Science.gov

Sample records for alcohol dehydrogenase polymorphism

  1. Alcohol and aldehyde dehydrogenase polymorphisms in Chinese and Indian populations.

    PubMed

    Tan, Ene-Choo; Lim, Leslie; Leong, Jern-Yi; Lim, Jing-Yan; Lee, Arthur; Yang, Jun; Tan, Chay-Hoon; Winslow, Munidasa

    2010-01-01

    The association between two functional polymorphisms in alcohol dehydrogenase (ADH2/ADH1B) and aldehyde dehydrogenase (ALDH2) genes and alcohol dependence was examined in 182 Chinese and Indian patients undergoing treatment for alcohol dependence and 184 screened control subjects from Singapore. All subjects were screened by the Alcohol Use Disorders Identification Test (AUDIT). Patients were also administered the Severity of Alcohol Dependence Questionnaire (SADQ). Polymorphisms were genotyped by allele-specific polymerase chain reaction and selected genotypes confirmed by DNA sequencing or restriction fragment length polymorphism. Our results showed that frequencies of ADH1B*2 and ALDH2*2 were higher in controls compared to alcohol-dependent subjects for both Chinese and Indians. Frequencies of these two alleles were also higher in the 104 Chinese controls compared to the 80 Indian controls. None of the eight Chinese who were homozygous for both protective alleles was alcohol dependent. The higher frequencies of the protective alleles could explain the lower rate of alcohol dependence in Chinese. PMID:20025435

  2. Alcohol dehydrogenase polymorphism in barrel cactus populations of Drosophila mojavensis.

    PubMed

    Cleland, S; Hocutt, G D; Breitmeyer, C M; Markow, T A; Pfeiler, E

    1996-07-01

    Starch gel electrophoresis revealed that the alcohol dehydrogenase (ADH-2) locus was polymorphic in two populations (from Agua Caliente, California and the Grand Canyon, Arizona) of cactophilic Drosophila mojavensis that utilize barrel cactus (Ferocactus acanthodes) as a host plant. Electromorphs representing products of a slow (S) and a fast (F) allele were found in adult flies. The frequency of the slow allele was 0.448 in flies from Agua Caliente and 0.659 in flies from the Grand Canyon. These frequencies were intermediate to those of the low (Baja California peninsula, Mexico) and high (Sonora, Mexico and southern Arizona) frequency Adh-2S populations of D. mojavensis that utilize different species of host cacti. PMID:8765684

  3. Aldehyde dehydrogenase 2 (ALDH2) and alcohol dehydrogenase 1B (ADH1B) polymorphisms exacerbate bladder cancer risk associated with alcohol drinking: gene-environment interaction.

    PubMed

    Masaoka, Hiroyuki; Ito, Hidemi; Soga, Norihito; Hosono, Satoyo; Oze, Isao; Watanabe, Miki; Tanaka, Hideo; Yokomizo, Akira; Hayashi, Norio; Eto, Masatoshi; Matsuo, Keitaro

    2016-06-01

    Although a range of chemical exposures (cigarette smoking and occupational exposure) are recognized risk factors for the development of bladder cancer (BCa), many epidemiological studies have demonstrated that alcohol drinking is not associated with BCa risk. Aldehyde dehydrogenase 2 (ALDH2; rs671, Glu504Lys) and alcohol dehydrogenase 1B (ADH1B; rs1229984, His47Arg) polymorphisms impact the accumulation of acetaldehyde, resulting in an increased risk of various cancers. To date, however, no studies evaluating the association between BCa risk and alcohol drinking have considered these polymorphisms. Here, we conducted a matched case-control study to investigate whether ALDH2 and ADH1B polymorphisms influence BCa risk associated with alcohol drinking. Cases were 74 BCa patients and controls were 740 first-visit outpatients without cancer at Aichi Cancer Center Hospital between January 2001 and December 2005. Odds ratio (OR), 95% confidence interval (CI) and gene-environment interaction were assessed by conditional logistic regression analysis with adjustment for potential confounders. Results showed that ALDH2 Glu/Lys was associated with a significantly increased risk of BCa compared with Glu/Glu (OR 2.03, 95% CI 1.14-3.62, P = 0.017). In contrast, ALDH2 Glu/Lys showed no increase in risk among the stratum of never drinkers compared with Glu/Glu, indicating a gene-environment interaction. ADH1B His/Arg had an OR of 1.98 (1.20-3.24, P = 0.007) compared with His/His. ADH1B Arg+ showed a similar OR and 95% CI. Individuals with ALDH2 Glu/Lys and ADH1B Arg+ had the highest risk of BCa compared with ALDH2 Glu/Glu and ADH1B His/His [OR 4.00 (1.81-8.87), P = 0.001]. PMID:26992901

  4. Alcohol dehydrogenase 1C (ADH1C) gene polymorphism and alcoholic liver cirrhosis risk: a meta analysis

    PubMed Central

    He, Lei; Deng, Tao; Luo, He-Sheng

    2015-01-01

    The association between alcohol dehydrogenase 1C (ADH1C) gene polymorphism and alcoholic liver cirrhosis (ALC) has been analyzed in several studies, but results have been conflicting. In this study, a meta-analysis was performed to assess the associations between the ADH1C polymorphism and risk of ALC. Relevant studies were identified using PubMed, Web of Science, CNKI and Wanfang databases up to January 10, 2015. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to assess the strength of the association using the fixed or random effect model. A total of 16 case-control studies, including 1375 cases and 1802 controls, were included. Overall, no significant association between the ADH1C polymorphism and ALC risk was found (dominant model: OR=0.87, 95% CI: 0.62-1.23; recessive model: OR=1.30, 95% CI: 0.84-1.99; *1/*2 vs. *1/*1: OR=0.87, 95% CI: 0.63-1.21; *2/*2 vs. *1/*1: OR=1.10, 95% CI: 0.71-1.70). In the subgroup analysis by ethnicity, we observed a significant association in Asian descent (*1/*2 vs. *1/*1: OR=1.63, 95% CI: 1.07-2.49), while a decreased risk was found among Caucasians (dominant model: OR=0.81, 95% CI: 0.66-0.99; *1/*2 vs. *1/*1: OR=0.76, 95% CI: 0.61-0.95). This meta-analysis demonstrated that the ADH1C polymorphism might increase the risk of ALC in Asians, while it may be a protective factor for ALC among Caucasians. PMID:26379912

  5. Folate, alcohol, and aldehyde dehydrogenase 2 polymorphism and the risk of oral and pharyngeal cancer in Japanese.

    PubMed

    Matsuo, Keitaro; Rossi, Marta; Negri, Eva; Oze, Isao; Hosono, Satoyo; Ito, Hidemi; Watanabe, Miki; Yatabe, Yasushi; Hasegawa, Yasuhisa; Tanaka, Hideo; Tajima, Kazuo; La Vecchia, Carlo

    2012-03-01

    Folate consumption is inversely associated with the risk of oral and pharyngeal cancer (OPC) and potentially interacts with alcohol drinking in the risk of OPC. Aldehyde dehydrogenase 2 (ALDH2) gene polymorphism is known to interact with alcohol consumption. The aim of this study was to investigate potential interaction between folate, alcohol drinking, and ALDH2 polymorphism in the risk of OPC in a Japanese population. The study group comprised 409 head and neck cancer cases and 1227 age-matched and sex-matched noncancer controls; of these, 251 cases and 759 controls were evaluated for ALDH rs671 polymorphism. Associations were assessed by odds ratios and 95% confidence intervals in multiple logistic regression models. We observed an inverse association between folate consumption and OPC risk. The odds ratio for high folate intake was 0.53 (95% confidence interval: 0.36-0.77) relative to low intake (P trend=0.003). This association was consistent across strata of sex, age, smoking, and ALDH2 genotypes. Interaction between folate consumption, drinking, and ALDH2 genotype was remarkable (three-way interaction, P<0.001). We observed significant interaction among folate, drinking, and ALDH2 genotype in the Japanese population. PMID:21946912

  6. Aldehyde Dehydrogenase 2 (ALDH2) Polymorphism and the Risk of Alcoholic Liver Cirrhosis among East Asians: A Meta-Analysis

    PubMed Central

    He, Lei; Luo, Hesheng

    2016-01-01

    Purpose The aldehyde dehydrogenase 2 (ALDH2) gene has been implicated in the development of alcoholic liver cirrhosis (ALC) in East Asians. However, the results are inconsistent. In this study, a meta-analysis was performed to assess the associations between the ALDH2 polymorphism and the risk of ALC. Materials and Methods Relevant studies were retrieved by searching PubMed, Web of Science, CNKI, Wanfang and Veipu databases up to January 10, 2015. Pooled odds ratio (OR) and 95% confidence interval (CI) were calculated using either the fixed- or random effects model. Results A total of twelve case-control studies included 1003 cases and 2011 controls were included. Overall, the ALDH2 polymorphism was associated with a decreased risk of ALC (*1/*2 vs. *1/*1: OR=0.78, 95% CI: 0.61–0.99). However, in stratification analysis by country, we failed to detect any association among Chinese, Korean or Japanese populations. Conclusion The pooled evidence suggests that ALDH2 polymorphism may be an important protective factor for ALC in East Asians. PMID:27189280

  7. Measuring Selection Coefficients Affecting the Alcohol Dehydrogenase Polymorphism in DROSOPHILA MELANOGASTER

    PubMed Central

    Wilson, S. R.; Oakeshott, J. G.; Gibson, J. B.; Anderson, P. R.

    1982-01-01

    This paper describes a perturbation experiment on the frequency of the F and S Alcohol dehydrogenase (Adh) alleles of D. melanogaster. Fifty-four isofemale lines set up from three wild populations and with initial F frequencies of either 0.25, 0.50 or 0.75 were maintained on standard laboratory food medium at 22°. At generations 4, 12 and 20 the lines were again scored for Adh gene frequencies. Maximum likelihood procedures were used to estimate selection coefficients for the Adh genotypes. An analysis of deviance was used to compare the coefficients against expectations under the hypotheses of neutrality and of constant values for the three base populations, and for the three initial gene frequency classes. Highly-significant departures from neutrality were observed; over all 54 lines, the set of relative fitnesses for S/S:F/S:F/F was estimated as 1.00:1.08:1.08. In addition, there were significant differences between lines in the outcome of selection which were not attributable to differences between base populations or initial F frequencies. These residual between-line differences, as well as some between-generation, within-line differences are discussed in terms of linkage disequilibria with background genes and electrophoretically cryptic variation at the Adh locus. PMID:6807750

  8. Low Km aldehyde dehydrogenase (ALDH2) polymorphism, alcohol-drinking behavior, and chromosome alterations in peripheral lymphocytes.

    PubMed Central

    Morimoto, K; Takeshita, T

    1996-01-01

    Excessive drinking of alcohol is now widely known to be one of the major lifestyle choices that ca effect health. Among the various effects of alcohol drinking, cytogenetic and other genotoxic effects are of major concern from the viewpoint of prevention of alcohol-related diseases. Alcohol is first metabolized to acetaldehyde, which directly causes various types of chromosomal DNA lesions and alcohol-related diseases, and is then further detoxified to the much less toxic metabolite acetate. About 50% of Oriental people are deficient in the aldehyde-dehydrogenase 2 isozyme (ALDH2) that can most efficiently detoxify acetaldehyde. We have performed a series of experiments to investigate how the genetic deficiency in ALDH2 affects the behavioral pattern for alcohol drinking and the sensitivity of peripheral lymphocytes to the induction of chromosome alterations by exposure to alcohol and alcohol-related chemicals. We found great effects of the ALDH2 genotypes on alcohol sensitivity and alcohol-drinking behavior. We also show that lymphocytes from habitual drinkers with the deficient ALDH2 enzyme had significantly higher frequencies of sister chromatid exchanges than those from ALDH2-proficient individuals. PMID:8781384

  9. Alcohol Dehydrogenase from Methylobacterium organophilum

    PubMed Central

    Wolf, H. J.; Hanson, R. S.

    1978-01-01

    The alcohol dehydrogenase from Methylobacterium organophilum, a facultative methane-oxidizing bacterium, has been purified to homogeneity as indicated by sodium dodecyl sulfate-gel electrophoresis. It has several properties in common with the alcohol dehydrogenases from other methylotrophic bacteria. The active enzyme is a dimeric protein, both subunits having molecular weights of about 62,000. The enzyme exhibits broad substrate specificity for primary alcohols and catalyzes the two-step oxidation of methanol to formate. The apparent Michaelis constants of the enzyme are 2.9 × 10−5 M for methanol and 8.2 × 10−5 M for formaldehyde. Activity of the purified enzyme is dependent on phenazine methosulfate. Certain characteristics of this enzyme distinguish it from the other alcohol dehydrogenases of other methylotrophic bacteria. Ammonia is not required for, but stimulates the activity of newly purified enzyme. An absolute dependence on ammonia develops after storage of the purified enzyme. Activity is not inhibited by phosphate. The fluorescence spectrum of the enzyme indicates that it and the cofactor associated with it may be chemically different from the alcohol dehydrogenases from other methylotrophic bacteria. The alcohol dehydrogenases of Hyphomicrobium WC-65, Pseudomonas methanica, Methylosinus trichosporium, and several facultative methylotrophs are serologically related to the enzyme purified in this study. The enzymes of Rhodopseudomonas acidophila and of organisms of the Methylococcus group did not cross-react with the antiserum prepared against the alcohol dehydrogenase of M. organophilum. Images PMID:80974

  10. Michael hydratase alcohol dehydrogenase or just alcohol dehydrogenase?

    PubMed Central

    2014-01-01

    The Michael hydratase – alcohol dehydrogenase (MhyADH) from Alicycliphilus denitrificans was previously identified as a bi-functional enzyme performing a hydration of α,β-unsaturated ketones and subsequent oxidation of the formed alcohols. The investigations of the bi-functionality were based on a spectrophotometric assay and an activity staining in a native gel of the dehydrogenase. New insights in the recently discovered organocatalytic Michael addition of water led to the conclusion that the previously performed experiments to identify MhyADH as a bi-functional enzyme and their results need to be reconsidered and the reliability of the methodology used needs to be critically evaluated. PMID:24949265

  11. A functionally critical single nucleotide polymorphism in the gene encoding the membrane-bound alcohol dehydrogenase found in ethanol oxidation-deficient Gluconobacter thailandicus.

    PubMed

    Charoenyingcharoen, Piyanat; Matsutani, Minenosuke; Yakushi, Toshiharu; Theeragool, Gunjana; Yukphan, Pattaraporn; Matsushita, Kazunobu

    2015-08-10

    The Gluconobacter thailandicus strains NBRC3254, NBRC3255, NBRC3256, NBRC3257, and NBRC3258 are naturally deficient in the ethanol-oxidizing respiratory chain because they do not produce the cytochrome subunit of the membrane-bound alcohol dehydrogenase (ADH). Draft genomes of G. thailandicus strains NBRC3255 and NBRC3257 indicated that the adhB gene encoding the cytochrome subunit contains four base differences when compared to a closely related gene in the public database One of the nucleotide differences results in an Opal codon at the -19th tryptophan (Trp) in the signal sequence for translocation to the periplasmic space (here, the position of +1st residue is assigned to the N-terminal amino acid residue after signal peptide cleavage), while the other differences result in one missense and two silent amino acid alterations. All five of the G. thailandicus strains were shown to have the Trp(-19)Opal alteration. Ethanol oxidation and ADH activities in NBRC3255 were restored by transformation with a derivative of the endogenous adhB gene, of which the -19th Opal codon was altered to encode Trp. These results indicate that this sequence is a functionally critical single nucleotide polymorphism in the cytochrome subunit. Comparative genomic analyses between the draft genomes of NBRC3255 and NBRC3257 revealed that although the two genomes are closely related, they both have a significant number of unique open reading frames. We suggest that the closely related NBRC3255 and NBRC3257 diverged from a common ancestor having the mutation in the adhB gene, whereas no additional functionally critical mutation occurred in the adhB pseudogene over the course of evolution. PMID:25943635

  12. Fundamental molecular differences between alcohol dehydrogenase classes.

    PubMed Central

    Danielsson, O; Atrian, S; Luque, T; Hjelmqvist, L; Gonzàlez-Duarte, R; Jörnvall, H

    1994-01-01

    Two types of alcohol dehydrogenase in separate protein families are the "medium-chain" zinc enzymes (including the classical liver and yeast forms) and the "short-chain" enzymes (including the insect form). Although the medium-chain family has been characterized in prokaryotes and many eukaryotes (fungi, plants, cephalopods, and vertebrates), insects have seemed to possess only the short-chain enzyme. We have now also characterized a medium-chain alcohol dehydrogenase in Drosophila. The enzyme is identical to insect octanol dehydrogenase. It is a typical class III alcohol dehydrogenase, similar to the corresponding human form (70% residue identity), with mostly the same residues involved in substrate and coenzyme interactions. Changes that do occur are conservative, but Phe-51 is of functional interest in relation to decreased coenzyme binding and increased overall activity. Extra residues versus the human enzyme near position 250 affect the coenzyme-binding domain. Enzymatic properties are similar--i.e., very low activity toward ethanol (Km beyond measurement) and high selectivity for formaldehyde/glutathione (S-hydroxymethylglutathione; kcat/Km = 160,000 min-1.mM-1). Between the present class III and the ethanol-active class I enzymes, however, patterns of variability differ greatly, highlighting fundamentally separate molecular properties of these two alcohol dehydrogenases, with class III resembling enzymes in general and class I showing high variation. The gene coding for the Drosophila class III enzyme produces an mRNA of about 1.36 kb that is present at all developmental stages of the fly, compatible with the constitutive nature of the vertebrate enzyme. Taken together, the results bridge a previously apparent gap in the distribution of medium-chain alcohol dehydrogenases and establish a strictly conserved class III enzyme, consistent with an important role for this enzyme in cellular metabolism. Images PMID:8197167

  13. A model system for QTL analysis: Effects of alcohol dehydrogenase genotype on alcohol pharmacokinetics

    SciTech Connect

    Martin, N.G.; Nightingale, B.; Whitfield, J.B.

    1994-09-01

    There is much interest in the detection of quantitative trait loci (QTL) - major genes which affect quantitative phenotypes. The relationship of polymorphism at known alcohol metabolizing enzyme loci to alcohol pharmacokinetics is a good model system. The three class I alcohol dehydrogenase genes are clustered on chromosome 4 and protein electrophoresis has revealed polymorphisms at the ADH2 and ADH3 loci. While different activities of the isozymes have been demonstrated in vitro, little work has been done in trying to relate ADH polymorphism to variation in ethanol metabolism in vivo. We previously measured ethanol metabolism and psychomotor reactivity in 206 twin pairs and demonstrated that most of the repeatable variation was genetic. We have now recontacted the twins to obtain DNA samples and used PCR with allele specific primers to type the ADH2 and ADH3 polymorphisms in 337 individual twins. FISHER has been used to estimate fixed effects of typed polymorphisms simultaneously with remaining linked and unlinked genetic variance. The ADH2*1-2 genotypes metabolize ethanol faster and attain a lower peak blood alcohol concentration than the more common ADH2*1-1 genotypes, although less than 3% of the variance is accounted for. There is no effect of ADH3 genotype. However, sib-pair linkage analysis suggests that there is a linked polymorphism which has a much greater effect on alcohol metabolism that those typed here.

  14. Alcohol dehydrogenases from olive (Olea europaea) fruit.

    PubMed

    Salas, J J; Sánchez, J

    1998-05-01

    Alcohol dehydrogenase activity was detected in extracts from the pericarp tissues of developing olive fruits using hexanal as the substrate. Total activity in the crude extract was 20-fold higher with NADPH than with NADH. Three discrete enzymes were resolved by means of a purification protocol involving ammonium sulfate fractionation followed by ion-exchange and affinity chromatography. One of the enzymes was NAD-dependent and displayed a high K(m) for hexanal (K(m) = 2.1 mM). Two NADP-dependent alcohol dehydrogenases were resolved, one showing a high K(m) for hexanal (K(m) = 1.9 mM) and the second with a lower K(m) for the same substrate (K(m) = 0.04 mM). The three enzymes have been partially purified and their kinetic parameters and specificities for various aldehydes determined. The involvement of these enzymes in the biogenesis of six carbon alcohols constituent of the aroma of olive oil is discussed. PMID:9621451

  15. Fast internal dynamics in alcohol dehydrogenase

    SciTech Connect

    Monkenbusch, M.; Stadler, A. Biehl, R.; Richter, D.; Ollivier, J.; Zamponi, M.

    2015-08-21

    Large-scale domain motions in alcohol dehydrogenase (ADH) have been observed previously by neutron spin-echo spectroscopy (NSE). We have extended the investigation on the dynamics of ADH in solution by using high-resolution neutron time-of-flight (TOF) and neutron backscattering (BS) spectroscopy in the incoherent scattering range. The observed hydrogen dynamics were interpreted in terms of three mobility classes, which allowed a simultaneous description of the measured TOF and BS spectra. In addition to the slow global protein diffusion and domain motions observed by NSE, a fast internal process could be identified. Around one third of the protons in ADH participate in the fast localized diffusive motion. The diffusion coefficient of the fast internal motions is around two third of the value of the surrounding D{sub 2}O solvent. It is tempting to associate the fast internal process with solvent exposed amino acid residues with dangling side chains.

  16. Stability of immobilized yeast alcohol dehydrogenase

    SciTech Connect

    Ooshima, H.; Genko, Y.; Harano, Y.

    1981-12-01

    The effects of substrate on stabilities of native (NA) and three kinds of immobilized yeast alcohol dehydrogenase (IMA), namely PGA (the carrier; porous glass), SEA (agarose gel) prepared covalently, and AMA (anion-exchange resin) prepared ionically, were studied. The following results were obtained. 1) The deactivations of NA and IMA free from the substrate or in the presence of ethanol obey the first-order kinetics, whereas, in the presence of butyraldehyde, their deactivation behaviors are explained on the basis of coexistence of two components of YADHs, namely the labile E1 and the comparatively stable E2, with different first-order deactivation constants. (2) A few attempts for stabilization of IMA were carried out from the viewpoint of the effects of crosslinkages among the subunits of YADH for PGA and the multibonding between the carrier and enzyme for SEA. The former is effective for the stabilization, whereas the latter is not. (Refs. 19).

  17. Fast internal dynamics in alcohol dehydrogenase.

    PubMed

    Monkenbusch, M; Stadler, A; Biehl, R; Ollivier, J; Zamponi, M; Richter, D

    2015-08-21

    Large-scale domain motions in alcohol dehydrogenase (ADH) have been observed previously by neutron spin-echo spectroscopy (NSE). We have extended the investigation on the dynamics of ADH in solution by using high-resolution neutron time-of-flight (TOF) and neutron backscattering (BS) spectroscopy in the incoherent scattering range. The observed hydrogen dynamics were interpreted in terms of three mobility classes, which allowed a simultaneous description of the measured TOF and BS spectra. In addition to the slow global protein diffusion and domain motions observed by NSE, a fast internal process could be identified. Around one third of the protons in ADH participate in the fast localized diffusive motion. The diffusion coefficient of the fast internal motions is around two third of the value of the surrounding D2O solvent. It is tempting to associate the fast internal process with solvent exposed amino acid residues with dangling side chains. PMID:26298156

  18. Mammalian class IV alcohol dehydrogenase (stomach alcohol dehydrogenase): structure, origin, and correlation with enzymology.

    PubMed Central

    Parés, X; Cederlund, E; Moreno, A; Hjelmqvist, L; Farrés, J; Jörnvall, H

    1994-01-01

    The structure of a mammalian class IV alcohol dehydrogenase has been determined by peptide analysis of the protein isolated from rat stomach. The structure indicates that the enzyme constitutes a separate alcohol dehydrogenase class, in agreement with the distinct enzymatic properties; the class IV enzyme is somewhat closer to class I (the "classical" liver alcohol dehydrogenase; approximately 68% residue identities) than to the other classes (II, III, and V; approximately 60% residue identities), suggesting that class IV might have originated through duplication of an early vertebrate class I gene. The activity of the class IV protein toward ethanol is even higher than that of the classical liver enzyme. Both Km and kcat values are high, the latter being the highest of any class characterized so far. Structurally, these properties are correlated with replacements at the active site, affecting both substrate and coenzyme binding. In particular, Ala-294 (instead of valine) results in increased space in the middle section of the substrate cleft, Gly-47 (instead of a basic residue) results in decreased charge interactions with the coenzyme pyrophosphate, and Tyr-363 (instead of a basic residue) may also affect coenzyme binding. In combination, these exchanges are compatible with a promotion of the off dissociation and an increased turnover rate. In contrast, residues at the inner part of the substrate cleft are bulky, accounting for low activity toward secondary alcohols and cyclohexanol. Exchanges at positions 259-261 involve minor shifts in glycine residues at a reverse turn in the coenzyme-binding fold. Clearly, class IV is distinct in structure, ethanol turnover, stomach expression, and possible emergence from class I. PMID:8127901

  19. N-acylethanolamines as novel alcohol dehydrogenase 3 substrates.

    PubMed

    Ivkovic, Milena; Dempsey, Daniel R; Handa, Sumit; Hilton, Joshua H; Lowe, Edward W; Merkler, David J

    2011-02-15

    N-acylethanolamines (NAEs) are members of the fatty acid amide family. The NAEs have been proposed to serve as metabolic precursors to N-acylglycines (NAGs). The sequential oxidation of the NAEs by an alcohol dehydrogenase and an aldehyde dehydrogenase would yield the N-acylglycinals and/or the NAGs. Alcohol dehydrogenase 3 (ADH3) is one enzyme that might catalyze this reaction. To define a potential role for ADH3 in NAE catabolism, we synthesized a set of NAEs and evaluated these as ADH3 substrates. NAEs were oxidized by ADH3, yielding the N-acylglycinals as the product. The (V/K)(app) values for the NAEs included here were low relative to cinnamyl alcohol. Our data show that the NAEs can serve as alcohol dehydrogenase substrates. PMID:21144815

  20. Human gastric alcohol dehydrogenase activity: effect of age, sex, and alcoholism.

    PubMed Central

    Seitz, H K; Egerer, G; Simanowski, U A; Waldherr, R; Eckey, R; Agarwal, D P; Goedde, H W; von Wartburg, J P

    1993-01-01

    As various isoenzymes of gastric alcohol dehydrogenase exist and as the effect of sex and age on these enzymes is unknown, this study measured the activity of gastric alcohol dehydrogenase at high and low ethanol concentrations in endoscopic biopsy specimens from a total of 290 patients of various ages and from 10 patients with chronic alcoholism. Gastric alcohol dehydrogenase was also detected by immunohistological tests in biopsy specimens from 40 patients by the use of a polyclonal rabbit antibody against class I alcohol dehydrogenase. A significant correlation was found between the immunohistological reaction assessed by the intensity of the colour reaction in the biopsy specimen and the activity of alcohol dehydrogenase measured at 580 mM ethanol. While alcohol dehydrogenase activity measured at 16 mM ethanol was not significantly affected by age and sex, both factors influenced alcohol dehydrogenase activity measured at 580 mM ethanol. Young women below 50 years of age had significantly lower alcohol dehydrogenase activities in the gastric corpus and antrum when compared with age matched controls (SEM) (6.4 (0.7) v 8.8 (0.6) nmol/min/mg protein; p < 0.001 and 6.0 (1.3) v 9.5 (1.3) nmol/min/mg protein; p < 0.001). Over 50 years of age this sex difference was no longer detectable, as high Km gastric alcohol dehydrogenase activity decreases with age only in men and not in women. In addition, extremely low alcohol dehydrogenase activities have been found in gastric biopsy specimens from young male alcoholics (2.2 (0.5) nmol/min/mg protein), which returned to normal after two to three weeks of abstinence. The activity of alcohol dehydrogenase in the human stomach measured at 580 mM ethanol is decreased in young women, in elderly men, and in the subject with alcoholism. This decrease in alcohol dehydrogenase activity may contribute to the reduced first pass metabolism of ethanol associated with raised ethanol blood concentrations seen in these people. Images Figure

  1. Multiple retinoid dehydrogenases in testes cytosol from alcohol dehydrogenase negative or positive deermice.

    PubMed

    Posch, K C; Napoli, J L

    1992-05-28

    Retinoic acid syntheses from retinol by cytosol from testes of alcohol dehydrogenase negative or positive deermice were similar in specific activity and in their insensitivity to 1 M ethanol or 100 mM 4-methylpyrazole. Anion-exchange followed by size-exclusion chromatography revealed multiple and similarly migrating peaks in each cytosol that had both retinol and retinal dehydrogenase activities. Thus, the effects of ethanol on testes cannot be caused by direct inhibition of cytosolic retinoic acid synthesis because retinoid dehydrogenases distinct from mouse class A2 alcohol dehydrogenases, which corresponds to human class I, occurred in testes and they were not inhibited by ethanol. These data also demonstrate the occurrence of multiple cytosolic retinoic acid synthesis activities and indicate that the two reactions of cytosolic retinoic acid synthesis, retinol and retinal dehydrogenation, may be catalyzed by enzymes that occur as complexes. PMID:1599517

  2. Quinoprotein alcohol dehydrogenase from ethanol-grown Pseudomonas aeruginosa.

    PubMed Central

    Groen, B; Frank, J; Duine, J A

    1984-01-01

    Cell-free extracts of Pseudomonas aeruginosa strains, grown on ethanol, showed dye-linked alcohol dehydrogenase activities. The enzyme responsible for this activity was purified to homogeneity. It appeared to contain two molecules of pyrroloquinoline quinone per enzyme molecule. In many respects, it resembled other quinoprotein alcohol dehydrogenases (EC 1.1.99.8), having a substrate specificity intermediate between that of methanol dehydrogenases and ethanol dehydrogenases in this group. On the other hand, it also showed dissimilarities: the enzyme was found to be a monomer (Mr 101 000), to need only one molecule of the suicide substrate cyclopropanol to become fully inactivated, and to have a different aromatic amino acid composition. PMID:6439190

  3. Drosophila alcohol dehydrogenase: developmental studies on cryptic variant lines.

    PubMed

    Miglani, G S; Ampy, F R

    1981-10-01

    Thirty-five cryptic variant lines were used to examine the mechanisms involved in genetic modulation of alcohol metabolism in Drosophila. Late third-instar larval, preemergence pupal, and adult stages cultured at 18 and 28 C were examined. Spectrophotometric analyses for native alcohol dehydrogenase (ADH) activity and residual ADH activity after treatment with guanidine hydrochloride and heat were performed. Differential response of cryptic variants to treatment with the denaturants during development suggested that this variation may have an adaptive significance. PMID:6800354

  4. Polymorphisms in Alcohol Metabolism Genes ADH1B and ALDH2, Alcohol Consumption and Colorectal Cancer

    PubMed Central

    Crous-Bou, Marta; Rennert, Gad; Cuadras, Daniel; Salazar, Ramon; Cordero, David; Saltz Rennert, Hedy; Lejbkowicz, Flavio; Kopelovich, Levy; Monroe Lipkin, Steven; Bernard Gruber, Stephen; Moreno, Victor

    2013-01-01

    Background Colorectal cancer (CRC) is a leading cause of cancer death worldwide. Epidemiological risk factors for CRC included alcohol intake, which is mainly metabolized to acetaldehyde by alcohol dehydrogenase and further oxidized to acetate by aldehyde dehydrogenase; consequently, the role of genes in the alcohol metabolism pathways is of particular interest. The aim of this study is to analyze the association between SNPs in ADH1B and ALDH2 genes and CRC risk, and also the main effect of alcohol consumption on CRC risk in the study population. Methodology/Principal Findings SNPs from ADH1B and ALDH2 genes, included in alcohol metabolism pathway, were genotyped in 1694 CRC cases and 1851 matched controls from the Molecular Epidemiology of Colorectal Cancer study. Information on clinicopathological characteristics, lifestyle and dietary habits were also obtained. Logistic regression and association analysis were conducted. A positive association between alcohol consumption and CRC risk was observed in male participants from the Molecular Epidemiology of Colorectal Cancer study (MECC) study (OR = 1.47; 95%CI = 1.18-1.81). Moreover, the SNPs rs1229984 in ADH1B gene was found to be associated with CRC risk: under the recessive model, the OR was 1.75 for A/A genotype (95%CI = 1.21-2.52; p-value = 0.0025). A path analysis based on structural equation modeling showed a direct effect of ADH1B gene polymorphisms on colorectal carcinogenesis and also an indirect effect mediated through alcohol consumption. Conclusions/Significance Genetic polymorphisms in the alcohol metabolism pathways have a potential role in colorectal carcinogenesis, probably due to the differences in the ethanol metabolism and acetaldehyde oxidation of these enzyme variants. PMID:24282520

  5. Genetic polymorphisms of ADH1B, ADH1C and ALDH2 in Turkish alcoholics: lack of association with alcoholism and alcoholic cirrhosis

    PubMed Central

    Vatansever, Sezgin; Tekin, Fatih; Salman, Esin; Altintoprak, Ender; Coskunol, Hakan; Akarca, Ulus Salih

    2015-01-01

    No data exists regarding the alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) gene polymorphisms in Turkish alcoholic cirrhotics. We studied the polymorphisms of ADH1B, ADH1C and ALDH2 genes in alcoholic cirrhotics and compared the results with non-cirrhotic alcoholics and healthy volunteers. Overall, 237 subjects were included for the study: 156 alcoholic patients (78 cirrhotics, 78 non-cirrhotic alcoholics) and 81 healthy volunteers. Three different single-nucleotide-polymorphism genotyping methods were used. ADH1C genotyping was performed using a polymerase chain reaction-restriction fragment length polymorphism method. The identified ADH1C genotypes were named according to the presence or absence of the enzyme restriction sites. ADH1B (Arg47Hys) genotyping was performed using the allele specific primer extension method, and ALDH2 (Glu487Lys) genotyping was performed by a multiplex polymerase chain reaction using two allele-specific primer pairs. For ADH1B, the frequency of allele *1 in the cirrhotics, non-cirrhotic alcoholics and healthy volunteers was 97.4%, 94.9% and 99.4%, respectively. For ADH1C, the frequency of allele *1 in the cirrhotics, non-cirrhotic alcoholics and healthy volunteers was 47%, 36.3% and 45%, respectively. There was no statistical difference between the groups for ADH1B and ADH1C (p>0.05). All alcoholic and non-alcoholic subjects (100%) had the allele *1 for ALDH2. The obtained results for ADH1B, ADH1C, and ALDH gene polymorphisms in the present study are similar to the results of Caucasian studies. ADH1B and ADH1C genetic variations are not related to the development of alcoholism or susceptibility to alcoholic cirrhosis. ALDH2 gene has no genetic variation in the Turkish population. PMID:26042511

  6. The alcohol dehydrogenase isoenzyme alcohol dehydrogenase IV as a candidate marker of Helicobacter pylori infection

    PubMed Central

    Laniewska-Dunaj, Magdalena; Strumnik, Anna; Szmitkowski, Maciej

    2014-01-01

    Introduction Helicobacter pylori infection is associated with decreased alcohol dehydrogenase (ADH) activity in the gastric mucosa. The decrease in gastric ADH activity depends on the severity of inflammation and mucosal injury. This damage can be a reason of the release of enzyme from gastric mucosa and leads to the increase of the ADH activity in the sera of patients with H. pylori infection. Material and methods Serum samples were taken from 140 patients with H. pylori infection. Total ADH activity was measured by photometric method with p-nitrosodimethylaniline as a substrate and ALDH activity by the fluorometric method with 6-methoxy-2-naphtaldehyde. For the measurement of the activity of class I and II isoenzymes we employed the fluorometric methods, with class-specific fluorogenic substrates. The activity of class III ADH was measured by the photometric method with n-octanol and class IV with m-nitrobenzaldehyde as a substrate. Results The activity of ADH IV in the serum of patients with H. pylori infection increased about 42% (7.86 mU/l) in the comparison to the control level (4.52 mU/l). Total activity of ADH was 1105 mU/l in patients group and 682 mU/l in control. The diagnostic sensitivity for ADH IV was 88%, specificity 90%, positive and negative predictive values were 91% and 84% respectively. Area under ROC curve for ADH IV was 0.84. Conclusions Helicobacter pylori infection of gastric mucosa is reflected in the serum by significant increase of class IV and total ADH activity. The results suggest a potential role for ADH IV as a marker of H. pylori infection. PMID:25395946

  7. Enantiocomplementary Yarrowia lipolytica Oxidoreductases: Alcohol Dehydrogenase 2 and Short Chain Dehydrogenase/Reductase

    PubMed Central

    Napora-Wijata, Kamila; Strohmeier, Gernot A.; Sonavane, Manoj N.; Avi, Manuela; Robins, Karen; Winkler, Margit

    2013-01-01

    Enzymes of the non-conventional yeast Yarrowia lipolytica seem to be tailor-made for the conversion of lipophilic substrates. Herein, we cloned and overexpressed the Zn-dependent alcohol dehydrogenase ADH2 from Yarrowia lipolytica in Escherichia coli. The purified enzyme was characterized in vitro. The substrate scope for YlADH2 mediated oxidation and reduction was investigated spectrophotometrically and the enzyme showed a broader substrate range than its homolog from Saccharomyces cerevisiae. A preference for secondary compared to primary alcohols in oxidation direction was observed for YlADH2. 2-Octanone was investigated in reduction mode in detail. Remarkably, YlADH2 displays perfect (S)-selectivity and together with a highly (R)-selective short chain dehydrogenase/ reductase from Yarrowia lipolytica it is possible to access both enantiomers of 2-octanol in >99% ee with Yarrowia lipolytica oxidoreductases. PMID:24970175

  8. Enzymic and structural studies on Drosophila alcohol dehydrogenase and other short-chain dehydrogenases/reductases.

    PubMed

    Smilda, T; Kamminga, A H; Reinders, P; Baron, W; van Hylckama Vlieg, J E; Beintema, J J

    2001-05-01

    Enzymic and structural studies on Drosophila alcohol dehydrogenases and other short-chain dehydrogenases/reductases (SDRs) are presented. Like alcohol dehydrogenases from other Drosophila species, the enzyme from D. simulans is more active on secondary than on primary alcohols, although ethanol is its only known physiological substrate. Several secondary alcohols were used to determine the kinetic parameters kcat and Km. The results of these experiments indicate that the substrate-binding region of the enzyme allows optimal binding of a short ethyl side-chain in a small binding pocket, and of a propyl or butyl side-chain in large binding pocket, with stereospecificity for R(-) alcohols. At a high concentration of R(-) alcohols substrate activation occurs. The kcat and Km values determined under these conditions are about two-fold, and two orders of magnitude, respectively, higher than those at low substrate concentrations. Sequence alignment of several SDRs of known, and unknown three-dimensional structures, indicate the presence of several conserved residues in addition to those involved in the catalyzed reactions. Structural roles of these conserved residues could be derived from observations made on superpositioned structures of several SDRs with known structures. Several residues are conserved in tetrameric SDRs, but not in dimeric ones. Two halohydrin-halide-lyases show significant homology with SDRs in the catalytic domains of these enzymes, but they do not have the structural features required for binding NAD+. Probably these lyases descend from an SDR, which has lost the capability to bind NAD+, but the enzyme reaction mechanisms may still be similar. PMID:11443349

  9. Biochemical properties of alcohol dehydrogenase from Drosophila lebanonensis.

    PubMed Central

    Winberg, J O; Hovik, R; McKinley-McKee, J S; Juan, E; Gonzalez-Duarte, R

    1986-01-01

    Purified Drosophila lebanonensis alcohol dehydrogenase (Adh) revealed one enzymically active zone in starch gel electrophoresis at pH 8.5. This zone was located on the cathode side of the origin. Incubation of D. lebanonensis Adh with NAD+ and acetone altered the electrophoretic pattern to more anodal migrating zones. D. lebanonensis Adh has an Mr of 56,000, a subunit of Mr of 28 000 and is a dimer with two active sites per enzyme molecule. This agrees with a polypeptide chain of 247 residues. Metal analysis by plasma emission spectroscopy indicated that this insect alcohol dehydrogenase is not a metalloenzyme. In studies of the substrate specificity and stereospecificity, D. lebanonensis Adh was more active with secondary than with primary alcohols. Both alkyl groups in the secondary alcohols interacted hydrophobically with the alcohol binding region of the active site. The catalytic centre activity for propan-2-ol was 7.4 s-1 and the maximum velocity of most secondary alcohols was approximately the same and indicative of rate-limiting enzyme-coenzyme dissociation. For primary alcohols the maximum velocity varied and was much lower than for secondary alcohols. The catalytic centre activity for ethanol was 2.4 s-1. With [2H6]ethanol a primary kinetic 2H isotope effect of 2.8 indicated that the interconversion of the ternary complexes was rate-limiting. Pyrazole was an ethanol-competitive inhibitor of the enzyme. The difference spectra of the enzyme-NAD+-pyrazole complex gave an absorption peak at 305 nm with epsilon 305 14.5 X 10(3) M-1 X cm-1. Concentrations and amounts of active enzyme can thus be determined. A kinetic rate assay to determine the concentration of enzyme active sites is also presented. This has been developed from active site concentrations established by titration at 305 nm of the enzyme and pyrazole with NAD+. In contrast with the amino acid composition, which indicated that D. lebanonensis Adh and the D. melanogaster alleloenzymes were not

  10. Polymorphism of Alcohol Metabolizing Gene ADH3 Predisposes to Development of Alcoholic Pancreatitis in North Indian Population

    PubMed Central

    Singh, Divya; Negi, Tajwar S.; Upadhyay, Ghanshyam; Choudhuri, Gourdas

    2015-01-01

    Background and aim: Genetic factors regulating alcohol metabolism could predispose in developing alcoholic pancreatitis (ACP). Studies revealed that alcohol could be metabolized by both ways, oxidative and non-oxidative. The main oxidative pathway includes alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), and cytochrome P450 enzyme. We investigated the association of polymorphisms in these enzymes with the alcoholic pancreatitis in the north Indian population. Method: Patients with alcoholic pancreatitis (ACP; n = 72), tropical calcific pancreatitis (TCP; n = 75), alcoholic controls (AC; n = 40), and healthy controls (HC; n = 100) were included in the study. Blood samples were collected from the subjects in EDTA coated vials. DNA was extracted and genotyping for ADH3, ALDH2, and CYP2E1 was done by PCR-RFLP (polymerase chain reaction—restriction fragment length polymorphism). The products were analyzed by gel electrophoresis. Result: The frequency distribution of ADH3*1/*1 genotype was significantly higher in ACP group (59.7%) compared with TCP (38.7%), HC (42%), and AC (37.5%) and was found to be associated with increased risk of alcoholic pancreatitis. There was no statistically significant difference between the frequency distribution of ADH3*1/*1, ADH3*1/*2, and ADH3*2/*2 genotypes between TCP and HC or healthy alcoholics. ALDH2 gene was monomorphic in our population, and the frequencies for CYP2E1 intron 6 Dra I polymorphism were comparable in all the four groups. Conclusion: This study shows that carriers of ADH3*1/*1 individuals consuming alcohol are at higher risk for alcoholic pancreatitis than those with other genotypes such as ADH3*1/*2 and ADH3*2/*2. PMID:26734614

  11. Multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase causing excessive acetaldehyde production from ethanol by oral streptococci

    PubMed Central

    Pavlova, Sylvia I.; Jin, Ling; Gasparovich, Stephen R.

    2013-01-01

    Ethanol consumption and poor oral hygiene are risk factors for oral and oesophageal cancers. Although oral streptococci have been found to produce excessive acetaldehyde from ethanol, little is known about the mechanism by which this carcinogen is produced. By screening 52 strains of diverse oral streptococcal species, we identified Streptococcus gordonii V2016 that produced the most acetaldehyde from ethanol. We then constructed gene deletion mutants in this strain and analysed them for alcohol and acetaldehyde dehydrogenases by zymograms. The results showed that S. gordonii V2016 expressed three primary alcohol dehydrogenases, AdhA, AdhB and AdhE, which all oxidize ethanol to acetaldehyde, but their preferred substrates were 1-propanol, 1-butanol and ethanol, respectively. Two additional dehydrogenases, S-AdhA and TdhA, were identified with specificities to the secondary alcohol 2-propanol and threonine, respectively, but not to ethanol. S. gordonii V2016 did not show a detectable acetaldehyde dehydrogenase even though its adhE gene encodes a putative bifunctional acetaldehyde/alcohol dehydrogenase. Mutants with adhE deletion showed greater tolerance to ethanol in comparison with the wild-type and mutant with adhA or adhB deletion, indicating that AdhE is the major alcohol dehydrogenase in S. gordonii. Analysis of 19 additional strains of S. gordonii, S. mitis, S. oralis, S. salivarius and S. sanguinis showed expressions of up to three alcohol dehydrogenases, but none showed detectable acetaldehyde dehydrogenase, except one strain that showed a novel ALDH. Therefore, expression of multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase may contribute to excessive production of acetaldehyde from ethanol by certain oral streptococci. PMID:23637459

  12. No evidence of association between structural polymorphism at the dopamine D3 receptor locus and alcoholism in the Japanese

    SciTech Connect

    Higuchi, Susumu; Muramatsu, Taro; Matsushita, Sachio; Murayama, Masanobu

    1996-07-26

    Dopaminergic systems mediate reward mechanisms and are involved in reinforcing self-administration of dependence-forming substances, including alcohol. Studies have reported that polymorphisms of the dopamine D2 receptor, whose structure and function are similar to those of the dopamine D3 receptor, increase the susceptibility to alcoholism. The observations led to the examination of the possible association between a structural polymorphism of the D3 receptor gene and alcoholism. Genotyping results, employing a PCR-RFLP method, showed no difference in allele and genotype frequencies of the D3 BalI polymorphism (Ser{sup 9}/Gly{sup 9}) between Japanese alcoholics and controls. Moreover, these frequencies were not altered in alcoholics with inactive aldehyde dehydrogenase-2 (ALDH2), a well-defined negative risk factor for alcoholism. These results strongly suggest that the dopamine D3 receptor is not associated with alcoholism. 19 refs., 1 fig., 1 tab.

  13. X-linked glucose-6-phosphate dehydrogenase (G6PD) and autosomal 6-phosphogluconate dehydrogenase (6PGD) polymorphisms in baboons

    SciTech Connect

    VandeBerg, J.L.; Aivaliotis, M.J.; Samollow, P.B. )

    1992-12-01

    Electrophoretic polymorphisms of glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD) were examined in captive colonies of five subspecies of baboons (Papio hamadryas). Phenotype frequencies and family data verified the X-linked inheritance of the G6PD polymorphism. Insufficient family data were available to confirm autosomal inheritance of the 6PGD polymorphism, but the electrophoretic patterns of variant types (putative heterozygotes) suggested the codominant expression of alleles at an autosomal locus. Implications of the G6PD polymorphism are discussed with regard to its utility as a marker system for research on X-chromosome inactivation during baboon development and for studies of clonal cell proliferation and/or cell selection during the development of atherosclerotic lesions in the baboon model. 61 refs., 1 fig., 4 tabs.

  14. Direct Observation of Correlated Interdomain Motion in Alcohol Dehydrogenase

    SciTech Connect

    Biehl, Ralf; Monkenbusch, Michael; Richter, Dieter; Hoffmann, Bernd; Merkel, Rudolf; Falus, Peter; Preost, Sylvain

    2008-09-26

    Interdomain motions in proteins are essential to enable or promote biochemical function. Neutron spin-echo spectroscopy is used to directly observe the domain dynamics of the protein alcohol dehydrogenase. The collective motion of domains as revealed by their coherent form factor relates to the cleft opening dynamics between the binding and the catalytic domains enabling binding and release of the functional important cofactor. The cleft opening mode hardens as a result of an overall stiffening of the domain complex due to the binding of the cofactor.

  15. High blood alcohol levels in women. The role of decreased gastric alcohol dehydrogenase activity and first-pass metabolism.

    PubMed

    Frezza, M; di Padova, C; Pozzato, G; Terpin, M; Baraona, E; Lieber, C S

    1990-01-11

    After consuming comparable amounts of ethanol, women have higher blood ethanol concentrations than men, even with allowance for differences in size, and are more susceptible to alcoholic liver disease. Recently, we documented significant "first-pass metabolism" of ethanol due to its oxidation by gastric tissue. We report a study of the possible contribution of this metabolism to the sex-related difference in blood alcohol concentrations in 20 men and 23 women. Six in each group were alcoholics. The first-pass metabolism was determined on the basis of the difference in areas under the curves of blood alcohol concentrations after intravenous and oral administration of ethanol (0.3 g per kilogram of body weight). Alcohol dehydrogenase activity was also measured in endoscopic gastric biopsies. In nonalcoholic subjects, the first-pass metabolism and gastric alcohol dehydrogenase activity of the women were 23 and 59 percent, respectively, of those in the men, and there was a significant correlation (rs = 0.659) between first-pass metabolism and gastric mucosal alcohol dehydrogenase activity. In the alcoholic men, the first-pass metabolism and gastric alcohol dehydrogenase activity were about half those in the nonalcoholic men; in the alcoholic women, the gastric mucosal alcohol dehydrogenase activity was even lower than in the alcoholic men, and first-pass metabolism was virtually abolished. We conclude that the increased bioavailability of ethanol resulting from decreased gastric oxidation of ethanol may contribute to the enhanced vulnerability of women to acute and chronic complications of alcoholism. PMID:2248624

  16. Amphibian alcohol dehydrogenase, the major frog liver enzyme. Relationships to other forms and assessment of an early gene duplication separating vertebrate class I and class III alcohol dehydrogenases

    SciTech Connect

    Cederlund, E.; Joernvall, H. ); Peralba, J.M.; Pares, X. )

    1991-03-19

    Submammalian alcohol dehydrogenase structures can be used to evaluate the origins and functions of different types of the mammalian enzyme. Two avian forms were recently reported, and the authors now define the major amphibian alcohol dehydrogenase. The enzyme from the liver of the Green frog Rana perezi was purified, carboxymethylated, and submitted to amino acid sequence determination by peptide analysis of six different digest. The protein has a 375-residue subunit and is a class I alcohol dehydrogenase, bridging the gap toward the original separation of the classes that are observable in the human alcohol dehydrogenase system. In relation to the human class I enzyme, the amphibian protein has residue identities exactly halfway (68%) between those for the corresponding avian enzyme (74%) and the human class III enzyme (62%), suggesting an origin of the alcohol dehnydrogenase classes very early in or close to the evolution of the vertebrate line. This conclusion suggests that these enzyme classes are more universal among animals than previously realized and constitutes the first real assessment of the origin of the duplications leading to the alcohol dehydrogenase classes. In conclusion, the amphibian enzyme allows a rough positioning of the divergence of the alcohol dehydrogenase classes, shows that the class I type is widesprread in vertebrates, and functionally conforms with greater variations at the substrate-binding than the coenzyme-binding site.

  17. Genic Heterogeneity at Two Alcohol Dehydrogenase Loci in DROSOPHILA PSEUDOOBSCURA and DROSOPHILA PERSIMILIS

    PubMed Central

    Coyne, Jerry A.; Felton, Alexander A.

    1977-01-01

    A sequential electrophoretic survey of the second chromosome loci, alcohol dehydrogenase-6 (Adh-6) and octanol dehydrogenase ( Odh), was performed on 147 isochromosomal lines of Drosophila pseudoobscura and 60 lines of its sibling species, D. persimilis. Gels run with a variety of acrylamide concentrations and buffer pH's revealed the presence of 18 alleles of Adh-6 in the two species, where only eight had been previously detected by conventional electrophoretic methods. Only two alleles were added with our techniques to the previous total of nine in both species at the largely monomorphic Odh locus. Both enzymes show a predominance of one allele, with the other variants being fairly rare. There was no evidence of increased genetic divergence between the two species, but we found a striking increase in differentiation of Adh-6 alleles between the main body of D. pseudoobscura populations and the conspecific isolate from Bogotá, Colombia. These results are compared with our previous surveys of xanthine dehydrogenase in these species and discussed in reference to theories of genic polymorphism. PMID:17248763

  18. Recommended nomenclature for the vertebrate alcohol dehydrogenase gene family.

    PubMed

    Duester, G; Farrés, J; Felder, M R; Holmes, R S; Höög, J O; Parés, X; Plapp, B V; Yin, S J; Jörnvall, H

    1999-08-01

    The alcohol dehydrogenase (ADH) gene family encodes enzymes that metabolize a wide variety of substrates, including ethanol, retinol, other aliphatic alcohols, hydroxysteroids, and lipid peroxidation products. Studies on 19 vertebrate animals have identified ADH orthologs across several species, and this has now led to questions of how best to name ADH proteins and genes. Seven distinct classes of vertebrate ADH encoded by non-orthologous genes have been defined based upon sequence homology as well as unique catalytic properties or gene expression patterns. Each class of vertebrate ADH shares <70% sequence identity with other classes of ADH in the same species. Classes may be further divided into multiple closely related isoenzymes sharing >80% sequence identity such as the case for class I ADH where humans have three class I ADH genes, horses have two, and mice have only one. Presented here is a nomenclature that uses the widely accepted vertebrate ADH class system as its basis. It follows the guidelines of human and mouse gene nomenclature committees, which recommend coordinating names across species boundaries and eliminating Roman numerals and Greek symbols. We recommend that enzyme subunits be referred to by the symbol "ADH" (alcohol dehydrogenase) followed by an Arabic number denoting the class; i.e. ADH1 for class I ADH. For genes we recommend the italicized root symbol "ADH" for human and "Adh" for mouse, followed by the appropriate Arabic number for the class; i.e. ADH1 or Adh1 for class I ADH genes. For organisms where multiple species-specific isoenzymes exist within a class, we recommend adding a capital letter after the Arabic number; i.e. ADH1A, ADH1B, and ADH1C for human alpha, beta, and gamma class I ADHs, respectively. This nomenclature will accommodate newly discovered members of the vertebrate ADH family, and will facilitate functional and evolutionary studies. PMID:10424757

  19. ADH and ALDH polymorphisms and alcohol dependence in Mexican and Native Americans

    PubMed Central

    Ehlers, Cindy L.; Liang, Tiebing; Gizer, Ian R.

    2012-01-01

    Background Ethanol is primarily metabolized in the liver by 2 rate-limiting reactions: conversion of ethanol to acetaldehyde by alcohol dehydrogenase (ADH) and subsequent conversion of acetaldehyde to acetate by aldehyde dehydrogenase (ALDH). ADH and ALDH exist in multiple isozymes that differ in their kinetic properties. Notably, polymorphisms within the genes that encode for these isozymes vary in their allele frequencies between ethnic groups, and thus, they have been considered as candidate genes that may differentially influence risk for the development of alcohol dependence across ethnic groups. Objectives and Methods Associations between alcohol dependence and polymorphisms in ADH1B, ADH1C, and ALDH2, were compared in a community sample of Native Americans living on reservations (n=791) and Mexican Americans (n=391) living within the same county. Results Two Mexican Americans and no Native Americans possessed one ALDH2*2 allele. Presence of at least one ADH1B*2 allele was found in 7% of the Native Americans and 13% of the Mexican Americans, but was only associated with protection against alcohol dependence in the Mexican Americans. Presence of at least one ADH1B*3 allele was found in 4% if the Native Americans and 2% of the Mexican Americans, but was associated with protection against alcohol dependence only in the Native Americans. No associations between alcohol dependence and polymorphisms in ADH1C were found. Conclusions and Scientific Significance Polymorphisms in ADH1B are protective against alcoholism in these two populations; however, these findings do not explain the high prevalence of alcoholism in these populations. PMID:22931071

  20. [Effect Of Polyelectrolytes on Catalytic Activity of Alcohol Dehydrogenase].

    PubMed

    Dubrovsky, A V; Musina, E V; Kim, A L; Tikhonenko, S A

    2016-01-01

    Fluorescent and optical spectroscopy were used to study the interaction of alcohol dehydrogenase (ADH) with negatively charged polystyrene sulfonate (PSS) and dextran sulfate (DS), as well as positively charged poly(diallyldimethylammonium) (PDADMA). As found, DS and PDADMA did not affect the structural and catalytic enzyme properties. In contrast, PSS slightly decreased the protein self-fluorescence over 1 h of incubation, which is associated with partial destruction of its quaternary (globular) structure. Investigation of the ADH activity with and without PSS showed its dependency on the incubation time and the PSS presence. Sodium chloride (2.0 M and 0.2 M) or ammonium sulfate (0.1 M) added to the reaction mixture did not completely protect the enzyme quaternary structure from the PSS action. However ammonium sulfate or 0.2 M sodium chloride stabilized the enzyme and partially inhibited the negative PSS effect. PMID:27266256

  1. Encapsulation of Alcohol Dehydrogenase in Mannitol by Spray Drying

    PubMed Central

    Shiga, Hirokazu; Joreau, Hiromi; Neoh, Tze Loon; Furuta, Takeshi; Yoshii, Hidefumi

    2014-01-01

    The retention of the enzyme activity of alcohol dehydrogenase (ADH) has been studied in various drying processes such as spray drying. The aim of this study is to encapsulate ADH in mannitol, either with or without additive in order to limit the thermal denaturation of the enzyme during the drying process. The retention of ADH activity was investigated at different drying temperatures. When mannitol was used, the encapsulated ADH was found inactive in all the dried powders. This is presumably due to the quick crystallization of mannitol during spray drying that resulted in the impairment of enzyme protection ability in comparison to its amorphous form. Maltodextin (dextrose equivalent = 11) was used to reduce the crystallization of mannitol. The addition of maltodextrin increased ADH activity and drastically changed the powder X-ray diffractogram of the spray-dried powders. PMID:24662364

  2. Physicochemical Characterization of a Thermostable Alcohol Dehydrogenase from Pyrobaculum aerophilum

    PubMed Central

    Vitale, Annalisa; Thorne, Natasha; Lovell, Scott; Battaile, Kevin P.; Hu, Xin; Shen, Min; D'Auria, Sabato; Auld, Douglas S.

    2013-01-01

    In this work we characterize an alcohol dehydrogenase (ADH) from the hyperthermophilic archaeon Pyrobaculum aerophilum (PyAeADHII). We have previously found that PyAeADHII has no activity when standard ADH substrates are used but is active when α-tetralone is used as substrate. Here, to gain insights into enzyme function, we screened several chemical libraries for enzymatic modulators using an assay employing α-tetralone. The results indicate that PyAeADHII activity in the presence of α-tetralone was inhibited by compounds such as flunarizine. We also examined metal coordination of the enzyme in solution by performing metal substitution of the enzyme-bound zinc (Zn2+) with cobalt. The solution-based absorption spectra for cobalt substituted PyAeADHII supports substitution at the structural Zn2+ site. To gain structural insight, we obtained the crystal structure of both wild-type and cobalt-substituted PyAeADHII at 1.75 Å and 2.20 Å resolution, respectively. The X-ray data confirmed one metal ion per monomer present only at the structural site with otherwise close conservation to other ADH enzymes. We next determined the co-crystal structure of the NADPH-bound form of the enzyme at 2.35 Å resolution to help define the active site region of the enzyme and this data shows close structural conservation with horse ADH, despite the lack of a catalytic Zn2+ ion in PyAeADHII. Modeling of α-tetralone into the NADPH bound structure suggests an arginine as a possible catalytic residue. The data presented here can yield a better understanding of alcohol dehydrogenases lacking the catalytic zinc as well as the structural features inherent to thermostable enzymes. PMID:23755111

  3. Contribution of liver alcohol dehydrogenase to metabolism of alcohols in rats.

    PubMed

    Plapp, Bryce V; Leidal, Kevin G; Murch, Bruce P; Green, David W

    2015-06-01

    The kinetics of oxidation of various alcohols by purified rat liver alcohol dehydrogenase (ADH) were compared with the kinetics of elimination of the alcohols in rats in order to investigate the roles of ADH and other factors that contribute to the rates of metabolism of alcohols. Primary alcohols (ethanol, 1-propanol, 1-butanol, 2-methyl-1-propanol, 3-methyl-1-butanol) and diols (1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol) were eliminated in rats with zero-order kinetics at doses of 5-20 mmol/kg. Ethanol was eliminated most rapidly, at 7.9 mmol/kgh. Secondary alcohols (2-propanol-d7, 2-propanol, 2-butanol, 3-pentanol, cyclopentanol, cyclohexanol) were eliminated with first order kinetics at doses of 5-10 mmol/kg, and the corresponding ketones were formed and slowly eliminated with zero or first order kinetics. The rates of elimination of various alcohols were inhibited on average 73% (55% for 2-propanol to 90% for ethanol) by 1 mmol/kg of 4-methylpyrazole, a good inhibitor of ADH, indicating a major role for ADH in the metabolism of the alcohols. The Michaelis kinetic constants from in vitro studies (pH 7.3, 37 °C) with isolated rat liver enzyme were used to calculate the expected relative rates of metabolism in rats. The rates of elimination generally increased with increased activity of ADH, but a maximum rate of 6±1 mmol/kg h was observed for the best substrates, suggesting that ADH activity is not solely rate-limiting. Because secondary alcohols only require one NAD(+) for the conversion to ketones whereas primary alcohols require two equivalents of NAD(+) for oxidation to the carboxylic acids, it appears that the rate of oxidation of NADH to NAD(+) is not a major limiting factor for metabolism of these alcohols, but the rate-limiting factors are yet to be identified. PMID:25641189

  4. Regulation of human class I alcohol dehydrogenases by bile acids

    PubMed Central

    Langhi, Cédric; Pedraz-Cuesta, Elena; Haro, Diego; Marrero, Pedro F.; Rodríguez, Joan C.

    2013-01-01

    Class I alcohol dehydrogenases (ADH1s) are the rate-limiting enzymes for ethanol and vitamin A (retinol) metabolism in the liver. Because previous studies have shown that human ADH1 enzymes may participate in bile acid metabolism, we investigated whether the bile acid-activated nuclear receptor farnesoid X receptor (FXR) regulates ADH1 genes. In human hepatocytes, both the endogenous FXR ligand chenodeoxycholic acid and synthetic FXR-specific agonist GW4064 increased ADH1 mRNA, protein, and activity. Moreover, overexpression of a constitutively active form of FXR induced ADH1A and ADH1B expression, whereas silencing of FXR abolished the effects of FXR agonists on ADH1 expression and activity. Transient transfection studies and electrophoretic mobility shift assays revealed functional FXR response elements in the ADH1A and ADH1B proximal promoters, thus indicating that both genes are direct targets of FXR. These findings provide the first evidence for direct connection of bile acid signaling and alcohol metabolism. PMID:23772048

  5. Use of the anti-Prelog stereospecific alcohol dehydrogenase from Leifsonia and Pseudomonas for producing chiral alcohols.

    PubMed

    Itoh, Nobuya

    2014-05-01

    The asymmetric reduction of ketones is one of the most promising processes for producing chiral alcohols. However, dehydrogenases or reductases that can catalyze the reduction of ketones to give anti-Prelog chiral alcohols have been limited to some NADP(+)/NADPH-dependent enzymes. Recently, we reported a novel NAD(+)/NADH-dependent alcohol dehydrogenase (ADH) from Leifsonia sp. and Pseudomonas ADH homologs from soil metagenomes. Moreover, we have established an efficient hydrogen-transfer bioreduction process with 2-propanol as a hydrogen donor using Leifsonia ADH. This review focuses on the recent development of novel ADHs for producing industrially useful anti-Prelog chiral alcohols from various ketones. PMID:24615386

  6. An autosomal glucose-6-phosphate dehydrogenase (hexose-6-phosphate dehydrogenase) polymorphism in human saliva.

    PubMed

    Tan, S G; Ashton, G C

    1976-01-01

    Glucose-6-phosphate dehydrogenase (hexose-6-phosphate dehydrogenase) from human saliva has been demonstrated by the zymogram technique. Three phenotypes were found. Family and population studies suggested that these phenotypes are the products of an autosomal locus with two alleles Sgd-1 and Sgd-2. PMID:950237

  7. Alcohol dehydrogenases and an alcohol oxidase involved in the assimilation of exogenous fatty alcohols in Yarrowia lipolytica.

    PubMed

    Iwama, Ryo; Kobayashi, Satoshi; Ohta, Akinori; Horiuchi, Hiroyuki; Fukuda, Ryouichi

    2015-05-01

    The yeast Yarrowia lipolytica can assimilate hydrophobic substrates, including n-alkanes and fatty alcohols. Here, eight alcohol dehydrogenase genes, ADH1-ADH7 and FADH, and a fatty alcohol oxidase gene, FAO1, were analyzed to determine their roles in the metabolism of hydrophobic substrates. A mutant deleted for all of these genes (ALCY02 strain) showed severely defective growth on fatty alcohols, and enhanced sensitivity to fatty alcohols in glucose-containing media. The ALCY02 strain grew normally on n-tetradecane or n-hexadecane, but exhibited slightly defective growth on n-decane or n-dodecane. It accumulated more 1-dodecanol and less dodecanoic acid than the wild-type strain when n-dodecane was fed. Expression of ADH1, ADH3 or FAO1, but not that of other ADH genes or FADH, in the ALCY02 strain restored its growth on fatty alcohols. In addition, a triple deletion mutant of ADH1, ADH3 and FAO1 showed similarly defective growth on fatty alcohols and on n-dodecane to the ALCY02 strain. Microscopic observation suggests that Adh1p and Adh3p are localized in the cytosol and Fao1p is in the peroxisome. These results suggest that Adh1p, Adh3p and Fao1p are responsible for the oxidation of exogenous fatty alcohols but play less prominent roles in the oxidation of fatty alcohols derived from n-alkanes. PMID:25805841

  8. Redesigning alcohol dehydrogenases/reductases for more efficient biosynthesis of enantiopure isomers.

    PubMed

    Zhang, Rongzhen; Xu, Yan; Xiao, Rong

    2015-12-01

    Alcohol dehydrogenases/reductases predominantly catalyze the asymmetric biosynthesis of optically pure stereoisomers because of their unique chiral constitutions. The enantioselectivities of alcohol dehydrogenases/reductases are substrate- and cofactor-dependent, and therefore they usually catalyze specific reactions with high enantioselectivity under physiological conditions; this may not be suitable for asymmetric biosynthesis with non-natural substrates or non-natural cofactors, and under nonphysiological conditions. It is therefore necessary to modify alcohol dehydrogenases/reductases using various redesigning tools such as directed evolution and rational design, and their combinations, as well as engineering enzyme modules for more efficient production of "non-natural" products. In this article, progress in these aspects of alcohol dehydrogenase/reductase design is reviewed, and future challenges are discussed. PMID:26320091

  9. Cloning and sequencing of the alcohol dehydrogenase II gene from Zymomonas mobilis

    DOEpatents

    Ingram, Lonnie O.; Conway, Tyrrell

    1992-01-01

    The alcohol dehydrogenase II gene from Zymomonas mobilis has been cloned and sequenced. This gene can be expressed at high levels in other organisms to produce acetaldehyde or to convert acetaldehyde to ethanol.

  10. Drosophila melanogaster alcohol dehydrogenase: mechanism of aldehyde oxidation and dismutation.

    PubMed

    Winberg, J O; McKinley-McKee, J S

    1998-02-01

    Drosophila alcohol dehydrogenase (Adh) catalyses the oxidation of both alcohols and aldehydes. In the latter case, the oxidation is followed by a reduction of the aldehyde, i.e. a dismutation reaction. At high pH, dismutation is accompanied by a small release of NADH, which is not observed at neutral pH. Previously it has been emphasized that kinetic coefficients obtained by measuring the increase in A340, i.e. the release of NADH at high pH is not a direct measure of the aldehyde oxidation reaction and these values cannot be compared with those for alcohol dehydrogenation. In this article we demonstrate that this is not entirely true, and that the coefficients phiB and phiAB, where B is the aldehyde and A is NAD+, are the same for a dismutation reaction and a simple aldehyde dehydrogenase reaction. Thus the substrate specificity of the aldehyde oxidation reaction can be determined by simply measuring the NADH release. The coefficients for oxidation and dehydrogenation reactions (phi0d and phiAd respectively) are complex and involve the constants for the dismutation reaction. However, dead-end inhibitors can be used to determine the quantitative contribution of the kinetic constants for the aldehyde oxidation and reduction pathways to the phi0d and phiAd coefficients. The combination of dead-end and product inhibitors can be used to determine the reaction mechanism for the aldehyde oxidation pathway. Previously, we showed that with Drosophila Adh, the interconversion between alcohols and aldehydes followed a strictly compulsory ordered pathway, although aldehydes and ketones formed binary complexes with the enzyme. This raised the question regarding the reaction mechanism for the oxidation of aldehydes, i.e. whether a random ordered pathway was followed. In the present work, the mechanism for the oxidation of different aldehydes and the accompanying dismutation reaction with the slow alleloenzyme (AdhS) from Drosophila melanogaster has been studied. To obtain

  11. Drosophila melanogaster alcohol dehydrogenase: mechanism of aldehyde oxidation and dismutation.

    PubMed Central

    Winberg, J O; McKinley-McKee, J S

    1998-01-01

    Drosophila alcohol dehydrogenase (Adh) catalyses the oxidation of both alcohols and aldehydes. In the latter case, the oxidation is followed by a reduction of the aldehyde, i.e. a dismutation reaction. At high pH, dismutation is accompanied by a small release of NADH, which is not observed at neutral pH. Previously it has been emphasized that kinetic coefficients obtained by measuring the increase in A340, i.e. the release of NADH at high pH is not a direct measure of the aldehyde oxidation reaction and these values cannot be compared with those for alcohol dehydrogenation. In this article we demonstrate that this is not entirely true, and that the coefficients phiB and phiAB, where B is the aldehyde and A is NAD+, are the same for a dismutation reaction and a simple aldehyde dehydrogenase reaction. Thus the substrate specificity of the aldehyde oxidation reaction can be determined by simply measuring the NADH release. The coefficients for oxidation and dehydrogenation reactions (phi0d and phiAd respectively) are complex and involve the constants for the dismutation reaction. However, dead-end inhibitors can be used to determine the quantitative contribution of the kinetic constants for the aldehyde oxidation and reduction pathways to the phi0d and phiAd coefficients. The combination of dead-end and product inhibitors can be used to determine the reaction mechanism for the aldehyde oxidation pathway. Previously, we showed that with Drosophila Adh, the interconversion between alcohols and aldehydes followed a strictly compulsory ordered pathway, although aldehydes and ketones formed binary complexes with the enzyme. This raised the question regarding the reaction mechanism for the oxidation of aldehydes, i.e. whether a random ordered pathway was followed. In the present work, the mechanism for the oxidation of different aldehydes and the accompanying dismutation reaction with the slow alleloenzyme (AdhS) from Drosophila melanogaster has been studied. To obtain

  12. Mechanistic implications from structures of yeast alcohol dehydrogenase complexed with coenzyme and an alcohol.

    PubMed

    Plapp, Bryce V; Charlier, Henry A; Ramaswamy, S

    2016-02-01

    Yeast alcohol dehydrogenase I is a homotetramer of subunits with 347 amino acid residues, catalyzing the oxidation of alcohols using NAD(+) as coenzyme. A new X-ray structure was determined at 3.0 Å where both subunits of an asymmetric dimer bind coenzyme and trifluoroethanol. The tetramer is a pair of back-to-back dimers. Subunit A has a closed conformation and can represent a Michaelis complex with an appropriate geometry for hydride transfer between coenzyme and alcohol, with the oxygen of 2,2,2-trifluoroethanol ligated at 2.1 Å to the catalytic zinc in the classical tetrahedral coordination with Cys-43, Cys-153, and His-66. Subunit B has an open conformation, and the coenzyme interacts with amino acid residues from the coenzyme binding domain, but not with residues from the catalytic domain. Coenzyme appears to bind to and dissociate from the open conformation. The catalytic zinc in subunit B has an alternative, inverted coordination with Cys-43, Cys-153, His-66 and the carboxylate of Glu-67, while the oxygen of trifluoroethanol is 3.5 Å from the zinc. Subunit B may represent an intermediate in the mechanism after coenzyme and alcohol bind and before the conformation changes to the closed form and the alcohol oxygen binds to the zinc and displaces Glu-67. PMID:26743849

  13. Alteration in substrate specificity of horse liver alcohol dehydrogenase by an acyclic nicotinamide analog of NAD(+).

    PubMed

    Malver, Olaf; Sebastian, Mina J; Oppenheimer, Norman J

    2014-11-01

    A new, acyclic NAD-analog, acycloNAD(+) has been synthesized where the nicotinamide ribosyl moiety has been replaced by the nicotinamide (2-hydroxyethoxy)methyl moiety. The chemical properties of this analog are comparable to those of β-NAD(+) with a redox potential of -324mV and a 341nm λmax for the reduced form. Both yeast alcohol dehydrogenase (YADH) and horse liver alcohol dehydrogenase (HLADH) catalyze the reduction of acycloNAD(+) by primary alcohols. With HLADH 1-butanol has the highest Vmax at 49% that of β-NAD(+). The primary deuterium kinetic isotope effect is greater than 3 indicating a significant contribution to the rate limiting step from cleavage of the carbon-hydrogen bond. The stereochemistry of the hydride transfer in the oxidation of stereospecifically deuterium labeled n-butanol is identical to that for the reaction with β-NAD(+). In contrast to the activity toward primary alcohols there is no detectable reduction of acycloNAD(+) by secondary alcohols with HLADH although these alcohols serve as competitive inhibitors. The net effect is that acycloNAD(+) has converted horse liver ADH from a broad spectrum alcohol dehydrogenase, capable of utilizing either primary or secondary alcohols, into an exclusively primary alcohol dehydrogenase. This is the first example of an NAD analog that alters the substrate specificity of a dehydrogenase and, like site-directed mutagenesis of proteins, establishes that modifications of the coenzyme distance from the active site can be used to alter enzyme function and substrate specificity. These and other results, including the activity with α-NADH, clearly demonstrate the promiscuity of the binding interactions between dehydrogenases and the riboside phosphate of the nicotinamide moiety, thus greatly expanding the possibilities for the design of analogs and inhibitors of specific dehydrogenases. PMID:25280628

  14. Contribution of Liver Alcohol Dehydrogenase to Metabolism of Alcohols in Rats

    PubMed Central

    Plapp, Bryce V.; Leidal, Kevin G.; Murch, Bruce P.; Green, David W.

    2015-01-01

    The kinetics of oxidation of various alcohols by purified rat liver alcohol dehydrogenase (ADH) were compared with the kinetics of elimination of the alcohols in rats in order to investigate the roles of ADH and other factors that contribute to the rates of metabolism of alcohols. Primary alcohols (ethanol, 1-propanol, 1-butanol, 2-methyl-1-propanol, 3-methyl-1-butanol) and diols (1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol) were eliminated in rats with zero-order kinetics at doses of 5–20 mmole/kg. Ethanol was eliminated most rapidly, at 7.9 mmole/kg•h. Secondary alcohols (2-propanol-d7, 2-propanol, 2-butanol, 3-pentanol, cyclopentanol, cyclohexanol) were eliminated with first order kinetics at doses of 5–10 mmole/kg, and the corresponding ketones were formed and slowly eliminated with zero or first order kinetics. The rates of elimination of various alcohols were inhibited on average 73% (55% for 2-propanol to 90% for ethanol) by 1 mmole/kg of 4-methylpyrazole, a good inhibitor of ADH, indicating a major role for ADH in the metabolism of the alcohols. The Michaelis kinetic constants from in vitro studies (pH 7.3, 37 °C) with isolated rat liver enzyme were used to calculate the expected relative rates of metabolism in rats. The rates of elimination generally increased with increased activity of ADH, but a maximum rate of 6 ± 1 mmole/kg•h was observed for the best substrates, suggesting that ADH activity is not solely rate-limiting. Because secondary alcohols only require one NAD+ for the conversion to ketones whereas primary alcohols require two equivalents of NAD+ for oxidation to the carboxylic acids, it appears that the rate of oxidation of NADH to NAD+ is not a major limiting factor for metabolism of these alcohols, but the rate-limiting factors are yet to be identified. PMID:25641189

  15. Alcohol dehydrogenase activity in Lactococcus chungangensis: application in cream cheese to moderate alcohol uptake.

    PubMed

    Konkit, Maytiya; Choi, Woo Jin; Kim, Wonyong

    2015-09-01

    Many human gastrointestinal facultative anaerobic and aerobic bacteria possess alcohol dehydrogenase (ADH) activity and are therefore capable of oxidizing ethanol to acetaldehyde. However, the ADH activity of Lactococcus spp., except Lactococcus lactis ssp. lactis, has not been widely determined, though they play an important role as the starter for most cheesemaking technologies. Cheese is a functional food recognized as an aid to digestion. In the current study, the ADH activity of Lactococcus chungangensis CAU 28(T) and 11 reference strains from the genus Lactococcus was determined. Only 5 strains, 3 of dairy origin, L. lactis ssp. lactis KCTC 3769(T), L. lactis ssp. cremoris KCCM 40699(T), and Lactococcus raffinolactis DSM 20443(T), and 2 of nondairy origin, Lactococcus fujiensis NJ317(T) and Lactococcus chungangensis CAU 28(T) KCTC 13185(T), showed ADH activity and possessed the ADH gene. All these strains were capable of making cheese, but the highest level of ADH activity was found in L. chungangensis, with 45.9nmol/min per gram in tryptic soy broth and 65.8nmol/min per gram in cream cheese. The extent that consumption of cheese, following imbibing alcohol, reduced alcohol uptake was observed by following the level of alcohol in the serum of mice. The results show a potential novel benefit of cheese as a dairy functional food. PMID:26142864

  16. Origin and evolution of medium chain alcohol dehydrogenases.

    PubMed

    Jörnvall, Hans; Hedlund, Joel; Bergman, Tomas; Kallberg, Yvonne; Cederlund, Ella; Persson, Bengt

    2013-02-25

    Different lines of alcohol dehydrogenases (ADHs) have separate superfamily origins, already recognized but now extended and re-evaluated by re-screening of the latest databank update. The short-chain form (SDR) is still the superfamily with most abundant occurrence, most multiple divergence, most prokaryotic emphasis, and most non-complicated architecture. This pattern is compatible with an early appearance at the time of the emergence of prokaryotic cellular life. The medium-chain form (MDR) is also old but second in terms of all the parameters above, and therefore compatible with a second emergence. However, this step appears seemingly earlier than previously considered, and may indicate sub-stages of early emergences at the increased resolution available from the now greater number of data entries. The Zn-MDR origin constitutes a third stage, possibly compatible with the transition to oxidative conditions on earth. Within all these three lines, repeated enzymogeneses gave the present divergence. MDR-ADH origin(s), at a fourth stage, may also be further resolved in multiple or extended modes, but the classical liver MDR-ADH of the liver type can still be traced to a gene duplication ~550 MYA (million years ago), at the early vertebrate radiation, compatible with the post-eon-shift, "Cambrian explosion". Classes and isozymes correspond to subsequent and recent duplicatory events, respectively. They illustrate a peculiar pattern with functional and emerging evolutionary distinctions between parent and emerging lines, suggesting a parallelism between duplicatory and mutational events, now also visible at separate sub-stages. Combined, all forms show distinctive patterns at different levels and illustrate correlations with global events. They further show that simple molecular observations on patterns, multiplicities and occurrence give much information, suggesting common divergence rules not much disturbed by horizontal gene transfers after the initial origins. PMID

  17. Bifunctional aldehyde/alcohol dehydrogenase (ADHE) in chlorophyte algal mitochondria.

    PubMed

    Atteia, Ariane; van Lis, Robert; Mendoza-Hernández, Guillermo; Henze, Katrin; Martin, William; Riveros-Rosas, Hector; González-Halphen, Diego

    2003-09-01

    Protein profiles of mitochondria isolated from the heterotrophic chlorophyte Polytomella sp. grown on ethanol at pH 6.0 and pH 3.7 were analyzed by Blue Native and denaturing polyacrylamide gel electrophoresis. Steady-state levels of oxidative phosphorylation complexes were influenced by external pH. Levels of an abundant, soluble, mitochondrial protein of 85 kDa and its corresponding mRNA increased at pH 6.0 relative to pH 3.7. N-terminal and internal sequencing of the 85 kDa mitochondrial protein together with the corresponding cDNA identified it as a bifunctional aldehyde/alcohol dehydrogenase (ADHE) with strong similarity to homologues from eubacteria and amitochondriate protists. A mitochondrial targeting sequence of 27 amino acids precedes the N-terminus of the mature mitochondrial protein. A gene encoding an ADHE homologue was also identified in the genome of Chlamydomonas reinhardtii, a photosynthetic relative of Polytomella. ADHE reveals a complex picture of sequence similarity among homologues. The lack of ADHE from archaebacteria indicates a eubacterial origin for the eukaryotic enzyme. Among eukaryotes, ADHE has hitherto been characteristic of anaerobes since it is essential to cytosolic energy metabolism of amitochondriate protists such as Giardia intestinalis and Entamoeba histolytica. Its abundance and expression pattern suggest an important role for ADHE in mitochondrial metabolism of Polytomella under the conditions studied. The current data are compatible with the view that Polytomella ADHE could be involved either in ethanol production or assimilation, or both, depending upon environmental conditions. Presence of ADHE in an oxygen-respiring algal mitochondrion and co-expression at ambient oxygen levels with respiratory chain components is unexpected with respect to the view that eukaryotes acquired ADHE genes specifically as an adaptation to an anaerobic lifestyle. PMID:14756315

  18. Action of shear on enzymes: studies with alcohol dehydrogenase.

    PubMed

    Thomas, C R; Nienow, A W; Dunnill, P

    1979-12-01

    Yeast alcohol dehydrogenase (ADH) solutions (approximately 1 mg/ml, pH 7) were sheared in a coaxial cylindrical viscometer. This was fitted with a lid sealing the contents from the atmosphere and preventing evaporation. At 30 degrees C after a total of 5 hr intermittent shearing at 683 sec-1 no losses of activity were observed. No losses were found after 5 hr continuous shearing and in a no-shear control. At 40 degrees C and 683 sec-1 there were only small activity losses in 5 hr. Shearing at 3440 sec-1 no measurable losses of activity were found with a 1.03 mg/ml solution in 5 hr at 30 degrees C, a 1.03 mg/ml solution in 8 hr at 5 degrees C, and with a 3.89 mg/ml solution in 3 hr at 5 degrees C. In all these cases, however, a white precipitate formed that was not observed in zero shear control experiments. The sheared 3.89 mg/ml solution was clarified by centrifugation. It was shown that there were no ADH aggregates in the supernatant and that the precipitate was less than 2% of the original protein. At 30 degrees C under adverse pH conditions (pH 8.8) there was no significant difference in activity losses of an approximately 1 mg/ml solution sheared at 65 and 744 sec-1. An approximately 0.5 mg/ml ADH solution, pH 7, was agitated in a small reactor with no free air-liquid interface. Peak shear rates near the impeller were estimated to be about 9000 sec-1. Only a small decrease in specific activity was observed until over 15 hr total running at 5 degrees C. PMID:42450

  19. Baboon alcohol dehydrogenase isozymes: phenotypic changes in liver following chronic consumption of alcohol.

    PubMed

    Holmes, R S; VandeBerg, J L

    1987-01-01

    According to the nomenclature of Vallee and Bazzone [1983] for mammalian alcohol dehydrogenase (ADH) isozymes, baboon ADHs comprise three major classes of activity, which were distinguished according to the following properties: Class I ADHs. These isozymes exhibited low-Km characteristics with ethanol as substrate, high isoelectric points (8.5-9.3), and sensitivity to 5 mM 4-methyl pyrazole inhibition, and were the major liver (ADH-2) and kidney (ADH-1) isozymes in the baboon. Class II ADHs. These isozymes showed high-Km values for ethanol, neutral isoelectric points (7.7 for the liver ADH-4 [pi-ADH] and 7.2 for the major stomach ADH [ADH-3], respectively), and were insensitive to inhibition with 5 mM 4-methyl pyrazole. Class III ADH. This enzyme was characterized by its inactivity with ethanol as substrate (up to 0.5 M), insensitivity to 4-methyl pyrazole inhibition, preference for medium-chain-length alcohols as substrate (trans-2-hexen-1-ol was routinely used in this study), and an isoelectric point (6.5) similar to that of the human liver chi-ADH (pI 6.4). Major activity variation of the liver pi-ADH (ADH-4) isozyme was observed among the 114 liver samples examined, with 34 percent exhibiting a null (or low-activity) phenotype. An electrophoretic variant phenotype for the major class II stomach isozyme (ADH-3) was also found in the population studied. The baboon was used as a model for studying alcohol-induced changes in liver ADH phenotype following chronic alcohol consumption. Prepuberal male baboons were pair-fed nutritionally adequate liquid diets containing ethanol (50 percent of calories) or isocaloric carbohydrates, and liver ADH isozyme patterns from biopsy samples were monitored for 20 weeks. Dramatic decreases in class II liver ADH activity (ADH-4, or pi-ADH) were observed within 4 weeks after the start of alcohol feeding, and a shift in liver class I isozymes was found during the later stages of alcohol consumption. These changes during chronic

  20. Highly selective anti-Prelog synthesis of optically active aryl alcohols by recombinant Escherichia coli expressing stereospecific alcohol dehydrogenase.

    PubMed

    Li, Ming; Nie, Yao; Mu, Xiao Qing; Zhang, Rongzhen; Xu, Yan

    2016-07-01

    Biocatalytic asymmetric synthesis has been widely used for preparation of optically active chiral alcohols as the important intermediates and precursors of active pharmaceutical ingredients. However, the available whole-cell system involving anti-Prelog specific alcohol dehydrogenase is yet limited. A recombinant Escherichia coli system expressing anti-Prelog stereospecific alcohol dehydrogenase from Candida parapsilosis was established as a whole-cell system for catalyzing asymmetric reduction of aryl ketones to anti-Prelog configured alcohols. Using 2-hydroxyacetophenone as the substrate, reaction factors including pH, cell status, and substrate concentration had obvious impacts on the outcome of whole-cell biocatalysis, and xylose was found to be an available auxiliary substrate for intracellular cofactor regeneration, by which (S)-1-phenyl-1,2-ethanediol was achieved with an optical purity of 97%e.e. and yield of 89% under the substrate concentration of 5 g/L. Additionally, the feasibility of the recombinant cells toward different aryl ketones was investigated, and most of the corresponding chiral alcohol products were obtained with an optical purity over 95%e.e. Therefore, the whole-cell system involving recombinant stereospecific alcohol dehydrogenase was constructed as an efficient biocatalyst for highly enantioselective anti-Prelog synthesis of optically active aryl alcohols and would be promising in the pharmaceutical industry. PMID:26178068

  1. Selection variability for Arg48His in alcohol dehydrogenase ADH1B among Asian populations.

    PubMed

    Evsyukov, Alexey; Ivanov, Denis

    2013-08-01

    The variant His at codon 48 of the alcohol dehydrogenase gene (ADH1B) results in more efficient ethanol metabolism than with the "typical" codon 48Arg. In this study we introduced selection properties of Arg48His genotypes of ADH1B and estimated fitness in four ethnic-geographical clusters in Asia. Population genetics models were employed that derive observed gene frequencies from fitness relationships among genotypes, to infer the selection pattern of polymorphisms in an indirect manner. The data were analyzed using the model of "complete stationary distribution" by Wright that takes into account random genetic drift, pressure of migrations, mutations, and selection as influential factors of gene frequency. We found that the different population groups showed some variation in the types of selection for Arg48His. Han Chinese from eastern and southeastern China and the Japanese and Korean populations showed stabilizing selection, while the groups from Central Asian and Indochina showed divergent selection. However, all the groups demonstrated a strong positive selection for Arg48His. PMID:25019189

  2. Effect of amines as activators on the alcohol-oxidizing activity of pyrroloquinoline quinone-dependent quinoprotein alcohol dehydrogenase.

    PubMed

    Takeda, Kouta; Ishida, Takuya; Igarashi, Kiyohiko; Samejima, Masahiro; Nakamura, Nobuhumi; Ohno, Hiroyuki

    2014-01-01

    Pyrroloquinoline quinone-dependent quinoprotein alcohol dehydrogenases (PQQ-ADH) require ammonia or primary amines as activators in in vitro assays with artificial electron acceptors. We found that PQQ-ADH from Pseudomonas putida KT2440 (PpADH) was activated by various primary amines, di-methylamine, and tri-methylamine. The alcohol oxidation activity of PpADH was strongly enhanced and the affinity for substrates was also improved by pentylamine as an activator. PMID:25229857

  3. Crystal structure of cod liver class I alcohol dehydrogenase: substrate pocket and structurally variable segments.

    PubMed Central

    Ramaswamy, S.; el Ahmad, M.; Danielsson, O.; Jörnvall, H.; Eklund, H.

    1996-01-01

    The structural framework of cod liver alcohol dehydrogenase is similar to that of horse and human alcohol dehydrogenases. In contrast, the substrate pocket differs significantly, and main differences are located in three loops. Nevertheless, the substrate pocket is hydrophobic like that of the mammalian class I enzymes and has a similar topography in spite of many main-chain and side-chain differences. The structural framework of alcohol dehydrogenase is also present in a number of related enzymes like glucose dehydrogenase and quinone oxidoreductase. These enzymes have completely different substrate specificity, but also for these enzymes, the corresponding loops of the substrate pocket have significantly different structures. The domains of the two subunits in the crystals of the cod enzyme further differ by a rotation of the catalytic domains by about 6 degrees. In one subunit, they close around the coenzyme similarly as in coenzyme complexes of the horse enzyme, but form a more open cleft in the other subunit, similar to the situation in coenzyme-free structures of the horse enzyme. The proton relay system differs from the mammalian class I alcohol dehydrogenases. His 51, which has been implicated in mammalian enzymes to be important for proton transfer from the buried active site to the surface is not present in the cod enzyme. A tyrosine in the corresponding position is turned into the substrate pocket and a water molecule occupies the same position in space as the His side chain, forming a shorter proton relay system. PMID:8845755

  4. Strong Protective Effect of The Aldehyde Dehydrogenase Gene (ALDH2) 504lys (*2) Allele Against Alcoholism And Alcohol-Induced Medical Diseases in Asians

    PubMed Central

    Li, Dawei; Zhao, Hongyu; Gelernter, Joel

    2013-01-01

    Alcohol is oxidized to acetaldehyde, which in turn is oxidized to acetate. The aldehyde dehydrogenase 2 gene (ALDH2) is the most important gene responsible for acetaldehyde metabolism. Individuals heterozygous or homozygous for the lys (A or *2) allele at the single nucleotide polymorphism (SNP) glu504lys (rs671) of ALDH2 have greatly reduced ability to metabolize acetaldehyde, which greatly decreases their risk for alcohol dependence (AD). Case-control studies have shown association between this SNP and alcohol dependence as well as alcohol-induced liver disease. However, some studies have produced insignificant results. Using cumulative data from the past 20 years predominately from Asian populations (from both English and Chinese publications), this meta-analysis sought to examine and update whether the aggregate data provide new evidence of statistical significance for the proposed association. Our results (9,678 cases and 7,331 controls from 53 studies) support a strong association of alcohol abuse and dependence, with allelic P value of 3×10−56 and OR of 0.23 (0.2, 0.28) under the random effects model. The dominant model (lys-lys + lys-glu vs. glu-glu) also showed strong association with P value of 1×10−44 and OR of 0.22 (0.18, 0.27). When stricter criteria and various sub-group analyses were applied, the association remained strong (for example, OR = 0.23 (0.18, 0.3) and P = 2×10−28 for the alcoholic patients with alcoholic liver disease, cirrhosis, or pancreatitis). These findings provide confirmation of the involvement of the human ALDH2 gene in the pathogenesis of AD as well as alcohol-induced medical illnesses in East-Asians. PMID:22102315

  5. Characterization of alcohol dehydrogenase 1 and 3 from Neurospora crassa FGSC2489.

    PubMed

    Park, Yong-Cheol; San, Ka-Yiu; Bennett, George N

    2007-08-01

    Alcohol dehydrogenase (ADH) is a key enzyme in the production and utilization of alcohols. Some also catalyze the formation of carboxylate esters from alcohols and aldehydes. The ADH1 and ADH3 genes of Neurospora crassa FGSC2489 were cloned and expressed in recombinant Escherichia coli to investigate their alcohol dehydrogenation and carboxylate ester formation abilities. Homology analysis and sequence alignment of amino acid sequence indicated that ADH1 and ADH3 of N. crassa contained a zinc-binding consensus sequence and a NAD(+)-binding motif and showed 54-75% identity with fungi ADHs. N. crassa ADH1 was expressed in E. coli to give a specific activity of 289 +/- 9 mU/mg using ethanol and NAD(+) as substrate and cofactor, respectively. Corresponding experiments on the expression and activity of ADH3 gave 4 mU/mg of specific activity. N. crassa ADH1 preferred primary alcohols containing C3-C8 carbons to secondary alcohols such as 2-propanol and 2-butanol. N. crassa ADH1 possessed 5.3 mU/mg of specific carboxylate ester-forming activity accumulating 0.4 mM of ethyl acetate in 18 h. Substrate specificity of various linear alcohols and aldehydes indicated that short chain-length alcohols and aldehydes were good substrates for carboxylate ester production. N. crassa ADH1 was a primary alcohol dehydrogenase using cofactor NAD(+) preferably and possessed carboxylate ester-forming activity with short chain alcohols and aldehydes. PMID:17516063

  6. NAD-dependent aromatic alcohol dehydrogenase in wheats (Triticum L.) and goatgrasses (Aegilops L.): evolutionary genetics.

    PubMed

    Jaaska, V

    1984-04-01

    Evolutionary electrophoretic variation of a NAD-specific aromatic alcohol dehydrogenase, AADH-E, in wheat and goatgrass species is described and discussed in comparison with a NAD-specific alcohol dehydrogenase (ADH-A) and a NADP-dependent AADH-B studied previously. Cultivated tetraploid emmer wheats (T. turgidum s. l.) and hexaploid bread wheats (T. aestivum s. l.) are all fixed for a heterozygous triplet, E(0.58)/E(0.64). The slowest isoenzyme, E(0.58), is controlled by a homoeoallelic gene on the chromosome arm 6AL of T. aestivum cv. 'Chinese Spring' and is inherent in all diploid wheats, T. monococcum s. Str., T. boeoticum s. l. and T. urartu. The fastest isoenzyme, E(0.64), is presumably controlled by the B- and D-genome homoeoalleles of the bread wheat and is the commonest alloenzyme of diploid goat-grasses, including Ae. speltaides and Ae. tauschii. The tetraploid T. timopheevii s. str. has a particular heterozygous triplet E(0.56)/E(0.71), whereas the hexaploid T. zhukovskyi exhibited polymorphism with electromorphs characteristic of T. timopheevii and T. monococcum. Wild tetraploid wheats, T. dicoccoides and T. araraticum, showed partially homologous intraspecific variation of AADH-E with heterozygous triplets E(0.58)/E(0.64) (the commonest), E(0.58)/E(0.71), E(0.45)/E(0.58), E(0.48)/E(0.58) and E(0.56)/E(0.58) recorded. Polyploid goatgrasses of the D-genome group, excepting Ae. cylindrica, are fixed for the common triplet E(0.58)/E(0.64). Ae. cylindrica and polyploid goatgrasses of the C(u)-genome group, excepting Ae. kotschyi, are homozygous for E(0.64). Ae. kotschyi is exceptional, showing fixed heterozygosity for both AADH-E and ADH-A with unique triplets E(0.56)/E(0.64) and A(0.49)/A(0.56). PMID:24258843

  7. Dehydrogenation of 3-phenoxybenzyl alcohol in isolated perfused rabbit skin, skin homogenate and purified dehydrogenases.

    PubMed

    Bast, G E; Kampffmeyer, H G

    1998-01-01

    The formation of 3-phenoxybenzoic acid from 3-phenoxybenzyl alcohol was determined in (a) rabbit ears, single-pass perfused with a protein-free buffer, pH 7.4; (b) the microsomal fraction and its supernatant from homogenized rabbit skin; and (c) purified alcohol dehydrogenase from horse liver and baker's yeast. The inhibition of product formation in (a) was about 60% by various 4-methylpyrazole concentrations, but metyrapone had no effect. Following ultracentrifugation, only the supernatant of homogenized skin showed product formation (apparent Vmay: 32 pmol/min per cm2 skin; apparent Km: 64 microM). 3-Phenoxybenzyl alcohol and ethanol dehydrogenation was similar by alcohol dehydrogenase from horse liver (apparent Km: 0.7 vs. 0.4 mM; apparent Vmax: 0.3 vs. 0.2 U/ microg protein). In baker's yeast, the apparent Km of 3-phenoxybenzoic acid formation was several times larger than that for ethanol dehydrogenation. The KI of 4-methylpyrazole for alcohol dehydrogenase from horse liver was 0.6 (3-phenoxybenzyl alcohol) vs. 0.04 microM (ethanol). The KI for ethanol in baker's yeast was 470 microM. In conclusion dehydrogenation is an important metabolic pathway in the skin for xenobiotics with an aliphatic alcohol at a side chain. PMID:9885409

  8. Structural aspects of the dye-linked alcohol dehydrogenase of Rhodopseudomonas acidophila.

    PubMed Central

    Bamforth, C W; Quayle, J R

    1979-01-01

    1. A dye-linked alcohol dehydrogenase was purified 60-fold from extracts of Rhodopseudomonas acidophila 10050 grown aerobically on ethanol. 2. The properties of this enzyme were identical with those of the alcohol dehydrogenase synthesized by this organism during growth on methanol anaerobically in the light, and they are judged to be the same enzyme. 3. The enzyme gave a single protein band, coincident with alcohol dehydrogenase activity, during electrophoresis on polyacrylamide gel. 4. The amino acid composition, ioselectric point, u.v. and visible absorption spectra of the enzyme were determined and compared with those of other similar enzymes. 5. The presence of 0.7--1.0 g-atom of non-haem, acidlabile iron/mol of enzyme was shown by atomic absorption spectrophotometry and colorimetric assay. The iron could not be dissociated from the enzyme by dialysis against chelating agents. 6. E.p.r. spectroscopy of the enzyme did not indicate any redox function for the iron during alcohol dehydrogenation, but showed a signal at g = 2.00 consistent with the presence of a protein-bound organic free radical. 8. Antisera were raised against alcohol (methanol) dehydrogenases purified from Rhodopseudomonas acidophila, Paracoccus denitrificans and Methylophilus methylotrophus. 9. The antiserum to the Rhodopseudomonas acidophila enzyme cross-reacted with neither of the two other antisera, nor with crude extracts of methanol-grown Hyphomicrobium X and Pseudomonas AM1, thus emphasizing its singular biochemical properties. PMID:229820

  9. Direct Electrochemical Addressing of Immobilized Alcohol Dehydrogenase for the Heterogeneous Bioelectrocatalytic Reduction of Butyraldehyde to Butanol

    PubMed Central

    Schlager, S; Neugebauer, H; Haberbauer, M; Hinterberger, G; Sariciftci, N S

    2015-01-01

    Modified electrodes using immobilized alcohol dehydrogenase enzymes for the efficient electroreduction of butyraldehyde to butanol are presented as an important step for the utilization of CO2-reduction products. Alcohol dehydrogenase was immobilized, embedded in an alginate–silicate hybrid gel, on a carbon felt (CF) electrode. The application of this enzyme to the reduction of an aldehyde to an alcohol with the aid of the coenzyme nicotinamide adenine dinucleotide (NADH), in analogy to the final step in the natural reduction cascade of CO2 to alcohol, has been already reported. However, the use of such enzymatic reductions is limited because of the necessity of providing expensive NADH as a sacrificial electron and proton donor. Immobilization of such dehydrogenase enzymes on electrodes and direct pumping of electrons into the biocatalysts offers an easy and efficient way for the biochemical recycling of CO2 to valuable chemicals or alternative synthetic fuels. We report the direct electrochemical addressing of immobilized alcohol dehydrogenase for the reduction of butyraldehyde to butanol without consumption of NADH. The selective reduction of butyraldehyde to butanol occurs at room temperature, ambient pressure and neutral pH. Production of butanol was detected by using liquid-injection gas chromatography and was estimated to occur with Faradaic efficiencies of around 40 %. PMID:26113881

  10. [Classification of alcohol metabolizing enzymes and polymorphisms--specificity in Japanese].

    PubMed

    Harada, S

    2001-04-01

    Multiple forms and gene loci of human alcohol dehydrogenase (ADH EC: 1.2.1.3) and aldehyde dehydrogenase (ALDH, EC: 1.2.1.3) in the major pathway of alcohol metabolism have been found and characterized in the last two decades. With the coenzyme NAD, these enzymes catalyze the reversible conversion of organic alcohols to ketones or aldehydes, and aldehyde to acetic acid. The ADH genes are mapped to chromosome 4p21-25, but the ALDH genes are localized at different chromosomes. The cytochrome P450 2E1 (CYP2E1) gene, which is mapped to chromosome 10q24.3-qter contributes also the conversion of ethanol to acetaldehyde. Genetic polymorphisms have been reported in these alcohol metabolizing enzymes. The metabolisms of alcohol and acetaldehyde in liver and blood after drinking alcohol are thought to be influenced by the interactive action of these enzymes. Amongst the five major classes of the ADH subunits (alpha, beta, gamma, pi, chi, sigma), beta and gamma subunits show genetic polymorphisms. Recently a new nomenclature for ALDH genes has been recommend based on divergent evolution and chromosomal mapping. Two major isoforms designated as cytosolic ALDH1 and mitochondrial ALDH2 can be distinguished by their electrophoretic and kinetic properties as well as by their subcellular localization. Mitochondrial ALDH2 is a major enzyme in the oxidation of acetaldehyde derived from ethanol metabolism. The catalytic deficiency of ALDH2 isozyme is responsible for flushing and other vasomotor symptoms caused by higher acetaldehyde levels after alcohol intake. So far, frequencies of the two alleles of ALDH2 in Mongoloid have been reported in the different population groups. The catalytic deficiency of ALDH2 is caused by a structural point mutation at amino acid position 487, where a substitution of Glu to Lys resulting from a transition of G (C) to A (T) at 1510 nucleotide from the initiation codon has occurred. Individuals deficient in ALDH2 activity refrain from excessive drinking

  11. Functional characterization of cinnamyl alcohol dehydrogenase and caffeic acid O-methyltransferase in Brachypodium distachyon.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lignin is a significant recalcitrant in the conversion of plant biomass to bioethanol. Cinnamyl alcohol dehydrogenase (CAD) and caffeic acid O-methyltransferase (COMT) catalyze key steps in the pathway of lignin monomer biosynthesis. Brown midrib mutants in Zea mays and Sorghum bicolor with impaired...

  12. Rapid Microscale Isolation and Purification of Yeast Alcohol Dehydrogenase Using Cibacron Blue Affinity Chromatography

    NASA Astrophysics Data System (ADS)

    Morgan, Chad; Moir, Neil

    1996-11-01

    A rapid microscale procedure has been developed for the isolation and purification of yeast alcohol dehydrogenase. Glass beads are used for cytolysis, PEG precipitation for partial purification and a cibacron blue affinity column for the final step. A 27.5 fold purification can be achieved in 2 - 3 hours.

  13. Determination of the Subunit Molecular Mass and Composition of Alcohol Dehydrogenase by SDS-PAGE

    ERIC Educational Resources Information Center

    Nash, Barbara T.

    2007-01-01

    SDS-PAGE is a simple, rapid technique that has many uses in biochemistry and is readily adaptable to the undergraduate laboratory. It is, however, a technique prone to several types of procedural pitfalls. This article describes the use of SDS-PAGE to determine the subunit molecular mass and composition of yeast alcohol dehydrogenase employing…

  14. Mutation of Arg-115 of human class III alcohol dehydrogenase: a binding site required for formaldehyde dehydrogenase activity and fatty acid activation.

    PubMed Central

    Engeland, K; Höög, J O; Holmquist, B; Estonius, M; Jörnvall, H; Vallee, B L

    1993-01-01

    The origin of the fatty acid activation and formaldehyde dehydrogenase activity that distinguishes human class III alcohol dehydrogenase (alcohol:NAD+ oxidoreductase, EC 1.1.1.1) from all other alcohol dehydrogenases has been examined by site-directed mutagenesis of its Arg-115 residue. The Ala- and Asp-115 mutant proteins were expressed in Escherichia coli and purified by affinity chromatography and ion-exchange HPLC. The activities of the recombinant native and mutant enzymes toward ethanol are essentially identical, but mutagenesis greatly decreases the kcat/Km values for glutathione-dependent formaldehyde oxidation. The catalytic efficiency for the Asp variant is < 0.1% that of the unmutated enzyme, due to both a higher Km and a lower kcat value. As with the native enzyme, neither mutant can oxidize methanol, be saturated by ethanol, or be inhibited by 4-methylpyrazole; i.e., they retain these class III characteristics. In contrast, however, their activation by fatty acids, another characteristic unique to class III alcohol dehydrogenase, is markedly attenuated. The Ala mutant is activated only slightly, but the Asp mutant is not activated at all. The results strongly indicate that Arg-115 in class III alcohol dehydrogenase is a component of the binding site for activating fatty acids and is critical for the binding of S-hydroxymethylglutathione in glutathione-dependent formaldehyde dehydrogenase activity. PMID:8460164

  15. Alcohol dehydrogenase gene ADH3 activates glucose alcoholic fermentation in genetically engineered Dekkera bruxellensis yeast.

    PubMed

    Schifferdecker, Anna Judith; Siurkus, Juozas; Andersen, Mikael Rørdam; Joerck-Ramberg, Dorte; Ling, Zhihao; Zhou, Nerve; Blevins, James E; Sibirny, Andriy A; Piškur, Jure; Ishchuk, Olena P

    2016-04-01

    Dekkera bruxellensis is a non-conventional Crabtree-positive yeast with a good ethanol production capability. Compared to Saccharomyces cerevisiae, its tolerance to acidic pH and its utilization of alternative carbon sources make it a promising organism for producing biofuel. In this study, we developed an auxotrophic transformation system and an expression vector, which enabled the manipulation of D. bruxellensis, thereby improving its fermentative performance. Its gene ADH3, coding for alcohol dehydrogenase, was cloned and overexpressed under the control of the strong and constitutive promoter TEF1. Our recombinant D. bruxellensis strain displayed 1.4 and 1.7 times faster specific glucose consumption rate during aerobic and anaerobic glucose fermentations, respectively; it yielded 1.2 times and 1.5 times more ethanol than did the parental strain under aerobic and anaerobic conditions, respectively. The overexpression of ADH3 in D. bruxellensis also reduced the inhibition of fermentation by anaerobiosis, the "Custer effect". Thus, the fermentative capacity of D. bruxellensis could be further improved by metabolic engineering. PMID:26743658

  16. Glu504Lys Single Nucleotide Polymorphism of Aldehyde Dehydrogenase 2 Gene and the Risk of Human Diseases

    PubMed Central

    Zhao, Yan; Wang, Chuancai

    2015-01-01

    Aldehyde dehydrogenase (ALDH) 2 is a mitochondrial enzyme that is known for its important role in oxidation and detoxification of ethanol metabolite acetaldehyde. ALDH2 also metabolizes other reactive aldehydes such as 4-hydroxy-2-nonenal and acrolein. The Glu504Lys single nucleotide polymorphism (SNP) of ALDH2 gene, which is found in approximately 40% of the East Asian populations, causes defect in the enzyme activity of ALDH2, leading to alterations in acetaldehyde metabolism and alcohol-induced “flushing” syndrome. Evidence suggests that ALDH2 Glu504Lys SNP is a potential candidate genetic risk factor for a variety of chronic diseases such as cardiovascular disease, cancer, and late-onset Alzheimer's disease. In addition, the association between ALDH2 Glu504Lys SNP and the development of these chronic diseases appears to be affected by the interaction between the SNP and lifestyle factors such as alcohol consumption as well as by the presence of other genetic variations. PMID:26491656

  17. Increasing Anaerobic Acetate Consumption and Ethanol Yields in Saccharomyces cerevisiae with NADPH-Specific Alcohol Dehydrogenase

    PubMed Central

    Henningsen, Brooks M.; Hon, Shuen; Covalla, Sean F.; Sonu, Carolina; Argyros, D. Aaron; Barrett, Trisha F.; Wiswall, Erin; Froehlich, Allan C.

    2015-01-01

    Saccharomyces cerevisiae has recently been engineered to use acetate, a primary inhibitor in lignocellulosic hydrolysates, as a cosubstrate during anaerobic ethanolic fermentation. However, the original metabolic pathway devised to convert acetate to ethanol uses NADH-specific acetylating acetaldehyde dehydrogenase and alcohol dehydrogenase and quickly becomes constrained by limited NADH availability, even when glycerol formation is abolished. We present alcohol dehydrogenase as a novel target for anaerobic redox engineering of S. cerevisiae. Introduction of an NADPH-specific alcohol dehydrogenase (NADPH-ADH) not only reduces the NADH demand of the acetate-to-ethanol pathway but also allows the cell to effectively exchange NADPH for NADH during sugar fermentation. Unlike NADH, NADPH can be freely generated under anoxic conditions, via the oxidative pentose phosphate pathway. We show that an industrial bioethanol strain engineered with the original pathway (expressing acetylating acetaldehyde dehydrogenase from Bifidobacterium adolescentis and with deletions of glycerol-3-phosphate dehydrogenase genes GPD1 and GPD2) consumed 1.9 g liter−1 acetate during fermentation of 114 g liter−1 glucose. Combined with a decrease in glycerol production from 4.0 to 0.1 g liter−1, this increased the ethanol yield by 4% over that for the wild type. We provide evidence that acetate consumption in this strain is indeed limited by NADH availability. By introducing an NADPH-ADH from Entamoeba histolytica and with overexpression of ACS2 and ZWF1, we increased acetate consumption to 5.3 g liter−1 and raised the ethanol yield to 7% above the wild-type level. PMID:26386051

  18. Increasing anaerobic acetate consumption and ethanol yields in Saccharomyces cerevisiae with NADPH-specific alcohol dehydrogenase.

    PubMed

    Henningsen, Brooks M; Hon, Shuen; Covalla, Sean F; Sonu, Carolina; Argyros, D Aaron; Barrett, Trisha F; Wiswall, Erin; Froehlich, Allan C; Zelle, Rintze M

    2015-12-01

    Saccharomyces cerevisiae has recently been engineered to use acetate, a primary inhibitor in lignocellulosic hydrolysates, as a cosubstrate during anaerobic ethanolic fermentation. However, the original metabolic pathway devised to convert acetate to ethanol uses NADH-specific acetylating acetaldehyde dehydrogenase and alcohol dehydrogenase and quickly becomes constrained by limited NADH availability, even when glycerol formation is abolished. We present alcohol dehydrogenase as a novel target for anaerobic redox engineering of S. cerevisiae. Introduction of an NADPH-specific alcohol dehydrogenase (NADPH-ADH) not only reduces the NADH demand of the acetate-to-ethanol pathway but also allows the cell to effectively exchange NADPH for NADH during sugar fermentation. Unlike NADH, NADPH can be freely generated under anoxic conditions, via the oxidative pentose phosphate pathway. We show that an industrial bioethanol strain engineered with the original pathway (expressing acetylating acetaldehyde dehydrogenase from Bifidobacterium adolescentis and with deletions of glycerol-3-phosphate dehydrogenase genes GPD1 and GPD2) consumed 1.9 g liter(-1) acetate during fermentation of 114 g liter(-1) glucose. Combined with a decrease in glycerol production from 4.0 to 0.1 g liter(-1), this increased the ethanol yield by 4% over that for the wild type. We provide evidence that acetate consumption in this strain is indeed limited by NADH availability. By introducing an NADPH-ADH from Entamoeba histolytica and with overexpression of ACS2 and ZWF1, we increased acetate consumption to 5.3 g liter(-1) and raised the ethanol yield to 7% above the wild-type level. PMID:26386051

  19. A bifunctional enzyme from Rhodococcus erythropolis exhibiting secondary alcohol dehydrogenase-catalase activities.

    PubMed

    Martinez-Rojas, Enriqueta; Kurt, Tutku; Schmidt, Udo; Meyer, Vera; Garbe, Leif-Alexander

    2014-11-01

    Alcohol dehydrogenases have long been recognized as potential biocatalyst for production of chiral fine and bulk chemicals. They are relevant for industry in enantiospecific production of chiral compounds. In this study, we identified and purified a nicotinamide adenine dinucleotide (NAD)-dependent secondary alcohol dehydrogenase (SdcA) from Rhodococcus erythropolis oxidizing γ-lactols into γ-lactones. SdcA showed broad substrate specificity on γ-lactols; secondary aliphatic alcohols with 8 and 10 carbon atoms were also substrates and oxidized with (2S)-stereospecificity. The enzyme exhibited moderate stability with a half-life of 5 h at 40 °C and 20 days at 4 °C. Mass spectrometric identification revealed high sequence coverage of SdcA amino acid sequence to a highly conserved catalase from R. erythropolis. The corresponding encoding gene was isolated from genomic DNA and subsequently overexpressed in Escherichia coli BL21 DE3 cells. In addition, the recombinant SdcA was purified and characterized in order to confirm that the secondary alcohol dehydrogenase and catalase activity correspond to the same enzyme. PMID:24846734

  20. [Possible ways of regulating detoxifying processes in the alcohol dehydrogenase reaction with pantothenic acid derivatives].

    PubMed

    Chernikevich, I P; Dorofeev, B F; Moĭseenok, A G

    1993-01-01

    Oxidation of derivatives and precursors of pantothenic acid was studied in alcohol dehydrogenase reactions. Despite the presence of free hydroxymethyl groups in a number of pantothenic acid derivatives only panthenol with Km = 8 x 10(-3) M was shown to serve as a substrate for alcohol dehydrogenase from horse liver tissue (EC 1.1.1.1) Pantethine, sodium phosphopantothenate, CoA and acetyl-CoA decreased the rate of ethanol oxidation, where pantethine and sodium phosphopantothenate were competitive inhibitors, while CoA and acetyl-CoA inhibited the enzyme noncompetitively Ki = 1.2 x 10(-2) M, 2.1 x 10(-2) M, 4.4 x 10(-4) M and 5.1 x 10(-4) M, respectively. Metabolic precursors, which were different from pantothenic acid in their structure, were not involved in the alcohol dehydrogenase reaction. Possible regulation of alcohol intoxication using derivatives and precursors of vitamin B3 is discussed. PMID:8511887

  1. Evaluation of alcohol dehydrogenase and aldehyde dehydrogenase enzymes as bi-enzymatic anodes in a membraneless ethanol microfluidic fuel cell

    NASA Astrophysics Data System (ADS)

    Galindo-de-la-Rosa, J.; Arjona, N.; Arriaga, L. G.; Ledesma-García, J.; Guerra-Balcázar, M.

    2015-12-01

    Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (AldH) enzymes were immobilized by covalent binding and used as the anode in a bi-enzymatic membraneless ethanol hybrid microfluidic fuel cell. The purpose of using both enzymes was to optimize the ethanol electro-oxidation reaction (EOR) by using ADH toward its direct oxidation and AldH for the oxidation of aldehydes as by-products of the EOR. For this reason, three enzymatic bioanode configurations were evaluated according with the location of enzymes: combined, vertical and horizontally separated. In the combined configuration, a current density of 16.3 mA cm-2, a voltage of 1.14 V and a power density of 7.02 mW cm-2 were obtained. When enzymes were separately placed in a horizontal and vertical position the ocp drops to 0.94 V and to 0.68 V, respectively. The current density also falls to values of 13.63 and 5.05 mA cm-2. The decrease of cell performance of bioanodes with separated enzymes compared with the combined bioanode was of 31.7% and 86.87% for the horizontal and the vertical array.

  2. Alcohol dehydrogenases in Acinetobacter sp. strain HO1-N: role in hexadecanse and hexadecanol metabolism

    SciTech Connect

    Singer, M.E.; Finnerty, W.R.

    1985-12-01

    Multiple alcohol dehydrogenases (ADH) were demonstrated in Acinetobacter sp. strain HO1-N. ADH-A and ADH-B were distinguished on the basis of electrophoretic mobility, pyridine nucleotide cofactor requirement, and substrate specificity. ADH-A is a soluble, NAD-linked, inducible ethanol dehydrogenase (EDH). An ethanol-negative mutant (Eth1) was isolated which contained 6.5% of wild-type EDH activity and was deficient in ADH-A. Eth1 exhibited normal growth on hexadecane and hexadecanol. A second ethanol-negative mutant (Eth3) was acetaldehyde dehydrogenase (ALDH) deficient, having 12.5% of wild-type ALDH activity. Eth3 had threefold-higher EDH activity than the wild-type strain. ALDH is a soluble, NAD-linked, ethanol-inducible enzyme. Eth3 exhibited normal growth on hexadecane, hexadecanol, and fatty aldehyde. ADH-B is soluble, constitutive, NADP-linked ADH which was active with medium-chain-length alcohols. Hexadecanol dehydrogenase (HDH), a soluble and membrane-bound, NAD-linked ADH, was induced 5- to 11-fold by growth on hexadecane or hexadecanol. HDH was distinct from ADH-A and ADH-B. NAD-linked HDH appears to possess a functional role in hexadecane and hexadecanol dissimilation.

  3. The first step in polyethylene glycol degradation by sphingomonads proceeds via a flavoprotein alcohol dehydrogenase containing flavin adenine dinucleotide.

    PubMed

    Sugimoto, M; Tanabe, M; Hataya, M; Enokibara, S; Duine, J A; Kawai, F

    2001-11-01

    Several Sphingomonas spp. utilize polyethylene glycols (PEGs) as a sole carbon and energy source, oxidative PEG degradation being initiated by a dye-linked dehydrogenase (PEG-DH) that oxidizes the terminal alcohol groups of the polymer chain. Purification and characterization of PEG-DH from Sphingomonas terrae revealed that the enzyme is membrane bound. The gene encoding this enzyme (pegA) was cloned, sequenced, and expressed in Escherichia coli. The purified recombinant enzyme was vulnerable to aggregation and inactivation, but this could be prevented by addition of detergent. It is as a homodimeric protein with a subunit molecular mass of 58.8 kDa, each subunit containing 1 noncovalently bound flavin adenine dinucleotide but not Fe or Zn. PEG-DH recognizes a broad variety of primary aliphatic and aromatic alcohols as substrates. Comparison with known sequences revealed that PEG-DH belongs to the group of glucose-methanol-choline (GMC) flavoprotein oxidoreductases and that it is a novel type of flavoprotein alcohol dehydrogenase related (percent identical amino acids) to other, so far uncharacterized bacterial, membrane-bound, dye-linked dehydrogenases: alcohol dehydrogenase from Pseudomonas oleovorans (46%); choline dehydrogenase from E. coli (40%); L-sorbose dehydrogenase from Gluconobacter oxydans (38%); and 4-nitrobenzyl alcohol dehydrogenase from a Pseudomonas species (35%). PMID:11673442

  4. Cupriavidus necator JMP134 rapidly reduces furfural with a Zn-dependent alcohol dehydrogenase.

    PubMed

    Li, Qunrui; Metthew Lam, L K; Xun, Luying

    2011-11-01

    Ethanol is a renewable biofuel, and it can be produced from lignocellulosic biomass. The biomass is usually converted to hydrolysates that consist of sugar and sugar derivatives, such as furfural. Yeast ferments sugar to ethanol, but furfural higher than 3 mM is inhibitory. It can take several days for yeast cells to reduce furfural to non-inhibitory furfuryl alcohol before producing ethanol. Bioreduction of furfural to furfuryl alcohol before fermentation may relieve yeast from furfural toxicity. We observed that Cupriavidus necator JMP134, a strict aerobe, rapidly reduced 17 mM furfural to less than 3 mM within 14 min with cell turbidity of 1.0 at 600 nm at 50°C. The rapid reduction consumed ethanol. The "furfural reductase" (FurX) was purified, and it oxidized ethanol to acetaldehyde and reduced furfural to furfuryl alcohol with NAD(+) as the cofactor. The protein was identified with mass spectrometry fingerprinting to be a hypothetical protein belonging to Zn-dependent alcohol dehydrogenase family. The furX-inactivation mutant of C. necator JMP134 lost the ability to rapidly reduce furfural, and Escherichia coli producing recombinant FurX gained the ability. Thus, an alcohol dehydrogenase enabled bacteria to rapidly reduce furfural with ethanol as the reducing power. PMID:21526390

  5. Geometric specificity of alcohol dehydrogenases and its potential for separation of trans and cis isomers of unsaturated aldehydes.

    PubMed Central

    Klibanov, A M; Giannousis, P P

    1982-01-01

    The geometric specificity of three different alcohol dehydrogenases (alcohol:NAD+ oxidoreductase, EC 1.1.1.1) (from yeast, from horse liver, and from Leuconostoc mesenteroides) in the reduction of trans- and cis-cinnamaldehydes has been investigated. All three enzymes display a remarkable trans specificity: they react with the trans isomer 7 to 647 times faster than with its cis counterpart. Experiments with the enzymatic reduction of 3-phenylpropionaldehyde, a saturated analog of cinnamaldehyde, have revealed that whereas trans-cinnamaldehyde possesses the "right" configuration for the active centers of the alcohol dehydrogenases, the cis isomer apparently does not fit the active centers well. All three alcohol dehydrogenases studied also exhibit a marked trans specificity in the reaction with alpha-methylcinnamaldehyde. The geometric specificity of alcohol dehydrogenases can be used for the production of otherwise hard to synthesize cis isomers of unsaturated aldehydes from their readily available trans counterparts: trans-cinnamaldehyde was irradiated with ultraviolet light (which converted it to a mixture of trans and cis isomers) then treated with NADH and yeast alcohol dehydrogenase (which selectively reduces only trans aldehyde into the alcohol), and finally the mixture of cis-cinnamaldehyde and trans-cinnamyl alcohol was separated easily by preparative column chromatography. PMID:7048306

  6. Maternal folate, alcohol and energy metabolism-related gene polymorphisms and the risk of recurrent pregnancy loss.

    PubMed

    Sata, F; Yamada, H; Kishi, R; Minakami, H

    2012-10-01

    Epidemiological studies have suggested that the condition of recurrent pregnancy loss (RPL) may be multifactorial, with both genetic predisposition and environmental factors potentially involved in its pathogenesis. The aim of this study is to elucidate the associations between maternal folate, alcohol and energy metabolism-related gene polymorphisms and the risk of RPL. This case-control study, which involved 116 cases with two or more instances of RPL and 306 fertile controls, was performed in the city of Sapporo, Japan. The associations between eight single nucleotide polymorphisms of folate, alcohol and energy metabolism-related genes [methylenetetrahydrofolate reductase (MTHFR), 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR), 5-methyltetrahydrofolate-homocysteine methyltransferase reductase (MTRR), alcohol dehydrogenase 1B (ADH1B), aldehyde dehydrogenase 2 (ALDH2), beta-3-adrenergic receptor (ADRB3) and peroxisome proliferator-activated receptor gamma (PPARG)], and RPL were assessed. Without consideration of cigarette smoking or alcohol use, the risk of RPL significantly decreased in women with the MTHFR rs1801133 TT, MTR rs1805087 AG or ALDH2 rs671 AA genotype (P < 0.05). The risk of RPL associated with cigarette smoking and alcohol use decreased significantly in women carrying the MTHFR rs1801133 T allele [odds ratio (OR), 0.51; 95% confidence interval (CI), 0.27-0.95]. Similarly, the risk of RPL significantly decreased in women carrying the MTR rs1805087 G allele (OR, 0.44; 95% CI, 0.23-0.85). Our findings suggest that maternal gene polymorphisms related to folate metabolism may decrease the risk of RPL. Molecular epidemiological studies are needed to unequivocally elucidate the multifactorial effects of both genetic and environmental factors on human fecundity. PMID:25102261

  7. Human liver alcohol dehydrogenase. 1. The primary structure of the beta 1 beta 1 isoenzyme.

    PubMed

    Hempel, J; Bühler, R; Kaiser, R; Holmquist, B; de Zalenski, C; von Wartburg, J P; Vallee, B; Jörnvall, H

    1984-12-17

    Determination of the amino acid sequence of the beta 1 subunit from the class I (pyrazole-sensitive) human liver alcohol dehydrogenase isoenzyme beta 1 beta 1 revealed a 373-residue structure differing at 48 positions (including a gap) from that of the subunit of the well studied horse liver alcohol dehydrogenase EE isoenzyme. The structure deduced is compatible with known differences in composition, ultraviolet absorbance, electrophoretic mobility and catalytic properties between the horse and human enzymes. All zinc-liganding residues of the horse E subunit are strictly conserved in the human beta 1 subunit, despite an earlier report of a mutation involving Cys-46. This residue therefore remains conserved in all known alcohol dehydrogenase structures. However, the total cysteine content of the beta 1 structure is raised from 14 in the subunit of the horse enzyme to 15 by a Tyr----Cys exchange. Most exchanges are on the surface of the molecule and of a well conserved nature. Substitutions close to the catalytic centre are of interest to explain the altered substrate specificity and different catalytic activity of the beta 1 homodimer. Functionally, a Ser----Thr exchange at position 48 appears to be of special importance, since Thr-48 in beta 1 instead of Ser-48 in the horse enzyme can restrict available space. Four other substitutions also line the active-site pocket, and appear to constitute partly compensated exchanges. PMID:6391920

  8. In vivo relationship between monoamine oxidase type B and alcohol dehydrogenase: effects of ethanol and phenylethylamine

    SciTech Connect

    Aliyu, S.U.; Upahi, L.

    1988-01-01

    The role of acute ethanol and phenylethylamine on the brain and platelet monoamine oxidase activities, hepatic cytosolic alcohol dehydrogenase, redox state and motor behavior were studied in male rats. Ethanol on its own decreased the redox couple ratio, as well as, alcohol dehydrogenase activity in the liver while at the same time it increased brain and platelet monoamine oxidase activity due to lower Km with no change in Vmax. The elevation in both brain and platelet MAO activity was associated with ethanol-induced hypomotility in the rats. Co-administration of phenylethylamine and ethanol to the animals, caused antagonism of the ethanol-induced effects described above. The effects of phenylethylamine alone, on the above mentioned biochemical and behavioral indices, are more complex. Phenylethylamine on its own, like ethanol, caused reduction of the cytosolic redox, ratio and elevation of monoamine oxidase activity in the brain and platelets. However, in contrast to ethanol, this monoamine produced hypermotility and activation of the hepatic cytosolic alcohol dehydrogenase activity in the animals.

  9. Catalytic and Molecular Properties of the Quinohemoprotein Tetrahydrofurfuryl Alcohol Dehydrogenase from Ralstonia eutropha Strain Bo

    PubMed Central

    Zarnt, Grit; Schräder, Thomas; Andreesen, Jan R.

    2001-01-01

    The quinohemoprotein tetrahydrofurfuryl alcohol dehydrogenase (THFA-DH) from Ralstonia eutropha strain Bo was investigated for its catalytic properties. The apparent kcat/Km and Ki values for several substrates were determined using ferricyanide as an artificial electron acceptor. The highest catalytic efficiency was obtained with n-pentanol exhibiting a kcat/Km value of 788 × 104 M−1 s−1. The enzyme showed substrate inhibition kinetics for most of the alcohols and aldehydes investigated. A stereoselective oxidation of chiral alcohols with a varying enantiomeric preference was observed. Initial rate studies using ethanol and acetaldehyde as substrates revealed that a ping-pong mechanism can be assumed for in vitro catalysis of THFA-DH. The gene encoding THFA-DH from R. eutropha strain Bo (tfaA) has been cloned and sequenced. The derived amino acid sequence showed an identity of up to 67% to the sequence of various quinoprotein and quinohemoprotein dehydrogenases. A comparison of the deduced sequence with the N-terminal amino acid sequence previously determined by Edman degradation analysis suggested the presence of a signal sequence of 27 residues. The primary structure of TfaA indicated that the protein has a tertiary structure quite similar to those of other quinoprotein dehydrogenases. PMID:11222593

  10. Association of VMAT2 gene polymorphisms with alcohol dependence.

    PubMed

    Fehr, Christoph; Sommerlad, Daniel; Sander, Thomas; Anghelescu, Ion; Dahmen, Norbert; Szegedi, Armin; Mueller, Christiana; Zill, Peter; Soyka, Michael; Preuss, Ulrich W

    2013-08-01

    Alcohol-related diseases cause significant harm in the western world. Up to 65 % of the phenotypic variance is genetically determined. Few candidate genes have been identified, comprising ADH4, ALDH2, COMT, CRHR1, DAT (SLC6A3), GABRA2 and MAOA. While abnormalities in the dopaminergic mesolimbic reward system are considered important mediators of alcoholism, studies analyzing variants of dopamine receptors showed conflicting results. Other modulators of the reward system are synaptosomal genes. Among candidate genes, polygenic variants of the Vesicular Monamine Transporter 2 (VMAT2) gene locus associated with alterations of drinking behavior were published. These variants comprise single nucleotide polymorphisms (SNPs) within the promoter region and the open reading frame. In this study, we confirm the association of VMAT2 SNP rs363387 (allelic association: p = 0.015) with alcohol dependence. This SNP defines several haplotypes including up to four SNPs (minimal p = 0.0045). In addition, numeric effects in the subgroups of males and patients with positive family history were found. We suggest that several rs363387 T-allele containing haplotypes increase the risk of alcohol dependence (OR 1.53), whereas G-allele containing haplotypes confer protection against alcohol dependence. Taken together, there is supporting evidence for a contribution of VMAT2 gene variants to phenotypes of alcohol dependence. PMID:23504072

  11. 11β-hydroxysteroid dehydrogenase inhibition as a new potential therapeutic target for alcohol abuse

    PubMed Central

    Sanna, P P; Kawamura, T; Chen, J; Koob, G F; Roberts, A J; Vendruscolo, L F; Repunte-Canonigo, V

    2016-01-01

    The identification of new and more effective treatments for alcohol abuse remains a priority. Alcohol intake activates glucocorticoids, which have a key role in alcohol's reinforcing properties. Glucocorticoid effects are modulated in part by the activity of 11β-hydroxysteroid dehydrogenases (11β-HSD) acting as pre-receptors. Here, we tested the effects on alcohol intake of the 11β-HSD inhibitor carbenoxolone (CBX, 18β-glycyrrhetinic acid 3β-O-hemisuccinate), which has been extensively used in the clinic for the treatment of gastritis and peptic ulcer and is active on both 11β-HSD1 and 11β-HSD2 isoforms. We observed that CBX reduces both baseline and excessive drinking in rats and mice. The CBX diastereomer 18α-glycyrrhetinic acid 3β-O-hemisuccinate (αCBX), which we found to be selective for 11β-HSD2, was also effective in reducing alcohol drinking in mice. Thus, 11β-HSD inhibitors may be a promising new class of candidate alcohol abuse medications, and existing 11β-HSD inhibitor drugs may be potentially re-purposed for alcohol abuse treatment. PMID:26978742

  12. Influence of ADH1B polymorphism on alcohol use and its subjective effects in a Jewish population.

    PubMed

    Carr, Lucinda G; Foroud, Tatiana; Stewart, Trent; Castelluccio, Peter; Edenberg, Howard J; Li, Ting-Kai

    2002-10-01

    Class I alcohol dehydrogenases (ADHs) are the principal enzymes responsible for ethanol metabolism in humans. Genetic polymorphism at the ADH1B locus (old nomenclature ADH2) results in isozymes with quite different catalytic properties. The frequency of the ADH1B*2 allele varies among ethnic groups. ADH1B*2 is most often observed in Asian populations, and has been shown to be protective against alcoholism. The Jewish population has a higher frequency of the ADH1B*2 allele and lower rates of alcohol-related problems as compared to other Caucasian populations. Thus, it would be of interest to determine whether the ADH1B*2 allele is associated with alcohol consumption and its subjective effects in this group. Four groups of Jewish subjects (male and female college-age samples, and male and female general samples) were recruited from the same region of the United States. All subjects completed a questionnaire to delineate alcohol consumption and its subjective consequences. Genotype at the ADH1B locus was determined for each participant. ADH1B*2 allele frequencies were similar for the Jewish college-age and general population samples. Men in both the college-age and general population in the ADH1B*2 group reported more unpleasant reactions following alcohol consumption than men in the ADH1B*1 group. Men in the general population in the ADH1B*2 group drank alcohol less frequently than men who were homozygous ADH1B*1; there was a similar trend among the women. The ADH1B polymorphism is associated with unpleasant reactions after alcohol consumption, and frequency of alcohol consumption in these Jewish samples. PMID:12244546

  13. Isolation and characterization of full-length putative alcohol dehydrogenase genes from polygonum minus

    NASA Astrophysics Data System (ADS)

    Hamid, Nur Athirah Abd; Ismail, Ismanizan

    2013-11-01

    Polygonum minus, locally named as Kesum is an aromatic herb which is high in secondary metabolite content. Alcohol dehydrogenase is an important enzyme that catalyzes the reversible oxidation of alcohol and aldehyde with the presence of NAD(P)(H) as co-factor. The main focus of this research is to identify the gene of ADH. The total RNA was extracted from leaves of P. minus which was treated with 150 μM Jasmonic acid. Full-length cDNA sequence of ADH was isolated via rapid amplification cDNA end (RACE). Subsequently, in silico analysis was conducted on the full-length cDNA sequence and PCR was done on genomic DNA to determine the exon and intron organization. Two sequences of ADH, designated as PmADH1 and PmADH2 were successfully isolated. Both sequences have ORF of 801 bp which encode 266 aa residues. Nucleotide sequence comparison of PmADH1 and PmADH2 indicated that both sequences are highly similar at the ORF region but divergent in the 3' untranslated regions (UTR). The amino acid is differ at the 107 residue; PmADH1 contains Gly (G) residue while PmADH2 contains Cys (C) residue. The intron-exon organization pattern of both sequences are also same, with 3 introns and 4 exons. Based on in silico analysis, both sequences contain "classical" short chain alcohol dehydrogenases/reductases ((c) SDRs) conserved domain. The results suggest that both sequences are the members of short chain alcohol dehydrogenase family.

  14. CARDIAC OVEREXPRESSION OF ALCOHOL DEHYDROGENASE EXACERBATES CARDIAC CONTRACTILE DYSFUNCTION, LIPID PEROXIDATION, AND PROTEIN DAMAGE AFTER CHRONIC ETHANOL INGESTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alcoholic cardiomyopathy is manifested as ventricular dysfunction although its specific toxic mechanism(s) remains obscure. This study was designed to examine the impact of enhanced acetaldehyde (ACA) exposure on cardiac function via cardiac-specific over-expression of alcohol dehydrogenase (ADH) fo...

  15. ETHANOL INDUCES AND INSULIN INHIBITS ALCOHOL DEHYDROGENASE CLASS 1 IN FGC-4 CELLS: BOTH APPEAR TO WORK THROUGH SREBP-1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have previously reported that chronic feeding of alcohol-containing diets (via intragastric infusion) to Sprague-Dawley rats induces hepatic alcohol dehydrogenase (ADH) Class 1 by interfering with signaling via the sterol regulatory element binding protein (SREBP-1). We have studied the effects ...

  16. Alcohol Dehydrogenase-1B (rs1229984) and Aldehyde Dehydrogenase-2 (rs671) Genotypes Are Strong Determinants of the Serum Triglyceride and Cholesterol Levels of Japanese Alcoholic Men

    PubMed Central

    Yokoyama, Akira; Yokoyama, Tetsuji; Matsui, Toshifumi; Mizukami, Takeshi; Kimura, Mitsuru; Matsushita, Sachio; Higuchi, Susumu; Maruyama, Katsuya

    2015-01-01

    Background Elevated serum triglyceride (TG) and high-density-lipoprotein cholesterol (HDL-C) levels are common in drinkers. The fast-metabolizing alcohol dehydrogenase-1B encoded by the ADH1B*2 allele (vs. ADH1B*1/*1 genotype) and inactive aldehyde dehydrogenase-2 encoded by the ALDH2*2 allele (vs. ALDH2*1/*1 genotype) modify ethanol metabolism and are prevalent (≈90% and ≈40%, respectively) in East Asians. We attempted to evaluate the associations between the ADH1B and ALDH2 genotypes and lipid levels in alcoholics. Methods The population consisted of 1806 Japanese alcoholic men (≥40 years) who had undergone ADH1B and ALDH2 genotyping and whose serum TG, total cholesterol, and HDL-C levels in the fasting state had been measured within 3 days after admission. Results High serum levels of TG (≥150 mg/dl), HDL-C (>80 mg/dl), and low-density-lipoprotein cholesterol (LDL-C calculated by the Friedewald formula ≥140 mg/dl) were observed in 24.3%, 16.8%, and 15.6%, respectively, of the subjects. Diabetes, cirrhosis, smoking, and body mass index (BMI) affected the serum lipid levels. Multivariate analysis revealed that the presence of the ADH1B*2 allele and the active ALDH2*1/*1 genotype increased the odds ratio (OR; 95% confidence interval) for a high TG level (2.22 [1.67–2.94] and 1.39 [0.99–1.96], respectively), and decreased the OR for a high HDL-C level (0.37 [0.28–0.49] and 0.51 [0.37–0.69], respectively). The presence of the ADH1B*2 allele decreased the OR for a high LDL-C level (0.60 [0.45–0.80]). The ADH1B*2 plus ALDH2*1/*1 combination yielded the highest ORs for high TG levels and lowest OR for a high HDL-C level. The genotype effects were more prominent in relation to the higher levels of TG (≥220 mg/dl) and HDL-C (≥100 mg/dl). Conclusions The fast-metabolizing ADH1B and active ALDH2, and especially a combination of the two were strongly associated with higher serum TG levels and lower serum HDL-C levels of alcoholics. The fast

  17. Ethanol-Induced Alcohol Dehydrogenase E (AdhE) Potentiates Pneumolysin in Streptococcus pneumoniae

    PubMed Central

    Luong, Truc Thanh; Kim, Eun-Hye; Bak, Jong Phil; Nguyen, Cuong Thach; Choi, Sangdun; Briles, David E.; Pyo, Suhkneung

    2014-01-01

    Alcohol impairs the host immune system, rendering the host more vulnerable to infection. Therefore, alcoholics are at increased risk of acquiring serious bacterial infections caused by Streptococcus pneumoniae, including pneumonia. Nevertheless, how alcohol affects pneumococcal virulence remains unclear. Here, we showed that the S. pneumoniae type 2 D39 strain is ethanol tolerant and that alcohol upregulates alcohol dehydrogenase E (AdhE) and potentiates pneumolysin (Ply). Hemolytic activity, colonization, and virulence of S. pneumoniae, as well as host cell myeloperoxidase activity, proinflammatory cytokine secretion, and inflammation, were significantly attenuated in adhE mutant bacteria (ΔadhE strain) compared to D39 wild-type bacteria. Therefore, AdhE might act as a pneumococcal virulence factor. Moreover, in the presence of ethanol, S. pneumoniae AdhE produced acetaldehyde and NADH, which subsequently led Rex (redox-sensing transcriptional repressor) to dissociate from the adhE promoter. An increase in AdhE level under the ethanol condition conferred an increase in Ply and H2O2 levels. Consistently, S. pneumoniae D39 caused higher cytotoxicity to RAW 264.7 cells than the ΔadhE strain under the ethanol stress condition, and ethanol-fed mice (alcoholic mice) were more susceptible to infection with the D39 wild-type bacteria than with the ΔadhE strain. Taken together, these data indicate that AdhE increases Ply under the ethanol stress condition, thus potentiating pneumococcal virulence. PMID:25312953

  18. Tea triterpenoidal saponins from the roots of Camellia sinensis have inhibitory effects against alcohol dehydrogenase.

    PubMed

    Varughese, Titto; Manir, Md Maniruzzaman; Rahaman, Mozahidur; Kim, Jeong Kee; Lee, Byeong-Gon; Moon, Surk-Sik

    2011-12-01

    Ten new polyhydroxyolean-12-ene pentacyclic triterpenoidal saponins, named rogchaponins 1-10, were isolated from the methanolic extract of the roots of Camellia sinensis by a series of chromatographic methods (silica gel flash column and C18 MPLC followed by C18 HPLC). Their structures were established by 1D and 2D-NMR techniques along with IR and HR-TOF-MS. Rogchaponins R4 ( 4) and R5 (5) showed inhibitory activities against yeast alcohol dehydrogenase (ADH) with IC (50) values of 16.1 ± 3.2 and 15.4 ± 3.3 µM, respectively. A 4-methylpyrazole positive control exhibited an IC (50) of 2750 ± 50 µM. However, the saponins showed no inhibitory activity against yeast aldehyde dehydrogenase (ALDH). PMID:21786220

  19. Syringyl Lignin Is Unaltered by Severe Sinapyl Alcohol Dehydrogenase Suppression in Tobacco[W

    PubMed Central

    Barakate, Abdellah; Stephens, Jennifer; Goldie, Alison; Hunter, William N.; Marshall, David; Hancock, Robert D.; Lapierre, Catherine; Morreel, Kris; Boerjan, Wout; Halpin, Claire

    2011-01-01

    The manipulation of lignin could, in principle, facilitate efficient biofuel production from plant biomass. Despite intensive study of the lignin pathway, uncertainty exists about the enzyme catalyzing the last step in syringyl (S) monolignol biosynthesis, the reduction of sinapaldehyde to sinapyl alcohol. Traditional schemes of the pathway suggested that both guaiacyl (G) and S monolignols are produced by a single substrate-versatile enzyme, cinnamyl alcohol dehydrogenase (CAD). This was challenged by the discovery of a novel sinapyl alcohol dehydrogenase (SAD) that preferentially uses sinapaldehyde as a substrate and that was claimed to regulate S lignin biosynthesis in angiosperms. Consequently, most pathway schemes now show SAD (or SAD and CAD) at the sinapaldehyde reduction step, although functional evidence is lacking. We cloned SAD from tobacco (Nicotiana tabacum) and suppressed it in transgenic plants using RNA interference–inducing vectors. Characterization of lignin in the woody stems shows no change to content, composition, or structure, and S lignin is normal. By contrast, plants additionally suppressed in CAD have changes to lignin structure and S:G ratio and have increased sinapaldehyde in lignin, similar to plants suppressed in CAD alone. These data demonstrate that CAD, not SAD, is the enzyme responsible for S lignin biosynthesis in woody angiosperm xylem. PMID:22158465

  20. Purification and Characterization of Cinnamyl Alcohol Dehydrogenase Isoforms from the Periderm of Eucalyptus gunnii Hook.

    PubMed Central

    Hawkins, S. W.; Boudet, A. M.

    1994-01-01

    Cinnamyl alcohol dehydrogenase (CAD, EC 1.1.1.195) isoforms were purified from the periderm (containing both suberized and lignified cell layers) of Eucalyptus gunnii Hook stems. Two isoforms (CAD 1P and CAD 2P) were initially characterized, and the major form, CAD 2P, was resolved into three further isoforms by ion-exchange chromatography. Crude extracts contained two aliphatic alcohol dehydrogenases (ADH) and one aromatic ADH, which was later resolved into two further isoforms. Aliphatic ADHs did not use hydroxycinnamyl alcohols as substrates, whereas both aromatic ADH isoforms used coniferyl and sinapyl alcohol as substrates but with a much lower specific activity when compared with benzyl alcohol. The minor form, CAD 1P, was a monomer with a molecular weight of 34,000 that did not co-elute with either aromatic or aliphatic ADH activity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blot analysis demonstrated that this protein was very similar to another CAD isoform purified from Eucalyptus xylem tissue. CAD 2P had a native molecular weight of approximately 84,000 and was a dimer consisting of two heterogenous subunits (with molecular weights of 42,000 and 44,000). These subunits were differentially combined to give the heterodimer and two homodimers. SDS-PAGE, western blots, and nondenaturing PAGE indicated that the CAD 2P heterodimer was very similar to the main CAD isoform previously purified in our laboratory from differentiating xylem tissue of E. gunnii (D. Goffner, I. Joffroy, J. Grima-Pettenati, C. Halpin, M.E. Knight, W. Schuch, A.M. Boudet [1992] Planta 188: 48-53). Kinetic data indicated that the different CAD 2P isoforms may be implicated in the preferential production of different monolignols used in the synthesis of lignin and/or suberin. PMID:12232063

  1. Human liver alcohol dehydrogenase. 2. The primary structure of the gamma 1 protein chain.

    PubMed

    Bühler, R; Hempel, J; Kaiser, R; de Zalenski, C; von Wartburg, J P; Jörnvall, H

    1984-12-17

    The primary structure of the gamma 1 subunit of human liver alcohol dehydrogenase isoenzyme gamma 1 gamma 1 was deduced by characterization of 36 tryptic and 2 CNBr peptides. The polypeptide chain is composed of 373 amino acid residues. gamma 1 differs from the beta 1 subunit of human liver alcohol dehydrogenase at 21 positions, and from the E subunit of horse liver alcohol dehydrogenase at 43 positions including a gap at position 128 as in the beta 1 subunit. All zinc-liganding residues from the E subunit of the horse protein and the beta 1 subunit of the human enzyme are conserved, but like beta 1, gamma 1 also has an additional cysteine residue at position 286 (in the positional numbering system of the horse enzyme) due to a Tyr----Cys exchange. Most amino acid exchanges preserve the properties of the residues affected and are largely located on the surface of the molecules, away from the active site and the coenzyme binding region. However, eight positions with charge differences in relation to the E subunit of the horse enzyme are noticed. These result in a net positive charge increase of one in gamma 1 versus E, explaining the electrophoretic mobilities on starch gels. Of functional significance is the conservation of Ser-48 in gamma 1 relative to E. The residue is close to the active site but different (Thr-48) in the beta 1 subunit of the human enzyme. Thus, the closer structural relationship between human gamma 1 and horse E enzyme subunit than between beta 1 and E is also reflected in functionally important residues, explaining a greater similarity between gamma 1 gamma 1 and EE than between beta 1 beta 1 and EE. PMID:6391921

  2. Functional reclassification of the putative cinnamyl alcohol dehydrogenase multigene family in Arabidopsis

    PubMed Central

    Kim, Sung-Jin; Kim, Mi-Ran; Bedgar, Diana L.; Moinuddin, Syed G. A.; Cardenas, Claudia L.; Davin, Laurence B.; Kang, ChulHee; Lewis, Norman G.

    2004-01-01

    Of 17 genes annotated in the Arabidopsis genome database as cinnamyl alcohol dehydrogenase (CAD) homologues, an in silico analysis revealed that 8 genes were misannotated. Of the remaining nine, six were catalytically competent for NADPH-dependent reduction of p-coumaryl, caffeyl, coniferyl, 5-hydroxyconiferyl, and sinapyl aldehydes, whereas three displayed very low activity and only at very high substrate concentrations. Of the nine putative CADs, two (AtCAD5 and AtCAD4) had the highest activity and homology (≈83% similarity) relative to bona fide CADs from other species. AtCAD5 used all five substrates effectively, whereas AtCAD4 (of lower overall catalytic capacity) poorly used sinapyl aldehyde; the corresponding 270-fold decrease in kenz resulted from higher Km and lower kcat values, respectively. No CAD homologue displayed a specific requirement for sinapyl aldehyde, which was in direct contrast with unfounded claims for a so-called sinapyl alcohol dehydrogenase in angiosperms. AtCAD2, 3, as well as AtCAD7 and 8 (highest homology to sinapyl alcohol dehydrogenase) were catalytically less active overall by at least an order of magnitude, due to increased Km and lower kcat values. Accordingly, alternative and/or bifunctional metabolic roles of these proteins in plant defense cannot be ruled out. Comprehensive analyses of lignified tissues of various Arabidopsis knockout mutants (for AtCAD5, 6, and 9) at different stages of growth/development indicated the presence of functionally redundant CAD metabolic networks. Moreover, disruption of AtCAD5 expression had only a small effect on either overall lignin amounts deposited, or on syringyl-guaiacyl compositions, despite being the most catalytically active form in vitro. PMID:14745009

  3. Temperature-Jump Fluorescence Provides Evidence for Fully Reversible Microsecond Dynamics in a Thermophilic Alcohol Dehydrogenase

    PubMed Central

    2015-01-01

    Protein dynamics on the microsecond (μs) time scale were investigated by temperature-jump fluorescence spectroscopy as a function of temperature in two variants of a thermophilic alcohol dehydrogenase: W87F and W87F:H43A. Both mutants exhibit a fast, temperature-independent μs decrease in fluorescence followed by a slower full recovery of the initial fluorescence. The results, which rule out an ionizing histidine as the origin of the fluorescence quenching, are discussed in the context of a Trp49-containing dimer interface that acts as a conduit for thermally activated structural change within the protein interior. PMID:26223665

  4. Alcohol dehydrogenase activities and ethanol tolerance in Anastrepha (Diptera, Tephritidae) fruit-fly species and their hybrids

    PubMed Central

    2009-01-01

    The ADH (alcohol dehydrogenase) system is one of the earliest known models of molecular evolution, and is still the most studied in Drosophila. Herein, we studied this model in the genus Anastrepha (Diptera, Tephritidae). Due to the remarkable advantages it presents, it is possible to cross species with different Adh genotypes and with different phenotype traits related to ethanol tolerance. The two species studied here each have a different number of Adh gene copies, whereby crosses generate polymorphisms in gene number and in composition of the genetic background. We measured certain traits related to ethanol metabolism and tolerance. ADH specific enzyme activity presented gene by environment interactions, and the larval protein content showed an additive pattern of inheritance, whilst ADH enzyme activity per larva presented a complex behavior that may be explained by epistatic effects. Regression models suggest that there are heritable factors acting on ethanol tolerance, which may be related to enzymatic activity of the ADHs and to larval mass, although a pronounced environmental effect on ethanol tolerance was also observed. By using these data, we speculated on the mechanisms of ethanol tolerance and its inheritance as well as of associated traits. PMID:21637665

  5. NAD(P)-Dependent Aldehyde Dehydrogenases Induced during Growth of Ralstonia eutropha Strain Bo on Tetrahydrofurfuryl Alcohol

    PubMed Central

    Schräder, Thomas; Zarnt, Grit; Andreesen, Jan R.

    2001-01-01

    Different aldehyde dehydrogenases (AlDHs) were formed during growth of Ralstonia eutropha Bo on tetrahydrofurfuryl alcohol (THFA). One of these enzymes, AlDH 4, was purified and characterized as a homodimer containing no prosthetic groups, showing a strong substrate inhibition, and having an N-terminal sequence similar to those of various NAD(P)-dependent AlDHs. The conversion rate of THFA by the quinohemoprotein THFA dehydrogenase was increased by AlDH 4. PMID:11717302

  6. Pancreatic injury in hepatic alcohol dehydrogenase-deficient deer mice after subchronic exposure to ethanol

    SciTech Connect

    Kaphalia, Bhupendra S.; Bhopale, Kamlesh K.; Kondraganti, Shakuntala; Wu Hai; Boor, Paul J.; Ansari, G.A. Shakeel

    2010-08-01

    Pancreatitis caused by activation of digestive zymogens in the exocrine pancreas is a serious chronic health problem in alcoholic patients. However, mechanism of alcoholic pancreatitis remains obscure due to lack of a suitable animal model. Earlier, we reported pancreatic injury and substantial increases in endogenous formation of fatty acid ethyl esters (FAEEs) in the pancreas of hepatic alcohol dehydrogenase (ADH)-deficient (ADH{sup -}) deer mice fed 4% ethanol. To understand the mechanism of alcoholic pancreatitis, we evaluated dose-dependent metabolism of ethanol and related pancreatic injury in ADH{sup -} and hepatic ADH-normal (ADH{sup +}) deer mice fed 1%, 2% or 3.5% ethanol via Lieber-DeCarli liquid diet daily for 2 months. Blood alcohol concentration (BAC) was remarkably increased and the concentration was {approx} 1.5-fold greater in ADH{sup -} vs. ADH{sup +} deer mice fed 3.5% ethanol. At the end of the experiment, remarkable increases in pancreatic FAEEs and significant pancreatic injury indicated by the presence of prominent perinuclear space, pyknotic nuclei, apoptotic bodies and dilation of glandular ER were found only in ADH{sup -} deer mice fed 3.5% ethanol. This pancreatic injury was further supported by increased plasma lipase and pancreatic cathepsin B (a lysosomal hydrolase capable of activating trypsinogen), trypsinogen activation peptide (by-product of trypsinogen activation process) and glucose-regulated protein 78 (endoplasmic reticulum stress marker). These findings suggest that ADH-deficiency and high alcohol levels in the body are the key factors in ethanol-induced pancreatic injury. Therefore, determining how this early stage of pancreatic injury advances to inflammation stage could be important for understanding the mechanism(s) of alcoholic pancreatitis.

  7. Characterization of a Zinc-Containing Alcohol Dehydrogenase with Stereoselectivity from the Hyperthermophilic Archaeon Thermococcus guaymasensis▿

    PubMed Central

    Ying, Xiangxian; Ma, Kesen

    2011-01-01

    An alcohol dehydrogenase (ADH) from hyperthermophilic archaeon Thermococcus guaymasensis was purified to homogeneity and was found to be a homotetramer with a subunit size of 40 ± 1 kDa. The gene encoding the enzyme was cloned and sequenced; this gene had 1,095 bp, corresponding to 365 amino acids, and showed high sequence homology to zinc-containing ADHs and l-threonine dehydrogenases with binding motifs of catalytic zinc and NADP+. Metal analyses revealed that this NADP+-dependent enzyme contained 0.9 ± 0.03 g-atoms of zinc per subunit. It was a primary-secondary ADH and exhibited a substrate preference for secondary alcohols and corresponding ketones. Particularly, the enzyme with unusual stereoselectivity catalyzed an anti-Prelog reduction of racemic (R/S)-acetoin to (2R,3R)-2,3-butanediol and meso-2,3-butanediol. The optimal pH values for the oxidation and formation of alcohols were 10.5 and 7.5, respectively. Besides being hyperthermostable, the enzyme activity increased as the temperature was elevated up to 95°C. The enzyme was active in the presence of methanol up to 40% (vol/vol) in the assay mixture. The reduction of ketones underwent high efficiency by coupling with excess isopropanol to regenerate NADPH. The kinetic parameters of the enzyme showed that the apparent Km values and catalytic efficiency for NADPH were 40 times lower and 5 times higher than those for NADP+, respectively. The physiological roles of the enzyme were proposed to be in the formation of alcohols such as ethanol or acetoin concomitant to the NADPH oxidation. PMID:21515780

  8. New inhibitors of alcohol dehydrogenase: studies in vivo and in vitro in the rat.

    PubMed

    Delmas, C; de Saint Blanquat, G; Freudenreich, C; Biellmann, J F

    1983-01-01

    Two compounds bearing an amide group, p-butoxyphenol acetamide (BPA) and N-(p-butoxybenzyl)formamide (BBF) were studied as inhibitors of alcohol dehydrogenase (ADH) and their action compared with that of 4-methyl-pyrazole (4-MP), a known inhibitor of this enzyme. In vitro studies on pure horse liver ADH showed that BPA and BBF were noncompetitive inhibitors with respect to ethanol and that their Ki values were 22 and 0.14 micrometer, respectively. The apparent Ki values of BPA and BBF for rat liver ADH were found to be 90 and 2.3 micrometers, respectively (noncompetitive inhibition). Several in vivo experiments were carried out in the rat. Administration intraperitoneally of the substance (460 mumol/kg) 1 hr before intraperitoneal injection of alcohol (2 g/kg body weight) led to a significant decrease in ethanol catabolism. Injection of the substances at 460 mumol/kg brought about a decrease in rat liver ADH activity, but the activity of mitochondrial aldehyde dehydrogenase was only decreased in animals treated with BBF. PMID:6353976

  9. Ranitidine as an alcohol dehydrogenase inhibitor in acute methanol toxicity in rats.

    PubMed

    El-Bakary, Amal A; El-Dakrory, Sahar A; Attalla, Sohayla M; Hasanein, Nawal A; Malek, Hala A

    2010-02-01

    Methanol poisoning is a hazardous intoxication characterized by visual impairment and formic acidemia. The therapy for methanol poisoning is alcohol dehydrogenase (ADH) inhibitors to prevent formate accumulation. Ranitidine has been considered to be an inhibitor of both gastric alcohol and hepatic aldehyde dehydrogenase enzymes. This study aimed at testing ranitidine as an antidote for methanol acute toxicity and comparing it with ethanol and 4-methyl pyrazole (4-MP). This study was conducted on 48 Sprague-Dawley rats, divided into 6 groups, with 8 rats in each group (one negative control group [C1], two positive control groups [C2, C3] and three test groups [1, 2 and 3]). C2, C3 and all test groups were exposed to nitrous oxide by inhalation, then, C3 group was given methanol (3 g/kg orally). The three test groups 1, 2 and 3 were given ethanol (0.5 g/kg orally), 4-MP (15 mg/kg intraperitoneally) and ranitidine (30 mg/kg intraperitoneally), respectively, 4 hours after giving methanol. Rats were sacrificed and heparinized, cardiac blood samples were collected for blood pH and bicarbonate. Non-heparinized blood samples were collected for formate levels by high performance liquid chromatography. Eye balls were enucleated for histological examination of the retina. Ranitidine corrected metabolic acidosis (p = .025), decreased formate levels (p = .014) and improved the histological findings in the retina induced by acute methanol toxicity. PMID:20026516

  10. Alcohol oxidase is a novel pathogenicity factor for Cladosporium fulvum, but aldehyde dehydrogenase is dispensable.

    PubMed

    Segers, G; Bradshaw, N; Archer, D; Blissett, K; Oliver, R P

    2001-03-01

    Cladosporiumfulvum is a mitosporic ascomycete pathogen of tomato. A study of fungal genes expressed during carbon starvation in vitro identified several genes that were up regulated during growth in planta. These included genes predicted to encode acetaldehyde dehydrogenase (Aldh1) and alcohol oxidase (Aox1). An Aldh1 deletion mutant was constructed. This mutant lacked all detectable ALDH activity, had lost the ability to grow with ethanol as a carbon source, but was unaffected in pathogenicity. Aox1 expression was induced by carbon starvation and during the later stages of infection. The alcohol oxidase enzyme activity has broadly similar properties (Km values, substrate specificity, pH, and heat stability) to yeast enzymes. Antibodies raised to Hansenula polymorpha alcohol oxidase (AOX) detected antigens in Western blots of starved C. fulvum mycelium and infected plant material. Antigen reacting with the antibodies was localized to organelles resembling peroxisomes in starved mycelium and infected plants. Disruption mutants of Aox1 lacked detectable AOX activity and had markedly reduced pathogenicity as assayed by two different measures of fungal growth. These results identify alcohol oxidase as a novel pathogenicity factor and are discussed in relation to peroxisomal metabolism of fungal pathogens during growth in planta. PMID:11277434

  11. Secondary alcohol dehydrogenase catalyzes the reduction of exogenous acetone to 2-propanol in Trichomonas vaginalis.

    PubMed

    Sutak, Robert; Hrdy, Ivan; Dolezal, Pavel; Cabala, Radomir; Sedinová, Miroslava; Lewin, Joern; Harant, Karel; Müller, Miklos; Tachezy, Jan

    2012-08-01

    Secondary alcohols such as 2-propanol are readily produced by various anaerobic bacteria that possess secondary alcohol dehydrogenase (S-ADH), although production of 2-propanol is rare in eukaryotes. Specific bacterial-type S-ADH has been identified in a few unicellular eukaryotes, but its function is not known and the production of secondary alcohols has not been studied. We purified and characterized S-ADH from the human pathogen Trichomonas vaginalis. The kinetic properties and thermostability of T. vaginalis S-ADH were comparable with bacterial orthologues. The substantial activity of S-ADH in the parasite's cytosol was surprising, because only low amounts of ethanol and trace amounts of secondary alcohols were detected as metabolic end products. However, S-ADH provided the parasite with a high capacity to scavenge and reduce external acetone to 2-propanol. To maintain redox balance, the demand for reducing power to metabolize external acetone was compensated for by decreased cytosolic reduction of pyruvate to lactate and by hydrogenosomal metabolism of pyruvate. We speculate that hydrogen might be utilized to maintain cytosolic reducing power. The high activity of Tv-S-ADH together with the ability of T. vaginalis to modulate the metabolic fluxes indicate efficacious metabolic responsiveness that could be advantageous for rapid adaptation of the parasite to changes in the host environment. PMID:22686835

  12. S-Nitrosoglutathione is a substrate for rat alcohol dehydrogenase class III isoenzyme.

    PubMed

    Jensen, D E; Belka, G K; Du Bois, G C

    1998-04-15

    An enzyme isolated from rat liver cytosol (native molecular mass 78. 3 kDa; polypeptide molecular mass 42.5 kDa) is capable of catalysing the NADH/NADPH-dependent degradation of S-nitrosoglutathione (GSNO). The activity utilizes 1 mol of coenzyme per mol of GSNO processed. The isolated enzyme has, as well, several characteristics that are unique to alcohol dehydrogenase (ADH) class III isoenzyme: it is capable of catalysing the NAD+-dependent oxidations of octanol (insensitive to inhibition by 4-methylpyrazole), methylcrotyl alcohol (stimulated by added pentanoate) and 12-hydroxydodecanoic acid, and also the NADH/NADPH-dependent reduction of octanal. Methanol and ethanol oxidation activity is minimal. The enzyme has formaldehyde dehydrogenase activity in that it is capable of catalysing the NAD+/NADP+-dependent oxidation of S-hydroxymethylglutathione. Treatment with the arginine-specific reagent phenylglyoxal prevents the pentanoate stimulation of methylcrotyl alcohol oxidation and markedly diminishes the enzymic activity towards octanol, 12-hydroxydodecanoic acid and S-hydroxymethylglutathione; the capacity to catalyse GSNO degradation is also checked. Additionally, limited peptide sequencing indicates 100% correspondence with known ADH class III isoenzyme sequences. Kinetic studies demonstrate that GSNO is an exceptionally active substrate for this enzyme. S-Nitroso-N-acetylpenicillamine and S-nitrosated human serum albumin are not substrates; the activity towards S-nitrosated glutathione mono- and di-ethyl esters is minimal. Product analysis suggests that glutathione sulphinamide is the major stable product of enzymic GSNO processing, with minor yields of GSSG and NH3; GSH, hydroxylamine, nitrite, nitrate and nitric oxide accumulations are minimal. Inclusion of GSH in the reaction mix decreases the yield of the supposed glutathione sulphinamide in favor of GSSG and hydroxylamine. PMID:9531510

  13. Plasmodium falciparum and Plasmodium vivax specific lactate dehydrogenase: genetic polymorphism study from Indian isolates.

    PubMed

    Keluskar, Priyadarshan; Singh, Vineeta; Gupta, Purva; Ingle, Sanjay

    2014-08-01

    Control and eradication of malaria is hindered by the acquisition of drug resistance by Plasmodium species. This has necessitated a persistent search for novel drugs and more efficient targets. Plasmodium species specific lactate dehydrogenase is one of the potential therapeutic and diagnostic targets, because of its indispensable role in endoerythrocytic stage of the parasite. A target molecule that is highly conserved in the parasite population can be more effectively used in diagnostics and therapeutics, hence, in the present study polymorphism in PfLDH (Plasmodiumfalciparum specific LDH) and PvLDH (Plasmodiumvivax specific LDH) genes was analyzed using PCR-single strand confirmation polymorphism (PCR-SSCP) and sequencing. Forty-six P. falciparum and thirty-five P. vivax samples were screened from different states of India. Our findings have revealed presence of a single PfLDH genotype and six PvLDH genotypes among the studied samples. Interestingly, along with synonymous substitutions, nonsynonymous substitutions were reported to be present for the first time in the PvLDH genotypes. Further, through amino acid sequence alignment and homology modeling studies we observed that the catalytic residues were conserved in all PvLDH genotypes and the nonsynonymous substitutions have not altered the enzyme structure significantly. Evolutionary genetics studies have confirmed that PfLDH and PvLDH loci are under strong purifying selection. Phylogenetic analysis of the pLDH gene sequences revealed that P. falciparum compared to P. vivax, has recent origin. The study therefore supports PfLDH and PvLDH as suitable therapeutic and diagnostic targets as well as phylogenetic markers to understand the genealogy of malaria species. PMID:24953504

  14. Prognostic Value of Drinking Status and Aldehyde Dehydrogenase 2 Polymorphism in Patients With Head and Neck Squamous Cell Carcinoma

    PubMed Central

    Kawakita, Daisuke; Oze, Isao; Hosono, Satoyo; Ito, Hidemi; Watanabe, Miki; Yatabe, Yasushi; Hasegawa, Yasuhisa; Murakami, Shingo; Tanaka, Hideo; Matsuo, Keitaro

    2016-01-01

    Background The association between alcohol drinking, aldehyde dehydrogenase 2 (ALDH2) polymorphism, and survival in patients with head and neck squamous cell carcinoma (HNSCC) remains unclear. Methods We performed a retrospective cohort study of 267 HNSCC patients at Aichi Cancer Center. Of these, 65 patients (24%) were non-drinkers, 104 (39%) were light drinkers (ethanol <46 g or <5 days/week), 46 (17%) were moderate drinkers (ethanol intake 46–68 g/day and ≥5 days/week), and 52 (20%) were heavy drinkers (ethanol intake ≥69 g and ≥5 days/week). The prognostic value of pre-treatment drinking status and ALDH2 polymorphism was investigated using multivariate proportional hazard models. Results Drinking status was associated with disease-free survival (DFS) in HNSCC patients, with marginal statistical significance (5-year DFS: 67.9% [95% confidence interval {CI}, 53.8–78.4%] for non-drinkers, 57.6% [95% CI, 47.4–66.6%] for light drinkers, 46.1% [95% CI, 30.8–60.1%] for moderate drinkers, and 43.5% [95% CI, 29.3–56.9%] for heavy drinkers; P = 0.088). However, this association lost significance when multivariate analyses were adjusted for established prognostic factors. ALDH2 genotype was not significantly associated with DFS in HNSCC patients (5-year DFS: 85.7% [95% CI, 53.9–96.2%] for Lys/Lys, 56.2% [95% CI, 47.4–64.1%] for Glu/Lys, and 50.5% [95% CI, 40.3–59.7%] for Glu/Glu; P = 0.154). After stratification by ALDH2 genotype, we observed a significant positive dose-response relationship between drinking status and DFS in HNSCC patients with ALDH2 Glu/Glu (P trend = 0.029). Conclusions In this study, we identified a significant positive dose-response relationship between pre-treatment drinking status and DFS in HNSCC patients with ALDH2 Glu/Glu. To confirm this association, further study is warranted. PMID:26804037

  15. Phylogeny and structure of the cinnamyl alcohol dehydrogenase gene family in Brachypodium distachyon.

    PubMed

    Bukh, Christian; Nord-Larsen, Pia Haugaard; Rasmussen, Søren K

    2012-10-01

    Cinnamyl alcohol dehydrogenase (CAD) catalyses the final step of the monolignol biosynthesis, the conversion of cinnamyl aldehydes to alcohols, using NADPH as a cofactor. Seven members of the CAD gene family were identified in the genome of Brachypodium distachyon and five of these were isolated and cloned from genomic DNA. Semi-quantitative reverse-transcription PCR revealed differential expression of the cloned genes, with BdCAD5 being expressed in all tissues and highest in root and stem while BdCAD3 was only expressed in stem and spikes. A phylogenetic analysis of CAD-like proteins placed BdCAD5 on the same branch as bona fide CAD proteins from maize (ZmCAD2), rice (OsCAD2), sorghum (SbCAD2) and Arabidopsis (AtCAD4, 5). The predicted three-dimensional structures of both BdCAD3 and BdCAD5 resemble that of AtCAD5. However, the amino-acid residues in the substrate-binding domains of BdCAD3 and BdCAD5 are distributed symmetrically and BdCAD3 is similar to that of poplar sinapyl alcohol dehydrogenase (PotSAD). BdCAD3 and BdCAD5 expressed and purified from Escherichia coli both showed a temperature optimum of about 50 °C and molar weight of 49 kDa. The optimal pH for the reduction of coniferyl aldehyde were pH 5.2 and 6.2 and the pH for the oxidation of coniferyl alcohol were pH 8 and 9.5, for BdCAD3 and BdCAD5 respectively. Kinetic parameters for conversion of coniferyl aldehyde and coniferyl alcohol showed that BdCAD5 was clearly the most efficient enzyme of the two. These data suggest that BdCAD5 is the main CAD enzyme for lignin biosynthesis and that BdCAD3 has a different role in Brachypodium. All CAD enzymes are cytosolic except for BdCAD4, which has a putative chloroplast signal peptide adding to the diversity of CAD functions. PMID:23028019

  16. From Alcohol Dehydrogenase to a “One-way” Carbonyl Reductase by Active-site Redesign

    PubMed Central

    Klimacek, Mario; Nidetzky, Bernd

    2010-01-01

    Directional preference in catalysis is often used to distinguish alcohol dehydrogenases from carbonyl reductases. However, the mechanistic basis underpinning this discrimination is weak. In mannitol 2-dehydrogenase from Pseudomonas fluorescens, stabilization of (partial) negative charge on the substrate oxyanion by the side chains of Asn-191 and Asn-300 is a key feature of catalysis in the direction of alcohol oxidation. We have disrupted this ability through individual and combined substitutions of the two asparagines by aspartic acid. Kinetic data and their thermodynamic analysis show that the internal equilibrium of enzyme-NADH-fructose and enzyme-NAD+-mannitol (Kint) was altered dramatically (104- to 105-fold) from being balanced in the wild-type enzyme (Kint ≈ 3) to favoring enzyme-NAD+-mannitol in the single site mutants, N191D and N300D. The change in Kint reflects a selective slowing down of the mannitol oxidation rate, resulting because Asn → Asp replacement (i) disfavors partial abstraction of alcohol proton by Lys-295 in a step preceding catalytic hydride transfer, and (ii) causes stabilization of a nonproductive enzyme-NAD+-mannitol complex. N191D and N300D appear to lose fructose binding affinity due to deprotonation of the respective Asp above apparent pK values of 5.3 ± 0.1 and 6.3 ± 0.2, respectively. The mutant incorporating both Asn→Asp substitutions behaved as a slow “fructose reductase” at pH 5.2, lacking measurable activity for mannitol oxidation in the pH range 6.8–10. A mechanism is suggested in which polarization of the substrate carbonyl by a doubly protonated diad of Asp and Lys-295 facilitates NADH-dependent reduction of fructose by N191D and N300D under optimum pH conditions. Creation of an effectively “one-way” reductase by active-site redesign of a parent dehydrogenase has not been previously reported and holds promise in the development of carbonyl reductases for application in organic synthesis. PMID:20639204

  17. Use of an ionic liquid in a two-phase system to improve an alcohol dehydrogenase catalysed reduction.

    PubMed

    Eckstein, Marrit; Villela Filho, Murillo; Liese, Andreas; Kragl, Udo

    2004-05-01

    Due to favourable partition coefficients the highly enantioselective reduction of 2-octanone, catalysed by an alcohol dehydrogenase from Lactobacillus brevis, is faster in a biphasic system containing buffer and the ionic liquid [BMIM][(CF(3)SO(2))(2)N] compared to the reduction in a biphasic system containing buffer and methyl tert-butyl ether. PMID:15116196

  18. DOWNREGULATION OF CINNAMYL-ALCOHOL DEHYDROGENASE IN SWITCHGRASS BY RNA SILENCING RESULTS IN ENHANCED GLUCOSE RELEASE AFTER CELLULASE TREATMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cinnamyl alcohol dehydrogenase (CAD), catalyzes the last step in monolignol biosynthesis and genetic evidence indicates CAD deficiency in grasses both decreases overall lignin, alters lignin structure and increases enzymatic recovery of sugars. To ascertain the effect of CAD downregulation in switch...

  19. Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum

    SciTech Connect

    Brown, Steven D; Guss, Adam M; Karpinets, Tatiana V; Parks, Jerry M; Smolin, Nikolai; Yang, Shihui; Land, Miriam L; Klingeman, Dawn Marie; Bhandiwad, Ashwini; Rodriguez, Jr., Miguel; Raman, Babu; Shao, Xiongjun; Mielenz, Jonathan R; Smith, Jeremy C; Keller, Martin; Lynd, Lee R

    2011-01-01

    Clostridium thermocellum is a thermophilic, obligately anaerobic, Gram-positive bacterium that is a candidate microorganism for converting cellulosic biomass into ethanol through consolidated bioprocessing. Ethanol intolerance is an important metric in terms of process economics, and tolerance has often been described as a complex and likely multigenic trait for which complex gene interactions come into play. Here, we resequence the genome of an ethanol-tolerant mutant, show that the tolerant phenotype is primarily due to a mutated bifunctional acetaldehyde-CoA/alcohol dehydrogenase gene (adhE), hypothesize based on structural analysis that cofactor specificity may be affected, and confirm this hypothesis using enzyme assays. Biochemical assays confirm a complete loss of NADH-dependent activity with concomitant acquisition of NADPH-dependent activity, which likely affects electron flow in the mutant. The simplicity of the genetic basis for the ethanol-tolerant phenotype observed here informs rational engineering of mutant microbial strains for cellulosic ethanol production.

  20. Azotobacter vinelandii Aldehyde Dehydrogenase Regulated by ς54: Role in Alcohol Catabolism and Encystment

    PubMed Central

    Gama-Castro, Socorro; Núñez, Cinthia; Segura, Daniel; Moreno, Soledad; Guzmán, Josefina; Espín, Guadalupe

    2001-01-01

    Encystment in Azotobacter vinelandii is induced by n-butanol or β-hydroxybutyrate (BHB). We identified a gene, encoding an aldehyde dehydrogenase, that was named aldA. An aldA mutation impaired bacterial growth on n-butanol, ethanol, or hexanol as the sole carbon source. Expression of aldA increased in cells shifted from sucrose to n-butanol and was shown to be dependent on the alternative ς54 factor. A mutation in rpoN encoding the ς54 factor also impaired growth on alcohols. Encystment on n-butanol, but not on BHB, was impaired in aldA or rpoN mutants, indicating that n-butanol is not an inducer of encystment by itself but must be catabolized in order to induce encystment. PMID:11591659

  1. Cinnamyl Alcohol Dehydrogenase: Identification of New Sites of Promoter Activity in Transgenic Poplar.

    PubMed Central

    Hawkins, S.; Samaj, J.; Lauvergeat, V.; Boudet, A.; Grima-Pettenati, J.

    1997-01-01

    Stem sections from poplar that were stably transformed with a eucalypt cinnamyl alcohol dehydrogenase promoter-[beta]-glucuronidase construct were prepared by using either a technique routinely used in herbaceous species or a technique designed to take into account the particular anatomy of woody plants. Although both preparation techniques confirmed the pattern of expression previously observed (C. Feuillet, V. Lauvergeat, C. Deswarte, G. Pilate, A. Boudet and J. Grima-Pettenati [1995] Plant Mol Biol 27: 651-657), the latter technique also allowed the detection of other sites of promoter activity not revealed by the first technique. In situ hybridization confirmed the expression pattern obtained with the second sample preparation technique. PMID:12223610

  2. Active site dynamics in the zinc-dependent medium chain alcohol dehydrogenase superfamily

    PubMed Central

    Baker, Patrick J.; Britton, K. Linda; Fisher, Martin; Esclapez, Julia; Pire, Carmen; Bonete, Maria Jose; Ferrer, Juan; Rice, David W.

    2009-01-01

    Despite being the subject of intensive investigations, many aspects of the mechanism of the zinc-dependent medium chain alcohol dehydrogenase (MDR) superfamily remain contentious. We have determined the high-resolution structures of a series of binary and ternary complexes of glucose dehydrogenase, an MDR enzyme from Haloferax mediterranei. In stark contrast to the textbook MDR mechanism in which the zinc ion is proposed to remain stationary and attached to a common set of protein ligands, analysis of these structures reveals that in each complex, there are dramatic differences in the nature of the zinc ligation. These changes arise as a direct consequence of linked movements of the zinc ion, a zinc-bound bound water molecule, and the substrate during progression through the reaction. These results provide evidence for the molecular basis of proton traffic during catalysis, a structural explanation for pentacoordinate zinc ion intermediates, a unifying view for the observed patterns of metal ligation in the MDR family, and highlight the importance of dynamic fluctuations at the metal center in changing the electrostatic potential in the active site, thereby influencing the proton traffic and hydride transfer events. PMID:19131516

  3. The aromatic alcohol dehydrogenases in Pseudomonas putida N.C.I.B. 9869 grown on 3,5-xylenol and p-cresol.

    PubMed Central

    Keat, M J; Hopper, D J

    1978-01-01

    Whole cells of Pseudomonas putida N.C.I.B 9869, when grown on either 3,5-xylenol or p-cresol, oxidized both m- and p-hydroxybenzyl alcohols. Two distinct NAD+-dependent m-hydroxybenzyl alcohol dehydrogenases were purified from cells grown on 3,5-xylenol. Each is active with a range of aromatic alcohols, including both m- and p-hydroxybenzyl alcohol, but differ in their relative rates with the various substrates. An NAD+-dependent alcohol dehydrogenase was also partially purified from p-cresol grown cells. This too was active with m- and p-hydroxybenzyl alcohol and other aromatic alcohols, but was not identical with either of the other two dehydrogenases. All three enzymes were unstable, but were stabilized by dithiothreitol and all were inhibited with p-chloromercuribenzoate. All were specific for NAD+ and each was shown to catalyse conversion of alcohol into aldehyde. PMID:743216

  4. Expression of Alcohol Dehydrogenase 3 in Tissue and Cultured Cells from Human Oral Mucosa

    PubMed Central

    Hedberg, Jesper J.; Höög, Jan-Olov; Nilsson, Jan A.; Xi, Zheng; Elfwing, Åsa; Grafström, Roland C.

    2000-01-01

    Because formaldehyde exposure has been shown to induce pathological changes in human oral mucosa, eg, micronuclei, the potential enzymatic defense by alcohol dehydrogenase 3 (ADH3)/glutathione-dependent formaldehyde dehydrogenase was characterized in oral tissue specimens and cell lines using RNA hybridization and immunological methods as well as enzyme activity measurements. ADH3 mRNA was expressed in basal and parabasal cell layers of oral epithelium, whereas the protein was detected throughout the cell layers. ADH3 mRNA and protein were further detected in homogenates of oral tissue and various oral cell cultures, including, normal, SV40T antigen-immortalized, and tumor keratinocyte lines. Inhibition of the growth of normal keratinocytes by maintenance at confluency significantly decreased the amount of ADH3 mRNA, a transcript with a determined half-life of 7 hours. In contrast, decay of ADH3 protein was not observed throughout a 4-day period in normal keratinocytes. In samples from both tissue and cells, the ADH3 protein content correlated to oxidizing activity for the ADH3-specific substrate S-hydroxymethylglutathione. The composite analyses associates ADH3 mRNA primarily to proliferative keratinocytes where it exhibits a comparatively short half-life. In contrast, the ADH3 protein is extremely stable, and consequently is retained during the keratinocyte life span in oral mucosa. Finally, substantial capacity for formaldehyde detoxification is shown from quantitative assessments of alcohol- and aldehyde-oxidizing activities including Km determinations, indicating that ADH3 is the major enzyme involved in formaldehyde oxidation in oral mucosa. PMID:11073833

  5. Two zebrafish alcohol dehydrogenases share common ancestry with mammalian class I, II, IV, and V alcohol dehydrogenase genes but have distinct functional characteristics.

    PubMed

    Reimers, Mark J; Hahn, Mark E; Tanguay, Robert L

    2004-09-10

    Ethanol is teratogenic to many vertebrates. We are utilizing zebrafish as a model system to determine whether there is an association between ethanol metabolism and ethanol-mediated developmental toxicity. Here we report the isolation and characterization of two cDNAs encoding zebrafish alcohol dehydrogenases (ADHs). Phylogenetic analysis of these zebrafish ADHs indicates that they share a common ancestor with mammalian class I, II, IV, and V ADHs. The genes encoding these zebrafish ADHs have been named Adh8a and Adh8b by the nomenclature committee. Both genes were genetically mapped to chromosome 13. The 1450-bp Adh8a is 82, 73, 72, and 72% similar at the amino acid level to the Baltic cod ADH8 (previously named ADH1), the human ADH1B2, the mouse ADH1, and the rat ADH1, respectively. Also, the 1484-bp Adh8b is 77, 68, 67, and 66% similar at the amino acid level to the Baltic cod ADH8, the human ADH1B2, the mouse ADH1, and the rat ADH1, respectively. ADH8A and ADH8B share 86% amino acid similarity. To characterize the functional properties of ADH8A and ADH8B, recombinant proteins were purified from SF-9 insect cells. Kinetic studies demonstrate that ADH8A metabolizes ethanol, with a V(max) of 13.4 nmol/min/mg protein, whereas ADH8B does not metabolize ethanol. The ADH8A K(m) for ethanol as a substrate is 0.7 mm. 4-Methyl pyrazole, a classical competitive inhibitor of class I ADH, failed to inhibit ADH8A. ADH8B has the capacity to efficiently biotransform longer chain primary alcohols (>/=5 carbons) and S-hydroxymethlyglutathione, whereas ADH8A does not efficiently metabolize these substrates. Finally, mRNA expression studies indicate that both ADH8A and ADH8B mRNA are expressed during early development and in the adult brain, fin, gill, heart, kidney, muscle, and liver. Together these results indicate that class I-like ADH is conserved in zebrafish, albeit with mixed functional properties. PMID:15231826

  6. Theoretical Calculations of the Catalytic Triad in Short-Chain Alcohol Dehydrogenases/Reductases

    PubMed Central

    Gani, Osman A. B. S. M.; Adekoya, Olayiwola A.; Giurato, Laura; Spyrakis, Francesca; Cozzini, Pietro; Guccione, Salvatore; Winberg, Jan-Olof; Sylte, Ingebrigt

    2008-01-01

    Three highly conserved active site residues (Ser, Tyr, and Lys) of the family of short-chain alcohol dehydrogenases/reductases (SDRs) were demonstrated to be essential for catalytic activity and have been denoted the catalytic triad of SDRs. In this study computational methods were adopted to study the ionization properties of these amino acids in SDRs from Drosophila melanogaster and Drosophila lebanonensis. Three enzyme models, with different ionization scenarios of the catalytic triad that might be possible when inhibitors bind to the enzyme cofactor complex, were constructed. The binding of the two alcohol competitive inhibitors were studied using automatic docking by the Internal Coordinate Mechanics program, molecular dynamic (MD) simulations with the AMBER program package, calculation of the free energy of ligand binding by the linear interaction energy method, and the hydropathic interactions force field. The calculations indicated that deprotonated Tyr acts as a strong base in the binary enzyme-NAD+ complex. Molecular dynamic simulations for 5 ns confirmed that deprotonated Tyr is essential for anchoring and orientating the inhibitors at the active site, which might be a general trend for the family of SDRs. The findings here have implications for the development of therapeutically important SDR inhibitors. PMID:17981907

  7. Isolation of Alcohol Dehydrogenase cDNA and Basal Regulatory Region from Metroxylon sagu

    PubMed Central

    Wee, Ching Ching; Roslan, Hairul Azman

    2012-01-01

    Alcohol dehydrogenase (Adh) is a versatile enzyme involved in many biochemical pathways in plants such as in germination and stress tolerance. Sago palm is plant with much importance to the state of Sarawak as one of the most important crops that bring revenue with the advantage of being able to withstand various biotic and abiotic stresses such as heat, pathogens, and water logging. Here we report the isolation of sago palm Adh cDNA and its putative promoter region via the use of rapid amplification of cDNA ends (RACE) and genomic walking. The isolated cDNA was characterized and determined to be 1464 bp long encoding for 380 amino acids. BLAST analysis showed that the Adh is similar to the Adh1 group with 91% and 85% homology with Elaeis guineensis and Washingtonia robusta, respectively. The putative basal msAdh1 regulatory region was further determined to contain promoter signals of TATA and AGGA boxes and predicted amino acids analyses showed several Adh-specific motifs such as the two zinc-binding domains that bind to the adenosine ribose of the coenzyme and binding to alcohol substrate. A phylogenetic tree was also constructed using the predicted amino acid showed clear separation of Adh from bacteria and clustered within the plant Adh group.

  8. Isolation of Alcohol Dehydrogenase cDNA and Basal Regulatory Region from Metroxylon sagu.

    PubMed

    Wee, Ching Ching; Roslan, Hairul Azman

    2012-01-01

    Alcohol dehydrogenase (Adh) is a versatile enzyme involved in many biochemical pathways in plants such as in germination and stress tolerance. Sago palm is plant with much importance to the state of Sarawak as one of the most important crops that bring revenue with the advantage of being able to withstand various biotic and abiotic stresses such as heat, pathogens, and water logging. Here we report the isolation of sago palm Adh cDNA and its putative promoter region via the use of rapid amplification of cDNA ends (RACE) and genomic walking. The isolated cDNA was characterized and determined to be 1464 bp long encoding for 380 amino acids. BLAST analysis showed that the Adh is similar to the Adh1 group with 91% and 85% homology with Elaeis guineensis and Washingtonia robusta, respectively. The putative basal msAdh1 regulatory region was further determined to contain promoter signals of TATA and AGGA boxes and predicted amino acids analyses showed several Adh-specific motifs such as the two zinc-binding domains that bind to the adenosine ribose of the coenzyme and binding to alcohol substrate. A phylogenetic tree was also constructed using the predicted amino acid showed clear separation of Adh from bacteria and clustered within the plant Adh group. PMID:27335670

  9. A human alcohol dehydrogenase gene (ADH6) encoding an additional class of isozyme.

    PubMed Central

    Yasunami, M; Chen, C S; Yoshida, A

    1991-01-01

    The human alcohol dehydrogenase (ADH; alcohol:NAD+ oxidoreductase, EC 1.1.1.1) gene family consists of five known loci (ADH1-ADH5), which have been mapped close together on chromosome 4 (4q21-25). ADH isozymes encoded by these genes are grouped in three distinct classes in terms of their enzymological properties. A moderate structural similarity is observed between the members of different classes. We isolated an additional member of the ADH gene family by means of cross-hybridization with the ADH2 (class I) cDNA probe. cDNA clones corresponding to this gene were derived from PCR-amplified libraries as well. The coding sequence of a 368-amino-acid-long open reading frame was interrupted by introns into eight exons and spanned approximately 17 kilobases on the genome. The gene contains a glucocorticoid response element at the 5' region. The transcript was detected in the stomach and liver. The deduced amino acid sequence of the open reading frame showed about 60% positional identity with known human ADHs. This extent of homology is comparable to interclass similarity in the human ADH family. Thus, the newly identified gene, which is designated ADH6, governs the synthesis of an enzyme that belongs to another class of ADHs presumably with a distinct physiological role. Images PMID:1881901

  10. Optical isopropanol biosensor using NADH-dependent secondary alcohol dehydrogenase (S-ADH).

    PubMed

    Chien, Po-Jen; Ye, Ming; Suzuki, Takuma; Toma, Koji; Arakawa, Takahiro; Iwasaki, Yasuhiko; Mitsubayashi, Kohji

    2016-10-01

    Isopropanol (IPA) is an important solvent used in industrial activity often found in hospitals as antiseptic alcohol rub. Also, IPA may have the potential to be a biomarker of diabetic ketoacidosis. In this study, an optical biosensor using NADH-dependent secondary alcohol dehydrogenase (S-ADH) for IPA measurement was constructed and evaluated. An ultraviolet light emitting diode (UV-LED, λ=340nm) was employed as the excitation light to excite nicotinamide adenine dinucleotide (NADH). A photomultiplier tube (PMT) was connected to a two-way branch optical fiber for measuring the fluorescence emitted from the NADH. S-ADH was immobilized on the membrane to catalyze IPA to acetone and reduce NAD(+) to be NADH. This IPA biosensor shows highly sensitivity and selectivity, the calibration range is from 500 nmol L(-1) to 1mmolL(-1). The optimization of buffer pH, temperature, and the enzyme-immobilized method were also evaluated. The detection of IPA in nail related cosmetic using our IPA biosensor was also carried out. The results showed that large amounts of IPA were used in these kinds of cosmetics. This IPA biosensor comes with the advantages of rapid reaction, good reproducibility, and wide dynamic range, and is also expected to use for clinical IPA detections in serum or other medical and health related applications. PMID:27474326

  11. Inhibition of human alcohol and aldehyde dehydrogenases by aspirin and salicylate: assessment of the effects on first-pass metabolism of ethanol.

    PubMed

    Lee, Shou-Lun; Lee, Yung-Pin; Wu, Min-Li; Chi, Yu-Chou; Liu, Chiu-Ming; Lai, Ching-Long; Yin, Shih-Jiun

    2015-05-01

    Previous studies have reported that aspirin significantly reduced the first-pass metabolism (FPM) of ethanol in humans thereby increasing adverse effects of alcohol. The underlying causes, however, remain poorly understood. Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), principal enzymes responsible for metabolism of ethanol, are complex enzyme families that exhibit functional polymorphisms among ethnic groups and distinct tissue distributions. We investigated the inhibition profiles by aspirin and its major metabolite salicylate of ethanol oxidation by recombinant human ADH1A, ADH1B1, ADH1B2, ADH1B3, ADH1C1, ADH1C2, ADH2, and ADH4, and acetaldehyde oxidation by ALDH1A1 and ALDH2, at pH 7.5 and 0.5 mM NAD(+). Competitive inhibition pattern was found to be a predominant type among the ADHs and ALDHs studied, although noncompetitive and uncompetitive inhibitions were also detected in a few cases. The inhibition constants of salicylate for the ADHs and ALDHs were considerably lower than that of aspirin with the exception of ADH1A that can be ascribed to a substitution of Ala-93 at the bottom of substrate pocket as revealed by molecular docking experiments. Kinetic inhibition equation-based simulations show at higher therapeutic levels of blood plasma salicylate (1.5 mM) that the decrease of activities at 2-10 mM ethanol for ADH1A/ADH2 and ADH1B2/ADH1B3 are predicted to be 75-86% and 31-52%, respectively, and that the activity decline for ALDH1A1 and ALDH2 at 10-50 μM acetaldehyde to be 62-73%. Our findings suggest that salicylate may substantially inhibit hepatic FPM of alcohol at both the ADH and ALDH steps when concurrent intaking aspirin. PMID:25772736

  12. Probes of hydrogen tunneling with horse liver alcohol dehydrogenase at subzero temperatures.

    PubMed

    Tsai, S; Klinman, J P

    2001-02-20

    The temperature dependence of steady-state kinetics has been studied with horse liver alcohol dehydrogenase (HLADH) using protonated and deuterated benzyl alcohol as substrates in methanol/water mixtures between +3 and -50 degrees C. Additionally, the competitive isotope effects, k(H)/k(T) and k(D)/k(T), were measured. The studies indicate increasing kinetic complexity for wild-type HLADH at subzero temperatures. Consistent with earlier findings at 25 degrees C [Bahnson et al. (1993) Biochemistry 31, 5503], the F93W mutant shows much less kinetic complexity than the wild-type enzyme between 3 and -35 degrees C. An analysis of noncompetitive deuterium isotope effects and competitive tritium isotope effects leads to the conclusion that the reaction of F93W involves substantial hydrogen tunneling down to -35 degrees C. The effect of methanol on kinetic properties for the F93W mutant was analyzed, showing a dependence of competitive KIEs on the NAD(+) concentration. This indicates a more random bi--bi kinetic mechanism, in comparison to an ordered bi-bi kinetic mechanism in water. Although MeOH also affects the magnitude of the reaction rates and, to some extent, the observed KIEs, the ratio of ln k(H)/k(T) to ln k(D)/k(T) for primary isotope effects has not changed in methanol, and we conclude little or no change in kinetic complexity. Importantly, the degree of tunneling, as shown from the relationship between the secondary k(H)/k(T) and k(D)/k(T) values, is the same in water and MeOH/water mixtures, implicating similar trajectories for H transfer in both solvents. In a recent study of a thermophilic alcohol dehydrogenase [Kohen et al. (1999) Nature 399, 496], it was shown that decreases in temperatures below a transition temperature lead to decreased tunneling. This arises because of a change in protein dynamics below a break point in enzyme activity [Kohen et al. (2000) J. Am. Chem. Soc. 122, 10738-10739]. For the mesophilic HLADH described herein, an opposite

  13. Microbial production of methylketones: properties of purified yeast secondary alcohol dehydrogenase

    SciTech Connect

    Patel, R.N.; Hou, C.T.; Laskin, A.I.; Derelanko, P.

    1981-06-01

    Secondary alcohol dehydrogenase (SADH) was purified from extracts of a methanol-grown yeast, Pichia sp. The purified enzyme was homogeneous as judged by ultracentrifugation and by polyacrylamide gel electrophoresis. The purified SADH has a molecular weight of 98,000 as determined by gel filtration and 102,000 as determined by sedimentation equilibrium analysis. The sedimentation constant s/sub 20,w/ was 6.0. The subunit size of the SADH was 48,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, indicating that it consists of two subunits. The purified SADH contained two atoms of zinc per mole of enzyme protein. SADH catalyzed the oxidation of secondary alcohols. Primary alcohols (C/sub 1/ to C/sub 8/ tested) were not oxidized. The purified SADH and extracts of various yeasts and bacteria also catalyzed the reduction of methylketones to the corresponding secondary alcohols in the presence of reduced NAD/sup +/ as an electron donor. Both reactions (oxidation of secondary alcohols in the presence of NAD/sup +/ and reduction of methylketones in the presence of reduced NAD/sup +/) catalyzed by the purified SADH were inhibited by metal-chelating agents, thio reagent, and by antisera prepared against the purified enzyme. The apparent K/sub m/ values for NAD/sup +/, reduced NAD/sup +/, reduced NAD/sup +/, 2-butanol, and 2-butanone are 0.05, 0.1, 0.4, and 1 mM, respectively. The purified enzyme preferentially oxidized (-)-2-butanol and (-)-2-octanol, the rate of oxidation of (+)-2-butanol and (+)-2-octanol was 36% and 13% of that of 100% with (-)-2-butanol and (-)-2-octanol, respectively. The K/sub m/ values for (-)-2-butanol and (+)-2-butanol were 3.0 and 0.75 mM, respectively. Antisera prepared against purified Pichia SADH cross-reacted with the SADH derived from bacteria. This suggests difference in immunological properties between yeast and bacterial SADH.

  14. ALDH2 polymorphism is associated with fasting blood glucose through alcohol consumption in Japanese men

    PubMed Central

    Yin, Guang; Naito, Mariko; Wakai, Kenji; Morita, Emi; Kawai, Sayo; Hamajima, Nobuyuki; Suzuki, Sadao; Kita, Yoshikuni; Takezaki, Toshiro; Tanaka, Keitaro; Morita, Makiko; Uemura, Hirokazu; Ozaki, Etsuko; Hosono, Satoyo; Mikami, Haruo; Kubo, Michiaki; Tanaka, Hideo

    2016-01-01

    ABSTRACT Associations between alcohol consumption and type 2 diabetes risk are inconsistent in epidemiologic studies. This study investigated the associations of ADH1B and ALDH2 polymorphisms with fasting blood glucose levels, and the impact of the associations of alcohol consumption with fasting blood glucose levels in Japanese individuals. This cross-sectional study included 907 men and 912 women, aged 35–69 years. The subjects were selected from among the Japan Multi-institutional Collaborative Cohort study across six areas of Japan. The ADH1B and ALDH2 polymorphisms were genotyped by Invader Assays. The ALDH2 Glu504Lys genotypes were associated with different levels of fasting blood glucose in men (P = 0.04). Mean fasting glucose level was positively associated with alcohol consumption in men with the ALDH2 504 Lys allele (Ptrend = 0.02), but not in men with the ALDH2 504Glu/Glu genotype (Ptrend = 0.45), resulting in no statistically significant interaction (P = 0.38). Alcohol consumption was associated with elevated fasting blood glucose levels compared with non-consumers in men (Ptrend = 0.002). The ADH1B Arg48His polymorphism was not associated with FBG levels overall or after stratification for alcohol consumption. These findings suggest that the ALDH2 polymorphism is associated with different levels of fasting blood glucose through alcohol consumption in Japanese men. The interaction of ALDH2 polymorphisms in the association between alcohol consumption and fasting blood glucose warrants further investigation. PMID:27303105

  15. Metabolic basis of ethylene glycol monobutyl ether (2-butoxyethanol) toxicity: role of alcohol and aldehyde dehydrogenases

    SciTech Connect

    Ghanayem, B.I.; Burka, L.T.; Matthews, H.B.

    1987-07-01

    2-Butoxyethanol (BE) is a massively produced glycol ether of which more than 230 million pounds was produced in the United States in 1983. It is extensively used in aerosols and cleaning agents intended for household use. This creates a high potential for human exposure during its manufacturing and use. A single exposure of rats to BE causes severe hemolytic anemia accompanied by secondary hemoglobinuria as well as liver and kidney damage. Butoxyacetic acid (BAA) was earlier identified as a urinary metabolite of BE. In addition, we have recently identified two additional urinary metabolites of BE, namely, BE-glucuronide and BE-sulfate conjugates. The current studies were undertaken to investigate the metabolic basis of BE-induced hematotoxicity in male F344 rats. Treatment of rats with pyrazole (alcohol dehydrogenase inhibitor) protected rats against BE-induced hematotoxicity and inhibited BE metabolism to BAA. Pyrazole inhibition of BE metabolism to BAA was accompanied by increased BE metabolism to BE-glucuronide and BE-sulfate as determined by quantitative high-performance liquid chromatography analysis of BE metabolites in urine. There was approximately a 10-fold decrease in the ratio of BAA to BE-glucuronide + BE-sulfate in the urine of rats treated with pyrazole + BE compared to rats treated with BE alone. Pretreatment of rats with cyanamide (aldehyde dehydrogenase inhibitor) also significantly protected rats against BE-induced hematotoxicity and modified BE metabolism in a manner similar to that caused by pyrazole. Administration of equimolar doses of BE, the metabolic intermediate butoxyacetaldehyde, or the ultimate metabolite BAA caused similar hematotoxic effects. Cyanamide also protected rats against butoxyacetaldehyde-induced hematotoxicity.

  16. Polymorphic transitions in n-hydrocarbon-water and n-alcohol-water binary systems

    NASA Astrophysics Data System (ADS)

    Mirgorod, Yu. A.

    2014-08-01

    The mixing of hydrocarbons and alcohols in an excess of water is explained by polymorphic transitions similar to crystallization in an ensemble of water clusters. Enthalpies of transitions of 4.90 ± 0.07 and 2.2 ± 0.3 kJ/mol are obtained for solutions of hydrocarbons and alcohols in an excess of water, respectively. It is concluded that the mixing of water in an excess of hydrocarbons and alcohols is similar to evaporation (the breaking of H-bonds) with an enthalpy of 34 ± 1.4 kJ/mol. It is established that a polymorphic transition occurs between two binodals, and is accompanied by the emergence of microphases (concentration fluctuations) of alcohols in water. Binodals and spinodals in an excess of water and alcohol coincide for butyl and other higher alcohols.

  17. Optimization of enzyme assisted extraction of Fructus Mori polysaccharides and its activities on antioxidant and alcohol dehydrogenase.

    PubMed

    Deng, Qingfang; Zhou, Xin; Chen, Huaguo

    2014-10-13

    In the present study, enzyme assisted extraction of Fructus Mori polysaccharides (FMPS) from F. mori using four kinds of enzymes and three compound enzymes were examined. Research found that glucose oxidase offered a better performance in enhancement of the extraction yields of FMPS, antioxidant and activate alcohol dehydrogenase activities. The glucose oxidase assisted extraction process was further optimized by using response surface method (RSM) to obtain maximum yield of crude FMPS. The results showed that optimized extraction conditions were ratio of enzyme amount 0.40%, enzyme treated time 38 min, treated temperature 58 °C and liquid-solid radio 11.0. Under these conditions, the mean experimental value of extraction yield (16.16 ± 0.14%) corresponded well with the predicted values and increased 160% than none enzyme treated ones. Pharmacological verification tests showed that F. mori crude polysaccharides had good antioxidant and activate alcohol dehydrogenase activities in vitro. PMID:25037415

  18. Complete amino acid sequence and characterization of the reaction mechanism of a glucosamine-induced novel alcohol dehydrogenase from Agrobacterium radiobacter (tumefaciens).

    PubMed

    Iwamoto, Ryoko; Kubota, Humie; Hosoki, Tomoko; Ikehara, Kenji; Tanaka, Mieko

    2002-02-15

    A glucosamine-induced novel alcohol dehydrogenase has been isolated from Agrobacterium radiobacter (tumefaciens) and its fundamental properties have been characterized. The enzyme catalyzes NAD-dependent dehydrogenation of aliphatic alcohols and amino alcohols. In this work, the complete amino acid sequence of the alcohol dehydrogenase was determined by PCR method using genomic DNA of A. radiobacter as template. The enzyme comprises 336 amino acids and has a molecular mass of 36 kDa. The primary structure of the enzyme demonstrates a high homology to structures of alcohol dehydrogenases from Shinorhizobium meliloti (83% identity, 90% positive) and Pseudomonas aeruginosa (65% identity, 76% positive). The two Zn(2+) ion binding sites, both the active site and another site that contributed to stabilization of the enzyme, are conserved in those enzymes. Sequences analysis of the NAD-dependent dehydrogenase family using a hypothetical phylogenetic tree indicates that these three enzymes form a new group distinct from other members of the Zn-containing long-chain alcohol dehydrogenase family. The physicochemical properties of alcohol dehydrogenase from A. radiobacter were characterized as follows. (1) Stereospecificity of the hydride transfer from ethanol to NADH was categorized as pro-R type by NMR spectra of NADH formed in the enzymatic reaction using ethanol-D(6) was used as substrate. (2) Optimal pH for all alcohols with no amino group examined was pH 8.5 (of the C(2)-C(6) alcohols, n-amyl alcohol demonstrated the highest activity). Conversely, glucosaminitol was optimally dehydrogenated at pH 10.0. (3) The rate-determining step of the dehydrogenase for ethanol is deprotonation of the enzyme-NAD-Zn-OHCH(2)CH(3) complex to enzyme-NAD-Zn-O(-)CH(2)CH(3) complex and that for glucosaminitol is H(2)O addition to enzyme-Zn-NADH complex. PMID:11831851

  19. Family-based study of brain-derived neurotrophic factor (BDNF) gene polymorphism in alcohol dependence.

    PubMed

    Grzywacz, Anna; Samochowiec, Agnieszka; Ciechanowicz, Andrzej; Samochowiec, Jerzy

    2010-01-01

    Brain-derived neurotrophic factor (BDNF) belongs to a family of proteins related to the nerve growth factor family, which are responsible for the proliferation, survival and differentiation of neurons. BDNF is thought to be involved in the pathogenesis of bipolar disorder, schizophrenia, eating disorders and addiction. We hypothesize that a functionally relevant polymorphism of the BDNF gene promoter may be associated with the pathogenesis of alcohol dependence. We performed an association study of 141 families with alcohol dependence. One hundred and thirty-eight healthy control subjects were matched based on ethnicity and gender. An association between the BDNF Val66Met gene polymorphism and alcoholism was not found. PMID:21098877

  20. Alcohol dehydrogenases from Scheffersomyces stipitis involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion.

    PubMed

    Ma, Menggen; Wang, Xu; Zhang, Xiaoping; Zhao, Xianxian

    2013-09-01

    Aldehyde inhibitors such as furfural and 5-hydroxymethylfurfural (HMF) are generated from biomass pretreatment. Scheffersomyces stipitis is able to reduce furfural and HMF to less toxic furanmethanol and furan-2,5-dimethanol; however, the enzymes involved in the reductive reaction still remain unknown. In this study, transcription responses of two known and five putative alcohol dehydrogenase genes from S. stipitis were analyzed under furfural and HMF stress conditions. All the seven alcohol dehydrogenase genes were also cloned and overexpressed for their activity analyses. Our results indicate that transcriptions of SsADH4 and SsADH6 were highly induced under furfural and HMF stress conditions, and the proteins encoded by them exhibited NADH- and/or NADPH-dependent activities for furfural and HMF reduction, respectively. For furfural reduction, NADH-dependent activity was also observed in SsAdh1p and NAD(P)H-dependent activities were also observed in SsAdh5p and SsAdh7p. For HMF reduction, NADPH-dependent activities were also observed in SsAdh5p and SsAdh7p. SsAdh4p displayed the highest NADPH-dependent specific activity and catalytic efficiency for reduction of both furfural and HMF among the seven alcohol dehydrogenases. Enzyme activities of all SsADH proteins were more stable under acidic condition. For most SsADH proteins, the optimum temperature for enzyme activities was 30 °C and more than 50 % enzyme activities remained at 60 °C. Reduction activities of formaldehyde, acetaldehyde, isovaleraldehyde, benzaldehyde, and phenylacetaldehyde were also observed in some SsADH proteins. Our results indicate that multiple alcohol dehydrogenases in S. stipitis are involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion. PMID:23912116

  1. Alcohol and Aldehyde Dehydrogenases Contribute to Sex-Related Differences in Clearance of Zolpidem in Rats

    PubMed Central

    Peer, Cody J.; Strope, Jonathan D.; Beedie, Shaunna; Ley, Ariel M.; Holly, Alesia; Calis, Karim; Farkas, Ronald; Parepally, Jagan; Men, Angela; Fadiran, Emmanuel O.; Scott, Pamela; Jenkins, Marjorie; Theodore, William H.; Sissung, Tristan M.

    2016-01-01

    Objectives: The recommended zolpidem starting dose was lowered in females (5 mg vs. 10 mg) since side effects were more frequent and severe than those of males; the mechanism underlying sex differences in pharmacokinetics (PK) is unknown. We hypothesized that such differences were caused by known sex-related variability in alcohol dehydrogenase (ADH) expression. Methods: Male, female, and castrated male rats were administered 2.6 mg/kg zolpidem, ± disulfiram (ADH/ALDH pathway inhibitor) to compare PK changes induced by sex and gonadal hormones. PK analyses were conducted in rat plasma and rat brain. Key findings: Sex differences in PK were evident: females had a higher CMAX (112.4 vs. 68.1 ug/L) and AUC (537.8 vs. 231.8 h∗ug/L) than uncastrated males. Castration induced an earlier TMAX (0.25 vs. 1 h), greater CMAX (109.1 vs. 68.1 ug/L), and a corresponding AUC increase (339.7 vs. 231.8 h∗ug/L). Administration of disulfiram caused more drastic CMAX and TMAX changes in male vs. female rats that mirrored the effects of castration on first-pass metabolism, suggesting that the observed PK differences may be caused by ADH/ALDH expression. Brain concentrations paralleled plasma concentrations. Conclusion: These findings indicate that sex differences in zolpidem PK are influenced by variation in the expression of ADH/ALDH due to gonadal androgens. PMID:27574509

  2. Suitability of the hydrocarbon-hydroxylating molybdenum-enzyme ethylbenzene dehydrogenase for industrial chiral alcohol production.

    PubMed

    Tataruch, M; Heider, J; Bryjak, J; Nowak, P; Knack, D; Czerniak, A; Liesiene, J; Szaleniec, M

    2014-12-20

    The molybdenum/iron-sulfur/heme protein ethylbenzene dehydrogenase (EbDH) was successfully applied to catalyze enantiospecific hydroxylation of alkylaromatic and alkylheterocyclic compounds. The optimization of the synthetic procedure involves use of the enzyme in a crude purification state that saves significant preparation effort and is more stable than purified EbDH without exhibiting unwanted side reactions. Moreover, immobilization of the enzyme on a crystalline cellulose support and changes in reaction conditions were introduced in order to increase the amounts of product formed (anaerobic atmosphere, electrochemical electron acceptor recycling or utilization of ferricyanide as alternative electron acceptor in high concentrations). We report here on an extension of effective enzyme activity from 4h to more than 10 days and final product yields of up to 0.4-0.5g/l, which represent a decent starting point for further optimization. Therefore, we expect that the hydrocarbon-hydroxylation capabilities of EbDH may be developed into a new process of industrial production of chiral alcohols. PMID:24998764

  3. Determination of Kinetic Isotope Effects in Yeast Alcohol Dehydrogenase Using Transition Path Sampling

    NASA Astrophysics Data System (ADS)

    Varga, Matthew; Schwartz, Steven

    2015-03-01

    The experimental determination of kinetic isotope effects in enzymatic systems can be a difficult, time-consuming, and expensive process. In this study, we use the Chandler-Bolhius method for the determination of reaction rates within transition path sampling (rTPS) to determine the primary kinetic isotope effect in yeast alcohol dehydrogenase (YADH). In this study, normal mode centroid molecular dynamics (CMD) was applied to the transferring hydride/deuteride in order to correctly incorporate quantum effects into the molecular simulations. Though previous studies have used rTPS to calculate reaction rate constants in various model and real systems, it has not been applied to a system as large as YADH. Due to the fact that particle transfer is not wholly indicative of the chemical step, this method cannot be used to determine reaction rate constants in YADH. However, it is possible to determine the transition rate constant of the particle transfer, and the kinetic isotope effect of that step. This method provides a set of tools to determine kinetic isotope effects with the atomistic detail of molecular simulations.

  4. Genetic basis of the difference in alcohol dehydrogenase expression between Drosophila melanogaster and Drosophila simulans.

    PubMed Central

    Laurie, C C; Heath, E M; Jacobson, J W; Thomson, M S

    1990-01-01

    Drosophila melanogaster and its sibling species, Drosophila simulans, differ in expression of the enzyme alcohol dehydrogenase (ADH). Adult melanogaster flies that are homozygous for the Slow allozyme have approximately twice the level of ADH activity and crossreacting material as simulans adults. There is no corresponding difference in ADH mRNA, however, so this difference in ADH protein level is evidently due to a difference in the rate of translation of the two RNAs and/or to a difference in protein stability. Here we report an interspecific gene-transfer experiment, using P-element transformation, to determine whether this expression difference is due to genetic background differences between the species (trans-acting modifiers) or to cis-acting factors within the Adh gene. When the Adh genes from D. melanogaster and D. simulans are put into the same genetic background, there is no detectable difference in their level of expression. The level is relatively high in the melanogaster background and relatively low in the simulans background. Therefore, the interspecific difference in Adh expression is due entirely to trans-acting modifiers, in spite of the many sequence differences between the Adh genes of the two species, which include two amino acid substitutions. PMID:2124699

  5. Red Xylem and Higher Lignin Extractability by Down-Regulating a Cinnamyl Alcohol Dehydrogenase in Poplar.

    PubMed Central

    Baucher, M.; Chabbert, B.; Pilate, G.; Van Doorsselaere, J.; Tollier, M. T.; Petit-Conil, M.; Cornu, D.; Monties, B.; Van Montagu, M.; Inze, D.; Jouanin, L.; Boerjan, W.

    1996-01-01

    Cinnamyl alcohol dehydrogenase (CAD) catalyzes the last step in the biosynthesis of the lignin precursors, the monolignols. We have down-regulated CAD in transgenic poplar (Populus tremula X Populus alba) by both antisense and co-suppression strategies. Several antisense and sense CAD transgenic poplars had an approximately 70% reduced CAD activity that was associated with a red coloration of the xylem tissue. Neither the lignin amount nor the lignin monomeric composition (syringyl/guaiacyl) were significantly modified. However, phloroglucinol-HCl staining was different in the down-regulated CAD plants, suggesting changes in the number of aldehyde units in the lignin. Furthermore, the reactivity of the cell wall toward alkali treatment was altered: a lower amount of lignin was found in the insoluble, saponified residue and more lignin could be precipitated from the soluble alkali fraction. Moreover, large amounts of phenolic compounds, vanillin and especially syringaldehyde, were detected in the soluble alkali fraction of the CAD down-regulated poplars. Alkaline pulping experiments on 3-month-old trees showed a reduction of the kappa number without affecting the degree of cellulose degradation. These results indicate that reducing the CAD activity in trees might be a valuable strategy to optimize certain processes of the wood industry, especially those of the pulp and paper industry. PMID:12226459

  6. Furfural reduction mechanism of a zinc-dependent alcohol dehydrogenase from Cupriavidus necator JMP134

    PubMed Central

    Kang, ChulHee; Hayes, Robert; Sanchez, Emiliano J.; Webb, Brian N.; Li, Qunrui; Hooper, Travis; Nissen, Mark S.; Xun, Luying

    2012-01-01

    Summary FurX is a tetrameric Zn-dependent alcohol dehydrogenase (ADH) from Cupriavidus necator JMP134. The enzyme rapidly reduces furfural with NADH as the reducing power. For the first time among characterized ADHs, the high-resolution structures of all reaction steps were obtained in a time-resolved manner, thereby illustrating the complete catalytic events of NADH-dependent reduction of furfural and the dynamic Zn2+ coordination among Glu66, water, substrate and product. In the fully closed conformation of the NADH complex, the catalytic turnover proved faster than observed for the partially closed conformation due to an effective proton transfer network. The domain motion triggered by NAD(H) association/dissociation appeared to facilitate dynamic interchanges in Zn2+ coordination with substrate and product molecules, ultimately increasing the enzymatic turnover rate. NAD+ dissociation appeared to be a slow process, involving multiple steps in concert with a domain opening and reconfiguration of Glu66. This agrees with the report that the cofactor is not dissociated from FurX during ethanol-dependent reduction of furfural, in which ethanol reduces NAD+ to NADH that is subsequently used for furfural reduction. PMID:22081946

  7. Monoterpene alcohol metabolism: identification, purification, and characterization of two geraniol dehydrogenase isoenzymes from Polygonum minus leaves.

    PubMed

    Hassan, Maizom; Maarof, Nur Diyana; Ali, Zainon Mohd; Noor, Normah Mohd; Othman, Roohaida; Mori, Nobuhiro

    2012-01-01

    NADP(+)-dependent geraniol dehydrogenase (EC 1.1.1.183) is an enzyme that catalyzes the oxidation of geraniol to geranial. Stable, highly active cell-free extract was obtained from Polygonum minus leaves using polyvinylpolypyrrolidone, Amberlite XAD-4, glycerol, 2-mercaptoethanol, thiourea, and phenylmethylsulfonylfluoride in tricine-NaOH buffer (pH 7.5). The enzyme preparation was separated into two activity peaks, geraniol-DH I and II, by DEAE-Toyopearl 650M column chromatography at pH 7.5. Both isoenzymes were purified to homogeneity in three chromatographic steps. The geraniol-DH isoenzymes were similar in molecular mass, optimal temperature, and pH, but the isoelectric point, substrate specificity, and kinetic parameters were different. The K(m) values for geraniol of geraniol-DH I and II appeared to be 0.4 mM and 0.185 mM respectively. P. minus geraniol-DHs are unusual among geraniol-DHs in view of their thermal stability and optimal temperatures, and also their high specificity for allylic alcohols and NADP(+). PMID:22878188

  8. Enhanced Stability and Reusability of Alcohol Dehydrogenase Covalently Immobilized on Magnetic Graphene Oxide Nanocomposites.

    PubMed

    Liu, Liangliang; Yu, Jingang; Chen, Xiaoqing

    2015-02-01

    Graphene oxide (GO) has a unique planar structure and contains many functional groups. As a functional material, it can be functionalized with biomolecules and nanomaterials for various applications. In this study, Magnetic GO (MGO) nanocomposites were synthesized according to covalent binding of amino Fe3O4 nanoparticles onto the GO surface and the as-made nanocomposites were successfully applied as supports for the immobilization of alcohol dehydrogenase (ADH). Compared with free ADH and Fe3O4 nanoparticles immobilized ADH (MNP-ADH), the MGO immobilized ADH (MGO-ADH) exhibited a wider pH stability range and a better thermal stability. Furthermore, the MGO-ADH exhibited better storage stability and reusability than MNP-ADH after recovered by magnetic separations. The MGO-ADH maintained 35.1% activity after 20 days storage and lost about 20.4% activity after ten times usage. The Michaelis constant (Km) of MGO-ADH was close to that of free ADH. The results showed the MGO nanocomposites were appropriate for the immobilization of enzyme. As a novel support, MGO nanocomposites effectively increased the stability of enzyme, allowed the reuse or continuous use of enzymes and therefore improved the potential use in practical. PMID:26353636

  9. Computational optimization of AG18051 inhibitor for amyloid-beta binding alcohol dehydrogenase enzyme

    NASA Astrophysics Data System (ADS)

    Marques, Alexandra T.; Antunes, Agostinho; Fernandes, Pedro A.; Ramos, Maria J.

    Amyloid-beta (Abeta) binding alcohol dehydrogenase (ABAD) is a multifunctional enzyme involved in maintaining the homeostasis. The enzyme can also mediate some diseases, including genetic diseases, Alzheimer's disease, and possibly some prostate cancers. Potent inhibitors of ABAD might facilitate a better clarification of the functions of the enzyme under normal and pathogenic conditions and might also be used for therapeutic intervention in disease conditions mediated by the enzyme. The AG18051 is the only presently available inhibitor of ABAD. It binds in the active-site cavity of the enzyme and reacts with the NAD+ cofactor to form a covalent adduct. In this work, we use computational methods to perform a rational optimization of the AG18051 inhibitor, through the introduction of chemical substitutions directed to improve the affinity of the inhibitor to the enzyme. The molecular mechanics-Poisson-Boltzmann surface area methodology was used to predict the relative free binding energy of the different modified inhibitor-NAD-enzyme complexes. We show that it is possible to increase significantly the affinity of the inhibitor to the enzyme with small modifications, without changing the overall structure and ADME (absorption, distribution, metabolism, and excretion) properties of the original inhibitor.

  10. Study on immobilization of yeast alcohol dehydrogenase on nanocrystalline Ni-Co ferrites as magnetic support.

    PubMed

    Shakir, Mohammad; Nasir, Zeba; Khan, Mohd Shoeb; Lutfullah; Alam, Md Fazle; Younus, Hina; Al-Resayes, Saud Ibrahim

    2015-01-01

    The covalent binding of yeast alcohol dehydrogenase (YADH) enzyme complex in a series of magnetic crystalline Ni-Co nanoferrites, synthesized via sol-gel auto combustion technique was investigated. The structural analysis, morphology and magnetic properties of Ni-Co nanoferrites were determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), vibrating-sample magnetometer (VSM), high resolution transmission electron microscopy (HRTEM) and Fourier transform infrared spectroscopy (FTIR). The comparative analysis of the HRTEM micrographs of bare magnetic nanoferrite particles and particles immobilized with enzyme revealed an uniform distribution of the particles in both the cases without undergoing change in the size which was found to be in the range 20-30 nm. The binding of YADH to Ni-Co nanoferrites and the possible binding mechanism have been suggested by comparing the FTIR results. The binding properties of the immobilized YADH enzyme were also studied by kinetic parameters, optimum operational pH, temperature, thermal stability and reusability. The immobilized YADH exhibits enhanced thermal stability as compared to the free enzyme over a wide range of temperature and pH, and showed good durability after recovery by magnetic separation for repeated use. PMID:25450541

  11. Mechanisms of mutagenesis: Analysis through the use of alcohol dehydrogenase in Drosophila: Final report

    SciTech Connect

    Sofer, W.H.

    1986-12-01

    Our original objective was to understand the mechanism of mutagenesis of several important mutagens in higher organisms. Our approach was to try to deduce this mechanism by working backwards from its final effects. The strategy that we used in an effort to carry out our studies was to make mutations in the alcohol dehydrogenase gene of Drosophila melanogaster and sequence the modified genes. Most of our work was focused on an array of mutants that we had induced with formaldehyde, a potent mutagen in Drosophila, and with ethyl methane sulfonate. Over the course of the project period we cloned and sequenced the ADH gene from four formalde-induced mutants and from one EMS mutant. We showed that the four formaldehyde-induced mutants contained small deletions within the protein-coding region of their ADH genes ranging in size from between 6 and 34 bp. The one EMS-induced mutant was shown by DNA sequencing to bear an AT to GC sequence change at a tryptophan codon near the c-terminal coding portion of the gene. These results have significantly increased our understanding of the mechanism(s) of mutagenesis in higher organisms. 20 refs., 1 fig.

  12. Molecular control of the induction of alcohol dehydrogenase by ethanol in Drosophila melanogaster larvae

    SciTech Connect

    Kapoun, A.M.; Geer, B.W.; Heinstra, P.W.H. ); Corbin, V. ); McKechnie, S.W. )

    1990-04-01

    The activity of alcohol dehydrogenase, the initial enzyme in the major pathway for ethanol degradation, is induced in Drosophila melanogaster larvae by low concentrations of dietary ethanol. Two lines of evidence indicate that the metabolic products of the ADH pathway for ethanol degradation are not directly involved in the induction of Adh. First, the accumulation of the proximal transcript in Adh{sup n2} larvae was increased when the intracellular level of ethanol was elevated. In addition, the ADH activity, the proximal Adh mRNA, and the intracellular concentration of ethanol were elevated coordinately in wild-type larvae fed hexadeuterated-ethanol, which is metabolized more slowly than normal ethanol.l An examination of P element transformant lines with specific deletions in the 5{prime} regulatory DNA of the Adh gene showed that the DNA sequence between +604 and +634 of the start site of transcription from the distal promoter was essential for this induction. The DNA sequence between {minus}660 and about {minus}5,000 of the distal transcript start site was important for the down-regulation of the induction response.

  13. High current density PQQ-dependent alcohol and aldehyde dehydrogenase bioanodes.

    PubMed

    Aquino Neto, Sidney; Hickey, David P; Milton, Ross D; De Andrade, Adalgisa R; Minteer, Shelley D

    2015-10-15

    In this paper, we explore the bioelectrooxidation of ethanol using pyrroloquinoline quinone (PQQ)-dependent alcohol and aldehyde dehydrogenase (ADH and AldDH) enzymes for biofuel cell applications. The bioanode architectures were designed with both direct electron transfer (DET) and mediated electron transfer (MET) mechanisms employing high surface area materials such as multi-walled carbon nanotubes (MWCNTs) and MWCNT-decorated gold nanoparticles, along with different immobilization techniques. Three different polymeric matrices were tested (tetrabutyl ammonium bromide (TBAB)-modified Nafion; octyl-modified linear polyethyleneimine (C8-LPEI); and cellulose) in the DET studies. The modified Nafion membrane provided the best electrical communication between enzymes and the electrode surface, with catalytic currents as high as 16.8 ± 2.1 µA cm(-2). Then, a series of ferrocene redox polymers were evaluated for MET. The redox polymer 1,1'-dimethylferrocene-modified linear polyethyleneimine (FcMe2-C3-LPEI) provided the best electrochemical response. Using this polymer, the electrochemical assays conducted in the presence of MWCNTs and MWCNTs-Au indicated a Jmax of 781 ± 59 µA cm(-2) and 925 ± 68 µA cm(-2), respectively. Overall, from the results obtained here, DET using the PQQ-dependent ADH and AldDH still lacks high current density, while the bioanodes that operate via MET employing ferrocene-modified LPEI redox polymers show efficient energy conversion capability in ethanol/air biofuel cells. PMID:25988787

  14. Arabidopsis alcohol dehydrogenase expression in both shoots and roots is conditioned by root growth environment

    NASA Technical Reports Server (NTRS)

    Chung, H. J.; Ferl, R. J.

    1999-01-01

    It is widely accepted that the Arabidopsis Adh (alcohol dehydrogenase) gene is constitutively expressed at low levels in the roots of young plants grown on agar media, and that the expression level is greatly induced by anoxic or hypoxic stresses. We questioned whether the agar medium itself created an anaerobic environment for the roots upon their growing into the gel. beta-Glucuronidase (GUS) expression driven by the Adh promoter was examined by growing transgenic Arabidopsis plants in different growing systems. Whereas roots grown on horizontal-positioned plates showed high Adh/GUS expression levels, roots from vertical-positioned plates had no Adh/GUS expression. Additional results indicate that growth on vertical plates closely mimics the Adh/GUS expression observed for soil-grown seedlings, and that growth on horizontal plates results in induction of high Adh/GUS expression that is consistent with hypoxic or anoxic conditions within the agar of the root zone. Adh/GUS expression in the shoot apex is also highly induced by root penetration of the agar medium. This induction of Adh/GUS in shoot apex and roots is due, at least in part, to mechanisms involving Ca2+ signal transduction.

  15. The alcohol dehydrogenase gene is nested in the outspread locus of Drosophila melanogaster

    SciTech Connect

    McNabb, S.; Greig, S.; Davis, T.

    1996-06-01

    This report describes the structure and expression of the outspread (osp) gene of Drosophila melanogaster. Previous work showed that chromosomal breakpoints associated with mutations of the osp locus map to both sides of the alcohol dehydrogenase gene (Adh), suggesting that Adh and the adjacent gene Adh{sup r} are nested in osp. We extended a chromosomal walk and mapped additional osp mutations to define the maximum molecular limit of osp as 119 kb. We identified a 6-kb transcript that hybridizes to osp region DNA and is altered or absent in osp mutants. Accumulation of this RNA peaks during embryonic and pupal periods. The osp cDNAs comprise two distinct classes based on alternative splicing patterns. The 5{prime} end of the longest cDNA was extended by PCR amplification. When hybridized to the osp walk, the 5{prime} extension verifies that Adh and Adh{sup r} are nested in osp and shows that osp has a transcription unit of {ge}74 kb. In situ hybridization shows that osp is expressed both maternally and zygotically. In the ovary, osp is transcribed in nurse cells and localized in the oocyte. In embryos, expression is most abundant in the developing visceral and somatic musculature. 55 refs., 11 figs., 1 tab.

  16. Biochemical characterization of a bifunctional acetaldehyde-alcohol dehydrogenase purified from a facultative anaerobic bacterium Citrobacter sp. S-77.

    PubMed

    Tsuji, Kohsei; Yoon, Ki-Seok; Ogo, Seiji

    2016-03-01

    Acetaldehyde-alcohol dehydrogenase (ADHE) is a bifunctional enzyme consisting of two domains of an N-terminal acetaldehyde dehydrogenase (ALDH) and a C-terminal alcohol dehydrogenase (ADH). The enzyme is known to be important in the cellular alcohol metabolism. However, the role of coenzyme A-acylating ADHE responsible for ethanol production from acetyl-CoA remains uncertain. Here, we present the purification and biochemical characterization of an ADHE from Citrobacter sp. S-77 (ADHES77). Interestingly, the ADHES77 was unable to be solubilized from membrane with detergents either 1% Triton X-100 or 1% Sulfobetaine 3-12. However, the enzyme was easily dissociated from membrane by high-salt buffers containing either 1.0 M NaCl or (NH4)2SO4 without detergents. The molecular weight of a native protein was estimated as approximately 400 kDa, consisting of four identical subunits of 96.3 kDa. Based on the specific activity and kinetic analysis, the ADHES77 tended to have catalytic reaction towards acetaldehyde elimination rather than acetaldehyde formation. Our experimental observation suggests that the ADHES77 may play a pivotal role in modulating intracellular acetaldehyde concentration. PMID:26216639

  17. Unexpected properties of NADP-dependent secondary alcohol dehydrogenase (ADH-1) in Trichomonas vaginalis and other microaerophilic parasites.

    PubMed

    Leitsch, David; Williams, Catrin F; Lloyd, David; Duchêne, Michael

    2013-07-01

    Our previous observation that NADP-dependent secondary alcohol dehydrogenase (ADH-1) is down-regulated in metronidazole-resistant Trichomonas vaginalis isolates prompted us to further characterise the enzyme. In addition to its canonical enzyme activity as a secondary alcohol dehydrogenase, a pronounced, so far unknown, background NADPH-oxidising activity in absence of any added substrate was observed when the recombinant enzyme or T. vaginalis extract were used. This activity was strongly enhanced at low oxygen concentrations. Unexpectedly, all functions of ADH-1 were efficiently inhibited by coenzyme A which is a cofactor of a number of key enzymes in T. vaginalis metabolism, i.e. pyruvate:ferredoxin oxidoreductase (PFOR). These observations could be extended to Entamoeba histolytica and Tritrichomonas foetus, both of which have a homologue of ADH-1, but not to Giardia lamblia which lacks an NADP-dependent secondary alcohol dehydrogenase. Although we could not identify the substrate of the observed background activity, we propose that ADH-1 functions as a major sink for NADPH in microaerophilic parasites at low oxygen tension. PMID:23578856

  18. Isolation of an alcohol dehydrogenase cDNA from and characterization of its expression in chrysanthemum under waterlogging.

    PubMed

    Yin, Dongmei; Ni, Dian; Song, Lili; Zhang, Zhiguo

    2013-11-01

    A PCR strategy was used to isolate a full-length CgADH (alcohol dehydrogenase) cDNA from chrysanthemum. The gene putatively encodes a 378 residue polypeptides, which shares 95% homology with tomato alcohol dehydrogenase class III. Endogenous ethylene generated in waterlogged Chrysanthemum zawadskii was enhanced by exogenous ethylene but decreased by 1-methylcyclopropene (1-MCP), an inhibitor of ethylene action. In waterlogged roots, the transcription of the gene encoding alcohol dehydrogenase (ADH, EC 1.1.1.1) increased rapidly but transiently, peaking at 7.5 fold the non-waterlogged level after 2h of stress. Waterlogging elevated ADH activity after a prolonged episode of stress. The exogenous supply of 40μLL(-1) ethylene suppressed the production of ethanol, while that of 4μLL(-1) 1-MCP enhanced it. Ethylene appeared to suppress an acceleration of both CgADH expression and fermentation, and alleviates ethanolic fermentation probably through by as a signal to acceleration of waterlogging-induced aerenchyma formation. This supports the previously observed phenomenon that the expression level of ADH gene is regulated by the local level of physiologically active ethylene. The relevance of the CgADH gene in relation to chrysanthemum waterlogging was discussed as well. PMID:24094053

  19. Brain-derived neurotrophic factor Val66Met polymorphism and alcohol-related phenotypes.

    PubMed

    Nedic, Gordana; Perkovic, Matea Nikolac; Sviglin, Korona Nenadic; Muck-Seler, Dorotea; Borovecki, Fran; Pivac, Nela

    2013-01-10

    Alcoholism is a chronic psychiatric disorder affecting neural pathways that regulate motivation, stress, reward and arousal. Brain-derived neurotrophic factor (BDNF) regulates mood, response to stress and interacts with neurotransmitters and stress systems involved in reward pathways and addiction. Aim of the study was to evaluate the association between a single nucleotide polymorphism (BDNF Val66Met or rs6265) and alcohol related phenotypes in Caucasian patients. In ethnically homogenous Caucasian subjects of the Croatian origin, the BDNF Val66Met genotype distribution was determined in 549 male and 126 female patients with alcohol dependence and in 655 male and 259 female healthy non-alcoholic control subjects. Based on the structured clinical interview, additional detailed clinical interview, the Brown-Goodwin Scale, the Hamilton Rating Scale for Depression and the Clinical Global Impression scores, alcoholic patients were subdivided into those with or without comorbid depression, aggression, delirium tremens, withdrawal syndrome, early/late onset of alcohol abuse, prior suicidal attempt during lifetime, current suicidal behavior, and severity of alcohol dependence. The results showed no significant association between BDNF Val66Met variants and alcohol dependence and/or any of the alcohol related phenotypes in either Caucasian women, or men, with alcohol dependence. There are few limitations of the study. The overall study sample size was large (N=1589) but not well-powered to detect differences in BDNF Val66Met genotype distribution between studied groups. Healthy control women were older than female alcoholic patients. Only one BDNF polymorphism (rs6265) was studied. In conclusion, these data do not support the view that BDNF Val66Met polymorphism correlates with the specific alcohol related phenotypes in ethnically homogenous medication-free Caucasian subjects with alcohol dependence. PMID:23023098

  20. Biophysical and mutagenic analysis of Thermoanaerobacter ethanolicus secondary-alcohol dehydrogenase activity and specificity.

    PubMed Central

    Burdette, D S; Secundo, F; Phillips, R S; Dong, J; Scott, R A; Zeikus, J G

    1997-01-01

    The Thermoanaerobacter ethanolicus 39E adhB gene encoding the secondary-alcohol dehydrogenase (secondary ADH) was overexpressed in Escherichia coli at more than 10% of total protein. The recombinant enzyme was purified in high yield (67%) by heat-treatment at 85 degrees C and (NH4)2SO4 precipitation. Site-directed mutants (C37S, H59N, D150N, D150Eand D150C were analysed to test the peptide sequence comparison-based predictions of amino acids responsible for putative catalytic Zn binding. X-ray absorption spectroscopy confirmed the presence of a protein-bound Zn atom with ZnS1(imid)1(N,O)3 co-ordination sphere. Inductively coupled plasma atomic emission spectrometry measured 0.48 Zn atoms per wild-type secondary ADH subunit. The C37S, H59N and D150N mutant enzymes bound only 0.11, 0.13 and 0.33 Zn per subunit respectively,suggesting that these residues are involved in Zn liganding. The D150E and D150C mutants retained 0.47 and 1.2 Zn atoms per subunit, indicating that an anionic side-chain moiety at this position preserves the bound Zn. All five mutant enzymes had

  1. Chronic alcoholism in rats induces a compensatory response, preserving brain thiamine diphosphate, but the brain 2-oxo acid dehydrogenases are inactivated despite unchanged coenzyme levels.

    PubMed

    Parkhomenko, Yulia M; Kudryavtsev, Pavel A; Pylypchuk, Svetlana Yu; Chekhivska, Lilia I; Stepanenko, Svetlana P; Sergiichuk, Andrej A; Bunik, Victoria I

    2011-06-01

    Thiamine-dependent changes in alcoholic brain were studied using a rat model. Brain thiamine and its mono- and diphosphates were not reduced after 20 weeks of alcohol exposure. However, alcoholism increased both synaptosomal thiamine uptake and thiamine diphosphate synthesis in brain, pointing to mechanisms preserving thiamine diphosphate in the alcoholic brain. In spite of the unchanged level of the coenzyme thiamine diphosphate, activities of the mitochondrial 2-oxoglutarate and pyruvate dehydrogenase complexes decreased in alcoholic brain. The inactivation of pyruvate dehydrogenase complex was caused by its increased phosphorylation. The inactivation of 2-oxoglutarate dehydrogenase complex (OGDHC) correlated with a decrease in free thiols resulting from an elevation of reactive oxygen species. Abstinence from alcohol following exposure to alcohol reactivated OGDHC along with restoration of the free thiol content. However, restoration of enzyme activity occurred before normalization of reactive oxygen species levels. Hence, the redox status of cellular thiols mediates the action of oxidative stress on OGDHC in alcoholic brain. As a result, upon chronic alcohol consumption, physiological mechanisms to counteract the thiamine deficiency and silence pyruvate dehydrogenase are activated in rat brain, whereas OGDHC is inactivated due to impaired antioxidant ability. PMID:21517848

  2. Dihydropyrimidine dehydrogenase and thymidylate synthase polymorphisms and their association with 5-fluorouracil/leucovorin chemotherapy in colorectal cancer.

    PubMed

    Zhu, Andrew X; Puchalski, Thomas A; Stanton, Vincent P; Ryan, David P; Clark, Jeffrey W; Nesbitt, Steven; Charlat, Olga; Kelly, Patrick; Kreconus, Elaine; Chabner, Bruce A; Supko, Jeffrey G

    2004-02-01

    The causes of interpatient variation in severe toxicity resulting from treatment with weekly 5-fluorouracil (5-FU)/ leucovorin (LV) are poorly understood. This study was undertaken to examine the contribution of commonly occurring polymorphisms in the dihydropyrimidine dehydrogenase (DPYD) gene to interpatient variability in 5-FU pharmacokinetics and toxicity. Patients with stage III/IV colorectal cancer were treated by bolus intravenous (I.V.) injection with 500 mg/m2 doses of 5-FU and LV once every week. The pharmacokinetics of 5-FU was determined on weeks 1 and 4. Genotyping assays were developed for 8 polymorphisms in the DPYD gene. A well-characterized functional polymorphism in the 5' untranslated region of the thymidylate synthase (TS) gene was also analyzed. A cohort of 22 patients (15 male, 7 female) with a median age of 61 years was evaluated. Although there was no relationship between the area under the plasma concentration time curve (AUC) for the first dose of 5-FU and worst-grade toxicity during the first cycle of therapy, 3 of the 4 patients in whom the AUC on week 4 was more than equal to 5 microgram/h/mL greater than the value for the first dose experienced grade 3/4 toxicity during subsequent treatment. Among the 8 polymorphisms in the DPYD gene, 7 were found to vary in the study population but none were significantly associated with the AUC of 5-FU. There was no relationship between the DPYD and TS genotypes examined and 5-FU toxicity. Extensive polymorphism in the DPYD gene was observed; however, no conclusive correlations existed between the DPYD and TS genotype and 5-FU pharmacokinetics or toxicity. Decreases in 5-FU clearance in certain patients may provide insight into the increased toxicity following repetitive cycles of treatment with weekly I.V. bolus 5-FU. The present study offers useful themes for undertaking larger prospective pharmacogenetic studies in the future. PMID:15025795

  3. Regulation of human alcohol dehydrogenase gene ADH7: importance of an AP-1 site.

    PubMed

    Kotagiri, S; Edenberg, H J

    1998-07-01

    The structure and function of the human alcohol dehydrogenase 7 (ADH7) promoter were analyzed. A promoter fragment extending to bp -232 functioned well in H4IIE-C3, CV-1, and HeLa cells, whereas the region extending further upstream to bp -799 had no significant effect on activity. We identified cis-acting elements in the proximal 232 bp and examined their effect on promoter activity. Mutation of site A, where c-Jun bound, caused a drastic decrease in the promoter activity in H4IIE-C3 and CV-1 cells, suggesting that AP-1 plays an important role in the regulation of ADH7. Mutation of site B also caused a large drop in promoter activity in both cell lines; C/EBPalpha can bind to this site, but because the site affects activity approximately equally in CV-1 cells that lack C/EBPalpha and in H4IIE-C3 cells that contain low levels, other proteins are likely to play the major roles in vivo. Mutation of site C, where C/EBP bound and c-Jun bound weakly, had different effects in the two cell lines: in H4IIE-C3 cells, the site C mutation did not significantly increase promoter activity, whereas in CV-1 cells, which lack C/EBPalpha, it led to a doubling of activity. Surprisingly, cotransfection of the wild-type promoter with C/EBPa or C/EBPbeta led to a decrease in promoter activity, which might in part explain the lack of activity of ADH7 in adult liver. PMID:9703017

  4. Classical Raman spectroscopic studies of NADH and NAD+ bound to liver alcohol dehydrogenase by difference techniques

    SciTech Connect

    Chen, D.; Yue, K.T.; Martin, C.; Rhee, K.W.; Sloan, D.; Callender, R.

    1987-07-28

    We report the Raman spectra of reduced and oxidized nicotinamide adenine dinucleotide (NADH and NAD+, respectively) and adenosine 5'-diphosphate ribose (ADPR) when bound to the coenzyme site of liver alcohol dehydrogenase (LADH). The bound NADH spectrum is calculated by taking the classical Raman difference spectrum of the binary complex, LADH/NADH, with that of LADH. We have investigated how the bound NADH spectrum is affected when the ternary complexes with inhibitors are formed with dimethyl sulfoxide (Me2SO) or isobutyramide (IBA), i.e., LADH/NADH/Me2SO or LADH/NADH/IBA. Similarly, the difference spectra of LADH/NAD+/pyrazole or LADH/ADPR with LADH are calculated. The magnitude of these difference spectra is on the order of a few percent of the protein Raman spectrum. We report and discuss the experimental configuration and control procedures we use in reliably calculating such small difference signals. These sensitive difference techniques could be applied to a large number of problems where the classical Raman spectrum of a ''small'' molecule, like adenine, bound to the active site of a protein is of interest. The spectrum of bound ADPR allows an assignment of the bands of the bound NADH and NAD+ spectra to normal coordinates located primarily on either the nicotinamide or the adenine moiety. By comparing the spectra of the bound coenzymes with model compound data and through the use of deuterated compounds, we confirm and characterize how the adenine moiety is involved in coenzyme binding and discuss the validity of the suggestion that the adenine ring is protonated upon binding. The nicotinamide moiety of NADH shows significant molecular changes upon binding.

  5. Characterization of transposable element-associated mutations that alter yeast alcohol dehydrogenase II expression.

    PubMed Central

    Williamson, V M; Cox, D; Young, E T; Russell, D W; Smith, M

    1983-01-01

    Seven cis-dominant, constitutively expressed mutations of the normally glucose-repressible isozyme of alcohol dehydrogenase (ADHII) from the yeast Saccharomyces cerevisiae are caused by insertion of transposable elements from the Ty1 family in front of the ADHII structural gene (ADR2) (V. M. Williamson, E. T. Young, and M. Ciriacy, Cell 23:605-614, 1981). We cloned ADR2 with its associated Ty1 element from five S. cerevisiae strains carrying these mutations. Comparison of the Ty1 elements by heteroduplex studies and restriction enzyme analyses indicated that four were very similar; the fifth, although the same size as the others (about 5.6 kilobases), differed by the presence of two large substitutions of approximately 1 and 2 kilobases. The DNA sequences of the terminal direct repeats (deltas) were very homologous but not identical and were similar to previously reported Ty1 element direct repeats. We determined the 5'-flanking sequences of the ADR2 gene isolated from a wild-type strain and from five Ty1-associated mutations. The 5-base pair target sequence at the site of Ty1 insertion was present at both ends of each Ty1 element. The sites of insertion of the elements were all different and occurred from 125 to 210 base pairs in front of the coding region of ADR2. The 5' end of the major transcript as determined by S1 mapping was the same in wild-type cells and in Ty1-associated constitutive mutants and was approximately 54 base pairs upstream from the coding region. ADR2 transcripts were not detected when a solo delta sequence was present in the 5'-flanking region of this gene. Images PMID:6298605

  6. Some properties of an alcohol dehydrogenase partially purified from baker's yeast grown without added zinc.

    PubMed Central

    Dickenson, C J; Dickinson, F M

    1976-01-01

    Alcohol dehydrogenase was partially purified from yeast (Saccharomyces cerevisiae) grown in the presence of 20 muM-MnSO4 without added Zn2+ and from yeast grown in the presence of 1.8 muM-MnSO4. The enzyme from yeast grown with added Zn2+ has the same properties as the crystalline enzyme from commercial supplies of baker's yeast. The enzyme from yeast grown without added An2+ has quite different properties. It has a mol.wt. in the region of 72000 and an S 20 w of 5.8S. The values can be compared with a mol.wt. of 141000 and an S 20 w of 7.6S for the crystalline enzyme. ADP-ribose, a common impurity in commercial samples of NAD+, is a potent competitive inhibitor of the new enzyme (K1 = 0.5 muM), but is not so for the crystalline enzyme. The observed maximum rate of ethanol oxidation at pH 7.05 and 25 degrees C was decreased 12-fold by the presence of 0.06 mol of inhibitor/mol of NAD+ when using the enzyme from Zn2+-deficient yeast, but with crystalline enzyme the maximum rate was essentially unchanged by this concentration of inhibitor. The kinetic characteristics for the two enzymes with ethanol, butan-1-ol, acetaldehyde and butyraldehyde as substrates are markedly different. These kinetic differences are discussed in relation to the mechanism of catalysis for the enzyme from Zn2+-deficient yeast. PMID:179534

  7. The Alcohol Dehydrogenase Gene Family in Melon (Cucumis melo L.): Bioinformatic Analysis and Expression Patterns

    PubMed Central

    Jin, Yazhong; Zhang, Chong; Liu, Wei; Tang, Yufan; Qi, Hongyan; Chen, Hao; Cao, Songxiao

    2016-01-01

    Alcohol dehydrogenases (ADH), encoded by multigene family in plants, play a critical role in plant growth, development, adaptation, fruit ripening and aroma production. Thirteen ADH genes were identified in melon genome, including 12 ADHs and one formaldehyde dehydrogenease (FDH), designated CmADH1-12 and CmFDH1, in which CmADH1 and CmADH2 have been isolated in Cantaloupe. ADH genes shared a lower identity with each other at the protein level and had different intron-exon structure at nucleotide level. No typical signal peptides were found in all CmADHs, and CmADH proteins might locate in the cytoplasm. The phylogenetic tree revealed that 13 ADH genes were divided into three groups respectively, namely long-, medium-, and short-chain ADH subfamily, and CmADH1,3-11, which belongs to the medium-chain ADH subfamily, fell into six medium-chain ADH subgroups. CmADH12 may belong to the long-chain ADH subfamily, while CmFDH1 may be a Class III ADH and serve as an ancestral ADH in melon. Expression profiling revealed that CmADH1, CmADH2, CmADH10 and CmFDH1 were moderately or strongly expressed in different vegetative tissues and fruit at medium and late developmental stages, while CmADH8 and CmADH12 were highly expressed in fruit after 20 days. CmADH3 showed preferential expression in young tissues. CmADH4 only had slight expression in root. Promoter analysis revealed several motifs of CmADH genes involved in the gene expression modulated by various hormones, and the response pattern of CmADH genes to ABA, IAA and ethylene were different. These CmADHs were divided into ethylene-sensitive and –insensitive groups, and the functions of CmADHs were discussed. PMID:27242871

  8. Acrylamide quenching of Trp phosphorescence in liver alcohol dehydrogenase: evidence of gated quencher penetration.

    PubMed

    Strambini, Giovanni B; Gonnelli, Margherita

    2009-08-11

    Notwithstanding the relevance of their biological function, slow motions in proteins, beyond the microsecond range, are still poorly understood and often elusive. We propose that acrylamide quenching of Trp phosphorescence of deeply buried residues, when extended over the entire accessible range of lifetime measurements (tau > 10 micros), may help to unveil low-frequency protein motions that allow penetration of solute into the protein interior. The work examines in some detail acrylamide quenching of Trp phosphorescence in a model protein (liver alcohol dehydrogenase) over an extended submillimolar to molar acrylamide concentration range. The results, which encompass a >10(4)-fold variation in the quenching rate, provide the first evidence of a downward-curving lifetime Stern-Volmer plot, indicative of a nonlinear dependence of the quenching rate on the quencher concentration. From an analysis of saturation effects in terms of a protein-gated acrylamide diffusion mechanism, we infer two main routes for acrylamide to penetrate the globular fold and come into the proximity of internal W314: a low-frequency gate [36 s(-1) (at 25 degrees C)] tentatively assigned to partial opening of the dimer interface and a higher-frequency one (11800 s(-1)) tentatively assigned to a channel blocked by the side chains of V276 and L307. These motions are sharply inhibited in the rigid protein complexes formed with the coenzyme NAD(+) and the coenzyme analogue adenine diphosphate ribose, as well as by the frictional drag of the solvent in viscous glycerol solutions, evidence that rules out an alternative quenching mechanism involving acrylamide binding to the protein. PMID:19594170

  9. NADH Dehydrogenase Subunit-2 237 Leu/Met Polymorphism Modulates the Effects of Coffee Consumption on the Risk of Hypertension in Middle-Aged Japanese Men

    PubMed Central

    Kokaze, Akatsuki; Ishikawa, Mamoru; Matsunaga, Naomi; Karita, Kanae; Yoshida, Masao; Ohtsu, Tadahiro; Shirasawa, Takako; Sekii, Hideaki; Ito, Taku; Kawamoto, Teruyoshi; Takashima, Yutaka

    2009-01-01

    Background Habitual coffee consumption has been reported to lower blood pressure in the Japanese population. The NADH dehydrogenase subunit-2 237 leucine/methionine (ND2-237 Leu/Met) polymorphism is associated with longevity and modifies the effects of alcohol consumption on blood pressure in the Japanese population. The objective of this study was to determine whether this polymorphism also modifies the effects of coffee consumption on blood pressure or the risk of hypertension in middle-aged Japanese men. Methods A total of 398 men (mean age ± standard deviation, 53.8 ± 7.8 years) were selected from among individuals visiting the hospital for regular medical check-ups. Hypertension was defined as a systolic blood pressure ≥140 mm Hg, diastolic blood pressure ≥90 mm Hg, or antihypertensive drug treatment. Polymerase chain reaction-restriction fragment length polymorphism using the restriction enzyme AluI was performed to determine ND2-237 Leu/Met genotype. Results In subjects with ND2-237Leu, coffee consumption was significantly and negatively associated with diastolic blood pressure (P = 0.007). The odds ratio (OR) for hypertension was significantly lower in subjects with ND2-237Leu who consumed 2 or 3 cups of coffee per day than in those who consumed less than 1 cup of coffee per day (OR, 0.517; 95% confidence interval [CI], 0.276 to 0.968; P = 0.039). After adjustment, the OR remained significant (OR = 0.399; 95% CI, 0.184 to 0.869; P = 0.020). Moreover, after adjustment, the OR was significantly lower in subjects with ND2-237Leu who consumed more than 4 cups of coffee per day than in those who consumed less than 1 cup of coffee per day (OR, 0.246; 95% CI, 0.062 to 0.975; P = 0.046). However, the association between ND2-237Met genotype and hypertension did not depend on coffee consumption. Conclusions The present results suggest that the ND2-237 Leu/Met polymorphism modulates the effects of coffee consumption on hypertension risk in middle-aged Japanese

  10. Physiological Studies of Methane- and Methanol-Oxidizing Bacteria: Comparison of a Primary Alcohol Dehydrogenase from Methylococcus capsulatus (Texas Strain) and Pseudomonas Species M27

    PubMed Central

    Patel, R. N.; Bose, H. R.; Mandy, W. J.; Hoare, D. S.

    1972-01-01

    A primary alcohol dehydrogenase has been purified from Methylococcus capsulatus (Texas strain). The purified enzyme catalyzes the oxidation of methanol and formaldehyde to formate; other primary alcohols are oxidized to their corresponding aldehydes. Ammonium ions are required for enzyme activity. The enzyme has a molecular weight of 120,000 daltons and consists of two 62,000 molecular-weight subunits which dissociate at acidic pH. The enzyme is similar to an alcohol dehydrogenase enzyme isolated from Pseudomonas sp. M27. Images PMID:5022170

  11. ALDH2 polymorphism is associated with fasting blood glucose through alcohol consumption in Japanese men.

    PubMed

    Yin, Guang; Naito, Mariko; Wakai, Kenji; Morita, Emi; Kawai, Sayo; Hamajima, Nobuyuki; Suzuki, Sadao; Kita, Yoshikuni; Takezaki, Toshiro; Tanaka, Keitaro; Morita, Makiko; Uemura, Hirokazu; Ozaki, Etsuko; Hosono, Satoyo; Mikami, Haruo; Kubo, Michiaki; Tanaka, Hideo

    2016-05-01

    Associations between alcohol consumption and type 2 diabetes risk are inconsistent in epidemiologic studies. This study investigated the associations of ADH1B and ALDH2 polymorphisms with fasting blood glucose levels, and the impact of the associations of alcohol consumption with fasting blood glucose levels in Japanese individuals. This cross-sectional study included 907 men and 912 women, aged 35-69 years. The subjects were selected from among the Japan Multi-institutional Collaborative Cohort study across six areas of Japan. The ADH1B and ALDH2 polymorphisms were genotyped by Invader Assays. The ALDH2 Glu504Lys genotypes were associated with different levels of fasting blood glucose in men (P = 0.04). Mean fasting glucose level was positively associated with alcohol consumption in men with the ALDH2 504 Lys allele (P trend = 0.02), but not in men with the ALDH2 504Glu/Glu genotype (P trend = 0.45), resulting in no statistically significant interaction (P = 0.38). Alcohol consumption was associated with elevated fasting blood glucose levels compared with non-consumers in men (P trend = 0.002). The ADH1B Arg48His polymorphism was not associated with FBG levels overall or after stratification for alcohol consumption. These findings suggest that the ALDH2 polymorphism is associated with different levels of fasting blood glucose through alcohol consumption in Japanese men. The interaction of ALDH2 polymorphisms in the association between alcohol consumption and fasting blood glucose warrants further investigation. PMID:27303105

  12. An enzyme-amplified microtiter plate assay for ethanol: Its application to the detection of peanut ethanol and alcohol dehydrogenase

    SciTech Connect

    Chung, S.Y.; Vercellotti, J.R.; Sanders, T.H.

    1995-12-01

    A calorimetric microliter plate assay for ethanol amplified by aldehyde dehydrogenase (ALDH) was developed. In the assay ethanol from a sample took part in a chain-reaction catalyzed by alcohol dehydrogenase (ADH) and amplified by ALDH in the presence of NAD{sup +}, diaphorase, and p-ibdonitrotetrazolium-violet (INT-violet)(a precursor of red product). The resultant reaction gave a red color, the intensity of which was proportional to the amount of ethanol present. Using the technique, the content of activity from peanuts of differing maturity and curing stages were determined respectively. Data showed that immature peanuts had a higher level of ethanol and a lower ADH activity than mature peanuts, and that the level of ethanol and ADH activity decreased with the curing time. This indicates that peanut maturity and curing have an effect on ethanol. Also, this implies that other peanut volatiles could be affected in the same way as ethanol, a major volatile in peanuts.

  13. Nur-related receptor 1 gene polymorphisms and alcohol dependence in Mexican Americans

    PubMed Central

    Wei, Ya-Ming; Du, Yan-Lei; Nie, Yu-Qiang; Li, Yu-Yuan; Wan, Yu-Jui

    2012-01-01

    AIM: To investigate the association of polymorphisms of nur-related receptor 1 (Nurr1) and development of alcohol dependence in Mexican Americans. METHODS: Peripheral blood samples were collected from 374 alcoholic and 346 nonalcoholic Mexican Americans; these two groups were sex- and age-matched. Sample DNA was extracted and genomic DNA was amplified by polymerase chain reaction. The -2922(C) 2-3 polymerase chain reaction products were digested with Sau96I, alleles of 1345(G/C), and -1198(C/G) in the regulatory region as well as Ex+132 (G/T/A/C) and Ex+715(T/-) in exon 3 were studied by sequencing. RESULTS: The C2/C2, C2/C3, C3/C3 genotype distribution of -2922(C) 2-3 was 34.4%, 38.2% and 27.5% in the nonalcoholic group compared to 23.3%, 51.2% and 25.4% in the alcoholic group (P = 0.001). The C/C, C/G, G/G genotype distribution of -1198(C/G) was 23.5%, 46.1% and 30.3% in the nonalcoholic group compared to 13.9%, 50.9% and 35.3% in the alcoholic group (P = 0.007). However, the -1345 (G/C), Ex3+132(G/T/A/C) and Ex3+715(T/-) alleles were not polymorphic in Mexican Americans, and all those studied had G/G, G/G and T/T genotype for these three alleles, respectively. The -2922(C) 2-3 did not show allele level difference between alcoholic and nonalcoholic individuals, but -1198 (C/G) showed a significant allele frequency difference between alcoholic (39.3%) and nonalcoholic (46.6%) populations (P = 0.005). Excluding obese individuals, significant differences were found at both genotypic and allelic levels for the -2922(C) 2-3 polymorphism (P = 0.000 and P = 0.049) and the -1198 (C/G) polymorphism (P = 0.008 and P = 0.032) between nonobese alcoholics and nonobese controls. Excluding smokers, a significant difference was found only at the genotypic level for the -2922(C) 2-3 polymorphism (P = 0.037) between nonsmoking alcoholics and nonsmoking controls, but only at the allelic level for the -1198(C/G) polymorphism (P = 0.034). CONCLUSION: Polymorphisms in the regulatory

  14. CHRONIC FEEDING ALCOHOL-CONTAINING DIETS VIA TOTAL ENTERAL NUTRITION INDUCES ALCOHOL DEHYDROGENASE (ADH) AND INSULIN RESISTANCE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Induction of Class 1 ADH occurs in rats fed alcohol chronically, and we have reported that C/EBPs and SREBP-1 are important signaling factors in this process. Chronic alcohol intake in humans can result in alcohol-induced diabetes. We have studied insulin signaling pathways in adult male Sprague-D...

  15. µ-Opioid Receptor Gene (OPRM1) Polymorphism A118G: Lack of Association in Finnish Populations with Alcohol Dependence or Alcohol Consumption

    PubMed Central

    Rouvinen-Lagerström, Noora; Lahti, Jari; Alho, Hannu; Kovanen, Leena; Aalto, Mauri; Partonen, Timo; Silander, Kaisa; Sinclair, David; Räikkönen, Katri; Eriksson, Johan G.; Palotie, Aarno; Koskinen, Seppo; Saarikoski, Sirkku T.

    2013-01-01

    Aims: The molecular epidemiological studies on the association of the opioid receptor µ-1 (OPRM1) polymorphism A118G (Asn40Asp, rs1799971) and alcohol use disorders have given conflicting results. The aim of this study was to test the possible association of A118G polymorphism and alcohol use disorders and alcohol consumption in three large cohort-based study samples. Methods: The association between the OPRM1 A118G (Asn40Asp, rs1799971) polymorphism and alcohol use disorders and alcohol consumption was analyzed using three different population-based samples: (a) a Finnish cohort study, Health 2000, with 503 participants having a DSM-IV diagnosis for alcohol dependence and/or alcohol abuse and 506 age- and sex-matched controls; (b) a Finnish cohort study, FINRISK (n = 2360) and (c) the Helsinki Birth Cohort Study (n = 1384). The latter two populations lacked diagnosis-based phenotypes, but included detailed information on alcohol consumption. Results: We found no statistically significant differences in genotypic or allelic distribution between controls and subjects with alcohol dependence or abuse diagnoses. Likewise no significant effects were observed between the A118G genotype and alcohol consumption. Conclusion: These results suggest that A118G (Asn40Asp) polymorphism may not have a major effect on the development of alcohol use disorders at least in the Finnish population. PMID:23729673

  16. Regulated Expression of Three Alcohol Dehydrogenase Genes in Barley Aleurone Layers 1

    PubMed Central

    Hanson, Andrew D.; Jacobsen, John V.; Zwar, John A.

    1984-01-01

    Three genes specify alcohol dehydrogenase (EC 1.1.1.1.; ADH) enzymes in barley (Hordeum vulgare L.) (Adh 1, Adh 2, and Adh 3). Their polypeptide products (ADH 1, ADH 2, ADH 3) dimerize to give a total of six ADH isozymes which can be resolved by native gel electrophoresis and stained for enzyme activity. Under fully aerobic conditions, aleurone layers of cv Himalaya had a high titer of a single isozyme, the homodimer containing ADH 1 monomers. This isozyme was accumulated by the aleurone tissue during the later part of seed development, and survived seed drying and rehydration. The five other possible ADH isozymes were induced by O2 deficit. The staining of these five isozymes on electrophoretic gels increased progressively in intensity as O2 levels were reduced below 5%, and were most intense at 0% O2. In vivo35S labeling and specific immunoprecipitation of ADH peptides, followed by isoelectric focusing of the ADH peptides in the presence of 8 molar urea (urea-IEF) demonstrated the following. (a) Aleurone layers incubated in air synthesized ADH 1 and a trace of ADH 2; immature layers from developing seeds behaved similarly. (b) At 5% O2, synthesis of ADH 2 increased and ADH 3 appeared. (c) At 2% and 0% O2, the synthesis of all three ADH peptides increased markedly. Cell-free translation of RNA isolated from aleurone layers, followed by immunoprecipitation and urea-IEF of in vitro synthesized ADH peptides, showed that levels of mRNA for all three ADH peptides rose sharply during 1 day of O2 deprivation. Northern hybridizations with a maize Adh 2 cDNA clone established that the clone hybridized with barley mRNA comparable in size to maize Adh 2 mRNA, and that the level of this barley mRNA increased 15- to 20-fold after 1 day at 5% or 2% O2, and about 100-fold after 1 day at 0% O2. We conclude that in aleurone layers, expression of the three barley Adh genes is maximal in the absence of O2, that regulation of mRNA level is likely to be a major controlling factor, and

  17. The Cinnamyl Alcohol Dehydrogenase Gene Family in Melon (Cucumis melo L.): Bioinformatic Analysis and Expression Patterns

    PubMed Central

    Jin, Yazhong; Zhang, Chong; Liu, Wei; Qi, Hongyan; Chen, Hao; Cao, Songxiao

    2014-01-01

    Cinnamyl alcohol dehydrogenase (CAD) is a key enzyme in lignin biosynthesis. However, little was known about CADs in melon. Five CAD-like genes were identified in the genome of melons, namely CmCAD1 to CmCAD5. The signal peptides analysis and CAD proteins prediction showed no typical signal peptides were found in all CmCADs and CmCAD proteins may locate in the cytoplasm. Multiple alignments implied that some motifs may be responsible for the high specificity of these CAD proteins, and may be one of the key residues in the catalytic mechanism. The phylogenetic tree revealed seven groups of CAD and melon CAD genes fell into four main groups. CmCAD1 and CmCAD2 belonged to the bona fide CAD group, in which these CAD genes, as representative from angiosperms, were involved in lignin synthesis. Other CmCADs were distributed in group II, V and VII, respectively. Semi-quantitative PCR and real time qPCR revealed differential expression of CmCADs, and CmCAD5 was expressed in different vegetative tissues except mature leaves, with the highest expression in flower, while CmCAD2 and CmCAD5 were strongly expressed in flesh during development. Promoter analysis revealed several motifs of CAD genes involved in the gene expression modulated by various hormones. Treatment of abscisic acid (ABA) elevated the expression of CmCADs in flesh, whereas the transcript levels of CmCAD1 and CmCAD5 were induced by auxin (IAA); Ethylene induced the expression of CmCADs, while 1-MCP repressed the effect, apart from CmCAD4. Taken together, these data suggested that CmCAD4 may be a pseudogene and that all other CmCADs may be involved in the lignin biosynthesis induced by both abiotic and biotic stresses and in tissue-specific developmental lignification through a CAD genes family network, and CmCAD2 may be the main CAD enzymes for lignification of melon flesh and CmCAD5 may also function in flower development. PMID:25019207

  18. Manipulating cinnamyl alcohol dehydrogenase (CAD) expression in flax affects fibre composition and properties

    PubMed Central

    2014-01-01

    Background In recent decades cultivation of flax and its application have dramatically decreased. One of the reasons for this is unpredictable quality and properties of flax fibre, because they depend on environmental factors, retting duration and growing conditions. These factors have contribution to the fibre composition, which consists of cellulose, hemicelluloses, lignin and pectin. By far, it is largely established that in flax, lignin reduces an accessibility of enzymes either to pectin, hemicelluloses or cellulose (during retting or in biofuel synthesis and paper production). Therefore, in this study we evaluated composition and properties of flax fibre from plants with silenced CAD (cinnamyl alcohol dehydrogenase) gene, which is key in the lignin biosynthesis. There is evidence that CAD is a useful tool to improve lignin digestibility and/or to lower the lignin levels in plants. Results Two studied lines responded differentially to the introduced modification due to the efficiency of the CAD silencing. Phylogenetic analysis revealed that flax CAD belongs to the “bona-fide” CAD family. CAD down-regulation had an effect in the reduced lignin amount in the flax fibre cell wall and as FT-IR results suggests, disturbed lignin composition and structure. Moreover introduced modification activated a compensatory mechanism which was manifested in the accumulation of cellulose and/or pectin. These changes had putative correlation with observed improved fiber’s tensile strength. Moreover, CAD down-regulation did not disturb at all or has only slight effect on flax plants’ development in vivo, however, the resistance against flax major pathogen Fusarium oxysporum decreased slightly. The modification positively affected fibre possessing; it resulted in more uniform retting. Conclusion The major finding of our paper is that the modification targeted directly to block lignin synthesis caused not only reduced lignin level in fibre, but also affected amount and

  19. Subjective Response to Alcohol and ADH Polymorphisms in a Select Sample of Young Adult Male East Indians and Africans in Trinidad and Tobago

    PubMed Central

    Montane Jaime, Lazara Karelia; Shafe, Samuel; Liang, Tiebing; Wills, Derek N; Berg, Greta I; Ehlers, Cindy L

    2014-01-01

    Objective: Level of response to alcohol has been associated with risk of alcohol dependence in a number of ethnic groups. In the present study, subjective and objective responses to alcohol were evaluated in Indo-Trinidadians (Indo-T) and Afro-Trinidadians (Afro-T). Associations of alcohol dehydrogenase polymorphisms with response to alcohol, using the Subjective High Assessment Scale (SHAS), and breath alcohol concentrations (BrAC) were tested. Method: Regular male drinkers without alcohol dependence (n = 112) ages 18–25 years participated in alcohol challenge sessions consisting of placebo and two doses of alcohol (target BrAC: 0 g/dl for placebo, .04 g/dl low dose, and .08 g/dl high dose) and genotyped for variants in ADH1B*3 and ADH1C*2. Results: Indo-T had significantly higher BrAC, pulse rates, and cortisol levels when compared with Afro-T but did not have significantly higher SHAS values. Higher responses on the SHAS items muddle/confused and nauseated were significantly associated with the presence of at least one ADH1B*3 allele following the high dose of alcohol in Afro-T. Indo-T with at least one ADH1C*2 allele displayed significantly different Drug × Time interactions for the SHAS item effects of alcohol at the low dose and for the SHAS items clumsy, muddle/confused, effects of alcohol, floating, drunk, and total at the high dose from Indo-T with two ADH1C*1 alleles. Conclusions: This is the first study that has investigated individual sensitivity to alcohol in a Caribbean population and in people of East Indian descent. Indo-T with at least one ADH1C*2 allele may be at higher risk for heavy drinking by feeling less of the effects of alcohol, including nausea. In Afro-T, having at least one ADH1B*3 allele appears to exert a protective effect by enhancing the unpleasant effects of alcohol, such as nausea and confusion. PMID:25208201

  20. Hydroperoxidic inhibitor of horse liver alcohol dehydrogenase activity, tightly bound to the enzyme-NAD+ complex, characteristically degrades the coenzyme.

    PubMed

    Skurský, L; Rezác, M; Khan, A N; Zídek, L; Rocek, J

    1992-01-01

    The strong inhibition of horse liver alcohol dehydrogenase (HLAD) by p-methylbenzyl hydroperoxide (XyHP) is only transient, XyHP behaves also as a pseudo-substrate of the enzyme and in the presence of NAD+, is degraded by HLAD to (as yet unidentified) non-inhibiting products while the NAD+ is converted to a derivative similar to the "NADX", originally observed in an analogous reaction of HLAD with hydrogen peroxide. The apparent KM for XyHP is approximately 10(4) times smaller than that for H2O2. The catalytic constant kcat for HLAD degradation of XyHP is two orders of magnitude less than that for ethanol dehydrogenation. XyHP inhibits both directions of the alcohol-aldehyde interconversion with equal potency. The first step of the inhibition mechanism is a tight binding of XyHP to the binary HLAD-NAD+ complex. PMID:1284958

  1. DRD4 Polymorphism Moderates the Effect of Alcohol Consumption on Social Bonding

    PubMed Central

    Creswell, Kasey G.; Sayette, Michael A.; Manuck, Stephen B.; Ferrell, Robert E.; Hill, Shirley Y.; Dimoff, John D.

    2012-01-01

    Development of interpersonal relationships is a fundamental human motivation, and behaviors facilitating social bonding are prized. Some individuals experience enhanced reward from alcohol in social contexts and may be at heightened risk for developing and maintaining problematic drinking. We employed a 3 (group beverage condition) ×2 (genotype) design (N = 422) to test the moderating influence of the dopamine D4 receptor gene (DRD4 VNTR) polymorphism on the effects of alcohol on social bonding. A significant gene x environment interaction showed that carriers of at least one copy of the 7-repeat allele reported higher social bonding in the alcohol, relative to placebo or control conditions, whereas alcohol did not affect ratings of 7-absent allele carriers. Carriers of the 7-repeat allele were especially sensitive to alcohol's effects on social bonding. These data converge with other recent gene-environment interaction findings implicating the DRD4 polymorphism in the development of alcohol use disorders, and results suggest a specific pathway by which social factors may increase risk for problematic drinking among 7-repeat carriers. More generally, our findings highlight the potential utility of employing transdisciplinary methods that integrate genetic methodologies, social psychology, and addiction theory to improve theories of alcohol use and abuse. PMID:22347363

  2. Three alcohol dehydrogenase genes and one acetyl-CoA synthetase gene are responsible for ethanol utilization in Yarrowia lipolytica.

    PubMed

    Gatter, Michael; Ottlik, Stephanie; Kövesi, Zsolt; Bauer, Benjamin; Matthäus, Falk; Barth, Gerold

    2016-10-01

    The non-conventional yeast Yarrowia lipolytica is able to utilize a wide range of different substrates like glucose, glycerol, ethanol, acetate, proteins and various hydrophobic molecules. Although most metabolic pathways for the utilization of these substrates have been clarified by now, it was not clear whether ethanol is oxidized by alcohol dehydrogenases or by an alternative oxidation system inside the cell. In order to detect the genes that are required for ethanol utilization in Y. lipolytica, eight alcohol dehydrogenase (ADH) genes and one alcohol oxidase gene (FAO1) have been identified and respective deletion strains were tested for their ability to metabolize ethanol. As a result of this, we found that the availability of ADH1, ADH2 or ADH3 is required for ethanol utilization in Y. lipolytica. A strain with deletions in all three genes is lacking the ability to utilize ethanol as sole carbon source. Although Adh2p showed by far the highest enzyme activity in an in vitro assay, the availability of any of the three genes was sufficient to enable a decent growth. In addition to ADH1, ADH2 and ADH3, an acetyl-CoA synthetase encoding gene (ACS1) was found to be essential for ethanol utilization. As Y. lipolytica is a non-fermenting yeast, it is neither able to grow under anaerobic conditions nor to produce ethanol. To investigate whether Y. lipolytica may produce ethanol, the key genes of alcoholic fermentation in S. cerevisiae, ScADH1 and ScPDC1, were overexpressed in an ADH and an ACS1 deletion strain. However, instead of producing ethanol, the respective strains regained the ability to use ethanol as single carbon source and were still not able to grow under anaerobic conditions. PMID:27486067

  3. Relationship between polymorphisms in lactate dehydrogenase B gene and milk characteristics in beef cows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cytochrome P450s are a group of heme-containing monooxygenases necessary for the oxidative metabolism of foreign biological substances. Our goal was to determine the frequency of single nucleotide polymorphism (SNP) 994 in the CYP3A28 sequence of three breed types of cattle. The distribution of geno...

  4. Mitochondrial NADH dehydrogenase polymorphisms are associated with breast cancer in Poland.

    PubMed

    Grzybowska-Szatkowska, Ludmiła; Slaska, Brygida

    2014-05-01

    Complex I NADH-oxidoreductase-ubiquinone transports reducing equivalents from the reduced form of NADH to ubiquinone (coenzyme Q-CoQ). The purpose of this study was to analyze mutations in MT-ND1, MT-ND2, MT-ND3 and MT-ND6 genes and their effect on the biochemical properties, structure and functioning of proteins in patients with breast tumours. In research materials, in 50 patients, 28 total polymorphisms and five mutations were detected. Most detected polymorphisms (50 %, 14/28) were observed in MT-ND2 gene. Most of them were silent mutations. Five polymorphisms (m.G3916A, m.C4888T, m.A4918G, m.C5363T, m.C10283T) do not exist in the database. A total of five mutations in 13 patients (13/50) were detected, including two not described in the literature: m.C4987G and m.T10173C. It cannot be excluded that, through the mutations and polymorphism impact on the protein structure, they may cause mitochondrial dysfunction and contribute to the appearance of other changes in mtDNA. The results of our study indicate the presence of homological changes in the sequence of mtDNA in both breast cancer and in some mitochondrial diseases. Mutations in the examined genes in breast cancer may affect the cell and cause its dysfunction, as is the case in mitochondrial diseases. PMID:24414975

  5. The lipoprotein lipase S447X polymorphism and plasma lipids: interactions with APOE polymorphisms, smoking, and alcohol consumption.

    PubMed

    Lee, J; Tan, C S; Chia, K S; Tan, C E; Chew, S K; Ordovas, J M; Tai, E S

    2004-06-01

    We studied 4,058 subjects from a representative sample of the Singapore population 1) to determine the association between the S447X polymorphism at the LPL locus and serum lipid concentration in Chinese, Malays, and Asian Indians living in Singapore and 2) to explore any interactions with apolipoprotein E (APOE) genotype, exercise, obesity, cigarette smoking, and alcohol intake. Information on obesity, lifestyle factors (including smoking, alcohol consumption, and exercise frequency), glucose tolerance, and fasting lipids was obtained. Male and female carriers of the X447 allele had lower serum triglyceride concentrations and higher HDL cholesterol (HDL-C) concentrations. The association between the X447 allele and serum HDL-C concentration was modulated by APOE genotype in males and cigarette smoking and alcohol intake in females. The effect of the X447 allele was greatest in men who carried the E4 allele and women who smoked or consumed alcohol. The X447 allele at the LPL locus is common and associated with a less atherogenic lipid profile in Asian populations. Interactions with APOE genotype, cigarette smoking, and alcohol intake reinforce the importance of examining genetic associations, such as this one, in the context of the population of interest. PMID:15060087

  6. Carbon Dioxide Effects on Ethanol Production, Pyruvate Decarboxylase, and Alcohol Dehydrogenase Activities in Anaerobic Sweet Potato Roots 1

    PubMed Central

    Chang, Ling A.; Hammett, Larry K.; Pharr, David M.

    1983-01-01

    The effect of varied anaerobic atmospheres on the metabolism of sweet potato (Ipomoea batatas [L.] Lam.) roots was studied. The internal gas atmospheres of storage roots changed rapidly when the roots were submerged under water. O2 and N2 gases disappeared quickly and were replaced by CO2. There were no appreciable differences in gas composition among the four cultivars that were studied. Under different anaerobic conditions, ethanol concentration in the roots was highest in a CO2 environment, followed by submergence and a N2 environment in all the cultivars except one. A positive relationship was found between ethanol production and pyruvate decarboxylase activity from both 100% CO2-treated and 100% N2-treated roots. CO2 atmospheres also resulted in higher pyruvate decarboxylase activity than did N2 atmospheres. Concentrations of CO2 were higher within anaerobic roots than those in the ambient anaerobic atmosphere. The level of pyruvate decarboxylase and ethanol in anaerobic roots was proportional to the ambient CO2 concentration. The measurable activity of pyruvate decarboxylase that was present in the roots was about 100 times less than that of alcohol dehydrogenase. Considering these observations, it is suggested that the rate-limiting enzyme for ethanol biosynthesis in sweet potato storage roots under anoxia is likely to be pyruvate decarboxylase rather than alcohol dehydrogenase. PMID:16662798

  7. Elucidating the contributions of multiple aldehyde/alcohol dehydrogenases to butanol and ethanol production in Clostridium acetobutylicum

    PubMed Central

    Dai, Zongjie; Dong, Hongjun; Zhang, Yanping; Li, Yin

    2016-01-01

    Ethanol and butanol biosynthesis in Clostridium acetobutylicum share common aldehyde/alcohol dehydrogenases. However, little is known about the relative contributions of these multiple dehydrogenases to ethanol and butanol production respectively. The contributions of six aldehyde/alcohol dehydrogenases of C. acetobutylicum on butanol and ethanol production were evaluated through inactivation of the corresponding genes respectively. For butanol production, the relative contributions from these enzymes were: AdhE1 > BdhB > BdhA ≈ YqhD > SMB_P058 > AdhE2. For ethanol production, the contributions were: AdhE1 > BdhB > YqhD > SMB_P058 > AdhE2 > BdhA. AdhE1 and BdhB are two essential enzymes for butanol and ethanol production. AdhE1 was relatively specific for butanol production over ethanol, while BdhB, YqhD, and SMB_P058 favor ethanol production over butanol. Butanol synthesis was increased in the adhE2 mutant, which had a higher butanol/ethanol ratio (8.15:1) compared with wild type strain (6.65:1). Both the SMB_P058 mutant and yqhD mutant produced less ethanol without loss of butanol formation, which led to higher butanol/ethanol ratio, 10.12:1 and 10.17:1, respectively. To engineer a more efficient butanol-producing strain, adhE1 could be overexpressed, furthermore, adhE2, SMB_P058, yqhD are promising gene inactivation targets. This work provides useful information guiding future strain improvement for butanol production. PMID:27321949

  8. Elucidating the contributions of multiple aldehyde/alcohol dehydrogenases to butanol and ethanol production in Clostridium acetobutylicum.

    PubMed

    Dai, Zongjie; Dong, Hongjun; Zhang, Yanping; Li, Yin

    2016-01-01

    Ethanol and butanol biosynthesis in Clostridium acetobutylicum share common aldehyde/alcohol dehydrogenases. However, little is known about the relative contributions of these multiple dehydrogenases to ethanol and butanol production respectively. The contributions of six aldehyde/alcohol dehydrogenases of C. acetobutylicum on butanol and ethanol production were evaluated through inactivation of the corresponding genes respectively. For butanol production, the relative contributions from these enzymes were: AdhE1 > BdhB > BdhA ≈ YqhD > SMB_P058 > AdhE2. For ethanol production, the contributions were: AdhE1 > BdhB > YqhD > SMB_P058 > AdhE2 > BdhA. AdhE1 and BdhB are two essential enzymes for butanol and ethanol production. AdhE1 was relatively specific for butanol production over ethanol, while BdhB, YqhD, and SMB_P058 favor ethanol production over butanol. Butanol synthesis was increased in the adhE2 mutant, which had a higher butanol/ethanol ratio (8.15:1) compared with wild type strain (6.65:1). Both the SMB_P058 mutant and yqhD mutant produced less ethanol without loss of butanol formation, which led to higher butanol/ethanol ratio, 10.12:1 and 10.17:1, respectively. To engineer a more efficient butanol-producing strain, adhE1 could be overexpressed, furthermore, adhE2, SMB_P058, yqhD are promising gene inactivation targets. This work provides useful information guiding future strain improvement for butanol production. PMID:27321949

  9. Reconstruction of an Acetogenic 2,3-Butanediol Pathway Involving a Novel NADPH-Dependent Primary-Secondary Alcohol Dehydrogenase

    PubMed Central

    Köpke, Michael; Gerth, Monica L.; Maddock, Danielle J.; Mueller, Alexander P.; Liew, FungMin

    2014-01-01

    Acetogenic bacteria use CO and/or CO2 plus H2 as their sole carbon and energy sources. Fermentation processes with these organisms hold promise for producing chemicals and biofuels from abundant waste gas feedstocks while simultaneously reducing industrial greenhouse gas emissions. The acetogen Clostridium autoethanogenum is known to synthesize the pyruvate-derived metabolites lactate and 2,3-butanediol during gas fermentation. Industrially, 2,3-butanediol is valuable for chemical production. Here we identify and characterize the C. autoethanogenum enzymes for lactate and 2,3-butanediol biosynthesis. The putative C. autoethanogenum lactate dehydrogenase was active when expressed in Escherichia coli. The 2,3-butanediol pathway was reconstituted in E. coli by cloning and expressing the candidate genes for acetolactate synthase, acetolactate decarboxylase, and 2,3-butanediol dehydrogenase. Under anaerobic conditions, the resulting E. coli strain produced 1.1 ± 0.2 mM 2R,3R-butanediol (23 μM h−1 optical density unit−1), which is comparable to the level produced by C. autoethanogenum during growth on CO-containing waste gases. In addition to the 2,3-butanediol dehydrogenase, we identified a strictly NADPH-dependent primary-secondary alcohol dehydrogenase (CaADH) that could reduce acetoin to 2,3-butanediol. Detailed kinetic analysis revealed that CaADH accepts a range of 2-, 3-, and 4-carbon substrates, including the nonphysiological ketones acetone and butanone. The high activity of CaADH toward acetone led us to predict, and confirm experimentally, that C. autoethanogenum can act as a whole-cell biocatalyst for converting exogenous acetone to isopropanol. Together, our results functionally validate the 2,3-butanediol pathway from C. autoethanogenum, identify CaADH as a target for further engineering, and demonstrate the potential of C. autoethanogenum as a platform for sustainable chemical production. PMID:24657865

  10. Reconstruction of an acetogenic 2,3-butanediol pathway involving a novel NADPH-dependent primary-secondary alcohol dehydrogenase.

    PubMed

    Köpke, Michael; Gerth, Monica L; Maddock, Danielle J; Mueller, Alexander P; Liew, FungMin; Simpson, Séan D; Patrick, Wayne M

    2014-06-01

    Acetogenic bacteria use CO and/or CO2 plus H2 as their sole carbon and energy sources. Fermentation processes with these organisms hold promise for producing chemicals and biofuels from abundant waste gas feedstocks while simultaneously reducing industrial greenhouse gas emissions. The acetogen Clostridium autoethanogenum is known to synthesize the pyruvate-derived metabolites lactate and 2,3-butanediol during gas fermentation. Industrially, 2,3-butanediol is valuable for chemical production. Here we identify and characterize the C. autoethanogenum enzymes for lactate and 2,3-butanediol biosynthesis. The putative C. autoethanogenum lactate dehydrogenase was active when expressed in Escherichia coli. The 2,3-butanediol pathway was reconstituted in E. coli by cloning and expressing the candidate genes for acetolactate synthase, acetolactate decarboxylase, and 2,3-butanediol dehydrogenase. Under anaerobic conditions, the resulting E. coli strain produced 1.1 ± 0.2 mM 2R,3R-butanediol (23 μM h(-1) optical density unit(-1)), which is comparable to the level produced by C. autoethanogenum during growth on CO-containing waste gases. In addition to the 2,3-butanediol dehydrogenase, we identified a strictly NADPH-dependent primary-secondary alcohol dehydrogenase (CaADH) that could reduce acetoin to 2,3-butanediol. Detailed kinetic analysis revealed that CaADH accepts a range of 2-, 3-, and 4-carbon substrates, including the nonphysiological ketones acetone and butanone. The high activity of CaADH toward acetone led us to predict, and confirm experimentally, that C. autoethanogenum can act as a whole-cell biocatalyst for converting exogenous acetone to isopropanol. Together, our results functionally validate the 2,3-butanediol pathway from C. autoethanogenum, identify CaADH as a target for further engineering, and demonstrate the potential of C. autoethanogenum as a platform for sustainable chemical production. PMID:24657865

  11. Sjögren-Larsson syndrome. Deficient activity of the fatty aldehyde dehydrogenase component of fatty alcohol:NAD+ oxidoreductase in cultured fibroblasts.

    PubMed Central

    Rizzo, W B; Craft, D A

    1991-01-01

    Sjögren-Larsson syndrome (SLS) is an inherited disorder associated with impaired fatty alcohol oxidation due to deficient activity of fatty alcohol:NAD+ oxidoreductase (FAO). FAO is a complex enzyme which consists of two separate proteins that sequentially catalyze the oxidation of fatty alcohol to fatty aldehyde and fatty acid. To determine which enzymatic component of FAO was deficient in SLS, we assayed fatty aldehyde dehydrogenase (FALDH) and fatty alcohol dehydrogenase in cultured fibroblasts from seven unrelated SLS patients. All SLS cells were selectively deficient in the FALDH component of FAO, and had normal activity of fatty alcohol dehydrogenase. The extent of FALDH deficiency in SLS cells depended on the aliphatic aldehyde used as substrate, ranging from 62% of mean normal activity using propionaldehyde as substrate to 8% of mean normal activity with octadecanal. FALDH activity in obligate SLS heterozygotes was partially decreased to 49 +/- 7% of mean normal activity using octadecanal as substrate. Differential centrifugation studies in fibroblasts indicated that this FALDH enzyme was largely particulate; soluble FALDH activity was normal in SLS cells. Intact SLS fibroblasts oxidized octadecanol to fatty acid at less than 10% of the normal rate, but oxidized free octadecanal normally, suggesting that the FALDH affected in SLS is chiefly involved in the oxidation of fatty alcohol to fatty acid. These results show that the primary enzymatic defect in SLS is the FALDH component of the FAO complex, which leads to deficient oxidation of fatty aldehyde derived from fatty alcohol. PMID:1939650

  12. Activity of Yeast Alcohol Dehydrogenases on Benzyl Alcohols and Benzaldehydes. Characterization of ADH1 from Saccharomyces carlsbergensis and Transition State Analysis

    PubMed Central

    Pal, Suresh; Park, Doo-Hong; Plapp, Bryce V.

    2009-01-01

    The substrate specificities of yeast alcohol dehydrogenases I and II from Saccharomyces cerevisiae (SceADH1 and SceADH2) and Saccharomyces carlsbergensis (ScbADH1) were studied. For this work, the gene for the S. carlsbergensis ADH1 was cloned, sequenced and expressed. The amino acid sequence of ScbADH1 differs at four positions as compared to SceADH1, including substitutions of two glutamine residues with glutamic acid residues, and has the same sequence as the commercial yeast enzyme, which apparently is prepared from S. carlsbergensis. The electrophoretic mobilities of ScbADH1, SceADH2 and commercial ADH are similar. The kinetics and specificities of ScbADH1 and SceADH1 acting on branched, long-chain and benzyl alcohols are very similar, but the catalytic efficiency of SceADH2 is about 10 to 100-fold higher on these substrates. A three dimensional structure of SceADH1 shows that the substrate binding pocket has Met-270, whereas SceADH2 has Leu-270, which allows larger substrates to bind. The reduction of a series of p-substituted benzaldehydes catalyzed by SceADH2 is significantly enhanced by electron-withdrawing groups, whereas the oxidation of p-substituted aromatic alcohols may be only slightly affected by the substituents. The substituent effects on catalysis generally reflect the effects on the equilibrium constant for the reaction, where electron-withdrawing substituents favor alcohol. The results are consistent with a transition state that is electronically similar to the alcohol, supporting previous results obtained with commercial yeast ADH. PMID:19022233

  13. Activity and electrophoretic profiles of liver aldehyde dehydrogenases from mice of inbred strains with different alcohol preference.

    PubMed

    Yamazaki, H; Nishiguchi, K; Miyamoto, R; Ogita, Z I; Nakanishi, S

    1983-01-01

    1. The activity of low Km-aldehyde dehydrogenase (ALDH) in the liver mitochondrial fraction (MT-fraction) from male C57BL/6J strain mice (alcohol preferring) was significantly higher than that from DBA/2 mice (alcohol avoiding). The F1 hybrids (C57BL/6J X DBA/2) did not exhibit the intermediate activity to these two strains. 2. Strain differences in liver mitochondrial ALDH isozymes were observed by isoelectric focusing. C57BL/6J strain had two isozymes at pH 7.1 while DBA/2 had no band at this pH. F1 hybrid mice had similar two bands with lower density to those of C57BL/6J at pH 7.1. There was no difference in zymograms of the soluble fraction between C57BL/6J and DBA/2 strains. 3. The present results suggest that the difference in alcohol preference of mice may depend on some restricted ALDH isozymes with different pl or electric mobility rather than the enzymatic activity in the liver MT-fraction. PMID:6822317

  14. Synthesis of cinnamyl alcohol from cinnamaldehyde with Bacillus stearothermophilus alcohol dehydrogenase as the isolated enzyme and in recombinant E. coli cells.

    PubMed

    Pennacchio, Angela; Rossi, Mosè; Raia, Carlo A

    2013-07-01

    The synthesis of the aroma chemical cinnamyl alcohol (CMO) by means of enzymatic reduction of cinnamaldehyde (CMA) was investigated using NADH-dependent alcohol dehydrogenase from Bacillus stearothermophilus both as an isolated enzyme, and in recombinant Escherichia coli whole cells. The influence of parameters such as reaction time and cofactor, substrate, co-substrate 2-propanol and biocatalyst concentrations on the bioreduction reaction was investigated and an efficient and sustainable one-phase system developed. The reduction of CMA (0.5 g/L, 3.8 mmol/L) by the isolated enzyme occurred in 3 h at 50 °C with 97% conversion, and yielded high purity CMO (≥98%) with a yield of 88% and a productivity of 50 g/genzyme. The reduction of 12.5 g/L (94 mmol/L) CMA by whole cells in 6 h, at 37 °C and no requirement of external cofactor occurred with 97% conversion, 82% yield of 98% pure alcohol and a productivity of 34 mg/gwet cell weight. The results demonstrate the microbial system as a practical and efficient method for larger-scale synthesis of CMO. PMID:23686507

  15. Choline Dehydrogenase Polymorphism rs12676 Is a Functional Variation and Is Associated with Changes in Human Sperm Cell Function

    PubMed Central

    Johnson, Amy R.; Lao, Sai; Wang, Tongwen; Galanko, Joseph A.; Zeisel, Steven H.

    2012-01-01

    Approximately 15% of couples are affected by infertility and up to half of these cases arise from male factor infertility. Unidentified genetic aberrations such as chromosomal deletions, translocations and single nucleotide polymorphisms (SNPs) may be the underlying cause of many cases of idiopathic male infertility. Deletion of the choline dehydrogenase (Chdh) gene in mice results in decreased male fertility due to diminished sperm motility; sperm from Chdh−/− males have decreased ATP concentrations likely stemming from abnormal sperm mitochondrial morphology and function in these cells. Several SNPs have been identified in the human CHDH gene that may result in altered CHDH enzymatic activity. rs12676 (G233T), a non-synonymous SNP located in the CHDH coding region, is associated with increased susceptibility to dietary choline deficiency and risk of breast cancer. We now report evidence that this SNP is also associated with altered sperm motility patterns and dysmorphic mitochondrial structure in sperm. Sperm produced by men who are GT or TT for rs12676 have 40% and 73% lower ATP concentrations, respectively, in their sperm. rs12676 is associated with decreased CHDH protein in sperm and hepatocytes. A second SNP located in the coding region of IL17BR, rs1025689, is linked to altered sperm motility characteristics and changes in choline metabolite concentrations in sperm. PMID:22558321

  16. Insight into the stereospecificity of short-chain thermus thermophilus alcohol dehydrogenase showing pro-S hydride transfer and prelog enantioselectivity.

    PubMed

    Pennacchio, Angela; Giordano, Assunta; Esposito, Luciana; Langella, Emma; Rossi, Mosè; Raia, Carlo A

    2010-04-01

    The stereochemistry of the hydride transfer in reactions catalyzed by NAD(H)-dependent alcohol dehydrogenase from Thermus thermophilus HB27 was determined by means of (1)H-NMR spectroscopy. The enzyme transfers the pro-S hydrogen of [4R-(2)H]NADH and exhibits Prelog specificity. Enzyme-substrate docking calculations provided structural details about the enantioselectivity of this thermophilic enzyme. These results give additional insights into the diverse active site architectures of the largely versatile short-chain dehydrogenase superfamily enzymes. A feasible protocol for the synthesis of [4R-(2)H]NADH with high yield was also set up by enzymatic oxidation of 2-propanol-d(8) catalyzed by Bacillus stearothermophilus alcohol dehydrogenase. PMID:19807673

  17. MOLECULAR SYSTEMATICS OF THE GENUS NEOTOMA BASED ON DNA SEQUENCES FROM INTRON 2 OF THE ALCOHOL DEHYDROGENASE GENE

    PubMed Central

    Longhofer, Lisa K.; Bradley, Robert D.

    2009-01-01

    Phylogenetic relationships were evaluated among 13 species of Neotoma based on DNA sequences from intron 2 of the nuclear alcohol dehydrogenase gene 1 (Adh1-I2). Sequences were analyzed using parsimony, likelihood, and Bayesian methods. Three major clades (I–III) consistently were recovered and relationships among taxa within 2 of the clades remained unchanged between analyses; however, relationships within clade III were largely unresolved. Average genetic divergence values were 2.12% among species, 4% between subgenera (Teonoma and Neotoma), and 5.1% between genera (Hodomys and Neotoma). Adh1-I2 sequences were concatenated with mitochondrial cytochrome-b sequences generated from the same individuals. Examination of the combined data resulted in a phylogeny whose topology was similar to that based only on cytochrome-b sequences. PMID:19907669

  18. Atomic-Resolution Structures of Horse Liver Alcohol Dehydrogenase with NAD[superscript +] and Fluoroalcohols Define Strained Michaelis Complexes

    SciTech Connect

    Plapp, Bryce V.; Ramaswamy, S.

    2013-01-16

    Structures of horse liver alcohol dehydrogenase complexed with NAD{sup +} and unreactive substrate analogues, 2,2,2-trifluoroethanol or 2,3,4,5,6-pentafluorobenzyl alcohol, were determined at 100 K at 1.12 or 1.14 {angstrom} resolution, providing estimates of atomic positions with overall errors of 0.02 {angstrom}, the geometry of ligand binding, descriptions of alternative conformations of amino acid residues and waters, and evidence of a strained nicotinamide ring. The four independent subunits from the two homodimeric structures differ only slightly in the peptide backbone conformation. Alternative conformations for amino acid side chains were identified for 50 of the 748 residues in each complex, and Leu-57 and Leu-116 adopt different conformations to accommodate the different alcohols at the active site. Each fluoroalcohol occupies one position, and the fluorines of the alcohols are well-resolved. These structures closely resemble the expected Michaelis complexes with the pro-R hydrogens of the methylene carbons of the alcohols directed toward the re face of C4N of the nicotinamide rings with a C-C distance of 3.40 {angstrom}. The oxygens of the alcohols are ligated to the catalytic zinc at a distance expected for a zinc alkoxide (1.96 {angstrom}) and participate in a low-barrier hydrogen bond (2.52 {angstrom}) with the hydroxyl group of Ser-48 in a proton relay system. As determined by X-ray refinement with no restraints on bond distances and planarity, the nicotinamide rings in the two complexes are slightly puckered (quasi-boat conformation, with torsion angles of 5.9{sup o} for C4N and 4.8{sup o} for N1N relative to the plane of the other atoms) and have bond distances that are somewhat different compared to those found for NAD(P){sup +}. It appears that the nicotinamide ring is strained toward the transition state on the path to alcohol oxidation.

  19. Multiple forms of octopine dehydrogenase in Strombus luhuanus (mollusca, gastropoda, strombidae): genetic basis of polymorphism, properties of the enzymes, and relationship between the octopine dehydrogenase phenotype and the accumulation of anaerobic end products during exercise.

    PubMed

    Baldwin, J; England, W R

    1982-10-01

    Octopine dehydrogenase (ODH) is electrophoretically polymorphic in the gastropod mollusk Strombus luhuanus. The frequencies of the six electrophoretic phenotypes in the Heron Island population, together with the molecular weight values of 38,000 obtained for each of the three forms of the enzyme, demonstrate that the monomeric enzyme is encoded by three codominant alleles at a single locus. The purified allozymes are indistinguishable in terms of Km values for substrates, product inhibition by octopine and NAD, pH optima, and substrate inhibition by pyruvate. No statistically significant correlations were found between the ODH phenotype and the maximum activities of ODH or alanopine dehydrogenase, the capacity for anaerobic muscle work, or the accumulation of octopine or strombine/alanopine during exercise. It would appear that the ODH allozymes may be functionally equivalent both in vitro and in vivo. PMID:7181845

  20. Identification of a long-range protein network that modulates active site dynamics in extremophilic alcohol dehydrogenases.

    PubMed

    Nagel, Zachary D; Cun, Shujian; Klinman, Judith P

    2013-05-17

    A tetrameric thermophilic alcohol dehydrogenase from Bacillus stearothermophilus (ht-ADH) has been mutated at an aromatic side chain in the active site (Trp-87). The ht-W87A mutation results in a loss of the Arrhenius break seen at 30 °C for the wild-type enzyme and an increase in cold lability that is attributed to destabilization of the active tetrameric form. Kinetic isotope effects (KIEs) are nearly temperature-independent over the experimental temperature range, and similar in magnitude to those measured above 30 °C for the wild-type enzyme. This suggests that the rigidification in the wild-type enzyme below 30 °C does not occur for ht-W87A. A mutation at the dimer-dimer interface in a thermolabile psychrophilic homologue of ht-ADH, ps-A25Y, leads to a more thermostable enzyme and a change in the rate-determining step at low temperature. The reciprocal mutation in ht-ADH, ht-Y25A, results in kinetic behavior similar to that of W87A. Collectively, the results indicate that flexibility at the active site is intimately connected to a subunit interaction 20 Å away. The convex Arrhenius curves previously reported for ht-ADH (Kohen, A., Cannio, R., Bartolucci, S., and Klinman, J. P. (1999) Nature 399, 496-499) are proposed to arise, at least in part, from a change in subunit interactions that rigidifies the substrate-binding domain below 30 °C, and impedes the ability of the enzyme to sample the catalytically relevant conformational landscape. These results implicate an evolutionarily conserved, long-range network of dynamical communication that controls C-H activation in the prokaryotic alcohol dehydrogenases. PMID:23525111

  1. Association of Genetically Determined Aldehyde Dehydrogenase 2 Activity with Diabetic Complications in Relation to Alcohol Consumption in Japanese Patients with Type 2 Diabetes Mellitus: The Fukuoka Diabetes Registry.

    PubMed

    Idewaki, Yasuhiro; Iwase, Masanori; Fujii, Hiroki; Ohkuma, Toshiaki; Ide, Hitoshi; Kaizu, Shinako; Jodai, Tamaki; Kikuchi, Yohei; Hirano, Atsushi; Nakamura, Udai; Kubo, Michiaki; Kitazono, Takanari

    2015-01-01

    Aldehyde dehydrogenase 2 (ALDH2) detoxifies aldehyde produced during ethanol metabolism and oxidative stress. A genetic defect in this enzyme is common in East Asians and determines alcohol consumption behaviors. We investigated the impact of genetically determined ALDH2 activity on diabetic microvascular and macrovascular complications in relation to drinking habits in Japanese patients with type 2 diabetes mellitus. An ALDH2 single-nucleotide polymorphism (rs671) was genotyped in 4,400 patients. Additionally, the relationship of clinical characteristics with ALDH2 activity (ALDH2 *1/*1 active enzyme activity vs. *1/*2 or *2/*2 inactive enzyme activity) and drinking habits (lifetime abstainers vs. former or current drinkers) was investigated cross-sectionally (n = 691 in *1/*1 abstainers, n = 1,315 in abstainers with *2, n = 1,711 in *1/*1 drinkers, n = 683 in drinkers with *2). The multiple logistic regression analysis for diabetic complications was adjusted for age, sex, current smoking habits, leisure-time physical activity, depressive symptoms, diabetes duration, body mass index, hemoglobin A1c, insulin use, high-density lipoprotein cholesterol, systolic blood pressure and renin-angiotensin system inhibitors use. Albuminuria prevalence was significantly lower in the drinkers with *2 than that of other groups (odds ratio [95% confidence interval (CI)]: *1/*1 abstainers as the referent, 0.94 [0.76-1.16] in abstainers with *2, 1.00 [0.80-1.26] in *1/*1 drinkers, 0.71 [0.54-0.93] in drinkers with *2). Retinal photocoagulation prevalence was also lower in drinkers with ALDH2 *2 than that of other groups. In contrast, myocardial infarction was significantly increased in ALDH2 *2 carriers compared with that in ALDH2 *1/*1 abstainers (odds ratio [95% CI]: *1/*1 abstainers as the referent, 2.63 [1.28-6.13] in abstainers with *2, 1.89 [0.89-4.51] in *1/*1 drinkers, 2.35 [1.06-5.79] in drinkers with *2). In summary, patients with type 2 diabetes and ALDH2 *2 displayed a

  2. Association of Genetically Determined Aldehyde Dehydrogenase 2 Activity with Diabetic Complications in Relation to Alcohol Consumption in Japanese Patients with Type 2 Diabetes Mellitus: The Fukuoka Diabetes Registry

    PubMed Central

    Idewaki, Yasuhiro; Iwase, Masanori; Fujii, Hiroki; Ohkuma, Toshiaki; Ide, Hitoshi; Kaizu, Shinako; Jodai, Tamaki; Kikuchi, Yohei; Hirano, Atsushi; Nakamura, Udai; Kubo, Michiaki; Kitazono, Takanari

    2015-01-01

    Aldehyde dehydrogenase 2 (ALDH2) detoxifies aldehyde produced during ethanol metabolism and oxidative stress. A genetic defect in this enzyme is common in East Asians and determines alcohol consumption behaviors. We investigated the impact of genetically determined ALDH2 activity on diabetic microvascular and macrovascular complications in relation to drinking habits in Japanese patients with type 2 diabetes mellitus. An ALDH2 single-nucleotide polymorphism (rs671) was genotyped in 4,400 patients. Additionally, the relationship of clinical characteristics with ALDH2 activity (ALDH2 *1/*1 active enzyme activity vs. *1/*2 or *2/*2 inactive enzyme activity) and drinking habits (lifetime abstainers vs. former or current drinkers) was investigated cross-sectionally (n = 691 in *1/*1 abstainers, n = 1,315 in abstainers with *2, n = 1,711 in *1/*1 drinkers, n = 683 in drinkers with *2). The multiple logistic regression analysis for diabetic complications was adjusted for age, sex, current smoking habits, leisure-time physical activity, depressive symptoms, diabetes duration, body mass index, hemoglobin A1c, insulin use, high-density lipoprotein cholesterol, systolic blood pressure and renin-angiotensin system inhibitors use. Albuminuria prevalence was significantly lower in the drinkers with *2 than that of other groups (odds ratio [95% confidence interval (CI)]: *1/*1 abstainers as the referent, 0.94 [0.76–1.16] in abstainers with *2, 1.00 [0.80–1.26] in *1/*1 drinkers, 0.71 [0.54–0.93] in drinkers with *2). Retinal photocoagulation prevalence was also lower in drinkers with ALDH2 *2 than that of other groups. In contrast, myocardial infarction was significantly increased in ALDH2 *2 carriers compared with that in ALDH2 *1/*1 abstainers (odds ratio [95% CI]: *1/*1 abstainers as the referent, 2.63 [1.28–6.13] in abstainers with *2, 1.89 [0.89–4.51] in *1/*1 drinkers, 2.35 [1.06–5.79] in drinkers with *2). In summary, patients with type 2 diabetes and ALDH2 *2

  3. Aldehyde Dehydrogenase-2 (ALDH2) Ameliorates Chronic Alcohol Ingestion-Induced Hepatic Steatosis and Inflammation: Role of Autophagy

    PubMed Central

    Guo, Rui; Xu, Xihui; Babcock, Sara A.; Zhang, Yingmei; Ren, Jun

    2014-01-01

    Background & Aims Mitochondrial aldehyde dehydrogenase (ALDH2) plays a critical role in the detoxification of the ethanol metabolite acetaldehyde. This study was designed to examine the impact of global ALDH2 overexpression on alcohol-induced hepatic steatosis. Methods Wild-type friendly virus B (FVB) and ALDH2 transgenic mice were placed on a 4% alcohol or control diet for 12 weeks. Serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), bilirubin and cholesterol, hepatic triglyceride, steatosis, fat metabolism-related proteins, pro-inflammatory cytokines, glutathione (GSH), oxidized glutathione (GSSG), autophagy and autophagy signaling were examined. The role of autophagy was evaluated in ADH1-transfected human hepatocellular liver carcinoma cells (VA-13) treated with or without autophagy inducer rapamycin and lysosomal inhibitors. Results Chronic alcohol intake led to elevated AST, ALT, bilirubin, AST/ALT ratio, cholesterol, hepatic triglycerides, hepatic fat deposition as evidenced by H&E and oil Red O staining, associated with disturbed fat metabolism-related proteins (fatty acid synthase, SCD1), upregulated interleukin-6, TNF-α, cyclooxygenase, oxidative stress, and loss of autophagy, the effects of which were attenuated or ablated by ALDH2 transgene. Moreover, ethanol (100 mM) and acetaldehyde (100, 500 μM) increased levels of IL-6 and IFN-γ, and suppressed autophagy in VA-13 cells, the effects of which were markedly alleviated by rapamycin. In addition, lysosomal inhibitors mimicked ethanol-induced p62 accumulation with little additive effect with ethanol. Ethanol significantly suppressed LC3 conversion in the presence of lysosomal inhibitors. Conclusions In summary, our results revealed that ALDH2 plays a beneficial role in ameliorating chronic alcohol intake-induced hepatic steatosis and inflammation through regulation of autophagy. PMID:25457208

  4. Starmerella bombicola influences the metabolism of Saccharomyces cerevisiae at pyruvate decarboxylase and alcohol dehydrogenase level during mixed wine fermentation

    PubMed Central

    2012-01-01

    Background The use of a multistarter fermentation process with Saccharomyces cerevisiae and non-Saccharomyces wine yeasts has been proposed to simulate natural must fermentation and to confer greater complexity and specificity to wine. In this context, the combined use of S. cerevisiae and immobilized Starmerella bombicola cells (formerly Candida stellata) was assayed to enhance glycerol concentration, reduce ethanol content and to improve the analytical composition of wine. In order to investigate yeast metabolic interaction during controlled mixed fermentation and to evaluate the influence of S. bombicola on S. cerevisiae, the gene expression and enzymatic activity of two key enzymes of the alcoholic fermentation pathway such as pyruvate decarboxylase (Pdc1) and alcohol dehydrogenase (Adh1) were studied. Results The presence of S. bombicola immobilized cells in a mixed fermentation trial confirmed an increase in fermentation rate, a combined consumption of glucose and fructose, an increase in glycerol and a reduction in the production of ethanol as well as a modification in the fermentation of by products. The alcoholic fermentation of S. cerevisiae was also influenced by S. bombicola immobilized cells. Indeed, Pdc1 activity in mixed fermentation was lower than that exhibited in pure culture while Adh1 activity showed an opposite behavior. The expression of both PDC1 and ADH1 genes was highly induced at the initial phase of fermentation. The expression level of PDC1 at the end of fermentation was much higher in pure culture while ADH1 level was similar in both pure and mixed fermentations. Conclusion In mixed fermentation, S. bombicola immobilized cells greatly affected the fermentation behavior of S. cerevisiae and the analytical composition of wine. The influence of S. bombicola on S. cerevisiae was not limited to a simple additive contribution. Indeed, its presence caused metabolic modifications during S. cerevisiae fermentation causing variation in the gene

  5. Characterization of a transient intermediate formed in the liver alcohol dehydrogenase catalyzed reduction of 3-hydroxy-4-nitrobenzaldehyde

    SciTech Connect

    MacGibbon, A.K.H.; Koerber, S.C.; Pease, K.; Dunn, M.F.

    1987-06-02

    The compounds 3-hydroxy-4-nitrobenzaldehyde and 3-hydroxy-4-nitrobenzyl alcohol are introduced as new chromophoric substrates for probing the catalytic mechanism of horse liver alcohol dehydrogenase (LADH). Ionization of the phenolic hydroxyl group shifts the spectrum of the aldehyde from 360 to 433 nm (pK/sub a/ = 6.0), whereas the spectrum of the alcohol shifts from 350 to 417 nm (pK/sub a/ = 6.9). Rapid-scanning, stopped-flow (RSSF) studies at alkaline pH show that the LADH-catalyzed interconversion of these compounds occurs via the formation of an enzyme-bound intermediate with a blue-shifted spectrum. When reaction is limited to a single turnover of enzyme sites, the formation and decay of the intermediate when aldehyde reacts with enzyme-bound reduced nicotinamide adenine dinucleotide E(NADH) are characterized by two relaxations. Detailed stopped-flow kinetic studies were carried out to investigate the disappearance of aldehyde and NADH, the formation and decay of the intermediate, the displacement of Auramine O by substrate, and /sup 2/H kinetic isotope effects. It was found that (1) NADH oxidation takes place at the rate of the slower relaxation (2) when NADD is substituted for NADH, lambda/sub s/ is subject to a small primary isotope effect; and (3) the events that occur in lambda/sub s/ precede lambda/sub f/. These findings identify the intermediate as a ternary complex containing bound oxidized nicotinamide adenine dinucleotide (NAD/sup +/) and some form of 3-hydroxy-4-nitrobenzyl alcohol. The authors conclude that the LADH substrate site can be divided into two subsites: a highly polar, electropositive subsite in the vicinity of the active-site zinc and, just a few angstroms away, a rather nonpolar region.

  6. Structural of the class II enzyme of human liver alcohol dehydrogenase: combined cDNA and protein sequence determination of the. pi. subunit

    SciTech Connect

    Hoeoeg, J.O.; von Bahr-Lindstroem, H.; Heden, L.O.; Holmquist, B.; Larsson, K.; Hempel, J.; Vallee, B.L.; Joernvall, H.

    1987-04-07

    The class II enzyme of human liver alcohol dehydrogenase was isolated, carboxymethylated, and cleaved with CNBr and proteolytic enzymes. Sequence analysis of peptides established structures corresponding to the ..pi.. subunit. Two segments from the C-terminal region unique to ..pi.. were selected for synthesis of oligodeoxyribonucleotide probes to screen a human liver cDNA library constructed in plasmid pT4. Sequence analysis of two identical hybridization-positive clones with cDNA inserts of about 2000 nucleotides gave the entire coding region of the ..pi.. subunit, a 61-nucleotide 5' noncoding region and a 741-nucleotide 3' noncoding region containing four possible polyadenylation sites. Translation of the coding region yields a 391-residue polypeptide, which in all regions except the C-terminal segment corresponds to the protein structure as determined directly by peptide analysis. With the class I numbering system, the exception concerns a residue exchange at position 368, the actual C-terminus which is Phe-374 by peptide data but a 12 residue extension by cDNA data, and possibly two further residue exchanges at positions 303 and 312. The size difference might indicate the existence of posttranslational modifications of the mature protein or, in combination with the residue exchanges, the existence of polymorphism at the locus for class II subunits. The ..pi.. subunit analyzed directly results in a 379-residue polypeptide and is the only class II size thus far known to occur in the mature protein. Comparison of the ..pi.. structure with those of the class I subunits (..cap alpha.., ..beta.., and ..gamma..) reveals a homology with extensive differences. Large variations in segments affecting relationships at the active site and the area of subunit interactions account for the significant alterations of enzymatic specificities and other properties that differentiate class II from class I enzymes.

  7. Elevated glutathione level does not protect against chronic alcohol mediated apoptosis in recombinant human hepatoma cell line VL-17A over-expressing alcohol metabolizing enzymes--alcohol dehydrogenase and Cytochrome P450 2E1.

    PubMed

    Chandrasekaran, Karthikeyan; Swaminathan, Kavitha; Kumar, S Mathan; Chatterjee, Suvro; Clemens, Dahn L; Dey, Aparajita

    2011-06-01

    Chronic consumption of alcohol leads to liver injury. Ethanol-inducible Cytochrome P450 2E1 (CYP2E1) plays a critical role in alcohol mediated oxidative stress due to its ability to metabolize ethanol. In the present study, using the recombinant human hepatoma cell line VL-17A that over-expresses the alcohol metabolizing enzymes-alcohol dehydrogenase (ADH) and CYP2E1; and control HepG2 cells, the mechanism and mode of cell death due to chronic ethanol exposure were studied. Untreated VL-17A cells exhibited apoptosis and oxidative stress when compared with untreated HepG2 cells. Chronic alcohol exposure, i.e., 100 mM ethanol treatment for 72 h caused a significant decrease in viability (47%) in VL-17A cells but not in HepG2 cells. Chronic ethanol mediated cell death in VL-17A cells was predominantly apoptotic, with increased oxidative stress as the underlying mechanism. Chronic ethanol exposure of VL-17A cells resulted in 1.1- to 2.5-fold increased levels of ADH and CYP2E1. Interestingly, the level of the antioxidant GSH was found to be 3-fold upregulated in VL-17A cells treated with ethanol, which may be a metabolic adaptation to the persistent and overwhelming oxidative stress. In conclusion, the increased GSH level may not be sufficient enough to protect VL-17A cells from chronic alcohol mediated oxidative stress and resultant apoptosis. PMID:21414402

  8. Purification and characterization of an anti-Prelog alcohol dehydrogenase from Oenococcus oeni that reduces 2-octanone to (R)-2-octanol.

    PubMed

    Meng, Fantao; Xu, Yan

    2010-04-01

    An anti-Prelog alcohol dehydrogenase from Oenococcus oeni that reduces 2-octanone to (R)-2-octanol was purified by 26-fold to homogeneity. The enzyme had a homodimeric structure consisting of 49 kDa subunits, required NADPH, but not NADH, as a cofactor and was a Zn-independent short-chain dehydrogenase. Aliphatic methyl ketones (chain length > or =6 carbon atoms) and aromatic methyl ketones were the preferred substrates for the enzyme, the best being 2-octanone. Maximum enzyme activity with 2-octanone was at 45 degrees C and at pH 8.0. PMID:20035369

  9. Effects of Cavities at the Nicotinamide Binding Site of Liver Alcohol Dehydrogenase on Structure, Dynamics and Catalysis

    PubMed Central

    2015-01-01

    A role for protein dynamics in enzymatic catalysis of hydrogen transfer has received substantial scientific support, but the connections between protein structure and catalysis remain to be established. Valine residues 203 and 207 are at the binding site for the nicotinamide ring of the coenzyme in liver alcohol dehydrogenase and have been suggested to facilitate catalysis with “protein-promoting vibrations” (PPV). We find that the V207A substitution has small effects on steady-state kinetic constants and the rate of hydrogen transfer; the introduced cavity is empty and is tolerated with minimal effects on structure (determined at 1.2 Å for the complex with NAD+ and 2,3,4,5,6-pentafluorobenzyl alcohol). Thus, no evidence is found to support a role for Val-207 in the dynamics of catalysis. The protein structures and ligand geometries (including donor–acceptor distances) in the V203A enzyme complexed with NAD+ and 2,3,4,5,6-pentafluorobenzyl alcohol or 2,2,2-trifluoroethanol (determined at 1.1 Å) are very similar to those for the wild-type enzyme, except that the introduced cavity accommodates a new water molecule that contacts the nicotinamide ring. The structures of the V203A enzyme complexes suggest, in contrast to previous studies, that the diminished tunneling and decreased rate of hydride transfer (16-fold, relative to that of the wild-type enzyme) are not due to differences in ground-state ligand geometries. The V203A substitution may alter the PPV and the reorganization energy for hydrogen transfer, but the protein scaffold and equilibrium thermal motions within the Michaelis complex may be more significant for enzyme catalysis. PMID:24437493

  10. Stability engineering of the Geobacillus stearothermophilus alcohol dehydrogenase and application for the synthesis of a polyamide 12 precursor.

    PubMed

    Kirmair, Ludwig; Seiler, Daniel Leonard; Skerra, Arne

    2015-12-01

    The thermostable NAD(+)-dependent alcohol dehydrogenase from Geobacillus stearothermophilus (BsADH) was exploited with regard to the biocatalytic synthesis of ω-oxo lauric acid methyl ester (OLAMe), a key intermediate for biobased polyamide 12 production, from the corresponding long-chain alcohol. Recombinant BsADH was produced in Escherichia coli as a homogeneous tetrameric enzyme and showed high activity towards the industrially relevant substrate ω-hydroxy lauric acid methyl ester (HLAMe) with K M = 86 μM and 44 U mg(-1). The equilibrium constant for HLAMe oxidation to the aldehyde (OLAMe) with NAD(+) was determined as 2.16 × 10(-3) from the kinetic parameters of the BsADH-catalyzed forward and reverse reactions. Since BsADH displayed limited stability under oxidizing conditions, the predominant oxidation-prone residue Cys257 was mutated to Leu based on sequence homology with related enzymes and computational simulation. This substitution resulted in an improved BsADH variant exhibiting prolonged stability and an elevated inactivation temperature. Semi-preparative biocatalysis at 60 °C using the stabilized enzyme, employing butyraldehyde for in situ cofactor regeneration with only catalytic amounts of NAD(+), yielded up to 23 % conversion of HLAMe to OLAMe after 30 min. In contrast to other oxidoreductases, no overoxidation to the dodecanoic diacid monomethyl ester was detected. Thus, the mutated BsADH offers a promising biocatalyst for the selective oxidation of fatty alcohols to yield intermediates for industrial polymer production. PMID:26329849

  11. Oxidation of methanol, ethylene glycol, and isopropanol with human alcohol dehydrogenases and the inhibition by ethanol and 4-methylpyrazole.

    PubMed

    Lee, Shou-Lun; Shih, Hsuan-Ting; Chi, Yu-Chou; Li, Yeung-Pin; Yin, Shih-Jiun

    2011-05-30

    Human alcohol dehydrogenases (ADHs) include multiple isozymes with broad substrate specificity and ethnic distinct allozymes. ADH catalyzes the rate-limiting step in metabolism of various primary and secondary aliphatic alcohols. The oxidation of common toxic alcohols, that is, methanol, ethylene glycol, and isopropanol by the human ADHs remains poorly understood. Kinetic studies were performed in 0.1M sodium phosphate buffer, at pH 7.5 and 25°C, containing 0.5 mM NAD(+) and varied concentrations of substrate. K(M) values for ethanol with recombinant human class I ADH1A, ADH1B1, ADH1B2, ADH1B3, ADH1C1, and ADH1C2, and class II ADH2 and class IV ADH4 were determined to be in the range of 0.12-57 mM, for methanol to be 2.0-3500 mM, for ethylene glycol to be 4.3-2600mM, and for isopropanol to be 0.73-3400 mM. ADH1B3 appeared to be inactive toward ethylene glycol, and ADH2 and ADH4, inactive with methanol. The variations for V(max) for the toxic alcohols were much less than that of the K(M) across the ADH family. 4-Methylpyrazole (4MP) was a competitive inhibitor with respect to ethanol for ADH1A, ADH1B1, ADH1B2, ADH1C1 and ADH1C2, and a noncompetitive inhibitor for ADH1B3, ADH2 and ADH4, with the slope inhibition constants (K(is)) for the whole family being 0.062-960 μM and the intercept inhibition constants (K(ii)), 33-3000 μM. Computer simulation studies using inhibition equations in the presence of alternate substrate ethanol and of dead-end inhibitor 4MP with the determined corresponding kinetic parameters for ADH family, indicate that the oxidation of the toxic alcohols up to 50mM are largely inhibited by 20 mM ethanol or by 50 μM 4MP with some exceptions. The above findings provide an enzymological basis for clinical treatment of methanol and ethylene glycol poisoning by 4MP or ethanol with pharmacogenetic perspectives. PMID:21167143

  12. Aldehyde-alcohol dehydrogenase and/or thiolase overexpression coupled with CoA transferase downregulation lead to higher alcohol titers and selectivity in Clostridium acetobutylicum fermentations.

    PubMed

    Sillers, Ryan; Al-Hinai, Mohab Ali; Papoutsakis, Eleftherios T

    2009-01-01

    Metabolic engineering (ME) of Clostridium acetobutylicum has led to increased solvent (butanol, acetone, and ethanol) production and solvent tolerance, thus demonstrating that further efforts have the potential to create strains of industrial importance. With recently developed ME tools, it is now possible to combine genetic modifications and thus implement more advanced ME strategies. We have previously shown that antisense RNA (asRNA)-based downregulation of CoA transferase (CoAT, the first enzyme in the acetone-formation pathway) results in increased butanol to acetone selectivity, but overall reduced butanol yields and titers. In this study the alcohol/aldehyde dehydrogenase (aad) gene (encoding the bifunctional protein AAD responsible for butanol and ethanol production from butyryl-CoA and acetyl-CoA, respectively) was expressed from the phosphotransbutyrylase (ptb) promoter to enhance butanol formation and selectivity, while CoAT downregulation was used to minimize acetone production. This led to early production of high alcohol (butanol plus ethanol) titers, overall solvent titers of 30 g/L, and a higher alcohol/acetone ratio. Metabolic flux analysis revealed the likely depletion of butyryl-CoA. In order to increase then the flux towards butyryl-CoA, we examined the impact of thiolase (THL, thl) overexpression. THL converts acetyl-CoA to acetoacetyl-CoA, the first step of the pathway from acetyl-CoA to butyryl-CoA, and thus, combining thl overexpression with aad overexpression decreased, as expected, acetate and ethanol production while increasing acetone and butyrate formation. thl overexpression in strains with asRNA CoAT downregulation did not significantly alter product formation thus suggesting that a more complex metabolic engineering strategy is necessary to enhance the intracellular butyryl-CoA pool and reduce the acetyl-CoA pool in order to achieve improved butanol titers and selectivity. PMID:18726959

  13. Cloning and expression of a putative alcohol dehydrogenase gene of Entamoeba histolytica and its application to immunological examination.

    PubMed Central

    Kimura, A; Hara, Y; Kimoto, T; Okuno, Y; Minekawa, Y; Nakabayashi, T

    1996-01-01

    To clone and express the genes encoding major antigens of Entamoeba histolytica, we constructed a lambda gt11 cDNA library for E. histolytica HM1:IMSS and screened it with pooled sera from patients with amoebiasis. A 1,223-bp cDNA was cloned (clone 1223), and its nucleotide sequence was determined. The amino acid sequence predicted to be encoded by the open reading frame of clone 1223 consisted of 396 residues and showed 32.5 and 32.3% homology to the NADH-dependent butanol dehydrogenases I and II (bdhA and bdhB) of Clostridium acetobutylicum, respectively. In addition, 29 of the 34 consensus positions of bdhA and bdhB were also well conserved in clone 1223. The recombinant protein expressed from clone 1223 had an estimated molecular mass of 43.5 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The antigenicity and specificity of the recombinant protein were evaluated by an enzyme-linked immunosorbent assay using sera obtained from two clinical groups of patients with amoebiasis and a group of healthy controls. The recombinant protein had potent and specific antigenicity. In all, 53 serum samples (88.3%) from 60 patients with amoebiasis were positive for immunoglobulin G antibody against the recombinant protein, with a mean optical density value of 0.42. In contrast, 53 of 54 healthy control serum samples were negative, with only 1 positive serum sample showing the lower optical density value. These results suggested that clone 1223 is promising in terms of providing a useful antigen for the accurate serodiagnosis of amoebiasis and that the gene encodes a putative alcohol dehydrogenase of E. histolytica. PMID:8705667

  14. Mutation of Tyr-218 to Phe in Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase: effects on bioelectronic interface performance.

    PubMed

    Hassler, Brian L; Dennis, Megan; Laivenieks, Maris; Zeikus, J Gregory; Worden, Robert M

    2007-10-01

    Bioelectronic interfaces that facilitate electron transfer between the electrode and a dehydrogenase enzyme have potential applications in biosensors, biocatalytic reactors, and biological fuel cells. The secondary alcohol dehydrogenase (2 degrees ADH) from Thermoanaerobacter ethanolicus is especially well suited for the development of such bioelectronic interfaces because of its thermostability and facile production and purification. However, the natural cofactor for the enzyme, beta-nicotinamide adenine dinucleotide phosphate (NADP+), is more expensive and less stable than beta-nicotinamide adenine dinucleotide (NAD+). PCR-based, site-directed mutagenesis was performed on 2 degrees ADH in an attempt to adjust the cofactor specificity toward NAD+ by mutating Tyr218 to Phe (Y218F 2 degrees ADH). This mutation increased the Km(app) for NADP+ 200-fold while decreasing the Km(app) for NAD+ 2.5-fold. The mutant enzyme was incorporated into a bioelectronic interface that established electrical communication between the enzyme, the NAD+, the electron mediator toluidine blue O (TBO), and a gold electrode. Cyclic voltammetry, impedance spectroscopy, gas chromatography, mass spectrometry, constant potential amperometry, and chronoamperometry were used to characterize the mutant and wild-type enzyme incorporated in the bioelectronic interface. The Y218F 2 degrees ADH exhibited a fourfold increase in the turnover ratio compared to the wild type in the presence of NAD+. The electrochemical and kinetic measurements support the prediction that the Rossmann fold of the enzyme binds to the phosphate moiety of the cofactor. During the 45 min of continuous operation, NAD+ was electrically recycled 6.7 x 10(4) times, suggesting that the Y218F 2 degrees ADH-modified bioelectronic interface is stable. PMID:18025592

  15. Lysophosphatidylethanolamine Is a Substrate for the Short-Chain Alcohol Dehydrogenase SocA from Myxococcus xanthus▿ †

    PubMed Central

    Avadhani, Madhavi; Geyer, Roland; White, David C.; Shimkets, Lawrence J.

    2006-01-01

    Short-chain alcohol dehydrogenases (SCADHs) synthesize a variety of intercellular signals and other chemically diverse products. It is difficult to predict the substrate of a SCADH on the basis of amino acid sequence homology, as the substrates are not known for most SCADHs. In Myxococcus xanthus, the SCADH CsgA is responsible for C signaling during fruiting body development, although the mechanism is unclear. Overexpression of the SCADH SocA compensates for the lack of CsgA and restores development and C signaling in csgA mutants. The potential of SocA in generating the C signal enzymatically was explored by developing a dehydrogenase assay-based screen to purify the SocA substrate(s). A SocA substrate was extracted from M. xanthus cells with acidified ethyl acetate and sequentially purified by solid-phase extraction on silica gel and by reverse-phase high-performance liquid chromatography. The fraction with the highest SocA dehydrogenase activity contained the lysophospholipid 1-acyl 2-hydroxy-sn-glycerophosphoethanolamine (lyso-PE) as indicated by the fragment ions and a phosphatidylethanolamine-specific neutral loss scan following liquid chromatography coupled to mass spectrometry. The abundant lysophospholipid with the mass m/z 450 (molecular ion [M-H]−) had a monounsaturated acyl chain with 16 carbons. SocA oxidizes lyso-PE containing either saturated or unsaturated fatty acids but exhibits poor activity on l-α-glycerophosphorylethanolamine, suggesting that an acyl chain is important for activity. Of the five different head groups, only ethanolamine showed appreciable activity. The apparent Km and Vmax for lyso-PE 18:1 were 116 μM and 875 μmol min−1 mg−1, respectively. The catalytic efficiency (kcat/Km) was 1 × 108 M−1 s−1. The proposed product, 1-acyloxy-3-(2-aminoethylphosphatyl) acetone was unstable, and the fragmented products were unable to rescue csgA mutant development. The active fraction from thin-layer chromatography also contained an

  16. A Study on MTHFR C677T Gene Polymorphism and Alcohol Dependence among Meiteis of Manipur, India

    PubMed Central

    Singh, Huidrom Suraj; Salam, Kabita; Saraswathy, Kallur Nava

    2014-01-01

    Chronic alcohol consumption is reported to be associated with increase in plasma homocysteine levels which is further influenced by the polymorphism in methylenetetrahydrofolate reductase (MTHFR) gene. The present study aims to understand the extent of the MTHFR C677T polymorphism in alcohol dependent (AD) cases of Meiteis of Manipur, a Mendelian population of India. MTHFR C677T polymorphism was screened in 313 controls and 139 alcohol dependent (AD) cases who all met DSM-IV criteria for alcohol dependence. Both AD cases and controls were unrelated up to 1st cousin. Among the control group, different drinking patterns like abstainer/nondrinkers (NDs), occasional drinkers (ODs), and moderate drinkers (MDs) are included. Both the groups were found to be in Hardy-Weinberg equilibrium (P > 0.05). Genotypic and allelic frequency distribution of MTHFR C677T polymorphism did not differ significantly between AD cases and controls (P > 0.05). However, individuals carrying mutant (T) allele show more than 1-fold increased risk for AD though not significant (OR = 1.43; 95% CI 0.41–5.01, P > 0.05). In conclusion, MTHFR C677T polymorphism is not found to be risk marker for AD in present studied population. However, higher prevalence of the mutant T allele may exacerbate deleterious health risk in future especially among alcohol drinkers. PMID:26317030

  17. Interleukin 10 promoter region polymorphisms and susceptibility to advanced alcoholic liver disease

    PubMed Central

    Grove, J; Daly, A; Bassendine, M; Gilvarry, E; Day, C

    2000-01-01

    BACKGROUND—The factors determining why less than 10% of heavy drinkers develop advanced alcoholic liver disease (ALD) remain elusive, although genetic factors may be important. Interleukin 10 (IL-10) is an important cytokine with anti-inflammatory, anti-immune, and antifibrotic functions. Several polymorphisms have been identified in the IL-10 promoter and recent evidence suggests that some of these may have functional effects on IL-10 secretion.
AIMS—To test the hypothesis that IL-10 promoter region polymorphisms are associated with susceptibility to ALD.
METHODS—The allele frequencies for the two single base pair substitutions at positions −627 (C→A) and −1117 (A→G) in the IL-10 promoter were determined in 287 heavy drinkers with biopsy proved advanced ALD, 107 heavy drinkers with no evidence of liver disease or steatosis only on biopsy, and 227 local healthy volunteers.
RESULTS—At position −627, 50% of patients with advanced ALD had a least one A allele compared with 33% of controls (p<0.0001) and 34% of drinkers with no or mild disease (p=0.017). At position −1117, the slight excess of the A allele in drinkers with advanced disease was because of linkage disequilibrium between the A alleles at the two sites.
CONCLUSIONS—Among heavy drinkers, possession of the A allele at position −627 in the IL-10 promoter is associated with an increased risk of advanced liver disease. This is consistent with recent functional data that the −627*A allele is associated with low IL-10 expression which will favour inflammatory, immune mediated, and profibrotic mechanisms of alcohol related liver injury.


Keywords: ethyl alcohol; cirrhosis; interleukin 10; genetic polymorphism PMID:10716685

  18. The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde.

    PubMed

    González-Guzmán, Miguel; Apostolova, Nadezda; Bellés, José M; Barrero, José M; Piqueras, Pedro; Ponce, María R; Micol, José L; Serrano, Ramón; Rodríguez, Pedro L

    2002-08-01

    Mutants able to germinate and perform early growth in medium containing a high NaCl concentration were identified during the course of two independent screenings and named salt resistant (sre) and salobreño (sañ). The sre and sañ mutants also were able to germinate in high-osmoticum medium, indicating that they are osmotolerant in a germination assay. Complementation analyses revealed that sre1-1, sre1-2, sañ3-1, and sañ3-2 were alleles of the abscisic acid (ABA) biosynthesis ABA2 gene. A map-based cloning strategy allowed the identification of the ABA2 gene and molecular characterization of four new aba2 alleles. The ABA2 gene product belongs to the family of short-chain dehydrogenases/reductases, which are known to be NAD- or NADP-dependent oxidoreductases. Recombinant ABA2 protein produced in Escherichia coli exhibits a K(m) value for xanthoxin of 19 micro M and catalyzes in a NAD-dependent manner the conversion of xanthoxin to abscisic aldehyde, as determined by HPLC-mass spectrometry. The ABA2 mRNA is expressed constitutively in all plant organs examined and is not upregulated in response to osmotic stress. The results of this work are discussed in the context of previous genetic and biochemical evidence regarding ABA biosynthesis, confirming the xanthoxin-->abscisic aldehyde-->ABA transition as the last steps of the major ABA biosynthetic pathway. PMID:12172025

  19. Physiological Studies of Methane- and Methanol-Oxidizing Bacteria: Immunological Comparison of a Primary Alcohol Dehydrogenase from Methylococcus capsulatus and Pseudomonas sp. M27

    PubMed Central

    Patel, R. N.; Mandy, W. J.; Hoare, D. S.

    1973-01-01

    A primary alcohol dehydrogenase was purified from cell extracts of two apparently unrelated microorganisms, namely, Pseudomonas sp. M27 and Methylococcus capsulatus. Rabbit antiserum prepared against the purified enzyme from M. capsulatus revealed distinctive antigenic determinants by quantitative and gel precipitin reactions. Rabbit antiserum to M27 enzyme detected both distinctive and shared antigenic determinants. Certain methane- and methanol-oxidizing bacteria were grouped on the basis of serological cross-reacting enzyme specificities. Images PMID:4120569

  20. E. coli metabolic protein aldehyde-alcohol dehydrogenase-E binds to the ribosome: a unique moonlighting action revealed.

    PubMed

    Shasmal, Manidip; Dey, Sandip; Shaikh, Tanvir R; Bhakta, Sayan; Sengupta, Jayati

    2016-01-01

    It is becoming increasingly evident that a high degree of regulation is involved in the protein synthesis machinery entailing more interacting regulatory factors. A multitude of proteins have been identified recently which show regulatory function upon binding to the ribosome. Here, we identify tight association of a metabolic protein aldehyde-alcohol dehydrogenase E (AdhE) with the E. coli 70S ribosome isolated from cell extract under low salt wash conditions. Cryo-EM reconstruction of the ribosome sample allows us to localize its position on the head of the small subunit, near the mRNA entrance. Our study demonstrates substantial RNA unwinding activity of AdhE which can account for the ability of ribosome to translate through downstream of at least certain mRNA helices. Thus far, in E. coli, no ribosome-associated factor has been identified that shows downstream mRNA helicase activity. Additionally, the cryo-EM map reveals interaction of another extracellular protein, outer membrane protein C (OmpC), with the ribosome at the peripheral solvent side of the 50S subunit. Our result also provides important insight into plausible functional role of OmpC upon ribosome binding. Visualization of the ribosome purified directly from the cell lysate unveils for the first time interactions of additional regulatory proteins with the ribosome. PMID:26822933

  1. E. coli metabolic protein aldehyde-alcohol dehydrogenase-E binds to the ribosome: a unique moonlighting action revealed

    PubMed Central

    Shasmal, Manidip; Dey, Sandip; Shaikh, Tanvir R.; Bhakta, Sayan; Sengupta, Jayati

    2016-01-01

    It is becoming increasingly evident that a high degree of regulation is involved in the protein synthesis machinery entailing more interacting regulatory factors. A multitude of proteins have been identified recently which show regulatory function upon binding to the ribosome. Here, we identify tight association of a metabolic protein aldehyde-alcohol dehydrogenase E (AdhE) with the E. coli 70S ribosome isolated from cell extract under low salt wash conditions. Cryo-EM reconstruction of the ribosome sample allows us to localize its position on the head of the small subunit, near the mRNA entrance. Our study demonstrates substantial RNA unwinding activity of AdhE which can account for the ability of ribosome to translate through downstream of at least certain mRNA helices. Thus far, in E. coli, no ribosome-associated factor has been identified that shows downstream mRNA helicase activity. Additionally, the cryo-EM map reveals interaction of another extracellular protein, outer membrane protein C (OmpC), with the ribosome at the peripheral solvent side of the 50S subunit. Our result also provides important insight into plausible functional role of OmpC upon ribosome binding. Visualization of the ribosome purified directly from the cell lysate unveils for the first time interactions of additional regulatory proteins with the ribosome. PMID:26822933

  2. Spaceflight exposure effects on transcription, activity, and localization of alcohol dehydrogenase in the roots of Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Porterfield, D. M.; Matthews, S. W.; Daugherty, C. J.; Musgrave, M. E.

    1997-01-01

    Although considerable research and speculation have been directed toward understanding a plant's perception of gravity and the resulting gravitropic responses, little is known about the role of gravity-dependent physical processes in normal physiological function. These studies were conducted to determine whether the roots of plants exposed to spaceflight conditions may be experiencing hypoxia. Arabidopsis thaliana (L.) Heynh. plants were grown in agar medium during 6 or 11 d of spaceflight exposure on shuttle missions STS-54 (CHROMEX-03) and STS-68 (CHROMEX-05), respectively. The analysis included measurement of agar redox potential and root alcohol dehydrogenase (ADH) activity, localization, and expression. ADH activity increased by 89% as a result of spaceflight exposure for both CHROMEX-03 and -05 experiments, and ADH RNase protection assays revealed a 136% increase in ADH mRNA. The increase in ADH activity associated with the spaceflight roots was realized by a 28% decrease in oxygen availability in a ground-based study; however, no reduction in redox potential was observed in measurements of the spaceflight bulk agar. Spaceflight exposure appears to effect a hypoxic response in the roots of agar-grown plants that may be caused by changes in gravity-mediated fluid and/or gas behavior.

  3. Thiodiglycol, the hydrolysis product of sulfur mustard: Analysis of in vitro biotransformation by mammalian alcohol dehydrogenases using nuclear magnetic resonance

    SciTech Connect

    Brimfield, A.A.; Hodgson, Ernest

    2006-06-15

    Thiodiglycol (2,2'-bis-hydroxyethylsulfide, TDG), the hydrolysis product of the chemical warfare agent sulfur mustard, has been implicated in the toxicity of sulfur mustard through the inhibition of protein phosphatases in mouse liver cytosol. The absence of any inhibitory activity when TDG was present in assays of pure enzymes, however, led us to investigate the possibility for metabolic activation of TDG to inhibitory compound(s) by cytosolic enzymes. We have successfully shown that mammalian alcohol dehydrogenases (ADH) rapidly oxidize TDG in vitro, but the classic spectrophotometric techniques for following this reaction provided no information on the identity of TDG intermediates and products. The use of proton NMR to monitor the oxidative reaction with structural confirmation by independent synthesis allowed us to establish the ultimate product, 2-hydroxyethylthioacetic acid, and to identify an intermediate equilibrium mixture consisting of 2-hydroxyethylthioacetaldehyde, 2-hydroxyethylthioacetaldehyde hydrate and the cyclic 1,4-oxathian-2-ol. The intermediate nature of this mixture was determined spectrophotometrically when it was shown to drive the production of NADH when added to ADH and NAD.

  4. Estimates of Gene Flow in Drosophila Pseudoobscura Determined from Nucleotide Sequence Analysis of the Alcohol Dehydrogenase Region

    PubMed Central

    Schaeffer, S. W.; Miller, E. L.

    1992-01-01

    The genetic structure of Drosophila pseudoobscura populations was inferred from a nucleotide sequence analysis of a 3.4-kb segment of the alcohol dehydrogenase (Adh) region. A total of 99 isochromosomal strains collected from 13 populations in North and South America were used to determine if any population departed from a neutral model and to estimate levels of gene flow between populations. This study also included the nucleotide sequences from two sibling species, D. persimilis and D. miranda. We estimated the neutral mutation parameter, 4Nμ, in synonymous and noncoding sites for 17 subregions of Adh in each of nine populations with sample sizes greater than three. The nucleotide diversity data in the nine populations was tested for departures from an equilibrium neutral model with two statistical tests. The Tajima and the Hudson, Kreitman, Aguade tests showed that each population fails to reject a neutral model. Tests for genetic differentiation between populations fail to show any population substructure among the North American populations of D. pseudoobscura. The nucleotide diversity data is consistent with direct and indirect measures of gene flow that show extensive dispersal between populations of D. pseudoobscura. PMID:1427038

  5. Substitutions at the cofactor phosphate-binding site of a clostridial alcohol dehydrogenase lead to unexpected changes in substrate specificity.

    PubMed

    Maddock, Danielle J; Patrick, Wayne M; Gerth, Monica L

    2015-08-01

    Changing the cofactor specificity of an enzyme from nicotinamide adenine dinucleotide 2'-phosphate (NADPH) to the more abundant NADH is a common strategy for increasing overall enzyme efficiency in microbial metabolic engineering. The aim of this study was to switch the cofactor specificity of the primary-secondary alcohol dehydrogenase from Clostridium autoethanogenum, a bacterium with considerable promise for the bio-manufacturing of fuels and other petrochemicals, from strictly NADPH-dependent to NADH-dependent. We used insights from a homology model to build a site-saturation library focussed on residue S199, the position deemed most likely to disrupt binding of the 2'-phosphate of NADPH. Although the CaADH(S199X) library did not yield any NADH-dependent enzymes, it did reveal that substitutions at the cofactor phosphate-binding site can cause unanticipated changes in the substrate specificity of the enzyme. Using consensus-guided site-directed mutagenesis, we were able to create an enzyme that was stringently NADH-dependent, albeit with a concomitant reduction in activity. This study highlights the role that distal residues play in substrate specificity and the complexity of enzyme-cofactor interactions. PMID:26034298

  6. Changes in soluble sugar, starch, and alcohol dehydrogenase in Arabidopsis thaliana exposed to N2 diluted atmospheres

    NASA Technical Reports Server (NTRS)

    Porterfield, D. M.; Crispi, M. L.; Musgrave, M. E.

    1997-01-01

    Proper exchange of atmospheric gases is important for normal root and shoot metabolism in plants. This study was conducted to determine how restricted air supply affects foliar carbohydrates, while using the marker enzyme alcohol dehydrogenase (ADH) to report on the oxygenation status of the rootzone. Fourteen-day-old Arabidopsis thaliana (L.) Heynh. plants grown singly in 7-ml tubes containing agarified nutrient medium were placed in coupled Magenta vessels and exposed for six days to either ambient air or one of six different air/nitrogen dilutions. Redox potential of the agar medium was measured immediately after harvesting and freezing leaf tissue, and then root systems were quickly extracted from the agar and frozen for subsequent analyses. Redox potential measurements indicated that this series of gas mixtures produced a transition from hypoxia to anoxia in the root zones. Root ADH activity increased at higher rates as the redox potential neared anoxic levels. In contrast, ADH mRNA expression quickly neared its maximum as the medium became hypoxic and showed little further increase as it became anoxic. Foliar carbohydrate levels increased 1.5- to 2-fold with decreased availability of metabolic gases, with starch increasing at higher concentrations of air than soluble carbohydrate. The results serve as a model for plant performance under microgravity conditions, where absence of convective air movement prevents replenishment of metabolic gases.

  7. Substitutions at the cofactor phosphate-binding site of a clostridial alcohol dehydrogenase lead to unexpected changes in substrate specificity

    PubMed Central

    Maddock, Danielle J.; Patrick, Wayne M.; Gerth, Monica L.

    2015-01-01

    Changing the cofactor specificity of an enzyme from nicotinamide adenine dinucleotide 2′-phosphate (NADPH) to the more abundant NADH is a common strategy for increasing overall enzyme efficiency in microbial metabolic engineering. The aim of this study was to switch the cofactor specificity of the primary–secondary alcohol dehydrogenase from Clostridium autoethanogenum, a bacterium with considerable promise for the bio-manufacturing of fuels and other petrochemicals, from strictly NADPH-dependent to NADH-dependent. We used insights from a homology model to build a site-saturation library focussed on residue S199, the position deemed most likely to disrupt binding of the 2′-phosphate of NADPH. Although the CaADH(S199X) library did not yield any NADH-dependent enzymes, it did reveal that substitutions at the cofactor phosphate-binding site can cause unanticipated changes in the substrate specificity of the enzyme. Using consensus-guided site-directed mutagenesis, we were able to create an enzyme that was stringently NADH-dependent, albeit with a concomitant reduction in activity. This study highlights the role that distal residues play in substrate specificity and the complexity of enzyme–cofactor interactions. PMID:26034298

  8. Spaceflight exposure effects on transcription, activity, and localization of alcohol dehydrogenase in the roots of Arabidopsis thaliana.

    PubMed Central

    Porterfield, D M; Matthews, S W; Daugherty, C J; Musgrave, M E

    1997-01-01

    Although considerable research and speculation have been directed toward understanding a plant's perception of gravity and the resulting gravitropic responses, little is known about the role of gravity-dependent physical processes in normal physiological function. These studies were conducted to determine whether the roots of plants exposed to spaceflight conditions may be experiencing hypoxia. Arabidopsis thaliana (L.) Heynh. plants were grown in agar medium during 6 or 11 d of spaceflight exposure on shuttle missions STS-54 (CHROMEX-03) and STS-68 (CHROMEX-05), respectively. The analysis included measurement of agar redox potential and root alcohol dehydrogenase (ADH) activity, localization, and expression. ADH activity increased by 89% as a result of spaceflight exposure for both CHROMEX-03 and -05 experiments, and ADH RNase protection assays revealed a 136% increase in ADH mRNA. The increase in ADH activity associated with the spaceflight roots was realized by a 28% decrease in oxygen availability in a ground-based study; however, no reduction in redox potential was observed in measurements of the spaceflight bulk agar. Spaceflight exposure appears to effect a hypoxic response in the roots of agar-grown plants that may be caused by changes in gravity-mediated fluid and/or gas behavior. PMID:9085569

  9. Slowed Diffusion and Excluded Volume Both Contribute to the Effects of Macromolecular Crowding on Alcohol Dehydrogenase Steady-State Kinetics.

    PubMed

    Schneider, Samuel H; Lockwood, Schuyler P; Hargreaves, Dominique I; Slade, David J; LoConte, Micaela A; Logan, Bridget E; McLaughlin, Erin E; Conroy, Michael J; Slade, Kristin M

    2015-09-29

    To understand the consequences of macromolecular crowding, studies have largely employed in vitro experiments with synthetic polymers assumed to be both pure and "inert". These polymers alter enzyme kinetics by excluding volume that would otherwise be available to the enzymes, substrates, and products. Presented here is evidence that other factors, in addition to excluded volume, must be considered in the interpretation of crowding studies with synthetic polymers. Dextran has a weaker effect on the Michaelis-Menten kinetic parameters of yeast alcohol dehydrogenase (YADH) than its small molecule counterpart, glucose. For glucose, the decreased Vmax values directly correlate with slower translational diffusion and the decreased Km values likely result from enhanced substrate binding due to YADH stabilization. Because dextran is unable to stabilize YADH to the same extent as glucose, this polymer's ability to decrease Km is potentially due to the nonideality of the solution, a crowding-induced conformational change, or both. Chronoamperometry reveals that glucose and dextran have surprisingly similar ferricyanide diffusion coefficients. Thus, the reduction in Vmax values for glucose is partially offset by an additional macromolecular crowding effect with dextran. Finally, this is the first report that supplier-dependent impurities in dextran affect the kinetic parameters of YADH. Taken together, our results reveal that caution should be used when interpreting results obtained with inert synthetic polymeric agents, as additional effects from the underlying monomer need to be considered. PMID:26333028

  10. Identification and characterization of a mycobacterial NAD⁺-dependent alcohol dehydrogenase with superior reduction of diacetyl to (S)-acetoin.

    PubMed

    Takeda, Minoru; Anamizu, Shiori; Motomatsu, Shigekazu; Chen, Xue; Thapa Chhetri, Rajan

    2014-01-01

    An enzyme capable of reducing acetoin in the presence of NADH was purified from Mycobacterium sp. B-009, a non-clinical bacterial strain of soil origin. The enzyme is a homotetramer and can be classified as a medium-chain alcohol dehydrogenase/reductase based on the molecular weight of the monomer. Identification of the structural gene revealed a limited distribution of homologous genes only among actinomycetes. In addition to its activity as a reductase specific for (S)-acetoin (EC 1.1.1.76), the enzyme showed both diacetyl reductase (EC 1.1.1.304) and NAD(+)-dependent alcohol dehydrogenase (EC 1.1.1.1) activities. (S)-Acetoin and diacetyl reductases belong to a group of short-chain alcohol dehydrogenase/reductases but do not have superior abilities to dehydrogenate monoalcohols. Thus, the purified enzyme can be readily distinguished from other enzymes. We used the dual functionality of the enzyme to effectively reduce diacetyl to (S)-acetoin, coupled with the oxidation of 1-butanol. PMID:25082080

  11. The Oxidative Fermentation of Ethanol in Gluconacetobacter diazotrophicus Is a Two-Step Pathway Catalyzed by a Single Enzyme: Alcohol-Aldehyde Dehydrogenase (ADHa)

    PubMed Central

    Gómez-Manzo, Saúl; Escamilla, José E.; González-Valdez, Abigail; López-Velázquez, Gabriel; Vanoye-Carlo, América; Marcial-Quino, Jaime; de la Mora-de la Mora, Ignacio; Garcia-Torres, Itzhel; Enríquez-Flores, Sergio; Contreras-Zentella, Martha Lucinda; Arreguín-Espinosa, Roberto; Kroneck, Peter M. H.; Sosa-Torres, Martha Elena

    2015-01-01

    Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH) and the aldehyde dehydrogenase (ALDH). We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa) of Ga. diazotrophicus is indeed a double function enzyme, which is able to use primary alcohols (C2–C6) and its respective aldehydes as alternate substrates. Moreover, the enzyme utilizes ethanol as a substrate in a reaction mechanism where this is subjected to a two-step oxidation process to produce acetic acid without releasing the acetaldehyde intermediary to the media. Moreover, we propose a mechanism that, under physiological conditions, might permit a massive conversion of ethanol to acetic acid, as usually occurs in the acetic acid bacteria, but without the transient accumulation of the highly toxic acetaldehyde. PMID:25574602

  12. Similarity of Escherichia coli propanediol oxidoreductase (fucO product) and an unusual alcohol dehydrogenase from Zymomonas mobilis and Saccharomyces cerevisiae

    SciTech Connect

    Conway, T. ); Ingram, L.O. )

    1989-07-01

    The gene that encodes 1,2-propanediol oxidoreductase (fucO) from Escherichia coli was sequenced. The reading frame specified a protein of 383 amino acids (including the N-terminal methionine), with an aggregate molecular weight of 40,642. The induction of fucO transcription, which occurred in the presence of fucose, was confirmed by Northern blot analysis. In E. coli, the primary fucO transcript was approximately 2.1 kilobases in length. The 5{prime} end of the transcript began more than 0.7 kilobase upstream of the fucO start codon within or beyond the fucA gene. Propanediol oxidoreductase exhibited 41.7% identity with the iron-containing alcohol dehydrogenase II from Zymomonas mobilis and 39.5% identity with ADH4 from Saccharomyces cerevisiae. These three proteins did not share homology with either short-chain or long-chain zinc-containing alcohol dehydrogenase enzymes. We propose that these three unusual alcohol dehydrogenases define a new family of enzymes.

  13. The oxidative fermentation of ethanol in Gluconacetobacter diazotrophicus is a two-step pathway catalyzed by a single enzyme: alcohol-aldehyde Dehydrogenase (ADHa).

    PubMed

    Gómez-Manzo, Saúl; Escamilla, José E; González-Valdez, Abigail; López-Velázquez, Gabriel; Vanoye-Carlo, América; Marcial-Quino, Jaime; de la Mora-de la Mora, Ignacio; Garcia-Torres, Itzhel; Enríquez-Flores, Sergio; Contreras-Zentella, Martha Lucinda; Arreguín-Espinosa, Roberto; Kroneck, Peter M H; Sosa-Torres, Martha Elena

    2015-01-01

    Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH) and the aldehyde dehydrogenase (ALDH). We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa) of Ga. diazotrophicus is indeed a double function enzyme, which is able to use primary alcohols (C2-C6) and its respective aldehydes as alternate substrates. Moreover, the enzyme utilizes ethanol as a substrate in a reaction mechanism where this is subjected to a two-step oxidation process to produce acetic acid without releasing the acetaldehyde intermediary to the media. Moreover, we propose a mechanism that, under physiological conditions, might permit a massive conversion of ethanol to acetic acid, as usually occurs in the acetic acid bacteria, but without the transient accumulation of the highly toxic acetaldehyde. PMID:25574602

  14. Characterization of an Allylic/Benzyl Alcohol Dehydrogenase from Yokenella sp. Strain WZY002, an Organism Potentially Useful for the Synthesis of α,β-Unsaturated Alcohols from Allylic Aldehydes and Ketones

    PubMed Central

    Ying, Xiangxian; Wang, Yifang; Xiong, Bin; Wu, Tingting; Xie, Liping; Yu, Meilan

    2014-01-01

    A novel whole-cell biocatalyst with high allylic alcohol-oxidizing activities was screened and identified as Yokenella sp. WZY002, which chemoselectively reduced the C=O bond of allylic aldehydes/ketones to the corresponding α,β-unsaturated alcohols at 30°C and pH 8.0. The strain also had the capacity of stereoselectively reducing aromatic ketones to (S)-enantioselective alcohols. The enzyme responsible for the predominant allylic/benzyl alcohol dehydrogenase activity was purified to homogeneity and designated YsADH (alcohol dehydrogenase from Yokenella sp.), which had a calculated subunit molecular mass of 36,411 Da. The gene encoding YsADH was subsequently expressed in Escherichia coli, and the purified recombinant YsADH protein was characterized. The enzyme strictly required NADP(H) as a coenzyme and was putatively zinc dependent. The optimal pH and temperature for crotonaldehyde reduction were pH 6.5 and 65°C, whereas those for crotyl alcohol oxidation were pH 8.0 and 55°C. The enzyme showed moderate thermostability, with a half-life of 6.2 h at 55°C. It was robust in the presence of organic solvents and retained 87.5% of the initial activity after 24 h of incubation with 20% (vol/vol) dimethyl sulfoxide. The enzyme preferentially catalyzed allylic/benzyl aldehydes as the substrate in the reduction of aldehydes/ketones and yielded the highest activity of 427 U mg−1 for benzaldehyde reduction, while the alcohol oxidation reaction demonstrated the maximum activity of 79.9 U mg−1 using crotyl alcohol as the substrate. Moreover, kinetic parameters of the enzyme showed lower Km values and higher catalytic efficiency for crotonaldehyde/benzaldehyde and NADPH than for crotyl alcohol/benzyl alcohol and NADP+, suggesting the nature of being an aldehyde reductase. PMID:24509923

  15. Characterization of an allylic/benzyl alcohol dehydrogenase from Yokenella sp. strain WZY002, an organism potentially useful for the synthesis of α,β-unsaturated alcohols from allylic aldehydes and ketones.

    PubMed

    Ying, Xiangxian; Wang, Yifang; Xiong, Bin; Wu, Tingting; Xie, Liping; Yu, Meilan; Wang, Zhao

    2014-04-01

    A novel whole-cell biocatalyst with high allylic alcohol-oxidizing activities was screened and identified as Yokenella sp. WZY002, which chemoselectively reduced the C=O bond of allylic aldehydes/ketones to the corresponding α,β-unsaturated alcohols at 30°C and pH 8.0. The strain also had the capacity of stereoselectively reducing aromatic ketones to (S)-enantioselective alcohols. The enzyme responsible for the predominant allylic/benzyl alcohol dehydrogenase activity was purified to homogeneity and designated YsADH (alcohol dehydrogenase from Yokenella sp.), which had a calculated subunit molecular mass of 36,411 Da. The gene encoding YsADH was subsequently expressed in Escherichia coli, and the purified recombinant YsADH protein was characterized. The enzyme strictly required NADP(H) as a coenzyme and was putatively zinc dependent. The optimal pH and temperature for crotonaldehyde reduction were pH 6.5 and 65°C, whereas those for crotyl alcohol oxidation were pH 8.0 and 55°C. The enzyme showed moderate thermostability, with a half-life of 6.2 h at 55°C. It was robust in the presence of organic solvents and retained 87.5% of the initial activity after 24 h of incubation with 20% (vol/vol) dimethyl sulfoxide. The enzyme preferentially catalyzed allylic/benzyl aldehydes as the substrate in the reduction of aldehydes/ketones and yielded the highest activity of 427 U mg(-1) for benzaldehyde reduction, while the alcohol oxidation reaction demonstrated the maximum activity of 79.9 U mg(-1) using crotyl alcohol as the substrate. Moreover, kinetic parameters of the enzyme showed lower Km values and higher catalytic efficiency for crotonaldehyde/benzaldehyde and NADPH than for crotyl alcohol/benzyl alcohol and NADP(+), suggesting the nature of being an aldehyde reductase. PMID:24509923

  16. Association of gene polymorphisms encoding dopaminergic system components and platelet MAO-B activity with alcohol dependence and alcohol dependence-related phenotypes.

    PubMed

    Nedic Erjavec, Gordana; Nenadic Sviglin, Korona; Nikolac Perkovic, Matea; Muck-Seler, Dorotea; Jovanovic, Tanja; Pivac, Nela

    2014-10-01

    The present study aimed to evaluate the association of alcohol dependence and alcohol dependence-related phenotypes with platelet monoamine oxidase type B (MAO-B) activity, Val108/158Met of catechol-o-methyltransferase (COMT), variable number of tandem repeats (VNTR) in the third exon of dopamine receptor D4 (DRD4) gene, VNTR in the 3'-untranslated region of dopamine transporter (DAT) gene, -1021C/T of dopamine beta-hydroxylase (DBH) and MAO-B intron 13 polymorphisms. The study included 1270 Caucasian men and women of Croatian origin: 690 patients with alcohol dependence and 580 healthy controls. Patients with alcohol dependence were subdivided according to the presence or absence of withdrawal symptoms, aggressive behavior, severity of alcohol dependence, delirium tremens, comorbid depression, suicidal behavior, lifetime suicide attempt and early/late onset of alcohol abuse. The results, corrected for multiple testing, revealed increased platelet MAO-B activity in patients with alcohol dependence, subdivided into those with or without alcohol-related liver diseases, compared to control subjects (P<0.001). In addition, we found an increased frequency of the COMT Met/Met genotype among suicidal (P=0.002) and patients who attempted suicide (P<0.001) and an increased frequency of COMT Val/Val genotype in patients with an early onset of alcohol dependence (P=0.004). This study provides data from a sample of ethnically homogeneous unrelated Caucasian subjects for future meta-analyses and suggests that the increased platelet MAO-B activity might be used as independent peripheral indicator of alcohol dependence, while COMT Val108/158Met polymorphism is associated with increased suicidality and early onset of alcohol dependence. PMID:25035107

  17. Serotonin-Related Gene Polymorphisms and Asymptomatic Neurocognitive Impairment in HIV-Infected Alcohol Abusers

    PubMed Central

    Villalba, Karina; Dévieux, Jessy G.; Rosenberg, Rhonda; Cadet, Jean Lud

    2016-01-01

    HIV-infected individuals continue to experience neurocognitive deterioration despite virologically successful treatments. While the cause remains unclear, evidence suggests that HIV-associated neurocognitive disorders (HAND) may be associated with neurobehavioral dysfunction. Genetic variants have been explored to identify risk markers to determine neuropathogenesis of neurocognitive deterioration. Memory deficits and executive dysfunction are highly prevalent among HIV-infected adults. These conditions can affect their quality of life and HIV risk-taking behaviors. Single nucleotide polymorphisms in the SLC6A4, TPH2, and GALM genes may affect the activity of serotonin and increase the risk of HAND. The present study explored the relationship between SLC6A4, TPH2, and GALM genes and neurocognitive impairment in HIV-infected alcohol abusers. A total of 267 individuals were genotyped for polymorphisms in SLC6A4 5-HTTLPR, TPH2 rs4570625, and GALM rs6741892. To assess neurocognitive functions, the Short Category and the Auditory Verbal Learning Tests were used. TPH2 SNP rs4570625 showed a significant association with executive function in African American males (odds ratio 4.8, 95% CI, 1.5–14.8; P = 0.005). Similarly, GALM SNP rs6741892 showed an increased risk with African American males (odds ratio 2.4, 95% CI, 1.2–4.9; P = 0.02). This study suggests that TPH2 rs4570625 and GALM rs6741892 polymorphisms may be risk factors for HAND. PMID:27069689

  18. Effects of the cofactor binding sites on the activities of secondary alcohol dehydrogenase (SADH).

    PubMed

    Wang, Tao; Chen, Xiangjun; Han, Jun; Ma, Sichun; Wang, Jianmei; Li, Xufeng; Zhang, Hui; Liu, Zhibin; Yang, Yi

    2016-07-01

    SADHs from Thermoanaerobacter ethanolicus are enzymes that, together with various cofactors, catalyze the reversible reduction of carbonyl compounds to their corresponding alcohols. To explore how cofactors bind to SADH, TeSADH was cloned in this study, and Ser(199) and Arg(200) were replaced by Tyr and Asp, respectively. Both sites were expected to be inside or adjacent to the cofactor-binding domain according to computational a prediction. Analysis of TeSADH activities revealed that the enzymatic efficiency (kcat/Km) of the S199Y mutant was noticeably enhanced using by NADH, NADPH as cofactors, and similar with that of wild-type using by NADP(+), NAD(+). Conversely, the activity of the R200D mutant significantly decreased with all cofactors. Furthermore, in yeast, the S199Y mutant substantially elevated the ethanol concentration compared with the wild type. Molecular dynamics simulation results indicated the H-bonding network between TeSADH and the cofactors was stronger for the S199Y mutant and the binding energy was simultaneously increased. Moreover, the fluorescence results indicated the S199Y mutant exhibited an increased preference for NAD(P)H, binding with NAD(P)H more compactly compared with wild type. PMID:27016086

  19. CINNAMYL ALCOHOL DEHYDROGENASE-C and -D are the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis.

    PubMed

    Sibout, Richard; Eudes, Aymerick; Mouille, Gregory; Pollet, Brigitte; Lapierre, Catherine; Jouanin, Lise; Séguin, Armand

    2005-07-01

    During lignin biosynthesis in angiosperms, coniferyl and sinapyl aldehydes are believed to be converted into their corresponding alcohols by cinnamyl alcohol dehydrogenase (CAD) and by sinapyl alcohol dehydrogenase (SAD), respectively. This work clearly shows that CAD-C and CAD-D act as the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis thaliana by supplying both coniferyl and sinapyl alcohols. An Arabidopsis CAD double mutant (cad-c cad-d) resulted in a phenotype with a limp floral stem at maturity as well as modifications in the pattern of lignin staining. Lignin content of the mutant stem was reduced by 40%, with a 94% reduction, relative to the wild type, in conventional beta-O-4-linked guaiacyl and syringyl units and incorportion of coniferyl and sinapyl aldehydes. Fourier transform infrared spectroscopy demonstrated that both xylem vessels and fibers were affected. GeneChip data and real-time PCR analysis revealed that transcription of CAD homologs and other genes mainly involved in cell wall integrity were also altered in the double mutant. In addition, molecular complementation of the double mutant by tissue-specific expression of CAD derived from various species suggests different abilities of these genes/proteins to produce syringyl-lignin moieties but does not indicate a requirement for any specific SAD gene. PMID:15937231

  20. Elemental sulfur: toxicity in vivo and in vitro to bacterial luciferase, in vitro yeast alcohol dehydrogenase, and bovine liver catalase.

    PubMed

    Cetkauskaite, Anolda; Pessala, Piia; Södergren, Anders

    2004-08-01

    The aim of this research was to analyze the effects and the modes of action of elemental sulfur (S(0)) in bioluminescence and respiration of Vibrio fischeri cells and the enzymes crude luciferase, pure catalase, and alcohol dehydrogenase (ADH). Metallic copper removed sulfur and reduced the toxicity of acetone extracts of sediment samples analyzed in the bioluminescence test. The sulfur inhibition of cell bioluminescence was noncompetitive with decanal, the luciferase substrate; reversible, with maximum toxicity after 15 min (EC(50) = 11.8 microg/L); and almost totally recovered after 2 h. In vitro preincubation of crude luciferase extract with sulfur (0.28 ppm) weakly inhibited bioluminescence at 5 min, but at 30 min the inhibition reached 60%. Increasing the concentration of sulfur in the parts per million concentration range in vitro decreased bioluminescence, which was not constant, but depended on exposure time, and no dead-end/total inhibition was observed. The redox state of enzymes in the in vitro system significantly affected inhibition. Hydrogen peroxide restored fully and the reducing agent dithiothreitol, itself toxic, restored only partially luciferase activity in the presence of sulfur. Sulfur (5.5 ppm) slightly inhibited ADH and catalase, and dithiothreitol enhanced sulfur inhibition. High sulfur concentrations (2.2 ppm) inhibited the bioluminescence and enhanced the respiration rate of V. fischeri cells. Elemental sulfur data were interpreted to show that sulfur acted on at least a few V. fischeri cell sites: reversibly modifying luciferase at sites sensitive to/protected by oxidative and reducing agents and by affecting electron transport processes, resulting in enhanced oxygen consumption. Sulfur together with an enzyme reducing agent inhibited the oxidoreductive enzymes ADH and catalase, which have --SH groups, metal ion cofactors, or heme, respectively, in their active centers. PMID:15269910

  1. Dehydrin, alcohol dehydrogenase, and central metabolite levels are associated with cold tolerance in diploid strawberry (Fragaria spp.).

    PubMed

    Davik, Jahn; Koehler, Gage; From, Britta; Torp, Torfinn; Rohloff, Jens; Eidem, Petter; Wilson, Robert C; Sønsteby, Anita; Randall, Stephen K; Alsheikh, Muath

    2013-01-01

    The use of artificial freezing tests, identification of biomarkers linked to or directly involved in the low-temperature tolerance processes, could prove useful in applied strawberry breeding. This study was conducted to identify genotypes of diploid strawberry that differ in their tolerance to low-temperature stress and to investigate whether a set of candidate proteins and metabolites correlate with the level of tolerance. 17 Fragaria vesca, 2 F. nilgerrensis, 2 F. nubicola, and 1 F. pentaphylla genotypes were evaluated for low-temperature tolerance. Estimates of temperatures where 50 % of the plants survived (LT₅₀) ranged from -4.7 to -12.0 °C between the genotypes. Among the F. vesca genotypes, the LT₅₀ varied from -7.7 °C to -12.0 °C. Among the most tolerant were three F. vesca ssp. bracteata genotypes (FDP821, NCGR424, and NCGR502), while a F. vesca ssp. californica genotype (FDP817) was the least tolerant (LT₅₀) -7.7 °C). Alcohol dehydrogenase (ADH), total dehydrin expression, and content of central metabolism constituents were assayed in select plants acclimated at 2 °C. The LT₅₀ estimates and the expression of ADH and total dehydrins were highly correlated (r(adh) = -0.87, r (dehyd) = -0.82). Compounds related to the citric acid cycle were quantified in the leaves during acclimation. While several sugars and acids were significantly correlated to the LT₅₀ estimates early in the acclimation period, only galactinol proved to be a good LT₅₀ predictor after 28 days of acclimation (r(galact) = 0.79). It is concluded that ADH, dehydrins, and galactinol show great potential to serve as biomarkers for cold tolerance in diploid strawberry. PMID:23014928

  2. Fructophilic characteristics of Fructobacillus spp. may be due to the absence of an alcohol/acetaldehyde dehydrogenase gene (adhE).

    PubMed

    Endo, Akihito; Tanaka, Naoto; Oikawa, Yo; Okada, Sanae; Dicks, Leon

    2014-04-01

    Fructophilic strains of Leuconostoc spp. have recently been reclassified to a new genus, i.e., Fructobacillus. Members of the genus are differentiated from Leuconostoc spp. by their preference for fructose on growth, requirement of an electron acceptor for glucose metabolism, and the inability to produce ethanol from the fermentation of glucose. In the present study, enzyme activities and genes involved in ethanol production were studied, since this is the key pathway for NAD(+)/NADH cycling in heterofermentative lactic acid bacteria. Fructobacillus spp. has a weak alcohol dehydrogenase activity and has no acetaldehyde dehydrogenase activity, whereas both enzymes are active in Leuconostoc mesenteroides. The bifunctional alcohol/acetaldehyde dehydrogenase gene, adhE, was described in Leuconostoc spp., but not in Fructobacillus spp. These results suggested that, due to the deficiency of the adhE gene, the normal pathway for ethanol production is absent in Fructobacillus spp. This leads to a shortage of NAD(+), and the requirement for an electron acceptor in glucose metabolism. Fructophilic characteristics, as observed for Fructobacillus spp., are thus due to the absence of the adhE gene, and a phenotype that most likely evolved as a result of regressive evolution. PMID:24352296

  3. An enantioselective NADP(+)-dependent alcohol dehydrogenase responsible for cooxidative production of (3S)-5-hydroxy-3-methyl-pentanoic acid.

    PubMed

    Takeda, Minoru; Matsumura, Aline Tiemi; Kurosaki, Kaishi; Chhetri, Rajan Thapa; Motomatsu, Shigekazu; Suzuki, Ichiro; Sahabi, Danladi Mahuta

    2016-06-01

    A soil bacterium, Mycobacterium sp. B-009, is able to grow on racemic 1,2-propanediol (PD). The strain was revealed to oxidize 3-methyl-1,5-pentanediol (MPD) to 5-hydroxy-3-methyl-pentanoic acid (HMPA) during growth on PD. MPD was converted into an almost equimolar amount of the S-form of HMPA (S-HMPA) at 72%ee, suggesting the presence of an enantioselective MPD dehydrogenase (MPD-DH). As expected, an NADP(+)-dependent alcohol dehydrogenase, which catalyzes the initial step of MPD oxidation, was detected and purified from the cell-free extract. This enzyme was suggested to be a homodimeric medium-chain alcohol dehydrogenase/reductase (MDR). The catalytic and kinetic parameters indicated that MPD is the most suitable substrate for the enzyme. The enzyme was encoded by a 1047-bp gene (mpd1) and several mycobacterial strains were found to have putative MDR genes similar to mpd1. In a phylogenetic tree, MPD-DH formed an independent clade together with the putative MDR of Mycobacterium neoaurum, which produces opportunistic infections. PMID:26923741

  4. Separation of dehydrogenases on polyaminomethylstyrene.

    PubMed

    Schöpp, W; Meinert, S; Thyfronitou, J; Aurich, H

    1975-01-29

    The binding of dehydrogenases, especially alcohol dehydrogenase, and other proteins to several ion exchangers and hydrophobic polymers was investigated. Quantitative parameters for the stability of the polymer-protein complexes (obtained form double reciprocal plots) indicate a high but different affinity of many proteins for polyaminomethylstyrene. The chromatography of a mixture of five dehydrogenases and human serum albumin on polyaminomethylstyrene is described. PMID:237012

  5. Dynamics of a Lactate Dehydrogenase Polymorphism in the Wood Louse PORCELLIO SCABER Latr.: Evidence for Partial Assortative Mating and Heterosis in Natural Populations

    PubMed Central

    Sassaman, Clay

    1978-01-01

    Electrophoretic separation of lactate dehydrogenase (LDH) of Porcellio scaber from 14 natural populations in California, and one each in Oregon, Delaware and Massachusetts, indicates a biallelic polymorphism. Phenotypes are recovered from laboratory matings of virgin females in frequencies agreeing with simple Mendelian inheritance, and the frequency distributions of phenotypes in natural populations are typically in agreement with the appropriate Hardy-Weinberg distributions for these same populations. The same allele predominates in all natural populations examined. Temporal stability within populations suggests that the polymorphism is at, or near, equilibrium. The spatial distribution of allele frequencies, however, is apparently mosaic. Abrupt discontinuities in gene frequency over short distances (50 m to 1 km) suggest that interpopulation migration is insufficient to swamp local differences in gene frequency. Analysis of the transmission dynamics of the polymorphism in natural populations using mother-offspring genotype comparisons suggests that the allelic frequencies of transmitted male gametes are not independent of female genotype. Specifically, the observed mating scheme in natural populations appears to be partially assortative. Comparisons of progeny genotype distributions with yearling (or adult) genotype distributions from the same populations indicate a superior post-partum viability of heterozygous individuals relative to homozygotes. The distortion of progeny genotypic distributions created by assortment is thus apparently counteracted by subsequent heterosis. PMID:640378

  6. Interactions of the LIPG 584C>T polymorphism and alcohol consumption on serum lipid levels.

    PubMed

    Liu, Wan-Ying; Yin, Rui-Xing; Zhang, Lin; Wu, Dong-Feng; Htet Aung, Lynn Htet; Hu, Xi-Jiang; Cao, Xiao-Li; Miao, Lin

    2011-11-01

    Both endothelial lipase gene (LIPG) 584C>T (rs2000813) polymorphism and alcohol consumption modulate serum lipid levels. But their interactions on serum lipid profiles are not well known. The present study was undertaken to detect the interactions of LIPG 584C>T polymorphism and alcohol consumption on serum lipid levels. Genotyping of the LIPG 584C>T was performed in 763 unrelated nondrinkers and 520 drinkers aged 15-85 years. The levels of serum total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), apolipoprotein (Apo) AI, and the ratio of ApoAI to ApoB were higher in drinkers than in nondrinkers (P<.01 for all). There were no significant differences in the genotypic and allelic frequencies between nondrinkers and drinkers. The levels of TC, HDL-C, and ApoAI in nondrinkers were different among the three genotypes (P<.05-.01), the subjects with CT genotype had higher TC, HDL-C, and ApoAI levels than the subjects with CC genotype. The levels of HDL-C and ApoAI in drinkers were different among the three genotypes (P<.001 and P<.05; respectively), the individuals with TT genotype had higher HDL-C and ApoAI levels than the individuals with CT and CC genotypes. The interactions between LIPG 584C>T genotypes and alcohol consumption on serum HDL-C (P<.01) and ApoAI levels (P<.05) were also detected by using a factorial regression analysis after controlling for potential confounders. The levels of TC in nondrinkers were correlated with LIPG 584C>T alleles (P<.05), whereas the levels of TG and HDL-C were associated with LIPG 584C>T alleles (P<.05) and genotypes (P<.05), respectively. These results suggest that the subjects with TT genotype benefit more from alcohol consumption than the subjects with CT and CC genotypes in increasing serum HDL-C and ApoAI levels. PMID:21816559

  7. In vivo ethanol elimination in man, monkey and rat: A lack of relationship between the ethanol metabolism and the hepatic activities of alcohol and aldehyde dehydrogenases

    SciTech Connect

    Zorzano, A. ); Herrera, E. )

    1990-01-01

    The in vivo ethanol elimination in human subjects, monkeys and rats was investigated after an oral ethanol dosage. After 0.4 g. ethanol/kg of body weight, ethanol elimination was much slower in human subjects than in monkeys. In order to detect a rise in monkey plasma ethanol concentrations as early as observed in human subjects, ethanol had to be administered at a dose of 3 g/kg body weight. Ethanol metabolism in rats was also much faster than in human subjects. However, human liver showed higher alcohol dehydrogenase activity and higher low Km aldehyde dehydrogenase activity than rat liver. Thus, our data suggest a lack of relationship between hepatic ethanol-metabolizing activities and the in vivo ethanol elimination rate.

  8. Association between opioid receptor mu 1 (OPRM1) gene polymorphisms and tobacco and alcohol consumption in a Spanish population

    PubMed Central

    Francés, Francesc; Portolés, Olga; Castelló, Ana; Costa, José Antonio; Verdú, Fernando

    2015-01-01

    Evidence gained from animals and humans suggests that the encephalic opioid system might be involved in the development of drug addiction through its role in reward. Our aim is to assess the influence of genetic variations in the opioid receptor mu 1 on alcohol and tobacco consumption in a Spanish population. 763 unrelated individuals (465 women, 298 men) aged 18-85 years were recruited between October 2011 and April 2012. Participants were requested to answer a 35-item questionnaire on tobacco and alcohol consumption, as well as to complete the AUDIT and Fagerström tests. Individuals were genotyped for three polymorphisms in the opioid receptor mu 1 (OPRM1) gene, using a TaqMan® protocol. In males, the rs10485057 polymorphism was associated with total pure ethanol intake and with the risk of being an alcohol consumer. Also, this polymorphism was significantly associated with higher Fagerström scores. Rs1799971 had a different influence on adaptive and maladaptive patterns of alcohol use. Despite the limited sample size, our study might enrich current knowledge on patterns of alcohol use, because it encompasses both extreme and adaptive phenotypes, providing thus a wider perspective on this subject. PMID:26042510

  9. Association between Opioid Receptor mu 1 (OPRM1) Gene Polymorphisms and Tobacco and Alcohol Consumption in a Spanish Population.

    PubMed

    Francès, Francesc; Portolés, Olga; Castelló, Ana; Costa, Jose Antonio; Verdú, Fernando

    2015-01-01

    Evidence gained from animals and humans suggests that the encephalic opioid system might be involved in the development of drug addiction through its role in reward. Our aim is to assess the influence of genetic variations in the opioid receptor mu 1 on alcohol and tobacco consumption in a Spanish population. 763 unrelated individuals (465 women, 298 men) aged 18-85 years were recruited between October 2011 and April 2012. Participants were requested to answer a 35-item questionnaire on tobacco and alcohol consumption, as well as to complete the AUDIT and Fagerström tests. Individuals were genotyped for three polymorphisms in the opioid receptor mu 1 (OPRM1) gene, using a TaqMan protocol. In males, the rs10485057 polymorphism was associated with total pure ethanol intake and with the risk of being an alcohol consumer. Also, this polymorphism was significantly associated with higher Fagerström scores. Rs1799971 had a different influence on adaptive and maladaptive patterns of alcohol use. Despite the limited sample size, our study might enrich current knowledge on patterns of alcohol use, because it encompasses both extreme and adaptive phenotypes, providing thus a wider perspective on this subject. PMID:26042510

  10. Impact of chronic low to moderate alcohol consumption on blood lipid and heart energy profile in acetaldehyde dehydrogenase 2-deficient mice

    PubMed Central

    Fan, Fan; Cao, Quan; Wang, Cong; Ma, Xin; Shen, Cheng; Liu, Xiang-wei; Bu, Li-ping; Zou, Yun-zeng; Hu, Kai; Sun, Ai-jun; Ge, Jun-bo

    2014-01-01

    Aim: To investigate the roles of acetaldehyde dehydrogenase 2 (ALDH2), the key enzyme of ethanol metabolism, in chronic low to moderate alcohol consumption-induced heart protective effects in mice. Methods: Twenty-one male wild-type (WT) or ALDH2-knockout (KO) mice were used in this study. In each genotype, 14 animals received alcohol (2.5%, 5% and 10% in week 1–3, respectively, and 18% in week 4–7), and 7 received water for 7 weeks. After the treatments, survival rate and general characteristics of the animals were evaluated. Serum ethanol and acetaldehyde levels and blood lipids were measured. Metabolomics was used to characterize the heart and serum metabolism profiles. Results: Chronic alcohol intake decreased the survival rate of KO mice by 50%, and significantly decreased their body weight, but did not affect those of WT mice. Chronic alcohol intake significantly increased the serum ethanol levels in both WT and KO mice, but KO mice had significantly higher serum acetaldehyde levels than WT mice. Chronic alcohol intake significantly increased the serum HDL cholesterol levels in WT mice, and did not change the serum HDL cholesterol levels in KO mice. After chronic alcohol intake, WT and KO mice showed differential heart and serum metabolism profiles, including the 3 main energy substrate types (lipids, glucose and amino acids) and three carboxylic acid cycles. Conclusion: Low to moderate alcohol consumption increases HDL cholesterol levels and improves heart energy metabolism profile in WT mice but not in ALDH2-KO mice. Thus, preserved ALDH2 function is essential for the protective effect of low to moderate alcohol on the cardiovascular system. PMID:24998256

  11. Association between Carotid Intima-media Thickness and Aldehyde Dehydrogenase 2 Glu504Lys Polymorphism in Chinese Han with Essential Hypertension

    PubMed Central

    Ma, Xiao-Xiang; Zheng, Shu-Zhan; Shu, Yan; Wang, Yong; Chen, Xiao-Ping

    2016-01-01

    Background: Aldehyde dehydrogenase 2 (ALDH2) is involved in the pathophysiological processes of cardiovascular diseases. Recent studies showed that mutant ALDH2 could increase oxidative stress and is a susceptible factor for hypertension. In addition, wild-type ALDH2 could improve the endothelial functions, therefore reducing the risk of developing atherosclerosis. The aim of the present study was to explore the frequency of the Glu504Lys polymorphism of the ALDH2 gene and its relation to carotid intima-media thickness (CIMT) in a group of patients with essential hypertension (EH) and to investigate the association between the Glu504Lys polymorphism and CIMT in Chinese Han patients with EH. Methods: In this study, 410 Chinese Han patients with EH who received physical examinations at the People's Hospital of Sichuan Province (China) were selected. DNA microarray chip was used for the genotyping of the Glu504Lys polymorphism of the ALDH2 gene. The differences in CIMT among patients with different Glu504Lys ALDH2 genotypes were analyzed. Results: The mean CIMT of the patients carrying AA/AG and GG genotypes was 1.02 ± 0.31 mm and 0.78 ± 0.28 mm, respectively. One-way ANOVA showed that the CIMT of the patients carrying the AA/AG genotype was significantly higher than in the ones carrying the GG genotype (P < 0.001). Multivariate logistic regression showed that the Glu504Lys AA/AG genotype of the ALDH2 gene was one of the major factors influencing the CIMT in patients with EH (odds ratio = 3.731, 95% confidence interval = 1.589–8.124, P = 0.001). Conclusions: The Glu504Lys polymorphism of the ALDH2 gene is associated with the CIMT of Chinese Han patients with EH in Sichuan, China. PMID:27270535

  12. In vitro characterization of an enzymatic redox cascade composed of an alcohol dehydrogenase, an enoate reductases and a Baeyer–Villiger monooxygenase

    PubMed Central

    Oberleitner, Nikolin; Peters, Christin; Rudroff, Florian; Bornscheuer, Uwe T.; Mihovilovic, Marko D.

    2014-01-01

    An artificial enzyme cascade composed of an alcohol dehydrogenase, an enoate reductase and a Baeyer–Villiger monooxygenase was investigated in vitro to gain deeper mechanistic insights and understand the assets and drawbacks of this multi-step biocatalysis. Several substrates composed of different structural motifs were examined and provided access to functionalized chiral compounds in high yields (up to >99%) and optical purities (up to >99%). Hence, the applicability of the presented enzymatic cascade was exploited for the synthesis of biorenewable polyesters. PMID:24746588

  13. Species-specific differences in tissue-specific expression of alcohol dehydrogenase are under the control of complex cis-acting loci: Evidence from Drosophila hybrids

    SciTech Connect

    Ranganayakulu, G.; Reddy, A.R. ); Kirkpatrick, R.B.; Martin, P.F. )

    1991-12-01

    Differences in the expression of alcohol dehydrogenase in the hindgut and testis of adult Drosophila virilis, D. texana, D. novamexicana and D. borealis flies were observed. These heritable differences do not arise due to chromosomal rearrangements, since the polytene chromosome banding patterns did not reveal any such gross chromosomal rearrangements near the Adh locus in any of the tested species. Analysis of the interspecific hybrids revealed that these differences are controlled by complex cis-acting genetic loci. Further, the cis-acting locus controlling the expression of ADH in testis was found to be separable by crossing-over.

  14. Interactions of several genetic polymorphisms and alcohol consumption on blood pressure levels.

    PubMed

    Yin, Rui-Xing; Aung, Lynn Htet Htet; Long, Xing-Jiang; Yan, Ting-Ting; Cao, Xiao-Li; Huang, Feng; Wu, Jin-Zhen; Yang, De-Zhai; Lin, Wei-Xiong; Pan, Shang-Ling

    2015-01-01

    This study aimed to detect the interactions of several single nucleotide polymorphisms (SNPs) and alcohol consumption on blood pressure levels. Genotypes of 10 SNPs in the ATP-binding cassette transporter A1 (ABCA-1), acyl-CoA:cholesterol acyltransferase-1 (ACAT-1), low density lipoprotein receptor (LDLR), hepatic lipase gene (LIPC), endothelial lipase gene (LIPG), methylenetetrahydrofolate reductase (MTHFR), the E3 ubiquitin ligase myosin regulatory light chain-interacting protein (MYLIP), proprotein convertase subtilisin-like kexin type 9 (PCSK9), peroxisome proliferator-activated receptor delta (PPARD), and Scavenger receptor class B type 1 (SCARB1) genes were determined in 616 nondrinkers and 608 drinkers. The genotypic frequencies of LDLR rs5925, LIPC rs2070895, MTHFR rs1801133, and MYLIP rs3757354 SNPs were significantly different between nondrinkers and drinkers. The levels of systolic blood pressure (ABCA-1 rs2066715 and rs2070895), diastolic blood pressure (rs2070895), and pulse pressure (PP) (rs2066715, ACAT-1 rs1044925, and rs1801133) in nondrinkers, and systolic blood pressure (rs1044925 and SCARB1 rs5888), diastolic blood pressure (rs1044925 and LIPG rs2000813), and PP (PCSK9 rs505151 and rs5888) in drinkers were different among the genotypes (P < 0.005-0.001). The interactions of several SNPs and alcohol consumption on systolic blood pressure (rs2066715, rs1044925, rs5925, rs2070895, rs1801133, rs3757354, PPARD rs2016520, and rs5888), diastolic blood pressure (rs2066715, rs1044925, rs5925, rs2000813, rs3757354, and rs2016520), and PP (rs1044925, rs2070895, rs1801133, rs3757354, rs505151, and rs5888) were observed (P < 0.005-0.001). The differences in blood pressure levels between the nondrinkers and drinkers might be partially attributed to the interactions of these SNPs and alcohol consumption. PMID:26354227

  15. Association study between reward dependence and a functional BDNF polymorphism in adult women offspring of alcohol-dependent probands.

    PubMed

    Benzerouk, Farid; Gierski, Fabien; Raucher-Chéné, Delphine; Ramoz, Nicolas; Gorwood, Philip; Kaladjian, Arthur; Limosin, Frédéric

    2015-10-01

    Thirty-five healthy adult women offspring of alcohol-dependent probands (AWOA) were compared with 63 healthy controls to test whether personality dimensions on the Temperament and Character Inventory questionnaire were associated with the brain-derived neurotrophic factor Val66Met polymorphism in offspring. We found a significantly lower reward dependence score in AWOA compared with the controls. The brain-derived neurotrophic factor Val66Met polymorphism may be involved in this difference as the lower reward dependence score was found only in AWOA carrying the Val allele. PMID:26204172

  16. Tryptophan in Alcoholism Treatment II:  Inhibition of the Rat Liver Mitochondrial Low Km Aldehyde Dehydrogenase Activity, Elevation of Blood Acetaldehyde Concentration and Induction of Aversion to Alcohol by Combined Administration of Tryptophan and Benserazide

    PubMed Central

    Badawy, Abdulla A.-B.; Bano, Samina; Steptoe, Alex

    2011-01-01

    Aims: The aims were to provide proofs of mechanism and principle by establishing the ability of the amino acid L-tryptophan (Trp) combined with the kynureninase inhibitor benserazide (BSZ) to inhibit the liver mitochondrial low Km aldehyde dehydrogenase (ALDH) activity after administration and in vivo and to induce aversion to alcohol. Methods: Trp, BSZ or both were administered to male Wistar rats and ALDH activity was determined both in vitro in liver homogenates and in vivo (by measuring acetaldehyde accumulation in blood after ethanol administration). Alcohol consumption was studied in an aversion model in rats and in alcohol-preferring C57 mice. Results: Combined administration of Trp + BSZ, but neither compound alone, produced a strong inhibition of ALDH activity and an increase in blood acetaldehyde concentration after ethanol, and induced aversion to alcohol in rats and decreased preference in mice. Another kynureninase inhibitor, carbidopa, induced aversion to alcohol by itself, which was reversed by Trp co-administration. Conclusions: The present results establish a prior art for the use of a combination of Trp plus BSZ in the treatment of alcoholism by aversion, which merits rapid clinical development. PMID:21896551

  17. CvADH1, a member of short-chain alcohol dehydrogenase family, is inducible by gibberellin and sucrose in developing watermelon seeds.

    PubMed

    Kim, Joonyul; Kang, Hong-Gyu; Jun, Sung-Hoon; Lee, Jinwon; Yim, Jieun; An, Gynheung

    2003-01-01

    To understand the molecular mechanisms that control seed formation, we selected a seed-preferential gene (CvADH1) from the ESTs of developing watermelon seeds. RNA blot analysis and in situ localization showed that CvADH1 was preferentially expressed in the nucellar tissue. The CvADH1 protein shared about 50% homology with short-chain alcohol dehydrogenase including ABA2 in Arabidopsis thaliana, stem secoisolariciresinol dehydrogenase in Forsythia intermedia, and 3beta-hydroxysterol dehydrogenase in Digitalis lanata. We investigated gene-expression levels in seeds from both normally pollinated fruits and those made parthenocarpic via N-(2-chloro-4-pyridyl)-N'-phenylurea treatment, the latter of which lack zygotic tissues. Whereas the transcripts of CvADH1 rapidly started to accumulate from about the pre-heart stage in normal seeds, they were not detectable in the parthenocarpic seeds. Treating the parthenogenic fruit with GA(3) strongly induced gene expression, up to the level accumulated in pollinated seeds. These results suggest that the CvADH1 gene is induced in maternal tissues by signals made in the zygotic tissues, and that gibberellin might be one of those signals. We also observed that CvADH1 expression was induced by sucrose in the parthenocarpic seeds. Therefore, we propose that the CvADH1 gene is inducible by gibberellin, and that sucrose plays an important role in the maternal tissues of watermelon during early seed development. PMID:12552151

  18. Development of an Alcohol Dehydrogenase Biosensor for Ethanol Determination with Toluidine Blue O Covalently Attached to a Cellulose Acetate Modified Electrode

    PubMed Central

    Alpat, Şenol; Telefoncu, Azmi

    2010-01-01

    In this work, a novel voltammetric ethanol biosensor was constructed using alcohol dehydrogenase (ADH). Firstly, alcohol dehydrogenase was immobilized on the surface of a glassy carbon electrode modified by cellulose acetate (CA) bonded to toluidine blue O (TBO). Secondly, the surface was covered by a glutaraldehyde/bovine serum albumin (BSA) cross-linking procedure to provide a new voltammetric sensor for the ethanol determination. In order to fabricate the biosensor, a new electrode matrix containing insoluble Toluidine Blue O (TBO) was obtained from the process, and enzyme/coenzyme was combined on the biosensor surface. The influence of various experimental conditions was examined for the characterization of the optimum analytical performance. The developed biosensor exhibited sensitive and selective determination of ethanol and showed a linear response between 1 × 10−5 M and 4 × 10−4 M ethanol. A detection limit calculated as three times the signal-to-noise ratio was 5.0 × 10−6 M. At the end of the 20th day, the biosensor still retained 50% of its initial activity. PMID:22315566

  19. Genetic improvement of Escherichia coli for ethanol production: Chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II

    SciTech Connect

    Ohta, Kazuyoshi; Beall, D.S.; Mejia, J.P.; Shanmugam, K.T.; Ingram, L.O. )

    1991-04-01

    Zymomonas mobilis genes for pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adhB) were integrated into the Escherichia coli chromosome within or near the pyruvate formate-lyase gene (pfl). Integration improved the stability of the Z. mobilis genes in E. coli, but further selection was required to increase expression. Spontaneous mutants were selected for resistance to high levels of chloramphenicol that also expressed high levels of the Z. mobilis genes. Analogous mutants were selected for increased expression of alcohol dehydrogenase on aldehyde indicator plates. These mutants were functionally equivalent to the previous plasmid-based strains for the fermentation of xylose and glucose to ethanol. Ethanol concentrations of 54.4 and 41.6 g/liter were obtained from 10% glucose and 8% xylose, respectively. The efficiency of conversion exceeded theoretical limits (0.51 g of ethanol/g of sugar) on the basis of added sugars because of the additional production of ethanol from the catabolism of complex nutrients. Further mutations were introduced to inactivate succinate production (frd) and to block homologous recombination (recA).

  20. Sulfur-rich zinc chemistry: new tris(thioimidazolyl)hydroborate ligands and their zinc complex chemistry related to the structure and function of alcohol dehydrogenase.

    PubMed

    Tesmer, M; Shu, M; Vahrenkamp, H

    2001-07-30

    The 1-substituted tris(2-thioimidazolyl)hydroborate ligands Tt(R) were prepared as the potassium salts from KBH(4) and the corresponding 1-R-2-thioimidazole for R = t-Bu and C(6)H(4)-p-CH(CH(3))(2) (Cum). Their reactions with zinc salts yielded the tetrahedral complexes Tt(R)Zn-X with X = F, Cl, ONO(2) and (Tt(t)()(-)(Bu))(2)Zn. With zinc perchlorate the labile perchlorate complexes Tt(R)Zn-OClO(3) were obtained. They served as starting materials for the incorporation of substrates which are relevant for the chemistry of horse liver alcohol dehydrogenase: Ethanol led to [Tt(t)()(-Bu)Zn.EtOH] ClO(4).EtOH, p-nitrophenol (NitOH) yielded Tt(Cum)Zn-ONit. Pyridine-2-carbaldehyde and salicylic aldehyde were incorporated as N(pyridine) and O(phenolate) coligands with possible additional O(aldehyde) coordination. Substituted pyridyl methanols (R-PyCH(2)OH) yielded the trinuclear complexes [(Tt(t)()(-Bu))(2)Zn(3)(R-PyCH(2)O)(2)] (ClO(4))(2) with bridging Tt and pyridylmethoxide ligands. Preliminary experiments on the functional modeling of alcohol dehydrogenase have shown that TtZn complexes promote both the dehydrogenation of 2-propanol and the hydrogenation of pentafluorobenzaldehyde. PMID:11466063

  1. Effects of polymorphisms in alcohol metabolism and oxidative stress genes on survival from head and neck cancer

    PubMed Central

    Hakenewerth, Anne M.; Millikan, Robert C.; Rusyn, Ivan; Herring, Amy H.; Weissler, Mark C.; Funkhouser, William K.; North, Kari E.; Barnholtz-Sloan, Jill S.; Olshan, Andrew F.

    2013-01-01

    Background Heavy alcohol consumption increases risk of developing squamous cell carcinoma of the head and neck (SCCHN). Alcohol metabolism to cytotoxic and mutagenic intermediates acetaldehyde and reactive oxygen species is critical for alcohol-drinking-associated carcinogenesis. We hypothesized that polymorphisms in alcohol metabolism-related and antioxidant genes influence SCCHN survival. Methods Interview and genotyping data (64 polymorphisms in 12 genes) were obtained from 1227 white and African-American cases from the Carolina Head and Neck Cancer Epidemiology study, a population-based case–control study of SCCHN conducted in North Carolina from 2002 to 2006. Vital status, date and cause of death through 2009 were obtained from the National Death Index. Kaplan–Meier log-rank tests and adjusted hazard ratios were calculated to identify alleles associated with survival. Results Most tested SNPs were not associated with survival, with the exception of the minor alleles of rs3813865 and rs8192772 in CYP2E1. These were associated with poorer cancer-specific survival (HRrs3813865, 95%CI = 2.00, 1.33–3.01; HRrs8192772, 95%CI = 1.62, 1.17–2.23). Hazard ratios for 8 additional SNPs in CYP2E1, GPx2, SOD1, and SOD2, though not statistically significant, were suggestive of differences in allele hazards for all-cause and/or cancer death. No consistent associations with survival were found for SNPs in ADH1B, ADH1C, ADH4, ADH7, ALDH2, GPx2, GPx4, and CAT. Conclusions We identified some polymorphisms in alcohol and oxidative stress metabolism genes that influence survival in subjects with SCCHN. Previously unreported associations of SNPs in CYP2E1 warrant further investigation. PMID:23632049

  2. Case–control association analysis of Dopamine receptor polymorphisms in alcohol dependence: a pilot study in Indian males

    PubMed Central

    2013-01-01

    Background Brain imaging studies and knock-out animal models have derived substantial abetment for dopamine receptor (DR) subtypes as potential candidates in susceptibility to addictive disorders, including alcohol dependence (AD). Various association studies that compared the frequencies of alleles of the dopamine D1, D2, D3 and D4 receptor genes between alcohol dependent and control subjects have produced suggestive results, though some of them are discordant in nature. In the absence of genetic data from Indian population, we evaluated genetic association of three polymorphisms namely rs4532 in DRD1, rs6280 in DRD3 and 120 bp duplication in 1.2 kb upstream region of DRD4 with AD. Methods A total of 90 cases (alcohol dependent males) and 122 age and ethnicity matched healthy male controls were recruited in the study by following DSM-IV criteria. Three polymorphisms, namely rs4532 in DRD1, rs6280 in DRD3 and 120 bp duplication in 1.2 kb upstream region of DRD4 were selected (based on minor allele frequency and available literature) for genotyping by PCR-RFLP/LP method. Allele and genotype frequencies of these genetic markers were compared using Pearson’s χ2 test followed by risk assessment using odds ratio. Statistical analysis of clinical parameters such as AUDIT scores of case subjects was also performed. Results Statistically significant associations of polymorphisms in DRD1 and DRD4 with alcoholism were found. Conclusions Our results underscore that genetic variations in dopamine receptors D1 and D4 may influence genetic predisposition to alcoholism. Unavailability of comparative data from Indian population and small sample size necessitate replication of results in an independent cohort. PMID:24135011

  3. The TTTAn aromatase (CYP19A1) polymorphism is associated with compulsive craving of male patients during alcohol withdrawal.

    PubMed

    Lenz, Bernd; Heberlein, Annemarie; Bayerlein, Kristina; Frieling, Helge; Kornhuber, Johannes; Bleich, Stefan; Hillemacher, Thomas

    2011-09-01

    Alcoholism is associated with alterations of the hypothalamus-pituitary-gonadal hormone axis. We recently reported a leptin-mediated relation between the CAGn polymorphism of the androgen receptor and craving during alcohol withdrawal. This study investigated whether the TTTAn polymorphism of the aromatase (CYP19A1) is equally linked to craving. An association between TTTAn and compulsive craving (p=0.029) was revealed in our sample of 118 male alcohol addicts at day of hospital admission. Genotype-dependent subgroups showed differences in that the patients with short alleles suffered from lower compulsive craving during withdrawal than those with the longer alleles (p=0.027). The additional inclusion of leptin revealed no further significant association in the present study. Our finding is a further step on the way to elucidate the genesis of craving for alcohol with its extensive underlying interactions of different genetic and non-genetic factors. Future investigations should enrol women and consider sex hormone levels for further clarification of the observed TTTAn-craving relationship. PMID:21414724

  4. Family-based and case-control association studies of glutamate receptor GRIK3 Ser310Ala polymorphism in Polish patients and families with alcohol dependence.

    PubMed

    Samochowiec, Jerzy; Grzywacz, Anna; Kucharska-Mazur, Jolanta; Samochowiec, Agnieszka; Horodnicki, Jan; Pelka-Wysiecka, Justyna; Syrek, Szymon

    2006-03-27

    The aim of this study was to evaluate the role of the GRIK3 functional polymorphism (Ser310Ala) in the pathogenesis of alcoholism. This polymorphism was investigated in two types of studies: (1) the association study in a whole group of alcoholics (116 patients fulfilling ICD-10 alcohol dependence (AD) criteria and 255 controls, Polish descent) and homogenous overlapping subgroups of patients with: a history of delirium tremens and/or alcohol seizures, early age of onset of alcoholism (AOO<26 years), a co-occurrence of dissocial personality disorder, a history of familial alcoholism; (2) the family-based study (using Transmission Disequilibrium Test (TDT) in 100 Polish families with alcohol dependence). The history of alcoholism was obtained using SSAGA (Polish version). GRIK3 functional polymorphism was determined using PCR. TDT revealed an adequate transmission of both alleles to the affected offspring in the whole group of alcohol families (29 x Ser, 24 x Ala; chi2=0.472; d.f.=1; p=0.492) and in the homogenous subgroups of families. No significant associations between any of the above mentioned alcohol phenotypes and Ser310 allele were observed (the whole AD group: p=0.66 AD with delirium and/or seizures: p=0.521; early onset AD: p=0.868; AD with familial history of alcoholism: p=0.798 and AD with dissocial personality disorder: p=0.618). These findings do not seem to support the hypothesis of the role of this polymorphism in the pathogenesis of alcoholism. PMID:16356644

  5. Nonsense mutations in the alcohol dehydrogenase gene of Drosophila melanogaster correlate with an abnormal 3' end processing of the corresponding pre-mRNA.

    PubMed Central

    Brogna, S

    1999-01-01

    From bacteria to mammals, mutations that generate premature termination codons have been shown to result in the reduction in the abundance of the corresponding mRNA. In mammalian cells, more often than not, the reduction happens while the RNA is still associated with the nucleus. Here, it is reported that mutations in the alcohol dehydrogenase gene (Adh) of Drosophila melanogaster that generate premature termination codons lead to reduced levels of cytoplasmic and nuclear mRNA. Unexpectedly, it has been found that the poly(A) tails of Adh mRNAs and pre-mRNAs that carry a premature termination codon are longer than in the wild-type transcript. The more 5' terminal the mutation is, the longer is the poly(A) tail of the transcript. These findings suggest that the integrity of the coding region may be required for accurate mRNA 3' end processing. PMID:10199572

  6. Inhibition of gastric alcohol dehydrogenase activity by histamine H2-receptor antagonists has no influence on the pharmacokinetics of ethanol after a moderate dose.

    PubMed Central

    Mallat, A; Roudot-Thoraval, F; Bergmann, J F; Trout, H; Simonneau, G; Dutreuil, C; Blanc, L E; Dhumeaux, D; Delchier, J C

    1994-01-01

    Ethanol undergoes gastric first pass metabolism by alcohol dehydrogenase (ADH). We have shown that cimetidine and famotidine both cause competitive inhibition of human gastric ADH in vitro. However, in a randomized 4-way cross-over study in 12 healthy subjects a 7-day course of treatment with cimetidine (800 mg day-1), ranitidine (300 mg day-1) or famotidine (40 mg day-1), did not modify the pharmacokinetics of ethanol given as a post-prandial 0.3 g kg-1 dose. We conclude that gastric mucosal concentrations of histamine H2-receptor blockers achieved after oral dosing are probably too low to cause significant inhibition of gastric ADH in vivo. PMID:7910473

  7. Structural Studies of Cinnamoyl-CoA Reductase and Cinnamyl-Alcohol Dehydrogenase, Key Enzymes of Monolignol Biosynthesis[C][W

    PubMed Central

    Pan, Haiyun; Zhou, Rui; Louie, Gordon V.; Mühlemann, Joëlle K.; Bomati, Erin K.; Bowman, Marianne E.; Dudareva, Natalia; Dixon, Richard A.; Noel, Joseph P.; Wang, Xiaoqiang

    2014-01-01

    The enzymes cinnamoyl-CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) catalyze the two key reduction reactions in the conversion of cinnamic acid derivatives into monolignol building blocks for lignin polymers in plant cell walls. Here, we describe detailed functional and structural analyses of CCRs from Medicago truncatula and Petunia hybrida and of an atypical CAD (CAD2) from M. truncatula. These enzymes are closely related members of the short-chain dehydrogenase/reductase (SDR) superfamily. Our structural studies support a reaction mechanism involving a canonical SDR catalytic triad in both CCR and CAD2 and an important role for an auxiliary cysteine unique to CCR. Site-directed mutants of CAD2 (Phe226Ala and Tyr136Phe) that enlarge the phenolic binding site result in a 4- to 10-fold increase in activity with sinapaldehyde, which in comparison to the smaller coumaraldehyde and coniferaldehyde substrates is disfavored by wild-type CAD2. This finding demonstrates the potential exploitation of rationally engineered forms of CCR and CAD2 for the targeted modification of monolignol composition in transgenic plants. Thermal denaturation measurements and structural comparisons of various liganded and unliganded forms of CCR and CAD2 highlight substantial conformational flexibility of these SDR enzymes, which plays an important role in the establishment of catalytically productive complexes of the enzymes with their NADPH and phenolic substrates. PMID:25217505

  8. Alcohol

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Alcohol KidsHealth > For Teens > Alcohol Print A A A ... you can make an educated choice. What Is Alcohol? Alcohol is created when grains, fruits, or vegetables ...

  9. Environmental Stresses of Field Growth Allow Cinnamyl Alcohol Dehydrogenase-Deficient Nicotiana attenuata Plants to Compensate for their Structural Deficiencies1[C][W][OA

    PubMed Central

    Kaur, Harleen; Shaker, Kamel; Heinzel, Nicolas; Ralph, John; Gális, Ivan; Baldwin, Ian T.

    2012-01-01

    The organized lignocellulosic assemblies of cell walls provide the structural integrity required for the large statures of terrestrial plants. Silencing two CINNAMYL ALCOHOL DEHYDROGENASE (CAD) genes in Nicotiana attenuata produced plants (ir-CAD) with thin, red-pigmented stems, low CAD and sinapyl alcohol dehydrogenase activity, low lignin contents, and rubbery, structurally unstable stems when grown in the glasshouse (GH). However, when planted into their native desert habitat, ir-CAD plants produced robust stems that survived wind storms as well as the wild-type plants. Despite efficient silencing of NaCAD transcripts and enzymatic activity, field-grown ir-CAD plants had delayed and restricted spread of red stem pigmentation, a color change reflecting blocked lignification by CAD silencing, and attained wild-type-comparable total lignin contents. The rubbery GH phenotype was largely restored when field-grown ir-CAD plants were protected from wind, herbivore attack, and ultraviolet B exposure and grown in restricted rooting volumes; conversely, it was lost when ir-CAD plants were experimentally exposed to wind, ultraviolet B, and grown in large pots in growth chambers. Transcript and liquid chromatography-electrospray ionization-time-of-flight analysis revealed that these environmental stresses enhanced the accumulation of various phenylpropanoids in stems of field-grown plants; gas chromatography-mass spectrometry and nuclear magnetic resonance analysis revealed that the lignin of field-grown ir-CAD plants had GH-grown comparable levels of sinapaldehyde and syringaldehyde cross-linked into their lignins. Additionally, field-grown ir-CAD plants had short, thick stems with normal xylem element traits, which collectively enabled field-grown ir-CAD plants to compensate for the structural deficiencies associated with CAD silencing. Environmental stresses play an essential role in regulating lignin biosynthesis in lignin-deficient plants. PMID:22645069

  10. Characterization of the Saccharomyces cerevisiae YMR318C (ADH6) gene product as a broad specificity NADPH-dependent alcohol dehydrogenase: relevance in aldehyde reduction.

    PubMed Central

    Larroy, Carol; Fernández, M Rosario; González, Eva; Parés, Xavier; Biosca, Josep A

    2002-01-01

    YMR318C represents an open reading frame from Saccharomyces cerevisiae with unknown function. It possesses a conserved sequence motif, the zinc-containing alcohol dehydrogenase (ADH) signature, specific to the medium-chain zinc-containing ADHs. In the present study, the YMR318C gene product has been purified to homogeneity from overexpressing yeast cells, and found to be a homodimeric ADH, composed of 40 kDa subunits and with a pI of 5.0-5.4. The enzyme was strictly specific for NADPH and was active with a wide variety of substrates, including aliphatic (linear and branched-chain) and aromatic primary alcohols and aldehydes. Aldehydes were processed with a 50-fold higher catalytic efficiency than that for the corresponding alcohols. The highest k(cat)/K(m) values were found with pentanal>veratraldehyde > hexanal > 3-methylbutanal >cinnamaldehyde. Taking into consideration the substrate specificity and sequence characteristics of the YMR318C gene product, we have proposed this gene to be called ADH6. The disruption of ADH6 was not lethal for the yeast under laboratory conditions. Although S. cerevisiae is considered a non lignin-degrading organism, the catalytic activity of ADHVI can direct veratraldehyde and anisaldehyde, arising from the oxidation of lignocellulose by fungal lignin peroxidases, to the lignin biodegradation pathway. ADHVI is the only S. cerevisiae enzyme able to significantly reduce veratraldehyde in vivo, and its overexpression allowed yeast to grow under toxic concentrations of this aldehyde. The enzyme may also be involved in the synthesis of fusel alcohols. To our knowledge this is the first NADPH-dependent medium-chain ADH to be characterized in S. cerevisiae. PMID:11742541

  11. Eukaryotic aldehyde dehydrogenase (ALDH) genes: human polymorphisms, and recommended nomenclature based on divergent evolution and chromosomal mapping.

    PubMed

    Vasiliou, V; Bairoch, A; Tipton, K F; Nebert, D W

    1999-08-01

    As currently being performed with an increasing number of superfamilies, a standardized gene nomenclature system is proposed here, based on divergent evolution, using multiple alignment analysis of all 86 eukaryotic aldehyde dehydrogenase (ALDH) amino-acid sequences known at this time. The ALDHs represent a superfamily of NAD(P)(+)-dependent enzymes having similar primary structures that oxidize a wide spectrum of endogenous and exogenous aliphatic and aromatic aldehydes. To date, a total of 54 animal, 15 plant, 14 yeast, and three fungal ALDH genes or cDNAs have been sequenced. These ALDHs can be divided into a total of 18 families (comprising 37 subfamilies), and all nonhuman ALDH genes are named here after the established human ALDH genes, when possible. An ALDH protein from one gene family is defined as having approximately < or = 40% amino-acid identity to that from another family. Two members of the same subfamily exhibit approximately > or = 60% amino-acid identity and are expected to be located at the same subchromosomal site. For naming each gene, it is proposed that the root symbol 'ALDH' denoting 'aldehyde dehydrogenase' be followed by an Arabic number representing the family and, when needed, a letter designating the subfamily and an Arabic number denoting the individual gene within the subfamily; all letters are capitalized in all mammals except mouse and fruit fly, e.g. 'human ALDH3A1 (mouse, Drosophila Aldh3a1).' It is suggested that the Human Gene Nomenclature Guidelines (http://++www.gene.ucl.ac.uk/nomenclature/guidelines.h tml) be used for all species other than mouse and Drosophila. Following these guidelines, the gene is italicized, whereas the corresponding cDNA, mRNA, protein or enzyme activity is written with upper-case letters and without italics, e.g. 'human, mouse or Drosophila ALDH3A1 cDNA, mRNA, or activity'. If an orthologous gene between species cannot be identified with certainty, sequential naming of these genes will be carried out

  12. MicroRNAs and Drinking: Association between the Pre-miR-27a rs895819 Polymorphism and Alcohol Consumption in a Mediterranean Population

    PubMed Central

    Barragán, Rocío; Coltell, Oscar; Asensio, Eva M.; Francés, Francesc; Sorlí, José V.; Estruch, Ramon; Salas-Huetos, Albert; Ordovas, Jose M.; Corella, Dolores

    2016-01-01

    Recently, microRNAs (miRNA) have been proposed as regulators in the different processes involved in alcohol intake, and differences have been found in the miRNA expression profile in alcoholics. However, no study has focused on analyzing polymorphisms in genes encoding miRNAs and daily alcohol consumption at the population level. Our aim was to investigate the association between a functional polymorphism in the pre-miR-27a (rs895819 A>G) gene and alcohol consumption in an elderly population. We undertook a cross-sectional study of PREvención con DIeta MEDiterránea (PREDIMED)-Valencia participants (n = 1007, including men and women aged 67 ± 7 years) and measured their alcohol consumption (total and alcoholic beverages) through a validated questionnaire. We found a strong association between the pre-miR-27a polymorphism and total alcohol intake, this being higher in GG subjects (5.2 ± 0.4 in AA, 5.9 ± 0.5 in AG and 9.1 ± 1.8 g/day in GG; padjusted = 0.019). We also found a statistically-significant association of the pre-miR-27a polymorphism with the risk of having a high alcohol intake (>2 drinks/day in men and >1 in women): 5.9% in AA versus 17.5% in GG; padjusted < 0.001. In the sensitivity analysis, this association was homogeneous for sex, obesity and Mediterranean diet adherence. In conclusion, we report for the first time a significant association between a miRNA polymorphism (rs895819) and daily alcohol consumption. PMID:27537871

  13. MicroRNAs and Drinking: Association between the Pre-miR-27a rs895819 Polymorphism and Alcohol Consumption in a Mediterranean Population.

    PubMed

    Barragán, Rocío; Coltell, Oscar; Asensio, Eva M; Francés, Francesc; Sorlí, José V; Estruch, Ramon; Salas-Huetos, Albert; Ordovas, Jose M; Corella, Dolores

    2016-01-01

    Recently, microRNAs (miRNA) have been proposed as regulators in the different processes involved in alcohol intake, and differences have been found in the miRNA expression profile in alcoholics. However, no study has focused on analyzing polymorphisms in genes encoding miRNAs and daily alcohol consumption at the population level. Our aim was to investigate the association between a functional polymorphism in the pre-miR-27a (rs895819 A>G) gene and alcohol consumption in an elderly population. We undertook a cross-sectional study of PREvención con DIeta MEDiterránea (PREDIMED)-Valencia participants (n = 1007, including men and women aged 67 ± 7 years) and measured their alcohol consumption (total and alcoholic beverages) through a validated questionnaire. We found a strong association between the pre-miR-27a polymorphism and total alcohol intake, this being higher in GG subjects (5.2 ± 0.4 in AA, 5.9 ± 0.5 in AG and 9.1 ± 1.8 g/day in GG; padjusted = 0.019). We also found a statistically-significant association of the pre-miR-27a polymorphism with the risk of having a high alcohol intake (>2 drinks/day in men and >1 in women): 5.9% in AA versus 17.5% in GG; padjusted < 0.001. In the sensitivity analysis, this association was homogeneous for sex, obesity and Mediterranean diet adherence. In conclusion, we report for the first time a significant association between a miRNA polymorphism (rs895819) and daily alcohol consumption. PMID:27537871

  14. GABA Receptors Genes Polymorphisms and Alcohol Dependence: No Evidence of an Association in an Italian Male Population

    PubMed Central

    Tucci, Marianna; Di Pietra, Laura; Ferrara, Santo Davide

    2014-01-01

    Objective The genes encoding for gamma-aminobutyric acid (GABA) A and B receptors may be considered as candidates for alcoholism; genetic alterations at this level may produce structural and functional diversity and thus play a role in the response to alcohol addiction treatment. To investigate these aspects further, we conducted a preliminary genetic association study on a population of Italian male alcohol addicts, focusing on GABA A and B receptors. Methods A total of 186 alcohol-dependent subjects (in the first phase 139, then 47 more samples) and 182 controls were genotyped for 25 single nucleotide polymorphisms (SNPs) of genes encoding the alpha-1 subunit of GABA A receptor (GABRA1) and subunits 1 and 2 of GABA B receptor (GABBR1 and GABBR2). The chi-squared test for allele and genotype distributions and Hardy-Weinberg equilibrium analysis of both subjects and controls were performed. Bonferroni's correction for multiple comparisons was applied. Results Preliminary results comparing 139 alcohol-dependent subjects and 182 controls showed differences in genotype distribution in the former for SNP rs29253, located in the intron region of the GABBR1 gene. In order to clarify the meaning of this association, 47 more samples from alcohol-dependent subjects were tested for this SNP only: the previously found association was not confirmed. Conclusion The lack of significant differences between the two groups does not provide evidence that GABRA 1 and GABBR1 and 2 genes are candidates for alcoholism in this population. Further studies with larger samples are needed, together with investigation of other components of the GABA pathway. PMID:25191505

  15. I86A/C295A mutant secondary alcohol dehydrogenase from Thermoanaerobacter ethanolicus has broadened substrate specificity for aryl ketones.

    PubMed

    Nealon, Christopher M; Welsh, Travis P; Kim, Chang Sup; Phillips, Robert S

    2016-09-15

    Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase (SADH) reduces aliphatic ketones according to Prelog's Rule, with binding pockets for small and large substituents. It was shown previously that the I86A mutant SADH reduces acetophenone, which is not a substrate of wild-type SADH, to give the anti-Prelog R-product (Musa, M. M.; Lott, N.; Laivenieks, M.; Watanabe, L.; Vieille, C.; Phillips, R. S. ChemCatChem2009, 1, 89-93.). However, I86A SADH did not reduce aryl ketones with substituents larger than fluorine. We have now expanded the small pocket of the active site of I86A SADH by mutation of Cys-295 to alanine to allow reaction of substituted acetophenones. As predicted, the double mutant I86A/C295A SADH has broadened substrate specificity for meta-substituted, but not para-substituted, acetophenones. However, the increase of the substrate specificity of I86A/C295A SADH is accompanied by a decrease in the kcat/Km values of acetophenones, possibly due to the substrates fitting loosely inside the more open active site. Nevertheless, I86A/C295A SADH gives high conversions and very high enantiomeric excess of the anti-Prelog R-alcohols from the tested substrates. PMID:27495738

  16. Reliability of a flushing questionnaire and the ethanol patch test in screening for inactive aldehyde dehydrogenase-2 and alcohol-related cancer risk.

    PubMed

    Yokoyama, A; Muramatsu, T; Ohmori, T; Kumagai, Y; Higuchi, S; Ishii, H

    1997-12-01

    Molecular epidemiology of esophageal and upper aerodigestive tract cancers revealed that alcohol is more carcinogenic in persons with inactive aldehyde dehydrogenase-2 (ALDH2) than in those with active ALDH2. A simple questionnaire has been developed to screen for the facial flushing that occurs in persons with inactive ALDH2 when they drink even a single glass of beer. In this study, 266 of 284 consecutive male Japanese clinic patients (age > or = 50 years) completed the flushing questionnaire, and 239 underwent the ethanol patch test (a cutaneous model for the flushing response). Blinded genotyping showed inactive ALDH2 for 94.4% (102 of 108) of subjects who reported always flushing (early in their drinking history or currently) and for 47.7% (21 of 44) of those who reported sometimes flushing, whereas 95.6% (109 of 114) of subjects reporting that they never exhibited facial flushing had active ALDH2. When all three categories of flushing (current always, former always, and sometimes) were collapsed into one, the questionnaire's sensitivity and specificity for identifying inactive ALDH2 were 96.1 and 79.0%, respectively, compared with 72.4 and 71.4% for the ethanol patch test. The results suggest the utility of this simple flushing questionnaire in daily practice, as well as large-scale studies to assess cancer risks associated with drinking and ALDH2 and for activities aimed at preventing alcohol-related cancer. PMID:9419411

  17. Loss of function of cinnamyl alcohol dehydrogenase 1 leads to unconventional lignin and a temperature-sensitive growth defect in Medicago truncatula.

    PubMed

    Zhao, Qiao; Tobimatsu, Yuki; Zhou, Rui; Pattathil, Sivakumar; Gallego-Giraldo, Lina; Fu, Chunxiang; Jackson, Lisa A; Hahn, Michael G; Kim, Hoon; Chen, Fang; Ralph, John; Dixon, Richard A

    2013-08-13

    There is considerable debate over the capacity of the cell wall polymer lignin to incorporate unnatural monomer units. We have identified Tnt1 retrotransposon insertion mutants of barrel medic (Medicago truncatula) that show reduced lignin autofluorescence under UV microscopy and red coloration in interfascicular fibers. The phenotype is caused by insertion of retrotransposons into a gene annotated as encoding cinnamyl alcohol dehydrogenase, here designated M. truncatula CAD1. NMR analysis indicated that the lignin is derived almost exclusively from coniferaldehyde and sinapaldehyde and is therefore strikingly different from classical lignins, which are derived mainly from coniferyl and sinapyl alcohols. Despite such a major alteration in lignin structure, the plants appear normal under standard conditions in the greenhouse or growth chamber. However, the plants are dwarfed when grown at 30 °C. Glycome profiling revealed an increased extractability of some xylan and pectin epitopes from the cell walls of the cad1-1 mutant but decreased extractability of others, suggesting that aldehyde-dominant lignin significantly alters cell wall structure. PMID:23901113

  18. Loss of function of cinnamyl alcohol dehydrogenase 1 leads to unconventional lignin and a temperature-sensitive growth defect in Medicago truncatula

    PubMed Central

    Zhao, Qiao; Tobimatsu, Yuki; Zhou, Rui; Pattathil, Sivakumar; Gallego-Giraldo, Lina; Fu, Chunxiang; Jackson, Lisa A.; Hahn, Michael G.; Kim, Hoon; Chen, Fang; Ralph, John; Dixon, Richard A.

    2013-01-01

    There is considerable debate over the capacity of the cell wall polymer lignin to incorporate unnatural monomer units. We have identified Tnt1 retrotransposon insertion mutants of barrel medic (Medicago truncatula) that show reduced lignin autofluorescence under UV microscopy and red coloration in interfascicular fibers. The phenotype is caused by insertion of retrotransposons into a gene annotated as encoding cinnamyl alcohol dehydrogenase, here designated M. truncatula CAD1. NMR analysis indicated that the lignin is derived almost exclusively from coniferaldehyde and sinapaldehyde and is therefore strikingly different from classical lignins, which are derived mainly from coniferyl and sinapyl alcohols. Despite such a major alteration in lignin structure, the plants appear normal under standard conditions in the greenhouse or growth chamber. However, the plants are dwarfed when grown at 30 °C. Glycome profiling revealed an increased extractability of some xylan and pectin epitopes from the cell walls of the cad1-1 mutant but decreased extractability of others, suggesting that aldehyde-dominant lignin significantly alters cell wall structure. PMID:23901113

  19. Degradation of Swainsonine by the NADP-Dependent Alcohol Dehydrogenase A1R6C3 in Arthrobacter sp. HW08

    PubMed Central

    Wang, Yan; Zhai, A’guan; Zhang, Yanqi; Qiu, Kai; Wang, Jianhua; Li, Qinfan

    2016-01-01

    Swainsonine is an indolizidine alkaloid that has been found in locoweeds and some fungi. Our previous study demonstrated that Arthrobacter sp. HW08 or its crude enzyme extract could degrade swainsonie efficiently. However, the mechanism of swainsonine degradation in bacteria remains unclear. In this study, we used label-free quantitative proteomics method based on liquid chromatography-electrospray ionization-tandem mass spectrometry to dissect the mechanism of swainsonine biodegradation by Arthrobacter sp. HW08. The results showed that 129 differentially expressed proteins were relevant to swainsonine degradation. These differentially expressed proteins were mostly related to the biological process of metabolism and the molecular function of catalytic activity. Among the 129 differentially expressed proteins, putative sugar phosphate isomerase/epimerase A1R5X7, Acetyl-CoA acetyltransferase A0JZ95, and nicotinamide adenine dinucleotide phosphate (NADP)-dependent alcohol dehydrogenase A1R6C3 were found to contribute to the swainsonine degradation. Notably, NADP-dependent alcohol dehyrodgenase A1R6C3 appeared to play a major role in degrading swainsonine, but not as much as Arthrobacter sp. HW08 did. Collectively, our findings here provide insights to understand the mechanism of swainsonine degradation in bacteria. PMID:27196926

  20. Ethanol metabolism, oxidative stress, and endoplasmic reticulum stress responses in the lungs of hepatic alcohol dehydrogenase deficient deer mice after chronic ethanol feeding

    SciTech Connect

    Kaphalia, Lata; Boroumand, Nahal; Hyunsu, Ju; Kaphalia, Bhupendra S.; Calhoun, William J.

    2014-06-01

    Consumption and over-consumption of alcoholic beverages are well-recognized contributors to a variety of pulmonary disorders, even in the absence of intoxication. The mechanisms by which alcohol (ethanol) may produce disease include oxidative stress and prolonged endoplasmic reticulum (ER) stress. Many aspects of these processes remain incompletely understood due to a lack of a suitable animal model. Chronic alcohol over-consumption reduces hepatic alcohol dehydrogenase (ADH), the principal canonical metabolic pathway of ethanol oxidation. We therefore modeled this situation using hepatic ADH-deficient deer mice fed 3.5% ethanol daily for 3 months. Blood ethanol concentration was 180 mg% in ethanol fed mice, compared to < 1.0% in the controls. Acetaldehyde (oxidative metabolite of ethanol) was minimally, but significantly increased in ethanol-fed vs. pair-fed control mice. Total fatty acid ethyl esters (FAEEs, nonoxidative metabolites of ethanol) were 47.6 μg/g in the lungs of ethanol-fed mice as compared to 1.5 μg/g in pair-fed controls. Histological and immunohistological evaluation showed perivascular and peribronchiolar lymphocytic infiltration, and significant oxidative injury, in the lungs of ethanol-fed mice compared to pair-fed controls. Several fold increases for cytochrome P450 2E1, caspase 8 and caspase 3 found in the lungs of ethanol-fed mice as compared to pair-fed controls suggest role of oxidative stress in ethanol-induced lung injury. ER stress and unfolded protein response signaling were also significantly increased in the lungs of ethanol-fed mice. Surprisingly, no significant activation of inositol-requiring enzyme-1α and spliced XBP1 was observed indicating a lack of activation of corrective mechanisms to reinstate ER homeostasis. The data suggest that oxidative stress and prolonged ER stress, coupled with formation and accumulation of cytotoxic FAEEs may contribute to the pathogenesis of alcoholic lung disease. - Highlights: • Chronic

  1. Polymorphism of the pig 17beta-hydroxysteroid dehydrogenase type1 (HSD17B1) gene and its association with reproductive traits.

    PubMed

    Liu, L Q; Li, F E; Deng, C Y; Zuo, B; Zheng, R; Xiong, Y Z

    2009-08-01

    17beta-Hydroxysteroid dehydrogenase type 1 (HSD17B1) is a key enzyme of 17beta-estradiol biosynthesis, which might play an important role in follicular development of the ovary. In this study, we isolated the complete coding sequence of porcine HSD17B1 gene and its unique intron sequences of porcine HSD17B1 gene, identified a single nucleotide polymorphism (SNP: A/C) in intron 4, and developed a PCR-MvaI-RFLP genotyping assay. Association of the SNP and litter size was assessed in two populations (purebred Large White and a experimental synthetic Line (DIV) sows). Statistical analysis demonstrated that, in the first parity, AC animals in experimental synthetic Line (DIV) sows had 0.52 more piglets born compared to the CC animals (P<0.05). In the all parities, pigs with the AA genotype had an additional 1.11 and 0.96 piglets born alive compared to the CC animals (P<0.05) in both experimental synthetic Line (DIV) and purebred Large White, respectively. Experimental synthetic Line (DIV) sows inheriting the AC genotype had additional 0.84 piglets born alive compared to the CC animals (P<0.01) in all parities. In addition, significant additive effect of -0.55+/-0.24 piglets/litter and -0.48+/-0.22 piglets/litter on piglet born alive was detected in both experimental synthetic Line (DIV) sows and purebred Large White lines (P<0.05), respectively. Therefore, HSD17B1 gene was significantly associated with litter size in two populations and could be a useful molecular marker in selection for increasing litter size in pigs. PMID:18945563

  2. Structural modeling and in silico analysis of non-synonymous single nucleotide polymorphisms of human 3β-hydroxysteroid dehydrogenase type 2

    PubMed Central

    Goswami, Achintya Mohan

    2015-01-01

    Single-nucleotide polymorphisms (SNPs), a most common type of genetic mutations, result from single base pair alterations. Non-synonymous SNPs (nsSNP) occur in the coding regions of a gene and result in single amino acid substitution which might have the potential to affect the function as well as structure of the corresponding protein. In human the 3β-hydroxysteroid dehydrogenases/Δ4,5-isomerase type 2 (HSD3B2) is an important membrane-bound enzyme involved in the dehydrogenation and Δ4,5-isomerization of the Δ5-steroid precursors into their respective Δ4-ketosteroids in the biosynthesis of steroid hormones such as glucocorticoids, mineralocorticoids, progesterone, androgens, and estrogens in tissues such as adrenal gland, ovary, and testis. Most of the nsSNPs of HSD3B2 are still uncharacterized in terms of their disease causing potential. So, this study has been undertaken to explore and extend the knowledge related to the effect of nsSNPs on the stability and function of the HSD3B2. In this study sixteen nsSNP of HSD3B2 were subjected to in silico analysis using nine different algorithms: SIFT, PROVEAN, PolyPhen, MutPred, SNPeffect, nsSNP Analyzer, PhD SNP, stSNP, and I Mutant 2.0. The results obtained from the analysis revealed that the prioritization of diseases associated amino acid substitution as evident from possible alteration in structure–function relationship. Structural phylogenetic analysis using ConSurf revealed that the functional residues are highly conserved in human HSD3B2; and most of the disease associated nsSNPs are within these conserved residues. Structural theoritical models of HSD3B2 were created using HHPred, Phyre2 and RaptorX server. The predicted models were evaluated to get the best one for structural understanding of amino acid substitutions in three dimensional spaces. PMID:26288759

  3. Size and sequence polymorphism in the isocitrate dehydrogenase kinase/phosphatase gene (aceK) and flanking regions in Salmonella enterica and Escherichia coli.

    PubMed

    Nelson, K; Wang, F S; Boyd, E F; Selander, R K

    1997-12-01

    The sequence of aceK, which codes for the regulatory catalytic enzyme isocitrate dehydrogenase kinase/phosphatase (IDH K/P), and sequences of the 5' flanking region and part or all of the 3' flanking region were determined for 32 strains of Salmonella enterica and Escherichia coli. In E. coli, the aceK gene was 1734 bp long in 13 strains, but in three strains it was 12 bp shorter and the stop codon was TAA rather than TGA. Strains with the shorter aceK lacked an open reading frame (f728) downstream between aceK and iclR that was present, in variable length, in the other strains. Among the 72 ECOR strains, the truncated aceK gene was present in all isolates of the B2 group and half of those of the D group. Other variant conditions included the presence of IS1 elements in two strains and large deletions in two strains. The aceK-aceA intergenic region varied in length from 48 to 280 bp in E. coli, depending largely on the number of repetitive extragenic palindromic (REP) sequences present. Among the ECOR strains, the number of REP elements showed a high degree of phylogenetic association, and sequencing of the region in the ECOR strains permitted partial reconstruction of its evolutionary history. In S. entica, the normal length of aceK was 1752 bp, but three other length variants, ranging from 1746 to 1785 bp, were represented in five of the 16 strains examined. The flanking intergenic regions showed relatively minor variation in length and sequence. The occurrence of several nonrandom patterns of distribution of polymorphic synonymous nucleotide sites indicated that intragenic recombination of horizontally exchanged DNA has contributed to the generation of allelic diversity at the aceK locus in both species. PMID:9409817

  4. Alcohol

    MedlinePlus

    ... Text Size: A A A Listen En Español Alcohol Wondering if alcohol is off limits with diabetes? Most people with diabetes can have a moderate amount of alcohol. Research has shown that there can be some ...

  5. Alcohol

    MedlinePlus

    If you are like many Americans, you drink alcohol at least occasionally. For many people, moderate drinking ... risky. Heavy drinking can lead to alcoholism and alcohol abuse, as well as injuries, liver disease, heart ...

  6. Application of nicotin amide-adenine dinucleotide analogs for clinical enzymology: alcohol dehydrogenase activity in liver injury.

    PubMed

    Fujisawa, K; Kimura, A; Minato, S; Tamaoki, H; Mizushima, H

    1976-06-01

    The activities of alcohol dehydrogease(ADH) in serum and in the subcellular fractions of rat liver were determined with n-amyl alcohol or ethanol as substrate and thionicotinamide-adenine dinucleotide as coenzyme. It was found that the enzyme's activity ratio on the amyl alcohol and ethanol(A/E value) of serum and on the particulate fractions of the liver were different, but the A/E value of the soluble fraction was similar to that of serum. The A/E value of the particulate fractions were higher than that of the soluble fraction. From the results of experimental liver damage in the rat, it seems that estimation of the A/E value of ADH activity in serum is a useful parameter for the diagnosis of active liver injury. Since the A/E values of patients' sera differed from those of the normal subjects, the estimation of the A/E value of serum may give diagnostic information on liver injury, especially in chronic liver injury. PMID:179739

  7. Alcohol

    MedlinePlus

    ... Got Homework? Here's Help White House Lunch Recipes Alcohol KidsHealth > For Kids > Alcohol Print A A A Text Size What's in ... What Is Alcoholism? Say No en español El alcohol Getting the Right Message "Hey, who wants a ...

  8. Effect of organic solvents on the activity and stability of halophilic alcohol dehydrogenase (ADH2) from Haloferax volcanii.

    PubMed

    Alsafadi, Diya; Paradisi, Francesca

    2013-01-01

    The effect of various organic solvents on the catalytic activity, stability and substrate specificity of alchohol dehydrogenase from Haloferax volcanii (HvADH2) was evaluated. The HvADH2 showed remarkable stability and catalysed the reaction in aqueous-organic medium containing dimethyl sulfoxide (DMSO) and methanol (MeOH). Tetrahydrofuran and acetonitrile were also investigated and adversely affected the stability of the enzyme. High concentration of salt, essential to maintain the enzymatic activity and structural integrity of the halophilic enzyme under standard conditions may be partially replaced by DMSO and MeOH. The presence of organic solvents did not induce gross changes in substrate specificity. DMSO offered a protective effect for the stability of the enzyme at nonoptimal pHs such as 6 and 10. Salt and solvent effects on the HvADH2 conformation and folding were examined through fluorescence spectroscopy. The fluorescence findings were consistent with the activity and stability results and corroborated the denaturing properties of some solvents. The intrinsic tolerance of this enzyme to organic solvent makes it highly attractive to industry. PMID:23179592

  9. 2-Butanol and butanone production in Saccharomyces cerevisiae through combination of a B12 dependent dehydratase and a secondary alcohol dehydrogenase using a TEV-based expression system.

    PubMed

    Ghiaci, Payam; Norbeck, Joakim; Larsson, Christer

    2014-01-01

    2-Butanol and its chemical precursor butanone (methyl ethyl ketone--MEK) are chemicals with potential uses as biofuels and biocommodity chemicals. In order to produce 2-butanol, we have demonstrated the utility of using a TEV-protease based expression system to achieve equimolar expression of the individual subunits of the two protein complexes involved in the B12-dependent dehydratase step (from the pdu-operon of Lactobacillus reuteri), which catalyze the conversion of meso-2,3-butanediol to butanone. We have furthermore identified a NADH dependent secondary alcohol dehydrogenase (Sadh from Gordonia sp.) able to catalyze the subsequent conversion of butanone to 2-butanol. A final concentration of 4±0.2 mg/L 2-butanol and 2±0.1 mg/L of butanone was found. A key factor for the production of 2-butanol was the availability of NADH, which was achieved by growing cells lacking the GPD1 and GPD2 isogenes under anaerobic conditions. PMID:25054226

  10. Manipulation of Guaiacyl and Syringyl Monomer Biosynthesis in an Arabidopsis Cinnamyl Alcohol Dehydrogenase Mutant Results in Atypical Lignin Biosynthesis and Modified Cell Wall Structure.

    PubMed

    Anderson, Nickolas A; Tobimatsu, Yuki; Ciesielski, Peter N; Ximenes, Eduardo; Ralph, John; Donohoe, Bryon S; Ladisch, Michael; Chapple, Clint

    2015-08-01

    Modifying lignin composition and structure is a key strategy to increase plant cell wall digestibility for biofuel production. Disruption of the genes encoding both cinnamyl alcohol dehydrogenases (CADs), including CADC and CADD, in Arabidopsis thaliana results in the atypical incorporation of hydroxycinnamaldehydes into lignin. Another strategy to change lignin composition is downregulation or overexpression of ferulate 5-hydroxylase (F5H), which results in lignins enriched in guaiacyl or syringyl units, respectively. Here, we combined these approaches to generate plants enriched in coniferaldehyde-derived lignin units or lignins derived primarily from sinapaldehyde. The cadc cadd and ferulic acid hydroxylase1 (fah1) cadc cadd plants are similar in growth to wild-type plants even though their lignin compositions are drastically altered. In contrast, disruption of CAD in the F5H-overexpressing background results in dwarfism. The dwarfed phenotype observed in these plants does not appear to be related to collapsed xylem, a hallmark of many other lignin-deficient dwarf mutants. cadc cadd, fah1 cadc cadd, and cadd F5H-overexpressing plants have increased enzyme-catalyzed cell wall digestibility. Given that these CAD-deficient plants have similar total lignin contents and only differ in the amounts of hydroxycinnamaldehyde monomer incorporation, these results suggest that hydroxycinnamaldehyde content is a more important determinant of digestibility than lignin content. PMID:26265762

  11. Metabolism of trans, trans-muconaldehyde, a cytotoxic metabolite of benzene, in mouse liver by alcohol dehydrogenase Adh1 and aldehyde reductase AKR1A4

    SciTech Connect

    Short, Duncan M.; Lyon, Robert; Watson, David G.; Barski, Oleg A.; McGarvie, Gail; Ellis, Elizabeth M. . E-mail: Elizabeth.ellis@strath.ac.uk

    2006-01-15

    The reductive metabolism of trans, trans-muconaldehyde, a cytotoxic metabolite of benzene, was studied in mouse liver. Using an HPLC-based stopped assay, the primary reduced metabolite was identified as 6-hydroxy-trans, trans-2,4-hexadienal (OH/CHO) and the secondary metabolite as 1,6-dihydroxy-trans, trans-2,4-hexadiene (OH/OH). The main enzymes responsible for the highest levels of reductase activity towards trans, trans-muconaldehyde were purified from mouse liver soluble fraction first by Q-sepharose chromatography followed by either blue or red dye affinity chromatography. In mouse liver, trans, trans-muconaldehyde is predominantly reduced by an NADH-dependent enzyme, which was identified as alcohol dehydrogenase (Adh1). Kinetic constants obtained for trans, trans-muconaldehyde with the native Adh1 enzyme showed a V {sub max} of 2141 {+-} 500 nmol/min/mg and a K {sub m} of 11 {+-} 4 {mu}M. This enzyme was inhibited by pyrazole with a K {sub I} of 3.1 {+-} 0.57 {mu}M. Other fractions were found to contain muconaldehyde reductase activity independent of Adh1, and one enzyme was identified as the NADPH-dependent aldehyde reductase AKR1A4. This showed a V {sub max} of 115 nmol/min/mg and a K {sub m} of 15 {+-} 2 {mu}M and was not inhibited by pyrazole.

  12. Characterization of two novel alcohol short-chain dehydrogenases/reductases from Ralstonia eutropha H16 capable of stereoselective conversion of bulky substrates.

    PubMed

    Magomedova, Zalina; Grecu, Andreea; Sensen, Christoph W; Schwab, Helmut; Heidinger, Petra

    2016-03-10

    Biocatalysis has significant advantages over organic synthesis in the field of chiral molecule production and several types of stereoselective enzymes are already in use in industrial biotechnology. However, there is still a high demand for new enzymes capable of transforming bulky molecules with sufficient operability. In order to reveal novel high-potential biocatalysts, the complete genome of the β-proteobacterium Ralstonia eutropha H16 was screened for potential short-chain dehydrogenases/reductases (SDRs). We were able to identify two (S)-enantioselective SDRs named A5 and B3. These showed clear preference towards long-chain and aromatic secondary alcohols, aldehydes and ketones, with diaryl diketone benzil as one of the best substrates. In addition the phylogenetic analysis of all enzyme types, which are known to facilitate benzil reduction, revealed at least two separate evolutionary clusters. Our results indicate the biotechnological potential of SDRs A5 and B3 for the production of chiral compounds with potential commercial value. PMID:26812656

  13. 2-Butanol and Butanone Production in Saccharomyces cerevisiae through Combination of a B12 Dependent Dehydratase and a Secondary Alcohol Dehydrogenase Using a TEV-Based Expression System

    PubMed Central

    Ghiaci, Payam; Norbeck, Joakim; Larsson, Christer

    2014-01-01

    2-Butanol and its chemical precursor butanone (methyl ethyl ketone – MEK) are chemicals with potential uses as biofuels and biocommodity chemicals. In order to produce 2-butanol, we have demonstrated the utility of using a TEV-protease based expression system to achieve equimolar expression of the individual subunits of the two protein complexes involved in the B12-dependent dehydratase step (from the pdu-operon of Lactobacillus reuterii), which catalyze the conversion of meso-2,3-butanediol to butanone. We have furthermore identified a NADH dependent secondary alcohol dehydrogenase (Sadh from Gordonia sp.) able to catalyze the subsequent conversion of butanone to 2-butanol. A final concentration of 4±0.2 mg/L 2-butanol and 2±0.1 mg/L of butanone was found. A key factor for the production of 2-butanol was the availability of NADH, which was achieved by growing cells lacking the GPD1 and GPD2 isogenes under anaerobic conditions. PMID:25054226

  14. The intrinsic topological information of the wild-type and of up-promoter mutations of the Saccharomyces cerevisiae alcohol dehydrogenase II regulatory region.

    PubMed

    Della Seta, F; Camilloni, G; Venditti, S; Di Mauro, E

    1988-11-01

    A 569-base pair fragment encompassing the upstream regulatory region, the RNA initiation sites, and the initial part of the coding region of the Saccharomyces cerevisiae alcohol dehydrogenase II gene has been analyzed for the presence of sites which undergo conformational modification under torsional stress. Fine mapping of P1 and S1 endonuclease-sensitive sites was obtained on single topoisomers produced by in vitro ligation. It was shown that the upstream activator sequence, the TATA sequence, a region directly upstream to the RNA initiation sites, and several positions in the first segment of the transcribed region change conformation as a function of the applied torsional stress in a precisely coordinate fashion. The superhelical density optima for this coordinate modifications have been determined. Analysis of the conformational changes of the promoter sequence in several naturally occurring (Young, E. T., Williamson, V. M., Taguchi, A., Smith, M., Sledziewski, L., Russel, D., Osterman, J., Denis, C., Cox, D., and Beier, D., (1982) in Genetic Engineering of Microorganisms for Chemicals (Hollander, A., De Moss, R. D., Kaplan, S., Konisky, J., Savage, D., and Wolle, R. S., eds) pp. 335-361, Plenum Publishing Corp., New York) up-promoter constitutive mutants was performed. This analysis has shown that the conformation of functionally relevant sites changes as a function of sequence mutations that have taken place elsewhere; this shows that the conformational behavior of the whole promoter region is linked and suggests transmission in cis of topological effects in RNA polymerase II promoters. PMID:3053683

  15. Manipulation of Guaiacyl and Syringyl Monomer Biosynthesis in an Arabidopsis Cinnamyl Alcohol Dehydrogenase Mutant Results in Atypical Lignin Biosynthesis and Modified Cell Wall Structure

    PubMed Central

    Anderson, Nickolas A.; Tobimatsu, Yuki; Ciesielski, Peter N.; Ximenes, Eduardo; Ralph, John; Donohoe, Bryon S.; Ladisch, Michael; Chapple, Clint

    2015-01-01

    Modifying lignin composition and structure is a key strategy to increase plant cell wall digestibility for biofuel production. Disruption of the genes encoding both cinnamyl alcohol dehydrogenases (CADs), including CADC and CADD, in Arabidopsis thaliana results in the atypical incorporation of hydroxycinnamaldehydes into lignin. Another strategy to change lignin composition is downregulation or overexpression of ferulate 5-hydroxylase (F5H), which results in lignins enriched in guaiacyl or syringyl units, respectively. Here, we combined these approaches to generate plants enriched in coniferaldehyde-derived lignin units or lignins derived primarily from sinapaldehyde. The cadc cadd and ferulic acid hydroxylase1 (fah1) cadc cadd plants are similar in growth to wild-type plants even though their lignin compositions are drastically altered. In contrast, disruption of CAD in the F5H-overexpressing background results in dwarfism. The dwarfed phenotype observed in these plants does not appear to be related to collapsed xylem, a hallmark of many other lignin-deficient dwarf mutants. cadc cadd, fah1 cadc cadd, and cadd F5H-overexpressing plants have increased enzyme-catalyzed cell wall digestibility. Given that these CAD-deficient plants have similar total lignin contents and only differ in the amounts of hydroxycinnamaldehyde monomer incorporation, these results suggest that hydroxycinnamaldehyde content is a more important determinant of digestibility than lignin content. PMID:26265762

  16. A novel electrochemiluminescence ethanol biosensor based on tris(2,2'-bipyridine) ruthenium (II) and alcohol dehydrogenase immobilized in graphene/bovine serum albumin composite film.

    PubMed

    Gao, Wenhua; Chen, Yunsheng; Xi, Jing; Lin, Shaoyu; Chen, Yaowen; Lin, Yuejuan; Chen, Zhanguang

    2013-03-15

    We developed a novel electrochemiluminescence (ECL) ethanol biosensor based on Ru(bpy)(3)(2+) and alcohol dehydrogenase (ADH) immobilized by graphene/bovine serum albumin composite film. The graphene film was directly formed on a glassy carbon electrode surface via an in situ reduction of graphene oxide (GO) and Ru(bpy)(3)(2+) was immobilized during its formation. The graphene film acted as both a decorating agent for immobilization of Ru(bpy)(3)(2+) and a matrix to immobilize bovine serum albumin (BSA), meanwhile BSA not only acted as a reductant to reduce GO, but also provided a friendly environment for ADH immobilization. Furthermore, ADH was separated from Ru(bpy)(3)(2+) by the electron-conductive graphene/BSA composite film to retain its enzymatic activity. The experimental results indicated that the biosensor had excellent electrochemical activity, ECL response to ethanol and stability. Such a design of Ru(bpy)(3)(2+)-graphene/BSA film to modify electrode holds a great promise as a new biocompatible platform for the development of enzyme-based ECL biosensors. PMID:23122751

  17. Expression of a heat-stable NADPH-dependent alcohol dehydrogenase in Caldicellulosiruptor bescii results in furan aldehyde detoxification

    SciTech Connect

    Chung, Daehwan; Verbeke, Tobin J.; Cross, Karissa L.; Westpheling, Janet; Elkins, James G.

    2015-07-22

    Compounds such as furfural and 5-hydroxymethylfurfural (5-HMF) are generated through the dehydration of xylose and glucose, respectively, during dilute-acid pretreatment of lignocellulosic biomass and are also potent microbial growth and fermentation inhibitors. The enzymatic reduction of these furan aldehydes to their corresponding, and less toxic, alcohols is an engineering approach that has been successfully implemented in both Saccharomyces cerevisiae and ethanologenicEscherichia coli, but has not yet been investigated in thermophiles relevant to biofuel production through consolidated bioprocessing (CBP). Developing CBP-relevant biocatalysts that are either naturally resistant to such inhibitors, or are amenable to engineered resistance, is therefore, an important component in making biofuels production from lignocellulosic biomass feasible.

  18. Expression of a heat-stable NADPH-dependent alcohol dehydrogenase in Caldicellulosiruptor bescii results in furan aldehyde detoxification

    DOE PAGESBeta

    Chung, Daehwan; Verbeke, Tobin J.; Cross, Karissa L.; Westpheling, Janet; Elkins, James G.

    2015-07-22

    Compounds such as furfural and 5-hydroxymethylfurfural (5-HMF) are generated through the dehydration of xylose and glucose, respectively, during dilute-acid pretreatment of lignocellulosic biomass and are also potent microbial growth and fermentation inhibitors. The enzymatic reduction of these furan aldehydes to their corresponding, and less toxic, alcohols is an engineering approach that has been successfully implemented in both Saccharomyces cerevisiae and ethanologenicEscherichia coli, but has not yet been investigated in thermophiles relevant to biofuel production through consolidated bioprocessing (CBP). Developing CBP-relevant biocatalysts that are either naturally resistant to such inhibitors, or are amenable to engineered resistance, is therefore, an important componentmore » in making biofuels production from lignocellulosic biomass feasible.« less

  19. Val158Met COMT polymorphism and risk of aggression in alcohol dependence.

    PubMed

    Soyka, Michael; Zill, Peter; Koller, Gabi; Samochowiec, Agnieszka; Grzywacz, Anna; Preuss, Ulrich W

    2015-01-01

    Aggression, violence and antisocial behavior are common in alcoholism, but their biological basis is poorly understood. Several studies and recent meta-analyses indicate that in schizophrenia the catecholamine-O-methyltransferase (COMT) Val158Met genotype may be associated with aggression, most often in methionine allele carriers. We tested this hypothesis in a sample of treatment-seeking alcohol-dependent in-patients (293 German patients and 499 controls, and additional 190 Polish patients as replication sample). As expected, patients with a history of violent or non-violent crime were more often male, had an earlier onset of alcoholism and more withdrawal seizures and delirium tremens, and were more likely to have a history of suicide attempts. COMT genotype was not associated with a history of violent or non-violent crime. More studies are needed on the neurobiological basis of aggression and violence in alcoholism. PMID:24118473

  20. Genetic susceptibility factors for alcohol-induced chronic pancreatitis.

    PubMed

    Aghdassi, Ali A; Weiss, F Ulrich; Mayerle, Julia; Lerch, Markus M; Simon, Peter

    2015-07-01

    Chronic pancreatitis is a progressive inflammatory disease of the pancreas and frequently associated with immoderate alcohol consumption. Since only a small proportion of alcoholics eventually develop chronic pancreatitis genetic susceptibility factors have long been suspected to contribute to the pathogenesis of the disease. Smaller studies in ethnically defined populations have found that not only polymorphism in proteins involved in the metabolism of ethanol, such as Alcohol Dehydrogenase and Aldehyde Dehydrogenase, can confer a risk for developing chronic pancreatitis but also mutations that had previously been reported in association with idiopathic pancreatitis, such as SPINK1 mutations. In a much broader approach employing genome wide search strategies the NAPS study found that polymorphisms in the Trypsin locus (PRSS1 rs10273639), and the Claudin 2 locus (CLDN2-RIPPLY1-MORC4 locus rs7057398 and rs12688220) confer an increased risk of developing alcohol-induced pancreatitis. These results from North America have now been confirmed by a European consortium. In another genome wide approach polymorphisms in the genes encoding Fucosyltransferase 2 (FUT2) non-secretor status and blood group B were not only found in association with higher serum lipase levels in healthy volunteers but also to more than double the risk for developing alcohol-associated chronic pancreatitis. These novel genetic associations will allow to investigate the pathophysiological and biochemical basis of alcohol-induced chronic pancreatitis on a cellular level and in much more detail than previously possible. PMID:26149858

  1. Alcohol

    MedlinePlus

    ... as well as injuries, liver disease, heart disease, cancer, and other health problems. It can also cause problems at home, at work, and with friends. NIH: National Institute on Alcohol Abuse and Alcoholism

  2. Cofactor Specificity of the Bifunctional Alcohol and Aldehyde Dehydrogenase (AdhE) in Wild-Type and Mutant Clostridium thermocellum and Thermoanaerobacterium saccharolyticum

    PubMed Central

    Zheng, Tianyong; Olson, Daniel G.; Tian, Liang; Bomble, Yannick J.; Himmel, Michael E.; Lo, Jonathan; Hon, Shuen; Shaw, A. Joe; van Dijken, Johannes P.

    2015-01-01

    ABSTRACT Clostridium thermocellum and Thermoanaerobacterium saccharolyticum are thermophilic bacteria that have been engineered to produce ethanol from the cellulose and hemicellulose fractions of biomass, respectively. Although engineered strains of T. saccharolyticum produce ethanol with a yield of 90% of the theoretical maximum, engineered strains of C. thermocellum produce ethanol at lower yields (∼50% of the theoretical maximum). In the course of engineering these strains, a number of mutations have been discovered in their adhE genes, which encode both alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) enzymes. To understand the effects of these mutations, the adhE genes from six strains of C. thermocellum and T. saccharolyticum were cloned and expressed in Escherichia coli, the enzymes produced were purified by affinity chromatography, and enzyme activity was measured. In wild-type strains of both organisms, NADH was the preferred cofactor for both ALDH and ADH activities. In high-ethanol-producing (ethanologen) strains of T. saccharolyticum, both ALDH and ADH activities showed increased NADPH-linked activity. Interestingly, the AdhE protein of the ethanologenic strain of C. thermocellum has acquired high NADPH-linked ADH activity while maintaining NADH-linked ALDH and ADH activities at wild-type levels. When single amino acid mutations in AdhE that caused increased NADPH-linked ADH activity were introduced into C. thermocellum and T. saccharolyticum, ethanol production increased in both organisms. Structural analysis of the wild-type and mutant AdhE proteins was performed to provide explanations for the cofactor specificity change on a molecular level. IMPORTANCE This work describes the characterization of the AdhE enzyme from different strains of C. thermocellum and T. saccharolyticum. C. thermocellum and T. saccharolyticum are thermophilic anaerobes that have been engineered to make high yields of ethanol and can solubilize components of

  3. Alcoholism.

    ERIC Educational Resources Information Center

    Caliguri, Joseph P., Ed.

    This extensive annotated bibliography provides a compilation of documents retreived from a computerized search of the ERIC, Social Science Citation Index, and Med-Line databases on the topic of alcoholism. The materials address the following areas of concern: (1) attitudes toward alcohol users and abusers; (2) characteristics of alcoholics and…

  4. Assessment of the frequency of the transforming growth factor beta-1 sequence polymorphisms in patients with alcohol dependence syndrome.

    PubMed

    Augustyńska, Beata; Araszkiewicz, Aleksander; Woźniak, Marcin; Grzybowski, Tomasz; Skonieczna, Katarzyna; Woźniak, Alina; Żyła, Magdalena

    2015-01-01

    Alcohol abuse is one of the most significant factors in the development of liver fibrosis. The pathomechanism of liver fibrosis is the same regardless of its etiology. Fibrosis is a sign of an imbalance between the synthesis of the extracellular matrix components and their degradation. Among the many cytokines that affect hepatic stellate cell activation it seems that transforming growth factor beta (TGF-β) is the most significant, either as the direct factor stimulating polymerase chain reaction (HSC) proliferation and transformation into myofibroblasts, or as the direct factor causing an increase in the activity of genes responsible for the synthesis of extracellular matrix components. The aim of the study was to reveal possible dependencies and differences between the presence of certain alleles of the TGF-β1 gene and its blood level in the study and control group. Blood samples were obtained from 39 patients, the control group consisted of 21 patients. The results obtained in the course of this study showed no statistically significant differences between the frequencies of particular polymorphisms. In the case of haplotype frequencies, insignificant differences were found for the algorithm Excoffier-Laval-Balding predicted haplotypes while one significant difference between the study and control groups was detected in case of the TC haplotype frequency predicted using the Expectation-Maximization algorithm. However, the difference in frequency of TC haplotype predicted by both algorithms was not significant. Genetic analysis of two single nucleotide polymorphisms (SNPs) in exon I of the TGF-β1 gene did not show significant differences between the occurrence of particular polymorphisms and haplotypes in the populations under study. PMID:25710054

  5. The Role of Interleukin-6 and Interleukin-8 Gene Polymorphisms in Non-Alcoholic Steatohepatitis

    PubMed Central

    Cengiz, Mustafa; Yasar, Demet Gokalp; Ergun, Mehmet Ali; Akyol, Gulen; Ozenirler, Seren

    2014-01-01

    Background: Genetic polymorphisms may play role in the pathophysiology of nonalcoholic steatohepatitis (NASH). Objectives: We purposed to assess the role of interleukin 6 (IL 6) and interleukin 8 (IL 8) gene polymorphisms in the pathogenesis of NASH. Patients and Methods: Consecutive patients with biopsy proven NASH and age- and gender-matched healthy individuals with normal liver function tests and normal ultrasonography were enrolled in the study. Histopathological findings were recorded according to nonalcoholic fatty liver disease activity score (NAS). Patients were classified according to fibrosis scores as fibrosis score < 2 (mild fibrosis group) and fibrosis score ≥ 2 (significant fibrosis group). Blood samples were collected and genomic DNA isolation kit was used to evaluate genetic polymorphisms. Results: Of thirty-eight patients, 27 (71%) were in mild fibrosis group and 11 (29%) in significant fibrosis group. Thirty-eight age- and gender-matched healthy controls were enrolled in the study. The frequencies of genotypes G/C and G/G of IL 6 among the NASH group and healthy controls were 39.5% and 60.5% vs. 53.6% and 46.4%, respectively (P = 0.32). The frequencies of the genotypes of IL 8 among the NASH group were 47.2%, 44.6%, and 8.2% for T/T, A/T, and A/A, and in healthy controls were 50%, 28.6% and 21.4%, respectively, (P = 0.568). The differences between IL 8 gene T/A and T/T genotypes were not significant statistically (P > 0.05). However, the frequency of A/A genotype in significant fibrosis group was higher than the mild fibrosis group (P = 0.0016). The differences of -251 A/T polymorphism in the IL 8 and -174 C/G polymorphism in the IL 6 were not statistically significant between fibrosis groups (P > 0.05). Conclusions: IL6 and IL8 gene polymorphisms have no role in NASH pathogenesis and liver fibrosis process, but presence of the A/A genotype in the IL8 gene is associated with disease progression. PMID:25737730

  6. MTHFR C677T polymorphism interaction with heavy alcohol consumption increases head and neck carcinoma risk.

    PubMed

    Zhuo, Xianlu; Song, Jue; Li, Dairong; Wu, Yongzhong; Zhou, Qi

    2015-01-01

    MTHFR C677T polymorphism has been indicated to be a risk factor for cancers, but its association with head and neck cancer (HNC) risk remains inconclusive. In the present study, we aimed to get a more precise estimation by performing a quantitative meta-analysis. Published papers up to Jun 2014 was searched and screened. Necessary information was rigorously extracted for data pooling and analyzing, and then, subgroup analyses on ethnicity, source of controls, sample size, tumor type, smoking and drinking status were also carried out. As a result, twenty-three case-control studies including 14298 subjects were included. The overall data failed to reveal a significant association between MTHFR C677T polymorphism and HNC risk (homozygote comparison model: OR = 1.16; 95%CI = 0.93-1.45; dominant model: OR = 1.05; 95%CI =  .90-1.21; recessive model: OR = 1.14; 95%CI = 0.93-1.38). However, in the subgroup analysis about drinking status, increase risk was shown in the heavy drinking subgroup (TT vs CC: OR = 3.11; 95%CI = 1.52-3.02). In conclusion, the results of the present study suggest that Homozygous TT alleles of MTHFR C677T polymorphism might be a risk factor for HNC among individuals who have a heavy drinking history. Further studies are needed to get a more definitive conclusion. PMID:26035704

  7. MTHFR C677T polymorphism interaction with heavy alcohol consumption increases head and neck carcinoma risk

    PubMed Central

    Zhuo, Xianlu; Song, Jue; Li, Dairong; Wu, Yongzhong; Zhou, Qi

    2015-01-01

    MTHFR C677T polymorphism has been indicated to be a risk factor for cancers, but its association with head and neck cancer (HNC) risk remains inconclusive. In the present study, we aimed to get a more precise estimation by performing a quantitative meta-analysis. Published papers up to Jun 2014 was searched and screened. Necessary information was rigorously extracted for data pooling and analyzing, and then, subgroup analyses on ethnicity, source of controls, sample size, tumor type, smoking and drinking status were also carried out. As a result, twenty-three case-control studies including 14298 subjects were included. The overall data failed to reveal a significant association between MTHFR C677T polymorphism and HNC risk (homozygote comparison model: OR = 1.16; 95%CI = 0.93-1.45; dominant model: OR = 1.05; 95%CI = 0.90-1.21; recessive model: OR = 1.14; 95%CI = 0.93-1.38). However, in the subgroup analysis about drinking status, increase risk was shown in the heavy drinking subgroup (TT vs CC: OR = 3.11; 95%CI = 1.52-3.02). In conclusion, the results of the present study suggest that Homozygous TT alleles of MTHFR C677T polymorphism might be a risk factor for HNC among individuals who have a heavy drinking history. Further studies are needed to get a more definitive conclusion. PMID:26035704

  8. Genetic association of the ApoB and ApoA1 gene polymorphisms with the risk for alcohol-induced osteonecrosis of femoral head

    PubMed Central

    Wang, Yuan; Cao, Yuju; Li, Yizhou; Guo, Yongchang; Wang, Quanjian; Yang, Min; Zhang, Ning; Jin, Tianbo; Wang, Jianzhong

    2015-01-01

    Polymorphisms of apolipoprotein B (ApoB), apolipoprotein A1 (ApoA1) gene and ApoB/ApoA1 Ratio were associated with lipid metabolism disorders in previous reports. The aim of this study assess whether variation of ApoB, ApoA1 gene are associated or not with alcohol-induced osteonecrosis of femoral head (ONFH). In a case-control study, we genotyped 4 single-nucleotide polymorphisms (SNPs) in ApoB and ApoA1 genes in 209 alcohol-induced ONFH patients and 300 healthy control subjects in Han Chinese population using χ2 test and genetic model analysis. The analysis revealed that the frequencies of ApoB and ApoA1 genotypes were significantly different in alcohol-induced ONFH patients than in controls. We identified rs1042034, rs676210 and rs673548 in ApoB gene were associated with decreased risk of alcohol-induced ONFH using recessive model analysis (odds ratio [OR], 0.44; 95% confidence interval [CI], 0.19-0.99; P = 0.042), the OR, CI, P value of three SNPs were the same after adjusted for gender + age. We also identified rs632153 in ApoA1 gene was associated with increased risk of alcohol-induced ONFH using allele model (OR, 1.83; 95% CI, 1.16-2.88; P = 0.008) and log-additive model (adjusted OR, 1.77; 95% CI, 1.00-3.14; P = 0.046), analysis respectively. Haplotype analysis demonstrated no difference between ApoB and alcohol-induced ONFH. Polymorphisms of the ApoB and ApoA1 gene are associated with alcohol-induced ONFH in the Han Chinese population. PMID:26617857

  9. Alcohol Dehydrogenase Protects against Endoplasmic Reticulum Stress-Induced Myocardial Contractile Dysfunction via Attenuation of Oxidative Stress and Autophagy: Role of PTEN-Akt-mTOR Signaling

    PubMed Central

    Pang, Jiaojiao; Fuller, Nathan D.; Hu, Nan; Barton, Linzi A.; Henion, Jeremy M.; Guo, Rui; Chen, Yuguo; Ren, Jun

    2016-01-01

    Background The endoplasmic reticulum (ER) plays an essential role in ensuring proper folding of the newly synthesized proteins. Aberrant ER homeostasis triggers ER stress and development of cardiovascular diseases. ADH is involved in catalyzing ethanol to acetaldehyde although its role in cardiovascular diseases other than ethanol metabolism still remains elusive. This study was designed to examine the impact of ADH on ER stress-induced cardiac anomalies and underlying mechanisms involved using cardiac-specific overexpression of alcohol dehydrogenase (ADH). Methods ADH and wild-type FVB mice were subjected to the ER stress inducer tunicamycin (1 mg/kg, i.p., for 48 hrs). Myocardial mechanical and intracellular Ca2+ properties, ER stress, autophagy and associated cell signaling molecules were evaluated. Results ER stress compromised cardiac contractile function (evidenced as reduced fractional shortening, peak shortening, maximal velocity of shortening/relengthening, prolonged relengthening duration and impaired intracellular Ca2+ homeostasis), oxidative stress and upregulated autophagy (increased LC3B, Atg5, Atg7 and p62), along with dephosphorylation of PTEN, Akt and mTOR, all of which were attenuated by ADH. In vitro study revealed that ER stress-induced cardiomyocyte anomaly was abrogated by ADH overexpression or autophagy inhibition using 3-MA. Interestingly, the beneficial effect of ADH was obliterated by autophagy induction, inhibition of Akt and mTOR. ER stress also promoted phosphorylation of the stress signaling ERK and JNK, the effect of which was unaffected by ADH transgene. Conclusions Taken together, these findings suggested that ADH protects against ER stress-induced cardiac anomalies possibly via attenuation of oxidative stress and PTEN/Akt/mTOR pathway-regulated autophagy. PMID:26807981

  10. Cinnamyl alcohol dehydrogenases in the mesocarp of ripening fruit of Prunus persica genotypes with different flesh characteristics: changes in activity and protein and transcript levels.

    PubMed

    Gabotti, Damiano; Negrini, Noemi; Morgutti, Silvia; Nocito, Fabio F; Cocucci, Maurizio

    2015-07-01

    Development of fruit flesh texture quality traits may involve the metabolism of phenolic compounds. This study presents molecular and biochemical results on the possible role played by cinnamyl alcohol dehydrogenase (CAD; EC 1.1.1.195) during ripening [S3, S4 I (pre-climacteric) and S4 III (climacteric) stages] of peach [Prunus persica (L.) Batsch] fruit with different flesh firmness [non-melting flesh (NMF) 'Oro A'/melting flesh (MF) 'Springcrest' and 'Sanguinella'] and color (blood-flesh Sanguinella). A total of 24 putative full-length PRUPE_CAD genes were identified (in silico analysis) in the peach genome. The most abundant CAD isoforms, encoded by genes located on scaffolds 8 and 6, were probed by specifically developed anti-PRUPE_CAD sc8 and by anti-FaCAD (PRUPE_CAD sc6) polyclonal antibodies, respectively. PRUPE_CAD sc8 proteins (SDS-PAGE and native-PAGE/western blot) appeared responsible for the CAD activity (in vitro/in-gel assays) that increased with ripening (parallel to PRUPE_ACO1 transcripts accumulation and ethylene evolution) only in the mesocarp of Oro A and blood-flesh Sanguinella. Accumulation of PRUPE_CAD sc8 transcripts (semi-quantitative RT-PCR) occurred in all three cultivars, but in Oro A and Springcrest it was not always accompanied by that of the related proteins, suggesting possible post-transcriptional regulation. Flesh firmness, as well as levels of lignin, total phenolics and, where present (Sanguinella), anthocyanins, declined with ripening, suggesting that, at least in the studied peach cultivars, CAD activity is related to neither lignification nor differences in flesh firmness (NMF/MF). Further studies are necessary to clarify whether the high levels of CAD activity/expression in Sanguinella play a role in determining the characteristics of this blood-flesh fruit. PMID:25534876

  11. A Nonsense Mutation in a Cinnamyl Alcohol Dehydrogenase Gene Is Responsible for the Sorghum brown midrib6 Phenotype1[W][OA

    PubMed Central

    Sattler, Scott E.; Saathoff, Aaron J.; Haas, Eric J.; Palmer, Nathan A.; Funnell-Harris, Deanna L.; Sarath, Gautam; Pedersen, Jeffrey F.

    2009-01-01

    brown midrib6 (bmr6) affects phenylpropanoid metabolism, resulting in reduced lignin concentrations and altered lignin composition in sorghum (Sorghum bicolor). Recently, bmr6 plants were shown to have limited cinnamyl alcohol dehydrogenase activity (CAD; EC 1.1.1.195), the enzyme that catalyzes the conversion of hydroxycinnamoyl aldehydes (monolignals) to monolignols. A candidate gene approach was taken to identify Bmr6. Two CAD genes (Sb02g024190 and Sb04g005950) were identified in the sorghum genome based on similarity to known CAD genes and through DNA sequencing a nonsense mutation was discovered in Sb04g005950 that results in a truncated protein lacking the NADPH-binding and C-terminal catalytic domains. Immunoblotting confirmed that the Bmr6 protein was absent in protein extracts from bmr6 plants. Phylogenetic analysis indicated that Bmr6 is a member of an evolutionarily conserved group of CAD proteins, which function in lignin biosynthesis. In addition, Bmr6 is distinct from the other CAD-like proteins in sorghum, including SbCAD4 (Sb02g024190). Although both Bmr6 and SbCAD4 are expressed in sorghum internodes, an examination of enzymatic activity of recombinant Bmr6 and SbCAD4 showed that Bmr6 had 1 to 2 orders of magnitude greater activity for monolignol substrates. Modeling of Bmr6 and SbCAD4 protein structures showed differences in the amino acid composition of the active site that could explain the difference in enzyme activity. These differences include His-57, which is unique to Bmr6 and other grass CADs. In summary, Bmr6 encodes the major CAD protein involved in lignin synthesis in sorghum, and the bmr6 mutant is a null allele. PMID:19363091

  12. Engineering of xylose reductase and overexpression of xylitol dehydrogenase and xylulokinase improves xylose alcoholic fermentation in the thermotolerant yeast Hansenula polymorpha

    PubMed Central

    Dmytruk, Olena V; Dmytruk, Kostyantyn V; Abbas, Charles A; Voronovsky, Andriy Y; Sibirny, Andriy A

    2008-01-01

    Background The thermotolerant methylotrophic yeast Hansenula polymorpha is capable of alcoholic fermentation of xylose at elevated temperatures (45 – 48°C). Such property of this yeast defines it as a good candidate for the development of an efficient process for simultaneous saccharification and fermentation. However, to be economically viable, the main characteristics of xylose fermentation of H. polymorpha have to be improved. Results Site-specific mutagenesis of H. polymorpha XYL1 gene encoding xylose reductase was carried out to decrease affinity of this enzyme toward NADPH. The modified version of XYL1 gene under control of the strong constitutive HpGAP promoter was overexpressed on a Δxyl1 background. This resulted in significant increase in the KM for NADPH in the mutated xylose reductase (K341 → R N343 → D), while KM for NADH remained nearly unchanged. The recombinant H. polymorpha strain overexpressing the mutated enzyme together with native xylitol dehydrogenase and xylulokinase on Δxyl1 background was constructed. Xylose consumption, ethanol and xylitol production by the constructed strain were determined for high-temperature xylose fermentation at 48°C. A significant increase in ethanol productivity (up to 7.3 times) was shown in this recombinant strain as compared with the wild type strain. Moreover, the xylitol production by the recombinant strain was reduced considerably to 0.9 mg × (L × h)-1 as compared to 4.2 mg × (L × h)-1 for the wild type strain. Conclusion Recombinant strains of H. polymorpha engineered for improved xylose utilization are described in the present work. These strains show a significant increase in ethanol productivity with simultaneous reduction in the production of xylitol during high-temperature xylose fermentation. PMID:18651968

  13. Rice alcohol dehydrogenase 1 promotes survival and has a major impact on carbohydrate metabolism in the embryo and endosperm when seeds are germinated in partially oxygenated water

    PubMed Central

    Takahashi, Hirokazu; Greenway, Hank; Matsumura, Hideo; Tsutsumi, Nobuhiro; Nakazono, Mikio

    2014-01-01

    Background and Aims Rice (Oryza sativa) has the rare ability to germinate and elongate a coleoptile under oxygen-deficient conditions, which include both hypoxia and anoxia. It has previously been shown that ALCOHOL DEHYDROGENASE 1 (ADH1) is required for cell division and cell elongation in the coleoptile of submerged rice seedlings by means of studies using a rice ADH1-deficient mutant, reduced adh activity (rad). The aim of this study was to understand how low ADH1 in rice affects carbohydrate metabolism in the embryo and endosperm, and lactate and alanine synthesis in the embryo during germination and subsequent coleoptile growth in submerged seedlings. Methods Wild-type and rad mutant rice seeds were germinated and grown under complete submergence. At 1, 3, 5 and 7 d after imbibition, the embryo and endosperm were separated and several of their metabolites were measured and compared. Key results In the rad embryo, the rate of ethanol fermentation was halved, while lactate and alanine concentrations were 2·4- and 5·7- fold higher in the mutant than in the wild type. Glucose and fructose concentrations in the embryos increased with time in the wild type, but not in the rad mutant. The rad mutant endosperm had lower amounts of the α-amylases RAMY1A and RAMY3D, resulting in less starch degradation and lower glucose concentrations. Conclusions These results suggest that ADH1 is essential for sugar metabolism via glycolysis to ethanol fermentation in both the embryo and endosperm. In the endosperm, energy is presumably needed for synthesis of the amylases and for sucrose synthesis in the endosperm, as well as for sugar transport to the embryo. PMID:24431339

  14. Inhibition of alcohol dehydrogenase after 2-propanol exposure in different geographic races of Drosophila mojavensis: lack of evidence for selection at the Adh-2 locus.

    PubMed

    Pfeiler, Edward; Reed, Laura K; Markow, Therese A

    2005-03-15

    High frequencies of the fast allele of alcohol dehydrogenase-2 (Adh-2F) are found in populations of Drosophila mojavensis that inhabit the Baja California peninsula (race BII) whereas the slow allele (Adh-2S) predominates at most other localities within the species' geographic range. Race BII flies utilize necrotic tissue of pitaya agria cactus (Stenocereus gummosus) which contains high levels of 2-propanol, whereas flies from most other localities utilize different cactus hosts in which 2-propanol levels are low. To test if 2-propanol acts as a selective force on Adh-2 genotype, or whether some other yet undetermined genetic factor is responsible, mature males of D. mojavensis lines derived from the Grand Canyon (race A) and Santa Catalina Island (race C), each with individuals homozygous for Adh-2F and Adh-2S, were exposed to 2-propanol for 24 h and ADH-2 specific activity was then determined on each genotype. Flies from five other localities homozygous for either the fast or slow allele also were examined. Results for all reported races of D. mojavensis were obtained. 2-propanol exposure inhibited ADH-2 specific activity in both genotypes from all localities, but inhibition was significantly less in two populations of race BII flies homozygous for Adh-2F. When F/F and S/S genotypes in flies from the same locality were compared, both genotypes showed high 2-propanol inhibition that was not statistically different, indicating that the F/F genotype alone does not provide a benefit against the inhibitory effects of 2-propanol. ADH-1 activity in female ovaries was inhibited less by 2-propanol than ADH-2. These results do not support the hypothesis that 2-propanol acts as a selective factor favoring the Adh-2F allele. PMID:15726639

  15. Picosecond-resolved fluorescence studies of substrate and cofactor-binding domain mutants in a thermophilic alcohol dehydrogenase uncover an extended network of communication.

    PubMed

    Meadows, Corey W; Tsang, Jonathan E; Klinman, Judith P

    2014-10-22

    Time-resolved fluorescence dynamics are investigated in two mutants of a thermophilic alcohol dehydrogenase (ht-ADH): Y25A (at the dimer interface) and V260A (at the cofactor-binding domain). These residues, ca. 32 Å apart, are shown to exhibit opposing low-temperature effects on the hydride tunneling step. Using single-tryptophan constructs at the active site (Trp87) and a remote, surface-exposed site (Trp167), time-dependent Stokes shifts and collisional quenching data allow an analysis of intra-protein dynamical communication. A double mutant, Y25A:V260A, was also inserted into each single-Trp construct and analyzed accordingly. None of the mutations affect fluorescence lifetimes, Stokes shift relaxation rates, and quenching data for the surface-exposed Trp167 to an appreciable extent. By contrast, fluorescent probes of the active-site tryptophan 87 reveal distinctive forms of dynamical communication. Stokes shifts show that the distal Y25A increases active-site flexibility, V260A introduces a temperature-dependent equilibration process not previously reported by such measurements, and the double mutant (Y25A:V260A) eliminates the temperature-dependent transition sensed by the active-site tryptophan in the presence of V260A. Collisional quenching data at Trp87 further show a structural change in the active-site environment/solvation for V260A. In the aggregate, the temperature dependencies of the fluorescence data are distinct from the breaks in behavior previously reported for catalysis and hydrogen/deuterium exchange, attributed to time scales for the interconversion of protein conformational substates that are slower and more global than the local motions monitored within. An extended network of dynamical communication between the protein dimer surface and substrate- and cofactor-binding domains emerges from the flourescent data. PMID:25314615

  16. Picosecond-resolved fluorescent probes at functionally distinct tryptophans within a thermophilic alcohol dehydrogenase: relationship of temperature-dependent changes in fluorescence to catalysis.

    PubMed

    Meadows, Corey W; Ou, Ryan; Klinman, Judith P

    2014-06-12

    Two single-tryptophan variants were generated in a thermophilic alcohol dehydrogenase with the goal of correlating temperature-dependent changes in local fluorescence with the previously demonstrated catalytic break at ca. 30 °C (Kohen et al., Nature 1999, 399, 496). One tryptophan variant, W87in, resides at the active site within van der Waals contact of bound alcohol substrate; the other variant, W167in, is a remote-site surface reporter located >25 Å from the active site. Picosecond-resolved fluorescence measurements were used to analyze fluorescence lifetimes, time-dependent Stokes shifts, and the extent of collisional quenching at Trp87 and Trp167 as a function of temperature. A subnanosecond fluorescence decay rate constant has been detected for W87in that is ascribed to the proximity of the active site Zn(2+) and shows a break in behavior at 30 °C. For the remainder of the reported lifetime measurements, there is no detectable break between 10 and 50 °C, in contrast with previously reported hydrogen/deuterium exchange experiments that revealed a temperature-dependent break analogous to catalysis (Liang et al., Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 9556). We conclude that the motions that lead to the rigidification of ht-ADH below 30 °C are likely to be dominated by global processes slower than the picosecond to nanosecond motions measured herein. In the case of collisional quenching of fluorescence by acrylamide, W87in and W167in behave in a similar manner that resembles free tryptophan in water. Stokes shift measurements, by contrast, show distinctive behaviors in which the active-site tryptophan relaxation is highly temperature-dependent, whereas the solvent-exposed tryptophan's dynamics are temperature-independent. These data are concluded to reflect a significantly constrained environment surrounding the active site Trp87 that both increases the magnitude of the Stokes shift and its temperature-dependence. The results are discussed in the context

  17. Picosecond-Resolved Fluorescent Probes at Functionally Distinct Tryptophans within a Thermophilic Alcohol Dehydrogenase: Relationship of Temperature-Dependent Changes in Fluorescence to Catalysis

    PubMed Central

    2015-01-01

    Two single-tryptophan variants were generated in a thermophilic alcohol dehydrogenase with the goal of correlating temperature-dependent changes in local fluorescence with the previously demonstrated catalytic break at ca. 30 °C (Kohen et al., Nature1999, 399, 496). One tryptophan variant, W87in, resides at the active site within van der Waals contact of bound alcohol substrate; the other variant, W167in, is a remote-site surface reporter located >25 Å from the active site. Picosecond-resolved fluorescence measurements were used to analyze fluorescence lifetimes, time-dependent Stokes shifts, and the extent of collisional quenching at Trp87 and Trp167 as a function of temperature. A subnanosecond fluorescence decay rate constant has been detected for W87in that is ascribed to the proximity of the active site Zn2+ and shows a break in behavior at 30 °C. For the remainder of the reported lifetime measurements, there is no detectable break between 10 and 50 °C, in contrast with previously reported hydrogen/deuterium exchange experiments that revealed a temperature-dependent break analogous to catalysis (Liang et al., Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 9556). We conclude that the motions that lead to the rigidification of ht-ADH below 30 °C are likely to be dominated by global processes slower than the picosecond to nanosecond motions measured herein. In the case of collisional quenching of fluorescence by acrylamide, W87in and W167in behave in a similar manner that resembles free tryptophan in water. Stokes shift measurements, by contrast, show distinctive behaviors in which the active-site tryptophan relaxation is highly temperature-dependent, whereas the solvent-exposed tryptophan’s dynamics are temperature-independent. These data are concluded to reflect a significantly constrained environment surrounding the active site Trp87 that both increases the magnitude of the Stokes shift and its temperature-dependence. The results are discussed in the context

  18. Cloning and overexpression of an NADH-dependent alcohol dehydrogenase gene from Candida maris involved in (R)-selective reduction of 5-acetylfuro[2,3-c]pyridine.

    PubMed

    Kawano, Shigeru; Yano, Miho; Hasegawa, Junzo; Yasohara, Yoshihiko

    2011-01-01

    5-((R)-1-Hydroxyethyl)-furo[2,3-c]pyridine ((R)-FPH) is a useful chiral building block in the synthesis of pharmaceuticals. An NADH-dependent alcohol dehydrogenase (AFPDH) isolated from Candida maris catalyzed the reduction of 5-acetylfuro[2,3-c]pyridine (AFP) to (R)-FPH with 100% enantiomeric excess. The gene encoding AFPDH was cloned and sequenced. The AFPDH gene comprises 762 bp and encodes a polypeptide of 27,230 Da. The deduced amino acid sequence showed a high degree of similarity to those of other members of the short-chain alcohol dehydrogenase superfamily. The AFPDH gene was overexpressed in Escherichia coli under the control of the lac promoter. One L of the cultured broth of an E. coli transformant coexpressing AFPDH and the glucose dehydrogenase (GDH) gene reduced 250 g of AFP to (R)-FPH in an organic solvent two-phase system. Under coupling with NADH regeneration using 2-propanol, 1 L of the cultured broth of an E. coli transformant expressing the AFPDH gene reduced 150 g of AFP to (R)-FPH. The optical purity of the (R)-FPH formed was 100% enantiomeric excess under both reaction conditions. PMID:22056439

  19. Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism and its implication in executive functions in adult offspring of alcohol-dependent probands.

    PubMed

    Benzerouk, Farid; Gierski, Fabien; Gorwood, Philip; Ramoz, Nicolas; Stefaniak, Nicolas; Hübsch, Bérengère; Kaladjian, Arthur; Limosin, Frédéric

    2013-06-01

    Impairment of executive functions (EFs) mediated by the prefrontal lobe is regarded as a cognitive endophenotype of alcohol dependence, being observed both in probands and in healthy offspring. Given its impact on the anatomy of the prefrontal cortex, the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism may well be involved in this specific endophenotype. Forty-six healthy adult children of alcoholics (HACA) and 82 healthy controls (HC) took part in the study. All the participants were assessed with the Diagnostic Interview for Genetic Studies, and their family histories of alcohol and substance use were assessed with the Family Informant Schedule and Criteria. The Trail Making Test, Arithmetic Switching Task, Stroop Color-Word Test and Wisconsin Card Sorting Test were administered to assess EFs. An overall executive factor score was calculated using factorial analyses. Genotyping of the BDNF Val66Met polymorphism was performed using the TaqMan® allelic discrimination assay. HACA had significantly lower EFs performance than HC. Genetic analysis showed that BDNF genotype distributions were in Hardy-Weinberg equilibrium in the HACA and HC. Genotype and allele distributions did not differ significantly between the two groups. Participants with the Met allele performed significantly more poorly than participants with the Val allele, and a group by allele interaction was observed, the BDNF Met allele being associated with a poorer executive factor score in the HACA group. These results suggest that the BDNF Val66Met polymorphism may contribute to alcohol dependence vulnerability via lower EFs performance. PMID:23582695

  20. An α-synuclein gene (SNCA) polymorphism moderates the association of PTSD symptomatology with hazardous alcohol use, but not with aggression-related measures

    PubMed Central

    Guillot, Casey R.; Fanning, Jennifer R.; Liang, Tiebing; Leventhal, Adam M.; Berman, Mitchell E.

    2015-01-01

    Posttraumatic stress disorder (PTSD) often precedes comorbid substance use disorder and has been associated with aggression. Prior research has evidenced that alcohol use and other externalizing behaviors share genetic factors with PTSD; however, few studies have examined if specific genes are associated with externalizing behaviors in PTSD. The purpose of the current study was to investigate whether an α-synuclein gene polymorphism (SNCA rs356195) moderates the association of PTSD symptomatology with externalizing behaviors. We examined the separate and combined effects of PTSD symptomatology and SNCA rs356195 on alcohol- and aggression-related measures in nonclinical participants (N = 138 European Americans; 15 diagnosed with probable PTSD). Probable PTSD status and SNCA were both associated with externalizing measures. SNCA also moderated the association of PTSD symptomatology with hazardous alcohol use, but not with aggression-related measures. Current findings suggest that variations in SNCA may increase the likelihood that PTSD symptomatology results in excessive alcohol use. PMID:25594371

  1. A further polymorphism of the Gd locus for glucose-6-phosphate dehydrogenase present among blacks (Nigerians) and apparently absent among Caucasoids: the quantitative isoelectrophoretic variation of the Gd+ allele.

    PubMed

    Modiano, G; Ciminelli, B M; Malaspina, P; Santolamazza, P; Sedran, L; Meloni, T; Forteleoni, G; Mela, G

    1991-01-01

    A structural but isoelectrophoretic moderate variation of glucose-6-phosphate dehydrogenase (G6PD) activity is common among Nigerians (a black population exposed to a long-lasting intense Plasmodium falciparum malarial endemia). It had never even been searched for among Caucasoids and Mongoloids. In the present work, we attempted to ascertain whether this polymorphism exists among Caucasoids. With this purpose, two Caucasoid male populations were studied: Sardinians and Romans, who respectively did and did not experience an evolutionarily effective exposure to P. falciparum. The approach adopted here consisted in comparing the variations of G6PD activity observed between brothers who certainly received their Gd gene from the same grandparent (hence Gd genes identical by descent) with those between brothers who received it (in the Roman series) or may have received it (in the Sardinian series) from different grandparents. No evidence for common moderate G6PD activity variations segregating with the Gd gene was found either in Romans or Sardinians, who have both been studied with much larger samples and more sensitive approaches than those which detected such type of polymorphism among Nigerians. The upper 95% confidence limit of such zero estimates for the frequency of the isoelectrophoretic quantitative Gd variant alleles were about 0.04 and 0.025 for Romans and Sardinians, respectively. This is the first example of a genetic region (the Gd gene with its flanking sequences) apparently monomorphic in a major race and with several (four) polymorphic sites in another major race. PMID:1797629

  2. Nucleation of CaCO3 polymorphs from a colloidal alcoholic solution of Ca(OH)2 nanocrystals exposed to low humidity conditions

    NASA Astrophysics Data System (ADS)

    Gomez-Villalba, L. S.; López-Arce, P.; Fort, R.

    2012-01-01

    A study of the stability of calcium carbonate polymorphs formed as a result of the carbonation process from an alcoholic colloidal solution of nanocrystals of Ca(OH)2 in low relative humidity (RH) conditions (33% and 54% RH) is presented in this research. The crystalline behavior, the time dependence of nucleation and the phases' transformations as a result of exposure to low humidity conditions are evaluated. The carbonation process is slow, starting with the nucleation of amorphous calcium carbonate, associated to an amorphization process that affects both the portlandite (Ca(OH)2) and the initial unstable CaCO3 polymorphs. The excess of alcohol in the solution decreases the surface tension and the nucleation is accelerated by the fast evaporation of the solvent, which avoids the particles to diffuse to their lowest energy sites, giving smaller particles with lower crystallinity as RH decreases.

  3. Associations of Sleep Apnea, NRG1 Polymorphisms, Alcohol Consumption, and Cerebral White Matter Hyperintensities: Analysis with Genome-Wide Association Data

    PubMed Central

    Baik, Inkyung; Seo, Hyung Suk; Yoon, Daewui; Kim, Seong Hwan; Shin, Chol

    2015-01-01

    Study Objective: There are few studies on gene-environment interactions with obstructive sleep apnea (OSA). Our study aimed to explore genetic polymorphisms associated with OSA using genome-wide association (GWA) data and evaluate the effects of relevant polymorphisms on the association between risk factors, including obesity and alcohol consumption, and OSA. We also investigated on these associations in relation to cerebral white matter hyperintensities (WMH) on magnetic resonance images. Design: A cross-sectional design. Setting: A polysomnography study embedded in a population-based cohort from the Korean Genome Epidemiology Study was conducted in 2011–2013. Participants: 1,763 participants aged 48–78 years. Results: 251 individuals were identified to have OSA with an apnea-hypopnea index ≥ 15. A common polymorphism of neuregulin-1 gene (NRG1), rs10097555, was selected as the most suggestive locus associated with OSA (P value < 10−5) based on the results of GWA analysis in a matched case-control subsample (n = 470). Among 1,763 participants, we found that the presence of the NRG1 polymorphism is inversely associated with OSA (P value < 0.01) even after taking into account potential risk factors; the multivariate odds ratio (95% confidence interval) for the mutant alleles was 0.57 (0.39–0.82) compared with the wild-type. We observed that this association is modified by alcohol consumption (P < 0.05), not by obesity. We also observed that WMH are positively associated with OSA independent of the NRG1 polymorphism and alcohol consumption (P < 0.05). Conclusions: These findings suggest that the neuregulin-1 gene (NRG1) may be involved in the etiological mechanisms of obstructive sleep apnea (OSA) and that carriers of a particular NRG1 mutation may be less likely to have OSA if they do not drink alcoholic beverages. Citation: Baik I, Seo HS, Yoon D, Kim SH, Shin C. Associations of sleep apnea, NRG1 polymorphisms, alcohol consumption, and cerebral white

  4. Associations between Methylenetetrahydrofolate Reductase (MTHFR) Polymorphisms and Non-Alcoholic Fatty Liver Disease (NAFLD) Risk: A Meta-Analysis

    PubMed Central

    Sun, Man-Yi; Zhang, Li; Shi, Song-Li; Lin, Jing-Na

    2016-01-01

    Background C677T and A1298C are the most common allelic variants of Methylenetetrahydrofolate Reductase (MTHFR) gene. The association between MTHFR polymorphisms and the occurrence of non-alcoholic fatty liver disease (NAFLD) remains controversial. This study was thus performed to examine whether MTHFR mutations are associated with the susceptibility to NAFLD. Methods A first meta-analysis on the association between the MTHFR polymorphisms and NAFLD risks was carried out via Review Manager 5.0 and Stata/SE 12.0 software. The on-line databases, such as PubMed, EMBASE, CENTRAL, WOS, Scopus and EBSCOhost (updated to April 1st, 2016), were searched for eligible case-control studies. The odd radio (OR), 95% confidence interval (CI) and P value were calculated through Mantel-Haenszel statistics under random- or fixed-effect model. Results Eight articles (785 cases and 1188 controls) contributed data to the current meta-analysis. For C677T, increased NAFLD risks were observed in case group under homozygote model (T/T vs C/C, OR = 1.49, 95% CI = 1.03~2.15, P = 0.04) and recessive model (T/T vs C/C+C/T, OR = 1.42, 95% CI = 1.07~1.88, P = 0.02), but not the other genetics models, compared with control group. For A1298C, significantly increased NAFLD risks were detected in allele model (C vs A, OR = 1.53, 95% CI = 1.13~2.07, P = 0.006), homozygote model (C/C vs A/A, OR = 2.81, 95% CI = 1.63~4.85, P = 0.0002), dominant model (A/C+C/C vs A/A, OR = 1.60, 95% CI = 1.06~2.41, P = 0.03) and recessive model (C/C vs A/A+A/C, OR = 2.08, 95% CI = 1.45~3.00, P<0.0001), but not heterozygote model. Conclusion T/T genotype of MTHFR C677T polymorphism and C/C genotype of MTHFR A1298C are more likely to be associated with the susceptibility to NAFLD. PMID:27128842

  5. NADP-dependent aromatic alcohol dehydrogenase in polyploid wheats and their diploid relatives. On the origin and phylogeny of polyploid wheats.

    PubMed

    Jaaska, V

    1978-09-01

    The three major isoenzymes of the NADP-dependent aromatic alcohol dehydrogenase (ADH-B), distinguished in polyploid wheats by means of polyacrylamide gel electrophoresis, are shown to be coded by homoeoalleles of the locus Adh-2 on short arms of chromosomes of the fifth homoeologous group. Essentially codominant expression of the Adh-2 homoeolleles of composite genomes was observed in young seedlings of hexaploid wheats (T. aestivum s.l.) and tetraploid wheats of the emmer group (T. turgidum s.l.), whereas only the isoenzyme characteristic of the A genome is present in the seedlings of the timopheevii-group tetraploids (T. timopheevii s.str. and T. araraticum).The slowest-moving B(3) isoenzyme of polyploid wheats, coded by the homoeoallele of the B genome, is characteristic of the diploid species Aegilops speltoides S.l., including both its awned and awnless forms, but was not encountered in Ae. bicornis, Ae. sharonensis and Ae. longissima. The last two diploids, as well as Ae. tauschii, Ae. caudata, Triticum monococcum s.str., T. boeoticum s.l. (incl. T. thaoudar) and T. urartu all shared a common isoenzyme coinciding electrophoretically with the band B(2) controlled by the A and D genome homoeoalleles in polyploid wheats. Ae. bicomis is characterized by the slowest isoenzyme, B(4), not found in wheats and in the other diploid Aegilops species studied.Two electrophoretic variants of ADH-B, B(1) and B(2), considered to be alloenzymes of the A genome homoeoallele, were observed in T. dicoccoides, T. dicoccon, T. turgidum. s.str. and T. spelta, whereas B(2) was characteristic of T. timopheevii s.l. and only B(1) was found in the remaining taxa of polyploid wheats. The isoenzyme B(1), not encountered among diploid species, is considered to be a mutational derivative which arose on the tetraploid level from its more ancestral form B(2) characteristic of diploid wheats.The implication of the ADH-B isoenzyme data to the problems of wheat phylogeny and gene evolution is

  6. Alcohol.

    ERIC Educational Resources Information Center

    Schibeci, Renato

    1996-01-01

    Describes the manufacturing of ethanol, the effects of ethanol on the body, the composition of alcoholic drinks, and some properties of ethanol. Presents some classroom experiments using ethanol. (JRH)

  7. Gene polymorphisms associated with non-alcoholic fatty liver disease and coronary artery disease: a concise review.

    PubMed

    Li, Xiao-Lin; Sui, Jian-Qing; Lu, Lin-Lin; Zhang, Nan-Nan; Xu, Xin; Dong, Quan-Yong; Xin, Yong-Ning; Xuan, Shi-Ying

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disease which represents a wide spectrum of hepatic damage. Several studies have reported that NAFLD is a strong independent risk factor for coronary artery disease (CAD). And patients with NAFLD are at higher risk and suggested undergoperiodic cardiovascular risk assessment. Cardiovascular disease (CVD) is responsible for the main cause of death in patients with NAFLD, and is mostly influenced by genetic factors. Both NAFLD and CAD are heterogeneous disease. Common pathways involved in the pathogenesis of NAFLD and CAD includes insulin resistance (IR), atherogenic dyslipidemia, subclinical inflammation, oxidative stress, etc. Genomic characteristics of these two diseases have been widely studied, further research about the association of these two diseases draws attention. The gene polymorphisms of adiponectin-encoding gene (ADIPOQ), leptin receptor (LEPR), apolipoprotein C3 (APOC3), peroxisome proliferator-activated receptors (PPAR), sterol regulatory elementbinding proteins (SREBP), transmembrane 6 superfamily member 2 (TM6SF2), microsomal triglyceride transfer protein (MTTP), tumor necrosis factors-alpha (TNF-α) and manganese superoxide dismutase (MnSOD) have been reported to be related to NAFLD and CAD. In this review, we aimed to provide an overview of recent insights into the genetic basis of NAFLD and CAD. PMID:26965314

  8. Characterization of polymorphisms of genes ADH2, ADH3, ALDH2 and CYP2E1 and relationship to the alcoholism in a Colombian population

    PubMed Central

    Méndez, Claudia

    2015-01-01

    Objective: Identify and characterize polymorphisms of genes ADH2, ADH3, ALDH2 and CYP2E1 in a Colombian population residing in the city of Bogotá and determine its possible relationship to the alcoholism. Methods: ADH2, ADH3, ALDH2, and CYP2E1 genotypes a population of 148 individuals with non-problematic alcohol and 65 individuals with alcoholism were determined with TaqMan probes and PCR-RFLP. DNA was obtained from peripheral blood white cells. Results: Significant difference was found in family history of alcoholism and use of other psychoactive substances to compare alcoholics with controls. When allelic frequencies for each category (gender) were considered, frequency of A2 allele carriers in ADH2 was found higher in male patients than controls. In women, the relative frequency for c1 allele in CYP2E1 was lower in controls than alcoholics. The ALDH2 locus is monomorphic. No significant differences in allele distributions of the loci examined to compare two populations were observed, however when stratifying the same trend was found that these differences tended to be significant. Conclusions: This study allows us to conclude the positive association between family history of alcoholism and alcoholism suggesting that there is a favourable hereditary predisposition. Since substance dependence requires interaction of multiple genes, the combination of genotypes ADH2 * 2, CYP2E1 * 1 combined with genotype homozygous ALDH2 * 1 found in this study could be leading to the population to a potential risk to alcoholism. PMID:26848198

  9. Isozyme multiplicity with anomalous dimer patterns in a class III alcohol dehydrogenase. Effects on the activity and quaternary structure of residue exchanges at "nonfunctional" sites in a native protein.

    PubMed

    Danielsson, O; Shafqat, J; Estonius, M; el-Ahmad, M; Jörnvall, H

    1996-11-19

    The isozymes of class III alcohol dehydrogenase/glutathione-dependent formaldehyde dehydrogenase from cod were characterized. They exhibited three unexpected properties of general interest. First, these dimeric isozymes, derived from two types of subunit (h and l, for high- and low-activity forms), were recovered from liver preparations in only the homodimeric ll and heterodimeric hl combinations. Dissociation and reassociation of the isolated hl form in vitro also resulted in lower yields of the hh than the ll homodimer, although class III subunits are usually freely associable over wide borders of divergence (human and Drosophila). The h and l primary structures show that both chain types are characteristic of class III enzymes, without large amino acid replacements at positions of known subunit interactions. Hence, the hh dimer partial restriction indicates nontraditional alterations at h-subunit interfaces. The structure provides a possible explanation, in the form of h-chain modifications that may influence the anchoring of a loop at positions of two potentially deamidative beta-aspartyl shifts at distant Asn-Gly structures. Second the ll and hl forms differ in enzymatic properties, having 5-fold different K(m) values for NAD+ at pH 8, different K(m) values for S-(hydroxymethyl)glutathione (10 versus 150 microM), and different specific activities (4.5 versus 41 units/mg), with ll resembling and hl deviating from human and other class III alcohol dehydrogenases. However, functional residues lining substrate and coenzyme pockets in the known conformations of homologous forms are largely identical in the two isozymes [only minor conservative exchanges of Val/Leu116, Val/Leu203, Ile/Val224, and Ile/Val269 (numbering system of the human class I enzyme)], again indicating effects from distantly positioned h-chain replacements. Third, the two isozymes differ a surprising amount in amino acid sequence (18%, the same as the piscine/ human difference), reflecting a

  10. OPG and RANKL polymorphisms are associated with alcohol-induced osteonecrosis of the femoral head in the north area of China population in men

    PubMed Central

    Li, Yizhou; Wang, Yuan; Guo, Yongchang; Wang, Quanjian; Ouyang, Yongri; Cao, Yuju; Jin, Tianbo; Wang, Jianzhong

    2016-01-01

    Abstract Alcohol-induced osteonecrosis of the femoral head (ONFH) is an important pathogenesis of nontraumatic ONFH. However, the mechanisms of the pathogenesis are still unknown. Osteoprotegerin (OPG) and receptor activator of nuclear factor-kappa B ligand (RANKL) have been implicated in multiple functions including blocking osteoclast maturation, controlling vascular calcifications, and promoting tumor growth and metastasis. The purpose of this article was to explore the association between OPG and RANKL gene variants and alcohol-induced ONFH. Six hundred seventy male subjects (335 patients and 335 normal individuals) were enrolled in our study. We selected 24 single-nucleotide polymorphisms (SNPs) to evaluate the association between genetic susceptibility variants and alcohol-induced ONFH using the chi-square test and gene model analysis. Overall, the OPG SNPs (rs1032128 and rs11573828) were associated with the strongest increased risk of alcohol-induced ONFH in the recessive model (rs1032128: odds ratio [OR] 1.49, 95% confidence interval [CI] 1.00–2.22, P = 0.04 for G/A; rs11573828: OR 3.32, 95% CI 1.07–10.30, P = 0.03 for T/C). The RANKL SNP rs2200287 was also an increased risk factor (OR 3.65, 95% CI 1.53–8.47, P = 0.003 for T/C) in the recessive model. The rs11573856, rs3134056, and rs1564861 SNPs were considered protective factors for alcohol-induced ONFH. We concluded that OPG and RANKL polymorphisms were associated with the occurrence of alcohol-induced ONFH. PMID:27336899

  11. A novel zinc-binding alcohol dehydrogenase 2 from Arachis diogoi, expressed in resistance responses against late leaf spot pathogen, induces cell death when transexpressed in tobacco.

    PubMed

    Kumar, Dilip; Rampuria, Sakshi; Singh, Naveen Kumar; Kirti, Pulugurtha B

    2016-03-01

    A novel zinc-binding alcohol dehydrogenase 2 (AdZADH2) was significantly upregulated in a wild peanut, Arachis diogoi treated with conidia of late leaf spot (LLS) pathogen, Phaeoisariopsis personata. This upregulation was not observed in a comparative analysis of cultivated peanut, which is highly susceptible to LLS. This zinc-binding alcohol dehydrogenase possessed a Rossmann fold containing NADB domain in addition to the MDR domain present in all previously characterized plant ADH genes/proteins. Transient over-expression of AdZADH2 under an estradiol inducible promoter (XVE) resulted in hypersensitive response (HR)-like cell death in tobacco leaf. However, the same level of cell death was not observed when the domains were transiently expressed individually. Cell death observed in tobacco was associated with overexpression of cell death related proteins, antioxidative enzymes such as SOD, CAT and APX and pathogenesis-related (PR) proteins. In A. diogoi, AdZADH2 expression was significantly upregulated in response to the plant signaling hormones salicylic acid, methyl jasmonate, and sodium nitroprusside. PMID:27047748

  12. Between and within-family association test of the dopamine receptor D2 TaqIA polymorphism and alcohol abuse and dependence in a general population sample of adults

    PubMed Central

    Haberstick, B.C.; Timberlake, D.; Smolen, A.; Sakai, J.T.; Hopfer, C.J.; Corley, R.P.; Young, S.E.; Stallings, M.C.; Huizinga, D.; Menard, S.; Hartman, C.; Grotpeter, J.; Hewitt, J.K.

    2008-01-01

    Objective Dopaminergic dysfunction has been hypothesized to play an important role in the etiology of alcohol use disorders. A restriction fragment length polymorphism (RFLP) in the 3' untranslated region (3'UTR) of the DRD2 gene affects gene expression and has been implicated as a risk factor for alcohol dependence. This polymorphism (TaqIA) has been reported as positively associated with alcohol use disorders in case-control samples, but these results have not been replicated in family-based association studies. These mixed results of association between the DRD2 TaqIA polymorphism and alcohol use disorders may be due to differences in sample size, phenotype definition, heterogeneity of the samples and genetic admixture. Method We conducted tests of association in a sample of 838 adults participating in the National Youth Survey Family Study (NYSFS). We examined whether the DRD2 TaqIA polymorphism was associated with a symptom counts measure of alcohol abuse and dependence derived from the DSM-IV and Craving Withdrawal models. Results Tests of association were non-significant across each classification system examined. Power calculations suggested these results were despite the ability to detect an effect size of 1%. Conclusions This study supports other family-based association tests that have reported no association between the DRD2 TaqIA polymorphism and alcohol abuse and dependence. PMID:17446975

  13. Mitochondrial gene polymorphisms alter hepatic cellular energy metabolism and aggravate diet-induced non-alcoholic steatohepatitis

    PubMed Central

    Schröder, Torsten; Kucharczyk, David; Bär, Florian; Pagel, René; Derer, Stefanie; Jendrek, Sebastian Torben; Sünderhauf, Annika; Brethack, Ann-Kathrin; Hirose, Misa; Möller, Steffen; Künstner, Axel; Bischof, Julia; Weyers, Imke; Heeren, Jörg; Koczan, Dirk; Schmid, Sebastian Michael; Divanovic, Senad; Giles, Daniel Aaron; Adamski, Jerzy; Fellermann, Klaus; Lehnert, Hendrik; Köhl, Jörg; Ibrahim, Saleh; Sina, Christian

    2016-01-01

    Objective Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and is associated with an enhanced risk for liver and cardiovascular diseases and mortality. NAFLD can progress from simple hepatic steatosis to non-alcoholic steatohepatitis (NASH). However, the mechanisms predisposing to this progression remain undefined. Notably, hepatic mitochondrial dysfunction is a common finding in patients with NASH. Due to a lack of appropriate experimental animal models, it has not been evaluated whether this mitochondrial dysfunction plays a causative role for the development of NASH. Methods To determine the effect of a well-defined mitochondrial dysfunction on liver physiology at baseline and during dietary challenge, C57BL/6J-mtFVB/N mice were employed. This conplastic inbred strain has been previously reported to exhibit decreased mitochondrial respiration likely linked to a non-synonymous gene variation (nt7778 G/T) of the mitochondrial ATP synthase protein 8 (mt-ATP8). Results At baseline conditions, C57BL/6J-mtFVB/N mice displayed hepatic mitochondrial dysfunction characterized by decreased ATP production and increased formation of reactive oxygen species (ROS). Moreover, genes affecting lipid metabolism were differentially expressed, hepatic triglyceride and cholesterol levels were changed in these animals, and various acyl-carnitines were altered, pointing towards an impaired mitochondrial carnitine shuttle. However, over a period of twelve months, no spontaneous hepatic steatosis or inflammation was observed. On the other hand, upon dietary challenge with either a methionine and choline deficient diet or a western-style diet, C57BL/6J-mtFVB/N mice developed aggravated steatohepatitis as characterized by lipid accumulation, ballooning of hepatocytes and infiltration of immune cells. Conclusions We observed distinct metabolic alterations in mice with a mitochondrial polymorphism associated hepatic mitochondrial dysfunction. However, a

  14. Serotonin transporter gene regulatory region polymorphism (5-HTTLPR), [3H]paroxetine binding in healthy control subjects and alcohol-dependent patients and their relationships to impulsivity.

    PubMed

    Preuss, U W; Soyka, M; Bahlmann, M; Wenzel, K; Behrens, S; de Jonge, S; Krüger, M; Bondy, B

    2000-09-25

    The aim of this study was to investigate [3H]paroxetine binding and impulsivity in alcohol-dependent and age-matched control subjects in relation to a 5'-promoter region serotonin transporter (5-HTT) polymorphism (5-HTTLPR). Alcohol-dependent subjects were hypothesized to show a decreased number of bindings sites and a lower dissociation constant. 5-HTTLPR S-genotype carriers in both alcohol-dependent and control subjects were expected to show significantly fewer binding sites and a lower dissociation constant. Influences of impulsive traits, chronic daily alcohol intake, duration of alcohol dependence, age of onset and age on [3H]paroxetine binding were also investigated. Inpatients meeting DSM IV alcohol dependence criteria and of German descent were recruited to avoid ethnic stratification effects. One hundred and seventeen control subjects of similar social status were recruited from a town community. Blood samples were taken from both alcohol-dependent and control subjects to determine 5-HTTLPR genotypes using PCR of lymphocyte DNA, and to perform platelet [3H]paroxetine binding (binding capacity: B(max); and dissociation constant: K(D)). Impulsivity was assessed using the Barratt impulsiveness scale version 5 (BIS-5) in alcohol-dependent subjects only. Alcohol-dependent subjects were subdivided into low or high impulsivity groups using a median-split of the BIS-5 scale. The control group was slightly older than the alcohol-dependent group (not statistically significant). [3H]paroxetine binding was investigated in 72 control subjects and 72 patients, of which five patients met type 2 alcohol dependence criteria. Genotyping was carried out in all patients and control subjects. A significant influence of duration of alcohol dependence was found on the [3H]paroxetine binding K(D) but not B(max.) Neither alcohol-dependent nor control subjects showed any differences in B(max) or K(D). S-allele carriers did not show a decreased binding or lower dissociation constant

  15. The C(-1019)G 5-HT1A promoter polymorphism and personality traits: no evidence for significant association in alcoholic patients

    PubMed Central

    Koller, G; Bondy, B; Preuss, UW; Zill, P; Soyka, M

    2006-01-01

    The 5HT1A receptor is one of at least 14 different receptors for serotonin which has a role in moderating several brain functions and may be involved in the aetiology of several psychiatric disorders. The C(-1019)G 5-HT1A promoter polymorphism was reported to be associated with major depression, depression-related personality traits and suicidal behavior in various samples. The G(-1019) allele carriers are prone to depressive personality traits and suicidal behavior, because serotonergic neurotransmission is reduced. The aim of this study is to replicate previous findings in a sample of 185 Alcohol-dependent individuals. Personality traits were evaluated using the NEO FFI and TCI. History of suicidal behavior was assessed by a standardized semistructured interview (SSAGA). No significant differences across C(-1019)G 5-HT1A genotype groups were found for TCI temperament and character traits and for NEO FFI personality scales. No association was detected between this genetic variant and history of suicide attempts. These results neither support a role of C(-1019)G 5-HT1A promoter polymorphism in the disposition of personality traits like harm avoidance or neuroticism, nor confirm previous research reporting an involvement of the G allele in suicidal behavior in alcoholics. Significant associations, however, were detected between Babor's Type B with number of suicide attempts in history, high neuroticism and harm avoidance scores in alcoholics. PMID:16504134

  16. Population study of 1311 C/T polymorphism of Glucose 6 Phosphate Dehydrogenase gene in Pakistan – an analysis of 715 X-chromosomes

    PubMed Central

    Moiz, Bushra; Nasir, Amna; Moatter, Tariq; Naqvi, Zulfiqar Ali; Khurshid, Mohammad

    2009-01-01

    Background Nucleotide 1311 polymorphism at exon 11 of G6PD gene is widely prevalent in various populations of the world. The aim of the study was to evaluate 1311 polymorphism in subjects carrying G6PD Mediterranean gene and in general population living in Pakistan. Results Patients already known to be G6PD deficient were tested for 563C-T (G6PD Mediterranean) and 1311 C-T mutation through RFLP based PCR and gene sequencing. A control group not known to be G6PD deficient was tested for 1311C/T only. C-T transition at nt 1311 was detected in 60/234 X-chromosomes with 563 C-T mutation (gene frequency of 0.26) while in 130 of normal 402 X-chromosomes (gene frequency of 0.32). Conclusion We conclude that 1311 T is a frequent polymorphism both in general populations and in subjects with G6PD Mediterranean gene in Pakistan. The prevalence is higher compared to most of the populations of the world. The present study will help in understanding genetic basis of G6PD deficiency in Pakistani population and in developing ancestral links of its various ethnic groups. PMID:19640310

  17. Impact of Maspin Polymorphism rs2289520 G/C and Its Interaction with Gene to Gene, Alcohol Consumption Increase Susceptibility to Oral Cancer Occurrence

    PubMed Central

    Yang, Po-Yu; Miao, Nae-Fang; Lin, Chiao-Wen; Chou, Ying-Erh; Yang, Shun-Fa; Huang, Hui-Chuan; Chang, Hsiu-Ju; Tsai, Hsiu-Ting

    2016-01-01

    Background The purpose of this study was to identify gene polymorphisms of mammary serine protease inhibitor (Maspin) specific to patients with oral cancer susceptibility and clinicopathological status. Methodology/Principal Findings Three single-nucleotide polymorphisms (SNPs) of the Maspin gene from 741 patients with oral cancer and 601 non-cancer controls were analyzed by real-time PCR. The participants with G/G homozygotes or with G/C heterozygotes of Maspin rs2289520 polymorphism had a 2.07-fold (p = 0.01) and a 2.01-fold (p = 0.02) risk of developing oral cancer compared to those with C/C homozygotes. Moreover, gene-gene interaction increased the risk of oral cancer susceptibility among subjects expose to oral cancer related risk factors, including areca, alcohol, and tobacco consumption. Conclusion G allele of Maspin rs2289520 polymorphism may be a factor that increases the susceptibility to oral cancer. The interactions of gene to oral cancer-related environmental risk factors have a synergetic effect that can further enhance oral cancer development. PMID:27525723

  18. Laryngeal cancer risk associated with smoking and alcohol consumption is modified by genetic polymorphisms in ERCC5, ERCC6 and RAD23B but not by polymorphisms in five other nucleotide excision repair genes.

    PubMed

    Abbasi, Rashda; Ramroth, Heribert; Becher, Heiko; Dietz, Andreas; Schmezer, Peter; Popanda, Odilia

    2009-09-15

    Laryngeal cancer is known to be associated with smoking and high alcohol consumption. Nucleotide excision repair (NER) plays a key role in repairing DNA damage induced by these exposures and might affect laryngeal cancer susceptibility. In a population-based case-control study including 248 cases and 647 controls, the association of laryngeal cancer with 14 single nucleotide polymorphisms (SNPs) in 8 NER genes (XPC, XPA, ERCC1, ERCC2, ERCC4, ERCC5, ERCC6 and RAD23B) was analyzed with respect to smoking and alcohol exposure. For genotyping, sequence specific hybridization probes were used. Data were evaluated by conditional logistic regression analysis, stratified for age and gender, and adjusted for smoking, alcohol consumption and education. Pro-carriers of ERCC6 Arg1230Pro showed a decreased risk for laryngeal cancer (OR = 0.53, 95% CI 0.34-0.85), strongest in heavy smokers and high alcohol consumers. ERCC5 Asp1104His was associated with risk in heavy smokers (OR = 1.70, 95% CI 1.1-2.5). Val-carriers of RAD23B Ala249Val had an increased cancer risk in heavy smokers (OR = 1.6, 95% CI 1.1-2.5) and high alcohol consumers (OR = 2.0, 95% CI 1.1-3.4). The combined effect of smoking and alcohol intake affected risk, at high exposure level, for ERCC6 1230Pro carriers (OR = 0.47, 95% CI 0.22-0.98) and RAD23B 249Val carriers (OR = 2.6, 95% CI 1.3-4.9). When tested for gene-gene interaction, presence of 3 risk alleles in the XPC-RAD23B complex increased the risk 2.1-fold. SNPs in the other genes did not show a significant association with laryngeal cancer risk. We conclude that common genetic variations in NER genes can significantly modify laryngeal cancer risk. PMID:19444904

  19. Purification and characterization of 6-phosphogluconate dehydrogenase from the wing-polymorphic cricket, Gryllus firmus, and assessment of causes of morph-differences in enzyme activity.

    PubMed

    Zera, Anthony J; Wehrkamp, Cody; Schilder, Rudolf; Black, Christine; Gribben, Paul

    2014-01-01

    Considerable information exists on the physiological correlates of life history adaptation, while molecular data on this topic are rapidly accumulating. However, much less is known about the enzymological basis of life history adaptation in outbred populations. In the present study, we compared developmental profiles of fat body specific activity, kinetic constants of homogeneously purified and unpurified enzyme, and fat body enzyme concentration of the pentose-shunt enzyme, 6-phosphogluconate dehydrogenase (6PGDH, E.C.1.1.1.44) between the dispersing [long-winged, LW(f)] and flightless [short-winged, SW] genotypes of the cricket Gryllus firmus. Neither kcat nor the Michaelis constant for 6-phosphogluconate differed between 6PGDH from LW(f) versus SW morphs for either homogeneously purified or unpurified enzyme. Purified enzyme from the LW(f) morph exhibited reduced KM for NADP(+), but this was not observed for multiple KM(NADP+) estimates for unpurified enzyme. A polyclonal antibody was generated against 6PGDH which was used to develop a chemiluminescence assay to quantify 6PGDH concentration in fat body homogenates. Elevated enzyme concentration accounted for all of the elevated 6PGDH specific activity in the LW(f) morph during the juvenile and adult stages. Finally, activity of another pentose-shunt enzyme, glucose-6-phosphate dehydrogenase, strongly covaried with 6PGDH activity suggesting that variation in 6PGDH activity gives rise to variation in pentose shunt flux. This is one of the first life-history studies and one of the few studies of intraspecific enzyme adaptation to identify the relative importance of evolutionary change in enzyme concentration vs. kinetic constants to adaptive variation in enzyme activity in an outbred population. PMID:24726622

  20. Ergot alkaloid biosynthesis in Aspergillus fumigatus: conversion of chanoclavine-I to chanoclavine-I aldehyde catalyzed by a short-chain alcohol dehydrogenase FgaDH.

    PubMed

    Wallwey, Christiane; Matuschek, Marco; Li, Shu-Ming

    2010-02-01

    Ergot alkaloids are toxins and important pharmaceuticals which are produced biotechnologically on an industrial scale. A putative gene fgaDH has been identified in the biosynthetic gene cluster of fumigaclavine C, an ergot alkaloid of the clavine-type. The deduced gene product FgaDH comprises 261 amino acids with a molecular mass of about 27.8 kDa and contains the conserved motifs of classical short-chain dehydrogenases/reductases (SDRs), but shares no worth mentioning sequence similarity with SDRs and other known proteins. The coding region of fgaDH consisting of two exons was amplified by PCR from a cDNA library of Aspergillus fumigatus, cloned into pQE60 and overexpressed in E. coli. The soluble tetrameric His(6)-FgaDH was purified to apparent homogeneity and characterized biochemically. It has been shown that FgaDH catalyzes the oxidation of chanoclavine-I in the presence of NAD(+) resulting in the formation of chanoclavine-I aldehyde, which was unequivocally identified by NMR and MS analyzes. Therefore, FgaDH functions as a chanoclavine-I dehydrogenase and represents a new group of short-chain dehydrogenases. K (M) values for chanoclavine-I and NAD(+) were determined at 0.27 and 1.1 mM, respectively. The turnover number was 0.38 s(-1). PMID:20039019

  1. IDRD2 TaqIA polymorphism is associated with urinary homovanillic acid levels in a sample of Spanish male alcoholic patients.

    PubMed

    Ponce, G; Hoenicka, J; Rodríguez-Jiménez, R; Gozalo, A; Jimenéz, M; Monasor, R; Aragüés, M; Rubio, G; Jiménez-Arriero, M A; Ramos, J A; Palomo, T

    2004-01-01

    The TaqIA1 allele of the dopamine receptor gene D2 (DRD2) has been associated with alcoholism, as well as with other addictive behaviours. The exact nature of how the presence of this allele can be a vulnerability factor in the development of alcoholism remains unclear. In this study we found that the presence in the DRD2 genotype of the TaqIA1 allele in Spanish alcoholics is associated with higher levels of urine homovanillic acid (HVA) when compared to patients homozygous for the TaqIA2 allele. A sample of 142 Spanish male alcoholic patients was split into 2 groups on the basis of the presence or absence of the A1 allele in their genotype. The urine sample was analyzed by high performance liquid cromatography (HPLC), and the concentration of homovanillic acid (HVA), 5-hydroxyindoleacetic acid (5-HIAA) and vanilylmandelic acid (VMA) was determined. We found a statistical difference in the concentration of HVA between the groups, that suggests this polymorphism could be related to the variance of urine HVA levels. PMID:15545020

  2. Single-Nucleotide Polymorphisms in Corticotropin Releasing Hormone Receptor 1 Gene (CRHR1) Are Associated With Quantitative Trait of Event-Related Potential and Alcohol Dependence

    PubMed Central

    Chen, Andrew C. H.; Manz, Niklas; Tang, Yongqiang; Rangaswamy, Madhavi; Almasy, Laura; Kuperman, Samuel; Nurnberger, John; O’Connor, Sean J.; Edenberg, Howard J.; Schuckit, Marc A.; Tischfield, Jay; Foroud, Tatiana; Bierut, Laura J.; Rohrbaugh, John; Rice, John P.; Goate, Alison; Hesselbrock, Victor; Porjesz, Bernice

    2011-01-01

    Background Endophenotypes reflect more proximal effects of genes than diagnostic categories, hence providing a more powerful strategy in searching for genes involved in complex psychiatric disorders. There is strong evidence suggesting the P3 amplitude of the event-related potential (ERP) as an endophenotype for the risk of alcoholism and other disinhibitory disorders. Recent studies demonstrated a crucial role of corticotropin releasing hormone receptor 1 (CRHR1) in the environmental stress response and ethanol self-administration in animal models. The aim of the present study was to test the potential associations between single-nucleotide polymorphisms (SNPs) in the CRHR1 gene and the quantitative trait, P3 amplitude during the processing of visual target signals in an oddball paradigm, as well as alcohol dependence diagnosis. Methods We analyzed a sample from the Collaborative Study on the Genetics of Alcoholism (COGA) comprising 1049 Caucasian subjects from 209 families (including 472 alcohol-dependent individuals). Quantitative transmission disequilibrium test (QTDT) and family-based association test (FBAT) were used to test the association, and false discovery rate (FDR) was applied to correct for multiple comparisons. Results Significant associations (p < 0.05) were found between the P3 amplitude and alcohol dependence with multiple SNPs in the CRHR1 gene. Conclusions Our results suggest that CRHR1 may be involved in modulating the P3 component of the ERP during information processing and in vulnerability to alcoholism. These findings underscore the utility of electrophysiology and the endophenotype approach in the genetic study of psychiatric disorders. PMID:20374216

  3. Leptin Receptor Gene Polymorphisms and the Risk of Non-Alcoholic Fatty Liver Disease and Coronary Atherosclerosis in the Chinese Han Population

    PubMed Central

    An, Bai-Quan; Lu, Lin-Lin; Yuan, Chen; Xin, Yong-Ning; Xuan, Shi-Ying

    2016-01-01

    Background Leptin receptor (LEPR) polymorphisms have been reported to be associated with lipid metabolism and insulin resistance in various populations. However, whether LEPR polymorphisms are associated with the risks of non-alcoholic fatty liver disease (NAFLD) and coronary atherosclerosis in the Chinese Han population remains unknown. Objectives To investigate the association of LEPR polymorphisms at Q223R and K109R with the risks of NAFLD and coronary atherosclerosis in the Chinese Han population. Patients and Methods Genotypes of LEPR Q223R and K109R were determined by polymerase chain reaction followed by sequencing in patients with NAFLD (n = 554), coronary atherosclerosis (n = 421), and healthy controls (n = 550). Serum lipid profiles were determined using biochemical methods. Pearson’s χ2 test was used to check for Hardy-Weinberg equilibrium and to analyze the distributions of genotypes’ alleles between groups. Baseline characteristics were analyzed using student’s t-test, paired-samples t-test, or the χ2 test where appropriate. Results The LEPR Q223R A allele significantly reduced the risks of both NAFLD and coronary atherosclerosis (OR = 0.683, 95% CI: 0.527 - 0.884, P = 0.004 and OR = 0.724, 95% CI: 0.548 - 0.955, P = 0.022, respectively). Compared to controls, no significant differences in the genotype and allele frequencies of K109R were found in the NAFLD and coronary atherosclerosis populations, respectively. However, there was a significantly increased risk of coronary atherosclerosis in NAFLD patients who carried the K109R A allele (OR = 2.283, 95% CI: 1.556 - 3.348, P < 0.001). Conclusions LEPR Q223R polymorphisms may confer a significant risk of NAFLD and coronary atherosclerosis. The A allele in the K109R polymorphism might be considered an independent risk factor for coronary atherosclerosis in NAFLD patients. PMID:27257426

  4. A New Glucose-6-Phosphate Dehydrogenase Variant, G6PD Orissa (44 Ala→Gly), is the Major Polymorphic Variant in Tribal Populations in India

    PubMed Central

    Kaeda, J. S.; Chhotray, G. P.; Ranjit, M. R.; Bautista, J. M.; Reddy, P. H.; Stevens, D.; Naidu, J. M.; Britt, R. P.; Vulliamy, T. J.; Luzzatto, L.; Mason, P. J.

    1995-01-01

    Deficiency of glucose-6-phosphate dehydrogenase (G6PD) is usually found at high frequencies in areas of the world where malaria has been endemic. The frequency and genetic basis of G6PD deficiency have been studied in Africa, around the Mediterranean, and in the Far East, but little such information is available about the situation in India. To determine the extent of heterogeneity of G6PD, we have studied several different Indian populations by screening for G6PD deficiency, followed by molecular analysis of deficient alleles. The frequency of G6PD deficiency varies between 3% and 15% in different tribal and urban groups. Remarkably, a previously unreported deficient variant, G6PD Orissa (44 Ala→Gly), is responsible for most of the G6PD deficiency in tribal Indian populations but is not found in urban populations, where most of the G6PD deficiency is due to the G6PD Mediterranean (188 Ser→Phe) variant. The K of G6PD Orissa is fivefold higher than that of the normal enzyme. This may be due to the fact that the alanine residue that is replaced by glycine is part of a putative coenzyme-binding site. ImagesFigure 2 PMID:8533762

  5. A new glucose-6-phosphate dehydrogenase variant, G6PD Orissa (44 Ala{yields}Gly), is the major polymorphic variant in tribal populations in India

    SciTech Connect

    Kaeda, J.S.; Bautista, J.M.; Stevens, D.

    1995-12-01

    Deficiency of glucose-6-phosphate dehydrogenase (G6PD) is usually found at high frequencies in areas of the world where malaria has been epidemic. The frequency and genetic basis of G6PD deficiency have been studied in Africa, around the Mediterranean, and in the Far East, but little such information is available about the situation in India. To determine the extent of heterogeneity of G6PD, we have studied several different Indian populations by screening for G6PD deficiency, followed by molecular analysis of deficient alleles. The frequency of G6PD deficiency varies between 3% and 15% in different tribal and urban groups. Remarkably, a previously unreported deficient variant, G6PD Orissa (44 Ala{yields}Gly), is responsible for most of the G6PD deficiency in tribal Indian populations but is not found in urban populations, where most of the G6PD deficiency is due to the G6PD Mediterranean (188 Ser{yields}Phe) variant. The K{sup NADP}{sub m} of G6PD Orissa is fivefold higher than that of the normal enzyme. This may be due to the fact that the alanine residue that is replaced by glycine is part of a putative coenzyme-binding site. 37 refs., 2 figs., 3 tabs.

  6. Microwave-solvothermal synthesis of various polymorphs of nanostructured TiO2 in different alcohol media and their lithium ion storage properties.

    PubMed

    Yoon, Sukeun; Lee, Eun-Sung; Manthiram, Arumugam

    2012-03-19

    The various polymorphs (anatase, rutile, and brookite) of TiO(2) with different nanomorphologies have been synthesized by a facile microwave-assisted solvothermal process without surfactants, employing TiCl(4) or TiCl(3) as precursors in various alcohol (ethanol, propanol, butanol, and octanol) media. The samples have been characterized by X-ray diffraction (XRD), electron microscopy, and Brunauer-Emmett-Teller (BET) surface area analysis. The Ti/Cl ion concentration, reaction pH, and size of the alcohol molecule are found to control the morphology, crystal structure, and crystallite size of the TiO(2) particles. Among the various TiO(2) polymorphs synthesized, the rutile TiO(2) spheres built up of nanorods that were synthesized with TiCl(4) in octanol have an average pore size and surface area of, respectively, 5 nm and 404 m(2)/g and exhibit the best electrochemical performance with a capacity of >200 mAh/g after 100 cycles and high rate capability. The excellent electrochemical properties originate from the nanorod-building morphology and mesoporosity of TiO(2) spheres that provide good electrical contact, accommodates the strain smoothly, and facilitates facile lithium-ion diffusion. PMID:22380796

  7. Association of Polymorphisms in RGS4 and Expression of RGS transcripts in the Brains of Human Alcoholics

    PubMed Central

    Ho, Ada M.-C.; MacKay, Rachel K; Dodd, Peter R.; Lewohl, Joanne M.

    2010-01-01

    Chronic alcoholism leads to neurotoxic effects in the central nervous system. Neuroadaptive changes in the brain may lead to tolerance to, and dependence on, alcohol as a result of alterations in synaptic complexity. G-proteins are negatively regulated by RGS proteins, which are integral to many neural pathways that include neurotransmission, hormonal responses, and chemotactic signals. These considerations, together with findings from microarray analyses of human autopsy brain, suggest that proteins involved in G-protein signalling, specifically the RGS protein family, may play an important role in the functioning of neural systems that are affected by chronic alcohol abuse. We used Real Time PCR to measure the expression of two members of the RGS family, RGS4 and RGS7, in the superior frontal gyrus and primary motor cortex from alcoholic and non-alcoholic cases. Overall, cirrhotic alcoholics had lower expression levels of RGS4 mRNA than controls and non-cirrhotic alcoholics. We also report that the four RGS4 SNPs (SNP1, 4, 7 and 18) may be associated with alcoholism in European Caucasians at the haplotype level. The haplotype T-C-G (SNP1-4-18) may exert a protective effect against alcoholism. PMID:20430014

  8. Screening the dopamine D{sub 1} receptor gene in 131 schizophrenics and eight alcoholics: Identification of polymorphisms but lack of functionally significant sequence changes

    SciTech Connect

    Liu, Qiang; Sommer, S.S.; Sobell, J.L.

    1995-04-24

    To determine whether mutations in the D{sub 1} dopamine receptor (D{sub 1}DR) gene are associated with schizophrenia, the coding sequence was examined in 106 Caucasian, 11 African-American, 8 Asian, and 6 Native American patients. Approximately 350 kb of genomic sequence was screened by dideoxy fingerprinting, a method related to single strand conformational polymorphism (SSCP) analysis that detects virtually 100% of sequence changes. One polymorphism was identified in Asians and one in Caucasians, but neither altered 421 the amino acid sequence (Leu{sup 66}, and Ser{sup 421}, respectively). In addition, a previously reported polymorphism in the 5{prime} untranslated region of exon 2 at bp -48 was found to be common, with an allele frequency of approximately 40% in Caucasians of Western European descent. Based on the fact that no sequence changes of likely functional significance were identified, these data suggest that mutations affecting the structure of the D{sub 1} dopamine receptor protein are uncommon and are unlikely to contribute significantly to the genetic predisposition to schizophrenia. The D{sub 1}DR gene also was examined in eight alcoholics, including 3 African-Americans and 1 Native American, but no sequence changes were identified. 35 refs., 1 fig., 3 tabs.

  9. Assessment of 11-β hydroxysteroid dehydrogenase (11-βHSD1) 4478T>G and tumor necrosis factor-α (TNF-α)-308G>A polymorphisms with obesity and insulin resistance in Asian Indians in North India.

    PubMed

    Sharma, Mukti; Vikram, Naval Kishore; Misra, Anoop; Bhatt, SuryaPrakash; Tarique, Mohammed; Parray, Hilal Ahmad; Pandey, Ravindra Mohan; Luthra, Kalpana

    2013-11-01

    11-β hydroxysteroid dehydrogenase (11-βHSD1), tumor necrosis factor-α (TNF-α) and their role in obesity, regional adiposity and insulin resistance has been sparsely evaluated. We determined the polymorphic status of 11-βHSD1 4478T>G and TNF-α-308G>A in Asian Indians in north India. In this cross-sectional study (n = 498; 258 males, 240 females), association of genotypes (PCR–RFLP) of 11-βHSD1 and TNF-α were analyzed with obesity [BMI ≥ 25 kg/m(2), percentage body fat (%BF by DEXA); subcutaneous and intra-abdominal fat area (L(2-3) level by single slice MRI) in a sub sample] and insulin resistance. 46 percent subjects had generalized obesity, 55 % abdominal obesity and 23.8 % were insulin resistant. Frequencies (%) of [T/T] and [T/G] genotypes of 11-βHSD1 were 89.57 and 10.43 respectively. Homozygosity for 11-βHSD1 4478G/G was absent with no association with parameters of obesity and insulin resistance. Frequencies (%) of TNF-α [G] and [A] alleles were 88 and 12 respectively. Higher frequency of variant -308[A/A] was observed in females versus males (p = 0.01). Females with at least one single A allele of TNF-α-308G>A had significantly high %BF and total skinfold, whereas higher values of waist hip ratio, total cholesterol, triglycerides and VLDL were observed in males. Subjects with even a single A allele in TNF-α genotype showed higher subscapular skinfold predisposing them to truncal subcutaneous adiposity (p = 0.02). Our findings of association of TNF-α-308G>A variant in females with obesity indices suggests a gender-specific role of this polymorphism in obesity. High truncal subcutaneous adiposity is associated with A allele of TNF-α-308G>A in this population. PMID:24078163

  10. Preliminary evidence for an association of a dinucleotide repeat polymorphism at the MAOA gene with early onset alcoholism/substance abuse

    SciTech Connect

    Vanyukov, M.M.; Moss, H.B.; Tarter, R.E.

    1995-04-24

    An association between the liability to early onset alcoholism/substance abuse and a recently discovered dinucleotide repeat length polymorphism at the MAOA gene (MAOCA-1) was examined using polymerase chain reaction (PCR). A significant correlation between the presence/absence of the disorder and the length of the MAOCA-1 repeat was found in males, but not females, with {open_quotes}long{close_quotes} alleles (repeat length above 115 bp) associated with both increased risk for the disorder and lower age of onset of substance abuse. These preliminary data suggest that further exploration of the relationship between the MAOA gene and behavioral traits in an expanded sample is warranted. 22 refs., 1 fig., 3 tabs.

  11. Influence of the PNPLA3 rs738409 Polymorphism on Non-Alcoholic Fatty Liver Disease and Renal Function among Normal Weight Subjects

    PubMed Central

    Oniki, Kentaro; Saruwatari, Junji; Izuka, Tomoko; Kajiwara, Ayami; Morita, Kazunori; Sakata, Misaki; Otake, Koji; Ogata, Yasuhiro; Nakagawa, Kazuko

    2015-01-01

    In normal weight subjects (body mass index < 25 kg/m2), non-alcoholic fatty liver disease (NAFLD) is likely to coexist with metabolic diseases. The patatin-like phospholipase 3 (PNPLA3) polymorphism rs738409 (c.444C>G) is associated with the risk of NAFLD and/or renal dysfunction; however, the influence of the weight status on the associations remains unknown. We aimed to clarify the associations of the PNPLA3 polymorphism with the risk of NAFLD and/or renal dysfunction, while also paying careful attention to the weight status of the subjects. Cross-sectional and retrospective longitudinal studies with 5.5 ± 1.1 years of follow-up were conducted in 740 and 393 Japanese participants (61.2 ± 10.5 and 67.5 ± 6.0 years), respectively, during a health screening program. Among 591 subjects who did not have a habitual alcohol intake and/or hepatitis B or C virus infections, the PNPLA3 G/G genotype was associated with the risk for NAFLD in normal weight subjects [odds ratio (95% CI): 3.06 (1.11–8.43), P < 0.05]. Among all subjects, carriers of the PNPLA3 G/G genotype with a normal weight had a lower eGFR than those of the C/C genotype [partial regression coefficient (SE): -3.26 (1.48), P < 0.05]. These associations were replicated in the longitudinal analyses. Among the overweight subjects, none of the genotypes were significantly associated in the cross-sectional and longitudinal analyses; however, the power of the analyses was small, especially in the analyses among overweight subjects. The findings of this study suggest that carriers of the PNPLA3 G/G genotype with a normal weight status should nevertheless be carefully monitored for the presence of NAFLD and/or renal dysfunction. PMID:26200108

  12. Association between dopamine receptor D3 gene BalI polymorphism and cognitive impulsiveness in alcohol-dependent men.

    PubMed

    Limosin, F; Romo, L; Batel, P; Adès, J; Boni, C; Gorwood, Ph

    2005-05-01

    The gene coding for the dopamine receptor D3 (DRD3) is considered as a major candidate gene in various addictive disorders. Association studies in alcohol-dependence for this gene are nevertheless controversial. We made the hypothesis that phenotypical heterogeneity of alcohol-dependence (i.e. the DRD3 gene is a vulnerability gene in a specific subgroup of patients only) could explain these spurious findings, focusing on a core dimension of addictive disorders, namely impulsiveness. In our sample of 108 French alcohol-dependent patients, patients above the median value for cognitive impulsiveness (one of the three dimensions of the Barratt scale) were more frequently heterozygous than both alcohol-dependent patients with lower impulsiveness (OR = 2.51, P = 0.019) and than 71 healthy controls (OR = 2.32, P = 0.025). Age at interview, antisocial personality disorder, other comorbid addictive disorder, age at onset of alcohol-dependence, and lifetime mood disorders did not constitute confusing intermediate factors. PMID:15935433

  13. Increased mesolimbic cue-reactivity in carriers of the mu-opioid-receptor gene OPRM1 A118G polymorphism predicts drinking outcome: a functional imaging study in alcohol dependent subjects.

    PubMed

    Bach, Patrick; Vollsta Dt-Klein, Sabine; Kirsch, Martina; Hoffmann, Sabine; Jorde, Anne; Frank, Josef; Charlet, Katrin; Beck, Anne; Heinz, Andreas; Walter, Henrik; Sommer, Wolfgang H; Spanagel, Rainer; Rietschel, Marcella; Kiefer, Falk

    2015-08-01

    The endogenous opioid system is involved in the pathophysiology of alcohol-use disorders. Genetic variants of the opioid system alter neural and behavioral responses to alcohol. In particular, a single nucleotide polymorphism rs1799971 (A118G) in the mu-opioid receptor gene (OPRM1) is suggested to modulate alcohol-related phenotypes and neural response in the mesocorticolimbic dopaminergic system. Little is known about the clinical implications of these changes. The current study investigated the relationship of genotype effects on subjective and neural responses to alcohol cues and relapse in a sample of abstinent alcohol-dependent patients. Functional magnetic resonance imaging (fMRI) was used to investigate alcohol cue-reactivity and drinking outcome of 81 abstinent alcohol-dependent patients. G-allele carriers displayed increased fMRI cue-reactivity in the left dorsal striatum and bilateral insulae. Neural responses to alcohol cues in these brain regions correlated positively with subjective craving for alcohol and positive expectations of alcohol׳s effects. Moreover, alcohol cue-reactivity in the left dorsal striatum predicted time to first severe relapse. Current results show that alcohol-dependent G-allele carriers׳ increased cue-reactivity is associated with an increased relapse risk. This suggests that genotype effects on cue-reactivity might link the OPRM1 A118G risk allele with an increased relapse risk that was reported in earlier studies. From a clinical perspective, risk-allele carriers might benefit from treatments, such as neuro-feedback or extinction-based therapy that are suggested to reduce mesolimbic reactivity. PMID:25937240

  14. Lack of association between SREBF-1c gene polymorphisms and risk of non-alcoholic fatty liver disease in a Chinese Han population.

    PubMed

    Peng, Xian-E; Chen, Feng-Lin; Liu, Wenjuan; Hu, ZhiJian; Lin, Xu

    2016-01-01

    The transcription factor sterol regulatory element-binding protein-1c (SREBP-1c) is a key regulator of lipogenesis and insulin sensitivity, and is associated with non-alcoholic fatty liver disease (NAFLD). Here, we assessed the impact of common single nucleotide polymorphisms (SNPs) in SREBF-1c on NAFLD susceptibility and associated metabolic phenotypes in a Han Chinese population. Four common SNPs (rs62064119, rs2297508, rs11868035 and rs13306741) in the SREBP-1c gene were selected and genotyped in 593 patients with NAFLD and 593 healthy controls. Unconditional logistic regression was performed to assess the risk of NAFLD by determining odds ratios and 95% confidence intervals (CIs). No significant differences in genotype and allele frequencies of these four SNPs were found between the NAFLD population and the controls (all P > 0.05). In addition, we did not find any association between the SREBF-1c SNPs and the clinical and biochemical parameters, such as body mass index, total cholesterol, high density lipoprotein-and low density lipoprotein-cholesterol or systolic and diastolic blood pressure, except that the rs2297508 C-allele or rs11868035 G-allele showed significant associations with lower triglyceride levels in control subjects (P < 0.01). Our findings suggested that the four polymorphisms in SREBF-1c gene are not associated with risk of NAFLD in the Chinese Han population. PMID:27572914

  15. Lack of association between SREBF-1c gene polymorphisms and risk of non-alcoholic fatty liver disease in a Chinese Han population

    PubMed Central

    Peng, Xian-E.; Chen, Feng-Lin; Liu, Wenjuan; Hu, ZhiJian; Lin, Xu

    2016-01-01

    The transcription factor sterol regulatory element-binding protein-1c (SREBP-1c) is a key regulator of lipogenesis and insulin sensitivity, and is associated with non-alcoholic fatty liver disease (NAFLD). Here, we assessed the impact of common single nucleotide polymorphisms (SNPs) in SREBF-1c on NAFLD susceptibility and associated metabolic phenotypes in a Han Chinese population. Four common SNPs (rs62064119, rs2297508, rs11868035 and rs13306741) in the SREBP-1c gene were selected and genotyped in 593 patients with NAFLD and 593 healthy controls. Unconditional logistic regression was performed to assess the risk of NAFLD by determining odds ratios and 95% confidence intervals (CIs). No significant differences in genotype and allele frequencies of these four SNPs were found between the NAFLD population and the controls (all P > 0.05). In addition, we did not find any association between the SREBF-1c SNPs and the clinical and biochemical parameters, such as body mass index, total cholesterol, high density lipoprotein-and low density lipoprotein-cholesterol or systolic and diastolic blood pressure, except that the rs2297508 C-allele or rs11868035 G-allele showed significant associations with lower triglyceride levels in control subjects (P < 0.01). Our findings suggested that the four polymorphisms in SREBF-1c gene are not associated with risk of NAFLD in the Chinese Han population. PMID:27572914

  16. Change in ATP-binding cassette B1/19, glutamine synthetase and alcohol dehydrogenase gene expression during root elongation in Betula pendula Roth and Alnus glutinosa L. Gaertn in response to leachate and leonardite humic substances.

    PubMed

    Tahiri, Abdelghani; Delporte, Fabienne; Muhovski, Yordan; Ongena, Marc; Thonart, Philippe; Druart, Philippe

    2016-01-01

    Humic substances (HS) are complex and heterogeneous compounds of humified organic matter resulting from the chemical and microbiological decomposition of organic residues. HS have a positive effect on plant growth and development by improving soil structure and fertility. They have long been recognized as plant growth-promoting substances, particularly with regard to influencing nutrient uptake, root growth and architecture. The biochemical and molecular mechanisms through which HS influence plant physiology are not well understood. This study evaluated the bioactivity of landfill leachate and leonardite HS on alder (Alnus glutinosa L. Gaertn) and birch (Betula pendula Roth) during root elongation in vitro. Changes in root development were studied in relation to auxin, carbon and nitrogen metabolisms, as well as to the stress adaptive response. The cDNA fragments of putative genes encoding two ATP-binding cassette (ABC) transporters (ABCB1 and ABCB19) belonging to the B subfamily of plant ABC auxin transporters were cloned and sequenced. Molecular data indicate that HS and their humic acid (HA) fractions induce root growth by influencing polar auxin transport (PAT), as illustrated by the modulation of the ABCB transporter transcript levels (ABCB1 and ABCB19). There were also changes in alcohol dehydrogenase (ADH) and glutamine synthetase (GS) gene transcript levels in response to HS exposure. These findings confirmed that humic matter affects plant growth and development through various metabolic pathways, including hormonal, carbon and nitrogen metabolisms and stress response or signalization. PMID:26595095

  17. Association and ancestry analysis of sequence variants in ADH and ALDH using alcohol-related phenotypes in a Native American community sample

    PubMed Central

    Peng, Qian; Gizer, Ian R.; Libiger, Ondrej; Bizon, Chris; Wilhelmsen, Kirk C.; Schork, Nicholas J.; Ehlers, Cindy L.

    2015-01-01

    Higher rates of alcohol use and other drug-dependence have been observed in some Native American populations relative to other ethnic groups in the U.S. Previous studies have shown that alcohol dehydrogenase (ADH) genes and aldehyde dehydrogenase (ALDH) genes may affect the risk of development of alcohol dependence, and that polymorphisms within these genes may differentially affect risk for the disorder depending on the ethnic group evaluated. We evaluated variations in the ADH and ALDH genes in a large study investigating risk factors for substance use in a Native American population. We assessed ancestry admixture and tested for associations between alcohol-related phenotypes in the genomic regions around the ADH1-7 and ALDH2 and ALDH1A1 genes. Seventy-two (72) ADH variants showed significant evidence of association with a severity level of alcohol drinking-related dependence symptoms phenotype. These significant variants spanned across the entire 7 ADH gene cluster regions. Two significant associations, one in ADH and one in ALDH2, were observed with alcohol dependence diagnosis. Seventeen (17) variants showed significant association with the largest number of alcohol drinks ingested during any 24-hour period. Variants in or near ADH7 were significantly negatively associated with alcohol-related phenotypes, suggesting a potential protective effect of this gene. In addition, our results suggested that a higher degree of Native American ancestry is associated with higher frequencies of potential risk variants and lower frequencies of potential protective variants for alcohol dependence phenotypes. PMID:25270064

  18. Glucose-6-phosphate dehydrogenase

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003671.htm Glucose-6-phosphate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) is a type of ...

  19. Ondansetron and sertraline may interact with 5-HTTLPR and DRD4 polymorphisms to reduce drinking in non-treatment seeking alcohol dependent women: exploratory findings

    PubMed Central

    Kenna, George A.; Zywiak, William H.; Swift, Robert M.; McGeary, John E.; Clifford, James S.; Shoaff, Jessica R.; Fricchione, Samuel; Brickley, Michael; Beaucage, Kayla; Haass-Koffler, Carolina L.; Leggio, Lorenzo

    2014-01-01

    The purpose of this exploratory study was to examine the interaction of 5-HTTLPR and DRD4 exon III polymorphisms with gender in non-treatment seeking alcohol dependent (AD) individuals while alternately taking ondansetron and sertraline. Evidence suggests that alcohol dependence may be influenced by a genetic interaction that may be gender specific with temporal changes making pharmacological treatment with serotonergic drugs complex. The main trial was a within-subject double-blind placebo-controlled human laboratory study with 77 non-treatment-seeking AD individuals randomized (55 completed, 49 complete data) to receive 200mg/day of sertraline or 0.5mg/day of ondansetron for 3-weeks followed by an alcohol self-administration experiment (ASAE), then placebo for three weeks followed by a second ASAE, then receive the alternate drug, in a counterbalanced order, for three weeks followed by a third ASAE. Results for men were not significant. Women with the LL 5-HTTLPR genotype receiving ondansetron and SS/SL 5-HTTLPR genotypes receiving sertraline (matched), drank significantly fewer drinks per drinking day (DDD) during the 7-days prior to the first and third ASAEs than women receiving the mismatched medication (i.e. sertraline to LL and ondansetron to SS/SL). In a three-way interaction, 5-HTTLPR alleles by DRD4 alleles by medications, women with the LL genotype who received ondansetron and had DRD4 ≥7 exon III repeats drank significantly fewer DDD as did SS/SL women who received sertraline but conversely had DRD4 <7-repeats in the 7-day period leading up to the first and third ASAEs. Consistent with these data was a significant reduction of milliliters consumed ad lib during these same ASAEs. These exploratory findings add possible support to gender and genetic differences among AD individuals in response to serotonergic pharmacotherapies. Future trials should be powerful enough to take into account that endophenotypes and a targeting of serotonergic interactions

  20. Ondansetron and sertraline may interact with 5-HTTLPR and DRD4 polymorphisms to reduce drinking in non-treatment seeking alcohol-dependent women: exploratory findings.

    PubMed

    Kenna, George A; Zywiak, William H; Swift, Robert M; McGeary, John E; Clifford, James S; Shoaff, Jessica R; Fricchione, Samuel; Brickley, Michael; Beaucage, Kayla; Haass-Koffler, Carolina L; Leggio, Lorenzo

    2014-09-01

    The purpose of this exploratory study was to examine the interaction of 5-HTTLPR and DRD4 exon III polymorphisms with gender in non-treatment seeking alcohol-dependent (AD) individuals while alternately taking ondansetron and sertraline. Evidence suggests that alcohol dependence may be influenced by a genetic interaction that may be gender-specific with temporal changes making pharmacological treatment with serotonergic drugs complex. The main trial was a within-subject double-blind placebo-controlled human laboratory study with 77 non-treatment-seeking AD individuals randomized (55 completed, 49 complete data) to receive 200 mg/day of sertraline or 0.5 mg/day of ondansetron for 3 weeks followed by an alcohol self-administration experiment (ASAE), then placebo for 3 weeks followed by a second ASAE, then receive the alternate drug, in a counterbalanced order, for 3 weeks followed by a third ASAE. Results for men were not significant. Women with the LL 5-HTTLPR genotype receiving ondansetron and SS/SL 5-HTTLPR genotype receiving sertraline (matched), drank significantly fewer drinks per drinking day (DDD) during the 7 days prior to the first and third ASAEs than women receiving the mismatched medication (i.e., sertraline to LL and ondansetron to SS/SL). In a 3-way interaction, 5-HTTLPR alleles by DRD4 alleles by medications, women with the LL genotype who received ondansetron and had DRD4≥7 exon III repeats drank significantly fewer DDD as did SS/SL women who received sertraline but conversely had DRD4<7 repeats in the 7-day period leading up to the first and third ASAEs. Consistent with these data was a significant reduction of milliliters consumed ad libitum during these same ASAEs. These exploratory findings add possible support to gender and genetic differences among AD individuals in response to serotonergic pharmacotherapies. Future trials should be powerful enough to take into account that endophenotypes and a targeting of serotonergic interactions may be

  1. Mutant alcohol dehydrogenase (ADH III) presequences that affect both in vitro mitochondrial import and in vitro processing by the matrix protease.

    PubMed Central

    Mooney, D T; Pilgrim, D B; Young, E T

    1990-01-01

    Point mutations in the presequence of the mitochondrial alcohol dehydrogerase isoenzyme (ADH III) have been shown to affect either the import of the precursor protein into yeast mitochondria in vivo or its processing within the organelle. In the present work, the behavior of these mutants during in vitro import into isolated mitochondria was investigated. All point mutants tested were imported with a slower initial rate than that of the wild-type precursor. This defect was corrected when the precursors were treated with urea prior to import. Once imported, the extent of processing to the mature form of mutant precursors varied greatly and correlated well with the defects observed in vivo. This result was not affected by prior urea treatment. When matrix extracts enriched for the processing protease were used, this defect was shown to be due to failure of the protease to efficiently recognize or cleave the presequence, rather than to a lack of access to the precursor. The rate of import of two ADH III precursors bearing internal deletions in the leader sequence was similar to those of the point mutants, whereas a deletion leading to the removal of the 15 amino-terminal amino acids was poorly imported. The mature amino terminus of wild-type ADH III was determined to be Gln-25. Mutant m01 (Ser-26 to Phe), which reduced the efficiency of cleavage in vitro by 80%, was cleaved at the correct site. Images PMID:2188098

  2. Crystal structure of Pseudomonas fluorescens mannitol 2-dehydrogenase: evidence for a very divergent long-chain dehydrogenase family.

    PubMed

    Kavanagh, Kathryn L; Klimacek, Mario; Nidetzky, Bernd; Wilson, David K

    2003-02-01

    Mannitol 2-dehydrogenase from Pseudomonas fluorescens (pfMDH) is a secondary alcohol dehydrogenase that catalyzes the reversible NAD(P)-dependent oxidation of D-mannitol to D-fructose, D-arabinitol to D-xylulose, and D-sorbitol to L-sorbose. It is a member of the mostly prokaryotic family of long-chain mannitol dehydrogenases that so far includes 66 members. Unlike other alcohol and polyol dehydrogenases that utilize metal cofactors or a conserved active-site tyrosine for catalysis, an invariant lysine is the general base. The crystal structure of pfMDH in a binary complex with NAD(H) and a ternary complex with NAD(H) and D-mannitol have been determined to 1.7 and 1.8 A resolution respectively. Comparison of secondary structure assignment to sequence alignments suggest the shortest members of this family, mannitol-1-phosphate 5-dehydrogenases, retain core elements but lack secondary structural components found on the surface of pfMDH. The elements predicted to be absent are distributed throughout the primary sequence, implying that a simple truncation or fusion did not occur. The closest structural neighbors are 6-phosphogluconate dehydrogenase, UDP-glucose dehydrogenase, N-(1-D-carboxyethyl)-L-norvaline dehydrogenase, and glycerol-3-phosphate dehydrogenase. Although sequence identity is only a barely recognizable 7-10%, conservation of secondary structural elements as well as homologous residues that are contributed to the active site indicates they may be related by divergent evolution. PMID:12604241

  3. Alcohol consumption and cognitive impairment in older men

    PubMed Central

    Hankey, Graeme J.; Yeap, Bu B.; Golledge, Jonathan; Flicker, Leon

    2014-01-01

    Objective: To determine whether alcohol consumption is causally associated with cognitive impairment in older men as predicted by mendelian randomization. Methods: Retrospective analysis of a cohort study of 3,542 community-dwelling men aged 65 to 83 years followed for 6 years. Cognitive impairment was established by a Mini-Mental State Examination score of 23 or less. Participants provided detailed information about their use of alcohol during the preceding year and were classified as abstainers, occasional drinkers, and regular drinkers: mild (<15 drinks/wk), moderate (15–27 drinks/wk), heavy (28–34 drinks/wk), and abusers (≥35 drinks/wk). We genotyped the rs1229984 G→A variant of the alcohol dehydrogenase 1B (ADH1B) gene, which is associated with lower prevalence of alcohol abuse and dependence. Other measures included age, education, marital status, smoking and physical activity, body mass index, diabetes, hypertension, and cardiovascular diseases. Results: At study entry, rs1229984 G→A polymorphism was associated with lower prevalence of regular use of alcohol and decreased consumption among regular users. Six years later, 502 men (14.2%) showed evidence of cognitive impairment. Abstainers and irregular drinkers had higher odds of cognitive impairment than regular drinkers (odds ratio [OR] = 1.23, 95% confidence interval [CI] = 1.00–1.51, after adjustment for other measured factors). The rs1229984 G→A polymorphism did not decrease the odds of cognitive impairment (AA/GG OR = 1.35, 95% CI = 0.29–6.27; GA/GG OR = 1.05, 95% CI = 0.71–1.55). Conclusions: Alcohol consumption, including heavy regular drinking and abuse, is not a direct cause of cognitive impairment in later life. Our results are consistent with the possibility, but do not prove, that regular moderate drinking decreases the risk of cognitive impairment in older men. PMID:24553426

  4. Comparative genomics of aldehyde dehydrogenase 5a1 (succinate semialdehyde dehydrogenase) and accumulation of gamma-hydroxybutyrate associated with its deficiency

    PubMed Central

    2009-01-01

    Succinic semialdehyde dehydrogenase (SSADH; aldehyde dehydrogenase 5A1 [ALDH5A1]; locus 6p22) occupies a central position in central nervous system (CNS) neurotransmitter metabolism as one of two enzymes necessary for γ-aminobutyric acid (GABA) recycling from the synaptic cleft. Its importance is highlighted by the neurometabolic disease associated with its inherited deficiency in humans, as well as the severe epileptic phenotype observed in Aldh5a1-/- knockout mice. Expanding evidence now suggests, however, that even subtle decreases in human SSADH activity, associated with rare and common single nucleotide polymorphisms, may produce subclinical pathological effects. SSADH, in conjunction with aldo-keto reductase 7A2 (AKR7A2), represent two neural enzymes responsible for further catabolism of succinic semialdehyde, producing either succinate (SSADH) or γ-hydroxybutyrate (GHB; AKR7A2). A GABA analogue, GHB is a short-chain fatty alcohol with unusual properties in the CNS and a long pharmacological history. Moreover, SSADH occupies a further role in the CNS as the enzyme responsible for further metabolism of the lipid peroxidation aldehyde 4-hydroxy-2-nonenal (4-HNE), an intermediate known to induce oxidant stress. Accordingly, subtle decreases in SSADH activity may have the capacity to lead to regional accumulation of neurotoxic intermediates (GHB, 4-HNE). Polymorphisms in SSADH gene structure may also associate with quantitative traits, including intelligence quotient and life expectancy. Further population-based studies of human SSADH activity promise to reveal additional properties of its function and additional roles in CNS tissue. PMID:19164088

  5. Effects and action mechanisms of Korean pear (Pyrus pyrifolia cv. Shingo) on alcohol detoxification.

    PubMed

    Lee, Ho-Sun; Isse, Toyoshi; Kawamoto, Toshihiro; Woo, Hyun-Su; Kim, An Keun; Park, Jong Y; Yang, Mihi

    2012-11-01

    Korean pear (Pyrus pyrifolia cv. Shingo) has been used as a traditional medicine for alleviating alcohol hangover. However, scientific evidence for its effectiveness or mechanism is not clearly established. To investigate its mechanism of alcohol detoxification, both in vitro and in vivo studies were performed with an aldehyde dehydrogenase 2 (ALDH2) alternated animal model. The pear extract (10 mL/kg bw) was administered to Aldh2 normal (C57BL/6) and deficient (Aldh2 -/-) male mice. After 30 min, ethanol (1 g or 2 g/kg bw) was administered to the mice via gavage. Levels of alcohol and acetaldehyde in blood were quantified by GC/MS. First, it was observed that the pears stimulated both alcohol dehydrogenase (ADH) and ALDH activities by 2∼3-  and 1.3-fold in in vitro studies, respectively. Second, mouse PK data (AUC(∞) and C(max) ) showed that the pear extract decreased the alcohol level in blood regardless of ALDH2 genotype. Third, the pear increased the acetaldehyde level in blood in Aldh2 deficient mice but not in Aldh2 normal mice. Therefore, the consistent in vitro and in vivo data suggest that Korean pears stimulate the two key alcohol-metabolizing enzymes. These stimulations could be the main mechanism of the Korean pear for alcohol detoxification. Finally, the results suggest that polymorphisms of human ALDH2 could bring out individual variations in the effects of Korean pear on alcohol detoxification. PMID:22451246

  6. Dynamic structures of horse liver alcohol dehydrogenase (HLADH): results of molecular dynamics simulations of HLADH-NAD(+)-PhCH(2)OH, HLADH-NAD(+)-PhCH(2)O(-), and HLADH-NADH-PhCHO.

    PubMed

    Luo, J; Bruice, T C

    2001-12-01

    Molecular dynamics simulations of the oxidation of benzyl alcohol by horse liver alcohol dehydrogenase (HLADH) have been carried out. The following three states have been studied: HLADH.PhCH(2)OH.NAD(+) (MD1), HLADH.PhCH(2)O(-).NAD(+) (MD2), and HLADH.PhCHO.NADH (MD3). MD1, MD2, and MD3 simulations were carried out on one of the subunits of the dimeric enzyme covered in a 32-A-radius sphere of TIP3P water centered on the active site. The proton produced on ionization of the alcohol when HLADH.PhCH(2)OH.NAD(+) --> HLADH.PhCH(2)O(-).NAD(+) is transferred from the active site to solvent water via a hydrogen bonding network consisting of serine48 hydroxyl, ribose 2'- and 3'-hydroxyl groups, and Hist51. Hydrogen bonding of the 3'OH of ribose to Ile269 carbonyl maintains this proton in position to be transferred to water. Molecular dynamic simulations have been employed to track water1287 from the TIP3 water pool to the active site, thus exhibiting the mode of entrance of water to the active site. With time the water1287 accumulates in two different positions in order to accept the proton from the ribose 3'-OH and from His51. There can be identified two structural substates for proton passage. In the first substate the imidazole Ne2 of His51 is adjacent to the nicotinamide ribose C2'-OH and hydrogen bonding distances for proton transfer through the hydrogen bonded relay series PhCH(2)OH...Ser48-OH...Ribose2'-OH...His51...OH(2) (path 1) average 2.0, 2.0, and 2.1 A and (for His51...OH(2)) minimal distances less or equal to 2.5 A. The structure for path 1 is present 20% of the time span. And in the second substate, there are two possible proton passages: path 1 as before and path 2. Path 2 involves the hydrogen-bonded relay series PhCH(2)OH...Ser48-OH...Ribose2'-OH...Ribose3'-OH...His51.OH(2) with the average bonding distances being 2.0, 2.0, 2.1, and 2.0 A and (for His51...OH(2)) minimal distances less or equal to 2.5 A (20% probability of the time span), respectively

  7. Plant Formate Dehydrogenase

    SciTech Connect

    John Markwell

    2005-01-10

    The research in this study identified formate dehydrogenase, an enzyme that plays a metabolic role on the periphery of one-carbon metabolism, has an unusual localization in Arabidopsis thaliana and that the enzyme has an unusual kinetic plasticity. These properties make it possible that this enzyme could be engineered to attempt to engineer plants with an improved photosynthetic efficiency. We have produced transgenic Arabidopsis and tobacco plants with increased expression of the formate dehydrogenase enzyme to initiate further studies.

  8. Alcoholism and Alcohol Abuse

    MedlinePlus

    ... This means that their drinking causes distress and harm. It includes alcoholism and alcohol abuse. Alcoholism, or ... brain, and other organs. Drinking during pregnancy can harm your baby. Alcohol also increases the risk of ...

  9. [Influence of chronic alcohol treatment on the expression of the Bdnf, Bax, Bcl-xL, and CASP3 genes in the mouse brain: Role of the C1473G polymorphism in the gene encoding tryptophan hydroxylase 2].

    PubMed

    Bazovkina, D V; Tsybko, A S; Filimonova, E A; Ilchibaeva, T V; Naumenko, V S

    2016-01-01

    Tryptophan hydroxylase 2 (Tph-2) is the key enzyme in serotonin biosynthesis. Serotonin is one of the main neurotransmitters involved in the regulation of various physiological functions and behavior patterns. The influence of chronic ethanol consumption on the expression of the Bdnf, Bax, Bcl-xL, and CASP3 genes was studied in the brain structures of B6-1473C (C/C) and B6-1473G (G/G) mice that had been obtained on the base of the C57BL/6 strain. The strains differed in the genotype for the C1473G single nucleotide polymorphism in the Tph-2 gene and in Tph-2 enzyme activity. It was found that chronic alcohol treatment led to a significant increase in the expression of the Bdnf gene in the midbrain of B6-1473G mice, but not in B6-1473С. Chronic alcohol treatment considerably decreased the expression of the ultimate brain apoptosis effector, caspase 3, in the frontal cortex, but increased it in the hippocampus of B6-1473G mice. At the same time, chronic ethanol administration reduced the level of the antiapoptotic Bcl-xL mRNA in the midbrain of B6-1473C mice. Thus, the C1473G polymorphism in the Tph-2 gene considerably influenced the changes in the expression patterns of genes involved in the regulation of neurogenesis and neural apoptosis induced by chronic ethanol treatment. PMID:27239851

  10. The conditioning of intervention effects on early adolescent alcohol use by maternal involvement and dopamine receptor D4 (DRD4) and serotonin transporter linked polymorphic region (5-HTTLPR) genetic variants.

    PubMed

    Cleveland, H Harrington; Schlomer, Gabriel L; Vandenbergh, David J; Feinberg, Mark; Greenberg, Mark; Spoth, Richard; Redmond, Cleve; Shriver, Mark D; Zaidi, Arslan A; Hair, Kerry L

    2015-02-01

    Data drawn from the in-home subsample of the PROSPER intervention dissemination trial were used to investigate the moderation of intervention effects on underage alcohol use by maternal involvement and candidate genes. The primary gene examined was dopamine receptor D4 (DRD4). Variation in this gene and maternal involvement were hypothesized to moderate the influence of intervention status on alcohol use. The PROSPER data used were drawn from 28 communities randomly assigned to intervention or comparison conditions. Participating youth were assessed in five in-home interviews from sixth to ninth grades. A main effect of sixth-grade pretest maternal involvement on ninth-grade alcohol use was found. Neither intervention status nor DRD4 variation was unconditionally linked to ninth-grade drinking. However, moderation analyses revealed a significant three-way interaction among DRD4 status, maternal involvement, and intervention condition. Follow-up analyses revealed that prevention reduced drinking risk, but only for youth with at least one DRD4 seven-repeat allele who reported average or greater pretest levels of maternal involvement. To determine if this conditional pattern was limited to the DRD4 gene, we repeated analyses using the serotonin transporter linked polymorphic region site near the serotonin transporter gene. The results for this supplemental analysis revealed a significant three-way interaction similar but not identical to that found for DRD4. PMID:25640830

  11. Analysis of rat cytosolic 9-cis-retinol dehydrogenase activity and enzymatic characterization of rat ADHII.

    PubMed

    Popescu, G; Napoli, J L

    2000-01-01

    We report the characterization of two enzymes that catalyze NAD(+)-dependent 9-cis-retinol dehydrogenase activity in rat liver cystol. Alcohol dehydrogenase class I (ADHI) contributes > 80% of the NA D+-dependent 9-cis-retinol dehydrogenase activity recovered, whereas alcohol dehydrogenase class II (ADHII), not identified previously at the protein level, nor characterized enzymatically in rat, accounts for approximately 2% of the activity. Rat ADHII exhibits properties different from those described for human ADHII. Moreover, rat ADHII-catalyzed rates of ethanol dehydrogenation are markedly lower than octanol or retinoid dehydrogenation rates. Neither ethanol nor 4-methylpyrazole inhibits the 9-cis-retinol dehydrogenase activity of rat ADHII. We propose that ADHII represents the previously observed additional retinoid oxidation activity of rat liver cytosol which occurred in the presence of either ethanol or 4-methylpyrazole. We also show that human and rat ADHII differ considerably in enzymatic properties. PMID:10606766

  12. Co-development of early adolescent alcohol use and depressive feelings: The role of the mu-opioid receptor A118G polymorphism.

    PubMed

    Kleinjan, Marloes; Rozing, Mayke; Engels, Rutger C M E; Verhagen, Maaike

    2015-08-01

    Alcohol use and depressive feelings are often related among early adolescents. However, the nature and underlying mechanisms of this association are not yet clear. The aim of this study was to investigate the co-development of alcohol use and depressive feelings over time and to examine the effects of the mu-opioid receptor (OPRM1) A118G genotype on such co-development. Data from a five-wave longitudinal, genetically informed survey study, with intervals of 4 months among a group of 739 normative early adolescents (12-13 years of age at baseline), were analyzed using a dual latent growth curve approach. OPRM1 status was evaluated from saliva-derived DNA samples. The results indicated a positive association between alcohol use and depressive feelings both at the initial levels and over time, indicating co-development in early adolescence. Compared to OPRM1 118G carriers, homozygous 118A carriers showed a greater increase in frequency of alcohol use and higher levels of depressive feelings over time. Evidence for co-development was only found within the group of homozygous 118A carriers, whereas in OPRM1 118G carriers the development of alcohol use and depressive feelings over time were not significantly associated. These results highlight the potential of OPRM1 as a common etiological factor for the development of alcohol use and depressive feelings in early adolescence. PMID:25215437

  13. Aldehyde dehydrogenase 2 and head and neck cancer: a meta-analysis implementing a Mendelian randomization approach.

    PubMed

    Boccia, Stefania; Hashibe, Mia; Gallì, Paola; De Feo, Emma; Asakage, Takahiro; Hashimoto, Tomoko; Hiraki, Akio; Katoh, Takahiko; Nomura, Takeshi; Yokoyama, Akira; van Duijn, Cornelia M; Ricciardi, Gualtiero; Boffetta, Paolo

    2009-01-01

    Alcohol drinking at high doses is a risk factor for head and neck cancer, and exposure to acetaldehyde, the principle metabolite of alcohol, is supposed to account for the increased risk. Individuals homozygous for the 2 variant allele of aldehyde dehydrogenase 2 (ALDH2) are unable to metabolize acetaldehyde, which prevents them from alcohol drinking, whereas 1 2 have 6-fold higher blood acetaldehyde concentration postalcohol consumption with respect to 1 1. According to the concept of Mendelian randomization, because this polymorphism is distributed randomly during gamete formation, its association with head and neck cancer should be not confounded by smoking. We carried out a meta-analysis of ALDH2 and head and neck cancer searching for relevant studies on Medline and Embase up to January 31, 2008, and investigated the consistency between the expected odds ratio (OR) among drinkers from the largest pooled analysis among never smokers and the observed OR from this meta-analysis by an interaction test. Six studies were selected (945 cases, 2,917 controls). The OR of head and neck cancer among 2 2 was 0.53 [95% confidence interval (95% CI), 0.28-1.00] relative to 1 1 and 1.83 (95% CI, 1.21-2.77) among 1 2. The expected OR for head and neck cancer due to alcohol intake among 1 1 was 1.38 (95% CI, 0.88-2.17) and the observed OR among 1 1 compared with 2*2 from this meta-analysis was 1.88 (95% CI, 1.00-3.57; P for interaction = 0.43). Besides showing the effectiveness of the Mendelian randomization approach, these findings support the theory that alcohol increases head and neck cancer risk through the carcinogenic action of acetaldehyde. PMID:19124505

  14. STRUCTURE TOXICITY IN RELATIONSHIPS FOR A,B-UNSATURATED ALCOHOLS IN FISH

    EPA Science Inventory

    Previous toxicity testing with fathead minnows (Pimephales promelas) indicated that some unsaturated acetylenic and allylic alcohols can be metabolically activated, via alcohol dehydrogenase, to highly toxic a,B-unsaturated aldehydes and ketones or allene derivatives. lthough sev...

  15. Exclusion of linkage between alcoholism and the MNS blood group region on chromosome 4q in multiplex families

    SciTech Connect

    Neiswanger, K.; Kaplan, B.; Hill, S.Y.

    1995-02-27

    Polymorphic DNA markers on the long arm of chromosome 4 were used to examine linkage to alcoholism in 20 multiplex pedigrees. Fifteen loci were determined for 124 individuals. Lod scores were calculated assuming both dominant and recessive disease modes of inheritance, utilizing incidence data by age and gender that allow for correction for variable age of onset and frequency of the disorder by gender. Under the assumption that alcoholism is homogeneous in this set of pedigrees, and that a recessive mode with age and gender correction is the most appropriate, the total lod scores for all families combined were uniformly lower than -2.0. This suggests an absence of linkage between the putative alcoholism susceptibility gene and markers in the region of the MNS blood group (4q28-31), a region for which we had previously found suggestive evidence of linkage to alcoholism. The 100 cM span of chromosome 4 studied includes the class I alcohol dehydrogenase (ADH) loci. Using the recessive mode, no evidence for linkage to alcoholism was found for the markers tested, which spanned almost the entire long arm of chromosome 4. Under the dominant mode, no evidence for linkage could be found for several of the markers. 36 refs., 1 fig., 3 tabs.

  16. Alcohol Alert

    MedlinePlus

    ... main content National Institute on Alcohol Abuse and Alcoholism (NIAAA) Main Menu Search Search form Search Alcohol & ... on a single aspect of alcohol abuse and alcoholism. Please click on the desired publication for full ...

  17. Exceptionally High Levels of Restriction Site Polymorphism in DNA near the Maize Adh1 Gene

    PubMed Central

    Johns, Mitrick A.; Strommer, Judith N.; Freeling, Michael

    1983-01-01

    Restriction maps have been prepared for the chromosomal region near seven biochemically and genetically distinct maize alcohol dehydrogenase-1 (Adh1) alleles using a small cDNA probe for Adh1. Five restriction sites spanning about 4 kb in and near the Adh1 transcription unit appear identical in all seven alleles. Outside this conserved region, variation in restriction site position is the rule. Six of the seven alleles are distinguishable, and the alleles appear to fall into four groups. The DNA flanking the 1S-type alleles seems to share no restriction site homology with the DNA near the 1F-type alleles. Several hypotheses are put forward to explain how such high levels of polymorphism could have arisen in a species that has been domesticated for only about 10,000 years. PMID:17246173

  18. Cyanobacterial NADPH dehydrogenase complexes

    SciTech Connect

    Ogawa, Teruo; Mi, Hualing

    2007-07-01

    Cyanobacteria possess functionally distinct multiple NADPH dehydrogenase (NDH-1) complexes that are essential to CO2 uptake, photosystem-1 cyclic electron transport and respiration. The unique nature of cyanobacterial NDH-1 complexes is the presence of subunits involved in CO2 uptake. Other than CO2 uptake, chloroplastic NDH-1 complex has similar role as cyanobacterial NDH-1 complexes in photosystem-1 cyclic electron transport and respiration (chlororespiration). In this mini-review we focus on the structure and function of cyanobacterial NDH-1 complexes and their phylogeny. The function of chloroplastic NDH-1 complex and characteristics of plants defective in NDH-1 are also described forcomparison.

  19. Alcoholism, Alcohol, and Drugs

    ERIC Educational Resources Information Center

    Rubin, Emanuel; Lieber, Charles S.

    1971-01-01

    Describes research on synergistic effects of alcohol and other drugs, particularly barbiturates. Proposes biochemical mechanisms to explain alcoholics' tolerance of other drugs when sober, and increased sensitivity when drunk. (AL)

  20. Substrate specificity of sheep liver sorbitol dehydrogenase.

    PubMed Central

    Lindstad, R I; Köll, P; McKinley-McKee, J S

    1998-01-01

    The substrate specificity of sheep liver sorbitol dehydrogenase has been studied by steady-state kinetics over the range pH 7-10. Sorbitol dehydrogenase stereo-selectively catalyses the reversible NAD-linked oxidation of various polyols and other secondary alcohols into their corresponding ketones. The kinetic constants are given for various novel polyol substrates, including L-glucitol, L-mannitol, L-altritol, D-altritol, D-iditol and eight heptitols, as well as for many aliphatic and aromatic alcohols. The maximum velocities (kcat) and the substrate specificity-constants (kcat/Km) are positively correlated with increasing pH. The enzyme-catalysed reactions occur by a compulsory ordered kinetic mechanism with the coenzyme as the first, or leading, substrate. With many substrates, the rate-limiting step for the overall reaction is the enzyme-NADH product dissociation. However, with several substrates there is a transition to a mechanism with partial rate-limitation at the ternary complex level, especially at low pH. The kinetic data enable the elucidation of new empirical rules for the substrate specificity of sorbitol dehydrogenase. The specificity-constants for polyol oxidation vary as a function of substrate configuration with D-xylo> D-ribo > L-xylo > D-lyxo approximately L-arabino > D-arabino > L-lyxo. Catalytic activity with a polyol or an aromatic substrate and various 1-deoxy derivatives thereof varies with -CH2OH > -CH2NH2 > -CH2OCH3 approximately -CH3. The presence of a hydroxyl group at each of the remaining chiral centres of a polyol, apart from the reactive C2, is also nonessential for productive ternary complex formation and catalysis. A predominantly nonpolar enzymic epitope appears to constitute an important structural determinant for the substrate specificity of sorbitol dehydrogenase. The existence of two distinct substrate binding regions in the enzyme active site, along with that of the catalytic zinc, is suggested to account for the lack of

  1. A guide to 17beta-hydroxysteroid dehydrogenases.

    PubMed

    Adamski, J; Jakob, F J

    2001-01-22

    17beta-Hydroxysteroid dehydrogenases (17beta-HSD) are pivotal in controlling the biological potency of steroid hormones by catalyzing oxidation or reduction at position 17. Several 17beta-HSDs may as well metabolize further substrates including alcohols, bile acids, fatty acids and retinols. This review summarizes recent progress in the field of 17beta-HSD research provides an update of nomenclature. PMID:11165003

  2. Genetics Home Reference: pyruvate dehydrogenase deficiency

    MedlinePlus

    ... control the activity of the complex: pyruvate dehydrogenase phosphatase turns on (activates) the complex, while pyruvate dehydrogenase ... binding protein (the PDHX gene), and pyruvate dehydrogenase phosphatase (the PDP1 gene) have been identified in people ...

  3. Polymorphism in the corticotropin-releasing factor receptor 1 (CRF1-R) gene plays a role in shaping the high anxious phenotype of Marchigian Sardinian alcohol-preferring (msP) rats

    PubMed Central

    Cippitelli, Andrea; Ayanwuyi, Lydia O.; Barbier, Estelle; Domi, Esi; Lerma-Cabrera, Jose M.; Carvajal, Francisca; Scuppa, Giulia; Li, Hongwu; Ubaldi, Massimo; Heilig, Markus; Roberto, Marisa; Ciccocioppo, Roberto

    2014-01-01

    Marchigian-Sardinian alcohol-preferring (msP) rats exhibit innate preference for alcohol along with anxious phenotype. In these animals, two single nucleotide polymorphisms in position −1836 and −2097 from the first start codon of the CRF1-R transcript have been found. Here we examined whether these point mutations account for the heightened anxiety-like behavior and stress responsiveness of msP rats. We re-derived the msP rats to obtain two distinct lines carrying the wild type (GG) and point mutations (AA), respectively. CRF1-R gene expression analysis revealed significant dysregulation of the system in the extended amygdala of AA rats. At the behavioral level, using the elevated plus maze, we found that both AA and GG lines had higher basal anxiety compared to Wistar rats. In the defensive burying test, AA rats showed decreased burying behavior compared to the GG and the unselected Wistar lines. Freezing/immobility did not differ among AA and GG but was higher than that of Wistars. The selective CRF1-R antagonist antalarmin (0, 10, 20 mg/kg) reduced burying behavior in Wistar animals. However, antalarmin (10 mg/kg) tended to increase rather than reducing this behavior when tested in the msP lines, an effect that appeared more marked in the GG as compared to the AA line. The present data suggest that rats with msP genetic background are more anxious and show different sensitivity to stress and CRF1-R blockade than Wistars. The point mutations occurring in the CRF1-R gene do not seem to influence basal anxiety while they appear to affect active responses to stress. PMID:25260340

  4. Joining Astrobiology to Medicine, Resurrecting Ancient Alcohol Metabolism

    NASA Astrophysics Data System (ADS)

    Carrigan, M. A.; Uryasev, O.; Davis, R. W.; Chamberlin, S. G.; Benner, S. A.

    2010-04-01

    We apply an astrobiological approach to understand how primates responded to the emergence of ethanol in their environment by resurrecting two enzymes involved in the degradation of ethanol, alcohol dehydrogenase and aldehyde dehydrgenase.

  5. Alcohol Alert

    MedlinePlus

    ... Us You are here Home » Alcohol Alert Alcohol Alert The NIAAA Alcohol Alert is a quarterly bulletin that disseminates important research ... text. To order single copies of select Alcohol Alerts, see ordering Information . To view publications in PDF ...

  6. Alcoholism - resources

    MedlinePlus

    Resources - alcoholism ... The following organizations are good resources for information on alcoholism : Alcoholics Anonymous -- www.aa.org Al-Anon/Alateen -- www.al-anon.org/home National Institute on Alcohol ...

  7. Alcoholic ketoacidosis

    MedlinePlus

    Ketoacidosis - alcoholic ... Alcoholic ketoacidosis is caused by very heavy alcohol use. It most often occurs in a malnourished person ... Symptoms of alcoholic ketoacidosis include: Nausea and vomiting ... Changed level of alertness, which may lead to coma Confusion ...

  8. Alcohol Facts

    MedlinePlus

    ... raquo Alcohol Facts Alcohol Facts Listen Drinks like beer, malt liquor, wine, and hard liquor contain alcohol. Alcohol is the ingredient that gets you drunk. Hard liquor—such as whiskey, rum, or gin—has more ...

  9. Alcoholic neuropathy

    MedlinePlus

    Neuropathy - alcoholic; Alcoholic polyneuropathy ... The exact cause of alcoholic neuropathy is unknown. It likely includes both a direct poisoning of the nerve by the alcohol and the effect of poor nutrition ...

  10. Alcohol Alert: Genetics of Alcoholism

    MedlinePlus

    ... and Reports » Alcohol Alert » Alcohol Alert Number 84 Alcohol Alert Number 84 Print Version The Genetics of ... immune defense system. Genes Encoding Enzymes Involved in Alcohol Breakdown Some of the first genes linked to ...

  11. Involvement of cannabinoid CB2 receptor in alcohol preference in mice and alcoholism in humans.

    PubMed

    Ishiguro, H; Iwasaki, S; Teasenfitz, L; Higuchi, S; Horiuchi, Y; Saito, T; Arinami, T; Onaivi, E S

    2007-12-01

    We tested if cannabinoid type 2 receptor (CB2) in the central nervous system plays a role in alcohol abuse/dependence in animal model and then examined an association between the CB2 gene polymorphism and alcoholism in human. Mice experiencing more alcohol preference by drinking showed reduced Cb2 gene expression, whereas mice with little preference showed no changes of it in ventral midbrain. Alcohol preference in conjunction with chronic mild stress were enhanced in mice treated with CB2 agonist JWH015 when subjected to chronic stress, whereas antagonist AM630 prevented development of alcohol preference. There is an association between the Q63R polymorphism of the CB2 gene and alcoholism in a Japanese population (P=0.007; odds ratio 1.25, 95% CI, (1.06-1.47)). CB2 under such environment is associated with the physiologic effects of alcohol and CB2 antagonists may have potential as therapies for alcoholism. PMID:17189959

  12. Lactate dehydrogenase-elevating virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book chapter describes the taxonomic classification of Lactate dehydrogenase-elevating virus (LDV). Included are: host, genome, classification, morphology, physicochemical and physical properties, nucleic acid, proteins, lipids, carbohydrates, geographic range, phylogenetic properties, biologic...

  13. Alcoholic and non-alcoholic steatohepatitis.

    PubMed

    Neuman, Manuela G; French, Samuel W; French, Barbara A; Seitz, Helmut K; Cohen, Lawrence B; Mueller, Sebastian; Osna, Natalia A; Kharbanda, Kusum K; Seth, Devanshi; Bautista, Abraham; Thompson, Kyle J; McKillop, Iain H; Kirpich, Irina A; McClain, Craig J; Bataller, Ramon; Nanau, Radu M; Voiculescu, Mihai; Opris, Mihai; Shen, Hong; Tillman, Brittany; Li, Jun; Liu, Hui; Thomes, Paul G; Ganesan, Murali; Malnick, Steve

    2014-12-01

    This paper is based upon the "Charles Lieber Satellite Symposia" organized by Manuela G. Neuman at the Research Society on Alcoholism (RSA) Annual Meetings, 2013 and 2014. The present review includes pre-clinical, translational and clinical research that characterize alcoholic liver disease (ALD) and non-alcoholic steatohepatitis (NASH). In addition, a literature search in the discussed area was performed. Strong clinical and experimental evidence lead to recognition of the key toxic role of alcohol in the pathogenesis of ALD. The liver biopsy can confirm the etiology of NASH or alcoholic steatohepatitis (ASH) and assess structural alterations of cells, their organelles, as well as inflammatory activity. Three histological stages of ALD are simple steatosis, ASH, and chronic hepatitis with hepatic fibrosis or cirrhosis. These latter stages may also be associated with a number of cellular and histological changes, including the presence of Mallory's hyaline, megamitochondria, or perivenular and perisinusoidal fibrosis. Genetic polymorphisms of ethanol metabolizing enzymes such as cytochrome p450 (CYP) 2E1 activation may change the severity of ASH and NASH. Alcohol mediated hepatocarcinogenesis, immune response to alcohol in ASH, as well as the role of other risk factors such as its co-morbidities with chronic viral hepatitis in the presence or absence of human immunodeficiency virus are discussed. Dysregulation of hepatic methylation, as result of ethanol exposure, in hepatocytes transfected with hepatitis C virus (HCV), illustrates an impaired interferon signaling. The hepatotoxic effects of ethanol undermine the contribution of malnutrition to the liver injury. Dietary interventions such as micro and macronutrients, as well as changes to the microbiota are suggested. The clinical aspects of NASH, as part of metabolic syndrome in the aging population, are offered. The integrative symposia investigate different aspects of alcohol-induced liver damage and possible

  14. Alcoholic and non-alcoholic steatohepatitis

    PubMed Central

    Neuman, Manuela G.; French, Samuel W.; French, Barbara A.; Seitz, Helmut K.; Cohen, Lawrence B.; Mueller, Sebastian; Osna, Natalia A.; Kharbanda, Kusum K.; Seth, Devanshi; Bautista, Abraham; Thompson, Kyle J.; McKillop, Iain H.; Kirpich, Irina A.; McClain, Craig J.; Bataller, Ramon; Nanau, Radu M.; Voiculescu, Mihai; Opris, Mihai; Shen, Hong; Tillman, Brittany; Li, Jun; Liu, Hui; Thomas, Paul G.; Ganesan, Murali; Malnick, Steve

    2015-01-01

    This paper is based upon the “Charles Lieber Satellite Symposia” organized by Manuela G. Neuman at the Research Society on Alcoholism (RSA) Annual Meetings, 2013 and 2014. The present review includes pre-clinical, translational and clinical research that characterize alcoholic liver disease (ALD) and non-alcoholic steatohepatitis (NASH). In addition, a literature search in the discussed area was performed. Strong clinical and experimental evidence lead to recognition of the key toxic role of alcohol in the pathogenesis of ALD. The liver biopsy can confirm the etiology of NASH or alcoholic steatohepatitis (ASH) and assess structural alterations of cells, their organelles, as well as inflammatory activity. Three histological stages of ALD are simple steatosis, ASH, and chronic hepatitis with hepatic fibrosis or cirrhosis. These latter stages may also be associated with a number of cellular and histological changes, including the presence of Mallory's hyaline, megamitochondria, or perivenular and perisinusoidal fibrosis. Genetic polymorphisms of ethanol metabolizing enzymes such as cytochrome p450 (CYP) 2E1 activation may change the severity of ASH and NASH. Alcohol mediated hepatocarcinogenesis, immune response to alcohol in ASH, as well as the role of other risk factors such as its comorbidities with chronic viral hepatitis in the presence or absence of human deficiency virus are discussed. Dysregulation of hepatic methylation, as result of ethanol exposure, in hepatocytes transfected with hepatitis C virus (HCV), illustrates an impaired interferon signaling. The hepatotoxic effects of ethanol undermine the contribution of malnutrition to the liver injury. Dietary interventions such as micro and macronutrients, as well as changes to the microbiota are suggested. The clinical aspects of NASH, as part of metabolic syndrome in the aging population, are offered. The integrative symposia investigate different aspects of alcohol-induced liver damage and possible

  15. Functional Analysis of a Mosquito Short Chain Dehydrogenase Cluster

    PubMed Central

    Mayoral, Jaime G.; Leonard, Kate T.; Defelipe, Lucas A.; Turjansksi, Adrian G.; Nouzova, Marcela; Noriegal, Fernando G.

    2013-01-01

    The short chain dehydrogenases (SDR) constitute one the oldest and largest families of enzymes with over 46,000 members in sequence databases. About 25% of all known dehydrogenases belong to the SDR family. SDR enzymes have critical roles in lipid, amino acid, carbohydrate, hormone and xenobiotic metabolism as well as in redox sensor mechanisms. This family is present in archaea, bacteria, and eukaryota, emphasizing their versatility and fundamental importance for metabolic processes. We identified a cluster of eight SDRs in the mosquito Aedes aegypti (AaSDRs). Members of the cluster differ in tissue specificity and developmental expression. Heterologous expression produced recombinant proteins that had diverse substrate specificities, but distinct from the conventional insect alcohol (ethanol) dehydrogenases. They are all NADP+-dependent and they have S-enantioselectivity and preference for secondary alcohols with 8–15 carbons. Homology modeling was used to build the structure of AaSDR1 and two additional cluster members. The computational study helped explain the selectivity towards the (10S)-isomers as well as the reduced activity of AaSDR4 and AaSDR9 for longer isoprenoid substrates. Similar clusters of SDRs are present in other species of insects, suggesting similar selection mechanisms causing duplication and diversification of this family of enzymes. PMID:23238893

  16. Efficiency of superoxide anions in the inactivation of selected dehydrogenases

    NASA Astrophysics Data System (ADS)

    Rodacka, Aleksandra; Serafin, Eligiusz; Puchala, Mieczyslaw

    2010-09-01

    The most ubiquitous of the primary reactive oxygen species, formed in all aerobes, is the superoxide free radical. It is believed that the superoxide anion radical shows low reactivity and in oxidative stress it is regarded mainly as an initiator of more reactive species such as rad OH and ONOO -. In this paper, the effectiveness of inactivation of selected enzymes by radiation-generated superoxide radicals in comparison with the effectiveness of the other products of water radiolysis is examined. We investigate three enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH). We show that the direct contribution of the superoxide anion radical to GAPDH and ADH inactivation is significant. The effectiveness of the superoxide anion in the inactivation of GAPDH and ADG was only 2.4 and 2.8 times smaller, respectively, in comparison with hydroxyl radical. LDH was practically not inactivated by the superoxide anion. Despite the fact that the studied dehydrogenases belong to the same class of enzymes (oxidoreductases), all have a similar molecular weight and are tetramers, their susceptibility to free-radical damage varies. The differences in the radiosensitivity of the enzymes are not determined by the basic structural parameters analyzed. A significant role in inactivation susceptibility is played by the type of amino acid residues and their localization within enzyme molecules.

  17. Educating women about the hidden dangers of alcohol.

    PubMed

    Cook, Linda J

    2004-06-01

    1. There is mounting research evidence that alcohol use and abuse affects women much differently than men. 2. Research indicates that women absorb and metabolize alcohol differently than men, partly due to body composition differences and the production of less gastric alcohol dehydrogenase by women. 3. Women of child-bearing age who engage in binge drinking are at increased risk of bearing children with fetal alcohol syndrome or alcohol-related neurological deficits. 4. Psychiatric nurses are often in the position to provide education and counseling to women regarding the hidden dangers of alcohol use and abuse. PMID:15237789

  18. Impaired Regulation of ALDH2 Protein Expression Revealing a Yet Unknown Epigenetic Impact of rs886205 on Specific Methylation of a Negative Regulatory Promoter Region in Alcohol-Dependent Patients.

    PubMed

    Haschemi Nassab, Mani; Rhein, Mathias; Hagemeier, Lars; Kaeser, Marius; Muschler, Marc; Glahn, Alexander; Pich, Andreas; Heberlein, Annemarie; Kornhuber, Johannes; Bleich, Stefan; Frieling, Helge; Hillemacher, Thomas

    2016-01-01

    Acetaldehyde, the carcinogenic metabolite of ethanol known to provoke aversive symptoms of alcohol consumption, is predominantly eliminated by aldehyde dehydrogenase 2 (ALDH2). Reduced ALDH2 activity correlates with low alcohol tolerance and low risk for alcohol dependence. The ALDH2 promoter polymorphism rs886205 (A>G) is associated with decreased promoter activity, but a molecular mechanism and allele-dependent ALDH2 protein expression has not been described yet. On the basis of allele-dependent epigenetic effects, we analyzed the rs886205 genotype, methylation rates of cytosine-phosphatidyl-guanine (CpG)-sites within a regulatory promoter region and ALDH2 protein levels in 82 alcohol-dependent patients during a 2-week withdrawal and compared them to 34 matched controls. Patients without the G-allele of rs886205 showed higher methylation of the promoter region than controls and readily adapted epigenetically as well as on protein level during withdrawal, while patients with the G-allele displayed retarded methylation readjustment and no change in ALDH2 protein levels. Our data provide novel insights into an unknown genetic-epigenetic interaction, revealing impaired ALDH2 protein expression in patients with the G-allele of rs886205. Additionally, we checked for an association between rs886205 and protection against alcohol dependence and found a trend association between the G-allele and protection against alcohol dependence that needs replication in a larger Caucasian cohort. PMID:26339786

  19. Alcoholic ketoacidosis

    MedlinePlus

    ... attention improves the overall outlook. How severe the alcoholism is, and the presence of liver disease or ... A.M. Editorial team. Related MedlinePlus Health Topics Alcoholism and Alcohol Abuse Browse the Encyclopedia A.D. ...

  20. Alcohol withdrawal

    MedlinePlus

    ... counseling to discuss the long-term issue of alcoholism Testing and treatment for other medical problems linked ... following organizations are good resources for information on alcoholism: Alcoholics Anonymous -- www.aa.org Al-Anon/Alateen -- ...

  1. Alcoholic neuropathy

    MedlinePlus

    ... objects in the shoes Guarding the extremities to prevent injury from pressure Alcohol must be stopped to prevent the damage from ... The only way to prevent alcoholic neuropathy is not to drink excessive amounts of alcohol.

  2. Crystal structure of Pseudomonas fluorescens mannitol 2-dehydrogenase binary and ternary complexes. Specificity and catalytic mechanism.

    PubMed

    Kavanagh, Kathryn L; Klimacek, Mario; Nidetzky, Bernd; Wilson, David K

    2002-11-01

    Long-chain mannitol dehydrogenases are secondary alcohol dehydrogenases that are of wide interest because of their involvement in metabolism and potential applications in agriculture, medicine, and industry. They differ from other alcohol and polyol dehydrogenases because they do not contain a conserved tyrosine and are not dependent on Zn(2+) or other metal cofactors. The structures of the long-chain mannitol 2-dehydrogenase (54 kDa) from Pseudomonas fluorescens in a binary complex with NAD(+) and ternary complex with NAD(+) and d-mannitol have been determined to resolutions of 1.7 and 1.8 A and R-factors of 0.171 and 0.176, respectively. These results show an N-terminal domain that includes a typical Rossmann fold. The C-terminal domain is primarily alpha-helical and mediates mannitol binding. The electron lone pair of Lys-295 is steered by hydrogen-bonding interactions with the amide oxygen of Asn-300 and the main-chain carbonyl oxygen of Val-229 to act as the general base. Asn-191 and Asn-300 are involved in a web of hydrogen bonding, which precisely orients the mannitol O2 proton for abstraction. These residues also aid in stabilizing a negative charge in the intermediate state and in preventing the formation of nonproductive complexes with the substrate. The catalytic lysine may be returned to its unprotonated state using a rectifying proton tunnel driven by Glu-292 oscillating among different environments. Despite low sequence homology, the closest structural neighbors are glycerol-3-phosphate dehydrogenase, N-(1-d-carboxylethyl)-l-norvaline dehydrogenase, UDP-glucose dehydrogenase, and 6-phosphogluconate dehydrogenase, indicating a possible evolutionary relationship among these enzymes. PMID:12196534

  3. Genetics Home Reference: lactate dehydrogenase deficiency

    MedlinePlus

    ... dehydrogenase-B pieces (subunits) of the lactate dehydrogenase enzyme. This enzyme is found throughout the body and is important ... cells. There are five different forms of this enzyme, each made up of four protein subunits. Various ...

  4. d-Xylose Metabolism in Hypocrea jecorina: Loss of the Xylitol Dehydrogenase Step Can Be Partially Compensated for by lad1-Encoded l-Arabinitol-4-Dehydrogenase

    PubMed Central

    Seiboth, Bernhard; Hartl, Lukas; Pail, Manuela; Kubicek, Christian P.

    2003-01-01

    With the goal of the genetic characterization of the d-xylose pathway in Hypocrea jecorina (anamorph: Trichoderma reesei), we cloned the xdh1 gene, encoding NAD-xylitol dehydrogenase, which catalyzes the second step of fungal d-xylose catabolism. This gene encodes a 363-amino-acid protein which has a mass of 38 kDa, belongs to the zinc-containing alcohol dehydrogenase family, exhibits high sequence identity to the published sequences of xylitol dehydrogenases from yeast origins, but contains a second, additional binding site for Zn2+. The enzyme catalyzed the NAD-dependent oxidation of xylitol and d-sorbitol and the NADH-dependent reduction of d-xylulose and d-fructose. No activity was observed with NADP, l-arabinose, or l-arabinitol. A single 1.4-kb transcript was formed during growth on xylan, d-xylose, l-arabinose, l-arabinitol and, at a lower abundance, xylitol, d-galactose, galactitol, and lactose but not on d-glucose and glycerol. xdh1 deletion mutants exhibited 50% reduced growth rates on d-xylose, whereas growth rates on xylitol remained unaltered. These mutants contained 30% of the xylitol dehydrogenase activity of the parent strain, indicating the presence of a second xylitol dehydrogenase. This activity was shown to be due to lad1-encoded l-arabinitol-4-dehydrogenase, because H. jecorina xdh1 lad1 double-deletion strains failed to grow on d-xylose or xylitol. In contrast, lad1 deletion strains of H. jecorina grew normally on these carbon sources. These results show that H. jecorina contains a single xylitol dehydrogenase which is encoded by xdh1 and is involved in the metabolism of d-xylose and that lad1-encoded l-arabinitol-4-dehydrogenase can compensate for it partially in mutants with a loss of xdh1 function. PMID:14555469

  5. An animal model of human aldehyde dehydrogenase deficiency

    SciTech Connect

    Chang, C.; Mann, J.; Yoshida, A.

    1994-09-01

    The genetic deficiency of ALDH2, a major mitochondrial aldehyde dehydrogenase, is intimately related to alcohol sensitivity and the degree of predisposition to alcoholic diseases in humans. The ultimate biological role of ALDH2 can be exposed by knocking out the ALDH2 gene in an animal model. As the first step for this line of studies, we cloned and characterized the ALDH2 gene from mouse C57/6J strain which is associated with a high alcohol preference. The gene spans 26 kbp and is composed of 13 exons. Embryonic stem cells were transfected with a replacement vector which contains a partially deleted exon3, a positive selection cassette (pPgk Neo), exon 4 with an artificial stop codon, exons 5, 6, 7, and a negative selection cassette (pMCI-Tk). Genomic DNAs prepared from drug resistant clones were analyzed by polymerase chain reaction and by Southern blot analysis to distinguish random integration from homologous recombination. Out of 132 clones examined, 8 had undergone homologous recombination at one of the ALDH2 alleles. The cloned transformed embryonic stem cells with a disrupted ALDH2 allele were injected into blastocysts. Transplantation of the blastocysts into surrogate mother mice yielded chimeric mice. The role of ALDH2 in alcohol preference, alcohol sensitivity and other biological and behavioral characteristics can be elucidated by examining the heterozygous and homozygous mutant strains produced by breeding of chimeric mice.

  6. Pharmacogenomics of alcohol response and addiction.

    PubMed

    Enoch, Mary-Anne

    2003-01-01

    Alcoholism is a complex psychiatric disorder that has high heritability (50-60%) and is relatively common; in the US the lifetime prevalence of alcohol dependence is 20% in men and 8% in women. Current psychosocial and pharmacological therapies have relatively modest effects. Treatment is complicated by the fact that alcoholism is often co-morbid with other disorders, including anxiety, depression, and antisocial personality disorder. Approximately 80% of alcoholics smoke cigarettes and there is considerable genetic overlap between nicotine and alcohol addiction. Convergent evidence supports the classification of alcoholics into two broad categories: type 1 - later onset with feelings of anxiety, guilt, and high harm avoidance; and type 2 - early age of onset, usually men, impulsive, antisocial, and with low levels of brain serotonin. The pharmacogenomics of alcohol response is well established; genetic variants for the principal enzymes of alcohol metabolism influence drinking behavior and protect against alcoholism. Vulnerability to alcoholism is likely to be due to multiple interacting genetic loci of small to modest effects. First-line therapeutic targets for alcoholism are neurotransmitter pathway genes implicated in alcohol use. Of particular interest are the 'reward pathway' (serotonin, dopamine, GABA, glutamate, and beta endorphin) and the behavioral stress response system (corticotrophin-releasing factor and neuropeptide Y). Common functional polymorphisms in these genes are likely to be predictive (although each with small effect) of individualized pharmacological responses. Genetic studies, including case-control association studies and genome wide linkage studies, have identified associations between alcoholism and common functional polymorphisms in several candidate genes. Meanwhile, the current pharmacological therapies for alcoholism are effective in some alcoholics but not all. Some progress has been made in elucidating the pharmacogenomic responses

  7. Affinity chromatography of nicotinamide–adenine dinucleotide-linked dehydrogenases on immobilized derivatives of the dinucleotide

    PubMed Central

    Barry, Standish; O'Carra, Pádraig

    1973-01-01

    1. Three established methods for immobilization of ligands through primary amino groups promoted little or no attachment of NAD+ through the 6-amino group of the adenine residue. Two of these methods (coupling to CNBr-activated agarose and to carbodi-imide-activated carboxylated agarose derivatives) resulted instead in attachment predominantly through the ribosyl residues. Other immobilized derivatives were prepared by azolinkage of NAD+ (probably through the 8 position of the adenine residue) to a number of different spacer-arm–agarose derivatives. 2. The effectiveness of these derivatives in the affinity chromatography of a variety of NAD-linked dehydrogenases was investigated, applying rigorous criteria to distinguish general or non-specific adsorption effects from truly NAD-specific affinity (bio-affinity). The ribosyl-attached NAD+ derivatives displayed negligible bio-affinity for any of the NAD-linked dehydrogenases tested. The most effective azo-linked derivative displayed strong bio-affinity for glycer-aldehyde 3-phosphate dehydrogenase, weaker bio-affinity for lactate dehydrogenase and none at all for malate dehydrogenase, although these three enzymes have very similar affinities for soluble NAD+. Alcohol dehydrogenase and xanthine dehydrogenase were subject to such strong non-specific interactions with the hydrocarbon spacer-arm assembly that any specific affinity was completely eclipsed. 3. It is concluded that, in practice, the general effectiveness of a general ligand may be considerably distorted and attenuated by the nature of the immobilization linkage. However, this attenuation can result in an increase in specific effectiveness, allowing dehydrogenases to be separated from one another in a manner unlikely to be feasible if the general effectiveness of the ligand remained intact. 4. The bio-affinity of the various derivatives for lactate dehydrogenase is correlated with the known structure of the NAD+-binding site of this enzyme. Problems

  8. NEUROBIOLOGICAL BASES OF ALCOHOL ADDICTION.

    PubMed

    Matošić, Ana; Marušić, Srđan; Vidrih, Branka; Kovak-Mufić, Ana; Cicin-Šain, Lipa

    2016-03-01

    characteristic of alcoholism type 2 is seeking for excitement (Novelty Seeking, NS), unchanged dopamine transmission and decreased serotonin transmission. These neurochemical differences among alcoholism subtypes represent the basis for a different therapy approach. Intake of alcohol changes different gene expression in the human brain. The inheritance model of alcoholism is not fully explained, however, it is considered that the disease is connected to a larger gene number included in neurotransmission, cell mechanisms and general metabolic function, with a simultaneous influence of the environment. The contribution of genetic factors is stronger in certain types of alcoholism and thus we have been confronted in the last years of alcoholism research with studies researching the connections of some alcoholism subtypes with the polymorphism phenomenon in the genes coding the synaptic proteins included in the alcoholism etiology. The primary role of monoamine oxidase (MAO) in the brain is catalysis of deamination of the oxidative neurotransmitter amines, i.e. serotonin, adrenaline, noradrenaline and dopamine. Thus, this enzyme is the key factor for maintaining cytoplasmic concentration of various neurotransmitters and for regulation of the neurotransmitting synaptic activity. Taken this MAO function into consideration, MAO is the enzyme included in the etiology and pathogenesis of various neuropsychiatric and neurological disorders. The finding of the decreased platelet MAO activity in various psychiatric disorders has brought us to the assumption that this enzyme may be a constitutional/genetic indicator (trait marker) or an indicator of disease condition (state marker) in biologic psychiatry. There are only a few studies of alcohol addiction researching the connections of the MAO coding gene polymorphism and alcoholism; however, these studies are primarily related to the variable number of tandem repeats (VTNR) polymorphism in the regulatory gene region for MAO-A, considered to

  9. Alcoholism and Alcohol Abuse

    MedlinePlus

    ... increase the risk of certain cancers. It can cause damage to the liver, brain, and other organs. Drinking during pregnancy can harm your baby. Alcohol also increases the risk of death from car crashes, injuries, homicide, and suicide. If you want to stop drinking, there is ...

  10. A simple method for the rapid determination of the stereospecificity of NAD-dependent dehydrogenases applied to mammalian IMP dehydrogenase and bacterial NADH peroxidase.

    PubMed

    Cooney, D; Hamel, E; Cohen, M; Kang, G J; Dalal, M; Marquez, V

    1987-11-01

    The stereospecificity of IMP dehydrogenase (IMP:NAD+ oxidoreductase, EC 1.1.1.205) from two different sources was determined. The enzyme preparations were obtained from murine lymphoblasts and from Escherichia coli. Both enzymes transferred the 2-3H of IMP to the pro-S position of carbon atom C-4 of the nicotinamide ring in NAD. Thus, B-sided stereospecificity is common to the enzyme from two very different species. In addition, the studies described here demonstrate that alcohol dehydrogenase and NADH peroxidase, used as auxiliary enzymes, in combination with a microdistillation procedure, should permit rapid determination of the stereospecificity of any NAD-dependent dehydrogenase for which the appropriate tritiated substrate is available. PMID:2889473

  11. Switchgrass contains two cinnamyl alcohol dehydrogenases involved in lignin formation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Switchgrass (Panicum virgatum L.) is a perennial polyploid grass with considerable potential as a bioenergy species. Many aspects of its biology and cell wall development are yet to be elucidated. Lignin content of cell walls is one of the key determinants of biomass quality and is a negative trai...

  12. The substrate tolerance of alcohol oxidases.

    PubMed

    Pickl, Mathias; Fuchs, Michael; Glueck, Silvia M; Faber, Kurt

    2015-08-01

    Alcohols are a rich source of compounds from renewable sources, but they have to be activated in order to allow the modification of their carbon backbone. The latter can be achieved via oxidation to the corresponding aldehydes or ketones. As an alternative to (thermodynamically disfavoured) nicotinamide-dependent alcohol dehydrogenases, alcohol oxidases make use of molecular oxygen but their application is under-represented in synthetic biotransformations. In this review, the mechanism of copper-containing and flavoprotein alcohol oxidases is discussed in view of their ability to accept electronically activated or non-activated alcohols and their propensity towards over-oxidation of aldehydes yielding carboxylic acids. In order to facilitate the selection of the optimal enzyme for a given biocatalytic application, the substrate tolerance of alcohol oxidases is compiled and discussed: Substrates are classified into groups (non-activated prim- and sec-alcohols; activated allylic, cinnamic and benzylic alcohols; hydroxy acids; sugar alcohols; nucleotide alcohols; sterols) together with suitable alcohol oxidases, their microbial source, relative activities and (stereo)selectivities. PMID:26153139

  13. SAXS fingerprints of aldehyde dehydrogenase oligomers.

    PubMed

    Tanner, John J

    2015-12-01

    Enzymes of the aldehyde dehydrogenase (ALDH) superfamily catalyze the nicotinamide adenine dinucleotide-dependent oxidation of aldehydes to carboxylic acids. ALDHs are important in detoxification of aldehydes, amino acid metabolism, embryogenesis and development, neurotransmission, oxidative stress, and cancer. Mutations in genes encoding ALDHs cause metabolic disorders, including alcohol flush reaction (ALDH2), Sjögren-Larsson syndrome (ALDH3A2), hyperprolinemia type II (ALDH4A1), γ-hydroxybutyric aciduria (ALDH5A1), methylmalonic aciduria (ALDH6A1), pyridoxine dependent epilepsy (ALDH7A1), and hyperammonemia (ALDH18A1). We previously reported crystal structures and small-angle X-ray scattering (SAXS) analyses of ALDHs exhibiting dimeric, tetrameric, and hexameric oligomeric states (Luo et al., Biochemistry 54 (2015) 5513-5522; Luo et al., J. Mol. Biol. 425 (2013) 3106-3120). Herein I provide the SAXS curves, radii of gyration, and distance distribution functions for the three types of ALDH oligomer. The SAXS curves and associated analysis provide diagnostic fingerprints that allow rapid identification of the type of ALDH oligomer that is present in solution. The data sets provided here serve as a benchmark for characterizing oligomerization of ALDHs. PMID:26693506

  14. [Factors influencing development and progression of alcoholic liver disease].

    PubMed

    Abdelrahman, K; Marot, A; Deltenre, P

    2015-09-01

    Only a minority ot excessive drinkers develop cirrhosis. The main cofactors implicated in the pathophysiology of alcoholic liver disease are obesity, diabetes or the metabolic syndrome. Several genetic polymorphisms have been associated with a higher risk of alcoholic cirrhosis. Recent data indicate that gut microbiota could play a role in the pathogenesis of alcoholic liver disease. The aim of this review is to summarize the factors that influence development and progression of alcoholic liver disease. PMID:26502621

  15. Alcohol Calorie Calculator

    MedlinePlus

    ... Alcohol Calorie Calculator Weekly Total 0 Calories Alcohol Calorie Calculator Find out the number of beer and ... Calories College Alcohol Policies Interactive Body Calculators Alcohol Calorie Calculator Alcohol Cost Calculator Alcohol BAC Calculator Alcohol ...

  16. Circadian rhythm in plasma concentrations of gamma-hydroxybutyric acid in alcoholics.

    PubMed

    Hoes, M J; Vree, T B; Guelen, P J

    1981-08-01

    Gamma-hydroxybutyric acid (GHB) was orally administered to six alcoholics at 09.00 and 23.00 h. The plasma concentrations of GHB show a clear circadian pattern, the area under the curve in the daytime experiments being 61% of that in the night experiments. The significance of alcohol dehydrogenase, the catabolic enzyme of GHB, for the difference is discussed. It is concluded that, although the activity of alcohol dehydrogenase in alcoholics is quantitatively disturbed, it remains subject to physiologic circadian activation. PMID:7341501

  17. The Protective Effects of Buzui on Acute Alcoholism in Mice

    PubMed Central

    Wen, Da-Chao; Gao, Shu-di; Hu, Xiao-yu; Yi, Cheng

    2016-01-01

    This study was designed to investigate the role of a traditional buzui recipe in anti-inebriation treatment. Buzui consists of Fructus Schisandrae Chinensis, Fructus Chebulae, Fructus Mume, Fructus Crataegi, Endothelium Corneum Gigeriae Galli, and Excrementum Bombycis. The buzui mixture was delivered by gavage, and ethanol was delivered subsequent to the final treatment. The effects of buzui on the righting reflex, inebriation rates, and the survival curve are depicted. Blood alcohol concentrations, alanine aminotransferase (ALT) levels, aspartate aminotransferase (AST) levels, and alkaline phosphatase (ALP) levels were recorded. The activities of alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), and superoxide dismutase (SOD), as well as malonaldehyde (MDA) levels, were also measured. Our results demonstrated that a traditional buzui recipe showed significant effects on promoting wakefulness and the prevention of acute alcohol intoxication, accelerating the metabolism of alcohol in the liver and reducing the oxidative damage caused by acute alcoholism. PMID:26884793

  18. Antidotes for poisoning by alcohols that form toxic metabolites.

    PubMed

    McMartin, Kenneth; Jacobsen, Dag; Hovda, Knut Erik

    2016-03-01

    The alcohols, methanol, ethylene glycol and diethylene glycol, have many features in common, the most important of which is the fact that the compounds themselves are relatively non-toxic but are metabolized, initially by alcohol dehydrogenase, to various toxic intermediates. These compounds are readily available worldwide in commercial products as well as in homemade alcoholic beverages, both of which lead to most of the poisoning cases, from either unintentional or intentional ingestion. Although relatively infrequent in overall occurrence, poisonings by metabolically-toxic alcohols do unfortunately occur in outbreaks and can result in severe morbidity and mortality. These poisonings have traditionally been treated with ethanol since it competes for the active site of alcohol dehydrogenase and decreases the formation of toxic metabolites. Although ethanol can be effective in these poisonings, there are substantial practical problems with its use and so fomepizole, a potent competitive inhibitor of alcohol dehydrogenase, was developed for a hopefully better treatment for metabolically-toxic alcohol poisonings. Fomepizole has few side effects and is easy to use in practice and it may obviate the need for haemodialysis in some, but not all, patients. Hence, fomepizole has largely replaced ethanol as the toxic alcohol antidote in many countries. Nevertheless, ethanol remains an important alternative because access to fomepizole can be limited, the cost may appear excessive, or the physician may prefer ethanol due to experience. PMID:26551875

  19. Propyl alcohol

    MedlinePlus

    Rubbing alcohol Alcohol swabs Skin and hair products Nail polish remover Note: This list may not be all ... number will let you talk to experts in poisoning. They will give you further instructions. This is ...

  20. Alcoholic hallucinosis.

    PubMed

    Bhat, Pookala S; Ryali, Vssr; Srivastava, Kalpana; Kumar, Shashi R; Prakash, Jyoti; Singal, Ankit

    2012-07-01

    Alcoholic hallucinosis is a rare complication of chronic alcohol abuse characterized by predominantly auditory hallucinations that occur either during or after a period of heavy alcohol consumption. Bleuler (1916) termed the condition as alcohol hallucinosis and differentiated it from Delirium Tremens. Usually it presents with acoustic verbal hallucinations, delusions and mood disturbances arising in clear consciousness and sometimes may progress to a chronic form mimicking schizophrenia. One such case with multimodal hallucinations in a Defence Service Corps soldier is presented here. PMID:24250051

  1. Formaldehyde dehydrogenase preparations from Methylococcus capsulatus (Bath) comprise methanol dehydrogenase and methylene tetrahydromethanopterin dehydrogenase.

    PubMed

    Adeosun, Ekundayo K; Smith, Thomas J; Hoberg, Anne-Mette; Velarde, Giles; Ford, Robert; Dalton, Howard

    2004-03-01

    In methylotrophic bacteria, formaldehyde is an important but potentially toxic metabolic intermediate that can be assimilated into biomass or oxidized to yield energy. Previously reported was the purification of an NAD(P)(+)-dependent formaldehyde dehydrogenase (FDH) from the obligate methane-oxidizing methylotroph Methylococcus capsulatus (Bath), presumably important in formaldehyde oxidation, which required a heat-stable factor (known as the modifin) for FDH activity. Here, the major protein component of this FDH preparation was shown by biophysical techniques to comprise subunits of 64 and 8 kDa in an alpha(2)beta(2) arrangement. N-terminal sequencing of the subunits of FDH, together with enzymological characterization, showed that the alpha(2)beta(2) tetramer was a quinoprotein methanol dehydrogenase of the type found in other methylotrophs. The FDH preparations were shown to contain a highly active NAD(P)(+)-dependent methylene tetrahydromethanopterin dehydrogenase that was the probable source of the NAD(P)(+)-dependent formaldehyde oxidation activity. These results support previous findings that methylotrophs possess multiple pathways for formaldehyde dissimilation. PMID:14993320

  2. Alcohol Abuse

    ERIC Educational Resources Information Center

    O'Farrell, Timothy J.; Fals-Stewart, William

    2003-01-01

    We received 38 controlled studies of marital and family therapy (MFT) in alcoholism treatment. We conclude that, when the alcoholic is unwilling to seek help, MFT is effective in helping the family cope better and motivating alcoholics to enter treatment. Specifically, (a) Al-Anon facilitation and referral help family members cope better; (b)…

  3. [Application of operant conditioning techniques to forensic toxicology: experimental studies on alcohol and abusable drugs].

    PubMed

    Hishida, S

    1996-10-01

    with a pH range of 3.5 to 9.5. Examination of the electrophoretic patterns of the acetaldehyde dehydrogenase (ALDH) revealed polymorphism in cytosolic ALDH 1. We confirmed that the polymorphism follows Mendel's law of inheritance, and is governed by two codominant alleles. Moreover, the polymorphism of ALDH 1 observed in Wistar strain rats correlated closely with the differences in ethanol consumption behavior or alcohol preference. 2) Effects of abusable drugs on learning behavior of rat. In general, animal experiments for assessing drug effects, regardless whether they measure learning or intrinsic motor or physiological function, use behavioral indicators that produce a positive or negative reinforcement. In other words, the behavioral effect of a drug is assessed by whether it enhances the animal's behavior in a positive reinforcement or decreases its response in a negative reinforcement. However, the behavioral indicator of the animal is rarely an independent entity within the body, but is closely associated with other behavioral components. Even when a behavioral indicator is enhanced by a drug, whether the apparent increase is due to the enhancing effect of the drug or a result of decreases of other behavioral components cannot be judged. We therefore devised a multiple active/passive avoidance learning apparatus which is a device for analyzing drug effects in rats using a running-wheel. We used this device to assess the effects of a drug on the animal from three dimensions simultaneously; excitatory, inhibitory and discriminatory behaviors. From these we attempted to clarify the overall effect of the drug on high order learning behavior of animal. This method enables direct examination of the so-called "learning capability" of an animal, which cannot be elucidated by single scheule learning that is strongly influenced by behavioral characteristics such as excitation and inhibition. Therefore, a method which uses avoidance learning as indicator is the best

  4. Effect of Hofmeister anions and protein concentration on the activity and stability of some immobilized made-independent dehydrogenases

    SciTech Connect

    Carrea, G.; Bovara, R.; Pasta, P.; Cremonesi, P.

    1982-01-01

    The effect of several factors on the activity and stability of alcohol dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, and 20-beta-hydroxysteroid dehydrogenase, both free and immobilized on CNBr-activated Sepharose 4B, was investigated. Enzymes were immobilized under different conditions including various degrees of matrix activation, variable amounts of protein, in the presence, or in the absence of, additives (coenzymes, dithiothreitol, salts). Activity recovery was in general satisfactorily high with 20-beta-hydroxysteroid dehydrogenase, low with glyceraldehyde-3-phosphate dehydrogenase, and markedly linked to the concentration of immobilized protein with alcohol dehydrogenase. In the latter case the advantageous stabilizing effect of high enzyme concentrations was notably diminished by the paralled decrease of the effectiveness factor. The effect of high concentrations of anions of the Hofmeister series was examined. It was found that 1M phosphate and 0.5M sulfate dramatically stabilize both free and immobilized enzymes against inactivation by temperature and urea. Km values of apolar substrates were considerably lowered by the two anions while Km values of polar substrates were not affected. In some cases Vmax values also were influenced by high concentrations of these anions. The present results appear of interest particularly in view of enzyme utilization for analytical as well as for preparative purposes. (Refs. 13).

  5. Facts about Alcohol and Alcoholism.

    ERIC Educational Resources Information Center

    Hall, Leonard C.

    Recognition of alcoholism as a treatable illness is a result of public education based on scientific facts. This publication, a digest of a more detailed survey of research about drinking and alcoholism, presents information about alcohol and its effects on individuals and society. It provides facts about the short-term and long-term effects of…

  6. Alcoholic cardiomyopathy

    PubMed Central

    Guzzo-Merello, Gonzalo; Cobo-Marcos, Marta; Gallego-Delgado, Maria; Garcia-Pavia, Pablo

    2014-01-01

    Alcohol is the most frequently consumed toxic substance in the world. Low to moderate daily intake of alcohol has been shown to have beneficial effects on the cardiovascular system. In contrast, exposure to high levels of alcohol for a long period could lead to progressive cardiac dysfunction and heart failure. Cardiac dysfunction associated with chronic and excessive alcohol intake is a specific cardiac disease known as alcoholic cardiomyopathy (ACM). In spite of its clinical importance, data on ACM and how alcohol damages the heart are limited. In this review, we evaluate available evidence linking excessive alcohol consumption with heart failure and dilated cardiomyopathy. Additionally, we discuss the clinical presentation, prognosis and treatment of ACM. PMID:25228956

  7. Cellobiose dehydrogenase in cellulose degradation

    SciTech Connect

    Eriksson, L.; Igarashi, Kiyohiko; Samejima, Masahiro

    1996-10-01

    Cellobiose dehydrogenase is produced by a variety of fungi. Although it was already discovered during the 70`s, it`s role in cellulose and lignin degradation is yet ambiguous. The enzyme contains both heme and FAD as prosthetic groups, and seems to have a domain specifically designed to bind the enzyme to cellulose. It`s affinity to amorphous cellulose is higher than to crystalline cellulose. We will report on the binding behavior of the enzyme, its usefulness in elucidation of cellulose structures and also, possibilities for applications such as its use in measuring individual and synergistic mechanisms for cellulose degradation by endo- and exo-glucanases.

  8. Nomenclature of glucose-6-phosphate dehydrogenase in man*

    PubMed Central

    1967-01-01

    The World Health Organization convened in Geneva from 5 to 10 December 1966 a Scientific Group on Standardization of Procedures for the Study of Glucose-6-Phosphate Dehydrogenase1 (EC 1.1.1.49; D-glucose-6-phosphate: NAPD oxidoreductase; G6PD). Variants of this enzyme have attracted international attention both as causes of various haemolytic disorders and as useful genetic markers in man. In the course of the meeting the variants of this enzyme thus far described were extensively reviewed. There was unanimous agreement that a consistent system of nomenclature would be desirable, and that as G6PD variants were only one example of similar polymorphisms in man, a nomenclature should be devised which might conceivably be applied to other enzymes. The Group included the following recommendations on nomenclature in its report, which will be published in full in World Health Organization: Technical Report Series, 1967, 366. PMID:5299754

  9. ALDH2 is associated to alcohol dependence and is the major genetic determinant of "daily maximum drinks" in a GWAS study of an isolated rural Chinese sample.

    PubMed

    Quillen, Ellen E; Chen, Xiang-Ding; Almasy, Laura; Yang, Fang; He, Hao; Li, Xi; Wang, Xu-Yi; Liu, Tie-Qiao; Hao, Wei; Deng, Hong-Wen; Kranzler, Henry R; Gelernter, Joel

    2014-03-01

    Alcohol dependence (AD) is a moderately heritable phenotype with a small number of known risk genes mapped via linkage or candidate gene studies. We considered 313 males from among 595 members of documented, extended pedigrees in which AD segregates collected in Northern Hunan Province, China. A joint analysis of both males and females could not be performed as the difference in alcohol consumption variance was too large. Genome-wide association analyses were performed for approximately 300,000 single nucleotide polymorphisms (SNPs). Significant associations found in the ALDH2 region for AD (minimum P = 4.73 × 10(-8)) and two AD-related phenotypes: flushing response (minimum P = 4.75 × 10(-26)) and maximum drinks in a 24-hr period (minimum P = 1.54 × 10(-16)). Association of previous candidate SNP, rs10774610 in CCDC63, was confirmed but resulted from linkage disequilibrium with ALDH2. ALDH2 is strongly associated with flushing response, AD, and maximum drinks in males, with nonsynonymous SNP rs671 explaining 29.2%, 7.9%, and 22.9% of phenotypic variation, respectively, in this sample. When rs671 was considered as a candidate SNP in females, it explained 23.6% of the variation in flushing response, but alcohol consumption rates were too low among females-despite familial enrichment for AD-for an adequate test of association for either AD or maximum drinks. These results support a mediating effect of aldehyde dehydrogenase deficiency on alcohol consumption in males and a secondary, culturally mediated limitation on alcohol consumption by females that should be appropriately modeled in future studies of alcohol consumption in populations where this may be a factor. PMID:24277619

  10. Overview of Alcohol Consumption

    MedlinePlus

    ... Search Alcohol & Your Health Overview of Alcohol Consumption Alcohol's Effects on the Body Alcohol Use Disorder Fetal Alcohol ... other questions about alcohol. Here’s what we know: Alcohol’s effects vary from person to person, depending on a ...

  11. Polymorphic light eruption

    MedlinePlus

    ... outdoors. Wear a sun hat. Wear sunglasses with UV protection. Use a lip balm with sunscreen. Alternative Names Polymorphic light eruption; Photodermatosis; PMLE Images Polymorphic light eruption on ...

  12. Tryptophan Hydroxylase 2 Gene and Alcohol Use among College Students

    PubMed Central

    Gacek, Paul; Conner, Tamlin S.; Tennen, Howard; Kranzler, Henry R.; Covault, Jonathan

    2009-01-01

    Objective Genes that regulate serotonin activity are regarded as promising predictors of heavy alcohol use. Tryptophan Hydroxylase (TPH2) plays an important role in serotonergic neurotransmission by serving as the rate-limiting enzyme for serotonin biosynthesis in the midbrain and serotonergic neurons. Despite the link between TPH2 and serotonergic function, TPH2’s role in the pathogenesis of alcohol use disorders remains unclear. The goal of this study was to examine whether variation in the TPH2 gene is associated with risky alcohol consumption. Specifically, this study examined whether the TPH2 G-703T polymorphism predicted alcohol consumption among college students. Methods In two successive years, 351 undergraduates were asked to record their alcohol use each day for 30 days using an internet-based electronic diary. Participants’ DNA was collected and polymerase chain reaction genotyping was performed. Results Alcohol consumption was not associated with the TPH2 G-703T polymorphism alone, or the interaction of TPH2 with two other candidate polymorphisms (TPH1 C218A, and the SLC6A4 tri-allelic 5-HTTLPR) or negative life events. Conclusions This study supports recent null findings relating TPH2 to drinking outcomes. It also extends these findings by showing null interactions with the TPH1 C218A polymorphism, the SLC6A4 tri-allelic 5-HTTLPR polymorphism, and environmental stressors in predicting sub-clinical alcohol use among Caucasian American young adults. PMID:18782386

  13. Betaine aldehyde dehydrogenase in sorghum.

    PubMed Central

    Wood, A J; Saneoka, H; Rhodes, D; Joly, R J; Goldsbrough, P B

    1996-01-01

    The ability to synthesize and accumulate glycine betaine is wide-spread among angiosperms and is thought to contribute to salt and drought tolerance. In plants glycine betaine is synthesized by the two-step oxidation of choline via the intermediate betaine aldehyde, catalyzed by choline monooxygenase and betaine aldehyde dehydrogenase (BADH). Two sorghum (Sorghum bicolor) cDNA clones, BADH1 and BADH15, putatively encoding betaine aldehyde dehydrogenase were isolated and characterized. BADH1 is a truncated cDNA of 1391 bp. BADH15 is a full-length cDNA clone, 1812 bp in length, predicted to encode a protein of 53.6 kD. The predicted amino acid sequences of BADH1 and BADH15 share significant homology with other plant BADHs. The effects of water deficit on BADH mRNA expression, leaf water relations, and glycine betaine accumulation were investigated in leaves of preflowering sorghum plants. BADH1 and BADH15 mRNA were both induced by water deficit and their expression coincided with the observed glycine betaine accumulation. During the course of 17 d, the leaf water potential in stressed sorghum plants reached -2.3 MPa. In response to water deficit, glycine betaine levels increased 26-fold and proline levels increased 108-fold. In severely stressed plants, proline accounted for > 60% of the total free amino acid pool. Accumulation of these compatible solutes significantly contributed to osmotic potential and allowed a maximal osmotic adjustment of 0.405 MPa. PMID:8934627

  14. Recent developments in alcoholism:genetic transmission.

    PubMed

    Goldman, D

    1993-01-01

    approach for detecting genes influencing behavior. The relationship of the alcohol metabolic gene variants to alcoholism was clarified by the finding that functional variants of alcohol and aldehyde dehydrogenases can act additively to determine vulnerability to alcoholism. PMID:8234925

  15. Alcoholism and liver disease in Mexico: Genetic and environmental factors

    PubMed Central

    Roman, Sonia; Zepeda-Carrillo, Eloy Alfonso; Moreno-Luna, Laura Eugenia; Panduro, Arturo

    2013-01-01

    Alcoholism and cirrhosis, which are two of the most serious health problems worldwide, have a broad spectrum of clinical outcomes. Both diseases are influenced by genetic susceptibility and cultural traits that differ globally but are specific for each population. In contrast to other regions around the world, Mexicans present the highest drinking score and a high mortality rate for alcoholic liver disease with an intermediate category level of per capita alcohol consumption. Mexico has a unique history of alcohol consumption that is linked to profound anthropological and social aspects. The Mexican population has an admixture genome inherited from different races, Caucasian, Amerindian and African, with a heterogeneous distribution within the country. Thus, genes related to alcohol addiction, such as dopamine receptor D2 in the brain, or liver alcohol-metabolizing enzymes, such as alcohol dehydrogenase class I polypeptide B, cytochrome P450 2E1 and aldehyde dehydrogenase class 2, may vary from one individual to another. Furthermore, they may be inherited as risk or non-risk haplogroups that confer susceptibility or resistance either to alcohol addiction or abusive alcohol consumption and possibly liver disease. Thus, in this era of genomics, personalized medicine will benefit patients if it is directed according to individual or population-based data. Additional association studies will be required to establish novel strategies for the prevention, care and treatment of liver disease in Mexico and worldwide. PMID:24307790

  16. Common ALDH2 genetic variants predict development of hypertension in the SAPPHIRe prospective cohort: Gene-environmental interaction with alcohol consumption

    PubMed Central

    2012-01-01

    Background Genetic variants near/within the ALDH2 gene encoding the mitochondrial aldehyde dehydrogenase 2 have been associated with blood pressure and hypertension in several case–control association studies in East Asian populations. Methods Three common tag single nucleotide polymorphisms (tagSNP) in the ALDH2 gene were genotyped in 1,134 subjects of Chinese origin from the Stanford Asia-Pacific Program for Hypertension and Insulin Resistance (SAPPHIRe) family cohort. We examined whether the ALDH2 SNP genotypes predicted the development of hypertension in the prospective SAPPHIRe cohort. Results Over an average follow-up period of 5.7 years, carriers homozygous for the rs2238152 T allele in the ALDH2 gene were more likely to progress to hypertension than were non-carriers (hazard ratio [HR], 2.88, 95% confidence interval [CI], 1.06-7.84, P = 0.03), corresponding to a population attributable risk of ~7.1%. The risk associated with the rs2238152 T allele were strongest in heavy/moderate alcohol drinkers and was reduced in non-drinkers, indicating an interaction between ALDH2 genetic variants and alcohol intake on the risk of hypertension (P for interaction = 0.04). The risk allele was associated with significantly lower ALDH2 gene expression levels in human adipose tissue. Conclusion ALDH2 genetic variants were associated with progression to hypertension in a prospective Chinese cohort. The association was modified by alcohol consumption. PMID:22839215

  17. [Action of analeptics in acute alcoholic intoxication].

    PubMed

    Bender, K I; Bobrova, L A

    1978-01-01

    Tests conducted on rabbits in a state of acute ethanol poisoning (2.5 g/kg per os) of a medium degree demonstrated that caffein (10 mg/kg) and bemegride (5 mg/kg) introduced one time intravenously at the height of alcoholic intoxication raise the activity of aerobic oxidative processes, but fail to eliminate metabolic acidosis and do not accelerate the excretion of ethanol. Unlike caffein, bemegride shows a tendency toward respiratory compensation of metabolic acidosis and lowers the activity of the alcohol-dehydrogenase. PMID:26595

  18. Amino ketone formation and aminopropanol-dehydrogenase activity in rat-liver preparations

    PubMed Central

    Turner, J. M.; Willetts, A. J.

    1967-01-01

    1. Rat tissue homogenates convert dl-1-aminopropan-2-ol into aminoacetone. Liver homogenates have relatively high aminopropanol-dehydrogenase activity compared with kidney, heart, spleen and muscle preparations. 2. Maximum activity of liver homogenates is exhibited at pH9·8. The Km for aminopropanol is approx. 15mm, calculated for a single enantiomorph, and the maximum activity is approx. 9mμmoles of aminoacetone formed/mg. wet wt. of liver/hr.at 37°. Aminoacetone is also formed from l-threonine, but less rapidly. An unidentified amino ketone is formed from dl-4-amino-3-hydroxybutyrate, the Km for which is approx. 200mm at pH9·8. 3. Aminopropanol-dehydrogenase activity in homogenates is inhibited non-competitively by dl-3-hydroxybutyrate, the Ki being approx. 200mm. EDTA and other chelating agents are weakly inhibitory, and whereas potassium chloride activates slightly at low concentrations, inhibition occurs at 50–100mm. 4. It is concluded that aminopropanol-dehydrogenase is located in mitochondria, and in contrast with l-threonine dehydrogenase can be readily solubilized from mitochondrial preparations by ultrasonic treatment. 5. Soluble extracts of disintegrated mitochondria exhibit maximum aminopropanol-dehydrogenase activity at pH9·1 At this pH, Km values for the amino alcohol and NAD+ are approx. 200 and 1·3mm respectively. Under optimum conditions the maximum velocity is approx. 70mμmoles of aminoacetone formed/mg. of protein/hr. at 37°. Chelating agents and thiol reagents appear to have little effect on enzyme activity, but potassium chloride inhibits at all concentrations tested up to 80mm. dl-3-Hydroxybutyrate is only slightly inhibitory. 6. Dehydrogenase activities for l-threonine and dl-4-amino-3-hydroxybutyrate appear to be distinct from that for aminopropanol. 7. Intraperitoneal injection of aminopropanol into rats leads to excretion of aminoacetone in the urine. Aminoacetone excretion proportional to the amount of the amino alcohol

  19. Single motoneuron succinate dehydrogenase activity.

    PubMed

    Chalmers, G R; Edgerton, V R

    1989-07-01

    We have developed a quantitative histochemical assay for measurement of succinate dehydrogenase (SDH) activity in single motoneurons. A computer image processing system was used to quantify the histochemical enzyme reaction product and to follow the time course of the reaction. The optimal concentration for each of the ingredients of the incubation medium for the SDH reaction was determined and the importance of using histochemical "blanks" in the determination of enzymatic activity was demonstrated. The enzymatic activity was linear with respect to reaction time and tissue thickness. The procedure described meets the criteria generally considered essential for establishment of a quantitative histochemical assay. The assay was then used to examine the SDH activity of cat and rat motoneurons. It was found that motoneurons with a small soma size had a wide range of SDH activity, whereas those with a large soma size were restricted to low SDH activity. PMID:2732457

  20. Glucose-6-Phosphate Dehydrogenase Deficiency.

    PubMed

    Luzzatto, Lucio; Nannelli, Caterina; Notaro, Rosario

    2016-04-01

    G6PD is a housekeeping gene expressed in all cells. Glucose-6-phosphate dehydrogenase (G6PD) is part of the pentose phosphate pathway, and its main physiologic role is to provide NADPH. G6PD deficiency, one of the commonest inherited enzyme abnormalities in humans, arises through one of many possible mutations, most of which reduce the stability of the enzyme and its level as red cells age. G6PD-deficient persons are mostly asymptomatic, but they can develop severe jaundice during the neonatal period and acute hemolytic anemia when they ingest fava beans or when they are exposed to certain infections or drugs. G6PD deficiency is a global health issue. PMID:27040960

  1. Undetected Toxicity Risk in Pharmacogenetic Testing for Dihydropyrimidine Dehydrogenase

    PubMed Central

    Falvella, Felicia Stefania; Caporale, Marta; Cheli, Stefania; Martinetti, Antonia; Berenato, Rosa; Maggi, Claudia; Niger, Monica; Ricchini, Francesca; Bossi, Ilaria; Di Bartolomeo, Maria; Sottotetti, Elisa; Bernardi, Francesca Futura; de Braud, Filippo; Clementi, Emilio; Pietrantonio, Filippo

    2015-01-01

    Fluoropyrimidines, the mainstay agents for the treatment of colorectal cancer, alone or as a part of combination therapies, cause severe adverse reactions in about 10%–30% of patients. Dihydropyrimidine dehydrogenase (DPD), a key enzyme in the catabolism of 5-fluorouracil, has been intensively investigated in relation to fluoropyrimidine toxicity, and several DPD gene (DPYD) polymorphisms are associated with decreased enzyme activity and increased risk of fluoropyrimidine-related toxicity. In patients carrying non-functional DPYD variants (c.1905+1G>A, c.1679T>G, c.2846A>T), fluoropyrimidines should be avoided or reduced according to the patients’ homozygous or heterozygous status, respectively. For other common DPYD variants (c.496A>G, c.1129-5923C>G, c.1896T>C), conflicting data are reported and their use in clinical practice still needs to be validated. The high frequency of DPYD polymorphism and the lack of large prospective trials may explain differences in studies’ results. The epigenetic regulation of DPD expression has been recently investigated to explain the variable activity of the enzyme. DPYD promoter methylation and its regulation by microRNAs may affect the toxicity risk of fluoropyrimidines. The studies we reviewed indicate that pharmacogenetic testing is promising to direct personalised dosing of fluoropyrimidines, although further investigations are needed to establish the role of DPD in severe toxicity in patients treated for colorectal cancer. PMID:25906475

  2. Electrocatalytic hydrocarbon hydroxylation by ethylbenzene dehydrogenase from Aromatoleum aromaticum.

    PubMed

    Kalimuthu, Palraj; Heider, Johann; Knack, Daniel; Bernhardt, Paul V

    2015-02-26

    We report the electrocatalytic activity of ethylbenzene dehydrogenase (EBDH) from the β-proteobacterium Aromatoleum aromaticum. EBDH is a complex 155 kDa heterotrimeric molybdenum/iron-sulfur/heme protein which catalyzes the enantioselective hydroxylation of nonactivated ethylbenzene to (S)-1-phenylethanol without molecular oxygen as cosubstrate. Furthermore, it oxidizes a wide range of other alkyl-substituted aromatic and heterocyclic compounds to their secondary alcohols. Hydroxymethylferrocenium (FM) is used as an artificial electron acceptor for EBDH in an electrochemically driven catalytic system. Electrocatalytic activity of EBDH is demonstrated with both its native substrate ethylbenzene and the related substrate p-ethylphenol. The catalytic system has been modeled by electrochemical simulation across a range of sweep rates and concentrations of each substrate, which provides new insights into the kinetics of the EBDH catalytic mechanism. PMID:25635950

  3. Protective effect of cordycepin-enriched Cordyceps militaris on alcoholic hepatotoxicity in Sprague-Dawley rats.

    PubMed

    Cha, Jae-Young; Ahn, Hee-Young; Cho, Young-Su; Je, Jae-Young

    2013-10-01

    This study was to investigate the protective effect of cordycepin-enriched Cordyceps militaris against alcohol-induced hepatotoxicity in Sprague-Dawley rats. Alcohol-feeding rats were fed diets with Paecilomyces japonica as CPJ group, C. militaris as CCM group, cordycepin-enriched C. militaris as CCMα group at the 3% (w/w) level and silymarin at the 0.1% (w/w) level for 4 weeks. Alcohol administration resulted in a significant increase in the activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), γ-glutamyl transpeptidase (γ-GTP), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) and the levels of blood alcohol and acetaldehyde in serum. However, CCMα group markedly prevented from alcohol-induced elevation of these parameters in serum. CCMα group showed the increased both hepatic activities of alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH). Unlike the action of alcohol treatment on alcoholic fatty liver, CCMα group was also attenuated lipid droplet accumulation in the hepatocytes. Present study was also confirmed the beneficial roles of silymarin (hepatoprotective agent) against alcohol-induced liver injury in rats. Therefore, cordycepin-enriched C. militaris can be a promising candidate to prevent from alcohol-induced hepatotoxicity. PMID:23876821

  4. Evidence of genotoxicity in lymphocytes of non-smoking alcoholics.

    PubMed

    Santovito, Alfredo; Cervella, Piero; Delpero, Massimiliano

    2015-01-01

    Alcohol abuse is a significant public health issue. Epidemiological studies conducted on different populations consistently showed that consumption of alcoholic beverages is associated with cytogenetic damages and higher risk for several types of cancer. However, the interpretation of many cytogenetic studies resulted complicated because some confounding factors, such as smoking habit, are not always taken into account. In the present study, the frequency of sister chromatid exchanges (SCEs), chromosome aberrations (CAs) and micronuclei (MNs) in cultured human lymphocytes was assessed on 15 alcoholic and 15 non-alcoholic control male subjects. Moreover, considering the implication of the Glutathione S-transferases gene polymorphisms in the genetic susceptibility to alcoholic liver diseases, we considered an important issue to evaluate the relationship between these gene polymorphisms and the cytogenetic damage. In our sample we exclusively considered individuals that did not smoke nor consume drugs for a period of at least 2 years prior to the analysis. Statistically significant differences were found between alcoholics and controls in the frequency of SCEs/cell (P = 0.001), RI value (P = 0.001), CAs (P = 0.002) and CAB (P = 0.002). Vice versa, no significant differences were found between alcoholics and controls in terms of MNs frequency and CBPI value. In both samples, no statistically significant association was found between the analysed GSTs gene polymorphisms and the frequencies of MNs, SCEs and CAs. Finally, among alcoholics we found a positive correlation between SCEs and CAs frequencies and the duration of alcohol abuse. PMID:25223858

  5. Neuropeptide S receptor gene variant and environment: contribution to alcohol use disorders and alcohol consumption.

    PubMed

    Laas, Kariina; Reif, Andreas; Akkermann, Kirsti; Kiive, Evelyn; Domschke, Katharina; Lesch, Klaus-Peter; Veidebaum, Toomas; Harro, Jaanus

    2015-05-01

    The functional polymorphism Asn(107) Ile (rs324981, A > T) of the neuropeptide S receptor (NPSR1) gene is involved in the modulation of traits that affect alcohol use. Hence, we have examined whether the NPSR1 A/T polymorphism is associated with alcohol use disorders (AUD) and alcohol use in a population-representative sample. Lifetime AUD were assessed by the MINI psychiatric interview (n = 501) in the older cohort of the longitudinal Estonian Children Personality Behaviour and Health Study at age 25. Alcohol use, environmental adversities and personality were reported by both the younger (original n = 583) and the older cohort (original n = 593) in three study waves. NPSR1 associations with AUD and alcohol use differed by sex. In females, both AUD [odds ratio (OR) = 7.20 (0.94-55.0), P = 0.029] and harmful alcohol use were more prevalent in A-allele carriers. In contrast, in males, AUD was more frequent in T-allele carriers [OR = 2.75 (1.19-6.36), P = 0.017], especially if exposed to adverse environments at age 15 [OR = 10 (1.18-84.51), P = 0.019]. Alcohol use was higher in male T-allele carriers at ages 15 and 18 as well. Similarly to females, however, the risk allele for higher alcohol use for males at age 25 was the A-allele. Many of the effects on alcohol use were explained by genotype effects on measures of personality. In the general population, the NPSR1 Asn(107) Ile polymorphism is associated with AUD and alcohol consumption, dependent on sex, environment and age. The results are in line with the impulsivity and personality regulating role of the NPSR1. PMID:24754478

  6. Alcohol Energy Drinks

    MedlinePlus

    ... Home / About Addiction / Alcohol / Alcohol Energy Drinks Alcohol Energy Drinks Read 14635 times font size decrease font size increase font size Print Email Alcohol energy drinks (AEDs) or Caffeinated alcoholic beverages (CABs) are ...

  7. Alcohol Energy Drinks

    MedlinePlus

    ... Home / About Addiction / Alcohol / Alcohol Energy Drinks Alcohol Energy Drinks Read 17728 times font size decrease font size increase font size Print Email Alcohol energy drinks (AEDs) or Caffeinated alcoholic beverages (CABs) are ...

  8. Alcohol during Pregnancy

    MedlinePlus

    ... Home > Pregnancy > Is it safe? > Alcohol during pregnancy Alcohol during pregnancy E-mail to a friend Please ... and fetal alcohol spectrum disorders. How does drinking alcohol during pregnancy affect your baby's health? Drinking alcohol ...

  9. Biology, Genetics, and Environment: Underlying Factors Influencing Alcohol Metabolism.

    PubMed

    Wall, Tamara L; Luczak, Susan E; Hiller-Sturmhöfel, Susanne

    2016-01-01

    Gene variants encoding several of the alcohol-metabolizing enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), are among the largest genetic associations with risk for alcohol dependence. Certain genetic variants (i.e., alleles)--particularly the ADH1B*2, ADH1B*3, ADH1C*1, and ALDH2*2 alleles--have been associated with lower rates of alcohol dependence. These alleles may lead to an accumulation of acetaldehyde during alcohol metabolism, which can result in heightened subjective and objective effects. The prevalence of these alleles differs among ethnic groups; ADH1B*2 is found frequently in northeast Asians and occasionally Caucasians, ADH1B*3 is found predominantly in people of African ancestry, ADH1C*1 varies substantially across populations, and ALDH2*2 is found almost exclusively in northeast Asians. Differences in the prevalence of these alleles may account at least in part for ethnic differences in alcohol consumption and alcohol use disorder (AUD). However, these alleles do not act in isolation to influence the risk of AUD. For example, the gene effects of ALDH2*2 and ADH1B*2 seem to interact. Moreover, other factors have been found to influence the extent to which these alleles affect a person's alcohol involvement, including developmental stage, individual characteristics (e.g., ethnicity, antisocial behavior, and behavioral undercontrol), and environmental factors (e.g., culture, religion, family environment, and childhood adversity). PMID:27163368

  10. Alcohol conversion

    DOEpatents

    Wachs, Israel E.; Cai, Yeping

    2002-01-01

    Preparing an aldehyde from an alcohol by contacting the alcohol in the presence of oxygen with a catalyst prepared by contacting an intimate mixture containing metal oxide support particles and particles of a catalytically active metal oxide from Groups VA, VIA, or VIIA, with a gaseous stream containing an alcohol to cause metal oxide from the discrete catalytically active metal oxide particles to migrate to the metal oxide support particles and to form a monolayer of catalytically active metal oxide on said metal oxide support particles.

  11. Genetics Home Reference: succinic semialdehyde dehydrogenase deficiency

    MedlinePlus

    ... a chemical that transmits signals in the brain (neurotransmitter) called gamma-amino butyric acid (GABA). The primary ... Diseases National Organization for Rare Disorders (NORD) Pediatric Neurotransmitter Disease Association GeneReviews (1 link) Succinic Semialdehyde Dehydrogenase ...

  12. Aldehyde dehydrogenases: From eye crystallins to metabolic disease and cancer stem cells

    PubMed Central

    Vasiliou, Vasilis; Thompson, David C.; Smith, Clay; Fujita, Mayumi; Chen, Ying

    2014-01-01

    The aldehyde dehydrogenase (ALDH) superfamily is composed of nicotinamide adenine dinucleotide (phosphate) (NAD(P)+)-dependent enzymes that catalyze the oxidation of aldehydes to their corresponding carboxylic acids. To date, 24 ALDH gene families have been identified in the eukaryotic genome. In addition to aldehyde metabolizing capacity, ALDHs have additional catalytic (e.g. esterase and reductase) and non-catalytic activities. The latter include functioning as structural elements in the eye (crystallins) and as binding molecules to endobiotics and xenobiotics. Mutations in human ALDH genes and subsequent inborn errors in aldehyde metabolism are the molecular basis of several diseases. Most recently ALDH polymorphisms have been associated with gout and osteoporosis. Aldehyde dehydrogenase enzymes also play important roles in embryogenesis and development, neurotransmission, oxidative stress and cancer. This article serves as a comprehensive review of the current state of knowledge regarding the ALDH superfamily and the contribution of ALDHs to various physiological and pathophysiological processes. PMID:23159885

  13. Alcohol withdrawal

    MedlinePlus

    ... Seeing or feeling things that aren't there (hallucinations) Seizures Severe confusion ... alcohol withdrawal. You will be watched closely for hallucinations and other signs of delirium tremens. Treatment may ...

  14. Alcoholism (image)

    MedlinePlus

    ... that interferes with physical or mental health, and social, family or job responsibilities. This addiction can lead to liver, circulatory and neurological problems. Pregnant women who drink alcohol in any amount ...

  15. MAOA expression predicts vulnerability for alcohol use.

    PubMed

    Cervera-Juanes, R; Wilhem, L J; Park, B; Lee, R; Locke, J; Helms, C; Gonzales, S; Wand, G; Jones, S R; Grant, K A; Ferguson, B

    2016-04-01

    The role of the monoamines dopamine (DA) and serotonin (5HT) and the monoamine-metabolizing enzyme monoamine oxidase A (MAOA) have been repeatedly implicated in studies of alcohol use and dependence. Genetic investigations of MAOA have yielded conflicting associations between a common polymorphism (MAOA-LPR) and risk for alcohol abuse. The present study provides direct comparison of tissue-specific MAOA expression and the level of alcohol consumption. We analyzed rhesus macaque MAOA (rhMAOA) expression in blood from males before and after 12 months of alcohol self-administration. In addition, nucleus accumbens core (NAc core) and cerebrospinal fluid (CSF) were collected from alcohol access and control (no alcohol access) subjects at the 12-month time point for comparison. The rhMAOA expression level in the blood of alcohol-naive subjects was negatively correlated with subsequent alcohol consumption level. The mRNA expression was independent of rhMAOA-LPR genotype and global promoter methylation. After 12 months of alcohol use, blood rhMAOA expression had decreased in an alcohol dose-dependent manner. Also after 12 months, rhMAOA expression in the NAc core was significantly lower in the heavy drinkers, as compared with control subjects. The CSF measured higher levels of DA and lower DOPAC/DA ratios among the heavy drinkers at the same time point. These results provide novel evidence that blood MAOA expression predicts alcohol consumption and that heavy alcohol use is linked to low MAOA expression in both the blood and NAc core. Together, the findings suggest a mechanistic link between dampened MAOA expression, elevated DA and alcohol abuse. PMID:26148813

  16. MAOA EXPRESSION PREDICTS VULNERABILITY FOR ALCOHOL USE

    PubMed Central

    Cervera-Juanes, Rita; Wilhem, Larry J.; Park, Byung; Lee, Richard; Locke, Jason; Helms, Christa; Gonzales, Steven; Wand, Gary; Jones, Sara R.; Grant, Kathleen A.; Ferguson, Betsy

    2015-01-01

    The role of the monoamines dopamine (DA) and serotonin (5HT) and the monoamine-metabolizing enzyme monoamine oxidase A (MAOA) have been repeatedly implicated in studies of alcohol use and dependence. Genetic investigations of MAOA have yielded conflicting associations between a common polymorphism (MAOA-LPR) and risk for alcohol abuse. The present study provides direct comparison of tissue-specific MAOA expression and the level of alcohol consumption. We analyzed rhesus macaque MAOA (rhMAOA) expression in blood from males before and after 12-months of alcohol self-administration. In addition, nucleus accumbens core (NAc core) and cerebrospinal fluid (CSF) were collected from alcohol-access and control (no alcohol access) subjects at the 12-month time point for comparison. The rhMAOA expression level in the blood of alcohol-naïve subjects was negatively correlated with subsequent alcohol consumption level. The mRNA expression was independent of rhMAOA-LPR genotype and global promoter methylation. After 12 months of alcohol use, blood rhMAOA expression had decreased in an alcohol dose-dependent manner. Also after 12 months, rhMAOA expression in the NAc core was significantly lower in the heavy drinkers, as compared to control subjects. The CSF measured higher levels of DA and lower DOPAC/DA ratios amongst the heavy drinkers at the same time point. These results provide novel evidence that blood MAOA expression predicts alcohol consumption and that heavy alcohol use is linked to low MAOA expression in both the blood and NAc core. Together, the findings suggest a mechanistic link between dampened MAOA expression, elevated DA and alcohol abuse. PMID:26148813

  17. Phosphorylation site on yeast pyruvate dehydrogenase complex

    SciTech Connect

    Uhlinger, D.J.

    1986-01-01

    The pyruvate dehydrogenase complex was purified to homogeneity from baker's yeast (Saccharomyces cerevisiae). Yeast cells were disrupted in a Manton-Gaulin laboratory homogenizer. The pyruvate dehydrogenase complex was purified by fractionation with polyethylene glycol, isoelectric precipitation, ultracentrifugation and chromatography on hydroxylapatite. Final purification of the yeast pyruvate dehydrogenase complex was achieved by cation-exchange high pressure liquid chromatography (HPLC). No endogenous pyruvate dehydrogenase kinase activity was detected during the purification. However, the yeast pyruvate dehydrogenase complex was phosphorylated and inactivated with purified pyruvate dehydrogenase kinase from bovine kidney. Tryptic digestion of the /sup 32/P-labeled complex yielded a single phosphopeptide which was purified to homogeniety. The tryptic digest was subjected to chromatography on a C-18 reverse phase HPLC column with a linear gradient of acetonitrile. Radioactive fractions were pooled, concentrated, and subjected to anion-exchange HPLC. The column was developed with a linear gradient of ammonium acetate. Final purification of the phosphopeptide was achieved by chromatography on a C-18 reverse phase HPLC column developed with a linear gradient of acetonitrile. The amino acid sequence of the homogeneous peptide was determined by manual modified Edman degradation.

  18. Alcoholic liver disease: Clinical and translational research.

    PubMed

    Neuman, Manuela G; Malnick, Stephen; Maor, Yaakov; Nanau, Radu M; Melzer, Ehud; Ferenci, Peter; Seitz, Helmut K; Mueller, Sebastian; Mell, Haim; Samuel, Didier; Cohen, Lawrence B; Kharbanda, Kusum K; Osna, Natalia A; Ganesan, Murali; Thompson, Kyle J; McKillop, Iain H; Bautista, Abraham; Bataller, Ramon; French, Samuel W

    2015-12-01

    The present review spans a broad spectrum of topics dealing with alcoholic liver disease (ALD), including clinical research, translational research, pathogenesis and therapies. A special accent is placed on alcohol misuse, as alcohol is a legally commercialized and taxable product. Drinking alcohol, particularly from a young age, is a major health problem. Alcoholism is known to contribute to morbidity and mortality. A systematic literature search was performed in order to obtain updated data (2008-2015). The review is focused on genetic polymorphisms of alcohol metabolizing enzymes and the role of cytochrome p450 2E1 and iron in ALD. Alcohol-mediated hepatocarcinogenesis is also discussed in the presence or absence of co-morbidities such as viral hepatitis C as well as therapeutic the role of innate immunity in ALD-HCV. Moreover, emphasis was placed on alcohol and drug interactions, as well as liver transplantation for end-stage ALD. Finally, the time came to eradicate alcohol-induced liver and intestinal damage by using betaine. PMID:26342547

  19. Effects of Beverages on Alcohol Metabolism: Potential Health Benefits and Harmful Impacts.

    PubMed

    Wang, Fang; Zhang, Yu-Jie; Zhou, Yue; Li, Ya; Zhou, Tong; Zheng, Jie; Zhang, Jiao-Jiao; Li, Sha; Xu, Dong-Ping; Li, Hua-Bin

    2016-01-01

    Nonalcoholic beverages are usually consumed accompanying alcoholic drinks, and their effects on alcohol metabolism are unclear in vivo. In this study, the effects of 20 nonalcoholic beverages on alcohol metabolism and liver injury caused by alcohol were evaluated in mice. Kunming mice were orally fed with alcohol (52%, v/v) and beverages. The concentrations of ethanol and acetaldehyde in blood as well as the activities of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) in liver were assessed to indicate alcohol metabolism. The levels of aspartate aminotransferase (AST) and alanine transaminase (ALT) in serum as well as the levels of malonaldehyde (MDA) and superoxide dismutase (SOD) in liver were measured to reflect the alcohol-induced liver injury. The results showed that the treatment of soda water, green tea and honey chrysanthemum tea could accelerate ethanol metabolism and prevent liver injuries caused by alcohol when companied with excessive alcohol drinking. They might be potential dietary supplements for the alleviation of harmful effects from excessive alcohol consumption. On the contrary, some beverages such as fresh orange juice and red bull are not advised to drink when companied with alcohol consumption due to their adverse effects on ethanol induced liver injury. PMID:27005619

  20. Effects of Beverages on Alcohol Metabolism: Potential Health Benefits and Harmful Impacts

    PubMed Central

    Wang, Fang; Zhang, Yu-Jie; Zhou, Yue; Li, Ya; Zhou, Tong; Zheng, Jie; Zhang, Jiao-Jiao; Li, Sha; Xu, Dong-Ping; Li, Hua-Bin

    2016-01-01

    Nonalcoholic beverages are usually consumed accompanying alcoholic drinks, and their effects on alcohol metabolism are unclear in vivo. In this study, the effects of 20 nonalcoholic beverages on alcohol metabolism and liver injury caused by alcohol were evaluated in mice. Kunming mice were orally fed with alcohol (52%, v/v) and beverages. The concentrations of ethanol and acetaldehyde in blood as well as the activities of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) in liver were assessed to indicate alcohol metabolism. The levels of aspartate aminotransferase (AST) and alanine transaminase (ALT) in serum as well as the levels of malonaldehyde (MDA) and superoxide dismutase (SOD) in liver were measured to reflect the alcohol-induced liver injury. The results showed that the treatment of soda water, green tea and honey chrysanthemum tea could accelerate ethanol metabolism and prevent liver injuries caused by alcohol when companied with excessive alcohol drinking. They might be potential dietary supplements for the alleviation of harmful effects from excessive alcohol consumption. On the contrary, some beverages such as fresh orange juice and red bull are not advised to drink when companied with alcohol consumption due to their adverse effects on ethanol induced liver injury. PMID:27005619

  1. The crystallographic structure of the mannitol 2-dehydrogenase NADP+ binary complex from Agaricus bisporus.

    PubMed

    Hörer, S; Stoop, J; Mooibroek, H; Baumann, U; Sassoon, J

    2001-07-20

    Mannitol, an acyclic six-carbon polyol, is one of the most abundant sugar alcohols occurring in nature. In the button mushroom, Agaricus bisporus, it is synthesized from fructose by the enzyme mannitol 2-dehydrogenase (MtDH; EC ) using NADPH as a cofactor. Mannitol serves as the main storage carbon (up to 50% of the fruit body dry weight) and plays a critical role in growth, fruit body development, osmoregulation, and salt tolerance. Furthermore, mannitol dehydrogenases are being evaluated for commercial mannitol production as alternatives to the less efficient chemical reduction of fructose. Given the importance of mannitol metabolism and mannitol dehydrogenases, MtDH was cloned into the pET28 expression system and overexpressed in Escherichia coli. Kinetic and physicochemical properties of the recombinant enzyme are indistinguishable from the natural enzyme. The crystal structure of its binary complex with NADP was solved at 1.5-A resolution and refined to an R value of 19.3%. It shows MtDH to be a tetramer and a member of the short chain dehydrogenase/reductase family of enzymes. The catalytic residues forming the so-called catalytic triad can be assigned to Ser(149), Tyr(169), and Lys(173). PMID:11335726

  2. An overview on alcohol oxidases and their potential applications.

    PubMed

    Goswami, Pranab; Chinnadayyala, Soma Sekhar R; Chakraborty, Mitun; Kumar, Adepu Kiran; Kakoti, Ankana

    2013-05-01

    Alcohol oxidases (Alcohol: O₂ Oxidoreductase; EC 1.1.3.x) are flavoenzymes that catalyze the oxidation of alcohols to the corresponding carbonyl compounds with a concomitant release of hydrogen peroxide. Based on substrate specificity, alcohol oxidases may be categorized broadly into four different groups namely, (a) short chain alcohol oxidase (SCAO), (b) long chain alcohol oxidase (LCAO), (c) aromatic alcohol oxidase (AAO), and (d) secondary alcohol oxidase (SAO). The sources reported for these enzymes are mostly limited to bacteria, yeast, fungi, plant, insect, and mollusks. However, the quantum of reports for each category of enzymes considerably varies across these sources. The enzymes belonging to SCAO and LCAO are intracellular in nature, whereas AAO and SAO are mostly secreted to the medium. SCAO and LCAO are invariably reported as multimeric proteins with very high holoenzyme molecular masses, but the molecular characteristics of these enzymes are yet to be clearly elucidated. One of the striking features of the alcohol oxidases that make them distinct from the widely known alcohol dehydrogenase is the avidly bound cofactor to the redox center of these enzymes that obviate the need to supplement cofactor during the catalytic reaction. These flavin-based redox enzymes have gained enormous importance in the development of various industrial processes and products primarily for developing biosensors and production of various industrially useful carbonyl compounds. The present review provides an overview on alcohol oxidases from different categories focusing research on these oxidases during the last decade along with their potential industrial applications. PMID:23525937

  3. Alcohol Abuse: Alcohol Withdrawal Syndrome

    MedlinePlus

    ... they quit drinking. What are the symptoms of alcohol withdrawal syndrome? Symptoms can be mild or severe, and may include: Shakiness Sweats Anxiety Irritability Fatigue Depression Headaches Insomnia Nightmares Decreased appetite More severe withdrawal symptoms ...

  4. Proline dehydrogenase (oxidase) in cancer.

    PubMed

    Liu, Wei; Phang, James M

    2012-01-01

    Proline dehydrogenase (oxidase, PRODH/POX), the first enzyme in the proline degradative pathway, plays a special role in tumorigenesis and tumor development. Proline metabolism catalyzed by PRODH/POX is closely linked with the tricarboxylic acid (TCA) cycle and urea cycle. The proline cycle formed by the interconversion of proline and Δ(1) -pyrroline-5-carboxylate (P5C) between mitochondria and cytosol interlocks with pentose phosphate pathway. Importantly, by catalyzing proline to P5C, PRODH/POX donates electrons into the electron transport chain to generate ROS or ATP. In earlier studies, we found that PRODH/POX functions as a tumor suppressor to initiate apoptosis, inhibit tumor growth, and block the cell cycle, all by ROS signaling. It also suppresses hypoxia inducible factor signaling by increasing α-ketoglutarate. During tumor progression, PRODH/POX is under the control of various tumor-associated factors, such as tumor suppressor p53, inflammatory factor peroxisome proliferator-activated receptor gamma (PPARγ), onco-miRNA miR-23b*, and oncogenic transcription factor c-MYC. Recent studies revealed the two-sided features of PRODH/POX-mediated regulation. Under metabolic stress such as oxygen and glucose deprivation, PRODH/POX can be induced to serve as a tumor survival factor through ATP production or ROS-induced autophagy. The paradoxical roles of PRODH/POX can be understood considering the temporal and spatial context of the tumor. Further studies will provide additional insights into this protein and on its metabolic effects in tumors, which may lead to new therapeutic strategies. PMID:22886911

  5. Protective effect of heat-treated cucumber (Cucumis sativus L.) juice on alcohol detoxification in experimental rats.

    PubMed

    Bajpai, Vivek K; Kim, Na-Hyung; Kim, Ji-Eun; Kim, Kangmin; Kang, Sun Chul

    2016-05-01

    In this study, heat-treated cucumber juice was assessed for its protective effect on blood alcohol levels and hepatic alcohol metabolic enzyme system in experimental rats. Initially, during detoxification of alcohol, all groups were orally dosed to 22% alcohol (6ml/kg body weight) along with different concentrations of heat-treated cucumber juice (10, 100 and 500mg/kg) and commercial goods for hangover-removal on sale (2ml/kg). Cucumber juice was dosed before 30 min, and simultaneously after 30min of alcohol administration, and its hepatoprotective effect on blood alcohol levels and hepatic alcohol metabolic enzyme system in experimental rats was evaluated. As a result, after 7h, remarkable reduction was found in the blood alcohol levels for all concentrations of cucumber juice treatment. Treatment with cucumber juice resulted in increasing dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) enzymatic activities in rat liver at 9h after alcohol administration thereby stimulated blood alcohol metabolism as compared with control group. The effect of heat-treated cucumber juice on alcohol detoxification was observed only in the rats treated before 30min from alcohol administration. These findings indicate that heat-treated cucumber juice has significant protective effect on alcohol detoxification in experimental rats, suggesting its usefulness in the treatment of liver injury caused by alcohol consumption. PMID:27383492

  6. Relation between Neonatal Icter and Gilbert Syndrome in Gloucose-6-Phosphate Dehydrogenase Deficient Subjects

    PubMed Central

    Zahedpasha, Yadollah; Ahmadpour, Mousa; Niaki, Haleh Akhavan; Alaee, Ehsan

    2014-01-01

    Background and Aim: The pathogenesis of neonatal hyperbilirubinemia hasn’t been completely defined in Gloucose-6-Phosphate Dehydrogenase (G6PD) deficient newborns. The aim of this study was to detect the relationship between Gilbert’s syndrome and hyperbilirubinemia in Gloucose-6-Phosphate Dehydrogenase (G6PD) deficient neonates. Materials and Methods: This case-control study was conducted in Amirkola pediatrics teaching hospital, Babol, Iran. A total number of one hundred four infants were included in the study (51 infants with neonatal jaundice and Gloucose-6-Phosphate Dehydrogenase (G6PD) deficiency admitted to phototherapy or transfusion were selected as the case group and 53 infants with Gloucose-6-Phosphate Dehydrogenase (G6PD) deficiency admitted for other reasons than jaundice were selected as the control group). Exclusion criteria were ABO or Rh incompatibility or other reasons that made Coombs test positive, sepsis, hepatosplenomegaly, metabolic diseases, medical treatment and phototherapy. The promoter and coding regions of Uridine diphosphate Glucuronosyl Transferase 1A1 (UGT1A1) of genomic DNA were amplified by polymerase chain reaction (PCR) isolated from leukocytes. We used chi-square test and t-test to compare cases and controls. Results: Distribution of Gilbert genome was not significantly different between the two groups; among cases, 33.3% were homozygote, 35.3% heterozygote, and 31.4% normal. Among controls, 22.6% were homozygote, 34% heterozygote, and 43.4% normal (p-value=xxx). Hyperbilirubinemia family history didn’t differ significantly between these two groups. Conclusions: We showed that in Gloucose-6-Phosphate Dehydrogenase (G6PD) deficient neonates, there was no significant association between Gilbert’s syndrome (promoter polymorphism) and hyperbilirubinemia. PMID:24783083

  7. Alcohol withdrawal.

    PubMed

    Manasco, Anton; Chang, Shannon; Larriviere, Joseph; Hamm, L Lee; Glass, Marcia

    2012-11-01

    Alcohol withdrawal is a common clinical condition that has a variety of complications and morbidities. The manifestations can range from mild agitation to withdrawal seizures and delirium tremens. The treatments for alcohol withdrawal include benzodiazepines, anticonvulsants, beta-blockers and antihypertensives. Although benzodiazepines are presently a first-line therapy, there is controversy regarding the efficacies of these medications compared with others. Treatment protocols often involve one of two contrasting approaches: symptom-triggered versus fixed-schedule dosing of benzodiazepines. We describe these protocols in our review and examine the data supporting symptom-triggered dosing as the preferred method for most patients in withdrawal.The Clinical Institute Withdrawal Assessment for Alcohol scoring system for alcohol withdrawal streamlines care, optimizes patient management, and is the best scale available for withdrawal assessment. Quality improvement implications for inpatient management of alcohol withdrawal include increasing training for signs of withdrawal and symptom recognition, adding new hospital protocols to employee curricula, and ensuring manageable patient-to-physician and patient-to-nurse ratios. PMID:23128805

  8. Genetic predisposition in alcoholism: association of the D2 dopamine receptor TaqI B1 RFLP with severe alcoholics.

    PubMed

    Blum, K; Noble, E P; Sheridan, P J; Montgomery, A; Ritchie, T; Ozkaragoz, T; Fitch, R J; Wood, R; Finley, O; Sadlack, F

    1993-01-01

    Previous studies have shown an association of the 3' Taq1 A1 allele of the D2 dopamine receptor (DRD2) gene with severe alcoholism. The recent demonstration of a new polymorphism located closer to the regulatory regions of this gene, permits an associational analysis of these 5' Taq1 B alleles with alcoholism and a comparison with the 3' Taq1 A alleles. Restriction fragment length polymorphism methodology was used to analyze a total of 133 blood samples of nonalcoholics, less severe alcoholics, and severe alcoholics. In white subjects (n = 115), no significant difference in the prevalence of the B1 allele is found between nonalcoholics (n = 30) and less severe alcoholics (n = 36). However, the prevalence of this allele is significantly higher in severe alcoholics (n = 49) when compared to either nonalcoholics (p = 0.008) or less severe alcoholics (p = 0.005). When Taq1 B and Taq1 A alleles of the DRD2 gene are compared in whites, the prevalence of the A1 allele is significantly higher than the B1 allele only in the severe alcoholic group. In conclusion, alleles in both the 5' and 3' region of the DRD2 gene associate with severe alcoholism. This suggests that the DRD2 gene may have an etiological role in some severe alcoholics. PMID:8095394

  9. Benzene toxicity: emphasis on cytosolic dihydrodiol dehydrogenases

    SciTech Connect

    Bolcsak, L.E.

    1982-01-01

    Blood dyscrasias such as leukopenia and anemia have been clearly identified as consequences of chronic benzene exposure. The metabolites, phenol, catechol, and hydroquinone produced inhibition of /sup 59/Fe uptake in mice which followed the same time course as that produced by benzene. The inhibitor of benzene oxidation, 3-amino-1,2,4-triazole, mitigated the inhibitory effects of benzene and phenol only. These data support the contention that benzene toxicity is mediated by a metabolite and suggest that the toxicity of phenol is a consequence of its metabolism to hydroquinone and that the route of metabolism to catechol may also contribute to the production of toxic metabolite(s). The properties of mouse liver cytosolic dihydrodiol dehydrogenases were examined. These enzymes catalyze the NADP/sup +/-dependent oxidation of trans-1,2-dihydro-1,2-dihydroxybenzene (BDD) to catechol, a possible toxic metabolite of benzene produced via this metabolic route. Four distinct dihydrodiol dehydrogenases (DD1, DD2, DD3, and DD4) were purified to apparent homogeneity as judged by SDS polyacrylamide gel electrophoresis and isoelectric focusing. DD1 appeared to be identical to the major ketone reductase and 17..beta..-hydroxysteroid dehydrogenase activity in the liver. DD2 exhibited aldehyde reductase activity. DD3 and DD4 oxidized 17..beta..-hydroxysteroids, but no carbonyl reductase activity was detected. These relationships between BDD dehydrogenases and carbonyl reductase and/or 17..beta..-hydroxysteroid dehydrogenase activities were supported by several lines of evidence.

  10. Alteration of substrate specificity of alanine dehydrogenase

    PubMed Central

    Fernandes, Puja; Aldeborgh, Hannah; Carlucci, Lauren; Walsh, Lauren; Wasserman, Jordan; Zhou, Edward; Lefurgy, Scott T.; Mundorff, Emily C.

    2015-01-01

    The l-alanine dehydrogenase (AlaDH) has a natural history that suggests it would not be a promising candidate for expansion of substrate specificity by protein engineering: it is the only amino acid dehydrogenase in its fold family, it has no sequence or structural similarity to any known amino acid dehydrogenase, and it has a strong preference for l-alanine over all other substrates. By contrast, engineering of the amino acid dehydrogenase superfamily members has produced catalysts with expanded substrate specificity; yet, this enzyme family already contains members that accept a broad range of substrates. To test whether the natural history of an enzyme is a predictor of its innate evolvability, directed evolution was carried out on AlaDH. A single mutation identified through molecular modeling, F94S, introduced into the AlaDH from Mycobacterium tuberculosis (MtAlaDH) completely alters its substrate specificity pattern, enabling activity toward a range of larger amino acids. Saturation mutagenesis libraries in this mutant background additionally identified a double mutant (F94S/Y117L) showing improved activity toward hydrophobic amino acids. The catalytic efficiencies achieved in AlaDH are comparable with those that resulted from similar efforts in the amino acid dehydrogenase superfamily and demonstrate the evolvability of MtAlaDH specificity toward other amino acid substrates. PMID:25538307

  11. Naltrexone for Alcoholism

    MedlinePlus

    MENU Return to Web version Naltrexone for Alcoholism Naltrexone for Alcoholism Is alcoholism a disease? Yes. Most experts agree that alcoholism is a disease, just as high blood pressure, diabetes and ...

  12. Fetal Alcohol Spectrum Disorders

    MedlinePlus

    ... alcohol can cause a group of conditions called fetal alcohol spectrum disorders (FASDs). Effects can include physical and behavioral problems such ... alcohol syndrome is the most serious type of FASD. People with fetal alcohol syndrome have facial abnormalities, ...

  13. NAD + -dependent Formate Dehydrogenase from Plants

    PubMed Central

    Alekseeva, A.A.; Savin, S.S.; Tishkov, V.I.

    2011-01-01

    NAD+-dependent formate dehydrogenase (FDH, EC 1.2.1.2) widely occurs in nature. FDH consists of two identical subunits and contains neither prosthetic groups nor metal ions. This type of FDH was found in different microorganisms (including pathogenic ones), such as bacteria, yeasts, fungi, and plants. As opposed to microbiological FDHs functioning in cytoplasm, plant FDHs localize in mitochondria. Formate dehydrogenase activity was first discovered as early as in 1921 in plant; however, until the past decade FDHs from plants had been considerably less studied than the enzymes from microorganisms. This review summarizes the recent results on studying the physiological role, properties, structure, and protein engineering of plant formate dehydrogenases. PMID:22649703

  14. Two different dihydroorotate dehydrogenases in Lactococcus lactis.

    PubMed Central

    Andersen, P S; Jansen, P J; Hammer, K

    1994-01-01

    The pyrimidine de novo biosynthesis pathway has been characterized for a number of organisms. The general pathway consists of six enzymatic steps. In the characterization of the pyrimidine pathway of Lactococcus lactis, two different pyrD genes encoding dihydroorotate dehydrogenase were isolated. The nucleotide sequences of the two genes, pyrDa and pyrDb, have been determined. One of the deduced amino acid sequences has a high degree of homology to the Saccharomyces cerevisiae dihydroorotate dehydrogenase, and the other resembles the dihydroorotate dehydrogenase from Bacillus subtilis. It is possible to distinguish between the two enzymes in crude extracts by using different electron acceptors. We constructed mutants containing a mutated form of either one or the other or both of the pyrD genes. Only the double mutant is pyrimidine auxotrophic. Images PMID:8021180

  15. Genetical genomic determinants of alcohol consumption in rats and humans

    PubMed Central

    Tabakoff, Boris; Saba, Laura; Printz, Morton; Flodman, Pam; Hodgkinson, Colin; Goldman, David; Koob, George; Richardson, Heather N; Kechris, Katerina; Bell, Richard L; Hübner, Norbert; Heinig, Matthias; Pravenec, Michal; Mangion, Jonathan; Legault, Lucie; Dongier, Maurice; Conigrave, Katherine M; Whitfield, John B; Saunders, John; Grant, Bridget; Hoffman, Paula L

    2009-01-01

    Background We have used a genetical genomic approach, in conjunction with phenotypic analysis of alcohol consumption, to identify candidate genes that predispose to varying levels of alcohol intake by HXB/BXH recombinant inbred rat strains. In addition, in two populations of humans, we assessed genetic polymorphisms associated with alcohol consumption using a custom genotyping array for 1,350 single nucleotide polymorphisms (SNPs). Our goal was to ascertain whether our approach, which relies on statistical and informatics techniques, and non-human animal models of alcohol drinking behavior, could inform interpretation of genetic association studies with human populations. Results In the HXB/BXH recombinant inbred (RI) rats, correlation analysis of brain gene expression levels with alcohol consumption in a two-bottle choice paradigm, and filtering based on behavioral and gene expression quantitative trait locus (QTL) analyses, generated a list of candidate genes. A literature-based, functional analysis of the interactions of the products of these candidate genes defined pathways linked to presynaptic GABA release, activation of dopamine neurons, and postsynaptic GABA receptor trafficking, in brain regions including the hypothalamus, ventral tegmentum and amygdala. The analysis also implicated energy metabolism and caloric intake control as potential influences on alcohol consumption by the recombinant inbred rats. In the human populations, polymorphisms in genes associated with GABA synthesis and GABA receptors, as well as genes related to dopaminergic transmission, were associated with alcohol consumption. Conclusion Our results emphasize the importance of the signaling pathways identified using the non-human animal models, rather than single gene products, in identifying factors responsible for complex traits such as alcohol consumption. The results suggest cross-species similarities in pathways that influence predisposition to consume alcohol by rats and humans

  16. Acetate Causes Alcohol Hangover Headache in Rats

    PubMed Central

    Maxwell, Christina R.; Spangenberg, Rebecca Jay; Hoek, Jan B.; Silberstein, Stephen D.; Oshinsky, Michael L.

    2010-01-01

    Background The mechanism of veisalgia cephalgia or hangover headache is unknown. Despite a lack of mechanistic studies, there are a number of theories positing congeners, dehydration, or the ethanol metabolite acetaldehyde as causes of hangover headache. Methods We used a chronic headache model to examine how pure ethanol produces increased sensitivity for nociceptive behaviors in normally hydrated rats. Results Ethanol initially decreased sensitivity to mechanical stimuli on the face (analgesia), followed 4 to 6 hours later by inflammatory pain. Inhibiting alcohol dehydrogenase extended the analgesia whereas inhibiting aldehyde dehydrogenase decreased analgesia. Neither treatment had nociceptive effects. Direct administration of acetate increased nociceptive behaviors suggesting that acetate, not acetaldehyde, accumulation results in hangover-like hypersensitivity in our model. Since adenosine accumulation is a result of acetate formation, we administered an adenosine antagonist that blocked hypersensitivity. Discussion Our study shows that acetate contributes to hangover headache. These findings provide insight into the mechanism of hangover headache and the mechanism of headache induction. PMID:21209842

  17. Allyl alcohol

    Integrated Risk Information System (IRIS)

    Allyl alcohol ; CASRN 107 - 18 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  18. Isobutyl alcohol

    Integrated Risk Information System (IRIS)

    Isobutyl alcohol ; CASRN 78 - 83 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  19. Propargyl alcohol

    Integrated Risk Information System (IRIS)

    Propargyl alcohol ; CASRN 107 - 19 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  20. Alcohol fuels

    SciTech Connect

    Not Available

    1981-07-01

    The API publication 4312 reports a detailed study carried out by Battelle on the energy balances for five alcohol-fuel-producing technologies. The results indicate that processes for producing ethanol from corn are net consumers of energy while ethanol from sugar cane and methanol from wood are net energy producers.

  1. Overexpression of Lactobacillus casei D-hydroxyisocaproic acid dehydrogenase in cheddar cheese.

    PubMed

    Broadbent, Jeffery R; Gummalla, Sanjay; Hughes, Joanne E; Johnson, Mark E; Rankin, Scott A; Drake, Mary Anne

    2004-08-01

    Metabolism of aromatic amino acids by lactic acid bacteria is an important source of off-flavor compounds in Cheddar cheese. Previous work has shown that alpha-keto acids produced from Trp, Tyr, and Phe by aminotransferase enzymes are chemically labile and may degrade spontaneously into a variety of off-flavor compounds. However, dairy lactobacilli can convert unstable alpha-keto acids to more-stable alpha-hydroxy acids via the action of alpha-keto acid dehydrogenases such as d-hydroxyisocaproic acid dehydrogenase. To further characterize the role of this enzyme in cheese flavor, the Lactobacillus casei d-hydroxyisocaproic acid dehydrogenase gene was cloned into the high-copy-number vector pTRKH2 and transformed into L. casei ATCC 334. Enzyme assays confirmed that alpha-keto acid dehydrogenase activity was significantly higher in pTRKH2:dhic transformants than in wild-type cells. Reduced-fat Cheddar cheeses were made with Lactococcus lactis starter only, starter plus L. casei ATCC 334, and starter plus L. casei ATCC 334 transformed with pTRKH2:dhic. After 3 months of aging, the cheese chemistry and flavor attributes were evaluated instrumentally by gas chromatography-mass spectrometry and by descriptive sensory analysis. The culture system used significantly affected the concentrations of various ketones, aldehydes, alcohols, and esters and one sulfur compound in cheese. Results further indicated that enhanced expression of d-hydroxyisocaproic acid dehydrogenase suppressed spontaneous degradation of alpha-keto acids, but sensory work indicated that this effect retarded cheese flavor development. PMID:15294819

  2. Alcoholism and Minority Populations.

    ERIC Educational Resources Information Center

    Watts, Thomas D.; Wright, Roosevelt, Jr.

    1991-01-01

    Briefly discusses some aspects of the role of the state and the position of minorities in respect to alcoholism policies and services. Includes case study of a Black alcoholic. Refers readers to studies on Black alcoholism, Native American alcoholism, Hispanic alcoholism, and Asian-American alcoholism. (Author/NB)

  3. Establishment of the Tree Shrew as an Alcohol-Induced Fatty Liver Model for the Study of Alcoholic Liver Diseases

    PubMed Central

    Xing, Huijie; Jia, Kun; He, Jun; Shi, Changzheng; Fang, Meixia;