations, H3K64ac and H3K122ac, and an H4 tail acetylation, H4K16ac, are enriched at active enhancers together with H3K27ac, and also at a large number of enhancers without detectable H3K27ac. We propose that acetylations at these lysine residues of histones H3 and H4 might function by directly affecting chromatin structure, nucleosome–nucleosome interactions, nucleosome stability, and transcription factor accessibility. PMID:27792455

  1. 21 CFR 172.372 - N-Acetyl-L-methionine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... amino acid methionine formed by addition of an acetyl group to the alpha-amino group of methionine. It... amino acid) by weight of the total protein of the finished food, including the amount naturally present... of the additive contained therein. (2) The amounts of additive and each amino acid contained in...

  2. 21 CFR 172.372 - N-Acetyl-L-methionine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... amino acid methionine formed by addition of an acetyl group to the alpha-amino group of methionine. It... amino acid) by weight of the total protein of the finished food, including the amount naturally present... of the additive contained therein. (2) The amounts of additive and each amino acid contained in...

  3. 21 CFR 172.372 - N-Acetyl-L-methionine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...-Acetyl-L-methionine (Chemical Abstracts Service Registry No. 65-82-7) is the derivative of the amino acid... provide a total of 3.1 percent L- and DL-methionine (expressed as the free amino acid) by weight of the... contained therein. (2) The amounts of additive and each amino acid contained in any mixture. (3)...

  4. 21 CFR 172.372 - N-Acetyl-L-methionine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... amino acid methionine formed by addition of an acetyl group to the alpha-amino group of methionine. It... amino acid) by weight of the total protein of the finished food, including the amount naturally present... of the additive contained therein. (2) The amounts of additive and each amino acid contained in...

  5. The use of a selective serotonin reuptake inhibitor decreases heavy alcohol exposure-induced inflammatory response and tissue damage in rats.

    PubMed

    Hu, Tsung M; Subeq, Yi M; Yang, Fwu L; Hsu, Bang G; Lin, Nien T; Lee, Ru P

    2013-10-01

    Alcohol intoxication and psychiatric medication overdoses, including antidepressants, are common emergency room events. Heavy alcohol and antidepressant exposure are able to induce changes in cytokines disturbing normal physiology. We examined the inflammatory and physiological effects of selective serotonin reuptake inhibitor (SSRI) medication after heavy alcohol exposure. Rats were randomly divided into Alc (EtOH 5g/kg, intravenous infusion for 3 h), SSRI (paroxetine oral intake) and Alc+SSRI groups. Serum samples were collected to measure blood ethanol, aspartate transferase, alanine transferase, creatine phosphokinase, lactate dehydrogenase, amylase, tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) levels. Lactate dehydrogenase levels in bronchoalveolar lavage fluid were also examined. Liver, pancreas and lungs were removed after sacrifice and any pathological changes were catalogued. Ethanol infusion resulted in blood levels of ethanol of >100 mg/dL after ethanol infusion. Serum levels of aspartate transferase, alanine transferase, creatine phosphokinase, lactate dehydrogenase, amylase, TNF-α and IL-6 in the Alc+SSRI group were lower than in the Alc group. Moreover, pathological damages to the liver, pancreas and lungs were slightly lower in the Alc+SSRI group than in the Alc group. These findings suggested that SSRI is able to decrease the release of pro-inflammatory cytokines and thereby reduce liver and pancreas damage after heavy alcohol exposure.

  6. Increased 4-hydroxynonenal protein adducts in male GSTA4–4/PPAR-alpha double knockout mice enhance injury during early stages of alcoholic liver disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To test the significance of lipid peroxidation in the development of alcoholic liver injury, an ethanol (EtOH) liquid diet was fed to male wild type 129/SvJ mice, and glutathione S-transferase A4-4 null (GSTA4-/-) mice for 40 d. GSTA4-/- mice were also crossed with peroxisome proliferator-activated ...

  7. Alcohol Withdrawal and Cerebellar Mitochondria.

    PubMed

    Jung, Marianna E

    2015-08-01

    Cerebellar disorders trigger the symptoms of movement problems, imbalance, incoordination, and frequent fall. Cerebellar disorders are shown in various CNS illnesses including a drinking disorder called alcoholism. Alcoholism is manifested as an inability to control drinking in spite of adverse consequences. Human and animal studies have shown that cerebellar symptoms persist even after complete abstinence from drinking. In particular, the abrupt termination (ethanol withdrawal) of long-term excessive ethanol consumption has shown to provoke a variety of neuronal and mitochondrial damage to the cerebellum. Upon ethanol withdrawal, excitatory neurotransmitter molecules such as glutamate are overly released in brain areas including cerebellum. This is particularly relevant to the cerebellar neuronal network as glutamate signals are projected to Purkinje neurons through granular cells that are the most populated neuronal type in CNS. This excitatory neuronal signal may be elevated by ethanol withdrawal stress, which promotes an increase in intracellular Ca(2+) level and a decrease in a Ca(2+)-binding protein, both of which result in the excessive entry of Ca(2+) to the mitochondria. Subsequently, mitochondria undergo a prolonged opening of mitochondrial permeability transition pore and the overproduction of harmful free radicals, impeding adenosine triphosphate (ATP)-generating function. This in turn provokes the leakage of mitochondrial molecule cytochrome c to the cytosol, which triggers a cascade of adverse cytosol reactions. Upstream to this pathway, cerebellum under the condition of ethanol withdrawal has shown aberrant gene modifications through altered DNA methylation, histone acetylation, or microRNA expression. Interplay between these events and molecules may result in functional damage to cerebellar mitochondria and consequent neuronal degeneration, thereby contributing to motoric deficit. Mitochondria-targeting research may help develop a powerful new

  8. Mechanism for the Inhibition of the Carboxyl-transferase

    SciTech Connect

    L Yu; Y Kim; L Tong

    2011-12-31

    Acetyl-CoA carboxylases (ACCs) are crucial metabolic enzymes and have been targeted for drug development against obesity, diabetes, and other diseases. The carboxyltransferase (CT) domain of this enzyme is the site of action for three different classes of herbicides, as represented by haloxyfop, tepraloxydim, and pinoxaden. Our earlier studies have demonstrated that haloxyfop and tepraloxydim bind in the CT active site at the interface of its dimer. However, the two compounds probe distinct regions of the dimer interface, sharing primarily only two common anchoring points of interaction with the enzyme. We report here the crystal structure of the CT domain of yeast ACC in complex with pinoxaden at 2.8-{angstrom} resolution. Despite their chemical diversity, pinoxaden has a similar binding mode as tepraloxydim and requires a small conformational change in the dimer interface for binding. Crystal structures of the CT domain in complex with all three classes of herbicides confirm the importance of the two anchoring points for herbicide binding. The structures also provide a foundation for understanding the molecular basis of the herbicide resistance mutations and cross resistance among the herbicides, as well as for the design and development of new inhibitors against plant and human ACCs.

  9. Protein-based peptide-bond formation by aminoacyl-tRNA protein transferase.

    PubMed

    Watanabe, Kazunori; Toh, Yukimatsu; Suto, Kyoko; Shimizu, Yoshihiro; Oka, Natsuhisa; Wada, Takeshi; Tomita, Kozo

    2007-10-18

    Eubacterial leucyl/phenylalanyl-tRNA protein transferase (LF-transferase) catalyses peptide-bond formation by using Leu-tRNA(Leu) (or Phe-tRNA(Phe)) and an amino-terminal Arg (or Lys) of a protein, as donor and acceptor substrates, respectively. However, the catalytic mechanism of peptide-bond formation by LF-transferase remained obscure. Here we determine the structures of complexes of LF-transferase and phenylalanyl adenosine, with and without a short peptide bearing an N-terminal Arg. Combining the two separate structures into one structure as well as mutation studies reveal the mechanism for peptide-bond formation by LF-transferase. The electron relay from Asp 186 to Gln 188 helps Gln 188 to attract a proton from the alpha-amino group of the N-terminal Arg of the acceptor peptide. This generates the attacking nucleophile for the carbonyl carbon of the aminoacyl bond of the aminoacyl-tRNA, thus facilitating peptide-bond formation. The protein-based mechanism for peptide-bond formation by LF-transferase is similar to the reverse reaction of the acylation step observed in the peptide hydrolysis reaction by serine proteases.

  10. The determination of tRNALeu recognition nucleotides for Escherichia coli L/F transferase

    PubMed Central

    Fung, Angela Wai Shan; Leung, Charles Chung Yun; Fahlman, Richard Peter

    2014-01-01

    Escherichia coli leucyl/phenylalanyl-tRNA protein transferase catalyzes the tRNA-dependent post-translational addition of amino acids onto the N-terminus of a protein polypeptide substrate. Based on biochemical and structural studies, the current tRNA recognition model by L/F transferase involves the identity of the 3′ aminoacyl adenosine and the sequence-independent docking of the D-stem of an aminoacyl-tRNA to the positively charged cluster on L/F transferase. However, this model does not explain the isoacceptor preference observed 40 yr ago. Using in vitro-transcribed tRNA and quantitative MALDI-ToF MS enzyme activity assays, we have confirmed that, indeed, there is a strong preference for the most abundant leucyl-tRNA, tRNALeu (anticodon 5′-CAG-3′) isoacceptor for L/F transferase activity. We further investigate the molecular mechanism for this preference using hybrid tRNA constructs. We identified two independent sequence elements in the acceptor stem of tRNALeu (CAG)—a G3:C70 base pair and a set of 4 nt (C72, A4:U69, C68)—that are important for the optimal binding and catalysis by L/F transferase. This maps a more specific, sequence-dependent tRNA recognition model of L/F transferase than previously proposed. PMID:24935875

  11. [Effects of alcohol extracts from three kinds of biomass energy plant tissues on biological activity of Bemisia tabaci].

    PubMed

    Zhou, Fu-cai; Zhou, Gui-sheng; Li, Chuan-ming; Yang, Yi-zhong; Qin, Pei

    2009-03-01

    To test the feasibility of using raw extracts from the tissues of biomass energy plants Ricinus communi and Kosteletzkya virginica as plant protection agents, the alcohol extracts from R. communi seed and leaf and from K. virginica leaf were used to treat adult Bemisia tabaci by spraying. The glutathione S-transferase and carboxylesterase activities in B. tabaci body were measured after treated for 4 h, 24 h, 48 h, 72 h, and 96 h, and the olfaction responses of B. tabaci to the alcohol extracts were detected with a Y-tube olfactomet. All the three alcohol extracts obviously inhibited the glutathione S-transferase and carboxylesterase activities in a concentration-dependent manner. The inhibitory effect of the 250-times diluted alcohol extracts on the two enzyme activities was equivalent to that of 3000 times-diluted 1.8% avermectins. In addition, the 250-times diluted alcohol extracts had obvious repellent effect on B. tabaci, with the repellent coefficient of the alcohol extracts from R. communi seed and leaf and from K, virginica leaf being 100.0%, 96.7%, and 79.4%, respectively. All of these suggested that the test three alcohol extracts had repellent and other biological effects on B. tabaci.

  12. Nucleosome competition reveals processive acetylation by the SAGA HAT module

    PubMed Central

    Ringel, Alison E.; Cieniewicz, Anne M.; Taverna, Sean D.; Wolberger, Cynthia

    2015-01-01

    The Spt-Ada-Gcn5 acetyltransferase (SAGA) coactivator complex hyperacetylates histone tails in vivo in a manner that depends upon histone 3 lysine 4 trimethylation (H3K4me3), a histone mark enriched at promoters of actively transcribed genes. SAGA contains a separable subcomplex known as the histone acetyltransferase (HAT) module that contains the HAT, Gcn5, bound to Sgf29, Ada2, and Ada3. Sgf29 contains a tandem Tudor domain that recognizes H3K4me3-containing peptides and is required for histone hyperacetylation in vivo. However, the mechanism by which H3K4me3 recognition leads to lysine hyperacetylation is unknown, as in vitro studies show no effect of the H3K4me3 modification on histone peptide acetylation by Gcn5. To determine how H3K4me3 binding by Sgf29 leads to histone hyperacetylation by Gcn5, we used differential fluorescent labeling of histones to monitor acetylation of individual subpopulations of methylated and unmodified nucleosomes in a mixture. We find that the SAGA HAT module preferentially acetylates H3K4me3 nucleosomes in a mixture containing excess unmodified nucleosomes and that this effect requires the Tudor domain of Sgf29. The H3K4me3 mark promotes processive, multisite acetylation of histone H3 by Gcn5 that can account for the different acetylation patterns established by SAGA at promoters versus coding regions. Our results establish a model for Sgf29 function at gene promoters and define a mechanism governing crosstalk between histone modifications. PMID:26401015

  13. Bipolar disorder comorbid with alcoholism: a 1H magnetic resonance spectroscopy study.

    PubMed

    Nery, Fabiano G; Stanley, Jeffrey A; Chen, Hua-Hsuan; Hatch, John P; Nicoletti, Mark A; Monkul, E Serap; Lafer, Beny; Soares, Jair C

    2010-04-01

    Alcoholism is highly prevalent among bipolar disorder (BD) patients, and its presence is associated with a worse outcome and refractoriness to treatment of the mood disorder. The neurobiological underpinnings that characterize this comorbidity are unknown. We sought to investigate the neurochemical profile of the dorsolateral prefrontal cortex (DLPFC) of BD patients with comorbid alcoholism. A short-TE, single-voxel (1)H spectroscopy acquisition at 1.5T from the left DLFPC of 22 alcoholic BD patients, 26 non-alcoholic BD patients and 54 healthy comparison subjects (HC) were obtained. Absolute levels of N-acetyl aspartate, phosphocreatine plus creatine, choline-containing compounds, myo-inositol, glutamate plus glutamine (Glu+Gln) and glutamate were obtained using the water signal as an internal reference. Analysis of co-variance was used to compare metabolite levels among the three groups. In the primary comparison, non-alcoholic BD patients had higher glutamate concentrations compared to alcoholic BD patients. In secondary comparisons integrating interactions between gender and alcoholism, non-alcoholic BD patients presented significantly higher glutamate plus glutamine (Glu+Gln) than alcoholic BD patients and HC. These results appeared to be driven by differences in male subjects. Alcoholic BD patients with additional drug use disorders presented significantly lower myo-inositol than BD patients with alcoholism alone. The co-occurrence of BD and alcoholism may be characterized by neurochemical abnormalities related to the glutamatergic system and to the inositol second messenger system and/or in glial pathology. These abnormalities may be the neurochemical correlate of an increased risk to develop alcoholism in BD, or of a persistently worse clinical and functional status in BD patients in remission from alcoholism, supporting the clinical recommendation that efforts should be made to prevent or early diagnose and treat alcoholism in BD patients.

  14. Molecular characterization of a glutathione transferase from Pinus tabulaeformis (Pinaceae).

    PubMed

    Zeng, Qing-Yin; Lu, Hai; Wang, Xiao-Ru

    2005-05-01

    Glutathione transferases (GSTs) play important roles in stress tolerance and detoxification metabolism in plants. To date, studies on GSTs in higher plants have focused largely on agricultural plants. In contrast, there is virtually no information on the molecular characteristics of GSTs in gymnosperms. The present study reports for the first time the cloning, expression and characteristics of a GST gene (PtGSTU1) from a pine, Pinus tabulaeformis, which is widely distributed from northern to central China covering cold temperate and drought regions. The PtGSTU1 gene encodes a protein of 228 amino acid residues with a calculated molecular mass of 26.37 kDa. Reverse transcription PCR revealed that PtGSTU1 was expressed in different tissues, both above and below ground, of P. tabulaeformis. The over-expressed recombinant PtGSTU1 showed high activity towards the substrates 1-chloro-2,4-dinitrobenzene (CDNB) and 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl). Kinetic analysis with respect to CDNB as substrate revealed a Km of 0.47 mM and Vmax of 169.1 micromol/min per mg of protein. The recombinant PtGSTU1 retained more than 60% of its maximum enzymatic activity from 15 degrees C to 45 degrees C with a broad optimum Tm range of 25 degrees C - 35 degrees C. The enzyme had a maximum activity at approximately pH 8.5 - 9.0. Site-directed mutagenesis revealed that Ser13 in the N-terminal domain is a critical catalytic residue, responsible for stabilisation of the thiolate anion of enzyme-bound glutathione. Based on comparative analyses of its amino acid sequence, phylogeny and predicted three-dimensional structure, the PtGSTU1 should be classified as a tau class GST.

  15. Phosphonocarboxylates Inhibit the Second Geranylgeranyl Addition by Rab Geranylgeranyl Transferase*

    PubMed Central

    Baron, Rudi A.; Tavaré, Richard; Figueiredo, Ana C.; Błażewska, Katarzyna M.; Kashemirov, Boris A.; McKenna, Charles E.; Ebetino, Frank H.; Taylor, Adam; Rogers, Michael J.; Coxon, Fraser P.; Seabra, Miguel C.

    2009-01-01

    Rab geranylgeranyl transferase (RGGT) catalyzes the post-translational geranylgeranyl (GG) modification of (usually) two C-terminal cysteines in Rab GTPases. Here we studied the mechanism of the Rab geranylgeranylation reaction by bisphosphonate analogs in which one phosphonate group is replaced by a carboxylate (phosphonocarboxylate, PC). The phosphonocarboxylates used were 3-PEHPC, which was previously reported, and 2-hydroxy-3-imidazo[1,2-a]pyridin-3-yl-2-phosphonopropionic acid ((+)-3-IPEHPC), a >25-fold more potent related compound as measured by both IC50 and Ki.(+)-3-IPEHPC behaves as a mixed-type inhibitor with respect to GG pyrophosphate (GGPP) and an uncompetitive inhibitor with respect to Rab substrates. We propose that phosphonocarboxylates prevent only the second GG transfer onto Rabs based on the following evidence. First, geranylgeranylation of Rab proteins ending with a single cysteine motif such as CAAX, is not affected by the inhibitors, either in vitro or in vivo. Second, the addition of an -AAX sequence onto Rab-CC proteins protects the substrate from inhibition by the inhibitors. Third, we demonstrate directly that in the presence of (+)-3-IPEHPC, Rab-CC and Rab-CXC proteins are modified by only a single GG addition. The presence of (+)-3-IPEHPC resulted in a preference for the Rab N-terminal cysteine to be modified first, suggesting an order of cysteine geranylgeranylation in RGGT catalysis. Our results further suggest that the inhibitor binds to a site distinct from the GGPP-binding site on RGGT. We suggest that phosphonocarboxylate inhibitors bind to a GG-cysteine binding site adjacent to the active site, which is necessary to align the mono-GG-Rab for the second GG addition. These inhibitors may represent a novel therapeutic approach in Rab-mediated diseases. PMID:19074143

  16. Alcoholism and alcohol drinking habits predicted from alcohol dehydrogenase genes.

    PubMed

    Tolstrup, Janne Schurmann; Nordestgaard, Børge Grønne; Rasmussen, Søren; Tybjaerg-Hansen, Anne; Grønbaek, Morten

    2008-06-01

    Alcohol drinking habits and alcoholism are partly genetically determined. Alcohol is degraded primarily by alcohol dehydrogenase (ADH) wherein genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. It is biologically plausible that these variations may be associated with alcohol drinking habits and alcoholism. By genotyping 9080 white men and women from the general population, we found that men and women with ADH1B slow vs fast alcohol degradation drank more alcohol and had a higher risk of everyday drinking, heavy drinking, excessive drinking and of alcoholism. For example, the weekly alcohol intake was 9.8 drinks (95% confidence interval (CI): 9.1-11) among men with the ADH1B.1/1 genotype compared to 7.5 drinks (95% CI: 6.4-8.7) among men with the ADH1B.1/2 genotype, and the odds ratio (OR) for heavy drinking was 3.1 (95% CI: 1.7-5.7) among men with the ADH1B.1/1 genotype compared to men with the ADH1B.1/2 genotype. Furthermore, individuals with ADH1C slow vs fast alcohol degradation had a higher risk of heavy and excessive drinking. For example, the OR for heavy drinking was 1.4 (95% CI: 1.1-1.8) among men with the ADH1C.1/2 genotype and 1.4 (95% CI: 1.0-1.9) among men with the ADH1B.2/2 genotype, compared with men with the ADH1C.1/1 genotype. Results for ADH1B and ADH1C genotypes among men and women were similar. Finally, because slow ADH1B alcohol degradation is found in more than 90% of the white population compared to less than 10% of East Asians, the population attributable risk of heavy drinking and alcoholism by ADH1B.1/1 genotype was 67 and 62% among the white population compared with 9 and 24% among the East Asian population.

  17. Glucose-6-phosphate dehydrogenase deficiency and sulfadimidin acetylation phenotypes in Egyptian oases.

    PubMed

    Hussein, L; Yamamah, G; Saleh, A

    1992-04-01

    Screening of 1315 males from two Egyptian oases for glucose-6-phosphate dehydrogenase deficiency (G-6PD) found an incidence of 5.9%. The rate of acetylation of sulfadimidin was also studied, and a bimodal distribution was found with 73% rapid acetylators. There is a correlation between high frequency of G-6PD deficiency and high frequency of slow acetylation rate.

  18. Acetylation of lysine 40 in alpha-tubulin is not essential in Tetrahymena thermophila

    PubMed Central

    1995-01-01

    In Tetrahymena, at least 17 distinct microtubule structures are assembled from a single primary sequence type of alpha- and beta- tubulin heterodimer, precluding distinctions among microtubular systems based on tubulin primary sequence isotypes. Tetrahymena tubulins also are modified by several types of posttranslational reactions including acetylation of alpha-tubulin at lysine 40, a modification found in most eukaryotes. In Tetrahymena, axonemal alpha-tubulin and numerous other microtubules are acetylated. We completely replaced the single type of alpha-tubulin gene in the macronucleus with a version encoding arginine instead of lysine 40 and therefore cannot be acetylated at this position. No acetylated tubulin was detectable in these transformants using a monoclonal antibody specific for acetylated lysine 40. Surprisingly, mutants lacking detectable acetylated tubulin are indistinguishable from wild-type cells. Thus, acetylation of alpha- tubulin at lysine 40 is non-essential in Tetrahymena. In addition, isoelectric focusing gel analysis of axonemal tubulin from cells unable to acetylate alpha-tubulin leads us to conclude that: (a) most or all ciliary alpha-tubulin is acetylated, (b) other lysines cannot be acetylated to compensate for loss of acetylation at lysine 40, and (c) acetylated alpha-tubulin molecules in wild-type cells contain one or more additional charge-altering modifications. PMID:7775576

  19. The Acetyl Group Buffering Action of Carnitine Acetyltransferase Offsets Macronutrient-induced Lysine Acetylation of Mitochondrial Proteins

    PubMed Central

    Davies, Michael N.; Kjalarsdottir, Lilja; Thompson, J. Will; Dubois, Laura G.; Stevens, Robert D.; Ilkayeva, Olga R.; Brosnan, M. Julia; Rolph, Timothy P.; Grimsrud, Paul A.; Muoio, Deborah M.

    2016-01-01

    Lysine acetylation (AcK), a posttranslational modification wherein a two-carbon acetyl group binds covalently to a lysine residue, occurs prominently on mitochondrial proteins and has been linked to metabolic dysfunction. An emergent theory suggests mitochondrial AcK occurs via mass action rather than targeted catalysis. To test this hypothesis we performed mass spectrometry-based acetylproteomic analyses of quadriceps muscles from mice with skeletal muscle-specific deficiency of carnitine acetyltransferase (CrAT), an enzyme that buffers the mitochondrial acetyl-CoA pool by converting short-chain acyl-CoAs to their membrane permeant acylcarnitine counterparts. CrAT deficiency increased tissue acetyl-CoA levels and susceptibility to diet-induced AcK of broad-ranging mitochondrial proteins, coincident with diminished whole body glucose control. Sub-compartment acetylproteome analyses of muscles from obese mice and humans showed remarkable overrepresentation of mitochondrial matrix proteins. These findings reveal roles for CrAT and L-carnitine in modulating the muscle acetylproteome and provide strong experimental evidence favoring the nonenzymatic carbon pressure model of mitochondrial AcK. PMID:26748706

  20. Alcoholism and reproduction.

    PubMed

    Heine, M W

    1981-01-01

    A brief overview of the reproductive capacities of both men and women in alcoholism is presented. A historical evaluation indicates a resurgence of interest in this area. The effect of chronic alcohol consumption on both male fertility and potency is reported in conjunction with alcohol-mediated effects on the female subject. Emphasis is placed on pharmacokinetics, metabolism and drinking behavior of the alcoholic female. The adverse actions of some therapeutic drugs and chronic alcohol consumption is discussed in relationship to fetal alcohol syndrome and the accompanied mental and somatic abnormalities.

  1. Alcohol and fuel production

    SciTech Connect

    Roth, E.R.

    1984-01-10

    Alcohol/water mixtures, such as those produced by fermentation of biomass material, are separated by extraction of alcohol with a solvent, comprising a higher aliphatic alcohol in major amount and an aliphatic hydrocarbon in minor amount, especially suited to such extraction and to subsequent removal. The solvent alcohol desirably has a branched chain, or the hydrocarbon an unsaturated bond, or both. Conventional distillation steps to concentrate alcohol and eliminate water are rendered unnecessary at a considerable reduction in heat energy requirement (usually met with fossil fuel). Optional addition of gasoline between the solvent extraction and solvent recovery steps not only aids the latter separation but produces alcohol already denatured for fuel use.

  2. Neurologic effects of alcoholism.

    PubMed Central

    Diamond, I; Messing, R O

    1994-01-01

    Alcoholism, a worldwide disorder, is the cause of a variety of neurologic disorders. In this article we discuss the cellular pathophysiology of ethanol addition and abuse as well as evidence supporting and refuting the role of inheritance in alcoholism. A genetic marker for alcoholism has not been identified, but neurophysiologic studies may be promising. Some neurologic disorders related to longterm alcoholism are due predominantly to inadequate nutrition (the thiamine deficiency that causes Wernicke's encephalopathy), but others appear to involve the neurotoxicity of ethanol on brain (alcohol withdrawal syndrome and dementia) and peripheral nerves (alcoholic neuropathy and myopathy). Images PMID:7975567

  3. Comparison of cage and mast with the alcohol markers CDT, gamma-GT, ALAT, ASAT and MCV.

    PubMed

    Wetterling, T; Kanitz, R D; Rumpf, H J; Hapke, U; Fischer, D

    1998-01-01

    Many alcoholics deny abuse. To screen greater samples for alcohol dependence, short questionnaires, e.g. the CAGE or MAST are often applied. Frequently laboratory parameters [i.e. 'alcohol markers', such as carbohydrate-deficient transferrin (CDT), gamma-glutamyl transferase or mean corpuscular volume of erythrocytes] are used to support the diagnosis of long-standing heavy alcohol consumption. In this study, the self-ratings (CAGE and MAST) were compared with the above laboratory parameters in an unselected sample of 204 patients admitted to a general hospital. The sensitivities, specificities, and positive (PPV) as well as negative predictive values of the CAGE, the MAST, and the alcohol markers were calculated along with the reported alcohol consumption or the ICD-10 diagnosis as standard. According to recent harmful alcohol consumption levels (women >225 g/week: men >350 g/week), the sensitivities and the PPVs were rather low in all tests (sensitivity <60%; PPV <50%). With the ICD-10 diagnosis as standard, the CAGE and MAST showed a rather high specificity (>95%) and PPV (about 90%). CDT revealed the best PPV of all alcohol markers (60%). However, the sensitivity of the CAGE, MAST, and the alcohol markers for the ICD-10 diagnosis was rather poor (<60%). This low sensitivity impedes the usefulness of these questionnaires and alcohol markers as screening tests for alcoholism in general hospitals.

  4. Fetal Alcohol Spectrum Disorders (FASDs): Alcohol Use Quiz

    MedlinePlus

    ... this page: About CDC.gov . FASD Homepage Facts Secondary Conditions Videos Alcohol Use in Pregnancy Questions & Answers Quiz Alcohol Screening & Brief Intervention Diagnosis Treatments Data & Statistics Alcohol Consumption Rates Research & Tracking Monitoring Alcohol ...

  5. Fusarium moniliforme extract fed before a single dose of diethylnitrosamine increases the numbers of placental glutathione S-transferase positive hepatocytes in rat liver

    SciTech Connect

    Lebepe, S.; Hendrich, S. )

    1991-03-11

    The carcinogenic potential of an alcohol:water (1:1) extract of Fusarium moniliforme (FUSX), containing 20 ppm fumonisin B{sub 1} was assayed. Groups of six 5-week-old female F344/N rats were fed a semipurified diet, with and without FUSX. A dose of initiating agent, diethylnitrosamine, was given orally. Placental glutathione S-transferase-positive (PGST(+)) hepatocytes were detected by immunohistochemistry and counted on 5 frozen hepatic sections/rat, as an endpoint to assess early stages of carcinogenesis. FUSX had significant co-initiating activity. Fusarium moniliforme infection of feed has been shown to promote hepatocarcinogenesis, and may pose a cocarcinogenic risk even during short-term, low-level exposure.

  6. Altered acetylation and succinylation profiles in Corynebacterium glutamicum in response to conditions inducing glutamate overproduction.

    PubMed

    Mizuno, Yuta; Nagano-Shoji, Megumi; Kubo, Shosei; Kawamura, Yumi; Yoshida, Ayako; Kawasaki, Hisashi; Nishiyama, Makoto; Yoshida, Minoru; Kosono, Saori

    2016-02-01

    The bacterium Corynebacterium glutamicum is utilized during industrial fermentation to produce amino acids such as L-glutamate. During L-glutamate fermentation, C. glutamicum changes the flux of central carbon metabolism to favor L-glutamate production, but the molecular mechanisms that explain these flux changes remain largely unknown. Here, we found that the profiles of two major lysine acyl modifications were significantly altered upon glutamate overproduction in C. glutamicum; acetylation decreased, whereas succinylation increased. A label-free semi-quantitative proteomic analysis identified 604 acetylated proteins with 1328 unique acetylation sites and 288 succinylated proteins with 651 unique succinylation sites. Acetylation and succinylation targeted enzymes in central carbon metabolic pathways that are directly related to glutamate production, including the 2-oxoglutarate dehydrogenase complex (ODHC), a key enzyme regulating glutamate overproduction. Structural mapping revealed that several critical lysine residues in the ODHC components were susceptible to acetylation and succinylation. Furthermore, induction of glutamate production was associated with changes in the extent of acetylation and succinylation of lysine, suggesting that these modifications may affect the activity of enzymes involved in glutamate production. Deletion of phosphotransacetylase decreased the extent of protein acetylation in nonproducing condition, suggesting that acetyl phosphate-dependent acetylation is active in C. glutamicum. However, no effect was observed on the profiles of acetylation and succinylation in glutamate-producing condition upon disruption of acetyl phosphate metabolism or deacetylase homologs. It was considered likely that the reduced acetylation in glutamate-producing condition may reflect metabolic states where the flux through acid-producing pathways is very low, and substrates for acetylation do not accumulate in the cell. Succinylation would occur more

  7. Dietary Patterns and Serum Gamma-Glutamyl Transferase in Japanese Men and Women

    PubMed Central

    Nanri, Hinako; Hara, Megumi; Nishida, Yuichiro; Shimanoe, Chisato; Nakamura, Kazuyo; Higaki, Yasuki; Imaizumi, Takeshi; Taguchi, Naoto; Sakamoto, Tatsuhiko; Horita, Mikako; Shinchi, Koichi; Kokaze, Akatsuki; Tanaka, Keitaro

    2015-01-01

    Background Although specific foods and nutrients have been examined as potential determinants of serum gamma-glutamyl transferase (GGT) concentrations, the relationship between dietary patterns and GGT remains unknown. The present cross-sectional study aimed to determine relationships between dietary patterns and GGT concentrations, and the effects of lifestyle factors on GGT. Methods Relationships between dietary patterns and GGT were analyzed in 9803 Japanese individuals (3723 men and 6080 women age 40–69 years) without a history of liver diseases or elevated serum aminotransferase. We examined major dietary patterns by factor analysis of 46 items determined from a validated, short food frequency questionnaire. Results We defined dietary patterns as healthy, Western, seafood, bread, and dessert. The healthy pattern was inversely related to GGT in men (odds ratio [OR] for highest vs lowest quartile, 0.72; 95% confidence interval [CI], 0.57–0.92; P < 0.01 for trend) and women (OR 0.82; 95% CI, 0.66–1.0; P = 0.05 for trend), whereas the seafood pattern was positively related to GGT in men (OR 1.27; 95% CI, 1.01–1.61; P = 0.03 for trend) and women (OR 1.21; 95% CI, 0.98–1.49; P = 0.05 for trend). Male-specific inverse associations with GGT were found for bread and dessert patterns (OR 0.63; 95% CI, 0.50–0.80 and OR 0.53; 95% CI, 0.41–0.68, respectively; P < 0.01 for both trends). Seafood or bread patterns and alcohol consumption significantly interacted with GGT in men (P = 0.03 and <0.01 for interaction, respectively) and between the dessert pattern and body mass index or smoking habit in women (P = 0.03 and <0.01, respectively, for interaction). Conclusions Dietary patterns may be important determinants of GGT, and their possible clinical implications warrant further investigation. PMID:25787241

  8. Fetal Alcohol Spectrum Disorders.

    PubMed

    Williams, Janet F; Smith, Vincent C

    2015-11-01

    Prenatal exposure to alcohol can damage the developing fetus and is the leading preventable cause of birth defects and intellectual and neurodevelopmental disabilities. In 1973, fetal alcohol syndrome was first described as a specific cluster of birth defects resulting from alcohol exposure in utero. Subsequently, research unequivocally revealed that prenatal alcohol exposure causes a broad range of adverse developmental effects. Fetal alcohol spectrum disorder (FASD) is the general term that encompasses the range of adverse effects associated with prenatal alcohol exposure. The diagnostic criteria for fetal alcohol syndrome are specific, and comprehensive efforts are ongoing to establish definitive criteria for diagnosing the other FASDs. A large and growing body of research has led to evidence-based FASD education of professionals and the public, broader prevention initiatives, and recommended treatment approaches based on the following premises:▪ Alcohol-related birth defects and developmental disabilities are completely preventable when pregnant women abstain from alcohol use.▪ Neurocognitive and behavioral problems resulting from prenatal alcohol exposure are lifelong.▪ Early recognition, diagnosis, and therapy for any condition along the FASD continuum can result in improved outcomes.▪ During pregnancy:◦no amount of alcohol intake should be considered safe;◦there is no safe trimester to drink alcohol;◦all forms of alcohol, such as beer, wine, and liquor, pose similar risk; and◦binge drinking poses dose-related risk to the developing fetus.

  9. Astrocyte Reactivity Following Blast Exposure Involves Aberrant Histone Acetylation.

    PubMed

    Bailey, Zachary S; Grinter, Michael B; VandeVord, Pamela J

    2016-01-01

    Blast induced neurotrauma (BINT) is a prevalent injury within military and civilian populations. The injury is characterized by persistent inflammation at the cellular level which manifests as a multitude of cognitive and functional impairments. Epigenetic regulation of transcription offers an important control mechanism for gene expression and cellular function which may underlie chronic inflammation and result in neurodegeneration. We hypothesize that altered histone acetylation patterns may be involved in blast induced inflammation and the chronic activation of glial cells. This study aimed to elucidate changes to histone acetylation occurring following injury and the roles these changes may have within the pathology. Sprague Dawley rats were subjected to either a 10 or 17 psi blast overpressure within an Advanced Blast Simulator (ABS). Sham animals underwent the same procedures without blast exposure. Memory impairments were measured using the Novel Object Recognition (NOR) test at 2 and 7 days post-injury. Tissues were collected at 7 days for Western blot and immunohistochemistry (IHC) analysis. Sham animals showed intact memory at each time point. The novel object discrimination decreased significantly between two and 7 days for each injury group (p < 0.05). This is indicative of the onset of memory impairment. Western blot analysis showed glial fibrillary acidic protein (GFAP), a known marker of activated astrocytes, was elevated in the prefrontal cortex (PFC) following blast exposure for both injury groups. Analysis of histone protein extract showed no changes in the level of any total histone proteins within the PFC. However, acetylation levels of histone H2b, H3, and H4 were decreased in both groups (p < 0.05). Co-localization immunofluorescence was used to further investigate any potential correlation between decreased histone acetylation and astrocyte activation. These experiments showed a similar decrease in H3 acetylation in astrocytes exposed to a 17

  10. Astrocyte Reactivity Following Blast Exposure Involves Aberrant Histone Acetylation

    PubMed Central

    Bailey, Zachary S.; Grinter, Michael B.; VandeVord, Pamela J.

    2016-01-01

    Blast induced neurotrauma (BINT) is a prevalent injury within military and civilian populations. The injury is characterized by persistent inflammation at the cellular level which manifests as a multitude of cognitive and functional impairments. Epigenetic regulation of transcription offers an important control mechanism for gene expression and cellular function which may underlie chronic inflammation and result in neurodegeneration. We hypothesize that altered histone acetylation patterns may be involved in blast induced inflammation and the chronic activation of glial cells. This study aimed to elucidate changes to histone acetylation occurring following injury and the roles these changes may have within the pathology. Sprague Dawley rats were subjected to either a 10 or 17 psi blast overpressure within an Advanced Blast Simulator (ABS). Sham animals underwent the same procedures without blast exposure. Memory impairments were measured using the Novel Object Recognition (NOR) test at 2 and 7 days post-injury. Tissues were collected at 7 days for Western blot and immunohistochemistry (IHC) analysis. Sham animals showed intact memory at each time point. The novel object discrimination decreased significantly between two and 7 days for each injury group (p < 0.05). This is indicative of the onset of memory impairment. Western blot analysis showed glial fibrillary acidic protein (GFAP), a known marker of activated astrocytes, was elevated in the prefrontal cortex (PFC) following blast exposure for both injury groups. Analysis of histone protein extract showed no changes in the level of any total histone proteins within the PFC. However, acetylation levels of histone H2b, H3, and H4 were decreased in both groups (p < 0.05). Co-localization immunofluorescence was used to further investigate any potential correlation between decreased histone acetylation and astrocyte activation. These experiments showed a similar decrease in H3 acetylation in astrocytes exposed to a 17

  11. Induction of Glutathione S-Transferase Isozymes in Sorghum by Herbicide Antidotes 1

    PubMed Central

    Dean, John V.; Gronwald, John W.; Eberlein, Charlotte V.

    1990-01-01

    Certain chemicals referred to as herbicide antidotes protect sorghum from injury by chloroacetanilide herbicides such as metolachlor. The effect of herbicide antidotes on the glutathione S-transferase isozyme complement of etiolated sorghum (Sorghum bicolor [L.] Moench) shoots was examined. Elution profiles of glutathione S-transferase isozymes from untreated and antidote-treated seedlings were generated by fast protein liquid chromatography utilizing an anion exchange (Mono Q) column. In untreated seedlings, there were two glutathione S-transferase isozymes, a major isozyme which exhibited activity toward 1-chloro-2,4-dinitrobenzene and a minor isozyme which exhibited activity toward metolachlor. Treating sorghum seedlings with various antidotes (flurazole, oxabetrinil, CGA-133205, naphthalic anhydride, dichlormid) resulted in the appearance of four to five additional glutathione S-transferase isozymes (de-pending on the particular antidote) which exhibited activity toward metolachlor as a substrate and little or no activity with 1-chloro-2,4-dinitrobenzene. Treating etiolated sorghum shoots with metolachlor was also found to induce at least four isozymes which exhibited activity toward the herbicide. An increase in glutathione S-transferase activity, measured with metolachlor as substrate, was detected within 4 h after treatment with 30 micromolar oxabetrinil, but 36 hours were required for maximum expression of activity. Addition of either the transcription inhibitor cordycepin or the translation inhibitor cycloheximide inhibited the appearance of glutathione S-transferase activity measured with metolachlor as substrate. The results are consistent with the hypothesis that antidotes confer protection against metolachlor injury in sorghum by inducing the de novo synthesis of glutathione S-transferase isozymes which catalyze the detoxification of the herbicide. PMID:16667299

  12. Alcohol Use and Older Adults

    MedlinePlus

    ... version of this page please turn Javascript on. Alcohol Use and Older Adults Alcohol and Aging Adults of any age can have ... Escape (Esc) button on your keyboard.) What Is Alcohol? Alcohol, also known as ethanol, is a chemical ...

  13. Fetal Alcohol Spectrum Disorders

    MedlinePlus

    ... Daily life skills, such as feeding and bathing Fetal alcohol syndrome is the most serious type of FASD. People with fetal alcohol syndrome have facial abnormalities, including wide-set and narrow ...

  14. Children of Alcoholics.

    ERIC Educational Resources Information Center

    Chafetz, Morris E.

    1979-01-01

    It is estimated that 29 million American children have alcoholic parents. The author documents the unstable environment and psychological consequences suffered by these children, who are at great risk to become alcoholics themselves. (Editor)

  15. Fetal alcohol syndrome

    MedlinePlus

    ... resources for information on alcoholism: Alcoholics Anonymous -- www.aa.org Al-Anon Family Groups -- www.al-anon. ... exposures to the fetus. In: Martin RJ, Fanaroff AA, Walsh MC, eds. Fanaroff and Martin's Neonatal-Perinatal ...

  16. Alcohol Use Screening

    MedlinePlus

    ... Centers Mental Health Medical Library Alcohol Use Screening (AUDIT-C) - Instructions The following questions are a screening ... is also text-only version . Alcohol Use Screening (AUDIT-C) - Manual Instructions The following questions are a ...

  17. Epidemiology of Alcoholism.

    ERIC Educational Resources Information Center

    Helzer, John E.

    1987-01-01

    Reviews the application of epidemiology to alcoholism. Discusses measurement and diagnostic issues and reviews studies of the prevalence of alcoholism, its risk factors, and the contributions of epidemiology to our knowledge of treatment and prevention. (Author/KS)

  18. Women and Alcohol

    MedlinePlus

    ... turn JavaScript on. Feature: Rethinking Drinking Women and Alcohol Past Issues / Spring 2014 Table of Contents Women react differently than men to alcohol and face higher risks from it. Pound for ...

  19. Myths about drinking alcohol

    MedlinePlus

    ... gov/ency/patientinstructions/000856.htm Myths about drinking alcohol To use the sharing features on this page, ... We know much more about the effects of alcohol today than in the past. Yet, myths remain ...

  20. Benzyl Alcohol Topical

    MedlinePlus

    Benzyl alcohol lotion is used to treat head lice (small insects that attach themselves to the skin) in adults ... children less than 6 months of age. Benzyl alcohol is in a class of medications called pediculicides. ...

  1. Translational Studies of Alcoholism

    PubMed Central

    Zahr, Natalie M.; Sullivan, Edith V.

    2008-01-01

    Human studies are necessary to identify and classify the brain systems predisposing individuals to develop alcohol use disorders and those modified by alcohol, while animal models of alcoholism are essential for a mechanistic understanding of how chronic voluntary alcohol consumption becomes compulsive, how brain systems become damaged, and how damage resolves. Our current knowledge of the neuroscience of alcohol dependence has evolved from the interchange of information gathered from both human alcoholics and animal models of alcoholism. Together, studies in humans and animal models have provided support for the involvement of specific brain structures over the course of alcohol addiction, including the prefrontal cortex, basal ganglia, cerebellum, amygdala, hippocampus, and the hypothalamic–pituitary–adrenal axis. PMID:20041042

  2. Alcohol advertising and alcohol consumption by adolescents.

    PubMed

    Saffer, Henry; Dave, Dhaval

    2006-06-01

    This study investigates the effects of alcohol advertising on adolescent alcohol consumption. The theory of an industry response function and evidence from prior studies indicate the importance of maximizing the variance in advertising measures. Monitoring the Future (MTF) and National Longitudinal Survey of Youth 1997 (NLSY97) data are augmented with alcohol advertising, originating on the market level, for five media. The large sample of the MTF allows estimation of race and gender-specific models. The longitudinal nature of the NLSY97 allows controls for unobserved heterogeneity with state-level and individual fixed effects. Price and advertising effects are generally larger for females relative to males. Controls for individual heterogeneity yield larger advertising effects, implying that the MTF results may understate the effects of alcohol advertising. Results from the NLSY97 suggest that a 28% reduction in alcohol advertising would reduce adolescent monthly alcohol participation from 25% to between 24 and 21%. For binge participation, the reduction would be from 12% to between 11 and 8%. The past month price-participation elasticity is estimated at -0.26, consistent with prior studies. The results show that reduction of alcohol advertising can produce a modest decline in adolescent alcohol consumption, though effects may vary by race and gender.

  3. Multiple Mass Isotopomer Tracing of Acetyl-CoA Metabolism in Langendorff-perfused Rat Hearts

    PubMed Central

    Li, Qingling; Deng, Shuang; Ibarra, Rafael A.; Anderson, Vernon E.; Brunengraber, Henri; Zhang, Guo-Fang

    2015-01-01

    We developed an isotopic technique to assess mitochondrial acetyl-CoA turnover (≈citric acid flux) in perfused rat hearts. Hearts are perfused with buffer containing tracer [13C2,2H3]acetate, which forms M5 + M4 + M3 acetyl-CoA. The buffer may also contain one or two labeled substrates, which generate M2 acetyl-CoA (e.g. [13C6]glucose or [1,2-13C2]palmitate) or/and M1 acetyl-CoA (e.g. [1-13C]octanoate). The total acetyl-CoA turnover and the contributions of fuels to acetyl-CoA are calculated from the uptake of the acetate tracer and the mass isotopomer distribution of acetyl-CoA. The method was applied to measurements of acetyl-CoA turnover under different conditions (glucose ± palmitate ± insulin ± dichloroacetate). The data revealed (i) substrate cycling between glycogen and glucose-6-P and between glucose-6-P and triose phosphates, (ii) the release of small excess acetyl groups as acetylcarnitine and ketone bodies, and (iii) the channeling of mitochondrial acetyl-CoA from pyruvate dehydrogenase to carnitine acetyltransferase. Because of this channeling, the labeling of acetylcarnitine and ketone bodies released by the heart are not proxies of the labeling of mitochondrial acetyl-CoA. PMID:25645937

  4. Chaperone-mediated acetylation of histones by Rtt109 identified by quantitative proteomics.

    PubMed

    Abshiru, Nebiyu; Ippersiel, Kevin; Tang, Yong; Yuan, Hua; Marmorstein, Ronen; Verreault, Alain; Thibault, Pierre

    2013-04-09

    Rtt109 is a fungal-specific histone acetyltransferase (HAT) that associates with either Vps75 or Asf1 to acetylate histone H3. Recent biochemical and structural studies suggest that site-specific acetylation of H3 by Rtt109 is dictated by the binding chaperone where Rtt109-Asf1 acetylates K56, while Rtt109-Vps75 acetylates K9 and K27. To gain further insights into the roles of Vps75 and Asf1 in directing site-specific acetylation of H3, we used quantitative proteomics to profile the global and site-specific changes in H3 and H4 during in vitro acetylation assays with Rtt109 and its chaperones. Our analyses showed that Rtt109-Vps75 preferentially acetylates H3 K9 and K23, the former residue being the major acetylation site. At high enzyme-to-substrate ratio, Rtt109 also acetylated K14, K18, K27 and to a lower extent K56 of histone H3. Importantly, this study revealed that in contrast to Rtt109-Vps75, Rtt109-Asf1 displayed a far greater site-specificity, with K56 being the primary site of acetylation. For the first time, we also report the acetylation of histone H4 K12 by Rtt109-Vps75, whereas Rtt109-Asf1 showed no detectable activity toward H4. This article is part of a Special Issue entitled: From protein structures to clinical applications.

  5. Chaperone-mediated acetylation of histones by Rtt109 identified by quantitative proteomics

    PubMed Central

    Abshiru, Nebiyu; Ippersiel, Kevin; Tang, Yong; Yuan, Hua; Marmorstein, Ronen; Verreault, Alain; Thibault, Pierre

    2014-01-01

    Rtt109 is a fungal-specific histone acetyltransferase (HAT) that associates with either Vps75 or Asf1 to acetylate histone H3. Recent biochemical and structural studies suggest that site-specific acetylation of H3 by Rtt109 is dictated by the binding chaperone where Rtt109-Asf1 acetylates K56, while Rtt109-Vps75 acetylates K9 and K27. To gain further insights into the roles of Vps75 and Asf1 in directing site-specific acetylation of H3, we used quantitative proteomics to profile the global and site-specific changes in H3 and H4 during in vitro acetylation assays with Rtt109 and its chaperones. Our analyses showed that Rtt109-Vps75 preferentially acetylates H3 K9 and K23, the former residue being the major acetylation site. At high enzyme to substrate ratio, Rtt109 also acetylated K14, K18, K27 and to a lower extent K56 of histone H3. Importantly, this study revealed that in contrast to Rtt109-Vps75, Rtt109-Asf1 displayed a far greater site-specificity, with K56 being the primary site of acetylation. For the first time, we also report the acetylation of histone H4 K12 by Rtt109-Vps75, whereas Rtt109-Asf1 showed no detectable activity toward H4. PMID:23036725

  6. Stoichiometry of site-specific lysine acetylation in an entire proteome.

    PubMed

    Baeza, Josue; Dowell, James A; Smallegan, Michael J; Fan, Jing; Amador-Noguez, Daniel; Khan, Zia; Denu, John M

    2014-08-01

    Acetylation of lysine ϵ-amino groups influences many cellular processes and has been mapped to thousands of sites across many organisms. Stoichiometric information of acetylation is essential to accurately interpret biological significance. Here, we developed and employed a novel method for directly quantifying stoichiometry of site-specific acetylation in the entire proteome of Escherichia coli. By coupling isotopic labeling and a novel pairing algorithm, our approach performs an in silico enrichment of acetyl peptides, circumventing the need for immunoenrichment. We investigated the function of the sole NAD(+)-dependent protein deacetylase, CobB, on both site-specific and global acetylation. We quantified 2206 peptides from 899 proteins and observed a wide distribution of acetyl stoichiometry, ranging from less than 1% up to 98%. Bioinformatic analysis revealed that metabolic enzymes, which either utilize or generate acetyl-CoA, and proteins involved in transcriptional and translational processes displayed the highest degree of acetylation. Loss of CobB led to increased global acetylation at low stoichiometry sites and induced site-specific changes at high stoichiometry sites, and biochemical analysis revealed altered acetyl-CoA metabolism. Thus, this study demonstrates that sirtuin deacetylase deficiency leads to both site-specific and global changes in protein acetylation stoichiometry, affecting central metabolism.

  7. Histone acetylation dependent energy landscapes in tri-nucleosome revealed by residue-resolved molecular simulations

    PubMed Central

    Chang, Le; Takada, Shoji

    2016-01-01

    Histone tail acetylation is a key epigenetic marker that tends to open chromatin folding and activate transcription. Despite intensive studies, precise roles of individual lysine acetylation in chromatin folding have only been poorly understood. Here, we revealed structural dynamics of tri-nucleosomes with several histone tail acetylation states and analyzed histone tail interactions with DNA by performing molecular simulations at an unprecedentedly high resolution. We found versatile acetylation-dependent landscapes of tri-nucleosome. The H4 and H2A tail acetylation reduced the contact between the first and third nucleosomes mediated by the histone tails. The H3 tail acetylation reduced its interaction with neighboring linker DNAs resulting in increase of the distance between consecutive nucleosomes. Notably, two copies of the same histone in a single nucleosome have markedly asymmetric interactions with DNAs, suggesting specific pattern of nucleosome docking albeit high inherent flexibility. Estimated transcription factor accessibility was significantly high for the H4 tail acetylated structures. PMID:27698366

  8. Metabolic actions of some sympathomimetic amines and their acetyl derivatives in the rabbit.

    PubMed

    Marvola, M

    1977-01-01

    To study how acetylation affects the activity of sympathomimetic amines the effects of tyramine, amphetamine, ephedrine, phenylephrine, orciprenaline and salbutamol and of their O- and N-acetyl derivatives on blood glucose and free fatty acid concentrations were studied in the rabbit. Hyperglycemia was induced by all parent compounds except amphetamine which tended to have a weak hypoglycaemic action. Hyperlipaemia in the doses used was induced by ephedrine and orciprenaline but not by the other parent compounds. Usually acetylation decreased the metabolic effects of the compounds but O-acetylation of tyramine and salbutamol caused hyperlipaemia and O-acetylation of ephedrine increased its fatty acid-mobilizing action, perhaps as a consequence of increased lipid solubility of the compounds. The ultimate effects of the O-acetyl derivatives were probably at least partly due to deacetylation at their sites of action. However O-acetylation of sympathomimetics could perhaps be used to induce drug latentiation.

  9. N-Terminal Acetylation Acts as an Avidity Enhancer Within an Interconnected Multiprotein Complex

    SciTech Connect

    Scott, Daniel C.; Monda, Julie K.; Bennett, Eric J.; Harper, J. Wade; Schulman, Brenda A.

    2012-10-25

    Although many eukaryotic proteins are amino (N)-terminally acetylated, structural mechanisms by which N-terminal acetylation mediates protein interactions are largely unknown. Here, we found that N-terminal acetylation of the E2 enzyme, Ubc12, dictates distinctive E3-dependent ligation of the ubiquitin-like protein Nedd8 to Cul1. Structural, biochemical, biophysical, and genetic analyses revealed how complete burial of Ubc12's N-acetyl-methionine in a hydrophobic pocket in the E3, Dcn1, promotes cullin neddylation. The results suggest that the N-terminal acetyl both directs Ubc12's interactions with Dcn1 and prevents repulsion of a charged N terminus. Our data provide a link between acetylation and ubiquitin-like protein conjugation and define a mechanism for N-terminal acetylation-dependent recognition.

  10. Infrared and 13C MAS nuclear magnetic resonance spectroscopic study of acetylation of cotton

    NASA Astrophysics Data System (ADS)

    Adebajo, Moses O.; Frost, Ray L.

    2004-01-01

    The acetylation of commercial cotton samples with acetic anhydride without solvents in the presence of about 5% 4-dimethylaminopyridine (DMAP) catalyst was followed using Fourier transform infrared (FTIR) and 13C MAS NMR spectroscopy. This preliminary investigation was conducted in an effort to develop hydrophobic, biodegradable, cellulosic materials for subsequent application in oil spill cleanup. The FTIR results provide clear evidence for successful acetylation though the NMR results indicate that the level of acetylation is low. Nevertheless, the overall results indicate that cotton fibres are potential candidates suitable for further development via acetylation into hydrophobic sorbent materials for subsequent oil spill cleanup application. The results also indicate that de-acetylation, the reverse of the equilibrium acetylation reaction, occurred when the acetylation reaction was prolonged beyond 3 h.

  11. [Effect of acetylation and oxidation on some properties of breadfruit (Artocarpus altilis) seed starch].

    PubMed

    Rincón, Alicia Mariela; Bou Rached, Lizet; Aragoza, Luis E; Padilla, Fanny

    2007-09-01

    Starch extracted from seeds of Artocarpus altilis (Breadfruit) was chemically modified by acetylation and oxidation, and its functional properties were evaluated and compared with these of native starch. Analysis of the chemical composition showed that moisture content was higher for modified starches. Ash, protein, crude fiber and amylose contents were reduced by the modifications, but did not alter the native starch granules' irregularity, oval shape and smooth surface. Acetylation produced changes in water absorption, swelling power and soluble solids, these values were higher for acetylated starch, while values for native and oxidized starches were similar. Both modifications reduced pasting temperature; oxidation reduced maximum peak viscosity but it was increased by acetylation. Hot paste viscosity was reduced by both modifications, whereas cold paste viscosity was lower in the oxidized starch and higher in the acetylated starch. Breakdown was increased by acetylation and reduced with oxidation. Setback value was reduced after acetylation, indicating it could minimize retrogradation of the starch.

  12. Distillation for alcohol

    SciTech Connect

    Kawase, T.; Sawai, K.

    1983-02-22

    A new distillation equipment for alcohol which consists mainly of a brief concentrating column a, a concentrating column b, a compressor C to compress alcohol vapor generated in column B and water evaporator D heated by the compressed alcohol vapor is developed and this especially fits for a distillation source of a glue like solution obtained by alcohol fermentation because steam generated in the water evaporator D is directly blown into the solution in the concentrating column A.

  13. Alcohol and fuel production

    SciTech Connect

    Roth, E.R.

    1981-12-22

    Alcohol/water mixtures, such as those produced by fermentation of biomass material, are separated by extraction of alcohol with a solvent especially suited to such extraction and to subsequent removal. Conventional distillation steps to concentrate alcohol and eliminate water are rendered unnecessary at a considerable reduction in heat energy requirement (Usually met with fossil fuel). Addition of gasoline between the solvent extraction and solvent recovery steps not only aids the latter separation but produces alcohol already denatured for fuel use.

  14. Acetyl-L-carnitine improves aged brain function.

    PubMed

    Kobayashi, Satoru; Iwamoto, Machiko; Kon, Kazuo; Waki, Hatsue; Ando, Susumu; Tanaka, Yasukazu

    2010-07-01

    The effects of acetyl-L-carnitine (ALCAR), an acetyl derivative of L-carnitine, on memory and learning capacity and on brain synaptic functions of aged rats were examined. Male Fischer 344 rats were given ALCAR (100 mg/kg bodyweight) per os for 3 months and were subjected to the Hebb-Williams tasks and AKON-1 task to assess their learning capacity. Cholinergic activities were determined with synaptosomes isolated from brain cortices of the rats. Choline parameters, the high-affinity choline uptake, acetylcholine (ACh) synthesis and depolarization-evoked ACh release were all enhanced in the ALCAR group. An increment of depolarization-induced calcium ion influx into synaptosomes was also evident in rats given ALCAR. Electrophysiological studies using hippocampus slices indicated that the excitatory postsynaptic potential slope and population spike size were both increased in ALCAR-treated rats. These results indicate that ALCAR increases synaptic neurotransmission in the brain and consequently improves learning capacity in aging rats.

  15. Structures of aminoacylase 3 in complex with acetylated substrates

    PubMed Central

    Hsieh, Jennifer M.; Tsirulnikov, Kirill; Sawaya, Michael R.; Magilnick, Nathaniel; Abuladze, Natalia; Kurtz, Ira; Abramson, Jeff; Pushkin, Alexander

    2010-01-01

    Trichloroethylene (TCE) is one of the most widespread environmental contaminants, which is metabolized to N-acetyl-S-1,2-dichlorovinyl-l-cysteine (NA-DCVC) before being excreted in the urine. Alternatively, NA-DCVC can be deacetylated by aminoacylase 3 (AA3), an enzyme that is highly expressed in the kidney, liver, and brain. NA-DCVC deacetylation initiates the transformation into toxic products that ultimately causes acute renal failure. AA3 inhibition is therefore a target of interest to prevent TCE induced nephrotoxicity. Here we report the crystal structure of recombinant mouse AA3 (mAA3) in the presence of its acetate byproduct and two substrates: Nα-acetyl-l-tyrosine and NA-DCVC. These structures, in conjunction with biochemical data, indicated that AA3 mediates substrate specificity through van der Waals interactions providing a dynamic interaction interface, which facilitates a diverse range of substrates. PMID:20921362

  16. Structures of aminoacylase 3 in complex with acetylated substrates.

    PubMed

    Hsieh, Jennifer M; Tsirulnikov, Kirill; Sawaya, Michael R; Magilnick, Nathaniel; Abuladze, Natalia; Kurtz, Ira; Abramson, Jeff; Pushkin, Alexander

    2010-10-19

    Trichloroethylene (TCE) is one of the most widespread environmental contaminants, which is metabolized to N-acetyl-S-1,2-dichlorovinyl-L-cysteine (NA-DCVC) before being excreted in the urine. Alternatively, NA-DCVC can be deacetylated by aminoacylase 3 (AA3), an enzyme that is highly expressed in the kidney, liver, and brain. NA-DCVC deacetylation initiates the transformation into toxic products that ultimately causes acute renal failure. AA3 inhibition is therefore a target of interest to prevent TCE induced nephrotoxicity. Here we report the crystal structure of recombinant mouse AA3 (mAA3) in the presence of its acetate byproduct and two substrates: N(α)-acetyl-L-tyrosine and NA-DCVC. These structures, in conjunction with biochemical data, indicated that AA3 mediates substrate specificity through van der Waals interactions providing a dynamic interaction interface, which facilitates a diverse range of substrates.

  17. Acetylated tubulin is essential for touch sensation in mice.

    PubMed

    Morley, Shane J; Qi, Yanmei; Iovino, Loredana; Andolfi, Laura; Guo, Da; Kalebic, Nereo; Castaldi, Laura; Tischer, Christian; Portulano, Carla; Bolasco, Giulia; Shirlekar, Kalyanee; Fusco, Claudia M; Asaro, Antonino; Fermani, Federica; Sundukova, Mayya; Matti, Ulf; Reymond, Luc; De Ninno, Adele; Businaro, Luca; Johnsson, Kai; Lazzarino, Marco; Ries, Jonas; Schwab, Yannick; Hu, Jing; Heppenstall, Paul A

    2016-12-13

    At its most fundamental level, touch sensation requires the translation of mechanical energy into mechanosensitive ion channel opening, thereby generating electro-chemical signals. Our understanding of this process, especially how the cytoskeleton influences it, remains unknown. Here we demonstrate that mice lacking the α-tubulin acetyltransferase Atat1 in sensory neurons display profound deficits in their ability to detect mechanical stimuli. We show that all cutaneous afferent subtypes, including nociceptors have strongly reduced mechanosensitivity upon Atat1 deletion, and that consequently, mice are largely insensitive to mechanical touch and pain. We establish that this broad loss of mechanosensitivity is dependent upon the acetyltransferase activity of Atat1, which when absent leads to a decrease in cellular elasticity. By mimicking α-tubulin acetylation genetically, we show both cellular rigidity and mechanosensitivity can be restored in Atat1 deficient sensory neurons. Hence, our results indicate that by influencing cellular stiffness, α-tubulin acetylation sets the force required for touch.

  18. Television: Alcohol's Vast Adland.

    ERIC Educational Resources Information Center

    2002

    Concern about how much television alcohol advertising reaches underage youth and how the advertising influences their attitudes and decisions about alcohol use has been widespread for many years. Lacking in the policy debate has been solid, reliable information about the extent of youth exposure to television alcohol advertising. To address this…

  19. Alcohol and the law.

    PubMed

    Karasov, Ariela O; Ostacher, Michael J

    2014-01-01

    Society has had an interest in controlling the production, distribution, and use of alcohol for millennia. The use of alcohol has always had consequences, be they positive or negative, and the role of government in the regulation of alcohol is now universal. This is accomplished at several levels, first through controls on production, importation, distribution, and use of alcoholic beverages, and second, through criminal laws, the aim of which is to address the behavior of users themselves. A number of interventions and policies reduce alcohol-related consequences to society by regulating alcohol pricing, targeting alcohol-impaired driving, and limiting alcohol availability. The legal system defines criminal responsibility in the context of alcohol use, as an enormous percentage of violent crime and motor death is associated with alcohol intoxication. In recent years, recovery-oriented policies have aimed to expand social supports for recovery and to improve access to treatment for substance use disorders within the criminal justice system. The Affordable Care Act, also know as "ObamaCare," made substantial changes to access to substance abuse treatment by mandating that health insurance include services for substance use disorders comparable to coverage for medical and surgical treatments. Rather than a simplified "war on drugs" approach, there appears to be an increasing emphasis on evidence-based policy development that approaches alcohol use disorders with hope for treatment and prevention. This chapter focuses on alcohol and the law in the United States.

  20. Alcohol and Family Violence.

    ERIC Educational Resources Information Center

    Covington, Stephanie S.

    There is growing acknowledgement of the association between family violence and alcohol use. A study was conducted to examine the role that abuse plays in the lives of women and to investigate the relationship between alcohol and violence. Data were collected from 35 recovering female alcoholics and 35 nonalcoholic women on their sexual experience…

  1. Alcoholism's Hidden Curriculum.

    ERIC Educational Resources Information Center

    Gress, James R.

    1988-01-01

    Discusses children of alcoholics as victims of fetal alcohol syndrome, family violence, retarded social development, and severe emotional scars. These children bring family roles to school that allow survival in the alcoholic home but are dysfunctional outside it. Educators can take certain steps to address these students' problems. Includes six…

  2. Biological Vulnerability to Alcoholism.

    ERIC Educational Resources Information Center

    Schuckit, Marc A.

    1987-01-01

    Reviews the role of biological factors in the risk for alcoholism. Notes the importance of the definition of primary alcoholism and highlights data indicating that this disorder is genetically influenced. In studies of men at high risk for the future development of alcoholism, vulnerability shows up in reactions to ethanol brain wave amplitude and…

  3. Drugs, Alcohol and HIV

    MedlinePlus

    ... and drugs can do to your overall health. Drugs and Alcohol: Effects on your immune system Drinking too much alcohol ... getting help and finding the treatment you need. Drugs and Alcohol: ... on short- and long-term effects of drinking, with specific information on people who ...

  4. Alcohol and Aggression.

    ERIC Educational Resources Information Center

    Gustafson, Roland

    1994-01-01

    Reviews the acute effects of alcohol on aggressive responding. From experimental studies that use human subjects, it is concluded that a moderate dose of alcohol does not increase aggression if subjects are unprovoked. Under provocative situations, aggression is increased as a function of alcohol intoxication, provided that subjects are restricted…

  5. Alcoholism and Lesbians

    ERIC Educational Resources Information Center

    Gedro, Julie

    2014-01-01

    This chapter explores the issues involved in the relationship between lesbianism and alcoholism. It examines the constellation of health and related problems created by alcoholism, and it critically interrogates the societal factors that contribute to the disproportionately high rates of alcoholism among lesbians by exploring the antecedents and…

  6. The p53-SET Interplays Reveal A New Mode of Acetylation-dependent Regulation

    PubMed Central

    Lasso, Gorka; Jiang, Le; Leng, Wenchuan; Zhu, Wei-Guo; Qin, Jun; Honig, Barry; Gu, Wei

    2016-01-01

    Summary Although lysine acetylation is now recognized as a general protein modification for both histones and non-histone proteins1-3, the mechanisms of acetylation mediated actions are not completely understood. Acetylation of the C-terminal domain (CTD) of p53 was the first example for non-histone protein acetylation4. Yet the precise role of the CTD acetylation remains elusive. Lysine acetylation often creates binding sites for bromodomain-containing “reader” proteins5,6; surprisingly, in a proteomic screen, we identified SET as a major cellular factor whose binding with p53 is totally dependent on the CTD acetylation status. SET profoundly inhibits p53 transcriptional activity in unstressed cells but SET-mediated repression is completely abolished by stress-induced p53 CTD acetylation. Moreover, loss of the interaction with SET activates p53, resulting in tumor regression in mouse xenograft models. Notably, the acidic domain of SET acts as a “reader” for unacetylated CTD of p53 and this mechanism of acetylation-dependent regulation is widespread in nature. For example, p53 acetylation also modulates its interactions with similar acidic domains found in other p53 regulators including VPRBP, DAXX and PELP1 (refs. 7-9), and computational analysis of the proteome identified numerous proteins with the potential to serve as the acidic domain readers and lysine-rich ligands. Unlike bromodomain readers, which preferentially bind the acetylated forms of their cognate ligands, the acidic domain readers specifically recognize the unacetylated forms of their ligands. Finally, the acetylation-dependent regulation of p53 was further validated in vivo by using a knockin mouse model expressing an acetylation-mimicking form of p53. These results reveal that the acidic domain-containing factors act as a new class of acetylation-dependent regulators by targeting p53 and potentially, beyond. PMID:27626385

  7. Acetyl-coenzyme A deacylase activity in liver is not an artifact. Subcellular distribution and substrate specificity of acetyl-coenzyme A deacylase activities in rat liver

    PubMed Central

    Grigat, Klaus-P.; Koppe, Klaus; Seufert, Claus-D.; Söling, Hans-D

    1979-01-01

    Whole liver and isolated liver mitochondria are able to release free acetate, especially under conditions of increased fatty acid oxidation. In the present paper it is shown that rat liver contains acetyl-CoA deacylase (EC 3.1.2.1) activity (0.72μmol/min per g wet wt. of liver at 30°C and 0.5mm-acetyl-CoA). At 0.5mm-acetyl-CoA 73% of total enzyme activity was found in the mitochondria, 8% in the lysosomal fraction and 19% in the postmicrosomal supernatant. Mitochondrial subfractionation shows that mitochondrial acetyl-CoA deacylase activity is restricted to the matrix space. Mitochondrial acetyl-CoA deacylase showed almost no activity with either butyryl- or hexanoyl-CoA. Acetyl-CoA hydrolase activity from purified rat liver lysosomes exhibited a very low affinity for acetyl-CoA (apparent Km>15mm compared with an apparent Km value of 0.5mm for the mitochondrial enzyme) and reacted at about the same rate with acetyl-, n-butyryl- and hexanoyl-CoA. We could not confirm the findings of Costa & Snoswell [(1975) Biochem. J. 152, 167–172] according to which mitochondrial acetyl-CoA deacylase was considered to be an artifact resulting from the combined actions of acetyl-CoA–l-carnitine acetyltransferase (EC 2.3.1.7) and acetylcarnitine hydrolase. The results are in line with the concept that free acetate released by the liver under physiological conditions stems from the intramitochondrial deacylation of acetyl-CoA. PMID:34392

  8. N-Acetyl-4-aminophenol (paracetamol), N-acetyl-2-aminophenol and acetanilide in urine samples from the general population, individuals exposed to aniline and paracetamol users.

    PubMed

    Dierkes, Georg; Weiss, Tobias; Modick, Hendrik; Käfferlein, Heiko Udo; Brüning, Thomas; Koch, Holger M

    2014-01-01

    Epidemiological studies suggest associations between the use of N-acetyl-4-aminophenol (paracetamol) during pregnancy and increased risks of reproductive disorders in the male offspring. Previously we have reported a ubiquitous urinary excretion of N-acetyl-4-aminophenol in the general population. Possible sources are (1) direct intake of paracetamol through medication, (2) paracetamol residues in the food chain and (3) environmental exposure to aniline or related substances that are metabolized into N-acetyl-4-aminophenol. In order to elucidate the origins of the excretion of N-acetyl-4-aminophenol in urine and to contribute to the understanding of paracetamol and aniline metabolism in humans we developed a rapid, turbulent-flow HPLC-MS/MS method with isotope dilution for the simultaneous quantification of N-acetyl-4-aminophenol and two other aniline related metabolites, N-acetyl-2-aminophenol and acetanilide. We applied this method to three sets of urine samples: (1) individuals with no known exposure to aniline and also no recent paracetamol medication; (2) individuals after occupational exposure to aniline but no paracetamol medication and (3) paracetamol users. We confirmed the omnipresent excretion of N-acetyl-4-aminophenol. Additionally we revealed an omnipresent excretion of N-acetyl-2-aminophenol. In contrast, acetanilide was only found after occupational exposure to aniline, not in the general population or after paracetamol use. The results lead to four preliminary conclusions: (1) other sources than aniline seem to be responsible for the major part of urinary N-acetyl-4-aminophenol in the general population; (2) acetanilide is a metabolite of aniline in man and a valuable biomarker for aniline in occupational settings; (3) aniline baseline levels in the general population measured after chemical hydrolysis do not seem to originate from acetanilide and hence not from a direct exposure to aniline itself and (4) N-acetyl-2-aminophenol does not seem to be

  9. Tomatidine, a tomato sapogenol, ameliorates hyperlipidemia and atherosclerosis in apoE-deficient mice by inhibiting acyl-CoA:cholesterol acyl-transferase (ACAT).

    PubMed

    Fujiwara, Yukio; Kiyota, Naoko; Tsurushima, Keiichiro; Yoshitomi, Makiko; Horlad, Hasita; Ikeda, Tsuyoshi; Nohara, Toshihiro; Takeya, Motohiro; Nagai, Ryoji

    2012-03-14

    It was previously revealed that esculeoside A, a new glycoalkaloid, and esculeogenin A, a new aglycon of esculeoside A, contained in ripe tomato ameliorate atherosclerosis in apoE-deficent mice. This study examined whether tomatidine, the aglycone of tomatine, which is a major tomato glycoalkaloid, also shows similar inhibitory effects on cholesterol ester (CE) accumulation in human monocyte-derived macrophages (HMDM) and atherogenesis in apoE-deficient mice. Tomatidine significantly inhibited the CE accumulation induced by acetylated LDL in HMDM in a dose-dependent manner. Tomatidine also inhibited CE formation in Chinese hamster ovary cells overexpressing acyl-CoA:cholesterol acyl-transferase (ACAT)-1 or ACAT-2, suggesting that tomatidine suppresses both ACAT-1 and ACAT-2 activities. Furthermore, the oral administration of tomatidine to apoE-deficient mice significantly reduced levels of serum cholesterol, LDL-cholesterol, and areas of atherosclerotic lesions. The study provides the first evidence that tomatidine significantly suppresses the activity of ACAT and leads to reduction of atherogenesis.

  10. Glyceryl trinitrate metabolism in the quail embryo by the glutathione S-transferases leads to a perturbation in redox status and embryotoxicity.

    PubMed

    Bardai, Ghalib K; Hales, Barbara F; Sunahara, Geoffrey I

    2013-07-01

    Exposure of stage 9 quail (Coturnix coturnix japonica) embryos to glyceryl trinitrate (GTN) induces malformations that were associated in previous studies with an increase in protein nitration. Increased nitration suggests metabolism of GTN by the embryo. The goals of this study were to characterize the enzymes and co-factors required for GTN metabolism by quail embryos, and to determine the effects of in ovo treatment with N-acetyl cysteine (NAC), a precursor of glutathione (GSH), on GTN embryotoxicity. GTN treatment of quail embryos resulted in an increase in nitrite, a decrease in total GSH, and an increase in the ratio of NADP(+)/NADPH, indicating that redox balance may be compromised in exposed embryos. Glutathione S-transferases (GSTs; EC 2.5.1.18) purified from the whole embryo (K(m) 0.84 mM; V(max) 36 μM/min) and the embryonic eye (K(m) 0.20 mM; V(max) 30 μM/min) had GTN-metabolizing activity (1436 and 34 nmol/min/mg, respectively); the addition of ethacrynic acid, an inhibitor of GST activity, decreased GTN metabolism. Peptide sequencing of the GST isozymes indicated that alpha- or mu-type GSTs in the embryo and embryonic eye had GTN metabolizing activity. NAC co-treatment partially protected against the effects of GTN exposure. Thus, GTN denitration by quail embryo GSTs may represent a key initial step in the developmental toxicity of GTN.

  11. Regulation of Histone Acetylation by Autophagy in Parkinson Disease*

    PubMed Central

    Park, Goonho; Tan, Jieqiong; Garcia, Guillermina; Kang, Yunyi; Salvesen, Guy; Zhang, Zhuohua

    2016-01-01

    Parkinson disease (PD) is the most common age-dependent neurodegenerative movement disorder. Accumulated evidence indicates both environmental and genetic factors play important roles in PD pathogenesis, but the potential interaction between environment and genetics in PD etiology remains largely elusive. Here, we report that PD-related neurotoxins induce both expression and acetylation of multiple sites of histones in cultured human cells and mouse midbrain dopaminergic (DA) neurons. Consistently, levels of histone acetylation are markedly higher in midbrain DA neurons of PD patients compared to those of their matched control individuals. Further analysis reveals that multiple histone deacetylases (HDACs) are concurrently decreased in 1-methyl-4-phenylpyridinium (MPP+)-treated cells and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mouse brains, as well as midbrain tissues of human PD patients. Finally, inhibition of histone acetyltransferase (HAT) protects, whereas inhibition of HDAC1 and HDAC2 potentiates, MPP+-induced cell death. Pharmacological and genetic inhibition of autophagy suppresses MPP+-induced HDACs degradation. The study reveals that PD environmental factors induce HDACs degradation and histone acetylation increase in DA neurons via autophagy and identifies an epigenetic mechanism in PD pathogenesis. PMID:26699403

  12. Acetylation modification regulates GRP78 secretion in colon cancer cells

    PubMed Central

    Li, Zongwei; Zhuang, Ming; Zhang, Lichao; Zheng, Xingnan; Yang, Peng; Li, Zhuoyu

    2016-01-01

    High glucose-regulated protein 78 (GRP78) expression contributes to the acquisition of a wide range of phenotypic cancer hallmarks, and the pleiotropic oncogenic functions of GRP78 may result from its diverse subcellular distribution. Interestingly, GRP78 has been reported to be secreted from solid tumour cells, participating in cell-cell communication in the tumour microenvironment. However, the mechanism underlying this secretion remains elusive. Here, we report that GRP78 is secreted from colon cancer cells via exosomes. Histone deacetylase (HDAC) inhibitors blocked GRP78 release by inducing its aggregation in the ER. Mechanistically, HDAC inhibitor treatment suppressed HDAC6 activity and led to increased GRP78 acetylation; acetylated GRP78 then bound to VPS34, a class III phosphoinositide-3 kinase, consequently preventing the sorting of GRP78 into multivesicular bodies (MVBs). Of note, we found that mimicking GRP78 acetylation by substituting the lysine at residue 633, one of the deacetylated sites of HDAC6, with a glutamine resulted in decreased GRP78 secretion and impaired tumour cell growth in vitro. Our study thus reveals a hitherto-unknown mechanism of GRP78 secretion and may also provide implications for the therapeutic use of HDAC inhibitors. PMID:27460191

  13. Selected properties of acetylated adipate of retrograded starch.

    PubMed

    Zięba, T; Gryszkin, A; Kapelko, M

    2014-01-01

    Native potato starch (NS) and retrograded starch (R - obtained via freezing and defrosting of a starch paste) were used to prepare starch acetates: NS-A and R-A, and then acetylated distarch adipates: NS-ADA and R-ADA. The chemically-modified preparations produced from retrograded starch (R-A; R-ADA) were characterized by a higher degree of esterification compared to the modified preparations produced under the same conditions from native potato starch (NS-A; NS-ADA). Starch resistance to amylolysis was observed to increase (to 30-40 g/100 g) as a result of starch retrogradation and acetylation. Starch cross-linking had a significant impact on the increased viscosity of the paste in the entire course of pasting characteristics and on the increased values of rheological coefficients determined from the equations describing flow curves. The produced preparation of acetylated retrograded starch cross-linked with adipic acid (R-ADA) may be deemed an RS3/4 preparation to be used as a food thickening agent.

  14. Regulation of Histone Acetylation by Autophagy in Parkinson Disease.

    PubMed

    Park, Goonho; Tan, Jieqiong; Garcia, Guillermina; Kang, Yunyi; Salvesen, Guy; Zhang, Zhuohua

    2016-02-12

    Parkinson disease (PD) is the most common age-dependent neurodegenerative movement disorder. Accumulated evidence indicates both environmental and genetic factors play important roles in PD pathogenesis, but the potential interaction between environment and genetics in PD etiology remains largely elusive. Here, we report that PD-related neurotoxins induce both expression and acetylation of multiple sites of histones in cultured human cells and mouse midbrain dopaminergic (DA) neurons. Consistently, levels of histone acetylation are markedly higher in midbrain DA neurons of PD patients compared to those of their matched control individuals. Further analysis reveals that multiple histone deacetylases (HDACs) are concurrently decreased in 1-methyl-4-phenylpyridinium (MPP(+))-treated cells and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mouse brains, as well as midbrain tissues of human PD patients. Finally, inhibition of histone acetyltransferase (HAT) protects, whereas inhibition of HDAC1 and HDAC2 potentiates, MPP(+)-induced cell death. Pharmacological and genetic inhibition of autophagy suppresses MPP(+)-induced HDACs degradation. The study reveals that PD environmental factors induce HDACs degradation and histone acetylation increase in DA neurons via autophagy and identifies an epigenetic mechanism in PD pathogenesis.

  15. Carbon isotope fractionation and the acetyl-CoA pathway

    NASA Astrophysics Data System (ADS)

    Blaser, Martin; Conrad, Ralf

    2010-05-01

    Homoacetogenic bacteria can catalyze the reductive synthesis of acetate from CO2 via the acetyl-CoA pathway. Besides this unifying property homoacetogenic bacteria constitute a metabolically and phylogenetically diverse bacteriological group. Therefore their environmental role is difficult to address. It has been recognized that in methanogenic environments homoacetogenic bacteria contribute to the degradation of organic matter. The natural abundance of 13C may be used to understand the functional impact of homoacetogenic bacteria in the soil environment. To distinguish the acetyl-CoA pathway from other dominant processes, the isotopic composition of acetate and CO2 can be determined and the fractionation factors of the individual processes may be used to discriminate between the dominant pathways. To characterize the fractionation factor associated with the acetyl-CoA pathway the phylogenetic and metabolic diversity needs to be considered. Therefore the fractionation factor of substrate utilization and product formation of different homoacetogens (Acetobacterium woodii, Sporomusa ovata, Thermoanaerobacter kivui, Morella thermoautotrophica) has been studied under pure culture conditions in two defined minimal medium with H2/CO2 as sole source of carbon and energy. It became obvious that the cultivation conditions have a major impact on the obtained fractionation factors.

  16. Getting a Knack for NAC: N-Acetyl-Cysteine.

    PubMed

    Sansone, Randy A; Sansone, Lori A

    2011-01-01

    N-acetyl-cysteine, N-acetylcysteine, N-acetyl cysteine, and N-acetyl-L-cysteine are all designations for the same compound, which is abbreviated as NAC. NAC is a precursor to the amino acid cysteine, which ultimately plays two key metabolic roles. Through its metabolic contribution to glutathione production, cysteine participates in the general antioxidant activities of the body. Through its role as a modulator of the glutamatergic system, cysteine influences the reward-reinforcement pathway. Because of these functions, NAC may exert a therapeutic effect on psychiatric disorders allegedly related to oxidative stress (e.g., schizophrenia, bipolar disorder) as well as psychiatric syndromes characterized by impulsive/compulsive symptoms (e.g., trichotillomania, pathological nail biting, gambling, substance misuse). While the dosages, pharmacological strategies (monotherapy versus augmentation), and long-term risks are not fully evident, NAC appears to be a promising, relatively low-risk intervention. If so, NAC might be an ideal treatment strategy for a variety of psychiatric conditions in both psychiatric and primary care settings.

  17. Highly acylated (acetylated and/or p-coumaroylated) native lignins from diverse herbaceous plants.

    PubMed

    del Río, José C; Rencoret, Jorge; Marques, Gisela; Gutiérrez, Ana; Ibarra, David; Santos, J Ignacio; Jiménez-Barbero, Jesús; Zhang, Liming; Martínez, Angel T

    2008-10-22

    The structure of lignins isolated from the herbaceous plants sisal ( Agave sisalana), kenaf ( Hibiscus cannabinus), abaca ( Musa textilis) and curaua ( Ananas erectifolius) has been studied upon spectroscopic (2D-NMR) and chemical degradative (derivatization followed by reductive cleavage) methods. The analyses demonstrate that the structure of the lignins from these plants is highly remarkable, being extensively acylated at the gamma-carbon of the lignin side chain (up to 80% acylation) with acetate and/or p-coumarate groups and preferentially over syringyl units. Whereas the lignins from sisal and kenaf are gamma-acylated exclusively with acetate groups, the lignins from abaca and curaua are esterified with acetate and p-coumarate groups. The structures of all these highly acylated lignins are characterized by a very high syringyl/guaiacyl ratio, a large predominance of beta- O-4' linkages (up to 94% of all linkages), and a strikingly low proportion of traditional beta-beta' linkages, which indeed are completely absent in the lignins from abaca and curaua. The occurrence of beta-beta' homocoupling and cross-coupling products of sinapyl acetate in the lignins from sisal and kenaf indicates that sinapyl alcohol is acetylated at the monomer stage and that, therefore, sinapyl acetate should be considered as a real monolignol involved in the lignification reactions.

  18. Crystal structure of tabtoxin resistance protein complexed with acetyl coenzyme A reveals the mechanism for {beta}-lactam acetylation.

    SciTech Connect

    He, H.; Ding, Y.; Bartlam, M.; Sun, F.; Le, Y.; Qin, X.; Tang, H.; Zhang, R.; Joachimiak, A.; Liu, J.; Zhao, N.; Rao, Z.; Biosciences Division; Tsinghua Univ.; Chinese Academy of Science

    2003-01-31

    Tabtoxin resistance protein (TTR) is an enzyme that renders tabtoxin-producing pathogens, such as Pseudomonas syringae, tolerant to their own phytotoxins. Here, we report the crystal structure of TTR complexed with its natural cofactor, acetyl coenzyme A (AcCoA), to 1.55 {angstrom} resolution. The binary complex forms a characteristic 'V' shape for substrate binding and contains the four motifs conserved in the GCN5-related N-acetyltransferase (GNAT) superfamily, which also includes the histone acetyltransferases (HATs). A single-step mechanism is proposed to explain the function of three conserved residues, Glu92, Asp130 and Tyr141, in catalyzing the acetyl group transfer to its substrate. We also report that TTR possesses HAT activity and suggest an evolutionary relationship between TTR and other GNAT members.

  19. Chronic alcohol binging injures the liver and other organs by reducing NAD⁺ levels required for sirtuin's deacetylase activity.

    PubMed

    French, Samuel W

    2016-04-01

    NAD(+) levels are markedly reduced when blood alcohol levels are high during binge drinking. This causes liver injury to occur because the enzymes that require NAD(+) as a cofactor such as the sirtuin de-acetylases cannot de-acetylate acetylated proteins such as acetylated histones. This prevents the epigenetic changes that regulate metabolic processes and which prevent organ injury such as fatty liver in response to alcohol abuse. Hyper acetylation of numerous regulatory proteins develops. Systemic multi-organ injury occurs when NAD(+) is reduced. For instance the Circadian clock is altered if NAD(+) is not available. Cell cycle arrest occurs due to up regulation of cell cycle inhibitors leading to DNA damage, mutations, apoptosis and tumorigenesis. NAD(+) is linked to aging in the regulation of telomere stability. NAD(+) is required for mitochondrial renewal. Alcohol dehydrogenase is present in every visceral organ in the body so that there is a systemic reduction of NAD(+) levels in all of these organs during binge drinking.

  20. Genetics and genomics of alcohol responses in Drosophila.

    PubMed

    Park, Annie; Ghezzi, Alfredo; Wijesekera, Thilini P; Atkinson, Nigel S

    2017-02-01

    Drosophila melanogaster has become a significant model organism for alcohol research. In flies, a rich variety of behaviors can be leveraged for identifying genes affecting alcohol responses and adaptations. Furthermore, almost all genes can be easily genetically manipulated. Despite the great evolutionary distance between flies and mammals, many of the same genes have been implicated in strikingly similar alcohol-induced behaviors. A major problem in medical research today is that it is difficult to extrapolate from any single model system to humans. Strong evolutionary conservation of a mechanistic response between distantly related organisms, such as flies and mammals, is a powerful predictor that conservation will continue all the way to humans. This review describes the state of the Drosophila alcohol research field. It describes common alcohol behavioral assays, the independent origins of resistance and tolerance, the results of classical genetic screens and candidate gene analysis, and the outcomes of recent genomics studies employing GWAS, transcriptome, miRNA, and genome-wide histone acetylation surveys.

  1. Genetics and alcoholism.

    PubMed

    Edenberg, Howard J; Foroud, Tatiana

    2013-08-01

    Alcohol is widely consumed; however, excessive use creates serious physical, psychological and social problems and contributes to the pathogenesis of many diseases. Alcohol use disorders (that is, alcohol dependence and alcohol abuse) are maladaptive patterns of excessive drinking that lead to serious problems. Abundant evidence indicates that alcohol dependence (alcoholism) is a complex genetic disease, with variations in a large number of genes affecting a person's risk of alcoholism. Some of these genes have been identified, including two genes involved in the metabolism of alcohol (ADH1B and ALDH2) that have the strongest known affects on the risk of alcoholism. Studies continue to reveal other genes in which variants affect the risk of alcoholism or related traits, including GABRA2, CHRM2, KCNJ6 and AUTS2. As more variants are analysed and studies are combined for meta-analysis to achieve increased sample sizes, an improved picture of the many genes and pathways that affect the risk of alcoholism will be possible.

  2. Alcohol and the Intestine

    PubMed Central

    Patel, Sheena; Behara, Rama; Swanson, Garth R.; Forsyth, Christopher B.; Voigt, Robin M.; Keshavarzian, Ali

    2015-01-01

    Alcohol abuse is a significant contributor to the global burden of disease and can lead to tissue damage and organ dysfunction in a subset of alcoholics. However, a subset of alcoholics without any of these predisposing factors can develop alcohol-mediated organ injury. The gastrointestinal tract (GI) could be an important source of inflammation in alcohol-mediated organ damage. The purpose of review was to evaluate mechanisms of alcohol-induced endotoxemia (including dysbiosis and gut leakiness), and highlight the predisposing factors for alcohol-induced dysbiosis and gut leakiness to endotoxins. Barriers, including immunologic, physical, and biochemical can regulate the passage of toxins into the portal and systemic circulation. In addition, a host of environmental interactions including those influenced by circadian rhythms can impact alcohol-induced organ pathology. There appears to be a role for therapeutic measures to mitigate alcohol-induced organ damage by normalizing intestinal dysbiosis and/or improving intestinal barrier integrity. Ultimately, the inflammatory process that drives progression into organ damage from alcohol appears to be multifactorial. Understanding the role of the intestine in the pathogenesis of alcoholic liver disease can pose further avenues for pathogenic and treatment approaches. PMID:26501334

  3. Alcoholic and non-alcoholic steatohepatitis

    PubMed Central

    Neuman, Manuela G.; French, Samuel W.; French, Barbara A.; Seitz, Helmut K.; Cohen, Lawrence B.; Mueller, Sebastian; Osna, Natalia A.; Kharbanda, Kusum K.; Seth, Devanshi; Bautista, Abraham; Thompson, Kyle J.; McKillop, Iain H.; Kirpich, Irina A.; McClain, Craig J.; Bataller, Ramon; Nanau, Radu M.; Voiculescu, Mihai; Opris, Mihai; Shen, Hong; Tillman, Brittany; Li, Jun; Liu, Hui; Thomas, Paul G.; Ganesan, Murali; Malnick, Steve

    2015-01-01

    This paper is based upon the “Charles Lieber Satellite Symposia” organized by Manuela G. Neuman at the Research Society on Alcoholism (RSA) Annual Meetings, 2013 and 2014. The present review includes pre-clinical, translational and clinical research that characterize alcoholic liver disease (ALD) and non-alcoholic steatohepatitis (NASH). In addition, a literature search in the discussed area was performed. Strong clinical and experimental evidence lead to recognition of the key toxic role of alcohol in the pathogenesis of ALD. The liver biopsy can confirm the etiology of NASH or alcoholic steatohepatitis (ASH) and assess structural alterations of cells, their organelles, as well as inflammatory activity. Three histological stages of ALD are simple steatosis, ASH, and chronic hepatitis with hepatic fibrosis or cirrhosis. These latter stages may also be associated with a number of cellular and histological changes, including the presence of Mallory's hyaline, megamitochondria, or perivenular and perisinusoidal fibrosis. Genetic polymorphisms of ethanol metabolizing enzymes such as cytochrome p450 (CYP) 2E1 activation may change the severity of ASH and NASH. Alcohol mediated hepatocarcinogenesis, immune response to alcohol in ASH, as well as the role of other risk factors such as its comorbidities with chronic viral hepatitis in the presence or absence of human deficiency virus are discussed. Dysregulation of hepatic methylation, as result of ethanol exposure, in hepatocytes transfected with hepatitis C virus (HCV), illustrates an impaired interferon signaling. The hepatotoxic effects of ethanol undermine the contribution of malnutrition to the liver injury. Dietary interventions such as micro and macronutrients, as well as changes to the microbiota are suggested. The clinical aspects of NASH, as part of metabolic syndrome in the aging population, are offered. The integrative symposia investigate different aspects of alcohol-induced liver damage and possible

  4. Alcoholic and non-alcoholic steatohepatitis.

    PubMed

    Neuman, Manuela G; French, Samuel W; French, Barbara A; Seitz, Helmut K; Cohen, Lawrence B; Mueller, Sebastian; Osna, Natalia A; Kharbanda, Kusum K; Seth, Devanshi; Bautista, Abraham; Thompson, Kyle J; McKillop, Iain H; Kirpich, Irina A; McClain, Craig J; Bataller, Ramon; Nanau, Radu M; Voiculescu, Mihai; Opris, Mihai; Shen, Hong; Tillman, Brittany; Li, Jun; Liu, Hui; Thomes, Paul G; Ganesan, Murali; Malnick, Steve

    2014-12-01

    This paper is based upon the "Charles Lieber Satellite Symposia" organized by Manuela G. Neuman at the Research Society on Alcoholism (RSA) Annual Meetings, 2013 and 2014. The present review includes pre-clinical, translational and clinical research that characterize alcoholic liver disease (ALD) and non-alcoholic steatohepatitis (NASH). In addition, a literature search in the discussed area was performed. Strong clinical and experimental evidence lead to recognition of the key toxic role of alcohol in the pathogenesis of ALD. The liver biopsy can confirm the etiology of NASH or alcoholic steatohepatitis (ASH) and assess structural alterations of cells, their organelles, as well as inflammatory activity. Three histological stages of ALD are simple steatosis, ASH, and chronic hepatitis with hepatic fibrosis or cirrhosis. These latter stages may also be associated with a number of cellular and histological changes, including the presence of Mallory's hyaline, megamitochondria, or perivenular and perisinusoidal fibrosis. Genetic polymorphisms of ethanol metabolizing enzymes such as cytochrome p450 (CYP) 2E1 activation may change the severity of ASH and NASH. Alcohol mediated hepatocarcinogenesis, immune response to alcohol in ASH, as well as the role of other risk factors such as its co-morbidities with chronic viral hepatitis in the presence or absence of human immunodeficiency virus are discussed. Dysregulation of hepatic methylation, as result of ethanol exposure, in hepatocytes transfected with hepatitis C virus (HCV), illustrates an impaired interferon signaling. The hepatotoxic effects of ethanol undermine the contribution of malnutrition to the liver injury. Dietary interventions such as micro and macronutrients, as well as changes to the microbiota are suggested. The clinical aspects of NASH, as part of metabolic syndrome in the aging population, are offered. The integrative symposia investigate different aspects of alcohol-induced liver damage and possible

  5. Separation of glutathione transferase subunits from Proteus vulgaris by two-dimensional gel electrophoresis.

    PubMed

    Hong, Giaming; Chien, Yi-Chih; Chien, Cheng-I

    2003-10-01

    Cytosolic glutathione transferases of Proteus vulgaris were purified by affinity chromatography and characterized by two-dimensional gel electrophoresis. Four different subunits were identified, and each subunit contained a different molecular mass, ranging from 26.2 kDa to 28.5 kDa; a different pI value, ranging from 8.2 to 9.4; and a different amount of protein fraction, ranging from 10% to 56%. All four subunits existed as basic proteins (pI > 7.0). From these results, we concluded that multiple forms of glutathione transferase enzymes existed in Proteus vulgaris, and four different glutathione transferase subunits were separated by 2-D gel electrophoresis.

  6. Alcohol disrupts sleep homeostasis.

    PubMed

    Thakkar, Mahesh M; Sharma, Rishi; Sahota, Pradeep

    2015-06-01

    Alcohol is a potent somnogen and one of the most commonly used "over the counter" sleep aids. In healthy non-alcoholics, acute alcohol decreases sleep latency, consolidates and increases the quality (delta power) and quantity of NREM sleep during the first half of the night. However, sleep is disrupted during the second half. Alcoholics, both during drinking periods and during abstinences, suffer from a multitude of sleep disruptions manifested by profound insomnia, excessive daytime sleepiness, and altered sleep architecture. Furthermore, subjective and objective indicators of sleep disturbances are predictors of relapse. Finally, within the USA, it is estimated that societal costs of alcohol-related sleep disorders exceeds $18 billion. Thus, although alcohol-associated sleep problems have significant economic and clinical consequences, very little is known about how and where alcohol acts to affect sleep. In this review, we have described our attempts to unravel the mechanism of alcohol-induced sleep disruptions. We have conducted a series of experiments using two different species, rats and mice, as animal models. We performed microdialysis, immunohistochemical, pharmacological, sleep deprivation and lesion studies which suggest that the sleep-promoting effects of alcohol may be mediated via alcohol's action on the mediators of sleep homeostasis: adenosine (AD) and the wake-promoting cholinergic neurons of the basal forebrain (BF). Alcohol, via its action on AD uptake, increases extracellular AD resulting in the inhibition of BF wake-promoting neurons. Since binge alcohol consumption is a highly prevalent pattern of alcohol consumption and disrupts sleep, we examined the effects of binge drinking on sleep-wakefulness. Our results suggest that disrupted sleep homeostasis may be the primary cause of sleep disruption observed following binge drinking. Finally, we have also shown that sleep disruptions observed during acute withdrawal, are caused due to impaired

  7. N-Acetyl-β-D-glucosaminidase activity in feral Carcinus maenas exposed to cadmium.

    PubMed

    Mesquita, Sofia Raquel; Ergen, Şeyda Fikirdeşici; Rodrigues, Aurélie Pinto; Oliva-Teles, M Teresa; Delerue-Matos, Cristina; Guimarães, Laura

    2015-02-01

    Cadmium is a priority hazardous substance, persistent in the aquatic environment, with the capacity to interfere with crustacean moulting. Moulting is a vital process dictating crustacean growth, reproduction and metamorphosis. However, for many organisms, moult disruption is difficult to evaluate in the short term, what limits its inclusion in monitoring programmes. N-acetyl-β-D-glucosaminidase (NAGase) is an enzyme acting in the final steps of the endocrine-regulated moulting cascade, allowing for the cast off of the old exoskeleton, with potential interest as a biomarker of moult disruption. This study investigated responses to waterborne cadmium of NAGase activity of Carcinus maenas originating from estuaries with different histories of anthropogenic contamination: a low impacted and a moderately polluted one. Crabs from both sites were individually exposed for seven days to cadmium concentrations ranging from 1.3 to 2000 μg/L. At the end of the assays, NAGase activity was assessed in the epidermis and digestive gland. Detoxification, antioxidant, energy production, and oxidative stress biomarkers implicated in cadmium metabolism and tolerance were also assessed to better understand differential NAGase responses: activity of glutathione S-transferases (GST), glutathione peroxidase (GPx) glutathione reductase (GR), levels of total glutathiones (TG), lipid peroxidation (LPO), lactate dehydrogenase (LDH), and NADP(+)-dependent isocitrate dehydrogenase (IDH). Animals from the moderately polluted estuary had lower NAGase activity both in the epidermis and digestive gland than in the low impacted site. NAGase activity in the epidermis and digestive gland of C. maenas from both estuaries was sensitive to cadmium exposure suggesting its usefulness for inclusion in monitoring programmes. However, in the digestive gland NAGase inhibition was found in crabs from the less impacted site but not in those from the moderately contaminated one. Altered glutathione levels were

  8. Acetylation of Werner syndrome protein (WRN): relationships with DNA damage, DNA replication and DNA metabolic activities

    PubMed Central

    Lozada, Enerlyn; Yi, Jingjie; Luo, Jianyuan; Orren, David K.

    2014-01-01

    Loss of WRN function causes Werner Syndrome, characterized by increased genomic instability, elevated cancer susceptibility and premature aging. Although WRN is subject to acetylation, phosphorylation and sumoylation, the impact of these modifications on WRN’s DNA metabolic function remains unclear. Here, we examined in further depth the relationship between WRN acetylation and its role in DNA metabolism, particularly in response to induced DNA damage. Our results demonstrate that endogenous WRN is acetylated somewhat under unperturbed conditions. However, levels of acetylated WRN significantly increase after treatment with certain DNA damaging agents or the replication inhibitor hydroxyurea. Use of DNA repair-deficient cells or repair pathway inhibitors further increase levels of acetylated WRN, indicating that induced DNA lesions and their persistence are at least partly responsible for increased acetylation. Notably, acetylation of WRN correlates with inhibition of DNA synthesis, suggesting that replication blockage might underlie this effect. Moreover, WRN acetylation modulates its affinity for and activity on certain DNA structures, in a manner that may enhance its relative specificity for physiological substrates. Our results also show that acetylation and deacetylation of endogenous WRN is a dynamic process, with sirtuins and other histone deacetylases contributing to WRN deacetylation. These findings advance our understanding of the dynamics of WRN acetylation under unperturbed conditions and following DNA damage induction, linking this modification not only to DNA damage persistence but also potentially to replication stalling caused by specific DNA lesions. Our results are consistent with proposed metabolic roles for WRN and genomic instability phenotypes associated with WRN deficiency. PMID:24965941

  9. Cell differentiation along multiple pathways accompanied by changes in histone acetylation status.

    PubMed

    Legartová, Soňa; Kozubek, Stanislav; Franek, Michal; Zdráhal, Zbyněk; Lochmanová, Gabriela; Martinet, Nadine; Bártová, Eva

    2014-04-01

    Post-translational modification of histones is fundamental to the regulation of basic nuclear processes and subsequent cellular events, including differentiation. In this study, we analyzed acetylated forms of histones H2A, H2B, and H4 during induced differentiation in mouse (mESCs) and human (hESCs) embryonic stem cells and during induced enterocytic differentiation of colon cancer cells in vitro. Endoderm-like differentiation of mESCs induced by retinoic acid and enterocytic differentiation induced by histone deacetylase inhibitor sodium butyrate were accompanied by increased mono-, di-, and tri-acetylation of histone H2B and a pronounced increase in di- and tri-acetylation of histone H4. In enterocytes, mono-acetylation of histone H2A also increased and tetra-acetylation of histone H4 appeared only after induction of this differentiation pathway. During differentiation of hESCs, we observed increased mono-acetylation and decreased tri-acetylation of H2B. Mono-, di-, and tri-acetylation of H4 were reduced, manifested by a significant increase in nonacetylated H4 histones. Levels of acetylated histones increased during induced differentiation in mESCs and during histone deacetylase (HDAC) inhibitor-induced enterocytic differentiation, whereas differentiation of human ESCs was associated with reduced acetylation of histones H2B and H4.

  10. Acetylation mimic of lysine 280 exacerbates human Tau neurotoxicity in vivo

    PubMed Central

    Gorsky, Marianna Karina; Burnouf, Sylvie; Dols, Jacqueline; Mandelkow, Eckhard; Partridge, Linda

    2016-01-01

    Dysfunction and accumulation of the microtubule-associated human Tau (hTau) protein into intraneuronal aggregates is observed in many neurodegenerative disorders including Alzheimer’s disease (AD). Reversible lysine acetylation has recently emerged as a post-translational modification that may play an important role in the modulation of hTau pathology. Acetylated hTau species have been observed within hTau aggregates in human AD brains and multi-acetylation of hTau in vitro regulates its propensity to aggregate. However, whether lysine acetylation at position 280 (K280) modulates hTau-induced toxicity in vivo is unknown. We generated new Drosophila transgenic models of hTau pathology to evaluate the contribution of K280 acetylation to hTau toxicity, by analysing the respective toxicity of pseudo-acetylated (K280Q) and pseudo-de-acetylated (K280R) mutant forms of hTau. We observed that mis-expression of pseudo-acetylated K280Q-hTau in the adult fly nervous system potently exacerbated fly locomotion defects and photoreceptor neurodegeneration. In addition, modulation of K280 influenced total hTau levels and phosphorylation without changing hTau solubility. Altogether, our results indicate that pseudo-acetylation of the single K280 residue is sufficient to exacerbate hTau neurotoxicity in vivo, suggesting that acetylated K280-hTau species contribute to the pathological events leading to neurodegeneration in AD. PMID:26940749

  11. Isopentenyl Pyrophosphate cis-1,4-Polyisoprenyl Transferase from Guayule (Parthenium argentatum Gray).

    PubMed

    Madhavan, S; Benedict, C R

    1984-08-01

    Electron micrographs of the mesophyll cells of guayule Parthenium argentatum Gray leaves show deposits of cis-polyisoprene (rubber) in the cytoplasm in the vicinity of mitochondria and chloroplasts and demonstrate that the rubber-synthesizing enzymes are present in guayule leaves. The terminal step in the synthesis of cis-polyisoprene from isopentenyl pyrophosphate (IPP) catalyzed by isopentenyl pyrophosphate cis-1,4-polyisoprenyl transferase has been demonstrated in crude leaf extracts by the enzymic incorporation of [(14)C]isopentenyl pyrophosphate into the polymer and the recovery of [(14)C]levulinic acid following ozonolysis. The rubber transferase activity in the crude extracts of guayule leaves was 5.8 nanomoles isopentenyl pyrophosphate incorporated per milligram protein per hour. This is the first description of the rubber transferase from a nonlaticiferous plant.The specific activity (in units of nanomoles IPP converted per milligram protein per hour) of the partially purified enzyme following chromatography on diethylaminoethyl-cellulose columns was 41.7 units and contained 0.29 units of IPP isomerase activity and 0.08 units of farnesyl pyrophosphate synthetase activity. The rubber transferase requires reduced glutathione and Mg(2+) for maximal activity. There was no incorporation of IPP into cis-1,4-polyisoprene in the absence of rubber particles as primer, and Langmuir isotherm plots showed that the specific activity of the enzyme was proportional to the concentration of the enzyme on the surface of the rubber particles. For a given rubber particle distribution, enzyme activity was proportional to time, IPP concentration, and rubber concentration. The addition of 0.4 millimolar dimethylallyl pyrophosphate to the rubber transferase reaction resulted in a 2-fold increase in the incorporation of IPP into rubber. A comparison was made of the relative activities of rubber transferase in different species of Parthenium, Ficus, and Euphorbia.

  12. Isopentenyl Pyrophosphate cis-1,4-Polyisoprenyl Transferase from Guayule (Parthenium argentatum Gray) 1

    PubMed Central

    Madhavan, S.; Benedict, Chauncey R.

    1984-01-01

    Electron micrographs of the mesophyll cells of guayule Parthenium argentatum Gray leaves show deposits of cis-polyisoprene (rubber) in the cytoplasm in the vicinity of mitochondria and chloroplasts and demonstrate that the rubber-synthesizing enzymes are present in guayule leaves. The terminal step in the synthesis of cis-polyisoprene from isopentenyl pyrophosphate (IPP) catalyzed by isopentenyl pyrophosphate cis-1,4-polyisoprenyl transferase has been demonstrated in crude leaf extracts by the enzymic incorporation of [14C]isopentenyl pyrophosphate into the polymer and the recovery of [14C]levulinic acid following ozonolysis. The rubber transferase activity in the crude extracts of guayule leaves was 5.8 nanomoles isopentenyl pyrophosphate incorporated per milligram protein per hour. This is the first description of the rubber transferase from a nonlaticiferous plant. The specific activity (in units of nanomoles IPP converted per milligram protein per hour) of the partially purified enzyme following chromatography on diethylaminoethyl-cellulose columns was 41.7 units and contained 0.29 units of IPP isomerase activity and 0.08 units of farnesyl pyrophosphate synthetase activity. The rubber transferase requires reduced glutathione and Mg2+ for maximal activity. There was no incorporation of IPP into cis-1,4-polyisoprene in the absence of rubber particles as primer, and Langmuir isotherm plots showed that the specific activity of the enzyme was proportional to the concentration of the enzyme on the surface of the rubber particles. For a given rubber particle distribution, enzyme activity was proportional to time, IPP concentration, and rubber concentration. The addition of 0.4 millimolar dimethylallyl pyrophosphate to the rubber transferase reaction resulted in a 2-fold increase in the incorporation of IPP into rubber. A comparison was made of the relative activities of rubber transferase in different species of Parthenium, Ficus, and Euphorbia. Images Fig. 2 Fig. 3

  13. The Making of a Sweet Modification: Structure and Function of O-GlcNAc Transferase*

    PubMed Central

    Janetzko, John; Walker, Suzanne

    2014-01-01

    O-GlcNAc transferase is an essential mammalian enzyme responsible for transferring a single GlcNAc moiety from UDP-GlcNAc to specific serine/threonine residues of hundreds of nuclear and cytoplasmic proteins. This modification is dynamic and has been implicated in numerous signaling pathways. An unexpected second function for O-GlcNAc transferase as a protease involved in cleaving the epigenetic regulator HCF-1 has also been reported. Recent structural and biochemical studies that provide insight into the mechanism of glycosylation and HCF-1 cleavage will be described, with outstanding questions highlighted. PMID:25336649

  14. Mapping of amino acid substitutions conferring herbicide resistance in wheat glutathione transferase.

    PubMed

    Govindarajan, Sridhar; Mannervik, Bengt; Silverman, Joshua A; Wright, Kathy; Regitsky, Drew; Hegazy, Usama; Purcell, Thomas J; Welch, Mark; Minshull, Jeremy; Gustafsson, Claes

    2015-03-20

    We have used design of experiments (DOE) and systematic variance to efficiently explore glutathione transferase substrate specificities caused by amino acid substitutions. Amino acid substitutions selected using phylogenetic analysis were synthetically combined using a DOE design to create an information-rich set of gene variants, termed infologs. We used machine learning to identify and quantify protein sequence-function relationships against 14 different substrates. The resulting models were quantitative and predictive, serving as a guide for engineering of glutathione transferase activity toward a diverse set of herbicides. Predictive quantitative models like those presented here have broad applicability for bioengineering.

  15. Melatonin is synthesised by yeast during alcoholic fermentation in wines.

    PubMed

    Rodriguez-Naranjo, M Isabel; Gil-Izquierdo, Angel; Troncoso, Ana M; Cantos-Villar, Emma; Garcia-Parrilla, M Carmen

    2011-06-15

    Melatonin (N-acetyl-5-methoxytryptamine) is a neurohormone produced in the pineal gland. Its biological properties are related to the circadian rhythm. Recently, the European Food Safety Authority (EFSA) accepted the health claim related to melatonin and the alleviation of subjective feelings of jet lag. This molecule has been detected in some foods. In this work, 13 grape varieties were studied; 7 monovarietal wines were produced in an experimental winery under strictly controlled conditions and were sampled in different steps. The grape varieties used to make the wines were: Cabernet Sauvignon, Merlot, Syrah, Tempranillo, Tintilla de Rota, Palomino Fino and Alpha red. Liquid chromatography tandem mass spectrometry (LC-MS/MS) unequivocally confirmed the presence of melatonin in wines. The main contribution of this paper is the results that clearly show that melatonin is synthesised during the winemaking process, specifically after the alcoholic fermentation. Indeed, melatonin is absent in grapes and musts and is formed during alcoholic fermentation.

  16. [Alcohol and crime].

    PubMed

    Lévay, Boglárka

    2006-01-01

    The role alcohol abuse plays in criminality has been a matter of primary concern for scholars for decades, as indicated by numerous studies and research projects. Most of these studies focus on determining the presence of a relationship between criminal behaviour and alcohol use, and whether criminal inclinations increase with the consumption of alcohol. Research shows that alcohol use indeed increases the risk of criminal behaviour, and that there is an especially strong and consistent correlation between alcohol abuse and violent crimes. However, researchers still disagree on the exact extent to which alcohol use effects criminality, and on the mechanisms causing alcohol to induce violent behaviour. A significant proportion of studies have focused in recent years on aggressive behaviour as a result of drinking alcohol. One of the most important means of measurement is the study of violent behaviour in places where alcohol is on sale. Studying the forms and frequency of violence in pubs and near off-licence stores greatly enables experts to understand the general context of the problem. This is the reason for the increasing interest in the topic throughout the past few decades. The present study focuses mainly on the literature published in English and German in leading journals of criminology since 1980, as well as on the most recent and fundamental publications on the topic, with special regard to results concerning drinking habits, and the relationship between drinking alcohol and violent or criminal behaviour, respectively.

  17. Alcohol and suicidal behavior.

    PubMed

    Hufford, M R

    2001-07-01

    Alcohol dependence and alcohol intoxication are important risk factors for suicidal behavior. However, the mechanism for the relationship remains unclear. This review presents a conceptual framework relating alcohol to suicidal behavior. Distal risk factors create a statistical potential for suicide. Alcohol dependence, as well as associated comorbid psychopathology and negative life events, act as distal risk factors for suicidal behavior. Proximal risk factors determine the timing of suicidal behavior by translating the statistical potential of distal risk factors into action. The acute effects of alcohol intoxication act as important proximal risk factors for suicidal behavior among the alcoholic and nonalcoholic alike. Mechanisms responsible for alcohol's ability to increase the proximal risk for suicidal behavior include alcohol's ability to: (1) increase psychological distress, (2) increase aggressiveness, (3) propel suicidal ideation into action through suicide-specific alcohol expectancies, and (4) constrict cognition which impairs the generation and implementation of alternative coping strategies. Moreover, the proximal risk factors associated with acute intoxication are consistent with Baumeister's (1990) escape theory of suicide. Suggestions for additional research are discussed, including the possibility that a nonlinear cusp catastrophe model characterizes the relationship between alcohol intoxication and suicidal behavior.

  18. Genetics of alcoholism.

    PubMed

    Schuckit, M A; Li, T K; Cloninger, C R; Deitrich, R A

    1985-12-01

    Great progress has been made by research on the contribution genetic factors make to a vulnerability toward alcoholism. Animal studies have demonstrated the importance of genetics in ethanol preference and levels of consumption, and human family, twin, and adoption research have revealed a 4-fold higher risk for offspring of alcoholics, even if they were adopted out at birth. The work presented in this symposium reviews the ongoing search for genetic trait markers of a vulnerability toward alcoholism. Dr. Li has used both animal and human research to demonstrate the possible importance of the genetic control of enzymes involved in ethanol metabolism and has worked to help develop an animal model of alcoholism. The possible importance of subgroups with different levels of predisposition toward alcoholism is emphasized by Dr. Cloninger. An overview of the studies of sons of alcoholics, given by Dr. Schuckit, reveals the potential importance of a decreased intensity of reaction to ethanol as part of a predisposition toward alcoholism and discusses the possible impact of some brain waves and ethanol metabolites to an alcoholism vulnerability. Dr. Deitrich reviews interrelationships between studies of animals and humans in the search for factors involved in a genetic vulnerability toward alcoholism. Taken together, these presentations underscore the importance of genetic factors in alcoholism, review animal and human research attempting to identify markers of a vulnerability, and reveal the high level of interaction between human and animal research.

  19. Fungal ammonia fermentation, a novel metabolic mechanism that couples the dissimilatory and assimilatory pathways of both nitrate and ethanol. Role of acetyl CoA synthetase in anaerobic ATP synthesis.

    PubMed

    Takasaki, Kazuto; Shoun, Hirofumi; Yamaguchi, Masashi; Takeo, Kanji; Nakamura, Akira; Hoshino, Takayuki; Takaya, Naoki

    2004-03-26

    Fungal ammonia fermentation is a novel dissimilatory metabolic mechanism that supplies energy under anoxic conditions. The fungus Fusarium oxysporum reduces nitrate to ammonium and simultaneously oxidizes ethanol to acetate to generate ATP (Zhou, Z., Takaya, N., Nakamura, A., Yamaguchi, M., Takeo, K., and Shoun, H. (2002) J. Biol. Chem. 277, 1892-1896). We identified the Aspergillus nidulans genes involved in ammonia fermentation by analyzing fungal mutants. The results showed that assimilatory nitrate and nitrite reductases (the gene products of niaD and niiA) were essential for reducing nitrate and for anaerobic cell growth during ammonia fermentation. We also found that ethanol oxidation is coupled with nitrate reduction and catalyzed by alcohol dehydrogenase, coenzyme A (CoA)-acylating aldehyde dehydrogenase, and acetyl-CoA synthetase (Acs). This is similar to the mechanism suggested in F. oxysporum except A. nidulans uses Acs to produce ATP instead of the ADP-dependent acetate kinase of F. oxysporum. The production of Acs requires a functional facA gene that encodes Acs and that is involved in ethanol assimilation and other metabolic processes. We purified the gene product of facA (FacA) from the fungus to show that the fungus acetylates FacA on its lysine residue(s) specifically under conditions of ammonia fermentation to regulate its substrate affinity. Acetylated FacA had higher affinity for acetyl-CoA than for acetate, whereas non-acetylated FacA had more affinity for acetate. Thus, the acetylated variant of the FacA protein is responsible for ATP synthesis during fungal ammonia fermentation. These results showed that the fungus ferments ammonium via coupled dissimilatory and assimilatory mechanisms.

  20. Exposure to Televised Alcohol Ads and Subsequent Adolescent Alcohol Use

    ERIC Educational Resources Information Center

    Stacy, Alan W.; Zogg, Jennifer B.; Unger, Jennifer B.; Dent, Clyde W.

    2004-01-01

    Objective : To assess the impact of televised alcohol commercials on adolescents' alcohol use. Methods : Adolescents completed questionnaires about alcohol commercials and alcohol use in a prospective study. Results : A one standard deviation increase in viewing television programs containing alcohol commercials in seventh grade was associated…

  1. Alcohol Expectancies in Young Adult Sons of Alcoholics and Controls.

    ERIC Educational Resources Information Center

    Brown, Sandra A.; And Others

    Adolescent offspring of alcoholics have been found to have higher alcohol reinforcement expectancies than do teenagers from nonalcoholic families. In particular, those with a positive family history of alcoholism expect more cognitive and motor enhancement with alcohol consumption. This study examined the alcohol expectancies of 58 matched pairs…

  2. In silico analysis of protein Lys-N𝜀-acetylation in plants

    PubMed Central

    Rao, R. Shyama Prasad; Thelen, Jay J.; Miernyk, Ján A.

    2014-01-01

    Among post-translational modifications, there are some conceptual similarities between Lys-N𝜀-acetylation and Ser/Thr/Tyr O-phosphorylation. Herein we present a bioinformatics-based overview of reversible protein Lys-acetylation, including some comparisons with reversible protein phosphorylation. The study of Lys-acetylation of plant proteins has lagged behind studies of mammalian and microbial cells; 1000s of acetylation sites have been identified in mammalian proteins compared with only hundreds of sites in plant proteins. While most previous emphasis was focused on post-translational modifications of histones, more recent studies have addressed metabolic regulation. Being directly coupled with cellular CoA/acetyl-CoA and NAD/NADH, reversible Lys-N𝜀-acetylation has the potential to control, or contribute to control, of primary metabolism, signaling, and growth and development. PMID:25136347

  3. Purification and Biochemical Characterization of Glutathione S-Transferase from Down Syndrome and Normal Children Erythrocytes: A Comparative Study

    ERIC Educational Resources Information Center

    Hamed, Ragaa R.; Maharem, Tahany M.; Abdel-Meguid, Nagwa; Sabry, Gilane M.; Abdalla, Abdel-Monem; Guneidy, Rasha A.

    2011-01-01

    Down syndrome (DS) is the phenotypic manifestation of trisomy 21. Our study was concerned with the characterization and purification of glutathione S-transferase enzyme (GST) from normal and Down syndrome (DS) erythrocytes to illustrate the difference in the role of this enzyme in the cell. Glutathione S-transferase and glutathione (GSH) was…

  4. Polymorphism in cytochrome P450 2E1 and interaction with other genetic risk factors and susceptibility to alcoholic liver cirrhosis.

    PubMed

    Khan, Anwar Jamal; Ruwali, Munindra; Choudhuri, Gourdas; Mathur, Neeraj; Husain, Qayyum; Parmar, Devendra

    2009-05-12

    The association of polymorphism in cytochrome P450 2E1 (CYP2E1), the major microsomal ethanol metabolizing enzyme and its interaction with genes, involved in detoxification of reactive oxygen species, such as glutathione-S-transferases M1 (GSTM1) and alcohol intake, gamma-aminobutyric acid receptor gamma2 (GABRG2) was studied with the risk to alcoholic cirrhosis in a case-control study. A total of 160 alcoholic cirrhotic and 125 non-alcoholic cirrhotic cases, visiting the OPD facility of Gastroenterology Department of Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGI), Lucknow, India and 250 non-alcoholic and 100 alcoholic controls having no evidence of liver disease were included in the study. PCR-based RFLP methodology was followed for genotyping studies. Our data revealed that the variant genotypes of CYP2E1 5B exhibited significant association with the alcoholic liver cirrhosis when compared to non-alcoholic controls (OR: 4.3; 95%CI: 1.5-12.4; p: 0.003) or non-alcoholic cirrhosis patients (OR: 5.4; 95%CI: 1.2-24.5; p: 0.01) or alcoholic controls (OR: 4.3; 95%CI: 0.95-19.62; p: 0.04). Haplotype approach revealed that haplotype T-A-T was found to be associated with more than 5-fold increase in risk for alcoholic cirrhosis. Likewise, combination of variant genotype of CYP2E1 5B with null genotype of GSTM1, a phase II detoxification enzyme, resulted in several fold increase in risk in alcoholic cirrhotic patients when compared with non-alcoholic controls or non-alcoholic cirrhotic patients. Further, the combination of variant genotype of CYP2E1 5B with GABRG2, significantly increased the risk upto 6.5-fold in alcoholic cirrhotic patients when compared with non-alcoholic controls thereby suggesting the role of gene-gene interaction in alcoholic cirrhosis.

  5. Dynamic Adaptation of Liver Mitochondria to Chronic Alcohol Feeding in Mice

    PubMed Central

    Han, Derick; Ybanez, Maria D.; Johnson, Heather S.; McDonald, Jeniece N.; Mesropyan, Lusine; Sancheti, Harsh; Martin, Gary; Martin, Alanna; Lim, Atalie M; Dara, Lily; Cadenas, Enrique; Tsukamoto, Hidekazu; Kaplowitz, Neil

    2012-01-01

    Liver mitochondria undergo dynamic alterations following chronic alcohol feeding to mice. Intragastric alcohol feeding to mice resulted in 1) increased state III respiration (109% compared with control) in isolated liver mitochondria, probably due to increased levels of complexes I, IV, and V being incorporated into the respiratory chain; 2) increased mitochondrial NAD+ and NADH levels (∼2-fold), with no change in the redox status; 3) alteration in mitochondrial morphology, with increased numbers of elongated mitochondria; and 4) enhanced mitochondrial biogenesis in the liver, which corresponded with an up-regulation of PGC-1α (peroxisome proliferator-activated receptor γ coactivator-1α). Oral alcohol feeding to mice, which is associated with less liver injury and steatosis, slightly enhanced respiration in isolated liver mitochondria (30.8% compared with control), lower than the striking increase caused by intragastric alcohol feeding. Mitochondrial respiration increased with both oral and intragastric alcohol feeding despite extensive N-acetylation of mitochondrial proteins. The alcohol-induced mitochondrial alterations are probably an adaptive response to enhance alcohol metabolism in the liver. Isolated liver mitochondria from alcohol-treated mice had a greater rate of acetaldehyde metabolism and respiration when treated with acetaldehyde than control. Aldehyde dehydrogenase-2 levels were unaltered in response to alcohol, suggesting that the greater acetaldehyde metabolism by isolated mitochondria from alcohol-treated mice was due to increased mitochondrial respiration that regenerated NAD+, the rate-limiting substrate in alcohol/acetaldehyde metabolism. Overall, our work suggests that mitochondrial plasticity in the liver may be an important adaptive response to the metabolic stress caused by alcohol intake and could potentially play a role in many other vital functions performed by the liver. PMID:23086958

  6. Update on Alcoholic Hepatitis.

    PubMed

    Torok, Natalie J

    2015-11-02

    Alcoholic liver disease is one of the most prevalent liver diseases worldwide, and a major cause of morbidity and mortality. Alcoholic hepatitis is a severe form of liver injury in patients with alcohol abuse, can present as an acute on chronic liver failure associated with a rapid decline in liver synthetic function, and consequent increase in mortality. Despite therapy, about 30%-50% of patients with severe alcoholic hepatitis eventually die. The pathogenic pathways that lead to the development of alcoholic hepatitis are complex and involve oxidative stress, gut dysbiosis, and dysregulation of the innate and adaptive immune system with injury to the parenchymal cells and activation of hepatic stellate cells. As accepted treatment approaches are currently limited, a better understanding of the pathophysiology would be required to generate new approaches that improve outcomes. This review focuses on recent advances in the diagnosis, pathogenesis of alcoholic hepatitis and novel treatment strategies.

  7. Characterisation of two alcohol acyltransferases from kiwifruit (Actinidia spp.) reveals distinct substrate preferences.

    PubMed

    Günther, Catrin S; Chervin, Christian; Marsh, Ken B; Newcomb, Richard D; Souleyre, Edwige J F

    2011-06-01

    Volatile esters are key compounds of kiwifruit flavour and are formed by alcohol acyltransferases that belong to the BAHD acyltransferase superfamily. Quantitative RT-PCR was used to screen kiwifruit-derived expressed sequence tags with proposed acyltransferase function in order to select ripening-specific sequences and test their involvement in alcohol acylation. The screening criterion was for at least 10-fold increased transcript accumulation in ripe compared with unripe kiwifruit and in response to ethylene. Recombinant expression in yeast revealed alcohol acyltransferase activity for Actinidia-derived AT1, AT16 and the phylogenetically distinct AT9, using various alcohol and acyl-CoA substrates. Functional characterisation of AT16 and AT9 demonstrated striking differences in their substrate preferences and apparent catalytic efficiencies (V'(max)K(m)(-1)). Thus revealing benzoyl-CoA:alcohol O-acyltransferase activity for AT16 and acetyl-CoA:alcohol O-acyltransferase activity for AT9. Both kiwifruit-derived enzymes displayed higher reaction rates with butanol compared with ethanol, even though ethanol is the main alcohol in ripe fruit. Since ethyl acetate and ethyl benzoate are major esters in ripe kiwifruit, we suggest that fruit characteristic volatile profiles result from a combination of substrate availability and specificity of individual alcohol acyltransferases.

  8. Acetyl phosphate-sensitive regulation of flagellar biogenesis and capsular biosynthesis depends on the Rcs phosphorelay.

    PubMed

    Fredericks, Christine E; Shibata, Satoshi; Aizawa, Shin-Ichi; Reimann, Sylvia A; Wolfe, Alan J

    2006-08-01

    As part of our attempt to map the impact of acetyl phosphate (acetyl approximately P) on the entire network of two-component signal transduction pathways in Escherichia coli, we asked whether the influence of acetyl approximately P on capsular biosynthesis and flagellar biogenesis depends on the Rcs phosphorelay. To do so, we performed a series of epistasis experiments: mutations in the components of the pathway that controls acetyl approximately P levels were combined with mutations in components of the Rcs phosphorelay. Cells that did not synthesize acetyl approximately P produced no capsule under normally permissive conditions, while those that accumulated acetyl approximately P synthesized capsule under conditions previously considered to be non-permissive. Acetyl approximately P-dependent capsular biosynthesis required both RcsB and RcsA, while the lack of RcsC restored capsular biosynthesis to acetyl approximately P-deficient cells. Similarly, acetyl approximately P-sensitive repression of flagellar biogenesis was suppressed by the loss of RcsB (but not of RcsA), while it was enhanced by the lack of RcsC. Taken together, these results show that both acetyl approximately P-sensitive activation of capsular biosynthesis and acetyl approximately P-sensitive repression of flagellar biogenesis require the Rcs phosphorelay. Moreover, they provide strong genetic support for the hypothesis that RcsC can function as either a kinase or a phosphatase dependent on environmental conditions. Finally, we learned that RcsB and RcsC inversely regulated the timing of flagellar biogenesis: rcsB mutants elaborated flagella prematurely, while rcsC mutants delayed their display of flagella. Temporal control of flagella biogenesis implicates the Rcs phosphorelay (and, by extension, acetyl approximately P) in the transition of motile, planktonic individuals into sessile biofilm communities.

  9. Smad Acetylation: A New Level of Regulation in TGF-Beta Signaling

    DTIC Science & Technology

    2007-07-01

    AD_________________ Award Number: W81XWH-04-1-0357 TITLE: Smad Acetylation : A New Level of...TYPE Annual Summary 3. DATES COVERED (From - To) 1 JUL 2004 - 30 JUN 2007 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Smad Acetylation : A New...proposal suggests a series of experiments designed to study the acetylation of Smad proteins. We have determined that Smad2 can be efficiently

  10. Autoimmune regulator is acetylated by transcription coactivator CBP/p300

    SciTech Connect

    Saare, Mario; Rebane, Ana; Rajashekar, Balaji; Vilo, Jaak; Peterson, Paert

    2012-08-15

    The Autoimmune Regulator (AIRE) is a regulator of transcription in the thymic medulla, where it controls the expression of a large set of peripheral-tissue specific genes. AIRE interacts with the transcriptional coactivator and acetyltransferase CBP and synergistically cooperates with it in transcriptional activation. Here, we aimed to study a possible role of AIRE acetylation in the modulation of its activity. We found that AIRE is acetylated in tissue culture cells and this acetylation is enhanced by overexpression of CBP and the CBP paralog p300. The acetylated lysines were located within nuclear localization signal and SAND domain. AIRE with mutations that mimicked acetylated K243 and K253 in the SAND domain had reduced transactivation activity and accumulated into fewer and larger nuclear bodies, whereas mutations that mimicked the unacetylated lysines were functionally similar to wild-type AIRE. Analogously to CBP, p300 localized to AIRE-containing nuclear bodies, however, the overexpression of p300 did not enhance the transcriptional activation of AIRE-regulated genes. Further studies showed that overexpression of p300 stabilized the AIRE protein. Interestingly, gene expression profiling revealed that AIRE, with mutations mimicking K243/K253 acetylation in SAND, was able to activate gene expression, although the affected genes were different and the activation level was lower from those regulated by wild-type AIRE. Our results suggest that the AIRE acetylation can influence the selection of AIRE activated genes. -- Highlights: Black-Right-Pointing-Pointer AIRE is acetylated by the acetyltransferases p300 and CBP. Black-Right-Pointing-Pointer Acetylation occurs between CARD and SAND domains and within the SAND domain. Black-Right-Pointing-Pointer Acetylation increases the size of AIRE nuclear dots. Black-Right-Pointing-Pointer Acetylation increases AIRE protein stability. Black-Right-Pointing-Pointer AIRE acetylation mimic regulates a different set of AIRE

  11. Epigenetic Readers of Lysine Acetylation Regulate Cocaine-Induced Plasticity

    PubMed Central

    Sartor, Gregory C.; Powell, Samuel K.; Brothers, Shaun P.

    2015-01-01

    Epigenetic processes that regulate histone acetylation play an essential role in behavioral and molecular responses to cocaine. To date, however, only a small fraction of the mechanisms involved in the addiction-associated acetylome have been investigated. Members of the bromodomain and extraterminal (BET) family of epigenetic “reader” proteins (BRD2, BRD3, BRD4, and BRDT) bind acetylated histones and serve as a scaffold for the recruitment of macromolecular complexes to modify chromatin accessibility and transcriptional activity. The role of BET proteins in cocaine-induced plasticity, however, remains elusive. Here, we used behavioral, pharmacological, and molecular techniques to examine the involvement of BET bromodomains in cocaine reward. Of the BET proteins, BRD4, but not BRD2 or BRD3, was significantly elevated in the nucleus accumbens (NAc) of mice and rats following repeated cocaine injections and self-administration. Systemic and intra-accumbal inhibition of BRD4 with the BET inhibitor, JQ1, attenuated the rewarding effects of cocaine in a conditioned place preference procedure but did not affect conditioned place aversion, nor did JQ1 alone induce conditioned aversion or preference. Investigating the underlying mechanisms, we found that repeated cocaine injections enhanced the binding of BRD4, but not BRD3, to the promoter region of Bdnf in the NAc, whereas systemic injection of JQ1 attenuated cocaine-induced expression of Bdnf in the NAc. JQ1 and siRNA-mediated knockdown of BRD4 in vitro also reduced expression of Bdnf. These findings indicate that disrupting the interaction between BET proteins and their acetylated lysine substrates may provide a new therapeutic avenue for the treatment of drug addiction. SIGNIFICANCE STATEMENT Proteins involved in the “readout” of lysine acetylation marks, referred to as BET bromodomain proteins (including BRD2, BRD3, BRD4, and BRDT), have been shown to be key regulators of chromatin dynamics and disease, and

  12. Piperazine oxadiazole inhibitors of acetyl-CoA carboxylase.

    PubMed

    Bourbeau, Matthew P; Siegmund, Aaron; Allen, John G; Shu, Hong; Fotsch, Christopher; Bartberger, Michael D; Kim, Ki-Won; Komorowski, Renee; Graham, Melissa; Busby, James; Wang, Minghan; Meyer, James; Xu, Yang; Salyers, Kevin; Fielden, Mark; Véniant, Murielle M; Gu, Wei

    2013-12-27

    Acetyl-CoA carboxylase (ACC) is a target of interest for the treatment of metabolic syndrome. Starting from a biphenyloxadiazole screening hit, a series of piperazine oxadiazole ACC inhibitors was developed. Initial pharmacokinetic liabilities of the piperazine oxadiazoles were overcome by blocking predicted sites of metabolism, resulting in compounds with suitable properties for further in vivo studies. Compound 26 was shown to inhibit malonyl-CoA production in an in vivo pharmacodynamic assay and was advanced to a long-term efficacy study. Prolonged dosing with compound 26 resulted in impaired glucose tolerance in diet-induced obese (DIO) C57BL6 mice, an unexpected finding.

  13. Urinary D-glucaric acid and serum hepatic enzyme levels in chronic alcoholics.

    PubMed

    Tutor, J C; Alvarez-Prechous, A; Bernabeu, F; Pardiñas, M C; Paz, J M; Lareu, V

    1988-06-01

    Urinary D-glucaric acid (DGA) and the activities of gamma-glutamyl transferase (GGT) and other hepatic enzymes in serum were determined in 33 noncirrhotic male alcoholics who had continued to consume alcohol until at least 24 h prior to the taking of samples. DGA excretion was significantly greater in them than in a group of 30 healthy controls (p less than 0.001), exceeding the upper reference level in 38% of the alcoholic cases (as compared with 88% for GGT). In the alcoholic patients, there was highly significant correlation between urinary DGA and serum GGT (r = 0.613, p less than 0.001), suggesting that in both cases the increased levels are due to enzyme induction. None of the biochemical variables studied were significantly correlated with estimated daily alcohol consumption. Urinary DGA levels fell off rapidly with abstinence, and in 31 alcoholic patients who had consumed no alcohol for 5 days, there was no statistically significant correlation between DGA excretion and serum GGT (r = 0.158, p congruent to 0.4).

  14. Aspirin acetylates wild type and mutant p53 in colon cancer cells: identification of aspirin acetylated sites on recombinant p53.

    PubMed

    Ai, Guoqiang; Dachineni, Rakesh; Kumar, D Ramesh; Marimuthu, Srinivasan; Alfonso, Lloyd F; Bhat, G Jayarama

    2016-05-01

    Aspirin's ability to inhibit cell proliferation and induce apoptosis in cancer cell lines is considered to be an important mechanism for its anti-cancer effects. We previously demonstrated that aspirin acetylated the tumor suppressor protein p53 at lysine 382 in MDA-MB-231 human breast cancer cells. Here, we extended these observations to human colon cancer cells, HCT 116 harboring wild type p53, and HT-29 containing mutant p53. We demonstrate that aspirin induced acetylation of p53 in both cell lines in a concentration-dependent manner. Aspirin-acetylated p53 was localized to the nucleus. In both cell lines, aspirin induced p21(CIP1). Aspirin also acetylated recombinant p53 (rp53) in vitro suggesting that it occurs through a non-enzymatic chemical reaction. Mass spectrometry analysis and immunoblotting identified 10 acetylated lysines on rp53, and molecular modeling showed that all lysines targeted by aspirin are surface exposed. Five of these lysines are localized to the DNA-binding domain, four to the nuclear localization signal domain, and one to the C-terminal regulatory domain. Our results suggest that aspirin's anti-cancer effect may involve acetylation and activation of wild type and mutant p53 and induction of target gene expression. This is the first report attempting to characterize p53 acetylation sites targeted by aspirin.

  15. Reduced Wall Acetylation Proteins Play Vital and Distinct Roles in Cell Wall O-Acetylation in Arabidopsis1[C][W][OPEN

    PubMed Central

    Manabe, Yuzuki; Verhertbruggen, Yves; Gille, Sascha; Harholt, Jesper; Chong, Sun-Li; Pawar, Prashant Mohan-Anupama; Mellerowicz, Ewa J.; Tenkanen, Maija; Cheng, Kun; Pauly, Markus; Scheller, Henrik Vibe

    2013-01-01

    The Reduced Wall Acetylation (RWA) proteins are involved in cell wall acetylation in plants. Previously, we described a single mutant, rwa2, which has about 20% lower level of O-acetylation in leaf cell walls and no obvious growth or developmental phenotype. In this study, we generated double, triple, and quadruple loss-of-function mutants of all four members of the RWA family in Arabidopsis (Arabidopsis thaliana). In contrast to rwa2, the triple and quadruple rwa mutants display severe growth phenotypes revealing the importance of wall acetylation for plant growth and development. The quadruple rwa mutant can be completely complemented with the RWA2 protein expressed under 35S promoter, indicating the functional redundancy of the RWA proteins. Nevertheless, the degree of acetylation of xylan, (gluco)mannan, and xyloglucan as well as overall cell wall acetylation is affected differently in different combinations of triple mutants, suggesting their diversity in substrate preference. The overall degree of wall acetylation in the rwa quadruple mutant was reduced by 63% compared with the wild type, and histochemical analysis of the rwa quadruple mutant stem indicates defects in cell differentiation of cell types with secondary cell walls. PMID:24019426

  16. Alcohol in human history.

    PubMed

    Vallee, B L

    1994-01-01

    The role of ethanol in the history of human development is here summarized under seven topics: I. Alcohol: the substitute for water as the major human beverage; II. Alcohol as a component of the diet and source of calories; III. Alcohol, concentration by distillation; IV. The Reformation, Temperance and Prohibition; V. Potable nonalcoholic beverages: Boiled water (coffee, tea); VI. Purification and sanitation of water; VII. The present and future.

  17. Alcohol use and menopause.

    PubMed

    Wilsnack, Richard W; Wilsnack, Sharon C

    2016-04-01

    Clinicians should periodically assess their menopausal patients' alcohol use. Specific health hazards from excessive alcohol consumption, as well as potential benefits of low-level consumption (for cardiovascular disease, bone health, and type 2 diabetes), should be discussed with their patients who drink. The information in this Practice Pearl can help clinicians provide evidence-based guidance about alcohol consumption and its relationship to common health concerns.

  18. [Biological markers of alcoholism].

    PubMed

    Marcos Martín, M; Pastor Encinas, I; Laso Guzmán, F J

    2005-09-01

    Diagnosis of alcoholism is very important, given its high prevalence and possibility of influencing the disease course. For this reason, the so-called biological markers of alcoholism are useful. These are analytic parameters that alter in the presence of excessive alcohol consumption. The two most relevant markers are the gamma-glutamyltranspeptidase and carbohydrate deficient transferrin. With this clinical comment, we aim to contribute to the knowledge of these tests and promote its use in the clinical practice.

  19. Fetal Alcohol Syndrome "Chemical Genocide."

    ERIC Educational Resources Information Center

    Asetoyer, Charon

    In the Northern Plains of the United States, 100% of Indian reservations are affected by alcohol related problems. Approximately 90% of Native American adults are currently alcohol users or abusers or are recovering from alcohol abuse. Alcohol consumption has a devastating effect on the unborn. Fetal Alcohol Syndrome (FAS) is an irreversible birth…

  20. Tobacco, Alcohol, Drugs, and Pregnancy

    MedlinePlus

    ... What are fetal alcohol spectrum disorders? • What is fetal alcohol syndrome? • What amounts of alcohol can cause FAS? • Is ... disabilities that can last a lifetime. What is fetal alcohol syndrome? Fetal alcohol syndrome (FAS) is the most severe ...

  1. Sirtuin-dependent reversible lysine acetylation of glutamine synthetases reveals an autofeedback loop in nitrogen metabolism

    PubMed Central

    You, Di; Yin, Bin-Cheng; Li, Zhi-Hai; Zhou, Ying; Yu, Wen-Bang; Zuo, Peng; Ye, Bang-Ce

    2016-01-01

    In cells of all domains of life, reversible lysine acetylation modulates the function of proteins involved in central cellular processes such as metabolism. In this study, we demonstrate that the nitrogen regulator GlnR of the actinomycete Saccharopolyspora erythraea directly regulates transcription of the acuA gene (SACE_5148), which encodes a Gcn5-type lysine acetyltransferase. We found that AcuA acetylates two glutamine synthetases (GlnA1 and GlnA4) and that this lysine acetylation inactivated GlnA4 (GSII) but had no significant effect on GlnA1 (GSI-β) activity under the conditions tested. Instead, acetylation of GlnA1 led to a gain-of-function that modulated its interaction with the GlnR regulator and enhanced GlnR–DNA binding. It was observed that this regulatory function of acetylated GSI-β enzymes is highly conserved across actinomycetes. In turn, GlnR controls the catalytic and regulatory activities (intracellular acetylation levels) of glutamine synthetases at the transcriptional and posttranslational levels, indicating an autofeedback loop that regulates nitrogen metabolism in response to environmental change. Thus, this GlnR-mediated acetylation pathway provides a signaling cascade that acts from nutrient sensing to acetylation of proteins to feedback regulation. This work presents significant new insights at the molecular level into the mechanisms underlying the regulation of protein acetylation and nitrogen metabolism in actinomycetes. PMID:27247389

  2. Preparation of radioactive acetyl-l-carnitine by an enzymatic exchange reaction

    SciTech Connect

    Emaus, R.; Bieber, L.L.

    1982-01-15

    A rapid method for the preparation of (1-/sup 14/C)acetyl-L-carnitine is described. The method involves exchange of (1-/sup 14/C)acetic acid into a pool of unlabeled acetyl-L-carnitine using the enzymes acetyl-CoA synthetase and carnitine acetyltransferase. After isotopic equilibrium is attained, radioactive acetylcarnitine is separated from the other reaction components by chromatography on Dowex 1 (C1/sup -/) anion exchange resin. One of the procedures used to verify the product (1-/sup 14/C)acetyl-L-carnitine can be used to synthesize (3S)-(5-/sup 14/C)citric acid.

  3. Inhibition of N-acetylneuraminate lyase by N-acetyl-4-oxo-D-neuraminic acid.

    PubMed

    Gross, H J; Brossmer, R

    1988-05-09

    We show that the 4-oxo analogue of N-acetyl-D-neuraminic acid strongly inhibits N-acetylneuraminate lyase (NeuAc aldolase, EC 4.1.3.3) from Clostridum perfringens (Ki = 0.025 mM) and Escherichia coli (Ki = 0.15 mM). In each case the inhibition was competitive. N-Acetyl-D-neuraminic acid; N-Acetylneuraminate lyase; N-Acetyl-D-neuraminic acid analog; 5-Acetamido-3,5-dideoxy-beta-D-manno-non-2,4-diulosonic acid; 2-Deoxy-2,3-didehydro-N-acetyl-4-oxo-neuraminic acid; Competitive inhibitor.

  4. First Comprehensive Proteome Analyses of Lysine Acetylation and Succinylation in Seedling Leaves of Brachypodium distachyon L.

    PubMed Central

    Zhen, Shoumin; Deng, Xiong; Wang, Jian; Zhu, Gengrui; Cao, Hui; Yuan, Linlin; Yan, Yueming

    2016-01-01

    Protein acetylation and succinylation are the most crucial protein post-translational modifications (PTMs) involved in the regulation of plant growth and development. In this study, we present the first lysine-acetylation and lysine-succinylation proteome analysis of seedling leaves in Brachypodium distachyon L (Bd). Using high accuracy nano LC-MS/MS combined with affinity purification, we identified a total of 636 lysine-acetylated sites in 353 proteins and 605 lysine-succinylated sites in 262 proteins. These proteins participated in many biology processes, with various molecular functions. In particular, 119 proteins and 115 sites were found to be both acetylated and succinylated, simultaneously. Among the 353 acetylated proteins, 148 had acetylation orthologs in Oryza sativa L., Arabidopsis thaliana, Synechocystis sp. PCC 6803, and Glycine max L. Among the 262 succinylated proteins, 170 of them were found to have homologous proteins in Oryza sativa L., Escherichia coli, Sacchayromyces cerevisiae, or Homo sapiens. Motif-X analysis of the acetylated and succinylated sites identified two new acetylated motifs (K---K and K-I-K) and twelve significantly enriched succinylated motifs for the first time, which could serve as possible binding loci for future studies in plants. Our comprehensive dataset provides a promising starting point for further functional analysis of acetylation and succinylation in Bd and other plant species. PMID:27515067

  5. Proteome-wide analysis of lysine acetylation in the plant pathogen Botrytis cinerea

    PubMed Central

    Lv, Binna; Yang, Qianqian; Li, Delong; Liang, Wenxing; Song, Limin

    2016-01-01

    Lysine acetylation is a dynamic and reversible post-translational modification that plays an important role in diverse cellular processes. Botrytis cinerea is the most thoroughly studied necrotrophic species due to its broad host range and huge economic impact. However, to date, little is known about the functions of lysine acetylation in this plant pathogen. In this study, we determined the lysine acetylome of B. cinerea through the combination of affinity enrichment and high-resolution LC-MS/MS analysis. Overall, 1582 lysine acetylation sites in 954 proteins were identified. Bioinformatics analysis shows that the acetylated proteins are involved in diverse biological functions and show multiple cellular localizations. Several particular amino acids preferred near acetylation sites, including KacY, KacH, Kac***R, KacF, FKac and Kac***K, were identified in this organism. Protein interaction network analysis demonstrates that a variety of interactions are modulated by protein acetylation. Interestingly, 6 proteins involved in virulence of B. cinerea, including 3 key components of the high-osmolarity glycerol pathway, were found to be acetylated, suggesting that lysine acetylation plays regulatory roles in pathogenesis. These data provides the first comprehensive view of the acetylome of B. cinerea and serves as a rich resource for functional analysis of lysine acetylation in this plant pathogen. PMID:27381557

  6. Peptidoglycan O Acetylation and Autolysin Profile of Enterococcus faecalis in the Viable but Nonculturable State

    PubMed Central

    Pfeffer, John M.; Strating, Hendrik; Weadge, Joel T.; Clarke, Anthony J.

    2006-01-01

    The O acetylation of peptidoglycan occurs specifically at the C-6 hydroxyl group of muramoyl residues. Using a combination of high-performance liquid chromatography-based organic acid analysis and carbohydrate analysis by high-pH anion-exchange chromatography, we determined that strains of Entercoccus durans, E. faecalis, E. faecium, and E. hirae produce O-acetylated peptidoglycan. The levels of O acetylation ranged from 19% to 72% relative to the muramic acid content, and they were found to vary with the growth phase of the culture. Increases of 10 to 40% in O acetylation were observed with cultures entering the stationary phase. Cells of E. faecalis in the viable but nonculturable (VBNC) state had the highest levels of peptidoglycan O acetylation. The presence of this modification to peptidoglycan was shown to inhibit the action of hen egg white lysozyme in a concentration-dependent manner. Zymography using sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels containing either O-acetylated or chemically de-O-acetylated peptidoglycan was used to monitor the production of specific autolysins in E. faecalis. Differences in the expression of specific autolysins were observed with the age of the culture, and VBNC E. faecalis produced the highest levels of these enzymes. This technique also permitted classification of the enterococcal autolysins into enzymes that preferentially hydrolyze either O-acetylated or non-O-acetylated peptidoglycan and enzymes that show no apparent preference for either substrate type. PMID:16428393

  7. Lysine Acetylation of CREBH Regulates Fasting-Induced Hepatic Lipid Metabolism

    PubMed Central

    Kim, Hyunbae; Mendez, Roberto; Chen, Xuequn; Fang, Deyu

    2015-01-01

    Cyclic AMP-responsive element-binding protein 3-like 3, hepatocyte specific (CREBH), is a hepatic transcription factor that functions as a key regulator of energy homeostasis. Here, we defined a regulatory CREBH posttranslational modification process, namely, lysine-specific acetylation, and its functional involvement in fasting-induced hepatic lipid metabolism. Fasting induces CREBH acetylation in mouse livers in a time-dependent manner, and this event is critical for CREBH transcriptional activity in regulating hepatic lipid homeostasis. The histone acetyltransferase PCAF-mediated acetylation and the deacetylase sirtuin-1-mediated deacetylation coexist to maintain CREBH acetylation states under fasting conditions. Site-directed mutagenesis and functional analyses revealed that the lysine (K) residue at position 294 (K294) within the bZIP domain of the CREBH protein is the site where fasting-induced acetylation/deacetylation occurs. Introduction of the acetylation-deficient (K294R) or acetylation-mimicking (K294Q) mutation inhibited or enhanced CREBH transcriptional activity, respectively. Importantly, CREBH acetylation at lysine 294 was required for the interaction and synergy between CREBH and peroxisome proliferator-activated receptor α (PPARα) in activating their target genes upon fasting or glucagon stimulation. Introduction of the CREBH lysine 294 mutation in the liver leads to hepatic steatosis and hyperlipidemia in animals under prolonged fasting. In summary, our study reveals a molecular mechanism by which fasting or glucagon stimulation modulates lipid homeostasis through acetylation of CREBH. PMID:26438600

  8. Conserved Lysine Acetylation within the Microtubule-Binding Domain Regulates MAP2/Tau Family Members

    PubMed Central

    Hwang, Andrew W.; Trzeciakiewicz, Hanna; Friedmann, Dave; Yuan, Chao-Xing; Marmorstein, Ronen; Lee, Virginia M. Y.; Cohen, Todd J.

    2016-01-01

    Lysine acetylation has emerged as a dominant post-translational modification (PTM) regulating tau proteins in Alzheimer’s disease (AD) and related tauopathies. Mass spectrometry studies indicate that tau acetylation sites cluster within the microtubule-binding region (MTBR), a region that is highly conserved among tau, MAP2, and MAP4 family members, implying that acetylation could represent a conserved regulatory mechanism for MAPs beyond tau. Here, we combined mass spectrometry, biochemical assays, and cell-based approaches to demonstrate that the tau family members MAP2 and MAP4 are also subject to reversible acetylation. We identify a cluster of lysines in the MAP2 and MAP4 MTBR that undergo CBP-catalyzed acetylation, many of which are conserved in tau. Similar to tau, MAP2 acetylation can occur in a cysteine-dependent auto-regulatory manner in the presence of acetyl-CoA. Furthermore, tubulin reduced MAP2 acetylation, suggesting tubulin binding dictates MAP acetylation status. Taken together, these results uncover a striking conservation of MAP2/Tau family post-translational modifications that could expand our understanding of the dynamic mechanisms regulating microtubules. PMID:28002468

  9. Lysine Acetylation of CREBH Regulates Fasting-Induced Hepatic Lipid Metabolism.

    PubMed

    Kim, Hyunbae; Mendez, Roberto; Chen, Xuequn; Fang, Deyu; Zhang, Kezhong

    2015-12-01

    Cyclic AMP-responsive element-binding protein 3-like 3, hepatocyte specific (CREBH), is a hepatic transcription factor that functions as a key regulator of energy homeostasis. Here, we defined a regulatory CREBH posttranslational modification process, namely, lysine-specific acetylation, and its functional involvement in fasting-induced hepatic lipid metabolism. Fasting induces CREBH acetylation in mouse livers in a time-dependent manner, and this event is critical for CREBH transcriptional activity in regulating hepatic lipid homeostasis. The histone acetyltransferase PCAF-mediated acetylation and the deacetylase sirtuin-1-mediated deacetylation coexist to maintain CREBH acetylation states under fasting conditions. Site-directed mutagenesis and functional analyses revealed that the lysine (K) residue at position 294 (K294) within the bZIP domain of the CREBH protein is the site where fasting-induced acetylation/deacetylation occurs. Introduction of the acetylation-deficient (K294R) or acetylation-mimicking (K294Q) mutation inhibited or enhanced CREBH transcriptional activity, respectively. Importantly, CREBH acetylation at lysine 294 was required for the interaction and synergy between CREBH and peroxisome proliferator-activated receptor α (PPARα) in activating their target genes upon fasting or glucagon stimulation. Introduction of the CREBH lysine 294 mutation in the liver leads to hepatic steatosis and hyperlipidemia in animals under prolonged fasting. In summary, our study reveals a molecular mechanism by which fasting or glucagon stimulation modulates lipid homeostasis through acetylation of CREBH.

  10. Functional Interplay between CBP and PCAF in Acetylation and Regulation of Transcription Factor KLF13 Activity

    PubMed Central

    Song, Chao-Zhong; Keller, Kimberly; Chen, Yangchao; Stamatoyannopoulos, George

    2010-01-01

    The transcriptional co-activators CBP/p300 and PCAF participate in transcriptional activation by many factors. We have shown that both CBP/p300 and PCAF stimulate the transcriptional activation by KLF13, a member of the KLF/Sp1 family, either individually or cooperatively. Here we further investigated how CBP and PCAF acetylation regulate KLF13 activity, and how these two co-activators functionally interplay in the regulation of KLF13 activity. We found that CBP and PCAF acetylated KLF13 at specific lysine residues in the zinc finger domain of KLF13. The acetylation by CBP, however, resulted in disruption of KLF13 DNA binding. Although the acetyltransferase activity of CBP is not required for stimulating the DNA binding activity of all of the transcription factors that we have examined, the disruption of factor DNA binding by CBP acetylation is factor-specific. We further showed that PCAF and CBP act synergistically and antagonistically to regulate KLF13 DNA binding depending on the status of acetylation. PCAF blocked CBP acetylation and disruption of KLF13 DNA binding. Conversely, acetylation of KLF13 by CBP prevented PCAF stimulation of KLF13 DNA binding. PCAF blocked CBP disruption of KLF13 DNA binding by preventing CBP acetylation of KLF13. These results demonstrate that acetylation by CBP has distinct effects on transcription factor DNA binding, and that CBP and PCAF regulate each other functionally in their regulation of transcription factor DNA binding. PMID:12758070

  11. The acetylation of alpha-tubulin and its relationship to the assembly and disassembly of microtubules

    PubMed Central

    1986-01-01

    A tight association between Chlamydomonas alpha-tubulin acetyltransferase (TAT) and flagellar axonemes, and the cytoplasmic localization of both tubulin deacetylase (TDA) and an inhibitor of tubulin acetylation have been demonstrated by the use of calf brain tubulin as substrate for these enzymes. A major axonemal TAT of 130 kD has been solubilized by high salt treatment, purified, and characterized. Using the Chlamydomonas TAT with brain tubulin as substrate, we have studied the effects of acetylation on the assembly and disassembly of microtubules in vitro. We also determined the relative rates of acetylation of tubulin dimers and polymers. The acetylation does not significantly affect the temperature-dependent polymerization or depolymerization of tubulin in vitro. Furthermore, polymerization of tubulin is not a prerequisite for the acetylation, although the polymer is a better substrate for TAT than the dimer. The acetylation is sensitive to calcium ions which completely inhibit the acetylation of both dimers and polymers of tubulin. Acetylation of the dimer is not inhibited by colchicine; the effect of colchicine on acetylation of the polymer can be explained by its depolymerizing effect on the polymer. PMID:3733880

  12. Insight into the carboxyl transferase domain mechanism of pyruvate carboxylase from Rhizobium etli†

    PubMed Central

    Zeczycki, Tonya N.; Maurice, Martin St.; Jitrapakdee, Sarawut; Wallace, John C.; Attwood, Paul V.; Cleland, W. Wallace

    2009-01-01

    The effects of mutations in the active site of the carboxyl transferase domain of R. etli pyruvate carboxylase have been determined for the forward reaction to form oxaloacetate, the reverse reaction to form MgATP, the oxamate-induced decarboxylation of oxaloacetate, the phosphorylation of MgADP by carbamoyl phosphate and the bicarbonate-dependent ATPase reaction. Additional studies with these mutants examined the effect of pyruvate and oxamate on the reactions of the biotin carboxylase domain. From these mutagenic studies, putative roles for catalytically relevant active site residues were assigned and a more accurate description of the mechanism of the carboxyl transferase domain is presented. The T882A mutant showed no catalytic activity for reactions involving the carboxyl transferase domain, but surprisingly showed a 7- and 3.5-fold increase in activity, as compared to the wild-type enzyme, for the ADP phosphorylation and bicarbonate-dependent ATPase reactions, respectively. Furthermore, the partial inhibition of the T882A catalyzed BC domain reactions by oxamate and pyruvate further supports the critical role of Thr882 in the proton transfer between biotin and pyruvate in the carboxyl transferase domain. The catalytic mechanism appears to involve the decarboxylation of carboxybiotin and proton removal from Thr882 by the resulting biotin enolate with either a concerted or subsequent transfer of a proton from pyruvate to Thr882. The resulting enolpyruvate then reacts with CO2 to form oxaloacetate and complete the reaction. PMID:19341298

  13. GLUTATHIONE S-TRANSFERASE THETA 1-1-DEPENDENT METABOLISM OF THE DISINFECTION BYPRODUCT BROMODICHLOROMETHANE

    EPA Science Inventory

    ABSTRACT
    Bromodichloromethane (BDCM), a prevalent drinking water disinfection by-product, was previously shown to be mutagenic in Salmonella expressing glutathione S-transferase (GST) theta 1-1 (GST T1-1). In the present study, in vitro experiments were performed to study the...

  14. 21 CFR 573.130 - Aminoglycoside 3′-phospho- transferase II.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... genetically modified cotton, oilseed rape, and tomatoes in accordance with the following prescribed conditions... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Aminoglycoside 3â²-phospho- transferase II. 573.130 Section 573.130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  15. 21 CFR 573.130 - Aminoglycoside 3′-phospho- transferase II.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... genetically modified cotton, oilseed rape, and tomatoes in accordance with the following prescribed conditions... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Aminoglycoside 3â²-phospho- transferase II. 573.130 Section 573.130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  16. 21 CFR 573.130 - Aminoglycoside 3′-phospho- transferase II.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... genetically modified cotton, oilseed rape, and tomatoes in accordance with the following prescribed conditions... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Aminoglycoside 3â²-phospho- transferase II. 573.130 Section 573.130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  17. 21 CFR 573.130 - Aminoglycoside 3′-phospho- transferase II.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... genetically modified cotton, oilseed rape, and tomatoes in accordance with the following prescribed conditions... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Aminoglycoside 3â²-phospho- transferase II. 573.130 Section 573.130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  18. Plasmodium spp. membrane glutathione S-transferases: detoxification units and drug targets

    PubMed Central

    Lisewski, Andreas M.

    2014-01-01

    Membrane glutathione S-transferases from the class of membrane-associated proteins in eicosanoid and glutathione metabolism (MAPEG) form a superfamily of detoxification enzymes that catalyze the conjugation of reduced glutathione (GSH) to a broad spectrum of xenobiotics and hydrophobic electrophiles. Evolutionarily unrelated to the cytosolic glutathione S-transferases, they are found across bacterial and eukaryotic domains, for example in mammals, plants, fungi and bacteria in which significant levels of glutathione are maintained. Species of genus Plasmodium, the unicellular protozoa that are commonly known as malaria parasites, do actively support glutathione homeostasis and maintain its metabolism throughout their complex parasitic life cycle. In humans and in other mammals, the asexual intraerythrocytic stage of malaria, when the parasite feeds on hemoglobin, grows and eventually asexually replicates inside infected red blood cells (RBCs), is directly associated with host disease symptoms and during this critical stage GSH protects the host RBC and the parasite against oxidative stress from parasite-induced hemoglobin catabolism. In line with these observations, several GSH-dependent Plasmodium enzymes have been characterized including glutathione reductases, thioredoxins, glyoxalases, glutaredoxins and glutathione S-transferases (GSTs); furthermore, GSH itself have been found to associate spontaneously and to degrade free heme and its hydroxide, hematin, which are the main cytotoxic byproducts of hemoglobin catabolism. However, despite the apparent importance of glutathione metabolism for the parasite, no membrane associated glutathione S-transferases of genus Plasmodium have been previously described. We recently reported the first examples of MAPEG members among Plasmodium spp. PMID:28357217

  19. The TIP GROWTH DEFECTIVE1 S-acyl transferase regulates plant cell growth in Arabidopsis.

    PubMed

    Hemsley, Piers A; Kemp, Alison C; Grierson, Claire S

    2005-09-01

    TIP GROWTH DEFECTIVE1 (TIP1) of Arabidopsis thaliana affects cell growth throughout the plant and has a particularly strong effect on root hair growth. We have identified TIP1 by map-based cloning and complementation of the mutant phenotype. TIP1 encodes an ankyrin repeat protein with a DHHC Cys-rich domain that is expressed in roots, leaves, inflorescence stems, and floral tissue. Two homologues of TIP1 in yeast (Saccharomyces cerevisiae) and human (Homo sapiens) have been shown to have S-acyl transferase (also known as palmitoyl transferase) activity. S-acylation is a reversible hydrophobic protein modification that offers swift, flexible control of protein hydrophobicity and affects protein association with membranes, signal transduction, and vesicle trafficking within cells. We show that TIP1 binds the acyl group palmitate, that it can rescue the morphological, temperature sensitivity, and yeast casein kinase2 localization defects of the yeast S-acyl transferase mutant akr1Delta, and that inhibition of acylation in wild-type Arabidopsis roots reproduces the Tip1- mutant phenotype. Our results demonstrate that S-acylation is essential for normal plant cell growth and identify a plant S-acyl transferase, an essential research tool if we are to understand how this important, reversible lipid modification operates in plant cells.

  20. DNA BINDING POTENTIAL OF BROMODICHLOROMETHANE MEDIATED BY GLUTATHIONE S-TRANSFERASE THETA 1-1

    EPA Science Inventory


    DNA BINDING POTENTIAL OF BROMODICHLOROMETHANE MEDIATED BY GLUTATHIONE S-TRANSFERASE THETA 1-1. R A Pegram1 and M K Ross2. 2Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC; 1Pharmacokinetics Branch, NHEERL, ORD, United States Environmental Protection Ag...

  1. 21 CFR 573.130 - Aminoglycoside 3′-phospho- transferase II.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.130 Aminoglycoside 3′-phospho- transferase II. The...) which catalyzes the phosphorylation of certain aminoglycoside antibiotics, including kanamycin,...

  2. Maize white seedling 3 results from disruption of homogentisate solanesyl transferase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize white seedling 3 (w3) has served as a model albino-seedling mutant since its discovery in 1923. We show here that the w3 phenotype is caused by disruptions in homogentisate solanesyl transferase (HST), an enzyme that catalyzes the committed step in plastoquinone-9 (PQ9) biosynthesis. This re...

  3. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  4. 21 CFR 862.1100 - Aspartate amino transferase (AST/SGOT) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Aspartate amino transferase (AST/SGOT) test system. 862.1100 Section 862.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  5. 21 CFR 862.1100 - Aspartate amino transferase (AST/SGOT) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Aspartate amino transferase (AST/SGOT) test system. 862.1100 Section 862.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  6. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  7. 21 CFR 862.1100 - Aspartate amino transferase (AST/SGOT) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Aspartate amino transferase (AST/SGOT) test system. 862.1100 Section 862.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  8. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  9. 21 CFR 862.1100 - Aspartate amino transferase (AST/SGOT) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Aspartate amino transferase (AST/SGOT) test system. 862.1100 Section 862.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  10. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  11. 21 CFR 862.1100 - Aspartate amino transferase (AST/SGOT) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Aspartate amino transferase (AST/SGOT) test system. 862.1100 Section 862.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  12. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  13. Alcoholic liver disease

    PubMed Central

    Walsh, K.; Alexander, G.

    2000-01-01

    Alcohol is a major cause of liver cirrhosis in the Western world and accounts for the majority of cases of liver cirrhosis seen in district general hospitals in the UK. The three most widely recognised forms of alcoholic liver disease are alcoholic fatty liver (steatosis), acute alcoholic hepatitis, and alcoholic cirrhosis. The exact pathogenesis of alcoholic liver injury is still not clear but immune mediated and free radical hepatic injury are thought to be important. There is increasing interest in genetic factors predisposing to hepatic injury in susceptible individuals. Diagnosis is based on accurate history, raised serum markers such as γ-glutamyltransferase, mean corpuscular volume, and IgA and liver histology when obtainable. Abstinence is the most important aspect of treatment. Newer drugs such as acamprosate and naltrexone are used to reduce alcohol craving. Vitamin supplements and nutrition are vital while corticosteroids have a role in acute alcoholic hepatitis where there is no evidence of gastrointestinal haemorrhage or sepsis. Liver transplantation has excellent results in abstinent patients with end stage liver disease but there are concerns about recidivism after transplant.


Keywords: cirrhosis; liver disease; alcohol PMID:10775280

  14. Comparative analysis of pharmacological treatments with N-acetyl-DL-leucine (Tanganil) and its two isomers (N-acetyl-L-leucine and N-acetyl-D-leucine) on vestibular compensation: Behavioral investigation in the cat.

    PubMed

    Tighilet, Brahim; Leonard, Jacques; Bernard-Demanze, Laurence; Lacour, Michel

    2015-12-15

    Head roll tilt, postural imbalance and spontaneous nystagmus are the main static vestibular deficits observed after an acute unilateral vestibular loss (UVL). In the UVL cat model, these deficits are fully compensated over 6 weeks as the result of central vestibular compensation. N-Acetyl-dl-leucine is a drug prescribed in clinical practice for the symptomatic treatment of acute UVL patients. The present study investigated the effects of N-acetyl-dl-leucine on the behavioral recovery after unilateral vestibular neurectomy (UVN) in the cat, and compared the effects of each of its two isomers N-acetyl-L-leucine and N-acetyl-D-leucine. Efficacy of these three drug treatments has been evaluated with respect to a placebo group (UVN+saline water) on the global sensorimotor activity (observation grids), the posture control (support surface measurement), the locomotor balance (maximum performance at the rotating beam test), and the spontaneous vestibular nystagmus (recorded in the light). Whatever the parameters tested, the behavioral recovery was strongly and significantly accelerated under pharmacological treatments with N-acetyl-dl-leucine and N-acetyl-L-leucine. In contrast, the N-acetyl-D-leucine isomer had no effect at all on the behavioral recovery, and animals of this group showed the same recovery profile as those receiving a placebo. It is concluded that the N-acetyl-L-leucine isomer is the active part of the racemate component since it induces a significant acceleration of the vestibular compensation process similar (and even better) to that observed under treatment with the racemate component only.

  15. The Metabolic Fate of Deoxynivalenol and Its Acetylated Derivatives in a Wheat Suspension Culture: Identification and Detection of DON-15-O-Glucoside, 15-Acetyl-DON-3-O-Glucoside and 15-Acetyl-DON-3-Sulfate.

    PubMed

    Schmeitzl, Clemens; Warth, Benedikt; Fruhmann, Philipp; Michlmayr, Herbert; Malachová, Alexandra; Berthiller, Franz; Schuhmacher, Rainer; Krska, Rudolf; Adam, Gerhard

    2015-08-12

    Deoxynivalenol (DON) is a protein synthesis inhibitor produced by the Fusarium species, which frequently contaminates grains used for human or animal consumption. We treated a wheat suspension culture with DON or one of its acetylated derivatives, 3-acetyl-DON (3-ADON), 15-acetyl-DON (15-ADON) and 3,15-diacetyl-DON (3,15-diADON), and monitored the metabolization over a course of 96 h. Supernatant and cell extract samples were analyzed using a tailored LC-MS/MS method for the quantification of DON metabolites. We report the formation of tentatively identified DON-15-O-β-D-glucoside (D15G) and of 15-acetyl-DON-3-sulfate (15-ADON3S) as novel deoxynivalenol metabolites in wheat. Furthermore, we found that the recently identified 15-acetyl-DON-3-O-β-D-glucoside (15-ADON3G) is the major metabolite produced after 15-ADON challenge. 3-ADON treatment led to a higher intracellular content of toxic metabolites after six hours compared to all other treatments. 3-ADON was exclusively metabolized into DON before phase II reactions occurred. In contrast, we found that 15-ADON was directly converted into 15-ADON3G and 15-ADON3S in addition to metabolization into deoxynivalenol-3-O-β-D-glucoside (D3G). This study highlights significant differences in the metabolization of DON and its acetylated derivatives.

  16. Identification of an Arabidopsis Feruloyl-Coenzyme A Transferase Required for Suberin Synthesis1[W][OA

    PubMed Central

    Molina, Isabel; Li-Beisson, Yonghua; Beisson, Fred; Ohlrogge, John B.; Pollard, Mike

    2009-01-01

    All plants produce suberin, a lipophilic barrier of the cell wall that controls water and solute fluxes and restricts pathogen infection. It is often described as a heteropolymer comprised of polyaliphatic and polyaromatic domains. Major monomers include ω-hydroxy and α,ω-dicarboxylic fatty acids, glycerol, and ferulate. No genes have yet been identified for the aromatic suberin pathway. Here we demonstrate that Arabidopsis (Arabidopsis thaliana) gene AT5G41040, a member of the BAHD family of acyltransferases, is essential for incorporation of ferulate into suberin. In Arabidopsis plants transformed with the AT5G41040 promoter:YFP fusion, reporter expression is localized to cell layers undergoing suberization. Knockout mutants of AT5G41040 show almost complete elimination of suberin-associated ester-linked ferulate. However, the classic lamellar structure of suberin in root periderm of at5g41040 is not disrupted. The reduction in ferulate in at5g41040-knockout seeds is associated with an approximate stoichiometric decrease in aliphatic monomers containing ω-hydroxyl groups. Recombinant AT5G41040p catalyzed acyl transfer from feruloyl-coenzyme A to ω-hydroxyfatty acids and fatty alcohols, demonstrating that the gene encodes a feruloyl transferase. CYP86B1, a cytochrome P450 monooxygenase gene whose transcript levels correlate with AT5G41040 expression, was also investigated. Knockouts and overexpression confirmed CYP86B1 as an oxidase required for the biosynthesis of very-long-chain saturated α,ω-bifunctional aliphatic monomers in suberin. The seed suberin composition of cyp86b1 knockout was surprisingly dominated by unsubstituted fatty acids that are incapable of polymeric linkages. Together, these results challenge our current view of suberin structure by questioning both the function of ester-linked ferulate as an essential component and the existence of an extended aliphatic polyester. PMID:19759341

  17. Characterization of acetylated corn starch prepared under ultrahigh pressure (UHP).

    PubMed

    Kim, Hyun-Seok; Choi, Hyun-Shik; Kim, Byung-Yong; Baik, Moo-Yeol

    2010-03-24

    To investigate the impact of ultrahigh pressure (UHP) on the physicochemical properties of the UHP-assisted starch acetate, common corn starch was subjected to either conventional (0.1 MPa, 30 degrees C, 60 min) or UHP-assisted (400 MPa, 25 degrees C, 15 min) acetylation reactions at three levels (4, 8, or 12%) of acetic anhydride. Without significant changes in starch granule crystal structure, UHP-assisted reaction exhibited lower degree of substitution values than conventional reaction across reagent addition levels. An increase in reagent addition levels exhibited common trends in starch solubility/swelling power, gelatinization, and pasting properties for the conventional and UHP-assisted starch acetates relative to native starch. Within an equivalent derivatization level, however, the UHP-assisted (relative to conventional) starch acetates revealed restricted starch solubility/swelling power, reduced gelatinization temperatures, and lower pasting viscosities. Overall, this result suggested that UHP treatment in acetylation reaction might influence the physicochemical properties of starch acetate by facilitating the formation of lipid-complexed amylose or altering granular reaction patterns to acetic anhydride.

  18. Acetylated tubulin is essential for touch sensation in mice

    PubMed Central

    Morley, Shane J; Qi, Yanmei; Iovino, Loredana; Andolfi, Laura; Guo, Da; Kalebic, Nereo; Castaldi, Laura; Tischer, Christian; Portulano, Carla; Bolasco, Giulia; Shirlekar, Kalyanee; Fusco, Claudia M; Asaro, Antonino; Fermani, Federica; Sundukova, Mayya; Matti, Ulf; Reymond, Luc; De Ninno, Adele; Businaro, Luca; Johnsson, Kai; Lazzarino, Marco; Ries, Jonas; Schwab, Yannick; Hu, Jing; Heppenstall, Paul A

    2016-01-01

    At its most fundamental level, touch sensation requires the translation of mechanical energy into mechanosensitive ion channel opening, thereby generating electro-chemical signals. Our understanding of this process, especially how the cytoskeleton influences it, remains unknown. Here we demonstrate that mice lacking the α-tubulin acetyltransferase Atat1 in sensory neurons display profound deficits in their ability to detect mechanical stimuli. We show that all cutaneous afferent subtypes, including nociceptors have strongly reduced mechanosensitivity upon Atat1 deletion, and that consequently, mice are largely insensitive to mechanical touch and pain. We establish that this broad loss of mechanosensitivity is dependent upon the acetyltransferase activity of Atat1, which when absent leads to a decrease in cellular elasticity. By mimicking α-tubulin acetylation genetically, we show both cellular rigidity and mechanosensitivity can be restored in Atat1 deficient sensory neurons. Hence, our results indicate that by influencing cellular stiffness, α-tubulin acetylation sets the force required for touch. DOI: http://dx.doi.org/10.7554/eLife.20813.001 PMID:27976998

  19. Two Arabidopsis Proteins Synthesize Acetylated Xylan in Vitro

    PubMed Central

    Urbanowicz, Breeanna R.; Peña, Maria J.; Moniz, Heather A.; Moremen, Kelley W.; York, William S.

    2014-01-01

    SUMMARY Xylan is the third most abundant glycopolymer on earth after cellulose and chitin. As a major component of wood, grain and forage, this natural biopolymer has far-reaching impacts on human life. This highly acetylated cell wall polysaccharide is a vital component of the plant cell wall, which functions as a molecular scaffold, providing plants with mechanical strength and flexibility. Mutations that impair synthesis of the xylan backbone give rise to plants that fail to grow normally due to collapsed xylem cells in the vascular system. Phenotypic analysis of these mutants has implicated many proteins in xylan biosynthesis. However, the enzymes directly responsible for elongation and acetylation of the xylan backbone have not been unambiguously identified. Here we provide direct biochemical evidence that two Arabidopsis thaliana proteins, IRREGULAR XYLEM 10-L (IRX10-L) and ESKIMO1/ TRICOME BIREFRINGENCE 29 (ESK1/TBL29), catalyze these respective processes in vitro. By identifying the elusive xylan synthase and establishing ESK1/TBL29 as the archetypal plant polysaccharide O-acetyltransferase, we have resolved two long-standing questions in plant cell wall biochemistry. These findings shed light on integral steps in the molecular pathways utilized by plants to synthesize a major component of the world's biomass and expand our toolkit for producing glycopolymers with valuable properties. PMID:25141999

  20. RAPID SEMISYNTHESIS OF ACETYLATED AND SUMOYLATED HISTONE ANALOGS

    PubMed Central

    Dhall, Abhinav; Weller, Caroline E.

    2016-01-01

    The density and diversity of post-translational modifications (PTMs) observed in histone proteins typically limits their purification to homogeneity from biological sources. Access to quantities of uniformly modified histones is, however, critical for investigating the downstream effects of histone PTMs on chromatin-templated processes. Therefore, a number of semisynthetic methodologies have been developed to generate histones bearing precisely defined PTMs or close analogs thereof. In this chapter, we present two optimized and rapid strategies for generating functional analogs of site-specifically acetylated and sumoylated histones. First, we describe a convergent strategy to site-specifically attach the small ubiquitin-like modifier-3 (SUMO-3) protein to the site of Lys12 in histone H4 by means of a disulfide linkage. We then describe the generation of thialysine analogs of histone H3 acetylated at Lys 14 or Lys 56, using thiol-ene coupling chemistry. Both strategies afford multi-milligram quantities of uniformly modified histones that are easily incorporated into mononucleosomes and nucleosome arrays for biophysical and biochemical investigations. These methods are readily extendable to any desired sites in the four core nucleosomal histones and their variant forms. PMID:27423861

  1. The dynamic organization of fungal acetyl-CoA carboxylase

    PubMed Central

    Hunkeler, Moritz; Stuttfeld, Edward; Hagmann, Anna; Imseng, Stefan; Maier, Timm

    2016-01-01

    Acetyl-CoA carboxylases (ACCs) catalyse the committed step in fatty-acid biosynthesis: the ATP-dependent carboxylation of acetyl-CoA to malonyl-CoA. They are important regulatory hubs for metabolic control and relevant drug targets for the treatment of the metabolic syndrome and cancer. Eukaryotic ACCs are single-chain multienzymes characterized by a large, non-catalytic central domain (CD), whose role in ACC regulation remains poorly characterized. Here we report the crystal structure of the yeast ACC CD, revealing a unique four-domain organization. A regulatory loop, which is phosphorylated at the key functional phosphorylation site of fungal ACC, wedges into a crevice between two domains of CD. Combining the yeast CD structure with intermediate and low-resolution data of larger fragments up to intact ACCs provides a comprehensive characterization of the dynamic fungal ACC architecture. In contrast to related carboxylases, large-scale conformational changes are required for substrate turnover, and are mediated by the CD under phosphorylation control. PMID:27073141

  2. Protein acetylation sites mediated by Schistosoma mansoni GCN5

    SciTech Connect

    Moraes Maciel, Renata de; Furtado Madeiro da Costa, Rodrigo; Meirelles Bastosde Oliveira, Francisco; Rumjanek, Franklin David; Fantappie, Marcelo Rosado

    2008-05-23

    The transcriptional co-activator GCN5, a histone acetyltransferase (HAT), is part of large multimeric complexes that are required for chromatin remodeling and transcription activation. As in other eukaryotes, the DNA from the parasite Schistosome mansoni is organized into nucleosomes and the genome encodes components of chromatin-remodeling complexes. Using a series of synthetic peptides we determined that Lys-14 of histone H3 was acetylated by the recombinant SmGCN5-HAT domain. SmGCN5 was also able to acetylate schistosome non-histone proteins, such as the nuclear receptors SmRXR1 and SmNR1, and the co-activator SmNCoA-62. Electron microscopy revealed the presence of SmGCN5 protein in the nuclei of vitelline cells. Within the nucleus, SmGCN5 was found to be located in interchromatin granule clusters (IGCs), which are transcriptionally active structures. The data suggest that SmGCN5 is involved in transcription activation.

  3. The dynamic organization of fungal acetyl-CoA carboxylase

    NASA Astrophysics Data System (ADS)

    Hunkeler, Moritz; Stuttfeld, Edward; Hagmann, Anna; Imseng, Stefan; Maier, Timm

    2016-04-01

    Acetyl-CoA carboxylases (ACCs) catalyse the committed step in fatty-acid biosynthesis: the ATP-dependent carboxylation of acetyl-CoA to malonyl-CoA. They are important regulatory hubs for metabolic control and relevant drug targets for the treatment of the metabolic syndrome and cancer. Eukaryotic ACCs are single-chain multienzymes characterized by a large, non-catalytic central domain (CD), whose role in ACC regulation remains poorly characterized. Here we report the crystal structure of the yeast ACC CD, revealing a unique four-domain organization. A regulatory loop, which is phosphorylated at the key functional phosphorylation site of fungal ACC, wedges into a crevice between two domains of CD. Combining the yeast CD structure with intermediate and low-resolution data of larger fragments up to intact ACCs provides a comprehensive characterization of the dynamic fungal ACC architecture. In contrast to related carboxylases, large-scale conformational changes are required for substrate turnover, and are mediated by the CD under phosphorylation control.

  4. Microtubule acetylation promotes kinesin-1 binding and transport.

    PubMed

    Reed, Nathan A; Cai, Dawen; Blasius, T Lynne; Jih, Gloria T; Meyhofer, Edgar; Gaertig, Jacek; Verhey, Kristen J

    2006-11-07

    Long-distance intracellular delivery is driven by kinesin and dynein motor proteins that ferry cargoes along microtubule tracks . Current models postulate that directional trafficking is governed by known biophysical properties of these motors-kinesins generally move to the plus ends of microtubules in the cell periphery, whereas cytoplasmic dynein moves to the minus ends in the cell center. However, these models are insufficient to explain how polarized protein trafficking to subcellular domains is accomplished. We show that the kinesin-1 cargo protein JNK-interacting protein 1 (JIP1) is localized to only a subset of neurites in cultured neuronal cells. The mechanism of polarized trafficking appears to involve the preferential recognition of microtubules containing specific posttranslational modifications (PTMs) by the kinesin-1 motor domain. Using a genetic approach to eliminate specific PTMs, we show that the loss of a single modification, alpha-tubulin acetylation at Lys-40, influences the binding and motility of kinesin-1 in vitro. In addition, pharmacological treatments that increase microtubule acetylation cause a redirection of kinesin-1 transport of JIP1 to nearly all neurite tips in vivo. These results suggest that microtubule PTMs are important markers of distinct microtubule populations and that they act to control motor-protein trafficking.

  5. Autotrophic acetyl coenzyme A biosynthesis in Methanococcus maripaludis.

    PubMed Central

    Shieh, J; Whitman, W B

    1988-01-01

    To detect autotrophic CO2 assimilation in cell extracts of Methanococcus maripaludis, lactate dehydrogenase and NADH were added to convert pyruvate formed from autotrophically synthesized acetyl coenzyme A to lactate. The lactate produced was determined spectrophotometrically. When CO2 fixation was pulled in the direction of lactate synthesis, CO2 reduction to methane was inhibited. Bromoethanesulfonate (BES), a potent inhibitor of methanogenesis, enhanced lactate synthesis, and methyl coenzyme M inhibited it in the absence of BES. Lactate synthesis was dependent on CO2 and H2, but H2 + CO2-independent synthesis was also observed. In cell extracts, the rate of lactate synthesis was about 1.2 nmol min-1 mg of protein-1. When BES was added, the rate of lactate synthesis increased to 2.3 nmol min-1 mg of protein-1. Because acetyl coenzyme A did not stimulate lactate synthesis, pyruvate synthase may have been the limiting activity in these assays. Radiolabel from 14CO2 was incorporated into lactate. The percentages of radiolabel in the C-1, C-2, and C-3 positions of lactate were 73, 33, and 11%, respectively. Both carbon monoxide and formaldehyde stimulated lactate synthesis. 14CH2O was specifically incorporated into the C-3 of lactate, and 14CO was incorporated into the C-1 and C-2 positions. Low concentrations of cyanide also inhibited autotrophic growth, CO dehydrogenase activity, and autotrophic lactate synthesis. These observations are in agreement with the acetogenic pathway of autotrophic CO2 assimilation. PMID:3133359

  6. Preparation and characterization of N-benzoyl-O-acetyl-chitosan.

    PubMed

    Cai, Jinping; Dang, Qifeng; Liu, Chengsheng; Fan, Bing; Yan, Jingquan; Xu, Yanyan; Li, Jingjing

    2015-01-01

    A novel amphipathic chitosan derivative, N-benzoyl-O-acetyl-chitosan (BACS), was prepared by using the selective partial acylation of chitosan (CS), benzoyl chloride, and acetic acid under high-intensity ultrasound. The chemical structure and physical properties of BACS were characterized by FTIR, (1)H NMR, TGA, and XRD techniques. The degrees of substitution of benzoyl and acetyl for the chitosan derivatives were 0.26 and 1.15, respectively, which were calculated from the peak areas in NMR spectra by using the combined integral methods. The foaming properties of CS and BACS were determined and the results suggested BACS had better foam capacity and stability than those of chitosan. In addition, the antimicrobial activities of CS and BACS were also investigated against two species of bacteria (Escherichia coli and Staphylococcus aureus) and a fungus (Aspergillus niger), the results indicated that the antibacterial and antifungal activities of BACS were much stronger than those of the parent chitosan. These findings suggested that BACS was preferable for use as a food additive with a dual role of both foaming agent and food preservative.

  7. Prenatal alcohol consumption and knowledge about alcohol consumption and fetal alcohol syndrome in Korean women.

    PubMed

    Kim, Oksoo; Park, Kyungil

    2011-09-01

    The study investigated prenatal alcohol consumption and knowledge of alcohol risks and fetal alcohol syndrome among Korean women. The participants were 221 Korean women who attended the post-partum care centers in Seoul, Korea. The data included the participants' background characteristics, quantity-frequency typology, Student Alcohol Questionnaire, and a scale on the participants' knowledge of fetal alcohol syndrome. Alcohol was consumed during pregnancy by 12.7% of the participants. Of these, 60.7% drank alcohol with their spouse. A few participants reported that nurses identified their drinking habits and gave them information on alcohol consumption and fetal alcohol syndrome. Most of the participants did not have the opportunity for prenatal counseling about fetal alcohol syndrome. The knowledge level regarding alcohol risks and fetal alcohol syndrome among the participants was poor. Alcohol consumption before pregnancy was significantly related to prenatal alcohol consumption. Prenatal alcohol consumption was not related to knowledge about alcohol consumption and fetal alcohol syndrome. The assessment of alcohol consumption and counseling about alcohol are needed for pregnant women in order to prevent fetal alcohol syndrome.

  8. Defining maximum levels of higher alcohols in alcoholic beverages and surrogate alcohol products.

    PubMed

    Lachenmeier, Dirk W; Haupt, Simone; Schulz, Katja

    2008-04-01

    Higher alcohols occur naturally in alcoholic beverages as by-products of alcoholic fermentation. Recently, concerns have been raised about the levels of higher alcohols in surrogate alcohol (i.e., illicit or home-produced alcoholic beverages) that might lead to an increased incidence of liver diseases in regions where there is a high consumption of such beverages. In contrast, higher alcohols are generally regarded as important flavour compounds, so that European legislation even demands minimum contents in certain spirits. In the current study we review the scientific literature on the toxicity of higher alcohols and estimate tolerable concentrations in alcoholic beverages. On the assumption that an adult consumes 4 x 25 ml of a drink containing 40% vol alcohol, the maximum tolerable concentrations of 1-propanol, 1-butanol, 2-butanol, isobutanol, isoamyl alcohol and 1-hexanol in such a drink would range between 228 and 3325 g/hl of pure alcohol. A reasonable preliminary guideline level would be 1000 g/hl of pure alcohol for the sum of all higher alcohols. This level is higher than the concentrations usually found in both legal alcoholic beverages and surrogate alcohols, so that we conclude that scientific data are lacking so far to consider higher alcohols as a likely cause for the adverse effects of surrogate alcohol. The limitations of our study include the inadequate toxicological data base leading to uncertainties during the extrapolation of toxicological data between the different alcohols, as well as unknown interactions between the different higher alcohols and ethanol.

  9. Effect of Acetyl-L-Carnitine on Antioxidant Status, Lipid Peroxidation, and Oxidative Damage of Arsenic in Rat.

    PubMed

    Sepand, Mohammad Reza; Razavi-Azarkhiavi, Kamal; Omidi, Ameneh; Zirak, Mohammad Reza; Sabzevari, Samin; Kazemi, Ali Reza; Sabzevari, Omid

    2016-05-01

    Arsenic (As) is a widespread environmental contaminant present around the world in both organic and inorganic forms. Oxidative stress is postulated as the main mechanism for As-induced toxicity. This study was planned to examine the protective effect of acetyl-L-carnitine (ALC) on As-induced oxidative damage in male rats. Animals were randomly divided into four groups of control (saline), sodium arsenite (NaAsO2, 20 mg/kg), ALC (300 mg/kg), and NaAsO2 plus ALC. Animals were dosed orally for 28 successive days. Blood and tissue samples including kidney, brain, liver, heart, and lung were collected on the 28th day and evaluated for oxidative damage and histological changes. NaAsO2 exposure caused a significant lipid peroxidation as evidenced by elevation in thiobarbituric acid-reactive substances (TBARS). The activity of antioxidant enzymes such as glutathione-S-transferase (GST), catalase (CAT), superoxide dismutase (SOD), as well as sulfhydryl group content (SH group) was significantly suppressed in various organs following NaAsO2 treatment (P < 0.05). Furthermore, NaAsO2 administration increased serum values of alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), and bilirubin. Our findings revealed that co-administration of ALC and NaAsO2 significantly suppressed the oxidative damage induced by NaAsO2. Tissue histological studies have confirmed the biochemical findings and provided evidence for the beneficial role of ALC. The results concluded that ALC attenuated NaAsO2-induced toxicity, and this protective effect may result from the ability of ALC in maintaining oxidant-antioxidant balance.

  10. Structure-Based Design of Inhibitors of the Crucial Cysteine Biosynthetic Pathway Enzyme O-Acetyl Serine Sulfhydrylase.

    PubMed

    Mazumder, Mohit; Gourinath, Samudrala

    2016-01-01

    The cysteine biosynthetic pathway is of fundamental importance for the growth, survival, and pathogenicity of the many pathogens. This pathway is present in many species but is absent in mammals. The ability of pathogens to counteract the oxidative defences of a host is critical for the survival of these pathogens during their long latent phases, especially in anaerobic pathogens such as Entamoeba histolytica, Leishmania donovani, Trichomonas vaginalis, and Salmonella typhimurium. All of these organisms rely on the de novo cysteine biosynthetic pathway to assimilate sulphur and maintain a ready supply of cysteine. The de novo cysteine biosynthetic pathway, on account of its being important for the survival of pathogens and at the same time being absent in mammals, is an important drug target for diseases such as amoebiasis, trichomoniasis & tuberculosis. Cysteine biosynthesis is catalysed by two enzymes: serine acetyl transferase (SAT) followed by O-acetylserine sulfhydrylase (OASS). OASS is well studied, and with the availability of crystal structures of this enzyme in different conformations, it is a suitable template for structure-based inhibitor development. Moreover, OASS is highly conserved, both structurally and sequence-wise, among the above-mentioned organisms. There have been several reports of inhibitor screening and development against this enzyme from different organisms such as Salmonella typhimurium, Mycobacterium tuberculosis and Entamoeba histolytica. All of these inhibitors have been reported to display micromolar to nanomolar binding affinities for the open conformation of the enzyme. In this review, we highlight the structural similarities of this enzyme in different organisms and the attempts for inhibitor development so far. We also propose that the intermediate state of the enzyme may be the ideal target for the design of effective highaffinity inhibitors.

  11. Identification of an Arabidopsis Fatty Alcohol:Caffeoyl-Coenzyme A Acyltransferase Required for the Synthesis of Alkyl Hydroxycinnamates in Root Waxes1[W][OA

    PubMed Central

    Kosma, Dylan K.; Molina, Isabel; Ohlrogge, John B.; Pollard, Mike

    2012-01-01

    While suberin is an insoluble heteropolymer, a number of soluble lipids can be extracted by rapid chloroform dipping of roots. These extracts include esters of saturated long-chain primary alcohols and hydroxycinnamic acids. Such fatty alcohols and hydroxycinnamic acids are also present in suberin. We demonstrate that alkyl coumarates and caffeates, which are the major components of Arabidopsis (Arabidopsis thaliana) root waxes, are present primarily in taproots. Previously we identified ALIPHATIC SUBERIN FERULOYL TRANSFERASE (At5g41040), a HXXXD-type acyltransferase (BAHD family), responsible for incorporation of ferulate into aliphatic suberin of Arabidopsis. However, aliphatic suberin feruloyl transferase mutants were unaffected in alkyl hydroxycinnamate ester root wax composition. Here we identify a closely related gene, At5g63560, responsible for the synthesis of a subset of alkyl hydroxycinnamate esters, the alkyl caffeates. Transgenic plants harboring PAt5g63560::YFP fusions showed transcriptional activity in suberized tissues. Knockout mutants of At5g63560 were severely reduced in their alkyl caffeate but not alkyl coumarate content. Recombinant At5g63560p had greater acyltransferase activity when presented with caffeoyl-Coenzyme A (CoA) substrate, thus we have named this acyltransferase FATTY ALCOHOL:CAFFEOYL-CoA CAFFEOYL TRANSFERASE. Stress experiments revealed elevated alkyl coumarate content in root waxes of NaCl-treated wild-type and fatty alcohol:caffeoyl-CoA caffeoyl transferase plants. We further demonstrate that FATTY ACYL-CoA REDUCTASEs (FARs) FAR5 (At3g44550), FAR4 (At3g44540), and FAR1 (At5g22500) are required for the synthesis of C18, C20, and C22 alkyl hydroxycinnamates, respectively. Collectively, these results suggest that multiple acyltransferases are utilized for the synthesis of alkyl hydroxycinnamate esters of Arabidopsis root waxes and that FAR1/4/5 provide the fatty alcohols required for alkyl hydroxycinnamate synthesis. PMID:22797656

  12. Alcohol-Related Liver Disease

    MedlinePlus

    ... events. Please support us. Donate | Volunteer Alcohol-Related Liver Disease Discussion on Inspire Support Community Join the ... Disease Information > Alcohol-Related Liver Disease Alcohol-Related Liver Disease Explore this section to learn more about ...

  13. Characterization of nucleolin K88 acetylation defines a new pool of nucleolin colocalizing with pre-mRNA splicing factors.

    PubMed

    Das, Sadhan; Cong, Rong; Shandilya, Jayasha; Senapati, Parijat; Moindrot, Benoit; Monier, Karine; Delage, Hélène; Mongelard, Fabien; Kumar, Sanjeev; Kundu, Tapas K; Bouvet, Philippe

    2013-03-01

    Nucleolin is a multifunctional protein that carries several post-translational modifications. We characterized nucleolin acetylation and developed antibodies specific to nucleolin K88 acetylation. Using this antibody we show that nucleolin is acetylated in vivo and is not localized in the nucleoli, but instead is distributed throughout the nucleoplasm. Immunofluorescence studies indicate that acetylated nucleolin is co-localized with the splicing factor SC35 and partially with Y12. Acetylated nucleolin is expressed in all tested proliferating cell types. Our findings show that acetylation defines a new pool of nucleolin which support a role for nucleolin in the regulation of mRNA maturation and transcription by RNA polymerase II.

  14. Identification and characteristics of the structural gene for the Drosophila eye colour mutant sepia, encoding PDA synthase, a member of the omega class glutathione S-transferases.

    PubMed

    Kim, Jaekwang; Suh, Hyunsuk; Kim, Songhee; Kim, Kiyoung; Ahn, Chiyoung; Yim, Jeongbin

    2006-09-15

    The eye colour mutant sepia (se1) is defective in PDA {6-acetyl-2-amino-3,7,8,9-tetrahydro-4H-pyrimido[4,5-b]-[1,4]diazepin-4-one or pyrimidodiazepine} synthase involved in the conversion of 6-PTP (2-amino-4-oxo-6-pyruvoyl-5,6,7,8-tetrahydropteridine; also known as 6-pyruvoyltetrahydropterin) into PDA, a key intermediate in drosopterin biosynthesis. However, the identity of the gene encoding this enzyme, as well as its molecular properties, have not yet been established. Here, we identify and characterize the gene encoding PDA synthase and show that it is the structural gene for sepia. Based on previously reported information [Wiederrecht, Paton and Brown (1984) J. Biol. Chem. 259, 2195-2200; Wiederrecht and Brown (1984) J. Biol. Chem. 259, 14121-14127; Andres (1945) Drosoph. Inf. Serv. 19, 45; Ingham, Pinchin, Howard and Ish-Horowicz (1985) Genetics 111, 463-486; Howard, Ingham and Rushlow (1988) Genes Dev. 2, 1037-1046], we isolated five candidate genes predicted to encode GSTs (glutathione S-transferases) from the presumed sepia locus (region 66D5 on chromosome 3L). All cloned and expressed candidates exhibited relatively high thiol transferase and dehydroascorbate reductase activities and low activity towards 1-chloro-2,4-dinitrobenzene, characteristic of Omega class GSTs, whereas only CG6781 catalysed the synthesis of PDA in vitro. The molecular mass of recombinant CG6781 was estimated to be 28 kDa by SDS/PAGE and 56 kDa by gel filtration, indicating that it is a homodimer under native conditions. Sequencing of the genomic region spanning CG6781 revealed that the se1 allele has a frameshift mutation from 'AAGAA' to 'GTG' at nt 190-194, and that this generates a premature stop codon. Expression of the CG6781 open reading frame in an se1 background rescued the eye colour defect as well as PDA synthase activity and drosopterins content. The extent of rescue was dependent on the dosage of transgenic CG6781. In conclusion, we have discovered a new catalytic

  15. Mutations of Arabidopsis TBL32 and TBL33 Affect Xylan Acetylation and Secondary Wall Deposition

    PubMed Central

    Yuan, Youxi; Teng, Quincy; Zhong, Ruiqin; Haghighat, Marziyeh; Richardson, Elizabeth A.; Ye, Zheng-Hua

    2016-01-01

    Xylan is a major acetylated polymer in plant lignocellulosic biomass and it can be mono- and di-acetylated at O-2 and O-3 as well as mono-acetylated at O-3 of xylosyl residues that is substituted with glucuronic acid (GlcA) at O-2. Based on the finding that ESK1, an Arabidopsis thaliana DUF231 protein, specifically mediates xylan 2-O- and 3-O-monoacetylation, we previously proposed that different acetyltransferase activities are required for regiospecific acetyl substitutions of xylan. Here, we demonstrate the functional roles of TBL32 and TBL33, two ESK1 close homologs, in acetyl substitutions of xylan. Simultaneous mutations of TBL32 and TBL33 resulted in a significant reduction in xylan acetyl content and endoxylanase digestion of the mutant xylan released GlcA-substituted xylooligomers without acetyl groups. Structural analysis of xylan revealed that the tbl32 tbl33 mutant had a nearly complete loss of 3-O-acetylated, 2-O-GlcA-substituted xylosyl residues. A reduction in 3-O-monoacetylated and 2,3-di-O-acetylated xylosyl residues was also observed. Simultaneous mutations of TBL32, TBL33 and ESK1 resulted in a severe reduction in xylan acetyl level down to 15% of that of the wild type, and concomitantly, severely collapsed vessels and stunted plant growth. In particular, the S2 layer of secondary walls in xylem vessels of tbl33 esk1 and tbl32 tbl33 esk1 exhibited an altered structure, indicating abnormal assembly of secondary wall polymers. These results demonstrate that TBL32 and TBL33 play an important role in xylan acetylation and normal deposition of secondary walls. PMID:26745802

  16. Acetylproteomic analysis reveals functional implications of lysine acetylation in human spermatozoa (sperm).

    PubMed

    Yu, Heguo; Diao, Hua; Wang, Chunmei; Lin, Yan; Yu, Fudong; Lu, Hui; Xu, Wei; Li, Zheng; Shi, Huijuan; Zhao, Shimin; Zhou, Yuchuan; Zhang, Yonglian

    2015-04-01

    Male infertility is a medical condition that has been on the rise globally. Lysine acetylation of human sperm, an essential posttranslational modification involved in the etiology of sperm abnormality, is not fully understood. Therefore, we first generated a qualified pan-anti-acetyllysine monoclonal antibody to characterize the global lysine acetylation of uncapacitated normal human sperm with a proteomics approach. With high enrichment ratios that were up to 31%, 973 lysine-acetylated sites that matched to 456 human sperm proteins, including 671 novel lysine acetylation sites and 205 novel lysine-acetylated proteins, were identified. These proteins exhibited conserved motifs XXXKYXXX, XXXKFXXX, and XXXKHXXX, were annotated to function in multiple metabolic processes, and were localized predominantly in the mitochondrion and cytoplasmic fractions. Between the uncapacitated and capacitated sperm, different acetylation profiles in regard to functional proteins involved in sperm capacitation, sperm-egg recognition, sperm-egg plasma fusion, and fertilization were observed, indicating that acetylation of functional proteins may be required during sperm capacitation. Bioinformatics analysis revealed association of acetylated proteins with diseases and drugs. Novel acetylation of voltage-dependent anion channel proteins was also found. With clinical sperm samples, we observed differed lysine acetyltransferases and lysine deacetylases expression between normal sperm and abnormal sperm of asthenospermia or necrospermia. Furthermore, with sperm samples impaired by epigallocatechin gallate to mimic asthenospermia, we observed that inhibition of sperm motility was partly through the blockade of voltage-dependent anion channel 2 Lys-74 acetylation combined with reduced ATP levels and mitochondrial membrane potential. Taken together, we obtained a qualified pan-anti-acetyllysine monoclonal antibody, analyzed the acetylproteome of uncapacitated human sperm, and revealed

  17. Mutations of Arabidopsis TBL32 and TBL33 affect xylan acetylation and secondary wall deposition

    DOE PAGES

    Yuan, Youxi; Teng, Quincy; Zhong, Ruiqin; ...

    2016-01-08

    Xylan is a major acetylated polymer in plant lignocellulosic biomass and it can be monoand di-acetylated at O-2 and O-3 as well as mono-acetylated at O-3 of xylosyl residues that is substituted with glucuronic acid (GlcA) at O-2. Based on the finding that ESK1, an Arabidopsis thaliana DUF231 protein, specifically mediates xylan 2-O- and 3-O-monoacetylation, we previously proposed that different acetyltransferase activities are required for regiospecific acetyl substitutions of xylan. Here, we demonstrate the functional roles of TBL32 and TBL33, two ESK1 close homologs, in acetyl substitutions of xylan. Simultaneous mutations of TBL32 and TBL33 resulted in a significant reductionmore » in xylan acetyl content and endoxylanase digestion of the mutant xylan released GlcA-substituted xylooligomers without acetyl groups. Structural analysis of xylan revealed that the tbl32 tbl33 mutant had a nearly complete loss of 3-O-acetylated, 2-O-GlcA-substituted xylosyl residues. A reduction in 3-Omonoacetylated and 2,3-di-O-acetylated xylosyl residues was also observed. Simultaneous mutations of TBL32, TBL33 and ESK1 resulted in a severe reduction in xylan acetyl level down to 15% of that of the wild type, and concomitantly, severely collapsed vessels and stunted plant growth. In particular, the S2 layer of secondary walls in xylem vessels of tbl33 esk1 and tbl32 tbl33 esk1 exhibited an altered structure, indicating abnormal assembly of secondary wall polymers. Furthermore, these results demonstrate that TBL32 and TBL33 play an important role in xylan acetylation and normal deposition of secondary walls.« less

  18. Molecular basis of alcoholism.

    PubMed

    Most, Dana; Ferguson, Laura; Harris, R Adron

    2014-01-01

    Acute alcohol intoxication causes cellular changes in the brain that last for hours, while chronic alcohol use induces widespread neuroadaptations in the nervous system that can last a lifetime. Chronic alcohol use and the progression into dependence involve the remodeling of synapses caused by changes in gene expression produced by alcohol. The progression of alcohol use, abuse, and dependence can be divided into stages, which include intoxication, withdrawal, and craving. Each stage is associated with specific changes in gene expression, cellular function, brain circuits, and ultimately behavior. What are the molecular mechanisms underlying the transition from recreational use (acute) to dependence (chronic)? What cellular adaptations result in drug memory retention, leading to the persistence of addictive behaviors, even after prolonged drug abstinence? Research into the neurobiology of alcoholism aims to answer these questions. This chapter will describe the molecular adaptations caused by alcohol use and dependence, and will outline key neurochemical participants in alcoholism at the molecular level, which are also potential targets for therapy.

  19. Alcoholism: A Developmental Disorder.

    ERIC Educational Resources Information Center

    Tarter, Ralph E.; Vanyukov, Michael

    1994-01-01

    Alcoholism etiology is discussed from developmental behavior genetic perspective. Temperament features that appear to be associated with heightened risk for alcoholism are examined. Their interactions with the environment during course of development are considered within epigenetic framework and, as discussed, have ramifications for improving…

  20. The Fetal Alcohol Syndrome.

    ERIC Educational Resources Information Center

    Umbreit, John; Ostrow, Lisa S.

    1980-01-01

    Fetal alcohol syndrome is a pattern of altered growth and morphogenesis found in about half the offspring of severely and chronically alcoholic women who continue drinking throughout their pregnancy. Of children studied, mild to moderate mental retardation was the most common disorder, occurring in 44 percent of the cases. (PHR)

  1. Fetal Alcohol Spectrum Disorder

    ERIC Educational Resources Information Center

    Caley, Linda M.; Kramer, Charlotte; Robinson, Luther K.

    2005-01-01

    Fetal alcohol spectrum disorder (FASD) is a serious and widespread problem in this country. Positioned within the community with links to children, families, and healthcare systems, school nurses are a critical element in the prevention and treatment of those affected by fetal alcohol spectrum disorder. Although most school nurses are familiar…

  2. Fetal Alcohol Syndrome.

    ERIC Educational Resources Information Center

    Zerrer, Peggy

    The paper reviews Fetal Alcohol Syndrome (FAS), a series of effects seen in children whose mothers drink alcohol to excess during pregnancy. The identification of FAS and its recognition as a major health problem in need of prevention are traced. Characteristics of children with FAS are described and resultant growth retardation, abnormal physical…

  3. Alcoholism in Women.

    ERIC Educational Resources Information Center

    Mutzell, Sture

    1994-01-01

    Compared characteristics of female alcoholics receiving treatment with those of male alcoholics. Found male subjects had more psychosocial problems and had more contact with the child welfare authorities during their childhood than did the females. However, the females' offspring had had more such contact than the males' offspring. Socioeconomic…

  4. Women and Alcohol

    MedlinePlus

    ... with 5 percent alcohol content »» 5 ounces of wine with 12 percent alcohol content »» 1.5 ounces ... large cup of beer, an overpoured glass of wine, or a single mixed drink could contain much ...

  5. Cardiovascular effects of alcohol.

    PubMed Central

    Davidson, D M

    1989-01-01

    The effects of alcohol on the heart include modification of the risk of coronary artery disease, the development of alcoholic cardiomyopathy, exacerbation of conduction disorders, atrial and ventricular dysrhythmias, and an increased risk of hypertension, hemorrhagic stroke, infectious endocarditis, and fetal heart abnormalities. PMID:2686174

  6. Toll-Like receptor-3 mediates HIV-1 transactivation via NFκB and JNK pathways and histone acetylation, but prolonged activation suppresses Tat and HIV-1 replication

    PubMed Central

    Bhargavan, Biju; Woollard, Shawna M.; Kanmogne, Georgette D.

    2016-01-01

    TLR3 has been implicated in the pathogenesis of several viral infections, including SIV- and HIV-1-induced inflammation and AIDS. However the molecular mechanisms of these TLR3-mediated effects are not known, and it is not known whether HIV interacts with cellular TLR3 to affect disease process. Here we investigate the effects of TLR3 ligands on HIV-1 transactivation using both primary human macrophages and cells containing integrated copies of the HIV-1 promoter. We demonstrate that TLR3 activation induced upregulation of transcription factors such as c-Jun, CCAAT/enhancer-binding protein alpha (CEBPA), signal transducer and activator of transcription (STAT)-1, STAT-2, RELB, and nuclear factor kappa-B1 (NFκB1), most of which are known to regulate the HIV promoter activity. We also demonstrate that TLR3 activation increased HIV-1 transactivation via the c-Jun N-terminal kinase (JNK) and NFκB pathways. This was associated with epigenetics modifications, including decreased histone deacetylase activity, increased histone acetyl transferase (HAT) activity, and increased acetylation of histones H3 and H4 at lysine residues in the nucleosome-0 and nucleosome-1 of the HIV-1 promoter. However, prolonged TLR3 activation decreased HIV-1 transactivation, decreased HAT activity and Tat transcription, and suppressed viral replication. Overall, data suggests TLR3 can acts as viral sensor to mediate viral transactivation, cellular signaling, innate immune response, and inflammation in HIV-infected humans. Our study provides novel insights into the molecular basis for these TLR3-mediated effects. PMID:26569339

  7. Homocysteine and alcoholism.

    PubMed

    Bleich, S; Degner, D; Javaheripour, K; Kurth, C; Kornhuber, J

    2000-01-01

    Chronic alcohol consumption can induce alterations in the function and morphology of most if not all brain systems and structures. However, the exact mechanism of brain damage in alcoholics remains unknown. Partial recovery of brain function with abstinence suggests that a proportion of the deficits must be functional in origin (i.e. plastic changes of nerve cells) while neuronal loss from selected brain regions indicates permanent and irreversible damage. There is growing evidence that chronic alcoholism is associated with a derangement in the sulfur amino acid metabolism. Recently, it has been shown that excitatory amino acid (EAA) neurotransmitters and homocysteine levels are elevated in patients who underwent withdrawal from alcohol. Furthermore, it has been found that homocysteine induces neuronal cell damage by stimulating NMDA receptors as well as by producing free radicals. Homocysteine neurotoxicity via overstimulation of N-methyl-D-aspartate receptors may contribute to the pathogenesis of both brain shrinkage and withdrawal seizures linked to alcoholism.

  8. Alcoholic hepatitis: current management.

    PubMed

    Spengler, Erin K J; Dunkelberg, Jeffrey; Schey, Ron

    2014-10-01

    Alcoholic hepatitis is an acute manifestation of alcoholic liver disease with mortality as high as 40-50% in severe cases. Patients usually have a history of prolonged alcohol abuse with or without a known history of liver disease. Although there is significant range in severity at presentation, patients with severe alcoholic hepatitis typically present with anorexia, fatigue, fever, jaundice, and ascites. The use of either pentoxifylline or corticosteroids in those with severe disease (Maddrey's discriminate function >32) has significant mortality benefit. The addition of N-acetylcysteine to corticosteroids decreases the incidences of hepatorenal syndrome, infection, and short-term mortality, but does not appear to significantly affect 6-month mortality. Nutritional support with high-calorie, high-protein diet is recommended in all patients screening positive for malnutrition. Liver transplantation for a highly selected group of patients with severe alcoholic hepatitis may be an option in the future, but is not currently recommended or available at most transplant institutions.

  9. Development and validation of a scale of attitudes towards alcohol, alcoholism and alcoholics.

    PubMed

    Vargas, Divane de; Luis, Margarita Antonia Villar

    2008-01-01

    The objective of this study was the construction and validation of a scale that would measure the attitudes towards alcohol, alcoholism and the alcoholic, called the Scale of Attitudes Towards Alcohol, Alcoholism and the Alcoholic. The face and content validations, as well as the factor analysis of the data obtained in a preliminary test with 144 nursing students resulted in a scale consisting of 96 items, divided into 5 factors: Attitudes towards the alcoholic person: care and interpersonal relations; Etiology; Disease; Repercussions deriving from alcohol use/abuse; Alcoholic beverages. The general scale presented a consistency level of 0.90. The resulting instrument is concluded to be a reliable tool to evaluate attitudes towards alcohol, alcoholism and alcohol addicts.

  10. A dysregulated acetyl/SUMO switch of FXR promotes hepatic inflammation in obesity

    PubMed Central

    Kim, Dong-Hyun; Xiao, Zhen; Kwon, Sanghoon; Sun, Xiaoxiao; Ryerson, Daniel; Tkac, David; Ma, Ping; Wu, Shwu-Yuan; Chiang, Cheng-Ming; Zhou, Edward; Xu, H Eric; Palvimo, Jorma J; Chen, Lin-Feng; Kemper, Byron; Kemper, Jongsook Kim

    2015-01-01

    Acetylation of transcriptional regulators is normally dynamically regulated by nutrient status but is often persistently elevated in nutrient-excessive obesity conditions. We investigated the functional consequences of such aberrantly elevated acetylation of the nuclear receptor FXR as a model. Proteomic studies identified K217 as the FXR acetylation site in diet-induced obese mice. In vivo studies utilizing acetylation-mimic and acetylation-defective K217 mutants and gene expression profiling revealed that FXR acetylation increased proinflammatory gene expression, macrophage infiltration, and liver cytokine and triglyceride levels, impaired insulin signaling, and increased glucose intolerance. Mechanistically, acetylation of FXR blocked its interaction with the SUMO ligase PIASy and inhibited SUMO2 modification at K277, resulting in activation of inflammatory genes. SUMOylation of agonist-activated FXR increased its interaction with NF-κB but blocked that with RXRα, so that SUMO2-modified FXR was selectively recruited to and trans-repressed inflammatory genes without affecting FXR/RXRα target genes. A dysregulated acetyl/SUMO switch of FXR in obesity may serve as a general mechanism for diminished anti-inflammatory response of other transcriptional regulators and provide potential therapeutic and diagnostic targets for obesity-related metabolic disorders. PMID:25425577

  11. The Effect of Acetyl-L-Carnitine Administration on Persons with Down Syndrome

    ERIC Educational Resources Information Center

    Pueschel, Siegfried M.

    2006-01-01

    Since previous investigations reported improvements in cognition of patients with dementia after acetyl-L-carnitine therapy and since there is an increased risk for persons with Down syndrome to develop Alzheimer disease, this study was designed to investigate the effect of acetyl-L-carnitine administration on neurological, intellectual, and…

  12. Modulation of Central Carbon Metabolism by Acetylation of Isocitrate Lyase in Mycobacterium tuberculosis

    PubMed Central

    Bi, Jing; Wang, Yihong; Yu, Heguo; Qian, Xiaoyan; Wang, Honghai; Liu, Jun; Zhang, Xuelian

    2017-01-01

    Several enzymes involved in central carbon metabolism such as isocitrate lyase and phosphoenolpyruvate carboxykinase are key determinants of pathogenesis of Mycobacterium tuberculosis (M. tb). In this study, we found that lysine acetylation plays an important role in the modulation of central carbon metabolism in M. tb. Mutant of M. tb defective in sirtuin deacetylase exhibited improved growth in fatty acid-containing media. Global analysis of lysine acetylome of M. tb identified three acetylated lysine residues (K322, K331, and K392) of isocitrate lyase (ICL1). Using a genetically encoding system, we demonstrated that acetylation of K392 increased the enzyme activity of ICL1, whereas acetylation of K322 decreased its activity. Antibodies that specifically recognized acetyllysine at 392 and 322 of ICL1 were used to monitor the levels of ICL1 acetylation in M. tb cultures. The physiological significance of ICL1 acetylation was demonstrated by the observation that M. tb altered the levels of acetylated K392 in response to changes of carbon sources, and that acetylation of K392 affected the abundance of ICL1 protein. Our study has uncovered another regulatory mechanism of ICL1. PMID:28322251

  13. Acetylation of Starch with Vinyl Acetate in Imidazolium Ionic Liquids and Characterization of Acetate Distribution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch was acetylated with vinyl acetate in different 1-butyl-3-methylimidazolium (BMIM) salts as solvent in effort to produce starches with different acetylation patterns. Overall degree of substitution was much higher for basic anions such as acetate and dicyanimide (dca) than for neutral anions ...

  14. Requirements for Carnitine Shuttle-Mediated Translocation of Mitochondrial Acetyl Moieties to the Yeast Cytosol

    PubMed Central

    van Rossum, Harmen M.; Kozak, Barbara U.; Niemeijer, Matthijs S.; Dykstra, James C.; Luttik, Marijke A. H.; van Maris, Antonius J. A.

    2016-01-01

    ABSTRACT In many eukaryotes, the carnitine shuttle plays a key role in intracellular transport of acyl moieties. Fatty acid-grown Saccharomyces cerevisiae cells employ this shuttle to translocate acetyl units into their mitochondria. Mechanistically, the carnitine shuttle should be reversible, but previous studies indicate that carnitine shuttle-mediated export of mitochondrial acetyl units to the yeast cytosol does not occur in vivo. This apparent unidirectionality was investigated by constitutively expressing genes encoding carnitine shuttle-related proteins in an engineered S. cerevisiae strain, in which cytosolic acetyl coenzyme A (acetyl-CoA) synthesis could be switched off by omitting lipoic acid from growth media. Laboratory evolution of this strain yielded mutants whose growth on glucose, in the absence of lipoic acid, was l-carnitine dependent, indicating that in vivo export of mitochondrial acetyl units to the cytosol occurred via the carnitine shuttle. The mitochondrial pyruvate dehydrogenase complex was identified as the predominant source of acetyl-CoA in the evolved strains. Whole-genome sequencing revealed mutations in genes involved in mitochondrial fatty acid synthesis (MCT1), nuclear-mitochondrial communication (RTG2), and encoding a carnitine acetyltransferase (YAT2). Introduction of these mutations into the nonevolved parental strain enabled l-carnitine-dependent growth on glucose. This study indicates intramitochondrial acetyl-CoA concentration and constitutive expression of carnitine shuttle genes as key factors in enabling in vivo export of mitochondrial acetyl units via the carnitine shuttle. PMID:27143389

  15. Novel Family of Carbohydrate Esterases, Based on Identification of the Hypocrea jecorina Acetyl Esterase Gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant cell walls have been shown to contain acetyl groups in hemicelluloses and pectin. The gene, ae1, encoding the acetyl esterase (Ae1) of Hypocrea jecorina was identified by amino terminal sequencing, peptide mass spectrometry, and genomic sequence analyses. The coded polypeptide had 348 amino ...

  16. Protein acetylation affects acetate metabolism, motility and acid stress response in Escherichia coli

    PubMed Central

    Castaño-Cerezo, Sara; Bernal, Vicente; Post, Harm; Fuhrer, Tobias; Cappadona, Salvatore; Sánchez-Díaz, Nerea C; Sauer, Uwe; Heck, Albert JR; Altelaar, AF Maarten; Cánovas, Manuel

    2014-01-01

    Although protein acetylation is widely observed, it has been associated with few specific regulatory functions making it poorly understood. To interrogate its functionality, we analyzed the acetylome in Escherichia coli knockout mutants of cobB, the only known sirtuin-like deacetylase, and patZ, the best-known protein acetyltransferase. For four growth conditions, more than 2,000 unique acetylated peptides, belonging to 809 proteins, were identified and differentially quantified. Nearly 65% of these proteins are related to metabolism. The global activity of CobB contributes to the deacetylation of a large number of substrates and has a major impact on physiology. Apart from the regulation of acetyl-CoA synthetase, we found that CobB-controlled acetylation of isocitrate lyase contributes to the fine-tuning of the glyoxylate shunt. Acetylation of the transcription factor RcsB prevents DNA binding, activating flagella biosynthesis and motility, and increases acid stress susceptibility. Surprisingly, deletion of patZ increased acetylation in acetate cultures, which suggests that it regulates the levels of acetylating agents. The results presented offer new insights into functional roles of protein acetylation in metabolic fitness and global cell regulation. PMID:25518064

  17. Observed surface lysine acetylation of human carbonic anhydrase II expressed in Escherichia coli

    PubMed Central

    Mahon, Brian P; Lomelino, Carrie L; Salguero, Antonieta L; Driscoll, Jenna M; Pinard, Melissa A; McKenna, Robert

    2015-01-01

    Acetylation of surface lysine residues of proteins has been observed in Escherichia coli (E. coli), an organism that has been extensively utilized for recombinant protein expression. This post-translational modification is shown to be important in various processes such as metabolism, stress-response, transcription, and translation. As such, utilization of E. coli expression systems for protein production may yield non-native acetylation events of surface lysine residues. Here we present the crystal structures of wild-type and a variant of human carbonic anhydrase II (hCA II) that have been expressed in E. coli and exhibit surface lysine acetylation and we speculate on the effect this has on the conformational stability of each enzyme. Both structures were determined to 1.6 Å resolution and show clear electron density for lysine acetylation. The lysine acetylation does not distort the structure and the surface lysine acetylation events most likely do not interfere with the biological interpretation. However, there is a reduction in conformational stability in the hCA II variant compared to wild type (∼4°C decrease). This may be due to other lysine acetylation events that have occurred but are not visible in the crystal structure due to intrinsic disorder. Therefore, surface lysine acetylation events may affect overall protein stability and crystallization, and should be considered when using E. coli expression systems. PMID:26266677

  18. An Artificial Reaction Promoter Modulates Mitochondrial Functions via Chemically Promoting Protein Acetylation

    PubMed Central

    Shindo, Yutaka; Komatsu, Hirokazu; Hotta, Kohji; Ariga, Katsuhiko; Oka, Kotaro

    2016-01-01

    Acetylation, which modulates protein function, is an important process in intracellular signalling. In mitochondria, protein acetylation regulates a number of enzymatic activities and, therefore, modulates mitochondrial functions. Our previous report showed that tributylphosphine (PBu3), an artificial reaction promoter that promotes acetylransfer reactions in vitro, also promotes the reaction between acetyl-CoA and an exogenously introduced fluorescent probe in mitochondria. In this study, we demonstrate that PBu3 induces the acetylation of mitochondrial proteins and a decrease in acetyl-CoA concentration in PBu3-treated HeLa cells. This indicates that PBu3 can promote the acetyltransfer reaction between acetyl-CoA and mitochondrial proteins in living cells. PBu3-induced acetylation gradually reduced mitochondrial ATP concentrations in HeLa cells without changing the cytoplasmic ATP concentration, suggesting that PBu3 mainly affects mitochondrial functions. In addition, pyruvate, which is converted into acetyl-CoA in mitochondria and transiently increases ATP concentrations in the absence of PBu3, elicited a further decrease in mitochondrial ATP concentrations in the presence of PBu3. Moreover, the application and removal of PBu3 reversibly alternated mitochondrial fragmentation and elongation. These results indicate that PBu3 enhances acetyltransfer reactions in mitochondria and modulates mitochondrial functions in living cells. PMID:27374857

  19. Protective Effects of Acetylation on the Pathological Reactions of the Lens Crystallins with Homocysteine Thiolactone

    PubMed Central

    Moafian, Zeinab; Khoshaman, Kazem; Oryan, Ahmad; Kurganov, Boris I.; Yousefi, Reza

    2016-01-01

    Various post-translational lens crystallins modifications result in structural and functional insults, contributing to the development of lens opacity and cataract disorders. Lens crystallins are potential targets of homocysteinylation, particularly under hyperhomocysteinemia which has been indicated in various eye diseases. Since both homocysteinylation and acetylation primarily occur on protein free amino groups, we applied different spectroscopic methods and gel mobility shift analysis to examine the possible preventive role of acetylation against homocysteinylation. Lens crystallins were extensively acetylated in the presence of acetic anhydride and then subjected to homocysteinylation in the presence of homocysteine thiolactone (HCTL). Extensive acetylation of the lens crystallins results in partial structural alteration and enhancement of their stability, as well as improvement of α-crystallin chaperone-like activity. In addition, acetylation partially prevents HCTL-induced structural alteration and aggregation of lens crystallins. Also, acetylation protects against HCTL-induced loss of α-crystallin chaperone activity. Additionally, subsequent acetylation and homocysteinylation cause significant proteolytic degradation of crystallins. Therefore, further experimentation is required in order to judge effectively the preventative role of acetylation on the structural and functional insults induced by homocysteinylation of lens crystallins. PMID:27706231

  20. Histone Acetylation is Recruited in Consolidation as a Molecular Feature of Stronger Memories

    ERIC Educational Resources Information Center

    Federman, Noel; Fustinana, Maria Sol; Romano, Arturo

    2009-01-01

    Gene expression is a key process for memory consolidation. Recently, the participation of epigenetic mechanisms like histone acetylation was evidenced in long-term memories. However, until now the training strength required and the persistence of the chromatin acetylation recruited are not well characterized. Here we studied whether histone…

  1. Control of poly-beta-hydroxybutyrate synthase mediated by acetyl phosphate in cyanobacteria.

    PubMed Central

    Miyake, M; Kataoka, K; Shirai, M; Asada, Y

    1997-01-01

    Poly-beta-hydroxybutyrate (PHB) synthesis in a cyanobacterium, Synechococcus sp. strain MA19, is controlled at the enzyme level and is dependent on the C/N balance in the culture medium. The control involves at least two enzymes. The first enzyme is PHB synthase. Little PHB synthase activity was detected in crude extracts from cells grown under nitrogen-sufficient conditions (MA19(+N)). The activity was detected exclusively in membrane fractions from nitrogen-deprived cells (MA19(-N)) under light but not dark conditions. The shift in the enzyme activity was insensitive to chloramphenicol, which suggests posttranslational activation. Acetyl phosphate activated PHB synthase in membrane fractions from MA19(+N). In vitro, the activation level of PHB synthase changed, depending on the concentration of acetyl phosphate. The second enzyme was phosphotransacetylase (EC 2.3.1.8), which catalyzes the conversion of acetyl coenzyme A (acetyl-CoA) to acetyl phosphate. The activity was detected in crude extracts from MA19(-N) but not in those from MA19(+N). The results suggested that intracellular acetyl phosphate concentration could be controlled, depending on C/N balance and intracellular acetyl-CoA concentration. Acetyl phosphate probably acts as a signal of C/N balance affecting PHB metabolism in MA19. PMID:9260940

  2. Post-translational modification by acetylation regulates the mitochondrial carnitine/acylcarnitine transport protein.

    PubMed

    Giangregorio, Nicola; Tonazzi, Annamaria; Console, Lara; Indiveri, Cesare

    2017-02-01

    The carnitine/acylcarnitine transporter (CACT; SLC25A20) mediates an antiport reaction allowing entry of acyl moieties in the form of acylcarnitines into the mitochondrial matrix and exit of free carnitine. The transport function of CACT is crucial for the β-oxidation pathway. In this work, it has been found that CACT is partially acetylated in rat liver mitochondria as demonstrated by anti-acetyl-lys antibody immunostaining. Acetylation was reversed by the deacetylase Sirtuin 3 in the presence of NAD(+). After treatment of the mitochondrial extract with the deacetylase, the CACT activity, assayed in proteoliposomes, increased. The half-saturation constant of the CACT was not influenced, while the V max was increased by deacetylation. Sirtuin 3 was not able to deacetylate the CACT when incubation was performed in intact mitoplasts, indicating that the acetylation sites are located in the mitochondrial matrix. Prediction on the localization of acetylated residues by bioinformatics correlates well with the experimental data. Recombinant CACT treated with acetyl-CoA was partially acetylated by non-enzymatic mechanism with a corresponding decrease of transport activity. The experimental data indicate that acetylation of CACT inhibits its transport activity, and thus may contribute to the regulation of the mitochondrial β-oxidation pathway.

  3. Effects of acetylation on the emulsifying properties of Artemisia sphaerocephala Krasch. polysaccharide.

    PubMed

    Li, Junjun; Hu, Xinzhong; Li, Xiaoping; Ma, Zhen

    2016-06-25

    In the present study, polysaccharides extracted from Artemisia sphaerocephala Krasch. seeds (ASKP) were acetylated to improve the emulsifying properties of the macromolecules. Several methods were applied for the acetylation purpose, among which the acetic anhydride-pyridine method with formamide as solvent was found to be the most effective one. Acetylated ASKPs with various degree of substitution (DS) were successfully produced and structurally characterized using HPSEC-MALS, FTIR and (1)H NMR techniques in this study. Results showed that acetylation treatment could cause the degradation of ASKP. Moreover, with the increase of DS, both the molecular weight and radius of gyration increased, as well as the molecular conformation trended to be more compact. Low DS (DS: 0.04 and 0.13) conferred acetylated ASKP a lower viscosity than that of ASKP. With the increase of DS, the viscosity of acetylated ASKPs increased and exceeded that of ASKP. Compared with ASKP, acetylated ASKPs could reduce the surface tension to a greater extent and demonstrated a much smaller droplet size (ZD) in an oil/water emulsion system. Acetylated ASKPs were capable of stabilizing the oil/water emulsion for 3 days at 60°C, whose performance was as good as that of gum acacia. In conclusion, such a hydrophobic modification on ASKP conferred it better emulsifying properties.

  4. A bioinformatics-based overview of protein Lys-Ne-acetylation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Among posttranslational modifications, there are some conceptual similarities between Lys-N'-acetylation and Ser/Thr/Tyr O-phosphorylation. Herein we present a bioinformatics-based overview of reversible protein Lys-acetylation, including some comparisons with reversible protein phosphorylation. T...

  5. 78 FR 42529 - National Institute on Alcohol Abuse and Alcoholism; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-16

    ... HUMAN SERVICES National Institutes of Health National Institute on Alcohol Abuse and Alcoholism; Notice... personal privacy. Name of Committee: National Institute on Alcohol Abuse and Alcoholism Initial Review....D., Scientific Review Administrator, National Institutes on Alcohol Abuse & Alcoholism,...

  6. 75 FR 38533 - National Institute on Alcohol Abuse and Alcoholism; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-02

    ... HUMAN SERVICES National Institutes of Health National Institute on Alcohol Abuse and Alcoholism; Notice... personal privacy. Name of Committee: National Institute on Alcohol Abuse and Alcoholism Special Emphasis... Alcohol Abuse and Alcoholism, Office of Extramural Activities, Extramural Project Officer, 5635...

  7. 78 FR 42530 - National Institute on Alcohol Abuse and Alcoholism; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-16

    ... HUMAN SERVICES National Institutes of Health National Institute on Alcohol Abuse and Alcoholism; Notice... personal privacy. Name of Committee: National Institute on Alcohol Abuse and Alcoholism Initial Review..., Ph.D., Scientific Review Officer, National Institute on Alcohol Abuse & Alcoholism,...

  8. 76 FR 77841 - National Institute on Alcohol Abuse and Alcoholism; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-14

    ... HUMAN SERVICES National Institutes of Health National Institute on Alcohol Abuse and Alcoholism; Notice... personal privacy. Name of Committee: National Institute on Alcohol Abuse and Alcoholism Initial Review..., Ph.D., Scientific Review Officer, National Institute on Alcohol Abuse & Alcoholism,...

  9. 76 FR 78014 - National Institute on Alcohol Abuse and Alcoholism; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-15

    ... HUMAN SERVICES National Institutes of Health National Institute on Alcohol Abuse and Alcoholism; Notice... personal privacy. Name of Committee: National Institute on Alcohol Abuse and Alcoholism Initial Review...., Scientific Review Administrator, National Institutes on Alcohol Abuse & Alcoholism, National Institutes...

  10. 75 FR 10808 - National Institute on Alcohol Abuse and Alcoholism; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-09

    ... HUMAN SERVICES National Institutes of Health National Institute on Alcohol Abuse and Alcoholism; Notice... personal privacy. Name of Committee: National Institute on Alcohol Abuse and Alcoholism Special Emphasis... Officer, National Institute on Alcohol Abuse & Alcoholism, National Institutes of Health, 5635...

  11. 77 FR 22794 - National Institute on Alcohol Abuse and Alcoholism; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-17

    ... HUMAN SERVICES National Institutes of Health National Institute on Alcohol Abuse and Alcoholism; Notice... personal privacy. Name of Committee: National Institute on Alcohol Abuse and Alcoholism Initial Review..., Ph.D., Scientific Review Administrator, National Institutes on Alcohol Abuse & Alcoholism...

  12. 77 FR 70171 - National Institute on Alcohol Abuse and Alcoholism; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-23

    ... HUMAN SERVICES National Institutes of Health National Institute on Alcohol Abuse and Alcoholism; Notice... personal privacy. Name of Committee: National Institute on Alcohol Abuse and Alcoholism Initial Review... Review Officer, National Institute ] on Alcohol Abuse & Alcoholism, National Institutes of Health,...

  13. 76 FR 26308 - National Institute on Alcohol Abuse and Alcoholism; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-06

    ... HUMAN SERVICES National Institutes of Health National Institute on Alcohol Abuse and Alcoholism; Notice... personal privacy. Name of Committee: National Institute on Alcohol Abuse and Alcoholism Initial Review..., Scientific Review Administrator, National Institutes On Alcohol Abuse & Alcoholism National, Institutes...

  14. 77 FR 22794 - National Institute on Alcohol Abuse and Alcoholism; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-17

    ... HUMAN SERVICES National Institutes of Health National Institute on Alcohol Abuse and Alcoholism; Notice... personal privacy. Name of Committee: National Institute on Alcohol Abuse and Alcoholism, Initial Review..., Ph.D., Scientific Review Officer, National Institute on Alcohol Abuse & Alcoholism,...

  15. 75 FR 57473 - National Institute on Alcohol Abuse and Alcoholism; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-21

    ... HUMAN SERVICES National Institutes of Health National Institute on Alcohol Abuse and Alcoholism; Notice... personal privacy. Name of Committee: National Institute on Alcohol Abuse and Alcoholism Special Emphasis... Officer, National Institute on Alcohol Abuse and Alcoholism, Office of Extramural Activities,...

  16. Human Apurinic/Apyrimidinic Endonuclease (APE1) Is Acetylated at DNA Damage Sites in Chromatin, and Acetylation Modulates Its DNA Repair Activity

    PubMed Central

    Roychoudhury, Shrabasti; Nath, Somsubhra; Song, Heyu; Hegde, Muralidhar L.; Bellot, Larry J.; Mantha, Anil K.; Sengupta, Shiladitya; Ray, Sutapa; Natarajan, Amarnath

    2016-01-01

    ABSTRACT Apurinic/apyrimidinic (AP) sites, the most frequently formed DNA lesions in the genome, inhibit transcription and block replication. The primary enzyme that repairs AP sites in mammalian cells is the AP endonuclease (APE1), which functions through the base excision repair (BER) pathway. Although the mechanism by which APE1 repairs AP sites in vitro has been extensively investigated, it is largely unknown how APE1 repairs AP sites in cells. Here, we show that APE1 is acetylated (AcAPE1) after binding to the AP sites in chromatin and that AcAPE1 is exclusively present on chromatin throughout the cell cycle. Positive charges of acetylable lysine residues in the N-terminal domain of APE1 are essential for chromatin association. Acetylation-mediated neutralization of the positive charges of the lysine residues in the N-terminal domain of APE1 induces a conformational change; this in turn enhances the AP endonuclease activity of APE1. In the absence of APE1 acetylation, cells accumulated AP sites in the genome and showed higher sensitivity to DNA-damaging agents. Thus, mammalian cells, unlike Saccharomyces cerevisiae or Escherichia coli cells, require acetylation of APE1 for the efficient repair of AP sites and base damage in the genome. Our study reveals that APE1 acetylation is an integral part of the BER pathway for maintaining genomic integrity. PMID:27994014

  17. Determination of the weight percentage gain and of the acetyl group content of acetylated wood by means of different infrared spectroscopic methods.

    PubMed

    Stefke, Barbara; Windeisen, Elisabeth; Schwanninger, Manfred; Hinterstoisser, Barbara

    2008-02-15

    The weight percentage gain (WPG) and the acetyl group content of wood due to acetylation with acetic anhydride have been analyzed by means of Fourier transform infrared spectroscopy (FTIR) and near-infrared spectroscopy (NIR). Band height ratios (BHR) (1240/1030 (1230/1030) and 1745/1030 (1740/1030)) of the bands at 1745 (1740), 1240 (1230), and 1030 cm-1 were calculated from FTIR-KBr and FTIR-ATR (attenuated total reflection) spectra. The good linear correlation with a coefficient of determination of about 0.94 over a range from 0 to 27% WPG existing between BHRs and WPG and acetyl group content, respectively, requires only a few samples to calibrate FTIR. Partial least-squares regression models based on second derivatives of the NIR spectra in the wavenumber range from 6080 to 5760 cm-1 resulted in a R2 value of 0.99, number of PLS components (rank) between 3 and 5, root-mean-square error of cross-validation between 0.6 and 0.79%, and a residual prediction deviation up to 10. Although a wide range of input parameters (i.e., various wood species and different procedures of acetylation) was used, highly satisfactory results were obtained. Both FTIR and NIR spectroscopic means fulfill the need for determining the WPG and the acetyl content of acetylated wood. By reason of its additional potential for on-line process control, the NIR method may even outperform the FTIR method.

  18. Loss-of-Function Mutation of REDUCED WALL ACETYLATION2 in Arabidopsis Leads to Reduced Cell Wall Acetylation and Increased Resistance to Botrytis cinerea1[W][OA

    PubMed Central

    Manabe, Yuzuki; Nafisi, Majse; Verhertbruggen, Yves; Orfila, Caroline; Gille, Sascha; Rautengarten, Carsten; Cherk, Candice; Marcus, Susan E.; Somerville, Shauna; Pauly, Markus; Knox, J. Paul; Sakuragi, Yumiko; Scheller, Henrik Vibe

    2011-01-01

    Nearly all polysaccharides in plant cell walls are O-acetylated, including the various pectic polysaccharides and the hemicelluloses xylan, mannan, and xyloglucan. However, the enzymes involved in the polysaccharide acetylation have not been identified. While the role of polysaccharide acetylation in vivo is unclear, it is known to reduce biofuel yield from lignocellulosic biomass by the inhibition of microorganisms used for fermentation. We have analyzed four Arabidopsis (Arabidopsis thaliana) homologs of the protein Cas1p known to be involved in polysaccharide O-acetylation in Cryptococcus neoformans. Loss-of-function mutants in one of the genes, designated REDUCED WALL ACETYLATION2 (RWA2), had decreased levels of acetylated cell wall polymers. Cell wall material isolated from mutant leaves and treated with alkali released about 20% lower amounts of acetic acid when compared with the wild type. The same level of acetate deficiency was found in several pectic polymers and in xyloglucan. Thus, the rwa2 mutations affect different polymers to the same extent. There were no obvious morphological or growth differences observed between the wild type and rwa2 mutants. However, both alleles of rwa2 displayed increased tolerance toward the necrotrophic fungal pathogen Botrytis cinerea. PMID:21212300

  19. Alcohol Alert: Link Between Stress and Alcohol

    MedlinePlus

    ... relate to alcohol use. 1 Racial and Ethnic Minority Stress Stress also can arise as a result of a person’s minority status, especially as it pertains to prejudice and discrimination. Such stress may range from mild (e.g., hassles such ...

  20. Restoration of Hypoxanthine Phosphoribosyl Transferase Activity in Mouse 1R Cells After Fusion with Chick-Embryo Fibroblasts

    PubMed Central

    Bakay, Bohdan; Croce, Carlo M.; Koprowski, Hilary; Nyhan, William L.

    1973-01-01

    Fusion of the 1R mouse cell, which lacks activity of hypoxanthine phosphoribosyl transferase (EC 2.4.2.8), with chick-embryo fibroblasts yielded progeny cells that survived in hypoxanthine-aminopterin-thymidine selective medium. This property and the failure of the progeny to survive in 8-azaguanine indicated that hypoxanthine phosphoribosyl transferase activity was present. Electrophoretic analysis revealed that the enzyme was of mouse, not chick, origin. These observations are consistent with the operation of a regulator gene responsible for the absence of hypoxanthine phosphoribosyl-transferase activity in the 1R cell and its presence in the progeny. Images PMID:4516198