Science.gov

Sample records for alcohol dehydrogenase aldehyde

  1. Mechanism of aldehyde oxidation catalyzed by horse liver alcohol dehydrogenase.

    PubMed

    Olson, L P; Luo, J; Almarsson, O; Bruice, T C

    1996-07-30

    The mechanism of oxidation of benzaldehyde to benzoic acid catalyzed by horse liver alcohol dehydrogenase (HLADH) has been investigated using the HLADH structure at 2.1 A resolution with NAD+ and pentafluorobenzyl alcohol in the active site [Ramaswamy et al. (1994) Biochemistry 33,5230-5237]. Constructs for molecular dynamics (MD) investigations with HLADH were obtained by a best-fit superimposition of benzaldehyde or its hydrate on the pentafluorobenzyl alcohol bound to the active site Zn(II)ion. Equilibrium bond lengths, angles, and dihedral parameters for Zn(II) bonding residues His67, Cys46, and Cys174 were obtained from small-molecule X-ray crystal structures and an ab initio-derived parameterization of zinc in HLADH [Ryde, U. (1995) Proteins: Struct., Funct., Genet. 21,40-56]. Dynamic simulations in CHARMM were carried out on the following three constructs to 100 ps: (MD1) enzyme with NAD+, benzaldehyde, and zinc-ligated HO-in the active site; (MD2) enzyme with NAD+ and hydrated benzaldehyde monoanion bound to zinc via the pro-R oxygen, with a proton residing on the pro-S oxygen; and (MD3) enzyme with NAD+ and hydrated benzaldehyde monoanion bound to zinc via the pro-S oxygen, with a proton residing on the pro-R oxygen. Analyses were done of 800 sample conformations taken in the last 40 ps of dynamics. Structures from MD1 and MD3 were used to define the initial spatial arrangements of reactive functionalities for semiempirical PM3 calculations. Using PM3, model systems were calculated of ground states and some transition states for aldehyde hydration, hydride transfer, and subsequent proton shuttling. With benzaldehyde and zinc-bound hydroxide ion in the active site, the oxygen of Zn(II)-OH resided at a distance of 2.8-5.5 A from the aldehyde carbonyl carbon during the dynamics simulation. This may be compared to the PM3 transition state for attack of the Zn(II)-OH oxygen on the benzaldehyde carbonyl carbon, which has an O...C distance of 1.877 A. HLADH

  2. Molecular characterization of an aldehyde/alcohol dehydrogenase gene from Clostridium acetobutylicum ATCC 824.

    PubMed Central

    Nair, R V; Bennett, G N; Papoutsakis, E T

    1994-01-01

    A gene (aad) coding for an aldehyde/alcohol dehydrogenase (AAD) was identified immediately upstream of the previously cloned ctfA (J. W. Cary, D. J. Petersen, E. T. Papoutsakis, and G. N. Bennett, Appl. Environ. Microbiol. 56:1576-1583, 1990) of Clostridium acetobutylicum ATCC 824 and sequenced. The 2,619-bp aad codes for a 96,517-Da protein. Primer extension analysis identified two transcriptional start sites 83 and 243 bp upstream of the aad start codon. The N-terminal section of AAD shows homology to aldehyde dehydrogenases of bacterial, fungal, mammalian, and plant origin, while the C-terminal section shows homology to alcohol dehydrogenases of bacterial (which includes three clostridial alcohol dehydrogenases) and yeast origin. AAD exhibits considerable amino acid homology (56% identity) over its entire sequence to the trifunctional protein encoded by adhE from Escherichia coli. Expression of aad from a plasmid in C. acetobutylicum showed that AAD, which appears as a approximately 96-kDa band in denaturing protein gels, provides elevated activities of NADH-dependent butanol dehydrogenase, NAD-dependent acetaldehyde dehydrogenase and butyraldehyde dehydrogenase, and a small increase in NADH-dependent ethanol dehydrogenase. A 957-bp open reading frame that could potentially encode a 36,704-Da protein was identified upstream of aad. Images PMID:8300540

  3. Aldehyde dehydrogenase activity in Lactococcus chungangensis: Application in cream cheese to reduce aldehyde in alcohol metabolism.

    PubMed

    Konkit, Maytiya; Choi, Woo Jin; Kim, Wonyong

    2016-03-01

    Previous studies have shown that the metabolic capability of colonic microflora may be at least as high as that of the liver or higher than that of the whole human body. Aldehyde dehydrogenase (ALDH) is an enzyme produced by these bacteria that can metabolize acetaldehyde, produce from ethanol to acetate. Lactococcus species, which is commonly used as a starter in dairy products, was recently found to possess the ALDH gene, and the activity of this enzyme was determined. In this study, the ALDH activity of Lactococcus chungangensis CAU 28(T) and 11 other type strains in the genus Lactococcus was studied. Only 5 species, 3 of dairy origin (Lactococcus lactis ssp. lactis KCTC 3769(T), Lactococcus lactis ssp. cremoris KCCM 40699(T), and Lactococcus raffinolactis DSM 20443(T)) and 2 of nondairy origin (Lactococcus fujiensis NJ317(T) and L. chungangensis CAU 28(T)), showed ALDH activity and possessed a gene encoding ALDH. All of these strains were capable of making cream cheese. Among the strains, L. chungangensis produced cream cheese that contained the highest level of ALDH and was found to reduce the level of acetaldehyde in the serum of mice. These results predict a promising role for L. chungangensis CAU28(T) to be used in cheese that can be developed as functional food.

  4. Ethanol utilization regulatory protein: profile alignments give no evidence of origin through aldehyde and alcohol dehydrogenase gene fusion.

    PubMed Central

    Nicholas, H. B.; Persson, B.; Jörnvall, H.; Hempel, J.

    1995-01-01

    The suggestion that the ethanol regulatory protein from Aspergillus has its evolutionary origin in a gene fusion between aldehyde and alcohol dehydrogenase genes (Hawkins AR, Lamb HK, Radford A, Moore JD, 1994, Gene 146:145-158) has been tested by profile analysis with aldehyde and alcohol dehydrogenase family profiles. We show that the degree and kind of similarity observed between these profiles and the ethanol regulatory protein sequence is that expected from random sequences of the same composition. This level of similarity fails to support the suggested gene fusion. PMID:8580855

  5. Influence of fermentation conditions on specific activity of the enzymes alcohol and aldehyde dehydrogenase from yeasts.

    PubMed

    Mauricio, J C; Ortega, J M

    1993-01-01

    The effects of anaerobic, semi-aerobic and short aeration fermentation conditions and the addition of ergosterol and oleic acid to musts on the specific activity of alcohol and aldehyde dehydrogenase (ADH and ALDH) from two yeast species, Saccharomyces cerevisiae and Torulaspora delbrueckii, were studied. ADH I biosynthesis only occurred during the first few hours of fermentation. ADH II from S. cerevisiae and ALDH-NADP+ from the two yeast species behaved as constitutive enzymes under all fermentation conditions. ADH II from T. delbrueckii was only synthesized in small amounts, and its activity was always lower than in S. cerevisiae, where it was responsible for the termination of alcoholic fermentation during the steady growth phase.

  6. Evaluation of alcohol dehydrogenase and aldehyde dehydrogenase enzymes as bi-enzymatic anodes in a membraneless ethanol microfluidic fuel cell

    NASA Astrophysics Data System (ADS)

    Galindo-de-la-Rosa, J.; Arjona, N.; Arriaga, L. G.; Ledesma-García, J.; Guerra-Balcázar, M.

    2015-12-01

    Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (AldH) enzymes were immobilized by covalent binding and used as the anode in a bi-enzymatic membraneless ethanol hybrid microfluidic fuel cell. The purpose of using both enzymes was to optimize the ethanol electro-oxidation reaction (EOR) by using ADH toward its direct oxidation and AldH for the oxidation of aldehydes as by-products of the EOR. For this reason, three enzymatic bioanode configurations were evaluated according with the location of enzymes: combined, vertical and horizontally separated. In the combined configuration, a current density of 16.3 mA cm-2, a voltage of 1.14 V and a power density of 7.02 mW cm-2 were obtained. When enzymes were separately placed in a horizontal and vertical position the ocp drops to 0.94 V and to 0.68 V, respectively. The current density also falls to values of 13.63 and 5.05 mA cm-2. The decrease of cell performance of bioanodes with separated enzymes compared with the combined bioanode was of 31.7% and 86.87% for the horizontal and the vertical array.

  7. Alcohol and aldehyde dehydrogenases: structures of the human liver enzymes, functional properties and evolutionary aspects.

    PubMed

    Jörnvall, H; Hempel, J; von Bahr-Lindström, H; Höög, J O; Vallee, B L

    1987-01-01

    All three types of subunit of class I human alcohol dehydrogenase have been analyzed both at the protein and cDNA levels, and the structures of alpha, beta 1, beta 2, gamma 1, and gamma 2 subunits are known. The same applies to class II pi subunits. Extensive protein data are also available for class III chi subunits. In the class I human isozymes, amino acid exchanges occur at 35 positions in total, with 21-28 replacements between any pair of the alpha/beta/gamma chains. These values, compared with those from species differences between the corresponding human and horse enzymes, suggest that isozyme developments in the class I enzyme resulted from separate gene duplications after the divergence of the human and equine evolutionary lines. All subunits exhibit some unique properties, with slightly closer similarity between the human gamma and horse enzyme subunits and somewhat greater deviations towards the human alpha subunit. Differences are large also in segments close to the active site zinc ligands and other functionally important positions. Species differences are distributed roughly equally between the two types of domain in the subunit, whereas isozyme differences are considerably more common in the catalytic than in the coenzyme-binding domain. These facts illustrate a functional divergence among the isozymes but otherwise similar changes during evolution. Polymorphic forms of beta and gamma subunits are characterized by single replacements at one and two positions, respectively, explaining known deviating properties. Class II and class III subunits are considerably more divergent. Their homology with class I isozymes exhibits only 60-65% positional identity. Hence, they reflect further steps towards the development of new enzymes, with variations well above the horse/human species levels, in contrast to the class I forms. Again, functionally important residues are affected, and patterns resembling those previously established for the divergently related

  8. The diagnostic value of alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) measurement in the sera of gastric cancer patients.

    PubMed

    Jelski, Wojciech; Orywal, Karolina; Laniewska, Magdalena; Szmitkowski, Maciej

    2010-12-01

    Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are present in gastric cancer cells (GC). Moreover, the activity of total ADH and class IV isoenzymes is significantly higher in cancer tissue than in healthy mucosa. The activity of these enzymes in cancer cells is probably reflected in the sera and could thus be helpful for diagnostics of gastric cancer. The aim of this study was to investigate a potential role of ADH and ALDH as tumor markers for gastric cancer. We defined diagnostic sensitivity, specificity, predictive value for positive and negative results, and receiver-operating characteristics (ROC) curve for tested enzymes. Serum samples were taken from 168 patients with gastric cancer before treatment and from 168 control subjects. Total ADH activity and class III and IV isoenzymes were measured by photometric but ALDH activity and ADH I and II by the fluorometric method, with class-specific fluorogenic substrates. There was significant increase in the activity of ADH IV isoenzyme and ADH total in the sera of gastric cancer patients compared to the control. The diagnostic sensitivity for ADH IV was 73%, specificity 79%, positive and negative predictive values were 81 and 72% respectively. Area under ROC curve for ADH IV was 0.67. The results suggest a potential role for ADH IV as marker of gastric cancer.

  9. Acute and chronic ethanol exposure differentially alters alcohol dehydrogenase and aldehyde dehydrogenase activity in the zebrafish liver.

    PubMed

    Tran, Steven; Nowicki, Magda; Chatterjee, Diptendu; Gerlai, Robert

    2015-01-02

    Chronic ethanol exposure paradigms have been successfully used in the past to induce behavioral and central nervous system related changes in zebrafish. However, it is currently unknown whether chronic ethanol exposure alters ethanol metabolism in adult zebrafish. In the current study we examine the effect of acute ethanol exposure on adult zebrafish behavioral responses, as well as alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activity in the liver. We then examine how two different chronic ethanol exposure paradigms (continuous and repeated ethanol exposure) alter behavioral responses and liver enzyme activity during a subsequent acute ethanol challenge. Acute ethanol exposure increased locomotor activity in a dose-dependent manner. ADH activity was shown to exhibit an inverted U-shaped curve and ALDH activity was decreased by ethanol exposure at all doses. During the acute ethanol challenge, animals that were continuously housed in ethanol exhibited a significantly reduced locomotor response and increased ADH activity, however, ALDH activity did not change. Zebrafish that were repeatedly exposed to ethanol demonstrated a small but significant attenuation of the locomotor response during the acute ethanol challenge but ADH and ALDH activity was similar to controls. Overall, we identified two different chronic ethanol exposure paradigms that differentially alter behavioral and physiological responses in zebrafish. We speculate that these two paradigms may allow dissociation of central nervous system-related and liver enzyme-dependent ethanol induced changes in zebrafish.

  10. High current density PQQ-dependent alcohol and aldehyde dehydrogenase bioanodes.

    PubMed

    Aquino Neto, Sidney; Hickey, David P; Milton, Ross D; De Andrade, Adalgisa R; Minteer, Shelley D

    2015-10-15

    In this paper, we explore the bioelectrooxidation of ethanol using pyrroloquinoline quinone (PQQ)-dependent alcohol and aldehyde dehydrogenase (ADH and AldDH) enzymes for biofuel cell applications. The bioanode architectures were designed with both direct electron transfer (DET) and mediated electron transfer (MET) mechanisms employing high surface area materials such as multi-walled carbon nanotubes (MWCNTs) and MWCNT-decorated gold nanoparticles, along with different immobilization techniques. Three different polymeric matrices were tested (tetrabutyl ammonium bromide (TBAB)-modified Nafion; octyl-modified linear polyethyleneimine (C8-LPEI); and cellulose) in the DET studies. The modified Nafion membrane provided the best electrical communication between enzymes and the electrode surface, with catalytic currents as high as 16.8 ± 2.1 µA cm(-2). Then, a series of ferrocene redox polymers were evaluated for MET. The redox polymer 1,1'-dimethylferrocene-modified linear polyethyleneimine (FcMe2-C3-LPEI) provided the best electrochemical response. Using this polymer, the electrochemical assays conducted in the presence of MWCNTs and MWCNTs-Au indicated a Jmax of 781 ± 59 µA cm(-2) and 925 ± 68 µA cm(-2), respectively. Overall, from the results obtained here, DET using the PQQ-dependent ADH and AldDH still lacks high current density, while the bioanodes that operate via MET employing ferrocene-modified LPEI redox polymers show efficient energy conversion capability in ethanol/air biofuel cells.

  11. Metabolic basis of ethylene glycol monobutyl ether (2-butoxyethanol) toxicity: role of alcohol and aldehyde dehydrogenases

    SciTech Connect

    Ghanayem, B.I.; Burka, L.T.; Matthews, H.B.

    1987-07-01

    2-Butoxyethanol (BE) is a massively produced glycol ether of which more than 230 million pounds was produced in the United States in 1983. It is extensively used in aerosols and cleaning agents intended for household use. This creates a high potential for human exposure during its manufacturing and use. A single exposure of rats to BE causes severe hemolytic anemia accompanied by secondary hemoglobinuria as well as liver and kidney damage. Butoxyacetic acid (BAA) was earlier identified as a urinary metabolite of BE. In addition, we have recently identified two additional urinary metabolites of BE, namely, BE-glucuronide and BE-sulfate conjugates. The current studies were undertaken to investigate the metabolic basis of BE-induced hematotoxicity in male F344 rats. Treatment of rats with pyrazole (alcohol dehydrogenase inhibitor) protected rats against BE-induced hematotoxicity and inhibited BE metabolism to BAA. Pyrazole inhibition of BE metabolism to BAA was accompanied by increased BE metabolism to BE-glucuronide and BE-sulfate as determined by quantitative high-performance liquid chromatography analysis of BE metabolites in urine. There was approximately a 10-fold decrease in the ratio of BAA to BE-glucuronide + BE-sulfate in the urine of rats treated with pyrazole + BE compared to rats treated with BE alone. Pretreatment of rats with cyanamide (aldehyde dehydrogenase inhibitor) also significantly protected rats against BE-induced hematotoxicity and modified BE metabolism in a manner similar to that caused by pyrazole. Administration of equimolar doses of BE, the metabolic intermediate butoxyacetaldehyde, or the ultimate metabolite BAA caused similar hematotoxic effects. Cyanamide also protected rats against butoxyacetaldehyde-induced hematotoxicity.

  12. Inhibition of human alcohol and aldehyde dehydrogenases by cimetidine and assessment of its effects on ethanol metabolism.

    PubMed

    Lai, Ching-Long; Li, Yeung-Pin; Liu, Chiu-Ming; Hsieh, Hsiu-Shan; Yin, Shih-Jiun

    2013-02-25

    Previous studies have reported that cimetidine, an H2-receptor antagonist used to treat gastric and duodenal ulcers, can inhibit alcohol dehydrogenases (ADHs) and ethanol metabolism. Human alcohol dehydrogenases and aldehyde dehydrogenases (ALDHs), the principal enzymes responsible for metabolism of ethanol, are complex enzyme families that exhibit functional polymorphisms among ethnic groups and distinct tissue distributions. We investigated the inhibition by cimetidine of alcohol oxidation by recombinant human ADH1A, ADH1B1, ADH1B2, ADH1B3, ADH1C1, ADH1C2, ADH2, and ADH4, and aldehyde oxidation by ALDH1A1 and ALDH2 at pH 7.5 and a cytosolic NAD(+) concentration. Cimetidine acted as competitive or noncompetitive inhibitors for the ADH and ALDH isozymes/allozymes with near mM inhibition constants. The metabolic interactions between cimetidine and ethanol/acetaldehyde were assessed by computer simulation using the inhibition equations and the determined kinetic constants. At therapeutic drug levels (0.015 mM) and physiologically relevant concentrations of ethanol (10 mM) and acetaldehyde (10 μM) in target tissues, cimetidine could weakly inhibit (<5%) the activities of ADH1B2 and ADH1B3 in liver, ADH2 in liver and small intestine, ADH4 in stomach, and ALDH1A1 in the three tissues, but not significantly affect ADH1A, ADH1B1, ADH1C1/2, or ALDH2. At higher drug levels, which may accumulate in cells (0.2 mM), the activities of the weakly-inhibited enzymes may be decreased more significantly. The quantitative effects of cimetidine on metabolism of ethanol and other physiological substrates of ADHs need further investigation.

  13. Structure of daidzin, a naturally occurring anti-alcohol-addiction agent, in complex with human mitochondrial aldehyde dehydrogenase.

    PubMed

    Lowe, Edward D; Gao, Guang-Yao; Johnson, Louise N; Keung, Wing Ming

    2008-08-14

    The ALDH2*2 gene encoding the inactive variant form of mitochondrial aldehyde dehydrogenase (ALDH2) protects nearly all carriers of this gene from alcoholism. Inhibition of ALDH2 has hence become a possible strategy to treat alcoholism. The natural product 7-O-glucosyl-4'-hydroxyisoflavone (daidzin), isolated from the kudzu vine ( Peruraria lobata), is a specific inhibitor of ALDH2 and suppresses ethanol consumption. Daidzin is the active principle in a herbal remedy for "alcohol addiction" and provides a lead for the design of improved ALDH2. The structure of daidzin/ALDH2 in complex at 2.4 A resolution shows the isoflavone moiety of daidzin binding close to the aldehyde substrate-binding site in a hydrophobic cleft and the glucosyl function binding to a hydrophobic patch immediately outside the isoflavone-binding pocket. These observations provide an explanation for both the specificity and affinity of daidzin (IC50 =80 nM) and the affinity of analogues with different substituents at the glucosyl position.

  14. Elucidating the contributions of multiple aldehyde/alcohol dehydrogenases to butanol and ethanol production in Clostridium acetobutylicum

    PubMed Central

    Dai, Zongjie; Dong, Hongjun; Zhang, Yanping; Li, Yin

    2016-01-01

    Ethanol and butanol biosynthesis in Clostridium acetobutylicum share common aldehyde/alcohol dehydrogenases. However, little is known about the relative contributions of these multiple dehydrogenases to ethanol and butanol production respectively. The contributions of six aldehyde/alcohol dehydrogenases of C. acetobutylicum on butanol and ethanol production were evaluated through inactivation of the corresponding genes respectively. For butanol production, the relative contributions from these enzymes were: AdhE1 > BdhB > BdhA ≈ YqhD > SMB_P058 > AdhE2. For ethanol production, the contributions were: AdhE1 > BdhB > YqhD > SMB_P058 > AdhE2 > BdhA. AdhE1 and BdhB are two essential enzymes for butanol and ethanol production. AdhE1 was relatively specific for butanol production over ethanol, while BdhB, YqhD, and SMB_P058 favor ethanol production over butanol. Butanol synthesis was increased in the adhE2 mutant, which had a higher butanol/ethanol ratio (8.15:1) compared with wild type strain (6.65:1). Both the SMB_P058 mutant and yqhD mutant produced less ethanol without loss of butanol formation, which led to higher butanol/ethanol ratio, 10.12:1 and 10.17:1, respectively. To engineer a more efficient butanol-producing strain, adhE1 could be overexpressed, furthermore, adhE2, SMB_P058, yqhD are promising gene inactivation targets. This work provides useful information guiding future strain improvement for butanol production. PMID:27321949

  15. Alcohol Dehydrogenase-1B (rs1229984) and Aldehyde Dehydrogenase-2 (rs671) Genotypes Are Strong Determinants of the Serum Triglyceride and Cholesterol Levels of Japanese Alcoholic Men

    PubMed Central

    Yokoyama, Akira; Yokoyama, Tetsuji; Matsui, Toshifumi; Mizukami, Takeshi; Kimura, Mitsuru; Matsushita, Sachio; Higuchi, Susumu; Maruyama, Katsuya

    2015-01-01

    Background Elevated serum triglyceride (TG) and high-density-lipoprotein cholesterol (HDL-C) levels are common in drinkers. The fast-metabolizing alcohol dehydrogenase-1B encoded by the ADH1B*2 allele (vs. ADH1B*1/*1 genotype) and inactive aldehyde dehydrogenase-2 encoded by the ALDH2*2 allele (vs. ALDH2*1/*1 genotype) modify ethanol metabolism and are prevalent (≈90% and ≈40%, respectively) in East Asians. We attempted to evaluate the associations between the ADH1B and ALDH2 genotypes and lipid levels in alcoholics. Methods The population consisted of 1806 Japanese alcoholic men (≥40 years) who had undergone ADH1B and ALDH2 genotyping and whose serum TG, total cholesterol, and HDL-C levels in the fasting state had been measured within 3 days after admission. Results High serum levels of TG (≥150 mg/dl), HDL-C (>80 mg/dl), and low-density-lipoprotein cholesterol (LDL-C calculated by the Friedewald formula ≥140 mg/dl) were observed in 24.3%, 16.8%, and 15.6%, respectively, of the subjects. Diabetes, cirrhosis, smoking, and body mass index (BMI) affected the serum lipid levels. Multivariate analysis revealed that the presence of the ADH1B*2 allele and the active ALDH2*1/*1 genotype increased the odds ratio (OR; 95% confidence interval) for a high TG level (2.22 [1.67–2.94] and 1.39 [0.99–1.96], respectively), and decreased the OR for a high HDL-C level (0.37 [0.28–0.49] and 0.51 [0.37–0.69], respectively). The presence of the ADH1B*2 allele decreased the OR for a high LDL-C level (0.60 [0.45–0.80]). The ADH1B*2 plus ALDH2*1/*1 combination yielded the highest ORs for high TG levels and lowest OR for a high HDL-C level. The genotype effects were more prominent in relation to the higher levels of TG (≥220 mg/dl) and HDL-C (≥100 mg/dl). Conclusions The fast-metabolizing ADH1B and active ALDH2, and especially a combination of the two were strongly associated with higher serum TG levels and lower serum HDL-C levels of alcoholics. The fast

  16. The diagnostic value of alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) measurement in the sera of patients with brain tumor

    PubMed Central

    Laniewska-Dunaj, Magdalena; Orywal, Karolina; Kochanowicz, Jan; Rutkowski, Robert; Szmitkowski, Maciej

    2017-01-01

    Introduction Alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) exist in the brain. Alcohol dehydrogenase and ALDH are also present in brain tumor cells. Moreover, the activity of class I isoenzymes was significantly higher in cancer than healthy brain cells. The activity of these enzymes in tumor tissue is reflected in the serum and could thus be helpful for diagnostics of brain neoplasms. The aim of this study was to investigate the potential role of ADH and ALDH as markers for brain tumors. Material and methods Serum samples were taken for routine biochemical investigation from 115 patients suffering from brain tumors (65 glioblastomas, 50 meningiomas). For the measurement of the activity of class I and II ADH isoenzymes and ALDH activity, fluorometric methods were used. The total ADH activity and activity of class III and IV isoenzymes were measured by the photometric method. Results There was a significant increase in the activity of ADH I isoenzyme and ADH total in the sera of brain tumor patients compared to the controls. The diagnostic sensitivity for ADH I was 78%, specificity 85%, and positive and negative predictive values were 86% and 76% respectively. The sensitivity and specificity of ADH I increased with the stage of the carcinoma. Area under receiver-operating characteristic curve for ADH I was 0.71. Conclusions The results suggest a potential role for ADH I as a marker for brain tumor. PMID:28261287

  17. Folate, alcohol, and aldehyde dehydrogenase 2 polymorphism and the risk of oral and pharyngeal cancer in Japanese.

    PubMed

    Matsuo, Keitaro; Rossi, Marta; Negri, Eva; Oze, Isao; Hosono, Satoyo; Ito, Hidemi; Watanabe, Miki; Yatabe, Yasushi; Hasegawa, Yasuhisa; Tanaka, Hideo; Tajima, Kazuo; La Vecchia, Carlo

    2012-03-01

    Folate consumption is inversely associated with the risk of oral and pharyngeal cancer (OPC) and potentially interacts with alcohol drinking in the risk of OPC. Aldehyde dehydrogenase 2 (ALDH2) gene polymorphism is known to interact with alcohol consumption. The aim of this study was to investigate potential interaction between folate, alcohol drinking, and ALDH2 polymorphism in the risk of OPC in a Japanese population. The study group comprised 409 head and neck cancer cases and 1227 age-matched and sex-matched noncancer controls; of these, 251 cases and 759 controls were evaluated for ALDH rs671 polymorphism. Associations were assessed by odds ratios and 95% confidence intervals in multiple logistic regression models. We observed an inverse association between folate consumption and OPC risk. The odds ratio for high folate intake was 0.53 (95% confidence interval: 0.36-0.77) relative to low intake (P trend=0.003). This association was consistent across strata of sex, age, smoking, and ALDH2 genotypes. Interaction between folate consumption, drinking, and ALDH2 genotype was remarkable (three-way interaction, P<0.001). We observed significant interaction among folate, drinking, and ALDH2 genotype in the Japanese population.

  18. Alcohol and Aldehyde Dehydrogenases Contribute to Sex-Related Differences in Clearance of Zolpidem in Rats

    PubMed Central

    Peer, Cody J.; Strope, Jonathan D.; Beedie, Shaunna; Ley, Ariel M.; Holly, Alesia; Calis, Karim; Farkas, Ronald; Parepally, Jagan; Men, Angela; Fadiran, Emmanuel O.; Scott, Pamela; Jenkins, Marjorie; Theodore, William H.; Sissung, Tristan M.

    2016-01-01

    Objectives: The recommended zolpidem starting dose was lowered in females (5 mg vs. 10 mg) since side effects were more frequent and severe than those of males; the mechanism underlying sex differences in pharmacokinetics (PK) is unknown. We hypothesized that such differences were caused by known sex-related variability in alcohol dehydrogenase (ADH) expression. Methods: Male, female, and castrated male rats were administered 2.6 mg/kg zolpidem, ± disulfiram (ADH/ALDH pathway inhibitor) to compare PK changes induced by sex and gonadal hormones. PK analyses were conducted in rat plasma and rat brain. Key findings: Sex differences in PK were evident: females had a higher CMAX (112.4 vs. 68.1 ug/L) and AUC (537.8 vs. 231.8 h∗ug/L) than uncastrated males. Castration induced an earlier TMAX (0.25 vs. 1 h), greater CMAX (109.1 vs. 68.1 ug/L), and a corresponding AUC increase (339.7 vs. 231.8 h∗ug/L). Administration of disulfiram caused more drastic CMAX and TMAX changes in male vs. female rats that mirrored the effects of castration on first-pass metabolism, suggesting that the observed PK differences may be caused by ADH/ALDH expression. Brain concentrations paralleled plasma concentrations. Conclusion: These findings indicate that sex differences in zolpidem PK are influenced by variation in the expression of ADH/ALDH due to gonadal androgens. PMID:27574509

  19. Genetic polymorphisms of alcohol dehydrogense-1B and aldehyde dehydrogenase-2, alcohol flushing, mean corpuscular volume, and aerodigestive tract neoplasia in Japanese drinkers.

    PubMed

    Yokoyama, Akira; Mizukami, Takeshi; Yokoyama, Tetsuji

    2015-01-01

    Genetic polymorphisms of alcohol dehydrogenase-1B (ADH1B) and aldehyde dehydrogenase-2 (ALDH2) modulate exposure levels to ethanol/acetaldehyde. Endoscopic screening of 6,014 Japanese alcoholics yielded high detection rates of esophageal squamous cell carcinoma (SCC; 4.1%) and head and neck SCC (1.0%). The risks of upper aerodigestive tract SCC/dysplasia, especially of multiple SCC/dysplasia, were increased in a multiplicative fashion by the presence of a combination of slow-metabolizing ADH1B*1/*1 and inactive heterozygous ALDH2*1/*2 because of prolonged exposure to higher concentrations of ethanol/acetaldehyde. A questionnaire asking about current and past facial flushing after drinking a glass (≈180 mL) of beer is a reliable tool for detecting the presence of inactive ALDH2. We invented a health-risk appraisal (HRA) model including the flushing questionnaire and drinking, smoking, and dietary habits. Esophageal SCC was detected at a high rate by endoscopic mass-screening in high HRA score persons. A total of 5.0% of 4,879 alcoholics had a history of (4.0%) or newly diagnosed (1.0%) gastric cancer. Their high frequency of a history of gastric cancer is partly explained by gastrectomy being a risk factor for alcoholism because of altered ethanol metabolism, e.g., by blood ethanol level overshooting. The combination of H. pylori-associated atrophic gastritis and ALDH2*1/*2 showed the greatest risk of gastric cancer in alcoholics. High detection rates of advanced colorectal adenoma/carcinoma were found in alcoholics, 15.7% of 744 immunochemical fecal occult blood test (IFOBT)-negative alcoholics and 31.5% of the 393 IFOBT-positive alcoholics. Macrocytosis with an MCV≥106 fl increased the risk of neoplasia in the entire aerodigestive tract of alcoholics, suggesting that poor nutrition as well as ethanol/acetaldehyde exposure plays an important role in neoplasia.

  20. E. coli metabolic protein aldehyde-alcohol dehydrogenase-E binds to the ribosome: a unique moonlighting action revealed

    PubMed Central

    Shasmal, Manidip; Dey, Sandip; Shaikh, Tanvir R.; Bhakta, Sayan; Sengupta, Jayati

    2016-01-01

    It is becoming increasingly evident that a high degree of regulation is involved in the protein synthesis machinery entailing more interacting regulatory factors. A multitude of proteins have been identified recently which show regulatory function upon binding to the ribosome. Here, we identify tight association of a metabolic protein aldehyde-alcohol dehydrogenase E (AdhE) with the E. coli 70S ribosome isolated from cell extract under low salt wash conditions. Cryo-EM reconstruction of the ribosome sample allows us to localize its position on the head of the small subunit, near the mRNA entrance. Our study demonstrates substantial RNA unwinding activity of AdhE which can account for the ability of ribosome to translate through downstream of at least certain mRNA helices. Thus far, in E. coli, no ribosome-associated factor has been identified that shows downstream mRNA helicase activity. Additionally, the cryo-EM map reveals interaction of another extracellular protein, outer membrane protein C (OmpC), with the ribosome at the peripheral solvent side of the 50S subunit. Our result also provides important insight into plausible functional role of OmpC upon ribosome binding. Visualization of the ribosome purified directly from the cell lysate unveils for the first time interactions of additional regulatory proteins with the ribosome. PMID:26822933

  1. Aldehyde Dehydrogenase 2 (ALDH2) Polymorphism and the Risk of Alcoholic Liver Cirrhosis among East Asians: A Meta-Analysis

    PubMed Central

    He, Lei; Luo, Hesheng

    2016-01-01

    Purpose The aldehyde dehydrogenase 2 (ALDH2) gene has been implicated in the development of alcoholic liver cirrhosis (ALC) in East Asians. However, the results are inconsistent. In this study, a meta-analysis was performed to assess the associations between the ALDH2 polymorphism and the risk of ALC. Materials and Methods Relevant studies were retrieved by searching PubMed, Web of Science, CNKI, Wanfang and Veipu databases up to January 10, 2015. Pooled odds ratio (OR) and 95% confidence interval (CI) were calculated using either the fixed- or random effects model. Results A total of twelve case-control studies included 1003 cases and 2011 controls were included. Overall, the ALDH2 polymorphism was associated with a decreased risk of ALC (*1/*2 vs. *1/*1: OR=0.78, 95% CI: 0.61–0.99). However, in stratification analysis by country, we failed to detect any association among Chinese, Korean or Japanese populations. Conclusion The pooled evidence suggests that ALDH2 polymorphism may be an important protective factor for ALC in East Asians. PMID:27189280

  2. Inhibition of human alcohol and aldehyde dehydrogenases by acetaminophen: Assessment of the effects on first-pass metabolism of ethanol.

    PubMed

    Lee, Yung-Pin; Liao, Jian-Tong; Cheng, Ya-Wen; Wu, Ting-Lun; Lee, Shou-Lun; Liu, Jong-Kang; Yin, Shih-Jiun

    2013-11-01

    Acetaminophen is one of the most widely used over-the-counter analgesic, antipyretic medications. Use of acetaminophen and alcohol are commonly associated. Previous studies showed that acetaminophen might affect bioavailability of ethanol by inhibiting gastric alcohol dehydrogenase (ADH). However, potential inhibitions by acetaminophen of first-pass metabolism (FPM) of ethanol, catalyzed by the human ADH family and by relevant aldehyde dehydrogenase (ALDH) isozymes, remain undefined. ADH and ALDH both exhibit racially distinct allozymes and tissue-specific distribution of isozymes, and are principal enzymes responsible for ethanol metabolism in humans. In this study, we investigated acetaminophen inhibition of ethanol oxidation with recombinant human ADH1A, ADH1B1, ADH1B2, ADH1B3, ADH1C1, ADH1C2, ADH2, and ADH4, and inhibition of acetaldehyde oxidation with recombinant human ALDH1A1 and ALDH2. The investigations were done at near physiological pH 7.5 and with a cytoplasmic coenzyme concentration of 0.5 mM NAD(+). Acetaminophen acted as a noncompetitive inhibitor for ADH enzymes, with the slope inhibition constants (Kis) ranging from 0.90 mM (ADH2) to 20 mM (ADH1A), and the intercept inhibition constants (Kii) ranging from 1.4 mM (ADH1C allozymes) to 19 mM (ADH1A). Acetaminophen exhibited noncompetitive inhibition for ALDH2 (Kis = 3.0 mM and Kii = 2.2 mM), but competitive inhibition for ALDH1A1 (Kis = 0.96 mM). The metabolic interactions between acetaminophen and ethanol/acetaldehyde were assessed by computer simulation using inhibition equations and the determined kinetic constants. At therapeutic to subtoxic plasma levels of acetaminophen (i.e., 0.2-0.5 mM) and physiologically relevant concentrations of ethanol (10 mM) and acetaldehyde (10 μm) in target tissues, acetaminophen could inhibit ADH1C allozymes (12-26%) and ADH2 (14-28%) in the liver and small intestine, ADH4 (15-31%) in the stomach, and ALDH1A1 (16-33%) and ALDH2 (8.3-19%) in all 3 tissues. The

  3. The oxidative fermentation of ethanol in Gluconacetobacter diazotrophicus is a two-step pathway catalyzed by a single enzyme: alcohol-aldehyde Dehydrogenase (ADHa).

    PubMed

    Gómez-Manzo, Saúl; Escamilla, José E; González-Valdez, Abigail; López-Velázquez, Gabriel; Vanoye-Carlo, América; Marcial-Quino, Jaime; de la Mora-de la Mora, Ignacio; Garcia-Torres, Itzhel; Enríquez-Flores, Sergio; Contreras-Zentella, Martha Lucinda; Arreguín-Espinosa, Roberto; Kroneck, Peter M H; Sosa-Torres, Martha Elena

    2015-01-07

    Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH) and the aldehyde dehydrogenase (ALDH). We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa) of Ga. diazotrophicus is indeed a double function enzyme, which is able to use primary alcohols (C2-C6) and its respective aldehydes as alternate substrates. Moreover, the enzyme utilizes ethanol as a substrate in a reaction mechanism where this is subjected to a two-step oxidation process to produce acetic acid without releasing the acetaldehyde intermediary to the media. Moreover, we propose a mechanism that, under physiological conditions, might permit a massive conversion of ethanol to acetic acid, as usually occurs in the acetic acid bacteria, but without the transient accumulation of the highly toxic acetaldehyde.

  4. The Oxidative Fermentation of Ethanol in Gluconacetobacter diazotrophicus Is a Two-Step Pathway Catalyzed by a Single Enzyme: Alcohol-Aldehyde Dehydrogenase (ADHa)

    PubMed Central

    Gómez-Manzo, Saúl; Escamilla, José E.; González-Valdez, Abigail; López-Velázquez, Gabriel; Vanoye-Carlo, América; Marcial-Quino, Jaime; de la Mora-de la Mora, Ignacio; Garcia-Torres, Itzhel; Enríquez-Flores, Sergio; Contreras-Zentella, Martha Lucinda; Arreguín-Espinosa, Roberto; Kroneck, Peter M. H.; Sosa-Torres, Martha Elena

    2015-01-01

    Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH) and the aldehyde dehydrogenase (ALDH). We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa) of Ga. diazotrophicus is indeed a double function enzyme, which is able to use primary alcohols (C2–C6) and its respective aldehydes as alternate substrates. Moreover, the enzyme utilizes ethanol as a substrate in a reaction mechanism where this is subjected to a two-step oxidation process to produce acetic acid without releasing the acetaldehyde intermediary to the media. Moreover, we propose a mechanism that, under physiological conditions, might permit a massive conversion of ethanol to acetic acid, as usually occurs in the acetic acid bacteria, but without the transient accumulation of the highly toxic acetaldehyde. PMID:25574602

  5. In vivo ethanol elimination in man, monkey and rat: A lack of relationship between the ethanol metabolism and the hepatic activities of alcohol and aldehyde dehydrogenases

    SciTech Connect

    Zorzano, A. ); Herrera, E. )

    1990-01-01

    The in vivo ethanol elimination in human subjects, monkeys and rats was investigated after an oral ethanol dosage. After 0.4 g. ethanol/kg of body weight, ethanol elimination was much slower in human subjects than in monkeys. In order to detect a rise in monkey plasma ethanol concentrations as early as observed in human subjects, ethanol had to be administered at a dose of 3 g/kg body weight. Ethanol metabolism in rats was also much faster than in human subjects. However, human liver showed higher alcohol dehydrogenase activity and higher low Km aldehyde dehydrogenase activity than rat liver. Thus, our data suggest a lack of relationship between hepatic ethanol-metabolizing activities and the in vivo ethanol elimination rate.

  6. Characterization of an Allylic/Benzyl Alcohol Dehydrogenase from Yokenella sp. Strain WZY002, an Organism Potentially Useful for the Synthesis of α,β-Unsaturated Alcohols from Allylic Aldehydes and Ketones

    PubMed Central

    Ying, Xiangxian; Wang, Yifang; Xiong, Bin; Wu, Tingting; Xie, Liping; Yu, Meilan

    2014-01-01

    A novel whole-cell biocatalyst with high allylic alcohol-oxidizing activities was screened and identified as Yokenella sp. WZY002, which chemoselectively reduced the C=O bond of allylic aldehydes/ketones to the corresponding α,β-unsaturated alcohols at 30°C and pH 8.0. The strain also had the capacity of stereoselectively reducing aromatic ketones to (S)-enantioselective alcohols. The enzyme responsible for the predominant allylic/benzyl alcohol dehydrogenase activity was purified to homogeneity and designated YsADH (alcohol dehydrogenase from Yokenella sp.), which had a calculated subunit molecular mass of 36,411 Da. The gene encoding YsADH was subsequently expressed in Escherichia coli, and the purified recombinant YsADH protein was characterized. The enzyme strictly required NADP(H) as a coenzyme and was putatively zinc dependent. The optimal pH and temperature for crotonaldehyde reduction were pH 6.5 and 65°C, whereas those for crotyl alcohol oxidation were pH 8.0 and 55°C. The enzyme showed moderate thermostability, with a half-life of 6.2 h at 55°C. It was robust in the presence of organic solvents and retained 87.5% of the initial activity after 24 h of incubation with 20% (vol/vol) dimethyl sulfoxide. The enzyme preferentially catalyzed allylic/benzyl aldehydes as the substrate in the reduction of aldehydes/ketones and yielded the highest activity of 427 U mg−1 for benzaldehyde reduction, while the alcohol oxidation reaction demonstrated the maximum activity of 79.9 U mg−1 using crotyl alcohol as the substrate. Moreover, kinetic parameters of the enzyme showed lower Km values and higher catalytic efficiency for crotonaldehyde/benzaldehyde and NADPH than for crotyl alcohol/benzyl alcohol and NADP+, suggesting the nature of being an aldehyde reductase. PMID:24509923

  7. ALDEHYDE DEHYDROGENASES EXPRESSION DURING POSTNATAL DEVELOPMENT: LIVER VS. LUNG

    EPA Science Inventory

    Aldehydes are highly reactive molecules present in the environment, and can be produced during biotransformation of xenobiotics. Although the lung can be a major target for aldehyde toxicity, development of aldehyde dehydrogenases (ALDHs), which detoxify aldehydes, in lung has be...

  8. Characterization of the Saccharomyces cerevisiae YMR318C (ADH6) gene product as a broad specificity NADPH-dependent alcohol dehydrogenase: relevance in aldehyde reduction.

    PubMed Central

    Larroy, Carol; Fernández, M Rosario; González, Eva; Parés, Xavier; Biosca, Josep A

    2002-01-01

    YMR318C represents an open reading frame from Saccharomyces cerevisiae with unknown function. It possesses a conserved sequence motif, the zinc-containing alcohol dehydrogenase (ADH) signature, specific to the medium-chain zinc-containing ADHs. In the present study, the YMR318C gene product has been purified to homogeneity from overexpressing yeast cells, and found to be a homodimeric ADH, composed of 40 kDa subunits and with a pI of 5.0-5.4. The enzyme was strictly specific for NADPH and was active with a wide variety of substrates, including aliphatic (linear and branched-chain) and aromatic primary alcohols and aldehydes. Aldehydes were processed with a 50-fold higher catalytic efficiency than that for the corresponding alcohols. The highest k(cat)/K(m) values were found with pentanal>veratraldehyde > hexanal > 3-methylbutanal >cinnamaldehyde. Taking into consideration the substrate specificity and sequence characteristics of the YMR318C gene product, we have proposed this gene to be called ADH6. The disruption of ADH6 was not lethal for the yeast under laboratory conditions. Although S. cerevisiae is considered a non lignin-degrading organism, the catalytic activity of ADHVI can direct veratraldehyde and anisaldehyde, arising from the oxidation of lignocellulose by fungal lignin peroxidases, to the lignin biodegradation pathway. ADHVI is the only S. cerevisiae enzyme able to significantly reduce veratraldehyde in vivo, and its overexpression allowed yeast to grow under toxic concentrations of this aldehyde. The enzyme may also be involved in the synthesis of fusel alcohols. To our knowledge this is the first NADPH-dependent medium-chain ADH to be characterized in S. cerevisiae. PMID:11742541

  9. Alcohol and aldehyde dehydrogenase polymorphisms and a new strategy for prevention and screening for cancer in the upper aerodigestive tract in East Asians.

    PubMed

    Yokoyama, Akira; Omori, Tai; Yokoyama, Tetsuji

    2010-01-01

    The ethanol in alcoholic beverages and the acetaldehyde associated with alcohol consumption are Group 1 human carcinogens (WHO, International Agency for Research on Cancer). The combination of alcohol consumption, tobacco smoking, the inactive heterozygous aldehyde dehydrogenase-2 genotype (ALDH2*1/*2) and the less-active homozygous alcohol dehydrogenase-1B genotype (ADH1B*1/*1) increases the risk of squamous cell carcinoma (SCC) in the upper aerodigestive tract (UADT) in a multiplicative fashion in East Asians. In addition to being exposed to locally high levels of ethanol, the UADT is exposed to a very high concentration of acetaldehyde from a variety of sources, including that as an ingredient of alcoholic beverages per se and that found in tobacco smoke; acetaldehyde is also produced by salivary microorganisms and mucosal enzymes and is present as blood acetaldehyde. The inefficient degradation of acetaldehyde by weakly expressed ALDH2 in the UADT may be cri! tical to the local accumulation of acetaldehyde, especially in ALDH2*1/*2 carriers. ADH1B*1/*1 carriers tend to experience less intense alcohol flushing and are highly susceptible to heavy drinking and alcoholism. Heavy drinking by persons with the less-active ADH1B*1/*1 leads to longer exposure of the UADT to salivary ethanol and acetaldehyde. The ALDH2*1/*2 genotype is a very strong predictor of synchronous and metachronous multiple SCCs in the UADT. High red cell mean corpuscular volume (MCV), esophageal dysplasia, and melanosis in the UADT, all of which are frequently found in ALDH2*1/*2 drinkers, are useful for identifying high-risk individuals. We invented a simple flushing questionnaire that enables prediction of the ALDH2 phenotype. New health appraisal models that include ALDH2 genotype, the simple flushing questionnaire, or MCV are powerful tools for devising a new strategy for prevention and screening for UADT cancer in East Asians.

  10. Alcohol and aldehyde dehydrogenase from Saccharomyces cerevisiae: specific activity and influence on the production of acetic acid, ethanol and higher alcohols in the first 48 h of fermentation of grape must.

    PubMed

    Millán, C; Mauricio, J C; Ortega, J M

    1990-01-01

    The changes in the specific activity of alcohol dehydrogenase (ADH-I and ADH-II) and aldehyde dehydrogenases [AIDH-NADP+ and AIDH-NAD(P)+] from Saccharomyces cerevisiae during the first 48 h of fermentation of grape must were investigated. The biosynthesis of ADH-I and AIDH-NADP+ took place basically during the adaptation of the yeasts to the must (first 4 h), while that of ADH-II occurred immediately after exponential growth (after 12 h). From the products produced by the yeast, only the specific rate of production of ethanol was found to be directly related to the specific activity of ADH-I.

  11. Expression of a heat-stable NADPH-dependent alcohol dehydrogenase in Caldicellulosiruptor bescii results in furan aldehyde detoxification

    DOE PAGES

    Chung, Daehwan; Verbeke, Tobin J.; Cross, Karissa L.; ...

    2015-07-22

    Compounds such as furfural and 5-hydroxymethylfurfural (5-HMF) are generated through the dehydration of xylose and glucose, respectively, during dilute-acid pretreatment of lignocellulosic biomass and are also potent microbial growth and fermentation inhibitors. The enzymatic reduction of these furan aldehydes to their corresponding, and less toxic, alcohols is an engineering approach that has been successfully implemented in both Saccharomyces cerevisiae and ethanologenicEscherichia coli, but has not yet been investigated in thermophiles relevant to biofuel production through consolidated bioprocessing (CBP). Developing CBP-relevant biocatalysts that are either naturally resistant to such inhibitors, or are amenable to engineered resistance, is therefore, an important componentmore » in making biofuels production from lignocellulosic biomass feasible.« less

  12. Expression of a heat-stable NADPH-dependent alcohol dehydrogenase in Caldicellulosiruptor bescii results in furan aldehyde detoxification

    SciTech Connect

    Chung, Daehwan; Verbeke, Tobin J.; Cross, Karissa L.; Westpheling, Janet; Elkins, James G.

    2015-07-22

    Compounds such as furfural and 5-hydroxymethylfurfural (5-HMF) are generated through the dehydration of xylose and glucose, respectively, during dilute-acid pretreatment of lignocellulosic biomass and are also potent microbial growth and fermentation inhibitors. The enzymatic reduction of these furan aldehydes to their corresponding, and less toxic, alcohols is an engineering approach that has been successfully implemented in both Saccharomyces cerevisiae and ethanologenicEscherichia coli, but has not yet been investigated in thermophiles relevant to biofuel production through consolidated bioprocessing (CBP). Developing CBP-relevant biocatalysts that are either naturally resistant to such inhibitors, or are amenable to engineered resistance, is therefore, an important component in making biofuels production from lignocellulosic biomass feasible.

  13. A wide host-range metagenomic library from a waste water treatment plant yields a novel alcohol/aldehyde dehydrogenase.

    PubMed

    Wexler, Margaret; Bond, Philip L; Richardson, David J; Johnston, Andrew W B

    2005-12-01

    Using DNA obtained from the metagenome of an anaerobic digestor in a waste water treatment plant, we constructed a gene library cloned in the wide host-range cosmid pLAFR3. One cosmid enabled Rhizobium leguminosarum to grow on ethanol as sole carbon and energy source, this being due to the presence of a gene, termed adhEMeta. The AdhEMeta protein most closely resembles the AdhE alcohol dehydrogenase of Clostridium acetobutylicum, where it catalyses the formation of ethanol and butanol in a two-step reductive process. However, cloned adhEMeta did not confer ethanol utilization ability to Escherichia coli or to Pseudomonas aeruginosa, even though it was transcribed in both these hosts. Further, cell-free extracts of E. coli and R. leguminosarum containing cloned adhEMeta had butanol and ethanol dehydrogenase activities when assayed in vitro. In contrast to the well-studied AdhE proteins of C. acetobutylicum and E. coli, the enzyme specified by adhEMeta is not inactivated by oxygen and it enables alcohol to be catabolized. Cloned adhEMeta did, however, confer one phenotype to E. coli. AdhE- mutants of E. coli fail to ferment glucose and introduction of adhEMeta restored the growth of such mutants when grown under fermentative conditions. These observations show that the use of wide host-range vectors enhances the efficacy with which metagenomic libraries can be screened for genes that confer novel functions.

  14. Inhibition of human alcohol and aldehyde dehydrogenases by aspirin and salicylate: assessment of the effects on first-pass metabolism of ethanol.

    PubMed

    Lee, Shou-Lun; Lee, Yung-Pin; Wu, Min-Li; Chi, Yu-Chou; Liu, Chiu-Ming; Lai, Ching-Long; Yin, Shih-Jiun

    2015-05-01

    Previous studies have reported that aspirin significantly reduced the first-pass metabolism (FPM) of ethanol in humans thereby increasing adverse effects of alcohol. The underlying causes, however, remain poorly understood. Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), principal enzymes responsible for metabolism of ethanol, are complex enzyme families that exhibit functional polymorphisms among ethnic groups and distinct tissue distributions. We investigated the inhibition profiles by aspirin and its major metabolite salicylate of ethanol oxidation by recombinant human ADH1A, ADH1B1, ADH1B2, ADH1B3, ADH1C1, ADH1C2, ADH2, and ADH4, and acetaldehyde oxidation by ALDH1A1 and ALDH2, at pH 7.5 and 0.5 mM NAD(+). Competitive inhibition pattern was found to be a predominant type among the ADHs and ALDHs studied, although noncompetitive and uncompetitive inhibitions were also detected in a few cases. The inhibition constants of salicylate for the ADHs and ALDHs were considerably lower than that of aspirin with the exception of ADH1A that can be ascribed to a substitution of Ala-93 at the bottom of substrate pocket as revealed by molecular docking experiments. Kinetic inhibition equation-based simulations show at higher therapeutic levels of blood plasma salicylate (1.5 mM) that the decrease of activities at 2-10 mM ethanol for ADH1A/ADH2 and ADH1B2/ADH1B3 are predicted to be 75-86% and 31-52%, respectively, and that the activity decline for ALDH1A1 and ALDH2 at 10-50 μM acetaldehyde to be 62-73%. Our findings suggest that salicylate may substantially inhibit hepatic FPM of alcohol at both the ADH and ALDH steps when concurrent intaking aspirin.

  15. Cancer screening of upper aerodigestive tract in Japanese alcoholics with reference to drinking and smoking habits and aldehyde dehydrogenase-2 genotype.

    PubMed

    Yokoyama, A; Ohmori, T; Muramatsu, T; Higuchi, S; Yokoyama, T; Matsushita, S; Matsumoto, M; Maruyama, K; Hayashida, M; Ishii, H

    1996-11-04

    In this study, 1,000 Japanese male alcoholics were consecutively screened by upper gastrointestinal endoscopy with esophageal iodine staining. Associations among cancer-detection rates, drinking and smoking habits, and aldehyde dehydrogenase-2 (ALDH2) genotypes were evaluated. A total of 53 patients (5.3%) had histologically confirmed cancer. Esophageal cancer was diagnosed in 36, gastric cancer in 17, and oropharyngolaryngeal cancer in 9 patients: 8 of the esophageal-cancer patients were multiple-cancer patients, with additional cancer(s) in the stomach and/or oropharyngolaryngeal region. Multiple logistic regression revealed that use of stronger alcoholic beverages (whisky or shochu) in contrast with lighter beverages (sake or beer) and smoking of 50 pack-years or more increased the risks for esophageal (odds ratio 3.2 and 2.8 respectively), oropharyngolaryngeal (4.8 and 5.1 respectively) and multiple cancer (10.5 and 11.8 respectively). The inactive form of ALDH2, encoded by the gene ALDH2*1/2*2 prevalent in Orientals, exposes them to higher blood levels of acetaldehyde, a recognized animal carcinogen, after drinking. This inactive ALDH2 was detected in 19/36 (52.8%) patients with esophageal cancer, in 5/9 (55.6%) patients with oropharyngolaryngeal cancer, and in 7/8 (87.5%) patients with multiple cancer. All of these gene frequencies far exceeded that in a large alcoholic cohort (80/655, 12.2%). The triple combination of the risk factors of the inactive ALDH2, stronger alcoholic beverages and heavy smoking was more commonly associated with multiple-cancer patients than with patients with esophageal cancer alone (62.5% vs. 7.1%). These results show that the 3 risk factors are important for the development of upper-aerodigestive-tract cancer in Japanese alcoholics. For these high-risk drinkers, regimented screening appears to be indicated.

  16. [The role of hepatic and erythrocyte aldehyde dehydrogenase in the development of burn toxemia in rats].

    PubMed

    Solov'eva, A G

    2009-01-01

    The study was designed to examine catalytic properties of non-specific aldehyde dehydrogenase from rat liver and erythrocyte as the main markers of endogenous intoxication after burn. Enzymatic activity was assayed from changes in the rate of NADH synthesis during acetaldehyde oxidation. Burn was shown to decrease it both in the liver and in erythrocytes which resulted in the accumulation of toxic aldehydes and the development of intoxication. Simultaneous fall in alcohol dehydrogenase and lactate dehydrogenase activities is supposed to contribute to the decrease of aldehyde dehydrogenase activity as a result of thermal injury.

  17. Betaine aldehyde dehydrogenase isozymes of spinach

    SciTech Connect

    Hanson, A.D.; Weretilnyk, E.A.; Weigel, P.

    1986-04-01

    Betaine is synthesized in spinach chloroplasts via the pathway Choline ..-->.. Betaine Aldehyde ..-->.. Betaine; the second step is catalyzed by betaine aldehyde dehydrogenase (BADH). The subcellular distribution of BADH was determined in leaf protoplast lysates; BADH isozymes were separated by 6-9% native PAGE. The chloroplast stromal fraction contains a single BADH isozyme (number1) that accounts for > 80% of the total protoplast activity; the extrachloroplastic fraction has a minor isozyme (number2) which migrates more slowly than number1. Both isozymes appear specific for betaine aldehyde, are more active with NAD than NADP, and show a ca. 3-fold activity increase in salinized leaves. The phenotype of a natural variant of isozyme number1 suggests that the enzyme is a dimer.

  18. Alcohol, Aldehydes, Adducts and Airways

    PubMed Central

    Sapkota, Muna; Wyatt, Todd A.

    2015-01-01

    Drinking alcohol and smoking cigarettes results in the formation of reactive aldehydes in the lung, which are capable of forming adducts with several proteins and DNA. Acetaldehyde and malondialdehyde are the major aldehydes generated in high levels in the lung of subjects with alcohol use disorder who smoke cigarettes. In addition to the above aldehydes, several other aldehydes like 4-hydroxynonenal, formaldehyde and acrolein are also detected in the lung due to exposure to toxic gases, vapors and chemicals. These aldehydes react with nucleophilic targets in cells such as DNA, lipids and proteins to form both stable and unstable adducts. This adduction may disturb cellular functions as well as damage proteins, nucleic acids and lipids. Among several adducts formed in the lung, malondialdehyde DNA (MDA-DNA) adduct and hybrid malondialdehyde-acetaldehyde (MAA) protein adducts have been shown to initiate several pathological conditions in the lung. MDA-DNA adducts are pre-mutagenic in mammalian cells and induce frame shift and base-pair substitution mutations, whereas MAA protein adducts have been shown to induce inflammation and inhibit wound healing. This review provides an insight into different reactive aldehyde adducts and their role in the pathogenesis of lung disease. PMID:26556381

  19. Association of Genetically Determined Aldehyde Dehydrogenase 2 Activity with Diabetic Complications in Relation to Alcohol Consumption in Japanese Patients with Type 2 Diabetes Mellitus: The Fukuoka Diabetes Registry.

    PubMed

    Idewaki, Yasuhiro; Iwase, Masanori; Fujii, Hiroki; Ohkuma, Toshiaki; Ide, Hitoshi; Kaizu, Shinako; Jodai, Tamaki; Kikuchi, Yohei; Hirano, Atsushi; Nakamura, Udai; Kubo, Michiaki; Kitazono, Takanari

    2015-01-01

    Aldehyde dehydrogenase 2 (ALDH2) detoxifies aldehyde produced during ethanol metabolism and oxidative stress. A genetic defect in this enzyme is common in East Asians and determines alcohol consumption behaviors. We investigated the impact of genetically determined ALDH2 activity on diabetic microvascular and macrovascular complications in relation to drinking habits in Japanese patients with type 2 diabetes mellitus. An ALDH2 single-nucleotide polymorphism (rs671) was genotyped in 4,400 patients. Additionally, the relationship of clinical characteristics with ALDH2 activity (ALDH2 *1/*1 active enzyme activity vs. *1/*2 or *2/*2 inactive enzyme activity) and drinking habits (lifetime abstainers vs. former or current drinkers) was investigated cross-sectionally (n = 691 in *1/*1 abstainers, n = 1,315 in abstainers with *2, n = 1,711 in *1/*1 drinkers, n = 683 in drinkers with *2). The multiple logistic regression analysis for diabetic complications was adjusted for age, sex, current smoking habits, leisure-time physical activity, depressive symptoms, diabetes duration, body mass index, hemoglobin A1c, insulin use, high-density lipoprotein cholesterol, systolic blood pressure and renin-angiotensin system inhibitors use. Albuminuria prevalence was significantly lower in the drinkers with *2 than that of other groups (odds ratio [95% confidence interval (CI)]: *1/*1 abstainers as the referent, 0.94 [0.76-1.16] in abstainers with *2, 1.00 [0.80-1.26] in *1/*1 drinkers, 0.71 [0.54-0.93] in drinkers with *2). Retinal photocoagulation prevalence was also lower in drinkers with ALDH2 *2 than that of other groups. In contrast, myocardial infarction was significantly increased in ALDH2 *2 carriers compared with that in ALDH2 *1/*1 abstainers (odds ratio [95% CI]: *1/*1 abstainers as the referent, 2.63 [1.28-6.13] in abstainers with *2, 1.89 [0.89-4.51] in *1/*1 drinkers, 2.35 [1.06-5.79] in drinkers with *2). In summary, patients with type 2 diabetes and ALDH2 *2 displayed a

  20. Metabolism of trans, trans-muconaldehyde, a cytotoxic metabolite of benzene, in mouse liver by alcohol dehydrogenase Adh1 and aldehyde reductase AKR1A4

    SciTech Connect

    Short, Duncan M.; Lyon, Robert; Watson, David G.; Barski, Oleg A.; McGarvie, Gail; Ellis, Elizabeth M. . E-mail: Elizabeth.ellis@strath.ac.uk

    2006-01-15

    The reductive metabolism of trans, trans-muconaldehyde, a cytotoxic metabolite of benzene, was studied in mouse liver. Using an HPLC-based stopped assay, the primary reduced metabolite was identified as 6-hydroxy-trans, trans-2,4-hexadienal (OH/CHO) and the secondary metabolite as 1,6-dihydroxy-trans, trans-2,4-hexadiene (OH/OH). The main enzymes responsible for the highest levels of reductase activity towards trans, trans-muconaldehyde were purified from mouse liver soluble fraction first by Q-sepharose chromatography followed by either blue or red dye affinity chromatography. In mouse liver, trans, trans-muconaldehyde is predominantly reduced by an NADH-dependent enzyme, which was identified as alcohol dehydrogenase (Adh1). Kinetic constants obtained for trans, trans-muconaldehyde with the native Adh1 enzyme showed a V {sub max} of 2141 {+-} 500 nmol/min/mg and a K {sub m} of 11 {+-} 4 {mu}M. This enzyme was inhibited by pyrazole with a K {sub I} of 3.1 {+-} 0.57 {mu}M. Other fractions were found to contain muconaldehyde reductase activity independent of Adh1, and one enzyme was identified as the NADPH-dependent aldehyde reductase AKR1A4. This showed a V {sub max} of 115 nmol/min/mg and a K {sub m} of 15 {+-} 2 {mu}M and was not inhibited by pyrazole.

  1. Relationships within the aldehyde dehydrogenase extended family.

    PubMed Central

    Perozich, J.; Nicholas, H.; Wang, B. C.; Lindahl, R.; Hempel, J.

    1999-01-01

    One hundred-forty-five full-length aldehyde dehydrogenase-related sequences were aligned to determine relationships within the aldehyde dehydrogenase (ALDH) extended family. The alignment reveals only four invariant residues: two glycines, a phenylalanine involved in NAD binding, and a glutamic acid that coordinates the nicotinamide ribose in certain E-NAD binary complex crystal structures, but which may also serve as a general base for the catalytic reaction. The cysteine that provides the catalytic thiol and its closest neighbor in space, an asparagine residue, are conserved in all ALDHs with demonstrated dehydrogenase activity. Sixteen residues are conserved in at least 95% of the sequences; 12 of these cluster into seven sequence motifs conserved in almost all ALDHs. These motifs cluster around the active site of the enzyme. Phylogenetic analysis of these ALDHs indicates at least 13 ALDH families, most of which have previously been identified but not grouped separately by alignment. ALDHs cluster into two main trunks of the phylogenetic tree. The largest, the "Class 3" trunk, contains mostly substrate-specific ALDH families, as well as the class 3 ALDH family itself. The other trunk, the "Class 1/2" trunk, contains mostly variable substrate ALDH families, including the class 1 and 2 ALDH families. Divergence of the substrate-specific ALDHs occurred earlier than the division between ALDHs with broad substrate specificities. A site on the World Wide Web has also been devoted to this alignment project. PMID:10210192

  2. JWH-018 ω-OH, a shared hydroxy metabolite of the two synthetic cannabinoids JWH-018 and AM-2201, undergoes oxidation by alcohol dehydrogenase and aldehyde dehydrogenase enzymes in vitro forming the carboxylic acid metabolite.

    PubMed

    Holm, Niels Bjerre; Noble, Carolina; Linnet, Kristian

    2016-09-30

    Synthetic cannabinoids are new psychoactive substances (NPS) acting as agonists at the cannabinoid receptors. The aminoalkylindole-type synthetic cannabinoid naphthalen-1-yl-(1-pentylindol-3-yl)methanone (JWH-018) was among the first to appear on the illicit drug market and its metabolism has been extensively investigated. The N-pentyl side chain is a major site of human cytochrome P450 (CYP)-mediated oxidative metabolism, and the ω-carboxylic acid metabolite appears to be a major in vivo human urinary metabolite. This metabolite is, however, not formed to any significant extent in human liver microsomal (HLM) incubations raising the possibility that the discrepancy is due to involvement of cytosolic enzymes. Here we demonstrate in incubations with human liver cytosol (HLC), that JWH-018 ω-OH, but not the JWH-018 parent compound, is a substrate for nicotinamide adenine dinucleotide (NAD(+))-dependent alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) enzymes. The sole end-product identified in HLC was the JWH-018 ω-COOH metabolite, while trapping tests with methoxyamine proved the presence of the aldehyde intermediate. ADH/ALDH and UDP-glucuronosyl-transferases (UGT) enzymes may therefore both act on the JWH-018 ω-OH substrate. Finally, we note that for [1-(5-fluoropentyl)indol-3-yl]-naphthalen-1-yl-methanone (AM-2201), the ω-fluorinated analog of JWH-018, a high amount of JWH-018 ω-OH was formed in HLM incubated without NADPH, suggesting that the oxidative defluorination is efficiently catalyzed by non-CYP enzyme(s). The pathway presented here may therefore be especially important for N-(5-fluoropentyl) substituted synthetic cannabinoids, because the oxidative defluorination can occur even if the CYP-mediated metabolism preferentially takes place on other parts of the molecule than the N-alkyl side chain. Controlled clinical studies in humans are ultimately required to demonstrate the in vivo importance of the oxidation pathway presented here.

  3. On the role of microsomal aldehyde dehydrogenase in metabolism of aldehydic products of lipid peroxidation.

    PubMed

    Antonenkov, V D; Pirozhkov, S V; Panchenko, L F

    1987-11-30

    To elucidate a possible role of membrane-bound aldehyde dehydrogenase in the detoxication of aldehydic products of lipid peroxidation, the substrate specificity of the highly purified microsomal enzyme was investigated. The aldehyde dehydrogenase was active with different aliphatic aldehydes including 4-hydroxyalkenals, but did not react with malonic dialdehyde. When Fe/ADP-ascorbate-induced lipid peroxidation of arachidonic acid was carried out in an in vitro system, the formation of products which react with microsomal aldehyde dehydrogenase was observed parallel with malonic dialdehyde accumulation.

  4. Daidzin: a potent, selective inhibitor of human mitochondrial aldehyde dehydrogenase.

    PubMed

    Keung, W M; Vallee, B L

    1993-02-15

    Human mitochondrial aldehyde dehydrogenase (ALDH-I) is potently, reversibly, and selectively inhibited by an isoflavone isolated from Radix puerariae and identified as daidzin, the 7-glucoside of 4',7-dihydroxyisoflavone. Kinetic analysis with formaldehyde as substrate reveals that daidzin inhibits ALDH-I competitively with respect to formaldehyde with a Ki of 40 nM, and uncompetitively with respect to the coenzyme NAD+. The human cytosolic aldehyde dehydrogenase isozyme (ALDH-II) is nearly 3 orders of magnitude less sensitive to daidzin inhibition. Daidzin does not inhibit human class I, II, or III alcohol dehydrogenases, nor does it have any significant effect on biological systems that are known to be affected by other isoflavones. Among more than 40 structurally related compounds surveyed, 12 inhibit ALDH-I, but only prunetin and 5-hydroxydaidzin (genistin) combine high selectivity and potency, although they are 7- to 15-fold less potent than daidzin. Structure-function relationships have established a basis for the design and synthesis of additional ALDH inhibitors that could both be yet more potent and specific.

  5. Targeting Aldehyde Dehydrogenase 2: New Therapeutic Opportunities

    PubMed Central

    Chen, Che-Hong; Ferreira, Julio Cesar Batista; Gross, Eric R.; Mochly-Rosen, Daria

    2014-01-01

    A family of detoxifying enzymes called aldehyde dehydrogenases (ALDHs) has been a subject of recent interest, as its role in detoxifying aldehydes that accumulate through metabolism and to which we are exposed from the environment has been elucidated. Although the human genome has 19 ALDH genes, one ALDH emerges as a particularly important enzyme in a variety of human pathologies. This ALDH, ALDH2, is located in the mitochondrial matrix with much known about its role in ethanol metabolism. Less known is a new body of research to be discussed in this review, suggesting that ALDH2 dysfunction may contribute to a variety of human diseases including cardiovascular diseases, diabetes, neurodegenerative diseases, stroke, and cancer. Recent studies suggest that ALDH2 dysfunction is also associated with Fanconi anemia, pain, osteoporosis, and the process of aging. Furthermore, an ALDH2 inactivating mutation (termed ALDH2*2) is the most common single point mutation in humans, and epidemiological studies suggest a correlation between this inactivating mutation and increased propensity for common human pathologies. These data together with studies in animal models and the use of new pharmacological tools that activate ALDH2 depict a new picture related to ALDH2 as a critical health-promoting enzyme. PMID:24382882

  6. An animal model of human aldehyde dehydrogenase deficiency

    SciTech Connect

    Chang, C.; Mann, J.; Yoshida, A.

    1994-09-01

    The genetic deficiency of ALDH2, a major mitochondrial aldehyde dehydrogenase, is intimately related to alcohol sensitivity and the degree of predisposition to alcoholic diseases in humans. The ultimate biological role of ALDH2 can be exposed by knocking out the ALDH2 gene in an animal model. As the first step for this line of studies, we cloned and characterized the ALDH2 gene from mouse C57/6J strain which is associated with a high alcohol preference. The gene spans 26 kbp and is composed of 13 exons. Embryonic stem cells were transfected with a replacement vector which contains a partially deleted exon3, a positive selection cassette (pPgk Neo), exon 4 with an artificial stop codon, exons 5, 6, 7, and a negative selection cassette (pMCI-Tk). Genomic DNAs prepared from drug resistant clones were analyzed by polymerase chain reaction and by Southern blot analysis to distinguish random integration from homologous recombination. Out of 132 clones examined, 8 had undergone homologous recombination at one of the ALDH2 alleles. The cloned transformed embryonic stem cells with a disrupted ALDH2 allele were injected into blastocysts. Transplantation of the blastocysts into surrogate mother mice yielded chimeric mice. The role of ALDH2 in alcohol preference, alcohol sensitivity and other biological and behavioral characteristics can be elucidated by examining the heterozygous and homozygous mutant strains produced by breeding of chimeric mice.

  7. Human liver aldehyde dehydrogenase: coenzyme binding

    SciTech Connect

    Kosley, L.L.; Pietruszko, R.

    1987-05-01

    The binding of (U-/sup 14/C) NAD to mitochondrial (E2) and cytoplasmin(E1) aldehyde dehydrogenase was measured by gel filtration and sedimentation techniques. The binding data for NAD and (E1) yielded linear Scatchard plots giving a dissociation constant of 25 (+/- 8) uM and the stoichiometry of 2 mol of NAD bound per mol of E1. The binding data for NAD and (E2) gave nonlinear Scatchard plots. The binding of NADH to E2 was measured via fluorescence enhancement; this could not be done with E1 because there was no signal. The dissociation constant for E2 by this technique was 0.7 (+/- 0.4) uM and stoichiometry of 1.0 was obtained. The binding of (U-/sup 14/C) NADH to (E1) and (E2) was also measured by the sedimentation technique. The binding data for (E1) and NADH gave linear Scatchard plots giving a dissociation constant of 13 (+/- 6) uM and the stoichiometry of 2.0. The binding data for NADH to (E2) gave nonlinear Scatchard plots. With (E1), the dissociation constants for both NAD and NADH are similar to those determined kinetically, but the stoichiometry is only half of that found by stopped flow technique. With (E2) the dissociation constant by fluorometric procedure was 2 orders of magnitude less than that from catalytic reaction.

  8. Characterization of five fatty aldehyde dehydrogenase enzymes from Marinobacter and Acinetobacter: structural insights into the aldehyde binding pocket.

    PubMed

    Bertram, Jonathan H; Mulliner, Kalene M; Shi, Ke; Plunkett, Mary H; Nixon, Peter; Serratore, Nicholas A; Douglas, Christopher J; Aihara, Hideki; Barney, Brett M

    2017-04-07

    Enzymes involved in lipid biosynthesis and metabolism play an important role in energy conversion and storage, and in the function of structural components such as cell membranes. The fatty aldehyde dehydrogenase (FAldDH) plays a central function in the metabolism of lipid intermediates, oxidizing fatty aldehydes to the corresponding fatty acid, and competing with pathways that would further reduce the fatty aldehydes to fatty alcohols or require the fatty aldehydes to produce alkanes. In this report, the genes for four putative FAldDH enzymes from Marinobacter aquaeolei VT8 and an additional enzyme from Acinetobacter baylyi were heterologously expressed in Escherichia coli and shown to display FAldDH activity. Five enzymes (Maqu_0438, Maqu_3316, Maqu_3410, Maqu_3572 and WP_004927398) were found to act on aldehydes ranging from acetaldehyde to hexadecanal, and also acted on the unsaturated long-chain palmitoleyl and oleyl aldehydes. A comparison of the specificity of these enzymes with various aldehydes is presented. Crystallization trials yielded diffraction quality crystals of one particular FAldDH (Maqu_3316) from M. aquaeolei VT8. Crystals were independently treated with both the NAD(+) cofactor and the aldehyde substrate decanal, revealing specific details of the likely substrate binding pocket for this class of enzymes. A likely model for how the catalysis by the enzyme is accomplished is also provided.Importance: This study provides a comparison of multiple enzymes with the ability to oxidize fatty aldehydes to fatty acids, and provides a likely picture of how the fatty aldehyde and NAD(+) is bound to the enzyme to facilitate catalysis. Based on the information obtained from this structural analysis and the comparisons of specificity for the five enzymes that were characterized, correlations may be drawn to the potential roles played by specific residues within the structure.

  9. Inhibitory effect of disulfiram (Antabuse) on alcohol dehydrogenase activity.

    PubMed

    Carper, W R; Dorey, R C; Beber, J H

    1987-10-01

    We investigated the effect of disulfiram (Antabuse) on the activity of alcohol dehydrogenase (EC 1.1.1.1) in vitro. We observed a time-dependent inhibition of this dehydrogenase by disulfiram and diethyldithiocarbamate similar to that obtained for aldehyde dehydrogenase (EC 1.2.1.3). These results suggest a possible explanation for various side effects observed in the clinical use of Antabuse.

  10. Molecular Characterization and Transcriptional Analysis of adhE2, the Gene Encoding the NADH-Dependent Aldehyde/Alcohol Dehydrogenase Responsible for Butanol Production in Alcohologenic Cultures of Clostridium acetobutylicum ATCC 824

    PubMed Central

    Fontaine, Lisa; Meynial-Salles, Isabelle; Girbal, Laurence; Yang, Xinghong; Croux, Christian; Soucaille, Philippe

    2002-01-01

    The adhE2 gene of Clostridium acetobutylicum ATCC 824, coding for an aldehyde/alcohol dehydrogenase (AADH), was characterized from molecular and biochemical points of view. The 2,577-bp adhE2 codes for a 94.4-kDa protein. adhE2 is expressed, as a monocistronic operon, in alcohologenic cultures and not in solventogenic cultures. Primer extension analysis identified two transcriptional start sites 160 and 215 bp upstream of the adhE2 start codon. The expression of adhE2 from a plasmid in the DG1 mutant of C. acetobutylicum, a mutant cured of the pSOL1 megaplasmid, restored butanol production and provided elevated activities of NADH-dependent butyraldehyde and butanol dehydrogenases. The recombinant AdhE2 protein expressed in E. coli as a Strep-tag fusion protein and purified to homogeneity also demonstrated NADH-dependent butyraldehyde and butanol dehydrogenase activities. This is the second AADH identified in C. acetobutylicum ATCC 824, and to our knowledge this is the first example of a bacterium with two AADHs. It is noteworthy that the two corresponding genes, adhE and adhE2, are carried by the pSOL1 megaplasmid of C. acetobutylicum ATCC 824. PMID:11790753

  11. Alcohol Dehydrogenase from Methylobacterium organophilum

    PubMed Central

    Wolf, H. J.; Hanson, R. S.

    1978-01-01

    The alcohol dehydrogenase from Methylobacterium organophilum, a facultative methane-oxidizing bacterium, has been purified to homogeneity as indicated by sodium dodecyl sulfate-gel electrophoresis. It has several properties in common with the alcohol dehydrogenases from other methylotrophic bacteria. The active enzyme is a dimeric protein, both subunits having molecular weights of about 62,000. The enzyme exhibits broad substrate specificity for primary alcohols and catalyzes the two-step oxidation of methanol to formate. The apparent Michaelis constants of the enzyme are 2.9 × 10−5 M for methanol and 8.2 × 10−5 M for formaldehyde. Activity of the purified enzyme is dependent on phenazine methosulfate. Certain characteristics of this enzyme distinguish it from the other alcohol dehydrogenases of other methylotrophic bacteria. Ammonia is not required for, but stimulates the activity of newly purified enzyme. An absolute dependence on ammonia develops after storage of the purified enzyme. Activity is not inhibited by phosphate. The fluorescence spectrum of the enzyme indicates that it and the cofactor associated with it may be chemically different from the alcohol dehydrogenases from other methylotrophic bacteria. The alcohol dehydrogenases of Hyphomicrobium WC-65, Pseudomonas methanica, Methylosinus trichosporium, and several facultative methylotrophs are serologically related to the enzyme purified in this study. The enzymes of Rhodopseudomonas acidophila and of organisms of the Methylococcus group did not cross-react with the antiserum prepared against the alcohol dehydrogenase of M. organophilum. Images PMID:80974

  12. Molecular characterization of benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase II of Acinetobacter calcoaceticus.

    PubMed Central

    Gillooly, D J; Robertson, A G; Fewson, C A

    1998-01-01

    The nucleotide sequences of xylB and xylC from Acinetobacter calcoaceticus, the genes encoding benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase II, were determined. The complete nucleotide sequence indicates that these two genes form part of an operon and this was supported by heterologous expression and physiological studies. Benzaldehyde dehydrogenase II is a 51654 Da protein with 484 amino acids per subunit and it is typical of other prokaryotic and eukaryotic aldehyde dehydrogenases. Benzyl alcohol dehydrogenase has a subunit Mr of 38923 consisting of 370 amino acids, it stereospecifically transfers the proR hydride of NADH, and it is a member of the family of zinc-dependent long-chain alcohol dehydrogenases. The enzyme appears to be more similar to animal and higher-plant alcohol dehydrogenases than it is to most other microbial alcohol dehydrogenases. Residue His-51 of zinc-dependent alcohol dehydrogenases is thought to be necessary as a general base for catalysis in this category of alcohol dehydrogenases. However, this residue was found to be replaced in benzyl alcohol dehydrogenase from A. calcoaceticus by an isoleucine, and the introduction of a histidine residue in this position did not alter the kinetic coefficients, pH optimum or substrate specificity of the enzyme. Other workers have shown that His-51 is also absent from the TOL-plasmid-encoded benzyl alcohol dehydrogenase of Pseudomonas putida and so these two closely related enzymes presumably have a catalytic mechanism that differs from that of the archetypal zinc-dependent alcohol dehydrogenases. PMID:9494109

  13. DEVELOPMENTAL EXPRESSION OF ALDEHYDE DEHYDROGENASE IN RAT: A COMPARISON OF LIVER AND LUNG DEVELOPMENT

    EPA Science Inventory

    Metabolism is one of the major determinants for age-related susceptibility changes to chemicals. Aldehydes are highly reactive molecules present in the environment and can be produced during biotransformation of xenobiotics. Aldehyde dehydrogenases (ALDH) are important in aldehyd...

  14. Development of a prediction model and estimation of cumulative risk for upper aerodigestive tract cancer on the basis of the aldehyde dehydrogenase 2 genotype and alcohol consumption in a Japanese population

    PubMed Central

    Koyanagi, Yuriko N.; Ito, Hidemi; Oze, Isao; Hosono, Satoyo; Tanaka, Hideo; Abe, Tetsuya; Shimizu, Yasuhiro; Hasegawa, Yasuhisa

    2017-01-01

    Alcohol consumption and the aldehyde dehydrogenase 2 (ALDH2) polymorphism are associated with the risk of upper aerodigestive tract cancer, and a significant gene–environment interaction between the two has been confirmed in a Japanese population. To aid the development of a personalized prevention strategy, we developed a risk-prediction model and estimated absolute risks stratified by a combination of the ALDH2 genotype and alcohol consumption. We carried out two age-matched and sex-matched case–control studies: one (630 cases and 1260 controls) for model derivation and the second (654 cases and 654 controls) for external validation. On the basis of data from the derivation study, a prediction model was developed by fitting a conditional logistic regression model using the following predictors: age, sex, smoking, drinking, and the ALDH2 genotype. The risk model, including a combination of the ALDH2 genotype and alcohol consumption, provided high discriminatory accuracy and good calibration in both the derivation and the validation studies: C statistics were 0.82 (95% confidence interval 0.80–0.84) and 0.83 (95% confidence interval 0.81–0.85), respectively, and the calibration plots of both studies remained close to the ideal calibration line. Cumulative risks were obtained by combining odds ratios estimated from the risk model with the age-specific incidence rate and population size. For heavy drinkers with a heterozygous genotype, the cumulative risk at age 80 was above 20%. In contrast, risk in the other groups was less than 5%. In conclusion, modification of alcohol consumption according to the ALDH2 genotype will have a major impact on upper aerodigestive tract cancer prevention. These findings represent a simple and practical model for personalized cancer prevention. PMID:26862830

  15. Michael hydratase alcohol dehydrogenase or just alcohol dehydrogenase?

    PubMed Central

    2014-01-01

    The Michael hydratase – alcohol dehydrogenase (MhyADH) from Alicycliphilus denitrificans was previously identified as a bi-functional enzyme performing a hydration of α,β-unsaturated ketones and subsequent oxidation of the formed alcohols. The investigations of the bi-functionality were based on a spectrophotometric assay and an activity staining in a native gel of the dehydrogenase. New insights in the recently discovered organocatalytic Michael addition of water led to the conclusion that the previously performed experiments to identify MhyADH as a bi-functional enzyme and their results need to be reconsidered and the reliability of the methodology used needs to be critically evaluated. PMID:24949265

  16. Modulation of ethanol stress tolerance by aldehyde dehydrogenase in the mycorrhizal fungus Tricholoma vaccinum.

    PubMed

    Asiimwe, Theodore; Krause, Katrin; Schlunk, Ines; Kothe, Erika

    2012-08-01

    We report the first mycorrhizal fungal aldehyde dehydrogenase gene, ald1, which was isolated from the basidiomycete Tricholoma vaccinum. The gene, encoding a protein Ald1 of 502 amino acids, is up-regulated in ectomycorrhiza. Phylogenetic analyses using 53 specific fungal aldehyde dehydrogenases from all major phyla in the kingdom of fungi including Ald1 and two partial sequences of T. vaccinum were performed to get an insight in the evolution of the aldehyde dehydrogenase family. By using competitive and real-time RT-PCR, ald1 is up-regulated in response to alcohol and aldehyde-related stress. Furthermore, heterologous expression of ald1 in Escherichia coli and subsequent in vitro enzyme activity assay demonstrated the oxidation of propionaldehyde and butyraldehyde with different kinetics using either NAD(+) or NADP(+) as cofactors. In addition, overexpression of ald1 in T. vaccinum after Agrobacterium tumefaciens-mediated transformation increased ethanol stress tolerance. These results demonstrate the ability of Ald1 to circumvent ethanol stress, a critical function in mycorrhizal habitats.

  17. Fatty aldehyde and fatty alcohol metabolism: review and importance for epidermal structure and function.

    PubMed

    Rizzo, William B

    2014-03-01

    Normal fatty aldehyde and alcohol metabolism is essential for epidermal differentiation and function. Long-chain aldehydes are produced by catabolism of several lipids including fatty alcohols, sphingolipids, ether glycerolipids, isoprenoid alcohols and certain aliphatic lipids that undergo α- or ω-oxidation. The fatty aldehyde generated by these pathways is chiefly metabolized to fatty acid by fatty aldehyde dehydrogenase (FALDH, alternately known as ALDH3A2), which also functions to oxidize fatty alcohols as a component of the fatty alcohol:NAD oxidoreductase (FAO) enzyme complex. Genetic deficiency of FALDH/FAO in patients with Sjögren-Larsson syndrome (SLS) results in accumulation of fatty aldehydes, fatty alcohols and related lipids (ether glycerolipids, wax esters) in cultured keratinocytes. These biochemical changes are associated with abnormalities in formation of lamellar bodies in the stratum granulosum and impaired delivery of their precursor membranes to the stratum corneum (SC). The defective extracellular SC membranes are responsible for a leaky epidermal water barrier and ichthyosis. Although lamellar bodies appear to be the pathogenic target for abnormal fatty aldehyde/alcohol metabolism in SLS, the precise biochemical mechanisms are yet to be elucidated. Nevertheless, studies in SLS highlight the critical importance of FALDH and normal fatty aldehyde/alcohol metabolism for epidermal function. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.

  18. Fatty Aldehyde and Fatty Alcohol Metabolism: Review and Importance for Epidermal Structure and Function

    PubMed Central

    Rizzo, William B.

    2014-01-01

    Normal fatty aldehyde and alcohol metabolism is essential for epidermal differentiation and function. Long-chain aldehydes are produced by catabolism of several lipids including fatty alcohols, sphingolipids, ether glycerolipids, isoprenoid alcohols and certain aliphatic lipids that undergo α- or ω-oxidation. The fatty aldehyde generated by these pathways is chiefly metabolized to fatty acid by fatty aldehyde dehydrogenase (FALDH, alternately known as ALDH3A2), which also functions to oxidize fatty alcohols as a component of the fatty alcohol:NAD oxidoreductase (FAO) enzyme complex. Genetic deficiency of FALDH/FAO in patients with Sjögren-Larsson syndrome (SLS) results in accumulation of fatty aldehydes, fatty alcohols and related lipids (ether glycerolipids, wax esters) in cultured keratinocytes. These biochemical changes are associated with abnormalities in formation of lamellar bodies in the stratum granulosum and impaired delivery of their precursor membranes to the stratum corneum (SC). The defective extracellular SC membranes are responsible for a leaky epidermal water barrier and ichthyosis. Although lamellar bodies appear to be the pathogenic target for abnormal fatty aldehyde/alcohol metabolism in SLS, the precise biochemical mechanisms are yet to be elucidated. Nevertheless, studies in SLS highlight the critical importance of FALDH and normal fatty aldehyde/alcohol metabolism for epidermal function. PMID:24036493

  19. Recent advances in biotechnological applications of alcohol dehydrogenases.

    PubMed

    Zheng, Yu-Guo; Yin, Huan-Huan; Yu, Dao-Fu; Chen, Xiang; Tang, Xiao-Ling; Zhang, Xiao-Jian; Xue, Ya-Ping; Wang, Ya-Jun; Liu, Zhi-Qiang

    2017-02-01

    Alcohol dehydrogenases (ADHs), which belong to the oxidoreductase superfamily, catalyze the interconversion between alcohols and aldehydes or ketones with high stereoselectivity under mild conditions. ADHs are widely employed as biocatalysts for the dynamic kinetic resolution of racemic substrates and for the preparation of enantiomerically pure chemicals. This review provides an overview of biotechnological applications for ADHs in the production of chiral pharmaceuticals and fine chemicals.

  20. Salivary aldehyde dehydrogenase - temporal and population variability, correlations with drinking and smoking habits and activity towards aldehydes contained in food.

    PubMed

    Giebułtowicz, Joanna; Dziadek, Marta; Wroczyński, Piotr; Woźnicka, Katarzyna; Wojno, Barbara; Pietrzak, Monika; Wierzchowski, Jacek

    2010-01-01

    Fluorimetric method based on oxidation of the fluorogenic 6-methoxy-2-naphthaldehyde was applied to evaluate temporal and population variability of the specific activity of salivary aldehyde dehydrogenase (ALDH) and the degree of its inactivation in healthy human population. Analyzed was also its dependence on drinking and smoking habits, coffee consumption, and its sensitivity to N-acetylcysteine. Both the specific activity of salivary ALDH and the degree of its inactivation were highly variable during the day, with the highest activities recorded in the morning hours. The activities were also highly variable both intra- and interpersonally, and negatively correlated with age, and this correlation was stronger for the subgroup of volunteers declaring abstinence from alcohol and tobacco. Moderately positive correlations of salivary ALDH specific activity with alcohol consumption and tobacco smoking were also recorded (r(s) ~0.27; p=0.004 and r(s) =0.30; p=0.001, respectively). Moderate coffee consumption correlated positively with the inactivation of salivary ALDH, particularly in the subgroup of non-drinking and non-smoking volunteers. It was found that mechanical stimulation of the saliva flow increases the specific activity of salivary ALDH. The specific activity of the salivary ALDH was strongly and positively correlated with that of superoxide dismutase, and somewhat less with salivary peroxidase. The antioxidant-containing drug N-acetylcysteine increased activity of salivary ALDH presumably by preventing its inactivation in the oral cavity. Some food-related aldehydes, mainly cinnamic aldehyde and anisaldehyde, were excellent substrates of the salivary ALDH3A1 enzyme, while alkenals, particularly those with short chain, were characterized by lower affinity towards this enzyme but high catalytic constants. The protective role of salivary ALDH against aldehydes in food and those found in the cigarette smoke is discussed, as well as its participation in

  1. Class 2 aldehyde dehydrogenase. Characterization of the hamster enzyme, sensitive to daidzin and conserved within the family of multiple forms.

    PubMed

    Hjelmqvist, L; Lundgren, R; Norin, A; Jörnvall, H; Vallee, B; Klyosov, A; Keung, W M

    1997-10-13

    Mitochondrial (class 2) hamster aldehyde dehydrogenase has been purified and characterized. Its primary structure has been determined and correlated with the tertiary structure recently established for this class from another species. The protein is found to represent a constant class within a complex family of multiple forms. Variable segments that occur in different species correlate with non-functional segments, in the same manner as in the case of the constant class of alcohol dehydrogenases (class III type) of another protein family, but distinct from the pattern of the corresponding variable enzymes. Hence, in both these protein families, overall variability and segment architectures behave similarly, with at least one 'constant' form in each case, class III in the case of alcohol dehydrogenases, and at least class 2 in the case of aldehyde dehydrogenases.

  2. Aldehyde dehydrogenase is used by cancer cells for energy metabolism

    PubMed Central

    Kang, Joon Hee; Lee, Seon-Hyeong; Hong, Dongwan; Lee, Jae-Seon; Ahn, Hee-Sung; Ahn, Ju-Hyun; Seong, Tae Wha; Lee, Chang-Hun; Jang, Hyonchol; Hong, Kyeong Man; Lee, Cheolju; Lee, Jae-Ho; Kim, Soo-Youl

    2016-01-01

    We found that non-small-cell lung cancer (NSCLC) cells express high levels of multiple aldehyde dehydrogenase (ALDH) isoforms via an informatics analysis of metabolic enzymes in NSCLC and immunohistochemical staining of NSCLC clinical tumor samples. Using a multiple reaction-monitoring mass spectrometry analysis, we found that multiple ALDH isozymes were generally abundant in NSCLC cells compared with their levels in normal IMR-90 human lung cells. As a result of the catalytic reaction mediated by ALDH, NADH is produced as a by-product from the conversion of aldehyde to carboxylic acid. We hypothesized that the NADH produced by ALDH may be a reliable energy source for ATP production in NSCLC. This study revealed that NADH production by ALDH contributes significantly to ATP production in NSCLC. Furthermore, gossypol, a pan-ALDH inhibitor, markedly reduced the level of ATP. Gossypol combined with phenformin synergistically reduced the ATP levels, which efficiently induced cell death following cell cycle arrest. PMID:27885254

  3. A coniferyl aldehyde dehydrogenase gene from Pseudomonas sp. strain HR199 enhances the conversion of coniferyl aldehyde by Saccharomyces cerevisiae.

    PubMed

    Adeboye, Peter Temitope; Olsson, Lisbeth; Bettiga, Maurizio

    2016-07-01

    The conversion of coniferyl aldehyde to cinnamic acids by Saccharomyces cerevisiae under aerobic growth conditions was previously observed. Bacteria such as Pseudomonas have been shown to harbor specialized enzymes for converting coniferyl aldehyde but no comparable enzymes have been identified in S. cerevisiae. CALDH from Pseudomonas was expressed in S. cerevisiae. An acetaldehyde dehydrogenase (Ald5) was also hypothesized to be actively involved in the conversion of coniferyl aldehyde under aerobic growth conditions in S. cerevisiae. In a second S. cerevisiae strain, the acetaldehyde dehydrogenase (ALD5) was deleted. A prototrophic control strain was also engineered. The engineered S. cerevisiae strains were cultivated in the presence of 1.1mM coniferyl aldehyde under aerobic condition in bioreactors. The results confirmed that expression of CALDH increased endogenous conversion of coniferyl aldehyde in S. cerevisiae and ALD5 is actively involved with the conversion of coniferyl aldehyde in S. cerevisiae.

  4. Expression pattern, ethanol-metabolizing activities, and cellular localization of alcohol and aldehyde dehydrogenases in human large bowel: association of the functional polymorphisms of ADH and ALDH genes with hemorrhoids and colorectal cancer.

    PubMed

    Chiang, Chien-Ping; Jao, Shu-Wen; Lee, Shiao-Pieng; Chen, Pei-Chi; Chung, Chia-Chi; Lee, Shou-Lun; Nieh, Shin; Yin, Shih-Jiun

    2012-02-01

    Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are principal enzymes responsible for metabolism of ethanol. Functional polymorphisms of ADH1B, ADH1C, and ALDH2 genes occur among racial populations. The goal of this study was to systematically determine the functional expressions and cellular localization of ADHs and ALDHs in human rectal mucosa, the lesions of adenocarcinoma and hemorrhoid, and the genetic association of allelic variations of ADH and ALDH with large bowel disorders. Twenty-one surgical specimens of rectal adenocarcinoma and the adjacent normal mucosa, including 16 paired tissues of rectal tumor, normal mucosae of rectum and sigmoid colon from the same individuals, and 18 surgical mixed hemorrhoid specimens and leukocyte DNA samples from 103 colorectal cancer patients, 67 hemorrhoid patients, and 545 control subjects recruited in previous study, were investigated. The isozyme/allozyme expression patterns of ADH and ALDH were identified by isoelectric focusing and the activities were assayed spectrophotometrically. The protein contents of ADH/ALDH isozymes were determined by immunoblotting using the corresponding purified class-specific antibodies; the cellular activity and protein localizations were detected by immunohistochemistry and histochemistry, respectively. Genotypes of ADH1B, ADH1C, and ALDH2 were determined by polymerase chain reaction-restriction fragment length polymorphisms. At 33mM ethanol, pH 7.5, the activity of ADH1C*1/1 phenotypes exhibited 87% higher than that of the ADH1C*1/*2 phenotypes in normal rectal mucosa. The activity of ALDH2-active phenotypes of rectal mucosa was 33% greater than ALDH2-inactive phenotypes at 200μM acetaldehyde. The protein contents in normal rectal mucosa were in the following order: ADH1>ALDH2>ADH3≈ALDH1A1, whereas those of ADH2, ADH4, and ALDH3A1 were fairly low. Both activity and content of ADH1 were significantly decreased in rectal tumors, whereas the ALDH activity remained

  5. Reversible, partial inactivation of plant betaine aldehyde dehydrogenase by betaine aldehyde: mechanism and possible physiological implications.

    PubMed

    Zárate-Romero, Andrés; Murillo-Melo, Darío S; Mújica-Jiménez, Carlos; Montiel, Carmina; Muñoz-Clares, Rosario A

    2016-04-01

    In plants, the last step in the biosynthesis of the osmoprotectant glycine betaine (GB) is the NAD(+)-dependent oxidation of betaine aldehyde (BAL) catalysed by some aldehyde dehydrogenase (ALDH) 10 enzymes that exhibit betaine aldehyde dehydrogenase (BADH) activity. Given the irreversibility of the reaction, the short-term regulation of these enzymes is of great physiological relevance to avoid adverse decreases in the NAD(+):NADH ratio. In the present study, we report that the Spinacia oleracea BADH (SoBADH) is reversibly and partially inactivated by BAL in the absence of NAD(+)in a time- and concentration-dependent mode. Crystallographic evidence indicates that the non-essential Cys(450)(SoBADH numbering) forms a thiohemiacetal with BAL, totally blocking the productive binding of the aldehyde. It is of interest that, in contrast to Cys(450), the catalytic cysteine (Cys(291)) did not react with BAL in the absence of NAD(+) The trimethylammonium group of BAL binds in the same position in the inactivating or productive modes. Accordingly, BAL does not inactivate the C(450)SSoBADH mutant and the degree of inactivation of the A(441)I and A(441)C mutants corresponds to their very different abilities to bind the trimethylammonium group. Cys(450)and the neighbouring residues that participate in stabilizing the thiohemiacetal are strictly conserved in plant ALDH10 enzymes with proven or predicted BADH activity, suggesting that inactivation by BAL is their common feature. Under osmotic stress conditions, this novel partial and reversible covalent regulatory mechanism may contribute to preventing NAD(+)exhaustion, while still permitting the synthesis of high amounts of GB and avoiding the accumulation of the toxic BAL.

  6. Fatty aldehyde dehydrogenases in Acinetobacter sp. strain HO1-N: role in hexadecanol metabolism.

    PubMed Central

    Singer, M E; Finnerty, W R

    1985-01-01

    The role of fatty aldehyde dehydrogenases (FALDHs) in hexadecane and hexadecanol metabolism was studied in Acinetobacter sp. strain HO1-N. Two distinct FALDHs were demonstrated in Acinetobacter sp. strain HO1-N: a membrane-bound, NADP-dependent FALDH activity induced 5-, 15-, and 9-fold by growth on hexadecanol, dodecyl aldehyde, and hexadecane, respectively, and a constitutive, NAD-dependent, membrane-localized FALDH. The NADP-dependent FALDH exhibited apparent Km and Vmax values for decyl aldehyde of 5.0, 13.0, 18.0, and 18.3 microM and 537.0, 500.0, 25.0, and 38.0 nmol/min in hexadecane-, hexadecanol-, ethanol-, palmitate-grown cells, respectively. FALDH isozymes ald-a, ald-b, and ald-c were demonstrated by gel electrophoresis in extracts of hexadecane- and hexadecanol-grown cells. ald-a, ald-b, and ald-d were present in dodecyl aldehyde-grown cells, while palmitate-grown control cells contained ald-b and ald-d. Dodecyl aldehyde-negative mutants were isolated and grouped into two phenotypic classes based on growth: class 1 mutants were hexadecane and hexadecanol negative and class 2 mutants were hexadecane and hexadecanol positive. Specific activity of NADP-dependent FALDH in Ald21 (class 1 mutant) was 85% lower than that of wild-type FALDH, while the specific activity of Ald24 (class 2 mutant) was 55% greater than that of wild-type FALDH. Ald21R, a dodecyl aldehyde-positive revertant able to grow on hexadecane, hexadecanol, and dodecyl aldehyde, exhibited a 100% increase in the specific activity of the NADP-dependent FALDH. The oxidation of [3H]hexadecane byAld21 yielded the accumulation of 61% more fatty aldehyde than the wild type, while Ald24 accumulated 27% more fatty aldehyde, 95% more fatty alcohol, and 65% more wax ester than the wild type. This study provides genetic and physiological evidence for the role of fatty aldehyde as an essential metabolic intermediate and NADP-dependent FALDH as a key enzyme in the dissimilation of hexadecane, hexadecanol

  7. Cyanobacterial aldehyde deformylase oxygenation of aldehydes yields n-1 aldehydes and alcohols in addition to alkanes.

    PubMed

    Aukema, Kelly G; Makris, Thomas M; Stoian, Sebastian A; Richman, Jack E; Münck, Eckard; Lipscomb, John D; Wackett, Lawrence P

    2013-10-04

    Aldehyde-deformylating oxygenase (ADO) catalyzes O2-dependent release of the terminal carbon of a biological substrate, octadecanal, to yield formate and heptadecane in a reaction that requires external reducing equivalents. We show here that ADO also catalyzes incorporation of an oxygen atom from O2 into the alkane product to yield alcohol and aldehyde products. Oxygenation of the alkane product is much more pronounced with C9-10 aldehyde substrates, so that use of nonanal as the substrate yields similar amounts of octane, octanal, and octanol products. When using doubly-labeled [1,2-(13)C]-octanal as the substrate, the heptane, heptanal and heptanol products each contained a single (13)C-label in the C-1 carbons atoms. The only one-carbon product identified was formate. [(18)O]-O2 incorporation studies demonstrated formation of [(18)O]-alcohol product, but rapid solvent exchange prevented similar determination for the aldehyde product. Addition of [1-(13)C]-nonanol with decanal as the substrate at the outset of the reaction resulted in formation of [1-(13)C]-nonanal. No (13)C-product was formed in the absence of decanal. ADO contains an oxygen-bridged dinuclear iron cluster. The observation of alcohol and aldehyde products derived from the initially formed alkane product suggests a reactive species similar to that formed by methane monooxygenase (MMO) and other members of the bacterial multicomponent monooxygenase family. Accordingly, characterization by EPR and Mössbauer spectroscopies shows that the electronic structure of the ADO cluster is similar, but not identical, to that of MMO hydroxylase component. In particular, the two irons of ADO reside in nearly identical environments in both the oxidized and fully reduced states, whereas those of MMOH show distinct differences. These favorable characteristics of the iron sites allow a comprehensive determination of the spin Hamiltonian parameters describing the electronic state of the diferrous cluster for the

  8. Aldehyde Dehydrogenases in Cellular Responses to Oxidative/electrophilic Stress

    PubMed Central

    Singh, Surendra; Brocker, Chad; Koppaka, Vindhya; Ying, Chen; Jackson, Brian; Matsumoto, Akiko; Thompson, David C.; Vasiliou, Vasilis

    2013-01-01

    Reactive oxygen species (ROS) are continuously generated within living systems and the inability to manage ROS load leads to elevated oxidative stress and cell damage. Oxidative stress is coupled to the oxidative degradation of lipid membranes, also known as lipid peroxidation. This process generates over 200 types of aldehydes, many of which are highly reactive and toxic. Aldehyde dehydrogenases (ALDHs) metabolize endogenous and exogenous aldehydes and thereby mitigate oxidative/electrophilic stress in prokaryotic and eukaryotic organisms. ALDHs are found throughout the evolutionary gamut, from single celled organisms to complex multicellular species. Not surprisingly, many ALDHs in evolutionarily distant, and seemingly unrelated, species perform similar functions, including protection against a variety of environmental stressors like dehydration and ultraviolet radiation. The ability to act as an ‘aldehyde scavenger’ during lipid peroxidation is another ostensibly universal ALDH function found across species. Up-regulation of ALDHs is a stress response in bacteria (environmental and chemical stress), plants (dehydration, salinity and oxidative stress), yeast (ethanol exposure and oxidative stress), Caenorhabditis elegans (lipid peroxidation) and mammals (oxidative stress and lipid peroxidation). Recent studies have also identified ALDH activity as an important feature of cancer stem cells. In these cells, ALDH expression helps abrogate oxidative stress and imparts resistance against chemotherapeutic agents such as oxazaphosphorine, taxane and platinum drugs. The ALDH superfamily represents a fundamentally important class of enzymes that significantly contributes to the management of electrophilic/oxidative stress within living systems. Mutations in various ALDHs are associated with a variety of pathological conditions in humans, underscoring the fundamental importance of these enzymes in physiological and pathological processes. PMID:23195683

  9. Aldehyde dehydrogenase 1A1 in stem cells and cancer

    PubMed Central

    Tomita, Hiroyuki; Tanaka, Kaori; Tanaka, Takuji; Hara, Akira

    2016-01-01

    The human genome contains 19 putatively functional aldehyde dehydrogenase (ALDH) genes, which encode enzymes critical for detoxification of endogenous and exogenous aldehyde substrates through NAD(P)+-dependent oxidation. ALDH1 has three main isotypes, ALDH1A1, ALDH1A2, and ALDH1A3, and is a marker of normal tissue stem cells (SC) and cancer stem cells (CSC), where it is involved in self-renewal, differentiation and self-protection. Experiments with murine and human cells indicate that ALDH1 activity, predominantly attributed to isotype ALDH1A1, is tissue- and cancer-specific. High ALDH1 activity and ALDH1A1 overexpression are associated with poor cancer prognosis, though high ALDH1 and ALDH1A1 levels do not always correlate with highly malignant phenotypes and poor clinical outcome. In cancer therapy, ALDH1A1 provides a useful therapeutic CSC target in tissue types that normally do not express high levels of ALDH1A1, including breast, lung, esophagus, colon and stomach. Here we review the functions and mechanisms of ALDH1A1, the key ALDH isozyme linked to SC populations and an important contributor to CSC function in cancers, and we outline its potential in future anticancer strategies. PMID:26783961

  10. Aldehyde dehydrogenase 2 in cardiac protection: a new therapeutic target?

    PubMed Central

    Budas, Grant R; Disatnik, Marie- Hélène; Mochly-Rosen, Daria

    2010-01-01

    Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is emerging as a key enzyme involved in cytoprotection in the heart. ALDH2 mediates both the detoxification of reactive aldehydes such as acetaldehyde and 4-hydroxy-2-nonenal (4-HNE) and the bioactivation of nitroglycerin (GTN) to nitric oxide (NO). In addition, chronic nitrate treatment results in ALDH2 inhibition and contributes to nitrate tolerance. Our lab recently identified ALDH2 to be a key mediator of endogenous cytoprotection. We reported that ALDH2 is phosphorylated and activated by the survival kinase protein kinase C epsilon (PKCε) and found a strong inverse correlation between ALDH2 activity and infarct size. We also identified a small molecule ALDH2 activator (Alda-1) which reduces myocardial infarct size induced by ischemia/reperfusion in vivo. In this review, we discuss evidence that ALDH2 is a key mediator of endogenous survival signaling in the heart, suggest possible cardioprotective mechanisms mediated by ALDH2, and discuss potential clinical implications of these findings. PMID:20005475

  11. Single amino acid polymorphism in aldehyde dehydrogenase gene superfamily.

    PubMed

    Priyadharshini Christy, J; George Priya Doss, C

    2015-01-01

    The aldehyde dehydrogenase gene superfamily comprises of 19 genes and 3 pseudogenes. These superfamily genes play a vital role in the formation of molecules that are involved in life processes, and detoxification of endogenous and exogenous aldehydes. ALDH superfamily genes associated mutations are implicated in various diseases, such as pyridoxine-dependent seizures, gamma-hydroxybutyric aciduria, type II Hyperprolinemia, Sjogren-Larsson syndrome including cancer and Alzheimer's disease. Accumulation of large DNA variations data especially Single Amino acid Polymorphisms (SAPs) in public databases related to ALDH superfamily genes insisted us to conduct a survey on the disease associated mutations and predict their function impact on protein structure and function. Overall this study provides an update and highlights the importance of pathogenic mutations in associated diseases. Using KD4v and Project HOPE a computational based platform, we summarized all the deleterious properties of SAPs in ALDH superfamily genes by the providing valuable insight into structural alteration rendered due to mutation. We hope this review might provide a way to define the deleteriousness of a SAP and helps to understand the molecular basis of the associated disease and also permits precise diagnosis and treatment in the near future.

  12. Aldehyde dehydrogenase inhibition as a pathogenic mechanism in Parkinson disease.

    PubMed

    Fitzmaurice, Arthur G; Rhodes, Shannon L; Lulla, Aaron; Murphy, Niall P; Lam, Hoa A; O'Donnell, Kelley C; Barnhill, Lisa; Casida, John E; Cockburn, Myles; Sagasti, Alvaro; Stahl, Mark C; Maidment, Nigel T; Ritz, Beate; Bronstein, Jeff M

    2013-01-08

    Parkinson disease (PD) is a neurodegenerative disorder particularly characterized by the loss of dopaminergic neurons in the substantia nigra. Pesticide exposure has been associated with PD occurrence, and we previously reported that the fungicide benomyl interferes with several cellular processes potentially relevant to PD pathogenesis. Here we propose that benomyl, via its bioactivated thiocarbamate sulfoxide metabolite, inhibits aldehyde dehydrogenase (ALDH), leading to accumulation of the reactive dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL), preferential degeneration of dopaminergic neurons, and development of PD. This hypothesis is supported by multiple lines of evidence. (i) We previously showed in mice the metabolism of benomyl to S-methyl N-butylthiocarbamate sulfoxide, which inhibits ALDH at nanomolar levels. We report here that benomyl exposure in primary mesencephalic neurons (ii) inhibits ALDH and (iii) alters dopamine homeostasis. It induces selective dopaminergic neuronal damage (iv) in vitro in primary mesencephalic cultures and (v) in vivo in a zebrafish system. (vi) In vitro cell loss was attenuated by reducing DOPAL formation. (vii) In our epidemiology study, higher exposure to benomyl was associated with increased PD risk. This ALDH model for PD etiology may help explain the selective vulnerability of dopaminergic neurons in PD and provide a potential mechanism through which environmental toxicants contribute to PD pathogenesis.

  13. Aldehyde dehydrogenase 2 inhibits inflammatory response and regulates atherosclerotic plaque

    PubMed Central

    Wei, Shu-jian; Zhang, Ming-xiang; Wang, Xu-ping; Yuan, Qiu-huan; Xue, Li; Wang, Jia-li; Cui, Zhao-qiang; Zhang, Yun; Xu, Feng; Chen, Yu-guo

    2016-01-01

    Previous studies demonstrated that aldehyde dehydrogenase 2 (ALDH2) rs671 polymorphism, which eliminates ALDH2 activity down to 1%-6%, is a susceptibility gene for coronary disease. Here we investigated the underlying mechanisms based on our prior clinical and experimental studies. Male apoE−/− mice were transfected with GFP, ALDH2-overexpression and ALDH2-RNAi lentivirus respectively (n=20 each) after constrictive collars were placed around the right common carotid arteries. Consequently, ALDH2 gene silencing led to an increased en face plaque area, more unstable plaque with heavier accumulation of lipids, more macrophages, less smooth muscle cells and collagen, which were associated with aggravated inflammation. However, ALDH2 overexpression displayed opposing effects. We also found that ALDH2 activity decreased in atherosclerotic plaques of human and aged apoE−/− mice. Moreover, in vitro experiments with human umbilical vein endothelial cells further illustrated that, inhibition of ALDH2 activity resulted in elevating inflammatory molecules, an increase of nuclear translocation of NF-κB, and enhanced phosphorylation of NF-κB p65, AP-1 c-Jun, Jun-N terminal kinase and p38 MAPK, while ALDH2 activation could trigger contrary effects. These findings suggested that ALDH2 can influence plaque development and vulnerability, and inflammation via MAPK, NF-κB and AP-1 signaling pathways. PMID:27191745

  14. Aldehyde dehydrogenases in cancer stem cells: potential as therapeutic targets

    PubMed Central

    Clark, David W.

    2016-01-01

    Resistance to current chemotherapeutic or radiation-based cancer treatment strategies is a serious concern. Cancer stem cells (CSCs) are typically able to evade treatment and establish a recurrent tumor or metastasis, and it is these that lead to the majority of cancer deaths. Therefore, a major current goal is to develop treatment strategies that eliminate the resistant CSCs as well as the bulk tumor cells in order to achieve complete disease clearance. Aldehyde dehydrogenases (ALDHs) are important for maintenance and differentiation of stem cells as well as normal development. There is expanding evidence that ALDH expression increases in response to therapy and promotes chemoresistance and survival mechanisms in CSCs. This perspective will discuss a paper by Cojoc and colleagues recently published in Cancer Research, that indicates ALDHs play a key role in resistance to radiation therapy and tumor recurrence in prostate cancer. The authors suggest that ALDHs are a potential therapeutic target for treatment prostate cancer patients to limit radiation resistance and disease recurrence. The findings are consistent with work from other cancers showing ALDHs are major contributors of CSC signaling and resistance to anti-cancer treatments. This perspective will address representative work concerning the validity of ALDH and the associated retinoic acid signaling pathway as chemotherapeutic targets for prostate as well as other cancers. PMID:28149880

  15. Aldehyde dehydrogenase inhibition as a pathogenic mechanism in Parkinson disease

    PubMed Central

    Fitzmaurice, Arthur G.; Rhodes, Shannon L.; Lulla, Aaron; Murphy, Niall P.; Lam, Hoa A.; O’Donnell, Kelley C.; Barnhill, Lisa; Casida, John E.; Cockburn, Myles; Sagasti, Alvaro; Stahl, Mark C.; Maidment, Nigel T.; Ritz, Beate; Bronstein, Jeff M.

    2013-01-01

    Parkinson disease (PD) is a neurodegenerative disorder particularly characterized by the loss of dopaminergic neurons in the substantia nigra. Pesticide exposure has been associated with PD occurrence, and we previously reported that the fungicide benomyl interferes with several cellular processes potentially relevant to PD pathogenesis. Here we propose that benomyl, via its bioactivated thiocarbamate sulfoxide metabolite, inhibits aldehyde dehydrogenase (ALDH), leading to accumulation of the reactive dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL), preferential degeneration of dopaminergic neurons, and development of PD. This hypothesis is supported by multiple lines of evidence. (i) We previously showed in mice the metabolism of benomyl to S-methyl N-butylthiocarbamate sulfoxide, which inhibits ALDH at nanomolar levels. We report here that benomyl exposure in primary mesencephalic neurons (ii) inhibits ALDH and (iii) alters dopamine homeostasis. It induces selective dopaminergic neuronal damage (iv) in vitro in primary mesencephalic cultures and (v) in vivo in a zebrafish system. (vi) In vitro cell loss was attenuated by reducing DOPAL formation. (vii) In our epidemiology study, higher exposure to benomyl was associated with increased PD risk. This ALDH model for PD etiology may help explain the selective vulnerability of dopaminergic neurons in PD and provide a potential mechanism through which environmental toxicants contribute to PD pathogenesis. PMID:23267077

  16. Alda-1 is an agonist and chemical chaperone for the common human aldehyde dehydrogenase 2 variant

    SciTech Connect

    Perez-Miller, Samantha; Younus, Hina; Vanam, Ram; Chen, Che-Hong; Mochly-Rosen, Daria; Hurley, Thomas D.

    2010-04-19

    In approximately one billion people, a point mutation inactivates a key detoxifying enzyme, aldehyde dehydrogenase (ALDH2). This mitochondrial enzyme metabolizes toxic biogenic and environmental aldehydes, including the endogenously produced 4-hydroxynonenal (4HNE) and the environmental pollutant acrolein, and also bioactivates nitroglycerin. ALDH2 is best known, however, for its role in ethanol metabolism. The accumulation of acetaldehyde following the consumption of even a single alcoholic beverage leads to the Asian alcohol-induced flushing syndrome in ALDH2*2 homozygotes. The ALDH2*2 allele is semidominant, and heterozygotic individuals show a similar but less severe phenotype. We recently identified a small molecule, Alda-1, that activates wild-type ALDH2 and restores near-wild-type activity to ALDH2*2. The structures of Alda-1 bound to ALDH2 and ALDH2*2 reveal how Alda-1 activates the wild-type enzyme and how it restores the activity of ALDH2*2 by acting as a structural chaperone.

  17. Crystal structure of quinone-dependent alcohol dehydrogenase from Pseudogluconobacter saccharoketogenes. A versatile dehydrogenase oxidizing alcohols and carbohydrates.

    PubMed

    Rozeboom, Henriëtte J; Yu, Shukun; Mikkelsen, Rene; Nikolaev, Igor; Mulder, Harm J; Dijkstra, Bauke W

    2015-12-01

    The quinone-dependent alcohol dehydrogenase (PQQ-ADH, E.C. 1.1.5.2) from the Gram-negative bacterium Pseudogluconobacter saccharoketogenes IFO 14464 oxidizes primary alcohols (e.g. ethanol, butanol), secondary alcohols (monosaccharides), as well as aldehydes, polysaccharides, and cyclodextrins. The recombinant protein, expressed in Pichia pastoris, was crystallized, and three-dimensional (3D) structures of the native form, with PQQ and a Ca(2+) ion, and of the enzyme in complex with a Zn(2+) ion and a bound substrate mimic were determined at 1.72 Å and 1.84 Å resolution, respectively. PQQ-ADH displays an eight-bladed β-propeller fold, characteristic of Type I quinone-dependent methanol dehydrogenases. However, three of the four ligands of the Ca(2+) ion differ from those of related dehydrogenases and they come from different parts of the polypeptide chain. These differences result in a more open, easily accessible active site, which explains why PQQ-ADH can oxidize a broad range of substrates. The bound substrate mimic suggests Asp333 as the catalytic base. Remarkably, no vicinal disulfide bridge is present near the PQQ, which in other PQQ-dependent alcohol dehydrogenases has been proposed to be necessary for electron transfer. Instead an associated cytochrome c can approach the PQQ for direct electron transfer.

  18. Fatty aldehyde dehydrogenase multigene family involved in the assimilation of n-alkanes in Yarrowia lipolytica.

    PubMed

    Iwama, Ryo; Kobayashi, Satoshi; Ohta, Akinori; Horiuchi, Hiroyuki; Fukuda, Ryouichi

    2014-11-28

    In the n-alkane assimilating yeast Yarrowia lipolytica, n-alkanes are oxidized to fatty acids via fatty alcohols and fatty aldehydes, after which they are utilized as carbon sources. Here, we show that four genes (HFD1-HFD4) encoding fatty aldehyde dehydrogenases (FALDHs) are involved in the metabolism of n-alkanes in Y. lipolytica. A mutant, in which all of four HFD genes are deleted (Δhfd1-4 strain), could not grow on n-alkanes of 12-18 carbons; however, the expression of one of those HFD genes restored its growth on n-alkanes. Production of Hfd2Ap or Hfd2Bp, translation products of transcript variants generated from HFD2 by the absence or presence of splicing, also supported the growth of the Δhfd1-4 strain on n-alkanes. The FALDH activity in the extract of the wild-type strain was increased when cells were incubated in the presence of n-decane, whereas this elevation in FALDH activity by n-decane was not observed in Δhfd1-4 strain extract. Substantial FALDH activities were detected in the extracts of Escherichia coli cells expressing the HFD genes. Fluorescent microscopic observation suggests that Hfd3p and Hfd2Bp are localized predominantly in the peroxisome, whereas Hfd1p and Hfd2Ap are localized in both the endoplasmic reticulum and the peroxisome. These results suggest that the HFD multigene family is responsible for the oxidation of fatty aldehydes to fatty acids in the metabolism of n-alkanes, and raise the possibility that Hfd proteins have diversified by gene multiplication and RNA splicing to efficiently assimilate or detoxify fatty aldehydes in Y. lipolytica.

  19. Reduced aldehyde dehydrogenase expression in preeclamptic decidual mesenchymal stem/stromal cells is restored by aldehyde dehydrogenase agonists

    PubMed Central

    Kusuma, Gina D.; Abumaree, Mohamed H.; Perkins, Anthony V.; Brennecke, Shaun P.; Kalionis, Bill

    2017-01-01

    High resistance to oxidative stress is a common feature of mesenchymal stem/stromal cells (MSC) and is associated with higher cell survival and ability to respond to oxidative damage. Aldehyde dehydrogenase (ALDH) activity is a candidate “universal” marker for stem cells. ALDH expression was significantly lower in decidual MSC (DMSC) isolated from preeclamptic (PE) patients. ALDH gene knockdown by siRNA transfection was performed to create a cell culture model of the reduced ALDH expression detected in PE-DMSC. We showed that ALDH activity in DMSC is associated with resistance to hydrogen peroxide (H2O2)-induced toxicity. Our data provide evidence that ALDH expression in DMSC is required for cellular resistance to oxidative stress. Furthermore, candidate ALDH activators were screened and two of the compounds were effective in upregulating ALDH expression. This study provides a proof-of-principle that the restoration of ALDH activity in diseased MSC is a rational basis for a therapeutic strategy to improve MSC resistance to cytotoxic damage. PMID:28205523

  20. Yeast Alcohol Dehydrogenase Structure and Catalysis

    PubMed Central

    2015-01-01

    Yeast (Saccharomyces cerevisiae) alcohol dehydrogenase I (ADH1) is the constitutive enzyme that reduces acetaldehyde to ethanol during the fermentation of glucose. ADH1 is a homotetramer of subunits with 347 amino acid residues. A structure for ADH1 was determined by X-ray crystallography at 2.4 Å resolution. The asymmetric unit contains four different subunits, arranged as similar dimers named AB and CD. The unit cell contains two different tetramers made up of “back-to-back” dimers, AB:AB and CD:CD. The A and C subunits in each dimer are structurally similar, with a closed conformation, bound coenzyme, and the oxygen of 2,2,2-trifluoroethanol ligated to the catalytic zinc in the classical tetrahedral coordination with Cys-43, Cys-153, and His-66. In contrast, the B and D subunits have an open conformation with no bound coenzyme, and the catalytic zinc has an alternative, inverted coordination with Cys-43, Cys-153, His-66, and the carboxylate of Glu-67. The asymmetry in the dimeric subunits of the tetramer provides two structures that appear to be relevant for the catalytic mechanism. The alternative coordination of the zinc may represent an intermediate in the mechanism of displacement of the zinc-bound water with alcohol or aldehyde substrates. Substitution of Glu-67 with Gln-67 decreases the catalytic efficiency by 100-fold. Previous studies of structural modeling, evolutionary relationships, substrate specificity, chemical modification, and site-directed mutagenesis are interpreted more fully with the three-dimensional structure. PMID:25157460

  1. Residues that influence coenzyme preference in the aldehyde dehydrogenases.

    PubMed

    González-Segura, Lilian; Riveros-Rosas, Héctor; Julián-Sánchez, Adriana; Muñoz-Clares, Rosario A

    2015-06-05

    To find out the residues that influence the coenzyme preference of aldehyde dehydrogenases (ALDHs), we reviewed, analyzed and correlated data from their known crystal structures and amino-acid sequences with their published kinetic parameters for NAD(P)(+). We found that the conformation of the Rossmann-fold loops participating in binding the adenosine ribose is very conserved among ALDHs, so that coenzyme specificity is mainly determined by the nature of the residue at position 195 (human ALDH2 numbering). Enzymes with glutamate or proline at 195 prefer NAD(+) because the side-chains of these residues electrostatically and/or sterically repel the 2'-phosphate group of NADP(+). But contrary to the conformational rigidity of proline, the conformational flexibility of glutamate may allow NADP(+)-binding in some enzymes by moving the carboxyl group away from the 2'-phosphate group, which is possible if a small neutral residue is located at position 224, and favored if the residue at position 53 interacts with Glu195 in a NADP(+)-compatible conformation. Of the residues found at position 195, only glutamate interacts with the NAD(+)-adenosine ribose; glutamine and histidine cannot since their side-chain points are opposite to the ribose, probably because the absence of the electrostatic attraction by the conserved nearby Lys192, or its electrostatic repulsion, respectively. The shorter side-chains of other residues-aspartate, serine, threonine, alanine, valine, leucine, or isoleucine-are distant from the ribose but leave room for binding the 2'-phosphate group. Generally, enzymes having a residue different from Glu bind NAD(+) with less affinity, but they can also bind NADP(+) even sometimes with higher affinity than NAD(+), as do enzymes containing Thr/Ser/Gln195. Coenzyme preference is a variable feature within many ALDH families, consistent with being mainly dependent on a single residue that apparently has no other structural or functional roles, and therefore can

  2. Targeting Aldehyde Dehydrogenase Cancer Stem Cells in Ovarian Cancer

    PubMed Central

    Landen, Charles N.; Goodman, Blake; Katre, Ashwini A.; Steg, Adam D.; Nick, Alpa M.; Stone, Rebecca L.; Miller, Lance D.; Mejia, Pablo Vivas; Jennings, Nicolas B.; Gershenson, David M.; Bast, Robert C.; Coleman, Robert L.; Lopez-Berestein, Gabriel; Sood, Anil K.

    2010-01-01

    Aldehyde dehydrogenase-1A1 (ALDH1A1) expression characterizes a subpopulation of cells with tumor initiating or cancer stem cell properties in several malignancies. Our goal was to characterize the phenotype of ALDH1A1-positive ovarian cancer cells and examine the biological effects of ALDH1A1 gene silencing. In our analysis of multiple ovarian cancer cell lines, we found that ALDH1A1 expression and activity was significantly higher in taxane and platinum-resistant cell lines. In patient samples, 72.9% of ovarian cancers had ALDH1A1 expression, in whom the percent of ALDH1A1-positive cells correlated negatively with progression-free survival (6.05 v 13.81 months, p<0.035). Subpopulations of A2780cp20 cells with ALDH1A1 activity were isolated for orthotopic tumor initiating studies, where tumorigenicity was approximately 50-fold higher with ALDH1A1-positive cells. Interestingly, tumors derived from ALDH1A1-positive cells gave rise to both ALDH1A1-positive and ALDH1A1-negative populations, but ALDH1A1-negative cells could not generate ALDH1A1-positive cells. In an in vivo orthotopic mouse model of ovarian cancer, ALDH1A1 silencing using nanoliposomal siRNA sensitized both taxane- and platinum-resistant cell lines to chemotherapy, significantly reducing tumor growth in mice compared to chemotherapy alone (a 74–90% reduction, p<0.015). These data demonstrate that the ALDH1A1 subpopulation is associated with chemoresistance and outcome in ovarian cancer patients, and targeting ALDH1A1 sensitizes resistant cells to chemotherapy. ALDH1A1-positive cells have enhanced, but not absolute, tumorigenicity, but do have differentiation capacity lacking in ALDH1A1-negative cells. This enzyme may be important for identification and targeting of chemoresistant cell populations in ovarian cancer. PMID:20889728

  3. Polyvinyl alcohol cross-linked with two aldehydes

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Rieker, L. L.; Hsu, L. C.; Manzo, M. A. (Inventor)

    1982-01-01

    A film forming polyvinyl alcohol resin is admixed, in aqueous solution, with a dialdehyde crosslinking agent which is capable of crosslinking the polyvinyl alcohol resin and a water soluble acid aldehyde containing a reactive aldehyde group capable of reacting with hydroxyl groups in the polyvinyl alcohol resin and an ionizable acid hydrogen atom. The dialdehyde is present in an amount sufficient to react with from 1 to 20% by weight of the theoretical amount required to react with all of the hydroxyl groups of the polyvinyl alcohol. The amount of acid aldehyde is from 1 to 50% by weight, same basis, and is sufficient to reduce the pH of the aqueous admixture to 5 or less. The admixture is then formed into a desired physical shape, such as by casting a sheet or film, and the shaped material is then heated to simultaneously dry and crosslink the article.

  4. Expression of a gene encoding mitochondrial aldehyde dehydrogenase in rice increases under submerged conditions.

    PubMed

    Nakazono, M; Tsuji, H; Li, Y; Saisho, D; Arimura, S; Tsutsumi, N; Hirai, A

    2000-10-01

    It is known that alcoholic fermentation is important for survival of plants under anaerobic conditions. Acetaldehyde, one of the intermediates of alcoholic fermentation, is not only reduced by alcohol dehydrogenase but also can be oxidized by aldehyde dehydrogenase (ALDH). To determine whether ALDH plays a role in anaerobic metabolism in rice (Oryza sativa L. cv Nipponbare), we characterized a cDNA clone encoding mitochondrial ALDH from rice (Aldh2a). Analysis of sub-cellular localization of ALDH2a protein using green fluorescent protein and an in vitro ALDH assay using protein extracts from Escherichia coli cells that overexpressed ALDH2a indicated that ALDH2a functions in the oxidation of acetaldehyde in mitochondria. A Southern-blot analysis indicated that mitochondrial ALDH is encoded by at least two genes in rice. We found that the Aldh2a mRNA was present at high levels in leaves of dark-grown seedlings, mature leaf sheaths, and panicles. It is interesting that expression of the rice Aldh2a gene, unlike the expression of the tobacco (Nicotiana tabacum) Aldh2a gene, was induced in rice seedlings by submergence. Experiments with ruthenium red, which is a blocker of Ca(2+) fluxes in rice as well as maize (Zea mays), suggest that the induction of expression of Adh1 and Pdc1 by low oxygen stress is regulated by elevation of the cytosolic Ca(2+) level. However, the induction of Aldh2a gene expression may not be controlled by the cytosolic Ca(2+) level elevation. A possible involvement of ALDH2a in the submergence tolerance of rice is discussed.

  5. Alcoholism and alcohol drinking habits predicted from alcohol dehydrogenase genes.

    PubMed

    Tolstrup, Janne Schurmann; Nordestgaard, Børge Grønne; Rasmussen, Søren; Tybjaerg-Hansen, Anne; Grønbaek, Morten

    2008-06-01

    Alcohol drinking habits and alcoholism are partly genetically determined. Alcohol is degraded primarily by alcohol dehydrogenase (ADH) wherein genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. It is biologically plausible that these variations may be associated with alcohol drinking habits and alcoholism. By genotyping 9080 white men and women from the general population, we found that men and women with ADH1B slow vs fast alcohol degradation drank more alcohol and had a higher risk of everyday drinking, heavy drinking, excessive drinking and of alcoholism. For example, the weekly alcohol intake was 9.8 drinks (95% confidence interval (CI): 9.1-11) among men with the ADH1B.1/1 genotype compared to 7.5 drinks (95% CI: 6.4-8.7) among men with the ADH1B.1/2 genotype, and the odds ratio (OR) for heavy drinking was 3.1 (95% CI: 1.7-5.7) among men with the ADH1B.1/1 genotype compared to men with the ADH1B.1/2 genotype. Furthermore, individuals with ADH1C slow vs fast alcohol degradation had a higher risk of heavy and excessive drinking. For example, the OR for heavy drinking was 1.4 (95% CI: 1.1-1.8) among men with the ADH1C.1/2 genotype and 1.4 (95% CI: 1.0-1.9) among men with the ADH1B.2/2 genotype, compared with men with the ADH1C.1/1 genotype. Results for ADH1B and ADH1C genotypes among men and women were similar. Finally, because slow ADH1B alcohol degradation is found in more than 90% of the white population compared to less than 10% of East Asians, the population attributable risk of heavy drinking and alcoholism by ADH1B.1/1 genotype was 67 and 62% among the white population compared with 9 and 24% among the East Asian population.

  6. Fundamental molecular differences between alcohol dehydrogenase classes.

    PubMed Central

    Danielsson, O; Atrian, S; Luque, T; Hjelmqvist, L; Gonzàlez-Duarte, R; Jörnvall, H

    1994-01-01

    Two types of alcohol dehydrogenase in separate protein families are the "medium-chain" zinc enzymes (including the classical liver and yeast forms) and the "short-chain" enzymes (including the insect form). Although the medium-chain family has been characterized in prokaryotes and many eukaryotes (fungi, plants, cephalopods, and vertebrates), insects have seemed to possess only the short-chain enzyme. We have now also characterized a medium-chain alcohol dehydrogenase in Drosophila. The enzyme is identical to insect octanol dehydrogenase. It is a typical class III alcohol dehydrogenase, similar to the corresponding human form (70% residue identity), with mostly the same residues involved in substrate and coenzyme interactions. Changes that do occur are conservative, but Phe-51 is of functional interest in relation to decreased coenzyme binding and increased overall activity. Extra residues versus the human enzyme near position 250 affect the coenzyme-binding domain. Enzymatic properties are similar--i.e., very low activity toward ethanol (Km beyond measurement) and high selectivity for formaldehyde/glutathione (S-hydroxymethylglutathione; kcat/Km = 160,000 min-1.mM-1). Between the present class III and the ethanol-active class I enzymes, however, patterns of variability differ greatly, highlighting fundamentally separate molecular properties of these two alcohol dehydrogenases, with class III resembling enzymes in general and class I showing high variation. The gene coding for the Drosophila class III enzyme produces an mRNA of about 1.36 kb that is present at all developmental stages of the fly, compatible with the constitutive nature of the vertebrate enzyme. Taken together, the results bridge a previously apparent gap in the distribution of medium-chain alcohol dehydrogenases and establish a strictly conserved class III enzyme, consistent with an important role for this enzyme in cellular metabolism. Images PMID:8197167

  7. Aldehydic load and aldehyde dehydrogenase 2 profile during the progression of post-myocardial infarction cardiomyopathy: benefits of Alda-1

    PubMed Central

    Gomes, Katia M.S.; Bechara, Luiz R.G.; Lima, Vanessa M.; Ribeiro, Márcio A.C.; Campos, Juliane C.; Dourado, Paulo M.; Kowaltowski, Alicia J.; Mochly-Rosen, Daria; Ferreira, Julio C.B.

    2015-01-01

    Background/Objectives We previously demonstrated that reducing cardiac aldehydic load by aldehyde dehydrogenase 2 (ALDH2), a mitochondrial enzyme responsible for metabolizing the major lipid peroxidation product, protects against acute ischemia/reperfusion injury and chronic heart failure. However, time-dependent changes in ALDH2 profile, aldehydic load and mitochondrial bioenergetics during progression of post-myocardial infarction (post-MI) cardiomyopathy is unknown and should be established to determine the optimal time window for drug treatment. Methods Here we characterized cardiac ALDH2 activity and expression, lipid peroxidation, 4-hydroxy-2-nonenal (4-HNE) adduct formation, glutathione pool and mitochondrial energy metabolism and H2O2 release during the 4 weeks after permanent left anterior descending (LAD) coronary artery occlusion in rats. Results We observed a sustained disruption of cardiac mitochondrial function during the progression of post-MI cardiomyopathy, characterized by >50% reduced mitochondrial respiratory control ratios and up to 2 fold increase in H2O2 release. Mitochondrial dysfunction was accompanied by accumulation of cardiac and circulating lipid peroxides and 4-HNE protein adducts and down-regulation of electron transport chain complexes I and V. Moreover, increased aldehydic load was associated with a 90% reduction in cardiac ALDH2 activity and increased glutathione pool. Further supporting an ALDH2 mechanism, sustained Alda-1 treatment (starting 24hrs after permanent LAD occlusion surgery) prevented aldehydic overload, mitochondrial dysfunction and improved ventricular function in post-MI cardiomyopathy rats. Conclusion Taken together, our findings demonstrate a disrupted mitochondrial metabolism along with an insufficient cardiac ALDH2-mediated aldehyde clearance during the progression of ventricular dysfunction, suggesting a potential therapeutic value of ALDH2 activators during the progression of post-myocardial infarction

  8. Catalytic Amination of Alcohols, Aldehydes, and Ketones

    NASA Astrophysics Data System (ADS)

    Klyuev, M. V.; Khidekel', M. L.

    1980-01-01

    Data on the catalytic amination of alcohols and carbonyl compounds are examined, the catalysts for these processes are described, and the problems of their effectiveness, selectivity, and stability are discussed. The possible mechanisms of the reactions indicated are presented. The bibliography includes 266 references.

  9. Neurodegeneration and motor dysfunction in mice lacking cytosolic and mitochondrial aldehyde dehydrogenases: implications for Parkinson's disease.

    PubMed

    Wey, Margaret Chia-Ying; Fernandez, Elizabeth; Martinez, Paul Anthony; Sullivan, Patricia; Goldstein, David S; Strong, Randy

    2012-01-01

    Previous studies have reported elevated levels of biogenic aldehydes in the brains of patients with Parkinson's disease (PD). In the brain, aldehydes are primarily detoxified by aldehyde dehydrogenases (ALDH). Reduced ALDH1 expression in surviving midbrain dopamine neurons has been reported in brains of patients who died with PD. In addition, impaired complex I activity, which is well documented in PD, reduces the availability of the NAD(+) co-factor required by multiple ALDH isoforms to catalyze the removal of biogenic aldehydes. We hypothesized that chronically decreased function of multiple aldehyde dehydrogenases consequent to exposure to environmental toxins and/or reduced ALDH expression, plays an important role in the pathophysiology of PD. To address this hypothesis, we generated mice null for Aldh1a1 and Aldh2, the two isoforms known to be expressed in substantia nigra dopamine neurons. Aldh1a1(-/-)×Aldh2(-/-) mice exhibited age-dependent deficits in motor performance assessed by gait analysis and by performance on an accelerating rotarod. Intraperitoneal administration of L-DOPA plus benserazide alleviated the deficits in motor performance. We observed a significant loss of neurons immunoreactive for tyrosine hydroxylase (TH) in the substantia nigra and a reduction of dopamine and metabolites in the striatum of Aldh1a1(-/-)×Aldh2(-/-) mice. We also observed significant increases in biogenic aldehydes reported to be neurotoxic, including 4-hydroxynonenal (4-HNE) and the aldehyde intermediate of dopamine metabolism, 3,4-dihydroxyphenylacetaldehyde (DOPAL). These results support the hypothesis that impaired detoxification of biogenic aldehydes may be important in the pathophysiology of PD and suggest that Aldh1a1(-/-)×Aldh2(-/-) mice may be a useful animal model of PD.

  10. Structural and functional analysis of betaine aldehyde dehydrogenase from Staphylococcus aureus

    PubMed Central

    Halavaty, Andrei S.; Rich, Rebecca L.; Chen, Chao; Joo, Jeong Chan; Minasov, George; Dubrovska, Ievgeniia; Winsor, James R.; Myszka, David G.; Duban, Mark; Shuvalova, Ludmilla; Yakunin, Alexander F.; Anderson, Wayne F.

    2015-01-01

    When exposed to high osmolarity, methicillin-resistant Staphylococcus aureus (MRSA) restores its growth and establishes a new steady state by accumulating the osmoprotectant metabolite betaine. Effective osmoregulation has also been implicated in the acquirement of a profound antibiotic resistance by MRSA. Betaine can be obtained from the bacterial habitat or produced intracellularly from choline via the toxic betaine aldehyde (BA) employing the choline dehydrogenase and betaine aldehyde dehydrogenase (BADH) enzymes. Here, it is shown that the putative betaine aldehyde dehydrogenase SACOL2628 from the early MRSA isolate COL (SaBADH) utilizes betaine aldehyde as the primary substrate and nicotinamide adenine dinucleotide (NAD+) as the cofactor. Surface plasmon resonance experiments revealed that the affinity of NAD+, NADH and BA for SaBADH is affected by temperature, pH and buffer composition. Five crystal structures of the wild type and three structures of the Gly234Ser mutant of SaBADH in the apo and holo forms provide details of the molecular mechanisms of activity and substrate specificity/inhibition of this enzyme. PMID:25945581

  11. Structural and functional analysis of betaine aldehyde dehydrogenase from Staphylococcus aureus.

    PubMed

    Halavaty, Andrei S; Rich, Rebecca L; Chen, Chao; Joo, Jeong Chan; Minasov, George; Dubrovska, Ievgeniia; Winsor, James R; Myszka, David G; Duban, Mark; Shuvalova, Ludmilla; Yakunin, Alexander F; Anderson, Wayne F

    2015-05-01

    When exposed to high osmolarity, methicillin-resistant Staphylococcus aureus (MRSA) restores its growth and establishes a new steady state by accumulating the osmoprotectant metabolite betaine. Effective osmoregulation has also been implicated in the acquirement of a profound antibiotic resistance by MRSA. Betaine can be obtained from the bacterial habitat or produced intracellularly from choline via the toxic betaine aldehyde (BA) employing the choline dehydrogenase and betaine aldehyde dehydrogenase (BADH) enzymes. Here, it is shown that the putative betaine aldehyde dehydrogenase SACOL2628 from the early MRSA isolate COL (SaBADH) utilizes betaine aldehyde as the primary substrate and nicotinamide adenine dinucleotide (NAD(+)) as the cofactor. Surface plasmon resonance experiments revealed that the affinity of NAD(+), NADH and BA for SaBADH is affected by temperature, pH and buffer composition. Five crystal structures of the wild type and three structures of the Gly234Ser mutant of SaBADH in the apo and holo forms provide details of the molecular mechanisms of activity and substrate specificity/inhibition of this enzyme.

  12. Aldehyde Dehydrogenases in Arabidopsis thaliana: Biochemical Requirements, Metabolic Pathways, and Functional Analysis.

    PubMed

    Stiti, Naim; Missihoun, Tagnon D; Kotchoni, Simeon O; Kirch, Hans-Hubert; Bartels, Dorothea

    2011-01-01

    Aldehyde dehydrogenases (ALDHs) are a family of enzymes which catalyze the oxidation of reactive aldehydes to their corresponding carboxylic acids. Here we summarize molecular genetic and biochemical analyses of selected ArabidopsisALDH genes. Aldehyde molecules are very reactive and are involved in many metabolic processes but when they accumulate in excess they become toxic. Thus activity of aldehyde dehydrogenases is important in regulating the homeostasis of aldehydes. Overexpression of some ALDH genes demonstrated an improved abiotic stress tolerance. Despite the fact that several reports are available describing a role for specific ALDHs, their precise physiological roles are often still unclear. Therefore a number of genetic and biochemical tools have been generated to address the function with an emphasis on stress-related ALDHs. ALDHs exert their functions in different cellular compartments and often in a developmental and tissue specific manner. To investigate substrate specificity, catalytic efficiencies have been determined using a range of substrates varying in carbon chain length and degree of carbon oxidation. Mutational approaches identified amino acid residues critical for coenzyme usage and enzyme activities.

  13. Interstellar Aldehydes and their corresponding Reduced Alcohols: Interstellar Propanol?

    NASA Astrophysics Data System (ADS)

    Etim, Emmanuel; Chakrabarti, Sandip Kumar; Das, Ankan; Gorai, Prasanta; Arunan, Elangannan

    2016-07-01

    There is a well-defined trend of aldehydes and their corresponding reduced alcohols among the known interstellar molecules; methanal (CH_2O) and methanol (CH_3OH); ethenone (C_2H_2O) and vinyl alcohol (CH_2CHOH); ethanal (C_2H_4O) and ethanol(C_2H_5OH); glycolaldehyde (C_2H_4O_2) and ethylene glycol(C_2H_6O_2). The reduced alcohol of propanal (CH_3CH_2CHO) which is propanol (CH_3CH_2CH_2OH) has not yet been observed but its isomer; ethyl methyl ether (CH_3CH_2OCH_3) is a known interstellar molecule. In this article, different studies are carried out in investigating the trend between aldehydes and their corresponding reduced alcohols and the deviation from the trend. Kinetically and with respect to the formation route, alcohols could have been produced from their corresponding reduced aldehydes via two successive hydrogen additions. This is plausible because of (a) the unquestionable high abundance of hydrogen, (b) presence of energy sources within some of the molecular clouds and (c) the ease at which successive hydrogen addition reaction occurs. In terms of stability, the observed alcohols are thermodynamically favorable as compared to their isomers. Regarding the formation process, the hydrogen addition reactions are believed to proceed on the surface of the interstellar grains which leads to the effect of interstellar hydrogen bonding. From the studies, propanol and propan-2-ol are found to be more strongly attached to the surface of the interstellar dust grains which affects its overall gas phase abundance as compared to its isomer ethyl methyl ether which has been observed.

  14. Aldehyde Dehydrogenase Inhibitors: a Comprehensive Review of the Pharmacology, Mechanism of Action, Substrate Specificity, and Clinical Application

    PubMed Central

    Koppaka, Vindhya; Thompson, David C.; Chen, Ying; Ellermann, Manuel; Nicolaou, Kyriacos C.; Juvonen, Risto O.; Petersen, Dennis; Deitrich, Richard A.; Hurley, Thomas D.

    2012-01-01

    Aldehyde dehydrogenases (ALDHs) belong to a superfamily of enzymes that play a key role in the metabolism of aldehydes of both endogenous and exogenous derivation. The human ALDH superfamily comprises 19 isozymes that possess important physiological and toxicological functions. The ALDH1A subfamily plays a pivotal role in embryogenesis and development by mediating retinoic acid signaling. ALDH2, as a key enzyme that oxidizes acetaldehyde, is crucial for alcohol metabolism. ALDH1A1 and ALDH3A1 are lens and corneal crystallins, which are essential elements of the cellular defense mechanism against ultraviolet radiation-induced damage in ocular tissues. Many ALDH isozymes are important in oxidizing reactive aldehydes derived from lipid peroxidation and thereby help maintain cellular homeostasis. Increased expression and activity of ALDH isozymes have been reported in various human cancers and are associated with cancer relapse. As a direct consequence of their significant physiological and toxicological roles, inhibitors of the ALDH enzymes have been developed to treat human diseases. This review summarizes known ALDH inhibitors, their mechanisms of action, isozyme selectivity, potency, and clinical uses. The purpose of this review is to 1) establish the current status of pharmacological inhibition of the ALDHs, 2) provide a rationale for the continued development of ALDH isozyme-selective inhibitors, and 3) identify the challenges and potential therapeutic rewards associated with the creation of such agents. PMID:22544865

  15. Aldehyde dehydrogenase 3A1 associates with prostate tumorigenesis

    PubMed Central

    Yan, J; De Melo, J; Cutz, J-C; Aziz, T; Tang, D

    2014-01-01

    Background: Accumulating evidence demonstrates high levels of aldehyde dehydrogense (ALDH) activity in human cancer types, in part, because of its association with cancer stem cells. Whereas ALDH1A1 and ALDH7A1 isoforms were reported to associate with prostate tumorigenesis, whether other ALDH isoforms are associated with prostate cancer (PC) remains unclear. Methods: ALDH3A1 expression was analysed in various PC cell lines. Xenograft tumours and 54 primary and metastatic PC tumours were stained using immunohistochemistry for ALDH3A1 expression. Results: In comparison with the non-stem counterparts, a robust upregulation of ALDH3A1 was observed in DU145-derived PC stem cells (PCSCs). As DU145 PCSCs produced xenograft tumours with more advanced features compared with those derived from DU145 cells, higher levels of ALDH3A1 were detected in the former; a dramatic elevation of ALDH3A1 occurred in DU145 cell-derived lung metastasis compared with local xenograft tumours. Furthermore, while ALDH3A1 was not observed in prostate glands, ALDH3A1 was clearly present in PIN, and further increased in carcinomas. In comparison with the paired local carcinomas, ALDH3A1 was upregulated in lymph node metastatic tumours; the presence of ALDH3A1 in bone metastatic PC was also demonstrated. Conclusions: We report here the association of ALDH3A1 with PC progression. PMID:24762960

  16. Fluorescence lifetime analysis and effect of magnesium ions on binding of NADH to human aldehyde dehydrogenase 1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aldehyde dehydrogenase 1 (ALDH1) catalyzes oxidation of toxic aldehydes to carboxylic acids. Physiologic levels of Mg2+ ions influence ALDH1 activity in part by increasing NADH binding affinity to the enzyme thus reducing activity. By using time-resolved fluorescence spectroscopy, we have resolved t...

  17. A specific affinity reagent to distinguish aldehyde dehydrogenases and oxidases. Enzymes catalyzing aldehyde oxidation in an adult moth

    SciTech Connect

    Tasayco, M.L.; Prestwich, G.D. )

    1990-02-25

    Aldehyde dehydrogenase (ALDH) and oxidase (AO) enzymes from the tissue extracts of male and female tobacco budworm moth (Heliothis virescens) were identified after electrophoretic protein separation. AO activity was visualized using formazan- or horseradish peroxidase-mediated staining coupled to the AO-catalyzed oxidation of benzaldehyde. A set of six soluble AO enzymes with isoelectric points from pI 4.6 to 5.3 were detected primarily in the antennal extracts. Partially purified antennal AO enzymes also oxidized both (Z)-9-tetradecenal and (Z)-11-hexadecenal, the two major pheromone components of this moth. ALDH activity was detected using a tritium-labeled affinity reagent based on a known irreversible inhibitor of this enzyme. This labeled vinyl ketone, (3H)(Z)-1,11-hexadecadien-3-one, was synthesized and used to covalently modify the soluble ALDH enzymes from tissue extracts. Molecular subunits of potential ALDH enzymes were visualized in the fluorescence autoradiograms of sodium dodecyl sulfate-polyacrylamide gel electrophoresis-separated proteins of the antenna, head, and leg tissues. Covalent modification of these protein subunits decreased specifically in the presence of excess pheromone aldehyde or benzaldehyde. Labeled vinyl ketones are thus novel tools for the identification of molecular subunits of ALDH enzymes.

  18. Purification of acetaldehyde dehydrogenase and alcohol dehydrogenases from Thermoanaerobacter ethanolicus 39E and characterization of the secondary-alcohol dehydrogenase (2 degrees Adh) as a bifunctional alcohol dehydrogenase--acetyl-CoA reductive thioesterase.

    PubMed

    Burdette, D; Zeikus, J G

    1994-08-15

    The purification and characterization of three enzymes involved in ethanol formation from acetyl-CoA in Thermoanaerobacter ethanolicus 39E (formerly Clostridium thermohydrosulfuricum 39E) is described. The secondary-alcohol dehydrogenase (2 degrees Adh) was determined to be a homotetramer of 40 kDa subunits (SDS/PAGE) with a molecular mass of 160 kDa. The 2 degrees Adh had a lower catalytic efficiency for the oxidation of 1 degree alcohols, including ethanol, than for the oxidation of secondary (2 degrees) alcohols or the reduction of ketones or aldehydes. This enzyme possesses a significant acetyl-CoA reductive thioesterase activity as determined by NADPH oxidation, thiol formation and ethanol production. The primary-alcohol dehydrogenase (1 degree Adh) was determined to be a homotetramer of 41.5 kDa (SDS/PAGE) subunits with a molecular mass of 170 kDa. The 1 degree Adh used both NAD(H) and NADP(H) and displayed higher catalytic efficiencies for NADP(+)-dependent ethanol oxidation and NADH-dependent acetaldehyde (identical to ethanal) reduction than for NADPH-dependent acetaldehyde reduction or NAD(+)-dependent ethanol oxidation. The NAD(H)-linked acetaldehyde dehydrogenase was a homotetramer (360 kDa) of identical subunits (100 kDa) that readily catalysed thioester cleavage and condensation. The 1 degree Adh was expressed at 5-20% of the level of the 2 degrees Adh throughout the growth cycle on glucose. The results suggest that the 2 degrees Adh primarily functions in ethanol production from acetyl-CoA and acetaldehyde, whereas the 1 degree Adh functions in ethanol consumption for nicotinamide-cofactor recycling.

  19. Purification of acetaldehyde dehydrogenase and alcohol dehydrogenases from Thermoanaerobacter ethanolicus 39E and characterization of the secondary-alcohol dehydrogenase (2 degrees Adh) as a bifunctional alcohol dehydrogenase--acetyl-CoA reductive thioesterase.

    PubMed Central

    Burdette, D; Zeikus, J G

    1994-01-01

    The purification and characterization of three enzymes involved in ethanol formation from acetyl-CoA in Thermoanaerobacter ethanolicus 39E (formerly Clostridium thermohydrosulfuricum 39E) is described. The secondary-alcohol dehydrogenase (2 degrees Adh) was determined to be a homotetramer of 40 kDa subunits (SDS/PAGE) with a molecular mass of 160 kDa. The 2 degrees Adh had a lower catalytic efficiency for the oxidation of 1 degree alcohols, including ethanol, than for the oxidation of secondary (2 degrees) alcohols or the reduction of ketones or aldehydes. This enzyme possesses a significant acetyl-CoA reductive thioesterase activity as determined by NADPH oxidation, thiol formation and ethanol production. The primary-alcohol dehydrogenase (1 degree Adh) was determined to be a homotetramer of 41.5 kDa (SDS/PAGE) subunits with a molecular mass of 170 kDa. The 1 degree Adh used both NAD(H) and NADP(H) and displayed higher catalytic efficiencies for NADP(+)-dependent ethanol oxidation and NADH-dependent acetaldehyde (identical to ethanal) reduction than for NADPH-dependent acetaldehyde reduction or NAD(+)-dependent ethanol oxidation. The NAD(H)-linked acetaldehyde dehydrogenase was a homotetramer (360 kDa) of identical subunits (100 kDa) that readily catalysed thioester cleavage and condensation. The 1 degree Adh was expressed at 5-20% of the level of the 2 degrees Adh throughout the growth cycle on glucose. The results suggest that the 2 degrees Adh primarily functions in ethanol production from acetyl-CoA and acetaldehyde, whereas the 1 degree Adh functions in ethanol consumption for nicotinamide-cofactor recycling. Images Figure 1 PMID:8068002

  20. Aldehyde dehydrogenases of the rat colon: comparison with other tissues of the alimentary tract and the liver.

    PubMed

    Koivisto, T; Salaspuro, M

    1996-05-01

    Intracolonic bacteria have previously been shown to produce substantial amounts of acetaldehyde during ethanol oxidation, and it has been suggested that this acetaldehyde might be associated with alcohol-related colonic disorders, as well as other alcohol-induced organ injuries. The capacity of colonic mucosa to remove this bacterial acetaldehyde by aldehyde dehydrogenase (ALDH) is, however, poorly known. We therefore measured ALDH activities and determined ALDH isoenzyme profiles from different subcellular fractions of rat colonic mucosa. For comparison, hepatic, gastric, and small intestinal samples were studied similarly. Alcohol dehydrogenase (ADH) activities were also measured from all of these tissues. Rat colonic mucosa was found to possess detectable amounts of ALDH activity with both micromolar and millimolar acetaldehyde concentrations and in all subcellular fractions. The ALDH activities of colonic mucosa were, however, generally low when compared with the liver and stomach, and they also tended to be lower than in small intestine. Mitochondrial low K(m) ALDH2 and cytosolic ALDH with low K(m) for acetaldehyde were expressed in the colonic mucosa, whereas some cytosolic high K(m) isoenzymes found in the small intestine and stomach were not detectable in colonic samples. Cytosolic ADH activity corresponded well to ALDH activity in different tissues: in colonic mucosa, it was approximately 6 times lower than in the liver and about one-half of gastric ADH activity. ALDH activity of the colonic mucosa should, thus, be sufficient for the removal of acetaldehyde produced by colonic mucosal ADH during ethanol oxidation. It may, however, be insufficient for the removal of the acetaldehyde produced by intracolonic bacteria. This may lead to the accumulation of acetaldehyde in the colon and colonic mucosa after ingestion of ethanol that might, at least after chronic heavy alcohol consumption, contribute to the development of alcohol-related colonic morbidity

  1. Thermostable alcohol dehydrogenase from Thermococcus kodakarensis KOD1 for enantioselective bioconversion of aromatic secondary alcohols.

    PubMed

    Wu, Xi; Zhang, Chong; Orita, Izumi; Imanaka, Tadayuki; Fukui, Toshiaki; Xing, Xin-Hui

    2013-04-01

    A novel thermostable alcohol dehydrogenase (ADH) showing activity toward aromatic secondary alcohols was identified from the hyperthermophilic archaeon Thermococcus kodakarensis KOD1 (TkADH). The gene, tk0845, which encodes an aldo-keto reductase, was heterologously expressed in Escherichia coli. The enzyme was found to be a monomer with a molecular mass of 31 kDa. It was highly thermostable with an optimal temperature of 90°C and a half-life of 4.5 h at 95°C. The apparent K(m) values for the cofactors NAD(P)(+) and NADPH were similar within a range of 66 to 127 μM. TkADH preferred secondary alcohols and accepted various ketones and aldehydes as substrates. Interestingly, the enzyme could oxidize 1-phenylethanol and its derivatives having substituents at the meta and para positions with high enantioselectivity, yielding the corresponding (R)-alcohols with optical purities of greater than 99.8% enantiomeric excess (ee). TkADH could also reduce 2,2,2-trifluoroacetophenone to (R)-2,2,2-trifluoro-1-phenylethanol with high enantioselectivity (>99.6% ee). Furthermore, the enzyme showed high resistance to organic solvents and was particularly highly active in the presence of H2O-20% 2-propanol and H2O-50% n-hexane or n-octane. This ADH is expected to be a useful tool for the production of aromatic chiral alcohols.

  2. Thermostable Alcohol Dehydrogenase from Thermococcus kodakarensis KOD1 for Enantioselective Bioconversion of Aromatic Secondary Alcohols

    PubMed Central

    Wu, Xi; Zhang, Chong; Orita, Izumi; Imanaka, Tadayuki

    2013-01-01

    A novel thermostable alcohol dehydrogenase (ADH) showing activity toward aromatic secondary alcohols was identified from the hyperthermophilic archaeon Thermococcus kodakarensis KOD1 (TkADH). The gene, tk0845, which encodes an aldo-keto reductase, was heterologously expressed in Escherichia coli. The enzyme was found to be a monomer with a molecular mass of 31 kDa. It was highly thermostable with an optimal temperature of 90°C and a half-life of 4.5 h at 95°C. The apparent Km values for the cofactors NAD(P)+ and NADPH were similar within a range of 66 to 127 μM. TkADH preferred secondary alcohols and accepted various ketones and aldehydes as substrates. Interestingly, the enzyme could oxidize 1-phenylethanol and its derivatives having substituents at the meta and para positions with high enantioselectivity, yielding the corresponding (R)-alcohols with optical purities of greater than 99.8% enantiomeric excess (ee). TkADH could also reduce 2,2,2-trifluoroacetophenone to (R)-2,2,2-trifluoro-1-phenylethanol with high enantioselectivity (>99.6% ee). Furthermore, the enzyme showed high resistance to organic solvents and was particularly highly active in the presence of H2O–20% 2-propanol and H2O–50% n-hexane or n-octane. This ADH is expected to be a useful tool for the production of aromatic chiral alcohols. PMID:23354700

  3. Metabolic engineering of glycine betaine synthesis: plant betaine aldehyde dehydrogenases lacking typical transit peptides are targeted to tobacco chloroplasts where they confer betaine aldehyde resistance.

    PubMed

    Rathinasabapathi, B; McCue, K F; Gage, D A; Hanson, A D

    1994-01-01

    Certain higher plants synthesize and accumulate glycine betaine, a compound with osmoprotectant properties. Biosynthesis of glycine betaine proceeds via the pathway choline-->betaine aldehyde-->glycine betaine. Plants such as tobacco (Nicotiana tabacum L.) which do not accumulate glycine betaine lack the enzymes catalyzing both reactions. As a step towards engineering glycine betaine accumulation into a non-accumulator, spinach and sugar beet complementary-DNA sequences encoding the second enzyme of glycine-betaine synthesis (betaine aldehyde dehydrogenase, BADH, EC 1.2.1.8) were expressed in tobacco. Despite the absence of a typical transit peptide, BADH was targeted to the chloroplast in leaves of transgenic plants. Levels of extractable BADH were comparable to those in spinach and sugar beet, and the molecular weight, isoenzyme profile and Km for betaine aldehyde of the BADH enzymes from transgenic plants were the same as for native spinach or sugar beet BADH. Transgenic plants converted supplied betaine aldehyde to glycine betaine at high rates, demonstrating that they were able to transport betaine aldehyde across both the plasma membrane and the chloroplast envelope. The glycine betaine produced in this way was not further metabolized and reached concentrations similar to those in plants which accumulate glycine betaine naturally. Betaine aldehyde was toxic to non-transformed tobacco tissues whereas transgenic tissues were resistant due to detoxification of betaine aldehyde to glycine betaine. Betaine aldehyded ehydrogenase is therefore of interest as a potential selectable marker, as well as in the metabolic engineering of osmoprotectant biosynthesis.

  4. Aldehyde dehydrogenase-2 regulates nociception in rodent models of acute inflammatory pain

    PubMed Central

    Zambelli, Vanessa O.; Gross, Eric R.; Chen, Che-Hong; Gutierrez, Vanessa P.; Cury, Yara; Mochly-Rosen, Daria

    2014-01-01

    Exogenous aldehydes can cause pain in animal models, suggesting that aldehyde dehydrogenase 2 (ALDH2), which metabolizes many aldehydes, may regulate nociception. To test this hypothesis, we generated a knock-in mouse with an inactivating point mutation in ALDH2 (ALDH2*2), which is also present in human ALDH2 of ~540 million East Asians. The ALDH2*1/*2 heterozygotic mice exhibited a larger response to painful stimuli than their wild-type littermates, and this heightened nociception was inhibited by an ALDH2-selective activator (Alda-1). No effect on inflammation per se was observed. Using a rat model, we then showed that nociception tightly correlated with ALDH activity (R2=0.90) and that reduced nociception was associated with less early growth response protein 1 (EGR1) in the spinal cord and less reactive aldehyde accumulation at the insult site (including acetaldehyde and 4-hydroxynonenal). Further, acetaldehyde and formalin-induced nociceptive behavior was greater in the ALDH2*1/*2 mice than wild-type mice. Finally, Alda-1 treatment was also beneficial when given even after the inflammatory agent was administered. Our data in rodent models suggest that the mitochondrial enzyme ALDH2 regulates nociception and could serve as a molecular target for pain control, with ALDH2 activators, such as Alda-1, as potential non-narcotic cardiac-safe analgesics. Furthermore, our results suggest a possible genetic basis for East Asians’ apparent lower pain tolerance. PMID:25163478

  5. Aldehyde dehydrogenase-2 regulates nociception in rodent models of acute inflammatory pain.

    PubMed

    Zambelli, Vanessa O; Gross, Eric R; Chen, Che-Hong; Gutierrez, Vanessa P; Cury, Yara; Mochly-Rosen, Daria

    2014-08-27

    Exogenous aldehydes can cause pain in animal models, suggesting that aldehyde dehydrogenase-2 (ALDH2), which metabolizes many aldehydes, may regulate nociception. To test this hypothesis, we generated a knock-in mouse with an inactivating point mutation in ALDH2 (ALDH2*2), which is also present in human ALDH2 of ~540 million East Asians. The ALDH2*1/*2 heterozygotic mice exhibited a larger response to painful stimuli than their wild-type littermates, and this heightened nociception was inhibited by an ALDH2-selective activator (Alda-1). No effect on inflammation per se was observed. Using a rat model, we then showed that nociception tightly correlated with ALDH activity (R(2) = 0.90) and that reduced nociception was associated with less early growth response protein 1 (EGR1) in the spinal cord and less reactive aldehyde accumulation at the insult site (including acetaldehyde and 4-hydroxynonenal). Further, acetaldehyde- and formalin-induced nociceptive behavior was greater in the ALDH2*1/*2 mice than in the wild-type mice. Finally, Alda-1 treatment was even beneficial when given after the inflammatory agent was administered. Our data in rodent models suggest that the mitochondrial enzyme ALDH2 regulates nociception and could serve as a molecular target for pain control, with ALDH2 activators, such as Alda-1, as potential non-narcotic, cardiac-safe analgesics. Furthermore, our results suggest a possible genetic basis for East Asians' apparent lower pain tolerance.

  6. Rice aldehyde dehydrogenase7 is needed for seed maturation and viability.

    PubMed

    Shin, Jun-Hye; Kim, Sung-Ryul; An, Gynheung

    2009-02-01

    Aldehyde dehydrogenases (ALDHs) catalyze the irreversible oxidation of a wide range of reactive aldehydes to their corresponding carboxylic acids. Although the proteins have been studied from various organisms and at different growth stages, their roles in seed development have not been well elucidated. We obtained T-DNA insertional mutants in OsALDH7, which is remarkably inducible by oxidative and abiotic stresses. Interestingly, endosperms from the osaldh7 null mutants accumulated brown pigments during desiccation and storage. Extracts from the mutant seeds showed a maximum absorbance peak at 360 nm, the wavelength that melanoidin absorbs. Under UV light, those extracts also exhibited much stronger fluorescence than the wild type, suggesting that the pigments are melanoidin. These pigments started to accumulate in the late seed developmental stage, the time when OsALDH7 expression began to increase significantly. Purified OsALDH7 protein showed enzyme activities to malondialdehyde, acetaldehyde, and glyceraldehyde. These results suggest that OsALDH7 is involved in removing various aldehydes formed by oxidative stress during seed desiccation. The mutant seeds were more sensitive to our accelerated aging treatment and accumulated more malondialdehyde than the wild type. These data imply that OsALDH7 plays an important role in maintaining seed viability by detoxifying the aldehydes generated by lipid peroxidation.

  7. NADP-Dependent Aldehyde Dehydrogenase from Archaeon Pyrobaculum sp.1860: Structural and Functional Features

    PubMed Central

    Petrova, Tatiana E.; Artemova, Natalia V.; Boyko, Konstantin M.; Shabalin, Ivan G.; Rakitina, Tatiana V.; Polyakov, Konstantin M.; Popov, Vladimir O.

    2016-01-01

    We present the functional and structural characterization of the first archaeal thermostable NADP-dependent aldehyde dehydrogenase AlDHPyr1147. In vitro, AlDHPyr1147 catalyzes the irreversible oxidation of short aliphatic aldehydes at 60–85°С, and the affinity of AlDHPyr1147 to the NADP+ at 60°С is comparable to that for mesophilic analogues at 25°С. We determined the structures of the apo form of AlDHPyr1147 (3.04 Å resolution), three binary complexes with the coenzyme (1.90, 2.06, and 2.19 Å), and the ternary complex with the coenzyme and isobutyraldehyde as a substrate (2.66 Å). The nicotinamide moiety of the coenzyme is disordered in two binary complexes, while it is ordered in the ternary complex, as well as in the binary complex obtained after additional soaking with the substrate. AlDHPyr1147 structures demonstrate the strengthening of the dimeric contact (as compared with the analogues) and the concerted conformational flexibility of catalytic Cys287 and Glu253, as well as Leu254 and the nicotinamide moiety of the coenzyme. A comparison of the active sites of AlDHPyr1147 and dehydrogenases characterized earlier suggests that proton relay systems, which were previously proposed for dehydrogenases of this family, are blocked in AlDHPyr1147, and the proton release in the latter can occur through the substrate channel. PMID:27956891

  8. Kinetic and mechanistic studies of methylated liver alcohol dehydrogenase.

    PubMed Central

    Tsai, C S

    1978-01-01

    Reductive methylation of lysine residues activates liver alcohol dehydrogenase in the oxidation of primary alcohols, but decreases the activity of the enzyme towards secondary alcohols. The modification also desensitizes the dehydrogenase to substrate inhibition at high alcohol concentrations. Steady-state kinetic studies of methylated liver alcohol dehydrogenase over a wide range of alcohol concentrations suggest that alcohol oxidation proceeds via a random addition of coenzyme and substrate with a pathway for the formation of the productive enzyme-NADH-alcohol complex. To facilitate the analyses of the effects of methylation on liver alcohol dehydrogenase and factors affecting them, new operational kinetic parameters to describe the results at high substrate concentration were introduced. The changes in the dehydrogenase activity on alkylation were found to be associated with changes in the maximum velocities that are affected by the hydrophobicity of alkyl groups introduced at lysine residues. The desensitization of alkylated liver alcohol dehydrogenase to substrate inhibition is identified with a decrease in inhibitory Michaelis constants for alcohols and this is favoured by the steric effects of substituents at the lysine residues. PMID:697732

  9. Discovery of a novel class of covalent inhibitor for aldehyde dehydrogenases

    SciTech Connect

    Khanna, Mary; Chen, Che-Hong; Kimble-Hill, Ann; Parajuli, Bibek; Perez-Miller, Samantha; Baskaran, Sulochanadevi; Kim, Jeewon; Dria, Karl; Vasiliou, Vasilis; Mochly-Rosen, Daria; Hurley, Thomas D.

    2012-10-23

    Human aldehyde dehydrogenases (ALDHs) comprise a family of 17 homologous enzymes that metabolize different biogenic and exogenic aldehydes. To date, there are relatively few general ALDH inhibitors that can be used to probe the contribution of this class of enzymes to particular metabolic pathways. Here, we report the discovery of a general class of ALDH inhibitors with a common mechanism of action. The combined data from kinetic studies, mass spectrometric measurements, and crystallographic analyses demonstrate that these inhibitors undergo an enzyme-mediated {beta}-elimination reaction generating a vinyl ketone intermediate that covalently modifies the active site cysteine residue present in these enzymes. The studies described here can provide the basis for rational approach to design ALDH isoenzyme-specific inhibitors as research tools and perhaps as drugs, to address diseases such as cancer where increased ALDH activity is associated with a cellular phenotype.

  10. Direct Electrochemical Addressing of Immobilized Alcohol Dehydrogenase for the Heterogeneous Bioelectrocatalytic Reduction of Butyraldehyde to Butanol

    PubMed Central

    Schlager, S; Neugebauer, H; Haberbauer, M; Hinterberger, G; Sariciftci, N S

    2015-01-01

    Modified electrodes using immobilized alcohol dehydrogenase enzymes for the efficient electroreduction of butyraldehyde to butanol are presented as an important step for the utilization of CO2-reduction products. Alcohol dehydrogenase was immobilized, embedded in an alginate–silicate hybrid gel, on a carbon felt (CF) electrode. The application of this enzyme to the reduction of an aldehyde to an alcohol with the aid of the coenzyme nicotinamide adenine dinucleotide (NADH), in analogy to the final step in the natural reduction cascade of CO2 to alcohol, has been already reported. However, the use of such enzymatic reductions is limited because of the necessity of providing expensive NADH as a sacrificial electron and proton donor. Immobilization of such dehydrogenase enzymes on electrodes and direct pumping of electrons into the biocatalysts offers an easy and efficient way for the biochemical recycling of CO2 to valuable chemicals or alternative synthetic fuels. We report the direct electrochemical addressing of immobilized alcohol dehydrogenase for the reduction of butyraldehyde to butanol without consumption of NADH. The selective reduction of butyraldehyde to butanol occurs at room temperature, ambient pressure and neutral pH. Production of butanol was detected by using liquid-injection gas chromatography and was estimated to occur with Faradaic efficiencies of around 40 %. PMID:26113881

  11. Benomyl, aldehyde dehydrogenase, DOPAL, and the catecholaldehyde hypothesis for the pathogenesis of Parkinson's disease.

    PubMed

    Casida, John E; Ford, Breanna; Jinsmaa, Yunden; Sullivan, Patti; Cooney, Adele; Goldstein, David S

    2014-08-18

    The dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL) is detoxified mainly by aldehyde dehydrogenase (ALDH). We find that the fungicide benomyl potently and rapidly inhibits ALDH and builds up DOPAL in vivo in mouse striatum and in vitro in PC12 cells and human cultured fibroblasts and glial cells. The in vivo results resemble those noted previously with knockouts of the genes encoding ALDH1A1 and 2, a mouse model of aging-related Parkinson's disease (PD). Exposure to pesticides that inhibit ALDH may therefore increase PD risk via DOPAL buildup. This study lends support to the "catecholaldehyde hypothesis" that the autotoxic dopamine metabolite DOPAL plays a pathogenic role in PD.

  12. Fast internal dynamics in alcohol dehydrogenase

    SciTech Connect

    Monkenbusch, M.; Stadler, A. Biehl, R.; Richter, D.; Ollivier, J.; Zamponi, M.

    2015-08-21

    Large-scale domain motions in alcohol dehydrogenase (ADH) have been observed previously by neutron spin-echo spectroscopy (NSE). We have extended the investigation on the dynamics of ADH in solution by using high-resolution neutron time-of-flight (TOF) and neutron backscattering (BS) spectroscopy in the incoherent scattering range. The observed hydrogen dynamics were interpreted in terms of three mobility classes, which allowed a simultaneous description of the measured TOF and BS spectra. In addition to the slow global protein diffusion and domain motions observed by NSE, a fast internal process could be identified. Around one third of the protons in ADH participate in the fast localized diffusive motion. The diffusion coefficient of the fast internal motions is around two third of the value of the surrounding D{sub 2}O solvent. It is tempting to associate the fast internal process with solvent exposed amino acid residues with dangling side chains.

  13. Aldehyde dehydrogenase (ALDH) superfamily in plants: gene nomenclature and comparative genomics

    PubMed Central

    Brocker, Chad; Vasiliou, Melpomene; Carpenter, Sarah; Carpenter, Christopher; Zhang, Yucheng; Wang, Xiping; Kotchoni, Simeon O.; Wood, Andrew J.; Kirch, Hans-Hubert; Kopečný, David; Nebert, Daniel W.

    2012-01-01

    In recent years, there has been a significant increase in the number of completely sequenced plant genomes. The comparison of fully sequenced genomes allows for identification of new gene family members, as well as comprehensive analysis of gene family evolution. The aldehyde dehydrogenase (ALDH) gene superfamily comprises a group of enzymes involved in the NAD+- or NADP+-dependent conversion of various aldehydes to their corresponding carboxylic acids. ALDH enzymes are involved in processing many aldehydes that serve as biogenic intermediates in a wide range of metabolic pathways. In addition, many of these enzymes function as ‘aldehyde scavengers’ by removing reactive aldehydes generated during the oxidative degradation of lipid membranes, also known as lipid peroxidation. Plants and animals share many ALDH families, and many genes are highly conserved between these two evolutionarily distinct groups. Conversely, both plants and animals also contain unique ALDH genes and families. Herein we carried outgenome-wide identification of ALDH genes in a number of plant species—including Arabidopsis thaliana (thale crest), Chlamydomonas reinhardtii (unicellular algae), Oryza sativa (rice), Physcomitrella patens (moss), Vitis vinifera (grapevine) and Zea mays (maize). These data were then combined with previous analysis of Populus trichocarpa (poplar tree), Selaginella moellindorffii (gemmiferous spikemoss), Sorghum bicolor (sorghum) and Volvox carteri (colonial algae) for a comprehensive evolutionary comparison of the plant ALDH superfamily. As a result, newly identified genes can be more easily analyzed and gene names can be assigned according to current nomenclature guidelines; our goal is to clarify previously confusing and conflicting names and classifications that might confound results and prevent accurate comparisons between studies. PMID:23007552

  14. Aldehyde dehydrogenase (ALDH) superfamily in plants: gene nomenclature and comparative genomics.

    PubMed

    Brocker, Chad; Vasiliou, Melpomene; Carpenter, Sarah; Carpenter, Christopher; Zhang, Yucheng; Wang, Xiping; Kotchoni, Simeon O; Wood, Andrew J; Kirch, Hans-Hubert; Kopečný, David; Nebert, Daniel W; Vasiliou, Vasilis

    2013-01-01

    In recent years, there has been a significant increase in the number of completely sequenced plant genomes. The comparison of fully sequenced genomes allows for identification of new gene family members, as well as comprehensive analysis of gene family evolution. The aldehyde dehydrogenase (ALDH) gene superfamily comprises a group of enzymes involved in the NAD(+)- or NADP(+)-dependent conversion of various aldehydes to their corresponding carboxylic acids. ALDH enzymes are involved in processing many aldehydes that serve as biogenic intermediates in a wide range of metabolic pathways. In addition, many of these enzymes function as 'aldehyde scavengers' by removing reactive aldehydes generated during the oxidative degradation of lipid membranes, also known as lipid peroxidation. Plants and animals share many ALDH families, and many genes are highly conserved between these two evolutionarily distinct groups. Conversely, both plants and animals also contain unique ALDH genes and families. Herein we carried out genome-wide identification of ALDH genes in a number of plant species-including Arabidopsis thaliana (thale crest), Chlamydomonas reinhardtii (unicellular algae), Oryza sativa (rice), Physcomitrella patens (moss), Vitis vinifera (grapevine) and Zea mays (maize). These data were then combined with previous analysis of Populus trichocarpa (poplar tree), Selaginella moellindorffii (gemmiferous spikemoss), Sorghum bicolor (sorghum) and Volvox carteri (colonial algae) for a comprehensive evolutionary comparison of the plant ALDH superfamily. As a result, newly identified genes can be more easily analyzed and gene names can be assigned according to current nomenclature guidelines; our goal is to clarify previously confusing and conflicting names and classifications that might confound results and prevent accurate comparisons between studies.

  15. Biochemical properties of rat liver mitochondrial aldehyde dehydrogenase with respect to oxidation of formaldehyde.

    PubMed

    Cinti, D L; Keyes, S R; Lemelin, M A; Denk, H; Schenkman, J B

    1976-03-25

    The oxidation of formaldehyde by rat liver mitochondria in the presence of 50 mM phosphate was enhanced 2-fold by exogenous NAD+. Absolute requirement of NAD+ for formaldehyde oxidation was demonstrated by depleting the mitochondria of their NAD+ content (4.6 nmol/mg of protein), followed by reincorporation of the NAD+ into the depleted mitochondria. Aldehyde (formaldehyde) dehydrogenase activity was completely abolished in the depleted mitochondria, but the enzyme activity was restored to control levels following reincorporation of the pyridine nucleotide. Phosphate stimulation of formaldehyde oxidation could not be explained fully by the phosphate-induced swelling which enhances membrane permeability to NAD+, since stimulation of the enzyme activity by increased phosphate concentrations was still observed in the absence of exogenous NAD+. The Km for formaldehyde oxidation by the mitochondria was found to be 0.38 nM, a value similar to that obtained with varying concentrations of NAD+; both Vmax values were very similar, giving a value of 70 to 80 nmol/min/mg of protein. The pH optimum for the mitochondrial enzyme was 8.0. Inhibition of the enzyme activity by anaerobiosis was apparently due to the inability of the respiratory chain to oxidize the generated NADH. The inhibition of mitochondrial formaldehyde oxidation by succinate was found to be due to a lowering of the NAD+ level in the mitochondria. Succinate also inhibited acetaldehyde oxidation by the mitochondria. Malonate, a competitive inhibitor of succinic dehydrogenase, blocked the inhibitory effect of succinate. The respiratory chain inhibitors, rotenone, and antimycin A plus succinate, strongly inhibited formaldehyde oxidation by apparently the same mechanism, although the crude enzyme preparation (freed from the membrane) was slightly sensitive to rotenone. The mitochondria were subfractionated, and 85% of the enzyme activity was found in the inner membrane fraction (mitoplast). Furthermore, separation

  16. Activation of Human Salivary Aldehyde Dehydrogenase by Sulforaphane: Mechanism and Significance

    PubMed Central

    Alam, Md. Fazle; Laskar, Amaj Ahmed; Maryam, Lubna

    2016-01-01

    Cruciferous vegetables contain the bio-active compound sulforaphane (SF) which has been reported to protect individuals against various diseases by a number of mechanisms, including activation of the phase II detoxification enzymes. In this study, we show that the extracts of five cruciferous vegetables that we commonly consume and SF activate human salivary aldehyde dehydrogenase (hsALDH), which is a very important detoxifying enzyme in the mouth. Maximum activation was observed at 1 μg/ml of cabbage extract with 2.6 fold increase in the activity. There was a ~1.9 fold increase in the activity of hsALDH at SF concentration of ≥ 100 nM. The concentration of SF at half the maximum response (EC50 value) was determined to be 52 ± 2 nM. There was an increase in the Vmax and a decrease in the Km of the enzyme in the presence of SF. Hence, SF interacts with the enzyme and increases its affinity for the substrate. UV absorbance, fluorescence and CD studies revealed that SF binds to hsALDH and does not disrupt its native structure. SF binds with the enzyme with a binding constant of 1.23 x 107 M-1. There is one binding site on hsALDH for SF, and the thermodynamic parameters indicate the formation of a spontaneous strong complex between the two. Molecular docking analysis depicted that SF fits into the active site of ALDH3A1, and facilitates the catalytic mechanism of the enzyme. SF being an antioxidant, is very likely to protect the catalytic Cys 243 residue from oxidation, which leads to the increase in the catalytic efficiency and hence the activation of the enzyme. Further, hsALDH which is virtually inactive towards acetaldehyde exhibited significant activity towards it in the presence of SF. It is therefore very likely that consumption of large quantities of cruciferous vegetables or SF supplements, through their activating effect on hsALDH can protect individuals who are alcohol intolerant against acetaldehyde toxicity and also lower the risk of oral cancer

  17. Changes in cinnamyl alcohol dehydrogenase activities from sugarcane cultivars inoculated with Sporisorium scitamineum sporidia.

    PubMed

    Santiago, Rocío; Alarcón, Borja; de Armas, Roberto; Vicente, Carlos; Legaz, María Estrella

    2012-06-01

    This study describes a method for determining cinnamyl alcohol dehydrogenase activity in sugarcane stems using reverse phase (RP) high-performance liquid chromatography to elucidate their possible lignin origin. Activity is assayed using the reverse mode, the oxidation of hydroxycinnamyl alcohols into hydroxycinnamyl aldehydes. Appearance of the reaction products, coniferaldehyde and sinapaldehyde is determined by measuring absorbance at 340 and 345 nm, respectively. Disappearance of substrates, coniferyl alcohol and sinapyl alcohol is measured at 263 and 273 nm, respectively. Isocratic elution with acetonitrile:acetic acid through an RP Mediterranea sea C18 column is performed. As case examples, we have examined two different cultivars of sugarcane; My 5514 is resistant to smut, whereas B 42231 is susceptible to the pathogen. Inoculation of sugarcane stems elicits lignification and produces significant increases of coniferyl alcohol dehydrogenase (CAD) and sinapyl alcohol dehydrogenase (SAD). Production of lignin increases about 29% in the resistant cultivar and only 13% in the susceptible cultivar after inoculation compared to uninoculated plants. Our results show that the resistance of My 5514 to smut is likely derived, at least in part, to a marked increase of lignin concentration by the activation of CAD and SAD.

  18. The effect of disulfiram on the aldehyde dehydrogenases of sheep liver.

    PubMed Central

    Kitson, T M

    1975-01-01

    1. The effect of disulfiram on the activity of the cytoplasmic and mitochondrial aldehyde dehydrogenases of sheep liver was studied. 2. Disulfiram causes an immediate inhibition of the enzyme reaction. The effect on the cytoplasmic enzyme is much greater than on the mitochondrial enzyme. 3. In both cases, the initial partial inhibition is followed by a gradual irreversible loss of activity. 4. The pH-rate profile of the inactivation of the mitochondrial enzyme by disulfiram and the pH-dependence of the maximum velocity of the enzyme-catalysed reaction are both consistent with the involvement of a thiol group. 5. Excess of 2-mercaptoethanol or GSH abolishes the effect of disulfiram. However, equimolar amounts of either of these reagents and disulfiram cause an effect greater than does disulfiram alone. It was shown that the mixed disulphide, Et2N-CS-SS-CH2-CH2OH, strongly inhibits aldehyde dehydrogenase. 6. The inhibitory effect of diethyldithiocarbamate in vitro is due mainly to contamination by disulfiram. PMID:3167

  19. Structural insights into the production of 3-hydroxypropionic acid by aldehyde dehydrogenase from Azospirillum brasilense

    PubMed Central

    Son, Hyeoncheol Francis; Park, Sunghoon; Yoo, Tae Hyeon; Jung, Gyoo Yeol; Kim, Kyung-Jin

    2017-01-01

    3-Hydroxypropionic acid (3-HP) is an important platform chemical to be converted to acrylic acid and acrylamide. Aldehyde dehydrogenase (ALDH), an enzyme that catalyzes the reaction of 3-hydroxypropionaldehyde (3-HPA) to 3-HP, determines 3-HP production rate during the conversion of glycerol to 3-HP. To elucidate molecular mechanism of 3-HP production, we determined the first crystal structure of a 3-HP producing ALDH, α-ketoglutarate-semialdehyde dehydrogenase from Azospirillum basilensis (AbKGSADH), in its apo-form and in complex with NAD+. Although showing an overall structure similar to other ALDHs, the AbKGSADH enzyme had an optimal substrate binding site for accepting 3-HPA as a substrate. Molecular docking simulation of 3-HPA into the AbKGSADH structure revealed that the residues Asn159, Gln160 and Arg163 stabilize the aldehyde- and the hydroxyl-groups of 3-HPA through hydrogen bonds, and several hydrophobic residues, such as Phe156, Val286, Ile288, and Phe450, provide the optimal size and shape for 3-HPA binding. We also compared AbKGSADH with other reported 3-HP producing ALDHs for the crucial amino acid residues for enzyme catalysis and substrate binding, which provides structural implications on how these enzymes utilize 3-HPA as a substrate. PMID:28393833

  20. Genomic organization and expression of the human fatty aldehyde dehydrogenase gene (FALDH)

    SciTech Connect

    Rogers, G.R.; Markova, N.G.; Compton, J.G.

    1997-01-15

    Mutations in the fatty aldehyde dehydrogenase (FALDH) gene cause Sjoegren-Larsson syndrome (SLS) - a disease characterized by mental retardation, spasticity, and congenital ichthyosis. To facilitate mutation analysis in SLS and to study the pathogenesis of FALDH deficiency, we have determined the structural organization and characterized expression of the FALDH (proposed designation ALDH10) gene. The gene consists of 10 exons spanning about 30.5 kb. A TATA-less promoter is associated with the major transcription initiation site found to be 258 hp upstream of the ATG codon. The G4C-rich sequences surrounding the transcription initiation site encompassed regulatory elements that interacted with proteins in HeLa nuclear extracts and were able to promote transcription in vitro. FALDH is widely expressed as three transcripts of 2, 3.8, and 4.0 kb, which originate from multiple polyadenylation signals in the 3{prime} UTR. An alternatively spliced mRNA was detected that contains an extra exon and encodes an enzyme that is likely to have altered membrane-binding properties. The FALDH gene lies only 50-85 kb from ALDH3, an aldehyde dehydrogenase gene that has homologous sequence and intron/exon structure. 25 refs., 4 figs., 1 tab.

  1. Identification and characterization of aldehyde dehydrogenase 9 from Lampetra japonica and its protective role against cytotoxicity.

    PubMed

    Zhao, Chunhui; Wang, Dan; Feng, Bin; Gou, Meng; Liu, Xin; Li, Qingwei

    2015-09-01

    Aldehyde dehydrogenases (ALDHs), which oxidize aldehyde to corresponding acids, play a major role in the detoxification of various endogenous and exogenous aldehydes. In this study, we cloned and characterized ALDH9 (designated LjALDH9) from Arctic lamprey Lampetra japonica. The open reading frame of LjALDH9 was 1566 bp, encoding 521 amino acids with a predicted molecular mass of 55.68 kDa. LjALDH9 protein had a signal peptide and Aldedh domain with the active site Cys315. In addition, LjALDH9 shares high sequence homology with ALDH9 of jawed vertebrates. Real-time quantitative PCR revealed that LjALDH9 was highly expressed in the buccal gland. A reactive LjALDH9 protein was obtained by prokaryotic expression, two-step-denaturing and refolding and affinity purification. During enzyme activity analysis of recombinant LjALDH9, we found that the most suitable reaction conditions were pH7.0, 16-23 °C and Mn(2+) as the activator. Our study provides theoretical proof that LjALDH9 plays an important role in the parasitic life phase of lamprey.

  2. Characterization of Two Distinct Structural Classes of Selective Aldehyde Dehydrogenase 1A1 Inhibitors

    PubMed Central

    Morgan, Cynthia A.; Hurley, Thomas D.

    2015-01-01

    Aldehyde dehydrogenases (ALDH) catalyze the irreversible oxidation of aldehydes to their corresponding carboxylic acid. Alterations in ALDH1A1 activity are associated with such diverse diseases as cancer, Parkinson’s disease, obesity, and cataracts. Inhibitors of ALDH1A1 could aid in illuminating the role of this enzyme in disease processes. However, there are no commercially available selective inhibitors for ALDH1A1. Here we characterize two distinct chemical classes of inhibitors that are selective for human ALDH1A1 compared to eight other ALDH isoenzymes. The prototypical members of each structural class, CM026 and CM037, exhibit sub-micromolar inhibition constants, but have different mechanisms of inhibition. The crystal structures of these compounds bound to ALDH1A1 demonstrate that they bind within the aldehyde binding pocket of ALDH1A1 and exploit the presence of a unique Glycine residue to achieve their selectivity. These two novel and selective ALDH1A1 inhibitors may serve as chemical tools to better understand the contributions of ALDH1A1 to normal biology and to disease states. PMID:25634381

  3. Inhibition of the Aldehyde Dehydrogenase 1/2 Family by Psoralen and Coumarin Derivatives.

    PubMed

    Buchman, Cameron D; Hurley, Thomas D

    2017-03-23

    Aldehyde dehydrogenase 2 (ALDH2), one of 19 ALDH superfamily members, catalyzes the NAD(+)-dependent oxidation of aldehydes to their respective carboxylic acids. In this study, we further characterized the inhibition of four psoralen and coumarin derivatives toward ALDH2 and compared them to the ALDH2 inhibitor daidzin for selectivity against five ALDH1/2 isoenzymes. Compound 2 (Ki = 19 nM) binds within the aldehyde-binding site of the free enzyme species of ALDH2. Thirty-three structural analogs were examined to develop a stronger SAR profile. Seven compounds maintained or improved upon the selectivity toward one of the five ALDH1/2 isoenzymes, including compound 36, a selective inhibitor for ALDH2 (Ki = 2.4 μM), and compound 32, which was 10-fold selective for ALDH1A1 (Ki = 1.2 μM) versus ALDH1A2. Further medicinal chemistry on the compounds' basic scaffold could enhance the potency and selectivity for ALDH1A1 or ALDH2 and generate chemical probes to examine the unique and overlapping functions of the ALDH1/2 isoenzymes.

  4. Association between aldehyde dehydrogenase gene polymorphisms and the phenomenon of field cancerization in patients with head and neck cancer.

    PubMed

    Muto, Manabu; Nakane, Mari; Hitomi, Yoshiaki; Yoshida, Shigeru; Sasaki, Satoshi; Ohtsu, Atsushi; Yoshida, Shigeaki; Ebihara, Satoshi; Esumi, Hiroyasu

    2002-10-01

    Patients with squamous-cell carcinoma in the head and neck (HNSCC) often develop second primary esophageal squamous-cell carcinomas (ESCC). In addition, widespread epithelial oncogenic alterations are also frequently observed in the esophagus and can be made visible as multiple Lugol-voiding lesions (multiple LVL) by Lugol chromoendoscopy. Multiple occurrences of neoplastic change in the upper aerodigestive tract have been explained by the concept of 'field cancerization', usually associated with repeated exposure to carcinogens such as alcohol and cigarette smoke. However, the etiology of second ESCC in HNSCC patients remains unclear and acetaldehyde, the first metabolite of ethanol, has been implicated as the ultimate carcinogen in alcohol-related carcinogenesis. We first investigated the relation between second ESCC and multiple LVL in 78 HNSCC patients. Multiple LVL and second ESCC were observed in 29 (37%) and 21 (27%) patients, respectively. All of the second ESCC were accompanied by multiple LVL. This may indicate that episodes of multiple LVL are precursors for second ESCC. We then examined the association of multiple LVL with the patients' characteristics, including genetic polymorphisms of the alcohol metabolizing enzymes, alcohol dehydrogenase type 3 (ADH3) and aldehyde dehydrogenase type 2 (ALDH2). We also investigated acetaldehyde concentrations in the breath of 52 of the 78 patients. All the patients with multiple LVL were both drinkers and smokers. Multivariable logistic analysis showed that the inactive ALDH2 allele (ALDH2-2) was the strongest contributing factor for the development of multiple LVL (odds ratio 17.6; 95% confidence intervals 4.7-65.3). After alcohol ingestion, acetaldehyde in the breath was elevated to a significantly higher level in all patients with the ALDH2-2 allele than in those without it. The high levels of breath acetaldehyde were significantly modified by the slow-metabolizing ADH3-2 allele. These results reveal strong

  5. Mammalian class IV alcohol dehydrogenase (stomach alcohol dehydrogenase): structure, origin, and correlation with enzymology.

    PubMed Central

    Parés, X; Cederlund, E; Moreno, A; Hjelmqvist, L; Farrés, J; Jörnvall, H

    1994-01-01

    The structure of a mammalian class IV alcohol dehydrogenase has been determined by peptide analysis of the protein isolated from rat stomach. The structure indicates that the enzyme constitutes a separate alcohol dehydrogenase class, in agreement with the distinct enzymatic properties; the class IV enzyme is somewhat closer to class I (the "classical" liver alcohol dehydrogenase; approximately 68% residue identities) than to the other classes (II, III, and V; approximately 60% residue identities), suggesting that class IV might have originated through duplication of an early vertebrate class I gene. The activity of the class IV protein toward ethanol is even higher than that of the classical liver enzyme. Both Km and kcat values are high, the latter being the highest of any class characterized so far. Structurally, these properties are correlated with replacements at the active site, affecting both substrate and coenzyme binding. In particular, Ala-294 (instead of valine) results in increased space in the middle section of the substrate cleft, Gly-47 (instead of a basic residue) results in decreased charge interactions with the coenzyme pyrophosphate, and Tyr-363 (instead of a basic residue) may also affect coenzyme binding. In combination, these exchanges are compatible with a promotion of the off dissociation and an increased turnover rate. In contrast, residues at the inner part of the substrate cleft are bulky, accounting for low activity toward secondary alcohols and cyclohexanol. Exchanges at positions 259-261 involve minor shifts in glycine residues at a reverse turn in the coenzyme-binding fold. Clearly, class IV is distinct in structure, ethanol turnover, stomach expression, and possible emergence from class I. PMID:8127901

  6. Aldehyde dehydrogenase 2 activation in heart failure restores mitochondrial function and improves ventricular function and remodelling

    PubMed Central

    Gomes, Katia M.S.; Campos, Juliane C.; Bechara, Luiz R.G.; Queliconi, Bruno; Lima, Vanessa M.; Disatnik, Marie-Helene; Magno, Paulo; Chen, Che-Hong; Brum, Patricia C.; Kowaltowski, Alicia J.; Mochly-Rosen, Daria; Ferreira, Julio C.B.

    2014-01-01

    Aims We previously demonstrated that pharmacological activation of mitochondrial aldehyde dehydrogenase 2 (ALDH2) protects the heart against acute ischaemia/reperfusion injury. Here, we determined the benefits of chronic activation of ALDH2 on the progression of heart failure (HF) using a post-myocardial infarction model. Methods and results We showed that a 6-week treatment of myocardial infarction-induced HF rats with a selective ALDH2 activator (Alda-1), starting 4 weeks after myocardial infarction at a time when ventricular remodelling and cardiac dysfunction were present, improved cardiomyocyte shortening, cardiac function, left ventricular compliance and diastolic function under basal conditions, and after isoproterenol stimulation. Importantly, sustained Alda-1 treatment showed no toxicity and promoted a cardiac anti-remodelling effect by suppressing myocardial hypertrophy and fibrosis. Moreover, accumulation of 4-hydroxynonenal (4-HNE)-protein adducts and protein carbonyls seen in HF was not observed in Alda-1-treated rats, suggesting that increasing the activity of ALDH2 contributes to the reduction of aldehydic load in failing hearts. ALDH2 activation was associated with improved mitochondrial function, including elevated mitochondrial respiratory control ratios and reduced H2O2 release. Importantly, selective ALDH2 activation decreased mitochondrial Ca2+-induced permeability transition and cytochrome c release in failing hearts. Further supporting a mitochondrial mechanism for ALDH2, Alda-1 treatment preserved mitochondrial function upon in vitro aldehydic load. Conclusions Selective activation of mitochondrial ALDH2 is sufficient to improve the HF outcome by reducing the toxic effects of aldehydic overload on mitochondrial bioenergetics and reactive oxygen species generation, suggesting that ALDH2 activators, such as Alda-1, have a potential therapeutic value for treating HF patients. PMID:24817685

  7. Control of aldehyde emissions in the diesel engines with alcoholic fuels.

    PubMed

    Krishna, M V S Murali; Varaprasad, C M; Reddy, C Venkata Ramana

    2006-01-01

    The major pollutants emitted from compression ignition (CI) engine with diesel as fuel are smoke and nitrogen oxides (NOx). When the diesel engine is run with alternate fuels, there is need to check alcohols (methanol or ethanol) and aldehydes also. Alcohols cannot be used directly in diesel engine and hence engine modification is essential as alcohols have low cetane number and high latent hear of vaporization. Hence, for use of alcohol in diesel engine, it needs hot combustion chamber, which is provided by low heat rejection (LHR) diesel engine with an air gap insulated piston with superni crown and air gap insulated liner with superni insert. In the present study, the pollution levels of aldehydes are reported with the use of methanol and ethanol as alternate fuels in LHR diesel engine with varying injection pressure, injection timings with different percentage of alcohol induction. The aldehydes (formaldehyde and acetaldehyde) in the exhaust were estimated by wet chemical technique with high performance liquid chromatograph (HPLC). Aldehyde emissions increased with an increase in alcohol induction. The LHR engine showed a decrease in aldehyde emissions when compared to conventional engine. However, the variation of injection pressure showed a marginal effect in reducing aldehydes, while advancing the injection timing reduced aldehyde emissions.

  8. Hepatic alcohol dehydrogenase activity in alcoholic subjects with and without liver disease.

    PubMed Central

    Vidal, F; Perez, J; Morancho, J; Pinto, B; Richart, C

    1990-01-01

    Alcohol dehydrogenase activity was measured in samples of liver tissue from a group of alcoholic and non-alcoholic subjects to determine whether decreased liver alcohol dehydrogenase activity is a consequence of ethanol consumption or liver damage. The alcoholic patients were classified further into the following groups: control subjects with no liver disease (group 1), subjects with non-cirrhotic liver disease (group 2), and subjects with cirrhotic liver disease (group 3). The non-alcoholic subjects were also divided, using the same criteria, into groups 4, 5, and 6, respectively. The analysis of the results showed no significant differences when mean alcohol dehydrogenase activities of alcoholic and non-alcoholic patients with similar degrees of liver pathology were compared (groups 1 v 4, 2 v 5, and 3 v 6. Alcohol dehydrogenase activity was, however, severely reduced in patients with liver disease compared with control subjects. Our findings suggest that alcohol consumption does not modify hepatic alcohol dehydrogenase activity. The reduction in specific alcohol dehydrogenase activity in alcoholic liver disease is a consequence of liver damage. PMID:2379876

  9. Microbial metabolism of amino alcohols. Metabolism of ethanolamine and 1-aminopropan-2-ol in species of Erwinia and the roles of amino alcohol kinase and amino alcohol O-phosphate phospho-lyase in aldehyde formation

    PubMed Central

    Jones, Alan; Faulkner, Anne; Turner, John M.

    1973-01-01

    1. Growth of Erwinia carotovora N.C.P.P.B. 1280 on media containing 1-aminopropan-2-ol compounds or ethanolamine as the sole N source resulted in the excretion of propionaldehyde or acetaldehyde respectively. The inclusion of (NH4)2SO4 in media prevented aldehyde formation. 2. Growth, microrespirometric and enzymic evidence implicated amino alcohol O-phosphates as aldehyde precursors. An inducibly formed ATP–amino alcohol phosphotransferase was partially purified and found to be markedly stimulated by ADP, unaffected by NH4+ ions and more active with ethanolamine than with 1-aminopropan-2-ol compounds. Amino alcohol O-phosphates were deaminated by an inducible phospho-lyase to give the corresponding aldehydes. This enzyme, separated from the kinase during purification, was more active with ethanolamine O-phosphate than with 1-aminopropan-2-ol O-phosphates. Activity of the phospho-lyase was unaffected by a number of possible effectors, including NH4+ ions, but its formation was repressed by the addition of (NH4)2SO4 to growth media. 3. E. carotovora was unable to grow with ethanolamine or 1-aminopropan-2-ol compounds as sources of C, the production of aldehydes during utilization as N sources being attributable to the inability of the microbe to synthesize aldehyde dehydrogenase. 4. Of seven additional strains of Erwinia examined similar results were obtained only with Erwinia ananas (N.C.P.P.B. 441) and Erwinia milletiae (N.C.P.P.B. 955). PMID:4357716

  10. A Personalized Medicine Approach for Asian Americans with the Aldehyde Dehydrogenase 2*2 Variant

    PubMed Central

    Gross, Eric R.; Zambelli, Vanessa O.; Small, Bryce A.; Ferreira, Julio C.B.; Chen, Che-Hong; Mochly-Rosen, Daria

    2015-01-01

    Asian Americans are one of the fastest-growing populations in the United States. A relatively large subset of this population carries a unique loss-of-function point mutation in aldehyde dehydrogenase 2 (ALDH2), ALDH2*2. Found in approximately 560 million people of East Asian descent, ALDH2*2 reduces enzymatic activity by approximately 60% to 80% in heterozygotes. Furthermore, this variant is associated with a higher risk for several diseases affecting many organ systems, including a particularly high incidence relative to the general population of esophageal cancer, myocardial infarction, and osteoporosis. In this review, we discuss the pathophysiology associated with the ALDH2*2 variant, describe why this variant needs to be considered when selecting drug treatments, and suggest a personalized medicine approach for Asian American carriers of this variant. We also discuss future clinical and translational perspectives regarding ALDH2*2 research. PMID:25292432

  11. Aldehyde Dehydrogenase 2 Has Cardioprotective Effects on Myocardial Ischaemia/Reperfusion Injury via Suppressing Mitophagy

    PubMed Central

    Ji, Wenqing; Wei, Shujian; Hao, Panpan; Xing, Junhui; Yuan, Qiuhuan; Wang, Jiali; Xu, Feng; Chen, Yuguo

    2016-01-01

    Mitophagy, a selective form of autophagy, is excessively activated in myocardial ischemia/reperfusion (I/R). The study investigated whether aldehyde dehydrogenase 2 (ALDH2) exerted its cardioprotective effect by regulating mitophagy. Myocardial infarct size and apoptosis after I/R in rats were ameliorated by Alda-1, an ALDH2 activator, and aggravated by ALDH2 inhibition. Both in I/R rats and hypoxia/reoxygenation H9C2 cells, ALDH2 activation suppressed phosphatase and tensin homolog-induced putative kinase 1 (PINK1)/Parkin expression, regulating mitophagy, by preventing 4-hydroxynonenal, reactive oxygen species and mitochondrial superoxide accumulation. Furthermore, the effect was enhanced by ALDH2 inhibition. Thus, ALDH2 may protect hearts against I/R injury by suppressing PINK1/Parkin–dependent mitophagy. PMID:27148058

  12. Rutin attenuates ethanol-induced neurotoxicity in hippocampal neuronal cells by increasing aldehyde dehydrogenase 2.

    PubMed

    Song, Kibbeum; Kim, Sokho; Na, Ji-Young; Park, Jong-Heum; Kim, Jae-Kyung; Kim, Jae-Hun; Kwon, Jungkee

    2014-10-01

    Rutin is derived from buckwheat, apples, and black tea. It has been shown to have beneficial anti-inflammatory and antioxidant effects. Ethanol is a central nervous system depressant and neurotoxin. Its metabolite, acetaldehyde, is critically toxic. Aldehyde dehydrogenase 2 (ALDH2) metabolizes acetaldehyde into nontoxic acetate. This study examined rutin's effects on ALDH2 activity in hippocampal neuronal cells (HT22 cells). Rutin's protective effects against acetaldehyde-based ethanol neurotoxicity were confirmed. Daidzin, an ALDH2 inhibitor, was used to clarify the mechanisms of rutin's protective effects. Cell viability was significantly increased after rutin treatment. Rutin significantly reversed ethanol-increased Bax, cytochrome c expression and caspase 3 activity, and decreased Bcl-2 and Bcl-xL protein expression in HT22 cells. Interestingly, rutin increased ALDH2 expression, while daidzin reversed this beneficial effect. Thus, this study demonstrates rutin protects HT22 cells against ethanol-induced neurotoxicity by increasing ALDH2 activity.

  13. Purification of a heterodimeric betaine aldehyde dehydrogenase from wild amaranth plants subjected to water deficit.

    PubMed

    Figueroa-Soto, C G; Valenzuela-Soto, E M

    2001-07-27

    Betaine aldehyde dehydrogenase was purified to homogeneity from wild-type amaranth plants subjected to water deficit. The enzyme has a native molecular mass of 125 kDa; it is formed by two subunits, one of the subunits with a molecular mass of 63 kDa and the second one of 70 kDa as determined by SDS-PAGE and double dimension electrophoresis. IEF studies showed two bands with pI values of 4.93 and 4.85, respectively. Possible glycosilation of the 63- and 70-kDa subunits were tested with negative results. Both subunits cross-reacted strongly with polyclonal antibody raised against porcine kidney BADH. Also antiserum rose against HSP70 cross-reacted strongly with the wild amaranth BADH 70-kDa subunit. The enzyme was stable to extreme pH's and temperatures, and high KCl concentrations. Product inhibition of BADH was not observed.

  14. Dual coenzyme activities of high-Km aldehyde dehydrogenase from rat liver mitochondria.

    PubMed

    Tsai, C S; Senior, D J

    1990-04-01

    Various kinetic approaches were carried out to investigate kinetic attributes for the dual coenzyme activities of mitochondrial aldehyde dehydrogenase from rat liver. The enzyme catalyses NAD(+)- and NADP(+)-dependent oxidations of ethanal by an ordered bi-bi mechanism with NAD(P)+ as the first reactant bound and NAD(P)H as the last product released. The two coenzymes presumably interact with the kinetically identical site. NAD+ forms the dynamic binary complex with the enzyme, while the enzyme-NAD(P)H complex formation is associated with conformation change(s). A stopped-flow burst of NAD(P)H formation, followed by a slower steady-state turnover, suggests that either the deacylation or the release of NAD(P)H is rate limiting. Although NADP+ is reduced by a faster burst rate, NAD+ is slightly favored as the coenzyme by virtue of its marginally faster turnover rate.

  15. Aldehyde dehydrogenase activity in cancer stem cells from canine mammary carcinoma cell lines.

    PubMed

    Michishita, M; Akiyoshi, R; Suemizu, H; Nakagawa, T; Sasaki, N; Takemitsu, H; Arai, T; Takahashi, K

    2012-08-01

    Increasing evidence suggests that diverse solid tumours arise from a small population of cells known as cancer stem cells or tumour-initiating cells. Cancer stem cells in several solid tumours are enriched for aldehyde dehydrogenase (ALDH) activity. High levels of ALDH activity (ALDH(high)) were detected in four cell lines derived from canine mammary carcinomas. ALDH(high) cells were enriched in a CD44(+)CD24(-) population having self-renewal capacity. Xenotransplantation into immunodeficient mice demonstrated that 1×10(4) ALDH(high) cells were sufficient for tumour formation in all injected mice, whereas 1×10(4) ALDH(low) cells failed to initiate any tumours. ALDH(high)-derived tumours contained both ALDH(+) and ALDH(-) cells, indicating that these cells had cancer stem cell-like properties.

  16. The effects of molybate, tungstate and lxd on aldehyde oxidase and xanthine dehydrogenase in Drosophila melanogaster.

    PubMed

    Bentley, M M; Williamson, J H; Oliver, M J

    1981-01-01

    The effects of dietary sodium molybdate and sodium tungstate on eye color and aldehyde oxidase and xanthine dehydrogenase activities have been determined in Drosophila melanogaster. Dietary sodium tungstate administration has been used as a screening procedure to identify two new lxd alleles. Tungstate administration results in increased frequencies of "brown-eyed" flies in lxd stocks and a coordinate decrease in AO and XDH activities in all genotypes tested. The two new lxd alleles affect AO and XDH in a qualitatively but not quantitatively similar fashion to the original lxd allele. AO and XDH activity and AO-CRM levels appear much more sensitive to mutational perturbations of this gene-enzyme than do XDH-CRM levels in the genotypes tested.

  17. Aldehyde dehydrogenase inhibition blocks mucosal fibrosis in human and mouse ocular scarring

    PubMed Central

    Ahadome, Sarah D.; Abraham, David J.; Rayapureddi, Suryanarayana; Saw, Valerie P.; Saban, Daniel R.; Calder, Virginia L.; Norman, Jill T.; Ponticos, Markella; Daniels, Julie T.; Dart, John K.

    2016-01-01

    Mucous membrane pemphigoid (MMP) is a systemic mucosal scarring disease, commonly causing blindness, for which there is no antifibrotic therapy. Aldehyde dehydrogenase family 1 (ALDH1) is upregulated in both ocular MMP (OMMP) conjunctiva and cultured fibroblasts. Application of the ALDH metabolite, retinoic acid (RA), to normal human conjunctival fibroblasts in vitro induced a diseased phenotype. Conversely, application of ALDH inhibitors, including disulfiram, to OMMP fibroblasts in vitro restored their functionality to that of normal controls. ALDH1 is also upregulated in the mucosa of the mouse model of scarring allergic eye disease (AED), used here as a surrogate for OMMP, in which topical application of disulfiram decreased fibrosis in vivo. These data suggest that progressive scarring in OMMP results from ALDH/RA fibroblast autoregulation, that the ALDH1 subfamily has a central role in immune-mediated ocular mucosal scarring, and that ALDH inhibition with disulfiram is a potential and readily translatable antifibrotic therapy. PMID:27699226

  18. Cloning and molecular evolution of the aldehyde dehydrogenase 2 gene (Aldh2) in bats (Chiroptera).

    PubMed

    Chen, Yao; Shen, Bin; Zhang, Junpeng; Jones, Gareth; He, Guimei

    2013-02-01

    Old World fruit bats (Pteropodidae) and New World fruit bats (Phyllostomidae) ingest significant quantities of ethanol while foraging. Mitochondrial aldehyde dehydrogenase (ALDH2, encoded by the Aldh2 gene) plays an important role in ethanol metabolism. To test whether the Aldh2 gene has undergone adaptive evolution in frugivorous and nectarivorous bats in relation to ethanol elimination, we sequenced part of the coding region of the gene (1,143 bp, ~73 % coverage) in 14 bat species, including three Old World fruit bats and two New World fruit bats. Our results showed that the Aldh2 coding sequences are highly conserved across all bat species we examined, and no evidence of positive selection was detected in the ancestral branches leading to Old World fruit bats and New World fruit bats. Further research is needed to determine whether other genes involved in ethanol metabolism have been the targets of positive selection in frugivorous and nectarivorous bats.

  19. Rotenone decreases intracellular aldehyde dehydrogenase activity: implications for the pathogenesis of Parkinson's disease.

    PubMed

    Goldstein, David S; Sullivan, Patti; Cooney, Adele; Jinsmaa, Yunden; Kopin, Irwin J; Sharabi, Yehonatan

    2015-04-01

    Repeated systemic administration of the mitochondrial complex I inhibitor rotenone produces a rodent model of Parkinson's disease (PD). Mechanisms of relatively selective rotenone-induced damage to nigrostriatal dopaminergic neurons remain incompletely understood. According to the 'catecholaldehyde hypothesis,' buildup of the autotoxic dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL) contributes to PD pathogenesis. Vesicular uptake blockade increases DOPAL levels, and DOPAL is detoxified mainly by aldehyde dehydrogenase (ALDH). We tested whether rotenone interferes with vesicular uptake and intracellular ALDH activity. Endogenous and F-labeled catechols were measured in PC12 cells incubated with rotenone (0-1000 nM, 180 min), without or with F-dopamine (2 μM) to track vesicular uptake and catecholamine metabolism. Rotenone dose dependently increased DOPAL, F-DOPAL, and 3,4-dihydroxyphenylethanol (DOPET) levels while decreasing dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) levels and the ratio of dopamine to the sum of its deaminated metabolites. In test tubes, rotenone did not affect conversion of DOPAL to DOPAC by ALDH when NAD(+) was supplied, whereas the direct-acting ALDH inhibitor benomyl markedly increased DOPAL and decreased DOPAC concentrations in the reaction mixtures. We propose that rotenone builds up intracellular DOPAL by decreasing ALDH activity and attenuating vesicular sequestration of cytoplasmic catecholamines. The results provide a novel mechanism for selective rotenone-induced toxicity in dopaminergic neurons. We report that rotenone, a mitochondrial complex I inhibitor that produces an animal model of Parkinson's disease, increases intracellular levels of the toxic dopamine metabolite 3,4-dihydroxyphenyl-acetaldehyde (DOPAL), via decreased DOPAL metabolism by aldehyde dehydrogenase (ALDH) and decreased vesicular sequestration of cytoplasmic dopamine by the vesicular monoamine transporter (VMAT). The results provide a novel

  20. Measurements Alcohols, Ketones, and Aldehydes During Trace-P

    NASA Astrophysics Data System (ADS)

    Apel, E. C.; Riemer, D. D.; Hills, A.; Lueb, R.; Fried, A.; Sachse, G.; Crawford, J.; Singh, H.; Blake, D.

    2002-12-01

    A sensitive and selective instrument (fast gas chromatographic mass spectrometer - FGCMS) was developed for the continuous measurement of oxygenated volatile organic compounds (OVOCs: alcohols, ketones and aldehydes (except for formaldehyde)) containing fewer than 6 carbon atoms and subsequently deployed during the NASA's TRACE-P (Transport and Chemical Evolution over the Pacific) experiment. This paper will briefly describe the instrument and present results obtained from 15 mission flights. Dramatic differences were observed in the mixing ratios and vertical profiles of the longer-lived species, acetone and methanol, compared to the shorter-lived species. For example, between 6 and 7 km, the median mixing ratios for the two longest lived species measured, acetone and methanol, are 765 pptv and 1061 pptv, respectively whereas the combined mixing ratio for all other species measured was less than 500 pptv. A large variety of air masses were encountered during this experiment and this is reflected in the behavior of the measured OVOCs. Relationships between the OVOCs and other trace species will be explored. Implications of these measurements for our current understanding of global tropospheric chemistry will be discussed.

  1. Evidence for two-step binding of reduced nicotinamide-adenine dinucleotide to aldehyde dehydrogenase.

    PubMed Central

    MacGibbon, A K; Buckley, P D; Blackwell, L F

    1977-01-01

    The displacement of NADH from cytoplasmic aldehyde dehydrogenase (EC 1.2.1.3) from sheep liver was studied by using NAD+, 1,10-phenanthroline, ADP-ribose, deamino-NAD+ and pyridine-3-aldehyde-adenine dinucleotide as displacing agents, by following the decrease in fluorescence as a function of time. The data obtained could be fitted by assuming two first-order processes were occurring, a faster process with an apparent rate constant of 0.85 +/- 0.20 s-1 and a relative amplitude of 60 +/- 10% and a slower process with an apparent rate constant of 0.20 +/- 0.05 s-1 and a relative amplitude of 40 +/- 10% (except for pyridine-3-aldehyde-adenine dinucleotide, where the apparent rate constant for the slow process was 0.05 s-1). The displacement rates did not change significantly when the pH was varied from 6.0 to 9.0. Kinetic data are also reported for the dependence of the rate of binding of NADH to the enzyme on the total concentration of NADH. Detailed arguments are presented based on the isolation and purification procedures, the equilibrium coenzyme-binding studies and the kinetic data, which lead to the following model for the release of NADH from the enzyme: (formula: see article). The parameters that best fit the data are: k + 1 = 0.2 s-1; k - 1 = 0.05 s-1; k + 2 = 0.8 s-1 and k - 2 = 5 X 10(5)litre-mol-1-s-1. The slow phase of the NADH release is similar to the steady-state turnover number for substrates such as acetaldehyde and propionaldehyde and appears to contribute significantly to the limitation of the steady-state rate. Images Fig. 1. Fig. 2. Fig. 3. Fig. 5. PMID:21657

  2. Development of Selective Inhibitors for Aldehyde Dehydrogenases Based on Substituted Indole-2,3-diones

    PubMed Central

    2015-01-01

    Aldehyde dehydrogenases (ALDH) participate in multiple metabolic pathways and have been indicated to play a role in several cancerous disease states. Our laboratory is interested in developing novel and selective ALDH inhibitors. We looked to further work recently published by developing a class of isoenzyme-selective inhibitors using similar indole-2,3-diones that exhibit differential inhibition of ALDH1A1, ALDH2, and ALDH3A1. Kinetic and X-ray crystallography data suggest that these inhibitors are competitive against aldehyde binding, forming direct interactions with active-site cysteine residues. The selectivity is precise in that these compounds appear to interact directly with the catalytic nucleophile, Cys243, in ALDH3A1 but not in ALDH2. In ALDH2, the 3-keto group is surrounded by the adjacent Cys301/303. Surprisingly, the orientation of the interaction changes depending on the nature of the substitutions on the basic indole ring structure and correlates well with the observed structure–activity relationships for each ALDH isoenzyme. PMID:24444054

  3. Identification of aldehyde dehydrogenase 1A1 modulators using virtual screening.

    PubMed

    Kotraiah, Vinayaka; Pallares, Diego; Toema, Deanna; Kong, Dehe; Beausoleil, Eric

    2013-06-01

    The highly similar aldehyde dehydrogenase isozymes (ALDH1A1 and ALDH2) have been implicated in the metabolism of toxic biogenic aldehydes such as 3,4-dihydroxyphenylacetaldehyde (DOPAL) and 4-hydroxy-2E-nonenal. We report the down-regulation of ALDH1A1 mRNA found in substantia nigra tissue of human Parkinson's disease (PD) samples using the Genome-Wide SpliceArray(™) (GWSA(™)) technology. Since DOPAL can rapidly inactivate ALDH1A1 in vitro, we set up a DOPAL-induced ALDH1A1 inactivation assay and used this assay to demonstrate that Alda-1, a compound originally identified as an activator of ALDH2, can also activate ALDH1A1. We carried out a virtual screening of 19,943 compounds and the top 21 hits from this screen were tested in the DOPAL inactivation assay with ALDH1A1 which led to identification of an activator as well as two inhibitors among these hits. These findings represent an attractive starting point for developing higher potency activator compounds that may have utility in restoring the metabolism of DOPAL in PD.

  4. Mitochondrial aldehyde dehydrogenase prevents ROS-induced vascular contraction in angiotensin-II hypertensive mice.

    PubMed

    Choi, Hyehun; Tostes, Rita C; Webb, R Clinton

    2011-01-01

    Mitochondrial aldehyde dehydrogenase (ALDH2) is an enzyme that detoxifies aldehydes to carboxylic acids. ALDH2 deficiency is known to increase oxidative stress, which is the imbalance between reactive oxygen species (ROS) generation and antioxidant defense activity. Increased ROS contribute to vascular dysfunction and structural remodeling in hypertension. We hypothesized that ALDH2 plays a protective role to reduce vascular contraction in angiotensin-II (AngII) hypertensive mice. Endothelium-denuded aortic rings from C57BL6 mice, treated with AngII (3.6 μg/kg/min, 14 days), were used to measure isometric force development. Rings treated with daidzin (10 μmol/L), an ALDH2 inhibitor, potentiated contractile responses to phenylephrine (PE) in AngII mice. Tempol (1 mmol/L) and catalase (600 U/mL) attenuated the augmented contractile effect of daidzin. In normotensive mice, contraction to PE in the presence of the daidzin was not different from control, untreated values. AngII aortic rings transfected with ALDH2 recombinant protein decreased contractile responses to PE compared with control. These data suggest that ALDH2 reduces vascular contraction in AngII hypertensive mice. Because tempol and catalase blocked the contractile response of the ALDH2 inhibitor, ROS generation by AngII may be decreased by ALDH2, thereby preventing ROS-induced contraction.

  5. Genome-Wide Identification and Functional Classification of Tomato (Solanum lycopersicum) Aldehyde Dehydrogenase (ALDH) Gene Superfamily

    PubMed Central

    Lopez-Valverde, Francisco J.; Robles-Bolivar, Paula; Lima-Cabello, Elena; Gachomo, Emma W.; Kotchoni, Simeon O.

    2016-01-01

    Aldehyde dehydrogenases (ALDHs) is a protein superfamily that catalyzes the oxidation of aldehyde molecules into their corresponding non-toxic carboxylic acids, and responding to different environmental stresses, offering promising genetic approaches for improving plant adaptation. The aim of the current study is the functional analysis for systematic identification of S. lycopersicum ALDH gene superfamily. We performed genome-based ALDH genes identification and functional classification, phylogenetic relationship, structure and catalytic domains analysis, and microarray based gene expression. Twenty nine unique tomato ALDH sequences encoding 11 ALDH families were identified, including a unique member of the family 19 ALDH. Phylogenetic analysis revealed 13 groups, with a conserved relationship among ALDH families. Functional structure analysis of ALDH2 showed a catalytic mechanism involving Cys-Glu couple. However, the analysis of ALDH3 showed no functional gene duplication or potential neo-functionalities. Gene expression analysis reveals that particular ALDH genes might respond to wounding stress increasing the expression as ALDH2B7. Overall, this study reveals the complexity of S. lycopersicum ALDH gene superfamily and offers new insights into the structure-functional features and evolution of ALDH gene families in vascular plants. The functional characterization of ALDHs is valuable and promoting molecular breeding in tomato for the improvement of stress tolerance and signaling. PMID:27755582

  6. Cloning and characterization of a novel betaine aldehyde dehydrogenase gene from Suaeda corniculata.

    PubMed

    Wang, F W; Wang, M L; Guo, C; Wang, N; Li, X W; Chen, H; Dong, Y Y; Chen, X F; Wang, Z M; Li, H Y

    2016-06-20

    Glycine betaine is an important quaternary ammonium compound that is produced in response to several abiotic stresses in many organisms. The synthesis of glycine betaine requires the catalysis of betaine aldehyde dehydrogenase (BADH), which can convert betaine aldehyde into glycine betaine in plants, especially in halotolerant plants. In this study, we isolated the full-length cDNA of BADH from Suaeda corniculata (ScBADH) using reverse transcriptase-polymerase chain reaction and rapid amplification of cDNA ends. Next, we analyzed the expression profile of ScBADH using real-time PCR. The results showed that ScBADH expression was induced in the roots, stems, and leaves of S. corniculata seedlings under salt and drought stress. Next, ScBADH was overexpressed in Arabidopsis, resulting in the transgenic plants exhibiting enhanced tolerance over wild-type plants under salt and drought stress. We then analyzed the levels of glycine betaine and proline, as well as superoxide dismutase (SOD) activity, during salt stress in WT and transgenic Arabidopsis. The results indicated that overexpression of ScBADH produced more glycine betaine and proline, and increased SOD activity under NaCl treatment. Our results suggest that ScBADH might be a positive regulator in plants during the response to NaCl.

  7. Redox Balance in Lactobacillus reuteri DSM20016: Roles of Iron-Dependent Alcohol Dehydrogenases in Glucose/ Glycerol Metabolism.

    PubMed

    Chen, Lu; Bromberger, Paul David; Nieuwenhuiys, Gavin; Hatti-Kaul, Rajni

    2016-01-01

    Lactobacillus reuteri, a heterofermentative bacterium, metabolizes glycerol via a Pdu (propanediol-utilization) pathway involving dehydration to 3-hydroxypropionaldehyde (3-HPA) followed by reduction to 1,3-propandiol (1,3-PDO) with concomitant generation of an oxidized cofactor, NAD+ that is utilized to maintain cofactor balance required for glucose metabolism and even for oxidation of 3-HPA by a Pdu oxidative branch to 3-hydroxypropionic acid (3-HP). The Pdu pathway is operative inside Pdu microcompartment that encapsulates different enzymes and cofactors involved in metabolizing glycerol or 1,2-propanediol, and protects the cells from the toxic effect of the aldehyde intermediate. Since L. reuteri excretes high amounts of 3-HPA outside the microcompartment, the organism is likely to have alternative alcohol dehydrogenase(s) in the cytoplasm for transformation of the aldehyde. In this study, diversity of alcohol dehydrogenases in Lactobacillus species was investigated with a focus on L. reuteri. Nine ADH enzymes were found in L. reuteri DSM20016, out of which 3 (PduQ, ADH6 and ADH7) belong to the group of iron-dependent enzymes that are known to transform aldehydes/ketones to alcohols. L. reuteri mutants were generated in which the three ADHs were deleted individually. The lagging growth phenotype of these deletion mutants revealed that limited NAD+/NADH recycling could be restricting their growth in the absence of ADHs. Notably, it was demonstrated that PduQ is more active in generating NAD+ during glycerol metabolism within the microcompartment by resting cells, while ADH7 functions to balance NAD+/NADH by converting 3-HPA to 1,3-PDO outside the microcompartment in the growing cells. Moreover, evaluation of ADH6 deletion mutant showed strong decrease in ethanol level, supporting the role of this bifuctional alcohol/aldehyde dehydrogenase in ethanol production. To the best of our knowledge, this is the first report revealing both internal and external recycling

  8. Structure-based mutational studies of substrate inhibition of betaine aldehyde dehydrogenase BetB from Staphylococcus aureus.

    PubMed

    Chen, Chao; Joo, Jeong Chan; Brown, Greg; Stolnikova, Ekaterina; Halavaty, Andrei S; Savchenko, Alexei; Anderson, Wayne F; Yakunin, Alexander F

    2014-07-01

    Inhibition of enzyme activity by high concentrations of substrate and/or cofactor is a general phenomenon demonstrated in many enzymes, including aldehyde dehydrogenases. Here we show that the uncharacterized protein BetB (SA2613) from Staphylococcus aureus is a highly specific betaine aldehyde dehydrogenase, which exhibits substrate inhibition at concentrations of betaine aldehyde as low as 0.15 mM. In contrast, the aldehyde dehydrogenase YdcW from Escherichia coli, which is also active against betaine aldehyde, shows no inhibition by this substrate. Using the crystal structures of BetB and YdcW, we performed a structure-based mutational analysis of BetB and introduced the YdcW residues into the BetB active site. From a total of 32 mutations, those in five residues located in the substrate binding pocket (Val288, Ser290, His448, Tyr450, and Trp456) greatly reduced the substrate inhibition of BetB, whereas the double mutant protein H448F/Y450L demonstrated a complete loss of substrate inhibition. Substrate inhibition was also reduced by mutations of the semiconserved Gly234 (to Ser, Thr, or Ala) located in the BetB NAD(+) binding site, suggesting some cooperativity between the cofactor and substrate binding sites. Substrate docking analysis of the BetB and YdcW active sites revealed that the wild-type BetB can bind betaine aldehyde in both productive and nonproductive conformations, whereas only the productive binding mode can be modeled in the active sites of YdcW and the BetB mutant proteins with reduced substrate inhibition. Thus, our results suggest that the molecular mechanism of substrate inhibition of BetB is associated with the nonproductive binding of betaine aldehyde.

  9. "Enzymogenesis": classical liver alcohol dehydrogenase origin from the glutathione-dependent formaldehyde dehydrogenase line.

    PubMed Central

    Danielsson, O; Jörnvall, H

    1992-01-01

    Analysis of the activity and structure of lower vertebrate alcohol dehydrogenases reveals that relationships between the classical liver and yeast enzymes need not be continuous. Both the ethanol activity of class I-type alcohol dehydrogenase (alcohol:NAD+ oxidoreductase, EC 1.1.1.1) and the glutathione-dependent formaldehyde activity of the class III-type enzyme [formaldehyde:NAD+ oxidoreductase (glutathione-formylating), EC 1.2.1.1] are present in liver down to at least the stage of bony fishes (cod liver: ethanol activity, 3.4 units/mg of protein in one enzyme; formaldehyde activity, 4.5 units/mg in the major form of another enzyme). Structural analysis of the latter protein reveals it to be a typical class III enzyme, with limited variation from the mammalian form and therefore with stable activity and structure throughout much of the vertebrate lineage. In contrast, the classical alcohol dehydrogenase (the class I enzyme) appears to be the emerging form, first in activity and later also in structure. The class I activity is present already in the piscine line, whereas the overall structural-type enzyme is not observed until amphibians and still more recent vertebrates. Consequently, the class I/III duplicatory origin appears to have arisen from a functional class III form, not a class I form. Therefore, ethanol dehydrogenases from organisms existing before this duplication have origins separate from those leading to the "classical" liver alcohol dehydrogenases. The latter now often occur in isozyme forms from further gene duplications and have a high rate of evolutionary change. The pattern is, however, not simple and we presently find in cod the first evidence for isozymes also within a class III alcohol dehydrogenase. Overall, the results indicate that both of these classes of vertebrate alcohol dehydrogenase are important and suggest a protective metabolic function for the whole enzyme system. Images PMID:1409630

  10. A bacterial aromatic aldehyde dehydrogenase critical for the efficient catabolism of syringaldehyde

    PubMed Central

    Kamimura, Naofumi; Goto, Takayuki; Takahashi, Kenji; Kasai, Daisuke; Otsuka, Yuichiro; Nakamura, Masaya; Katayama, Yoshihiro; Fukuda, Masao; Masai, Eiji

    2017-01-01

    Vanillin and syringaldehyde obtained from lignin are essential intermediates for the production of basic chemicals using microbial cell factories. However, in contrast to vanillin, the microbial conversion of syringaldehyde is poorly understood. Here, we identified an aromatic aldehyde dehydrogenase (ALDH) gene responsible for syringaldehyde catabolism from 20 putative ALDH genes of Sphingobium sp. strain SYK-6. All these genes were expressed in Escherichia coli, and nine gene products, including previously characterized BzaA, BzaB, and vanillin dehydrogenase (LigV), exhibited oxidation activities for syringaldehyde to produce syringate. Among these genes, SLG_28320 (desV) and ligV were most highly and constitutively transcribed in the SYK-6 cells. Disruption of desV in SYK-6 resulted in a significant reduction in growth on syringaldehyde and in syringaldehyde oxidation activity. Furthermore, a desV ligV double mutant almost completely lost its ability to grow on syringaldehyde. Purified DesV showed similar kcat/Km values for syringaldehyde (2100 s−1·mM−1) and vanillin (1700 s−1·mM−1), whereas LigV substantially preferred vanillin (8800 s−1·mM−1) over syringaldehyde (1.4 s−1·mM−1). These results clearly demonstrate that desV plays a major role in syringaldehyde catabolism. Phylogenetic analyses showed that DesV-like ALDHs formed a distinct phylogenetic cluster separated from the vanillin dehydrogenase cluster. PMID:28294121

  11. [Effects of H2-blockers on alcohol dehydrogenase (ADH) activity].

    PubMed

    Jelski, Wojciech; Orywal, Karolina; Szmitkowski, Maciej

    2008-12-01

    First-pass metabolism (FPM) of alcohol is demonstrated by lower blood alcohol concentrations after oral than intravenous administration of the same dose. FPM occurs predominantly in the stomach and has been attributed to class IV of alcohol dehydrogenase (ADH) isoenzyme localizated in the gastric mucosa. A number of factors that influence on gastric ADH activity and thereby modulate FPM have been identified. These include age, sex, ethnicity, concentrations and amounts of alcohol consumed and drugs. Several H2-receptor antagonists, including cimetidine and ranitidine, inhibit gastric ADH activity and reduce FPM, resulting in higher blood alcohol concentrations after H2-blockers administration.

  12. Multiple cancers associated with esophageal and oropharyngolaryngeal squamous cell carcinoma and the aldehyde dehydrogenase-2 genotype in male Japanese drinkers.

    PubMed

    Yokoyama, Akira; Watanabe, Hiroshi; Fukuda, Haruhiko; Haneda, Tatsumasa; Kato, Hoichi; Yokoyama, Tetsuji; Muramatsu, Taro; Igaki, Hiroyasu; Tachimori, Yuji

    2002-09-01

    Aldehyde dehydrogenase-2 (ALDH2) is a key enzyme for the elimination of acetaldehyde, an established animal carcinogen generated by alcohol metabolism. In the presence of ALDH2*2, a mutant allele that is prevalent in East Asians, this enzyme is inactive, leading to excessive accumulation of acetaldehyde. Only among Japanese alcoholic patients has the positive association between this inactive form of ALDH2 and multiple-field cancerization in the upper aerodigestive tract been demonstrated. Whether this finding could be extended to multiple-cancer patients in general is of great interest, because the prevalence of esophageal cancer with other organ cancers has increased dramatically during recent decades in Japan. This study compared the ALDH2 genotypes of groups of male Japanese drinkers who had either esophageal squamous cell carcinomas (SCCs) with (n = 26) or without (n = 48) multiplicity or oropharyngolaryngeal SCCs with (n = 17) or without (n = 29) multiplicity. After adjustments for age and drinking and smoking habits, logistic regression analysis showed significantly increased risk for each multiplicity associated with either esophageal or oropharyngolaryngeal SCCs in the presence of the ALDH2*2 allele (odds ratio, 5.26; 95% confidence interval, 1.08-51.06 and odds ratio, 7.36; 95% confidence interval, 1.29-80.70, respectively). This study is the first to strongly link inactive ALDH2 with the multiple cancer susceptibility of male Japanese drinkers with either esophageal or oropharyngolaryngeal cancers. A simple questionnaire about both current and past facial flushing after drinking a glass of beer was highly sensitive (95.6%) in detecting inactive ALDH2 in these patients and may be useful for identifying high-risk patients.

  13. The Arabidopsis thaliana REDUCED EPIDERMAL FLUORESCENCE1 Gene Encodes an Aldehyde Dehydrogenase Involved in Ferulic Acid and Sinapic Acid Biosynthesis

    PubMed Central

    Nair, Ramesh B.; Bastress, Kristen L.; Ruegger, Max O.; Denault, Jeff W.; Chapple, Clint

    2004-01-01

    Recent research has significantly advanced our understanding of the phenylpropanoid pathway but has left in doubt the pathway by which sinapic acid is synthesized in plants. The reduced epidermal fluorescence1 (ref1) mutant of Arabidopsis thaliana accumulates only 10 to 30% of the sinapate esters found in wild-type plants. Positional cloning of the REF1 gene revealed that it encodes an aldehyde dehydrogenase, a member of a large class of NADP+-dependent enzymes that catalyze the oxidation of aldehydes to their corresponding carboxylic acids. Consistent with this finding, extracts of ref1 leaves exhibit low sinapaldehyde dehydrogenase activity. These data indicate that REF1 encodes a sinapaldehyde dehydrogenase required for sinapic acid and sinapate ester biosynthesis. When expressed in Escherichia coli, REF1 was found to exhibit both sinapaldehyde and coniferaldehyde dehydrogenase activity, and further phenotypic analysis of ref1 mutant plants showed that they contain less cell wall–esterified ferulic acid. These findings suggest that both ferulic acid and sinapic acid are derived, at least in part, through oxidation of coniferaldehyde and sinapaldehyde. This route is directly opposite to the traditional representation of phenylpropanoid metabolism in which hydroxycinnamic acids are instead precursors of their corresponding aldehydes. PMID:14729911

  14. Molecular cloning and biochemical characterization of two cinnamyl alcohol dehydrogenases from a liverwort Plagiochasma appendiculatum.

    PubMed

    Sun, Yi; Wu, Yifeng; Zhao, Yu; Han, Xiaojuan; Lou, Hongxiang; Cheng, Aixia

    2013-09-01

    Cinnamyl alcohol dehydrogenase (CAD) (EC 1.1.1.195) is a key enzyme in lignin biosynthesis. It catalyzes cinnamyl aldehydes as substrates to form corresponding alcohols, the last step in monolignol biosynthesis. Almost all CAD members of land plants could be divided into three classes according to the phylogenetic analysis, together with gene structure and function. In the present investigation, two cDNAs encoding CADs were obtained from a Chinese liverwort Plagiochasma appendiculatum thallus library and were designated as PaCAD1 and PaCAD2. Phylogenetic analysis showed that PaCAD1 and PaCAD2 belonged to Class II. Full length cDNAs were heterologously expressed in E. coli and the recombinant PaCAD proteins displayed high activity levels using p-coumaryl, caffeyl, coniferyl, 5-hydroxyconiferyl and sinapyl aldehydes as substrates to form corresponding alcohols. The enzyme kinetics results showed that PaCAD1 and PaCAD2 used coniferyl aldehyde as the favourite substrate and showed high catalytic efficiency towards p-coumaryl aldehyde but lowest catalytic efficiency towards 5-hydroxyconiferaldehyde. In accord with the higher lignin content in the thallus than in the callus, the expression level of PaCAD2 was also higher in thallus than in the callus. The expression of PaCAD1 and PaCAD2 was induced by Methyl jasmonic acid (MeJA) treatment. This suggested that these two PaCADs played twin roles in lignin biosynthesis and the defencedefence of abiotic stress in P. appendiculatum. This is the first time that the CADs in liverworts have been functionally characterized.

  15. Pre-steady-state kinetic studies on cytoplasmic sheep liver aldehyde dehydrogenase.

    PubMed

    MacGibbon, A K; Blackwell, L F; Buckley, P D

    1977-11-01

    Stopped-flow experiments in which sheep liver cytoplasmic aldehyde dehydrogenase (EC 1.2.1.3) was rapidly mixed with NAD(+) and aldehyde showed a burst of NADH formation, followed by a slower steady-state turnover. The kinetic data obtained when the relative concentrations and orders of mixing of NAD(+) and propionaldehyde with the enzyme were varied were fitted to the following mechanism: [Formula: see text] where the release of NADH is slow. By monitoring the quenching of protein fluorescence on the binding of NAD(+), estimates of 2x10(5) litre.mol(-1).s(-1) and 2s(-1) were obtained for k(+1) and k(-1) respectively. Although k(+3) could be determined from the dependence of the burst rate constant on the concentration of propionaldehyde to be 11s(-1), k(+2) and k(-2) could not be determined uniquely, but could be related by the equation: (k(-2)+k(+3))/k(+2) =50x10(-6)mol.litre(-1). No significant isotope effect was observed when [1-(2)H]propionaldehyde was used as substrate. The burst rate constant was pH-dependent, with the greatest rate constants occurring at high pH. Similar data were obtained by using acetaldehyde, where for this substrate (k(-2)+k(+3))/k(+2)=2.3x10 (-3)mol.litre(-1) and k(+3) is 23s(-1). When [1,2,2,2-(2)H]acetaldehyde was used, no isotope effect was observed on k(+3), but there was a significant effect on k(+2) and k(-2). A burst of NADH production has also been observed with furfuraldehyde, trans-4-(NN-dimethylamino)cinnamaldehyde, formaldehyde, benzaldehyde, 4-(imidazol-2-ylazo)benzaldehyde, p-methoxybenzaldehyde and p-methylbenzaldehyde as substrates, but not with p-nitrobenzaldehyde.

  16. Mitochondrial aldehyde dehydrogenase obliterates insulin resistance-induced cardiac dysfunction through deacetylation of PGC-1α

    PubMed Central

    Hu, Nan; Ren, Jun; Zhang, Yingmei

    2016-01-01

    Insulin resistance contributes to the high prevalence of type 2 diabetes mellitus, leading to cardiac anomalies. Emerging evidence depicts a pivotal role for mitochondrial injury in oxidative metabolism and insulin resistance. Mitochondrial aldehyde dehydrogenase (ALDH2) is one of metabolic enzymes detoxifying aldehydes although its role in insulin resistance remains elusive. This study was designed to evaluate the impact of ALDH2 overexpression on insulin resistance-induced myocardial damage and mechanisms involved with a focus on autophagy. Wild-type (WT) and transgenic mice overexpressing ALDH2 were fed sucrose or starch diet for 8 weeks and cardiac function and intracellular Ca2+ handling were assessed using echocardiographic and IonOptix systems. Western blot analysis was used to evaluate Akt, heme oxygenase-1 (HO-1), PGC-1α and Sirt-3. Our data revealed that sucrose intake provoked insulin resistance and compromised fractional shortening, cardiomyocyte function and intracellular Ca2+ handling (p < 0.05) along with unaltered cardiomyocyte size (p > 0.05), mitochondrial injury (elevated ROS generation, suppressed NAD+ and aconitase activity, p < 0.05 for all), the effect of which was ablated by ALDH2. In vitro incubation of the ALDH2 activator Alda-1, the Sirt3 activator oroxylin A and the histone acetyltransferase inhibitor CPTH2 rescued insulin resistance-induced changes in aconitase activity and cardiomyocyte function (p < 0.05). Inhibiting Sirt3 deacetylase using 5-amino-2-(4-aminophenyl) benzoxazole negated Alda-1-induced cardioprotective effects. Taken together, our data suggest that ALDH2 serves as an indispensable cardioprotective factor against insulin resistance-induced cardiomyopathy with a mechanism possibly associated with facilitation of the Sirt3-dependent PGC-1α deacetylation. PMID:27634872

  17. Aldehyde Dehydrogenase Gene Superfamily in Populus: Organization and Expression Divergence between Paralogous Gene Pairs.

    PubMed

    Tian, Feng-Xia; Zang, Jian-Lei; Wang, Tan; Xie, Yu-Li; Zhang, Jin; Hu, Jian-Jun

    2015-01-01

    Aldehyde dehydrogenases (ALDHs) constitute a superfamily of NAD(P)+-dependent enzymes that catalyze the irreversible oxidation of a wide range of reactive aldehydes to their corresponding nontoxic carboxylic acids. ALDHs have been studied in many organisms from bacteria to mammals; however, no systematic analyses incorporating genome organization, gene structure, expression profiles, and cis-acting elements have been conducted in the model tree species Populus trichocarpa thus far. In this study, a comprehensive analysis of the Populus ALDH gene superfamily was performed. A total of 26 Populus ALDH genes were found to be distributed across 12 chromosomes. Genomic organization analysis indicated that purifying selection may have played a pivotal role in the retention and maintenance of PtALDH gene families. The exon-intron organizations of PtALDHs were highly conserved within the same family, suggesting that the members of the same family also may have conserved functionalities. Microarray data and qRT-PCR analysis indicated that most PtALDHs had distinct tissue-specific expression patterns. The specificity of cis-acting elements in the promoter regions of the PtALDHs and the divergence of expression patterns between nine paralogous PtALDH gene pairs suggested that gene duplications may have freed the duplicate genes from the functional constraints. The expression levels of some ALDHs were up- or down-regulated by various abiotic stresses, implying that the products of these genes may be involved in the adaptation of Populus to abiotic stresses. Overall, the data obtained from our investigation contribute to a better understanding of the complexity of the Populus ALDH gene superfamily and provide insights into the function and evolution of ALDH gene families in vascular plants.

  18. The mitochondrial monoamine oxidase-aldehyde dehydrogenase pathway: a potential site of action of daidzin.

    PubMed

    Rooke, N; Li, D J; Li, J; Keung, W M

    2000-11-02

    Recent studies showed that daidzin suppresses ethanol intake in ethanol-preferring laboratory animals. In vitro, it potently and selectively inhibits the mitochondrial aldehyde dehydrogenase (ALDH-2). Further, it inhibits the conversion of monoamines such as serotonin (5-HT) and dopamine (DA) into their respective acid metabolites, 5-hydroxyindole-3-acetic acid (5-HIAA) and 3,4-dihydroxyphenylacetic acid (DOPAC) in isolated hamster or rat liver mitochondria. Studies on the suppression of ethanol intake and inhibition of 5-HIAA (or DOPAC) formation by six structural analogues of daidzin suggested a potential link between these two activities. This, together with the finding that daidzin does not affect the rates of mitochondria-catalyzed oxidative deamination of these monoamines, raised the possibility that the ethanol intake-suppressive (antidipsotropic) action of daidzin is not mediated by the monoamines but rather by their reactive biogenic aldehyde intermediates such as 5-hydroxyindole-3-acetaldehyde (5-HIAL) and/or 3,4-dihydroxyphenylacetaldehyde (DOPAL) which accumulate in the presence of daidzin. To further evaluate this possibility, we synthesized more structural analogues of daidzin and tested and compared their antidipsotropic activities in Syrian golden hamsters with their effects on monoamine metabolism in isolated hamster liver mitochondria using 5-HT as the substrate. Effects of daidzin and its structural analogues on the activities of monoamine oxidase (MAO) and ALDH-2, the key enzymes involved in 5-HT metabolism in the mitochondria, were also examined. Results from these studies reveal a positive correlation between the antidipsotropic activities of these analogues and their abilities to increase 5-HIAL accumulation during 5-HT metabolism in isolated hamster liver mitochondria. Daidzin analogues that potently inhibit ALDH-2 but have no or little effect on MAO are most antidipsotropic, whereas those that also potently inhibit MAO exhibit little, if

  19. [Experimental research on alcohols, aldehydes, aromatic hydrocarbons and olefins emissions from alcohols fuelled vehicles].

    PubMed

    Zhang, Fan; Wang, Jian-Hai; Wang, Xiao-Cheng; Wang, Jian-Xin

    2013-07-01

    Using two vehicles fuelled with pure gasoline, M15, M30 and pure gasoline, E10, E20 separately, 25 degrees C normal temperature type I emission test, -7 degrees C low temperature type VI emission test and type IV evaporation emission test were carried out. FTIR, HPLC and GC-MS methods were utilized to measure alcohols, aldehydes, aromatic hydrocarbons and olefins emissions. The test results indicate that at the low as well as normal ambient temperature, as the alcohols proportion increasing in the fuel, unburned methanol, formaldehyde, acetaldehyde increase proportionally, benzene, toluene, ethylene, propylene, 1,3-butadiene and isobutene decrease slightly. The unregulated emissions at the low ambient temperature are significantly higher than those at the normal ambient temperature. The difference of HC emissions in the entire process of evaporative emission tests of E10, gasoline and M15 fuels is slight. There is a small difference of unregulated emissions in the diurnal test of three fuels.

  20. Characterization of an Arxula adeninivorans alcohol dehydrogenase involved in the metabolism of ethanol and 1-butanol.

    PubMed

    Kasprzak, Jakub; Rauter, Marion; Riechen, Jan; Worch, Sebastian; Baronian, Kim; Bode, Rüdiger; Schauer, Frieder; Kunze, Gotthard

    2016-05-01

    In this study, alcohol dehydrogenase 1 from Arxula adeninivorans (Aadh1p) was identified and characterized. Aadh1p showed activity with short and medium chain length primary alcohols in the forward reaction and their aldehydes in the reverse reaction. Aadh1p has 64% identity with Saccharomyces cerevisiae Adh1p, is localized in the cytoplasm and uses NAD(+) as cofactor. Gene expression analysis showed a low level increase in AADH1 gene expression with ethanol, pyruvate or xylose as the carbon source. Deletion of the AADH1 gene affects growth of the cells with 1-butanol, ethanol and glucose as the carbon source, and a strain which overexpressed the AADH1 gene metabolized 1-butanol more rapidly. An ADH activity assay indicated that Aadh1p is a major enzyme for the synthesis of ethanol and the degradation of 1-butanol in A. adeninivorans.

  1. [Thermal stability of lactate dehydrogenase and alcohol dehydrogenase incorporated into highly concentrated gels].

    PubMed

    Kulis, Iu Iu

    1979-03-01

    The rate constants for inactivation of lactate dehydrogenase and alcohol dehydrogenase in solution at 65 degrees C (pH 7,5) are 0,72 and 0,013 min-1, respectively. The enzyme incorporation into acrylamide gels results in immobilized enzymes, whose residual activity is 18--25% of the original one. In 6,7% gels the rate of thermal inactivation for lactate dehydrogenase is decreased nearly 10-fold, whereas the inactivation rate for alcohol dehydrogenase is increased 4,6-fold as compared to the soluble enzymes. In 14% and 40% gels the inactivation constants for lactate dehydrogenase are 6,3.10(-3) and 5,9.10(-4) min-1, respectively. In 60% gels the thermal inactivation of lactate dehydrogenase is decelerated 3600-fold as compared to the native enzyme. The enthalpy and enthropy for the inactivation of the native enzyme are equal to 62,8 kcal/mole and 116,9 cal/(mole.grad.) for the native enzyme and those of gel-incorporated (6,7%) enzyme -- 38,7 kcal/mole and 42 cal/(mole.grad.), respectively. The thermal stability of alcohol dehydrogenase in 60% gels is increased 12-fold. To prevent gel swelling, methacrylic acid and allylamine were added to the matrix, with subsequent treatment by dicyclohexylcarbodiimide. The enzyme activity of the modified gels is 2,7--3% of that for the 6,7% gels. The stability of lactate dehydrogenase in such gels is significantly increased. A mechanism of stabilization of the subunit enzymes in highly concentrated gels is discussed.

  2. NOTCH-induced aldehyde dehydrogenase 1A1 deacetylation promotes breast cancer stem cells.

    PubMed

    Zhao, Di; Mo, Yan; Li, Meng-Tian; Zou, Shao-Wu; Cheng, Zhou-Li; Sun, Yi-Ping; Xiong, Yue; Guan, Kun-Liang; Lei, Qun-Ying

    2014-12-01

    High aldehyde dehydrogenase (ALDH) activity is a marker commonly used to isolate stem cells, particularly breast cancer stem cells (CSCs). Here, we determined that ALDH1A1 activity is inhibited by acetylation of lysine 353 (K353) and that acetyltransferase P300/CBP-associated factor (PCAF) and deacetylase sirtuin 2 (SIRT2) are responsible for regulating the acetylation state of ALDH1A1 K353. Evaluation of breast carcinoma tissues from patients revealed that cells with high ALDH1 activity have low ALDH1A1 acetylation and are capable of self-renewal. Acetylation of ALDH1A1 inhibited both the stem cell population and self-renewal properties in breast cancer. Moreover, NOTCH signaling activated ALDH1A1 through the induction of SIRT2, leading to ALDH1A1 deacetylation and enzymatic activation to promote breast CSCs. In breast cancer xenograft models, replacement of endogenous ALDH1A1 with an acetylation mimetic mutant inhibited tumorigenesis and tumor growth. Together, the results from our study reveal a function and mechanism of ALDH1A1 acetylation in regulating breast CSCs.

  3. Vasodilatory effect of nitroglycerin in Japanese subjects with different aldehyde dehydrogenase 2 (ALDH2) genotypes.

    PubMed

    Miura, Takeshi; Nishinaka, Toru; Terada, Tomoyuki; Yonezawa, Kazuya

    2017-03-23

    The functional genetic polymorphism of aldehyde dehydrogenase 2 (ALDH2) influences the enzymatic activities of its wild type (Glu504 encoded by ALDH2*1) and mutant type (Lys504 encoded by ALDH2*2) proteins. The enzymatic activities of mutant-type ALDH2 are limited compared with those of the wild type. ALDH2 has been suggested as a critical factor for nitroglycerin-mediated vasodilation by some human studies and in vitro studies. Currently, there is no research on direct observations of the vasodilatory effect of nitroglycerin sublingual tablets, which is the generally used dosage form. In the present study, the contribution of ALDH2 to the vasodilatory effect of nitroglycerin sublingual tablets was investigated among three genotype groups (ALDH2*1/*1, ALDH2*1/*2, and ALDH2*2/*2) in Japanese. The results by direct assessments of in vivo nitroglycerin-mediated dilation showed no apparent difference in vasodilation among all genotypes of ALDH2. Furthermore, to analyze the effect of other factors (age and flow-mediated dilation), multiple regression analysis and Pearson's correlation coefficient analysis were carried out. These analyses also indicated that the genotypes of ALDH2 were not related to the degree of vasodilation. These results suggest the existence of other predominant pathway(s) for nitroglycerin biotransformation, at least with regard to clinical nitroglycerin (e.g., a sublingual tablet) in Japanese subjects.

  4. Aldehyde dehydrogenase 2 is associated with cognitive functions in patients with Parkinson’s disease

    PubMed Central

    Yu, Rwei-Ling; Tan, Chun-Hsiang; Lu, Ying-Che; Wu, Ruey-Meei

    2016-01-01

    Neurotransmitter degradation has been proposed to cause the accumulation of neurotoxic metabolites. The metabolism of these metabolites involves aldehyde dehydrogenase 2 (ALDH2). The Asian-specific single nucleotide polymorphism rs671 causes reduced enzyme activity. This study aims to explore whether Parkinson’s disease (PD) patients with reduced ALDH2 activity owing to the rs671 polymorphism are at risk for neuropsychological impairments. A total of 139 PD patients were recruited. Each participant was assessed for medical characteristics and their ALDH2 genotype. The Mini-Mental State Examination (MMSE), the Clinical Dementia Rating Scale and the Frontal Behavioral Inventory were used to measure neuropsychological functions. We found that the MMSE scores were significantly lower in patients with inactive ALDH2 (U = 1873.5, p = 0.02). The presence of cognitive impairments was significantly more frequent in the inactive ALDH2 group (46.0%) than in the active ALDH2 group (26.3%) (χ2 = 5.886, p = 0.01). The inactive group showed significant deterioration in hobbies and exhibited more severe “disorganization” and “hyper-sexuality” behaviours. The additive effects of the allele on the development of cognitive impairments in PD patients may be an important finding that provides further insight into the pathogenic mechanism of cognitive dysfunction in PD. PMID:27453488

  5. Crystal structure of human aldehyde dehydrogenase 1A3 complexed with NAD+ and retinoic acid

    PubMed Central

    Moretti, Andrea; Li, Jianfeng; Donini, Stefano; Sobol, Robert W.; Rizzi, Menico; Garavaglia, Silvia

    2016-01-01

    The aldehyde dehydrogenase family 1 member A3 (ALDH1A3) catalyzes the oxidation of retinal to the pleiotropic factor retinoic acid using NAD+. The level of ALDHs enzymatic activity has been used as a cancer stem cell marker and seems to correlate with tumour aggressiveness. Elevated ALDH1A3 expression in mesenchymal glioma stem cells highlights the potential of this isozyme as a prognosis marker and drug target. Here we report the first crystal structure of human ALDH1A3 complexed with NAD+ and the product all-trans retinoic acid (REA). The tetrameric ALDH1A3 folds into a three domain-based architecture highly conserved along the ALDHs family. The structural analysis revealed two different and coupled conformations for NAD+ and REA that we propose to represent two snapshots along the catalytic cycle. Indeed, the isoprenic moiety of REA points either toward the active site cysteine, or moves away adopting the product release conformation. Although ALDH1A3 shares high sequence identity with other members of the ALDH1A family, our structural analysis revealed few peculiar residues in the 1A3 isozyme active site. Our data provide information into the ALDH1As catalytic process and can be used for the structure-based design of selective inhibitors of potential medical interest. PMID:27759097

  6. Aldehyde dehydrogenase 1a3 defines a subset of failing pancreatic β cells in diabetic mice

    PubMed Central

    Kim-Muller, Ja Young; Fan, Jason; Kim, Young Jung R.; Lee, Seung-Ah; Ishida, Emi; Blaner, William S.; Accili, Domenico

    2016-01-01

    Insulin-producing β cells become dedifferentiated during diabetes progression. An impaired ability to select substrates for oxidative phosphorylation, or metabolic inflexibility, initiates progression from β-cell dysfunction to β-cell dedifferentiation. The identification of pathways involved in dedifferentiation may provide clues to its reversal. Here we isolate and functionally characterize failing β cells from various experimental models of diabetes and report a striking enrichment in the expression of aldehyde dehydrogenase 1 isoform A3 (ALDH+) as β cells become dedifferentiated. Flow-sorted ALDH+ islet cells demonstrate impaired glucose-induced insulin secretion, are depleted of Foxo1 and MafA, and include a Neurogenin3-positive subset. RNA sequencing analysis demonstrates that ALDH+ cells are characterized by: (i) impaired oxidative phosphorylation and mitochondrial complex I, IV and V; (ii) activated RICTOR; and (iii) progenitor cell markers. We propose that impaired mitochondrial function marks the progression from metabolic inflexibility to dedifferentiation in the natural history of β-cell failure. PMID:27572106

  7. Aldehyde dehydrogenase variation enhances effect of pesticides associated with Parkinson disease

    PubMed Central

    Fitzmaurice, Arthur G.; Rhodes, Shannon L.; Cockburn, Myles; Ritz, Beate

    2014-01-01

    Objective: The objective of this study was to determine whether environmental and genetic alterations of neuronal aldehyde dehydrogenase (ALDH) enzymes were associated with increased Parkinson disease (PD) risk in an epidemiologic study. Methods: A novel ex vivo assay was developed to identify pesticides that can inhibit neuronal ALDH activity. These were investigated for PD associations in a population-based case-control study, the Parkinson's Environment & Genes (PEG) Study. Common variants in the mitochondrial ALDH2 gene were genotyped to assess effect measure modification (statistical interaction) of the pesticide effects by genetic variation. Results: All of the metal-coordinating dithiocarbamates tested (e.g., maneb, ziram), 2 imidazoles (benomyl, triflumizole), 2 dicarboxymides (captan, folpet), and 1 organochlorine (dieldrin) inhibited ALDH activity, potentially via metabolic byproducts (e.g., carbon disulfide, thiophosgene). Fifteen screened pesticides did not inhibit ALDH. Exposures to ALDH-inhibiting pesticides were associated with 2- to 6-fold increases in PD risk; genetic variation in ALDH2 exacerbated PD risk in subjects exposed to ALDH-inhibiting pesticides. Conclusion: ALDH inhibition appears to be an important mechanism through which environmental toxicants contribute to PD pathogenesis, especially in genetically vulnerable individuals, suggesting several potential interventions to reduce PD occurrence or slow or reverse its progression. PMID:24491970

  8. Daidzin inhibits mitochondrial aldehyde dehydrogenase and suppresses ethanol intake of Syrian golden hamsters.

    PubMed

    Keung, W M; Klyosov, A A; Vallee, B L

    1997-03-04

    Daidzin is the major active principle in extracts of radix puerariae, a traditional Chinese medication that suppresses the ethanol intake of Syrian golden hamsters. It is the first isoflavone recognized to have this effect. Daidzin is also a potent and selective inhibitor of human mitochondrial aldehyde dehydrogenase (ALDH-2). To establish a link between these two activities, we have tested a series of synthetic structural analogs of daidzin. The results demonstrate a direct correlation between ALDH-2 inhibition and ethanol intake suppression and raise the possibility that daidzin may, in fact, suppress ethanol intake of golden hamsters by inhibiting ALDH-2. Hamster liver contains not only mitochondrial ALDH-2 but also high concentrations of a cytosolic form, ALDH-1, which is a very efficient catalyst of acetaldehyde oxidation. Further, the cytosolic isozyme is completely resistant to daidzin inhibition. This unusual property of the hamster ALDH-1 isozyme accounts for the fact we previously observed that daidzin can suppress ethanol intake of this species without blocking acetaldehyde metabolism. Thus, the mechanism by which daidzin suppresses ethanol intake in golden hamsters clearly differs from that proposed for the classic ALDH inhibitor disulfiram. We postulate that a physiological pathway catalyzed by ALDH-2, so far undefined, controls ethanol intake of golden hamsters and mediates the antidipsotropic effect of daidzin.

  9. Identification of Tumor Endothelial Cells with High Aldehyde Dehydrogenase Activity and a Highly Angiogenic Phenotype

    PubMed Central

    Maishi, Nako; Ohga, Noritaka; Hida, Yasuhiro; Kawamoto, Taisuke; Iida, Junichiro; Shindoh, Masanobu; Tsuchiya, Kunihiko; Shinohara, Nobuo; Hida, Kyoko

    2014-01-01

    Tumor blood vessels play an important role in tumor progression and metastasis. It has been reported that tumor endothelial cells (TECs) exhibit highly angiogenic phenotypes compared with those of normal endothelial cells (NECs). TECs show higher proliferative and migratory abilities than those NECs, together with upregulation of vascular endothelial growth factor (VEGF) and VEGF receptor 2 (VEGFR2). Furthermore, compared with NECs, stem cell markers such as Sca-1, CD90, and multidrug resistance 1 are upregulated in TECs, suggesting that stem-like cells exist in tumor blood vessels. In this study, to reveal the biological role of stem-like TECs, we analyzed expression of the stem cell marker aldehyde dehydrogenase (ALDH) in TECs and characterized ALDHhigh TECs. TECs and NECs were isolated from melanoma-xenografted nude mice and normal dermis, respectively. ALDH mRNA expression and activity were higher in TECs than those in NECs. Next, ALDHhigh/low TECs were isolated by fluorescence-activated cell sorting to compare their characteristics. Compared with ALDHlow TECs, ALDHhigh TECs formed more tubes on Matrigel-coated plates and sustained the tubular networks longer. Furthermore, VEGFR2 expression was higher in ALDHhigh TECs than that in ALDHlow TECs. In addition, ALDH was expressed in the tumor blood vessels of in vivo mouse models of melanoma and oral carcinoma, but not in normal blood vessels. These findings indicate that ALDHhigh TECs exhibit an angiogenic phenotype. Stem-like TECs may have an essential role in tumor angiogenesis. PMID:25437864

  10. Roles of histamine on the expression of aldehyde dehydrogenase 1 in endometrioid adenocarcinoma cell line.

    PubMed

    Wang, Yi; Jiang, Yang; Ikeda, Jun-Ichiro; Tian, Tian; Sato, Atsushi; Ohtsu, Hiroshi; Morii, Eiichi

    2014-10-01

    Cancer-initiating cells (CICs) are a limited number of cells that are essential for maintenance, recurrence, and metastasis of tumors. Aldehyde dehydrogenase 1 (ALDH1) has been recognized as a marker of CICs. We previously reported that ALDH1-high cases of uterine endometrioid adenocarcinoma showed poor prognosis, and that ALDH1 high population was more tumorigenic, invasive, and resistant to apoptosis than ALDH1 low population. Histamine plays a critical role in cancer cell proliferation, migration, and invasion. Here, we examined the effect of histamine on ALDH1 expression in endometrioid adenocarcinoma cell line. The addition of histamine increased ALDH1 high population, which was consistent with the result that histamine enhanced the invasive ability and the resistance to anticancer drug. Among 4 types of histamine receptors, histamine H1 and H2 receptor (H1R and H2R) were expressed in endometrioid adenocarcinoma cell line. The addition of H1R agonist but not H2R agonist increased ALDH1. The antagonist H1R but not H2R inhibited the effect of histamine on ALDH1 expression. These results indicated that histamine increased the expression of ALDH1 via H1R but not H2R. These findings may provide the evidence for exploring a new strategy to suppress CICs by inhibiting ALDH1 expression with histamine.

  11. Aldehyde dehydrogenase 1 positive glioblastoma cells show brain tumor stem cell capacity.

    PubMed

    Rasper, Michael; Schäfer, Andrea; Piontek, Guido; Teufel, Julian; Brockhoff, Gero; Ringel, Florian; Heindl, Stefan; Zimmer, Claus; Schlegel, Jürgen

    2010-10-01

    Glioblastoma (GBM) is the most aggressive primary brain tumor and is resistant to all therapeutic regimens. Relapse occurs regularly and might be caused by a poorly characterized tumor stem cell (TSC) subpopulation escaping therapy. We suggest aldehyde dehydrogenase 1 (ALDH1) as a novel stem cell marker in human GBM. Using the neurosphere formation assay as a functional method to identify brain TSCs, we show that high protein levels of ALDH1 facilitate neurosphere formation in established GBM cell lines. Even single ALDH1 positive cells give rise to colonies and neurospheres. Consequently, the inhibition of ALDH1 in vitro decreases both the number of neurospheres and their size. Cell lines without expression of ALDH1 do not form tumor spheroids under the same culturing conditions. High levels of ALDH1 seem to keep tumor cells in an undifferentiated, stem cell-like state indicated by the low expression of beta-III-tubulin. In contrast, ALDH1 inhibition induces premature cellular differentiation and reduces clonogenic capacity. Primary cell cultures obtained from fresh tumor samples approve the established GBM cell line results.

  12. Rotenone Decreases Intracellular Aldehyde Dehydrogenase Activity: Implications for the Pathogenesis of Parkinson Disease

    PubMed Central

    Goldstein, David S.; Sullivan, Patti; Cooney, Adele; Jinsmaa, Yunden; Kopin, Irwin J.; Sharabi, Yehonatan

    2015-01-01

    Repeated systemic administration of the mitochondrial complex I inhibitor rotenone produces a rodent model of Parkinson disease (PD). Mechanisms of relatively selective rotenone-induced damage to nigrostriatal dopaminergic neurons remain incompletely understood. According to the “catecholaldehyde hypothesis,” buildup of the autotoxic dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL) contributes to PD pathogenesis. Vesicular uptake blockade increases DOPAL levels, and DOPAL is detoxified mainly by aldehyde dehydrogenase (ALDH). We tested whether rotenone interferes with vesicular uptake and intracellular ALDH activity. Endogenous and F-labeled catechols were measured in PC12 cells incubated with rotenone (0-1000 nM, 180 minutes), without or with F-dopamine (2 μM) to track vesicular uptake and catecholamine metabolism. Rotenone dose-dependently increased DOPAL, F-DOPAL, and 3,4-dihydroxyphenylethanol (DOPET) levels while decreasing dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) levels and the ratio of dopamine to the sum of its deaminated metabolites. In test tubes, rotenone did not affect conversion of DOPAL to DOPAC by ALDH when NAD+ was supplied, whereas the direct-acting ALDH inhibitor benomyl markedly increased DOPAL and decreased DOPAC concentrations in the reaction mixtures. We propose that rotenone builds up intracellular DOPAL by decreasing ALDH activity and attenuating vesicular sequestration of cytoplasmic catecholamines. The results provide a novel mechanism for selective rotenone-induced toxicity in dopaminergic neurons. PMID:25645689

  13. Cloning and heterologous expression of two aryl-aldehyde dehydrogenases from the white-rot basidiomycete Phanerochaete chrysosporium

    SciTech Connect

    Nakamura, Tomofumi; Ichinose, Hirofumi; Wariishi, Hiroyuki

    2010-04-09

    We identified two aryl-aldehyde dehydrogenase proteins (PcALDH1 and PcALDH2) from the white-rot basidiomycete Phanerochaete chrysosporium. Both PcALDHs were translationally up-regulated in response to exogenous addition of vanillin, one of the key aromatic compounds in the pathway of lignin degradation by basidiomycetes. To clarify the catalytic functions of PcALDHs, we isolated full-length cDNAs encoding these proteins and heterologously expressed the recombinant enzymes using a pET/Escherichia coli system. The open reading frames of both PcALDH1 and PcALDH2 consisted of 1503 nucleotides. The deduced amino acid sequences of both proteins showed high homologies with aryl-aldehyde dehydrogenases from other organisms and contained ten conserved domains of ALDHs. Moreover, a novel glycine-rich motif 'GxGxxxG' was located at the NAD{sup +}-binding site. The recombinant PcALDHs catalyzed dehydrogenation reactions of several aryl-aldehyde compounds, including vanillin, to their corresponding aromatic acids. These results strongly suggested that PcALDHs metabolize aryl-aldehyde compounds generated during fungal degradation of lignin and various aromatic xenobiotics.

  14. Ethanol production by the hyperthermophilic archaeon Pyrococcus furiosus by expression of bacterial bifunctional alcohol dehydrogenases.

    PubMed

    Keller, Matthew W; Lipscomb, Gina L; Nguyen, Diep M; Crowley, Alexander T; Schut, Gerrit J; Scott, Israel; Kelly, Robert M; Adams, Michael W W

    2017-02-14

    Ethanol is an important target for the renewable production of liquid transportation fuels. It can be produced biologically from pyruvate, via pyruvate decarboxylase, or from acetyl-CoA, by alcohol dehydrogenase E (AdhE). Thermophilic bacteria utilize AdhE, which is a bifunctional enzyme that contains both acetaldehyde dehydrogenase and alcohol dehydrogenase activities. Many of these organisms also contain a separate alcohol dehydrogenase (AdhA) that generates ethanol from acetaldehyde, although the role of AdhA in ethanol production is typically not clear. As acetyl-CoA is a key central metabolite that can be generated from a wide range of substrates, AdhE can serve as a single gene fuel module to produce ethanol through primary metabolic pathways. The focus here is on the hyperthermophilic archaeon Pyrococcus furiosus, which grows by fermenting sugar to acetate, CO2 and H2 . Previously, by the heterologous expression of adhA from a thermophilic bacterium, P. furiosus was shown to produce ethanol by a novel mechanism from acetate, mediated by AdhA and the native enzyme aldehyde oxidoreductase (AOR). In this study, the AOR gene was deleted from P. furiosus to evaluate ethanol production directly from acetyl-CoA by heterologous expression of the adhE gene from eight thermophilic bacteria. Only AdhEs from two Thermoanaerobacter strains showed significant activity in cell-free extracts of recombinant P. furiosus and supported ethanol production in vivo. In the AOR deletion background, the highest amount of ethanol (estimated 61% theoretical yield) was produced when adhE and adhA from Thermoanaerobacter were co-expressed.

  15. Structural shifts of aldehyde dehydrogenase enzymes were instrumental for the early evolution of retinoid-dependent axial patterning in metazoans

    PubMed Central

    Sobreira, Tiago J. P.; Marlétaz, Ferdinand; Simões-Costa, Marcos; Schechtman, Deborah; Pereira, Alexandre C.; Brunet, Frédéric; Sweeney, Sarah; Pani, Ariel; Aronowicz, Jochanan; Lowe, Christopher J.; Davidson, Bradley; Laudet, Vincent; Bronner, Marianne; de Oliveira, Paulo S. L.; Schubert, Michael; Xavier-Neto, José

    2011-01-01

    Aldehyde dehydrogenases (ALDHs) catabolize toxic aldehydes and process the vitamin A-derived retinaldehyde into retinoic acid (RA), a small diffusible molecule and a pivotal chordate morphogen. In this study, we combine phylogenetic, structural, genomic, and developmental gene expression analyses to examine the evolutionary origins of ALDH substrate preference. Structural modeling reveals that processing of small aldehydes, such as acetaldehyde, by ALDH2, versus large aldehydes, including retinaldehyde, by ALDH1A is associated with small versus large substrate entry channels (SECs), respectively. Moreover, we show that metazoan ALDH1s and ALDH2s are members of a single ALDH1/2 clade and that during evolution, eukaryote ALDH1/2s often switched between large and small SECs after gene duplication, transforming constricted channels into wide opened ones and vice versa. Ancestral sequence reconstructions suggest that during the evolutionary emergence of RA signaling, the ancestral, narrow-channeled metazoan ALDH1/2 gave rise to large ALDH1 channels capable of accommodating bulky aldehydes, such as retinaldehyde, supporting the view that retinoid-dependent signaling arose from ancestral cellular detoxification mechanisms. Our analyses also indicate that, on a more restricted evolutionary scale, ALDH1 duplicates from invertebrate chordates (amphioxus and ascidian tunicates) underwent switches to smaller and narrower SECs. When combined with alterations in gene expression, these switches led to neofunctionalization from ALDH1-like roles in embryonic patterning to systemic, ALDH2-like roles, suggesting functional shifts from signaling to detoxification. PMID:21169504

  16. Inhibitory effects of terpene alcohols and aldehydes on growth of green alga Chlorella pyrenoidosa

    SciTech Connect

    Ikawa, Miyoshi; Mosley, S.P.; Barbero, L.J. )

    1992-10-01

    The growth of the green alga Chlorella pyrenoidosa was inhibited by terpene alcohols and the terpene aldehyde citral. The strongest activity was shown by citral. Nerol, geraniol, and citronellol also showed pronounced activity. Strong inhibition was linked to acyclic terpenes containing a primary alcohol or aldehyde function. Inhibition appeared to be taking place through the vapor phase rather than by diffusion through the agar medium from the terpene-treated paper disks used in the system. Inhibition through agar diffusion was shown by certain aged samples of terpene hydrocarbons but not by recently purchased samples.

  17. Phylogeny and structure of the cinnamyl alcohol dehydrogenase gene family in Brachypodium distachyon

    PubMed Central

    Bukh, Christian; Nord-Larsen, Pia Haugaard; Rasmussen, Søren K.

    2012-01-01

    Cinnamyl alcohol dehydrogenase (CAD) catalyses the final step of the monolignol biosynthesis, the conversion of cinnamyl aldehydes to alcohols, using NADPH as a cofactor. Seven members of the CAD gene family were identified in the genome of Brachypodium distachyon and five of these were isolated and cloned from genomic DNA. Semi-quantitative reverse-transcription PCR revealed differential expression of the cloned genes, with BdCAD5 being expressed in all tissues and highest in root and stem while BdCAD3 was only expressed in stem and spikes. A phylogenetic analysis of CAD-like proteins placed BdCAD5 on the same branch as bona fide CAD proteins from maize (ZmCAD2), rice (OsCAD2), sorghum (SbCAD2) and Arabidopsis (AtCAD4, 5). The predicted three-dimensional structures of both BdCAD3 and BdCAD5 resemble that of AtCAD5. However, the amino-acid residues in the substrate-binding domains of BdCAD3 and BdCAD5 are distributed symmetrically and BdCAD3 is similar to that of poplar sinapyl alcohol dehydrogenase (PotSAD). BdCAD3 and BdCAD5 expressed and purified from Escherichia coli both showed a temperature optimum of about 50 °C and molar weight of 49kDa. The optimal pH for the reduction of coniferyl aldehyde were pH 5.2 and 6.2 and the pH for the oxidation of coniferyl alcohol were pH 8 and 9.5, for BdCAD3 and BdCAD5 respectively. Kinetic parameters for conversion of coniferyl aldehyde and coniferyl alcohol showed that BdCAD5 was clearly the most efficient enzyme of the two. These data suggest that BdCAD5 is the main CAD enzyme for lignin biosynthesis and that BdCAD3 has a different role in Brachypodium. All CAD enzymes are cytosolic except for BdCAD4, which has a putative chloroplast signal peptide adding to the diversity of CAD functions. PMID:23028019

  18. Isolation and characterization of full-length putative alcohol dehydrogenase genes from polygonum minus

    NASA Astrophysics Data System (ADS)

    Hamid, Nur Athirah Abd; Ismail, Ismanizan

    2013-11-01

    Polygonum minus, locally named as Kesum is an aromatic herb which is high in secondary metabolite content. Alcohol dehydrogenase is an important enzyme that catalyzes the reversible oxidation of alcohol and aldehyde with the presence of NAD(P)(H) as co-factor. The main focus of this research is to identify the gene of ADH. The total RNA was extracted from leaves of P. minus which was treated with 150 μM Jasmonic acid. Full-length cDNA sequence of ADH was isolated via rapid amplification cDNA end (RACE). Subsequently, in silico analysis was conducted on the full-length cDNA sequence and PCR was done on genomic DNA to determine the exon and intron organization. Two sequences of ADH, designated as PmADH1 and PmADH2 were successfully isolated. Both sequences have ORF of 801 bp which encode 266 aa residues. Nucleotide sequence comparison of PmADH1 and PmADH2 indicated that both sequences are highly similar at the ORF region but divergent in the 3' untranslated regions (UTR). The amino acid is differ at the 107 residue; PmADH1 contains Gly (G) residue while PmADH2 contains Cys (C) residue. The intron-exon organization pattern of both sequences are also same, with 3 introns and 4 exons. Based on in silico analysis, both sequences contain "classical" short chain alcohol dehydrogenases/reductases ((c) SDRs) conserved domain. The results suggest that both sequences are the members of short chain alcohol dehydrogenase family.

  19. Cloning, expression, functional validation and modeling of cinnamyl alcohol dehydrogenase isolated from xylem of Leucaena leucocephala.

    PubMed

    Pandey, Brijesh; Pandey, Veda Prakash; Dwivedi, Upendra Nath

    2011-10-01

    A cDNA encoding cinnamyl alcohol dehydrogenase (CAD), catalyzing conversion of cinnamyl aldehydes to corresponding cinnamyl alcohols, was cloned from secondary xylem of Leucaena leucocephala. The cloned cDNA was expressed in Escherichia coli BL21 (DE3) pLysS cells. Temperature and Zn(2+) ion played crucial role in expression and activity of enzyme, such that, at 18°C and at 2 mM Zn(2+) the CAD was maximally expressed as active enzyme in soluble fraction. The expressed protein was purified 14.78-folds to homogeneity on Ni-NTA agarose column with specific activity of 346 nkat/mg protein. The purified enzyme exhibited lowest Km with cinnamyl alcohol (12.2 μM) followed by coniferyl (18.1 μM) and sinapyl alcohol (23.8 μM). Enzyme exhibited high substrate inhibition with cinnamyl (beyond 20 μM) and coniferyl (beyond 100 μM) alcohols. The in silico analysis of CAD protein exhibited four characteristic consensus sequences, GHEXXGXXXXXGXXV; C(100), C(103), C(106), C(114); GXGXXG and C(47), S(49), H(69), L(95), C(163), I(300) involved in catalytic Zn(2+) binding, structural Zn(2+) binding, NADP(+) binding and substrate binding, respectively. Tertiary structure, generated using Modeller 9v5, exhibited a trilobed structure with bulged out structural Zn(2+) binding domain. The catalytic Zn(2+) binding, substrate binding and NADP(+) binding domains formed a pocket protected by two major lobes. The enzyme catalysis, sequence homology and 3-D model, all supported that the cloned CAD belongs to alcohol dehydrogenase family of plants.

  20. Aldehyde dehydrogenase activity selects for lung adenocarcinoma stem cells dependent on notch signaling.

    PubMed

    Sullivan, James P; Spinola, Monica; Dodge, Michael; Raso, Maria G; Behrens, Carmen; Gao, Boning; Schuster, Katja; Shao, Chunli; Larsen, Jill E; Sullivan, Laura A; Honorio, Sofia; Xie, Yang; Scaglioni, Pier P; DiMaio, J Michael; Gazdar, Adi F; Shay, Jerry W; Wistuba, Ignacio I; Minna, John D

    2010-12-01

    Aldehyde dehydrogenase (ALDH) is a candidate marker for lung cancer cells with stem cell-like properties. Immunohistochemical staining of a large panel of primary non-small cell lung cancer (NSCLC) samples for ALDH1A1, ALDH3A1, and CD133 revealed a significant correlation between ALDH1A1 (but not ALDH3A1 or CD133) expression and poor prognosis in patients including those with stage I and N0 disease. Flow cytometric analysis of a panel of lung cancer cell lines and patient tumors revealed that most NSCLCs contain a subpopulation of cells with elevated ALDH activity, and that this activity is associated with ALDH1A1 expression. Isolated ALDH(+) lung cancer cells were observed to be highly tumorigenic and clonogenic as well as capable of self-renewal compared with their ALDH(-) counterparts. Expression analysis of sorted cells revealed elevated Notch pathway transcript expression in ALDH(+) cells. Suppression of the Notch pathway by treatment with either a γ-secretase inhibitor or stable expression of shRNA against NOTCH3 resulted in a significant decrease in ALDH(+) lung cancer cells, commensurate with a reduction in tumor cell proliferation and clonogenicity. Taken together, these findings indicate that ALDH selects for a subpopulation of self-renewing NSCLC stem-like cells with increased tumorigenic potential, that NSCLCs harboring tumor cells with ALDH1A1 expression have inferior prognosis, and that ALDH1A1 and CD133 identify different tumor subpopulations. Therapeutic targeting of the Notch pathway reduces this ALDH(+) component, implicating Notch signaling in lung cancer stem cell maintenance.

  1. Aldehyde dehydrogenase 3 converts farnesal into farnesoic acid in the corpora allata of mosquitoes.

    PubMed

    Rivera-Perez, Crisalejandra; Nouzova, Marcela; Clifton, Mark E; Garcia, Elena Martin; LeBlanc, Elizabeth; Noriega, Fernando G

    2013-08-01

    The juvenile hormones (JHs) play a central role in insect reproduction, development and behavior. Interrupting JH biosynthesis has long been considered a promising strategy for the development of target-specific insecticides. Using a combination of RNAi, in vivo and in vitro studies we characterized the last unknown biosynthetic enzyme of the JH pathway, a fatty aldehyde dehydrogenase (AaALDH3) that oxidizes farnesal into farnesoic acid (FA) in the corpora allata (CA) of mosquitoes. The AaALDH3 is structurally and functionally a NAD(+)-dependent class 3 ALDH showing tissue- and developmental-stage-specific splice variants. Members of the ALDH3 family play critical roles in the development of cancer and Sjögren-Larsson syndrome in humans, but have not been studies in groups other than mammals. Using a newly developed assay utilizing fluorescent tags, we demonstrated that AaALDH3 activity, as well as the concentrations of farnesol, farnesal and FA were different in CA of sugar and blood-fed females. In CA of blood-fed females the low catalytic activity of AaALDH3 limited the flux of precursors and caused a remarkable increase in the pool of farnesal with a decrease in FA and JH synthesis. The accumulation of the potentially toxic farnesal stimulated the activity of a reductase that converted farnesal back into farnesol, resulting in farnesol leaking out of the CA. Our studies indicated AaALDH3 plays a key role in the regulation of JH synthesis in blood-fed females and mosquitoes seem to have developed a "trade-off" system to balance the key role of farnesal as a JH precursor with its potential toxicity.

  2. Decreased Vesicular Storage and Aldehyde Dehydrogenase Activity in Multiple System Atrophy

    PubMed Central

    Goldstein, David S.; Sullivan, Patricia; Holmes, Courtney; Kopin, Irwin J.; Sharabi, Yehonatan; Mash, Deborah C.

    2015-01-01

    Background Parkinson disease (PD) and multiple system atrophy (MSA) share some neuropathologic findings (nigrostriatal dopaminergic lesion, alpha-synuclein deposition) but not others (Lewy bodies in PD, glial cytoplasmic inclusions in MSA). In PD evidence has accrued for a vesicular storage defect and aldehyde dehydrogenase (ALDH) inhibition in residual dopaminergic terminals, resulting in accumulation of the toxic dopamine (DA) metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL). In this study we asked whether MSA entails a similar abnormal neurochemical pattern. Methods DA and its main neuronal metabolite 3,4-dihydroxyphenylacetic acid (DOPAC), norepinephrine (NE) and its main neuronal metabolite 3,4-dihydroxyphenylglycol (DHPG), the catecholamine precursor DOPA, and DOPAL were measured in striatal and frontal cortical tissue from patients with pathologically proven end-stage MSA (N=15), sporadic PD (N=17), and control subjects (N=18). Results Compared to the control group, the MSA and PD groups had similarly decreased putamen DA (by 96% and 93%, p<0.0001), DOPAC (97% and 95%, p<0.0001), NE (91% and 74%, p<0.0001), and DHPG (81% and 74%, p<0.0001). In the MSA and PD groups, ratios of DOPAL:DA were 2.3 and 3.5 times control and DHPG:NE 3.1 and 2.6 times control, while DOPAC:DOPAL ratios were decreased by 61% and 74%. In both diseases cortical NE and DHPG were decreased, while DA and DOPAC were not. Conclusions MSA and PD entail a catecholamine metabolic profile indicating impaired vesicular storage, decreased ALDH activity, and DOPAL buildup, which may be part of a common pathway in catecholamine neuronal death. Targeting this pathway by interfering with catecholaldehyde production or effects constitutes a novel treatment approach. PMID:25829070

  3. Regulation of Human Mitochondrial Aldehyde Dehydrogenase (ALDH-2) Activity by Electrophiles in Vitro*

    PubMed Central

    Oelze, Matthias; Knorr, Maike; Schell, Richard; Kamuf, Jens; Pautz, Andrea; Art, Julia; Wenzel, Philip; Münzel, Thomas; Kleinert, Hartmut; Daiber, Andreas

    2011-01-01

    Recently, mitochondrial aldehyde dehydrogenase (ALDH-2) was reported to reduce ischemic damage in an experimental myocardial infarction model. ALDH-2 activity is redox-sensitive. Therefore, we here compared effects of various electrophiles (organic nitrates, reactive fatty acid metabolites, or oxidants) on the activity of ALDH-2 with special emphasis on organic nitrate-induced inactivation of the enzyme, the biochemical correlate of nitrate tolerance. Recombinant human ALDH-2 was overexpressed in Escherichia coli; activity was determined with an HPLC-based assay, and reactive oxygen and nitrogen species formation was determined by chemiluminescence, fluorescence, protein tyrosine nitration, and diaminonaphthalene nitrosation. The organic nitrate glyceryl trinitrate caused a severe concentration-dependent decrease in enzyme activity, whereas incubation with pentaerythritol tetranitrate had only minor effects. 4-Hydroxynonenal, an oxidized prostaglandin J2, and 9- or 10-nitrooleate caused a significant inhibition of ALDH-2 activity, which was improved in the presence of Mg2+ and Ca2+. Hydrogen peroxide and NO generation caused only minor inhibition of ALDH-2 activity, whereas peroxynitrite generation or bolus additions lead to severe impairment of the enzymatic activity, which was prevented by the thioredoxin/thioredoxin reductase (Trx/TrxR) system. In the presence of glyceryl trinitrate and to a lesser extent pentaerythritol tetranitrate, ALDH-2 may be switched to a peroxynitrite synthase. Electrophiles of different nature potently regulate the enzymatic activity of ALDH-2 and thereby may influence the resistance to ischemic damage in response to myocardial infarction. The Trx/TrxR system may play an important role in this process because it not only prevents inhibition of ALDH-2 but is also inhibited by the ALDH-2 substrate 4-hydroxynonenal. PMID:21252222

  4. Development and validation of a rapid, aldehyde dehydrogenase bright–based cord blood potency assay

    PubMed Central

    Noldner, Pamela; Troy, Jesse D.; Cheatham, Lynn; Parrish, Amanda; Page, Kristin; Gentry, Tracy; Balber, Andrew E.; Kurtzberg, Joanne

    2016-01-01

    Banked, unrelated umbilical cord blood provides access to hematopoietic stem cell transplantation for patients lacking matched bone marrow donors, yet 10% to 15% of patients experience graft failure or delayed engraftment. This may be due, at least in part, to inadequate potency of the selected cord blood unit (CBU). CBU potency is typically assessed before cryopreservation, neglecting changes in potency occurring during freezing and thawing. Colony-forming units (CFUs) have been previously shown to predict CBU potency, defined as the ability to engraft in patients by day 42 posttransplant. However, the CFU assay is difficult to standardize and requires 2 weeks to perform. Consequently, we developed a rapid multiparameter flow cytometric CBU potency assay that enumerates cells expressing high levels of the enzyme aldehyde dehydrogenase (ALDH bright [ALDHbr]), along with viable CD45+ or CD34+ cell content. These measurements are made on a segment that was attached to a cryopreserved CBU. We validated the assay with prespecified criteria testing accuracy, specificity, repeatability, intermediate precision, and linearity. We then prospectively examined the correlations among ALDHbr, CD34+, and CFU content of 3908 segments over a 5-year period. ALDHbr (r = 0.78; 95% confidence interval [CI], 0.76-0.79), but not CD34+ (r = 0.25; 95% CI, 0.22-0.28), was strongly correlated with CFU content as well as ALDHbr content of the CBU. These results suggest that the ALDHbr segment assay (based on unit characteristics measured before release) is a reliable assessment of potency that allows rapid selection and release of CBUs from the cord blood bank to the transplant center for transplantation. PMID:26968535

  5. Expanded Hematopoietic Progenitor Cells Reselected for High Aldehyde Dehydrogenase Activity Demonstrate Islet Regenerative Functions.

    PubMed

    Seneviratne, Ayesh K; Bell, Gillian I; Sherman, Stephen E; Cooper, Tyler T; Putman, David M; Hess, David A

    2016-04-01

    Human umbilical cord blood (UCB) hematopoietic progenitor cells (HPC) purified for high aldehyde dehydrogenase activity (ALDH(hi) ) stimulate islet regeneration after transplantation into mice with streptozotocin-induced β cell deletion. However, ALDH(hi) cells represent a rare progenitor subset and widespread use of UCB ALDH(hi) cells to stimulate islet regeneration will require progenitor cell expansion without loss of islet regenerative functions. Here we demonstrate that prospectively purified UCB ALDH(hi) cells expand efficiently under serum-free, xeno-free conditions with minimal growth factor supplementation. Consistent with the concept that ALDH-activity is decreased as progenitor cells differentiate, kinetic analyses over 9 days revealed the frequency of ALDH(hi) cells diminished as culture time progressed such that total ALDH(hi) cell number was maximal (increased 3-fold) at day 6. Subsequently, day 6 expanded cells (bulk cells) were sorted after culture to reselect differentiated progeny with low ALDH-activity (ALDH(lo) subset) from less differentiated progeny with high ALDH-activity (ALDH(hi) subset). The ALDH(hi) subset retained primitive cell surface marker coexpression (32.0% ± 7.0% CD34(+) /CD38(-) cells, 37.0% ± 6.9% CD34(+) /CD133(+) cells), and demonstrated increased hematopoietic colony forming cell function compared with the ALDH(lo) subset. Notably, bulk cells or ALDH(lo) cells did not possess the functional capacity to lower hyperglycemia after transplantation into streptozotocin-treated NOD/SCID mice. However, transplantation of the repurified ALDH(hi) subset significantly reduced hyperglycemia, improved glucose tolerance, and increased islet-associated cell proliferation and capillary formation. Thus, expansion and delivery of reselected UCB cells that retain high ALDH-activity after short-term culture represents an improved strategy for the development of cellular therapies to enhance islet regeneration in situ.

  6. Kinetic involvement of acetaldehyde substrate inhibition on the rate equation of yeast aldehyde dehydrogenase.

    PubMed

    Eggert, Matthew W; Byrne, Mark E; Chambers, Robert P

    2012-10-01

    In order to evaluate the effectiveness of aldehyde dehydrogenase (ALDH) from Saccharomyces cerevisiae as a catalyst for the conversion of acetaldehyde into its physiologically and biologically less toxic acetate, the kinetics over broad concentrations were studied to develop a suitable kinetic rate expression. Even with literature accounts of the binding complexations, the yeast ALDH currently lacks a quantitative kinetic rate expression accounting for simultaneous inhibition parameters under higher acetaldehyde concentrations. Both substrate acetaldehyde and product NADH were observed as individual sources of inhibition with the combined effect of a ternary complex of acetaldehyde and the coenzyme leading to experimental rates as little as an eighth of the expected activity. Furthermore, the onset and strength of inhibition from each component were directly affected by the concentration of the co-substrate NAD. While acetaldehyde inhibition of ALDH is initiated below concentrations of 0.05 mM in the presence of 0.5 mM NAD or less, the acetaldehyde inhibition onset shifts to 0.2 mM with as much as 1.6 mM NAD. The convenience of the statistical software package JMP allowed for effective determination of experimental kinetic constants and simplification to a suitable rate expression: v = Vmax(AB)/(K(ia)K(b) + K(b)A + K(a)B + AB + B(2)/K(I-Ald) + B(2)Q/K(I-Ald-NADH) + BQ/K(I-NADH)) where the last three terms represent the inhibition complex terms for acetaldehyde, acetaldehyde-NADH, and NADH, respectively. The corresponding values of K(I-Ald), K(I-Ald-NADH), and K(I-NADH) for yeast ALDH are 2.55, 0.0269, and 0.162 mM at 22 °C and pH 7.8.

  7. Aldehyde dehydrogenases inhibition eradicates leukemia stem cells while sparing normal progenitors

    PubMed Central

    Venton, G; Pérez-Alea, M; Baier, C; Fournet, G; Quash, G; Labiad, Y; Martin, G; Sanderson, F; Poullin, P; Suchon, P; Farnault, L; Nguyen, C; Brunet, C; Ceylan, I; Costello, R T

    2016-01-01

    The vast majority of patients with acute myeloid leukemia (AML) achieve complete remission (CR) after standard induction chemotherapy. However, the majority subsequently relapse and die of the disease. A leukemia stem cell (LSC) paradigm has been invoked to explain this failure of CR to reliably translate into cure. Indeed, LSCs are highly enriched in CD34+CD38− leukemic cells that exhibit positive aldehyde dehydrogenase activity (ALDH+) on flow cytometry, these LSCs are resistant to currently existing treatments in AML such as cytarabine and anthracycline that, at the cost of great toxicity on normal cells, are highly active against the leukemic bulk, but spare the LSCs responsible for relapse. To try to combat the LSC population selectively, a well-characterized ALDH inhibitor by the trivial name of dimethyl ampal thiolester (DIMATE) was assessed on sorted CD34+CD38− subpopulations from AML patients and healthy patients. ALDH activity and cell viability were monitored by flow cytometry. From enzyme kinetic studies DIMATE is an active enzyme-dependent, competitive, irreversible inhibitor of ALDH1. On cells in culture, DIMATE is a powerful inhibitor of ALDHs 1 and 3, has a major cytotoxic activity on human AML cell lines. Moreover, DIMATE is highly active against leukemic populations enriched in LSCs, but, unlike conventional chemotherapy, DIMATE is not toxic for healthy hematopoietic stem cells which retained, after treatment, their self-renewing and multi-lineage differentiation capacity in immunodeficient mice, xenografted with human leukemic cells. DIMATE eradicates specifically human AML cells and spares healthy mouse hematologic cells. PMID:27611922

  8. Serelaxin Treatment Reduces Oxidative Stress and Increases Aldehyde Dehydrogenase-2 to Attenuate Nitrate Tolerance

    PubMed Central

    Leo, Chen Huei; Fernando, Dhanushke T.; Tran, Lillie; Ng, Hooi Hooi; Marshall, Sarah A.; Parry, Laura J.

    2017-01-01

    Background: Glyceryl trinitrate (GTN) is a commonly prescribed treatment for acute heart failure patients. However, prolonged GTN treatment induces tolerance, largely due to increased oxidative stress and reduced aldehyde dehydrogenase-2 (ALDH-2) expression. Serelaxin has several vasoprotective properties, which include reducing oxidative stress and augmenting endothelial function. We therefore tested the hypothesis in rodents that serelaxin treatment could attenuate low-dose GTN-induced tolerance. Methods and Results: Co-incubation of mouse aortic rings ex vivo with GTN (10 μM) and serelaxin (10 nM) for 1 h, restored GTN responses, suggesting that serelaxin prevented the development of GTN tolerance. Male Wistar rats were subcutaneously infused with ethanol (control), low-dose GTN+placebo or low-dose GTN+serelaxin via osmotic minipumps for 3 days. Aortic vascular function and superoxide levels were assessed using wire myography and lucigenin-enhanced chemiluminescence assay respectively. Changes in aortic ALDH-2 expression were measured by qPCR and Western blot respectively. GTN+placebo infusion significantly increased superoxide levels, decreased ALDH-2 and attenuated GTN-mediated vascular relaxation. Serelaxin co-treatment with GTN significantly enhanced GTN-mediated vascular relaxation, reduced superoxide levels and increased ALDH-2 expression compared to GTN+placebo-treated rats. Conclusion: Our data demonstrate that a combination of serelaxin treatment with low dose GTN attenuates the development of GTN-induced tolerance by reducing superoxide production and increasing ALDH-2 expression in the rat aorta. We suggest that serelaxin may improve nitrate efficacy in a clinical setting. PMID:28377719

  9. Characterization of Cardiac-Resident Progenitor Cells Expressing High Aldehyde Dehydrogenase Activity

    PubMed Central

    Roehrich, Marc-Estienne; Spicher, Albert; Milano, Giuseppina; Vassalli, Giuseppe

    2013-01-01

    High aldehyde dehydrogenase (ALDH) activity has been associated with stem and progenitor cells in various tissues. Human cord blood and bone marrow ALDH-bright (ALDHbr) cells have displayed angiogenic activity in preclinical studies and have been shown to be safe in clinical trials in patients with ischemic cardiovascular disease. The presence of ALDHbr cells in the heart has not been evaluated so far. We have characterized ALDHbr cells isolated from mouse hearts. One percent of nonmyocytic cells from neonatal and adult hearts were ALDHbr. ALDHvery-br cells were more frequent in neonatal hearts than adult. ALDHbr cells were more frequent in atria than ventricles. Expression of ALDH1A1 isozyme transcripts was highest in ALDHvery-br cells, intermediate in ALDHbr cells, and lowest in ALDHdim cells. ALDH1A2 expression was highest in ALDHvery-br cells, intermediate in ALDHdim cells, and lowest in ALDHbr cells. ALDH1A3 and ALDH2 expression was detectable in ALDHvery-br and ALDHbr cells, unlike ALDHdim cells, albeit at lower levels compared with ALDH1A1 and ALDH1A2. Freshly isolated ALDHbr cells were enriched for cells expressing stem cell antigen-1, CD34, CD90, CD44, and CD106. ALDHbr cells, unlike ALDHdim cells, could be grown in culture for more than 40 passages. They expressed sarcomeric α-actinin and could be differentiated along multiple mesenchymal lineages. However, the proportion of ALDHbr cells declined with cell passage. In conclusion, the cardiac-derived ALDHbr population is enriched for progenitor cells that exhibit mesenchymal progenitor-like characteristics and can be expanded in culture. The regenerative potential of cardiac-derived ALDHbr cells remains to be evaluated. PMID:23484127

  10. Proteomic alteration of mitochondrial aldehyde dehydrogenase 2 in sepsis regulated by heat shock response.

    PubMed

    Chen, Hsiang-Wen; Kuo, Hung-Tien; Hwang, Long-Chih; Kuo, Mei-Fang; Yang, Rei-Cheng

    2007-12-01

    The present study was designed to investigate the proteomic alteration of hepatic mitochondria during sepsis and to explore the possible effects induced by heat shock treatment. Sepsis was induced by cecal ligation and puncture in Sprague-Dawley rats. Liver mitochondrial proteins were isolated and evaluated by 2-dimensional electrophoresis with broad pH-ranged (pH 3 - 10) immobile DryStrip and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The protein spots were visualized with silver stain and analyzed by Bio-2D software. Results showed that around 120 dominant spots could be separated and visualized distinctly by 2-dimensional electrophoresis analysis. Among them, three spots with the same molecular weight (56.4 kd), mitochondrial protein 1 (MP1), MP2, and MP3, were significantly altered in septic specimens. When analyzed by liquid chromatography-tandem mass spectrometry, the three spots all revealed to be an identical enzyme: aldehyde dehydrogenase 2 (ALDH2, EC 1.2.1.3). During sepsis, MP1 and MP2 were downregulated, whereas MP3 was upregulated concomitantly. Interestingly, heat shock treatment could reverse this phenomenon. Phosphoprotein staining showed that the degree of phosphorylation is higher in MP1 and MP2 than that in MP3. The enzyme activity assay showed that ALDH2 activity was downregulated in nonheated septic rats of 18 h after cecal ligation and puncture operation, and preserved in heated septic rats. The results of this study suggest that posttranslation modification, highly possible the phosphorylation, in ALDH2 may play a functional role in the pathogenesis of sepsis and provide a novel protective mechanism of heat shock treatment.

  11. Insight into Coenzyme A cofactor binding and the mechanism of acyl-transfer in an acylating aldehyde dehydrogenase from Clostridium phytofermentans

    PubMed Central

    Tuck, Laura R.; Altenbach, Kirsten; Ang, Thiau Fu; Crawshaw, Adam D.; Campopiano, Dominic J.; Clarke, David J.; Marles-Wright, Jon

    2016-01-01

    The breakdown of fucose and rhamnose released from plant cell walls by the cellulolytic soil bacterium Clostridium phytofermentans produces toxic aldehyde intermediates. To enable growth on these carbon sources, the pathway for the breakdown of fucose and rhamnose is encapsulated within a bacterial microcompartment (BMC). These proteinaceous organelles sequester the toxic aldehyde intermediates and allow the efficient action of acylating aldehyde dehydrogenase enzymes to produce an acyl-CoA that is ultimately used in substrate-level phosphorylation to produce ATP. Here we analyse the kinetics of the aldehyde dehydrogenase enzyme from the fucose/rhamnose utilisation BMC with different short-chain fatty aldehydes and show that it has activity against substrates with up to six carbon atoms, with optimal activity against propionaldehyde. We have also determined the X-ray crystal structure of this enzyme in complex with CoA and show that the adenine nucleotide of this cofactor is bound in a distinct pocket to the same group in NAD+. This work is the first report of the structure of CoA bound to an aldehyde dehydrogenase enzyme and our crystallographic model provides important insight into the differences within the active site that distinguish the acylating from non-acylating aldehyde dehydrogenase enzymes. PMID:26899032

  12. The metabolism of fatty alcohols in lipid nanoparticles by alcohol dehydrogenase.

    PubMed

    Dong, X; Mumper, R J

    2006-09-01

    Fatty alcohols are commonly used in lipid-based drug delivery systems including parenteral emulsions and solid lipid nanoparticles (NPs). The purpose of these studies was to determine whether horse liver alcohol dehydrogenase (HLADH), a NAD-dependent enzyme, could metabolize the fatty alcohols within the NPs and thus serve as a mechanism to degrade these NPs in the body. Solid nanoparticles (<100 nm) were engineered from oil-in-water microemulsion precursors using emulsifying wax NF as the oil phase and polyoxyethylene 20-stearyl ether (Brij 78) as the surfactant. Emulsifying wax contains both cetyl and stearyl alcohols. NPs were incubated with the enzyme and NAD+ at 37 degrees C for up to 48 h, and the concentrations of fatty alcohols were quantitatively determined over time by gas chromatography (GC). The concentrations of cetyl alcohol and stearyl alcohol within the NPs decreased to only 10-20% remaining after 15-24 h of incubation. In parallel, NP size, turbidity and the fluorescence intensity of NADH all increased over time. It was concluded that horse liver alcohol dehydrogenase/NAD+ was able to metabolize the fatty alcohols within the NPs, suggesting that NPs made of fatty alcohols may be metabolized in the body via endogenous alcohol dehydrogenase enzyme systems.

  13. Selective deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo2C) surfaces

    NASA Astrophysics Data System (ADS)

    Xiong, Ke; Yu, Weiting; Chen, Jingguang G.

    2014-12-01

    The selective deoxygenation of aldehydes and alcohols without cleaving the Csbnd C bond is crucial for upgrading bio-oil and other biomass-derived molecules to useful fuels and chemicals. In this work, propanal, 1-propanol, furfural and furfuryl alcohol were selected as probe molecules to study the deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo2C) prepared over a Mo(1 1 0) surface. The reaction pathways were investigated using temperature programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS). The deoxygenation of propanal and 1-propanol went through a similar intermediate (propoxide or η2(C,O)-propanal) to produce propene. The deoxygenation of furfural and furfuryl alcohol produced a surface intermediate similar to adsorbed 2-methylfuran. The comparison of these results revealed the promising deoxygenation performance of Mo2C, as well as the effect of the furan ring on the selective deoxygenation of the Cdbnd O and Csbnd OH bonds.

  14. Enzymic and structural studies on Drosophila alcohol dehydrogenase and other short-chain dehydrogenases/reductases.

    PubMed

    Smilda, T; Kamminga, A H; Reinders, P; Baron, W; van Hylckama Vlieg, J E; Beintema, J J

    2001-05-01

    Enzymic and structural studies on Drosophila alcohol dehydrogenases and other short-chain dehydrogenases/reductases (SDRs) are presented. Like alcohol dehydrogenases from other Drosophila species, the enzyme from D. simulans is more active on secondary than on primary alcohols, although ethanol is its only known physiological substrate. Several secondary alcohols were used to determine the kinetic parameters kcat and Km. The results of these experiments indicate that the substrate-binding region of the enzyme allows optimal binding of a short ethyl side-chain in a small binding pocket, and of a propyl or butyl side-chain in large binding pocket, with stereospecificity for R(-) alcohols. At a high concentration of R(-) alcohols substrate activation occurs. The kcat and Km values determined under these conditions are about two-fold, and two orders of magnitude, respectively, higher than those at low substrate concentrations. Sequence alignment of several SDRs of known, and unknown three-dimensional structures, indicate the presence of several conserved residues in addition to those involved in the catalyzed reactions. Structural roles of these conserved residues could be derived from observations made on superpositioned structures of several SDRs with known structures. Several residues are conserved in tetrameric SDRs, but not in dimeric ones. Two halohydrin-halide-lyases show significant homology with SDRs in the catalytic domains of these enzymes, but they do not have the structural features required for binding NAD+. Probably these lyases descend from an SDR, which has lost the capability to bind NAD+, but the enzyme reaction mechanisms may still be similar.

  15. High Aldehyde Dehydrogenase Activity Identifies a Subset of Human Mesenchymal Stromal Cells with Vascular Regenerative Potential.

    PubMed

    Sherman, Stephen E; Kuljanin, Miljan; Cooper, Tyler T; Putman, David M; Lajoie, Gilles A; Hess, David A

    2017-03-15

    During culture expansion, multipotent mesenchymal stromal cells (MSCs) differentially express aldehyde dehydrogenase (ALDH), an intracellular detoxification enzyme that protects long-lived cells against oxidative stress. Thus, MSC selection based on ALDH-activity may be used to reduce heterogeneity and distinguish MSC subsets with improved regenerative potency. After expansion of human bone marrow-derived MSCs, cell progeny was purified based on low versus high ALDH-activity (ALDH(hi) ) by fluorescence-activated cell sorting, and each subset was compared for multipotent stromal and provascular regenerative functions. Both ALDH(l) ° and ALDH(hi) MSC subsets demonstrated similar expression of stromal cell (>95% CD73(+) , CD90(+) , CD105(+) ) and pericyte (>95% CD146(+) ) surface markers and showed multipotent differentiation into bone, cartilage, and adipose cells in vitro. Conditioned media (CDM) generated by ALDH(hi) MSCs demonstrated a potent proliferative and prosurvival effect on human microvascular endothelial cells (HMVECs) under serum-free conditions and augmented HMVEC tube-forming capacity in growth factor-reduced matrices. After subcutaneous transplantation within directed in vivo angiogenesis assay implants into immunodeficient mice, ALDH(hi) MSC or CDM produced by ALDH(hi) MSC significantly augmented murine vascular cell recruitment and perfused vessel infiltration compared with ALDH(l) ° MSC. Although both subsets demonstrated strikingly similar mRNA expression patterns, quantitative proteomic analyses performed on subset-specific CDM revealed the ALDH(hi) MSC subset uniquely secreted multiple proangiogenic cytokines (vascular endothelial growth factor beta, platelet derived growth factor alpha, and angiogenin) and actively produced multiple factors with chemoattractant (transforming growth factor-β, C-X-C motif chemokine ligand 1, 2, and 3 (GRO), C-C motif chemokine ligand 5 (RANTES), monocyte chemotactic protein 1 (MCP-1), interleukin [IL]-6, IL-8

  16. Enrichment of chemical libraries docked to protein conformational ensembles and application to aldehyde dehydrogenase 2.

    PubMed

    Wang, Bo; Buchman, Cameron D; Li, Liwei; Hurley, Thomas D; Meroueh, Samy O

    2014-07-28

    Molecular recognition is a complex process that involves a large ensemble of structures of the receptor and ligand. Yet, most structure-based virtual screening is carried out on a single structure typically from X-ray crystallography. Explicit-solvent molecular dynamics (MD) simulations offer an opportunity to sample multiple conformational states of a protein. Here we evaluate our recently developed scoring method SVMSP in its ability to enrich chemical libraries docked to MD structures of seven proteins from the Directory of Useful Decoys (DUD). SVMSP is a target-specific rescoring method that combines machine learning with statistical potentials. We find that enrichment power as measured by the area under the ROC curve (ROC-AUC) is not affected by increasing the number of MD structures. Among individual MD snapshots, many exhibited enrichment that was significantly better than the crystal structure, but no correlation between enrichment and structural deviation from crystal structure was found. We followed an innovative approach by training SVMSP scoring models using MD structures (SVMSPMD). The resulting models were applied to two difficult cases (p38 and CDK2) for which enrichment was not better than random. We found remarkable increase in enrichment power, particularly for p38, where the ROC-AUC increased by 0.30 to 0.85. Finally, we explored approaches for a priori identification of MD snapshots with high enrichment power from an MD simulation in the absence of active compounds. We found that the use of randomly selected compounds docked to the target of interest using SVMSP led to notable enrichment for EGFR and Src MD snapshots. SVMSP rescoring of protein-compound MD structures was applied for the search of small-molecule inhibitors of the mitochondrial enzyme aldehyde dehydrogenase 2 (ALDH2). Rank-ordering of a commercial library of 50 000 compounds docked to MD structures of ALDH2 led to five small-molecule inhibitors. Four compounds had IC50s below 5

  17. Aldehyde dehydrogenase-2 inhibition blocks remote preconditioning in experimental and human models.

    PubMed

    Contractor, Hussain; Støttrup, Nicolaj B; Cunnington, Colin; Manlhiot, Cedric; Diesch, Jonathan; Ormerod, Julian O M; Jensen, Rebekka; Bøtker, Hans Erik; Redington, Andrew; Schmidt, Michael R; Ashrafian, Houman; Kharbanda, Rajesh K

    2013-05-01

    Mitochondrial aldehyde dehydrogenase-2 (ALDH-2) is involved in preconditioning pathways, but its role in remote ischaemic preconditioning (rIPC) is unknown. We investigated its role in animal and human models of rIPC. (i) In a rabbit model of myocardial infarction, rIPC alone reduced infarct size [69 ± 5.8 % (n = 11) to 40 ± 6.5 % (n = 12), P = 0.019]. However, rIPC protection was lost after pre-treatment with the ALDH-2 inhibitor cyanamide (62 ± 7.6 % controls, n = 10, versus 61 ± 6.9 % rIPC after cyanamide, n = 10, P > 0.05). (ii) In a forearm plethysmography model of endothelial ischaemia-reperfusion injury, 24 individuals of Asian ethnic origin underwent combined rIPC and ischaemia-reperfusion (IR). 11 had wild-type (WT) enzyme and 13 carried the Glu504Lys (ALDH2*2) polymorphism (rendering ALDH-2 functionally inactive). In WT individuals, rIPC protected against impairment of response to acetylcholine (P = 0.9), but rIPC failed to protect carriers of Glu504Lys polymorphism (P = 0.004). (iii) In a second model of endothelial IR injury, 12 individuals participated in a double-blind placebo-controlled crossover study, receiving the ALDH-2 inhibitor disulfiram 600 mg od or placebo for 48 h prior to assessment of flow-mediated dilation (FMD) before and after combined rIPC and IR. With placebo, rIPC was effective with no difference in FMD before and after IR (6.18 ± 1.03 % and 4.76 ± 0.93 % P = 0.1), but disulfiram inhibited rIPC with a reduction in FMD after IR (7.87 ± 1.27 % and 3.05 ± 0.53 %, P = 0.001). This study demonstrates that ALDH-2 is involved in the rIPC pathway in three distinct rabbit and human models. This has potential implications for future clinical studies of remote conditioning.

  18. Aldehyde dehydrogenase (ALDH) 3A1 expression by the human keratocyte and its repair phenotypes.

    PubMed

    Pei, Ying; Reins, Rose Y; McDermott, Alison M

    2006-11-01

    Transparency is essential for normal corneal function. Recent studies suggest that corneal cells express high levels of so-called corneal crystallins, such as aldehyde dehydrogenase (ALDH) and transketolase (TKT) that contribute to maintaining cellular transparency. Stromal injury leads to the appearance of repair phenotype keratocytes, the corneal fibroblast and myofibroblast. Previous studies on keratocytes from species such as bovine and rabbit indicate that the transformation from the normal to repair phenotype is accompanied by a loss of corneal crystallin expression, which may be associated with loss of cellular transparency. Here we investigated if a similar loss occurs with human keratocyte repair phenotypes. Human corneal epithelial cells were collected by scraping and keratocytes were isolated by collagenase digestion from cadaveric corneas. The cells were either processed immediately (freshly isolated keratocytes) or were cultured in the presence of 10% fetal bovine serum or transforming growth factor-beta to induce transformation to the corneal fibroblast and myofibroblast phenotypes, respectively. RT-PCR, western blotting and immunolabeling were used to detect mRNA and protein expression of ALDH isozymes and TKT. ALDH enzyme activity was also quantitated and immunolabeling was performed to determine the expression of ALDH3A1 in human corneal tissue sections from normal and diseased corneas. Human corneal keratocytes isolated from three donors expressed ALDH1A1 and ALDH3A1 mRNA, and one donor also expressed ALDH2 and TKT. Corneal epithelial cells expressed ALDH1A1, ALDH2, ALDH3A1 and TKT. Compared to normal keratocytes, corneal fibroblast expression of ALDH3A1 mRNA was reduced by 27% (n=5). ALDH3A1 protein expression as detected by western blotting was markedly reduced in passage zero fibroblasts and undetectable in higher passages (n=3). TKT protein expression was reduced in fibroblasts compared to keratocytes (n=2). ALDH3A1 enzyme activity was not

  19. Aldehyde dehydrogenase activity selects for the holoclone phenotype in prostate cancer cells

    SciTech Connect

    Doherty, R.E.; Haywood-Small, S.L.; Sisley, K.; Cross, N.A.

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Isolated ALDH{sup Hi} PC3 cells preferentially form primitive holoclone-type colonies. Black-Right-Pointing-Pointer Primitive holoclone colonies are predominantly ALDH{sup Lo} but contain rare ALDH{sup Hi} cells. Black-Right-Pointing-Pointer Holoclone-forming cells are not restricted to the ALDH{sup Hi} population. Black-Right-Pointing-Pointer ALDH phenotypic plasticity occurs in PC3 cells (ALDH{sup Lo} to ALDH{sup Hi} and vice versa). Black-Right-Pointing-Pointer ALDH{sup Hi} cells are observed but very rare in PC3 spheroids grown in stem cell medium. -- Abstract: Aldehyde dehydrogenase 1 (ALDH) activity is considered to be a marker of cancer stem cells (CSCs) in many tumour models, since these cells are more proliferative and tumourigenic than ALDH{sup Lo} cells in experimental models. However it is unclear whether all CSC-like cells are within the ALDH{sup Hi} population, or whether all ALDH{sup Hi} cells are highly proliferative and tumourigenic. The ability to establish a stem cell hierarchy in vitro, whereby sub-populations of cells have differing proliferative and differentiation capacities, is an alternate indication of the presence of stem cell-like populations within cell lines. In this study, we have examined the interaction between ALDH status and the ability to establish a stem cell hierarchy in PC3 prostate cancer cells. We demonstrate that PC3 cells contain a stem cell hierarchy, and isolation of ALDH{sup Hi} cells enriches for the most primitive holoclone population, however holoclone formation is not restricted to ALDH{sup Hi} cells. In addition, we show that ALDH activity undergoes phenotypic plasticity, since the ALDH{sup Lo} population can develop ALDH{sup Hi} populations comparable to parental cells within 2 weeks in culture. Furthermore, we show that the majority of ALDH{sup Hi} cells are found within the least primitive paraclone population, which is circumvented by culturing PC3 cells as spheroids in

  20. Induction of mitochondrial aldehyde dehydrogenase by submergence facilitates oxidation of acetaldehyde during re-aeration in rice.

    PubMed

    Tsuji, Hiroyuki; Meguro, Naoki; Suzuki, Yasuhiro; Tsutsumi, Nobuhiro; Hirai, Atsushi; Nakazono, Mikio

    2003-07-10

    Post-hypoxic injuries in plants are primarily caused by bursts of reactive oxygen species and acetaldehyde. In agreement with previous studies, we found accumulations of acetaldehyde in rice during re-aeration following submergence. During re-aeration, acetaldehyde-oxidizing aldehyde dehydrogenase (ALDH) activity increased, thereby causing the acetaldehyde content to decrease in rice. Interestingly, re-aerated rice plants showed an intense mitochondrial ALDH2a protein induction, even though ALDH2a mRNA was submergence induced and declined upon re-aeration. This suggests that rice ALDH2a mRNA is accumulated in order to quickly metabolize acetaldehyde that is produced upon re-aeration.

  1. Redox Balance in Lactobacillus reuteri DSM20016: Roles of Iron-Dependent Alcohol Dehydrogenases in Glucose/ Glycerol Metabolism

    PubMed Central

    Bromberger, Paul David; Nieuwenhuiys, Gavin; Hatti-Kaul, Rajni

    2016-01-01

    Lactobacillus reuteri, a heterofermentative bacterium, metabolizes glycerol via a Pdu (propanediol-utilization) pathway involving dehydration to 3-hydroxypropionaldehyde (3-HPA) followed by reduction to 1,3-propandiol (1,3-PDO) with concomitant generation of an oxidized cofactor, NAD+ that is utilized to maintain cofactor balance required for glucose metabolism and even for oxidation of 3-HPA by a Pdu oxidative branch to 3-hydroxypropionic acid (3-HP). The Pdu pathway is operative inside Pdu microcompartment that encapsulates different enzymes and cofactors involved in metabolizing glycerol or 1,2-propanediol, and protects the cells from the toxic effect of the aldehyde intermediate. Since L. reuteri excretes high amounts of 3-HPA outside the microcompartment, the organism is likely to have alternative alcohol dehydrogenase(s) in the cytoplasm for transformation of the aldehyde. In this study, diversity of alcohol dehydrogenases in Lactobacillus species was investigated with a focus on L. reuteri. Nine ADH enzymes were found in L. reuteri DSM20016, out of which 3 (PduQ, ADH6 and ADH7) belong to the group of iron-dependent enzymes that are known to transform aldehydes/ketones to alcohols. L. reuteri mutants were generated in which the three ADHs were deleted individually. The lagging growth phenotype of these deletion mutants revealed that limited NAD+/NADH recycling could be restricting their growth in the absence of ADHs. Notably, it was demonstrated that PduQ is more active in generating NAD+ during glycerol metabolism within the microcompartment by resting cells, while ADH7 functions to balance NAD+/NADH by converting 3-HPA to 1,3-PDO outside the microcompartment in the growing cells. Moreover, evaluation of ADH6 deletion mutant showed strong decrease in ethanol level, supporting the role of this bifuctional alcohol/aldehyde dehydrogenase in ethanol production. To the best of our knowledge, this is the first report revealing both internal and external recycling

  2. Substrate specificity, substrate channeling, and allostery in BphJ: an acylating aldehyde dehydrogenase associated with the pyruvate aldolase BphI.

    PubMed

    Baker, Perrin; Carere, Jason; Seah, Stephen Y K

    2012-06-05

    BphJ, a nonphosphorylating acylating aldehyde dehydrogenase, catalyzes the conversion of aldehydes to form acyl-coenzyme A in the presence of NAD(+) and coenzyme A (CoA). The enzyme is structurally related to the nonacylating aldehyde dehydrogenases, aspartate-β-semialdehyde dehydrogenase and phosphorylating glyceraldehyde-3-phosphate dehydrogenase. Cys-131 was identified as the catalytic thiol in BphJ, and pH profiles together with site-specific mutagenesis data demonstrated that the catalytic thiol is not activated by an aspartate residue, as previously proposed. In contrast to the wild-type enzyme that had similar specificities for two- or three-carbon aldehydes, an I195A variant was observed to have a 20-fold higher catalytic efficiency for butyraldehyde and pentaldehyde compared to the catalytic efficiency of the wild type toward its natural substrate, acetaldehyde. BphJ forms a heterotetrameric complex with the class II aldolase BphI that channels aldehydes produced in the aldol cleavage reaction to the dehydrogenase via a molecular tunnel. Replacement of Ile-171 and Ile-195 with bulkier amino acid residues resulted in no more than a 35% reduction in acetaldehyde channeling efficiency, showing that these residues are not critical in gating the exit of the channel. Likewise, the replacement of Asn-170 in BphJ with alanine and aspartate did not substantially alter aldehyde channeling efficiencies. Levels of activation of BphI by BphJ N170A, N170D, and I171A were reduced by ≥3-fold in the presence of NADH and ≥4.5-fold when BphJ was undergoing turnover, indicating that allosteric activation of the aldolase has been compromised in these variants. The results demonstrate that the dehydrogenase coordinates the catalytic activity of BphI through allostery rather than through aldehyde channeling.

  3. Purification and characterization of a primary-secondary alcohol dehydrogenase from two strains of Clostridium beijerinckii.

    PubMed Central

    Ismaiel, A A; Zhu, C X; Colby, G D; Chen, J S

    1993-01-01

    Two primary alcohols (1-butanol and ethanol) are major fermentation products of several clostridial species. In addition to these two alcohols, the secondary alcohol 2-propanol is produced to a concentration of about 100 mM by some strains of Clostridium beijerinckii. An alcohol dehydrogenase (ADH) has been purified to homogeneity from two strains (NRRL B593 and NESTE 255) of 2-propanol-producing C. beijerinckii. When exposed to air, the purified ADH was stable, whereas the partially purified ADH was inactivated. The ADHs from the two strains had similar structural and kinetic properties. Each had a native M(r) of between 90,000 and 100,000 and a subunit M(r) of between 38,000 and 40,000. The ADHs were NADP(H) dependent, but a low level of NAD(+)-linked activity was detected. They were equally active in reducing aldehydes and 2-ketones, but a much lower oxidizing activity was obtained with primary alcohols than with secondary alcohols. The kcat/Km value for the alcohol-forming reaction appears to be a function of the size of the larger alkyl substituent on the carbonyl group. ADH activities measured in the presence of both acetone and butyraldehyde did not exceed activities measured with either substrate present alone, indicating a common active site for both substrates. There was no similarity in the N-terminal amino acid sequence between that of the ADH and those of fungi and several other bacteria. However, the N-terminal sequence had 67% identity with those of two other anaerobes, Thermoanaerobium brockii and Methanobacterium palustre. Furthermore, conserved glycine and tryptophan residues are present in ADHs of these three anaerobic bacteria and ADHs of mammals and green plants. Images PMID:8349550

  4. Multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase causing excessive acetaldehyde production from ethanol by oral streptococci.

    PubMed

    Pavlova, Sylvia I; Jin, Ling; Gasparovich, Stephen R; Tao, Lin

    2013-07-01

    Ethanol consumption and poor oral hygiene are risk factors for oral and oesophageal cancers. Although oral streptococci have been found to produce excessive acetaldehyde from ethanol, little is known about the mechanism by which this carcinogen is produced. By screening 52 strains of diverse oral streptococcal species, we identified Streptococcus gordonii V2016 that produced the most acetaldehyde from ethanol. We then constructed gene deletion mutants in this strain and analysed them for alcohol and acetaldehyde dehydrogenases by zymograms. The results showed that S. gordonii V2016 expressed three primary alcohol dehydrogenases, AdhA, AdhB and AdhE, which all oxidize ethanol to acetaldehyde, but their preferred substrates were 1-propanol, 1-butanol and ethanol, respectively. Two additional dehydrogenases, S-AdhA and TdhA, were identified with specificities to the secondary alcohol 2-propanol and threonine, respectively, but not to ethanol. S. gordonii V2016 did not show a detectable acetaldehyde dehydrogenase even though its adhE gene encodes a putative bifunctional acetaldehyde/alcohol dehydrogenase. Mutants with adhE deletion showed greater tolerance to ethanol in comparison with the wild-type and mutant with adhA or adhB deletion, indicating that AdhE is the major alcohol dehydrogenase in S. gordonii. Analysis of 19 additional strains of S. gordonii, S. mitis, S. oralis, S. salivarius and S. sanguinis showed expressions of up to three alcohol dehydrogenases, but none showed detectable acetaldehyde dehydrogenase, except one strain that showed a novel ALDH. Therefore, expression of multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase may contribute to excessive production of acetaldehyde from ethanol by certain oral streptococci.

  5. [Class III alcohol dehydrogenase and its role in the human body].

    PubMed

    Jelski, Wojciech; Sani, Tufik Alizade; Szmitkowski, Maciej

    2006-01-01

    Class III alcohol dehydrogenase is composed of two chi subunits, encoded by the ADH5 gene and existing in all tissues examined. It possesses a great ability to metabolize long-chain alcohols, while its capacity to oxidize ethanol is very limited. The amino-acid sequence homology and identical structural and kinetic properties indicate that class III alcohol dehydrogenase and formaldehyde dehydrogenase are identical enzymes. ADH III plays a significant role in the metabolism of formaldehyde in the human body.

  6. Identification of long chain specific aldehyde reductase and its use in enhanced fatty alcohol production in E. coli.

    PubMed

    Fatma, Zia; Jawed, Kamran; Mattam, Anu Jose; Yazdani, Syed Shams

    2016-09-01

    Long chain fatty alcohols have wide application in chemical industries and transportation sector. There is no direct natural reservoir for long chain fatty alcohol production, thus many groups explored metabolic engineering approaches for its microbial production. Escherichia coli has been the major microbial platform for this effort, however, terminal endogenous enzyme responsible for converting fatty aldehydes of chain length C14-C18 to corresponding fatty alcohols is still been elusive. Through our in silico analysis we selected 35 endogenous enzymes of E. coli having potential of converting long chain fatty aldehydes to fatty alcohols and studied their role under in vivo condition. We found that deletion of ybbO gene, which encodes NADP(+) dependent aldehyde reductase, led to >90% reduction in long chain fatty alcohol production. This feature was found to be strain transcending and reinstalling ybbO gene via plasmid retained the ability of mutant to produce long chain fatty alcohols. Enzyme kinetic study revealed that YbbO has wide substrate specificity ranging from C6 to C18 aldehyde, with maximum affinity and efficiency for C18 and C16 chain length aldehyde, respectively. Along with endogenous production of fatty aldehyde via optimized heterologous expression of cyanobaterial acyl-ACP reductase (AAR), YbbO overexpression resulted in 169mg/L of long chain fatty alcohols. Further engineering involving modulation of fatty acid as well as of phospholipid biosynthesis pathway improved fatty alcohol production by 60%. Finally, the engineered strain produced 1989mg/L of long chain fatty alcohol in bioreactor under fed-batch cultivation condition. Our study shows for the first time a predominant role of a single enzyme in production of long chain fatty alcohols from fatty aldehydes as well as of modulation of phospholipid pathway in increasing the fatty alcohol production.

  7. Comparative study of the aldehyde dehydrogenase (ALDH) gene superfamily in the glycophyte Arabidopsis thaliana and Eutrema halophytes

    PubMed Central

    Hou, Quancan; Bartels, Dorothea

    2015-01-01

    Background and Aims Stresses such as drought or salinity induce the generation of reactive oxygen species, which subsequently cause excessive accumulation of aldehydes in plant cells. Aldehyde dehydrogenases (ALDHs) are considered as ‘aldehyde scavengers’ to eliminate toxic aldehydes caused by oxidative stress. The completion of the genome sequencing projects of the halophytes Eutrema parvulum and E. salsugineum has paved the way to explore the relationships and the roles of ALDH genes in the glycophyte Arabidopsis thaliana and halophyte model plants. Methods Protein sequences of all plant ALDH families were used as queries to search E. parvulum and E. salsugineum genome databases. Evolutionary analyses compared the phylogenetic relationships of ALDHs from A. thaliana and Eutrema. Expression patterns of several stress-associated ALDH genes were investigated under different salt conditions using reverse transcription–PCR. Putative cis-elements in the promoters of ALDH10A8 from A. thaliana and E. salsugineum were compared in silico. Key Results Sixteen and 17 members of ten ALDH families were identified from E. parvulum and E. salsugineum genomes, respectively. Phylogenetic analysis of ALDH protein sequences indicated that Eutrema ALDHs are closely related to those of Arabidopsis, and members within these species possess nearly identical exon–intron structures. Gene expression analysis under different salt conditions showed that most of the ALDH genes have similar expression profiles in Arabidopsis and E. salsugineum, except for ALDH7B4 and ALDH10A8. In silico analysis of promoter regions of ALDH10A8 revealed different distributions of cis-elements in E. salsugineum and Arabidopsis. Conclusions Genomic organization, copy number, sub-cellular localization and expression profiles of ALDH genes are conserved in Arabidopsis, E. parvulum and E. salsugineum. The different expression patterns of ALDH7B4 and ALDH10A8 in Arabidopsis and E. salsugineum suggest that E

  8. Physiological Function of Alcohol Dehydrogenases and Long-Chain (C30) Fatty Acids in Alcohol Tolerance of Thermoanaerobacter ethanolicus

    PubMed Central

    Burdette, D. S.; Jung, S.-H.; Shen, G.-J.; Hollingsworth, R. I.; Zeikus, J. G.

    2002-01-01

    A mutant strain (39E H8) of Thermoanaerobacter ethanolicus that displayed high (8% [vol/vol]) ethanol tolerance for growth was developed and characterized in comparison to the wild-type strain (39E), which lacks alcohol tolerance (<1.5% [vol/vol]). The mutant strain, unlike the wild type, lacked primary alcohol dehydrogenase and was able to increase the percentage of transmembrane fatty acids (i.e., long-chain C30 fatty acids) in response to increasing levels of ethanol. The data support the hypothesis that primary alcohol dehydrogenase functions primarily in ethanol consumption, whereas secondary alcohol dehydrogenase functions in ethanol production. These results suggest that improved thermophilic ethanol fermentations at high alcohol levels can be developed by altering both cell membrane composition (e.g., increasing transmembrane fatty acids) and the metabolic machinery (e.g., altering primary alcohol dehydrogenase and lactate dehydrogenase activities). PMID:11916712

  9. Nickel-catalyzed enantioselective alkylative coupling of alkynes and aldehydes: synthesis of chiral allylic alcohols with tetrasubstituted olefins.

    PubMed

    Yang, Yun; Zhu, Shou-Fei; Zhou, Chang-Yue; Zhou, Qi-Lin

    2008-10-29

    A highly efficient nickel-catalyzed asymmetric alkylative coupling of alkynes, aldehydes, and dimethylzinc has been realized by using bulky spirobiindane phosphoramidite ligands, affording allylic alcohols with a tetrasubstituted olefin functionality in high yields, high regioselectivities, and excellent enantioselectivities.

  10. An enzyme-amplified microtiter plate assay for ethanol: Its application to the detection of peanut ethanol and alcohol dehydrogenase

    SciTech Connect

    Chung, S.Y.; Vercellotti, J.R.; Sanders, T.H.

    1995-12-01

    A calorimetric microliter plate assay for ethanol amplified by aldehyde dehydrogenase (ALDH) was developed. In the assay ethanol from a sample took part in a chain-reaction catalyzed by alcohol dehydrogenase (ADH) and amplified by ALDH in the presence of NAD{sup +}, diaphorase, and p-ibdonitrotetrazolium-violet (INT-violet)(a precursor of red product). The resultant reaction gave a red color, the intensity of which was proportional to the amount of ethanol present. Using the technique, the content of activity from peanuts of differing maturity and curing stages were determined respectively. Data showed that immature peanuts had a higher level of ethanol and a lower ADH activity than mature peanuts, and that the level of ethanol and ADH activity decreased with the curing time. This indicates that peanut maturity and curing have an effect on ethanol. Also, this implies that other peanut volatiles could be affected in the same way as ethanol, a major volatile in peanuts.

  11. Group III alcohol dehydrogenase from Pectobacterium atrosepticum: insights into enzymatic activity and organization of the metal ion-containing region.

    PubMed

    Elleuche, Skander; Fodor, Krisztian; von der Heyde, Amélie; Klippel, Barbara; Wilmanns, Matthias; Antranikian, Garabed

    2014-05-01

    NAD(P)(+)-dependent alcohol dehydrogenases (ADH) are widely distributed in all phyla. These proteins can be assigned to three nonhomologous groups of isozymes, with group III being highly diverse with regards to catalytic activity and primary structure. Members of group III ADHs share a conserved stretch of amino acid residues important for cofactor binding and metal ion coordination, while sequence identities for complete proteins are highly diverse (<20 to >90 %). A putative group III ADH PaYqhD has been identified in BLAST analysis from the plant pathogenic enterobacterium Pectobacterium atrosepticum. The PaYqhD gene was expressed in the heterologous host Escherichia coli, and the recombinant protein was purified in a two-step purification procedure to homogeneity indicating an obligate dimerization of monomers. Four conserved amino acid residues involved in metal ion coordination were substituted with alanine, and their importance for catalytic activity was confirmed by circular dichroism spectrum determination, in vitro, and growth experiments. PaYqhD exhibits optimal activity at 40 °C with short carbon chain aldehyde compounds and NADPH as cofactor indicating the enzyme to be an aldehyde reductase. No oxidative activities towards alcoholic compounds were detectable. EDTA completely inhibited catalytic activity and was fully restored by the addition of Co(2+). Activity measurements together with sequence alignments and structure analysis confirmed that PaYqhD belongs to the butanol dehydrogenase-like enzymes within group III of ADHs.

  12. Cytochrome P450BM-3 reduces aldehydes to alcohols through a direct hydride transfer

    SciTech Connect

    Kaspera, Ruediger; Sahele, Tariku; Lakatos, Kyle; Totah, Rheem A.

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer Cytochrome P450BM-3 reduced aldehydes to alcohols efficiently (k{sub cat} {approx} 25 min{sup -1}). Black-Right-Pointing-Pointer Reduction is a direct hydride transfer from R-NADP{sup 2}H to the carbonyl moiety. Black-Right-Pointing-Pointer P450 domain variants enhance reduction through potential allosteric/redox interactions. Black-Right-Pointing-Pointer Novel reaction will have implications for metabolism of xenobiotics. -- Abstract: Cytochrome P450BM-3 catalyzed the reduction of lipophilic aldehydes to alcohols efficiently. A k{sub cat} of {approx}25 min{sup -1} was obtained for the reduction of methoxy benzaldehyde with wild type P450BM-3 protein which was higher than in the isolated reductase domain (BMR) alone and increased in specific P450-domain variants. The reduction was caused by a direct hydride transfer from preferentially R-NADP{sup 2}H to the carbonyl moiety of the substrate. Weak substrate-P450-binding of the aldehyde, turnover with the reductase domain alone, a deuterium incorporation in the product from NADP{sup 2}H but not D{sub 2}O, and no inhibition by imidazole suggests the reductase domain of P450BM-3 as the potential catalytic site. However, increased aldehyde reduction by P450 domain variants (P450BM-3 F87A T268A) may involve allosteric or redox mechanistic interactions between heme and reductase domains. This is a novel reduction of aldehydes by P450BM-3 involving a direct hydride transfer and could have implications for the metabolism of endogenous substrates or xenobiotics.

  13. New model for polymerization of oligomeric alcohol dehydrogenases into nanoaggregates.

    PubMed

    Barzegar, Abolfazl; Moosavi-Movahedi, Ali A; Kyani, Anahita; Goliaei, Bahram; Ahmadian, Shahin; Sheibani, Nader

    2010-02-01

    Polymerization and self-assembly of proteins into nanoaggregates of different sizes and morphologies (nanoensembles or nanofilaments) is a phenomenon that involved problems in various neurodegenerative diseases (medicine) and enzyme instability/inactivity (biotechnology). Thermal polymerization of horse liver alcohol dehydrogenase (dimeric) and yeast alcohol dehydrogenase (tetrameric), as biotechnological ADH representative enzymes, was evaluated for the development of a rational strategy to control aggregation. Constructed ADH nuclei, which grew to larger amorphous nanoaggregates, were prevented via high repulsion strain of the net charge values. Good correlation between the variation in scattering and lambda(-2) was related to the amorphousness of the nanoaggregated ADHs, shown by electron microscopic images. Scattering corrections revealed that ADH polymerization was related to the quaternary structural changes, including delocalization of subunits without unfolding, i.e. lacking the 3D conformational and/or secondary-ordered structural changes. The results demonstrated that electrostatic repulsion was not only responsible for disaggregation but also caused a delay in the onset of aggregation temperature, decreasing maximum values of aggregation and amounts of precipitation. Together, our results demonstrate and propose a new model of self-assembly for ADH enzymes based on the construction of nuclei, which grow to formless nanoaggregates with minimal changes in the tertiary and secondary conformations.

  14. Effect of fermented sea tangle on the alcohol dehydrogenase and acetaldehyde dehydrogenase in Saccharomyces cerevisiae.

    PubMed

    Cha, Jae-Young; Jeong, Jae-Jun; Yang, Hyun-Ju; Lee, Bae-Jin; Cho, Young-Su

    2011-08-01

    Sea tangle, a kind of brown seaweed, was fermented with Lactobacillus brevis BJ-20. The gamma-aminobutyric acid (GABA) content in fermented sea tangle (FST) was 5.56% (w/w) and GABA in total free amino acid of FST was 49.5%. The effect of FST on the enzyme activities and mRNA protein expression of alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) involved in alcohol metabolism in Saccharomyces cerevisiae was investigated. Yeast was cultured in YPD medium supplemented with different concentrations of FST powder [0, 0.4, 0.8, and 1.0% (w/v)] for 18 h. FST had no cytotoxic effect on the yeast growth. The highest activities and protein expressions of ADH and ALDH from the cell-free extracts of S. cerevisiae were evident with the 0.4% and 0.8% (w/v) FST-supplemented concentrations, respectively. The highest concentrations of GABA as well as minerals (Zn, Ca, and Mg) were found in the cell-free extracts of S. cerevisiae cultured in medium supplemented with 0.4% (w/v) FST. The levels of GABA, Zn, Ca, and Mg in S. cerevisiae were strongly correlated with the enzyme activities of ADH and ALDH in yeast. These results indicate that FST can enhance the enzyme activities and protein expression of ADH and ALDH in S. cerevisiae.

  15. Human aldehyde dehydrogenase 3A1 (ALDH3A1): biochemical characterization and immunohistochemical localization in the cornea.

    PubMed Central

    Pappa, Aglaia; Estey, Tia; Manzer, Rizwan; Brown, Donald; Vasiliou, Vasilis

    2003-01-01

    ALDH3A1 (aldehyde dehydrogenase 3A1) is expressed at high concentrations in the mammalian cornea and it is believed that it protects this vital tissue and the rest of the eye against UV-light-induced damage. The precise biological function(s) and cellular distribution of ALDH3A1 in the corneal tissue remain to be elucidated. Among the hypotheses proposed for ALDH3A1 function in cornea is detoxification of aldehydes formed during UV-induced lipid peroxidation. To investigate in detail the biochemical properties and distribution of this protein in the human cornea, we expressed human ALDH3A1 in Sf9 insect cells using a baculovirus vector and raised monoclonal antibodies against ALDH3A1. Recombinant ALDH3A1 protein was purified to homogeneity with a single-step affinity chromatography method using 5'-AMP-Sepharose 4B. Human ALDH3A1 demonstrated high substrate specificity for medium-chain (6 carbons and more) saturated and unsaturated aldehydes, including 4-hydroxy-2-nonenal, which are generated by the peroxidation of cellular lipids. Short-chain aliphatic aldehydes, such as acetaldehyde, propionaldehyde and malondialdehyde, were found to be very poor substrates for human ALDH3A1. In addition, ALDH3A1 metabolized glyceraldehyde poorly and did not metabolize glucose 6-phosphate, 6-phosphoglucono-delta-lactone and 6-phosphogluconate at all, suggesting that this enzyme is not involved in either glycolysis or the pentose phosphate pathway. Immunohistochemistry in human corneas, using the monoclonal antibodies described herein, revealed ALDH3A1 expression in epithelial cells and stromal keratocytes, but not in endothelial cells. Overall, these cumulative findings support the metabolic function of ALDH3A1 as a part of a corneal cellular defence mechanism against oxidative damage caused by aldehydic products of lipid peroxidation. Both recombinant human ALDH3A1 and the highly specific monoclonal antibodies described in the present paper may prove to be useful in probing

  16. Amphibian alcohol dehydrogenase, the major frog liver enzyme. Relationships to other forms and assessment of an early gene duplication separating vertebrate class I and class III alcohol dehydrogenases

    SciTech Connect

    Cederlund, E.; Joernvall, H. ); Peralba, J.M.; Pares, X. )

    1991-03-19

    Submammalian alcohol dehydrogenase structures can be used to evaluate the origins and functions of different types of the mammalian enzyme. Two avian forms were recently reported, and the authors now define the major amphibian alcohol dehydrogenase. The enzyme from the liver of the Green frog Rana perezi was purified, carboxymethylated, and submitted to amino acid sequence determination by peptide analysis of six different digest. The protein has a 375-residue subunit and is a class I alcohol dehydrogenase, bridging the gap toward the original separation of the classes that are observable in the human alcohol dehydrogenase system. In relation to the human class I enzyme, the amphibian protein has residue identities exactly halfway (68%) between those for the corresponding avian enzyme (74%) and the human class III enzyme (62%), suggesting an origin of the alcohol dehnydrogenase classes very early in or close to the evolution of the vertebrate line. This conclusion suggests that these enzyme classes are more universal among animals than previously realized and constitutes the first real assessment of the origin of the duplications leading to the alcohol dehydrogenase classes. In conclusion, the amphibian enzyme allows a rough positioning of the divergence of the alcohol dehydrogenase classes, shows that the class I type is widesprread in vertebrates, and functionally conforms with greater variations at the substrate-binding than the coenzyme-binding site.

  17. Characterization of alcohol dehydrogenase (ADH12) from Haloarcula marismortui, an extreme halophile from the Dead Sea.

    PubMed

    Timpson, Leanne M; Alsafadi, Diya; Mac Donnchadha, Cillín; Liddell, Susan; Sharkey, Michael A; Paradisi, Francesca

    2012-01-01

    Haloarchaeal alcohol dehydrogenases are of increasing interest as biocatalysts in the field of white biotechnology. In this study, the gene adh12 from the extreme halophile Haloarcula marismortui (HmADH12), encoding a 384 residue protein, was cloned into two vectors: pRV1 and pTA963. The resulting constructs were used to transform host strains Haloferax volcanii (DS70) and (H1209), respectively. Overexpressed His-tagged recombinant HmADH12 was purified by immobilized metal-affinity chromatography (IMAC). The His-tagged protein was visualized by SDS-PAGE, with a subunit molecular mass of 41.6 kDa, and its identity was confirmed by mass spectrometry. Purified HmADH12 catalyzed the interconversion between alcohols and aldehydes and ketones, being optimally active in the presence of 2 M KCl. It was thermoactive, with maximum activity registered at 60°C. The NADP(H) dependent enzyme was haloalkaliphilic for the oxidative reaction with optimum activity at pH 10.0. It favored a slightly acidic pH of 6.0 for catalysis of the reductive reaction. HmADH12 was significantly more tolerant than mesophilic ADHs to selected organic solvents, making it a much more suitable biocatalyst for industrial application.

  18. The mechanism of discrimination between oxidized and reduced coenzyme in the aldehyde dehydrogenase domain of Aldh1l1.

    PubMed

    Tsybovsky, Yaroslav; Malakhau, Yuryi; Strickland, Kyle C; Krupenko, Sergey A

    2013-02-25

    Aldh1l1, also known as 10-formyltetrahydrofolate dehydrogenase (FDH), contains the carboxy-terminal domain (Ct-FDH), which is a structural and functional homolog of aldehyde dehydrogenases (ALDHs). This domain is capable of catalyzing the NADP(+)-dependent oxidation of short chain aldehydes to their corresponding acids, and similar to most ALDHs it has two conserved catalytic residues, Cys707 and Glu673. Previously, we demonstrated that in the Ct-FDH mechanism these residues define the conformation of the bound coenzyme and the affinity of its interaction with the protein. Specifically, the replacement of Cys707 with an alanine resulted in the enzyme lacking the ability to differentiate between the oxidized and reduced coenzyme. We suggested that this was due to the loss of a covalent bond between the cysteine and the C4N atom of nicotinamide ring of NADP(+) formed during Ct-FDH catalysis. To obtain further insight into the functional significance of the covalent bond between Cys707 and the coenzyme, and the overall role of the two catalytic residues in the coenzyme binding and positioning, we have now solved crystal structures of Ct-FDH in the complex with thio-NADP(+) and the complexes of the C707S mutant with NADP(+) and NADPH. This study has allowed us to trap the coenzyme in the contracted conformation, which provided a snapshot of the conformational processing of the coenzyme during the transition from oxidized to reduced form. Overall, the results of this study further support the previously proposed mechanism by which Cys707 helps to differentiate between the oxidized and reduced coenzyme during ALDH catalysis.

  19. Expression of a betaine aldehyde dehydrogenase gene in rice, a glycinebetaine nonaccumulator, and possible localization of its protein in peroxisomes.

    PubMed

    Nakamura, T; Yokota, S; Muramoto, Y; Tsutsui, K; Oguri, Y; Fukui, K; Takabe, T

    1997-05-01

    Betaine aldehyde dehydrogenase (BADH) catalyzes the last step in the plant biosynthetic pathway that leads to glycinebetaine. Rice plants (Oryza sativa L.), albeit considered a typical non-glycinebetaine accumulating species, have been found to express this enzyme at low levels. This observation evokes an interest in phylogenic evolution of the enzyme in the plant kingdom. It is reported here that rice plants possess the ability to take up exogenously added betaine aldehyde through the roots and convert it to glycinebetaine, resulting in an enhanced salt-tolerance of the plants. A gene encoding a putative BADH from the rice genome was also cloned and sequenced. The gene was found to contain 14 introns, and the overall nucleotide sequence of the coding region is c. 78% identical to that of the barley BADH cDNA. Cloning of a partial BADH cDNA from rice was accomplished by reverse transcription-polymerase chain reaction (RT-PCR). The nucleotide sequence of the cloned fragment was found to be identical to the corresponding exon regions of the rice genomic BADH gene. The deduced amino acid sequences of rice and barley BADH both contain a C-terminal tripeptide SKL, a signal known to target preproteins to microbodies. This localization was confirmed by an immuno-gold labeling study of transgenic tobacco harboring barley cDNA, which showed BADH protein inside peroxisomes. Northern blot analysis revealed that the level of BADH mRNA is salt-inducible.

  20. Targeted therapy for a subset of acute myeloid leukemias that lack expression of aldehyde dehydrogenase 1A1.

    PubMed

    Gasparetto, Maura; Pei, Shanshan; Minhajuddin, Mohammad; Khan, Nabilah; Pollyea, Daniel A; Myers, Jason R; Ashton, John M; Becker, Michael W; Vasiliou, Vasilis; Humphries, Keith R; Jordan, Craig T; Smith, Clayton A

    2017-03-09

    Aldehyde dehydrogenase 1A1 (ALDH1A1) activity is high in hematopoietic stem cells and functions in part to protect stem cells from reactive aldehydes and other toxic compounds. In contrast, we found that ~25% of all acute myeloid leukemias expressed low or undetectable levels of ALDH1A1 and that this ALDH1A1- subset of leukemias correlates with good prognosis cytogenetics. ALDH1A1- cell lines as well as primary leukemia cells were found to be sensitive to treatment with compounds that directly and indirectly generate toxic ALDH substrates including 4-hydroxynonenal and the clinically relevant compounds arsenic trioxide and 4-hydroperoxycyclophosphamide. In contrast, normal hematopoietic stem cells were relatively resistant to these compounds. Using a murine xenotransplant model to emulate a clinical treatment strategy, established ALDH1A1- leukemias were also sensitive to in vivo treatment with cyclophosphamide combined with arsenic trioxide. These results demonstrate that targeting ALDH1A1- leukemic cells with toxic ALDH1A1 substrates such as arsenic and cyclophosphamide may be a novel targeted therapeutic strategy for this subset of acute myeloid leukemias.

  1. Aldehyde dehydrogenase 3A1 protects airway epithelial cells from cigarette smoke-induced DNA damage and cytotoxicity.

    PubMed

    Jang, Jun-Ho; Bruse, Shannon; Liu, Yushi; Duffy, Veronica; Zhang, Chunyu; Oyamada, Nathaniel; Randell, Scott; Matsumoto, Akiko; Thompson, David C; Lin, Yong; Vasiliou, Vasilis; Tesfaigzi, Yohannes; Nyunoya, Toru

    2014-03-01

    Aldehyde dehydrogenase 3A1 (ALDH3A1), an ALDH superfamily member, catalyzes the oxidation of reactive aldehydes, highly toxic components of cigarette smoke (CS). Even so, the role of ALDH3A1 in CS-induced cytotoxicity and DNA damage has not been examined. Among all of the ALDH superfamily members, ALDH3A1 mRNA levels showed the greatest induction in response to CS extract (CSE) exposure of primary human bronchial epithelial cells (HBECs). ALDH3A1 protein accumulation was accompanied by increased ALDH enzymatic activity in CSE-exposed immortalized HBECs. The effects of overexpression or suppression of ALDH3A1 on CSE-induced cytotoxicity and DNA damage (γH2AX) were evaluated in cultured immortalized HBECs. Enforced expression of ALDH3A1 attenuated cytotoxicity and downregulated γH2AX. SiRNA-mediated suppression of ALDH3A1 blocked ALDH enzymatic activity and augmented cytotoxicity in CSE-exposed cells. Our results suggest that the availability of ALDH3A1 is important for cell survival against CSE in HBECs.

  2. Isolated tumoral pyruvate dehydrogenase can synthesize acetoin which inhibits pyruvate oxidation as well as other aldehydes.

    PubMed

    Baggetto, L G; Lehninger, A L

    1987-05-29

    Oxidation of 1 mM pyruvate by Ehrlich and AS30-D tumor mitochondria is inhibited by acetoin, an unusual and important metabolite of pyruvate utilization by cancer cells, by acetaldehyde, methylglyoxal and excess pyruvate. The respiratory inhibition is reversed by other substrates added to pyruvate and also by 0.5 mM ATP. Kinetic properties of pyruvate dehydrogenase complex isolated from these tumor mitochondria have been studied. This complex appears to be able to synthesize acetoin from acetaldehyde plus pyruvate and is competitively inhibited by acetoin. The role of a new regulatory pattern for tumoral pyruvate dehydrogenase is presented.

  3. Purification and characterization of an NADH-dependent alcohol dehydrogenase from Candida maris for the synthesis of optically active 1-(pyridyl)ethanol derivatives.

    PubMed

    Kawano, Shigeru; Yano, Miho; Hasegawa, Junzo; Yasohara, Yoshihiko

    2011-01-01

    A novel (R)-specific alcohol dehydrogenase (AFPDH) produced by Candida maris IFO10003 was purified to homogeneity by ammonium sulfate fractionation, DEAE-Toyopearl, and Phenyl-Toyopearl, and characterized. The relative molecular mass of the native enzyme was found to be 59,900 by gel filtration, and that of the subunit was estimated to be 28,900 on SDS-polyacrylamide gel electrophoresis. These results suggest that the enzyme is a homodimer. It required NADH as a cofactor and reduced various kinds of carbonyl compounds, including ketones and aldehydes. AFPDH reduced acetylpyridine derivatives, β-keto esters, and some ketone compounds with high enantioselectivity. This is the first report of an NADH-dependent, highly enantioselective (R)-specific alcohol dehydrogenase isolated from a yeast. AFPDH is a very useful enzyme for the preparation of various kinds of chiral alcohols.

  4. [Effect Of Polyelectrolytes on Catalytic Activity of Alcohol Dehydrogenase].

    PubMed

    Dubrovsky, A V; Musina, E V; Kim, A L; Tikhonenko, S A

    2016-01-01

    Fluorescent and optical spectroscopy were used to study the interaction of alcohol dehydrogenase (ADH) with negatively charged polystyrene sulfonate (PSS) and dextran sulfate (DS), as well as positively charged poly(diallyldimethylammonium) (PDADMA). As found, DS and PDADMA did not affect the structural and catalytic enzyme properties. In contrast, PSS slightly decreased the protein self-fluorescence over 1 h of incubation, which is associated with partial destruction of its quaternary (globular) structure. Investigation of the ADH activity with and without PSS showed its dependency on the incubation time and the PSS presence. Sodium chloride (2.0 M and 0.2 M) or ammonium sulfate (0.1 M) added to the reaction mixture did not completely protect the enzyme quaternary structure from the PSS action. However ammonium sulfate or 0.2 M sodium chloride stabilized the enzyme and partially inhibited the negative PSS effect.

  5. Encapsulation of alcohol dehydrogenase in mannitol by spray drying.

    PubMed

    Shiga, Hirokazu; Joreau, Hiromi; Neoh, Tze Loon; Furuta, Takeshi; Yoshii, Hidefumi

    2014-03-24

    The retention of the enzyme activity of alcohol dehydrogenase (ADH) has been studied in various drying processes such as spray drying. The aim of this study is to encapsulate ADH in mannitol, either with or without additive in order to limit the thermal denaturation of the enzyme during the drying process. The retention of ADH activity was investigated at different drying temperatures. When mannitol was used, the encapsulated ADH was found inactive in all the dried powders. This is presumably due to the quick crystallization of mannitol during spray drying that resulted in the impairment of enzyme protection ability in comparison to its amorphous form. Maltodextin (dextrose equivalent = 11) was used to reduce the crystallization of mannitol. The addition of maltodextrin increased ADH activity and drastically changed the powder X-ray diffractogram of the spray-dried powders.

  6. Sequential injection analysis of ethanol using immobilized alcohol dehydrogenase

    SciTech Connect

    Hedenfalk, M.; Mattiasson, B.

    1996-05-01

    A Sequential Injection (SI) system was used to analyze the ethanol concentration in fermentation broth. The method is based on the use of immobilized NAD{sup +} dependent alcohol dehydrogenase. A non-linear standard curve for ethanol (range 0.25-100 mM) was used to determine the concentration in fermentation broth and the results correlated well with HPLC measurements. The assay time was 140 s, 0.5 {mu}mol of cofactor was used for each determination, and the relative standard deviation was less than 6% when analyzing fermentation samples. The assay system is very stable and makes it possible to reduce the cofactor consumption while keeping the system set up simple.

  7. Alcohol dehydrogenase polymorphism in barrel cactus populations of Drosophila mojavensis.

    PubMed

    Cleland, S; Hocutt, G D; Breitmeyer, C M; Markow, T A; Pfeiler, E

    1996-07-01

    Starch gel electrophoresis revealed that the alcohol dehydrogenase (ADH-2) locus was polymorphic in two populations (from Agua Caliente, California and the Grand Canyon, Arizona) of cactophilic Drosophila mojavensis that utilize barrel cactus (Ferocactus acanthodes) as a host plant. Electromorphs representing products of a slow (S) and a fast (F) allele were found in adult flies. The frequency of the slow allele was 0.448 in flies from Agua Caliente and 0.659 in flies from the Grand Canyon. These frequencies were intermediate to those of the low (Baja California peninsula, Mexico) and high (Sonora, Mexico and southern Arizona) frequency Adh-2S populations of D. mojavensis that utilize different species of host cacti.

  8. Alcohol biosensor based on alcohol dehydrogenase and Meldola Blue immobilized into a carbon paste electrode.

    PubMed

    García Mullor, S; Sánchez-Cabezudo, M; Miranda Ordieres, A J; López Ruiz, B

    1996-05-01

    A yeast alcohol dehydrogenase amperometric carbon paste-based biosensor, with Meldola Blue as a mediator and a dialysis membrane with a very small molecular weight cut-off for protection, is described. The influence of membrane pore size on the stability and overall kinetics of the biosensor is shown using cyclic voltammetry and stationary potential measurements. The operating potential is + 50 mV vs. Ag/AgCl, KCl sat. reference electrode. Application of this device to the determination of ethanol in alcoholic beverages was achieved successfully. In these kinds of samples and at this working potential no interferences were found.

  9. Alcohol dehydrogenase 1B genotype and fetal alcohol syndrome: a HuGE minireview.

    PubMed

    Green, Ridgely Fisk; Stoler, Joan Marilyn

    2007-07-01

    Fetal alcohol syndrome (FAS), 1 of the most common developmental disabilities in the United States, occurs at a rate of 0.5-2.0:1000 live births. Animal model, family, and twin studies suggest a genetic component to FAS susceptibility. Alcohol dehydrogenases (ADHs) catalyze the rate-limiting step in alcohol metabolism. Studies of genetic associations with FAS have focused on the alcohol dehydrogenase 1B (ADH1B) gene, comparing mothers and children with the alleles ADH1B*2 or ADH1B*3, associated with faster ethanol metabolism, with those homozygous for ADH1B*1. While most studies have found a protective effect for genotypes containing ADH1B*2 or ADH1B*3, results have been conflicting, and further investigation into the association between the ADH1B genotype and FAS is needed. Whether increased alcohol intake accounts for the elevated risk reported for the ADH1B*1/ADH1B*1 genotype should be addressed, and future studies would benefit from consistent case definitions, enhanced exposure measurements, larger sample sizes, and careful study design.

  10. Aldehyde dehydrogenase inhibition combined with phenformin treatment reversed NSCLC through ATP depletion

    PubMed Central

    Lee, Jae-Seon; Nam, Boas; Seong, Tae Wha; Son, Jaekyoung; Jang, Hyonchol; Hong, Kyeong Man; Lee, Cheolju; Kim, Soo-Youl

    2016-01-01

    Among ALDH isoforms, ALDH1L1 in the folate pathway showed highly increased expression in non-small-cell lung cancer cells (NSCLC). Based on the basic mechanism of ALDH converting aldehyde to carboxylic acid with by-product NADH, we suggested that ALDH1L1 may contribute to ATP production using NADH through oxidative phosphorylation. ALDH1L1 knockdown reduced ATP production by up to 60% concomitantly with decrease of NADH in NSCLC. ALDH inhibitor, gossypol, also reduced ATP production in a dose dependent manner together with decrease of NADH level in NSCLC. A combination treatment of gossypol with phenformin, mitochondrial complex I inhibitor, synergized ATP depletion, which efficiently induced cell death. Pre-clinical xenograft model using human NSCLC demonstrated a remarkable therapeutic response to the combined treatment of gossypol and phenformin. PMID:27384481

  11. Contribution of liver alcohol dehydrogenase to metabolism of alcohols in rats.

    PubMed

    Plapp, Bryce V; Leidal, Kevin G; Murch, Bruce P; Green, David W

    2015-06-05

    The kinetics of oxidation of various alcohols by purified rat liver alcohol dehydrogenase (ADH) were compared with the kinetics of elimination of the alcohols in rats in order to investigate the roles of ADH and other factors that contribute to the rates of metabolism of alcohols. Primary alcohols (ethanol, 1-propanol, 1-butanol, 2-methyl-1-propanol, 3-methyl-1-butanol) and diols (1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol) were eliminated in rats with zero-order kinetics at doses of 5-20 mmol/kg. Ethanol was eliminated most rapidly, at 7.9 mmol/kgh. Secondary alcohols (2-propanol-d7, 2-propanol, 2-butanol, 3-pentanol, cyclopentanol, cyclohexanol) were eliminated with first order kinetics at doses of 5-10 mmol/kg, and the corresponding ketones were formed and slowly eliminated with zero or first order kinetics. The rates of elimination of various alcohols were inhibited on average 73% (55% for 2-propanol to 90% for ethanol) by 1 mmol/kg of 4-methylpyrazole, a good inhibitor of ADH, indicating a major role for ADH in the metabolism of the alcohols. The Michaelis kinetic constants from in vitro studies (pH 7.3, 37 °C) with isolated rat liver enzyme were used to calculate the expected relative rates of metabolism in rats. The rates of elimination generally increased with increased activity of ADH, but a maximum rate of 6±1 mmol/kg h was observed for the best substrates, suggesting that ADH activity is not solely rate-limiting. Because secondary alcohols only require one NAD(+) for the conversion to ketones whereas primary alcohols require two equivalents of NAD(+) for oxidation to the carboxylic acids, it appears that the rate of oxidation of NADH to NAD(+) is not a major limiting factor for metabolism of these alcohols, but the rate-limiting factors are yet to be identified.

  12. Characterization of new medium-chain alcohol dehydrogenases adds resolution to duplications of the class I/III and the sub-class I genes.

    PubMed

    Cederlund, Ella; Hedlund, Joel; Hjelmqvist, Lars; Jonsson, Andreas; Shafqat, Jawed; Norin, Annika; Keung, Wing-Ming; Persson, Bengt; Jörnvall, Hans

    2011-05-30

    Four additional variants of alcohol and aldehyde dehydrogenases have been purified and functionally characterized, and their primary structures have been determined. The results allow conclusions about the structural and evolutionary relationships within the large family of MDR alcohol dehydrogenases from characterizations of the pigeon (Columba livia) and dogfish (Scyliorhinus canicula) major liver alcohol dehydrogenases. The pigeon enzyme turns out to be of class I type and the dogfish enzyme of class III type. This result gives a third type of evidence, based on purifications and enzyme characterization in lower vertebrates, that the classical liver alcohol dehydrogenase originated by a gene duplication early in the evolution of vertebrates. It is discernable as the major liver form at about the level in-between cartilaginous and osseous fish. The results also show early divergence within the avian orders. Structures were determined by Edman degradations, making it appropriate to acknowledge the methodological contributions of Pehr Edman during the 65 years since his thesis at Karolinska Institutet, where also the present analyses were performed.

  13. Not only students can express alcohol dehydrogenase: goldfish can too!

    PubMed

    Chamberland, Valérie; Rioux, Pierre

    2010-12-01

    This article describes a novel approach to study the metabolic regulation of the respiratory system in vertebrates that suits physiology lessons for undergraduate students. It consists of an experimental demonstration of the goldfish's (Carassius auratus) adaptations to anoxia. The goldfish is one of the few vertebrates showing strong enzymatic plasticity for the expression of alcohol dehydrogenase (ADH), which allows it to survive long periods of severe anoxia. Therefore, we propose two simple laboratory exercises in which students are first asked to characterize the distribution of ADH isozymes in the goldfish by performing cellulose acetate electrophoresis. The second part of this laboratory lesson is the determination of liver glycogen. To further student comprehension, an interspecies comparative component is integrated, in which the same subjects are studied in an anoxia-sensitive species, the brook charr (Salvelinus fontinalis). ADH in goldfish is restricted to skeletal muscles, where it catalyzes alcoholic fermentation, permitting ethanol excretion through the gills and therefore preventing lactate acidosis caused by sustained glycolysis during anoxia. Electrophoresis also reveals the occurrence of a liver isozyme in the brook charr, which ADH catalyzes in the opposite pathway, allowing the usual ethanol degradation. As for the liver glycogen assay, it shows largely superior content in the goldfish liver compared with the brook charr, providing goldfish with a sustained energy supply during anoxia. The results of this laboratory exercise clearly demonstrate several physiological strategies developed by goldfish to cope with such a crucial environmental challenge as oxygen depletion.

  14. Isolation and partial characterization of the Drosophila alcohol dehydrogenase gene.

    PubMed Central

    Goldberg, D A

    1980-01-01

    The alcohol dehydrogenase (ADH; alcohol: NAD+ oxidoreductase, EC 1.1.1.1) gene (Adh) of Drosophila melanogaster was isolated by utilizing a mutant strain in which the Adh locus is deleted. Adult RNA from wild-type flies was enriched in ADH sequences by gel electrophoresis and then used to prepare labeled cDNA for screening a bacteriophage lambda library of genomic Drosophila DNA. Of the clones that hybridized in the initial screen, one clone was identified that hybridized with labeled cDNA prepared from a wild-type Drosophila strain but did not hybridize with cDNA prepared from an Adh deletion strain. This clone was shown to contain ADH structural gene sequences by three criteria: in situ hybridization, in vitro translation of mRNA selected by hybridization to the cloned DNA, and comparison of the ADH protein sequence with a nucleotide sequence derived from the cloned DNA. Comparison of the restriction site maps from clones of three different wild-type Drosophila strains revealed the presence of a 200-nucleotide sequence in one strain that was absent from the other two strains. The ADH mRNA sequences were located within the cloned DNA by hybridization mapping experiments. Two intervening sequences were identified within Adh by S1 nuclease mapping experiments. Images PMID:6777776

  15. Sequence variation of alcohol dehydrogenase (Adh) paralogs in cactophilic Drosophila.

    PubMed Central

    Matzkin, Luciano M; Eanes, Walter F

    2003-01-01

    This study focuses on the population genetics of alcohol dehydrogenase (Adh) in cactophilic Drosophila. Drosophila mojavensis and D. arizonae utilize cactus hosts, and each host contains a characteristic mixture of alcohol compounds. In these Drosophila species there are two functional Adh loci, an adult form (Adh-2) and a larval and ovarian form (Adh-1). Overall, the greater level of variation segregating in D. arizonae than in D. mojavensis suggests a larger population size for D. arizonae. There are markedly different patterns of variation between the paralogs across both species. A 16-bp intron haplotype segregates in both species at Adh-2, apparently the product of an ancient gene conversion event between the paralogs, which suggests that there is selection for the maintenance of the intron structure possibly for the maintenance of pre-mRNA structure. We observe a pattern of variation consistent with adaptive protein evolution in the D. mojavensis lineage at Adh-1, suggesting that the cactus host shift that occurred in the divergence of D. mojavensis from D. arizonae had an effect on the evolution of the larval expressed paralog. Contrary to previous work we estimate a recent time for both the divergence of D. mojavensis and D. arizonae (2.4 +/- 0.7 MY) and the age of the gene duplication (3.95 +/- 0.45 MY). PMID:12586706

  16. Cardiac Mitochondrial Respiratory Dysfunction and Tissue Damage in Chronic Hyperglycemia Correlate with Reduced Aldehyde Dehydrogenase-2 Activity

    PubMed Central

    Deshpande, Mandar; Thandavarayan, Rajarajan A.; Xu, Jiang; Yang, Xiao-Ping; Palaniyandi, Suresh S.

    2016-01-01

    Aldehyde dehydrogenase (ALDH) 2 is a mitochondrial isozyme of the heart involved in the metabolism of toxic aldehydes produced from oxidative stress. We hypothesized that hyperglycemia-mediated decrease in ALDH2 activity may impair mitochondrial respiration and ultimately result in cardiac damage. A single dose (65 mg/kg; i.p.) streptozotocin injection to rats resulted in hyperglycemia with blood glucose levels of 443 ± 9 mg/dl versus 121 ± 7 mg/dl in control animals, p<0.0001, N = 7–11. After 6 months of diabetes mellitus (DM) induction, the rats were sacrificed after recording the functionality of their hearts. Increase in the cardiomyocyte cross sectional area (446 ± 32 μm2 Vs 221 ± 10 μm2; p<0.0001) indicated cardiac hypertrophy in DM rats. Both diastolic and systolic dysfunctions were observed with DM rats compared to controls. Most importantly, myocardial ALDH2 activity and levels were reduced, and immunostaining for 4HNE protein adducts was increased in DM hearts compared to controls. The mitochondrial oxygen consumption rate (OCR), an index of mitochondrial respiration, was decreased in mitochondria isolated from DM hearts compared to controls (p<0.0001). Furthermore, the rate of mitochondrial respiration and the increase in carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP)-induced maximal respiration were also decreased with chronic hyperglycemia. Chronic hyperglycemia reduced mitochondrial OXPHOS proteins. Reduced ALDH2 activity was correlated with mitochondrial dysfunction, pathological remodeling and cardiac dysfunction, respectively. Our results suggest that chronic hyperglycemia reduces ALDH2 activity, leading to mitochondrial respiratory dysfunction and consequently cardiac damage and dysfunction. PMID:27736868

  17. Genome-wide identification and analysis of the aldehyde dehydrogenase (ALDH) gene superfamily in apple (Malus × domestica Borkh.).

    PubMed

    Li, Xiaoqin; Guo, Rongrong; Li, Jun; Singer, Stacy D; Zhang, Yucheng; Yin, Xiangjing; Zheng, Yi; Fan, Chonghui; Wang, Xiping

    2013-10-01

    Aldehyde dehydrogenases (ALDHs) represent a protein superfamily encoding NAD(P)(+)-dependent enzymes that oxidize a wide range of endogenous and exogenous aliphatic and aromatic aldehydes. In plants, they are involved in many biological processes and play a role in the response to environmental stress. In this study, a total of 39 ALDH genes from ten families were identified in the apple (Malus × domestica Borkh.) genome. Synteny analysis of the apple ALDH (MdALDH) genes indicated that segmental and tandem duplications, as well as whole genome duplications, have likely contributed to the expansion and evolution of these gene families in apple. Moreover, synteny analysis between apple and Arabidopsis demonstrated that several MdALDH genes were found in the corresponding syntenic blocks of Arabidopsis, suggesting that these genes appeared before the divergence of lineages that led to apple and Arabidopsis. In addition, phylogenetic analysis, as well as comparisons of exon-intron and protein structures, provided further insight into both their evolutionary relationships and their putative functions. Tissue-specific expression analysis of the MdALDH genes demonstrated diverse spatiotemporal expression patterns, while their expression profiles under abiotic stress and various hormone treatments indicated that many MdALDH genes were responsive to high salinity and drought, as well as different plant hormones. This genome-wide identification, as well as characterization of evolutionary relationships and expression profiles, of the apple MdALDH genes will not only be useful for the further analysis of ALDH genes and their roles in stress response, but may also aid in the future improvement of apple stress tolerance.

  18. Crystal structure of the vertebrate NADP(H)-dependent alcohol dehydrogenase (ADH8).

    PubMed

    Rosell, Albert; Valencia, Eva; Parés, Xavier; Fita, Ignacio; Farrés, Jaume; Ochoa, Wendy F

    2003-06-27

    The amphibian enzyme ADH8, previously named class IV-like, is the only known vertebrate alcohol dehydrogenase (ADH) with specificity towards NADP(H). The three-dimensional structures of ADH8 and of the binary complex ADH8-NADP(+) have been now determined and refined to resolutions of 2.2A and 1.8A, respectively. The coenzyme and substrate specificity of ADH8, that has 50-65% sequence identity with vertebrate NAD(H)-dependent ADHs, suggest a role in aldehyde reduction probably as a retinal reductase. The large volume of the substrate-binding pocket can explain both the high catalytic efficiency of ADH8 with retinoids and the high K(m) value for ethanol. Preference of NADP(H) appears to be achieved by the presence in ADH8 of the triad Gly223-Thr224-His225 and the recruitment of conserved Lys228, which define a binding pocket for the terminal phosphate group of the cofactor. NADP(H) binds to ADH8 in an extended conformation that superimposes well with the NAD(H) molecules found in NAD(H)-dependent ADH complexes. No additional reshaping of the dinucleotide-binding site is observed which explains why NAD(H) can also be used as a cofactor by ADH8. The structural features support the classification of ADH8 as an independent ADH class.

  19. CINNAMYL ALCOHOL DEHYDROGENASE-C and -D Are the Primary Genes Involved in Lignin Biosynthesis in the Floral Stem of ArabidopsisW⃞

    PubMed Central

    Sibout, Richard; Eudes, Aymerick; Mouille, Gregory; Pollet, Brigitte; Lapierre, Catherine; Jouanin, Lise; Séguin, Armand

    2005-01-01

    During lignin biosynthesis in angiosperms, coniferyl and sinapyl aldehydes are believed to be converted into their corresponding alcohols by cinnamyl alcohol dehydrogenase (CAD) and by sinapyl alcohol dehydrogenase (SAD), respectively. This work clearly shows that CAD-C and CAD-D act as the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis thaliana by supplying both coniferyl and sinapyl alcohols. An Arabidopsis CAD double mutant (cad-c cad-d) resulted in a phenotype with a limp floral stem at maturity as well as modifications in the pattern of lignin staining. Lignin content of the mutant stem was reduced by 40%, with a 94% reduction, relative to the wild type, in conventional β-O-4–linked guaiacyl and syringyl units and incorportion of coniferyl and sinapyl aldehydes. Fourier transform infrared spectroscopy demonstrated that both xylem vessels and fibers were affected. GeneChip data and real-time PCR analysis revealed that transcription of CAD homologs and other genes mainly involved in cell wall integrity were also altered in the double mutant. In addition, molecular complementation of the double mutant by tissue-specific expression of CAD derived from various species suggests different abilities of these genes/proteins to produce syringyl-lignin moieties but does not indicate a requirement for any specific SAD gene. PMID:15937231

  20. Conserved catalytic residues of the ALDH1L1 aldehyde dehydrogenase domain control binding and discharging of the coenzyme.

    PubMed

    Tsybovsky, Yaroslav; Krupenko, Sergey A

    2011-07-01

    The C-terminal domain (C(t)-FDH) of 10-formyltetrahydrofolate dehydrogenase (FDH, ALDH1L1) is an NADP(+)-dependent oxidoreductase and a structural and functional homolog of aldehyde dehydrogenases. Here we report the crystal structures of several C(t)-FDH mutants in which two essential catalytic residues adjacent to the nicotinamide ring of bound NADP(+), Cys-707 and Glu-673, were replaced separately or simultaneously. The replacement of the glutamate with an alanine causes irreversible binding of the coenzyme without any noticeable conformational changes in the vicinity of the nicotinamide ring. Additional replacement of cysteine 707 with an alanine (E673A/C707A double mutant) did not affect this irreversible binding indicating that the lack of the glutamate is solely responsible for the enhanced interaction between the enzyme and the coenzyme. The substitution of the cysteine with an alanine did not affect binding of NADP(+) but resulted in the enzyme lacking the ability to differentiate between the oxidized and reduced coenzyme: unlike the wild-type C(t)-FDH/NADPH complex, in the C707A mutant the position of NADPH is identical to the position of NADP(+) with the nicotinamide ring well ordered within the catalytic center. Thus, whereas the glutamate restricts the affinity for the coenzyme, the cysteine is the sensor of the coenzyme redox state. These conclusions were confirmed by coenzyme binding experiments. Our study further suggests that the binding of the coenzyme is additionally controlled by a long-range communication between the catalytic center and the coenzyme-binding domain and points toward an α-helix involved in the adenine moiety binding as a participant of this communication.

  1. Arabidopsis aldehyde dehydrogenase 10 family members confer salt tolerance through putrescine-derived 4-aminobutyrate (GABA) production

    PubMed Central

    Zarei, Adel; Trobacher, Christopher P.; Shelp, Barry J.

    2016-01-01

    Polyamines represent a potential source of 4-aminobutyrate (GABA) in plants exposed to abiotic stress. Terminal catabolism of putrescine in Arabidopsis thaliana involves amine oxidase and the production of 4-aminobutanal, which is a substrate for NAD+-dependent aminoaldehyde dehydrogenase (AMADH). Here, two AMADH homologs were chosen (AtALDH10A8 and AtALDH10A9) as candidates for encoding 4-aminobutanal dehydrogenase activity for GABA synthesis. The two genes were cloned and soluble recombinant proteins were produced in Escherichia coli. The pH optima for activity and catalytic efficiency of recombinant AtALDH10A8 with 3-aminopropanal as substrate was 10.5 and 8.5, respectively, whereas the optima for AtALDH10A9 were approximately 9.5. Maximal activity and catalytic efficiency were obtained with NAD+ and 3-aminopropanal, followed by 4-aminobutanal; negligible activity was obtained with betaine aldehyde. NAD+ reduction was accompanied by the production of GABA and β-alanine, respectively, with 4-aminobutanal and 3-aminopropanal as substrates. Transient co-expression systems using Arabidopsis cell suspension protoplasts or onion epidermal cells and several organelle markers revealed that AtALDH10A9 was peroxisomal, but AtALDH10A8 was cytosolic, although the N-terminal 140 amino acid sequence of AtALDH10A8 localized to the plastid. Root growth of single loss-of-function mutants was more sensitive to salinity than wild-type plants, and this was accompanied by reduced GABA accumulation. PMID:27725774

  2. Alcohol dehydrogenases and an alcohol oxidase involved in the assimilation of exogenous fatty alcohols in Yarrowia lipolytica.

    PubMed

    Iwama, Ryo; Kobayashi, Satoshi; Ohta, Akinori; Horiuchi, Hiroyuki; Fukuda, Ryouichi

    2015-05-01

    The yeast Yarrowia lipolytica can assimilate hydrophobic substrates, including n-alkanes and fatty alcohols. Here, eight alcohol dehydrogenase genes, ADH1-ADH7 and FADH, and a fatty alcohol oxidase gene, FAO1, were analyzed to determine their roles in the metabolism of hydrophobic substrates. A mutant deleted for all of these genes (ALCY02 strain) showed severely defective growth on fatty alcohols, and enhanced sensitivity to fatty alcohols in glucose-containing media. The ALCY02 strain grew normally on n-tetradecane or n-hexadecane, but exhibited slightly defective growth on n-decane or n-dodecane. It accumulated more 1-dodecanol and less dodecanoic acid than the wild-type strain when n-dodecane was fed. Expression of ADH1, ADH3 or FAO1, but not that of other ADH genes or FADH, in the ALCY02 strain restored its growth on fatty alcohols. In addition, a triple deletion mutant of ADH1, ADH3 and FAO1 showed similarly defective growth on fatty alcohols and on n-dodecane to the ALCY02 strain. Microscopic observation suggests that Adh1p and Adh3p are localized in the cytosol and Fao1p is in the peroxisome. These results suggest that Adh1p, Adh3p and Fao1p are responsible for the oxidation of exogenous fatty alcohols but play less prominent roles in the oxidation of fatty alcohols derived from n-alkanes.

  3. Aldehyde dehydrogenase, Ald4p, is a major component of mitochondrial fluorescent inclusion bodies in the yeast Saccharomyces cerevisiae

    PubMed Central

    Misonou, Yoshiko; Kikuchi, Maiko; Sato, Hiroshi; Inai, Tomomi; Kuroiwa, Tsuneyoshi; Tanaka, Kenji; Miyakawa, Isamu

    2014-01-01

    ABSTRACT When Saccharomyces cerevisiae strain 3626 was cultured to the stationary phase in a medium that contained glucose, needle-like structures that emitted autofluorescence were observed in almost all cells by fluorescence microscopy under UV excitation. The needle-like structures completely overlapped with the profile of straight elongated mitochondria. Therefore, these structures were designated as mitochondrial fluorescent inclusion bodies (MFIBs). The MFIB-enriched mitochondrial fractions were successfully isolated and 2D-gel electrophoresis revealed that a protein of 54 kDa was only highly concentrated in the fractions. Determination of the N-terminal amino acid sequence of the 54-kDa protein identified it as a mitochondrial aldehyde dehydrogenase, Ald4p. Immunofluorescence microscopy showed that anti-Ald4p antibody specifically stained MFIBs. Freeze-substitution electron microscopy demonstrated that cells that retained MFIBs had electron-dense filamentous structures with a diameter of 10 nm in straight elongated mitochondria. Immunoelectron microscopy showed that Ald4p was localized to the electron-dense filamentous structures in mitochondria. These results together showed that a major component of MFIBs is Ald4p. In addition, we demonstrate that MFIBs are common features that appear in mitochondria of many species of yeast. PMID:24771619

  4. Deficient Expression of Aldehyde Dehydrogenase 1A1 is Consistent With Increased Sensitivity of Gorlin Syndrome Patients to Radiation Carcinogenesis

    PubMed Central

    Wright, Aaron T.; Magnaldo, Thierry; Sontag, Ryan L.; Anderson, Lindsey N.; Sadler, Natalie C.; Piehowski, Paul D.; Gache, Yannick; Weber, Thomas J.

    2016-01-01

    Human phenotypes that are highly susceptible to radiation carcinogenesis have been identified. Sensitive phenotypes often display robust regulation of molecular features that modify biological response, which can facilitate identification of the pathways/networks that contribute to pathophysiological outcomes. Here we interrogate primary dermal fibroblasts isolated from Gorlin syndrome patients (GDFs), who display a pronounced inducible tumorigenic response to radiation, in comparison to normal human dermal fibroblasts (NHDFs). Our approach exploits newly developed thiol reactive probes to define changes in protein thiol profiles in live cell studies, which minimizes artifacts associated with cell lysis. Redox probes revealed deficient expression of an apparent 55 kDa protein thiol in GDFs from independent Gorlin syndrome patients, compared with NHDFs. Proteomics tentatively identified this protein as aldehyde dehydrogenase 1A1 (ALDH1A1), a key enzyme regulating retinoic acid synthesis, and ALDH1A1 protein deficiency in GDFs was confirmed by Western blot. A number of additional protein thiol differences in GDFs were identified, including radiation responsive annexin family members and lamin A/C. Collectively, candidates identified in our study have plausible implications for radiation health effects and cancer susceptibility. PMID:24285572

  5. Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress and abscisic acid.

    PubMed

    Ishitani, M; Nakamura, T; Han, S Y; Takabe, T

    1995-01-01

    When subjected to salt stress or drought, some vascular plants such as barley respond with an increased accumulation of the osmoprotectant glycine betaine (betaine), being the last step of betaine synthesis catalyzed by betaine aldehyde dehydrogenase (BADH). We report here cloning and characterization of BADH cDNA from barley, a monocot, and the expression pattern of a BADH transcript. An open reading frame of 1515 bp encoded a protein which showed high homology to BADH enzymes present in other plants (spinach and sugar-beet) and in Escherichia coli. Transgenic tobacco plants harboring the clone expressed high levels of both BADH protein and its enzymatic activity. Northern blot analyses indicated that BADH mRNA levels increased almost 8-fold and 2-fold, respectively, in leaves and roots of barley plants grown in high-salt conditions, and that these levels decreased upon release of the stress, whereas they did not decrease under continuous salt stress. BADH transcripts also accumulate in response to water stress or drought, indicating a common response of the plant to osmotic changes that affect its water status. The addition of abscisic acid (ABA) to plants during growth also increased the levels of BADH transcripts dramatically, although the response was delayed when compared to that found for salt-stressed plants. Removal of plant roots before transferring the plants to high-salt conditions reduced only slightly the accumulation of BADH transcripts in the leaves.

  6. Inhibition of aldehyde dehydrogenase 2 activity enhances antimycin-induced rat cardiomyocytes apoptosis through activation of MAPK signaling pathway.

    PubMed

    Zhang, Peng; Xu, Danling; Wang, Shijun; Fu, Han; Wang, Keqiang; Zou, Yunzeng; Sun, Aijun; Ge, Junbo

    2011-12-01

    Aldehyde dehydrogenase 2 (ALDH2), a mitochondrial-specific enzyme, has been proved to be involved in oxidative stress-induced cell apoptosis, while little is known in cardiomyocytes. This study was aimed at investigating the role of ALDH2 in antimycin A-induced cardiomyocytes apoptosis by suppressing ALDH2 activity with a specific ALDH2 inhibitor Daidzin. Antimycin A (40μg/ml) was used to induce neonatal cardiomyocytes apoptosis. Daidzin (60μM) effectively inhibited ALDH2 activity by 50% without own effect on cell apoptosis, and significantly enhanced antimycin A-induced cardiomyocytes apoptosis from 33.5±4.4 to 56.5±6.4% (Hochest method, p<0.05), and from 57.9±1.9 to 74.0±11.9% (FACS, p<0.05). Phosphorylation of activated MAPK signaling pathway, including extracellular signal-regulated kinase (ERK1/2), c-Jun NH2-terminal kinase (JNK) and p38 was also increased in antimycin A and daidzin treated cardiomyocytes compared to the cells treated with antimycin A alone. These findings indicated that modifying mitochondrial ALDH2 activity/expression might be a potential therapeutic option on reducing oxidative insults induced cardiomyocytes apoptosis.

  7. Deficient expression of aldehyde dehydrogenase 1A1 is consistent with increased sensitivity of Gorlin syndrome patients to radiation carcinogenesis.

    PubMed

    Wright, Aaron T; Magnaldo, Thierry; Sontag, Ryan L; Anderson, Lindsey N; Sadler, Natalie C; Piehowski, Paul D; Gache, Yannick; Weber, Thomas J

    2015-06-01

    Human phenotypes that are highly susceptible to radiation carcinogenesis have been identified. Sensitive phenotypes often display robust regulation of molecular features that modify biological response, which can facilitate identification of the pathways/networks that contribute to pathophysiological outcomes. Here we interrogate primary dermal fibroblasts isolated from Gorlin syndrome patients (GDFs), who display a pronounced inducible tumorigenic response to radiation, in comparison to normal human dermal fibroblasts (NHDFs). Our approach exploits newly developed thiol reactive probes to define changes in protein thiol profiles in live cell studies, which minimizes artifacts associated with cell lysis. Redox probes revealed deficient expression of an apparent 55 kDa protein thiol in GDFs from independent Gorlin syndrome patients, compared with NHDFs. Proteomics tentatively identified this protein as aldehyde dehydrogenase 1A1 (ALDH1A1), a key enzyme regulating retinoic acid synthesis, and ALDH1A1 protein deficiency in GDFs was confirmed by Western blot. A number of additional protein thiol differences in GDFs were identified, including radiation responsive annexin family members and lamin A/C. Collectively, candidates identified in our study have plausible implications for radiation health effects and cancer susceptibility.

  8. cDNA cloning and analysis of betaine aldehyde dehydrogenase, a salt inducible enzyme in sugar beet

    SciTech Connect

    McCue, K.F.; Hanson, A.D. )

    1990-05-01

    Betaine accumulates and serves as a compatible osmolyte in some plants subjected to drought or salinity stress. The last enzyme in the betaine biosynthetic pathway is betaine aldehyde dehydrogenase (BADH). The activity of BADH increases in response to increasing salinity levels. This increase in activity corresponds to an increase in protein detectable by immunoblotting, and to an increase in the translatable BADH mRNA. BADH was cloned from a cDNA library constructed in {lambda}gt10 using poly(A){sup +} RNA from sugar beets salinized to 500 mM NaCl. cDNAs were size selected (>1kb) before ligation into the vector, and the library was screened with a spinach BADH cDNA probe. Three nearly full length clones obtained were confirmed as BADH by their nucleotide and deduced amino acid homology to spinach BADH. Clones averaged 1.8 kb and contained open reading frames of 500 amino acids at 80% identity with spinach BADH. RNA gel blot analysis of poly(A){sup +} RNA indicated that salinization to 500 mM NaCl resulted in a 5-fold increase of BADH mRNA level.

  9. Salt-induction of betaine aldehyde dehydrogenase mRNA, protein, and enzymatic activity in sugar beet. [Beta vulgaris L

    SciTech Connect

    McCue, K.F.; Hanson, A.D. )

    1991-05-01

    In Chenopodiaceae such as sugar beet (Beta vulgaris L.), glycine betaine (betaine) accumulates in response to drought or salinity stress and functions in the cytoplasm as a compatible osmolyte. The last enzyme in the biosynthetic pathway, betaine aldehyde dehydrogenase (BADH), increases as much as 4-fold in response to rising salinity in the external medium. This increase is accompanied by an increase in both protein and mRNA levels. The steady state increases in BADH were examined at a series of NaCl concentrations from 100 to 500 mM NaCl. BADH protein levels were examined by native PAGE, and by western blot analysis using antibodies raised against BADH purified from spinach. mRNA levels were examined by northern plot analysis of total RNA isolated from the leaves and hybridized with a sugar beet BADH cDNA clone. The time course for BADH mRNA induction was determined in a salt shock experiment utilizing 400 mM NaCl added to the external growth medium. Disappearance of BADH was examined in a salt relief experiment using plants step-wise salinized to 500 mM NaCl and then returned to 0 mM NaCl.

  10. Deficient expression of aldehyde dehydrogenase 1A1 is consistent with increased sensitivity of Gorlin syndrome patients to radiation carcinogenesis

    DOE PAGES

    Wright, Aaron T.; Magnaldo, Thierry; Sontag, Ryan L.; ...

    2013-11-27

    Human phenotypes that are highly susceptible to radiation carcinogenesis have been identified. Sensitive phenotypes often display robust regulation of molecular features that modify biological response, which can facilitate identification of relevant pathways/networks. Here we interrogate primary dermal fibroblasts isolated from Gorlin syndrome patients (GDFs), who display a pronounced tumorigenic response to radiation, in comparison to normal human dermal fibroblasts (NHDFs). Our approach exploits newly developed thiol-reactive probes with a flexible click chemistry functional group to define changes in protein thiol profiles in live cell studies, which minimizes artifacts associated with cell lysis. We observe qualitative differences in protein thiol profilesmore » by SDS-PAGE analysis when detection by iodoacetamide vs maleimide probe chemistries are compared, and pretreatment of cells with hydrogen peroxide eliminates detection of the majority of SDS-PAGE bands. Redox probes revealed deficient expression of an apparent 55 kDa protein thiol in GDFs from independent donors, compared with NHDFs. Proteomics tentatively identified this protein as aldehyde dehydrogenase 1A1 (ALDH1A1), a key enzyme regulating retinoic acid synthesis, and this deficiency was confirmed by Western blot. Redox probes revealed additional protein thiol differences between GDFs and NHDFs, including radiation responsive annexin family members. Our results indicate a multifactorial basis for the unusual sensitivity of Gorlin syndrome to radiation carcinogenesis, and the pathways identified have plausible implications for radiation health effects.« less

  11. Deficient expression of aldehyde dehydrogenase 1A1 is consistent with increased sensitivity of Gorlin syndrome patients to radiation carcinogenesis

    SciTech Connect

    Wright, Aaron T.; Magnaldo, Thierry; Sontag, Ryan L.; Anderson, Lindsey N.; Sadler, Natalie C.; Piehowski, Paul D.; Gache, Yannick; Weber, Thomas J.

    2013-11-27

    Human phenotypes that are highly susceptible to radiation carcinogenesis have been identified. Sensitive phenotypes often display robust regulation of molecular features that modify biological response, which can facilitate identification of relevant pathways/networks. Here we interrogate primary dermal fibroblasts isolated from Gorlin syndrome patients (GDFs), who display a pronounced tumorigenic response to radiation, in comparison to normal human dermal fibroblasts (NHDFs). Our approach exploits newly developed thiol-reactive probes with a flexible click chemistry functional group to define changes in protein thiol profiles in live cell studies, which minimizes artifacts associated with cell lysis. We observe qualitative differences in protein thiol profiles by SDS-PAGE analysis when detection by iodoacetamide vs maleimide probe chemistries are compared, and pretreatment of cells with hydrogen peroxide eliminates detection of the majority of SDS-PAGE bands. Redox probes revealed deficient expression of an apparent 55 kDa protein thiol in GDFs from independent donors, compared with NHDFs. Proteomics tentatively identified this protein as aldehyde dehydrogenase 1A1 (ALDH1A1), a key enzyme regulating retinoic acid synthesis, and this deficiency was confirmed by Western blot. Redox probes revealed additional protein thiol differences between GDFs and NHDFs, including radiation responsive annexin family members. Our results indicate a multifactorial basis for the unusual sensitivity of Gorlin syndrome to radiation carcinogenesis, and the pathways identified have plausible implications for radiation health effects.

  12. Implication of an Aldehyde Dehydrogenase Gene and a Phosphinothricin N-Acetyltransferase Gene in the Diversity of Pseudomonas cichorii Virulence

    PubMed Central

    Tanaka, Masayuki; Wali, Ullah Md; Nakayashiki, Hitoshi; Fukuda, Tatsuya; Mizumoto, Hiroyuki; Ohnishi, Kouhei; Kiba, Akinori; Hikichi, Yasufumi

    2011-01-01

    Pseudomonas cichorii harbors the hrp genes. hrp-mutants lose their virulence on eggplant but not on lettuce. A phosphinothricin N-acetyltransferase gene (pat) is located between hrpL and an aldehyde dehydrogenase gene (aldH) in the genome of P. cichorii. Comparison of nucleotide sequences and composition of the genes among pseudomonads suggests a common ancestor of hrp and pat between P. cichorii strains and P. viridiflava strains harboring the single hrp pathogenicity island. In contrast, phylogenetic diversification of aldH corresponded to species diversification amongst pseudomonads. In this study, the involvement of aldH and pat in P. cichorii virulence was analyzed. An aldH-deleted mutant (ΔaldH) and a pat-deleted mutant (Δpat) lost their virulence on eggplant but not on lettuce. P. cichorii expressed both genes in eggplant leaves, independent of HrpL, the transcriptional activator for the hrp. Inoculation into Asteraceae species susceptible to P. cichorii showed that the involvement of hrp, pat and aldH in P. cichorii virulence is independent of each other and has no relationship with the phylogeny of Asteraceae species based on the nucleotide sequences of ndhF and rbcL. It is thus thought that not only the hrp genes but also pat and aldH are implicated in the diversity of P. cichorii virulence on susceptible host plant species. PMID:24704843

  13. Aldehyde dehydrogenase 2 activation in aged heart improves the autophagy by reducing the carbonyl modification on SIRT1.

    PubMed

    Wu, Bing; Yu, Lu; Wang, Yishi; Wang, Hongtao; Li, Chen; Yin, Yue; Yang, Jingrun; Wang, Zhifa; Zheng, Qiangsun; Ma, Heng

    2016-01-19

    Cardiac aging is characterized by accumulation of damaged proteins and decline of autophagic efficiency. Here, by forestalling SIRT1 carbonylated inactivation in aged heart, we determined the benefits of activation of aldehyde dehydrogenase 2 (ALDH2) on the autophagy. In this study, the ALDH2 KO mice progressively developed age-related heart dysfunction and showed reduction in the life span, which strongly suggests that ALDH2 ablation leads to cardiac aging. What's more, aged hearts displayed a significant decrease ALDH2 activity, resulting in accumulation of 4-HNE-protein adducts and protein carbonyls, impairment in the autophagy flux, and, consequently, deteriorated cardiac function after starvation. Sustained Alda-1 (selective ALDH2 activator) treatment increased cardiac ALDH2 activity and abrogated these effects. Using SIRT1 deficient heterozygous (Sirt1+/-) mice, we found that SIRT1 was necessary for ALDH2 activation-induced autophagy. We further demonstrated that ALDH2 activation attenuated SIRT1 carbonylation and improved SIRT1 activity, thereby increasing the deacetylation of nuclear LC3 and FoxO1. Sequentially, ALDH2 enhanced SIRT1 regulates LC3-Atg7 interaction and FoxO1 increased Rab7 expression, which were both necessary and sufficient for restoring autophagy flux. These results highlight that both accumulation of proteotoxic carbonyl stress linkage with autophagy decline contribute to heart senescence. ALDH2 activation is adequate to improve the autophagy flux by reducing the carbonyl modification on SIRT1, which in turn plays an important role in maintaining cardiac health during aging.

  14. Long-Chain Aldehyde Dehydrogenase That Participates in n-Alkane Utilization and Wax Ester Synthesis in Acinetobacter sp. Strain M-1

    PubMed Central

    Ishige, Takeru; Tani, Akio; Sakai, Yasuyoshi; Kato, Nobuo

    2000-01-01

    A long-chain aldehyde dehydrogenase, Ald1, was found in a soluble fraction of Acinetobacter sp. strain M-1 cells grown on n-hexadecane as a sole carbon source. The gene (ald1) was cloned from the chromosomal DNA of the bacterium. The open reading frame of ald1 was 1,512 bp long, corresponding to a protein of 503 amino acid residues (molecular mass, 55,496 Da), and the deduced amino acid sequence showed high similarity to those of various aldehyde dehydrogenases. The ald1 gene was stably expressed in Escherichia coli, and the gene product (recombinant Ald1 [rAld1]) was purified to apparent homogeneity by gel electrophoresis. rAld1 showed enzyme activity toward n-alkanals (C4 to C14), with a preference for longer carbon chains within the tested range; the highest activity was obtained with tetradecanal. The ald1 gene was disrupted by homologous recombination on the Acinetobacter genome. Although the ald1 disruptant (ald1Δ) strain still had the ability to grow on n-hexadecane to some extent, its aldehyde dehydrogenase activity toward n-tetradecanal was reduced to half the level of the wild-type strain. Under nitrogen-limiting conditions, the accumulation of intracellular wax esters in the ald1Δ strain became much lower than that in the wild-type strain. These and other results imply that a soluble long-chain aldehyde dehydrogenase indeed plays important roles both in growth on n-alkane and in wax ester formation in Acinetobacter sp. strain M-1. PMID:10919810

  15. The oxidation of yeast alcohol dehydrogenase-1 by hydrogen peroxide in vitro.

    PubMed

    Men, Lijie; Wang, Yinsheng

    2007-01-01

    Yeast alcohol dehydrogenase (YADH) plays an important role in the conversion of alcohols to aldehydes or ketones. YADH-1 is a zinc-containing protein, and it accounts for the major part of ADH activity in growing baker's yeast. To gain insight into how oxidative modification of the enzyme affects its function, we exposed YADH-1 to hydrogen peroxide in vitro and assessed the oxidized protein by LC-MS/MS analysis of proteolytic cleavage products of the protein and by measurements of enzymatic activity, zinc release, and thiol/thiolate loss. The results illustrated that Cys43 and Cys153, which reside at the active site of the protein, could be selectively oxidized to cysteine sulfinic acid (Cys-SO2H) and cysteine sulfonic acid (Cys-SO3H). In addition, H2O2 induced the formation of three disulfide bonds: Cys43-Cys153 in the catalytic domain, Cys103-Cys111 in the noncatalytic zinc center, and Cys276-Cys277. Therefore, our results support the notion that the oxidation of cysteine residues in the zinc-binding domain of proteins can go beyond the formation of disulfide bond(s); the formation of Cys-SO2H and Cys-SO3H is also possible. Furthermore, most methionines could be oxidized to methionine sulfoxides. Quantitative measurement results revealed that, among all the cysteine residues, Cys43 was the most susceptible to H2O2 oxidation, and the major oxidation products of this cysteine were Cys-SO2H and Cys-SO3H. The oxidation of Cys43 might be responsible for the inactivation of the enzyme upon H2O2 treatment.

  16. Purification and characterization of a zinc-dependent cinnamyl alcohol dehydrogenase from Leucaena leucocephala, a tree legume.

    PubMed

    Pandey, Brijesh; Pandey, Veda P; Shasany, A K; Dwivedi, U N

    2014-04-01

    A cinnamyl alcohol dehydrogenase (CAD) from the secondary xylem of Leucaena leucocephala has been purified to homogeneity through successive steps of ammonium sulfate fractionation, DEAE cellulose, Sephadex G-75, and Blue Sepharose CL-6B affinity column chromatographies. CAD was purified to 514.2 folds with overall recovery of 13 % and specific activity of 812. 5 nkat/mg. Native and subunit molecular masses of the purified enzyme were found to be ∼76 and ∼38 kDa, respectively, suggesting it to be a homodimer. The enzyme exhibited highest catalytic efficiency (Kcat/Km 3.75 μM(-1) s(-1)) with cinnamyl aldehyde among all the substrates investigated. The pH and temperature optima of the purified CAD were pH 8.8 and 40 °C, respectively. The enzyme activity was enhanced in the presence of 2.0 mM Mg(2+), while Zn(2+) at the same concentration exerted an inhibitory effect. The inclusion of 2.0 mM EDTA in the assay system activated the enzyme. The enzyme was inhibited with caffeic acid and ferulic acid in a concentration-dependent manner, while no inhibition was observed with salicylic acid. Peptide mass analysis of the purified CAD by MALDI-TOF showed a significant homology to alcohol dehydrogenases of MDR superfamily.

  17. Cloning and sequencing of the alcohol dehydrogenase II gene from Zymomonas mobilis

    DOEpatents

    Ingram, Lonnie O.; Conway, Tyrrell

    1992-01-01

    The alcohol dehydrogenase II gene from Zymomonas mobilis has been cloned and sequenced. This gene can be expressed at high levels in other organisms to produce acetaldehyde or to convert acetaldehyde to ethanol.

  18. [Dopamine content in blood and activity of alcohol-transforming enzymes in alcoholism].

    PubMed

    Kharchenko, N K

    1997-01-01

    An increase of alcohol dehydrogenase activity is observed in patients with chronic alcoholism at the first stage of the disease under normal indices of activity of aldehyde dehydrogenase, aspartate- and alanine aminotransferase and thymol sample that evidences for the induction of alcohol dehydrogenase synthesis in the liver. At the second stage of alcoholism the activity of alcohol dehydrogenase, aspartate- and alanine aminotransferase, the index of thymol sample increase while activity of aldehyde dehydrogenase decreases that indicates to organic destructive changes in the liver. At the third stage of alcoholism one can observe the decrease in activity of alcohol dehydrogenase, aldehyde dehydrogenase and alanine aminotransferase relative to activity of these enzymes at the second stage, that can evidence for the increase of the possibility of the processes of synthesis of the liver. The correlation of alcohol dehydrogenase activity to that of aldehyde dehydrogenase in the process of formation and development of alcoholism is shifted towards the progressive accumulation of acetaldehyde. Parallel increase of dopamine concentration in blood creates conditions for formation of morphine-like alcaloides--products of condensation of acetaldehide with dopamine.

  19. The two-step electrochemical oxidation of alcohols using a novel recombinant PQQ alcohol dehydrogenase as a catalyst for a bioanode.

    PubMed

    Takeda, Kouta; Matsumura, Hirotoshi; Ishida, Takuya; Samejima, Masahiro; Igarashi, Kiyohiko; Nakamura, Nobuhumi; Ohno, Hiroyuki

    2013-12-01

    A bioanode has been developed based on the oxidation of ethanol by the recombinant pyrroloquinoline quinone (PQQ) dependent alcohol dehydrogenase from Pseudomonas putidaKT2440 heterologously expressed in Pichia pastoris. The apo form of the recombinant protein (PpADH) was purified and displayed catalytic activity for binding PQQ in the presence of Ca(2+). PpADH exhibited broad substrate specificity towards various alcohols and aldehydes. The Km values for the aldehydes of PpADH were increased compared to those for the alcohols, whereas the kcat values were unaltered. For instance, the Km values at T=298.15K (25 °C) for ethanol and acetaldehyde were 0.21 (± 0.02)mM and 5.8 (± 0.60)mM, respectively. The kcat values for ethanol and acetaldehyde were 24.8 (± 1.2) s(-1) and 31.1 (± 1.2) s(-1), respectively. The aminoferrocene was used as an electron transfer mediator between PpADH and the electrode during electrochemical experiments. The catalytic currents for the oxidation of alcohol and acetaldehyde by PpADH were also observed in this system. The electric charge for the oxidation of ethanol (Q = 2.09 × 10(-3) · C) was increased two-fold compared to that for the oxidation of acetaldehyde (Q = 0.95 × 10(-3) · C), as determined by chronoamperometric measurements. Thus, we have electrochemically demonstrated the two-step oxidation of ethanol to acetate using only PpADH.

  20. Leucaena sp. recombinant cinnamyl alcohol dehydrogenase: purification and physicochemical characterization.

    PubMed

    Patel, Parth; Gupta, Neha; Gaikwad, Sushama; Agrawal, Dinesh C; Khan, Bashir M

    2014-02-01

    Cinnamyl alcohol dehydrogenase is a broad substrate specificity enzyme catalyzing the final step in monolignol biosynthesis, leading to lignin formation in plants. Here, we report characterization of a recombinant CAD homologue (LlCAD2) isolated from Leucaena leucocephala. LlCAD2 is 80 kDa homo-dimer associated with non-covalent interactions, having substrate preference toward sinapaldehyde with Kcat/Km of 11.6×10(6) (M(-1) s(-1)), and a possible involvement of histidine at the active site. The enzyme remains stable up to 40 °C, with the deactivation rate constant (Kd(*)) and half-life (t1/2) of 0.002 and 5h, respectively. LlCAD2 showed optimal activity at pH 6.5 and 9 for reduction and oxidation reactions, respectively, and was stable between pH 7 and 9, with the deactivation rate constant (Kd(*)) and half-life (t1/2) of 7.5×10(-4) and 15 h, respectively. It is a Zn-metalloenzyme with 4 Zn(2+) per dimer, however, was inhibited in presence of externally supplemented Zn(2+) ions. The enzyme was resistant to osmolytes, reducing agents and non-ionic detergents.

  1. Alcohol dehydrogenase and an inactivator from rice seedlings

    SciTech Connect

    Shimomura, S.; Beevers, H.

    1983-01-01

    Alcohol dehydrogenase (ADH) was measured in the various organs of rice seedlings (Oryza sativa) growing in air. In extracts from ungerminated seeds, the ADH is stable, but in extracts from seedlings more than 2 days old the enzyme initially present loses activity in a time- and temperature-dependent fashion, due to the presence of an inactivating component which increases with age in roots and shoots. The inactivation can be prevented completely by dithiothreitol, and when this is included in the extraction medium the apparent loss of total ADH in roots and shoots with age is not observed. In seedlings grown in N/sub 2/, ADA levels in coleoptile extracts are higher than those in air, the enzyme is stable, and no inactivator can be detected. When seedlings grown for 5 days in air were transferred to N/sub 2/ for 3 days, ADA levels increased and there was a decline in inactivator activity. Transfer back to air after 1 day in N/sub 2/ led to loss of the accumulated ADH and increase in inactivator. These reciprocal changes and the fact that the inactivator is absent from coleoptiles of seedlings grown in N/sub 2/ appear to suggest a regulator role for the inactivator in vivo. However, it is clear that high levels of inactivator and ADH can exist in cells of seedlings grown in air for long periods without loss of enzyme activity, and it is argued that they must normally be separately compartmented.

  2. Genetic control of alcohol dehydrogenase levels in Drosophila.

    PubMed

    Maroni, G

    1978-06-01

    Among the progeny of Drosophila flies heterozygous for two noncomplementing Adh-negative alleles, two individuals were found that had recovered appreciable alcohol dehydrogenase activity, thereby surviving the ethanol medium used as a screen. The most likely explanation is that these Adh-positive flies are the product of intracistronic recombination within the Adh locus. Judging by the distribution of outside markers, one of the crossovers would have been a conventional reciprocal exchange while the other appears to have been an instance of nonreciprocal recombination. The enzymes produced in strains derived from the original survivors can be easily distinguished from wild-type enzymes ADH-S and ADH-F on the basis of their sensitivity to denaturing agents. None of various physical and catalytic properties tested revealed differences between the enzymes of the survivor strains except that in one of them the level of activity is 55--65% of the other. Quantitative immunological determinations of ADH gave estimates of enzyme protein which are proportional to the measured activity levels. These results are interpreted to indicate that different amounts of ADH protein are being accumulated in the two strains.

  3. Mechanistic implications from structures of yeast alcohol dehydrogenase complexed with coenzyme and an alcohol.

    PubMed

    Plapp, Bryce V; Charlier, Henry A; Ramaswamy, S

    2016-02-01

    Yeast alcohol dehydrogenase I is a homotetramer of subunits with 347 amino acid residues, catalyzing the oxidation of alcohols using NAD(+) as coenzyme. A new X-ray structure was determined at 3.0 Å where both subunits of an asymmetric dimer bind coenzyme and trifluoroethanol. The tetramer is a pair of back-to-back dimers. Subunit A has a closed conformation and can represent a Michaelis complex with an appropriate geometry for hydride transfer between coenzyme and alcohol, with the oxygen of 2,2,2-trifluoroethanol ligated at 2.1 Å to the catalytic zinc in the classical tetrahedral coordination with Cys-43, Cys-153, and His-66. Subunit B has an open conformation, and the coenzyme interacts with amino acid residues from the coenzyme binding domain, but not with residues from the catalytic domain. Coenzyme appears to bind to and dissociate from the open conformation. The catalytic zinc in subunit B has an alternative, inverted coordination with Cys-43, Cys-153, His-66 and the carboxylate of Glu-67, while the oxygen of trifluoroethanol is 3.5 Å from the zinc. Subunit B may represent an intermediate in the mechanism after coenzyme and alcohol bind and before the conformation changes to the closed form and the alcohol oxygen binds to the zinc and displaces Glu-67.

  4. Formation of C-C Bonds via Ruthenium Catalyzed Transfer Hydrogenation: Carbonyl Addition from the Alcohol or Aldehyde Oxidation Level.

    PubMed

    Shibahara, Fumitoshi; Krische, Michael J

    2008-01-01

    Under the conditions of ruthenium catalyzed transfer hydrogenation employing isopropanol as terminal reductant, π-unsaturated compounds (1,3-dienes, allenes, 1,3-enynes and alkynes) reductively couple to aldehydes to furnish products of carbonyl addition. In the absence of isopropanol, π-unsaturated compounds couple directly from the alcohol oxidation level to form identical products of carbonyl addition. Such "alcohol-unsaturate C-C couplings" enable carbonyl allylation, propargylation and vinylation from the alcohol oxidation level in the absence of stoichiometric organometallic reagents or metallic reductants. Thus, direct catalytic C-H functionalization of alcohols at the carbinol carbon is achieved.

  5. Alteration in substrate specificity of horse liver alcohol dehydrogenase by an acyclic nicotinamide analog of NAD(+).

    PubMed

    Malver, Olaf; Sebastian, Mina J; Oppenheimer, Norman J

    2014-11-01

    A new, acyclic NAD-analog, acycloNAD(+) has been synthesized where the nicotinamide ribosyl moiety has been replaced by the nicotinamide (2-hydroxyethoxy)methyl moiety. The chemical properties of this analog are comparable to those of β-NAD(+) with a redox potential of -324mV and a 341nm λmax for the reduced form. Both yeast alcohol dehydrogenase (YADH) and horse liver alcohol dehydrogenase (HLADH) catalyze the reduction of acycloNAD(+) by primary alcohols. With HLADH 1-butanol has the highest Vmax at 49% that of β-NAD(+). The primary deuterium kinetic isotope effect is greater than 3 indicating a significant contribution to the rate limiting step from cleavage of the carbon-hydrogen bond. The stereochemistry of the hydride transfer in the oxidation of stereospecifically deuterium labeled n-butanol is identical to that for the reaction with β-NAD(+). In contrast to the activity toward primary alcohols there is no detectable reduction of acycloNAD(+) by secondary alcohols with HLADH although these alcohols serve as competitive inhibitors. The net effect is that acycloNAD(+) has converted horse liver ADH from a broad spectrum alcohol dehydrogenase, capable of utilizing either primary or secondary alcohols, into an exclusively primary alcohol dehydrogenase. This is the first example of an NAD analog that alters the substrate specificity of a dehydrogenase and, like site-directed mutagenesis of proteins, establishes that modifications of the coenzyme distance from the active site can be used to alter enzyme function and substrate specificity. These and other results, including the activity with α-NADH, clearly demonstrate the promiscuity of the binding interactions between dehydrogenases and the riboside phosphate of the nicotinamide moiety, thus greatly expanding the possibilities for the design of analogs and inhibitors of specific dehydrogenases.

  6. Fluorescence lifetime analysis and effect of magnesium ions on binding of NADH to human aldehyde dehydrogenase 1.

    PubMed

    Gonnella, Thomas P; Keating, Jennifer M; Kjemhus, Jessica A; Picklo, Matthew J; Biggane, Joseph P

    2013-02-25

    Aldehyde dehydrogenase 1 (ALDH1A1) catalyzes the oxidation of toxic aldehydes to carboxylic acids. Physiologic levels of Mg(2+) ions decrease ALDH1 activity in part by increasing NADH binding affinity to the enzyme. By using time-resolved fluorescence spectroscopy, we have resolved the fluorescent lifetimes (τ) of free NADH in solution (τ=0.4 ns) and two enzyme-bound NADH states (τ=2.0 ns and τ=7.7 ns). We used this technique to investigate the effects of Mg(2+) ions on the ALDH1A1-NADH binding characteristics and enzyme catalysis. From the resolved free and bound NADH fluorescence signatures, the KD values for both NADH conformations in ALDH1A1 ranged from about 24 μM to 1 μM for Mg(2+) ion concentrations of 0-6000 μM, respectively. The rate constants for dissociation of the enzyme-NADH complex ranged from 0.03 s(-1) (6000 μM Mg(2+)) to 0.30s(-1) (0 μM Mg(2+)) as determined by addition of excess NAD(+) to prevent re-association of NADH and resolving the real-time NADH fluorescence signal. During the initial reaction of enzyme with NAD(+) and butyraldehyde, there was an immediate rise in the NADH fluorescence, due to the formation of bound NADH complexes, with a constant steady-state rate of production of free NADH. As the Mg(2+) ion concentration was increased, there was a consistent decrease of the enzyme catalytic turnover from 0.31 s(-1) (0 μM Mg(2+)) to 0.050 s(-1) (6000 μM Mg(2+)) and a distinct shift in steady-state conformational population from one that favors the ALDH1-NADH complex with the shorter fluorescence lifetime (33% excess) in the absence of magnesium ion to one that favors the ALDH1-NADH complex with the longer fluorescence lifetime (13% excess) at 6000 μM Mg(2+). This shift in conformational population at higher Mg(2+) ion concentrations and to lower enzyme activity may be due to longer residence time of the NADH in the ALDH1 pocket. The results from monitoring enzyme catalysis in the absence of magnesium suggests that the ALDH1

  7. Contribution of Liver Alcohol Dehydrogenase to Metabolism of Alcohols in Rats

    PubMed Central

    Plapp, Bryce V.; Leidal, Kevin G.; Murch, Bruce P.; Green, David W.

    2015-01-01

    The kinetics of oxidation of various alcohols by purified rat liver alcohol dehydrogenase (ADH) were compared with the kinetics of elimination of the alcohols in rats in order to investigate the roles of ADH and other factors that contribute to the rates of metabolism of alcohols. Primary alcohols (ethanol, 1-propanol, 1-butanol, 2-methyl-1-propanol, 3-methyl-1-butanol) and diols (1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol) were eliminated in rats with zero-order kinetics at doses of 5–20 mmole/kg. Ethanol was eliminated most rapidly, at 7.9 mmole/kg•h. Secondary alcohols (2-propanol-d7, 2-propanol, 2-butanol, 3-pentanol, cyclopentanol, cyclohexanol) were eliminated with first order kinetics at doses of 5–10 mmole/kg, and the corresponding ketones were formed and slowly eliminated with zero or first order kinetics. The rates of elimination of various alcohols were inhibited on average 73% (55% for 2-propanol to 90% for ethanol) by 1 mmole/kg of 4-methylpyrazole, a good inhibitor of ADH, indicating a major role for ADH in the metabolism of the alcohols. The Michaelis kinetic constants from in vitro studies (pH 7.3, 37 °C) with isolated rat liver enzyme were used to calculate the expected relative rates of metabolism in rats. The rates of elimination generally increased with increased activity of ADH, but a maximum rate of 6 ± 1 mmole/kg•h was observed for the best substrates, suggesting that ADH activity is not solely rate-limiting. Because secondary alcohols only require one NAD+ for the conversion to ketones whereas primary alcohols require two equivalents of NAD+ for oxidation to the carboxylic acids, it appears that the rate of oxidation of NADH to NAD+ is not a major limiting factor for metabolism of these alcohols, but the rate-limiting factors are yet to be identified. PMID:25641189

  8. Sequence analysis of the oxidase/reductase genes upstream of the Rhodococcus erythropolis aldehyde dehydrogenase gene thcA reveals a gene organisation different from Mycobacterium tuberculosis.

    PubMed

    Nagy, I; De Mot, R

    1999-01-01

    The sequence of the DNA region upstream of the thiocarbamate-inducible aldehyde dehydrogenase gene thcA of Rhodococcus erythropolis NI86/21 was determined. Most of the predicted ORFs are related to various oxidases/reductases, including short-chain oxidases/reductases, GMC oxidoreductases, alpha-hydroxy acid oxidases (subfamily 1 flavin oxidases/dehydrogenases), and subfamily 2 flavin oxidases/dehydrogenases. One ORF is related to enzymes involved in biosynthesis of PQQ or molybdopterin cofactors. In addition, a putative member of the TetR family of regulatory proteins was identified. The substantial sequence divergence from functionally characterized enzymes precludes a reliable prediction about the probable function of these proteins at this stage. In Mycobacterium tuberculosis H37Rv, most of these ORFs have homologs that are also clustered in the genome, but some striking differences in gene organization were observed between Rhodococcus and Mycobacterium.

  9. Alcohol dehydrogenase activity in Lactococcus chungangensis: application in cream cheese to moderate alcohol uptake.

    PubMed

    Konkit, Maytiya; Choi, Woo Jin; Kim, Wonyong

    2015-09-01

    Many human gastrointestinal facultative anaerobic and aerobic bacteria possess alcohol dehydrogenase (ADH) activity and are therefore capable of oxidizing ethanol to acetaldehyde. However, the ADH activity of Lactococcus spp., except Lactococcus lactis ssp. lactis, has not been widely determined, though they play an important role as the starter for most cheesemaking technologies. Cheese is a functional food recognized as an aid to digestion. In the current study, the ADH activity of Lactococcus chungangensis CAU 28(T) and 11 reference strains from the genus Lactococcus was determined. Only 5 strains, 3 of dairy origin, L. lactis ssp. lactis KCTC 3769(T), L. lactis ssp. cremoris KCCM 40699(T), and Lactococcus raffinolactis DSM 20443(T), and 2 of nondairy origin, Lactococcus fujiensis NJ317(T) and Lactococcus chungangensis CAU 28(T) KCTC 13185(T), showed ADH activity and possessed the ADH gene. All these strains were capable of making cheese, but the highest level of ADH activity was found in L. chungangensis, with 45.9nmol/min per gram in tryptic soy broth and 65.8nmol/min per gram in cream cheese. The extent that consumption of cheese, following imbibing alcohol, reduced alcohol uptake was observed by following the level of alcohol in the serum of mice. The results show a potential novel benefit of cheese as a dairy functional food.

  10. Heterologous expression of betaine aldehyde dehydrogenase gene from Ammopiptanthus nanus confers high salt and heat tolerance to Escherichia coli.

    PubMed

    Yu, Hao-Qiang; Wang, Ying-Ge; Yong, Tai-Ming; She, Yue-Hui; Fu, Feng-Ling; Li, Wan-Chen

    2014-10-01

    Betaine aldehyde dehydrogenase (BADH) catalyzes the synthesis of glycine betaine, a regulator of osmosis, and therefore BADH is considered to play a significant role in response of plants to abiotic stresses. Here, based on the conserved residues of the deduced amino acid sequences of the homologous BADH genes, we cloned the AnBADH gene from the xerophytic leguminous plant Ammopiptanthus nanus by using reverse transcription PCR and rapid amplification of cDNA ends. The full-length cDNA is 1,868 bp long without intron, and contains an open reading frame of 1512 bp, and 3'- and 5'-untranslated regions of 294 and 62 bp. It encodes a 54.71 kDa protein of 503 amino acids. The deduced amino acid sequence shares high homology, conserved amino acid residues and sequence motifs crucial for the function with the BADHs in other leguminous species. The sequence of the open reading frame was used to construct a prokaryotic expression vector pET32a-AnBADH, and transform Escherichia coli. The transformants expressed the heterologous AnBADH gene under the induction of isopropyl β-D-thiogalactopyranoside, and demonstrated significant enhancement of salt and heat tolerance under the stress conditions of 700 mmol L(-1) NaCl and 55°C high temperature. This result suggests that the AnBADH gene might play a crucial role in adaption of A. nanus to the abiotic stresses, and have the potential to be applied to transgenic operations of commercially important crops for improvement of abiotic tolerance.

  11. Human liver mitochondrial aldehyde dehydrogenase: three-dimensional structure and the restoration of solubility and activity of chimeric forms.

    PubMed Central

    Ni, L.; Zhou, J.; Hurley, T. D.; Weiner, H.

    1999-01-01

    Human liver cytosolic and mitochondrial isozymes of aldehyde dehydrogenase share 70% sequence identity. However, the first 21 residues are not conserved between the human isozymes (15% identity). The three-dimensional structures of the beef mitochondrial and sheep cytosolic forms have virtually identical three-dimensional structures. Here, we solved the structure of the human mitochondrial enzyme and found it to be identical to the beef enzyme. The first 21 residues are found on the surface of the enzyme and make no contact with other subunits in the tetramer. A pair of chimeric enzymes between the human isozymes was made. Each chimera had the first 21 residues from one isozyme and the remaining 479 from the other. When the first 21 residues were from the mitochondrial isozyme, an enzyme with cytosolic-like properties was produced. The other was expressed but was insoluble. It was possible to restore solubility and activity to the chimera that had the first 21 cytosolic residues fused to the mitochondrial ones by making point mutations to residues at the N-terminal end. When residue 19 was changed from tyrosine to a cysteine, the residue found in the mitochondrial form, an active enzyme could be made though the Km for NAD+ was 35 times higher than the native mitochondrial isozyme and the specific activity was reduced by 75%. This residue interacts with residue 203, a nonconserved, nonactive site residue. A mutation of residue 18, which also interacts with 203, restored solubility, but not activity. Mutation to residue 15, which interacts with 104, also restored solubility but not activity. It appears that to have a soluble or active enzyme a favorable interaction must occur between a residue in a surface loop and a residue elsewhere in the molecule even though neither make contact with the active site region of the enzyme. PMID:10631996

  12. Head and Neck Squamous Cell Carcinoma Metabolism Draws on Glutaminolysis, and Stemness Is Specifically Regulated by Glutaminolysis via Aldehyde Dehydrogenase.

    PubMed

    Kamarajan, Pachiyappan; Rajendiran, Thekkelnaycke M; Kinchen, Jason; Bermúdez, Mercedes; Danciu, Theodora; Kapila, Yvonne L

    2017-03-03

    Cancer cells use alternate energetic pathways; however, cancer stem cell (CSC) metabolic energetic pathways are unknown. The purpose of this study was to define the metabolic characteristics of head and neck cancer at different points of its pathogenesis with a focus on its CSC compartment. UPLC-MS/MS-profiling and GC-MS-validation studies of human head and neck cancer tissue, saliva, and plasma were used in conjunction with in vitro and in vivo models to carry out this investigation. We identified metabolite biomarker panels that distinguish head and neck cancer from healthy controls, and confirmed involvement of glutamate and glutaminolysis. Glutaminase, which catalyzes glutamate formation from glutamine, and aldehyde dehydrogenase (ALDH), a stemness marker, were highly expressed in primary and metastatic head and neck cancer tissues, tumorspheres, and CSC versus controls. Exogenous glutamine induced stemness via glutaminase, whereas inhibiting glutaminase suppressed stemness in vitro and tumorigenesis in vivo. Head and neck CSC (CD44(hi)/ALDH(hi)) exhibited higher glutaminase, glutamate, and sphere levels than CD44(lo)/ALDH(lo) cells. Glutaminase drove transcriptional and translational ALDH expression, and glutamine directed even CD44(lo)/ALDH(lo) cells toward stemness. Glutaminolysis regulates tumorigenesis and CSC metabolism via ALDH. These findings indicate that glutamate is an important marker of cancer metabolism whose regulation via glutaminase works in concert with ALDH to mediate cancer stemness. Future analyses of glutaminolytic-ALDH driven mechanisms underlying tumorigenic transitions may help in the development of targeted therapies for head and neck cancer and its CSC compartment.

  13. Inhibition of telomerase activity preferentially targets aldehyde dehydrogenase-positive cancer stem-like cells in lung cancer

    PubMed Central

    2011-01-01

    Background Mortality rates for advanced lung cancer have not declined for decades, even with the implementation of novel chemotherapeutic regimens or the use of tyrosine kinase inhibitors. Cancer Stem Cells (CSCs) are thought to be responsible for resistance to chemo/radiotherapy. Therefore, targeting CSCs with novel compounds may be an effective approach to reduce lung tumor growth and metastasis. We have isolated and characterized CSCs from non-small cell lung cancer (NSCLC) cell lines and measured their telomerase activity, telomere length, and sensitivity to the novel telomerase inhibitor MST312. Results The aldehyde dehydrogenase (ALDH) positive lung cancer cell fraction is enriched in markers of stemness and endowed with stem cell properties. ALDH+ CSCs display longer telomeres than the non-CSC population. Interestingly, MST312 has a strong antiproliferative effect on lung CSCs and induces p21, p27 and apoptosis in the whole tumor population. MST312 acts through activation of the ATM/pH2AX DNA damage pathway (short-term effect) and through decrease in telomere length (long-term effect). Administration of this telomerase inhibitor (40 mg/kg) in the H460 xenograft model results in significant tumor shrinkage (70% reduction, compared to controls). Combination therapy consisting of irradiation (10Gy) plus administration of MST312 did not improve the therapeutic efficacy of the telomerase inhibitor alone. Treatment with MST312 reduces significantly the number of ALDH+ CSCs and their telomeric length in vivo. Conclusions We conclude that antitelomeric therapy using MST312 mainly targets lung CSCs and may represent a novel approach for effective treatment of lung cancer. PMID:21827695

  14. Improved Tolerance to Various Abiotic Stresses in Transgenic Sweet Potato (Ipomoea batatas) Expressing Spinach Betaine Aldehyde Dehydrogenase

    PubMed Central

    Fan, Weijuan; Zhang, Min; Zhang, Hongxia; Zhang, Peng

    2012-01-01

    Abiotic stresses are critical delimiters for the increased productivity and cultivation expansion of sweet potato (Ipomoea batatas), a root crop with worldwide importance. The increased production of glycine betaine (GB) improves plant tolerance to various abiotic stresses without strong phenotypic changes, providing a feasible approach to improve stable yield production under unfavorable conditions. The gene encoding betaine aldehyde dehydrogenase (BADH) is involved in the biosynthesis of GB in plants, and the accumulation of GB by the heterologous overexpression of BADH improves abiotic stress tolerance in plants. This study is to improve sweet potato, a GB accumulator, resistant to multiple abiotic stresses by promoted GB biosynthesis. A chloroplastic BADH gene from Spinacia oleracea (SoBADH) was introduced into the sweet potato cultivar Sushu-2 via Agrobacterium-mediated transformation. The overexpression of SoBADH in the transgenic sweet potato improved tolerance to various abiotic stresses, including salt, oxidative stress, and low temperature. The increased BADH activity and GB accumulation in the transgenic plant lines under normal and multiple environmental stresses resulted in increased protection against cell damage through the maintenance of cell membrane integrity, stronger photosynthetic activity, reduced reactive oxygen species (ROS) production, and induction or activation of ROS scavenging by the increased activity of free radical-scavenging enzymes. The increased proline accumulation and systemic upregulation of many ROS-scavenging genes in stress-treated transgenic plants also indicated that GB accumulation might stimulate the ROS-scavenging system and proline biosynthesis via an integrative mechanism. This study demonstrates that the enhancement of GB biosynthesis in sweet potato is an effective and feasible approach to improve its tolerance to multiple abiotic stresses without causing phenotypic defects. This strategy for trait improvement in

  15. Formation of Nitric Oxide by Aldehyde Dehydrogenase-2 Is Necessary and Sufficient for Vascular Bioactivation of Nitroglycerin*

    PubMed Central

    Opelt, Marissa; Eroglu, Emrah; Waldeck-Weiermair, Markus; Russwurm, Michael; Koesling, Doris; Malli, Roland; Graier, Wolfgang F.; Fassett, John T.; Schrammel, Astrid; Mayer, Bernd

    2016-01-01

    Aldehyde dehydrogenase-2 (ALDH2) catalyzes vascular bioactivation of the antianginal drug nitroglycerin (GTN), resulting in activation of soluble guanylate cyclase (sGC) and cGMP-mediated vasodilation. We have previously shown that a minor reaction of ALDH2-catalyzed GTN bioconversion, accounting for about 5% of the main clearance-based turnover yielding inorganic nitrite, results in direct NO formation and concluded that this minor pathway could provide the link between vascular GTN metabolism and activation of sGC. However, lack of detectable NO at therapeutically relevant GTN concentrations (≤1 μm) in vascular tissue called into question the biological significance of NO formation by purified ALDH2. We addressed this issue and used a novel, highly sensitive genetically encoded fluorescent NO probe (geNOp) to visualize intracellular NO formation at low GTN concentrations (≤1 μm) in cultured vascular smooth muscle cells (VSMC) expressing an ALDH2 mutant that reduces GTN to NO but lacks clearance-based GTN denitration activity. NO formation was compared with GTN-induced activation of sGC. The addition of 1 μm GTN to VSMC expressing either wild-type or C301S/C303S ALDH2 resulted in pronounced intracellular NO elevation, with maximal concentrations of 7 and 17 nm, respectively. Formation of GTN-derived NO correlated well with activation of purified sGC in VSMC lysates and cGMP accumulation in intact porcine aortic endothelial cells infected with wild-type or mutant ALDH2. Formation of NO and cGMP accumulation were inhibited by ALDH inhibitors chloral hydrate and daidzin. The present study demonstrates that ALDH2-catalyzed NO formation is necessary and sufficient for GTN bioactivation in VSMC. PMID:27679490

  16. Mechanism of protection against alcoholism by an alcohol dehydrogenase polymorphism: development of an animal model.

    PubMed

    Rivera-Meza, Mario; Quintanilla, María Elena; Tampier, Lutske; Mura, Casilda V; Sapag, Amalia; Israel, Yedy

    2010-01-01

    Humans who carry a point mutation in the gene coding for alcohol dehydrogenase-1B (ADH1B*2; Arg47His) are markedly protected against alcoholism. Although this mutation results in a 100-fold increase in enzyme activity, it has not been reported to cause higher levels of acetaldehyde, a metabolite of ethanol known to deter alcohol intake. Hence, the mechanism by which this mutation confers protection against alcoholism is unknown. To study this protective effect, the wild-type rat cDNA encoding rADH-47Arg was mutated to encode rADH-47His, mimicking the human mutation. The mutated cDNA was incorporated into an adenoviral vector and administered to genetically selected alcohol-preferring rats. The V(max) of rADH-47His was 6-fold higher (P<0.001) than that of the wild-type rADH-47Arg. Animals transduced with rAdh-47His showed a 90% (P<0.01) increase in liver ADH activity and a 50% reduction (P<0.001) in voluntary ethanol intake. In animals transduced with rAdh-47His, administration of ethanol (1g/kg) produced a short-lived increase of arterial blood acetaldehyde concentration to levels that were 3.5- to 5-fold greater than those in animals transduced with the wild-type rAdh-47Arg vector or with a noncoding vector. This brief increase (burst) in arterial acetaldehyde concentration after ethanol ingestion may constitute the mechanism by which humans carrying the ADH1B*2 allele are protected against alcoholism.

  17. Stimulation of reductive glycerol metabolism by overexpression of an aldehyde dehydrogenase in a recombinant Klebsiella pneumoniae strain defective in the oxidative pathway.

    PubMed

    Luo, Lian Hua; Seo, Jeong-Woo; Oh, Baek-Rock; Seo, Pil-Soo; Heo, Sun-Yeon; Hong, Won-Kyung; Kim, Dae-Hyuk; Kim, Chul Ho

    2011-08-01

    Previously, we constructed a glycerol oxidative pathway-deficient mutant strain of Klebsiella pneumoniae by inactivation of glycerol dehydrogenase (dhaD) to eliminate by-product synthesis during production of 1,3-propanediol (1,3-PD) from glycerol. Although by-product formation was successfully blocked in the resultant strain, the yield of 1,3-PD was not enhanced, probably because dhaD disruption resulted in insufficient regeneration of the cofactor NADH essential for the activity of 1,3-PD oxidoreductase (DhaT). To improve cofactor regeneration, in the present study we overexpressed an NAD(+)-dependent aldehyde dehydrogenase in the recombinant strain. To this end, an aldehyde dehydrogenase AldHk homologous to E. coli AldH but with NAD(+)-dependent propionaldehyde dehydrogenase activity was identified in K. pneumoniae. Functional analysis revealed that the substrate specificity of AldHk embraced various aldehydes including propionaldehyde, and that NAD(+) was preferred over NADP(+) as a cofactor. Overexpression of AldHk in the glycerol oxidative pathway-deficient mutant AK/pVOTHk resulted in a 3.6-fold increase (0.57 g l(-1) to 2.07 g l(-1)) in the production of 3-hydroxypropionic acid (3-HP), and a 1.1-fold enhancement (8.43 g l(-1) to 9.65 g l(-1)) of 1,3-PD synthesis, when glycerol was provided as the carbon source, compared to the levels synthesized by the control strain (AK/pVOT). Batch fermentation using AK/pVOTHk showed a significant increase (to 70%, w/w) in conversion of glycerol to the reductive metabolites, 1,3-PD and 3-HP, with no production of by-products except acetate.

  18. Tuning the catalytic CO hydrogenation to straight- and long-chain aldehydes/alcohols and olefins/paraffins

    PubMed Central

    Xiang, Yizhi; Kruse, Norbert

    2016-01-01

    The catalytic CO hydrogenation is one of the most versatile large-scale chemical syntheses leading to variable chemical feedstock. While traditionally mainly methanol and long-chain hydrocarbons are produced by CO hydrogenation, here we show that the same reaction can be tuned to produce long-chain n-aldehydes, 1-alcohols and olefins, as well as n-paraffins over potassium-promoted CoMn catalysts. The sum selectivity of aldehydes and alcohols is usually >50 wt% whereof up to ∼97% can be n-aldehydes. While the product slate contains ∼60% n-aldehydes at /pCO=0.5, a 65/35% slate of paraffins/alcohols is obtained at a ratio of 9. A linear Anderson–Schulz–Flory behaviour, independent of the /pCO ratio, is found for the sum of C4+ products. We advocate a synergistic interaction between a Mn5O8 oxide and a bulk Co2C phase, promoted by the presence of potassium, to be responsible for the unique product spectra in our studies. PMID:27708269

  19. Tuning the catalytic CO hydrogenation to straight- and long-chain aldehydes/alcohols and olefins/paraffins

    NASA Astrophysics Data System (ADS)

    Xiang, Yizhi; Kruse, Norbert

    2016-10-01

    The catalytic CO hydrogenation is one of the most versatile large-scale chemical syntheses leading to variable chemical feedstock. While traditionally mainly methanol and long-chain hydrocarbons are produced by CO hydrogenation, here we show that the same reaction can be tuned to produce long-chain n-aldehydes, 1-alcohols and olefins, as well as n-paraffins over potassium-promoted CoMn catalysts. The sum selectivity of aldehydes and alcohols is usually >50 wt% whereof up to ~97% can be n-aldehydes. While the product slate contains ~60% n-aldehydes at /pCO=0.5, a 65/35% slate of paraffins/alcohols is obtained at a ratio of 9. A linear Anderson-Schulz-Flory behaviour, independent of the /pCO ratio, is found for the sum of C4+ products. We advocate a synergistic interaction between a Mn5O8 oxide and a bulk Co2C phase, promoted by the presence of potassium, to be responsible for the unique product spectra in our studies.

  20. Tuning the catalytic CO hydrogenation to straight- and long-chain aldehydes/alcohols and olefins/paraffins.

    PubMed

    Xiang, Yizhi; Kruse, Norbert

    2016-10-06

    The catalytic CO hydrogenation is one of the most versatile large-scale chemical syntheses leading to variable chemical feedstock. While traditionally mainly methanol and long-chain hydrocarbons are produced by CO hydrogenation, here we show that the same reaction can be tuned to produce long-chain n-aldehydes, 1-alcohols and olefins, as well as n-paraffins over potassium-promoted CoMn catalysts. The sum selectivity of aldehydes and alcohols is usually >50 wt% whereof up to ∼97% can be n-aldehydes. While the product slate contains ∼60% n-aldehydes at /pCO=0.5, a 65/35% slate of paraffins/alcohols is obtained at a ratio of 9. A linear Anderson-Schulz-Flory behaviour, independent of the /pCO ratio, is found for the sum of C4+ products. We advocate a synergistic interaction between a Mn5O8 oxide and a bulk Co2C phase, promoted by the presence of potassium, to be responsible for the unique product spectra in our studies.

  1. Enhancement of cell growth and glycolic acid production by overexpression of membrane-bound alcohol dehydrogenase in Gluconobacter oxydans DSM 2003.

    PubMed

    Zhang, Huan; Shi, Lulu; Mao, Xinlei; Lin, Jinping; Wei, Dongzhi

    2016-11-10

    Membrane-bound alcohol dehydrogenase (mADH) was overexpressed in Gluconobacter oxydans DSM 2003, and the effects on cell growth and glycolic acid production were investigated. The transcription levels of two terminal ubiquinol oxidases (bo3 and bd) in the respiratory chain of the engineered strain G. oxydans-adhABS were up-regulated by 13.4- and 3.8-fold, respectively, which effectively enhanced the oxygen uptake rate, resulting in higher resistance to acid. The cell biomass of G. oxydans-adhABS could increase by 26%-33% when cultivated in a 7L bioreactor. The activities of other major membrane-bound dehydrogenases were also increased to some extent, particularly membrane-bound aldehyde dehydrogenase (mALDH), which is involved in the catalytic oxidation of aldehydes to the corresponding acids and was 1.26-fold higher. Relying on the advantages of the above, G. oxydans-adhABS could produce 73.3gl(-1) glycolic acid after 45h of bioconversion with resting cells, with a molar yield 93.5% and a space-time yield of 1.63gl(-1)h(-1). Glycolic acid production could be further improved by fed-batch fermentation. After 45h of culture, 113.8gl(-1) glycolic acid was accumulated, with a molar yield of 92.9% and a space-time yield of 2.53gl(-1)h(-1), which is the highest reported glycolic acid yield to date.

  2. Inhibition by ethanol, acetaldehyde and trifluoroethanol of reactions catalysed by yeast and horse liver alcohol dehydrogenases.

    PubMed Central

    Dickenson, C J; Dickinson, F M

    1978-01-01

    1. Produced inhibition by ethanol of the acetaldehyde-NADH reaction, catalysed by the alcohol dehydrogenases from yeast and horse liver, was studied at 25 degrees C and pH 6-9. 2. The results with yeast alcohol dehydrogenase are generally consistent with the preferred-pathway mechanism proposed previously [Dickenson & Dickinson (1975) Biochem. J. 147, 303-311]. The observed hyperbolic inhibition by ethanol of the maximum rate of acetaldehyde reduction confirms the existence of the alternative pathway involving an enzyme-ethanol complex. 3. The maximum rate of acetaldehyde reduction with horse liver alcohol dehydrogenase is also subject to hyperbolic inhibition by ethanol. 4. The measured inhibition constants for ethanol provide some of the information required in the determination of the dissociation constant for ethanol from the active ternary complex. 5. Product inhibition by acetaldehyde of the ethanol-NAD+ reaction with yeast alcohol dehydrogenase was examined briefly. The results are consistent with the proposed mechanism. However, the nature of the inhibition of the maximum rate cannot be determined within the accessible range of experimental conditions. 6. Inhibition of yeast alcohol dehydrogenase by trifluoroethanol was studied at 25 degrees C and pH 6-10. The inhibition was competitive with respect to ethanol in the ethanol-NAD+ reaction. Estimates were made of the dissociation constant for trifluoroethanol from the enzyme-NAD+-trifluoroethanol complex in the range pH6-10. PMID:208509

  3. Highly selective anti-Prelog synthesis of optically active aryl alcohols by recombinant Escherichia coli expressing stereospecific alcohol dehydrogenase.

    PubMed

    Li, Ming; Nie, Yao; Mu, Xiao Qing; Zhang, Rongzhen; Xu, Yan

    2016-07-03

    Biocatalytic asymmetric synthesis has been widely used for preparation of optically active chiral alcohols as the important intermediates and precursors of active pharmaceutical ingredients. However, the available whole-cell system involving anti-Prelog specific alcohol dehydrogenase is yet limited. A recombinant Escherichia coli system expressing anti-Prelog stereospecific alcohol dehydrogenase from Candida parapsilosis was established as a whole-cell system for catalyzing asymmetric reduction of aryl ketones to anti-Prelog configured alcohols. Using 2-hydroxyacetophenone as the substrate, reaction factors including pH, cell status, and substrate concentration had obvious impacts on the outcome of whole-cell biocatalysis, and xylose was found to be an available auxiliary substrate for intracellular cofactor regeneration, by which (S)-1-phenyl-1,2-ethanediol was achieved with an optical purity of 97%e.e. and yield of 89% under the substrate concentration of 5 g/L. Additionally, the feasibility of the recombinant cells toward different aryl ketones was investigated, and most of the corresponding chiral alcohol products were obtained with an optical purity over 95%e.e. Therefore, the whole-cell system involving recombinant stereospecific alcohol dehydrogenase was constructed as an efficient biocatalyst for highly enantioselective anti-Prelog synthesis of optically active aryl alcohols and would be promising in the pharmaceutical industry.

  4. Aryl hydrocarbon receptor-associated genes in rat liver: regional coinduction of aldehyde dehydrogenase 3 and glutathione transferase Ya.

    PubMed

    Lindros, K O; Oinonen, T; Kettunen, E; Sippel, H; Muro-Lupori, C; Koivusalo, M

    1998-02-15

    The tumor-associated aldehyde dehydrogenase 3 (ALDH3) and the glutathione transferase (GST)Ya form are coded by members of the Ah (aryl hydrocarbon) battery group of genes activated in the liver by polycyclic hydrocarbons such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The physiological role of the Ah receptor (AHR), its gene-activating mechanism and its endogenous ligands are still poorly clarified. We had previously observed that 3-methylcholanthrene (3MC) and beta-naphthoflavone (betaNF) induced the AHR-associated CYP1A1/1A2 pair in different liver regions, an effect not explained by the acinar distribution of the AHR protein. Here, we investigated AHR-associated regional induction by comparing the expression patterns of ALDH3 and GSTYa. Analysis of samples from periportal and perivenous cell lysates from 3MC-treated animals revealed that ALDH3 mRNA, protein and benzaldehyde-NADP associated activity were all confined to the perivenous region. In contrast, such regio-specific induction was not seen after beta-NF induction. Immunohistochemically, a peculiar mono- or oligocellular induction pattern of ALDH3 was seen, consistently surrounding terminal hepatic veins after 3MC but mainly in the midzonal region after betaNF. A ligand-specific difference in regional induction of GSTYa1 mRNA was also observed: The constitutive perivenous dominance was preserved after 3MC while induction by betaNF was mainly periportal. A 3MC-betaNF difference was also seen by immunohistochemistry and at the GSTYa protein level, in contrast to that of the AHR-unassociated GSTYb protein. However, experiments with hepatocytes isolated from the periportal or perivenous region to replicate these inducer-specific induction responses in vitro were unsuccessful. These data demonstrate that the different acinar induction patterns by 3MC and betaNF previously observed for CYP1A1 and CYP1A2 are seen also for two other Ah battery genes, GSTYa1 and ALDH3, but in a modified, gene-specific form. We

  5. Increased Expression of Aldehyde Dehydrogenase 2 Reduces Renal Cell Apoptosis During Ischemia/Reperfusion Injury After Hypothermic Machine Perfusion.

    PubMed

    Zhong, Zibiao; Hu, Qianchao; Fu, Zhen; Wang, Ren; Xiong, Yan; Zhang, Yang; Liu, Zhongzhong; Wang, Yanfeng; Ye, Qifa

    2016-06-01

    Hypothermic machine perfusion (MP) can reduce graft's injury after kidney transplantation; however, the mechanism has not been elucidated. In the past decade, many studies showed that aldehyde dehydrogenase 2 (ALDH2) is a protease which can inhibit cell apoptosis. Therefore, this study aims to explore whether ALDH2 takes part in reducing organ damage after MP. Eighteen healthy male New Zealand rabbits (12 weeks old, weight 3.0 ± 0.3 kg) were randomly divided into three groups: normal group, MP group, and cold storage (CS) group (n = 6). The left kidney of rabbits underwent warm ischemia for 35 min through clamping the left renal pedicle and then reperfusion for 1 h. Left kidneys were preserved by MP or CS (4°C for 4 h) in vivo followed by the right nephrectomy and 24-h reperfusion, and then the specimens and blood were collected. Finally, concentration of urine creatinine (Cr), blood urea nitrogen (BUN), and 4-HNE were tested. Renal apoptosis was detected by TUNEL staining, and the expression of ALDH2, cleaved-caspase 3, bcl-2/ bax, MAPK in renal tissue was detected by immunohistochemistry or Western blot; 24 h after surgery, the concentration of Cr in MP group was 355 ± 71μmol/L, in CS group was 511 ± 44 μmol/L (P < 0.05), while the BUN was 15.02 ± 2.34 mmol/L in MP group, 22.64 ± 3.58 mmol/L in CS group (P < 0.05). The rate of apoptosis and expression of cleaved caspase-3, p-P38, p-ERK, and p-JNK in MP group was significantly lower than that in CS group (P < 0.05), while expression of ALDH2 and bcl-2/bax in MP group was significantly higher than that in CS group (P < 0.05); expression of cleaved caspase-3 in both MP and CS group significantly increased as compared with that in normal group (P < 0.05). In conclusion, increased expression of ALDH2 can reduce the renal cell apoptosis through inhibiting MAPK pathway during ischemia/reperfusion injury (IRI) after hypothermic MP.

  6. Inducible UDP-glucose dehydrogenase from French bean (Phaseolus vulgaris L.) locates to vascular tissue and has alcohol dehydrogenase activity.

    PubMed

    Robertson, D; Smith, C; Bolwell, G P

    1996-01-01

    UDP-glucose dehydrogenase is responsible for channelling UDP-glucose into the pool of UDP-sugars utilized in the synthesis of wall matrix polysaccharides and glycoproteins. It has been purified to homogeneity from suspension-cultured cells of French bean by a combination of hydrophobic-interaction chromatography, gel filtration and dye-ligand chromatography. The enzyme had a subunit of Mr 40,000. Km values were measured for UDP-glucose as 5.5 +/- 1.4 mM and for NAD+ as 20 +/- 3 microM. It was subject to inhibition by UDP-xylose. UDP-glucose dehydrogenase activity co-purified with alcohol dehydrogenase activity from suspension-cultured cells, elicitor-treated cells and elongating hypocotyls, even when many additional chromatographic steps were employed subsequently. The protein from each source was resolved into virtually identical patterns of isoforms on two-dimensional isoelectric focusing/PAGE. However, a combination of peptide mapping and sequence analysis, gel analysis using activity staining and kinetic analysis suggests that both activities are a function of the same protein. An antibody was raised and used to immunolocalize UDP-glucose dehydrogenase to developing xylem and phloem of French bean hypocotyl. Together with data published previously, these results are consistent with an important role in the regulation of carbon flux into wall matrix polysaccharides.

  7. A novel protective mechanism for mitochondrial aldehyde dehydrogenase (ALDH2) in type i diabetes-induced cardiac dysfunction: role of AMPK-regulated autophagy.

    PubMed

    Guo, Yuli; Yu, Wenjun; Sun, Dongdong; Wang, Jiaxing; Li, Congye; Zhang, Rongqing; Babcock, Sara A; Li, Yan; Liu, Min; Ma, Meijuan; Shen, Mingzhi; Zeng, Chao; Li, Na; He, Wei; Zou, Qian; Zhang, Yingmei; Wang, Haichang

    2015-02-01

    Mitochondrial aldehyde dehydrogenase (ALDH2) is known to offer myocardial protection against stress conditions including ischemia-reperfusion injury, alcoholism and diabetes mellitus although the precise mechanism is unclear. This study was designed to evaluate the effect of ALDH2 on diabetes-induced myocardial injury with a focus on autophagy. Wild-type FVB and ALDH2 transgenic mice were challenged with streptozotozin (STZ, 200mg/kg, i.p.) for 3months to induce experimental diabetic cardiomyopathy. Diabetes triggered cardiac remodeling and contractile dysfunction as evidenced by cardiac hypertrophy, decreased cell shortening and prolonged relengthening duration, the effects of which were mitigated by ALDH2. Lectin staining displayed that diabetes promoted cardiac hypertrophy, the effect of which was alleviated by ALDH2. Western blot analysis revealed dampened autophagy protein markers including LC3B ratio and Atg7 along with upregulated p62 following experimental diabetes, the effect of which was reconciled by ALDH2. Phosphorylation level of AMPK was decreased and its downstream signaling molecule FOXO3a was upregulated in both diabetic cardiac tissue and in H9C2 cells with high glucose exposure. All these effect were partly abolished by ALDH2 overexpression and ALDH2 agonist Alda1. High glucose challenge dampened autophagy in H9C2 cells as evidenced by enhanced p62 levels and decreased levels of Atg7 and LC3B, the effect of which was alleviated by the ALDH2 activator Alda-1. High glucose-induced cell death and apoptosis were reversed by Alda-1. The autophagy inhibitor 3-MA and the AMPK inhibitor compound C mitigated Alda-1-offered beneficial effect whereas the autophagy inducer rapamycin mimicked or exacerbated high glucose-induced cell injury. Moreover, compound C nullified Alda-1-induced protection against STZ-induced changes in autophagy and function. Our results suggested that ALDH2 protects against diabetes-induced myocardial dysfunction possibly through an

  8. Enantioselective Diels-Alder reaction of 1,2-dihydropyridines with aldehydes using β-amino alcohol organocatalyst.

    PubMed

    Kohari, Yoshihito; Okuyama, Yuko; Kwon, Eunsang; Furuyama, Taniyuki; Kobayashi, Nagao; Otuki, Teppei; Kumagai, Jun; Seki, Chigusa; Uwai, Koji; Dai, Gang; Iwasa, Tatsuo; Nakano, Hiroto

    2014-10-17

    The enantioselective Diels-Alder reaction of 1,2-dihydropyridines with aldehydes using an easily prepared optically active β-amino alcohol catalyst was found to provide optically active isoquinuclidines, an efficient synthetic intermediate of pharmaceutically important compounds such as oseltamivir phosphate, with a satisfactory chemical yield and enantioselectivity (up to 96%, up to 98% ee). In addition, the obtained highly optically pure isoquinuclidine was easily converted to an optically active piperidine having four successive carbon centers.

  9. A Long-Chain Secondary Alcohol Dehydrogenase from Rhodococcus erythropolis ATCC 4277

    PubMed Central

    Ludwig, B.; Akundi, A.; Kendall, K.

    1995-01-01

    A NAD-dependent secondary alcohol dehydrogenase has been purified from the alkane-degrading bacterium, Rhodococcus erythropolis ATCC 4277. The enzyme was found to be active against a broad range of substrates, particularly long-chain secondary aliphatic alcohols. Although optimal activity was observed with linear 2-alcohols containing between 6 and 11 carbon atoms, secondary alcohols as long as 2-tetradecanol were oxidized at 25% of the rate seen with mid-range alcohols. The purified enzyme was specific for the S-(+) stereoisomer of 2-octanol and had a specific activity for 2-octanol of over 200 (mu)mol/min/mg of protein at pH 9 and 37(deg)C, 25-fold higher than that of any previously reported S-(+) secondary alcohol dehydrogenase. Linear primary alcohols containing between 3 and 13 carbon atoms were utilized 20- to 40-fold less efficiently than the corresponding secondary alcohols. The apparent K(infm) value for NAD(sup+) with 2-octanol as the substrate was 260 (mu)M, whereas the apparent K(infm) values for the 2-alcohols ranged from over 5 mM for 2-pentanol to less than 2 (mu)M for 2-tetradecanol. The enzyme showed moderate thermostability (half-life of 4 h at 60(deg)C) and could potentially be useful for the synthesis of optically pure stereoisomers of secondary alcohols. PMID:16535152

  10. Joining Astrobiology to Medicine, Resurrecting Ancient Alcohol Metabolism

    NASA Astrophysics Data System (ADS)

    Carrigan, M. A.; Uryasev, O.; Davis, R. W.; Chamberlin, S. G.; Benner, S. A.

    2010-04-01

    We apply an astrobiological approach to understand how primates responded to the emergence of ethanol in their environment by resurrecting two enzymes involved in the degradation of ethanol, alcohol dehydrogenase and aldehyde dehydrgenase.

  11. Ethanol Metabolism by HeLa Cells Transduced with Human Alcohol Dehydrogenase Isoenzymes: Control of the Pathway by Acetaldehyde Concentration†

    PubMed Central

    Matsumoto, Michinaga; Cyganek, Izabela; Sanghani, Paresh C.; Cho, Won Kyoo; Liangpunsakul, Suthat; Crabb, David W.

    2010-01-01

    Background Human class I alcohol dehydrogenase 2 isoenzymes (encoded by the ADH1B locus) have large differences in kinetic properties; however, individuals inheriting the alleles for the different isoenzymes exhibit only small differences in alcohol elimination rates. This suggests that other cellular factors must regulate the activity of the isoenzymes. Methods The activity of the isoenzymes expressed from ADH1B*1, ADH1B*2, and ADH1B*3 cDNAs was examined in stably transduced HeLa cell lines, including lines which expressed human low Km aldehyde dehydrogenase (ALDH2). The ability of the cells to metabolize ethanol was compared with that of HeLa cells expressing rat class I ADH (HeLa-rat ADH cells), rat hepatoma (H4IIEC3) cells, and rat hepatocytes. Results The isoenzymes had similar protein half-lives in the HeLa cells. Rat hepatocytes, H4IIEC3 cells, and HeLa-rat ADH cells oxidized ethanol much faster than the cells expressing the ADH1B isoenzymes. This was not explained by high cellular NADH levels or endogenous inhibitors; but rather because the activity of the β1 and β2 ADHs were constrained by the accumulation of acetaldehyde, as shown by the increased rate of ethanol oxidation by cell lines expressing β2 ADH plus ALDH2. Conclusion The activity of the human β2 ADH isoenzyme is sensitive to inhibition by acetaldehyde, which likely limits its activity in vivo. This study emphasizes the importance of maintaining a low steady–state acetaldehyde concentration in hepatocytes during ethanol metabolism. PMID:21166830

  12. Pepper aldehyde dehydrogenase CaALDH1 interacts with Xanthomonas effector AvrBsT and promotes effector-triggered cell death and defence responses.

    PubMed

    Kim, Nak Hyun; Hwang, Byung Kook

    2015-06-01

    Xanthomonas type III effector AvrBsT induces hypersensitive cell death and defence responses in pepper (Capsicum annuum) and Nicotiana benthamiana. Little is known about the host factors that interact with AvrBsT. Here, we identified pepper aldehyde dehydrogenase 1 (CaALDH1) as an AvrBsT-interacting protein. Bimolecular fluorescence complementation and co-immunoprecipitation assays confirmed the interaction between CaALDH1 and AvrBsT in planta. CaALDH1:smGFP fluorescence was detected in the cytoplasm. CaALDH1 expression in pepper was rapidly and strongly induced by avirulent Xanthomonas campestris pv. vesicatoria (Xcv) Ds1 (avrBsT) infection. Transient co-expression of CaALDH1 with avrBsT significantly enhanced avrBsT-triggered cell death in N. benthamiana leaves. Aldehyde dehydrogenase activity was higher in leaves transiently expressing CaALDH1, suggesting that CaALDH1 acts as a cell death enhancer, independently of AvrBsT. CaALDH1 silencing disrupted phenolic compound accumulation, H2O2 production, defence response gene expression, and cell death during avirulent Xcv Ds1 (avrBsT) infection. Transgenic Arabidopsis thaliana overexpressing CaALDH1 exhibited enhanced defence response to Pseudomonas syringae pv. tomato and Hyaloperonospora arabidopsidis infection. These results indicate that cytoplasmic CaALDH1 interacts with AvrBsT and promotes plant cell death and defence responses.

  13. In vivo measurement of aldehyde dehydrogenase-2 activity in rat liver ethanol model using dynamic MRSI of hyperpolarized [1-(13) C]pyruvate.

    PubMed

    Josan, Sonal; Xu, Tao; Yen, Yi-Fen; Hurd, Ralph; Ferreira, Julio; Chen, Che-Hong; Mochly-Rosen, Daria; Pfefferbaum, Adolf; Mayer, Dirk; Spielman, Daniel

    2013-06-01

    To date, measurements of the activity of aldehyde dehydrogenase-2 (ALDH2), a critical mitochondrial enzyme for the elimination of certain cytotoxic aldehydes in the body and a promising target for drug development, have been largely limited to in vitro methods. Recent advancements in MRS of hyperpolarized (13) C-labeled substrates have provided a method to detect and image in vivo metabolic pathways with signal-to-noise ratio gains greater than 10 000-fold over conventional MRS techniques. However aldehydes, because of their toxicity and short T1 relaxation times, are generally poor targets for such (13) C-labeled studies. In this work, we show that dynamic MRSI of hyperpolarized [1-(13) C]pyruvate and its conversion to [1-(13) C]lactate can provide an indirect in vivo measurement of ALDH2 activity via the concentration of NADH (nicotinamide adenine dinucleotide, reduced form), a co-factor common to both the reduction of pyruvate to lactate and the oxidation of acetaldehyde to acetate. Results from a rat liver ethanol model (n = 9) show that changes in (13) C-lactate labeling following the bolus injection of hyperpolarized pyruvate are highly correlated with changes in ALDH2 activity (R(2) = 0.76).

  14. Bradykinetic alcohol dehydrogenases make yeast fitter for growth in the presence of allyl alcohol.

    PubMed

    Plapp, Bryce V; Lee, Ann Ting-I; Khanna, Aditi; Pryor, John M

    2013-02-25

    Previous studies showed that fitter yeast (Saccharomyces cerevisiae) that can grow by fermenting glucose in the presence of allyl alcohol, which is oxidized by alcohol dehydrogenase I (ADH1) to toxic acrolein, had mutations in the ADH1 gene that led to decreased ADH activity. These yeast may grow more slowly due to slower reduction of acetaldehyde and a higher NADH/NAD(+) ratio, which should decrease the oxidation of allyl alcohol. We determined steady-state kinetic constants for three yeast ADHs with new site-directed substitutions and examined the correlation between catalytic efficiency and growth on selective media of yeast expressing six different ADHs. The H15R substitution (a test for electrostatic effects) is on the surface of ADH and has small effects on the kinetics. The H44R substitution (affecting interactions with the coenzyme pyrophosphate) was previously shown to decrease affinity for coenzymes 2-4-fold and turnover numbers (V/Et) by 4-6-fold. The W82R substitution is distant from the active site, but decreases turnover numbers by 5-6-fold, perhaps by effects on protein dynamics. The E67Q substitution near the catalytic zinc was shown previously to increase the Michaelis constant for acetaldehyde and to decrease turnover for ethanol oxidation. The W54R substitution, in the substrate binding site, increases kinetic constants (Ks, by >10-fold) while decreasing turnover numbers by 2-7-fold. Growth of yeast expressing the different ADHs on YPD plates (yeast extract, peptone and dextrose) plus antimycin to require fermentation, was positively correlated with the log of catalytic efficiency for the sequential bi reaction (V1/KiaKb=KeqV2/KpKiq, varying over 4 orders of magnitude, adjusted for different levels of ADH expression) in the order: WT≈H15R>H44R>W82R>E67Q>W54R. Growth on YPD plus 10mM allyl alcohol was inversely correlated with catalytic efficiency. The fitter yeast are "bradytrophs" (slow growing) because the ADHs have decreased catalytic

  15. Histamine H4-Receptors Inhibit Mast Cell Renin Release in Ischemia/Reperfusion via Protein Kinase Cε-Dependent Aldehyde Dehydrogenase Type-2 Activation

    PubMed Central

    Aldi, Silvia; Takano, Ken-ichi; Tomita, Kengo; Koda, Kenichiro; Chan, Noel Y.-K.; Marino, Alice; Salazar-Rodriguez, Mariselis; Thurmond, Robin L.

    2014-01-01

    Renin released by ischemia/reperfusion (I/R) from cardiac mast cells (MCs) activates a local renin-angiotensin system (RAS) causing arrhythmic dysfunction. Ischemic preconditioning (IPC) inhibits MC renin release and consequent activation of this local RAS. We postulated that MC histamine H4-receptors (H4Rs), being Gαi/o-coupled, might activate a protein kinase C isotype–ε (PKCε)–aldehyde dehydrogenase type-2 (ALDH2) cascade, ultimately eliminating MC-degranulating and renin-releasing effects of aldehydes formed in I/R and associated arrhythmias. We tested this hypothesis in ex vivo hearts, human mastocytoma cells, and bone marrow–derived MCs from wild-type and H4R knockout mice. We found that activation of MC H4Rs mimics the cardioprotective anti-RAS effects of IPC and that protection depends on the sequential activation of PKCε and ALDH2 in MCs, reducing aldehyde-induced MC degranulation and renin release and alleviating reperfusion arrhythmias. These cardioprotective effects are mimicked by selective H4R agonists and disappear when H4Rs are pharmacologically blocked or genetically deleted. Our results uncover a novel cardioprotective pathway in I/R, whereby activation of H4Rs on the MC membrane, possibly by MC-derived histamine, leads sequentially to PKCε and ALDH2 activation, reduction of toxic aldehyde-induced MC renin release, prevention of RAS activation, reduction of norepinephrine release, and ultimately to alleviation of reperfusion arrhythmias. This newly discovered protective pathway suggests that MC H4Rs may represent a new pharmacologic and therapeutic target for the direct alleviation of RAS-induced cardiac dysfunctions, including ischemic heart disease and congestive heart failure. PMID:24696042

  16. Functional characterization of cinnamyl alcohol dehydrogenase and caffeic acid O-methyltransferase in Brachypodium distachyon.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lignin is a significant recalcitrant in the conversion of plant biomass to bioethanol. Cinnamyl alcohol dehydrogenase (CAD) and caffeic acid O-methyltransferase (COMT) catalyze key steps in the pathway of lignin monomer biosynthesis. Brown midrib mutants in Zea mays and Sorghum bicolor with impaired...

  17. [Isolation and fermentation conditions of strains producing 1-phenyl-2-amino-ethanol alcohol dehydrogenase].

    PubMed

    Wang, J; Wang, J; Yang, L; Wu, J; Sun, W

    2001-10-01

    A Arachnia sp. P163 producing alcohol dehydrogenase which is able to reduce aminoacetophenone to R-1-phenyl-2-aminoethanol was obtained from soil and cultures. The maximum activity of enzyme was produced by the LB medium containing 1% sodium citrate and peptone, 0.1% phenylaminoethanol as inducer at 30 degrees C for 48 hs.

  18. The Alcohol Dehydrogenase Kinetics Laboratory: Enhanced Data Analysis and Student-Designed Mini-Projects

    ERIC Educational Resources Information Center

    Silverstein, Todd P.

    2016-01-01

    A highly instructive, wide-ranging laboratory project in which students study the effects of various parameters on the enzymatic activity of alcohol dehydrogenase has been adapted for the upper-division biochemistry and physical biochemistry laboratory. Our two main goals were to provide enhanced data analysis, featuring nonlinear regression, and…

  19. Determination of the Subunit Molecular Mass and Composition of Alcohol Dehydrogenase by SDS-PAGE

    ERIC Educational Resources Information Center

    Nash, Barbara T.

    2007-01-01

    SDS-PAGE is a simple, rapid technique that has many uses in biochemistry and is readily adaptable to the undergraduate laboratory. It is, however, a technique prone to several types of procedural pitfalls. This article describes the use of SDS-PAGE to determine the subunit molecular mass and composition of yeast alcohol dehydrogenase employing…

  20. Mutation of Arg-115 of human class III alcohol dehydrogenase: a binding site required for formaldehyde dehydrogenase activity and fatty acid activation.

    PubMed Central

    Engeland, K; Höög, J O; Holmquist, B; Estonius, M; Jörnvall, H; Vallee, B L

    1993-01-01

    The origin of the fatty acid activation and formaldehyde dehydrogenase activity that distinguishes human class III alcohol dehydrogenase (alcohol:NAD+ oxidoreductase, EC 1.1.1.1) from all other alcohol dehydrogenases has been examined by site-directed mutagenesis of its Arg-115 residue. The Ala- and Asp-115 mutant proteins were expressed in Escherichia coli and purified by affinity chromatography and ion-exchange HPLC. The activities of the recombinant native and mutant enzymes toward ethanol are essentially identical, but mutagenesis greatly decreases the kcat/Km values for glutathione-dependent formaldehyde oxidation. The catalytic efficiency for the Asp variant is < 0.1% that of the unmutated enzyme, due to both a higher Km and a lower kcat value. As with the native enzyme, neither mutant can oxidize methanol, be saturated by ethanol, or be inhibited by 4-methylpyrazole; i.e., they retain these class III characteristics. In contrast, however, their activation by fatty acids, another characteristic unique to class III alcohol dehydrogenase, is markedly attenuated. The Ala mutant is activated only slightly, but the Asp mutant is not activated at all. The results strongly indicate that Arg-115 in class III alcohol dehydrogenase is a component of the binding site for activating fatty acids and is critical for the binding of S-hydroxymethylglutathione in glutathione-dependent formaldehyde dehydrogenase activity. PMID:8460164

  1. Alcohol dehydrogenase gene ADH3 activates glucose alcoholic fermentation in genetically engineered Dekkera bruxellensis yeast.

    PubMed

    Schifferdecker, Anna Judith; Siurkus, Juozas; Andersen, Mikael Rørdam; Joerck-Ramberg, Dorte; Ling, Zhihao; Zhou, Nerve; Blevins, James E; Sibirny, Andriy A; Piškur, Jure; Ishchuk, Olena P

    2016-04-01

    Dekkera bruxellensis is a non-conventional Crabtree-positive yeast with a good ethanol production capability. Compared to Saccharomyces cerevisiae, its tolerance to acidic pH and its utilization of alternative carbon sources make it a promising organism for producing biofuel. In this study, we developed an auxotrophic transformation system and an expression vector, which enabled the manipulation of D. bruxellensis, thereby improving its fermentative performance. Its gene ADH3, coding for alcohol dehydrogenase, was cloned and overexpressed under the control of the strong and constitutive promoter TEF1. Our recombinant D. bruxellensis strain displayed 1.4 and 1.7 times faster specific glucose consumption rate during aerobic and anaerobic glucose fermentations, respectively; it yielded 1.2 times and 1.5 times more ethanol than did the parental strain under aerobic and anaerobic conditions, respectively. The overexpression of ADH3 in D. bruxellensis also reduced the inhibition of fermentation by anaerobiosis, the "Custer effect". Thus, the fermentative capacity of D. bruxellensis could be further improved by metabolic engineering.

  2. A Wheat Cinnamyl Alcohol Dehydrogenase TaCAD12 Contributes to Host Resistance to the Sharp Eyespot Disease.

    PubMed

    Rong, Wei; Luo, Meiying; Shan, Tianlei; Wei, Xuening; Du, Lipu; Xu, Huijun; Zhang, Zengyan

    2016-01-01

    Sharp eyespot, caused mainly by the necrotrophic fungus Rhizoctonia cerealis, is a destructive disease in hexaploid wheat (Triticum aestivum L.). In Arabidopsis, certain cinnamyl alcohol dehydrogenases (CADs) have been implicated in monolignol biosynthesis and in defense response to bacterial pathogen infection. However, little is known about CADs in wheat defense responses to necrotrophic or soil-borne pathogens. In this study, we isolate a wheat CAD gene TaCAD12 in response to R. cerealis infection through microarray-based comparative transcriptomics, and study the enzyme activity and defense role of TaCAD12 in wheat. The transcriptional levels of TaCAD12 in sharp eyespot-resistant wheat lines were significantly higher compared with those in susceptible wheat lines. The sequence and phylogenetic analyses revealed that TaCAD12 belongs to IV group in CAD family. The biochemical assay proved that TaCAD12 protein is an authentic CAD enzyme and possesses catalytic efficiencies toward both coniferyl aldehyde and sinapyl aldehyde. Knock-down of TaCAD12 transcript significantly repressed resistance of the gene-silenced wheat plants to sharp eyespot caused by R. cerealis, whereas TaCAD12 overexpression markedly enhanced resistance of the transgenic wheat lines to sharp eyespot. Furthermore, certain defense genes (Defensin, PR10, PR17c, and Chitinase1) and monolignol biosynthesis-related genes (TaCAD1, TaCCR, and TaCOMT1) were up-regulated in the TaCAD12-overexpressing wheat plants but down-regulated in TaCAD12-silencing plants. These results suggest that TaCAD12 positively contributes to resistance against sharp eyespot through regulation of the expression of certain defense genes and monolignol biosynthesis-related genes in wheat.

  3. A Wheat Cinnamyl Alcohol Dehydrogenase TaCAD12 Contributes to Host Resistance to the Sharp Eyespot Disease

    PubMed Central

    Rong, Wei; Luo, Meiying; Shan, Tianlei; Wei, Xuening; Du, Lipu; Xu, Huijun; Zhang, Zengyan

    2016-01-01

    Sharp eyespot, caused mainly by the necrotrophic fungus Rhizoctonia cerealis, is a destructive disease in hexaploid wheat (Triticum aestivum L.). In Arabidopsis, certain cinnamyl alcohol dehydrogenases (CADs) have been implicated in monolignol biosynthesis and in defense response to bacterial pathogen infection. However, little is known about CADs in wheat defense responses to necrotrophic or soil-borne pathogens. In this study, we isolate a wheat CAD gene TaCAD12 in response to R. cerealis infection through microarray-based comparative transcriptomics, and study the enzyme activity and defense role of TaCAD12 in wheat. The transcriptional levels of TaCAD12 in sharp eyespot-resistant wheat lines were significantly higher compared with those in susceptible wheat lines. The sequence and phylogenetic analyses revealed that TaCAD12 belongs to IV group in CAD family. The biochemical assay proved that TaCAD12 protein is an authentic CAD enzyme and possesses catalytic efficiencies toward both coniferyl aldehyde and sinapyl aldehyde. Knock-down of TaCAD12 transcript significantly repressed resistance of the gene-silenced wheat plants to sharp eyespot caused by R. cerealis, whereas TaCAD12 overexpression markedly enhanced resistance of the transgenic wheat lines to sharp eyespot. Furthermore, certain defense genes (Defensin, PR10, PR17c, and Chitinase1) and monolignol biosynthesis-related genes (TaCAD1, TaCCR, and TaCOMT1) were up-regulated in the TaCAD12-overexpressing wheat plants but down-regulated in TaCAD12-silencing plants. These results suggest that TaCAD12 positively contributes to resistance against sharp eyespot through regulation of the expression of certain defense genes and monolignol biosynthesis-related genes in wheat. PMID:27899932

  4. Probing stereoselectivity and pro-chirality of hydride transfer during short-chain alcohol dehydrogenase activity: a combined quantitative 2H NMR and computational approach.

    PubMed

    Kwiecień, Renata A; Ayadi, Farouk; Nemmaoui, Youssef; Silvestre, Virginie; Zhang, Ben-Li; Robins, Richard J

    2009-02-01

    Different members of the alcohol oxidoreductase family can transfer the hydride of NAD(P)H to either the re- or the si-face of the substrate. The enantioselectivity of transfer is very variable, even for a range of substrates reduced by the same enzyme. Exploiting quantitative isotopic (2)H NMR to measure the transfer of (2)H from NAD(P)(2)H to ethanol, a range of enantiomeric excess between 0.38 and 0.98, depending on the origin of the enzyme and the nature of the cofactor, has been determined. Critically, in no case was only (R)-[1-(2)H]ethanol or (S)-[1-(2)H]ethanol obtained. By calculating the relative energies of the active site models for hydride transfer to the re- or si-face of short-chain aldehydes by alcohol dehydrogenase from Saccharomyces cerevisiae and Lactobacillus brevis, it is shown that the differences in the energy of the systems when the substrate is positioned with the alkyl group in one or the other pocket of the active site could play a role in determining stereoselectivity. These experiments help to provide insight into structural features that influence the potential catalytic flexibility of different alcohol dehydrogenase activities.

  5. Stability engineering of the Geobacillus stearothermophilus alcohol dehydrogenase and application for the synthesis of a polyamide 12 precursor.

    PubMed

    Kirmair, Ludwig; Seiler, Daniel Leonard; Skerra, Arne

    2015-12-01

    The thermostable NAD(+)-dependent alcohol dehydrogenase from Geobacillus stearothermophilus (BsADH) was exploited with regard to the biocatalytic synthesis of ω-oxo lauric acid methyl ester (OLAMe), a key intermediate for biobased polyamide 12 production, from the corresponding long-chain alcohol. Recombinant BsADH was produced in Escherichia coli as a homogeneous tetrameric enzyme and showed high activity towards the industrially relevant substrate ω-hydroxy lauric acid methyl ester (HLAMe) with K M = 86 μM and 44 U mg(-1). The equilibrium constant for HLAMe oxidation to the aldehyde (OLAMe) with NAD(+) was determined as 2.16 × 10(-3) from the kinetic parameters of the BsADH-catalyzed forward and reverse reactions. Since BsADH displayed limited stability under oxidizing conditions, the predominant oxidation-prone residue Cys257 was mutated to Leu based on sequence homology with related enzymes and computational simulation. This substitution resulted in an improved BsADH variant exhibiting prolonged stability and an elevated inactivation temperature. Semi-preparative biocatalysis at 60 °C using the stabilized enzyme, employing butyraldehyde for in situ cofactor regeneration with only catalytic amounts of NAD(+), yielded up to 23 % conversion of HLAMe to OLAMe after 30 min. In contrast to other oxidoreductases, no overoxidation to the dodecanoic diacid monomethyl ester was detected. Thus, the mutated BsADH offers a promising biocatalyst for the selective oxidation of fatty alcohols to yield intermediates for industrial polymer production.

  6. Increasing Anaerobic Acetate Consumption and Ethanol Yields in Saccharomyces cerevisiae with NADPH-Specific Alcohol Dehydrogenase

    PubMed Central

    Henningsen, Brooks M.; Hon, Shuen; Covalla, Sean F.; Sonu, Carolina; Argyros, D. Aaron; Barrett, Trisha F.; Wiswall, Erin; Froehlich, Allan C.

    2015-01-01

    Saccharomyces cerevisiae has recently been engineered to use acetate, a primary inhibitor in lignocellulosic hydrolysates, as a cosubstrate during anaerobic ethanolic fermentation. However, the original metabolic pathway devised to convert acetate to ethanol uses NADH-specific acetylating acetaldehyde dehydrogenase and alcohol dehydrogenase and quickly becomes constrained by limited NADH availability, even when glycerol formation is abolished. We present alcohol dehydrogenase as a novel target for anaerobic redox engineering of S. cerevisiae. Introduction of an NADPH-specific alcohol dehydrogenase (NADPH-ADH) not only reduces the NADH demand of the acetate-to-ethanol pathway but also allows the cell to effectively exchange NADPH for NADH during sugar fermentation. Unlike NADH, NADPH can be freely generated under anoxic conditions, via the oxidative pentose phosphate pathway. We show that an industrial bioethanol strain engineered with the original pathway (expressing acetylating acetaldehyde dehydrogenase from Bifidobacterium adolescentis and with deletions of glycerol-3-phosphate dehydrogenase genes GPD1 and GPD2) consumed 1.9 g liter−1 acetate during fermentation of 114 g liter−1 glucose. Combined with a decrease in glycerol production from 4.0 to 0.1 g liter−1, this increased the ethanol yield by 4% over that for the wild type. We provide evidence that acetate consumption in this strain is indeed limited by NADH availability. By introducing an NADPH-ADH from Entamoeba histolytica and with overexpression of ACS2 and ZWF1, we increased acetate consumption to 5.3 g liter−1 and raised the ethanol yield to 7% above the wild-type level. PMID:26386051

  7. Increasing anaerobic acetate consumption and ethanol yields in Saccharomyces cerevisiae with NADPH-specific alcohol dehydrogenase.

    PubMed

    Henningsen, Brooks M; Hon, Shuen; Covalla, Sean F; Sonu, Carolina; Argyros, D Aaron; Barrett, Trisha F; Wiswall, Erin; Froehlich, Allan C; Zelle, Rintze M

    2015-12-01

    Saccharomyces cerevisiae has recently been engineered to use acetate, a primary inhibitor in lignocellulosic hydrolysates, as a cosubstrate during anaerobic ethanolic fermentation. However, the original metabolic pathway devised to convert acetate to ethanol uses NADH-specific acetylating acetaldehyde dehydrogenase and alcohol dehydrogenase and quickly becomes constrained by limited NADH availability, even when glycerol formation is abolished. We present alcohol dehydrogenase as a novel target for anaerobic redox engineering of S. cerevisiae. Introduction of an NADPH-specific alcohol dehydrogenase (NADPH-ADH) not only reduces the NADH demand of the acetate-to-ethanol pathway but also allows the cell to effectively exchange NADPH for NADH during sugar fermentation. Unlike NADH, NADPH can be freely generated under anoxic conditions, via the oxidative pentose phosphate pathway. We show that an industrial bioethanol strain engineered with the original pathway (expressing acetylating acetaldehyde dehydrogenase from Bifidobacterium adolescentis and with deletions of glycerol-3-phosphate dehydrogenase genes GPD1 and GPD2) consumed 1.9 g liter(-1) acetate during fermentation of 114 g liter(-1) glucose. Combined with a decrease in glycerol production from 4.0 to 0.1 g liter(-1), this increased the ethanol yield by 4% over that for the wild type. We provide evidence that acetate consumption in this strain is indeed limited by NADH availability. By introducing an NADPH-ADH from Entamoeba histolytica and with overexpression of ACS2 and ZWF1, we increased acetate consumption to 5.3 g liter(-1) and raised the ethanol yield to 7% above the wild-type level.

  8. Downregulation of Cinnamyl-Alcohol Dehydrogenase in Switchgrass by RNA Silencing Results in Enhanced Glucose Release after Cellulase Treatment

    PubMed Central

    Saathoff, Aaron J.; Sarath, Gautam; Chow, Elaine K.; Dien, Bruce S.; Tobias, Christian M.

    2011-01-01

    Cinnamyl alcohol dehydrogenase (CAD) catalyzes the last step in monolignol biosynthesis and genetic evidence indicates CAD deficiency in grasses both decreases overall lignin, alters lignin structure and increases enzymatic recovery of sugars. To ascertain the effect of CAD downregulation in switchgrass, RNA mediated silencing of CAD was induced through Agrobacterium mediated transformation of cv. “Alamo” with an inverted repeat construct containing a fragment derived from the coding sequence of PviCAD2. The resulting primary transformants accumulated less CAD RNA transcript and protein than control transformants and were demonstrated to be stably transformed with between 1 and 5 copies of the T-DNA. CAD activity against coniferaldehyde, and sinapaldehyde in stems of silenced lines was significantly reduced as was overall lignin and cutin. Glucose release from ground samples pretreated with ammonium hydroxide and digested with cellulases was greater than in control transformants. When stained with the lignin and cutin specific stain phloroglucinol-HCl the staining intensity of one line indicated greater incorporation of hydroxycinnamyl aldehydes in the lignin. PMID:21298014

  9. NAD(+)-linked alcohol dehydrogenase 1 regulates methylglyoxal concentration in Candida albicans.

    PubMed

    Kwak, Min-Kyu; Ku, MyungHee; Kang, Sa-Ouk

    2014-04-02

    We purified a fraction that showed NAD(+)-linked methylglyoxal dehydrogenase activity, directly catalyzing methylglyoxal oxidation to pyruvate, which was significantly increased in glutathione-depleted Candida albicans. It also showed NADH-linked methylglyoxal-reducing activity. The fraction was identified as a NAD(+)-linked alcohol dehydrogenase (ADH1) through mass spectrometric analyses. In ADH1-disruptants of both the wild type and glutathione-depleted cells, the intracellular methylglyoxal concentration increased significantly; defects in growth, differentiation, and virulence were observed; and G2-phase arrest was induced.

  10. A bifunctional enzyme from Rhodococcus erythropolis exhibiting secondary alcohol dehydrogenase-catalase activities.

    PubMed

    Martinez-Rojas, Enriqueta; Kurt, Tutku; Schmidt, Udo; Meyer, Vera; Garbe, Leif-Alexander

    2014-11-01

    Alcohol dehydrogenases have long been recognized as potential biocatalyst for production of chiral fine and bulk chemicals. They are relevant for industry in enantiospecific production of chiral compounds. In this study, we identified and purified a nicotinamide adenine dinucleotide (NAD)-dependent secondary alcohol dehydrogenase (SdcA) from Rhodococcus erythropolis oxidizing γ-lactols into γ-lactones. SdcA showed broad substrate specificity on γ-lactols; secondary aliphatic alcohols with 8 and 10 carbon atoms were also substrates and oxidized with (2S)-stereospecificity. The enzyme exhibited moderate stability with a half-life of 5 h at 40 °C and 20 days at 4 °C. Mass spectrometric identification revealed high sequence coverage of SdcA amino acid sequence to a highly conserved catalase from R. erythropolis. The corresponding encoding gene was isolated from genomic DNA and subsequently overexpressed in Escherichia coli BL21 DE3 cells. In addition, the recombinant SdcA was purified and characterized in order to confirm that the secondary alcohol dehydrogenase and catalase activity correspond to the same enzyme.

  11. Mechanistic Insights on the Hydrogenation of α,β-Unsaturated Ketones and Aldehydes to Unsaturated Alcohols over Metal Catalysts

    SciTech Connect

    Ide, Matthew S.; Hao, Bing; Neurock, Matthew; Davis, Robert J.

    2012-04-06

    The selective hydrogenation of unsaturated ketones (methyl vinyl ketone and benzalacetone) and unsaturated aldehydes (crotonaldehyde and cinnamaldehyde) was carried out with H₂ at 2 bar absolute over Pd/C, Pt/C, Ru/C, Au/C, Au/TiO₂, or Au/Fe₂O₃ catalysts in ethanol or water solvent at 333 K. Comparison of the turnover frequencies revealed Pd/C to be the most active hydrogenation catalyst, but the catalyst failed to produce unsaturated alcohols, indicating hydrogenation of the C=C bond was highly preferred over the C=O bond on Pd. The Pt and Ru catalysts were able to produce unsaturated alcohols from unsaturated aldehydes, but not from unsaturated ketones. Although Au/ Fe₂O₃ was able to partially hydrogenate unsaturated ketones to unsaturated alcohols, the overall hydrogenation rate over gold was the lowest of all of the metals examined. First-principles density functional theory calculations were therefore used to explore the reactivity trends of methyl vinyl ketone (MVK) and benzalacetone (BA) hydrogenation over model Pt(111) and Ru(0001) surfaces. The observed selectivity over these metals is likely controlled by the significantly higher activation barriers to hydrogenate the C=O bond compared with those required to hydrogenate the C=C bond. Both the unsaturated alcohol and the saturated ketone, which are the primary reaction products, are strongly bound to Ru and can react further to the saturated alcohol. The lower calculated barriers for the hydrogenation steps over Pt compared with Ru account for the higher observed turnover frequencies for the hydrogenation of MVK and BA over Pt. The presence of a phenyl substituent α to the C=C bond in BA increased the barrier for C=C hydrogenation over those associated with the C=C bond in MVK; however, the increase in barriers with phenyl substitution was not adequate to reverse the selectivity trend.

  12. The vertebrate alcohol dehydrogenase system: variable class II type form elucidates separate stages of enzymogenesis.

    PubMed Central

    Hjelmqvist, L; Estonius, M; Jörnvall, H

    1995-01-01

    A mixed-class alcohol dehydrogenase has been characterized from avian liver. Its functional properties resemble the classical class I type enzyme in livers of humans and animals by exhibiting low Km and kcat values with alcohols (Km = 0.7 mM with ethanol) and low Ki values with 4-methylpyrazole (4 microM). These values are markedly different from corresponding parameters of class II and III enzymes. In contrast, the primary structure of this avian liver alcohol dehydrogenase reveals an overall relationship closer to class II and to some extent class III (69 and 65% residue identities, respectively) than to class I or the other classes of the human alcohol dehydrogenases (52-61%), the presence of an insertion (four positions in a segment close to position 120) as in class II but in no other class of the human enzymes, and the presence of several active site residues considered typical of the class II enzyme. Hence, the avian enzyme has mixed-class properties, being functionally similar to class I, yet structurally similar to class II, with which it also clusters in phylogenetic trees of characterized vertebrate alcohol dehydrogenases. Comparisons reveal that the class II enzyme is approximately 25% more variable than the "variable" class I enzyme, which itself is more variable than the "constant" class III enzyme. The overall extreme, and the unusual chromatographic behavior may explain why the class II enzyme has previously not been found outside mammals. The properties define a consistent pattern with apparently repeated generation of novel enzyme activities after separate gene duplications. Images Fig. 3 PMID:7479907

  13. Characterization of the molecular mechanisms underlying increased ischemic damage in the aldehyde dehydrogenase 2 genetic polymorphism using a human induced pluripotent stem cell model system

    PubMed Central

    Ebert, Antje D.; Kodo, Kazuki; Liang, Ping; Wu, Haodi; Huber, Bruno C.; Riegler, Johannes; Churko, Jared; Lee, Jaecheol; de Almeida, Patricia; Lan, Feng; Diecke, Sebastian; Burridge, Paul W.; Gold, Joseph D.; Mochly-Rosen, Daria; Wu, Joseph C.

    2014-01-01

    Nearly 8% of the human population carries an inactivating point mutation in the gene that encodes the cardioprotective enzyme aldehyde dehydrogenase 2 (ALDH2). This genetic polymorphism (ALDH2*2) is linked to more severe outcomes from ischemic heart damage and an increased risk of coronary artery disease (CAD), but the underlying molecular bases are unknown. We investigated the ALDH2*2 mechanisms in a human model system of induced pluripotent stem cell–derived cardiomyocytes (iPSC-CMs) generated from individuals carrying the most common heterozygous form of the ALDH2*2 genotype. We showed that the ALDH2*2 mutation gave rise to elevated amounts of reactive oxygen species and toxic aldehydes, thereby inducing cell cycle arrest and activation of apoptotic signaling pathways, especially during ischemic injury. We established that ALDH2 controls cell survival decisions by modulating oxidative stress levels and that this regulatory circuitry was dysfunctional in the loss-of-function ALDH2*2 genotype, causing up-regulation of apoptosis in cardiomyocytes after ischemic insult. These results reveal a new function for the metabolic enzyme ALDH2 in modulation of cell survival decisions. Insight into the molecular mechanisms that mediate ALDH2*2-related increased ischemic damage is important for the development of specific diagnostic methods and improved risk management of CAD and may lead to patient-specific cardiac therapies. PMID:25253673

  14. Human Salivary Aldehyde Dehydrogenase: Purification, Kinetic Characterization and Effect of Ethanol, Hydrogen Peroxide and Sodium Dodecyl Sulfate on the Activity of the Enzyme.

    PubMed

    Alam, Md Fazle; Laskar, Amaj Ahmed; Choudhary, Hadi Hasan; Younus, Hina

    2016-09-01

    Human salivary aldehyde dehydrogenase (hsALDH) enzyme appears to be the first line of defense in the body against exogenous toxic aldehydes. However till date much work has not been done on this important member of the ALDH family. In this study, we have purified hsALDH to homogeneity by diethylaminoethyl-cellulose (DEAE-cellulose) ion-exchange chromatography in a single step. The molecular mass of the homodimeric enzyme was determined to be approximately 108 kDa. Four aromatic substrates; benzaldehyde, cinnamaldehyde, 2-naphthaldehyde and 6-methoxy-2-naphthaldehyde were used for determining the activity of pure hsALDH. K m values for these substrates were calculated to be 147.7, 5.31, 0.71 and 3.31 μM, respectively. The best substrates were found to be cinnamaldehyde and 2-naphthaldehyde since they exhibited high V max /K m values. 6-methoxy-2-naphthaldehyde substrate was used for further kinetic characterization of pure hsALDH. The pH and temperature optima of hsALDH were measured to be pH 8 and 45 °C, respectively. The pure enzyme is highly unstable at high temperatures. Ethanol, hydrogen peroxide and SDS activate hsALDH, therefore it is safe and beneficial to include them in mouthwashes and toothpastes in low concentrations.

  15. Significant improvement of stress tolerance in tobacco plants by overexpressing a stress-responsive aldehyde dehydrogenase gene from maize (Zea mays).

    PubMed

    Huang, Weizao; Ma, Xinrong; Wang, Qilin; Gao, Yongfeng; Xue, Ying; Niu, Xiangli; Yu, Guirong; Liu, Yongsheng

    2008-11-01

    Aldehyde dehydrogenases (ALDHs) play a central role in detoxification processes of aldehydes generated in plants when exposed to the stressed conditions. In order to identify genes required for the stresses responses in the grass crop Zea mays, an ALDH (ZmALDH22A1) gene was isolated and characterized. ZmALDH22A1 belongs to the family ALDH22 that is currently known only in plants. The ZmALDH22A1 encodes a protein of 593 amino acids that shares high identity with the orthologs from Saccharum officinarum (95%), Oryza sativa (89%), Triticum aestivum (87%) and Arabidopsis thaliana (77%), respectively. Real-time PCR analysis indicates that ZmALDH22A1 is expressed differentially in different tissues. Various elevated levels of ZmALDH22A1 expression have been detected when the seedling roots exposed to abiotic stresses including dehydration, high salinity and abscisic acid (ABA). Tomato stable transformation of construct expressing the ZmALDH22A1 signal peptide fused with yellow fluorescent protein (YFP) driven by the CaMV35S-promoter reveals that the fusion protein is targeted to plastid. Transgenic tobacco plants overexpressing ZmALDH22A1 shows elevated stresses tolerance. Stresses tolerance in transgenic plants is accompanied by a reduction of malondialdehyde (MDA) derived from cellular lipid peroxidation.

  16. Association between the aldehyde dehydrogenase 2*2 allele and smoking-related chronic airway obstruction in a Japanese general population: a pilot study.

    PubMed

    Morita, Kazunori; Masuda, Natsuki; Oniki, Kentaro; Saruwatari, Junji; Kajiwara, Ayami; Otake, Koji; Ogata, Yasuhiro; Nakagawa, Kazuko

    2015-07-16

    Aldehyde dehydrogenase 2 (ALDH2) detoxifies exogenous and endogenous toxic aldehydes; however, its protective effect against cigarette smoke in airways is unknown. We therefore examined whether the inactive ALDH2*2 allele is associated with smoking-related chronic airway obstruction. We conducted a cross-sectional study including 684 Japanese participants in a health screening program, and a retrospective longitudinal study in the elderly subgroup. The risks of airway obstruction in the ever-smokers with the ALDH2*1/*2 and *2/*2 genotypes were two and three times higher, respectively, than in the never-smokers with the ALDH2*1/*1 genotype. Moreover, the combined effect of smoking and the ALDH2*2 allele was prominent in the asthmatic subjects. In a longitudinal association analysis, the combination of the ALDH2 genotype and pack-years of smoking synergistically increased the risk of airway obstruction. The number of pack-years of smoking at baseline was identified to be a significant predictor of airway obstruction only in the ALDH2*2 allele carriers. In addition, the ALDH2*2 allele was also associated with the incidence of smoking-related airway obstruction, in the Cox proportional hazards model. This pilot study demonstrated for the first time a significant gene-environment interaction between the ALDH2*2 allele and cumulative exposure to cigarette smoke on the risk of airway obstruction.

  17. Combined effects of current-smoking and the aldehyde dehydrogenase 2*2 allele on the risk of myocardial infarction in Japanese patients.

    PubMed

    Morita, Kazunori; Miyazaki, Hiroko; Saruwatari, Junji; Oniki, Kentaro; Kumagae, Naoki; Tanaka, Takahiro; Kajiwara, Ayami; Otake, Koji; Ogata, Yasuhiro; Arima, Yuichiro; Hokimoto, Seiji; Ogawa, Hisao; Nakagawa, Kazuko

    2015-01-05

    Aldehyde dehydrogenase 2 (ALDH2) detoxifies toxic aldehydes, e.g. acetaldehyde in cigarette smoke; however, the interactive effects between smoking status and the ALDH2 genotype on coronary artery disease (CAD) have not been reported. We investigated the effects of smoking status and the ALDH2 genotype, and assessed their interactive and combined effects on the risk of myocardial infarction (MI) or stable angina (SA), including 221 MI and 175 SA subjects and 473 age- and sex-matched controls without CAD. Current-smoking and the ALDH2*2 allele additively increased the risk of MI (adjusted odds ratio 4.54, 95% confidence interval 2.25-9.15), although this combination was not associated with the risk of SA. This combination also increased the peak creatine kinase (CK) level synergistically in the acute MI (AMI) subjects. Moreover, current-smoking was found to be a significant risk factor for an increased peak CK level in the ALDH2*2 allele carriers (B 2220.2IU/L, p=0.008), but not the non-carriers. Additionally, a synergistic effect of this combination on the triglycerides levels was also found in the AMI subjects. These preliminary findings suggest that the combination of current-smoking and the inactive ALDH2*2 allele may increase the risk of MI additively and the infarct size synergistically.

  18. In vivo regulation of alcohol dehydrogenase and lactate dehydrogenase in Rhizopus oryzae to improve L-lactic acid fermentation.

    PubMed

    Thitiprasert, Sitanan; Sooksai, Sarintip; Thongchul, Nuttha

    2011-08-01

    Rhizopus oryzae is becoming more important due to its ability to produce an optically pure L: -lactic acid. However, fermentation by Rhizopus usually suffers from low yield because of production of ethanol as a byproduct. Limiting ethanol production in living immobilized R. oryzae by inhibition of alcohol dehydrogenase (ADH) was observed in shake flask fermentation. The effects of ADH inhibitors added into the medium on the regulation of ADH and lactate dehydrogenase (LDH) as well as the production of cell biomass, lactic acid, and ethanol were elucidated. 1,2-diazole and 2,2,2-trifluroethanol were found to be the effective inhibitors used in this study. The highest lactic acid yield of 0.47 g/g glucose was obtained when 0.01 mM 2,2,2-trifluoroethanol was present during the production phase of the pregrown R. oryzae. This represents about 38% increase in yield as compared with that from the simple glucose fermentation. Fungal metabolism was suppressed when iodoacetic acid, N-ethylmaleimide, 4,4'-dithiodipyridine, or 4-hydroxymercury benzoic acid were present. Dramatic increase in ADH and LDH activities but slight change in product yields might be explained by the inhibitors controlling enzyme activities at the pyruvate branch point. This showed that in living R. oryzae, the inhibitors regulated the flux through the related pathways.

  19. Substrate Specificity and Subcellular Localization of the Aldehyde-Alcohol Redox-coupling Reaction in Carp Cones*

    PubMed Central

    Sato, Shinya; Fukagawa, Takashi; Tachibanaki, Shuji; Yamano, Yumiko; Wada, Akimori; Kawamura, Satoru

    2013-01-01

    Our previous study suggested the presence of a novel cone-specific redox reaction that generates 11-cis-retinal from 11-cis-retinol in the carp retina. This reaction is unique in that 1) both 11-cis-retinol and all-trans-retinal were required to produce 11-cis-retinal; 2) together with 11-cis-retinal, all-trans-retinol was produced at a 1:1 ratio; and 3) the addition of enzyme cofactors such as NADP(H) was not necessary. This reaction is probably part of the reactions in a cone-specific retinoid cycle required for cone visual pigment regeneration with the use of 11-cis-retinol supplied from Müller cells. In this study, using purified carp cone membrane preparations, we first confirmed that the reaction is a redox-coupling reaction between retinals and retinols. We further examined the substrate specificity, reaction mechanism, and subcellular localization of this reaction. Oxidation was specific for 11-cis-retinol and 9-cis-retinol. In contrast, reduction showed low specificity: many aldehydes, including all-trans-, 9-cis-, 11-cis-, and 13-cis-retinals and even benzaldehyde, supported the reaction. On the basis of kinetic studies of this reaction (aldehyde-alcohol redox-coupling reaction), we found that formation of a ternary complex of a retinol, an aldehyde, and a postulated enzyme seemed to be necessary, which suggested the presence of both the retinol- and aldehyde-binding sites in this enzyme. A subcellular fractionation study showed that the activity is present almost exclusively in the cone inner segment. These results suggest the presence of an effective production mechanism of 11-cis-retinal in the cone inner segment to regenerate visual pigment. PMID:24217249

  20. Exploring the evolutionary route of the acquisition of betaine aldehyde dehydrogenase activity by plant ALDH10 enzymes: implications for the synthesis of the osmoprotectant glycine betaine

    PubMed Central

    2014-01-01

    Background Plant ALDH10 enzymes are aminoaldehyde dehydrogenases (AMADHs) that oxidize different ω-amino or trimethylammonium aldehydes, but only some of them have betaine aldehyde dehydrogenase (BADH) activity and produce the osmoprotectant glycine betaine (GB). The latter enzymes possess alanine or cysteine at position 441 (numbering of the spinach enzyme, SoBADH), while those ALDH10s that cannot oxidize betaine aldehyde (BAL) have isoleucine at this position. Only the plants that contain A441- or C441-type ALDH10 isoenzymes accumulate GB in response to osmotic stress. In this work we explored the evolutionary history of the acquisition of BAL specificity by plant ALDH10s. Results We performed extensive phylogenetic analyses and constructed and characterized, kinetically and structurally, four SoBADH variants that simulate the parsimonious intermediates in the evolutionary pathway from I441-type to A441- or C441-type enzymes. All mutants had a correct folding, average thermal stabilities and similar activity with aminopropionaldehyde, but whereas A441S and A441T exhibited significant activity with BAL, A441V and A441F did not. The kinetics of the mutants were consistent with their predicted structural features obtained by modeling, and confirmed the importance of position 441 for BAL specificity. The acquisition of BADH activity could have happened through any of these intermediates without detriment of the original function or protein stability. Phylogenetic studies showed that this event occurred independently several times during angiosperms evolution when an ALDH10 gene duplicate changed the critical Ile residue for Ala or Cys in two consecutive single mutations. ALDH10 isoenzymes frequently group in two clades within a plant family: one includes peroxisomal I441-type, the other peroxisomal and non-peroxisomal I441-, A441- or C441-type. Interestingly, high GB-accumulators plants have non-peroxisomal A441- or C441-type isoenzymes, while low-GB accumulators

  1. Genetic improvement of Escherichia coli for ethanol production: Chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II

    SciTech Connect

    Ohta, Kazuyoshi; Beall, D.S.; Mejia, J.P.; Shanmugam, K.T.; Ingram, L.O. )

    1991-04-01

    Zymomonas mobilis genes for pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adhB) were integrated into the Escherichia coli chromosome within or near the pyruvate formate-lyase gene (pfl). Integration improved the stability of the Z. mobilis genes in E. coli, but further selection was required to increase expression. Spontaneous mutants were selected for resistance to high levels of chloramphenicol that also expressed high levels of the Z. mobilis genes. Analogous mutants were selected for increased expression of alcohol dehydrogenase on aldehyde indicator plates. These mutants were functionally equivalent to the previous plasmid-based strains for the fermentation of xylose and glucose to ethanol. Ethanol concentrations of 54.4 and 41.6 g/liter were obtained from 10% glucose and 8% xylose, respectively. The efficiency of conversion exceeded theoretical limits (0.51 g of ethanol/g of sugar) on the basis of added sugars because of the additional production of ethanol from the catabolism of complex nutrients. Further mutations were introduced to inactivate succinate production (frd) and to block homologous recombination (recA).

  2. Thermophilic alcohol dehydrogenase from the mesophile Entamoeba histolytica: crystallization and preliminary X-ray characterization.

    PubMed

    Shimon, Linda J W; Peretz, Moshe; Goihberg, Edi; Burstein, Yigal; Frolow, Felix

    2002-03-01

    The tetrameric NADP(+)-dependent secondary alcohol dehydrogenase from Entamoeba histolytica has been crystallized in its apo form. The crystals belong to space group C222(1), with unit-cell parameters a = 76.89, b = 234.24, c = 96.24 A, and diffract to 1.9 A at liquid-nitrogen temperature. Analysis of the Patterson self-rotation function shows that the crystals contain one dimer per asymmetric unit.

  3. Depression of alcohol dehydrogenase activity in rat hepatocyte culture by dihydrotestosterone.

    PubMed

    Mezey, E; Potter, J J; Diehl, A M

    1986-01-15

    Hepatocytes harvested from castrated rats retained a higher alcohol dehydrogenase (EC 1.1.1.1) activity than hepatocytes harvested from normal rats during 7 days of culture. Dihydrotestosterone (1 microM) decreased the enzyme activity, after 2 and 5 days of culture, in hepatocytes from castrated and control animals respectively. Dihydrotestosterone decreased the enzyme activity to similar values in both groups of hepatocytes by the end of 7 days of culture. Testosterone (1 microM) had no effect on the enzyme activity in normal hepatocytes and only a transitory effect in decreasing the enzyme activity in hepatocytes from castrated animals. The increases in alcohol dehydrogenase activity after castration and their suppression by dihydrotestosterone were associated with parallel changes in the rate of ethanol elimination. Additions of substrates of the malate-aspartate shuttle or dinitrophenol did not modify ethanol elimination. These observations indicate that dihydrotestosterone has a direct suppressant effect on hepatocyte alcohol dehydrogenase and that the enzyme activity is a major determinant of the rate of ethanol elimination.

  4. In vivo relationship between monoamine oxidase type B and alcohol dehydrogenase: effects of ethanol and phenylethylamine

    SciTech Connect

    Aliyu, S.U.; Upahi, L.

    1988-01-01

    The role of acute ethanol and phenylethylamine on the brain and platelet monoamine oxidase activities, hepatic cytosolic alcohol dehydrogenase, redox state and motor behavior were studied in male rats. Ethanol on its own decreased the redox couple ratio, as well as, alcohol dehydrogenase activity in the liver while at the same time it increased brain and platelet monoamine oxidase activity due to lower Km with no change in Vmax. The elevation in both brain and platelet MAO activity was associated with ethanol-induced hypomotility in the rats. Co-administration of phenylethylamine and ethanol to the animals, caused antagonism of the ethanol-induced effects described above. The effects of phenylethylamine alone, on the above mentioned biochemical and behavioral indices, are more complex. Phenylethylamine on its own, like ethanol, caused reduction of the cytosolic redox, ratio and elevation of monoamine oxidase activity in the brain and platelets. However, in contrast to ethanol, this monoamine produced hypermotility and activation of the hepatic cytosolic alcohol dehydrogenase activity in the animals.

  5. Asymmetric reduction and oxidation of aromatic ketones and alcohols using W110A secondary alcohol dehydrogenase from Thermoanaerobacter ethanolicus.

    PubMed

    Musa, Musa M; Ziegelmann-Fjeld, Karla I; Vieille, Claire; Zeikus, J Gregory; Phillips, Robert S

    2007-01-05

    An enantioselective asymmetric reduction of phenyl ring-containing prochiral ketones to yield the corresponding optically active secondary alcohols was achieved with W110A secondary alcohol dehydrogenase from Thermoanaerobacter ethanolicus (W110A TESADH) in Tris buffer using 2-propanol (30%, v/v) as cosolvent and cosubstrate. This concentration of 2-propanol was crucial not only to enhance the solubility of hydrophobic phenyl ring-containing substrates in the aqueous reaction medium, but also to shift the equilibrium in the reduction direction. The resulting alcohols have S-configuration, in agreement with Prelog's rule, in which the nicotinamide-adenine dinucleotide phosphate (NADPH) cofactor transfers its pro-R hydride to the re face of the ketone. A series of phenyl ring-containing ketones, such as 4-phenyl-2-butanone (1a) and 1-phenyl-1,3-butadione (2a), were reduced with good to excellent yields and high enantioselectivities. On the other hand, 1-phenyl-2-propanone (7a) was reduced with lower ee than 2-butanone derivatives. (R)-Alcohols, the anti-Prelog products, were obtained by enantiospecific oxidation of (S)-alcohols through oxidative kinetic resolution of the rac-alcohols using W110A TESADH in Tris buffer/acetone (90:10, v/v).

  6. 11β-hydroxysteroid dehydrogenase inhibition as a new potential therapeutic target for alcohol abuse

    PubMed Central

    Sanna, P P; Kawamura, T; Chen, J; Koob, G F; Roberts, A J; Vendruscolo, L F; Repunte-Canonigo, V

    2016-01-01

    The identification of new and more effective treatments for alcohol abuse remains a priority. Alcohol intake activates glucocorticoids, which have a key role in alcohol's reinforcing properties. Glucocorticoid effects are modulated in part by the activity of 11β-hydroxysteroid dehydrogenases (11β-HSD) acting as pre-receptors. Here, we tested the effects on alcohol intake of the 11β-HSD inhibitor carbenoxolone (CBX, 18β-glycyrrhetinic acid 3β-O-hemisuccinate), which has been extensively used in the clinic for the treatment of gastritis and peptic ulcer and is active on both 11β-HSD1 and 11β-HSD2 isoforms. We observed that CBX reduces both baseline and excessive drinking in rats and mice. The CBX diastereomer 18α-glycyrrhetinic acid 3β-O-hemisuccinate (αCBX), which we found to be selective for 11β-HSD2, was also effective in reducing alcohol drinking in mice. Thus, 11β-HSD inhibitors may be a promising new class of candidate alcohol abuse medications, and existing 11β-HSD inhibitor drugs may be potentially re-purposed for alcohol abuse treatment. PMID:26978742

  7. Human liver class I alcohol dehydrogenase gammagamma isozyme: the sole cytosolic 3beta-hydroxysteroid dehydrogenase of iso bile acids.

    PubMed

    Marschall, H U; Oppermann, U C; Svensson, S; Nordling, E; Persson, B; Höög, J O; Jörnvall, H

    2000-04-01

    3beta-Hydroxy (iso) bile acids are formed during enterohepatic circulation from 3alpha-hydroxy bile acids and constitute normal compounds in plasma but are virtually absent in bile. Isoursodeoxycholic acid (isoUDCA) is a major metabolite of UDCA. In a recent study it was found that after administration of isoUDCA, UDCA became the major acid in bile. Thus, epimerization of the 3beta-hydroxy to a 3alpha-hydroxy group, catalyzed by 3beta-hydroxysteroid dehydrogenases (HSD) and 3-oxo-reductases must occur. The present study aims to characterize the human liver bile acid 3beta-HSD. Human liver cytosol and recombinant alcohol dehydrogenase (ADH) betabeta and gammagamma isozymes were subjected to native polyacrylamide gel electrophoresis (PAGE) and isoelectric focusing. Activity staining with oxidized nicotinamide adenine dinucleotide (NAD(+)) or oxidized nicotinamide adenine dinucleotide phosphate (NADP(+)) as cofactors and various iso bile acids as substrates was used to screen for 3beta-HSD activity. Reaction products were identified and quantified by gas chromotography/mass spectrometry (GC/MS). Computer-assisted substrate docking of isoUDCA to the active site of a 3-dimensional model of human class I gammagamma ADH was performed. ADH gammagamma isozyme was identified as the iso bile acid 3beta-HSD present in human liver cytosol, with NAD(+) as a cofactor. Values for k(cat)/K(m) were in the rank order isodeoxycholic acid (isoDCA), isochenodeoxycholic acid (isoCDCA), isoUDCA, and isolithocholic acid (isoLCA) (0.10, 0.09, 0.08, and 0. 05 min(-1) x micromol/L(-1), respectively). IsoUDCA fits as substrate to the 3-dimensional model of the active-site of ADH gammagamma. ADH gammagamma isozyme was defined as the only bile acid 3beta-HSD in human liver cytosol. Hydroxysteroid dehydrogenases are candidates for the binding and transport of 3alpha-hydroxy bile acids. We assume that ADH gammagamma isozyme is involved in cytosolic bile acid binding and transport processes as well.

  8. Cloning and molecular characterization of the betaine aldehyde dehydrogenase involved in the biosynthesis of glycine betaine in white shrimp (Litopenaeus vannamei).

    PubMed

    Delgado-Gaytán, María F; Rosas-Rodríguez, Jesús A; Yepiz-Plascencia, Gloria; Figueroa-Soto, Ciria G; Valenzuela-Soto, Elisa M

    2017-02-15

    The enzyme betaine aldehyde dehydrogenase (BADH) catalyzes the irreversible oxidation of betaine aldehyde to glycine betaine (GB), a very efficient osmolyte accumulated during osmotic stress. In this study, we determined the nucleotide sequence of the cDNA for the BADH from the white shrimp Litopenaeus vannamei (LvBADH). The cDNA was 1882 bp long, with a complete open reading frame of 1524 bp, encoding 507 amino acids with a predicted molecular mass of 54.15 kDa and a pI of 5.4. The predicted LvBADH amino acid sequence shares a high degree of identity with marine invertebrate BADHs. Catalytic residues (C-298, E-264 and N-167) and the decapeptide VTLELGGKSP involved in nucleotide binding and highly conserved in BADHs were identified in the amino acid sequence. Phylogenetic analyses classified LvBADH in a clade that includes ALDH9 sequences from marine invertebrates. Molecular modeling of LvBADH revealed that the protein has amino acid residues and sequence motifs essential for the function of the ALDH9 family of enzymes. LvBADH modeling showed three potential monovalent cation binding sites, one site is located in an intra-subunit cavity; other in an inter-subunit cavity and a third in a central-cavity of the protein. The results show that LvBADH shares a high degree of identity with BADH sequences from marine invertebrates and enzymes that belong to the ALDH9 family. Our findings suggest that the LvBADH has molecular mechanisms of regulation similar to those of other BADHs belonging to the ALDH9 family, and that BADH might be playing a role in the osmoregulation capacity of L. vannamei.

  9. Alcohol dehydrogenase, SDR and MDR structural stages, present update and altered era.

    PubMed

    Jörnvall, Hans; Landreh, Michael; Östberg, Linus J

    2015-06-05

    It is now about half a century since molecular research on alcohol dehydrogenase (ADH), short-chain dehydrogenase/reductase (SDR) and medium-chain dehydrogenase/reductase (MDR) started. During this time, at least four stages of research can be distinguished, which led to many ADH, SDR and MDR structures from which their origins could be traced. An introductory summary of these stages is given, followed by a current update on the now known structures, including the present pattern of mammalian MDR-ADH enzymes into six classes and their evolutionary relationships. In spite of the wide spread in evolutionary changes from the "constant" class III to the more "variable" other classes, the change in class V (only confirmed as a transcript in humans) and class VI (absent in humans) are also restricted. Such spread in variability is visible also in other dehydrogenases, but not always so restricted in other co-evolving proteins we have studied. Finally, the shift in era of present ADH research is highlighted, as well as levels of likely future continuation.

  10. Ethanol-induced alcohol dehydrogenase E (AdhE) potentiates pneumolysin in Streptococcus pneumoniae.

    PubMed

    Luong, Truc Thanh; Kim, Eun-Hye; Bak, Jong Phil; Nguyen, Cuong Thach; Choi, Sangdun; Briles, David E; Pyo, Suhkneung; Rhee, Dong-Kwon

    2015-01-01

    Alcohol impairs the host immune system, rendering the host more vulnerable to infection. Therefore, alcoholics are at increased risk of acquiring serious bacterial infections caused by Streptococcus pneumoniae, including pneumonia. Nevertheless, how alcohol affects pneumococcal virulence remains unclear. Here, we showed that the S. pneumoniae type 2 D39 strain is ethanol tolerant and that alcohol upregulates alcohol dehydrogenase E (AdhE) and potentiates pneumolysin (Ply). Hemolytic activity, colonization, and virulence of S. pneumoniae, as well as host cell myeloperoxidase activity, proinflammatory cytokine secretion, and inflammation, were significantly attenuated in adhE mutant bacteria (ΔadhE strain) compared to D39 wild-type bacteria. Therefore, AdhE might act as a pneumococcal virulence factor. Moreover, in the presence of ethanol, S. pneumoniae AdhE produced acetaldehyde and NADH, which subsequently led Rex (redox-sensing transcriptional repressor) to dissociate from the adhE promoter. An increase in AdhE level under the ethanol condition conferred an increase in Ply and H2O2 levels. Consistently, S. pneumoniae D39 caused higher cytotoxicity to RAW 264.7 cells than the ΔadhE strain under the ethanol stress condition, and ethanol-fed mice (alcoholic mice) were more susceptible to infection with the D39 wild-type bacteria than with the ΔadhE strain. Taken together, these data indicate that AdhE increases Ply under the ethanol stress condition, thus potentiating pneumococcal virulence.

  11. Silver(I) and copper(I) cocatalyzed tandem reaction of 2-alkynylbenzaldoximes with aldehydes or alcohols: approach to 4-carboxylated isoquinolines.

    PubMed

    Wang, Xianbo; Yu, Xingxin

    2014-09-05

    A novel and efficient route for the preparation of 4-carboxylated isoquinolines via a Ag(I) and Cu(I) cocatalyzed tandem reaction of 2-alkynylbenzaldoximes with aldehydes or alcohols in moderate to good yields is described. The reaction proceeds smoothly to produce C-N and C-O bonds in a one-pot procedure with structural complexity and molecular diversity.

  12. [Effect of Bacillus natto-fermented product (BIOZYME) on blood alcohol, aldehyde concentrations after whisky drinking in human volunteers, and acute toxicity of acetaldehyde in mice].

    PubMed

    Sumi, H; Yatagai, C; Wada, H; Yoshida, E; Maruyama, M

    1995-04-01

    Effects of Bacillus natto-fermented product (BIOZYME) on blood alcohol and aldehyde concentrations after drinking whisky (corresponding to 30-65 ml ethanol) were studied in 21 healthy volunteers. When 100 ml of BIOZYME was orally administrated to the volunteers before drinking whisky, the time delay of both blood factors to attain maximum concentrations were observed. The maximum decrease in blood alcohol and aldehyde concentrations were about 23% and 45% (p < 0.005), respectively, at 1 hr after drinking whisky. The aldehyde lowering effect of BIOZYME was continued for at least 4 hr after whisky drinking. Concentration of the breath alcohol was also sharply decreased by BIOZYME administration. The breath alcohol concentration in the administered group (0.18 +/- 0.11 mg/l) was found to be lowered about 44% than that of the control group (0.32 +/- 0.11 mg/l) (p < 0.0005, n = 21), at 1 hr after drinking whisky. In acute toxicity experiments of aldehyde in mice (12 mmol AcH/mg), BIOZYME showed the survival effect as with alpha-D-Ala (134% increase of the living, at 40 min after i.p. administration) (p < 0.005, n = 22). These findings reveal the Bacillus natto produced BIOZYME as a reasonable, safety and useful anti-hangover agent.

  13. Bioelectrochemistry of non-covalent immobilized alcohol dehydrogenase on oxidized diamond nanoparticles.

    PubMed

    Nicolau, Eduardo; Méndez, Jessica; Fonseca, José J; Griebenow, Kai; Cabrera, Carlos R

    2012-06-01

    Diamond nanoparticles are considered a biocompatible material mainly due to their non-cytotoxicity and remarkable cellular uptake. Model proteins such as cytochrome c and lysozyme have been physically adsorbed onto diamond nanoparticles, proving it to be a suitable surface for high protein loading. Herein, we explore the non-covalent immobilization of the redox enzyme alcohol dehydrogenase (ADH) from Saccharomyces cerevisiae (E.C.1.1.1.1) onto oxidized diamond nanoparticles for bioelectrochemical applications. Diamond nanoparticles were first oxidized and physically characterized by X-ray diffraction (XRD), FT-IR and TEM. Langmuir isotherms were constructed to investigate the ADH adsorption onto the diamond nanoparticles as a function of pH. It was found that a higher packing density is achieved at the isoelectric point of the enzyme. Moreover, the relative activity of the immobilized enzyme on diamond nanoparticles was addressed under optimum pH conditions able to retain up to 70% of its initial activity. Thereafter, an ethanol bioelectrochemical cell was constructed by employing the immobilized alcohol dehydrogenase onto diamond nanoparticles, this being able to provide a current increment of 72% when compared to the blank solution. The results of this investigation suggest that this technology may be useful for the construction of alcohol biosensors or biofuel cells in the near future.

  14. Properties and evolution of an alcohol dehydrogenase from the Crenarchaeota Pyrobaculum aerophilum.

    PubMed

    Vitale, Annalisa; Rosso, Francesco; Barbarisi, Alfonso; Labella, Tullio; D'Auria, Sabato

    2010-08-01

    The gene encoding a novel alcohol dehydrogenase (ADH) that belongs to the medium chain dehydrogenase/reductase (MDR) superfamily was identified in the hyperthermophilic archaeon, Pyrobaculum aerophilum. The P. aerophilum ADH gene (Pae2687) was over-expressed in Escherichia coli, and the protein (PyAeADHII) was purified to homogeneity and characterized. The PyAeADHII belongs to a medium chain class because its monomer size is 330 residues and even if it is structurally similar to other enzymes belonging to MDR superfamily, it lacks key residues involved in the coordination of the catalytic Zn ion and in the binding of alcoholic substrates typical of other ADHs. Consistently, PyAeADHII does not show activity on a large number of alcohols, aldheydes or ketones. It is active only when alpha-tetralone is used as a substrate. The enzyme has a strict requirement for NADP(H) as the coenzyme and has remarkable thermophilicity, displaying activity at temperatures up to 95 degrees C. The study of the metabolic pathways of P. aerophilum can provide information on the evolution of genes and enzymes and may be crucial for understanding the evolution of eukaryotic cells.

  15. Purification and Characterization of Cinnamyl Alcohol Dehydrogenase Isoforms from the Periderm of Eucalyptus gunnii Hook.

    PubMed Central

    Hawkins, S. W.; Boudet, A. M.

    1994-01-01

    Cinnamyl alcohol dehydrogenase (CAD, EC 1.1.1.195) isoforms were purified from the periderm (containing both suberized and lignified cell layers) of Eucalyptus gunnii Hook stems. Two isoforms (CAD 1P and CAD 2P) were initially characterized, and the major form, CAD 2P, was resolved into three further isoforms by ion-exchange chromatography. Crude extracts contained two aliphatic alcohol dehydrogenases (ADH) and one aromatic ADH, which was later resolved into two further isoforms. Aliphatic ADHs did not use hydroxycinnamyl alcohols as substrates, whereas both aromatic ADH isoforms used coniferyl and sinapyl alcohol as substrates but with a much lower specific activity when compared with benzyl alcohol. The minor form, CAD 1P, was a monomer with a molecular weight of 34,000 that did not co-elute with either aromatic or aliphatic ADH activity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blot analysis demonstrated that this protein was very similar to another CAD isoform purified from Eucalyptus xylem tissue. CAD 2P had a native molecular weight of approximately 84,000 and was a dimer consisting of two heterogenous subunits (with molecular weights of 42,000 and 44,000). These subunits were differentially combined to give the heterodimer and two homodimers. SDS-PAGE, western blots, and nondenaturing PAGE indicated that the CAD 2P heterodimer was very similar to the main CAD isoform previously purified in our laboratory from differentiating xylem tissue of E. gunnii (D. Goffner, I. Joffroy, J. Grima-Pettenati, C. Halpin, M.E. Knight, W. Schuch, A.M. Boudet [1992] Planta 188: 48-53). Kinetic data indicated that the different CAD 2P isoforms may be implicated in the preferential production of different monolignols used in the synthesis of lignin and/or suberin. PMID:12232063

  16. Enhancement of 1,3-propanediol production by expression of pyruvate decarboxylase and aldehyde dehydrogenase from Zymomonas mobilis in the acetolactate-synthase-deficient mutant of Klebsiella pneumoniae.

    PubMed

    Lee, Sung-Mok; Hong, Won-Kyung; Heo, Sun-Yeon; Park, Jang Min; Jung, You Ree; Oh, Baek-Rock; Joe, Min-Ho; Seo, Jeong-Woo; Kim, Chul Ho

    2014-08-01

    The acetolactate synthase (als)-deficient mutant of Klebsiella pneumoniae fails to produce 1,3-propanediol (1,3-PD) or 2,3-butanediol (2,3-BD), and is defective in glycerol metabolism. In an effort to recover production of the industrially valuable 1,3-PD, we introduced the Zymomonas mobilis pyruvate decarboxylase (pdc) and aldehyde dehydrogenase (aldB) genes into the als-deficient mutant to activate the conversion of pyruvate to ethanol. Heterologous expression of pdc and aldB efficiently recovered glycerol metabolism in the 2,3-BD synthesis-defective mutant, enhancing the production of 1,3-PD by preventing the accumulation of pyruvate. Production of 1,3-PD in the pdc- and aldB-expressing als-deficient mutant was further enhanced by increasing the aeration rate. This system uses metabolic engineering to produce 1,3-PD while minimizing the generation of 2,3-BD, offering a breakthrough for the industrial production of 1,3-PD from crude glycerol.

  17. Expression of aldehyde dehydrogenase family 1 member A1 and high mobility group box 1 in oropharyngeal squamous cell carcinoma in association with survival time

    PubMed Central

    Qian, Xu; Coordes, Annekatrin; Kaufmann, Andreas M.; Albers, Andreas E.

    2016-01-01

    Despite the development of novel multimodal treatment combinations in advanced oropharyngeal squamous cell carcinoma (OSCC), outcomes remain poor. The identification of specifically validated biomarkers is required to understand the underlying molecular mechanisms, to evaluate treatment efficiency and to develop novel therapeutic targets. The present study, therefore, examined the presence of aldehyde dehydrogenase family 1 member A1 (ALDH1A1) and high mobility group box 1 (HMGB1) expression in primary OSCC and analyzed the impact on survival time. In 59 patients with OSCC, the expression of ALDH1A1, p16 and HMGB1, and their clinicopathological data were analyzed. HMGB1 positivity was significantly increased in patients with T1-2 stage disease compared with T3-4 stage disease (P<0.001), whereas ALDH1A1 positivity was not. ALDH1A1+ tumors showed significantly lower differentiation than ALDH1A1− tumors (P=0.018). Multivariate analysis showed that ALDH1A1 positivity (P=0.041) and nodal status (N2-3) (P=0.036) predicted a poor prognosis. In this patient cohort, ALDH1A1 and nodal status were identified as independent predictors of a shorter overall survival time. The study results, therefore, provide evidence of the prognostic value of ALDH1A1 as a marker for cancer stem cells and nodal status in OSCC patients. PMID:27900016

  18. Expression of aldehyde dehydrogenase family 1 member A1 and high mobility group box 1 in oropharyngeal squamous cell carcinoma in association with survival time.

    PubMed

    Qian, Xu; Coordes, Annekatrin; Kaufmann, Andreas M; Albers, Andreas E

    2016-11-01

    Despite the development of novel multimodal treatment combinations in advanced oropharyngeal squamous cell carcinoma (OSCC), outcomes remain poor. The identification of specifically validated biomarkers is required to understand the underlying molecular mechanisms, to evaluate treatment efficiency and to develop novel therapeutic targets. The present study, therefore, examined the presence of aldehyde dehydrogenase family 1 member A1 (ALDH1A1) and high mobility group box 1 (HMGB1) expression in primary OSCC and analyzed the impact on survival time. In 59 patients with OSCC, the expression of ALDH1A1, p16 and HMGB1, and their clinicopathological data were analyzed. HMGB1 positivity was significantly increased in patients with T1-2 stage disease compared with T3-4 stage disease (P<0.001), whereas ALDH1A1 positivity was not. ALDH1A1(+) tumors showed significantly lower differentiation than ALDH1A1(-) tumors (P=0.018). Multivariate analysis showed that ALDH1A1 positivity (P=0.041) and nodal status (N2-3) (P=0.036) predicted a poor prognosis. In this patient cohort, ALDH1A1 and nodal status were identified as independent predictors of a shorter overall survival time. The study results, therefore, provide evidence of the prognostic value of ALDH1A1 as a marker for cancer stem cells and nodal status in OSCC patients.

  19. [Overexpression of Spinacia oleracea betaine aldehyde dehydrogenase (SoBADH) gene confers the salt and cold tolerant in Gossypium hirsutum L].

    PubMed

    Luo, Xiaoli; Xiao, Juanli; Wang, Zhian; Zhang, Anhong; Tian, Yingchuan; Wu, Jiahe

    2008-08-01

    The open reading frame of Spinacia oleracea Betaine Aldehyde Dehydrogenase (SoBADH) was retrieved from Spinacia oleracea and inserted into the Agrobacterium tumefaciens binary vector pBin438, which was driven by CaMV35S promoter, and produced the new binary vector pBSB. A. tumefaciens LBA4404 carrying this plasmid was used in genetic transformation of plants. Forty-five primary transgenic plants were detected by PCR and verified by the Southern blotting from 65 regenerated plants, of which 27 transgenic plants had only one copy of T-DNA. The Northern blotting and Western blotting analysis indicated that the SoBADH gene had been transcribed mRNA and expression protein in the transgenic cotton lines. The testing of SoBADH activity of transgenic plant leaves showed that the enzyme activity was much higher than that of the non-transgenic cotton. The growth of transgenic plants was well under the salinity and freezing stress, whereas the non-transgenic plant grew poorly and even died. Challenging with salinity, the height and fresh weight of transgenic plants was higher compared with those of non-transgenic plants. Under the freezing stress, the relative conductivity of leaf electrolyte leakage of the transgenic cotton lines was lower than that of non-transgenic plants. These results demonstrated that the SoBADH gene could over express in the exogenous plants, and could be used in genetic engineering for cotton stress resistance.

  20. Pharmacological recruitment of aldehyde dehydrogenase 3A1 (ALDH3A1) to assist ALDH2 in acetaldehyde and ethanol metabolism in vivo

    PubMed Central

    Chen, Che-Hong; Cruz, Leslie A.; Mochly-Rosen, Daria

    2015-01-01

    Correcting a genetic mutation that leads to a loss of function has been a challenge. One such mutation is in aldehyde dehydrogenase 2 (ALDH2), denoted ALDH2*2. This mutation is present in ∼0.6 billion East Asians and results in accumulation of toxic acetaldehyde after consumption of ethanol. To temporarily increase metabolism of acetaldehyde in vivo, we describe an approach in which a pharmacologic agent recruited another ALDH to metabolize acetaldehyde. We focused on ALDH3A1, which is enriched in the upper aerodigestive track, and identified Alda-89 as a small molecule that enables ALDH3A1 to metabolize acetaldehyde. When given together with the ALDH2-specific activator, Alda-1, Alda-89 reduced acetaldehyde-induced behavioral impairment by causing a rapid reduction in blood ethanol and acetaldehyde levels after acute ethanol intoxication in both wild-type and ALDH2-deficient, ALDH2*1/*2, heterozygotic knock-in mice. The use of a pharmacologic agent to recruit an enzyme to metabolize a substrate that it usually does not metabolize may represent a novel means to temporarily increase elimination of toxic agents in vivo. PMID:25713355

  1. A new potent inhibitor of horse liver alcohol dehydrogenase: p-methylbenzyl hydroperoxide.

    PubMed

    Skurský, L; Khan, A N; Saleem, M N; al-Tamer, Y Y

    1992-04-01

    A product of p-xylene auto-oxidation, p-methylbenzyl hydroperoxide, acts as a very strong reversible inhibitor of the ethanol dehydrogenating activity of horse liver alcohol dehydrogenase. Concentrations of hydroperoxide as low as that of the enzyme active site (about 10(-8) mol.dm-3) in the assay depresses the activity by 50%. Somewhat less potent is benzyl hydroperoxide (derived from toluene) while the (secondary) hydroperoxide derived from ethylbenzene and tert.butyl hydroperoxide and cumyl hydroperoxide do not inhibit HLAD appreciably.

  2. The purification and biochemical properties of alcohol dehydrogenase--"fast (Chateau Douglas)" from Drosophila melanogaster.

    PubMed

    Chambers, G K

    1984-06-01

    Alcohol dehydrogenase has been purified from Drosophila melanogaster lines bearing the AdhF, AdhS, and AdhFCh.D. alleles. Biochemical investigations show that the properties of the purified enzymes are very similar to those of crude enzyme extracts except that the pure enzymes are more heat stable. ADH-FCh.D. resembles ADH-S very closely in specific activity, substrate specificity, and a number of kinetic parameters including limiting values for Km(app.) for ethanol. However, it is considerably more heat stable than either of the two common variants. ADH-F differs from ADH-S and ADH-FCh.D. particularly with regard to the rate of oxidation of secondary alcohols. Atomic absorbtion spectroscopy shows that all three allozymes lack zinc or other divalent cations as active-site components. Peptide mapping experiments identify one very active cysteinyl residue; and amide residues in the NAD+ binding domain.

  3. Characterization of a novel flooding stress-responsive alcohol dehydrogenase expressed in soybean roots.

    PubMed

    Komatsu, Setsuko; Deschamps, Thibaut; Thibaut, Deschamps; Hiraga, Susumu; Kato, Mikio; Chiba, Mitsuru; Hashiguchi, Akiko; Tougou, Makoto; Shimamura, Satoshi; Yasue, Hiroshi

    2011-10-01

    Alcohol dehydrogenase (Adh) is the key enzyme in alcohol fermentation. We analyzed Adh expression in order to clarify the role of Adh of soybeans (Glycine max) to flooding stress. Proteome analysis confirmed that expression of Adh is significantly upregulated in 4-day-old soybean seedlings subjected to 2 days of flooding. Southern hybridization analysis and soybean genome database search revealed that soybean has at least 6 Adh genes. The GmAdh2 gene that responded to flooding was isolated from soybean cultivar Enrei. Adh2 expression was markedly increased 6 h after flooding and decreased 24 h after floodwater drainage. In situ hybridization and Western blot indicated that flooding strongly induces Adh2 expression in RNA and protein levels in the root apical meristem. Osmotic, cold, or drought stress did not induce expression of Adh2. These results indicate that Adh2 is a flooding-response specific soybean gene expressed in root tissue.

  4. Pancreatic injury in hepatic alcohol dehydrogenase-deficient deer mice after subchronic exposure to ethanol

    SciTech Connect

    Kaphalia, Bhupendra S.; Bhopale, Kamlesh K.; Kondraganti, Shakuntala; Wu Hai; Boor, Paul J.; Ansari, G.A. Shakeel

    2010-08-01

    Pancreatitis caused by activation of digestive zymogens in the exocrine pancreas is a serious chronic health problem in alcoholic patients. However, mechanism of alcoholic pancreatitis remains obscure due to lack of a suitable animal model. Earlier, we reported pancreatic injury and substantial increases in endogenous formation of fatty acid ethyl esters (FAEEs) in the pancreas of hepatic alcohol dehydrogenase (ADH)-deficient (ADH{sup -}) deer mice fed 4% ethanol. To understand the mechanism of alcoholic pancreatitis, we evaluated dose-dependent metabolism of ethanol and related pancreatic injury in ADH{sup -} and hepatic ADH-normal (ADH{sup +}) deer mice fed 1%, 2% or 3.5% ethanol via Lieber-DeCarli liquid diet daily for 2 months. Blood alcohol concentration (BAC) was remarkably increased and the concentration was {approx} 1.5-fold greater in ADH{sup -} vs. ADH{sup +} deer mice fed 3.5% ethanol. At the end of the experiment, remarkable increases in pancreatic FAEEs and significant pancreatic injury indicated by the presence of prominent perinuclear space, pyknotic nuclei, apoptotic bodies and dilation of glandular ER were found only in ADH{sup -} deer mice fed 3.5% ethanol. This pancreatic injury was further supported by increased plasma lipase and pancreatic cathepsin B (a lysosomal hydrolase capable of activating trypsinogen), trypsinogen activation peptide (by-product of trypsinogen activation process) and glucose-regulated protein 78 (endoplasmic reticulum stress marker). These findings suggest that ADH-deficiency and high alcohol levels in the body are the key factors in ethanol-induced pancreatic injury. Therefore, determining how this early stage of pancreatic injury advances to inflammation stage could be important for understanding the mechanism(s) of alcoholic pancreatitis.

  5. Pancreatic injury in hepatic alcohol dehydrogenase-deficient deer mice after subchronic exposure to ethanol.

    PubMed

    Kaphalia, Bhupendra S; Bhopale, Kamlesh K; Kondraganti, Shakuntala; Wu, Hai; Boor, Paul J; Ansari, G A Shakeel

    2010-08-01

    Pancreatitis caused by activation of digestive zymogens in the exocrine pancreas is a serious chronic health problem in alcoholic patients. However, mechanism of alcoholic pancreatitis remains obscure due to lack of a suitable animal model. Earlier, we reported pancreatic injury and substantial increases in endogenous formation of fatty acid ethyl esters (FAEEs) in the pancreas of hepatic alcohol dehydrogenase (ADH)-deficient (ADH(-)) deer mice fed 4% ethanol. To understand the mechanism of alcoholic pancreatitis, we evaluated dose-dependent metabolism of ethanol and related pancreatic injury in ADH(-) and hepatic ADH-normal (ADH(+)) deer mice fed 1%, 2% or 3.5% ethanol via Lieber-DeCarli liquid diet daily for 2months. Blood alcohol concentration (BAC) was remarkably increased and the concentration was ∼1.5-fold greater in ADH(-) vs. ADH(+) deer mice fed 3.5% ethanol. At the end of the experiment, remarkable increases in pancreatic FAEEs and significant pancreatic injury indicated by the presence of prominent perinuclear space, pyknotic nuclei, apoptotic bodies and dilation of glandular ER were found only in ADH(-) deer mice fed 3.5% ethanol. This pancreatic injury was further supported by increased plasma lipase and pancreatic cathepsin B (a lysosomal hydrolase capable of activating trypsinogen), trypsinogen activation peptide (by-product of trypsinogen activation process) and glucose-regulated protein 78 (endoplasmic reticulum stress marker). These findings suggest that ADH-deficiency and high alcohol levels in the body are the key factors in ethanol-induced pancreatic injury. Therefore, determining how this early stage of pancreatic injury advances to inflammation stage could be important for understanding the mechanism(s) of alcoholic pancreatitis.

  6. Titanium superoxide--a stable recyclable heterogeneous catalyst for oxidative esterification of aldehydes with alkylarenes or alcohols using TBHP as an oxidant.

    PubMed

    Dey, Soumen; Gadakh, Sunita K; Sudalai, A

    2015-11-21

    Titanium superoxide efficiently catalysed the oxidative esterification of aldehydes with alkylarenes or alcohols, under truly heterogeneous conditions, to afford the corresponding benzyl and alkyl esters in excellent yields. Mechanistic studies have established that this "one pot" direct oxidative esterification process proceeds through a radical pathway, proven by a FTIR spectral study of a titanium superoxide-aldehyde complex as well as spin trapping experiments with TEMPO. The intramolecular version of this protocol has been successfully demonstrated in the concise synthesis of 3-butylphthalide, an anti-convulsant drug.

  7. Immobilization of L-arabinitol dehydrogenase on aldehyde-functionalized silicon oxide nanoparticles for L-xylulose production.

    PubMed

    Singh, Raushan Kumar; Tiwari, Manish Kumar; Singh, Ranjitha; Haw, Jung-Rim; Lee, Jung-Kul

    2014-02-01

    L-Xylulose is a potential starting material for therapeutics. However, its translation into clinical practice has been hampered by its inherently low bioavailability. In addition, the high cost associated with the production of L-xylulose is a major factor hindering its rapid deployment beyond the laboratory. In the current study, L-arabinitol 4-dehydrogenase from Hypocrea jecorina (HjLAD), which catalyzes the conversion of L-arabinitol into L-xylulose, was immobilized onto various carriers, and the immobilized enzymes were characterized. HjLAD covalently immobilized onto silicon oxide nanoparticles showed the highest immobilization efficiency (94.7 %). This report presents a comparative characterization of free and immobilized HjLAD, including its thermostability and kinetic parameters. The thermostability of HjLAD immobilized on silicon oxide nanoparticles was more than 14.2-fold higher than free HjLAD; the t1/2 of HjLAD at 25 °C was enhanced from 190 min (free) to 45 h (immobilized). In addition, the immobilized HjLAD retained 94 % of its initial activity after 10 cycles. When the immobilized HjLAD was used to catalyze the biotransformation of L-arabinitol to L-xylulose, 66 % conversion and a productivity of 7.9 g · h(-1) · L(-1) were achieved. The enhanced thermostability and reusability of HjLAD suggest that immobilization of HjLAD onto silicon oxide nanoparticles has the potential for use in the industrial production of rare sugars.

  8. Characterization of a Zinc-Containing Alcohol Dehydrogenase with Stereoselectivity from the Hyperthermophilic Archaeon Thermococcus guaymasensis▿

    PubMed Central

    Ying, Xiangxian; Ma, Kesen

    2011-01-01

    An alcohol dehydrogenase (ADH) from hyperthermophilic archaeon Thermococcus guaymasensis was purified to homogeneity and was found to be a homotetramer with a subunit size of 40 ± 1 kDa. The gene encoding the enzyme was cloned and sequenced; this gene had 1,095 bp, corresponding to 365 amino acids, and showed high sequence homology to zinc-containing ADHs and l-threonine dehydrogenases with binding motifs of catalytic zinc and NADP+. Metal analyses revealed that this NADP+-dependent enzyme contained 0.9 ± 0.03 g-atoms of zinc per subunit. It was a primary-secondary ADH and exhibited a substrate preference for secondary alcohols and corresponding ketones. Particularly, the enzyme with unusual stereoselectivity catalyzed an anti-Prelog reduction of racemic (R/S)-acetoin to (2R,3R)-2,3-butanediol and meso-2,3-butanediol. The optimal pH values for the oxidation and formation of alcohols were 10.5 and 7.5, respectively. Besides being hyperthermostable, the enzyme activity increased as the temperature was elevated up to 95°C. The enzyme was active in the presence of methanol up to 40% (vol/vol) in the assay mixture. The reduction of ketones underwent high efficiency by coupling with excess isopropanol to regenerate NADPH. The kinetic parameters of the enzyme showed that the apparent Km values and catalytic efficiency for NADPH were 40 times lower and 5 times higher than those for NADP+, respectively. The physiological roles of the enzyme were proposed to be in the formation of alcohols such as ethanol or acetoin concomitant to the NADPH oxidation. PMID:21515780

  9. Microbial Engineering for Aldehyde Synthesis

    PubMed Central

    Kunjapur, Aditya M.

    2015-01-01

    Aldehydes are a class of chemicals with many industrial uses. Several aldehydes are responsible for flavors and fragrances present in plants, but aldehydes are not known to accumulate in most natural microorganisms. In many cases, microbial production of aldehydes presents an attractive alternative to extraction from plants or chemical synthesis. During the past 2 decades, a variety of aldehyde biosynthetic enzymes have undergone detailed characterization. Although metabolic pathways that result in alcohol synthesis via aldehyde intermediates were long known, only recent investigations in model microbes such as Escherichia coli have succeeded in minimizing the rapid endogenous conversion of aldehydes into their corresponding alcohols. Such efforts have provided a foundation for microbial aldehyde synthesis and broader utilization of aldehydes as intermediates for other synthetically challenging biochemical classes. However, aldehyde toxicity imposes a practical limit on achievable aldehyde titers and remains an issue of academic and commercial interest. In this minireview, we summarize published efforts of microbial engineering for aldehyde synthesis, with an emphasis on de novo synthesis, engineered aldehyde accumulation in E. coli, and the challenge of aldehyde toxicity. PMID:25576610

  10. Evaluation of the impact of functional diversification on Poaceae, Brassicaceae, Fabaceae, and Pinaceae alcohol dehydrogenase enzymes.

    PubMed

    Thompson, Claudia E; Fernandes, Cláudia L; de Souza, Osmar Norberto; de Freitas, Loreta B; Salzano, Francisco M

    2010-05-01

    The plant alcohol dehydrogenases (ADHs) have been intensively studied in the last years in terms of phylogeny and they have been widely used as a molecular marker. However, almost no information about their three-dimensional structure is available. Several studies point to functional diversification of the ADH, with evidence of its importance, in different organisms, in the ethanol, norepinephrine, dopamine, serotonin, and bile acid metabolism. Computational results demonstrated that in plants these enzymes are submitted to a functional diversification process, which is reinforced by experimental studies indicating distinct enzymatic functions as well as recruitment of specific genes in different tissues. The main objective of this article is to establish a correlation between the functional diversification occurring in the plant alcohol dehydrogenase family and the three-dimensional structures predicted for 17 ADH belonging to Poaceae, Brassicaceae, Fabaceae, and Pinaceae botanical families. Volume, molecular weight and surface areas are not markedly different among them. Important electrostatic and pI differences were observed with the residues responsible for some of them identified, corroborating the function diversification hypothesis. These data furnish important background information for future specific structure-function and evolutionary investigations.

  11. Sequence and structural aspects of the functional diversification of plant alcohol dehydrogenases.

    PubMed

    Thompson, Claudia E; Salzano, Francisco M; de Souza, Osmar Norberto; Freitas, Loreta B

    2007-07-01

    The glycolytic proteins in plants are coded by small multigene families, which provide an interesting contrast to the high copy number of gene families studied to date. The alcohol dehydrogenase (Adh) genes encode glycolytic enzymes that have been characterized in some plant families. Although the amino acid sequences of zinc-containing long-chain ADHs are highly conserved, the metabolic function of this enzyme is variable. They also have different patterns of expression and are submitted to differences in nonsynonymous substitution rates between gene copies. It is possible that the Adh copies have been retained as a consequence of adaptative amino acid replacements which have conferred subtle changes in function. Phylogenetic analysis indicates that there have been a number of separate duplication events within angiosperms, and that genes labeled Adh1, Adh2 and Adh3 in different groups may not be homologous. Nonsynonymous/synonymous ratios yielded no signs of positive selection. However, the coefficients of functional divergence (theta) estimated between the Adh1 and Adh2 gene groups indicate statistically significant site-specific shift of evolutionary rates between them, as well as between those of different botanical families, suggesting that altered functional constraints may have taken place at some amino acid residues after their diversification. The theoretical three-dimensional structure of the alcohol dehydrogenase from Arabis blepharophylla was constructed and verified to be stereochemically valid.

  12. Molecular and physiological aspects of alcohol dehydrogenases in the ethanol metabolism of Saccharomyces cerevisiae.

    PubMed

    de Smidt, Olga; du Preez, James C; Albertyn, Jacobus

    2012-02-01

    The physiological role and possible functional substitution of each of the five alcohol dehydrogenase (Adh) isozymes in Saccharomyces cerevisiae were investigated in five quadruple deletion mutants designated strains Q1-Q5, with the number indicating the sole intact ADH gene. Their growth in aerobic batch cultures was characterised in terms of kinetic and stoichiometric parameters. Cultivation with glucose or ethanol as carbon substrate revealed that Adh1 was the only alcohol dehydrogenase capable of efficiently catalysing the reduction of acetaldehyde to ethanol. The oxidation of produced or added ethanol could also be attributed to Adh1. Growth of strains lacking the ADH1 gene resulted in the production of glycerol as a major fermentation product, concomitant with the production of a significant amount of acetaldehyde. Strains Q2 and Q3, expressing only ADH2 or ADH3, respectively, produced ethanol from glucose, albeit less than strain Q1, and were also able to oxidise added ethanol. Strains Q4 and Q5 grew poorly on glucose and produced ethanol, but were neither able to utilise the produced ethanol nor grow on added ethanol. Transcription profiles of the ADH4 and ADH5 genes suggested that participation of these gene products in ethanol production from glucose was unlikely.

  13. Effect of additives on gas-phase catalysis with immobilised Thermoanaerobacter species alcohol dehydrogenase (ADH T).

    PubMed

    Trivedi, A H; Spiess, A C; Daussmann, T; Büchs, J

    2006-07-01

    This paper presents a strategy for preparing an efficient immobilised alcohol dehydrogenase preparation for a gas-phase reaction. The effects of additives such as buffers and sucrose on the immobilisation efficiency (residual activity and protein loading) and on the gas-phase reaction efficiency (initial reaction rate and half-life) of Thermoanaerobacter sp. alcohol dehydrogenase were studied. The reduction of acetophenone to 1-phenylethanol under in situ cofactor regeneration using isopropanol as co-substrate was used as a model reaction at fixed reaction conditions (temperature and thermodynamic activities). A strongly enhanced thermostability of the enzyme in the gas-phase reaction was achieved when the enzyme was immobilised with 50 mM phosphate buffer (pH 7) containing sucrose five times the protein amount (on weight/weight basis). This resulted in a remarkable productivity of 200 g L(-1) day(-1) even at non-optimised reaction conditions. The interaction of additives with the enzyme and water affects the immobilisation and gas-phase efficiencies of the enzyme. However, it was not possible to predict the effect of additives on the gas-phase reaction efficiency even after knowing their effect on the immobilisation efficiency.

  14. RDH13L, an enzyme responsible for the aldehyde-alcohol redox coupling reaction (AL-OL coupling reaction) to supply 11-cis retinal in the carp cone retinoid cycle.

    PubMed

    Sato, Shinya; Miyazono, Sadaharu; Tachibanaki, Shuji; Kawamura, Satoru

    2015-01-30

    Cone photoreceptors require effective pigment regeneration mechanisms to maintain their sensitivity in the light. Our previous studies in carp cones suggested the presence of an unconventional and very effective mechanism to produce 11-cis retinal, the necessary component in pigment regeneration. In this reaction (aldehyde-alcohol redox coupling reaction, AL-OL coupling reaction), formation of 11-cis retinal, i.e. oxidation of 11-cis retinol is coupled to reduction of an aldehyde at a 1:1 molar ratio without exogenous NADP(H) which is usually required in this kind of reaction. Here, we identified carp retinol dehydrogenase 13-like (RDH13L) as an enzyme catalyzing the AL-OL coupling reaction. RDH13L was partially purified from purified carp cones, identified as a candidate protein, and its AL-OL coupling activity was confirmed using recombinant RDH13L. We further examined the substrate specificity, subcellular localization, and expression level of RDH13L. Based on these results, we concluded that RDH13L contributes to a significant part, but not all, of the AL-OL coupling activity in carp cones. RDH13L contained tightly bound NADP(+) which presumably functions as a cofactor in the reaction. Mouse RDH14, a mouse homolog of carp RDH13L, also showed the AL-OL coupling activity. Interestingly, although carp cone membranes, carp RDH13L and mouse RDH14 all showed the coupling activity at 15-37 °C, they also showed a conventional NADP(+)-dependent 11-cis retinol oxidation activity above 25 °C without addition of aldehydes. This dual mechanism of 11-cis retinal synthesis attained by carp RDH13L and mouse RDH14 probably contribute to effective pigment regeneration in cones that function in the light.

  15. Secondary alcohol dehydrogenase catalyzes the reduction of exogenous acetone to 2-propanol in Trichomonas vaginalis.

    PubMed

    Sutak, Robert; Hrdy, Ivan; Dolezal, Pavel; Cabala, Radomir; Sedinová, Miroslava; Lewin, Joern; Harant, Karel; Müller, Miklos; Tachezy, Jan

    2012-08-01

    Secondary alcohols such as 2-propanol are readily produced by various anaerobic bacteria that possess secondary alcohol dehydrogenase (S-ADH), although production of 2-propanol is rare in eukaryotes. Specific bacterial-type S-ADH has been identified in a few unicellular eukaryotes, but its function is not known and the production of secondary alcohols has not been studied. We purified and characterized S-ADH from the human pathogen Trichomonas vaginalis. The kinetic properties and thermostability of T. vaginalis S-ADH were comparable with bacterial orthologues. The substantial activity of S-ADH in the parasite's cytosol was surprising, because only low amounts of ethanol and trace amounts of secondary alcohols were detected as metabolic end products. However, S-ADH provided the parasite with a high capacity to scavenge and reduce external acetone to 2-propanol. To maintain redox balance, the demand for reducing power to metabolize external acetone was compensated for by decreased cytosolic reduction of pyruvate to lactate and by hydrogenosomal metabolism of pyruvate. We speculate that hydrogen might be utilized to maintain cytosolic reducing power. The high activity of Tv-S-ADH together with the ability of T. vaginalis to modulate the metabolic fluxes indicate efficacious metabolic responsiveness that could be advantageous for rapid adaptation of the parasite to changes in the host environment.

  16. Comparison of quantum dot technology with conventional immunohistochemistry in examining aldehyde dehydrogenase 1A1 as a potential biomarker for lymph node metastasis of head and neck cancer.

    PubMed

    Xu, Jing; Müller, Susan; Nannapaneni, Sreenivas; Pan, Lin; Wang, Yuxiang; Peng, Xianghong; Wang, Dongsheng; Tighiouart, Mourad; Chen, Zhengjia; Saba, Nabil F; Beitler, Jonathan J; Shin, Dong M; Chen, Zhuo Georgia

    2012-07-01

    This study explored whether the expression of aldehyde dehydrogenase 1 (ALDH1A1) in the primary tumour correlated with lymph node metastasis (LNM) of squamous cell carcinoma of the head and neck (HNSCC). We used both quantum dot (QD)-based immunohistofluorescence (IHF) and conventional immunohistochemistry (IHC) to quantify ALDH1A1 expression in primary tumour samples taken from 96 HNSCC patients, 50 with disease in the lymph nodes and 46 without. The correlation between the quantified level of ALDH1A1 expression and LNM in HNSCC patients was evaluated with univariate and multivariate analysis. The prognostic value of ALDH1A1 was examined by Kaplan-Meier analysis and Wald test. ALDH1A1 was highly correlated with LNM in HNSCC patients (p<0.0001 by QD-based IHF and 0.039 by IHC). The two methods (QD-based IHF and conventional IHC) for quantification of ALDH1A1 were found to be comparable (R=0.75, p<0.0001), but QD-IHF was more sensitive and objective than IHC. The HNSCC patients with low ALDH1A1 expression had a higher 5-year survival rate than those with high ALDH1A1 level (p=0.025). Our study suggests that ALDH1A1 is a potential biomarker for predicting LNM in HNSCC patients, though it is not an independent prognostic factor for survival of HNSCC patients. Furthermore, QD-IHF has advantages over IHC in quantification of ALDH1A1 expression in HNSCC tissues.

  17. Immobilisation and characterisation of biocatalytic co-factor recycling enzymes, glucose dehydrogenase and NADH oxidase, on aldehyde functional ReSyn™ polymer microspheres.

    PubMed

    Twala, Busisiwe V; Sewell, B Trevor; Jordaan, Justin

    2012-05-10

    The use of enzymes in industrial applications is limited by their instability, cost and difficulty in their recovery and re-use. Immobilisation is a technique which has been shown to alleviate these limitations in biocatalysis. Here we describe the immobilisation of two biocatalytically relevant co-factor recycling enzymes, glucose dehydrogenase (GDH) and NADH oxidase (NOD) on aldehyde functional ReSyn™ polymer microspheres with varying functional group densities. The successful immobilisation of the enzymes on this new high capacity microsphere technology resulted in the maintenance of activity of ∼40% for GDH and a maximum of 15.4% for NOD. The microsphere variant with highest functional group density of ∼3500 μmol g⁻¹ displayed the highest specific activity for the immobilisation of both enzymes at 33.22 U mg⁻¹ and 6.75 U mg⁻¹ for GDH and NOD with respective loading capacities of 51% (0.51 mg mg⁻¹) and 129% (1.29 mg mg⁻¹). The immobilised GDH further displayed improved activity in the acidic pH range. Both enzymes displayed improved pH and thermal stability with the most pronounced thermal stability for GDH displayed on ReSyn™ A during temperature incubation at 65 °C with a 13.59 fold increase, and NOD with a 2.25-fold improvement at 45 °C on the same microsphere variant. An important finding is the suitability of the microspheres for stabilisation of the multimeric protein GDH.

  18. Structural and functional consequences of coenzyme binding to the inactive asian variant of mitochondrial aldehyde dehydrogenase: roles of residues 475 and 487.

    PubMed

    Larson, Heather N; Zhou, Jianzhong; Chen, Zhiqiang; Stamler, Jonathan S; Weiner, Henry; Hurley, Thomas D

    2007-04-27

    The common mitochondrial aldehyde dehydrogenase (ALDH2) ALDH2(*)2 polymorphism is associated with impaired ethanol metabolism and decreased efficacy of nitroglycerin treatment. These physiological effects are due to the substitution of Lys for Glu-487 that reduces the k(cat) for these processes and increases the K(m) for NAD(+), as compared with ALDH2. In this study, we sought to understand the nature of the interactions that give rise to the loss of structural integrity and low activity in ALDH2(*)2 even when complexed with coenzyme. Consequently, we have solved the crystal structure of ALDH2(*)2 complexed with coenzyme to 2.5A(.) We have also solved the structures of a mutated form of ALDH2 where Arg-475 is replaced by Gln (R475Q). The structural and functional properties of the R475Q enzyme are intermediate between those of wild-type and the ALDH2(*)2 enzymes. In both cases, the binding of coenzyme restores most of the structural deficits observed in the apoenzyme structures. The binding of coenzyme to the R475Q enzyme restores its structure and catalytic properties to near wild-type levels. In contrast, the disordered helix within the coenzyme binding pocket of ALDH2(*)2 is reordered, but the active site is only partially reordered. Consistent with the structural data, ALDH2(*)2 showed a concentration-dependent increase in esterase activity and nitroglycerin reductase activity upon addition of coenzyme, but the levels of activity do not approach those of the wild-type enzyme or that of the R475Q enzyme. The data presented shows that Glu-487 maintains a critical function in linking the structure of the coenzyme-binding site to that of the active site through its interactions with Arg-264 and Arg-475, and in doing so, creates the stable structural scaffold conducive to catalysis.

  19. Structural and Functional Consequences of Coenzyme Binding to the Inactive Asian Variant of Mitochondrial Aldehyde Dehydrogenase: Roles of Residues 475 and 487

    SciTech Connect

    Larson,H.; Zhou, J.; Chen, Z.; Stamler, J.; Weiner, H.; Hurley, T.

    2007-01-01

    The common mitochondrial aldehyde dehydrogenase (ALDH2) ALDH2*2 polymorphism is associated with impaired ethanol metabolism and decreased efficacy of nitroglycerin treatment. These physiological effects are due to the substitution of Lys for Glu-487 that reduces the k{sub cat} for these processes and increases the K{sub m} for NAD{sup +}, as compared with ALDH2. In this study, we sought to understand the nature of the interactions that give rise to the loss of structural integrity and low activity in ALDH2*2 even when complexed with coenzyme. Consequently, we have solved the crystal structure of ALDH2*2 complexed with coenzyme to 2.5 {angstrom}. We have also solved the structures of a mutated form of ALDH2 where Arg-475 is replaced by Gln (R475Q). The structural and functional properties of the R475Q enzyme are intermediate between those of wild-type and the ALDH2*2 enzymes. In both cases, the binding of coenzyme restores most of the structural deficits observed in the apoenzyme structures. The binding of coenzyme to the R475Q enzyme restores its structure and catalytic properties to near wild-type levels. In contrast, the disordered helix within the coenzyme binding pocket of ALDH2*2 is reordered, but the active site is only partially reordered. Consistent with the structural data, ALDH2*2 showed a concentration-dependent increase in esterase activity and nitroglycerin reductase activity upon addition of coenzyme, but the levels of activity do not approach those of the wild-type enzyme or that of the R475Q enzyme. The data presented shows that Glu-487 maintains a critical function in linking the structure of the coenzyme binding site to that of the active site through its interactions with Arg-264 and Arg-475, and in doing so, creates the stable structural scaffold conducive to catalysis.

  20. Effects of Betaine Aldehyde Dehydrogenase-Transgenic Soybean on Phosphatase Activities and Rhizospheric Bacterial Community of the Saline-Alkali Soil

    PubMed Central

    Wang, Da-qing; Yu, Song

    2016-01-01

    The development of transgenic soybean has produced numerous economic benefits; however the potential impact of root exudates upon soil ecological systems and rhizospheric soil microbial diversity has also received intensive attention. In the present study, the influence of saline-alkali tolerant transgenic soybean of betaine aldehyde dehydrogenase on bacterial community structure and soil phosphatase during growth stages was investigated. The results showed that, compared with nontransgenic soybean as a control, the rhizospheric soil pH of transgenic soybean significantly decreased at the seedling stage. Compared to HN35, organic P content was 13.5% and 25.4% greater at the pod-filling stage and maturity, respectively. The acid phosphatase activity of SRTS was significantly better than HN35 by 12.74% at seedling, 14.03% at flowering, and 59.29% at podding, while alkaline phosphatase achieved maximum activity in the flowering stage and was markedly lower than HN35 by 13.25% at pod-filling. The 454 pyrosequencing technique was employed to investigate bacterial diversity, with a total of 25,499 operational taxonomic units (OTUs) obtained from the 10 samples. Notably, the effect of SRTS on microbial richness and diversity of rhizospheric soil was marked at the stage of podding and pod-filling. Proteobacteria, Acidobacteria, and Actinobacteria were the dominant phyla among all samples. Compared with HN35, the relative abundance of Proteobacteria was lower by 2.01%, 2.06%, and 5.28% at the stage of seedling, at pod-bearing, and at maturity. In genus level, the relative abundance of Gp6, Sphingomonas sp., and GP4 was significantly inhibited by SRTS at the stage of pod-bearing and pod-filling. PMID:27689079

  1. Association between Carotid Intima-media Thickness and Aldehyde Dehydrogenase 2 Glu504Lys Polymorphism in Chinese Han with Essential Hypertension

    PubMed Central

    Ma, Xiao-Xiang; Zheng, Shu-Zhan; Shu, Yan; Wang, Yong; Chen, Xiao-Ping

    2016-01-01

    Background: Aldehyde dehydrogenase 2 (ALDH2) is involved in the pathophysiological processes of cardiovascular diseases. Recent studies showed that mutant ALDH2 could increase oxidative stress and is a susceptible factor for hypertension. In addition, wild-type ALDH2 could improve the endothelial functions, therefore reducing the risk of developing atherosclerosis. The aim of the present study was to explore the frequency of the Glu504Lys polymorphism of the ALDH2 gene and its relation to carotid intima-media thickness (CIMT) in a group of patients with essential hypertension (EH) and to investigate the association between the Glu504Lys polymorphism and CIMT in Chinese Han patients with EH. Methods: In this study, 410 Chinese Han patients with EH who received physical examinations at the People's Hospital of Sichuan Province (China) were selected. DNA microarray chip was used for the genotyping of the Glu504Lys polymorphism of the ALDH2 gene. The differences in CIMT among patients with different Glu504Lys ALDH2 genotypes were analyzed. Results: The mean CIMT of the patients carrying AA/AG and GG genotypes was 1.02 ± 0.31 mm and 0.78 ± 0.28 mm, respectively. One-way ANOVA showed that the CIMT of the patients carrying the AA/AG genotype was significantly higher than in the ones carrying the GG genotype (P < 0.001). Multivariate logistic regression showed that the Glu504Lys AA/AG genotype of the ALDH2 gene was one of the major factors influencing the CIMT in patients with EH (odds ratio = 3.731, 95% confidence interval = 1.589–8.124, P = 0.001). Conclusions: The Glu504Lys polymorphism of the ALDH2 gene is associated with the CIMT of Chinese Han patients with EH in Sichuan, China. PMID:27270535

  2. Aberrant expression of aldehyde dehydrogenase 1A (ALDH1A) subfamily genes in acute lymphoblastic leukaemia is a common feature of T-lineage tumours.

    PubMed

    Longville, Brooke A C; Anderson, Denise; Welch, Mathew D; Kees, Ursula R; Greene, Wayne K

    2015-01-01

    The class 1A aldehyde dehydrogenase (ALDH1A) subfamily of genes encode enzymes that function at the apex of the retinoic acid (RA) signalling pathway. We detected aberrant expression of ALDH1A genes, particularly ALDH1A2, in a majority (72%) of primary paediatric T cell acute lymphoblastic leukaemia (T-ALL) specimens. ALDH1A expression was almost exclusive to T-lineage, but not B-lineage, ALL. To determine whether ALDH1A expression may have relevance to T-ALL cell growth and survival, the effect of inhibiting ALDH1A function was measured on a panel of human ALL cell lines. This revealed that T-ALL proliferation had a higher sensitivity to modulation of ALDH1A activity and RA signalling as compared to ALL cell lines of B-lineage. Consistent with these findings, the genes most highly correlated with ALDH1A2 expression were involved in cell proliferation and apoptosis. Evidence that such genes may be targets of regulation via RA signalling initiated by ALDH1A activity was provided by the TNFRSF10B gene, encoding the apoptotic death receptor TNFRSF10B (also termed TRAIL-R2), which negatively correlated with ALDH1A2 and showed elevated transcription following treatment of T-ALL cell lines with the ALDH1A inhibitor citral (3,7-dimethyl-2,6-octadienal). These data indicate that ALDH1A expression is a common event in T-ALL and supports a role for these enzymes in the pathobiology of this disease.

  3. Aldehyde dehydrogenase 1A1 up-regulates stem cell markers in benzo[a]pyrene-induced malignant transformation of BEAS-2B cells.

    PubMed

    Liu, Yonghong; Lu, Ruitao; Gu, Junlian; Chen, Yanxuan; Zhang, Xueyan; Zhang, Lan; Wu, Hao; Hua, Wenfeng; Zeng, Jun

    2016-07-01

    Recently, Aldehyde dehydrogenase 1A1 (ALDH1A1) has been proposed to be a common marker of cancer stem cells and can be induced by benzo[a]pyrene (B[a]P) exposure. However, the underlying mechanism of how ALDH1A1 contributes to B[a]P-induced carcinogenesis in human bronchial epithelial cells remains unclear. Here, we found that B[a]P up-regulated expression levels of stem cell markers (ABCG2, SOX2, c-Myc and Klf4), epithelial-mesenchymal transition (EMT) associated genes (SNAIL1, ZEB1, TWIST and β-CATENIN) and cancer-related long non-coding RNAs (lncRNAs; HOTAIR and MALAT-1) in malignant B[a]P-transformed human bronchial epithelial cells (BEAS-2B-T cells), and these up-regulations were dependent on increased expression of ALDH1A1. The inhibition of endogenous ALDH1A1 expression down-regulated expression levels of stem cell markers and reversed the malignant phenotype as well as reduced the chemoresistance of BEAS-2B-T cells. In contrast, the overexpression of ALDH1A1 in BEAS-2B cells increased the expression of stem cell markers, facilitated cell transformation, promoted migratory ability and enhanced the drug resistance of BEAS-2B cells. Overall, our data indicates that ALDH1A1 promotes a stemness phenotype and plays a critical role in the BEAS-2B cell malignant transformation induced by B[a]P.

  4. Radical-Induced Metal and Solvent-Free Cross-Coupling Using TBAI-TBHP: Oxidative Amidation of Aldehydes and Alcohols with N-Chloramines via C-H Activation.

    PubMed

    Achar, Tapas Kumar; Mal, Prasenjit

    2015-01-02

    A solvent-free cross-coupling method for oxidative amidation of aldehydes and alcohols via a metal-free radial pathway has been demonstrated. The proposed methodology uses the TBAI-TBHP combination which efficiently induces metal-free C-H activation of aldehydes under neat conditions at 50 °C or ball-milling conditions at room temperature.

  5. Gene cloning and expression of Leifsonia alcohol dehydrogenase (LSADH) involved in asymmetric hydrogen-transfer bioreduction to produce (R)-form chiral alcohols.

    PubMed

    Inoue, Kousuke; Makino, Yoshihide; Dairi, Tohru; Itoh, Nobuya

    2006-02-01

    The gene encoding Leifsonia alcohol dehydrogenase (LSADH), a useful biocatalyst for producing (R)-chiral alcohols, was cloned from the genomic DNA of Leifsonia sp. S749. The gene contained an opening reading frame consisting of 756 nucleotides corresponding to 251 amino acid residues. The subunit molecular weight was calculated to be 24,999, which was consistent with that determined by polyacrylamide gel electrophoresis. The enzyme was expressed in recombinant Escherichia coli cells and purified to homogeneity by three column chromatographies. The predicted amino acid sequence displayed 30-50% homology to known short chain alcohol dehydrogenase/reductases (SDRs); moreover, the NADH-binding site and the three catalytic residues in SDRs were conserved. The recombinant E. coli cells which overexpressed lsadh produced (R)-form chiral alcohols from ketones using 2-propanol as a hydrogen donor with the highest level of productivity ever reported and enantiomeric excess (e.e.).

  6. Mutation of Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase at Trp-110 affects stereoselectivity of aromatic ketone reduction.

    PubMed

    Patel, Jay M; Musa, Musa M; Rodriguez, Luis; Sutton, Dewey A; Popik, Vladimir V; Phillips, Robert S

    2014-08-21

    Alcohol dehydrogenases (ADHs) are enzymes that catalyze the reversible reduction of carbonyl compounds to their corresponding alcohols. We have been studying a thermostable, nicotinamide-adenine dinucleotide phosphate (NADP(+))-dependent, secondary ADH from Thermoanaerobacter ethanolicus (TeSADH). In the current work, we expanded our library of TeSADH and adopted the site-saturation mutagenesis approach in creating a comprehensive mutant library at W110. We used phenylacetone as a model substrate to study the effectiveness of our library because this substrate showed low enantioselectivity in our previous work when reduced using W110A TeSADH. Five of the newly designed W110 mutants reduced phenylacetone at >99.9% ee, and two of these mutants exhibit an enantiomeric ratio (E-value) of over 100. These five mutants also reduced 1-phenyl-2-butanone and 4-phenyl-2-butanone to their corresponding (S)-configured alcohols in >99.9% ee. These new mutants of TeSADH will likely have synthetic utility for reduction of aromatic ketones in the future.

  7. Influence of yeast immobilization on fermentation and aldehyde reduction during the production of alcohol-free beer.

    PubMed

    van Iersel MF; Brouwer-Post; Rombouts; Abee

    2000-05-01

    Production of alcohol-free beer by limited fermentation is optimally performed in a packed-bed reactor. This highly controllable system combines short contact times between yeast and wort with the reduction of off-flavors to concentrations below threshold values. In the present study, the influence of immobilization of yeast to DEAE-cellulose on sugar fermentation and aldehyde reduction was monitored. Immobilized cells showed higher activities of hexokinase and pyruvate decarboxylase compared to cells grown in batch culture. In addition, a higher glucose flux was observed, with enhanced excretion of main fermentation products, indicating a reduction in the flux of sugar used for biomass production. ADH activity was higher in immobilized cells compared to that in suspended cells. However, during prolonged production a decrease was observed in NAD-specific ADH activity, whereas NADP-specific activity increased in the immobilized cells. The shifts in enzyme activities and glucose flux correlate with a higher in vivo reduction capacity of the immobilized cells.

  8. DOWNREGULATION OF CINNAMYL-ALCOHOL DEHYDROGENASE IN SWITCHGRASS BY RNA SILENCING RESULTS IN ENHANCED GLUCOSE RELEASE AFTER CELLULASE TREATMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cinnamyl alcohol dehydrogenase (CAD), catalyzes the last step in monolignol biosynthesis and genetic evidence indicates CAD deficiency in grasses both decreases overall lignin, alters lignin structure and increases enzymatic recovery of sugars. To ascertain the effect of CAD downregulation in switch...

  9. Structural insights into substrate specificity and solvent tolerance in alcohol dehydrogenase ADH-'A' from Rhodococcus ruber DSM 44541.

    PubMed

    Karabec, Martin; Łyskowski, Andrzej; Tauber, Katharina C; Steinkellner, Georg; Kroutil, Wolfgang; Grogan, Gideon; Gruber, Karl

    2010-09-14

    The structure of the alcohol dehydrogenase ADH-'A' from Rhodococcus ruber reveals possible reasons for its remarkable tolerance to organic co-solvents and suggests new directions for structure-informed mutagenesis to produce enzymes of altered substrate specificity or improved selectivity.

  10. Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum

    SciTech Connect

    Brown, Steven D; Guss, Adam M; Karpinets, Tatiana V; Parks, Jerry M; Smolin, Nikolai; Yang, Shihui; Land, Miriam L; Klingeman, Dawn Marie; Bhandiwad, Ashwini; Rodriguez, Jr., Miguel; Raman, Babu; Shao, Xiongjun; Mielenz, Jonathan R; Smith, Jeremy C; Keller, Martin; Lynd, Lee R

    2011-01-01

    Clostridium thermocellum is a thermophilic, obligately anaerobic, Gram-positive bacterium that is a candidate microorganism for converting cellulosic biomass into ethanol through consolidated bioprocessing. Ethanol intolerance is an important metric in terms of process economics, and tolerance has often been described as a complex and likely multigenic trait for which complex gene interactions come into play. Here, we resequence the genome of an ethanol-tolerant mutant, show that the tolerant phenotype is primarily due to a mutated bifunctional acetaldehyde-CoA/alcohol dehydrogenase gene (adhE), hypothesize based on structural analysis that cofactor specificity may be affected, and confirm this hypothesis using enzyme assays. Biochemical assays confirm a complete loss of NADH-dependent activity with concomitant acquisition of NADPH-dependent activity, which likely affects electron flow in the mutant. The simplicity of the genetic basis for the ethanol-tolerant phenotype observed here informs rational engineering of mutant microbial strains for cellulosic ethanol production.

  11. Improved resistance to transition metals of a cobalt-substituted alcohol dehydrogenase 1 from Saccharomyces cerevisiae.

    PubMed

    Cavaletto, M; Pessione, E; Vanni, A; Giunta, C

    2001-11-17

    Cobalt-substituted alcohol dehydrogenase 1 was purified from a yeast culture of Saccharomyces cerevisiae. Its reactivity towards different transition metals was tested and compared with the native zinc enzyme. The cobalt enzyme displayed a catalytic efficiency 100-fold higher than that of the zinc enzyme. Copper, nickel and cadmium exerted a mixed-type inhibition, with a scale of inhibition efficiency: Cu(2+)>Ni(2+)>Cd(2+). In general, a higher resistance of the modified protein to the inhibitory action of transition metals was observed, with two orders of magnitude for copper I(50). The presence of nickel in the complexes enzyme-coenzyme-inhibitor-substrate resulted in a decrease of the ampholytic nature of the catalytic site. On the contrary, cadmium and copper exerted an enhancement of this parameter. Electrostatic or other types of interactions may be involved in conferring a good resistance in the basic pH range, making cobalt enzyme very suitable for biotechnological processes.

  12. 2,2-dipyridyl binding to metal substituted horse liver alcohol dehydrogenase.

    PubMed

    Syvertsen, C; McKinley-McKee, J S

    1984-09-01

    The binding of 2,2-dipyridyl to metal substituted horse liver alcohol dehydrogenase was measured by spectrophotometric titrations. Large changes in the visible absorption spectra were seen for the Co2+, Cu2+ and Ni2+ hybrids upon coordination of 2,2-dipyridyl, due to a change in coordination number. The formation constants for binding to the Co2+ and Cd2+ hybrids are of the order 10(6) M-1, which means that these hybrids have a 500-fold higher affinity for 2,2-dipyridyl than the native Zn2+ enzyme. 2,2-dipyridyl has a 100-fold higher affinity for enzyme bound Cd2+ than for aqueous Cd2+ ions, while for Cu2+ and Zn2+ the opposite is the case. None of the substituted metal ions were removed from the active site during titration with the chelator 2,2-dipyridyl.

  13. Escherichia coli derivatives lacking both alcohol dehydrogenase and phosphotransacetylase grow anaerobically by lactate fermentation.

    PubMed Central

    Gupta, S; Clark, D P

    1989-01-01

    Escherichia coli mutants lacking alcohol dehydrogenase (adh mutants) cannot synthesize the fermentation product ethanol and are unable to grow anaerobically on glucose and other hexoses. Similarly, phosphotransacetylase-negative mutants (pta mutants) neither excrete acetate nor grow anaerobically. However, when a strain carrying an adh deletion was selected for anaerobic growth on glucose, spontaneous pta mutants were isolated. Strains carrying both adh and pta mutations were observed by in vivo nuclear magnetic resonance and shown to produce lactic acid as the major fermentation product. Various combinations of adh pta double mutants regained the ability to grow anaerobically on hexoses, by what amounts to a homolactic fermentation. Unlike wild-type strains, such adh pta double mutants were unable to grow anaerobically on sorbitol or on glucuronic acid. The growth properties of strains carrying various mutations affecting the enzymes of fermentation are discussed in terms of redox balance. PMID:2661531

  14. Escherichia coli derivatives lacking both alcohol dehydrogenase and phosphotransacetylase grow anaerobically by lactate fermentation.

    PubMed

    Gupta, S; Clark, D P

    1989-07-01

    Escherichia coli mutants lacking alcohol dehydrogenase (adh mutants) cannot synthesize the fermentation product ethanol and are unable to grow anaerobically on glucose and other hexoses. Similarly, phosphotransacetylase-negative mutants (pta mutants) neither excrete acetate nor grow anaerobically. However, when a strain carrying an adh deletion was selected for anaerobic growth on glucose, spontaneous pta mutants were isolated. Strains carrying both adh and pta mutations were observed by in vivo nuclear magnetic resonance and shown to produce lactic acid as the major fermentation product. Various combinations of adh pta double mutants regained the ability to grow anaerobically on hexoses, by what amounts to a homolactic fermentation. Unlike wild-type strains, such adh pta double mutants were unable to grow anaerobically on sorbitol or on glucuronic acid. The growth properties of strains carrying various mutations affecting the enzymes of fermentation are discussed in terms of redox balance.

  15. Escherichia coli derivatives lacking both alcohol dehydrogenase and phosphotransacetylase grow anaerobically by lactate fermentation

    SciTech Connect

    Gupta, S.; Clark, D.P. )

    1989-07-01

    Escherichia coli mutants lacking alcohol dehydrogenase (adh mutants) cannot synthesize the fermentation product ethanol and are unable to grow anaerobically on glucose and other hexoses. Similarly, phosphotransacetylase-negative mutants (pta mutants) neither excrete acetate nor grow anaerobically. However, when a strain carrying an adh deletion was selected for anaerobic growth on glucose, spontaneous pta mutants were isolated. Strains carrying both adh and pta mutations were observed by in vivo nuclear magnetic resonance and shown to produce lactic acid as the major fermentation product. Various combinations of adh pta double mutants regained the ability to grow anaerobically on hexoses, by what amounts to a homolactic fermentation. Unlike wild-type strains, such adh pta double mutants were unable to grow anaerobically on sorbitol or on glucuronic acid. The growth properties of strains carrying various mutations affecting the enzymes of fermentation are discussed terms of redox balance.

  16. Correct developmental expression of a cloned alcohol dehydrogenase gene transduced into the Drosophila germ line.

    PubMed

    Goldberg, D A; Posakony, J W; Maniatis, T

    1983-08-01

    We have used P-element-mediated transformation to introduce a cloned Drosophila alcohol dehydrogenase (Adh) gene into the germ line of ADH null flies. Six independent transformants expressing ADH were identified by their acquired resistance to ethanol. Each transformant carries a single copy of the cloned Adh gene in a different chromosomal location. Four of the six transformant lines exhibit normal Adh expression by the following criteria: quantitative levels of ADH enzyme activity in larvae and adults; qualitative tissue specificity; the size of stable Adh mRNA; and the characteristic developmental switch in utilization of two different Adh promoters. The remaining two transformants express ADH enzyme activity with the correct tissue specificity, but at a lower level than wild type. These results demonstrate that an 11.8 kb chromosomal fragment containing the Adh gene includes the cis-acting sequences necessary for its correct developmental expression, and that a variety of chromosomal sites permit proper Adh gene function.

  17. Readily available sulfamide-amine alcohols for enantioselective phenylacetylene addition to aldehydes in the absence of Ti(O(i)Pr)4.

    PubMed

    Mao, Jincheng; Wan, Boshun; Wu, Fan; Lu, Shiwei

    2005-05-15

    Ephedrine-derived sulfamide-amine alcohol 3 was found to be an effective catalyst for the asymmetric phenylacetylene addition to aldehydes at room temperature without using Ti(O(i)Pr)4 and Zn(OTf)2. It afforded the propargylic alcohols in high yields (up to 99%) and good enantioselectivities (up to 84% ee), which were much higher than that based on N-methylephedrine under the same reaction conditions. Its weakly coordinative sulfonamide moiety of the ligand plays an important role for further acceleration and stereocontrol in the alkynylation.

  18. Characteristics of alcohol dehydrogenases of certain aerobic bacteria representing human colonic flora.

    PubMed

    Nosova, T; Jousimies-Somer, H; Kaihovaara, P; Jokelainen, K; Heine, R; Salaspuro, M

    1997-05-01

    We have recently proposed the existence of a bacteriocolonic pathway for ethanol oxidation [i.e., ethanol is oxidized by alcohol dehydrogenases (ADHs) of intestinal bacteria resulting in high intracolonic levels of reactive and toxic acetaldehyde]. The aim of this in vitro study was to characterize further ADH activity of some aerobic bacteria, representing the normal human colonic flora. These bacteria were earlier shown to possess high cytosolic ADH activities (Escherichia coli IH 133369, Klebsiella pneumoniae IH 35385, Klebsiella oxytoca IH 35339, Pseudomonas aeruginosa IH 35342, and Hafnia alvei IH 53227). ADHs of the tested bacteria strongly preferred NAD as a cofactor. Marked ADH activities were found in all bacteria, even at low ethanol concentrations (1.5 mM) that may occur in the colon due to bacterial fermentation. The Km for ethanol varied from 29.9 mM for K. pneumoniae to 0.06 mM for Hafnia alvei. The inhibition of ADH by 4-methylpyrazole was found to be of the competitive type in 4 of 5 bacteria, and Ki varied from 18.26 +/- 3.3 mM for Escherichia coli to 0.47 +/- 0.13 mM for K. pneumoniae. At pH 7.4, ADH activity was significantly lower than at pH 9.6 in four bacterial strains. ADH of K. oxytoca, however, showed almost equal activities at neutral pH and at 9.6. In conclusion, NAD-linked alcohol dehydrogenases of aerobic colonic bacteria possess low apparent Km's for ethanol. Accordingly, they may oxidize moderate amounts of ethanol ingested during social drinking with nearly maximal velocity. This may result in the marked production of intracolonic acetaldehyde. Kinetic characteristics of the bacterial enzymes may enable some of them to produce acetaldehyde even from endogenous ethanol formed by other bacteria via alcoholic fermentation. The microbial ADHs were inhibited by 4-methylpyrazole by the same competitive inhibition as hepatic ADH, however, with nearly 1000 times lower susceptibility. Individual variations in human colonic flora may thus

  19. Comparison of three classes of human liver alcohol dehydrogenase. Emphasis on different substrate binding pockets.

    PubMed

    Eklund, H; Müller-Wille, P; Horjales, E; Futer, O; Holmquist, B; Vallee, B L; Höög, J O; Kaiser, R; Jörnvall, H

    1990-10-24

    Conformational models of the three characterized classes of mammalian liver alcohol dehydrogenase were constructed using computer graphics based on the known three-dimensional structure of the E subunit of the horse enzyme (class I) and the primary structures of the three human enzyme classes. This correlates the substrate-binding pockets of the class I subunits (alpha, beta and gamma in the human enzyme) with those of the class II and III subunits (pi and chi, respectively) for three enzymes that differ in substrate specificity, inhibition pattern and many other properties. The substrate-binding sites exhibit pronounced differences in both shape and properties. Comparing human class I subunits with those of class II and III subunits there are no less than 8 and 10 replacements, respectively, out of 11 residues in the substrate pocket, while in the human class I isozyme variants, only 1-3 of these 11 positions differ. A single residue, Val294, is conserved throughout. The liver alcohol dehydrogenases, with different substrate-specificity pockets, resemble the patterns of other enzyme families such as the pancreatic serine proteases. The inner part of the substrate cleft in the class II and III enzymes is smaller than in the horse class I enzyme, because both Ser48 and Phe93 are replaced by larger residues, Thr and Tyr, respectively. In class II, the residues in the substrate pocket are larger in about half of the positions. It is rich in aromatic residues, four Phe and one Tyr, making the substrate site distinctly smaller than in the class I subunits. In class III, the inner part of the substrate cleft is narrow but the outer part considerably wider and more polar than in the class I and II enzymes. In addition, Ser (or Thr) and Tyr in class II and III instead of His51 may influence proton abstraction/donation at the active site.

  20. Relationships between resistance to cross-linking agents and glutathione metabolism, aldehyde dehydrogenase isozymes and adenovirus replication in human tumour cell lines.

    PubMed

    Parsons, P G; Lean, J; Kable, E P; Favier, D; Khoo, S K; Hurst, T; Holmes, R S; Bellet, A J

    1990-12-15

    In a panel of 10 human tumour cell lines with no prior exposure to drugs in vitro, resistance to cisplatin correlated with resistance to the nitrogen mustard derivatives Asta Z-7557 (mafosfamide, an activated form of cyclophosphamide), melphalan and chlorambucil. Simultaneous treatment with DL-buthionine-S,R-sulfoximine did not enhance the toxicity of cisplatin or Asta Z-7557, and no correlation was found between drug resistance and cellular levels of metallothioneins (as judged by sensitivity to cadmium chloride), glutathione (GSH), GSH reductase, GSH transferase, or gamma-glutamyltranspeptidase. The two cell lines most resistant to Asta Z-7557 expressed aldehyde dehydrogenase cytosolic isozyme 1, found also in normal ovary, but not isozyme 3. Treatment of resistant cells with cisplatin or Asta Z-7557 inhibited cellular DNA synthesis and replication of adenovirus 5 to a lesser extent than in sensitive cells. The virus could be directly inactivated by both drugs prior to infection, subsequent replication being inhibited to the same extent in sensitive and resistant cells. In contrast to Asta Z-7557 and other DNA damaging agents, cisplatin was much more toxic to adenovirus (D37 0.022-0.048 microM) than to cells (D37 0.25-2.5 microM). The adenovirus 5 mutant Ad5ts125 having a G----A substitution was even more sensitive to cisplatin (D37 7-8 nM) than wild type virus and another mutant. Cisplatin was detoxified less by sonicated resistant resistant cells than sensitive cells, as judged by inactivation of Ad5ts125 added to the reaction mixture. It can be inferred that (i) the major differences in cellular resistance to cisplatin and Asta Z-7557 in the present material did not involve enhanced DNA repair or protection by metallothioneins or GSH, but were associated with the ability to continue cellular and viral DNA synthesis during treatment, (ii) resistance was not associated with less template damage, and (iii) the adenovirus genome may be a suitable probe for

  1. The effect of peroxynitrite decomposition catalyst MnTBAP on aldehyde dehydrogenase-2 nitration by organic nitrates: role in nitrate tolerance.

    PubMed

    Mollace, Vincenzo; Muscoli, Carolina; Dagostino, Concetta; Giancotti, Luigino Antonio; Gliozzi, Micaela; Sacco, Iolanda; Visalli, Valeria; Gratteri, Santo; Palma, Ernesto; Malara, Natalia; Musolino, Vincenzo; Carresi, Cristina; Muscoli, Saverio; Vitale, Cristiana; Salvemini, Daniela; Romeo, Francesco

    2014-11-01

    Bioconversion of glyceryl trinitrate (GTN) into nitric oxide (NO) by aldehyde dehydrogenase-2 (ALDH-2) is a crucial mechanism which drives vasodilatory and antiplatelet effect of organic nitrates in vitro and in vivo. Oxidative stress generated by overproduction of free radical species, mostly superoxide anions and NO-derived peroxynitrite, has been suggested to play a pivotal role in the development of nitrate tolerance, though the mechanism still remains unclear. Here we studied the free radical-dependent impairment of ALDH-2 in platelets as well as vascular tissues undergoing organic nitrate ester tolerance and potential benefit when using the selective peroxynitrite decomposition catalyst Mn(III) tetrakis (4-Benzoic acid) porphyrin (MnTBAP). Washed human platelets were made tolerant to nitrates via incubation with GTN for 4h. This was expressed by attenuation of platelet aggregation induced by thrombin (40U/mL), an effect accompanied by GTN-related induction of cGMP levels in platelets undergoing thrombin-induced aggregation. Both effects were associated to attenuated GTN-induced nitrite formation in platelets supernatants and to prominent nitration of ALDH-2, the GTN to NO metabolizing enzyme, suggesting that GTN tolerance was associated to reduced NO formation via impairment of ALDH-2. These effects were all antagonized by co-incubation of platelets with MnTBAP, which restored GTN-induced responses in tolerant platelets. Comparable effect was found under in in vivo settings. Indeed, MnTBAP (10mg/kg, i.p.) significantly restored the hypotensive effect of bolus injection of GTN in rats made tolerants to organic nitrates via chronic administration of isosorbide-5-mononitrate (IS-5-MN), thus confirming the role of peroxynitrite overproduction in the development of tolerance to vascular responses induced by organic nitrates. In conclusion, oxidative stress subsequent to prolonged use of organic nitrates, which occurs via nitration of ALDH-2, represents a key event

  2. Isolation of Alcohol Dehydrogenase cDNA and Basal Regulatory Region from Metroxylon sagu

    PubMed Central

    Wee, Ching Ching; Roslan, Hairul Azman

    2012-01-01

    Alcohol dehydrogenase (Adh) is a versatile enzyme involved in many biochemical pathways in plants such as in germination and stress tolerance. Sago palm is plant with much importance to the state of Sarawak as one of the most important crops that bring revenue with the advantage of being able to withstand various biotic and abiotic stresses such as heat, pathogens, and water logging. Here we report the isolation of sago palm Adh cDNA and its putative promoter region via the use of rapid amplification of cDNA ends (RACE) and genomic walking. The isolated cDNA was characterized and determined to be 1464 bp long encoding for 380 amino acids. BLAST analysis showed that the Adh is similar to the Adh1 group with 91% and 85% homology with Elaeis guineensis and Washingtonia robusta, respectively. The putative basal msAdh1 regulatory region was further determined to contain promoter signals of TATA and AGGA boxes and predicted amino acids analyses showed several Adh-specific motifs such as the two zinc-binding domains that bind to the adenosine ribose of the coenzyme and binding to alcohol substrate. A phylogenetic tree was also constructed using the predicted amino acid showed clear separation of Adh from bacteria and clustered within the plant Adh group. PMID:27335670

  3. Purification and characterization of a novel alcohol dehydrogenase from Leifsonia sp. strain S749: a promising biocatalyst for an asymmetric hydrogen transfer bioreduction.

    PubMed

    Inoue, Kousuke; Makino, Yoshihide; Itoh, Nobuya

    2005-07-01

    To find microorganisms that could reduce phenyl trifluoromethyl ketone (PTK) to (S)-1-phenyltrifluoroethanol [(S)-PTE], styrene-assimilating bacteria (ca. 900 strains) isolated from soil samples were screened. We found that Leifsonia sp. strain S749 was the most suitable strain for the conversion of PTK to (S)-PTE in the presence of 2-propanol as a hydrogen donor. The enzyme corresponding to the reaction was purified homogeneity, characterized and designated Leifsonia alcohol dehydrogenase (LSADH). The purified enzyme had a molecular weight of 110,000 and was composed of four identical subunits (molecular weight, 26,000). LSADH required NADH as a cofactor, showed little activity with NADPH, and reduced a wide variety of aldehydes and ketones. LSADH catalyzed the enantioselective reduction of some ketones with high enantiomeric excesses (e.e.): PTK to (S)-PTE (>99% e.e.), acetophenone to (R)-1-phenylethanol (99% e.e.), and 2-heptanone to (R)-2-heptanol (>99% e.e.) in the presence of 2-propanol without an additional NADH regeneration system. Therefore, it would be a useful biocatalyst.

  4. Alcohol Dehydrogenase and Pyruvate Decarboxylase Activity in Leaves and Roots of Eastern Cottonwood (Populus deltoides Bartr.) and Soybean (Glycine max L.) 1

    PubMed Central

    Kimmerer, Thomas W.

    1987-01-01

    Pyruvate decarboxylase (PDC, EC 4.1.1.1) and alcohol dehydrogenase (ADH, EC 1.1.1.1) are responsible for the anaerobic production of acetaldehyde and ethanol in higher plants. In developing soybean embryos, ADH activity increased upon imbibition and then declined exponentially with development, and was undetectable in leaves by 30 days after imbibition. PDC was not detectable in soybean leaves. In contrast, ADH activity remained high in developing cottonwood seedlings, with no decline in activity during development. ADH activity in the first fully expanded leaf of cottonwood was 230 micromoles NADH oxidized per minute per gram dry weight, and increased with leaf age. Maximal PDC activity of cottonwood leaves was 10 micromoles NADH oxidized per minute per gram dry weight. ADH activity in cottonwood roots was induced by anaerobic stress, increasing from 58 to 205 micromoles NADH oxidized per minute per gram dry weight in intact plants in 48 hours, and from 38 to 246 micromoles NADH oxidized per minute per gram dry weight in detached roots in 48 hours. Leaf ADH activity increased by 10 to 20% on exposure to anaerobic conditions. Crude leaf enzyme extracts with high ADH activity reduced little or no NADH when other aldehydes, such as trans-2-hexenal, were provided as substrate. ADH and PDC are constitutive enzyme in cottonwood leaves, but their metabolic role is not known. PMID:16665586

  5. In vitro expression of Candida albicans alcohol dehydrogenase genes involved in acetaldehyde metabolism.

    PubMed

    Bakri, M M; Rich, A M; Cannon, R D; Holmes, A R

    2015-02-01

    Alcohol consumption is a risk factor for oral cancer, possibly via its conversion to acetaldehyde, a known carcinogen. The oral commensal yeast Candida albicans may be one of the agents responsible for this conversion intra-orally. The alcohol dehydrogenase (Adh) family of enzymes are involved in acetaldehyde metabolism in yeast but, for C. albicans it is not known which family member is responsible for the conversion of ethanol to acetaldehyde. In this study we determined the expression of mRNAs from three C. albicans Adh genes (CaADH1, CaADH2 and CaCDH3) for cells grown in different culture media at different growth phases by Northern blot analysis and quantitative reverse transcription polymerase chain reaction. CaADH1 was constitutively expressed under all growth conditions but there was differential expression of CaADH2. CaADH3 expression was not detected. To investigate whether CaAdh1p or CaAdh2p can contribute to alcohol catabolism in C. albicans, each gene from the reference strain C. albicans SC5314 was expressed in Saccharomyces cerevisiae. Cell extracts from an CaAdh1p-expressing S. cerevisiae recombinant, but not an CaAdh2p-expressing recombinant, or an empty vector control strain, possessed ethanol-utilizing Adh activity above endogenous S. cerevisiae activity. Furthermore, expression of C. albicans Adh1p in a recombinant S. cerevisiae strain in which the endogenous ScADH2 gene (known to convert ethanol to acetaldehyde in this yeast) had been deleted, conferred an NAD-dependent ethanol-utilizing, and so acetaldehyde-producing, Adh activity. We conclude that CaAdh1p is the enzyme responsible for ethanol use under in vitro growth conditions, and may contribute to the intra-oral production of acetaldehyde.

  6. Structural and biochemical studies of alcohol dehydrogenase isozymes from Kluyveromyces lactis.

    PubMed

    Bozzi, A; Saliola, M; Falcone, C; Bossa, F; Martini, F

    1997-04-25

    The cytosolic and mitochondrial alcohol dehydrogenases from Kluyveromyces lactis (KlADHs) were purified and characterised. Both the N-terminally blocked cytosolic isozymes, KlADH I and KlADH II, were strictly NAD-dependent and exhibited catalytic properties similar to those previously reported for other yeast ADHs. Conversely, the mitochondrial isozymes, KlADH III and KlADH IV, displayed Ala and Asn, respectively, as N-termini and were able to oxidise at an increased rate primary alcohols with aliphatic chains longer than ethanol, such as propanol, butanol, pentanol and hexanol. Interestingly, the mitochondrial KlADHs, at variance with cytosolic isozymes and the majority of ADHs from other sources, were capable of accepting as a cofactor, and in some case almost equally well, either NAD or NADP. Since Asp-223 of horse liver ADH, thought to be responsible for the selection of NAD as coenzyme, is strictly conserved in all the KlADH isozymes, this amino-acid residue should not be considered critical for the coenzyme discrimination with respect to the other residues lining the coenzyme binding pocket of the mitochondrial isozymes. The relatively low specificity of the mitochondrial KlADHs both toward the alcohols and the cofactor could be explained on the basis of an enhanced flexibility of the corresponding catalytic pockets. An involvement of the mitochondrial KlADH isozymes in the physiological reoxidation of the cytosolic NADPH was also hypothesized. Moreover, both cytosolic and KlADH IV isozymes have an additional cysteine, not involved in zinc binding, that could be responsible for the increased activity in the presence of 2-mercaptoethanol.

  7. Aerobic and anaerobic metabolism in oxygen minimum layer fishes: the role of alcohol dehydrogenase.

    PubMed

    Torres, Joseph J; Grigsby, Michelle D; Clarke, M Elizabeth

    2012-06-01

    Zones of minimum oxygen form at intermediate depth in all the world's oceans as a result of global circulation patterns that keep the water at oceanic mid-depths out of contact with the atmosphere for hundreds of years. In areas where primary production is very high, the microbial oxidation of sinking organic matter results in very low oxygen concentrations at mid-depths. Such is the case with the Arabian Sea, with O(2) concentrations reaching zero at 200 m and remaining very low (<0.1 ml O(2)l(-1)) for hundreds of meters below this depth, and in the California borderland, where oxygen levels reach 0.2 ml O(2)l(-1) at 700 m with severely hypoxic (<1.0 ml O(2)l(-1)) waters at depths 300 m above and below that. Despite the very low oxygen, mesopelagic fishes (primarily lanternfishes: Mytophidae) inhabiting the Arabian Sea and California borderland perform a daily vertical migration into the low-oxygen layer, spending daylight hours in the oxygen minimum zone and migrating upward into normoxic waters at night. To find out how fishes were able to survive their daily sojourns into the minimum zone, we tested the activity of four enzymes, one (lactate dehydrogenase, LDH) that served as a proxy for anaerobic glycolysis with a conventional lactate endpoint, a second (citrate synthase, CS) that is indicative of aerobic metabolism, a third (malate dehydrogenase) that functions in the Krebs' cycle and as a bridge linking mitochondrion and cytosol, and a fourth (alcohol dehydrogenase, ADH) that catalyzes the final reaction in a pathway where pyruvate is reduced to ethanol. Ethanol is a metabolic product easily excreted by fish, preventing lactate accumulation. The ADH pathway is rarely very active in vertebrate muscle; activity has previously been seen only in goldfish and other cyprinids capable of prolonged anaerobiosis. Activity of the enzyme suite in Arabian Sea and California fishes was compared with that of ecological analogs in the same family and with the same

  8. NAD-dependent aromatic alcohol dehydrogenase in wheats (Triticum L.) and goatgrasses (Aegilops L.): evolutionary genetics.

    PubMed

    Jaaska, V

    1984-04-01

    Evolutionary electrophoretic variation of a NAD-specific aromatic alcohol dehydrogenase, AADH-E, in wheat and goatgrass species is described and discussed in comparison with a NAD-specific alcohol dehydrogenase (ADH-A) and a NADP-dependent AADH-B studied previously. Cultivated tetraploid emmer wheats (T. turgidum s. l.) and hexaploid bread wheats (T. aestivum s. l.) are all fixed for a heterozygous triplet, E(0.58)/E(0.64). The slowest isoenzyme, E(0.58), is controlled by a homoeoallelic gene on the chromosome arm 6AL of T. aestivum cv. 'Chinese Spring' and is inherent in all diploid wheats, T. monococcum s. Str., T. boeoticum s. l. and T. urartu. The fastest isoenzyme, E(0.64), is presumably controlled by the B- and D-genome homoeoalleles of the bread wheat and is the commonest alloenzyme of diploid goat-grasses, including Ae. speltaides and Ae. tauschii. The tetraploid T. timopheevii s. str. has a particular heterozygous triplet E(0.56)/E(0.71), whereas the hexaploid T. zhukovskyi exhibited polymorphism with electromorphs characteristic of T. timopheevii and T. monococcum. Wild tetraploid wheats, T. dicoccoides and T. araraticum, showed partially homologous intraspecific variation of AADH-E with heterozygous triplets E(0.58)/E(0.64) (the commonest), E(0.58)/E(0.71), E(0.45)/E(0.58), E(0.48)/E(0.58) and E(0.56)/E(0.58) recorded. Polyploid goatgrasses of the D-genome group, excepting Ae. cylindrica, are fixed for the common triplet E(0.58)/E(0.64). Ae. cylindrica and polyploid goatgrasses of the C(u)-genome group, excepting Ae. kotschyi, are homozygous for E(0.64). Ae. kotschyi is exceptional, showing fixed heterozygosity for both AADH-E and ADH-A with unique triplets E(0.56)/E(0.64) and A(0.49)/A(0.56).

  9. Acyclovir-induced nephrotoxicity: the role of the acyclovir aldehyde metabolite.

    PubMed

    Gunness, Patrina; Aleksa, Katarina; Bend, John; Koren, Gideon

    2011-11-01

    For decades, acyclovir-induced nephrotoxicity was believed to be secondary to crystalluria. Clinical evidence of nephrotoxicity in the absence of crystalluria suggests that acyclovir induces direct insult to renal tubular cells. We postulated that acyclovir is metabolized by the alcohol dehydrogenase (ADH) enzyme to acyclovir aldehyde, which is metabolized by the aldehyde dehydrognase 2 (ALDH2) enzyme to 9-carboxymethoxymethylguanine (CMMG). We hypothesized that acyclovir aldehyde plays a role in acyclovir-induced nephrotoxicity. Human renal proximal tubular (HK-2) cells were used as our in vitro model. Western blot and enzymes activities assays were performed to determine whether the HK-2 cells express ADH and ALDH2 isozymes, respectively. Cytotoxicity (measured as a function of cell viability) assays were conducted to determine (1) whether the acyclovir aldehyde plays a role in acyclovir-induced nephrotoxicity and (2) whether CMMG induces cell death. A colorimetric assay was performed to determine whether acyclovir was metabolized to an aldehyde in vitro. Our results illustrated that (1) HK-2 cells express ADH and ALDH2 isozymes, (2) 4-methylpyrazole rendered significant protection against cell death, (3) CMMG does not induce cell death, and (4) acyclovir was metabolized to an aldehyde in tubular cells. These data indicate that acyclovir aldehyde is produced in HK-2 cells and that inhibition of its production by 4-methylpyrazole offers significant protection from cell death in vitro, suggesting that acyclovir aldehyde may cause the direct renal tubular insult associated with acyclovir.

  10. A distinct type of alcohol dehydrogenase, adh4+, complements ethanol fermentation in an adh1-deficient strain of Schizosaccharomyces pombe.

    PubMed

    Sakurai, Masao; Tohda, Hideki; Kumagai, Hiromichi; Giga-Hama, Yuko

    2004-03-01

    In the fission yeast Schizosaccharomyces pombe, only one alcohol dehydrogenase gene, adh1(+), has been identified. To elucidate the influence of adh1(+) on ethanol fermentation, we constructed the adh1 null strain (delta adh1). The delta adh1 cells still produced ethanol and grew fermentatively as the wild-type cells. Both DNA microarray and RT-PCR analysis demonstrated that this ethanol production is caused by the enhanced expression of a Saccharomyces cerevisiae ADH4-like gene product (SPAC5H10.06C named adh4(+)). Since the strain lacking both adh1 and adh4 genes (delta adh1 delta adh4) showed non-fermentative retarded growth, only these two ADHs produce ethanol for fermentative growth. This is the first observation that a S. cerevisiae ADH4-like alcohol dehydrogenase functions in yeast ethanol fermentation.

  11. Involvement of AMPK in Alcohol Dehydrogenase Accentuated Myocardial Dysfunction Following Acute Ethanol Challenge in Mice

    PubMed Central

    Guo, Rui; Scott, Glenda I.; Ren, Jun

    2010-01-01

    Objectives Binge alcohol drinking often triggers myocardial contractile dysfunction although the underlying mechanism is not fully clear. This study was designed to examine the impact of cardiac-specific overexpression of alcohol dehydrogenase (ADH) on ethanol-induced change in cardiac contractile function, intracellular Ca2+ homeostasis, insulin and AMP-dependent kinase (AMPK) signaling. Methods ADH transgenic and wild-type FVB mice were acutely challenged with ethanol (3 g/kg/d, i.p.) for 3 days. Oral glucose tolerance test, cardiac AMP/ATP levels, cardiac contractile function, intracellular Ca2+ handling and AMPK signaling (including ACC and LKB1) were examined. Results Ethanol exposure led to glucose intolerance, elevated plasma insulin, compromised cardiac contractile and intracellular Ca2+ properties, downregulated protein phosphatase PP2A subunit and PPAR-γ, as well as phosphorylation of AMPK, ACC and LKB1, all of which except plasma insulin were overtly accentuated by ADH transgene. Interestingly, myocardium from ethanol-treated FVB mice displayed enhanced expression of PP2Cα and PGC-1α, decreased insulin receptor expression as well as unchanged expression of Glut4, the response of which was unaffected by ADH. Cardiac AMP-to-ATP ratio was significantly enhanced by ethanol exposure with a more pronounced increase in ADH mice. In addition, the AMPK inhibitor compound C (10 µM) abrogated acute ethanol exposure-elicited cardiomyocyte mechanical dysfunction. Conclusions In summary, these data suggest that the ADH transgene exacerbated acute ethanol toxicity-induced myocardial contractile dysfunction, intracellular Ca2+ mishandling and glucose intolerance, indicating a role of ADH in acute ethanol toxicity-induced cardiac dysfunction possibly related to altered cellular fuel AMPK signaling cascade. PMID:20585647

  12. Structural basis for substrate specificity differences of horse liver alcohol dehydrogenase isozymes.

    PubMed

    Adolph, H W; Zwart, P; Meijers, R; Hubatsch, I; Kiefer, M; Lamzin, V; Cedergren-Zeppezauer, E

    2000-10-24

    A structure determination in combination with a kinetic study of the steroid converting isozyme of horse liver alcohol dehydrogenase, SS-ADH, is presented. Kinetic parameters for the substrates, 5beta-androstane-3beta,17beta-ol, 5beta-androstane-17beta-ol-3-one, ethanol, and various secondary alcohols and the corresponding ketones are compared for the SS- and EE-isozymes which differ by nine amino acid substitutions and one deletion. Differences in substrate specificity and stereoselectivity are explained on the basis of individual kinetic rate constants for the underlying ordered bi-bi mechanism. SS-ADH was crystallized in complex with 3alpha,7alpha,12alpha-trihydroxy-5beta-cholan -24-acid (cholic acid) and NAD(+), but microspectrophotometric analysis of single crystals proved it to be a mixed complex containing 60-70% NAD(+) and 30-40% NADH. The crystals belong to the space group P2(1) with cell dimensions a = 55.0 A, b = 73.2 A, c = 92.5 A, and beta = 102.5 degrees. A 98% complete data set to 1.54-A resolution was collected at 100 K using synchrotron radiation. The structure was solved by the molecular replacement method utilizing EE-ADH as the search model. The major structural difference between the isozymes is a widening of the substrate channel. The largest shifts in C(alpha) carbon positions (about 5 A) are observed in the loop region, in which a deletion of Asp115 is found in the SS isozyme. SS-ADH easily accommodates cholic acid, whereas steroid substrates of similar bulkiness would not fit into the EE-ADH substrate site. In the ternary complex with NAD(+)/NADH, we find that the carboxyl group of cholic acid ligates to the active site zinc ion, which probably contributes to the strong binding in the ternary NAD(+) complex.

  13. Oxidation of Thiodiglycol (2,2’-Thiobis-ethanol) by Alcohol Dehydrogenase: Comparison of Human Isoenzymes

    DTIC Science & Technology

    2000-01-01

    3 . DATES COVERED (From - To) 4. TITLE AND SUBTITLE Oxidation of Thiodiglycol (2,2’-Thiobis-ethanol) by Alcohol Dehydrogenase: Comparison of Human...tion of protein (serine/threonine) phosphatases in tis- sue cytosol by sulfur mustard in vitro [ 3 ]. These en- zymes have been implicated in the...mustard itself [ 3 ]. Unsuccessful attempts to rep- licate the inhibitory effect of TDG on purified prepa- rations of protein phosphatases 1 and 2A (A

  14. Nitric oxide inhibition of alcohol dehydrogenase in fresh-cut apples ( Malus domestica Borkh).

    PubMed

    Amissah, Joris Gerald Niilante; Hotchkiss, Joseph H; Watkins, Chris B

    2013-11-20

    The effects of nitric oxide (NO) and nitrite treatment on alcohol dehydrogenase activity and the shelf life of apple tissue were investigated. Fresh-cut apple slices were stored for 2 days at 6 °C in 0.25-1% NO (v/v, balance N2) or 100% N2 atmospheres. Slices were also treated with 1% NO or 2 mM sodium nitrite (NaNO2) for 20 min, stored for 6 weeks in 100% N2 at 6 °C, and analyzed for acetaldehyde, ethanol, and ethyl acetate accumulation, firmness, and color. Compared with N2 or deionized water controls, treatment with 1% NO or 2 mM NaNO2 inhibited ethanol accumulation, whereas that of acetaldehyde increased. Ethyl acetate accumulation was inhibited only by NO. Slice firmness was not affected by NO or NaNO2 treatment, but slices were darker than the untreated controls. NO and nitrite may extend the shelf life of fresh-cut produce with low concentrations of phenolic compounds.

  15. Coexpression of pyruvate decarboxylase and alcohol dehydrogenase genes in Lactobacillus brevis.

    PubMed

    Liu, Siqing; Dien, Bruce S; Nichols, Nancy N; Bischoff, Kenneth M; Hughes, Stephen R; Cotta, Michael A

    2007-09-01

    Lactobacillus brevis ATCC367 was engineered to express pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH) genes in order to increase ethanol fermentation from biomass-derived residues. First, a Gram-positive Sarcina ventriculi PDC gene (Svpdc) was introduced into L. brevis ATCC 367 to obtain L. brevis bbc03. The SvPDC was detected by immunoblot using an SvPDC oligo peptide antiserum, but no increased ethanol was detected in L. brevis bbc03. Then, an ADH gene from L. brevis (Bradh) was cloned behind the Svpdc gene that generated a pdc/adh-coupled ethanol cassette pBBC04. The pBBC04 restored anaerobic growth and conferred ethanol production of Escheirichia coli NZN111 (a fermentative defective strain incapable of growing anaerobically). Approximately 58 kDa (SvPDC) and 28 kDa (BrADH) recombinant proteins were observed in L. brevis bbc04. These results indicated that the Gram-positive ethanol production genes can be expressed in L. brevis using a Gram-positive promoter and pTRKH2 shuttle vector. This work provides evidence that expressing Gram-positive ethanol genes in pentose utilizing L. brevis will further aid manipulation of this microbe toward biomass to ethanol production.

  16. The Alcohol Dehydrogenase Gene Is Nested in the Outspread Locus of Drosophila Melanogaster

    PubMed Central

    McNabb, S.; Greig, S.; Davis, T.

    1996-01-01

    This report describes the structure and expression of the outspread (osp) gene of Drosophila melanogaster. Previous work showed that chromosomal breakpoints associated with mutations of the osp locus map to both sides of the alcohol dehydrogenase gene (Adh), suggesting that Adh and the adjacent gene Adh(r) are nested in osp. We extended a chromosomal walk and mapped additional osp mutations to define the maximum molecular limit of osp as 119 kb. We identified a 6-kb transcript that hybridizes to osp region DNA and is altered or absent in osp mutants. Accumulation of this RNA peaks during embryonic and pupal periods. The osp cDNAs comprise two distinct classes based on alternative splicing patterns. The 5' end of the longest cDNA was extended by PCR amplification. When hybridized to the osp walk, the 5' extension verifies that Adh and Adh(r) are nested in osp and shows that osp has a transcription unit of >=74 kb. In situ hybridization shows that osp is expressed both maternally and zygotically. In the ovary, osp is transcribed in nurse cells and localized in the oocyte. In embryos, expression is most abundant in the developing visceral and somatic musculature. PMID:8725237

  17. Enhanced Stability and Reusability of Alcohol Dehydrogenase Covalently Immobilized on Magnetic Graphene Oxide Nanocomposites.

    PubMed

    Liu, Liangliang; Yu, Jingang; Chen, Xiaoqing

    2015-02-01

    Graphene oxide (GO) has a unique planar structure and contains many functional groups. As a functional material, it can be functionalized with biomolecules and nanomaterials for various applications. In this study, Magnetic GO (MGO) nanocomposites were synthesized according to covalent binding of amino Fe3O4 nanoparticles onto the GO surface and the as-made nanocomposites were successfully applied as supports for the immobilization of alcohol dehydrogenase (ADH). Compared with free ADH and Fe3O4 nanoparticles immobilized ADH (MNP-ADH), the MGO immobilized ADH (MGO-ADH) exhibited a wider pH stability range and a better thermal stability. Furthermore, the MGO-ADH exhibited better storage stability and reusability than MNP-ADH after recovered by magnetic separations. The MGO-ADH maintained 35.1% activity after 20 days storage and lost about 20.4% activity after ten times usage. The Michaelis constant (Km) of MGO-ADH was close to that of free ADH. The results showed the MGO nanocomposites were appropriate for the immobilization of enzyme. As a novel support, MGO nanocomposites effectively increased the stability of enzyme, allowed the reuse or continuous use of enzymes and therefore improved the potential use in practical.

  18. The alcohol dehydrogenase gene is nested in the outspread locus of Drosophila melanogaster

    SciTech Connect

    McNabb, S.; Greig, S.; Davis, T.

    1996-06-01

    This report describes the structure and expression of the outspread (osp) gene of Drosophila melanogaster. Previous work showed that chromosomal breakpoints associated with mutations of the osp locus map to both sides of the alcohol dehydrogenase gene (Adh), suggesting that Adh and the adjacent gene Adh{sup r} are nested in osp. We extended a chromosomal walk and mapped additional osp mutations to define the maximum molecular limit of osp as 119 kb. We identified a 6-kb transcript that hybridizes to osp region DNA and is altered or absent in osp mutants. Accumulation of this RNA peaks during embryonic and pupal periods. The osp cDNAs comprise two distinct classes based on alternative splicing patterns. The 5{prime} end of the longest cDNA was extended by PCR amplification. When hybridized to the osp walk, the 5{prime} extension verifies that Adh and Adh{sup r} are nested in osp and shows that osp has a transcription unit of {ge}74 kb. In situ hybridization shows that osp is expressed both maternally and zygotically. In the ovary, osp is transcribed in nurse cells and localized in the oocyte. In embryos, expression is most abundant in the developing visceral and somatic musculature. 55 refs., 11 figs., 1 tab.

  19. Two mitochondrial alcohol dehydrogenase activities of Kluyveromyces lactis are differently expressed during respiration and fermentation.

    PubMed

    Saliola, M; Falcone, C

    1995-12-20

    The lactose-utilizing yeast Kluyveromyces lactis is an essentially aerobic organism in which both respiration and fermentation can coexist depending on the sugar concentration. Despite a low fermentative capacity as compared to Saccharomyces cerevisiae, four structural genes encoding alcohol dehydrogenase (ADH) activities are present in this yeast. Two of these activities, namely K1ADH III and K1ADH IV, are located within mitochondria and their presence is dependent on the carbon sources in the medium. In this paper we demonstrate by transcription and activity analysis that KlADH3 is expressed in the presence of low glucose concentrations and in the presence of respiratory carbon sources other than ethanol. Indeed ethanol acts as a strong repressor of this gene. On the other hand, KlADH4 is induced by the presence of ethanol and not by other respiratory carbon sources. We also demonstrate that the presence of KLADH III and KLADH IV in K. lactis cells is dependent on glucose concentration, glucose uptake and the amount of ethanol produced. As a consequence, these activities can be used as markers for the onset of respiratory and fermentative metabolism in this yeast.

  20. Thermal inactivation and conformational lock studies on horse liver alcohol dehydrogenase: structural mechanism.

    PubMed

    Moosavi-Movahedi, Faezeh; Saboury, Ali A; Alijanvand, H Hadi; Bohlooli, M; Salami, M; Moosavi-Movahedi, Ali A

    2013-07-01

    Horse liver alcohol dehydrogenase (HLADH) is a two subunits metal enzyme that has two catalytic sites and two coenzyme domains for each subunit. These subunits are connected together by coenzyme domains. In this study, we investigated the number and sequences of residues that participated in interface locks of HLADH. For this purpose, the kinetics of thermal inactivation of HLADH were studied in a 50 mM pyrophosphate buffer, pH 8.8, using ethanol as a substrate and NAD(+) as a cofactor. The temperature range was between 46°C and 55°C and the conformational lock was developed based on the Poltorak theory and analysis of the curves was done by the conformational lock method for oligomeric enzymes. The conformational lock number of HLADH was 2 when calculated experimentally. The results were confirmed by the Ligplot program computations. Using computational method it was shown that there are two patches binding sites at the interface and they spread over two regions of each chain. In this study we also proposed a thermal denaturation mechanism for HLADH by using different techniques such as UV-Vis fluorescence and circular dichroism (CD) spectroscopy and dynamic light scattering (DLS). The subunits are dissociated and several intermediates appeared during inactivation through increasing the temperature. DLS measurement was performed to study the changes in hydrodynamic radius during thermal inactivation. The three distinct zones that were shown by DLS were also confirmed by fluorescence and CD techniques.

  1. Arabidopsis alcohol dehydrogenase expression in both shoots and roots is conditioned by root growth environment

    NASA Technical Reports Server (NTRS)

    Chung, H. J.; Ferl, R. J.

    1999-01-01

    It is widely accepted that the Arabidopsis Adh (alcohol dehydrogenase) gene is constitutively expressed at low levels in the roots of young plants grown on agar media, and that the expression level is greatly induced by anoxic or hypoxic stresses. We questioned whether the agar medium itself created an anaerobic environment for the roots upon their growing into the gel. beta-Glucuronidase (GUS) expression driven by the Adh promoter was examined by growing transgenic Arabidopsis plants in different growing systems. Whereas roots grown on horizontal-positioned plates showed high Adh/GUS expression levels, roots from vertical-positioned plates had no Adh/GUS expression. Additional results indicate that growth on vertical plates closely mimics the Adh/GUS expression observed for soil-grown seedlings, and that growth on horizontal plates results in induction of high Adh/GUS expression that is consistent with hypoxic or anoxic conditions within the agar of the root zone. Adh/GUS expression in the shoot apex is also highly induced by root penetration of the agar medium. This induction of Adh/GUS in shoot apex and roots is due, at least in part, to mechanisms involving Ca2+ signal transduction.

  2. Ethanol at low concentrations protects glomerular podocytes through alcohol dehydrogenase and 20-HETE.

    PubMed

    McCarthy, Ellen T; Zhou, Jianping; Eckert, Ryan; Genochio, David; Sharma, Rishi; Oni, Olurinde; De, Alok; Srivastava, Tarak; Sharma, Ram; Savin, Virginia J; Sharma, Mukut

    2015-01-01

    Clinical studies suggest cardiovascular and renal benefits of ingesting small amounts of ethanol. Effects of ethanol, role of alcohol dehydrogenase (ADH) or of 20-hydroxyeicosatetraenoic acid (20-HETE) in podocytes of the glomerular filtration barrier have not been reported. We found that mouse podocytes at baseline generate 20-HETE and express ADH but not CYP2e1. Ethanol at high concentrations altered the actin cytoskeleton, induced CYP2e1, increased superoxide production and inhibited ADH gene expression. Ethanol at low concentrations upregulated the expression of ADH and CYP4a12a. 20-HETE, an arachidonic acid metabolite generated by CYP4a12a, blocked the ethanol-induced cytoskeletal derangement and superoxide generation. Ethanol at high concentration or ADH inhibitor increased glomerular albumin permeability in vitro. 20-HETE and its metabolite produced by ADH activity, 20-carboxy-arachidonic acid, protected the glomerular permeability barrier against an ADH inhibitor, puromycin or FSGS permeability factor. We conclude that ADH activity is required for glomerular function, 20-HETE is a physiological substrate of ADH in podocytes and that podocytes are useful biosensors to understand glomeruloprotective effects of ethanol.

  3. Computational optimization of AG18051 inhibitor for amyloid-beta binding alcohol dehydrogenase enzyme

    NASA Astrophysics Data System (ADS)

    Marques, Alexandra T.; Antunes, Agostinho; Fernandes, Pedro A.; Ramos, Maria J.

    Amyloid-beta (Abeta) binding alcohol dehydrogenase (ABAD) is a multifunctional enzyme involved in maintaining the homeostasis. The enzyme can also mediate some diseases, including genetic diseases, Alzheimer's disease, and possibly some prostate cancers. Potent inhibitors of ABAD might facilitate a better clarification of the functions of the enzyme under normal and pathogenic conditions and might also be used for therapeutic intervention in disease conditions mediated by the enzyme. The AG18051 is the only presently available inhibitor of ABAD. It binds in the active-site cavity of the enzyme and reacts with the NAD+ cofactor to form a covalent adduct. In this work, we use computational methods to perform a rational optimization of the AG18051 inhibitor, through the introduction of chemical substitutions directed to improve the affinity of the inhibitor to the enzyme. The molecular mechanics-Poisson-Boltzmann surface area methodology was used to predict the relative free binding energy of the different modified inhibitor-NAD-enzyme complexes. We show that it is possible to increase significantly the affinity of the inhibitor to the enzyme with small modifications, without changing the overall structure and ADME (absorption, distribution, metabolism, and excretion) properties of the original inhibitor.

  4. Molecular control of the induction of alcohol dehydrogenase by ethanol in Drosophila melanogaster larvae

    SciTech Connect

    Kapoun, A.M.; Geer, B.W.; Heinstra, P.W.H. ); Corbin, V. ); McKechnie, S.W. )

    1990-04-01

    The activity of alcohol dehydrogenase, the initial enzyme in the major pathway for ethanol degradation, is induced in Drosophila melanogaster larvae by low concentrations of dietary ethanol. Two lines of evidence indicate that the metabolic products of the ADH pathway for ethanol degradation are not directly involved in the induction of Adh. First, the accumulation of the proximal transcript in Adh{sup n2} larvae was increased when the intracellular level of ethanol was elevated. In addition, the ADH activity, the proximal Adh mRNA, and the intracellular concentration of ethanol were elevated coordinately in wild-type larvae fed hexadeuterated-ethanol, which is metabolized more slowly than normal ethanol.l An examination of P element transformant lines with specific deletions in the 5{prime} regulatory DNA of the Adh gene showed that the DNA sequence between +604 and +634 of the start site of transcription from the distal promoter was essential for this induction. The DNA sequence between {minus}660 and about {minus}5,000 of the distal transcript start site was important for the down-regulation of the induction response.

  5. Intramolecular electron transport in quinoprotein alcohol dehydrogenase of Acetobacter methanolicus: a redox-titration study

    PubMed

    Frébortova; Matsushita; Arata; Adachi

    1998-01-27

    Quinohemoprotein-cytochrome c complex alcohol dehydrogenase (ADH) of acetic acid bacteria consists of three subunits, of which subunit I contains pyrroloquinoline quinone (PQQ) and heme c, and subunit II contains three heme c components. The PQQ and heme c components are believed to be involved in the intramolecular electron transfer from ethanol to ubiquinone. To study the intramolecular electron transfer in ADH of Acetobacter methanolicus, the redox potentials of heme c components were determined with ADH complex and the isolated subunits I and II of A. methanolicus, as well as hybrid ADH consisting of the subunit I/III complex of Gluconobacter suboxydans ADH and subunit II of A. methanolicus ADH. The redox potentials of hemes c in ADH complex were -130, 49, 188, and 188 mV at pH 7.0 and 24, 187, 190, and 255 mV at pH 4.5. In hybrid ADH, one of these heme c components was largely changed in the redox potential. Reduced ADH was fully oxidized with potassium ferricyanide, while ubiquinone oxidized the enzyme partially. The results indicate that electrons extracted from ethanol at PQQ site are transferred to ubiquinone via heme c in subunit I and two of the three hemes c in subunit II. Copyright 1998 Elsevier Science B.V.

  6. Origin of the human alcohol dehydrogenase system: implications from the structure and properties of the octopus protein.

    PubMed

    Kaiser, R; Fernández, M R; Parés, X; Jörnvall, H

    1993-12-01

    In contrast to the multiplicity of alcohol dehydrogenase in vertebrates, a class III type of the enzyme [i.e., a glutathione-dependent formaldehyde dehydrogenase; formaldehyde; NAD+ oxidoreductase (glutathione-formylating), EC 1.2.1.1.] is the only form detectable in appreciable yield in octopus. It is enzymatically and structurally highly similar to the human class III enzyme, with limited overall residue differences (26%) and only a few conservative residue exchanges at the substrate and coenzyme pockets, reflecting "constant" characteristics of this class over wide time periods. It is distinct from the ethanol-active "variable" class I type of the enzyme (i.e., classical liver alcohol dehydrogenase; alcohol:NAD+ oxidoreductase, EC 1.1.1.1). The residue conservation of class III is also spaced differently from that of class I but is typical of that of proteins in general, emphasizing that class I, with divergence at three functional segments, is the form with deviating properties. In spite of the conservation in class III, surface charges differ considerably. The apparent absence of a class I enzyme in octopus and the constant nature of the class III enzyme support the concept of a duplicative origin of the class I line from the ancient class III form. Still more distant relationships define further enzyme lines that have subunits with other properties.

  7. Biochemical characterization of a bifunctional acetaldehyde-alcohol dehydrogenase purified from a facultative anaerobic bacterium Citrobacter sp. S-77.

    PubMed

    Tsuji, Kohsei; Yoon, Ki-Seok; Ogo, Seiji

    2016-03-01

    Acetaldehyde-alcohol dehydrogenase (ADHE) is a bifunctional enzyme consisting of two domains of an N-terminal acetaldehyde dehydrogenase (ALDH) and a C-terminal alcohol dehydrogenase (ADH). The enzyme is known to be important in the cellular alcohol metabolism. However, the role of coenzyme A-acylating ADHE responsible for ethanol production from acetyl-CoA remains uncertain. Here, we present the purification and biochemical characterization of an ADHE from Citrobacter sp. S-77 (ADHE(S77)). Interestingly, the ADHE(S77) was unable to be solubilized from membrane with detergents either 1% Triton X-100 or 1% Sulfobetaine 3-12. However, the enzyme was easily dissociated from membrane by high-salt buffers containing either 1.0 M NaCl or (NH(4))(2)SO(4) without detergents. The molecular weight of a native protein was estimated as approximately 400 kDa, consisting of four identical subunits of 96.3 kDa. Based on the specific activity and kinetic analysis, the ADHES77 tended to have catalytic reaction towards acetaldehyde elimination rather than acetaldehyde formation. Our experimental observation suggests that the ADHES77 may play a pivotal role in modulating intracellular acetaldehyde concentration.

  8. Origin of the human alcohol dehydrogenase system: implications from the structure and properties of the octopus protein.

    PubMed Central

    Kaiser, R; Fernández, M R; Parés, X; Jörnvall, H

    1993-01-01

    In contrast to the multiplicity of alcohol dehydrogenase in vertebrates, a class III type of the enzyme [i.e., a glutathione-dependent formaldehyde dehydrogenase; formaldehyde; NAD+ oxidoreductase (glutathione-formylating), EC 1.2.1.1.] is the only form detectable in appreciable yield in octopus. It is enzymatically and structurally highly similar to the human class III enzyme, with limited overall residue differences (26%) and only a few conservative residue exchanges at the substrate and coenzyme pockets, reflecting "constant" characteristics of this class over wide time periods. It is distinct from the ethanol-active "variable" class I type of the enzyme (i.e., classical liver alcohol dehydrogenase; alcohol:NAD+ oxidoreductase, EC 1.1.1.1). The residue conservation of class III is also spaced differently from that of class I but is typical of that of proteins in general, emphasizing that class I, with divergence at three functional segments, is the form with deviating properties. In spite of the conservation in class III, surface charges differ considerably. The apparent absence of a class I enzyme in octopus and the constant nature of the class III enzyme support the concept of a duplicative origin of the class I line from the ancient class III form. Still more distant relationships define further enzyme lines that have subunits with other properties. PMID:8248232

  9. RNAi-directed downregulation of betaine aldehyde dehydrogenase 1 (OsBADH1) results in decreased stress tolerance and increased oxidative markers without affecting glycine betaine biosynthesis in rice (Oryza sativa).

    PubMed

    Tang, Wei; Sun, Jiaqi; Liu, Jia; Liu, Fangfang; Yan, Jun; Gou, Xiaojun; Lu, Bao-Rong; Liu, Yongsheng

    2014-11-01

    As an important osmoprotectant, glycine betaine (GB) plays an essential role in resistance to abiotic stress in a variety of organisms, including rice (Oryza sativa L.). However, GB content is too low to be detectable in rice, although rice genome possesses several orthologs coding for betaine aldehyde dehydrogenase (BADH) involved in plant GB biosynthesis. Rice BADH1 (OsBADH1) has been shown to be targeted to peroxisome and its overexpression resulted in increased GB biosynthesis and tolerance to abiotic stress. In this study, we demonstrated a pivotal role of OsBADH1 in stress tolerance without altering GB biosynthesis capacity, using the RNA interference (RNAi) technique. OsBADH1 was ubiquitously expressed in different organs, including roots, stems, leaves and flowers. Transgenic rice lines downregulating OsBADH1 exhibited remarkably reduced tolerance to NaCl, drought and cold stresses. The decrease of stress tolerance occurring in the OsBADH1-RNAi repression lines was associated with an elevated level of malondialdehyde content and hydrogen peroxidation. No GB accumulation was detected in transgene-positive and transgene-negative lines derived from heterozygous transgenic T0 plants. Moreover, transgenic OsBADH1-RNAi repression lines showed significantly reduced seed set and yield. In conclusion, the downregulation of OsBADH1, even though not causing any change of GB content, was accounted for the reduction of ability to dehydrogenate the accumulating metabolism-derived aldehydes and subsequently resulted in decreased stress tolerance and crop productivity. These results suggest that OsBADH1 possesses an enzyme activity to catalyze other aldehydes in addition to betaine aldehyde (the precursor of GB) and thus alleviate their toxic effects under abiotic stresses.

  10. Effects of dietary fat on alcohol-pyrazole hepatitis in rats: the pathogenetic role of the nonalcohol dehydrogenase pathway in alcohol-induced hepatic cell injury.

    PubMed

    Takada, A; Matsuda, Y; Takase, S

    1986-08-01

    Rats were fed with two different alcohol-containing (36% of total calories) liquid diets of high fat and low fat (35% and 15% of total calories) with or without 2 mM of pyrazole for 12 weeks. At the 12th week, the serum glutamic oxaloacetic transaminase level was significantly elevated in the alcohol-pyrazole high fat group, but not in the low fat group. Ballooning and necrotic changes of the hepatocytes in the centrolobular area were more prominent in the alcohol-pyrazole high fat group than in the low fat group and alcohol alone groups, indicating that high fat diet accelerates the development of alcohol-pyrazole hepatitis. In the alcohol-pyrazole high fat group, a decrease of hepatic microtubules content and an accumulation of hepatic export proteins in the hepatocytes were found. The protein accumulation was prominent only in the ballooned hepatocytes. Hepatic acetaldehyde levels were significantly higher in the alcohol-pyrazole high fat group than in the alcohol-pyrazole low fat group. These results suggest that the accelerated ethanol metabolism in the nonalcohol dehydrogenase pathway by a high fat diet may play an important role in the development of hepatocytic injuries, by impairing the microtubular function of the hepatocytes.

  11. Genes contributing to the development of alcoholism: an overview.

    PubMed

    Edenberg, Howard J

    2012-01-01

    Genetic factors (i.e., variations in specific genes) account for a substantial portion of the risk for alcoholism. However, identifying those genes and the specific variations involved is challenging. Researchers have used both case-control and family studies to identify genes related to alcoholism risk. In addition, different strategies such as candidate gene analyses and genome-wide association studies have been used. The strongest effects have been found for specific variants of genes that encode two enzymes involved in alcohol metabolism-alcohol dehydrogenase and aldehyde dehydrogenase. Accumulating evidence indicates that variations in numerous other genes have smaller but measurable effects.

  12. Bioactivation to an aldehyde metabolite--possible role in the onset of toxicity induced by the anti-HIV drug abacavir.

    PubMed

    Grilo, Nádia M; Charneira, Catarina; Pereira, Sofia A; Monteiro, Emília C; Marques, M Matilde; Antunes, Alexandra M M

    2014-01-30

    Aldehydes are highly reactive molecules, which can be generated during numerous physiological processes, including the biotransformation of drugs. Several non-P450 enzymes participate in their metabolism albeit alcohol dehydrogenase and aldehyde dehydrogenase are the ones most frequently involved in this process. Endogenous and exogenous aldehydes have been strongly implicated in multiple human pathologies. Their ability to react with biomacromolecules (e.g. proteins) yielding covalent adducts is suggested to be the common primary mechanism underlying the toxicity of these reactive species. Abacavir is one of the options for combined anti-HIV therapy. Although individual susceptibilities to adverse effects differ among patients, abacavir is associated with idiosyncratic hypersensitivity drug reactions and an increased risk of cardiac dysfunction. This review highlights the current knowledge on abacavir metabolism and discusses the potential role of bioactivation to an aldehyde metabolite, capable of forming protein adducts, in the onset of abacavir-induced toxic outcomes.

  13. Purification and characterization of alcohol dehydrogenase reducing N-benzyl-3-pyrrolidinone from Geotrichum capitatum.

    PubMed

    Yamada-Onodera, Keiko; Fukui, Masato; Tani, Yoshiki

    2007-02-01

    (S)-N-Benzyl-3-pyrrolidinol is widely used in the synthesis of pharmaceuticals as a chiral building block. We produced 30 mM (S)-N-benzyl-3-pyrrolidinol (enantiometric excess > 99.9%) from the corresponding ketone N-benzyl-3-pyrrolidinone with more than 99.9% yield in 28 h of the resting-cell reaction of Geotrichum capitatum JCM 3908. NAD(+)-dependent alcohol dehydrogenase reducing N-benzyl-3-pyrrolidinone from G. capitatum JCM 3908 was purified to homogeneity by ammonium sulfate fractionation and a series of DEAE-Toyopearl, Butyl-Toyopearl, Superdex 200, and Hydroxyapatite column chromatographies. The results of SDS-PAGE and HPLC showed the enzyme to be a dimer with a molecular mass of 78 kDa. The purified enzyme produced (S)-N-benzyl-3-pyrrolidinol (e.e.>99.9%) from N-benzyl-3-pyrrolidinone. The enzyme reduced 2,3-butanedione, 2-hexanone, cyclohexanone, propionaldehyde, n-butylaldehyde, n-hexylaldehyde, n-octylaldehyde, n-valeraldehyde, and benzylacetone more effectively than it did N-benzyl-3-pyrrolidinone. No activity was detected towards N-benzyl-2-pyrrolidinone or 2-pyrrolidinone. The activity towards (R)-N-benzyl-3-pyrrolidinol was not detected under the assay conditions employed. The oxidizing activity of the enzyme was higher towards 2-propanol, 2-butanol, 2-pentanol, 2-hexanol, 3-hexanol, and 1-phenyl-2-propanol than towards (S)-N-benzyl-3-pyrrolidinol. The K(m) values for N-benzyl-3-pyrrolidinone reduction and (S)-N-benzyl-3-pyrrolidinol oxidation were 0.13 and 8.47 mM, respectively. To our knowledge, this is the first time that an N-benzyl-3-pyrrolidinol/N-benzyl-3-pyrrolidinone oxidoreductase was purified from a eukaryote; moreover, this is the first report of (S)-N-benzyl-3-pyrrolidinol dehydrogenase activity in microorganisms. This enzyme showed features different from those of known prokaryotic N-benzyl-3-pyrrolidinone reductases. This enzyme will be very useful for the production of chiral compounds.

  14. Membrane-bound sugar alcohol dehydrogenase in acetic acid bacteria catalyzes L-ribulose formation and NAD-dependent ribitol dehydrogenase is independent of the oxidative fermentation.

    PubMed

    Adachi, O; Fujii, Y; Ano, Y; Moonmangmee, D; Toyama, H; Shinagawa, E; Theeragool, G; Lotong, N; Matsushita, K

    2001-01-01

    To identify the enzyme responsible for pentitol oxidation by acetic acid bacteria, two different ribitol oxidizing enzymes, one in the cytosolic fraction of NAD(P)-dependent and the other in the membrane fraction of NAD(P)-independent enzymes, were examined with respect to oxidative fermentation. The cytoplasmic NAD-dependent ribitol dehydrogenase (EC 1.1.1.56) was crystallized from Gluconobacter suboxydans IFO 12528 and found to be an enzyme having 100 kDa of molecular mass and 5 s as the sedimentation constant, composed of four identical subunits of 25 kDa. The enzyme catalyzed a shuttle reversible oxidoreduction between ribitol and D-ribulose in the presence of NAD and NADH, respectively. Xylitol and L-arabitol were well oxidized by the enzyme with reaction rates comparable to ribitol oxidation. D-Ribulose, L-ribulose, and L-xylulose were well reduced by the enzyme in the presence of NADH as cosubstrates. The optimum pH of pentitol oxidation was found at alkaline pH such as 9.5-10.5 and ketopentose reduction was found at pH 6.0. NAD-Dependent ribitol dehydrogenase seemed to be specific to oxidoreduction between pentitols and ketopentoses and D-sorbitol and D-mannitol were not oxidized by this enzyme. However, no D-ribulose accumulation was observed outside the cells during the growth of the organism on ribitol. L-Ribulose was accumulated in the culture medium instead, as the direct oxidation product catalyzed by a membrane-bound NAD(P)-independent ribitol dehydrogenase. Thus, the physiological role of NAD-dependent ribitol dehydrogenase was accounted to catalyze ribitol oxidation to D-ribulose in cytoplasm, taking D-ribulose to the pentose phosphate pathway after being phosphorylated. L-Ribulose outside the cells would be incorporated into the cytoplasm in several ways when need for carbon and energy sources made it necessary to use L-ribulose for their survival. From a series of simple experiments, membrane-bound sugar alcohol dehydrogenase was concluded to be

  15. Chronic alcoholism in rats induces a compensatory response, preserving brain thiamine diphosphate, but the brain 2-oxo acid dehydrogenases are inactivated despite unchanged coenzyme levels.

    PubMed

    Parkhomenko, Yulia M; Kudryavtsev, Pavel A; Pylypchuk, Svetlana Yu; Chekhivska, Lilia I; Stepanenko, Svetlana P; Sergiichuk, Andrej A; Bunik, Victoria I

    2011-06-01

    Thiamine-dependent changes in alcoholic brain were studied using a rat model. Brain thiamine and its mono- and diphosphates were not reduced after 20 weeks of alcohol exposure. However, alcoholism increased both synaptosomal thiamine uptake and thiamine diphosphate synthesis in brain, pointing to mechanisms preserving thiamine diphosphate in the alcoholic brain. In spite of the unchanged level of the coenzyme thiamine diphosphate, activities of the mitochondrial 2-oxoglutarate and pyruvate dehydrogenase complexes decreased in alcoholic brain. The inactivation of pyruvate dehydrogenase complex was caused by its increased phosphorylation. The inactivation of 2-oxoglutarate dehydrogenase complex (OGDHC) correlated with a decrease in free thiols resulting from an elevation of reactive oxygen species. Abstinence from alcohol following exposure to alcohol reactivated OGDHC along with restoration of the free thiol content. However, restoration of enzyme activity occurred before normalization of reactive oxygen species levels. Hence, the redox status of cellular thiols mediates the action of oxidative stress on OGDHC in alcoholic brain. As a result, upon chronic alcohol consumption, physiological mechanisms to counteract the thiamine deficiency and silence pyruvate dehydrogenase are activated in rat brain, whereas OGDHC is inactivated due to impaired antioxidant ability.

  16. Engineering of 2,3-butanediol dehydrogenase to reduce acetoin formation by glycerol-overproducing, low-alcohol Saccharomyces cerevisiae.

    PubMed

    Ehsani, Maryam; Fernández, Maria R; Biosca, Josep A; Julien, Anne; Dequin, Sylvie

    2009-05-01

    Engineered Saccharomyces cerevisiae strains overexpressing GPD1, which codes for glycerol-3-phosphate dehydrogenase, and lacking the acetaldehyde dehydrogenase Ald6 display large-scale diversion of the carbon flux from ethanol toward glycerol without accumulating acetate. Although GPD1 ald6 strains have great potential for reducing the ethanol contents in wines, one major side effect is the accumulation of acetoin, having a negative sensory impact on wine. Acetoin is reduced to 2,3-butanediol by the NADH-dependent 2,3-butanediol dehydrogenase Bdh1. In order to investigate the influence of potential factors limiting this reaction, we overexpressed BDH1, coding for native NADH-dependent Bdh1, and the engineered gene BDH1(221,222,223), coding for an NADPH-dependent Bdh1 enzyme with the amino acid changes 221 EIA 223 to 221 SRS 223, in a glycerol-overproducing wine yeast. We have shown that both the amount of Bdh1 and the NADH availability limit the 2,3-butanediol dehydrogenase reaction. During wine fermentation, however, the major limiting factor was the level of synthesis of Bdh1. Consistent with this finding, the overproduction of native or engineered Bdh1 made it possible to redirect 85 to 90% of the accumulated acetoin into 2,3-butanediol, a compound with neutral sensory characteristics. In addition, the production of diacetyl, a compound causing off-flavor in alcoholic beverages, whose production is increased in glycerol-overproducing yeast cells, was decreased by half. The production of higher alcohols and esters, which was slightly decreased or unchanged in GPD1 ald6 cells compared to that in the control cells, was not further modified in BDH1 cells. Overall, rerouting carbons toward glycerol and 2,3-butanediol represents a new milestone in the engineering of a low-alcohol yeast with desirable organoleptic features, permitting the decrease of the ethanol contents in wines by up to 3 degrees.

  17. Enhanced production of dihydroxyacetone from glycerol by overexpression of glycerol dehydrogenase in an alcohol dehydrogenase-deficient mutant of Gluconobacter oxydans.

    PubMed

    Li, Ming-hua; Wu, Jian; Liu, Xu; Lin, Jin-ping; Wei, Dong-zhi; Chen, Hao

    2010-11-01

    Gluconobacter oxydans can rapidly and incompletely oxidize glycerol to dihydroxyacetone (DHA), a versatile product extensively used in cosmetic, chemical and pharmaceutical industries. To improve DHA production, the glycerol dehydrogenase (GDH) responsible for DHA formation was overexpressed in G. oxydans M5AM, in which the gene coding for the membrane-bound alcohol dehydrogenase (ADH) was interrupted. Real-time PCR and enzyme activity assay revealed that the absence of ADH together with the overexpression of GDH gene resulted in an increased GDH activity in the resulting strain M5AM/GDH, which led to a substantially enhanced production of DHA in a resting cell system. In a batch biotransformation process, M5AM/GDH exhibited a 2.4-fold increased DHA productivity of 2.4g/g CDW/h from 1.0g/g CDW/h, yielding 96g/L DHA from 100g/L glycerol. When 140g/L glycerol was supplied, a final DHA concentration of 134g/L was accumulated within 14h. In four repeated batch runs, 385g DHA over a time period of 34h was achieved from 400g glycerol with an average productivity of 2.2g/g CDW/h. These results indicated that this newly developed strain G. oxydans M5AM/GDH with high productivity and increased tolerance against product inhibition has potential for DHA production in an industrial bioconversion process.

  18. Alcohol Dehydrogenase in the Diploid Plant STEPHANOMERIA EXIGUA (Compositae): Gene Duplication, Mode of Inheritance and Linkage

    PubMed Central

    Roose, M. L.; Gottlieb, L. D.

    1980-01-01

    Study of the biochemical genetics of alcohol dehydrogenase (ADH) in the annual plant Stephanomeria exigua (Compositae) revealed that the isozymes are specified by a small family of tightly linked structural genes. One set of ADH isozymes (ADH-1) was induced in roots by flooding, and was also expressed in thickened unflooded tap roots, stems, ovaries and seeds. As in other plants, the enzymes are dimeric and form homo- and heterodimers. An electrophoretic survey of ADH-1 phenotypes in two natural populations revealed seven different ADH-1 homodimers in various phenotypes having one to eight enzyme bands. Genetic analysis of segregations from crosses involving 59 plants showed that the ADH-1 isozymes are inherited as a single Mendelian unit, Adh1. Adh1 is polymorphic for forms that specify one, two, or three different ADH-1 subunits (which combine to form homo- and heterodimers), and are expressed co-dominantly in all genotypic combinations. Staining intensity of enzymes extracted from various homozygous and heterozygous plants indicated that the different subunit types specified by Adh1 are produced in approximately equal amounts. These observations suggest that Adh1 is a compound locus consisting of one to several tightly linked (0 recombinants among 579 testcross progeny), coordinately expressed structural genes. The genes in the two triplications also occur in various duplicate complexes and thus could have originated via unequal crossing over. The ADH-2 isozyme found in pollen and seeds is apparently specified by a different gene, Adh2. Adh1 and Adh2 are tightly linked (0 recombinants among 81 testcross progeny). PMID:17249032

  19. Improved paper pulp from plants with suppressed cinnamoyl-CoA reductase or cinnamyl alcohol dehydrogenase.

    PubMed

    O'Connell, Ann; Holt, Karen; Piquemal, Joël; Grima-Pettenati, Jacqueline; Boudet, Alain; Pollet, Brigitte; Lapierre, Catherine; Petit-Conil, Michel; Schuch, Wolfgang; Halpin, Claire

    2002-10-01

    Transgenic plants severely suppressed in the activity of cinnamoyl-CoA reductase were produced by introduction of a partial sense CCR transgene into tobacco. Five transgenic lines with CCR activities ranging from 2 to 48% of wild-type values were selected for further study. Some lines showed a range of aberrant phenotypes including reduced growth, and all had changes to lignin structure making the polymer more susceptible to alkali extraction. The most severely CCR-suppressed line also had significantly decreased lignin content and an increased proportion of free phenolic groups in non-condensed lignin. These changes are likely to make the lignin easier to extract during chemical pulping. Direct Kraft pulping trials confirmed this. More lignin could be removed from the transgenic wood than from wild-type wood at the same alkali charge. A similar improvement in pulping efficiency was recently shown for poplar trees expressing an antisense cinnamyl alcohol dehydrogenase gene. Pulping experiments performed here on CAD-antisense tobacco plants produced near-identical results--the modified lignin was more easily removed during pulping without any adverse effects on the quality of the pulp or paper produced. These results suggest that pulping experiments performed in tobacco can be predictive of the results that will be obtained in trees such as poplar, extending the utility of the tobacco model. On the basis of our results on CCR manipulation in tobacco, we predict that CCR-suppressed trees may show pulping benefits. However, it is likely that CCR-suppression will not be the optimal target for genetic manipulation of pulping character due to the potential associated growth defects.

  20. Effects of DNA on immunoglobulin production stimulating activity of alcohol dehydrogenase.

    PubMed

    Okamoto, T; Furutani, H; Sasaki, T; Sugahara, T

    1999-09-01

    Alcohol dehydrogenase-I (ADH-I) derived from horse liver stimulated IgM production by human-human hybridoma, HB4C5 cells and lymphocytes. The IPSF activity of ADH-I was suppressed by coexistence of short DNA whose chain length is less than 200 base pairs (bp) and fibrous DNA in a dose-dependent manner. These DNA preparations completely inhibited the IPSF activity at the concentration of 250 mug/ml and 1.0 mg/ml, respectively. DNA sample termed long DNA whose average chain length is 400-7000 bp slightly stimulated IPSF activity at 0.06 mug/ml. However, long DNA suppressed IPSF activity by half at 1.0 mg/ml. The laser confocal microscopic analysis had revealed that ADH-I was incorporated by HB4C5 cells. The uptake of ADH-I was strongly inhibited by short DNA and fibrous DNA. However, long DNA did not suppress the internalization of ADH-I into HB4C5 cells. These findings indicate that short DNA and fibrous DNA depress IPSF activity of ADH-I by inhibiting the internalization of this enzyme. According to the gel-filtration analysis using HPLC, ADH-I did not directly interact with short DNA. It is expected from these findings that short DNA influences HB4C5 cells to suppress the internalization of ADH-I. Moreover, these facts also strongly suggest that ADH-I acts as IPSF after internalization into the cell.

  1. The Alcohol Dehydrogenase Gene Family in Melon (Cucumis melo L.): Bioinformatic Analysis and Expression Patterns

    PubMed Central

    Jin, Yazhong; Zhang, Chong; Liu, Wei; Tang, Yufan; Qi, Hongyan; Chen, Hao; Cao, Songxiao

    2016-01-01

    Alcohol dehydrogenases (ADH), encoded by multigene family in plants, play a critical role in plant growth, development, adaptation, fruit ripening and aroma production. Thirteen ADH genes were identified in melon genome, including 12 ADHs and one formaldehyde dehydrogenease (FDH), designated CmADH1-12 and CmFDH1, in which CmADH1 and CmADH2 have been isolated in Cantaloupe. ADH genes shared a lower identity with each other at the protein level and had different intron-exon structure at nucleotide level. No typical signal peptides were found in all CmADHs, and CmADH proteins might locate in the cytoplasm. The phylogenetic tree revealed that 13 ADH genes were divided into three groups respectively, namely long-, medium-, and short-chain ADH subfamily, and CmADH1,3-11, which belongs to the medium-chain ADH subfamily, fell into six medium-chain ADH subgroups. CmADH12 may belong to the long-chain ADH subfamily, while CmFDH1 may be a Class III ADH and serve as an ancestral ADH in melon. Expression profiling revealed that CmADH1, CmADH2, CmADH10 and CmFDH1 were moderately or strongly expressed in different vegetative tissues and fruit at medium and late developmental stages, while CmADH8 and CmADH12 were highly expressed in fruit after 20 days. CmADH3 showed preferential expression in young tissues. CmADH4 only had slight expression in root. Promoter analysis revealed several motifs of CmADH genes involved in the gene expression modulated by various hormones, and the response pattern of CmADH genes to ABA, IAA and ethylene were different. These CmADHs were divided into ethylene-sensitive and –insensitive groups, and the functions of CmADHs were discussed. PMID:27242871

  2. Cd-substituted horse liver alcohol dehydrogenase: catalytic site metal coordination geometry and protein conformation.

    PubMed

    Hemmingsen, L; Bauer, R; Bjerrum, M J; Zeppezauer, M; Adolph, H W; Formicka, G; Cedergren-Zeppezauer, E

    1995-05-30

    The coordination geometry of the catalytic site in Cd-substituted horse liver alcohol dehydrogenase (LADH) has been investigated as a function of pH using the method of perturbed angular correlation of gamma-rays (PAC). LADH in solution fully loaded with cadmium, including radioactive 111mCd in the catalytic site [Cd2(111mCd)Cd2LADH], was studied over the pH range 7.9-11.5. Analysis of the PAC spectra showed the ionization of a group with pKa of 11. This pKa value is about 2 pH units higher than that of native zinc-containing LADH. A pKa of 9.6 was found for the binary complex of Cd2(111mCd)Cd2LADH with NAD+. This value is also about 2 pH units higher than that of the binary complex of native zinc-containing enzyme and NAD+. No pH dependency was detected for the binary complex of Cd2(111mCd)Cd2LADH with NADH within the pH range measured (pH 8.3-11.5). Assuming that metal-coordinated water is the ionizing group [Kvassman, J., & Pettersson, G. (1979) Eur. J. Biochem. 100, 115-123], we conclude that the larger ionic radius of Cd(II) relative to Zn(II) in the catalytic site causes the elevated pKa values of metal-bound water. Interpretation of nuclear quadrupole interaction (NQI) parameters derived from PAC spectra is based on the use of the angular overlap model, using the coordinates for the catalytic zinc site from the 1.8 A resolution crystal structure of the ternary complex between LADH, NADH, and dimethyl sulfoxide as a model.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Complete reversal of coenzyme specificity by concerted mutation of three consecutive residues in alcohol dehydrogenase.

    PubMed

    Rosell, Albert; Valencia, Eva; Ochoa, Wendy F; Fita, Ignacio; Parés, Xavier; Farrés, Jaume

    2003-10-17

    Gastric tissues from amphibian Rana perezi express the only vertebrate alcohol dehydrogenase (ADH8) that is specific for NADP(H) instead of NAD(H). In the crystallographic ADH8-NADP+ complex, a binding pocket for the extra phosphate group of coenzyme is formed by ADH8-specific residues Gly223-Thr224-His225, and the highly conserved Leu200 and Lys228. To investigate the minimal structural determinants for coenzyme specificity, several ADH8 mutants involving residues 223 to 225 were engineered and kinetically characterized. Computer-assisted modeling of the docked coenzymes was also performed with the mutant enzymes and compared with the wild-type crystallographic binary complex. The G223D mutant, having a negative charge in the phosphate-binding site, still preferred NADP(H) over NAD(H), as did the T224I and H225N mutants. Catalytic efficiency with NADP(H) dropped dramatically in the double mutants, G223D/T224I and T224I/H225N, and in the triple mutant, G223D/T224I/H225N (kcat/KmNADPH = 760 mm-1 min-1), as compared with the wild-type enzyme (kcat/KmNADPH = 133330 mm-1 min-1). This was associated with a lower binding affinity for NADP+ and a change in the rate-limiting step. Conversely, in the triple mutant, catalytic efficiency with NAD(H) increased, reaching values (kcat/KmNADH = 155000 mm-1 min-1) similar to those of the wild-type enzyme with NADP(H). The complete reversal of ADH8 coenzyme specificity was therefore attained by the substitution of only three consecutive residues in the phosphate-binding site, an unprecedented achievement within the ADH family.

  4. Expression Pattern of Two Paralogs Encoding Cinnamyl Alcohol Dehydrogenases in Arabidopsis. Isolation and Characterization of the Corresponding Mutants1

    PubMed Central

    Sibout, Richard; Eudes, Aymerick; Pollet, Brigitte; Goujon, Thomas; Mila, Isabelle; Granier, Fabienne; Séguin, Armand; Lapierre, Catherine; Jouanin, Lise

    2003-01-01

    Studying Arabidopsis mutants of the phenylpropanoid pathway has unraveled several biosynthetic steps of monolignol synthesis. Most of the genes leading to monolignol synthesis have been characterized recently in this herbaceous plant, except those encoding cinnamyl alcohol dehydrogenase (CAD). We have used the complete sequencing of the Arabidopsis genome to highlight a new view of the complete CAD gene family. Among nine AtCAD genes, we have identified the two distinct paralogs AtCAD-C and AtCAD-D, which share 75% identity and are likely to be involved in lignin biosynthesis in other plants. Northern, semiquantitative restriction fragment-length polymorphism-reverse transcriptase-polymerase chain reaction and western analysis revealed that AtCAD-C and AtCAD-D mRNA and protein ratios were organ dependent. Promoter activities of both genes are high in fibers and in xylem bundles. However, AtCAD-C displayed a larger range of sites of expression than AtCAD-D. Arabidopsis null mutants (Atcad-D and Atcad-C) corresponding to both genes were isolated. CAD activities were drastically reduced in both mutants, with a higher impact on sinapyl alcohol dehydrogenase activity (6% and 38% of residual sinapyl alcohol dehydrogenase activities for Atcad-D and Atcad-C, respectively). Only Atcad-D showed a slight reduction in Klason lignin content and displayed modifications of lignin structure with a significant reduced proportion of conventional S lignin units in both stems and roots, together with the incorporation of sinapaldehyde structures ether linked at Cβ. These results argue for a substantial role of AtCAD-D in lignification, and more specifically in the biosynthesis of sinapyl alcohol, the precursor of S lignin units. PMID:12805615

  5. Disruption of the membrane-bound alcohol dehydrogenase-encoding gene improved glycerol use and dihydroxyacetone productivity in Gluconobacter oxydans.

    PubMed

    Habe, Hiroshi; Fukuoka, Tokuma; Morita, Tomotake; Kitamoto, Dai; Yakushi, Toshiharu; Matsushita, Kazunobu; Sakaki, Keiji

    2010-01-01

    Dihydroxyacetone (DHA) production from glycerol by Gluconobacter oxydans is an industrial form of fermentation, but some problems exist related to microbial DHA production. For example, glycerol inhibits DHA production and affects its biological activity. G. oxydans produces both DHA and glyceric acid (GA) from glycerol simultaneously, and membrane-bound glycerol dehydrogenase and membrane-bound alcohol dehydrogenases are involved in the two reactions, respectively. We discovered that the G. oxydans mutant DeltaadhA, in which the membrane-bound alcohol dehydrogenase-encoding gene (adhA) was disrupted, significantly improved its ability to grow in a higher concentration of glycerol and to produce DHA compared to a wild-type strain. DeltaadhA grew on 220 g/l of initial glycerol and produced 125 g/l of DHA during a 3-d incubation, whereas the wild-type did not. Resting DeltaadhA cells converted 230 g/l of glycerol aqueous solution to 139.7 g/l of DHA during a 3-d incubation. The inhibitory effect of glycerate sodium salt on DeltaadhA was investigated. An increase in the glycerate concentration at the beginning of growth resulted in decreases in both growth and DHA production.

  6. Screening, Molecular Cloning, and Biochemical Characterization of an Alcohol Dehydrogenase from Pichia pastoris Useful for the Kinetic Resolution of a Racemic β-Hydroxy-β-trifluoromethyl Ketone.

    PubMed

    Bulut, Dalia; Duangdee, Nongnaphat; Gröger, Harald; Berkessel, Albrecht; Hummel, Werner

    2016-07-15

    The stereoselective synthesis of chiral 1,3-diols with the aid of biocatalysts is an attractive tool in organic chemistry. Besides the reduction of diketones, an alternative approach consists of the stereoselective reduction of β-hydroxy ketones (aldols). Thus, we screened for an alcohol dehydrogenase (ADH) that would selectively reduce a β-hydroxy-β-trifluoromethyl ketone. One potential starting material for this process is readily available by aldol addition of acetone to 2,2,2-trifluoroacetophenone. Over 200 strains were screened, and only a few yeast strains showed stereoselective reduction activities. The enzyme responsible for the reduction of the β-hydroxy-β-trifluoromethyl ketone was identified after purification and subsequent MALDI-TOF mass spectrometric analysis. As a result, a new NADP(+) -dependent ADH from Pichia pastoris (PPADH) was identified and confirmed to be capable of stereospecific and diastereoselective reduction of the β-hydroxy-β-trifluoromethyl ketone to its corresponding 1,3-diol. The gene encoding PPADH was cloned and heterologously expressed in Escherichia coli BL21(DE3). To determine the influence of an N- or C-terminal His-tag fusion, three different recombinant plasmids were constructed. Interestingly, the variant with the N-terminal His-tag showed the highest activity; consequently, this variant was purified and characterized. Kinetic parameters and the dependency of activity on pH and temperature were determined. PPADH shows a substrate preference for the reduction of linear and branched aliphatic aldehydes. Surprisingly, the enzyme shows no comparable activity towards ketones other than the β-hydroxy-β-trifluoromethyl ketone.

  7. Proteomic Analysis of Mitochondria-Enriched Fraction Isolated from the Frontal Cortex and Hippocampus of Apolipoprotein E Knockout Mice Treated with Alda-1, an Activator of Mitochondrial Aldehyde Dehydrogenase (ALDH2)

    PubMed Central

    Stachowicz, Aneta; Olszanecki, Rafał; Suski, Maciej; Głombik, Katarzyna; Basta-Kaim, Agnieszka; Adamek, Dariusz; Korbut, Ryszard

    2017-01-01

    The role of different genotypes of apolipoprotein E (apoE) in the etiology of Alzheimer’s disease is widely recognized. It has been shown that altered functioning of apoE may promote 4-hydroxynonenal modification of mitochondrial proteins, which may result in mitochondrial dysfunction, aggravation of oxidative stress, and neurodegeneration. Mitochondrial aldehyde dehydrogenase (ALDH2) is an enzyme considered to perform protective function in mitochondria by the detoxification of the end products of lipid peroxidation, such as 4-hydroxynonenal and other reactive aldehydes. The goal of our study was to apply a differential proteomics approach in concert with molecular and morphological techniques to elucidate the changes in the frontal cortex and hippocampus of apolipoprotein E knockout (apoE−/−) mice upon treatment with Alda-1—a small molecular weight activator of ALDH2. Despite the lack of significant morphological changes in the brain of apoE−/− mice as compared to age-matched wild type animals, the proteomic and molecular approach revealed many changes in the expression of genes and proteins, indicating the impairment of energy metabolism, neuroplasticity, and neurogenesis in brains of apoE−/− mice. Importantly, prolonged treatment of apoE−/− mice with Alda-1 led to the beneficial changes in the expression of genes and proteins related to neuroplasticity and mitochondrial function. The pattern of alterations implies mitoprotective action of Alda-1, however, the accurate functional consequences of the revealed changes require further research. PMID:28218653

  8. Purification and properties of methyl formate synthase, a mitochondrial alcohol dehydrogenase, participating in formaldehyde oxidation in methylotrophic yeasts.

    PubMed Central

    Murdanoto, A P; Sakai, Y; Konishi, T; Yasuda, F; Tani, Y; Kato, N

    1997-01-01

    Methyl formate synthase, which catalyzes methyl formate formation during the growth of methylotrophic yeasts, was purified to homogeneity from methanol-grown Candida boidinii and Pichia methanolica cells. Both purified enzymes were tetrameric, with identical subunits with molecular masses of 42 to 45 kDa, containing two atoms of zinc per subunit. The enzymes catalyze NAD(+)-linked dehydrogenation of the hydroxyl group of the hemiacetal adduct [CH2(OH)OCH3] of methanol and formaldehyde, leading to the formation of a stoichiometric amount of methyl formate. Although neither methanol nor formaldehyde alone acted as a substrate for the enzymes, they showed simple NAD(+)-linked alcohol dehydrogenase activity toward aliphatic long-chain alcohols such as octanol, showing that they belong to the class III alcohol dehydrogenase family. The methyl formate synthase activity of C. boidinii was found in the mitochondrial fraction in subcellular fractionation experiments, suggesting that methyl formate synthase is a homolog of Saccharomyces cerevisiae Adh3p. These results indicate that formaldehyde could be oxidized in a glutathione-independent manner by methyl formate synthase in methylotrophic yeasts. The significance of methyl formate synthase in both formaldehyde resistance and energy metabolism is also discussed. PMID:9143107

  9. Alcohol fuel use: Implications for atmospheric levels of aldehydes, organic nitrates, pans, and peroxides: Separating sources using carbon isotopes

    SciTech Connect

    Gaffney, J.S.; Tanner, R.L.

    1988-01-01

    We have developed DiNitroPhenylHydrazone (DNPH) derivatization--high performance liquid chromatographic methods for measuring aldehydes in ambient samples with detection limits of approximately 1ppbV. These methods can be used for air or precipitation studies, and have been used for indoor measurements at much higher levels using shorter integration times. We are using gas chromatographs with electron capture detection (GCECD) to measure ambient levels of peroxyacyl nitrates and organic nitrates. Diffusion tubes with synthetically produced organic nitrates in n-tridecane solution are used to calibrate these systems. These compounds are important means of transporting NO/sub x/ over large scales due to their reduced tropospheric reactivity, low water solubilities, photolytic, and thermal stability. Their chemistries are coupled to aldehyde chemistry and are important greenhouse gases as well as phytotoxins. We have completed preliminary studies in Rio de Janeiro examining the atmospheric chemistry consequences of ethanol fuel usage. The urban air mass has been effected by the direct uncontrolled usage of ethanolgasoline and ethanoldiesel mixtures. We are exploring the use of luminol chemiluminescent detection of peroxides using gas chromatography to separate the various organic and inorganic peroxides. These compounds are coupled to the aldehyde chemistry, particularly in remote chemistries down-wind of urban sources. 13 refs.

  10. Use of a modified alcohol dehydrogenase, ADH1, promoter in construction of diacetyl non-producing brewer's yeast.

    PubMed

    Onnela, M L; Suihko, M L; Penttilä, M; Keränen, S

    1996-08-20

    The bacterial gene, encoding alpha-acetolactate decarboxylase (alpha-ALDC), was expressed in a bottom-fermenting brewer's yeast under the control of a modified Saccharomyces cerevisiae alcohol dehydrogenase (ADH1) promoter which lacks the upstream regions from -800 bp to -1500 bp. In pilot scale brewing conditions, the level of alpha-ALDC produced was high enough to reduce the concentration of diacetyl so that lagering was not required. alpha-ALDC active brewer's yeast strains were also shown to be suitable for high gravity brewing.

  11. Laboratory evolution of Pyrococcus furiosus alcohol dehydrogenase to improve the production of (2S,5S)-hexanediol at moderate temperatures.

    PubMed

    Machielsen, Ronnie; Leferink, Nicole G H; Hendriks, Annemarie; Brouns, Stan J J; Hennemann, Hans-Georg; Daussmann, Thomas; van der Oost, John

    2008-07-01

    There is considerable interest in the use of enantioselective alcohol dehydrogenases for the production of enantio- and diastereomerically pure diols, which are important building blocks for pharmaceuticals, agrochemicals and fine chemicals. Due to the need for a stable alcohol dehydrogenase with activity at low-temperature process conditions (30 degrees C) for the production of (2S,5S)-hexanediol, we have improved an alcohol dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus (AdhA). A stable S-selective alcohol dehydrogenase with increased activity at 30 degrees C on the substrate 2,5-hexanedione was generated by laboratory evolution on the thermostable alcohol dehydrogenase AdhA. One round of error-prone PCR and screening of approximately 1,500 mutants was performed. The maximum specific activity of the best performing mutant with 2,5-hexanedione at 30 degrees C was tenfold higher compared to the activity of the wild-type enzyme. A 3D-model of AdhA revealed that this mutant has one mutation in the well-conserved NADP(H)-binding site (R11L), and a second mutation (A180V) near the catalytic and highly conserved threonine at position 183.

  12. Disruption of lactate dehydrogenase and alcohol dehydrogenase for increased hydrogen production and its effect on metabolic flux in Enterobacter aerogenes.

    PubMed

    Zhao, Hongxin; Lu, Yuan; Wang, Liyan; Zhang, Chong; Yang, Cheng; Xing, Xinhui

    2015-10-01

    Hydrogen production by Enterobacter aerogenes from glucose was enhanced by deleting the targeted ldhA and adh genes responsible for two NADH-consuming pathways which consume most NADH generated from glycolysis. Compared with the wild-type, the hydrogen yield of IAM1183-ΔldhA increased 1.5 fold. Metabolic flux analysis showed both IAM1183-ΔldhA and IAM1183-Δadh exhibited significant changes in flux, including enhanced flux towards the hydrogen generation. The lactate production of IAM1183-ΔldhA significantly decreased by 91.42%, while the alcohol yield of IAM1183-Δadh decreased to 30%. The mutant IAM1183-ΔldhA with better hydrogen-producing performance was selected for further investigation in a 5-L fermentor. The hydrogen production of IAM1183-ΔldhA was 2.3 times higher than the wild-type. Further results from the fermentation process showed that the pH decreased to 5.39 levels, then gradually increased to 5.96, indicating that some acidic metabolites might be degraded or uptaken by cells.

  13. The Xenopus alcohol dehydrogenase gene family: characterization and comparative analysis incorporating amphibian and reptilian genomes

    PubMed Central

    2014-01-01

    Background The alcohol dehydrogenase (ADH) gene family uniquely illustrates the concept of enzymogenesis. In vertebrates, tandem duplications gave rise to a multiplicity of forms that have been classified in eight enzyme classes, according to primary structure and function. Some of these classes appear to be exclusive of particular organisms, such as the frog ADH8, a unique NADP+-dependent ADH enzyme. This work describes the ADH system of Xenopus, as a model organism, and explores the first amphibian and reptilian genomes released in order to contribute towards a better knowledge of the vertebrate ADH gene family. Results Xenopus cDNA and genomic sequences along with expressed sequence tags (ESTs) were used in phylogenetic analyses and structure-function correlations of amphibian ADHs. Novel ADH sequences identified in the genomes of Anolis carolinensis (anole lizard) and Pelodiscus sinensis (turtle) were also included in these studies. Tissue and stage-specific libraries provided expression data, which has been supported by mRNA detection in Xenopus laevis tissues and regulatory elements in promoter regions. Exon-intron boundaries, position and orientation of ADH genes were deduced from the amphibian and reptilian genome assemblies, thus revealing syntenic regions and gene rearrangements with respect to the human genome. Our results reveal the high complexity of the ADH system in amphibians, with eleven genes, coding for seven enzyme classes in Xenopus tropicalis. Frogs possess the amphibian-specific ADH8 and the novel ADH1-derived forms ADH9 and ADH10. In addition, they exhibit ADH1, ADH2, ADH3 and ADH7, also present in reptiles and birds. Class-specific signatures have been assigned to ADH7, and ancestral ADH2 is predicted to be a mixed-class as the ostrich enzyme, structurally close to mammalian ADH2 but with class-I kinetic properties. Remarkably, many ADH1 and ADH7 forms are observed in the lizard, probably due to lineage-specific duplications. ADH4 is not

  14. The cinnamyl alcohol dehydrogenase gene family in melon (Cucumis melo L.): bioinformatic analysis and expression patterns.

    PubMed

    Jin, Yazhong; Zhang, Chong; Liu, Wei; Qi, Hongyan; Chen, Hao; Cao, Songxiao

    2014-01-01

    Cinnamyl alcohol dehydrogenase (CAD) is a key enzyme in lignin biosynthesis. However, little was known about CADs in melon. Five CAD-like genes were identified in the genome of melons, namely CmCAD1 to CmCAD5. The signal peptides analysis and CAD proteins prediction showed no typical signal peptides were found in all CmCADs and CmCAD proteins may locate in the cytoplasm. Multiple alignments implied that some motifs may be responsible for the high specificity of these CAD proteins, and may be one of the key residues in the catalytic mechanism. The phylogenetic tree revealed seven groups of CAD and melon CAD genes fell into four main groups. CmCAD1 and CmCAD2 belonged to the bona fide CAD group, in which these CAD genes, as representative from angiosperms, were involved in lignin synthesis. Other CmCADs were distributed in group II, V and VII, respectively. Semi-quantitative PCR and real time qPCR revealed differential expression of CmCADs, and CmCAD5 was expressed in different vegetative tissues except mature leaves, with the highest expression in flower, while CmCAD2 and CmCAD5 were strongly expressed in flesh during development. Promoter analysis revealed several motifs of CAD genes involved in the gene expression modulated by various hormones. Treatment of abscisic acid (ABA) elevated the expression of CmCADs in flesh, whereas the transcript levels of CmCAD1 and CmCAD5 were induced by auxin (IAA); Ethylene induced the expression of CmCADs, while 1-MCP repressed the effect, apart from CmCAD4. Taken together, these data suggested that CmCAD4 may be a pseudogene and that all other CmCADs may be involved in the lignin biosynthesis induced by both abiotic and biotic stresses and in tissue-specific developmental lignification through a CAD genes family network, and CmCAD2 may be the main CAD enzymes for lignification of melon flesh and CmCAD5 may also function in flower development.

  15. The Cinnamyl Alcohol Dehydrogenase Gene Family in Melon (Cucumis melo L.): Bioinformatic Analysis and Expression Patterns

    PubMed Central

    Jin, Yazhong; Zhang, Chong; Liu, Wei; Qi, Hongyan; Chen, Hao; Cao, Songxiao

    2014-01-01

    Cinnamyl alcohol dehydrogenase (CAD) is a key enzyme in lignin biosynthesis. However, little was known about CADs in melon. Five CAD-like genes were identified in the genome of melons, namely CmCAD1 to CmCAD5. The signal peptides analysis and CAD proteins prediction showed no typical signal peptides were found in all CmCADs and CmCAD proteins may locate in the cytoplasm. Multiple alignments implied that some motifs may be responsible for the high specificity of these CAD proteins, and may be one of the key residues in the catalytic mechanism. The phylogenetic tree revealed seven groups of CAD and melon CAD genes fell into four main groups. CmCAD1 and CmCAD2 belonged to the bona fide CAD group, in which these CAD genes, as representative from angiosperms, were involved in lignin synthesis. Other CmCADs were distributed in group II, V and VII, respectively. Semi-quantitative PCR and real time qPCR revealed differential expression of CmCADs, and CmCAD5 was expressed in different vegetative tissues except mature leaves, with the highest expression in flower, while CmCAD2 and CmCAD5 were strongly expressed in flesh during development. Promoter analysis revealed several motifs of CAD genes involved in the gene expression modulated by various hormones. Treatment of abscisic acid (ABA) elevated the expression of CmCADs in flesh, whereas the transcript levels of CmCAD1 and CmCAD5 were induced by auxin (IAA); Ethylene induced the expression of CmCADs, while 1-MCP repressed the effect, apart from CmCAD4. Taken together, these data suggested that CmCAD4 may be a pseudogene and that all other CmCADs may be involved in the lignin biosynthesis induced by both abiotic and biotic stresses and in tissue-specific developmental lignification through a CAD genes family network, and CmCAD2 may be the main CAD enzymes for lignification of melon flesh and CmCAD5 may also function in flower development. PMID:25019207

  16. Regulated Expression of Three Alcohol Dehydrogenase Genes in Barley Aleurone Layers 1

    PubMed Central

    Hanson, Andrew D.; Jacobsen, John V.; Zwar, John A.

    1984-01-01

    Three genes specify alcohol dehydrogenase (EC 1.1.1.1.; ADH) enzymes in barley (Hordeum vulgare L.) (Adh 1, Adh 2, and Adh 3). Their polypeptide products (ADH 1, ADH 2, ADH 3) dimerize to give a total of six ADH isozymes which can be resolved by native gel electrophoresis and stained for enzyme activity. Under fully aerobic conditions, aleurone layers of cv Himalaya had a high titer of a single isozyme, the homodimer containing ADH 1 monomers. This isozyme was accumulated by the aleurone tissue during the later part of seed development, and survived seed drying and rehydration. The five other possible ADH isozymes were induced by O2 deficit. The staining of these five isozymes on electrophoretic gels increased progressively in intensity as O2 levels were reduced below 5%, and were most intense at 0% O2. In vivo35S labeling and specific immunoprecipitation of ADH peptides, followed by isoelectric focusing of the ADH peptides in the presence of 8 molar urea (urea-IEF) demonstrated the following. (a) Aleurone layers incubated in air synthesized ADH 1 and a trace of ADH 2; immature layers from developing seeds behaved similarly. (b) At 5% O2, synthesis of ADH 2 increased and ADH 3 appeared. (c) At 2% and 0% O2, the synthesis of all three ADH peptides increased markedly. Cell-free translation of RNA isolated from aleurone layers, followed by immunoprecipitation and urea-IEF of in vitro synthesized ADH peptides, showed that levels of mRNA for all three ADH peptides rose sharply during 1 day of O2 deprivation. Northern hybridizations with a maize Adh 2 cDNA clone established that the clone hybridized with barley mRNA comparable in size to maize Adh 2 mRNA, and that the level of this barley mRNA increased 15- to 20-fold after 1 day at 5% or 2% O2, and about 100-fold after 1 day at 0% O2. We conclude that in aleurone layers, expression of the three barley Adh genes is maximal in the absence of O2, that regulation of mRNA level is likely to be a major controlling factor, and

  17. Manipulating cinnamyl alcohol dehydrogenase (CAD) expression in flax affects fibre composition and properties

    PubMed Central

    2014-01-01

    Background In recent decades cultivation of flax and its application have dramatically decreased. One of the reasons for this is unpredictable quality and properties of flax fibre, because they depend on environmental factors, retting duration and growing conditions. These factors have contribution to the fibre composition, which consists of cellulose, hemicelluloses, lignin and pectin. By far, it is largely established that in flax, lignin reduces an accessibility of enzymes either to pectin, hemicelluloses or cellulose (during retting or in biofuel synthesis and paper production). Therefore, in this study we evaluated composition and properties of flax fibre from plants with silenced CAD (cinnamyl alcohol dehydrogenase) gene, which is key in the lignin biosynthesis. There is evidence that CAD is a useful tool to improve lignin digestibility and/or to lower the lignin levels in plants. Results Two studied lines responded differentially to the introduced modification due to the efficiency of the CAD silencing. Phylogenetic analysis revealed that flax CAD belongs to the “bona-fide” CAD family. CAD down-regulation had an effect in the reduced lignin amount in the flax fibre cell wall and as FT-IR results suggests, disturbed lignin composition and structure. Moreover introduced modification activated a compensatory mechanism which was manifested in the accumulation of cellulose and/or pectin. These changes had putative correlation with observed improved fiber’s tensile strength. Moreover, CAD down-regulation did not disturb at all or has only slight effect on flax plants’ development in vivo, however, the resistance against flax major pathogen Fusarium oxysporum decreased slightly. The modification positively affected fibre possessing; it resulted in more uniform retting. Conclusion The major finding of our paper is that the modification targeted directly to block lignin synthesis caused not only reduced lignin level in fibre, but also affected amount and

  18. Kinetic analysis about the effects of neutral salts on the thermal stability of yeast alcohol dehydrogenase.

    PubMed

    Ikegaya, Kazuo

    2005-03-01

    The effects of salts on the rate constants of inactivation by heat of yeast alcohol dehydrogenase (YADH) at 60.0 degrees C were measured. Different effects were observed at low and high salt concentrations. At high concentrations, some salts had stabilizing effects, while others were destabilizing. The effects of salts in the high concentration range examined can be described as follows: (decreased thermal stability) NaClO(4) < NaI = (C(2)H(5))(4)NBr < NH(4)Br < NaBr = KBr = CsBr = (no addition) < (CH(3))(4)NBr < KCl < KF < Na(2)SO(4) (increased thermal stability). The decreasing effect of NaClO(4) on YADH controlled the thermal stability of the enzyme absolutely and was not compensated by the addition of Na(2)SO(4), a salt which stabilized the enzyme. However, Na(2)SO(4) compensation did occur in response to the decrease in thermal stability caused by (C(2)H(5))(4)NBr. The rate constants of inactivation by heat (k (in)) of the enzyme were measured at various temperatures. Effective values of the thermodynamic activation parameters of thermal inactivation, activation of free energy (DeltaG (double dagger)), activation enthalpy (DeltaH (double dagger)), and activation entropy (DeltaS (double dagger)), were determined. The thermal stability of YADH in 0.8 M Na(2)SO(4) increased more than that of pyruvate kinase from Bacillus stearothermophilus, a moderate thermophile. The changes in the values of DeltaH (double dagger) and DeltaS (double dagger) were great and showed a general compensatory tendency, with the exception of in the case of NaClO(4). The temperature for the general compensation effect (T (c)) was approximately 123 degrees C. With Na(2)SO(4), the thermal stability of YADH at a temperature below T (c) was greater than that in the absence of salt due to the higher values of DeltaH (double dagger) and DeltaS (double dagger), respectively, and thus was an example of low-temperature enzymatic stabilization. With (C(2)H(5))(4)NBr, the thermal stability of YADH

  19. Diversity and Evolutionary Analysis of Iron-Containing (Type-III) Alcohol Dehydrogenases in Eukaryotes

    PubMed Central

    Gaona-López, Carlos; Julián-Sánchez, Adriana

    2016-01-01

    Background Alcohol dehydrogenase (ADH) activity is widely distributed in the three domains of life. Currently, there are three non-homologous NAD(P)+-dependent ADH families reported: Type I ADH comprises Zn-dependent ADHs; type II ADH comprises short-chain ADHs described first in Drosophila; and, type III ADH comprises iron-containing ADHs (FeADHs). These three families arose independently throughout evolution and possess different structures and mechanisms of reaction. While types I and II ADHs have been extensively studied, analyses about the evolution and diversity of (type III) FeADHs have not been published yet. Therefore in this work, a phylogenetic analysis of FeADHs was performed to get insights into the evolution of this protein family, as well as explore the diversity of FeADHs in eukaryotes. Principal Findings Results showed that FeADHs from eukaryotes are distributed in thirteen protein subfamilies, eight of them possessing protein sequences distributed in the three domains of life. Interestingly, none of these protein subfamilies possess protein sequences found simultaneously in animals, plants and fungi. Many FeADHs are activated by or contain Fe2+, but many others bind to a variety of metals, or even lack of metal cofactor. Animal FeADHs are found in just one protein subfamily, the hydroxyacid-oxoacid transhydrogenase (HOT) subfamily, which includes protein sequences widely distributed in fungi, but not in plants), and in several taxa from lower eukaryotes, bacteria and archaea. Fungi FeADHs are found mainly in two subfamilies: HOT and maleylacetate reductase (MAR), but some can be found also in other three different protein subfamilies. Plant FeADHs are found only in chlorophyta but not in higher plants, and are distributed in three different protein subfamilies. Conclusions/Significance FeADHs are a diverse and ancient protein family that shares a common 3D scaffold with a patchy distribution in eukaryotes. The majority of sequenced FeADHs from

  20. Carbon Dioxide Effects on Ethanol Production, Pyruvate Decarboxylase, and Alcohol Dehydrogenase Activities in Anaerobic Sweet Potato Roots 1

    PubMed Central

    Chang, Ling A.; Hammett, Larry K.; Pharr, David M.

    1983-01-01

    The effect of varied anaerobic atmospheres on the metabolism of sweet potato (Ipomoea batatas [L.] Lam.) roots was studied. The internal gas atmospheres of storage roots changed rapidly when the roots were submerged under water. O2 and N2 gases disappeared quickly and were replaced by CO2. There were no appreciable differences in gas composition among the four cultivars that were studied. Under different anaerobic conditions, ethanol concentration in the roots was highest in a CO2 environment, followed by submergence and a N2 environment in all the cultivars except one. A positive relationship was found between ethanol production and pyruvate decarboxylase activity from both 100% CO2-treated and 100% N2-treated roots. CO2 atmospheres also resulted in higher pyruvate decarboxylase activity than did N2 atmospheres. Concentrations of CO2 were higher within anaerobic roots than those in the ambient anaerobic atmosphere. The level of pyruvate decarboxylase and ethanol in anaerobic roots was proportional to the ambient CO2 concentration. The measurable activity of pyruvate decarboxylase that was present in the roots was about 100 times less than that of alcohol dehydrogenase. Considering these observations, it is suggested that the rate-limiting enzyme for ethanol biosynthesis in sweet potato storage roots under anoxia is likely to be pyruvate decarboxylase rather than alcohol dehydrogenase. PMID:16662798

  1. Aspartate 46, a second sphere ligand to the catalytic zinc, is essential for activity of yeast alcohol dehydrogenase

    SciTech Connect

    Ganzhorn, A.J.; Plapp, B.V.

    1987-05-01

    The crystal structure of horse liver alcohol dehydrogenase (ADH) shows a hydrogen bond between the imidazole of His-67, a ligand to the active site zinc, and the carboxylate of Asp-49. Both residues are conserved in alcohol dehydrogenases. Directed mutagenesis was used to replace the homologous Asp-46 in ADH